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Abstract

The present thesis focuses on the mechanics of the seismic source, in the framework

of asperity models of faults. Thanks to the major role played by asperities in the

dynamics of the seismic source, faults have been treated as dynamical systems

made of a small number of asperities, weak regions or fault segments. The state of

the system is described by the slip deficits or Coulomb stresses associated with the

regions of the fault. Five cases are illustrated, differing for the number of asperities,

weak regions or fault segments and for the mechanical processes investigated. In a

model of a fault with a single asperity, the dynamics is described by two dynamic

modes, corresponding to asperity loading and asperity failure, respectively. In a

model of a fault with an asperity and a weak region, the dynamics is studied in

terms of three dynamic modes, corresponding to interseismic intervals, seismic

slip of the asperity and afterslip in the weak region. In a model of a two-asperity

fault with purely elastic coupling, the dynamics is described by a sticking mode,

associated with stationary asperities, and three slipping modes, corresponding

to the slip of one or both asperities at a time. If viscoelastic coupling between

the asperities is assumed, the model allows to highlight the role of rock rheology

in the duration of the interseismic intervals of the fault and in the response to

stress perturbations from neighbouring faults. In a model of a system of n faults

generating a seismic sequence, it is possible to retrieve the state of the system at

any time during the sequence. Also, the order of fault activation is described by

a permutation of the first n natural numbers. In each case, applications to real

faults are presented.
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Chapter 1

Introduction

Several aspects of fault mechanics can be effectively investigated by devising

discrete models that reduce fault dynamics to its essentials. From a macroscopic

point of view, this is accomplished by modelling faults (or fault systems) as

made of a small number of regions, namely asperities and weak regions (or fault

segments). Asperities on a fault are identified as regions with a high static friction

and a velocity-weakening dynamic friction; therefore, they can be also referred to

as strong regions (Lay et al., 1982; Ruff, 1983; Scholz, 1990). On the other hand,

weak (or stable) fault regions are characterized as regions with a negligible static

friction and a velocity-strengthening dynamic friction.

In the present thesis, faults are treated as discrete dynamical systems whose

basic elements are asperities, weak region or fault segments. This study method

presents several benefits. First of all, the number of degrees of freedom required

to describe fault dynamics is reduced, thus allowing the analytical solution of

the evolution equations. What is more, it is possible to analyse the evolution

of the system from a geometrical point of view, following its orbit in the phase

space. Finally, this approach allows to focus on the main features of the seismic

source (e.g. stick-slip mechanism, stress transfers, post-seismic deformation) while

avoiding the more complicated description of continuum mechanics.

Chapter 2 serves as an introduction to the most relevant aspects of fault

mechanics, with particular emphasis on the description of friction on a fault, the

interaction between neighbouring faults, the rheology of lithospheric rocks and

two important post-seismic phenomena.
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Chapter 3 presents the main achievements in the field of discrete modelling of

fault dynamics, focusing on asperity models of faults and the relevant theory of

dynamical systems. At the end of the chapter, the reference fault model for all

the studies presented in the thesis is illustrated.

The subsequent chapters present five fault models, differing for the number

of asperities, weak regions or fault segments and for the mechanical processes

investigated.

The simplest case is considered in Chapter 4, where it is assumed that the

fault activity is dominated by the evolution of one large asperity on its surface.

The system has one degree of freedom and its dynamics is described in terms

of two dynamic modes. The main features of a seismic event (e.g. moment rate

function, seismic spectrum, energy budget) are discussed. In Chapter 5, a fault

containing an asperity and a weak region is considered. The system has two

degrees of freedom and its dynamics is studied by means of three dynamic modes.

The interaction between seismic and aseismic slip on the fault is discussed. In

Chapter 6, a two-asperity fault is considered, assuming purely elastic coupling

between the asperities. The system has two degrees of freedom and its dynamics

is described in terms of four dynamic modes. The role of asperity size on various

aspects of the model (e.g. sticking region, slip amplitude, duration and moment

rate spectrum of a seismic event) is investigated. In Chapter 7, the evolution of

a two-asperity fault in the presence of viscoelastic relaxation is discussed. The

system has three degrees of freedom and its dynamics is studied by means of the

same four dynamic modes as in the purely elastic case. The interplay between

viscoelastic relaxation and stress perturbations in the evolution of a two-asperity

fault is investigated in Chapter 8. The complications with respect to the case of a

purely elastic rock rheology are presented. Finally, a model for the evolution of

a system of n faults during a seismic sequence is illustrated in Chapter 9. The

role played by stress drops and stress transfers in governing the order of fault

activation during a seismic sequence is discussed.

In each case, applications to real faults are presented, showing the potential

to shade some light on the essential aspects of complex geophysical observations.

4



Chapter 2

Seismic source dynamics

The goal of the present chapter is to provide an overview of the main aspects of

the seismic source dynamics this thesis focuses on. First, the general features of

fault mechanics are presented, discussing the phases of the seismic cycle, the role

of friction in the process of earthquake generation and the complications arising

from the interaction between neighbouring faults. Afterwards, the rheological

properties of lithospheric rocks are considered, with particular reference to the

characteristics of viscoelasticity. Finally, I provide a description of two significant

phenomena often observed in the aftermath of an earthquake, namely afterslip

and pore fluid diffusion.

2.1 Fault mechanics

It is a geological evidence that lithospheric rocks exhibit a certain degree of

fracturing at any scale of observation. As a consequence of the relative motion

of tectonic plates, lithospheric rocks undergo a continual process of deformation.

The stress thus accumulated in the medium is preferably released by the relative

motion of the sides of a pre-existing fracture, instead of by the formation of a

new one, in order to minimize the expenditure of energy. We call fault any large

fracture showing signs of a dislocation, i.e., the relative motion of its sides.

According to seismic and geodetic observations, faults can accommodate tec-

tonic motion in two different ways. Some fault regions exhibit a slow, quasi-static

creep, with slip rates comparable to tectonic rates; other fault regions remain

locked for most of the time and eventually undergo a sudden failure, catastrophi-

cally releasing the deformation energy stored in the medium with the emission of

5



elastic waves. The former is known as aseismic (stable) slip, the latter as seismic

(unstable) slip. In the case of seismogenic faults, the process of stress build-up

takes place over time intervals of tens or hundredths of years, whereas the duration

of seismic slip is of the order of tens of seconds. This mechanism is referred to

as “stick-slip” (where the “stick” corresponds to the interseismic period of elastic

strain accumulation and the “slip” identifies the earthquake) and is related to the

frictional properties of seismogenic faults (§2.1.1).

In fact, the dynamical behaviour of a fault is governed by two factors, both

functions of time and space: the frictional resistance and the stress applied

to the fault. As for the stress field, it is the result of the combined action of

lithostatic pressure and tectonic stress: the former is associated with a purely

normal, compressive contribution, whereas the latter is generally made of two

components, one normal to the fault plane and the other tangential to it. This

tangential component is the one responsible for earthquake generation: according

to Amonton’s law (Turcotte and Schubert, 2002), slip on a fault initiates when

the shear stress on the fault reaches the threshold

τs = ks(p− σn − p′) (2.1)

where ks is known as static friction coefficient, σn is the tectonic normal stress on

the fault, p is the lithostatic pressure and p′ is the pore fluid pressure. According

to Eq. (2.1), the condition for the onset of slip may change both in space and time,

as a consequence of a variation in any of the four components in its right-hand side.

In fact: ks is a property of the rocks embedding the fault; σn depends on tectonic

loading and on the interaction with neighbouring faults (§2.1.2); p is a function

of the depth and the orientation of the fault; p′ depends on the concentration of

pore fluids in lithospheric rocks.

2.1.1 Frictional resistance

As already stated, earthquakes rarely occur as a consequence of the formation of

a new crack, but instead they take place on a pre-existing fault. Accordingly, it

is crucial to underline that earthquakes are a frictional, rather than a fracture,

phenomenon (Scholz, 1998). Nonetheless, an increase in the contact points of the

sides of a fault and chemical interactions between rocks (welding) may cause the

static friction coefficient on a fault to grow larger over long interseismic intervals,

typically as a logarithmic function of time: this process is known as fault healing

6



(Dieterich, 1972).

To date, the most accurate description of frictional resistance is provided by

the rate- and state-dependent friction laws. In the Dieterich-Ruina formulation

(Ruina, 1983; Dieterich, 1994), they express the static friction coefficient asks(V, ζ) = k∗s + a ln
(
V
V ∗

)
+ ζ

ζ̇ = −V
L

[
ζ + b ln

(
V
V ∗

)] (2.2)

where: V is the slip velocity; V ∗ is a reference slip velocity, corresponding to

the steady-state friction coefficient k∗s ; the nondimensional coefficients a and b

depend on the material; ζ is a nondimensional variable representing the state of

the contact surface; L is the critical slip distance required for friction to change

value following a variation in the slip velocity. This formulation points out that

friction depends on the sliding velocity and on the “history” of the sliding surface.

Frictional stability is governed by the difference (a−b): if (a−b) ≥ 0, the material

is said to be velocity-strengthening (stable), so that an increase in the slip velocity

entails an increase in friction; the opposite holds if (a − b) < 0, so that the

material is said to be velocity-weakening (unstable). In the Earth’s interior, the

parameter (a− b) shows a dependence upon temperature and depth (Stesky et

al., 1974). Furthermore, it is affected by the presence of wear detritus on the

fault surface (the so-called fault gouge), resulting from previous episodes of slip

(Marone et al., 1990). To sum up, earthquakes can only take place on faults

located where unstable sliding conditions are fulfilled, whereas aseismic slip is

a characteristic feature of faults lying in a velocity-strengthening environment.

Furthermore, modelling and experimental observations have pointed out that

instability is attained only if the slipping patch reaches a critical size Lc, known

as nucleation length (Dieterich, 1992).

As a matter of fact, the typical stick-slip behaviour associated with the

dynamics of a seismogenic fault can be also reproduced adopting a simplified

version of the rate- and state-dependent friction laws: the Coulomb friction law.

It describes the friction coefficient k as a function of the slip velocity V in the

form

k(V ) =

ks V = 0

kd V 6= 0
(2.3)

where kd < ks is called dynamic friction coefficient. Typical values of ks range

7



between 0.6 and 0.8 for most crustal rocks, whereas a representative value for the

ratio kd/ks is 0.7 (Jaeger and Cook, 1976; Scholz, 1990).

2.1.2 Interaction between faults

A dramatic complication in studying the evolution of a fault arises from the fact

that no fault can be considered isolated; in fact, any fault is subject to the stress

perturbations associated with earthquakes on neighbouring faults (Harris, 1998;

Steacy et al., 2005). We refer to system of faults when considering a set of two or

more faults that are close enough to be significantly affected by each other. When-

ever a fault slips, the stress field in the surrounding medium is altered. Focusing

on the coseismic effects, static and dynamic stress changes can be distinguished:

the former take place instantaneously, as the result of the dislocation on the

slipping fault, whereas the latter are associated with the propagation of elastic

waves and are as such oscillatory. The magnitude of stress changes decays with

the distance from the dislocation source; however, static stress changes attenuate

more rapidly than dynamic stress changes, which then dominate at large distances

(Belardinelli et al., 2003). The stress field on a fault can be further altered owing

to post-seismic processes (§2.3).

As a result of stress perturbations, the stress field on a fault can be enhanced

or weakened, the net effect depending on the relative orientations and locations of

the interacting faults. What is more, contributions from different faults of the

same system may partially cancel each other out. Accordingly, the occurrence

time of future earthquakes on the perturbed fault may change with respect to the

unperturbed condition, which is governed by tectonic loading. The interaction

between neighbouring faults and the problem of stress perturbations are considered

in the discrete models presented in §8 and §9.

Coulomb stress

An effective way to characterize the interaction between faults is provided by the

concept of Coulomb stress (Stein, 1999). On a given fault, it is defined as the

difference between the shear stress σt in the direction of fault slip and the static

friction τs on the fault surface:

σC = σt − τs. (2.4)

8



Accordingly, σC is negative during an interseismic interval and a seismic event

occurs when σC vanishes.

After the occurrence of an earthquake in the surroundings, a perturbing stress

field is superimposed to the fault. This additional stress results in the fault

being brought closer to or farther from the failure, depending on its position and

orientation relative to the dislocation source. Generally speaking, the coseismic

traction transferred to the fault consists in a normal component ∆σn and a

tangential component ∆σt: the former modifies the frictional resistance of the

fault, while the latter promotes or prevents the slip on the fault, depending on its

orientation relative to the tectonic stress loading the fault. The change in static

friction is

∆τs = −ks ∆σn (2.5)

where ks is the effective static friction coefficient on the perturbed fault (i.e., the

friction coefficient corresponding to the net effect of lithostatic and pore fluid

pressures). We conclude that the frictional resistance of the fault is increased if

∆σn < 0 (compressional) or decreased if ∆σn > 0 (extensional). As for ∆σt, it is

defined as positive if it promotes the slip of the fault as driven by tectonic loading,

while it is defined as negative if it counteracts the effect of tectonic motion, thus

obstructing fault slip.

The net effect of the stress perturbation can be estimated from the variation

in Coulomb stress, given by

∆σC = ∆σt −∆τs. (2.6)

The slip of the perturbed fault is anticipated if ∆σC > 0, whereas it is delayed if

∆σC < 0.

2.2 Rheology of the lithosphere

The rheological properties of lithospheric rocks play a crucial role in the long-term

evolution of a fault. They can be inferred from seismological and geodetic surveys,

from the observations of post-seismic deformations following large earthquakes

and from the constitutive equations (strain vs. stress relations) derived from

experimental data (Kirby and Kronenberg, 1987; Nishimura and Tatcher, 2003;

Bürgmann and Dresen, 2008). The rheological behaviour of rocks is a consequence

9



not only of their composition, but also of a number of external (environmental)

factors, such as pressure and temperature (Kusznir et al., 1991).

It must also be borne in mind that the rheology of lithospheric rocks strongly

depends on the time scale of the observations. Accordingly, it is possible to

discriminate between a short-term, elastic behaviour and a long-term, viscous

behaviour (Carter, 1976). The former is associated with the typical time scales

of seismic waves propagation, whereas the latter only appears on time scales

several orders of magnitude larger. As a result, a viscoelastic rheology is generally

attributed to lithospheric rocks (Ranalli, 1995).

This degree of anelasticity has a significant impact on the post-seismic defor-

mation of the medium in which the dislocation source is located. In fact, the static

stress field produced by an earthquake undergoes a certain amount of relaxation

during the interseismic intervals; in turn, this process alters the stress distribution

on surrounding faults, thus modifying the occurrence times of future seismic events

(Piombo et al., 2007; Ding and Lin, 2014). With similar considerations as in §2.1.2,

earthquakes can be anticipated or delayed by viscoelastic relaxation, depending

on the net effect of the stress redistribution.

2.2.1 The Maxwell body

One of the most common models employed to reproduce the viscoelastic rheology

of lithospheric rocks is the Maxwell body (e.g. Dragoni et al., 1982, Turcotte and

Schubert, 2002).

Many rheological models are graphically represented as combinations of basic

mechanical elements, such as springs and dashpots. In this description, the

Maxwell body is composed by the series of a Hooke elastic solid (spring) of

rigidity µ and a Newtonian viscous element (dashpot) of viscosity η; it is shown

in Fig. (2.1).

η µ

Figure 2.1: Graphical representation of the Maxwell body.
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In the series of multiple mechanical elements, the overall strain is equal to the

sum of the strains associated with the single elements. The strain-stress relation

for the Hooke solid is

eH =
σ

2µ
, (2.7)

whereas the constitutive equation for the Newtonian fluid is

ėN =
σ

2η
. (2.8)

Deriving Eq. (2.7) with respect to time and setting

ė = ėH + ėN , (2.9)

we end up with the constitutive equation for the Maxwell body:

2ė =
σ̇

µ
+
σ

η
. (2.10)

In view of the following application, let us introduce the characteristic relaxation

time

θ =
η

µ
. (2.11)

Relaxation at constant strain

Let us consider the case in which the Maxwell body is subject to a constant strain

for times t > 0:

e(t) = e0H(t) (2.12)

where H is the Heaviside function. At first, the medium reacts in a purely elastic

way, as there is not enough time for the dashpot to react to the instantaneous

strain. Hence, the initial stress is

σ(t = 0+) = 2µe0. (2.13)

From Eq. (2.10) we get the ODE (Ordinary Differential Equation)

σ̇

µ
+
σ

η
= 0. (2.14)

Integrating with the initial condition (2.13), we obtain the solution

σ(t) = 2µe0H(t)e−t/θ. (2.15)

The initial elastic stress is therefore gradually relaxed and gets substantially

negligible for times t� θ. The situation discussed here reproduces the long-term
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effect of an earthquake in a viscoelastic medium, as anticipated beforehand. The

strain (2.12) can be interpreted as the result of the coseismic slip on a fault:

thus, according to Eq. (2.15), the static stress field produced by the seismic event

undergoes a certain degree of relaxation during the subsequent interseismic interval.

This phenomenon is taken into account in the discrete model of a fault presented

in §7.

2.3 Post-seismic phenomena

Here, two post-seismic processes are considered, namely afterslip and poroelastic

deformation, which often contribute to the stress redistribution on faults, thus

altering their subsequent evolution.

2.3.1 Afterslip

Afterslip is defined as the aseismic slip of a fault that is frequently observed after

an earthquake and that may last up to several months, depending on the magni-

tude of the seismic event. This phenomenon takes place at a decreasing rate and

has been ascribed to elementary creep events triggered by the stress perturbation

caused by the mainshock (Belardinelli and Bonafede, 1993). If afterslip can be

clearly observed at the Earth surface, geodetic measurements allow to estimate

the extension of the creeping zone. Several studies pointed out that the final

amplitude of afterslip is proportional to that of seismic slip. Also, it can produce

an amount of aseismic slip comparable with the coseismic slip at seismogenic

depths (e.g. Kenner and Segall, 2000).

Marone et al. (1991) studied the relationship between afterslip and the presence

of scarcely consolidated sediments at shallow depths by means of a mechanical

model of the upper crust, under the hypothesis that fault rocks exhibit rate- and

state-variable frictional behaviour (§2.1.1). They considered an elastic lithosphere

containing a fault zone with a velocity-strengthening (stable) region overlying a

velocity-weakening (unstable) region. As a result of the stress perturbation due to

the sudden increase in slip velocity associated with a seismic event in the lower re-

gion, the fault starts slipping aseismically at the surface. Accordingly, afterslip can

be interpreted as the relaxation of coseismic stress within a velocity-strengthening

region that has been loaded by the coseismic slip of a velocity-weakening region.
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The authors also showed that a thicker layer of superficial sediments would result

in reduced coseismic surface slip and increased afterslip, in good agreement with

field observations.

Several empirical relationships have been suggested in order to describe the

evolution of aseismic slip as a function of the time elapsed since an earthquake

(Barbot et al., 2009). Nason and Weertman (1973) proposed an exponential

function approaching a constant value. The theoretical analysis of Marone et al.

(1991) suggested a logarithmic function of time. In many cases, this functional

form reproduces field observations reasonably well; however, it entails a slip

amplitude increasing indefinitely with time and must be truncated ad hoc. In §5,

a discrete model of a fault with two mechanically different regions and another

formulation of the temporal evolution of afterslip are proposed.

2.3.2 Post-seismic fluid flow

Due to the presence of fluids (the most abundant of which is water), the Earth’s

crust cannot be considered as a purely elastic medium, but it is more properly

to be treated as a fluid-filled poroelastic medium (Detournay and Cheng, 1993;

Wang, 2000). If an earthquake takes place in a fluid-filled medium, the subsequent

perturbation in the stress field causes the compression or dilation of the volume

of rocks surrounding the seismic source. As a result, pore fluid pressure gradients

are generated, thus triggering the diffusion of interstitial fluids. This transient

phenomenon can last up to times in the order of 1 year (Jónsson et al., 2003) and

can play an important role in the stress interaction between neighbouring faults

and in post-seismic deformation.

The governing equations for a linear elastic, fluid-filled porous medium were

first derived by Biot (1941). The effect of migrating fluids can be taken into

account by distinguishing between two limit regimes, known as undrained and

drained conditions, governed by the Poisson’s moduli νu and ν, respectively. These

regimes correspond to the short- and long-term responses of the medium to a

abrupt pore pressure change, respectively. At the occurrence of an earthquake,

the interstitial fluids can be considered stationary and their diffusive flow can be

reasonably neglected: the medium is then said to be in the undrained state and

the stress field correspond to the elastic solution with undrained moduli. As time
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goes by, fluid flow takes place until the pore pressure gradients are cancelled out:

the medium is then said to be in a drained condition and the stress field is given

by the elastic solution with drained moduli. The timescale of fluid migration is

controlled by the hydraulic diffusivity c of the medium: its value depends on the

position and the composition of rocks, spanning over a wide range, from 10−11 to

105 m2 s−1 (Roeloffs, 1996).

Theoretical considerations and laboratory data (Rice and Cleary, 1976) show

that, under undrained conditions, the Poisson modulus is larger than under

drained condition, that is, νu ≥ ν. It was already mentioned that the two regimes

correspond to the coseismic and post-seismic response of the medium, respec-

tively. Therefore, we conclude that fluid migration in a porous medium can be a

source of post-seismic ground deformation: this effect is called poroelastic rebound.

Furthermore, pore pressure relaxation and the related diffusive processes have

been proposed as a possible cause of aftershock migration, induced seismicity

and triggered seismicity (Steacy et al., 2005). For instance, Piombo et al. (2005)

studied the effect of post-seismic fluid flow on the coseismic Coulomb stress change

field due to an earthquake: they found that the migration of fluids can delay the

occurrence of earthquakes in regions where a positive change in Coulomb stress

has been inferred, and vice-versa. The role of pore fluid diffusion in the stress

redistribution within a system of faults is discussed in Appendix I.
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Chapter 3

Discrete fault models

In this chapter, an overview of the most significant aspects of discrete modelling

of fault dynamics is presented. In this framework, faults are treated as dynamical

systems: therefore, I begin by mentioning the properties of such systems that are

most relevant to the present work. Afterwards, the advantages granted by this

study approach and the categories in which discrete fault models can be classified

into are illustrated, with particular reference to asperity models.

3.1 Dynamical systems - selected topics

A dynamical system is any system whose behaviour can be described by means of

an evolution operator

Φt : X → X (3.1)

defined on a space X for all times t ∈ T , such that, given any initial condition

x0 ∈ X and any t, s ∈ T , we have

Φ0(x0) = x0, (3.2)

Φt+s(x0) = Φt (Φs(x0)) . (3.3)

The first condition identifies the initial state of the system, whereas the second

entails the deterministic nature of the evolution of the system.

Generally speaking, X is a subset of Rn: it is known as the state space of the

system. The state of the system at any instant t in time is described by the n−
dimensional vector x(t): its n components are the state variables of the system.

As for the space T , we can distinguish between two cases, corresponding to T = R
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and T = Z: in the former case, the dynamical system is said to be a continuous

time system, while in the latter case it is said to be a discrete time system. In

the present thesis, only systems of the first kind are dealt with. On the whole,

a dynamical system is often identified as {X,Φ} (e.g. Stewart and Thompson,

1986; Strogatz, 2014).

A continuous time system of dimension n is defined by a set of n autonomous

ODEs in the form

ẋ =
dx

dt
= f(x) (3.4)

where f : X → Rn is the vector field associated with the dynamical system. The

evolution operator Φt describes the flow of the vector field, that is,

x(t) = Φt(x0). (3.5)

The system is called linear if Eq. (3.4) can be written in the form

ẋ = Ax (3.6)

where A is a n× n matrix of constant components. Furthermore, the system is

defined as conservative in the absence of any forms of energy dissipation; oth-

erwise, it is said to be dissipative and its total mechanical energy changes with time.

The evolution of a dynamical system can be studied by following its orbit in

the state space: it is defined as the set

{Φt(x0) | t ∈ T} (3.7)

representing the complete history of the system, starting from the initial state x0.

A dynamical system is said to be smooth of order r if the first r time derivatives

of the associated vector field f exist and are continuous ∀x ∈ X. A particular

case of great significance is represented by piecewise-smooth dynamical systems:

they are defined as systems exhibiting phases of smooth evolution interrupted

by sudden transitions (di Bernardo et al., 2008). Such are the systems whose

behaviour is governed by a friction threshold, known as stick-slip systems. For such

systems, the transitions between phases of smooth evolution are not associated

with a discontinuity in the state vector x, but instead in the accelerations and in

the equations describing the dynamics, i.e., in the vector field f .
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Nonlinear, dissipative, piecewise-smooth dynamical systems with a discon-

tinuous right-hand side are called Filippov systems (Filippov, 1988). For such

systems, it is possible to define a sticking region as the set of the state space

corresponding to a phase of global stick. The system enters a phase of slip when

its orbits intersects a geometric set known as failure locus.

Another significant feature in the characterization of a dynamical system is its

sensitivity to initial conditions and to perturbations in the boundary conditions.

Accordingly, a dynamical system is said to be predictable when its long-term

evolution is not affected by small variations in initial and/or boundary conditions,

whereas it is named chaotic if its long-term evolution strongly depends on the

initial and/or boundary conditions. Notice that these definitions are referred to

deterministic (non stochastic) dynamical systems.

3.2 Faults as discrete dynamical systems

It has long been acknowledged that fault dynamics can be fruitfully investigated

by discrete models made of blocks connected through springs (Pelletier, 2000).

Such an approach has the advantage of reducing the number of degrees of freedom

required to describe the dynamics of the seismic source.

Discrete fault models can be classified into two categories, corresponding to a

micro- and a macroscopic characterization of fault dynamics, respectively.

In the first case, a large number n of blocks is used to represent the contact

points between the two sides of a fault. As n → ∞, these models simulate the

behaviour of a continuous elastic medium. The precursor of this methodology can

be found in the work of Burridge and Knopoff (1967). The authors considered an

array of blocks placed on a horizontal rough plane, connected to each other by

springs and pulled by an external driver (Fig. 3.1).

Figure 3.1: Sketch of the spring-block system due to Burridge and Knopoff (1967).
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As for friction on the blocks, a piecewise constant function of the slip velocity

as the one in Eq.(2.3) was assumed. This way, the authors were able to reproduce

the characteristic stick-slip behaviour of seismic sources, as well as the typical

Gutenberg-Richter distribution of earthquake sizes (e.g. Scholz, 1990). Owing to

the nonlinear dependence of friction on the slip velocity, the system is nonlinear

and dissipative. Models of this first category have been subsequently developed by

a number of authors (e.g. Carlson and Langer, 1989a,b; Nakanishi, 1990; Carlson

et al., 1991; Nakanishi, 1991; Huang et al., 1992; Hainzl et al., 1999; Weatherley

and Abe, 2004).

Models of the second kind make use of a small number of blocks to analyse

the main aspects of the dynamics of the seismic source (e.g. seismic slip, stress

transfers, post-seismic deformation) with little regard to a minute description

of these processes. In this framework, blocks represent multiple coplanar faults

or asperities on the same fault (§3.3). In a way, this approach is similar to the

characterization of a physical system by means of macroscopic thermodynamic

quantities, instead of through the microscopic concepts of statistical mechanics.

These models allow the study of the evolution of a fault by means of orbits in the

phase space: via this geometrical analysis, it is possible to better appreciate and

visualize the different aspects of the dynamics of the system. On the whole, these

discrete fault models allow to focus on the main features of the seismic source

(e.g. the stick-slip mechanism governed by the system of forces on the fault) and

avoid the more complicated characterization based on continuum mechanics. The

present thesis deals with models of this category.

The first example of such spring-block models is due to Nussbaum and Ruina

(1987), who considered the elastic rebound of two blocks placed on a horizontal

rough plane. The blocks are coupled to each other and to an external driver by

means of springs of different stiffnesses (Fig. 3.2). The following correspondence

rules hold: the blocks represent two asperities on the same fault plane or two

coplanar faults; the external driver corresponds to the motion of the tectonic plates;

the deformation of the springs represent the elastic deformation of crustal rocks; the

forces applied to the blocks reproduce the tractions on the asperities/faults; friction

on the horizontal support represents the frictional resistance on the asperity/fault

surface; the motion of a block corresponds to the seismic slip; the coupling spring

accounts for the coseismic stress transfer between the asperities/faults.
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Figure 3.2: Sketch of the two-block model devised by Nussbaum and Ruina (1987).

The analysis was carried out under the hypothesis of complete spatial sym-

metry, i.e., assuming for the two blocks the same mass, frictional resistance and

coupling with the external driver. Most of the seismic events resulted from the

motion of a single block at a time, even though the simultaneous motion of the

two blocks was observed as well. According to its properties, the two-block system

can be classified as a Filippov stick-slip system (§3.1). During a phase of global

stick, the state of the system can be described in terms of the difference p between

the positions of the two blocks with respect to the external driver. As a seismic

event occurs, p takes a new value. Accordingly, the evolution of the system can

be described by means of an event map pk+1 = f(pk), where every iteration

corresponds to a seismic event.

The hypothesis of spatial symmetry was later relaxed by Huang and Turcotte

(1990a): under the assumption of a simple static/dynamic friction law as the one

in Eq. (2.3), the authors showed that a two-block asymmetric system may exhibit

chaotic behaviour (§3.1) in correspondence with higher coupling stiffness between

the blocks. Furthermore, Huang and Turcotte (1990b) found that the chaotic

behaviour may reproduce some features of interacting fault systems (§2.1.2), such

as the pattern of seismicity observed on real faults. More recently, He (2003)

showed that chaos in a two-block asymmetric system also depends on the particular

formulation of friction adopted. In fact, if a rate- and state-friction law as the

one in Eq. (2.2) is assumed, a chaotic evolution is fostered by smaller coupling

intensities, corresponding to blocks moving more independently from each other,

in contrast with the results obtained by Huang and Turcotte (1990a) with a

simpler static/dynamic friction law. Hence, the crucial influence of friction on the

specific properties of spring-block systems was acknowledged.

19



3.3 Asperity models of faults

Asperity models were first proposed by Scholz and Engelder (1976) and Byerlee

(1978) as a means to explain some experimental results on the frictional resistance

of rock samples. Later on, they were introduced in the field of fault mechanics

(Lay et al., 1982; Ruff, 1983; Scholz, 1990). In the framework of asperity models,

it is assumed that the fault is characterized by the presence of one or more strong

regions with a high static friction and a velocity-weakening dynamic friction

(§2.1.1). As a consequence of tectonic loading, the stress acting on the asperities

is gradually increased, eventually leading to their sudden slip and to a seismic

event. Thus, asperity failures account for the unstable, stick-slip sliding regime of

seismogenic faults (§2.1). This characteristic behaviour can be fruitfully described

by means of the concept of slip deficit: at any instant t in time, the slip deficit

of an asperity is defined as the amount of slip that asperity should undergo in

order to recover the relative displacement of tectonic plates occurred up to time t.

Accordingly, the slip deficit increases when the asperity is at rest and decreases

when it slips.

The number of asperities involved in an earthquake is generally small (from 1

to 3) and can be inferred from the analysis of the moment rate (source function),

which yields the features of the far-field displacement due to the seismic event.

Examples of earthquakes that can be ascribed to the failure of two asperities

are the 1964 Alaska earthquake (Christensen and Beck, 1994), the 1992 Landers,

California, earthquake (Kanamori et al., 1992), the 2004 Parkfield, California,

earthquake (Twardzik et al., 2012), the 2007 Pisco, Peru, earthquake (Sladen et

al., 2010) and the 2010 Maule, Chile, earthquake (Delouis et al., 2010).

Kanamori (1978) studied the role of asperity distribution and size in the spatial

and temporal patterns of earthquake generation. If the asperities on the same fault

plane have similar extension and frictional resistance, the slip of a first asperity is

in general capable of triggering the slip of neighbouring asperities, thus giving rise

to an earthquake of larger size. The opposite holds if asperities have different size

and frictional resistance: in this case, the stress coupling between the asperities

is less efficient, so that the slip of a first asperity mainly yield the failure of the

smaller and weaker surrounding regions of the fault.
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When considering asperity models, stress accumulation on the asperities, slip at

the asperities and stress transfer between asperities are factors of crucial relevance.

It is therefore appropriate to describe the fault as a dynamical system whose

essential components are the asperities (Ruff, 1992; Turcotte, 1997).

It must be stressed that the discrete dynamical systems considered in the

present work are much more general than the simple spring-block system shown

in Fig. (3.2). Systems where each asperity is a compact and simply connected

subset of the fault surface are considered. Therefore, asperities may have any

geometrical shape and they may be different from each other as to their shapes

and areas. Each asperity is subject to a tectonic traction that may have any

direction, with both normal and tangential components with respect to the fault

surface. Asperity slip takes places in the direction of the tangential traction and

can reproduce any kind of source mechanism (Fig. 3.3).

Figure 3.3: Slip of a two-asperity fault with strike-slip mechanism (above) and dip-slip

normal mechanism (below). The rectangular frame is the fault border.

Since asperities are considered as single units of the fault, details of slip distribution

on asperities are not considered, but a uniform slip is assumed to take place when an

asperity moves. Therefore, asperity motions are similar to Volterra (or translation)

dislocations, which are commonly employed in describing seismic sources (e.g.

Okada, 1992).
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3.3.1 A two-asperity fault model with elastic coupling

I summarize the main results of a series of works addressed to the analysis of

a two-asperity fault model, on which much of the present thesis is based upon.

In these works, it is assumed that the coupling between the asperities is purely

elastic and that the fault is subject to a uniform and constant strain rate due to

the motion of tectonic plates. The fault is treated as a dynamical system whose

state variables are the slip deficits of the asperities (§3.3). As a result, the model

has two degrees of freedom and the phase space is 4-dimensional. Furthermore,

the dynamics of the system can be described in terms of four dynamic modes: one

sticking mode, corresponding to stationary asperities, and three slipping modes,

associated with the separate or simultaneous failures of the asperities.

A model of a fault with two asperities of equal areas and frictional resistances

(symmetric system) was considered by Dragoni and Santini (2010, 2011). The

authors showed that the evolution of the system is governed by a quantity re-

lated to the inhomogeneity of the stress applied to the asperities. This quantity

corresponds to the quantity p (§3.2) governing the evolution of the two-block

system considered by Nussbaum and Ruina (1987). Within a narrow range of

stress distributions, the system follows a limit cycle, corresponding to a periodic

behaviour, with the alternate slips of the asperities. There exists an uncountable

infinity of such cycles, each one corresponding to a particular pattern of seismicity.

The orbit of the system enters a limit cycle if, at the beginning of an interseismic

interval, its representative point belongs to a specific subset L of the state space.

If an external perturbation alters the stress distribution, so that the representative

point lies outside of L, earthquakes associated with the simultaneous slips of the

asperities take place. Due to the interaction between the asperities, the seismic

moment released during such events is larger that the sum of the moments released

by the asperities when they slip separately. Therefore, earthquakes due to the

simultaneous failures of the asperities are the largest events that the fault can

generate. Over time, a stress distribution compatible with the aforementioned

periodic behaviour is restored: hence, the long-term evolution of the fault is always

a limit cycle. The previous considerations point out that the system is sensitive

to small perturbations: this observation is particularly significant, since no fault

can be considered isolated, being subject to stress transfers due to earthquakes on

surrounding faults (§2.1.2).
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Dragoni and Santini (2012, 2014) studied the properties of a two-asperity

asymmetric fault model. Complete analytical solutions for the four dynamic

modes of the system were presented; furthermore, in order to apply the model

to a real fault, the authors devised a set of correspondence rules between the

discrete model and a model based on continuum mechanics. It was found that,

when a single asperity is involved in a seismic event, the subsequent earthquake

is very often due to the failure of the other asperity, although it may take place

on the same asperity. The authors also investigated the source functions of all

the possible seismic events predicted by the model, showing the dependence of

their shape (number of humps and amplitude) on the sequence of slipping modes

involved in the earthquake, which is in turn univocally determined by the state of

the system before the earthquake. As for the rise time, duration and amplitude

of the source functions, they are affected by the degree of coupling between the

asperities and by the frictional resistance on them.

The effect of stress perturbations due to earthquakes on neighbouring faults

was considered by Dragoni and Piombo (2015) in the case of an asymmetric

model. The presence of two asperities entails that stress perturbations may not

only change the occurrence time of the next earthquake on the fault, but also its

hypocentre, seismic moment and duration: in fact, stress transfers may alter the

sequence of dynamic modes in the earthquake. This circumstance was proposed

by the authors as an explanation of the fact that earthquakes produced by a given

fault are not only an aperiodic phenomenon, but are also different from one other

in magnitude, slip distribution and duration. The effect of stress perturbations

was discussed in terms of the variation of the Coulomb stress on each asperity

(§2.1.2). Specifically, the authors found that the change in the difference between

Coulomb stresses on the asperities determines which asperity will fail the first in

the next earthquake; furthermore, the variation in the duration of the preceding

interseismic interval is directly proportional to the change in the Coulomb stress

associated with the asperity that fails the first in the earthquake.

The radiation of seismic waves during earthquakes generated by a two-asperity

fault was studied by Dragoni and Santini (2015) in the framework of an asymmet-

ric model. They included the seismic radiation by introducing an additional term

proportional to the slip rate of the asperities in the equations of motion. Assuming
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that this rate-dependent term gives a smaller contribution than dynamic friction

during a seismic event, the authors illustrated the influence of seismic radiation

on the earthquakes generated by the fault. Specifically, they showed that the slip

amplitude and, in turn, the seismic moment are smaller, while the slip duration is

larger in the presence of elastic waves. Furthermore, they calculated the moment

rate spectra predicted by the model, which were found to be in agreement with

the classic high-frequency trend found by Brune (1970). The model was further in-

vestigated by Dragoni and Tallarico (2016), who focused on the dynamic interplay

between the asperities during seismic events made up of two or more slipping modes.

The authors pointed out how such events require an heterogeneous stress distribu-

tion on the fault to be generated. Also, they discussed the seismic moment release,

source functions and seismic spectra associated with these events, whose features

may change dramatically as a function of the initial stress distribution on the fault.

In the models listed above, it was assumed that the asperities on the fault

have equal areas. This assumption is relaxed in Chapter 6.

3.4 Reference model

In this section, I describe the fault model on which all the different studies pre-

sented in the following chapters are based on.

A plane fault (or a fault system) enclosed by two tectonic plates moving

at constant relative velocity v is considered. The fault lies in an elastic shear

zone that is a homogeneous and isotropic Poisson solid with rigidity µ. As a

consequence of tectonic motion, the fault is subject to a uniform and constant

strain rate ė.

It is assumed that the fault contains one or more asperities and possibly one

or more weak regions (i.e., regions associated with a negligible static friction and

a velocity-strengthening dynamic friction). Following the assumptions of asperity

models, the production of earthquakes on the fault and the release of seismic

moment are ascribed to the failure of the sole asperities. The slips of the different

regions on the fault are treated as Volterra dislocations and thus assumed uniform

over their areas.
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Instead of focusing on the values of friction, slip and stress at every point on

the fault, only the average values of these quantities on the asperities and weak

regions are considered.

The fault is treated as a dynamical system whose state is described by the

state of the asperities and weak regions (or the fault segments in the fault system).

The state variables are the slip deficits (§3.3) or the Coulomb stresses (§2.1.2)

associated with the regions on the fault.
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Chapter 4

A fault with a single asperity

In this chapter, a discrete model of a fault containing a single asperity is considered.

This configuration represents the simplest expression of a discrete fault model and

provides as such a useful means to replicate the essential features of the seismic

source (§3). The present chapter is based on the fault model devised by Dragoni

and Piombo (2011).

4.1 The model

The fault model described in §3.4 is adopted and a fault containing a strong

region (asperity) with area A is considered. The asperity is responsible for the

bulk of seismic moment release during an earthquake: any contribution from the

remaining weaker region of the fault is assumed to be negligible. A sketch of the

model is shown in Fig. (4.1).

A

Figure 4.1: A plane fault containing a single asperity of area A. The rectangular frame

is the fault border.
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The fault is treated as a dynamical system whose state is described by the slip

deficit x(t) associated with the asperity, where t is time. Since the system has

one degree of freedom, the phase-space is a 2-manifold.

The simplest form of rate-dependent friction is considered, characterizing the

asperity by a static friction threshold fs and a dynamic friction fd defined as the

average value of friction during asperity slip. This description of friction yields

the typical stick-slip behaviour of fault dynamics.

Since the asperity moves as a rigid surface, it is easier to use forces instead of

tractions. During the sticking mode, the asperity is subject to the loading action

of tectonic motion, corresponding to the tangential force

f = −Kx, (4.1)

where the coupling constant K can be calculated from the values of A, v and the

tangential stress rate on the fault (§4.6). The equation of motion for the sticking

mode is

ẍ = 0 (4.2)

where a dot indicates differentiation with respect to t. As a result, the slip deficit

x increases steadily with time. A seismic event takes place as soon as the condition

f = −fs (4.3)

is reached. During the slipping mode, the asperity is subject to the additional

tangential force

fι = −ιẋ (4.4)

where ι is an impedance introduced to take into account the radiation of elastic

waves during asperity slip. The equation of motion during the slipping mode is

µ1ẍ+Kx+ ιẋ− fd = 0 (4.5)

where µ1 is the mass associated with the asperity.

For the sake of simplicity, the analysis is carried out in nondimensional form.

I introduce the nondimensional parameters

γ =
ι√
Kµ1

, ε =
fd
fs
, V =

√
Kµ1

fs
v (4.6)
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where: γ is a function of the seismic efficiency of the fault; ε is the ratio between

dynamic and static frictions on the asperity; V is the nondimensional velocity of

tectonic plates. The parameters are subject to the constraints γ ≥ 0, 0 < ε < 1

and V > 0. I also define the nondimensional slip deficit and time

X =
Kx

fs
, T =

√
K

µ1

t. (4.7)

Accordingly, the equation of motion (4.2) for the sticking mode can be rewritten

as

Ẍ = 0, (4.8)

while the equation of motion (4.5) for the slipping mode becomes

Ẍ +X + γẊ − ε = 0 (4.9)

where a dot now denotes differentiation with respect to T .

Introducing the nondimensional force

F =
f

fs
, (4.10)

the loading action (4.1) of tectonic motion can be rewritten as

F = −X (4.11)

and the condition (4.3) for the onset of a seismic event becomes

F = −1 (4.12)

or, in terms of the slip deficit,

X = 1. (4.13)

A condition of no overshooting is assumed: accordingly, it is required that X ≥ 0

and that the tangential force on the asperity is always in the same direction as

the velocity of tectonic plates, that is, F ≤ 0.

To sum up, the system is described by the set of three parameters γ, ε and V .

At any instant T in time, the state of the system may be univocally expressed by

the slip deficit X or by the force F .
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4.2 Dynamic modes

The dynamics of the system is characterized by two dynamic modes: the sticking

and the slipping mode. In the following, the solution of the equations of motion

for these modes is provided. I shall make use of the characteristic frequency

ω0 =

√
1− γ2

4
. (4.14)

During a slipping mode, it is assumed that the velocity dependent term (4.4) in

the equation of motion is small with respect to dynamic friction. This choice is

suggested by the observation that the seismic efficiency of faults is small (Kanamori,

2001). Accordingly, the case of weak damping is considered, so that γ ≤ 2.

The effect of wave radiation is described by the quantity

κ0 =
1

2

(
1 + e

− πγ
2ω0

)
(4.15)

which is a decreasing function of γ, equal to 1 in the absence of radiation (γ = 0).

4.2.1 Sticking mode

The equation of motion is (4.8). With initial conditions

X(0) = X̄, Ẋ(0) = V (4.16)

the solution is

X(T ) = X̄ + V T. (4.17)

Accordingly, the slip deficit of the asperity increases linearly with time, as a

consequence of tectonic motion at constant relative velocity V .

4.2.2 Slipping mode

The equation of motion is (4.9). With initial conditions

X(0) = 1, Ẋ(0) = 0 (4.18)

the solution is

X(T ) = ε+
U

2

(
cosω0T +

γ

2ω0

sinω0T

)
e−

γT
2 (4.19)

where

U = 2(1− ε). (4.20)

The evolution of the slip deficit is shown in Fig. (4.2), together with the slip

velocity Ẋ(T ), for given values of γ and ε.
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Figure 4.2: Evolution of the slip deficit X(T ) and the slip velocity Ẋ(T ) during an

earthquake generated by the fault (γ = 1, ε = 0.7).

In choosing the initial conditions, I set V = 0. This is a reasonable assumption,

since the ratio between the velocity of tectonic plates and the slip rate of a fault

is in the order of 10−9.

The duration of slip Ts can be evaluated from the condition Ẋ(T ) = 0, yielding

Ts =
π

ω0

(4.21)

which reduces to π in the limit case γ = 0. The slip amplitude is

∆X(T ) = X(0)−X(T ). (4.22)

It is shown in Fig. (4.3) for a particular choice of the parameters γ and ε. The

graph shows the typical features of the source function of an earthquake, with a

rise time Ts and a final slip amplitude

Us = ∆X(Ts) = κ0U. (4.23)

In the limit case γ = 0, we have Us = U .

Finally, the slip rate is

∆Ẋ(T ) =
U

2ω0

e−
γT
2 sinω0T. (4.24)
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Figure 4.3: Evolution of the slip amplitude during an earthquake generated by the fault

(γ = 1, ε = 0.7).

Figure (4.4) shows the graphs of slip duration and amplitude as functions of the

parameter γ, in units of the values assumed in the limit case γ = 0. As the

radiation of elastic waves becomes more and more significant, the slip duration

increases, whereas the slip amplitude is reduced. The former effect is a direct

consequence of the smaller slip rate ∆Ẋ(T ) determined by the presence of radiation,

in accordance with Eq. (4.24). The effect on the slip amplitude is instead due to

the more and more important contribution of wave radiation to the energy budget

of the system as γ increases. This issue will be further discussed in §4.5.

4.3 Orbits in the phase space

In this section, the orbit of the system in the phase space (X, Ẋ) is described,

distinguishing between the two dynamic modes.

During the sticking mode, it is assumed that Ẋ = 0, as discussed before. The

solution (4.17) is then a line segment lying on the X axis. The system evolves on

this line until the point (1, 0) is reached, corresponding to the condition (4.13) for

the onset of failure. Here, the system enters the slipping mode.

As for the slipping mode, the solution (4.19) describes a damped Lissajous curve
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Figure 4.4: Slip duration Ts and slip amplitude Us as functions of the parameter γ.

They are normalized to the values assumed in the limit case γ = 0.

(Lawrence, 1972) in the phase space. The representative point of the system moves

in the half-plane Ẋ < 0 until its orbit crosses the X axis at the point (1− Us, 0),

where the system goes back in the sticking mode. In the limit case γ = 0, the orbit

is a half circumference centered in (ε, 0) with radius U/2. The no overshooting

condition X ≥ 0 entails the constraint

1− Us ≥ 0⇒ ε ≥ 1− 1

2κ0

. (4.25)

Summing up, the system is characterized by a periodic orbit that is displayed in

Fig. (4.5) for a given choice of the parameters γ and ε. The possible initial states

are the points (X, 0) with 0 ≤ X ≤ 1. All orbits eventually enter the periodic

orbit, giving rise to a limit cycle with period

∆T =
Us
V

(4.26)

whose specific value depends on the parameters γ, ε and V .
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Figure 4.5: Orbit of the system in the phase space (γ = 1, ε = 0.7).

An alternative visualization of the evolution of the system is provided by the

graph of the tangential force on the asperity during the seismic cycle, which can

be calculated exploiting Eq. (4.11). The modulus of the force increases linearly in

time with rate V during the sticking mode, until the failure condition |F | = 1 is

reached. The slip of the asperity is associated with a fixed stress drop

|∆F | = 1− (1− Us) = Us. (4.27)

Afterwards, the force resumes increasing linearly until the failure condition is

reached again, and so on. As a result, the tangential force exhibits a saw tooth

shape with period ∆T . It is shown in Fig. (4.6).

4.4 Seismic moment rate and spectrum

The moment rate associated with an earthquake originated by the fault can be

evaluated as

Ṁ(T ) =
M1

U
∆Ẋ(T ) =

M1

2ω0

e−
γT
2 sinω0T (4.28)

where M1 is the seismic moment associated with the seismic event in the limit

case γ = 0. Figure (4.7) shows the moment rate Ṁ(T ) for different values of γ

and for a given choice of the parameter ε.
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Figure 4.6: Evolution of the tangential force on the asperity during the seismic cycle

(γ = 1, ε = 0.7, V = 10−9).

In the absence of wave radiation, the graph is a symmetric hump and presents

a maximum at T = Ts/2. As wave radiation gets more and more significant,

the graph becomes more and more asymmetric; also, its maximum is displaced

towards earlier times and gets smaller and smaller.
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Figure 4.7: Moment rate associated with an earthquake originated by the fault (ε = 0.7).
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The final seismic moment is

M0 =
M1

U
∆X(Ts) = κ0M1 (4.29)

which is a decreasing function of γ, owing to its dependence on the factor κ0.

In order to calculate the moment rate spectrum associated with a seismic

event, let us consider the Fourier transform

H(Ω) =

∫ Ts

0

Ṁ(T ) e−iΩTdT (4.30)

where Ω is a nondimensional frequency defined from the frequency ω of the seismic

waves as

Ω =

√
µ1

K
ω. (4.31)

The nondimensional spectrum is then given by

S(Ω) = |H(Ω)| = M1

2

√
1 + 2e

− πγ
2ω0 cos ΩTs + e

−πγ
ω0

(1− Ω2)2 + γ2Ω2
. (4.32)

It takes the value M0 for Ω = 0, while its envelope for Ω → ∞ is M0/Ω
2.

Thus, the seismic spectrum is inversely proportional to Ω2 at high frequencies, in

accordance with the classical spectrum described by Brune (1970). The corner

frequency, corresponding to the intersection of the asymptotic trends at low and

high frequencies, is

Ωc = 1. (4.33)

The spectrum S(Ω) is shown in Fig. (4.8) in the case γ = 1.

4.5 Energy budget

As a result of tectonic loading, the slip deficit of the asperity increases with time,

resulting in a build up of potential energy in the system. Such energy is dissipated

into heat and wave radiation during a seismic event. Let w(t) be the mechanical

energy of the system at a time t, while q(t) and r(t) are the heat and radiation

produced by the slip of the asperity after a time t from the onset of the earthquake.

Their nondimensional equivalents are defined as

W =
Kw

f 2
s

, Q =
Kq

f 2
s

, R =
Kr

f 2
s

. (4.34)
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Figure 4.8: The moment rate spectrum associated with an earthquake generated by the

fault (γ = 1). The dashed line indicates the corner frequency Ωc, corresponding to the

intersection of the low and high-frequency asymptotes.

During a sticking mode, the energy of the system is given by

W (X) =
1

2
X2. (4.35)

The slip of the asperity begins at X = 1 and ends at X = 1−Us. The consequent

energy change is

∆W = W (1− Us)−W (1) = −1

2
Us(2− Us) (4.36)

which reduces to

∆W0 = 2ε(ε− 1) (4.37)

in the limit case γ = 0. As for the heat and seismic energy released during the

earthquake, we have

∆Q =

∫ Ts

0

Q̇(T )dT, ∆R =

∫ Ts

0

Ṙ(T )dT, (4.38)

with rates

Q̇ = εẊ, Ṙ = −γẊ2. (4.39)

Accordingly, we obtain

∆Q = −εUs, ∆R = −1

8
U2(1− e−

πγ
2ω0 ). (4.40)
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The energy budget of the fault is shown in Fig. (4.9) as a function of the impedance

γ. In the limit case γ = 0, no seismic waves are radiated and all the energy is

dissipated into heat, while the contribution of elastic radiation increases with γ.
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Figure 4.9: Energy budget for an earthquake generated by the fault, as a function of

the impedance γ with ε = 0.7. The change in mechanical energy ∆W , the heat release

∆Q and the radiated energy ∆R are normalised with respect to ∆W0, the total energy

change in the limit case γ = 0.

The seismic efficiency of the fault is defined as

η =
∆R

∆W
. (4.41)

Hence, we find

η = η̄
1− e−

πγ
2ω0

1− η̄e−
πγ
2ω0

, (4.42)

where

η̄ =
1− ε
1 + ε

(4.43)

is the seismic efficiency in the limit case γ = 2, which decreases from 1 to 0 as

ε increases. Figure (4.10) shows the seismic efficency η as a function of γ for

different values of the parameter ε.
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Figure 4.10: Seismic efficiency η of the fault, as a function of the impedance γ.

4.6 Choice of the parameters

In order to apply the model to a real fault, it is necessary to assign appropriate

values to the three parameters γ, ε and V .

The impedance γ is related to the seismic efficiency of the fault: from Eq. (4.42),

it is easy to obtain

γ =
2 ln ζ√
π2 + ln2 a

, (4.44)

with

ζ =
(1− η)(1− ε)

1− ε− η(1 + ε)
. (4.45)

However, the seismic efficiency cannot be determined from seismological data

(Kanamori, 2001); therefore, the value of γ can be inferred on the basis of the fit

with the observed source function of the earthquake.

The parameter ε depends on the properties of crustal rocks and can be chosen

on the basis of experimental data (e.g. Jaeger and Cook, 1976). Finally, the rate

V can be calculated from the observed plate velocity v, the duration ts and the

average slip amplitude us of the seismic event generated by the fault:

V =
Us
us

ts
Ts
v. (4.46)
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As for the constant K in Eq. (4.1), it can be evaluated from the tectonic shear

force f accumulating on the asperity over a time t, given by

f = σ̇tAt (4.47)

where σ̇t is the tangential stress rate on the fault. Its expression is calculated from

the strain rate ė in Appendix A, distinguishing between strike-slip and dip-slip

faults. In the discrete model, the force associated with tectonic loading over a

time t is Kvt. By comparison, we obtain

K =
σ̇tA

v
. (4.48)

Hence, the intensity of coupling between the asperity and the tectonic plates

increases with the area of the asperity and with the tangential stress rate acting

on the fault, while it decreases with the velocity of the tectonic plates.

4.7 An application: the 2004 Sumatra-Andaman

earthquake

The great Sumatra-Andaman earthquake of 26 December 2004 occurred as the

result of combined reverse dip-slip and right-lateral strike-slip faulting, with a

moment magnitude ranging between 9.1 and 9.3 (Chlieh et al., 2007). The rupture

involved a fault segment at the boundary between the Indo-Australian plate

and the southeastern portion of the Eurasian plate, with an extension of about

1300 km from Northern Sumatra to the northern Andaman islands (Lay et al.,

2005). The duration of the seismic event was about 600 s, with a moment release

concentrated in a time interval ts = 460 s (Ammon et al., 2005). I characterize

the event averaging the data available in the SRCMOD database and assume

an asperity area A = 400, 000 km2 and a seismic moment m = 5.4 × 1022 Nm.

With an average rigidity µ = 25 GPa (Lorito et al., 2010), the average slip of the

asperity is us = 5.4 m. Finally, I take v = 4.5 cm a−1 (McCaffrey, 2009) for the

relative velocity of tectonic plates at the Sumatra-Andaman subduction zone. A

sketch of the tectonic setting is shown in Fig. (4.11).
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Figure 4.11: Geographic location of the 2004 Sumatra-Andaman earthquake. The star

denotes the epicenter. Black arrows indicate the relative motion of the Indo-Australian

plate with respect to the Eurasian plate, whereas the thick dashed line identifies the

boundary between the tectonic plates.

For the sake of the present application, I assume ε = 0.7 (e.g. Jaeger and Cook,

1976) and take γ = 1.4, a value yielding the best fit with the observed source

function of the earthquake.

First, the observed seismic moment rate is reproduced, focusing on the time

interval t1 ≤ t ≤ t2 where the main contribution to seismic moment is generated,

with t1 = 40 s and t2 = 500 s. In dimensional form, the moment rate (4.28)

becomes

ṁ(t) =
m1

2ω0

χe−
γχ(t−t1)

2 sinω0χ(t− t1) (4.49)

where

χ =
Ts
ts

(4.50)

and

m1 = µAu (4.51)

is the seismic moment released by the fault in the limit case γ = 0: accordingly,

we have u = us/κ0. The modelled moment rate is shown in Fig. (4.12) together

with the observed moment rate reported by Ammon et al. (2005). The central

peak of the source function and its shape are reasonably well fit by the model.
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Figure 4.12: Modelled source function (solid line) of the 2004 Sumatra-Andaman

earthquake, compared with the observed source function (dashed line) given by Ammon

et al. (2005).

The final seismic moment provided by the model is

m0 = κ0m1 = 5.4× 1022 Nm (4.52)

consistent with the average value given beforehand.

The moment rate spectrum can be obtained as

s(ω) =

∫ t2

t1

ṁ(t) e−iωtdt (4.53)

with ṁ(t) given by Eq. (4.49). The spectrum is shown in Fig. (4.13).

The dimensional form of the corner frequency (4.33) can be retrieved taking

the definition of the nondimensional frequency Ω into account. According to

Eq. (4.31), we have

ωc =
ω

Ω
Ωc =

√
K

µ1

. (4.54)

Bearing in mind the definition (4.7) of the nondimensional time T , we can write√
K

µ1

=
Ts
ts

(4.55)
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where Ts is the slip duration predicted by the model, given by Eq. (4.21). Hence,

the dimensional corner frequency can be estimated from the parameter γ and the

source duration ts as

ωc =
1

ts

2π√
4− γ2

. (4.56)

With the values of γ and ts listed above, we get ωc ' 0.01 rad s−1. This result

is in very good agreement with the corner frequency ωc ' 2 mHz that can be

estimated graphically from the seismic spectrum reported by Lay et al. (2005).
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Figure 4.13: Modelled seismic spectrum for the 2004 Sumatra-Andaman earthquake.

The dashed line indicates the corner frequency ωc, corresponding to the intersection of

the low and high-frequency asymptotes.
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Chapter 5

A fault exhibiting seismic slip

and afterslip

In this chapter, I consider a discrete model of a fault containing two regions

differing for their mechanical behaviour: an unstable, velocity-weakening region

and a stable, velocity-strengthening region (§2.1.1). The separation of the fault

surface into two such regions allows to replicate the generation of earthquakes,

associated with the slip of the unstable region, and the occurrence of afterslip in

the aftermath of an earthquake, taking place in the stable region (§2.3.1). This

chapter presents the results discussed by Dragoni and Lorenzano (2017).

5.1 The model

Adopting the fault model described in §3.4, I consider a fault containing two

regions differing for their mechanical behaviours (Fig. 5.1): a strong region (asper-

ity) of area A1, characterized by a high static friction and a velocity-weakening

dynamic friction, and a weak region of area A2, associated with a negligible static

friction and a velocity-strengthening dynamic friction. Let a be the distance

between the centres of the two regions.

A simplified form of the general rate- and state-dependent friction law (§2.1.1)

is adopted. For the asperity, a constant static friction fs and a dynamic friction fd

that is the average value of friction during slip are assumed. For the weak region,

a dynamic friction f̃d described by the velocity-strengthening law

f̃d = f0 − Λẏ (5.1)
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is assumed, where f0 is the steady-state dynamic friction and Λ is a constant. In

writing the velocity-dependent term, it was taken into account that ẏ < 0 during

a slip phase.

A1 A2

Figure 5.1: Model of a fault with two mechanically different regions: an asperity of area

A1 and a weak region of area A2. The rectangular frame is the fault border.

The fault is characterized as a dynamical system whose state variables are the

slip deficits x(t) and y(t) of the asperity and of the weak region, respectively, as

functions of time t. Since the system has two degrees of freedom, the phase-space

is a 4-manifold.

As the two regions move as rigid surfaces, it is simpler to use forces instead of

tractions. Let f1 and f2 be the tangential forces applied to the asperity and to

the weak region, respectively, in the slip direction. They can be written as

f1 = −K1x+Kc(y − x)− ιẋ, f2 = −K2y −−Kc(y − x). (5.2)

The terms −K1x and −K2y represent the effect of tectonic loading; the terms

±Kc (y − x) are the contributions of stress transfer between the two regions; the

term −ιẋ is only present during seismic slip and is due to radiation damping,

where ι is an impedance and the dot indicates differentiation with respect to t.

The constants K1, K2 and Kc can be retrieved from the values of A1, A2, µ, v, the

tangential stress rate acting on the fault and the tangential stress transferred by

the slip of one region to the other (§5.4). Specifically, the ratio K2/K1 results

equal to the ratio A2/A1.

The dynamics of the system can be characterized in terms of three dynamic

modes, each one associated with a different system of autonomous ODEs. They
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correspond to: evolution during an interseismic interval, seismic slip of the asperity

and afterslip within the weak region. In the following, the masses associated with

the asperity and the weak region are denoted as µ1 and µ2, respectively.

During an interseismic interval, the slip deficit x of the asperity increases

steadily due to tectonic loading. As for the weak region, a steady-state creep at

constant stress is allowed, so that its slip deficit y increases with time, but at a

slower rate than x. Accordingly, the equations of motion during an interseismic

interval are

ẍ = 0 (5.3)

(K2 +Kc)y −Kc x = f0. (5.4)

The slip of the asperity occurs when

f1 = −fs. (5.5)

Asperity slip takes place over a time interval very short with respect to the

interseismic interval: accordingly, both tectonic loading and steady-state creep

can be neglected during a seismic event. As a result, the slip deficit y of the weak

region can be assumed as constant during asperity slip. The equations of motion

are then

µ1ẍ+ ιẋ+ (K1 +Kc)x−Kc y − fd = 0 (5.6)

ẏ = 0. (5.7)

Following an earthquake, afterslip takes place in the weak region, while the asperity

remains stationary. Since afterslip is characterized by a much shorter duration

than typical interseismic intervals, tectonic loading can be reasonably neglected

during this mode. The equations of motion are then

ẋ = 0 (5.8)

µ2ÿ + Λẏ + (K2 +Kc)y −Kc x− f0 = 0. (5.9)

For the sake of simplicity, the analysis is carried out in nondimensional form. I

introduce the nondimensional parameters

α =
Kc

K1

, β =
f0

fs
, γ =

ι√
K1µ1

(5.10)

ε =
fd
fs
, λ =

Λ√
K1µ1

, ξ =
A2

A1

, V =

√
K1µ1

fs
v (5.11)
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where: α expresses the degree of coupling between the asperity and the weak

region; β is the ratio between the steady-state dynamic friction on the weak region

and the static friction on the asperity; γ is a function of the seismic efficiency of

the fault; ε is the ratio between the dynamic and static frictions of the asperity; λ

is a measure of the intensity of velocity strengthening in the weak region; ξ is the

ratio between the areas of the two regions; V is the nondimensional velocity of

tectonic plates. These parameters are subject to the following constraints: α ≥ 0,

0 < β < 1, γ ≥ 0, λ > 0, 0 < ε < 1, ξ > 0, V > 0. Furthermore, it is assumed

that the masses associated with the two regions are proportional to their areas, so

that
µ2

µ1

=
K2

K1

= ξ. (5.12)

Finally, I introduce the nondimensional slip deficits and time

X =
K1x

fs
, Y =

K1y

fs
, T =

√
K1

µ1

t (5.13)

and the nondimensional forces

F1 =
f1

fs
, F2 =

f2

fs
. (5.14)

Making use of Eq. (5.2), we get

F1 = −X + α (Y −X)− γẊ, F2 = −ξY − α (Y −X) (5.15)

where a dot now indicates differentiation with respect to T . These forces reduce

to

F1 = −X + α (Y −X) , F2 = −ξY − α (Y −X) (5.16)

during an interseismic interval and afterslip. To sum up, the system is described

by the set of seven parameters α, β, γ, ε, λ, ξ and V . At any instant T in time, the

state of the system can be univocally expressed by the couple (X, Y ) or by the

couple (F1, F2).

In nondimensional form, the equations of motion (5.3)-(5.4) for the interseismic

intervals can be rewritten as

Ẍ = 0 (5.17)

(α + ξ)Y − αX = β. (5.18)

The equations of motion (5.6) and (5.7) for the seismic mode become

Ẍ + γẊ + (1 + α)X − αY − ε = 0 (5.19)
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Ẏ = 0. (5.20)

Finally, the equations of motion (5.8) and (5.9) for the afterslip mode become

Ẋ = 0 (5.21)

ξŸ + λẎ + (α + ξ)Y − αX − β = 0. (5.22)

5.2 Solutions of dynamic modes

The analytical solutions to the equations of motion for the three dynamic modes

of the system are provided. I shall make use of the frequencies

ω1 =

√
1 + α− γ2

4
, ω2 =

√
λ2

4ξ2
− 1− α

ξ
. (5.23)

The maximum slip amplitude of the asperity in the absence of radiation (γ = 0)

is defined as

U = 2
1− ε
1 + α

. (5.24)

Finally, the effect of wave radiation is described by the quantity

κ1 =
1

2

(
1 + e

− πγ
2ω1

)
, (5.25)

which is a decreasing function of γ, equal to 1 in the absence of radiation (γ = 0).

5.2.1 Interseismic interval

The equations of motion are given by Eq. (5.17) and Eq. (5.18). With initial

conditions

X(0) = X0, Ẋ(0) = V, Y (0) = Y0 (5.26)

the solution is

X(T ) = X0 + V T (5.27)

Y (T ) = Y0 +
α

α + ξ
V T (5.28)

where, according to Eq. (5.18),

Y0 =
αX0 + β

α + ξ
. (5.29)

We conclude that, during an interseismic interval, the representative point of the

system moves along the line

Y =
β + αX

α + ξ
. (5.30)
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The solution shows that the slip deficit X of the asperity increases in time with

the velocity V of tectonic plates. The slip deficit Y of the weak region increases

in time as well, but with a slower rate

Ẏ =
α

α + ξ
V (5.31)

implying a steady creep ∆Y (T ) with constant rate

∆Ẏ = V − Ẏ =
ξ

α + ξ
V (5.32)

that is smaller than plate velocity. Combining Eq. (5.27) - (5.28) with Eq. (5.16),

the evolution of the tangential forces on the two regions during an interseismic

interval is expressed by

F1(T ) = F1(0)− α + αξ + ξ

α + ξ
V T (5.33)

F2 = −β (5.34)

where

F1(0) = −X0 + α (Y0 −X0) . (5.35)

Accordingly, stress increases linearly with time on the asperity, while it remains

constant on the weak region.

5.2.2 Seismic slip

The asperity starts to slip at T = T1, when the forces have the values

F1 = −1, F2 = −β (5.36)

where Eq. (5.5) and Eq. (5.34) were taken into account. By combination with

Eq. (5.16), we obtain the equations of two lines

(1 + α)X − αY = 1 (5.37)

(α + ξ)Y − αX = β (5.38)

whose intersection yields the state of the fault at the beginning of the seismic

event:

X1 =
α + αβ + ξ

α + αξ + ξ
, Y1 =

α + αβ + β

α + αξ + ξ
. (5.39)

The equations of motion are given in Eq. (5.19) and Eq. (5.20). Eq. (5.19) is solved

in the case of weak damping, implying that the velocity dependent term is small
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with respect to the other forces (§4.2). For the sake of simplicity, I set T1 = 0.

With initial conditions

X(0) = X1, Ẋ(0) = 0, Y (0) = Y1 (5.40)

the solution is

X(T ) = X1 −
U

2

[
1−

(
cosω1T +

γ

2ω1

sinω1T

)
e−

γ
2
T

]
(5.41)

Y = Y1. (5.42)

Accordingly, the slip deficit of the asperity decreases with time, whereas the slip

deficit of the weak region remains unchanged. The duration of the seismic event,

calculated from the condition Ẋ(T ) = 0, is

Ts =
π

ω1

. (5.43)

Defining the slip amplitude of the asperity as

∆X(T ) = X1 −X(T ), (5.44)

the final slip amplitude is

Us = ∆X(Ts) = κ1U. (5.45)

The slip amplitude ∆X(T ) is shown in Fig. (5.2) for a given choice of the parameters

α, γ and ε.

0 1 2 3
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0

0.1

0.2

0.3

0.4

∆
X
(T

)

Figure 5.2: Evolution of the slip amplitude of the asperity during a seismic event

(α = 0.2, γ = 1, ε = 0.7).
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The moment rate associated with the seismic event can be calculated as

Ṁs(T ) = M1
∆Ẋ(T )

U
(5.46)

where M1 is the seismic moment corresponding to the slip U . From Eq. (5.41) and

Eq. (5.44), we obtain

Ṁs(T ) = M1
1 + α

2ω1

sinω1T e
− γ

2
T . (5.47)

The final seismic moment is

Ms = M1
Us
U

= κ1M1. (5.48)

The seismic moment rate Ṁs(T ) is shown in Fig. (5.3) for a given choice of the

parameters α, γ and ε.
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1

Ṁ
(T

)/
M
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Figure 5.3: Moment rate associated with an earthquake on the fault (α = 0.2, γ = 1, ε =

0.7).

From Eq. (5.15), the forces on the asperity and on the weak region during the

earthquake are, respectively,

F1(T ) = −X(T ) + α [Y1 −X(T )]− γẊ(T ) (5.49)

F2(T ) = −ξY1 − α [Y1 −X(T )] . (5.50)

They are shown in Fig. (5.4) for a given choice of the parameters α, γ and ε.
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Figure 5.4: Evolution of the tangential forces on the asperity (solid line) and on the

weak region (dashed line) during a seismic event (α = 0.2, γ = 1, ε = 0.7).

At the end of the event (T = T2), the slip deficits of the two regions are

X2 = X1 − Us, Y2 = Y1. (5.51)

In order to exclude overshooting during the earthquake, the condition X2 ≥ 0 is

required. Making use of Eq. (5.39), we obtain the constraint

β ≥ Us(α + αξ + ξ)− α− ξ
α

. (5.52)

Introducing the expressions of X2 and Y2 into Eq. (5.49) and Eq. (5.50), we conclude

that the forces at the end of the slipping mode are

F1(T2) = −1 + (1 + α)Us (5.53)

F2(T2) = −β − αUs. (5.54)

A comparison with Eq. (5.36) indicates that the force F1 on the asperity has

decreased in magnitude, with a force drop (1 + α)Us. Conversely, the force F2 on

the weak region has increased in magnitude by an amount αUs: this drives the

region out of the steady-state creep and initiates the afterslip.
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5.2.3 Afterslip

The equations of motion are given in Eq. (5.21) and Eq. (5.22). As a matter of

fact, afterslip is characterized by a longer duration than seismic slip: thus, a high

value of λ is expected and it is reasonable to consider the overdamped solution

of Eq. (5.22). For the sake of simplicity, I set T2 = 0 for the origin time of the

afterslip mode. With initial conditions

X(0) = X2, Y (0) = Y2, Ẏ (0) = 0 (5.55)

the solution is

X = X2 (5.56)

Y (T ) = Ȳ − (Ȳ − Y1)

[
coshω2T +

λ

2ξω2

sinhω2T

]
e−

λ
2ξ
T (5.57)

where

Ȳ =
αX2 + β

α + ξ
. (5.58)

Defining the afterslip amplitude as

∆Y (T ) = Y2 − Y (T ), (5.59)

the final afterslip amplitude is

Ua = Y2 − Ȳ =
α

α + ξ
Us (5.60)

where Eq. (5.39), Eq. (5.45), Eq. (5.51) and Eq. (5.58) were used. This result points

out that afterslip in the weak region is proportional to the seismic slip of the

asperity, in agreement with observations (Scholz, 1990). The afterslip amplitude

∆Y (T ) is shown in Fig. (5.5) for a particular choice of the parameters α, ε, λ and

ξ.
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Figure 5.5: Evolution of the afterslip amplitude of the weak region following a seismic

event (α = 0.2, ε = 0.7, λ = 105, ξ = 1).

The afterslip rate is

∆Ẏ (T ) =
(α + ξ)Ua

ξω2

sinhω2T e
− λ

2ξ
T . (5.61)

Strictly speaking, this expression suggests that the final value Ua of the afterslip

amplitude is reached only as T →∞. However, the slip rate ∆Ẏ is exponentially

decreasing and, after some time, afterslip becomes indistinguishable from the

steady-state creep taking place during interseismic intervals. Therefore, it is

possible to assign a finite duration to afterslip, defined as the time interval Ta

after which the afterslip rate (5.61) lowers below the creep rate (5.32):

∆Ẏ (Ta) =
ξ

α + ξ
V. (5.62)

This equation can be easily solved for Ta noticing that, for large values of T , it is

possible to write to a very good approximation

∆Ẏ (T ) ≈ (α + ξ)Ua
2ξω2

e−T/Θa (5.63)

with

Θa =

(
λ

2ξ
− ω2

)−1

. (5.64)
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Thus, Eq. (5.62) yields

Ta = Θa ln
αUs(α + ξ)

2ξ2ω2V
. (5.65)

Afterslip duration Ta is remarkably affected by the degree of coupling between

the two regions of the fault. This is illustrated in Fig. (5.6), where Ta is shown

as a function of the coupling parameter α for different values of the parameter

ξ. The graph shows an initial steep growth for smaller values of α, reaching a

maximum value that depends on the particular combination of the parameters of

the system; finally, it decreases for higher values of α.
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Figure 5.6: Afterslip duration (5.65) as a function of the coupling parameter α for

different values of the parameter ξ. Other parameters are ε = 0.7, γ = 1, λ = 105 and

V = 10−9.

The geodetic moment rate associated with afterslip can be calculated as

Ṁa(T ) = ξM1
∆Ẏ (T )

U
. (5.66)

Using Eq. (5.60) and Eq. (5.61), we obtain

Ṁa(T ) = M1
ακ1

ω2

sinhω2T e
− λ

2ξ
T . (5.67)

The final moment is

Ma = ξM1
Ua
U

=
αξ

α + ξ
κ1M1 (5.68)
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differing from the seismic moment (5.48) by a factor αξ/(α + ξ). The geodetic

moment rate Ṁa(T ) is shown in Fig. (5.7) for a particular choice of the parameters

α, ε, λ and ξ.
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Figure 5.7: Geodetic moment rate associated with afterslip on the fault (α = 0.2, ε =

0.7, λ = 105, ξ = 1).

From Eq. (5.16), the forces acting on the asperity and on the weak region during

afterslip are, respectively,

F1(T ) = −X2 + α [Y (T )−X2] (5.69)

F2(T ) = −ξY (T )− α [Y (T )−X2] . (5.70)

They are shown in Fig. (5.8) for a given choice of the parameters α, ε, λ and ξ.
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Figure 5.8: Evolution of the tangential forces on the asperity (solid line) and on the

weak region (dashed line) during afterslip on the fault (α = 0.2, ε = 0.7, λ = 105, ξ = 1).

At the end of afterslip, the state of the fault is

X3 = X2, Y3 = Y2 − Ua = Ȳ . (5.71)

If we introduce these values in Eq. (5.69) and Eq. (5.70), we obtain the forces at

the end of afterslip (T = T3)

F1(T3) = −1 +
α + αξ + ξ

α + ξ
Us (5.72)

F2(T3) = −β. (5.73)

The force F1 on the asperity has increased (in magnitude) by an amount αUa with

respect to its value (5.53) at the end of the earthquake (T = T2), since afterslip

has transferred stress to the asperity. Therefore, the asperity is closer to the

failure condition. The amount of stress transferred to the asperity significantly

increases with the coupling parameter α; however, F1(T3) > −1, which guarantees

that afterslip never triggers asperity failure. Nevertheless, the amount of stress

that afterslip transfers to the asperity will produce a time advance of the next

earthquake. This is illustrated in Fig. (5.9), where F1(T3) is shown as a function

of α for different values of the parameter ξ. As for the weak region, Eq. (5.73)

points out that the condition for steady-state creep has been recovered.
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Figure 5.9: Tangential force (5.72) on the asperity at the end of afterslip, as a function

of the coupling parameter α for different values of the parameter ξ. Other parameters

are ε = 0.7 and γ = 1.

Notice that the state (5.71) at the end of the afterslip mode satisfies the equation

of line (5.30). Under the assumption (5.52), the no overshooting condition Y3 ≥ 0

is then always satisfied and no additional constraint is required. Hence, in the

absence of perturbations due to earthquakes on nearby faults, the orbit of the

system describes a cycle made of a sequence of the three dynamic modes. During

the interseismic interval, the representative point of the system moves on line

(5.30). When it reaches the point P1 with coordinates (5.39), a seismic event

takes place. The point moves by a quantity Us given by Eq. (5.45), reducing the

value of the slip deficit X and reaching the point P2 with coordinates (5.51). Here

afterslip begins and lowers the value of Y by a quantity Ua given by Eq. (5.60),

driving the system to the point P3 with coordinates (5.71). This state belongs

again to line (5.30), so that a new interseismic interval begins. This orbit is in-

dependent of λ and describes the right-angled triangle P1P2P3 shown in Fig. (5.10).

The duration Tis of the new interseismic interval can be calculated considering

the expression (5.72) of the force acting on the asperity at the end of the afterslip

mode, that is, when the system is at point P3. In order to reach the unit value
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and give rise to a new earthquake, F1 must increase in magnitude by an amount

∆F1 =
α + αξ + ξ

α + ξ
Us. (5.74)

This force is accumulated over a time interval

Tis =
∆F1

|Ḟ1|
(5.75)

where Ḟ1 is the interseismic rate of increase of F1 that can be calculated from

Eq. (5.33). We obtain

Tis =
Us
V
. (5.76)

X

Y

P1

P2

P3

Ua

Us

Figure 5.10: Geometrical illustration of the cycle made of interseismic creep, seismic slip

and afterslip. The dashed and dotted lines represent the conditions for the failure of the

asperity and for the interseismic fault creep, respectively. The state of the fault is P1 at

the beginning of a seismic event, P2 at the end of the event, P3 at the end of afterslip.

In the triangle P1P2P3, the lengths of the catheti are the amplitudes Us of seismic slip

and Ua of afterslip, respectively. From P3 to P1, the fault is subject to tectonic loading

and steady-state creep. Arrows indicate the motion of the representative point of the

system during the cycle.

In order to enlighten the role of afterslip, the duration of the interseismic interval

T ′is that would be observed in the absence of afterslip is calculated next. In this

case, at the beginning of the interseismic interval, the force on the asperity remains

fixed to the value (5.53) reached at the end of seismic event (T = T2). Accordingly,
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F1 must increase in magnitude by an amount

∆F ′1 = (1 + α)Us (5.77)

for the next earthquake to take place. Thus, we get

T ′is =
∆F ′1
|Ḟ1|

=
(1 + α)(α + ξ)

α + αξ + ξ

Us
V
. (5.78)

The ratio
Tis
T ′is

= 1− α2

(1 + α)(α + ξ)
(5.79)

is always smaller than 1, since α and ξ are defined as positive. Hence, the occur-

rence of afterslip anticipates the next earthquake produced by the fault.

From Eq. (5.32) and Eq. (5.76), the cumulative creep in the interseismic interval

is

Uis = ∆Ẏ · Tis =
ξ

α + ξ
Us, (5.80)

corresponding to a geodetic moment

Mis = ξM1
Uis
U

=
ξ2

α + ξ
Ms. (5.81)

Comparing this result with Eq. (5.48) and Eq. (5.68), we conclude that, in a cycle

including the three dynamic modes, the total geodetic moment (Ma +Mis) is a

fraction ξ of the seismic moment Ms and the total moment released is

M = (1 + ξ)Ms. (5.82)

5.3 Afterslip vs. viscoelastic relaxation

The present model provides a possible means to discriminate between afterslip

and viscoelastic relaxation as sources of postseismic deformation.

Let us begin by noticing that, since λ is much larger than (1− α/ξ), the

expression (5.59) for the afterslip amplitude

∆Y (T ) = Ua

[
1−

(
coshω2T +

λ

2ξω2

sinhω2T

)
e−

λ
2ξ
T

]
(5.83)

can be rewritten in a simpler form. Expressing the hyperbolic functions by

exponentials, one easily finds

∆Y (T ) ≈ Ua(1− e−T/Θa) (5.84)
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to a very good approximation, with Θa given by Eq. (5.64).

The surface displacement associated with postseismic deformation has been

often modelled as

s(t) = b ln

(
1 +

t

τ

)
(5.85)

where b is a constant and τ is a characteristic time (Scholz, 1990; Marone et al.,

1991; Heki et al., 1997; Barbot et al., 2009). This function becomes arbitrarily

large as t→∞, even though its derivative tends to zero. In many cases, it fits

the postseismic deformation data over finite time intervals reasonably well. On

the contrary, Eq. (5.84) entails an afterslip approaching a maximum value Ua in a

finite time Ta, with an associated surface displacement

sa(t) = s̄a(1− e−t/θa) (5.86)

where s̄a is the asymptotic value and θa can be calculated from the observed

duration of afterslip ta as

θa =
ta
Ta
.Θa (5.87)

Let us assume that the lithosphere is a Maxwell body with a characteristic time θ.

Accordingly, the surface displacement associated with viscoelastic relaxation can

be written as

sv(t) = s̄v(1− e−t/θ) (5.88)

where s̄v is the asymptotic value. Owing to the high value of the lithospheric

viscosity, viscoelastic relaxation typically occurs over a timescale much longer

than the one associated with afterslip, i.e. θ � θa. Thus, if we focus on the time

interval 0 ≤ t ≤ ta during which afterslip is observed, it results t � θ and the

displacement sv(t) can be approximated with its first-order expansion. The total

displacement can then be written as

s(t) = sa(1− e−t/θa) + ct (5.89)

with c = s̄v/θ. The slope of this function decreases much slower than the slope of

sa(t), thus resembling the logarithmic function (5.85).

5.4 Choice of the parameters

I show how to assign appropriate values to the parameters of the system.
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The coupling parameter α can be calculated from the area A2 of the weak

region, the rigidity µ of the elastic medium, the velocity v of the tectonic plates,

the tangential stress rate σ̇t acting on the fault and the tangential traction (per unit

moment) s imposed on one region by a dislocation of the other, calculated as the

average value at the centre of the receiving region. With the same considerations

as in §4.6, the coupling constants K1 and K2 can be evaluated as

K1 =
σ̇tA1

v
, K2 =

σ̇tA2

v
(5.90)

where the proper expression for σ̇t is provided in Appendix A. In the discrete

model, the tangential force imposed on the weak region by the slip of the asperity

by an amount u is Kcu. The corresponding tangential traction (per unit moment)

is

s =
Kcu

µA1A2u
=

Kc

µA1A2

(5.91)

from which we obtain

Kc = µA1A2s. (5.92)

Hence, the coupling parameter α is given by

α =
Kc

K1

=
µA2sv

σ̇t
. (5.93)

For nonoverlapping regions satisfying the condition a ≥ 1.5
√
A1, the traction

produced by a point-like dislocation source placed at the centre of the asperity is

a good approximation for s (Appendix B). Specifically, we have

s =
5

12π
a−3 (5.94)

for strike-slip faulting and

s =
1

6π
a−3 (5.95)

for dip-slip faulting. We conclude that the coupling between the two regions of the

fault increases with the area of the weak region, the rigidity of the medium and the

velocity of the tectonic plates, whereas it is inversely proportional to the distance

between the centres of the two regions and to the tangential stress rate on the fault.

The parameter β is always smaller than 1: in fact, by definition, the steady-

state dynamic friction f0 on the weak region is much smaller than the static

friction fs on the asperity. In applications to real cases, the value of β can be

chosen in order that the model gives the best fit with observations.
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As already stated in §4.6, γ is chosen in order to obtain the best fit with the

observed source function of a given earthquake, while ε is inferred from experi-

mental data.

The evaluation of the parameter λ requires the knowledge of the observed

durations ta and ts of the afterslip and of the seismic event, respectively. In fact,

λ can be obtained as the numerical solution of Eq. (5.65) with the substitution

Ta =
ta
ts
Ts. (5.96)

Finally, the parameter ξ is determined from the areas of the strong and the

weak region on the fault, which are in turn inferred from the spatial distribution

of coseismic slip and afterslip, respectively. As for the parameter V , it can be

calculated by means of Eq. (4.46) from the observed plate velocity v, the duration

ts and the slip amplitude us of the seismic event.

5.5 An application: the 2011 Tohoku-Oki earth-

quake

The 11 March 2011 Mw 9.0 Tohoku-Oki (Japan) earthquake took place as a result

of thrust faulting at the Japan trench, where the Pacific plate subducts below

the Eurasia plate at a rate v = 8 cm a−1 (Simons et al., 2011). With a seismic

moment ms = 3.5× 1022 Nm (Maercklin et al., 2012; Bletery et al., 2014), this

event will be certainly included as one of the largest earthquakes of the current

century. A sketch of the tectonic setting is shown in Fig. (5.11).

The event lasted for about 160 s, with a moment release concentrated in

a time interval ts = 80 s (Wei et al., 2012). The coseismic slip distribution

suggests a compact area of large slip extending from the trench to about 50 km

of depth (Lay et al., 2012), whereas afterslip was mostly observed in an area

located downdip of the coseismic slip, reaching a depth of about 100 km (Silverii

et al., 2014). Accordingly, it is assumed that the fault is made of a shallower,

velocity-weakening region and a deeper, velocity-strengthening region. The two

regions are assumed to be rectangles with sides 400 and 150 km long, so that

their areas are A1 = A2 = 60, 000 km2, with a distance a = 150 km between their

centres. An average dip angle δ = 20◦ is assumed (Lay et al., 2012). With an
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average rigidity µ = 40 GPa (Ozawa et al., 2011), the average seismic slip was

us = 15 m. With a strain rate ė = 10−14 s−1 (Kato et al., 1998) and a Poisson

modulus ν = 0.25, the tangential stress rate on the fault is σ̇t ' 3.4× 10−4 Pa s−1

(Eq. A.4).

Figure 5.11: Geographic location of the 2011 Tohoku-Oki (Japan) earthquake. The star

denotes the epicenter. Black arrows indicate the relative motion of the Pacific plate

with respect to the Eurasia plate, whereas the thick dashed line identifies the boundary

between the tectonic plates.

With the data listed above, the parameters of the model are calculated. From

Eq. (5.93), we get α ' 0.3. The best fit with the observed source function of the

earthquake is obtained with γ = 1.5. I assume ε = 0.7 (e.g. Jaeger and Cook,

1976). The value of λ will be evaluated on the basis of the assumed afterslip dura-

tion. Finally, we have ξ = 1. Notice that only the seismic slip and afterslip phases

associated with the event are investigated here; their evolutions are independent

of β (as shown in §5.2.2 and §5.2.3), so that there is no need to assign a value to

this parameter.

First, the observed source function is reproduced over the time interval t1 ≤
t ≤ t2 where the dominant contribution to seismic moment is generated, with

t1 = 50 s and t2 = 130 s. In dimensional form, the moment rate (5.47) becomes

ṁs(t) = m1
1 + α

2ω1

χ sinω1χ(t− t1) e−
γ
2
χ(t−t1) (5.97)

63



where

χ =
Ts
ts

(5.98)

and

m1 = µA1u (5.99)

where u is the slip of the asperity in the limit case γ = 0, so that u = us/κ1. The

moment rate (5.97) is shown in Fig. (5.12). It is superimposed to the observed

moment rate reported by Montagner et al. (2016) and fits its central peak

reasonably well.
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Figure 5.12: Modelled source function (solid line) of the 2011 Tohoku-Oki (Japan) earth-

quake, compared with the observed source function (dashed line) given by Montagner

et al. (2016).

According to the model, the final seismic moment is

ms = κ1m1 = 3.6× 1022 Nm (5.100)

in agreement with the observations.

Let us now focus on the postseismic evolution of the fault. Equation (5.60)

yields an average afterslip amplitude in the weak region equal to ua = 0.23us ' 3.5

m. Also, from Eq. (5.68), the geodetic moment associated with afterslip is

ma = 0.23ms ' 8.3× 1021 Nm.
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Let ss be the coseismic ground displacement. According to Ozawa et al. (2011),

a postseismic displacement s′a = 0.09 ss was reached at a time t′a = 15 d after

the seismic event. We can ascribe s′a entirely to afterslip, because viscoelastic

relaxation takes place over much longer times: in fact, with a viscosity of the

lower crust equal to 1019 Pa s (Wang et al., 2012; Sun et al., 2014), the Maxwell

relaxation time is θ = 8 a. By means of Eq. (5.86) and taking into account that

surface displacement is proportional to fault slip, we find θa ' 30 d � θ, as

anticipated.

The surface displacement generated by afterslip is shown in Fig. (5.13) as a

function of time. The curve is consistent with data from Diao et al. (2013) and

Silverii et al. (2014), according to whom postseismic ground displacement reached

the value s̄a after a time from 120 to 150 d from the event. We conclude that

afterslip reached the asymptotic value ua after a time ta of about four months.

Following the procedure described in §5.4, we find λ ' 105.
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Figure 5.13: Surface displacement generated by afterslip during a time interval of 120

d following the 2011 Tohoku-Oki (Japan) earthquake, according to the model. It is

normalized to the coseismic surface displacement ss.

The ground displacement produced by afterslip has been calculated making use of

Okada’s (1985) formulae. The graphs of the horizontal and vertical displacement

components are shown in Fig. (5.14).

65



-2 -1 0 1 2

x1/L

-2

-1

0

1

2

x
2
/L

(a)

max. displacement

0.7m

x
2
/L

x1/L

u3 (m)

Figure 5.14: Ground displacement produced by afterslip following the 2011 Tohoku-Oki

(Japan) earthquake, according to the present model: (a) horizontal component; (b)

vertical component u3. The rectangle is the projection of the weak fault region on

the Earth’s surface and the dashed segment is the fault trace. The x1 and x2 axes

are parallel to the strike direction of the fault and to the direction normal to strike,

respectively. Distances are measured in units of the half-side of the fault along the

strike direction, namely L = 200 km.

66



The direction and magnitude of the calculated displacement are broadly compara-

ble with displacements obtained from GPS data over a time interval comparable

with ta. For instance, Silverii et al. (2014) reported a maximum horizontal dis-

placement of the order of 1 m at the eastern coasts of the Iwate/Miyagi prefectures

of Japan and a maximum vertical displacement of about 20 cm in the same area.

These figures are in good agreement with the results shown in Fig. (5.14), where

the eastern coasts of the Iwate/Miyagi prefectures approximately correspond with

the projection of the lower margin of the weak fault region on the Earth’s surface.

According to this analysis, the remainder of postseismic deformation should be

ascribed to viscoelastic relaxation in the lithosphere.
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Chapter 6

A fault with two asperities of

different areas and strengths

In this chapter, a discrete model of a fault with two asperities of different areas and

strengths is considered, assuming purely elastic coupling between the asperities.

This model represents a further development of the models illustrated in §3.3.1.

6.1 The model

The fault model described in §3.4 is adopted and a fault containing two asperities

(named asperity 1 and asperity 2) with areas A1 and A2, respectively, is considered

(Fig. 6.1). Let a be the distance between the centres of the asperities.

A1 A2

Figure 6.1: Model of a fault with two asperities of different areas, namely A1 and A2.

The rectangular frame is the fault border.
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The fault is treated as a dynamical system with two state variables, functions of

time t: the slip deficits x(t) and y(t) of asperity 1 and 2, respectively. Since the

system has two degrees of freedom, the phase-space is a 4-manifold.

The simplest form of rate-dependent friction is assumed, associating the

asperities with constant static and dynamic frictions, the latter considered as the

average value during slip. Let fs1 and fd1 be the static and dynamic friction forces

on asperity 1, respectively, whereas fs2 and fd2 are the static and dynamic friction

forces on asperity 2, respectively. Letting β be the ratio between the frictional

stresses of the asperities, we have

fs2
fs1

=
fd2

fd1

= βξ (6.1)

where the nondimensional parameter

ξ =
A2

A1

(6.2)

was introduced. It is assumed that fs1 > fs2 and fd1 > fd2, i.e., asperity 1 is

stronger than asperity 2. Accordingly, it results 0 < β < 1.

Since the asperities move as rigid surfaces, it is easier to use forces instead of

tractions. The tangential forces applied to the asperities in the slip direction are

f1 = −K1x+Kc (y − x)− ι1ẋ, f2 = −K2y −Kc (y − x)− ι2ẏ. (6.3)

In these expressions, the terms −K1x and −K2y represent the effect of tectonic

loading, whereas the terms ±Kc (y − x) are the contributions of stress transfer

between the asperities; finally, the terms −ι1ẋ and −ι2ẏ are forces due to radiation

damping, where ι1 and ι2 are impedances. Assuming that the impedance per unit

area is the same for both asperities, it results

ι2
ι1

= ξ. (6.4)

The constants K1, K2 and Kc can be retrieved from the values of A1, A2, µ, v, the

tangential stress rate acting on the fault and the tangential stress transferred from

one asperity to the other during a seismic event, as it was shown in §5.4.

During a sticking mode, the slip deficits x and y increase steadily due to to

tectonic motion. Accordingly, the equations of motion during a sticking mode are

ẍ = 0, ÿ = 0 (6.5)
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where a dot indicates differentiation with respect to t. The slip of asperity 1

occurs when

f1 = −fs1, (6.6)

while the slip of asperity 2 takes place when

f2 = −fs2. (6.7)

The equations of motion during a slipping mode are

µ1ẍ+ ι1ẋ+ (K1 +Kc)x−Kc y − fd1 = 0 (6.8)

µ2ÿ + ι2ẏ + (K2 +Kc) y −Kc x− fd2 = 0 (6.9)

where µ1 and µ2 are the masses associated with the asperities.

For the sake of simplicity, the analysis is carried out in nondimensional form.

I introduce the additional nondimensional parameters

α =
Kc

K1

, γ =
ι1√
K1µ1

(6.10)

ε =
fd1

fs1
=
fd2

fs2
, V =

√
K1µ1

fs1
v (6.11)

where: α is a measure of the degree of coupling between the asperities; γ is a

function of the seismic efficiency of the fault; ε is the ratio between dynamic and

static frictions on the asperities; V is the nondimensional velocity of tectonic

plates. The parameters are subject to the following constraints: α ≥ 0, γ ≥ 0,

0 < ε < 1, V > 0. Furthermore, it is assumed that the masses associated with the

two asperities are proportional to their areas, so that

µ2

µ1

=
K2

K1

= ξ. (6.12)

I also define the nondimensional slip deficits and time

X =
K1x

fs1
, Y =

K1y

fs1
, T =

√
K1

µ1

t. (6.13)

Accordingly, the equations of motion (6.5) for the sticking mode can be rewritten

as

Ẍ = 0, Ÿ = 0 (6.14)

where a dot now indicates differentiation with respect to T . The equations of

motion (6.8)-(6.9) for the slipping mode become

Ẍ + γẊ + (1 + α)X − αY − ε = 0 (6.15)
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Ÿ + γẎ + (1 + α′)Y − α′X − βε = 0 (6.16)

where the parameter

α′ =
α

ξ
(6.17)

was introduced.

Finally, I introduce the nondimensional forces

F1 =
f1

fs1
, F2 =

f2

fs1
. (6.18)

Making use of Eq. (6.3), it results

F1 = −(1 + α)X + αY − γẊ, F2 = −(α + ξ)Y + αX − γξẎ . (6.19)

To sum up, the system is described by the set of six parameters α, β, γ, ε, ξ and

V . At any instant T in time, the state of the system can be univocally expressed

by one of the couples (X, Y ) or (F1, F2).

The dynamics of the system can be characterized in terms of four dynamic

modes, each one described by a different system of autonomous ODEs: a sticking

mode (00), corresponding to stationary asperities, and three slipping modes,

associated with the slip of asperity 1 alone (mode 10), the slip of asperity 2 alone

(mode 01) and the simultaneous slip of the asperities (mode 11). A seismic event

generally consists in n slipping modes and involves one or both the asperities.

6.1.1 The sticking region

The sticking region is defined as the set of states corresponding to a phase of

global stick of the system. When both asperities are stationary (mode 00), the

rates Ẋ and Ẏ are negligible with respect to their values when the asperities are

slipping; thus, the sticking region is a subset Q of the state space XY . It can be

determined as follows.

During a global stick phase, the forces (6.19) reduce to

F1 = −(1 + α)X + αY, F2 = −(α + ξ)Y + αX. (6.20)

In nondimensional form, the conditions (6.6) and (6.7) for the onset of motion of

asperity 1 and 2 become, respectively,

F1 = −1, F2 = −βξ. (6.21)
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Combining these conditions with Eq. (6.20), we obtain two lines in the XY plane,

Y =
1 + α

α
X − 1

α
(6.22)

Y =
α

α + ξ
X +

βξ

α + ξ
(6.23)

which I name line 1 and line 2, respectively.

Overshooting during a slipping mode is excluded: accordingly, it is assumed

that X ≥ 0 and Y ≥ 0. As a consequence, the tangential forces on the asperities

must always be in the same direction as the velocity of tectonic plates, i.e. F1 ≤ 0

and F2 ≤ 0. From Eq. (6.20), the limit cases F1 = 0 and F2 = 0 define two more

lines in the XY plane,

Y =
1 + α

α
X (6.24)

Y =
α

α + ξ
X, (6.25)

which I call line 3 and line 4, respectively.

Let Pa be the intersection of line 1 with line 4 and Pb be the intersection of

line 2 with line 3. The coordinates of points Pa and Pb are

Xa =
α + ξ

α + αξ + ξ
, Ya =

α

α + αξ + ξ
(6.26)

Xb =
αβξ

α + αξ + ξ
, Yb =

(1 + α)βξ

α + αξ + ξ
(6.27)

Lines 1 and 2 meet at point P with coordinates

XP = Xa +Xb, YP = Ya + Yb. (6.28)

To sum up, the sticking region Q of the system is the parallelogram enclosed by

the four lines, with vertices at the origin, Pa, Pb and P . It is shown in Fig. (6.2)

for a particular choice of the parameters α, β and ξ. Its area is

AQ =
βξ

α + αξ + ξ
. (6.29)

Accordingly, the subset of state space corresponding to stationary asperities de-

creases with the degree of coupling between the asperities and with the asymmetry

of the system (β → 0). By definition, every orbit of mode 00 is enclosed within

Q and eventually reaches line 1 or line 2, where a seismic event starts. In these

cases, the system switches from mode 00 to mode 10 or mode 01, respectively. In

the particular case in which the orbit of mode 00 reaches point P , the system

passes from mode 00 to mode 11.
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Figure 6.2: The sticking region of the system: a parallelogram Q (α = 1, β = 0.5, ξ = 2).

6.2 Solutions of dynamic modes

The solutions to the equations of motion for each of the four dynamic modes of

the system are presented. I shall make use of the frequencies ω0 and ω1 defined in

Eq. (4.14) and Eq. (5.23), respectively, and

ω2 =

√
1 + α′ − γ2

4
, ω3 =

√
1 + α + α′ − γ2

4
. (6.30)

The case of weak damping is considered, i.e. γ ≤ 2 (§4.2).

6.2.1 Stationary asperities (mode 00)

The equations of motion are given in Eq. (6.14). With initial conditions

X(0) = X̄, Y (0) = Ȳ , Ẋ(0) = V, Ẏ (0) = V (6.31)

the solutions are

X(T ) = X̄ + V T, Y (T ) = Ȳ + V T (6.32)

where T ≥ 0. Equations (6.32) are the parametric equations of the line

Y = X + p (6.33)
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where

p = Ȳ − X̄. (6.34)

This line is the orbit of the system in the sticking region Q during mode 00.

Let P1 = (X1, Y1) and P2 = (X2, Y2) be the points where the orbit of mode 00

intersects line 1 and line 2, respectively, and let T1 and T2 be the corresponding

instants in time. The coordinates of P1 must satisfy the equation (6.22) of line 1:

thus, by combination with Eq. (6.32), we get the condition

Ȳ + V T1 =
1 + α

α

(
X̄ + V T1

)
− 1

α
. (6.35)

Accordingly, the slip of asperity 1 will start after a time

T1 =
1 + αp− X̄

V
. (6.36)

Analogously, the coordinates of P2 must satisfy the equation (6.23) of line 2:

exploiting Eq. (6.32) again, we get the condition

Ȳ + V T2 =
α

α + ξ

(
X̄ + V T2

)
+

βξ

α + ξ
. (6.37)

Thus, the slip of asperity 2 will take place at time

T2 =
β − α′p− Ȳ

V
. (6.38)

6.2.2 Slip of asperity 1 (mode 10)

The equations of motion are

Ẍ + γẊ + (1 + α)X − αY − ε = 0 (6.39)

Ÿ = 0 (6.40)

The fault can enter mode 10 from mode 11 or from mode 00.

Case 11→ 10

Let us assume that the asperities are both initially in motion and that, at T = 0,

asperity 2 stops, while asperity 1 continues to slip. Thus, the initial conditions are

X(0) = X̄, Y (0) = Ȳ , Ẋ(0) = V̄ , Ẏ (0) = 0 (6.41)
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and the solutions are

X(T ) = X̄ − Ū1

2
+

[
Ū1

2
cosω1T +

1

ω1

(γ
4
Ū1 + V̄

)
sinω1T

]
e−

γ
2
T (6.42)

Y (T ) = Ȳ (6.43)

where

Ū1 = 2

(
X̄ − αȲ + ε

1 + α

)
. (6.44)

Accordingly, the slip deficit of asperity 1 decreases with time, whereas the slip

deficit of asperity 2 remains unchanged. If the orbit does not reach line 2 during

the mode, the slip duration can be calculated from the condition Ẋ(T ) = 0,

yielding

T1a =
1

ω1

[
π + arctan

2ω1V̄

(1 + α)Ū1 + γV̄

]
. (6.45)

The final slip amplitude is then

U1a = X̄ −X(T1a) =
Ū1

2
+

√
Ū2

1

4
+

V̄ 2

1 + α
+

γŪ1V̄

2(1 + α)
e−

γ
2
T1a . (6.46)

If instead the orbit reaches line 2 during the mode, the system enters again mode

11. The slip duration is then obtained by solving the equation (6.23) of line 2 for

the unknown T .

Case 00→ 10

Let us assume that the asperities are both initially stationary and that, at T = 0,

the condition for the failure of asperity 1 is reached. Accordingly, the initial point

of the orbit of mode 10 belongs to line 1 given by Eq. (6.22) and V̄ = 0; from

Eq. (6.44), we have Ū1 = U defined in Eq. (5.24). The solutions reduce to

X(T ) = X̄ − U

2

[
1−

(
cosω1T +

γ

2ω1

sinω1T

)
e−

γ
2
T

]
(6.47)

Y (T ) = Ȳ . (6.48)

If the orbit does not reach line 2 during the mode, the slip duration is

T1b =
π

ω1

(6.49)

and the final slip amplitude is

U1b = κ1U (6.50)

with κ1 defined in Eq. (5.25). If instead the orbit reaches line 2 before time T1b

has elapsed, the system passes to mode 11. In this case, the slip duration is again

obtained by solving the equation (6.23) of line 2 for the unknown T .
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6.2.3 Slip of asperity 2 (mode 01)

The equations of motion are

Ẍ = 0 (6.51)

Ÿ + γẎ + (1 + α′)Y − α′X − βε = 0. (6.52)

The fault can enter mode 01 from mode 11 or from mode 00.

Case 11→ 01

Let us assume that the asperities are both initially in motion and that, at T = 0,

asperity 1 stops, while asperity 2 continues to slip. Thus, the initial conditions are

X(0) = X̄, Y (0) = Ȳ , Ẋ(0) = 0, Ẏ (0) = V̄ (6.53)

and the solutions are

X(T ) = X̄ (6.54)

Y (T ) = Ȳ − Ū2

2
+

[
Ū2

2
cosω2T +

1

ω2

(γ
4
Ū2 + V̄

)
sinω2T

]
e−

γ
2
T (6.55)

where

Ū2 = 2

(
Ȳ − α′X̄ + βε

1 + α′

)
. (6.56)

Accordingly, the slip deficit of asperity 2 decreases with time, whereas the slip

deficit of asperity 1 remains unchanged. If the orbit does not reach line 1 during

the mode, the slip duration can be calculated from the condition Ẏ (T ) = 0,

yielding

T2a =
1

ω2

[
π + arctan

2ω2V̄

(1 + α′)Ū2 + γV̄

]
. (6.57)

The final slip amplitude is then

U2a = Ȳ − Y (T2a) =
Ū2

2
+

√
Ū2

2

4
+

V̄ 2

1 + α′
+

γŪ2V̄

2(1 + α′)
e−

γ
2
T2a . (6.58)

If instead the orbit reaches line 1 during the mode, the system enters again mode

11. The slip duration is then obtained by solving the equation (6.22) of line 1 for

the unknown T .

Case 00→ 01

Let us assume that the asperities are both initially stationary and that, at T = 0,

the condition for the failure of asperity 2 is reached. Accordingly, the initial point
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of the orbit of mode 01 belongs to line 2 given by Eq. (6.23) and V̄ = 0; from

Eq. (6.56), we have Ū2 = βU ′, where

U ′ = 2
1− ε
1 + α′

. (6.59)

The solutions reduce to

X(T ) = X̄ (6.60)

Y (T ) = Ȳ − βU ′

2

[
1−

(
cosω2T +

γ

2ω2

sinω2T

)
e−

γ
2
T

]
. (6.61)

If the orbit does not reach line 1 during the mode, the slip duration is

T2b =
π

ω2

(6.62)

and the final slip amplitude is

U2b = βκ2U
′ (6.63)

where

κ2 =
1

2

(
1 + e

− πγ
2ω2

)
. (6.64)

If instead the orbit reaches line 1 before time T2b has elapsed, the system passes to

mode 11. In this case, the slip duration is again obtained by solving the equation

(6.22) of line 1 for the unknown T .

6.2.4 Simultaneous slip of asperities (mode 11)

The equations of motion are

Ẍ + γẊ + (1 + α)X − αY − ε = 0 (6.65)

Ÿ + γẎ + (1 + α′)Y − α′X − βε = 0 (6.66)

and the solution is

X(T ) = εXP + (A sinω0T +B cosω0T + C sinω3T +D cosω3T ) e−
γ
2
T (6.67)

Y (T ) = εYP + (A sinω0T +B cosω0T −
1

ξ
C sinω3T −

1

ξ
D cosω3T )e−

γ
2
T (6.68)

showing that the slip deficits of both asperities decrease with time. The con-

stants A, B, C and D depend on the initial conditions and are listed in Appendix C.

The duration T11 of mode 11 must be evaluated numerically: letting Tx and

Ty be the smallest positive solutions of the equations Ẋ(T ) = 0 and Ẏ (T ) = 0,
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respectively, we have T11 = min(Tx, Ty). Notice that Tx and Ty always differ,

owing to the asymmetry of the system (β 6= 1). If Tx < Ty, asperity 1 stops the

first and the system enters mode 01; if instead Ty < Tx, asperity 2 stops the first

and the system enters mode 10. In both cases, the final slip amplitudes of the

asperities in mode 11 are given by X̄ −X(T11) and Ȳ − Y (T11) for asperity 1 and

2, respectively.

6.3 Slip in a seismic event

A seismic event is generally made up of n slipping modes and can involve only one

or both asperities. More specifically, it is possible to distinguish three kinds of

events, namely (i) events due to the slip of a single asperity, (ii) events associated

with the separate (i.e., not simultaneous) slips of both asperities and (iii) events

involving the simultaneous slip of asperities. The number and sequence of dynamic

modes in a seismic event can be univocally determined from the knowledge of

the state of the system at the beginning of the interseismic interval preceding the

event. This state is identified by the value of the variable p defined in Eq. (6.34):

different subsets of the sticking region of the system can be identified accordingly,

as discussed in the following.

Let P0 ∈ Q be the representative point of the system at the beginning of an

interseismic interval. The orbit of mode 00 starting at P0 eventually reaches line

1 or line 2, where an earthquake begins. The kind of seismic event generated by

the fault depends on the subset of Q which P0 belongs to. Specifically, it depends

exclusively on the value of the variable p.

A major subdivision of Q is determined by the orbit through P , driving the

fault from mode 00 to mode 11. This orbit belongs to the line

Y = X + p0 (6.69)

with

p0 = YP −XP =
(β − 1)ξ

α + αξ + ξ
(6.70)

where Eq. (6.28) was taken into account. Line (6.69) divides Q in two subsets pro-

ducing events starting with mode 10 (p < p0) and mode 01 (p > p0), respectively.

In the particular case p = p0, the fault produces a two-mode event 11-01: this is
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the largest seismic event predicted by the model.

Next, the subset S of Q from which the fault generates events starting with

the slip of one asperity followed by the simultaneous motion of both of them is

determined. This subset is defined by the values of p belonging to the interval

[p1, p2], where

p1 =
(β − 1)ξ − ακ1U

α + ξ + αξ
, p2 =

(β − 1)ξ + αβξκ2U
′

α + ξ + αξ
(6.71)

as shown in Appendix D. Specifically, the lower margin of S is the line

Y = X + p1 (6.72)

causing asperity 1 to trigger the motion of asperity 2 after completing mode 10,

whereas the upper margin of S is the line

Y = X + p2 (6.73)

causing asperity 2 to trigger the motion of asperity 1 after completing mode 01.

Initial states that are outside S produce one-mode events 10 or 01, corresponding

to p < p1 and p > p2, respectively.

The subset S is shown in Fig. (6.3) for a particular choice of the parameters of

the system. For later use, let S1 and S2 be the subsets of S below and above line

(6.69), respectively. By definition, seismic events resulting from p = p1 and p = p2

are two-mode events 10-01 and 01-10, respectively. A further discussion of the

events generated by these stress distributions is provided in Appendix D.

6.4 Source functions and seismic moment

The number and sequence of slipping modes in a seismic event yield a specific shape

of the source function associated with the earthquake. Let us consider a seismic

event made up of n slipping modes and call Pi = (Xi, Yi) the representative point

of the system at T = Ti, when the system enters the i-th mode (i = 1, 2, . . . n).

The duration of the event is then

∆T = Tn+1 − T1. (6.74)

Let Xi(T ) and Yi(T ) be the slip deficits of asperities 1 and 2 respectively in the

i-th mode. The slip functions of the asperities in the i-th mode are then

∆Xi(T ) = Xi −Xi(T − Ti), ∆Yi(T ) = Yi − Yi(T − Ti) (6.75)
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Figure 6.3: The subset S of the sticking region Q from which events involving the

simultaneous slip of the asperities take place (α = 1, β = 0.5, γ = 1, ε = 0.7, ξ = 2). The

dashed lines correspond to p = p1 (right) and p = p2 (left), the dotted line to p = p0.

and the slip rates are

∆Ẋi(T ) = −Ẋi(T − Ti), ∆Ẏi(T ) = −Ẏi(T − Ti). (6.76)

Of course, the appropriate expressions of Xi(T ) and Yi(T ) must be used (§6.2).

Each event corresponds to a seismic moment m(t) or, in nondimensional form,

M(T ) =
K1

f 2
s1

m(t). (6.77)

As a reference, the seismic moment M1 that is released in a one-mode event 10 in

the limit case γ = 0 is considered. Accordingly, the moment rate associated with

a n-mode event is given by

Ṁ(T ) =
M1

U

n∑
i=1

(∆Ẋi + ∆Ẏi)[H(T − Ti)−H(T − Ti+1)] (6.78)

where H(T ) is the Heaviside function. Slip rates can be calculated analytically,

while the instants Ti are known a priori only for events involving the separate

slips of the asperities; in any other case, they must be calculated numerically. The

final seismic moment is

M0 = M1
U1 + U2

U
(6.79)
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where

U1 =
n∑
i=1

∆Xi = X1 −Xn+1, U2 =
n∑
i=1

∆Yi = Y1 − Yn+1 (6.80)

are the final slip amplitudes of the asperities.

As an example, events involving the failure of a single asperity or the consec-

utive, but separate, failures of the asperities are considered: these are the only

events predicted by the model for which completely analytical expressions of the

source functions and final seismic moment can be obtained.

1) One-mode events. If the earthquake is produced by the failure of asperity

1, Eq. (6.78) yields

Ṁ(T ) = M1
1 + α

2ω1

sinω1T e
− γ

2
T (6.81)

with 0 ≤ T ≤ T1b. The final seismic moment is

M0 = κ1M1. (6.82)

If the earthquake is produced by the failure of asperity 2, Eq. (6.78) yields

Ṁ(T ) = M1
1 + α

2ω2

β sinω2T e
− γ

2
T (6.83)

with 0 ≤ T ≤ T2b. The final seismic moment is

M0 =
1 + α

1 + α′
βκ2M1. (6.84)

The source functions associated with such events are shown in Fig. (6.4) for a

particular choice of the parameters of the system.

2) Two-mode events 10-01/01-10. If the sequence of slipping modes is 10-01,

the moment rate is

Ṁ(T ) = M1
1 + α

2


1
ω1

sinω1T e
− γ

2
T , 0 ≤ T ≤ T1b

β
ω2

sinω2(T − T1b) e
− γ

2
(T−T1b), T1b ≤ T ≤ ∆T

(6.85)

where

∆T = T1b + T2b. (6.86)

If the sequence is 01-10, the expression is straightforward. In both cases, the final

seismic moment is

M0 =

(
κ1 +

1 + α

1 + α′
βκ2

)
M1. (6.87)
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The source functions associated with such events are shown in Fig. (6.5) for a

particular choice of the parameters of the system.

To sum up, the number and sequence of dynamic modes involved in a seismic

event can be determined from the number and the amplitudes of the humps in

its source function. In turn, the knowledge of the source function of the seismic

event allows to set constraints on the state of the fault that generated it (§6.3).

An example will be shown in §6.8 for a real fault.

0 1 2 3

T

0

0.5

1

Ṁ
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(a) One-mode event 10.
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(b) One-mode event 01.

Figure 6.4: Source functions associated with the one-mode events predicted by the

model (α = 1, β = 0.5, γ = 1, ε = 0.7, ξ = 2).
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(a) Two-mode event 10-01.
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(b) Two-mode event 01-10.

Figure 6.5: Source functions associated with two-mode events involving the consecutive

slips of the asperities (α = 1, β = 0.5, γ = 1, ε = 0.7, ξ = 2).

6.5 Moment rate spectrum

As in §4.4, the nondimensional moment rate spectrum of a seismic event can be

calculated as

S(Ω) =
∣∣∫ ∆T

0

Ṁ(T ) e−iΩTdT
∣∣ (6.88)

83



where ∆T is the duration of the event given in Eq. (6.74) and Ω is a nondimensional

frequency, defined from the angular frequency ω of the emitted waves as

Ω =

√
µ1

K1

ω. (6.89)

The spectrum can be calculated analytically for one-mode events 10 or 01 and for

two-mode events 10-01 or 01-10: for the sake of simplicity, only the spectrum of

one-mode events is shown.

1) For a one-mode event 10, ∆T = T1b and we obtain

S(Ω) = M1
1 + α

2

√
1 + 2e−

γ
2
T1b cos ΩT1b + e−γT1b

(1 + α− Ω2)2 + γ2Ω2
. (6.90)

Its value for Ω = 0 is

S0 = M0 (6.91)

where M0 is given by Eq. (6.82), and its envelope for Ω→∞ is

S∞(Ω) =
1 + α

Ω2
M0. (6.92)

The nondimensional corner frequency is

Ωc =
√

1 + α (6.93)

and its dimensional value is

ωc =
T1b

t′
Ωc (6.94)

where t′ is the observed event duration.

2) For a one-mode event 01, ∆T = T2b and the spectrum is

S(Ω) = M1
1 + α

2
β

√
1 + 2e−

γ
2
T2b cos ΩT2b + e−γT2b

(1 + α′ − Ω2)2 + γ2Ω2
(6.95)

Its value for Ω = 0 is

S0 =
1 + α

1 + α′
βκ2M1 = M0 (6.96)

where M0 is given by Eq. (6.84), and its envelope for Ω→∞ is

S∞(Ω) =
1 + α′

Ω2
M0. (6.97)

The nondimensional corner frequency is

Ωc =
√

1 + α′ (6.98)

and its dimensional value is

ωc =
T2b

t′
Ωc. (6.99)
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6.6 The difference between the asperity areas

In this section, the influence of the difference between the asperity areas on several

features of the model is considered. For the sake of the present discussion, it

is assumed that the size of asperity 1 remains fixed, whereas asperity 2 can be

smaller (ξ < 1) or larger (ξ > 1).

6.6.1 Forces on the asperities

The evolution of the tangential forces on the asperities during a global stick phase

is considered. Combining Eq. (6.20) with Eq. (6.32), the forces F1 and F2 during

mode 00 are

F1(T ) = −X̄ + αp− V T, F2(T ) = −ξȲ − αp− ξV T. (6.100)

Accordingly, the forces on the asperities do not evolve with the same rate, since

Ḟ1 = −V, Ḟ2 = −ξV. (6.101)

We conclude that |Ḟ2| > |Ḟ1| if asperity 2 is larger than asperity 1, and vice-versa.

A significant implication of Eq. (6.100) concerns the meaning of the variable p

defined in Eq. (6.34). In fact, the difference

F1(T )− F2(T ) = −X̄ + ξȲ + 2αp+ (ξ − 1)V T (6.102)

does not remain constant during an interseismic interval, except for the limit case

ξ = 1, in which we have

F1 − F2 = (1 + 2α)p. (6.103)

As a result, the variable p no longer describes the stress inhomogeneity on the

fault in a univocal way (Dragoni and Santini, 2012). Nevertheless, it still controls

which asperity fails the first in a seismic event, as shown in §6.3.

6.6.2 Slip duration and amplitude

The dependence of slip duration and amplitude on the size of the asperities is

discussed. The parameter ξ appears in the solutions of dynamic modes involving

the slip of asperity 2, as shown in §6.2.3 and §6.2.4. For the sake of simplicity,

only one-mode events 01 are considered here. Figure (6.6) shows the slip duration

(6.62) and final slip amplitude (6.63) in a one-mode event 01, as functions of ξ.
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They are expressed in units of the slip duration (6.49) and final slip amplitude

(6.50) associated with a one-mode event 10, respectively.
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(a) Slip duration.
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(b) Final slip amplitude.

Figure 6.6: Slip duration and final slip amplitude in a one-mode event 01, as functions

of ξ (α = 1, β = 0.5, γ = 1, ε = 0.7). They are normalized to the slip duration and final

slip amplitude associated with a one-mode event 10, respectively.

As asperity 2 gets larger, its inertia grows as well. Therefore, the slip duration is

increased and, in turn, the final slip amplitude increases too. Notice that the slip

durations T1b and T2b coincide in the limit case ξ = 1 (asperities of equal areas),
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whereas U2b < U1b for any value of ξ, since asperity 2 is assumed to be weaker

then asperity 1. In turn, the source function of the event is affected by ξ: for

larger values of this parameter, the source function reaches a larger maximum

value that is delayed in time, as shown in Fig. (6.7).
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Figure 6.7: Source function of a one-mode event 01 for different values of the parameter

ξ (α = 1, β = 0.5, γ = 1, ε = 0.7).

6.6.3 The sticking region and its subsets

I discuss the influence of the parameter ξ on the sticking region Q. Its area AQ

was given in Eq. (6.29): it is shown in Fig. (6.8) as a function of ξ, in units of the

area A∗Q corresponding to the limit case ξ = 1 (asperities of equal areas). The

graph clearly shows that the area AQ is smaller than the area A∗Q for ξ < 1; the

opposite holds for ξ > 1. As a matter of fact, the overall inertia of the system

decreases when ξ < 1 and the set of states corresponding to stationary asperities

is reduced in turn; the opposite holds when ξ > 1.
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Figure 6.8: The area AQ of the sticking region Q, as a function of the parameter ξ

(α = 1, β = 0.5). It is normalized to the area A∗Q corresponding to ξ = 1.

Next, the effect of ξ on events involving the simultaneous slip of the asperities is

discussed. Figure (6.9)-(a) shows the area AS of the subset S of the sticking region

from which events involving mode 11 take place, as a function of ξ. A deeper

insight is presented in Figure (6.9)-(b), showing the dependence on ξ of the areas

AS1 and AS2 of the subsets S1 and S2 (§6.3). On the whole, as the overall size

of the asperities gets larger, the probability that the system gives rise to events

involving the simultaneous slip of the asperities is reduced. More specifically, the

subset S1 decreases with ξ, since the slip of asperity 1 is less likely to trigger the

failure of asperity 2 if its size grows. On the contrary, the subset S2 increases

with ξ, since a larger size entails a larger slip amplitude of asperity 2 and, in turn,

a larger stress transfer to asperity 1; as a result, it is easier for the slip of asperity

2 to trigger the failure of asperity 1. Notice that there exists a particular value

of ξ in correspondence to which S1 and S2 are equal to each other. This value

must be evaluated numerically and depends on the particular combination of the

parameters α, β, γ and ε.
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(a) Area of S, normalized to the area of the sticking region Q.
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Figure 6.9: The area AS of the subset S of the sticking region and the areas AS1 and AS2

of its subsets S1 and S2, as functions of the parameter ξ (α = 1, β = 0.5, γ = 1, ε = 0.7).

6.6.4 Radiation of elastic waves

In order to show the influence of the asperity area on the radiation of elastic waves

during fault slip, let us first consider the moment rate spectrum (6.95) associated

with one-mode events 01. It is shown in Fig. (6.10) for different values of the

parameter ξ. As asperity 2 gets larger, the corner frequency (6.98) diminishes, so
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that the content of relatively high frequencies is reduced.
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Figure 6.10: Moment rate spectrum of a one-mode event 01 for different values of the

parameter ξ (α = 1, β = 0.5, γ = 1).

Next, the seismic efficiency of the fault is discussed. As in §4.5, it is defined as

the ratio

η =
∆R

∆W
(6.104)

between the nondimensional seismic energy ∆R and the nondimensional total

energy change ∆W associated with a seismic event. Let us consider a seismic

event made up of n slipping modes starting at time Ti (i = 1, 2, . . . n), when the

state of the system is (Xi, Yi). The seismic energy released during the event can

be calculated as

∆R = −γ
n∑
i=1

Ti+1∫
Ti

(Ẋ2
i + ξẎ 2

i ) dT (6.105)

where Ẋi and Ẏi are the slip rates of the asperities during the event. During a

sticking mode, the total energy of the system is

W (X, Y ) =
1

2
(X2 + ξY 2) +

1

2
α(X − Y )2. (6.106)

Accordingly, the total energy change in the seismic event is given by

∆W = W (X1 − U1, Y1 − U2)−W (X1, Y1) (6.107)
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where U1 and U2 are the final slip amplitudes (6.80) of the asperities.

In the case of a one-mode event 10, we have

Ẏ = 0, T1 = 0, T2 = T1b (6.108)

U1 = U1b, U2 = 0 (6.109)

with T1b and U1b given by Eq. (6.49) and Eq. (6.50), respectively. In the case of a

one-mode event 01, we have

Ẋ = 0, T1 = 0, T2 = T2b (6.110)

U1 = 0, U2 = U2b (6.111)

with T2b and U2b given by Eq. (6.62) and Eq. (6.63), respectively. As a result, the

seismic efficiency is

η1 = η̄
1− e− γT1b

2

1− η̄e− γT1b
2

(6.112)

for a one-mode event 10 and

η2 = η̄
1− e− γT2b

2

1− η̄e− γT2b
2

(6.113)

for a one-mode event 01, with η̄ defined in Eq. (4.43). The ratio η2/η1 is shown in

Fig. (6.11) as a function of ξ.
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Figure 6.11: Ratio η2/η1 between the seismic efficiencies associated with one-mode

events 01 and 10, respectively, as a function of the parameter ξ (α = 1, γ = 1, ε = 0.7).

91



If asperity 2 is larger than asperity 1, we have η2 > η1, and vice-versa. The

seismic efficiencies coincide in the limit case ξ = 1, since this circumstance yields

T1b = T2b. As pointed out by Dragoni and Santini (2015), the seismic efficiency

does not depend on the relative strength of asperity 2 with respect to asperity 1.

Finally, events associated with the consecutive, but separate, failures of the

asperities are considered. In the case of a two-mode event 10-01, we have

T1 = 0, T2 = T1b, T3 = T1b + T2b (6.114)

U1 = U1b, U2 = U2b (6.115)

and the initial state is given by (D.1) with p = p1 defined in Eq. (D.3). In the

case of a two-mode event 01-10, we have

T1 = 0, T2 = T2b, T3 = T1b + T2b (6.116)

U1 = U1b, U2 = U2b (6.117)

and the initial state is given by (D.4) with p = p2 defined in Eq. (D.6). The

seismic efficiency is the same for the two events. Its analytical expression is too

complicated to be reported here: I only show its dependence on ξ in Fig. (6.12).
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Figure 6.12: Seismic efficiency associated with two-mode events 10-01 and 01-10, as a

function of the parameter ξ (α = 1, β = 0.5, γ = 1, ε = 0.7).
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The graph points out that the seismic efficiency associated with events due to the

consecutive, but separate, failures of the asperities increases with the overall size

of the asperities.

It is noteworthy to point out that the seismic efficiency η shown in Fig. (6.12)

has two horizontal asymptotes, whose existence can be verified numerically:

lim
ξ→0

η = η1, lim
ξ→∞

η = η2 (6.118)

with η1 and η2 given by Eq. (6.112) and Eq. (6.113), respectively.

6.7 Choice of the parameters

With the same consideration as in §5.4, the coupling parameter α can be calculated

as

α =
µA2sv

σ̇t
(6.119)

where s is the tangential traction (per unit moment) imposed on an asperity by

the slip of the other and σ̇t is the tangential stress rate acting on the fault. The ex-

pression of s has been given in Eq. (5.94) and Eq. (5.95) for strike-slip and dip-slip

faulting, respectively, while the proper expression for σ̇t is provided in Appendix A.

The parameter β conveying the degree of asymmetry of the system can be

estimated from the knowledge of the slip amplitudes u1 and u2 of the asperities

when they slip separately. In the framework of the elastic rebound model of a

fault, these slips are given by

u1 = v
σs1 − σd1

σ̇t
, u2 = v

σs2 − σd2

σ̇t
(6.120)

where the difference σsi − σdi is the stress drop associated with the failure of the

i-th asperity. Accordingly, we have

u2

u1

=
σs2 − σd2

σs1 − σd1

=
σs2

σs1 − σd1

− σd2

σs1 − σd1

=
β

1− ε −
εβ

1− ε = β (6.121)

where the definition of the parameter ε given in Eq. (6.11) was taken into account.

As for the parameters γ and ε, the same considerations discussed in §4.6 hold.
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6.8 An application: the 2007 Pisco, Peru, earth-

quake

The Mw 8.0 Pisco (Peru) earthquake of 15 August 2007 occurred as the result of

thrust faulting at the interface between the Nazca and South American plates,

with a seismic moment estimated between 1.8 and 2× 1021 Nm (Lay et al., 2010).

A sketch of the tectonic setting is shown in Fig. (6.13).

Figure 6.13: Geographic location of the 2007 Pisco, Peru, earthquake. The star denotes

the epicenter. Black arrows indicate the relative motion of the Nazca plate with respect

to the South American plate, whereas the thick dashed line identifies the boundary

between the tectonic plates.

The slip distribution inferred from the joint inversion of teleseismic body waves

and InSAR data indicates the presence of two distinct asperities (Sladen et al.,

2010): a shallower, larger one (asperity 1), where the maximum coseismic slip

was attained, and a deeper, smaller one (asperity 2). The earthquake initiated

with the slip of asperity 2, followed by the slip of asperity 1 after a brief time

interval. The two phases of the earthquake were treated as distinct events by Lay

et al. (2010), who estimated seismic moments of 1.2 × 1021 Nm and 3.5 × 1020

Nm for the slip of asperity 1 and 2, respectively. With an average rigidity µ = 30

GPa (Wang and Liu, 2007) and assuming A1 = 4200 km2 and A2 = 2400 km2

for the area of asperity 1 and 2, respectively, we obtain average slips u1 = 9.5

m and u2 = 4.8 m for asperity 1 and 2, respectively. Finally, we take v = 6 cm

a−1 (Sladen et al., 2010) as the relative velocity of tectonic plates at the Peru

trench and assume that the fault is subject to a tangential strain rate ė = 10−15 s−1.
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With the data listed above, we evaluate the parameters of the model. From

Eq. (6.119) and Eq. (6.121), we obtain α = 0.2 and β = 0.5. We take γ = 1.3, a

value yielding the best fit with the observed source function of the earthquake and

corresponding to a seismic efficiency η ' 0.16, and assume ε = 0.7 (e.g. Jaeger

and Cook, 1976). Finally, the ratio A2/A1 yields ξ = 0.6.

In terms of the present model, the 2007 earthquake can be described as a

two-mode event 01-10 with a finite time interval between the slips of the asperities.

Specifically, it is assumed that the slip of asperity 2 takes place over the time

interval t1 ≤ t ≤ t2, with t1 = 0 s and t2 = 38 s, whereas the slip of asperity 1

takes place over the time interval t3 ≤ t ≤ t4, with t3 = 60 s and t4 = 105 s. The

action of tectonic loading during the time gap of 22 s that separates the slips

of the asperities is excluded, since its effect is negligible over such a short time.

Accordingly, the state of the fault at the onset of the earthquake (t = t1) is

X1 = β − α + ξ

ξ
p2, Y1 = β − α

ξ
p2 (6.122)

where p2 ' −0.31 from Eq. (D.6). At the end of mode 01 (t = t2), the state is

X2 = X1, Y2 = Y1 − βκ2U
′. (6.123)

In accordance with the previous assumptions, this is also the state of the fault at

the onset of mode 10 (t = t3). Finally, the state is

X3 = X2 − κ1U, Y3 = Y2 (6.124)

at the end of the event (t = t4). The orbit of the system during the earthquake is

shown in Fig. (6.14).
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Figure 6.14: Orbit of the Pisco (Peru) fault during the 2007 earthquake. The dashed

line corresponds to p = p2. The event starts at point P1 with the slip of asperity 2;

the orbit then reaches line 1 at point P2, triggering the slip of asperity 1 up to point

P3, where the event terminates. For reference, the point P defined in Eq. (6.28) is also

shown.

Next, the observed seismic moment rate is reproduced. In dimensional form, the

moment rate predicted by the model is

ṁ(t) = m1
1 + α

2


βχ2

ω2
sinω2χ2(t− t1) e−

γ
2
χ2(t−t1), t1 ≤ t ≤ t2

χ1

ω1
sinω1χ1(t− t3) e−

γ
2
χ1(t−t3), t3 ≤ t ≤ t4

(6.125)

where

χ1 =
T1b

t4 − t3
, χ2 =

T2b

t2 − t1
(6.126)

and

m1 = µA1u (6.127)

is the seismic moment released by asperity 1 in the limit case γ = 0: accordingly,

we have u = u1/κ1. The modelled moment rate is shown in Fig. (6.15) together

with the observed moment rate reported by Sladen et al. (2010). The two main

peaks of the source function and its shape are reasonably well fit by the model.
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Figure 6.15: Modelled source function (solid line) of the 2007 Pisco (Peru) earthquake,

compared with the observed source function (dashed line) reported by Sladen et al.

(2010).

According to Eq. (6.87), the final seismic moment provided by the model is

m0 =

(
κ1 +

1 + α

1 + α′
βκ2

)
m1 ' 1.7× 1021 Nm (6.128)

in good agreement with the observations.
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Chapter 7

A two-asperity fault in the

presence of viscoelastic relaxation

In this chapter, a discrete model of a fault with two asperities is considered and

it is assumed that the static stress field produced by earthquakes on the fault

undergoes a certain amount of relaxation in the following interseismic interval, as

a result of the rheological properties of lithospheric rocks (§2.2). This model has

first been studied by Amendola and Dragoni (2013) and then further investigated

by Dragoni and Lorenzano (2015).

7.1 The model

The fault model described in §3.4 is adopted and a fault with two asperities

of equal areas A and different strengths, named asperity 1 and asperity 2, is

considered (Fig. 7.1). Let a be the distance between the centres of the asperities.

As for the rheology of lithospheric rocks, a Maxwell viscoelastic behaviour with a

characteristic relaxation time θ is assumed. Accordingly, the static stress fields

produced by the slip of the asperities undergo a certain amount of relaxation

during the subsequent interseismic interval.

The fault is treated as a dynamical system with three state variables, functions

of time t: the slip deficits x(t) and y(t) of asperity 1 and 2, respectively, and a

variable z(t) representing the variation of the difference between the slip deficits

of the asperities, owing to the viscoelastic rheology of lithospheric rocks. Since the

system has three degrees of freedom, the phase-space is a 6-manifold. Notice that

tectonic loading is assumed to occur under purely elastic rheological conditions:
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in fact, viscoelastic coupling between the fault and the tectonic plates would cause

the stress imposed to the fault to approach a constant value, thus preventing

the occurrence of earthquakes. Accordingly, the characteristic relaxation time

associated with tectonic loading is assumed to be much longer than the typical

duration of interseismic intervals.

A A

Figure 7.1: Model of a fault with two asperities of equal areas A. The rectangular frame

is the fault border.

The simplest form of rate-dependent friction is assumed, associating the asperities

with constant static and dynamic frictions, the latter considered as the average

values during slip. Let fs1 and fd1 be the static and dynamic frictions on asperity

1, respectively, whereas fs2 and fd2 are the static and dynamic frictions on asperity

2, respectively. It is assumed that fs1 > fs2 and fd1 > fd2, i.e., asperity 1 is

stronger than asperity 2.

Since the asperities move as rigid surfaces, it is easier to use forces instead of

tractions. The tangential forces applied to the asperities in the slip direction are

f1 = −Kx+Kc z − ιẋ, f2 = −Ky −Kc z − ιẏ. (7.1)

In these expressions, the terms −Kx and −Ky represent the effect of tectonic

loading, whereas the terms ±Kc z are the contributions of stress transfer between

the asperities, in the presence of viscoelastic relaxation; finally, the terms −ιẋ and

−ιẏ are forces due to radiation damping, where ι is an impedance. The constants

K and Kc can be retrieved from the values of A, µ, v, the tangential stress rate

acting on the fault and the tangential stress transferred from one asperity to the

other during a seismic event, as it was shown in §5.4 (bearing in mind that, in
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the framework of the present model, K = K1 = K2).

During a sticking mode, the slip deficits x and y increase steadily due to to

tectonic motion, while the variable z is governed by the Maxwell constitutive

equation (§2.2.1). Accordingly, the equations of motion during a sticking mode

are

ẍ = 0, ÿ = 0, z̈ =
z

θ2
(7.2)

where a dot indicates differentiation with respect to t. The slip of asperity 1

occurs when

f1 = −fs1, (7.3)

while the slip of asperity 2 takes place when

f2 = −fs2. (7.4)

During a seismic event, viscoelastic relaxation is negligible, since it takes place

over times much longer than the duration of seismic slip. Hence, asperity slip can

be studied as in the case of purely elastic coupling between the asperities (§6.1),

corresponding to z = y − x and θ →∞. Accordingly, the equations of motion for

x and y are

µ1ẍ+ ιẋ+Kx−Kc z − fd1 = 0 (7.5)

µ1ÿ + ιẏ +Ky +Kc z − fd2 = 0 (7.6)

where µ1 is the mass associated with both asperities, while z changes according

to the equation

z̈ = ÿ − ẍ. (7.7)

For the sake of simplicity, the analysis is carried out in nondimensional form. I

introduce the nondimensional parameters

α =
Kc

K
, β =

fs2
fs1

=
fd2

fd1

, γ =
ι√
Kµ1

(7.8)

ε =
fd1

fs1
=
fd2

fs2
, Θ =

√
K

µ1

θ, V =

√
Kµ1

fs1
v (7.9)

where Θ is the nondimensional Maxwell relaxation time, while the same interpre-

tation as it was given in §6.1 hold for the remaining parameters. These parameters

are subject to the constraints α ≥ 0, 0 < β < 1, γ ≥ 0, 0 < ε < 1, Θ > 0 and

V > 0.
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I also define the nondimensional slip deficits and time

X =
Kx

fs1
, Y =

Ky

fs1
, Z =

Kz

fs1
, T =

√
K

µ1

t. (7.10)

Accordingly, the equations of motion (7.2) for the sticking mode can be rewritten

as

Ẍ = 0, Ÿ = 0, Z̈ =
Z

Θ2
(7.11)

where a dot now indicates differentiation with respect to T , while the equations

of motion (7.5)-(7.6)-(7.7) for the slipping mode become

Ẍ + γẊ +X − αZ − ε = 0 (7.12)

Ÿ + γẎ + Y + αZ − βε = 0 (7.13)

Z̈ = Ÿ − Ẍ (7.14)

I introduce the nondimensional forces

F1 =
f1

fs1
= −X + αZ − γẊ, F2 =

f2

fs1
= −Y − αZ − γẎ (7.15)

which reduce to

F1 = −X + αZ, F2 = −Y − αZ (7.16)

during a global stick phase. To sum up, the system is described by the set of six

parameters α, β, γ, ε,Θ and V . At any instant T in time, the state of the system

can be univocally expressed by the tern (X, Y, Z) or by the couple (F1, F2).

The dynamics of the system can be characterized in terms of four dynamic

modes, each one described by a different system of autonomous ODEs: a stick-

ing mode (00), corresponding to stationary asperities, and three slipping modes,

associated with the slip of asperity 1 alone (mode 10), the slip of asperity 2

alone (mode 01) and the simultaneous slip of the asperities (mode 11). A seismic

event generally consists in n slipping modes and involves one or both the asperities.

7.1.1 The sticking region

The sticking region is defined as the set of states corresponding to a phase of

global stick of the system. When both asperities are stationary (mode 00), the

rates Ẋ, Ẏ and Ż are negligible with respect to their values when the asperities
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are slipping; thus, the sticking region is a subset of the state space XY Z. It can

be determined as follows.

In nondimensional form, the conditions (7.3) and (7.4) for the onset of motion

of asperity 1 and 2 become, respectively,

F1 = −1, F2 = −β. (7.17)

Combining these conditions with Eq. (7.16), we obtain two planes in the XY Z

space,

X − αZ − 1 = 0 (7.18)

Y + αZ − β = 0, (7.19)

which I name Π1 and Π2, respectively.

Overshooting during asperity slip is excluded: accordingly, it is assumed that

X ≥ 0 and Y ≥ 0. As a consequence, the tangential forces on the asperities must

always be in the same direction as the velocity of tectonic plates, i.e. F1 ≤ 0

and F2 ≤ 0. From Eq. (7.16), the limit cases F1 = 0 and F2 = 0 define two more

planes in the XY Z space,

X − αZ = 0 (7.20)

Y + αZ = 0, (7.21)

which I name Γ1 and Γ2, respectively.

To sum up, the sticking region of the system is the subset of the XY Z space

enclosed by the planes X = 0, Y = 0,Γ1,Γ2,Π1 and Π2: a convex hexahedron H.

Its vertices are the origin (0, 0, 0) and the points

A =

(
0, 1,− 1

α

)
, B =

(
β, 0,

β

α

)
, C =

(
β + 1, 0,

β

α

)
(7.22)

D =

(
0, β + 1,− 1

α

)
, E = (1, 0, 0) , F = (0, β, 0) . (7.23)

The sticking region is shown in Fig. (7.2) for a particular choice of the parameters

α and β. Its volume can be expressed as a function of the parameters of the

system as β(β+1)/2α. Accordingly, the subset of the state space corresponding to

stationary asperities decreases with the degree of coupling between the asperities

and with the asymmetry of the system (β → 0).
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Figure 7.2: The sticking region of the system: a convex hexahedron H (α = 1, β = 1).

The point P , corresponding to purely elastic coupling between the asperities, is shown.

Seismic events take place on the faces AECD and BCDF .

By definition, every orbit of mode 00 is enclosed within H and eventually reaches

one of its faces AECD or BCDF , belonging to the planes Π1 and Π2, respec-

tively, where a seismic event starts. In these cases, the system switches from

mode 00 to mode 10 or mode 01, respectively. In the particular case in which the

orbit of mode 00 reaches the edge CD, the system passes from mode 00 to mode 11.

For later use, I introduce a point P with coordinates

XP =
α + αβ + 1

1 + 2α
, YP =

α + αβ + β

1 + 2α
, ZP = − 1− β

1 + 2α
(7.24)

belonging to the edge CD and corresponding to a condition of purely elastic

coupling, since ZP = YP −XP .

7.2 Solutions of dynamic modes

The solutions of the equations of motion for each of the four dynamic modes are

presented. I shall make use of the frequencies ω0 and ω1 defined in Eq. (4.14) and

Eq. (5.23), respectively, and

ω2 =

√
1 + 2α− γ2

4
(7.25)

The case of weak damping is considered, i.e. γ ≤ 2 (§4.2).
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7.2.1 Stationary asperities (mode 00)

The equations of motion are given in Eq. (7.11). With initial conditions

X(0) = X̄, Y (0) = Ȳ , Z(0) = Z̄ (7.26)

Ẋ(0) = V, Ẏ (0) = V, Ż(0) = − Z̄
Θ

(7.27)

the solutions are

X(T ) = X̄ + V T, Y (T ) = Ȳ + V T, Z(T ) = Z̄e−T/Θ (7.28)

with T ≥ 0. The equations (7.28) are the parametric equations of a curve lying

on the plane

X − Y + Ȳ − X̄ = 0 (7.29)

that is parallel to the Z axis.

The orbit of mode 00 lies inside H and eventually reaches one of its faces

AECD or BCDF , belonging to the planes Π1 and Π2, respectively, where a

seismic event takes place. Let P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) be the

points where the orbit of mode 00 intersects the planes Π1 and Π2, respectively,

and let T1 and T2 be the corresponding instants in time. The coordinates of P1

must satisfy the equation (7.18) of Π1: thus, exploiting Eq. (7.28), we get the

condition

X̄ + V T1 − αZ̄e−T1/Θ − 1 = 0. (7.30)

Accordingly, the slip of asperity 1 starts at time

T1 = ΘW (γ1) +
1− X̄
V

, (7.31)

where W is the Lambert function with argument

γ1 =
αZ̄

VΘ
e−

1−X̄
VΘ . (7.32)

Analogously, the coordinates of P2 must satisfy the equation (7.19) of Π2: again

from Eq. (7.28), we get the condition

Ȳ + V T2 + αZ̄e−T2/Θ − β = 0. (7.33)

Thus, the slip of asperity 2 starts at time

T2 = ΘW (γ2) +
β − Ȳ
V

, (7.34)

with

γ2 = − αZ̄
VΘ

e−
β−Ȳ
VΘ . (7.35)
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7.2.2 Slip of asperity 1 (mode 10)

The equations of motion are

Ẍ + γẊ +X − αZ − ε = 0 (7.36)

Ÿ = 0 (7.37)

Z̈ − γẊ −X + αZ + ε = 0. (7.38)

The fault can enter mode 10 from mode 11 or from mode 00.

Case 11→ 10

Let us assume that the asperities are both initially in motion and that, at T = 0,

asperity 2 stops, while asperity 1 continues to slip. Thus, the initial conditions are

X(0) = X̄, Y (0) = Ȳ , Z(0) = Z̄ (7.39)

Ẋ(0) = V̄ , Ẏ (0) = 0, Ż(0) = −V̄ . (7.40)

The solutions are

X(T ) = X̄ − Ū1

2
+

[
Ū1

2
cosω1T +

1

ω1

(γ
4
Ū1 + V̄

)
sinω1T

]
e−

γ
2
T (7.41)

Y (T ) = Ȳ (7.42)

Z(T ) = Z̄ + X̄ −X(T ) (7.43)

where

Ū1 = 2
X̄ − αZ̄ − ε

1 + α
. (7.44)

Accordingly, the slip deficit of asperity 1 decreases with time, whereas the slip

deficit of asperity 2 remains unchanged. If the orbit does not reach the plane Π2

during the mode, the slip duration can be calculated from the condition Ẋ(T ) = 0,

yielding

T1a =
1

ω1

[
π + arctan

2ω1V̄

(1 + α)Ū1 + γV̄

]
. (7.45)

The final slip amplitude is then

U1a = X̄ −X(T1a) =
Ū1

2
+

√
Ū2

1

4
+

V̄ 2

1 + α
+

γŪ1V̄

2(1 + α)
e−

γ
2
T1a . (7.46)

If instead the orbit reaches the plane Π2 during the mode, the system enters again

mode 11. The slip duration is then obtained by solving the equation (7.19) of

plane Π2 for the unknown T .
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Case 00→ 10

Let us assume that the asperities are both initially stationary and that, at T = 0,

the condition for the failure of asperity 1 is reached. Accordingly, the initial point

of the orbit of mode 10 belongs to plane Π1, so that

X̄ − αZ̄ = 1 (7.47)

and V̄ = 0; from Eq. (7.44), we have Ū1 = U defined in Eq. (5.24). The solutions

reduce to

X(T ) = X̄ − U

2

[
1−

(
cosω1T +

γ

2ω1

sinω1T

)
e−

γ
2
T

]
(7.48)

Y (T ) = Ȳ (7.49)

Z(T ) = Z̄ + X̄ −X(T ). (7.50)

If the orbit does not reach the plane Π2 during the mode, the slip duration is

T1b =
π

ω1

, (7.51)

while the final slip amplitude is

U1b = κ1U (7.52)

with κ1 defined in Eq. (5.25). If instead the orbit reaches the plane Π2 before time

T1b has elapsed, the system passes to mode 11. In this case, the slip duration is

again obtained by solving the equation (7.19) of plane Π2 for the unknown T .

7.2.3 Slip of asperity 2 (mode 01)

The equations of motion are

Ẍ = 0 (7.53)

Ÿ + γẎ + Y + αZ − βε = 0 (7.54)

Z̈ + γẎ + Y + αZ − βε = 0. (7.55)

The fault can enter mode 01 from mode 11 or from mode 00.
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Case 11→ 01

Let us assume that the asperities are both initially in motion and that, at T = 0,

asperity 1 stops, while asperity 2 continues to slip. Thus, the initial conditions are

X(0) = X̄, Y (0) = Ȳ , Z(0) = Z̄ (7.56)

Ẋ(0) = 0, Ẏ (0) = V̄ , Ż(0) = V̄ . (7.57)

The solutions are

X(T ) = X̄ (7.58)

Y (T ) = Ȳ − Ū2

2
+

[
Ū2

2
cosω1T +

1

ω1

(γ
4
Ū2 + V̄

)
sinω1T

]
e−

γ
2
T (7.59)

Z(T ) = Z̄ − Ȳ + Y (T ) (7.60)

where

Ū2 = 2
Ȳ + αZ̄ − βε

1 + α
. (7.61)

Accordingly, the slip deficit of asperity 2 decreases with time, whereas the slip

deficit of asperity 1 remains unchanged. If the orbit does not reach the plane Π1

during the mode, the slip duration can be calculated from the condition Ẏ (T ) = 0,

yielding

T2a =
1

ω1

[
π + arctan

2ω1V̄

(1 + α)Ū2 + γV̄

]
. (7.62)

The final slip amplitude is then

U2a = Ȳ − Y (T2a) =
Ū2

2
+

√
Ū2

2

4
+

V̄ 2

1 + α
+

γŪ2V̄

2(1 + α)
e−

γ
2
T2a . (7.63)

If instead the orbit reaches the plane Π1 during the mode, the system enters again

mode 11. The slip duration is then obtained by solving the equation (7.18) of

plane Π1 for the unknown T .

Case 00→ 01

Let us assume that the asperities are both initially stationary and that, at T = 0,

the condition for the failure of asperity 2 is reached. Accordingly, the initial point

of the orbit of mode 01 belongs to the plane Π2, so that

Ȳ + αZ̄ = β (7.64)

and V̄ = 0; from Eq. (7.61), we have Ū2 = βU . The solutions reduce to

X(T ) = X̄ (7.65)
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Y (T ) = Ȳ − βU

2

[
1−

(
cosω1T +

γ

2ω1

sinω1T

)
e−

γ
2
T

]
(7.66)

Z(T ) = Z̄ − Ȳ + Y (T ). (7.67)

If the orbit does not reach the plane Π1 during the mode, the slip duration is the

same as in Eq. (7.51), while the final slip amplitude is

U2b = βκ1U. (7.68)

If instead the orbit reaches the plane Π1 before time T1b has elapsed, the system

passes to mode 11. In this case, the slip duration is again obtained by solving the

equation (7.18) of plane Π1 for the unknown T .

7.2.4 Simultaneous slip of asperities (mode 11)

The equations of motion are

Ẍ + γẊ +X − αZ − ε = 0 (7.69)

Ÿ + γẎ + Y + αZ − βε = 0 (7.70)

Z̈ + γ
(
Ẏ − Ẋ

)
−X + Y + 2αZ + (1− β)ε = 0 (7.71)

and the solutions are

X(T ) = E1 + (A sinω0T +B cosω0T + C sinω2T +D cosω2T ) e−
γ
2
T (7.72)

Y (T ) = E2 + (A sinω0T +B cosω0T − C sinω2T −D cosω2T ) e−
γ
2
T (7.73)

Z(T ) = E3 − 2 (C sinω2T +D cosω2T ) e−
γ
2
T (7.74)

showing that the slip deficits of both asperities decrease with time. The constants

A, B, C, D, E1, E2 and E3 depend on initial conditions and are listed in Appendix

E. As for the slip duration and amplitude, the same considerations as in §6.2.4

hold.

7.3 Slip in a seismic event

A seismic event is generally made up of n slipping modes and can involve only one

or both asperities. More specifically, it is possible to distinguish three kinds of

events, namely (i) events due to the slip of a single asperity, (ii) events associated

with the separate (i.e., not simultaneous) slips of both asperities and (iii) events
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involving the simultaneous slip of asperities. In the following, the connection

between these three kinds of events with the state of the system at the beginning

of the earthquake are first discussed. Afterwards, it is shown how the number and

the sequence of slipping modes in a seismic event can be univocally determined

from the knowledge of the state of the system at the beginning of the interseismic

interval preceding the event, in the absence of stress perturbations.

7.3.1 Dependence on the state at the onset of the event

It was showed that the conditions for the onset of motion for asperity 1 and 2

are reached on the face AECD and BCDF of the sticking region H, respectively.

Here, I discuss the different subsets in which these faces can be divided, according

to the number and sequence of dynamic modes involved in a seismic event.

Let us consider an orbit of mode 00 starting at a point P0 inside H and

reaching one of the faces AECD or BCDF at a point P1, where the earthquake

begins. With reference to Fig. (7.3), let us first focus on the face AECD. If

P1 belongs to the trapezoid Q1, the earthquake will be a one-mode event 10; if

P1 belongs to the segment s1, the earthquake will be a two-mode event 10-01;

finally, if P1 belongs to the trapezoid R1, the earthquake will be a three-mode

event 10-11-01 or 10-11-10, where the specific sequence must be evaluated nu-

merically and depends on the particular combination of the parameters α, β, γ

and ε. The remaining portion of the face would lead to overshooting. Analo-

gous considerations can be made for subsets Q2, s2 and R2 on the face BCDF .

In the particular case in which P1 belongs to the edge CD, the earthquake will

be a two-mode event 11-01: this is the largest seismic event predicted by the model.

The boundaries of the subsets of the faces AECD and BCDF can be identified

taking into account the no overshooting conditions and the constraint on the

orientation of the tangential forces on the asperities discussed beforehand (§7.1).

The details are provided in Appendix F.

By definition, seismic events taking place on the segments s1 and s2 are two-

mode events 10-01 and 01-10, respectively. A further discussion of the events

generated on these subsets is reported in Appendix G.
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Figure 7.3: The faces AECD and BCDF of the sticking region and their subsets,

which determine the number and the sequence of dynamic modes in a seismic event

(α = 1, β = 1, γ = 1, ε = 0.7). The events taking place on the face AECD (BCDF )

start with mode 10 (01).

7.3.2 Dependence on the state at the beginning of the

interseismic interval

I now discuss how the location of the initial point P0 of any orbit of mode 00

affects the number and the sequence of slipping modes in the seismic event.

To begin with, a way to discriminate the first slipping mode involved in the

earthquake is devised. Every orbit of mode 00, if prolonged outside the sticking

region, intersects both planes Π1 and Π2. The expressions of the times T1 and

T2 required to the orbit for reaching these planes were provided in Eq. (7.31) and

Eq. (7.34), respectively. The condition

T1 − T2 = 0 (7.75)

identifies a transcendental surface Σ in the state space, with equation

VΘ [W (γ1)−W (γ2)] + Y −X + 1− β = 0. (7.76)
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This surface divides the sticking region H in two connected, open subsets H1

and H2. It is shown in Fig. (7.4) for a particular choice of the parameters α, β, V

and Θ. Given any initial state P0 ∈ H, the seismic event starts with mode 10 if

P0 ∈ H1 or with mode 01 if P0 ∈ H2. By definition, the edge CD belongs to Σ

and no orbit of mode 00 can cross it; thus, if P0 ∈ Σ, its orbit remains on Σ and

reaches the edge CD, so that the seismic event starts with mode 11. Notice from

Eq. (7.76) that the surface Σ does not depend on the parameter γ; thus, it is not

affected by the seismic efficiency of the fault.

Figure 7.4: The surface Σ dividing the sticking region in the subsets H1 (below) and

H2 (above) that discriminate the first slipping mode in a seismic event (α = 1, β =

1, VΘ = 1).

I now describe an additional surface inside each of the subsets H1 and H2, allowing

to distinguish the number of slipping modes in the seismic event.

Let P1 be the point where the orbit of mode 00 starting at P0 ∈ H1 reaches

the face AECD. In order that P1 belongs to the segment s1, its coordinates must

satisfy Eq. (F.13). Introducing the solutions (7.28) of mode 00 in Eq. (F.13) and

replacing T with T1 given in Eq. (7.31), we obtain the equation of a transcendental

surface Σ1

X − Y − 2αZe−W (γ1)− 1−X
VΘ + β − ακ1U − 1 = 0. (7.77)

The surface Σ1 is shown in Fig. (7.5) for a given choice of the six parameters of
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the system. It lies beneath the surface Σ, so that the subset H1 is divided into

two sections H−1 and H+
1 , respectively below and above Σ1. If P0 ∈ H−1 , then

P1 ∈ Q1 and the earthquake will be a one-mode event 10, whereas if P0 ∈ H+
1 ,

then P1 ∈ R1 and the earthquake will be a three-mode event 10-11-10 or 10-11-01,

as discussed in §7.3.1. By definition, the segment s1 belongs to Σ1 and no orbit

can cross Σ1: accordingly, if P0 ∈ Σ1, its orbit remains on Σ1 and reaches the

segment s1, giving rise to a two-mode event 10-01.

Figure 7.5: The surface Σ1 in the subset H1 of the sticking region, discriminating the

number of slipping modes in a seismic event starting when the orbit of the system

reaches the face AECD (α = 1, β = 1, γ = 1, ε = 0.7, VΘ = 1).

Let us now repeat the analysis for the subset H2. Let P2 be the point where the

orbit of mode 00 starting at P0 ∈ H2 reaches the face BCDF . In order that P2

belongs to the segment s2, its coordinates must satisfy Eq. (F.28). Introducing

the solutions (7.28) of mode 00 in Eq. (F.28) and replacing T with T2 given in

Eq. (7.34), we obtain the equation of a transcendental surface Σ2

X − Y − 2αZe−W (γ2)−β−Y
VΘ + β + αβκ1U − 1 = 0. (7.78)

The surface Σ2 is shown in Fig. (7.6) for a given choice of the six parameters of

the system. It lies above the surface Σ, so that the subset H2 is divided into

two sections H−2 and H+
2 , respectively below and above Σ2. If P0 ∈ H−2 , then

P2 ∈ R2 and the earthquake will be a three-mode event 01-11-10 or 01-11-01,

whereas if P0 ∈ H+
2 , then P2 ∈ Q2 and the earthquake will be a one-mode event

112



01 (§7.3.1). By definition, the segment s2 belongs to Σ2 and no orbit can cross

Σ2: accordingly, if P0 ∈ Σ2, its orbit remains on Σ2 and reaches the segment s2,

giving rise to a two-mode event 01-10.

Figure 7.6: The surface Σ2 in the subset H2 of the sticking region, discriminating the

number of slipping modes in a seismic event starting when the orbit of the system

reaches the face BCDF (α = 1, β = 1, γ = 1, ε = 0.7, VΘ = 1).

It is clear from their definitions (7.77) and (7.78) that both Σ1 and Σ2 depend

on κ1 introduced in Eq. (5.25). Therefore, their position inside the sticking region

changes as a function of the seismic efficiency of the fault. For larger values of

γ, they are both closer to Σ, so that the subsets H+
1 and H−2 are smaller. This

feature shows that higher values of γ reduce the possibility of simultaneous slip

of the asperities, in agreement with the results obtained by Dragoni and Santini

(2015) in the purely elastic case.

7.4 Source functions and seismic moment

The source functions and seismic moment of a seismic event can be determined

with the same procedure as it was described in §6.4 for the purely elastic case.

Figures (7.7), (7.8) and (7.9) show the source functions associated with the different

seismic events predicted by the model for a given choice of the parameters α, β, γ

and ε.
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(a) One-mode event 10.
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(b) One-mode event 01.

Figure 7.7: Source functions associated with the one-mode events predicted by the

model (α = 1, β = 0.5, γ = 1, ε = 0.7).
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(a) Two-mode event 10-01.
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(b) Two-mode event 01-10.
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(c) Two-mode event 11-01.

Figure 7.8: Source functions associated with the two-mode events predicted by the

model (α = 1, β = 0.5, γ = 1, ε = 0.7).
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(a) Three-mode event 10-11-10 (α = 1).
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(b) Three-mode event 10-11-01 (α = 0.1).
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(c) Three-mode event 01-11-10 (α = 0.1).
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(d) Three-mode event 01-11-01 (α = 1).

Figure 7.9: Source functions associated with the three-mode events predicted by the

model (β = 0.5, γ = 1, ε = 0.7).

The values of the final slip amplitudes of the asperities (namely U1 and U2) and

the final seismic moment M0 in a seismic event can be discriminated according

to the state P0 at the beginning of the interseismic interval preceding the event

and, in turn, according to the state P1 where the seismic event starts: this is

summarized in Table (7.1).

In conclusion, the number and the amplitudes of the humps in the source

function of a seismic event allow to derive the number and sequence of dynamic

modes involved; in turn, the state of the fault that generated the event can be

constrained. Subsequently, it is possible to reduce the uncertainty on the future

evolution of the system. An example will be shown in §7.8 for a real fault.
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Table 7.1: Final slip amplitudes U1 and U2 of asperity 1 and 2 and seismic moment M0

during an earthquake made up of n slipping modes, as functions of the states P0 at

the beginning of the interseismic interval preceding the event and P1 where the event

started. The entry e.n. is the abbreviation for evaluated numerically.

P0 P1 n U1 U2 M0

P0 ∈ H−1 P1 ∈ Q1 1 κ1U 0 κ1M1

P0 ∈ H+
2 P1 ∈ Q2 1 0 βκ1U βκ1M1

P0 ∈ Σ P1 ∈ CD 2 e.n. e.n. e.n.

P0 ∈ Σ1 ∨ P0 ∈ Σ2 P1 ∈ s1 ∨ P1 ∈ s2 2 κ1U βκ1U κ1M1(1 + β)

P0 ∈ H+
1 ∨ P0 ∈ H−2 P1 ∈ R1 ∨ P1 ∈ R2 3 e.n. e.n. e.n.

7.5 Forces on the asperities

In the following, the evolution of the tangential forces on the asperities during the

seismic cycle of the fault is discussed. First, I focus on the interseismic intervals

and show the main differences with respect to the case of purely elastic coupling

between the asperities. Then, the sequence of dynamic modes involved in an

earthquake is related with the force distribution on the fault at the onset of the

event. Finally, the static force drops on the asperities following the different

seismic events predicted by the model are evaluated.

7.5.1 Interseismic interval

In order to discuss the influence of viscoelastic relaxation on the duration of

the interseismic intervals of the fault, let us first focus on the case of purely

elastic coupling between the asperities, corresponding to Z = Y −X and Θ→∞.

Combining Eq. (7.16) with Eq. (7.28), the temporal evolution of the tangential

forces on the asperities during mode 00 is expressed by

F1(T ) = −X̄ − V T + α(Ȳ − X̄), F2(T ) = −Ȳ − V T − α(Ȳ − X̄) (7.79)

where (X̄, Ȳ ) is the state of the fault at the beginning of the interseismic interval.

Accordingly, the forces evolve with the same rate

Ḟ1 = Ḟ2 = −V (7.80)
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and their difference remains constant in time. If instead we introduce the viscoelas-

tic deformation, the temporal evolution of the tangential forces on the asperities

during mode 00 is given by

F1(T ) = −X̄ − V T + αZ̄e−T/Θ, F2(T ) = −Ȳ − V T − αZ̄e−T/Θ (7.81)

where (X̄, Ȳ , Z̄) is the state of the fault at the beginning of the interseismic

interval. These forces evolve with rates

Ḟ1(T ) = −V − αZ̄

Θ
e−T/Θ, Ḟ2(T ) = −V +

αZ̄

Θ
e−T/Θ. (7.82)

Some significant divergences with respect to the elastic case stand out. First,

the difference F1 − F2 changes as tectonic loading takes place, so that the stress

distribution on the asperities varies during an interseismic interval. Furthermore,

the rate of evolution of the tangential force on asperity 1 is not the same as for

asperity 2. Also, these rates are not constant in time and depend on the state

of the fault at the beginning of the interseismic interval: if Z̄ > 0, the rate |Ḟ1|
is larger than in the purely elastic case, so that the failure of asperity 1 can be

anticipated, and vice-versa if Z̄ < 0; the opposite holds for asperity 2.

7.5.2 Onset of a seismic event

The relationship between the sequence of dynamic modes in an earthquake gener-

ated by the fault and the different subsets in which the faces AECD or BCDF

of the sticking region H can be divided was discussed in §7.3.1. I now show the

correlation existing between these sequences and the distribution of forces on the

fault at the onset of a seismic event.

Let us consider an earthquake involving n slipping modes starting with mode

10, i.e., on the face AECD. Let Pi = (Xi, Yi, Zi) be the representative point of the

system at T = Ti, when the system enters the i−th mode (i = 1, 2, ..., n). Finally,

let d be the distance of the starting point P1 from the edge CD. At the beginning

of the event (T = T1), the force acting on asperity 2 is

F2(T1) = −Y1 − αZ1 (7.83)

where Eq. (7.16) was used. The magnitude |F2(T1)| decreases linearly with d, as

shown in Fig. (7.10)-(a), whereas the magnitude of the force F1 acting on asperity

1 is the same everywhere (|F1| = 1). At T = T2, the force on asperity 2 is

F2(T2) = −Y2 − αZ2 = F2(T1)− α (Z2 − Z1) , (7.84)
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where it was taken into account that Y2 = Y1, since the first slipping mode in the

event is associated with the sole slip of asperity 1. The difference

F2(T2)− F2(T1) = −α(Z2 − Z1) (7.85)

represents the stress transfer from asperity 1. If the magnitude of F2(T1) is large

enough that |F2(T2)| = β, the slip of asperity 1 triggers the slip of asperity 2,

so that mode 10 is followed by mode 01 or 11. This condition is verified by

states P1 ∈ s1 and P1 ∈ R1, respectively, as shown in Fig. (7.10)-(b); conversely,

|F2(T2)| < β for states P1 ∈ Q1 and mode 10 is followed by mode 00.
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Figure 7.10: Force F2 on asperity 2 during an earthquake involving n slipping modes and

starting with mode 10, as a function of the distance d of the initial state P1, measured

on the face AECD from the edge CD of the sticking region H (α = 1, β = 0.5, γ = 1,

ε = 0.7) : (a) magnitude of F2 at the onset of the event (T = T1); (b) magnitude of

F2 after the initial slip of asperity 1 (T = T2). The labels indicate the subsets of the

face AECD corresponding to different intervals of d. The dashed line indicates the

condition for the slip of asperity 2 (|F2| = β), which is reached only for states P1 ∈ s1

and P1 ∈ R1.

Similar considerations hold on the face BCDF . In this case, the n-mode event

starts with mode 01. At the beginning of the event (T = T1), the force acting on

asperity 1 is

F1(T1) = −X1 + αZ1 (7.86)
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where Eq. (7.16) was employed. The magnitude |F1(T1)| decreases linearly with d,

while |F2| = β everywhere. At T = T2, the force on asperity 1 is

F1(T2) = −X2 + αZ2 = F1(T1) + α (Z2 − Z1) , (7.87)

where it was taken into account that X2 = X1, since the first slipping mode in

the event is associated with the sole slip of asperity 2. The difference

F1(T2)− F1(T1) = α(Z2 − Z1) (7.88)

represents the stress transfer from asperity 2. If the magnitude of F1(T1) is large

enough that |F1(T2)| = 1, the slip of asperity 2 triggers the slip of asperity 1 and

mode 01 is followed by mode 10 or 11. This condition is verified by states P1 ∈ s2

and P1 ∈ R2, respectively. On the contrary, |F1(T2)| < 1 for states P1 ∈ Q2, so

that mode 01 is followed by mode 00. This is shown in Fig. (7.11).
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Figure 7.11: Force F1 on asperity 1 during an earthquake involving n slipping modes and

starting with mode 01, as a function of the distance d of the initial state P1, measured

on the face BCDF from the edge CD of the sticking region H (α = 1, β = 0.5, γ = 1,

ε = 0.7) : (a) magnitude of F1 at the onset of the event (T = T1); (b) magnitude of

F1 after the initial slip of asperity 2 (T = T2). The labels indicate the subsets of the

face BCDF corresponding to different intervals of d. The dashed line indicates the

condition for the slip of asperity 1 (|F1| = 1), which is reached only for states P1 ∈ s2

and P1 ∈ R2.
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7.5.3 Static force drops

The static force drops on the asperities can be calculated from the knowledge of

the slip amplitudes (6.80) of the asperities and the stress transferred from one

asperity to the other.

Once again, I consider a seismic event involving n slipping modes and call

Pi = (Xi, Yi, Zi) the representative point of the system at T = Ti, when the system

enters the i−th mode (i = 1, 2, . . . n). At the end of the event, the force drop on

asperity 1 is

F1(Tn+1)− F1(T1) = U1 + α(Zn+1 − Z1). (7.89)

Analogously, the force drop on asperity 2 is

F2(Tn+1)− F2(T1) = U2 − α(Zn+1 − Z1). (7.90)

Combining these expressions with the details of Table (7.1), the values of the

force drops associated with the different seismic events predicted by the model

can be calculated. They are listed in Table (7.2). For events involving the slip of

a single asperity, the force drop on the stationary asperity is negative, since stress

is accumulated on it.

Table 7.2: Static force drops on the asperities, following the different seismic events

predicted by the model. The entry e.n. is the abbreviation for evaluated numerically.

Kind of event Force drop on asperity 1 Force drop on asperity 2

one-mode 10 2κ1(1− ε) −ακ1U

one-mode 01 −αβκ1U 2κ1β(1− ε)
two-mode 10-01/01-10 κ1U(1 + α− αβ) κ1U(β − α + αβ)

involving mode 11 e.n. e.n.

7.6 Influence of seismic efficiency on events due

to the consecutive slips of the asperities

In this section, I focus on two-mode events starting on segments s1 and s2 and

discuss how they are affected by the radiation of elastic waves. To this aim, the

effect of a variation of the parameter γ in the interval [0, 2] is studied. In the
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following, a superscript 0 shall be used when referring to quantities corresponding

to no wave radiation (γ = 0).

The lengths l1 and l2 of segments s1 and s2, respectively, as well as their

distances d1 and d2 from the edge CD are provided in Appendix F. In the limit

case γ = 0, the maximum amount of slip κ1U of asperity 1 that is present in

their expressions must be replaced by U defined in Eq. (5.24), where U ≥ κ1U . In

Fig. (7.12) the ratios l1/l
0
1 and l2/l

0
2 are plotted as functions of γ. The trends clearly

point out that an increase in γ entails a lengthening of both segments s1 and s2.

As a matter of fact, the lengths of these segments depend on the coordinates of

their end points, which are in turn constrained by the no overshooting conditions.

Since wave radiation reduces the maximum amount of slip allowed to the asperities,

the number of states satisfying the no overshooting conditions is increased and

more states are included in the segments s1 and s2. As γ grows, the probability

that the system gives rise to two-mode events 10-01 or 01-10 is thus enlarged.
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Figure 7.12: The lengths l1/l
0
1 and l2/l

0
2 of segments s1 and s2, as functions of γ

(α = 1, β = 0.5, ε = 0.7). Larger values of the ratios li/l
0
i entail a higher probability of a

two-mode event associated with the separate slips of both asperities.

According to Eq. (F.32), the ratio di/d
0
i is the same for both segments s1 and s2.

It is shown in Fig. (7.13) as a function of γ. Evidently, an increase in γ takes both

segments s1 and s2 closer to the edge CD of the sticking region. This can be
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explained if one considers the already discussed correlation between the different

subsets of the faces AECD and BCDF and the forces acting on the asperities

(§7.5.2). Taking into account that wave radiation lowers the slip of the asperities,

the stress transferred from one asperity to the other during a seismic event is

reduced as well. Thus, the segment s1 must be closer to the edge CD, so that the

value of F2 at the beginning of mode 10 is large enough for the stress transferred

by asperity 1 to asperity 2 to trigger mode 01. Analogous considerations can be

made for the segment s2 on the face BCDF .
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Figure 7.13: The distance d/d0 of segments s1 and s2 from the edge CD, as a function

of γ (α = 1, ε = 0.7). The smaller the distance, the more homogeneous the stress

distribution on the fault at the beginning of a two-mode event associated with the

separate slips of both asperities.

A direct consequence of the smaller distance between segments s1 and s2 and the

edge CD is that the areas AQi
of the subsets Q1 and Q2 are enlarged, while the

areas ARi
of the subsets R1 and R2 are reduced. This is shown in Fig. (7.14),

where the ratios AQi
/A0

Qi
and ARi

/A0
Ri

are plotted as functions of γ. This feature

provides an additional proof that higher seismic efficiencies progressively reduce

the possibility of simultaneous slip of the asperities, as pointed out in §7.3.2.
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Figure 7.14: The areas AQi
/A0

Qi
and ARi

/A0
Ri

of the subsets Q1,Q2,R1 and R2, as

functions of γ (α = 1, β = 0.5, ε = 0.7). As the ratios AQi
/A0

Qi
increase, the possibility

of simultaneous slip of asperities is reduced. The converse holds for the ratios ARi
/A0

Ri
.

7.7 Choice of the parameters

With the same consideration as in §5.4, the coupling parameter α can be calculated

as

α =
µAsv

σ̇t
(7.91)

where s is the tangential traction (per unit moment) imposed on an asperity by

the slip of the other and σ̇t is the tangential stress rate acting on the fault. The ex-

pression of s has been given in Eq. (5.94) and Eq. (5.95) for strike-slip and dip-slip

faulting, respectively, while the proper expression for σ̇t is provided in Appendix A.

As for the parameters β, γ and ε, the same considerations discussed in §6.7

hold. Finally, the effect of viscoelastic relaxation is conveyed by the product VΘ,

in terms of which the solutions (7.28) for mode 00 can be rewritten (as all other

expressions derived from them). From Eq. (7.9), we have

VΘ =
Kvθ

fs1
. (7.92)

By definition, we can write

U =
Ku0

1

fs1
(7.93)
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where

u0
1 =

u1

κ1

(7.94)

is the slip amplitude of asperity 1 when it slips alone, in the limit case γ = 0.

Accordingly, the static friction force on asperity 1 can be estimated as

fs1 =
Ku1

κ1U
. (7.95)

Replacing this expression in Eq. (7.92), we find

VΘ =
κ1Uvθ

u1

. (7.96)

7.8 An application: the 1964 Alaska earthquake

The 28 March 1964 Mw 9.2 Alaska earthquake was the second largest earthquake

of the last century, with a seismic moment m0 estimated between 3 and 8× 1022

Nm (Christensen and Beck, 1994; Holdahl and Sauber, 1994; Johnson et al., 1996).

The event was due to reverse dip-slip faulting at the boundary between the North

American plate and the Pacific plate, with a rupture extending of about 800 km

along the Alaska/Aleutian trench. A sketch of the tectonic setting is shown in

Fig. (7.15).

Figure 7.15: Geographic location of the 1964 Alaska earthquake. The star denotes the

epicenter. Black arrows indicate the relative motion of the Pacific plate with respect

to the North American plate, whereas the thick dashed line identifies the boundary

between the tectonic plates.
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The joint analysis of seismological, geodetic and tsunami data pointed out that the

seismic event was due to the failure of two distinct asperities: the Prince William

Sound and Kodiak Island asperities, which I call asperity 1 and 2, respectively.

The earthquake initiated with the failure of asperity 1, followed by the failure of

asperity 2. On the basis of coseismic surface deformation, Santini et al. (2003)

suggested average slips u1 = 24 m for asperity 1 and u2 = 18 m for asperity 2.

Following Dragoni and Santini (2015), an area A = 20, 000 km2 for both asperities

and a distance a = 300 km between their centres are assumed.

It is assumed that the fault is embedded in a shear zone of width d = 300 km

(Plafker, 1965) and average rigidity µ = 55 GPa (Dziewonski and Anderson, 1981).

The relative plate velocity is v = 5.7 cm a−1 (DeMets and Dixon, 1999; Cohen and

Freymueller, 2004). As a matter of fact, the velocity of the Pacific plate relative

to the North American plate at the Alaska/Aleutian trench increases gradually

from the northeast to the southwest. However, the difference between the area of

Prince William Sound and the area of Kodiak Island is in the order of few mm

per year and can be reasonably neglected. From Eq. (A.9), the tangential stress

rate on the fault is σ̇t ' 3× 10−4 Pa s−1.

In the decades following the earthquake, significant post-seismic deformation

took place, which has been ascribed to aseismic slip on the fault and viscoelastic

relaxation (Zweck et al., 2002; Suito and Freymueller, 2009). The latter process

shows a characteristic time θ ≈ 30 a.

With the data listed above, the parameters of the model are calculated. From

Eq. (7.91) and Eq. (6.121), we get α ≈ 0.01 and β = 0.75. From Eq. (5.24) and

taking ε = 0.7 (e.g. Jaeger and Cook, 1976), we get U ' 0.594. I take γ = 0.2

as in Dragoni and Santini (2015), a value yielding the best fit with the observed

source function of the earthquake. Thus, we have κ1 ' 0.87 from Eq. (5.25).

Finally, we have VΘ ' 0.037 from Eq. (7.96).

In terms of the present model, the earthquake can be described as a two-

mode event 10-01 starting from mode 00. Accordingly, the orbit of the system

during mode 00 lies on the surface Σ1 inside the subset H1 of the sticking region

(Fig. 7.5). Furthermore, letting P1 be the representative point of the system at

the beginning of the earthquake, we have that P1 belongs to segment s1 (Fig. 7.3).
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From Eq. (F.13), the coordinates of P1 are

X1 = αZ1 + 1, Y1 = β − ακ1U − αZ1, Z1 (7.97)

with

Za ≤ Z1 ≤ Zb (7.98)

where the extreme values Za and Zb correspond to the end points (F.12) and

(F.11) of s1:

Za =
κ1U − 1

α
, Zb =

β − κ1U(α + β)

α
. (7.99)

Mode 10 terminates at the point P2 with coordinates

X2 = X1 − κ1U, Y2 = Y1, Z2 = Z1 + κ1U, (7.100)

where mode 01 starts. As Z1 varies in the interval (7.98), an infinite number of

points P2 describe a segment r1 on the subset Q2 of the face BCDF and parallel

to the edge CD. At the end of mode 01, the system is at the point P3 with

coordinates

X3 = X2, Y3 = Y2 − βκ1U, Z3 = Z2 − βκ1U. (7.101)

Again, as Z1 varies in the interval (7.98), there is an infinite number of points P3

defining another segment q1 parallel to the edge CD. This segment lies inside

the sticking region and crosses the surface Σ for Z1 = Zc, with Za < Zc < Zb.

What is more, it intersects the surface Σ2 for Z1 = Zd, with Za < Zd < Zc, and

the surface Σ1 for Z1 = Ze, with Zc < Ze < Zb.

7.8.1 Refinement according to the seismic history to date

The knowledge of the time interval elapsed after the 1964 earthquake provides

a constraint on the state of the system that may have given rise to that event.

Depending on the specific state P1 where the 1964 earthquake begun, the state

of the system at the end of the event corresponds to a particular point P3 on

the segment q1. The coordinates of P3 given in Eq. (7.101) can be expressed

as a function of Z1 thanks to Eq. (7.100). Owing to the intersection of q1 with

the surface Σ, the point P3 can belong to H1,H2 or Σ, in correspondence to

Zc < Z1 ≤ Zb, Za ≤ Z1 < Zc and Z1 = Zc, respectively. This circumstance

determines which of the two asperities will fail the first at the beginning of the

next earthquake produced by the fault. In the first case, the next event will start

with the failure of asperity 1; in the second case, with the failure of asperity 2; in
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the third case, with the simultaneous failures of the asperities.

With the values of α, β, κ1 and U listed above, we find Za ' −48.3, Zb ' 35.7,

Zc ' 6.2, Zd ' 6 and Ze ' 6.46. These figures suggest that only about one third

of segment q1 lies inside the subset H1 of the sticking region. This would lead us

to the preliminary conclusion that future events on the 1964 fault are more likely

to start with the failure of asperity 2.

Let us calculate the duration Tis of the interseismic interval after the 1964

earthquake from Eq. (7.31) and Eq. (7.34) for states belonging to H1 and H2,

respectively:

Tis =

{
ΘW (γ′1) + 1−X3

V
, Zc < Z1 ≤ Zb

ΘW (γ′2) + β−Y3

V
, Za ≤ Z1 < Zc

(7.102)

where

γ′1 =
αZ3

VΘ
e−

1−X3
VΘ , γ′2 = −αZ3

VΘ
e−

β−Y3
VΘ . (7.103)

The duration Tis is shown in Fig. (7.16) as a function of Z1.
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Figure 7.16: Duration of the interseismic interval after the 1964 Alaska earthquake, in

units of the associated Maxwell relaxation time Θ. The variable Z1 characterizes the

initial state of the 1964 event. The elapsed time to date (dotted line) constrains the

possible initial states of the 1964 earthquake and, in turn, the features of the next event

on the fault. The case Z1 = Zc corresponds to the largest future event predicted by the

model, associated with a two-mode event 11-01.
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The 1964 earthquake took place about 53 years ago. Hence, the states on segment

s1 for which the expected interseismic time interval (7.102) is shorter than or

equal to tis = 53 years can be ruled out. Imposing the condition

Tis
Θ

>
tis
θ
' 1.77 (7.104)

we conclude that only the states on segment s1 in the subset Z̃a ≤ Z1 ≤ Zb are

acceptable as starting states for the 1964 event, with Z̃a = −39.5.

In turn, this refinement introduces a constraint on the admissible states on

the segment q1, and so on the possible future events generated by the fault. In

fact, if we compare the interval [Z̃a, Zc] with the interval [Zc, Zb], we conclude

that approximately 60% of the acceptable portion of q1 lies in H2. Accordingly,

the probability that future events on the 1964 fault start with the failure of asper-

ity 2 has been reduced by this refinement; however, the next earthquake is still

more likely to start with the failure of this asperity, according to the present model.

The refining procedure described above may be repeated again in the future,

if no earthquakes were to be observed for some time. Thus, it would be possible

to further constrain the admissible subsets of segments s1 and q1.

7.8.2 Future earthquakes

The next seismic event generated by the 1964 fault is now further characterized,

providing details about the sequence of slipping modes involved.

It was already mentioned that the features of the next earthquake on the 1964

fault depend upon the specific state P3 on segment q1. The number and the

sequence of dynamic modes in the earthquake are summarized in Table (7.3) as a

function of the different subintervals of Z1.

The value of the seismic moment M0 released during the next event on the 1964

fault is shown in Fig. (7.17) as a function of Z1. The largest possible earthquake

predicted by the model, corresponding to Z1 = Zc and associated with a two-mode

event 11-01, entails a seismic moment M0 ' 1.53M1.
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Table 7.3: Future earthquakes generated by the 1964 Alaska fault, as functions of

the variable Z1 describing the initial state of the 1964 event, with Z1 ∈ [Z̃a, Zb] =

[−39.5, 35.7]. The value Z1 = Zc = 6.2 corresponds to the largest possible earthquake

predicted by the model. The values Z1 = Zd = 6 and Z1 = Ze = 6.46 correspond to

events associated with the separate (consecutive) slips of the asperities.

Future earthquake Initial state of the 1964 earthquake

1-mode event 01 Z̃a ≤ Z1 < Zd

2-mode event 01-10 Z1 = Zd

3-mode event 01-11-10 Zd < Z1 < Zc

2-mode event 11-01 Z1 = Zc

3-mode event 10-11-01 Zc < Z1 < Ze

2-mode event 10-01 Z1 = Ze

1-mode event 10 Ze < Z1 ≤ Zb

This application serves as an example of the concepts discussed in §7.4. In fact,

each of the possible future seismic events on the 1964 Alaska fault predicted by the

model (Table 7.3) is associated with a characteristic shape of the source function.

Accordingly, the observation of the shape and the number of humps in the source

function associated with the next event generated by the fault, together with the

energy release, will provide information about the state of the system at the onset

of that event. In turn, it will be possible to further constrain the acceptable set of

states from which the 1964 event may have taken place.

7.8.3 Comparison with the purely elastic case

Assuming purely elastic coupling between the asperities, Dragoni and Santini

(2015) were able to identify the particular stress states of the fault at the onset

and at the end of the 1964 earthquake. Specifically, they estimated the difference

between the slip deficits of the asperities to be

Y1 −X1 ' −0.25 (7.105)

at the beginning of the event and

Y3 −X3 ' −0.12 (7.106)

at the end of the event. In Chapter 6, it was shown that the number and sequence

of dynamic modes in a seismic event produced by a two-asperity fault in the
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Figure 7.17: (a) Seismic moment M0 of the next event generated by the 1964 Alaska

fault, as a function of the variable Z1 characterizing the initial state of the 1964

earthquake; (b) magnification of the narrow interval associated with events involving

the simultaneous failures of both asperities. The value Z1 = Zc corresponds to the

largest possible earthquake predicted by the model, associated with a two-mode event

11-01. The values of the parameters are relevant to the 1964 Alaska earthquake

(α = 0.01, β = 0.75, γ = 0.2, ε = 0.7, VΘ = 0.037).
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case of purely elastic rheology can be univocally determined from the knowledge

of the difference between the slip deficits of the asperities at the beginning of

the interseismic interval preceding the event; such difference is identified by the

variable p defined in Eq. (6.34). From Eq. (7.106), it results

p = −0.12 > p2 (7.107)

at the end of the 1964 event, with p2 given by Eq. (D.6) assuming ξ = 1. Accord-

ingly, the next earthquake produced by the 1964 Alaska fault will be caused by

the sole failure of asperity 2, i.e., it will be a one-mode event 01. The duration

of the interseismic interval preceding the event can be calculated from Eq. (6.38)

assuming again ξ = 1: it results ∆t ' 316 a.

In the previous sections, it was shown that the presence of viscoelastic relax-

ation entails a broad range of states compatible with the observed slip pattern

of the 1964 earthquake. Such uncertainty on the initial state of the fault is in

turn reflected on the particular features of the next earthquake on the 1964 fault

and on the duration of the interseismic interval preceding the event. In order to

carry out a comparison with the elastic case, it is therefore necessary to determine

the specific state on segment s1 that corresponds with the stress state (7.105).

This can be easily achieved bearing in mind that the limit case of purely elastic

coupling between the asperities corresponds to Z = Y −X. We conclude that,

among all states on segment s1, the elastic case studied by Dragoni and Santini

(2015) is identified by Z1 = −0.25.

Since Z̃a ≤ −0.25 ≤ Zd, the present model predicts that the next earthquake

on the 1964 fault will be a one-mode event 01, in agreement with the elastic case.

The duration of the interseismic interval preceding the event can be calculated

from Eq. (7.102) with Z1 = −0.25: it results ∆t ' 315 a. The influence of

viscoelastic relaxation on the post-seismic evolution of the 1964 fault is therefore

relatively weak, according to the present model, since it causes the anticipation of

the next earthquake by only about 1 a with respect to the purely elastic case.
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Chapter 8

Stress perturbations on a

two-asperity fault in the presence

of viscoelastic relaxation

In this chapter, I consider the discrete model of a two-asperity fault in the presence

of viscoelastic relaxation presented in the previous chapter and I devise a means

to study the effect of stress perturbations from neighbouring faults (§2.1.2) taking

place during the phase of post-seismic deformation of the fault, pointing out the

main differences with respect to the case of a purely elastic rheology.

8.1 Modelling stress perturbations

Let us consider the fault model described in §7.1 and focus on the perturbations

of its state caused by the coseismic slip on surrounding faults. Following Dragoni

and Piombo (2015), it is assumed that:

1. the perturbations occur during an interseismic interval: this is a reasonable

assumption, since faults are predominantly stationary over time;

2. the stress transfer takes place over a time interval negligible with respect to

the duration of the interseismic interval;

3. at the time of the perturbation, the state of the fault is sufficiently far from

the failure condition and the stress transfer is small enough that the onset of

motion of either asperity is not achieved immediately.

As discussed in §2.1.2, an effective way to characterize the interaction between

neighbouring faults is provided by the concept of Coulomb stress. In the present
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model, the presence of two asperities with different strengths make it necessary

to assign a value of Coulomb stress to each of them. By definition, the Coulomb

forces associated with asperity 1 and 2 are, respectively,

fC1 = −f1 − fs1, fC2 = −f2 − fs2. (8.1)

In nondimensional form, they become

FC
1 = X − αZ − 1, FC

2 = Y + αZ − β. (8.2)

Of course, these forces vanish on planes Π1 and Π2, respectively (§7.1.1); further-

more, their gradients

∇FC
1 = (1, 0,−α) , ∇FC

2 = (0, 1, α) (8.3)

are orthogonal to Π1 and Π2, respectively.

Let (X, Y, Z) ∈ H be the state of the fault at the time of the perturbation. As

a result of the stress transfer, the system undergoes a transition to a new state

(X ′, Y ′, Z ′) = (X, Y, Z) + (∆X,∆Y,∆Z) . (8.4)

Since the stress transfer takes place over a time interval short with respect to the

interseismic interval (assumption 2), viscoelastic relaxation is negligible during

the perturbation and the rheology can be reasonably considered as purely elastic

as the perturbation takes place. Accordingly, it is possible to set

∆Z = ∆Y −∆X. (8.5)

The change of state is associated with a vector in the XY Z space,

∆R = (∆X,∆Y,∆Z) . (8.6)

The components of ∆R generally have different magnitudes and may have different

signs, as a consequence of the inhomogeneity of the stress field produced by an

earthquake. They can be written in terms of the tangential forces ∆F1 and ∆F2

exerted by the perturbing source on asperity 1 and 2, respectively: from Eq. (7.16),

we have

∆F1 = −∆X + α∆Z = α∆Y − (1 + α)∆X (8.7)

∆F2 = −∆Y − α∆Z = α∆X − (1 + α)∆Y. (8.8)
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Combining these expressions together, we get

∆X = − 1 + α

1 + 2α
∆F1 −

α

1 + 2α
∆F2 (8.9)

∆Y = − α

1 + 2α
∆F1 −

1 + α

1 + 2α
∆F2 (8.10)

∆Z =
1

1 + 2α
(∆F1 −∆F2) . (8.11)

As a result, the variations in tangential stress alter the orbit of the system.

The components of ∆R can also be related to the orientation of the vector in

the state space. With reference to Fig. (8.1), we have

∆X = ∆R cosϕ cosϑ, ∆Y = ∆R cosϕ sinϑ, ∆Z = ∆R sinϕ. (8.12)

X

Y

Z
∆R

ϑ

ϕ

Figure 8.1: The vector ∆R and its orientation in the XY Z space, characterizing the

stress perturbation imposed on the system by earthquakes produced by neighbouring

faults.

Introducing the assumption (8.5), the angle ϕ may be expressed in terms of the

angle ϑ as

ϕ = arctan (sinϑ− cosϑ) . (8.13)

In writing Eq. (8.13), it was taken into account that

ϕ 6= π

2
,
3π

2
(8.14)

or it would result

∆Z = ±∆R, ∆X = ∆Y = 0 (8.15)

134



which is a meaningless circumstance. From Eq. (8.12), the tangential forces

(8.7)-(8.8) can be rewritten as

∆F1 =
α sinϑ− (1 + α) cosϑ√

2− sin 2ϑ
∆R (8.16)

∆F2 =
α cosϑ− (1 + α) sinϑ√

2− sin 2ϑ
∆R. (8.17)

Following the variations in normal stress, the static and dynamic frictions on each

asperity are altered. Letting f ′s1 and f ′s2 be the new static frictions on asperity 1

and 2, respectively, I define

β1 =
f ′s1
fs1

, β2 =
f ′s2
fs1

. (8.18)

The changes in static frictions are then

∆β1 = β1 − 1, ∆β2 = β2 − β (8.19)

on asperity 1 and 2, respectively.

Since the stress perturbation does not alter the friction coefficients of rocks,

it is reasonable to assume that the ratio ε between dynamic and static frictions

remains unchanged on both asperities. Therefore, letting f ′d1 and f ′d2 be the new

dynamic frictions on asperity 1 and 2, respectively, we have

f ′d1

fs1
= ε

f ′s1
fs1

= εβ1,
f ′d2

fs1
= ε

f ′s2
fs1

= εβ2. (8.20)

The consequent changes in dynamic frictions are ε∆β1 and ε∆β2 on asperity 1

and 2, respectively.

8.2 Effects of the perturbation

The stress transfer resulting from earthquakes on neighbouring faults alters several

parameters of the model. A first remarkable change concerns the strength of the

asperities. After the perturbation, it is possible to define a new ratio

β′ =
f ′s2
f ′s1

=
f ′d2

f ′d1

=
β2

β1

(8.21)

which differs from the original value β given in Eq. (7.8). Moreover, the stress

transfer may be so intense that the weaker asperity may become the stronger one:
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that is, it may result β′ > 1.

The variations in static frictions entail different conditions for the onset of

motion of the asperities. Taking Eq. (8.18) into account, Eq. (7.17) is replaced by

F1 = −β1, F2 = −β2. (8.22)

By combination with Eq. (7.16), these conditions define the planes

X − αZ − β1 = 0 (8.23)

Y + αZ − β2 = 0 (8.24)

that I call Π′1 and Π′2, respectively. Conversely, the planes Γ1 and Γ2 given in

Eq. (7.20) and Eq. (7.21) are not affected by the stress perturbation, since they

do not depend on frictions. In conclusion, the changes in normal stress modify

the sticking region of the system, describing a new hexahedron H′ in the state

space. The coordinates of its vertices are

A′ =

(
0, β1,−

β1

α

)
, B′ =

(
β2, 0,

β2

α

)
, C ′ =

(
β1 + β2, 0,

β2

α

)
(8.25)

D′ =

(
0, β1 + β2,−

β1

α

)
, E ′ = (β1, 0, 0) , F ′ = (0, β2, 0) . (8.26)

The volume of H′ is β1β2(β1 + β2)/2α: by comparison with the characteristics

of H discussed in §7.1.1, we conclude that the set of states corresponding to

stationary asperities is enlarged or reduced, depending on how normal stresses on

the asperities are modified.

Following the changes in static frictions, the surface Σ defined in Eq. (7.76) is

replaced by a new surface Σ′ expressed by

VΘ [W (γ′1)−W (γ′2)] + Y −X + β1 − β2 = 0, (8.27)

where

γ′1 =
αZ

VΘ
e−

β1−X
VΘ , γ′2 = − αZ

VΘ
e−

β2−Y
VΘ . (8.28)

As a result, the sticking region H′ is split in two subsets H′1 and H′2; furthermore,

its faces A′E ′C ′D′ and B′C ′D′F ′ are divided into subsets Q′1, s
′
1, R′1 and Q′2, s

′
2,

R′2, respectively.
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As for the surfaces Σ1 and Σ2, we see from their definitions (7.77) and (7.78)

that they are affected by the variations of the static frictions and of the slip

amplitudes of the asperities (which are a consequence of the changes in dynamic

frictions). Accordingly, the surface Σ1 is replaced by a new surface Σ′1 given by

X − Y − 2αZe−W (γ′1)−β1−X
VΘ + β2 − β1(1 + ακ1U) = 0 (8.29)

with γ′1 given in Eq. (8.28). Analogously, the surface Σ2 is replaced by a new

surface Σ′2 expressed by

X − Y − 2αZe−W (γ′2)−β2−Y
VΘ + β2(1 + ακ1U)− β1 = 0, (8.30)

with γ′2 given in Eq. (8.28).

Since the amount of slip that asperities undergo during a seismic event is

modified by the perturbation, the seismic moment associated with an earthquake

is altered as well. The variations in the final slip amplitudes U1 and U2 of asperity

1 and asperity 2, respectively, and in the final seismic moment M0 associated with

the different seismic events predicted by the model are listed in Table (8.1).

Table 8.1: Changes in the final slip amplitudes U1 and U2 of asperity 1 and 2 and in the

seismic moment M0 associated with the different seismic events predicted by the model,

after a stress perturbation from neighbouring faults. The entry e.n. is the abbreviation

for evaluated numerically. The unperturbed slip amplitudes and seismic moment are

listed in Table (7.1).

Kind of event ∆U1 ∆U2 ∆M0

one-mode 10 ∆β1κ1U - ∆β1κ1M1

one-mode 01 - ∆β2κ1U ∆β2κ1M1

two-mode 10-01/01-10 ∆β1κ1U ∆β2κ1U κ1M1(∆β1 + ∆β2)

involving mode 11 e.n. e.n. e.n.

8.2.1 Changes in Coulomb forces

The variations in tangential stresses and static frictions discussed so far entail

a change in the Coulomb forces assigned to the asperities. Combining Eq. (8.2)

with Eq. (8.7) and Eq. (8.8), these changes are given by

∆FC
1 = −∆F1 −∆β1 = (1 + α)∆X − α∆Y −∆β1 (8.31)
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∆FC
2 = −∆F2 −∆β2 = (1 + α)∆Y − α∆X −∆β2 (8.32)

or, exploiting Eq. (8.16) and Eq. (8.17),

∆FC
1 =

(1 + α) cosϑ− α sinϑ√
2− sin 2ϑ

∆R−∆β1 (8.33)

∆FC
2 =

(1 + α) sinϑ− α cosϑ√
2− sin 2ϑ

∆R−∆β2. (8.34)

The sign of ∆FC
i (i = 1, 2) determines whether the perturbation brings an asperity

closer to or farther from the failure; specifically, positive variations entail that slip

if favoured, and vice-versa. Equations (8.33) and (8.34) clearly point out that this

effect is regulated by the orientation of the vector ∆R in the state space. Bearing

in mind the observations concerning the orientation of the gradients ∇FC
1 and

∇FC
2 made in §8.1, we find that: ∆FC

1 is maximum when ∆R is perpendicular

to plane Π1 and points toward it; it vanishes when ∆R is parallel to plane Π1;

it is minimum when ∆R is perpendicular to plane Π1 and points away from it.

Analogous considerations can be made for ∆FC
2 .

On the whole, the effect of the stress perturbation can be discussed in terms

of the quantity

∆FC = ∆FC
2 −∆FC

1 = (1 + 2α) (∆Y −∆X) + ∆β1 −∆β2. (8.35)

Let us assume that the system is at a certain state (X, Y, Z) ∈ H1 before the

perturbation; accordingly, the next seismic event on the fault will start with the

failure of asperity 1. If ∆FC > 0, the perturbation favours the slip of asperity 2

over the slip of asperity 1: therefore, the system is brought to a state closer to the

condition for the simultaneous failures of the asperities and thus to the Σ surface.

On the contrary, perturbations for which ∆FC < 0 take the system farther from

the Σ surface. The opposite holds for an unperturbed state (X, Y, Z) ∈ H2.

8.2.2 Changes in the duration of the interseismic interval

As already stated, stress perturbations can anticipate or delay the occurrence

of an earthquake produced by a certain asperity. This effect can be quantified

in terms of the variation in the duration of the interseismic interval. Generally

speaking, the perturbation vector ∆R may cross the Σ surface and thus bring the

system from an unperturbed state within H1 (H2) to a perturbed state within H′2

(H′1). For the sake of simplicity, only the particular case in which the perturbation
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vector ∆R does not cross the Σ surface is considered here. An example of a more

general case will be shown in §8.3 for a real fault.

Let us first focus on the case in which the unperturbed state (X, Y, Z) ∈ H1.

The time required by the orbit of the system to reach plane Π1, triggering the

failure of asperity 1, was given in Eq. (7.31). If the stress perturbation brings the

system to a state (X ′, Y ′, Z ′) ∈ H′1 and the static friction on asperity 1 to β1,

the time required by the orbit to reach plane Π′1 is

T ′1 = ΘW (γ′1) +
β1 −X ′
V

(8.36)

with γ′1 given in Eq. (8.28). The difference between the two times is

∆T1 = T ′1 − T1 = Θ [W (γ′1)−W (γ1)]− ∆FC
1 + α∆Z

V
(8.37)

where Eq. (8.31) has been employed. If instead (X, Y, Z) ∈ H2, the time required

by the orbit of the system to reach plane Π2, triggering the failure of asperity

2, was given in Eq. (7.34). If the stress perturbation takes the system to a state

(X ′, Y ′, Z ′) ∈ H′2 and the static friction on asperity 2 to β2, the time required to

reach plane Π′2 is

T ′2 = ΘW (γ′2) +
β2 − Y ′
V

(8.38)

with γ′2 given in Eq. (8.28). The difference between the two times is

∆T2 = T ′2 − T2 = Θ [W (γ′2)−W (γ2)]− ∆FC
2 − α∆Z

V
(8.39)

where Eq. (8.32) has been employed. Positive values of ∆T1 and ∆T2 correspond

to a delay in the occurrence of an earthquake on asperity 1 and 2, respectively,

and vice-versa.

8.2.3 Comparison with the elastic case

According to the model, rock rheology plays a critical role in the response to

stress perturbations. In the case of purely elastic coupling between the asperities,

Dragoni and Piombo (2015) showed that the changes in the duration of the

interseismic interval prior to the failure of asperity 1 and 2 are, respectively,

∆T1 = −∆FC
1

V
, ∆T2 = −∆FC

2

V
. (8.40)

Accordingly, an increase in the Coulomb force associated with a given asper-

ity (∆FC
i > 0) directly yields the anticipation of the slip of that asperity, and
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vice-versa. What is more, the variation in the duration of the interseismic inter-

val is proportional to the change in the Coulomb force associated with the asperity.

Conversely, in the viscoelastic case there is no straightforward connection

between the sign of ∆FC
i and the anticipation or delay of an earthquake on the

associated asperity. In fact, the expressions (8.37) and (8.39) obtained for ∆T1

and ∆T2 indicate that the net effect depends in a non trivial way on the particular

state of the fault at the time of the stress perturbation and right after it. This

result points out the complex interplay between the post-seismic evolution of

a fault in the presence of viscoelastic relaxation and the stress transfer from

neighbouring faults.

8.3 An application: perturbation of the 1992

Landers fault by the 1999 Hector Mine earth-

quake

I study the effects of the 16 October 1999 Mw 7.1 Hector Mine, California,

earthquake on the post-seismic evolution of the fault that generated the 28 June

1992 Mw 7.3 Landers, California, earthquake. The geometry of the two faults is

shown in Fig. (8.2).

N 

1 
2 

 

HM 

LAN 

 

Figure 8.2: Geometry of the Landers (LAN) and Hector Mine (HM), California, faults

that generated the 1992 and 1999 earthquakes, respectively. The stars indicate the

hypocentres of the seismic events. The labels 1 and 2 identify the asperities on the

Landers fault.
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The 1992 Landers earthquake was due to right-lateral strike-slip faulting within

the Mojave block, a part of the eastern California shear zone to the east of the

San Andreas fault, accommodating part of the motion of the Pacific plate with

respect to the North American plate (Masterlark and Wang, 2002). A sketch of

the tectonic setting is shown in Fig. (8.3).

Figure 8.3: Geographic location of the 1992 Landers and 1999 Hector Mine, California,

earthquakes. The black star denotes the epicenter of the former, the white one the

epicenter of the latter. Black arrows indicate the relative motion of the Pacific plate

with respect to the North American plate, whereas the thick dashed line identifies the

boundary between the tectonic plates.

Although geodetic and seismological observations indicate a very heterogeneous

slip distribution along a multiple-segment fault (Wald and Heaton, 1994), the

event can be approximated as the result of the slip of two coplanar asperities

(Kanamori et al., 1992): a northern one (asperity 1) and a southern one (asperity

2), with average slips u1 = 6 m and u2 = 3 m, respectively. The earthquake started

with the failure of asperity 2, followed by the failure of asperity 1. Following

Dragoni and Tallarico (2016), a common area A = 300 km2 for both asperities

and a distance a = 30 km between their centres are assumed. The centres of

asperity 1 and asperity 2 are placed at (34.46◦ N, 116.52◦ W) and (34.20◦ N,

116.44◦ W), respectively, with a common depth of 8 km. I characterize the event

by strike, dip and rake angles of 345◦, 85◦ and 180◦, respectively, an average of

the values provided by Kanamori et al. (1992) for the two phases of the earthquake.

As for the shear zone containing the fault, I take an average rigidity µ = 30 GPa
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(Kanamori et al., 1992) and a width d = 80 km (Masterlark and Wang, 2002).

The relative plate velocity is v = 3 cm a−1 (Wallace, 1990) and the tangential

stress rate on the fault is σ̇t ' 3× 10−4 Pa s−1 (Eq. A.9).

GPS and InSAR measurements highlighted significant post-seismic deforma-

tion after the 1992 event. Multiple processes have been suggested to explain the

observations, such as aseismic afterslip on or beneath the seismogenic rupture

zone, poroelastic rebound and viscoelastic relaxation of the upper mantle. Even

though a combination of mechanisms seems to be required to explain the geodetic

measurements (Fialko, 2004), I assume viscoelastic relaxation as the predominant

post-seismic process. Modelling of viscoelastic relaxation has led to several esti-

mates of the viscosity of the lower crust at Landers. For the sake of the present

application, I average the values provided by a number of authors (Deng et al.,

1998; Pollitz et al., 2000; Freed and Lin, 2001; Masterlark and Wang, 2002) and

assume a viscosity η = 5 · 1018 Pa s. The corresponding Maxwell relaxation time is

θ = η/µ ' 5 a.

With the data listed above, the parameters of the model are calculated. From

Eq. (7.91) and Eq. (6.121), we get α = 0.1 and β = 0.5. From Eq. (5.24) and

taking ε = 0.7 (e.g. Jaeger and Cook, 1976), we get U ' 0.546. I take γ = 1.5

as in Dragoni and Tallarico (2016), a value yielding modelled moment rate and

seismic spectrum comparable with the observations. Thus, we have κ1 ' 0.52

from Eq. (5.25). Finally, we have VΘ ' 0.007 from Eq. (7.96).

The 1992 earthquake is modelled as a two-mode event 01-10 starting from

mode 00. Accordingly, the orbit of the system during mode 00 lies on the surface

Σ2 inside the subset H2 of the sticking region (Fig. 7.6) and the state P1 at the

beginning of the earthquake belongs to segment s2 (Fig. 7.3). The coordinates of

P1 are

X1 = αZ1 + 1− αβκ1U, Y1 = β − αZ1, Z1 (8.41)

with

Za ≤ Z1 ≤ Zb, (8.42)

where the extreme values Za and Zb correspond to the end points (F.26) and

(F.27) of s2:

Za =
κ1U(αβ + 1)− 1

α
, Zb =

β(1− κ1U)

α
. (8.43)
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At the end of mode 01, the system is at point P2 with coordinates

X2 = X1, Y2 = Y1 − βκ1U, Z2 = Z1 − βκ1U, (8.44)

where mode 10 starts. As Z1 varies in the interval (8.42), an infinite number of

points P2 describe a segment r2 on the subset Q1 of the face AECD and parallel

to the edge CD. Mode 10 terminates at point P3 with coordinates

X3 = X2 − κ1U, Y3 = Y2, Z3 = Z2 + κ1U. (8.45)

Again, as Z1 varies in the interval (8.42), there is an infinite number of points

P3 defining another segment q2 parallel to the edge CD. This segment is sit-

uated within the sticking region and crosses the surface Σ for Z1 = Zc, with

Za < Zc < Zb. Furthermore, it intersects the surface Σ2 for Z1 = Zd, with

Za < Zd < Zc, and the surface Σ1 for Z1 = Ze, with Zc < Ze < Zb.

Every state P1 on segment s2, where the 1992 earthquake begun, corresponds

to a specific state P3 on segment q2, where the 1992 earthquake ended. Exploiting

Eq. (8.44), we can express the coordinates (8.45) of P3 as a function of Z1. Since q2

crosses the surface Σ, the state P3 can belong to H1,H2 or Σ, in correspondence

to Zc < Z1 ≤ Zb, Za ≤ Z1 < Zc and Z1 = Zc, respectively. In the first case,

the next event will start with the failure of asperity 1; in the second case, with

the failure of asperity 2; in the third case, with the simultaneous failures of the

asperities. With the values of α, β, κ1 and U listed above, we find Za ' −7.02,

Zb ' 3.58, Zc ' 0.78, Zd ' 0.71 and Ze ' 0.92. Accordingly, only about one

fourth of segment q2 lies inside the subset H1 of the sticking region. Without any

further discussion and neglecting the stress perturbation caused by the Hector

Mine earthquake, we would infer that future events on the 1992 fault are more

likely to start with the failure of asperity 2.

8.3.1 Stress perturbation by the 1999 Hector Mine earth-

quake

The 1999 Hector Mine earthquake was generated by right-lateral strike-slip faulting

located at (34.59◦ N, 116.27◦ W), about 20 km northeast from the Landers fault

(Jónsson et al., 2002; Salichon et al., 2004). I characterize the event averaging

the data available in the SRCMOD database and assume: strike, dip and rake

angles of 330◦, 80◦ and 180◦, respectively; a depth of 10 km; a seismic moment of
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6.62× 1019 Nm.

The stress transferred to the asperities at Landers is evaluated employing the

model of Appendix H, taking

φ1 = 345◦, φ2 = 330◦, ψ1 = 85◦, ψ2 = 80◦, λ1 = λ2 = 180◦. (8.46)

As a result, the normal and tangential components of the perturbing stress on

asperity 1 are

σ1n ' 0.14 MPa, σ1t ' 0.39 MPa. (8.47)

Accordingly, the static friction on asperity 1 is reduced and right-lateral slip is

favoured. As for asperity 2, the components of the perturbing stress are

σ2n ' 0.18 MPa, σ2t ' −0.17 MPa, (8.48)

suggesting that static friction on asperity 2 is reduced and right-lateral slip is

inhibited.

Let use now introduce the effect of the perturbation in the framework of the

discrete model. The changes in the tangential forces (7.16) on the asperities are

∆F1 = −σ1t

fs1
A, ∆F2 = −σ2t

fs1
A. (8.49)

An estimate of the static friction fs1 on asperity 1 was provided in Eq. (7.95):

accordingly, we get fs1/A ' 7.9 MPa. Hence, we have

∆F1 ' −0.05, ∆F2 ' 0.02. (8.50)

From Eq. (8.9) – (8.11), the components of the perturbation vector ∆R are

∆X ' 0.043, ∆Y ' −0.016, ∆Z ' −0.059. (8.51)

As a result, the orientation of ∆R in the state space is characterized by angles

ϑ ' −0.35 rad and ϕ ' −0.91 rad. The changes in static frictions (8.19) can be

calculated as

∆β1 = −ksσ1n

fs1
A, ∆β2 = −ksσ2n

fs1
A, (8.52)

where ks is the effective static friction coefficient on asperity 1. Assuming ks = 0.4,

we get

∆β1 ' −0.0073, ∆β2 ' −0.0092. (8.53)
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Finally, from Eq. (8.31) and Eq. (8.32), the changes in Coulomb forces on the

asperities are

∆FC
1 ' 0.057, ∆FC

2 ' −0.012. (8.54)

At the time of the Hector Mine earthquake, the Landers fault was at a state P4

resulting from the post-seismic evolution of any of the possible states P3 ∈ q2

where the 1992 event ended. The coordinates of P4 can be calculated from the

solution to the equations of mode 00 given by Eq. (7.28) and taking into account

that the time interval t̃ elapsed between the 1992 Landers and 1999 Hector Mine

earthquakes amounts to about 7.3 years:

X4 = X3 + V T̃ , Y4 = Y3 + V T̃ , Z4 = Z3 e
−T̃ /Θ, (8.55)

where
T̃

Θ
=
t̃

θ
≈ 1.5. (8.56)

Making use of Eq. (8.44) and Eq. (8.45), we can express the coordinates of P4 as

a function of Z1 ∈ [Za, Zb]. Accordingly, there is an infinite number of points

P4 defining a segment t2 inside the sticking region. At T = T̃ , the perturbation

vector ∆R moves every state P4 to a new state P ′4 with coordinates

X ′4 = X4 + ∆X, Y ′4 = Y4 + ∆Y, Z ′4 = Z4 + ∆Z (8.57)

which can be expressed as a function of Z1 ∈ [Za, Zb]. As a result, a new segment

t′2 identifies the state of the Landers fault after the Hector Mine earthquake.

In order to characterize the effect of the perturbation, let us consider the

difference ∆FC defined in Eq. (8.35): from Eq. (8.54), we get ∆FC ' −0.069.

Since ∆FC < 0, we conclude that the stress perturbation is such that: states

P4 ∈ H1 are moved to H′1; the state P4 ∈ Σ enters H′1; states P4 ∈ H2 are shifted

towards the Σ surface and some of them enter H′1. Specifically, we find that P ′4

belongs to H′1, H′2 and Σ′ in correspondence to Z ′c < Z1 ≤ Zb, Za ≤ Z1 < Z ′c and

Z1 = Z ′c, with Z ′c ' 0.50. Furthermore, the state P ′4 lies on the surfaces Σ′1 and

Σ′2 for Z1 = Z ′e and Z1 = Z ′d, respectively, with Z ′d ' 0.43 and Z ′e ' 0.64. On

the whole, we can draw the preliminary conclusion that the stress perturbation is

such that future events on the Landers fault starting with the slip of asperity 1

are favoured over events starting with the slip of asperity 2. A deeper discussion

is provided in the next section.
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8.3.2 Constraints due to the seismic history to date

I now follow a procedure similar to that presented for the 1964 Alaska fault in

§7.8.1, exploiting the seismic history between 1999 and the present date in order to

improve the knowledge on the state that gave rise to the 1992 Landers earthquake

and on the possible future events generated by that fault. After the perturbation

caused by the Hector Mine earthquake, the interseismic time T ′is of the Landers

fault can be calculated from Eq. (8.36) and Eq. (8.38) for states P ′4 belonging to

H′1 and H′2, respectively:

T ′is =

{
ΘW (γ′1) +

β1−X′4
V

, Z ′c < Z1 ≤ Zb

ΘW (γ′2) +
β2−Y ′4
V

, Za ≤ Z1 < Z ′c
(8.58)

where

γ′1 =
αZ ′4
VΘ

e−
β1−X

′
4

VΘ , γ′2 = −αZ
′
4

VΘ
e−

β2−Y
′
4

VΘ . (8.59)

Since no earthquakes have been produced by the Landers fault after the occurrence

of the Hector Mine event, up to year 2017, the states on segment s2 yielding an

expected interseismic time (8.58) shorter than or equal to t′is ≈ 17 years can be

excluded. The requirement
T ′is
Θ

>
t′is
θ
≈ 3.5 (8.60)

is satisfied by states on segment s2 in the subset Z̃a ≤ Z1 ≤ Z̃b, with Z̃a ' −1.17

and Z̃b ' 2.19.

As a consequence, the admissible states on segment t2 can be constrained. A

comparison between the intervals [Z̃a, Zc] and [Zc, Z̃b] points out that more than

one half of the acceptable subset of t2 belongs to H2. Hence, before the stress

perturbation caused by the Hector Mine earthquake, future events on the 1992

Landers fault were more likely to start with the failure of asperity 2. In turn, the

refinement of t2 limits the acceptable states on the segment t′2. From the ampli-

tude of the intervals [Z̃a, Z
′
c] and [Z ′c, Z̃b], we deduce that the acceptable subset of

t′2 is almost equally divided between H′1 and H′2. Therefore, if we consider the

influence of the Hector Mine earthquake on future events generated by the 1992

Landers fault, we conclude that the stress perturbation yielded homogenization

in the probability of events starting with the failure of asperity 1 or asperity 2.

This result is in agreement with the observation that the perturbation vector ∆R

shifted the whole segment t2 towards the subset H′1 of the sticking region.
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These conclusions would have to be reconsidered if new stress perturbations

from neighbouring faults were to affect the post-seismic evolution of the Landers

fault in the future. In addition, if no earthquakes were to be observed for some time

on the Landers fault, the refining procedure discussed above could be repeated

and the admissible subsets of segments s2, t2 and t′2 could be constrained with

further precision.

8.3.3 Effects of the stress perturbation on future earth-

quakes

The features of the next seismic event generated by the 1992 Landers fault, as

predicted by the present model, are discussed, highlighting the changes due to the

1999 Hector Mine earthquake.

Every state P1 ∈ s2 where the 1992 earthquake begun corresponds to a partic-

ular state P4 ∈ t2 and P ′4 ∈ t′2 before and after the stress perturbation associated

with the Hector Mine earthquake, respectively. Since the segment t2 intersects

the surface Σ, the state P4 can belong to H1,H2 or Σ (Fig. 7.4), thus affecting

the asperity that will fail the first at the beginning of the next earthquake on

the fault. In the first case, the next event will start with the failure of asperity

1, in the second case with the failure of asperity 2, in the third case with the

simultaneous failures of the asperities. Analogous considerations hold for states

P ′4 in H′1,H
′
2 and Σ′, respectively. The number and sequence of dynamic modes

in the earthquake depend on the subinterval of Z1 considered. The details are

summarized in Table (8.2) for both the unperturbed and perturbed cases.

Taking these specifics into account and referring to Table (7.1) and Table (8.1),

I evaluate the seismic moments M0 and M ′
0 associated with the expected future

earthquake on the 1992 fault before and after the 1999 Hector Mine earthquake,

respectively. In Fig. (8.4), the difference

∆M0 = M ′
0 −M0 (8.61)

is shown as a function of Z1 ∈ [Z̃a, Z̃b]. Owing to the translation imposed to

segment t2 by the perturbation vector ∆R, the sign of ∆M0 changes across the

different subintervals of Z1. The energy released by the earthquake is increased

for Z1 ∈ [Z ′d, Zd], while it is reduced elsewhere.
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Table 8.2: Future earthquakes generated by the 1992 Landers, California, fault, as

functions of the variable Z1 describing the initial state of the 1992 event, with Z1 ∈
[Z̃a, Z̃b] = [−1.17, 2.19]. The results predicted by the model before and after the

stress perturbation associated with the 1999 Hector Mine, California, earthquake are

shown. The values Z1 = Zc = 0.78 and Z1 = Z ′c = 0.50 correspond to the largest

possible earthquakes before and after the stress perturbation, respectively. The values

Z1 = Zd = 0.71, Z1 = Z ′d = 0.43, Z1 = Ze = 0.92 and Z1 = Z ′e = 0.64 correspond to

events associated with the separate (consecutive) slips of the asperities.

Future earthquake Unperturbed condition Perturbed condition

1-mode event 01 Z̃a ≤ Z1 < Zd Z̃a ≤ Z1 < Z ′d

2-mode event 01-10 Z1 = Zd Z1 = Z ′d

3-mode event 01-11-01 Zd < Z1 < Zc Z ′d < Z1 < Z ′c

2-mode event 11-01 Z1 = Zc Z1 = Z ′c

3-mode event 10-11-01 Zc < Z1 < Ze Z ′c < Z1 < Z ′e

2-mode event 10-01 Z1 = Ze Z1 = Z ′e

1-mode event 10 Ze < Z1 ≤ Z̃b Z ′e < Z1 ≤ Z̃b

Another significant effect of the stress perturbation concerns the variation in the

interseismic time before the next seismic event. I consider again the post-seismic

evolution from 1999 onwards and set the origin of times at the occurence of

the Hector Mine earthquake. The expected interseismic time Tis prior to the

stress perturbation can be calculated from Eq. (7.31) and Eq. (7.34) for states P4

belonging to H1 and H2, respectively:

Tis =

{
ΘW (γ1) + 1−X4

V
, Zc < Z1 ≤ Z̃b

ΘW (γ2) + β−Y4

V
, Z̃a ≤ Z1 < Zc

(8.62)

where

γ1 =
αZ4

VΘ
e−

1−X4
VΘ , γ2 = −αZ4

VΘ
e−

β−Y4
VΘ . (8.63)

The interseismic time T ′is after the stress perturbation has been given in Eq. (8.58).

The difference

∆T = T ′is − Tis (8.64)

is shown in Fig. (8.5) as a function of Z1 ∈ [Z̃a, Z̃b]. For states P4 ∈ H1 correspond-

ing to P ′4 ∈ H′1 and states P4 ∈ H2 corresponding to P ′4 ∈ H′2, this difference

coincides with (8.37) and (8.39), respectively.
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Figure 8.4: Change in the seismic moment released during the next event on the 1992

Landers, California, fault, as a result of the stress perturbation due to the 1999 Hector

Mine, California, earthquake. On the horizontal axis, the variable Z1 describing the

initial state of the 1992 event. The values Z1 = Zc and Z1 = Z ′c correspond to the largest

possible earthquakes predicted by the model before and after the stress perturbation,

respectively, associated with a sequence of modes 11-01.

Some peculiar features stand out. First, we notice that, for all states P4 ∈ H2

corresponding to P ′4 ∈ H′2, that is, for Z1 ∈ [Z̃a, Z
′
c], the interseismic time is

increased by the stress perturbation, in agreement with the inhibiting effect

on asperity 2 suggested by Eq. (8.54). On the other hand, Eq. (8.54) suggests

that the failure of asperity 1 is promoted, but this is not verified by all states

P ′4 ∈ H′1, that is, for Z1 ∈ [Z ′c, Z̃b]. In fact, the interseismic time is reduced only

for Z1 ∈ (0.53, Z̃b], while it is increased for Z1 ∈ [Z ′c, 0.53). In the particular

case Z1 = 0.53, there is no change in the interseismic time. This is a remarkable

result, showing that the presence of viscoelastic relaxation at the time of the stress

perturbation entails the unpredictability of the consequent influence in terms of

anticipation/delay of future earthquakes, on the basis of the sole knowledge of the

change in Coulomb stress.
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Figure 8.5: Change in the interseismic time before the next event on the 1992 Landers,

California, fault, as a result of the stress perturbation due to the 1999 Hector Mine,

California, earthquake. On the horizontal axis, the variable Z1 describing the initial

state of the 1992 event. The values Z1 = Zc and Z1 = Z ′c correspond to the largest

possible earthquakes predicted by the model before and after the stress perturbation,

respectively, associated with a sequence of modes 11-01.

Finally, the same considerations presented in §7.8.2 for the 1964 Alaska fault hold.

At the occurrence of the next earthquake produced by the Landers fault, the

shape and number of humps in the source function associated with the event and

the energy released will reveal more about the state of the system, thus allowing

a further refinement of the specific conditions that gave rise to the 1992 event.
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Chapter 9

Seismic sequences originated by a

fault system

In this chapter, a particular expression of the interaction between neighbouring

faults discussed in §2.1.2 is considered: the seismic sequences produced by a fault

system.

I name “seismic sequence” a series of earthquakes generated by faults located

in a relatively small region (in the order of 100 km) and occurring in a time interval

(in the order of few months) much shorter than a typical interseismic interval,

when the system is at rest. Seismic sequences are originated by fault systems

that produce similar earthquakes in terms of focal mechanism and magnitude. A

sequence is typically made of a small number (< 10) of larger events of medium

magnitude, in general between 5 and 6, plus a greater number of smaller events.

Generally speaking, the time interval elapsing between two seismic sequences in

the same region is in the order of several decades at least (Rovida et al., 2011).

The present definition of seismic sequence does not include the series of aftershocks

following a greater event, since they may have similar features but are strongly

conditioned by the main shock. Also, I only focus on the larger events of the

sequence, neglecting the smaller ones. This chapter presents a generalized version

of the results discussed by Dragoni and Lorenzano (2016).

9.1 The model

The fault model described in §3.4 is adopted and a system made up of n plane

faults characterized by the same strike and dip angles is considered. A coordinate
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system (x, y, z) is introduced, with x, y and z defined as the strike direction, the

horizontal direction perpendicular to strike and depth, respectively. Notice that,

in the framework of the present model, x, y and z do not represent the state

variables of the system as in the previous chapters. The faults are numbered from

1 to n, according to the order in which they are encountered while moving along

the strike direction from one end of the system. A sketch of the model in the case

of n = 3 faults is shown in Fig. (9.1).

x

y

z

Figure 9.1: A system of n = 3 faults, numbered according to the order in which they

are encountered while moving along the strike direction x from one end of the system.

Let Ai be the area of the i-th fault and rij be the distance between the centres

of the i-th and the j-th fault. Finally, let δ be the dip angle of the faults. The

following assumptions are made:

1. the fault system is subject to a strain rate ė that is constant in time and

uniform in space;

2. the onset of seismic events is controlled by the average values of tangential

traction and static friction on fault surfaces;

3. fault slip is a step function of time and does not produce overshooting;

4. each fault slips only once during a sequence;

5. there is no simultaneous slip of two or more faults and a finite time interval

elapses between the failures of any two faults;

6. the duration of a sequence is much shorter than the interval between two

consecutive sequences;

7. the system is not subject to external stress perturbations.

Assumption 1 is reasonable, since the n faults are defined as belonging to the
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same seismogenic region, for which the same tectonic mechanism is observed.

Assumptions 2 and 3 are supported by the fact that I am not interested in the

details of each event, which has a much shorter duration than the duration of the

sequence, but rather in the relationship between the n events. Assumptions 4, 5

and 6 are suggested by the features of the seismic sequences that are dealt with:

such sequences are made of distinct events, each one associated with the failure of

a single fault of the system, and there is no reactivation of the same fault during

a sequence. As a matter of fact, seismic sequences typically last for several weeks

or few months, whereas the interval between two consecutive sequences may be

even centuries long. As for assumption 7, it was already shown that the evolution

of a fault can be altered by stress perturbations from neighbouring faults (§2.1.2).

Generally speaking, contributions from external faults may be numerous during an

interseismic interval, but they are smaller than contributions from faults belonging

to the system, owing to greater distances and to different orientations of fault

surfaces. What is more, such contributions may partially cancel each other out.

Let σi be the average tangential traction applied to the i-th fault in the slip

direction and τi be the average static friction of the i-th fault. Accordingly, the

Coulomb stress associated with the i-th fault is (§2.1.2)

xi = σi − τi, i = 1, 2, . . . n. (9.1)

By definition, the σi are always positive or zero; hence, we have

− τi ≤ xi ≤ 0, i = 1, 2, . . . n. (9.2)

An earthquake is generated by the i-th fault when xi = 0. Introducing the

coefficient of static friction ks, assumed to be the same for the whole fault system,

we obtain the rates of σi and τi as

σ̇i = σ̇t, τ̇i = ksσ̇n (9.3)

where σ̇n and σ̇t are the normal and tangential stress rates acting on the faults,

respectively. Their expressions are calculated from the strain rate ė in Appendix

A, distinguishing between strike-slip and dip-slip faults. Accordingly, the rate of

Coulomb stress for the whole fault system is

ẋ = κσ̇ (9.4)

where

κ = sin δ(ks sin δ ± cos δ) (9.5)
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for normal and reverse faults and

κ = 1 (9.6)

for transcurrent faults. Then, during an interseismic intervals, the Coulomb stress

of the i-th fault changes in time as

xi(t) = x0i + ẋt (9.7)

where x0i is the Coulomb stress at an arbitrary time t = 0.

Owing to the presence of friction, the system of n faults represents a nonlinear

dynamical system. At any instant in time, the state of the system is described

by an n-dimensional vector x(t) whose components are the Coulomb stresses

xi. Since the system has n degrees of freedom, the phase-space is a 2n-manifold.

The representative point of the system in enclosed within an n-dimensional

parallelepiped S, defined by the n inequalities (9.2). It is shown in Fig. (9.2) in

the case of n = 3 faults.

x1

x2

x3

(−τ1, 0, 0)

(0,−τ2, 0)

(0, 0,−τ3)

Figure 9.2: The parallelepiped S enclosing all states of the system, in the case of n = 3

faults associated with Coulomb stresses xi and static frictions τi. The dotted segment

lies on line (9.8).

During the interseismic intervals, the representative point of the system x moves

inside S along the line defined by the parametric equations (9.7), which is parallel
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to the line

x1 = x2 = · · · = xn. (9.8)

According to assumption 5, all the components of x are different from one another.

Therefore, one (and only one) component will vanish first, generating the first

event in the sequence. At the occurrence of an earthquake, a static stress field is

applied to all faults, thus modifying the associated Coulomb stresses and causing

a sudden change in the state of the system x. Generally speaking, the change in

Coulomb stress on the j-th fault due to the failure of the i-th fault can be written

as

∆xij(t) = (∆σij −∆τij)H(t) + ∆x′ij(t) (9.9)

where: ∆σij and ∆τij are the coseismic changes in tangential traction and static

friction, respectively; H is the Heaviside function; ∆x′ij is the overall change in

Coulomb stress due to time-dependent processes, such as pore fluid diffusion,

afterslip and viscoelastic relaxation. The change in static friction is a consequence

of the variation in normal stress on the fault.

The coseismic components of ∆xij(t) are calculated following the model de-

scribed in Appendix H, treating the i-th fault as a point-like double-couple source

in an unbounded medium. As for the stress change on the i-th fault, it is given by

∆xii = −∆σi (9.10)

where ∆σi is the static stress drop, which can be estimated from the average slip

ui and the fault area Ai as

∆σi = C
µui√
Ai
. (9.11)

Here, C is a nondimensional constant of the order of unity determined by the

geometry of the fault (Kanamori, 2001).

As far as the pore fluid diffusion is concerned, I discussed in §2.3.2 how the

coseismic stress field may induce a fluid flow that changes the stress field in turn.

In the particular case of coplanar faults, the effect of fluid diffusion is at least

one order of magnitude smaller than the coseismic stress transfer (Appendix I).

Although the evolution of a seismic sequence may be influenced by pore fluid

diffusion (e.g. Convertito et al., 2013), this effect is neglected in the following, for

the sake of simplicity. As for afterslip and viscoelastic relaxation, I am considering

sequences of medium-size earthquakes: accordingly, it is assumed that the seismic
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events do not produce appreciable afterslip nor impose significant stress to deeper

ductile regions that may relax it afterwards.

For later use, I introduce the differences between the components of the state

vector x as

dij(t) = xi(t)− xj(t). (9.12)

These differences form an antisymmetric matrix having n(n − 1) nonvanishing

components that are related by (n− 1)2 equations. Therefore dij is known if we

know only n− 1 components, for example the d1j with j = 2, 3, . . . n.

9.1.1 A particular case: coplanar faults

Let us consider the particular case of a system of n faults lined up in the strike

direction x and belonging to the same plane (Fig. 9.3).

x

1

r12 r23

2 3 • • • n

Figure 9.3: A system of n coplanar faults. The x axis is the strike direction. Distances

rij between the i-th and the j-th fault are computed from the fault centres.

The main difference with respect to the more general case discussed beforehand

involves the change in Coulomb stress of the j-th fault, following the failure of the

i-th fault. In fact, since the faults are coplanar, there are no changes in normal

stress on the fault plane; in turn, the static friction on the fault remains the same

throughout the sequence. Neglecting the effect of time-dependent processes as

before, Eq. (9.9) then reduces to

∆xij(t) = ∆σijH(t). (9.13)

As a result, we can equivalently refer to stress changes or stress transfers. As

discussed in Appendix H, the stress transferred to the j-th fault following an

earthquake on the i-th fault is always positive in this particular framework. Thus,

the j-th component of the state vector x is reduced in magnitude and the failure
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of the corresponding fault is anticipated in time. In conclusion, the cumulative

effect of the earthquakes in the sequence is always to concentrate the events in a

shorter time interval. A means for quantifying such effect will be discussed later

on.

9.2 Evolution of the system

Let tk be the occurrence times of the events in the sequence (k = 1, 2, . . . n), so

that the durations of the interseismic intervals are

∆tk = tk+1 − tk, k = 1, 2, . . . n− 1. (9.14)

Accordingly, the initial state of the system is expressed by x(t1−). If the first

event is due to the failure of the i1-th fault, x undergoes a sudden change and its

k component becomes

xk(t1+) = xk(t1−) + ∆xi1k. (9.15)

Afterwards, x changes continuously in time, as a consequence of tectonic loading:

according to Eq. (9.7), we have

xk(t) = xk(t1+) + ẋ (t− t1). (9.16)

At t = t2, the second event takes place, due to the failure of the i2-th fault, so

that x undergoes another sudden change, and so on. At the end of the sequence,

the state of the system is expressed by

xk(tn+) = xk(tn−) + ∆xink. (9.17)

Making use of the previous equations, the final state can be rewritten in terms of

the initial state as

xk(tn+) = xk(t1−) + ẋ∆t+
n∑
j=1

∆xjk (9.18)

where

∆t =
n−1∑
k=1

∆tk = tn − t1 (9.19)

is the duration of the sequence, which can be written as

∆t = −xin(t1−)

ẋ
− 1

ẋ

n∑
j=1

∆xijin , ij 6= in. (9.20)
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We see from Eq. (9.18) that the difference between the final and the initial state

consists in two terms: the first one represents the effect of tectonic loading during

the time interval ∆t, whereas the second one reflects the cumulative effect of

the earthquakes in the sequence. The latter term causes the lengthening or the

shortening of the duration of the sequence, depending on the features of the stress

transfer between the faults of the system. The net effect can be evaluated by

calculating how much the occurrence time tn of the last event is anticipated or

delayed: this variation is due to the sum of the stresses that are transferred to

the in-th fault from the other n− 1 faults. From Eq. (9.20), the duration of the

sequence in the absence of interaction is given by

∆t′ = ∆t+
1

ẋ

n∑
j=1

∆xijin , ij 6= in. (9.21)

Finally, the interseismic intervals (9.14) can be calculated as

∆tk = −xik+1
(tk+)

ẋ
, k = 1, 2, . . . n− 1. (9.22)

The duration and the particular evolution of a seismic sequence strongly depend

on the heterogeneity of stress distribution on the faults of the system. One possible

way to characterize this feature is provided by the standard deviation associated

with the state vector x. At a given instant in time, it is defined as

s =

[
1

n

n∑
i=1

(xi − x̄)2

]1/2

(9.23)

where

x̄ =
1

n

n∑
i=1

xi. (9.24)

9.3 Retrieval of the initial and final states

According to the present model, the observation of a seismic sequence allows to

retrieve the state of the system at any time during the sequence. In the following,

I focus on the evaluation of the state of the system at the onset and at the end of

the sequence.

Let us consider a seismic sequence made up of n earthquakes that can be

ascribed to the failure of n faults belonging to the same system. Let t1, t2, . . . tn

be the observed occurrence times of the events. The stress transfer matrix can be
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calculated from the knowledge of the geometry of the faults and of the seismic

moments associated with the events; in turn, it is possible to retrieve the Coulomb

stress change matrix ∆xij . Also, the Coulomb stress rate ẋ can be determined by

means of Eq. (9.4) from the strain rate ė provided by geodetic measurements.

Let us focus on the generic fault ik that generated the k-th event in the

sequence. By definition, the Coulomb stress of fault ik at the onset of the sequence

xik(t1−) must be such that it is cancelled by the stress accumulated on the fault

up to time tk. Accordingly, we can write

xik(t1−) = −ẋ (tk − t1)−
k−1∑
j=1

∆xijik . (9.25)

In fact, apart from the sign, the right-hand side is the total stress accumulated

on fault ik since the beginning of the sequence. It consists of two terms: the first

term is the tectonic stress concentrated on the fault from the beginning of the

sequence up to time tk, whereas the second term is the sum of stress transfers

that the fault ik has received from the faults i1, i2, . . . ik−1 that slipped before it.

As for the final state of fault ik, it is given by Eq. (9.18). Replacing xik(t1−)

in Eq. (9.18) with its expression (9.25), we obtain

xik(tn+) = ẋ (tn − tk) +
n∑
j=k

∆xijik . (9.26)

Bearing in mind that the Coulomb stress of fault ik was equal to zero at t = tk−,

the final stress is equal to the tectonic stress accumulated in the time interval from

tk to the end of the sequence, plus the stress drop associated with the failure of fault

ik and the stress transfers from the faults ik+1, ik+2, . . . in that slipped after fault ik.

To sum up, the Coulomb stress of fault ik at the onset of the sequence depends

only on what happened before its failure, while the Coulomb stress at the end of

the sequence depends only on what happened after its failure. Notice that the

retrieval of the complete state vector of the system requires the knowledge of the

entire sequence. An example will be shown in §9.6 for two real cases.
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9.4 The order of events

It was already mentioned that the n components of the state vector x are always

different from each other. As a result, they can be ordered according to their

magnitudes: at any instant t in time, the set X of the xi(t) is a well-ordered set.

This order controls the order of the events in the seismic sequence, as shown in

the following.

Let Nn be the set of the first n natural numbers. According to the premise, a

permutation α of Nn can be associated with each state x of the system, expressing

the order of faults in relation to the value of their Coulomb stress:

α =

(
1 2 . . . n

i1 i2 . . . in

)
(9.27)

where

xi1 = max(X) (9.28)

xik = max(X − {xi1 , xi2 , . . . xik−1
}) (9.29)

with k = 2, 3, . . . n. Hence, the parallelepiped S enclosing all states of the system

can be divided into a number n! of subsets Sj, corresponding to the n! permu-

tations of Nn. During the interseismic intervals, the permutation αj associated

with the system does not change, because all the xi increase with the same rate,

according to Eq. (9.7). Therefore, the representative point x remains in the same

subset Sj. At the occurrence of a seismic event, x switches to a different subset

Sk, characterized by a permutation αk.

Let us assume that, before the sequence, the permutation associated with the

system is

α0 =

(
1 2 . . . n

i1 i2 . . . in

)
(9.30)

implying that the first event of the sequence will be generated by the i1-th fault.

This event changes the magnitudes of all Coulomb stresses, so that the new state

of the system is associated with a different permutation

α1 =

(
1 2 . . . n

j1 j2 . . . jn

)
(9.31)
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implying that the second event will be generated by the j1-th fault, and so on.

After the (n− 1)-th event, the permutation is

αn−1 =

(
1 2 . . . n

k1 k2 . . . kn

)
(9.32)

implying that the last event will be generated by the k1-th fault. To sum up, the

order of events in the sequence is expressed by the permutation

α∗ =

(
1 2 . . . n

i1 j1 . . . k1

)
. (9.33)

The quantities determining α∗ are the initial stress state of the fault system, the

stress drops and the stress transfers associated with each event. In terms of the

order of events, the number of possible sequences in a system made up of n faults

is equal to n!. Since every fault may slip only once in a sequence (assumption 4),

there are n! alternatives for the initial permutation α0, but only (n− 1)! for α1

and (n− k)! for the generic permutation αk.

9.4.1 Subsequent evolution

After the n-th event of the sequence (i.e., at the end of the sequence), the state of

the system is associated with the permutation

αn =

(
1 2 . . . n

i j . . . k

)
. (9.34)

Accordingly, the next sequence will start with the failure of the i-th fault after an

interseismic time interval

∆T = −xi(tn+)

ẋ
(9.35)

where Eq. (9.7) was employed. Generally speaking, the permutation αn does not

coincide with the permutation α0 characterizing the system at the onset of the

sequence. In fact, the stress distribution on the faults is rearranged, owing to the

combined effects of stress drops and stress transfers between the faults. In terms

of the differences dij, we have, thanks to Eq. (9.26),

dij(tn+)− dij(t1−) =
n∑
k=1

(∆xki −∆xkj). (9.36)

It is noteworthy that the right-hand side of this expression is different from zero:

as a matter of fact, the sum of stress transfers received by a fault during the
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sequence is in general different from that received by the other faults, depending

on the relative positions of the faults. In conclusion, the next sequence produced

by the system will be associated with a different order of events, described by a

new permutation α∗.

9.5 Discussion of the model

In this section, the particular conditions of the state of the system that are required

in order to observe a seismic sequence with the features listed in §9.1 are first

discussed. For the sake of providing a means to better understand the evolution

of a seismic sequence, I then focus on the particular case of coplanar faults and

discuss the special situation in which the process of stress redistribution within

the system is governed by the stress drops.

9.5.1 Constraints on the state of the system

A first constraint on the differences dij between the components of the state vector

x is determined by assumption 5. Let us assume that the slip of the i-th fault

entails a positive change in the Coulomb stress of the j-th fault, that is, ∆xij > 0.

If dij is smaller than ∆xij , the failure of the i-th fault would immediately produce

the failure of the j-th fault, in contrast with the hypothesis of a finite time interval

elapsing between any two seismic events of the sequence. Therefore, if ∆xij > 0,

dij must always be larger than ∆xij. Although this circumstance cannot be

validated a priori (since it depends on the specific orientation and location of

the j-th fault relative to the i-th fault), it represents an intrinsic property of the

system, which must be verified at any time.

An additional condition on dij is set by the observed durations of seismic

sequences. In fact, the dij must be small enough that a sequence is completed

within a few months, if the effect of stress transfer between faults is taken into

account. Therefore, in agreement with assumption 6, the stress change ẋ δt that

tectonic loading produces in a time δt� ∆T plus the sum of stress changes ∆xij

(i 6= j) may be assumed as an upper limit for dij, where ∆T is the interseismic

time interval between two sequences. Specifically, a greater value of δt (several

decades) can be assumed for lower stress rates ẋ, a smaller value (several years)

for higher stress rates.
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9.5.2 Stress drops vs. stress transfers: a special case

Let us consider a system of n coplanar faults lined up in the strike direction (§9.1.1)

generating a seismic sequence made up of n distinct events whose associated stress

drops ∆σi (i = 1, 2, . . . n) are approximately equal to each other. Also, let us

assume that the differences dij between the components of the state vector x are

such that, following the failure of the i-th fault, the relative magnitude of the

other n− 1 components of x does not change.

Let α0 and α∗ be the permutations describing the initial state of the system

and the order of events in the sequence, respectively (§9.4). Under the assumptions

introduced above, it is easy to see that the only effect of the k-th event of the

sequence is simply to shift the label ik to the last position in the permutation

αk, whereas the stress transfers ∆σikj do not change the relative positions of the

other labels. Accordingly, a permutation

η =

(
i1 i2 . . . in

i2 i3 . . . i1

)
(9.37)

can be associated with each event, so that the permutation αk characterizing the

state of the system after the k-th event is

αk = ηαk−1, k = 1, 2, . . . n. (9.38)

As a result, the order of events is given by the initial permutation, i.e., α∗ = α0.

The final permutation αn is also equal to α0; however, this circumstance does not

imply the repetition of the order α∗ in the following sequence. In fact, according

to Eq. (9.36), the new sequence will start with different values of dij, entailing a

different order of events.

The special case described here is based on the assumption that the rearrange-

ment in the permutations throughout a sequence can be entirely ascribed to the

stress drops ∆σi, with respect to which the role of stress transfers is negligible.

This case is useful as a terms for comparison with real sequences. As a matter

of fact, the order implied by α0 is generally changed during a sequence, since

the dij have the same order of magnitude as the stress transfers ∆σij (i 6= j), so

that the relative magnitude of the components of x is modified after each event.

In addition, if an event k has a stress drop that is considerably larger than the

others, the label ik will permanently occupy the last position in the permutation,
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thus altering the initial order. To sum up, the order of events is different from the

initial order of stresses, i.e. α∗ 6= α0. The final permutation αn is also different

from α0.

9.6 Applications

In this section, two applications of the present model are presented. For a better

understanding, I first focus on the simpler case of a system of coplanar, lined

up faults (see §9.1.1) and study the 2012 Emilia (Italy) seismic sequence. I

then move to the general case of non-coplanar faults and consider the 1997-1998

Umbria-Marche (Italy) sequence.

9.6.1 The 2012 Emilia sequence

I consider the 2012 Emilia (Italy) seismic sequence, which was made up of seven

events with magnitudes between 5 and 6 (Pezzo et al., 2013). They occurred in

the period between May 20th and June 3rd, 2012, and can be ascribed to a fault

system of n = 7 faults approximately lined up in the West-East direction, with

a total length of about 50 km. The faults are all of thrust type, with shallow

hypocentres between 5 and 10 km in depth. The geographic location of the

sequence is shown in Fig. (9.4).

0 10 20

km

Figure 9.4: Geographic location of the 2012 Emilia (Italy) seismic sequence. Stars

indicate the epicentres; numbers indicate the order of fault activation.
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In studying the features of the 2012 Emilia sequence, Convertito et al. (2013)

suggested that dynamic triggering caused by seismic waves might be the primary

factor to explain the evolution of the sequence, in addition to the variation in

permeability and pore-pressure effects due to a massive presence of fluids in the

Po Plain basin. As stated in §9.1, the role of dynamic triggering and pore fluid

diffusion is neglected in the present model. Although these phenomena may alter

the sequence of permutations describing the evolution of the sequence, as well as

the state of the system at the end of the sequence, they would not change the

general conclusions of this section.

All sources are treated as pure reverse dip-slip faults with a dip angle δ = 40◦,

an average of the values given by Convertito et al. (2013). The areas and the

locations of the faults are inferred by employing the distances between hypocentres

along the strike direction as constraints (Caporali and Ostini, 2012; Serpelloni et

al., 2012). The projection of the faults on a vertical plane is shown in Fig. (9.5).
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Figure 9.5: Geometry of the model for the 2012 Emilia (Italy) seismic sequence. The rect-

angles are the projections of faults on a vertical plane. Stars correspond to hypocenters;

each fault is labelled with the corresponding index i = 1, 2, ...7.

Accordingly, the matrix r of the distances between the centres of the faults is

given by

r (km) =



0 5 10 18 30 38 43

5 0 5 13 25 33 38

10 5 0 8 20 28 33

18 13 8 0 12 20 25

30 25 20 12 0 8 13

38 33 28 20 8 0 5

43 38 33 25 13 5 0


. (9.39)

I take µ = 30 GPa for the rigidity of the medium and ks = 0.6 as the effective

coefficient of static friction. With a strain rate ė = −3 × 10−15 s−1 (Caporali

and Ostini, 2012) and a Poisson modulus ν = 0.25, the rate of Coulomb stress
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calculated from Eq. (9.4) is

ẋ = κσ̇ ' 2 kPa a−1 (9.40)

where κ and σ̇ are given by Eq. (9.5) and Eq. (A.3), respectively. All other data

required by the application of the model are listed in Table (9.1). The origin times

and the seismic moments mi are taken from Pezzo et al. (2013) and Tramelli et al.

(2014), respectively. The areas Ai take into account the analysis of Caporali and

Ostini (2012) and Serpelloni et al. (2012), whereas the slips ui are constrained

according to the values of mi and Ai. From Eq. (9.11) with C = 1, the values of

stress drops ∆σi are in the range between 0.9 and 1.9 MPa, consistent with the

range evaluated by Castro et al. (2013) from seismic spectra.

Table 9.1: Data for the seismic events of the 2012 Emilia (Italy) sequence. See Fig. (9.5)

for fault numbers.

Event Fault

Origin time (UTC)

yyyy/mm/dd

hh:mm:ss

ti (d) mi (N m) Ai (km2) ui (m)

1 5 2012/05/20 02:03:52 0 8.9× 1017 60 0.49

2 6 2012/05/20 02:07:31 0.0025 5.6× 1016 16 0.12

3 7 2012/05/20 13:18:02 0.47 5.6× 1016 16 0.12

4 4 2012/05/29 07:00:03 9.2 6.3× 1017 60 0.35

5 3 2012/05/29 10:55:57 9.4 1.1× 1017 16 0.23

6 2 2012/05/29 11:00:25 9.4 7.9× 1016 16 0.16

7 1 2012/06/03 19:20:43 15 5.6× 1016 16 0.12

According to Table (9.1), the order of events is given by the permutation

α∗ =

(
1 2 3 4 5 6 7

5 6 7 4 3 2 1

)
. (9.41)

Therefore, the sequence started about in the middle of the system and propagated

eastward up to the end of it (5, 6, 7); afterwards, the sequence propagated from

the middle to the west end of the system (4, 3, 2, 1).

Combining the data provided in Table (9.1) with the distances rij listed above,

I calculate the stress change matrix ∆xij making use of Eq. (9.11) and Eq. (H.19)

for the diagonal and nondiagonal components, respectively. Afterwards, it is
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possible to retrieve the state of the system at any time during the sequence,

together with the associated permutations, following the procedure discussed in

§9.2. Specifically, at the beginning of the sequence we have

α0 =

(
1 2 3 4 5 6 7

5 4 7 1 2 3 6

)
(9.42)

whereas the state after the i-th event of the sequence is described by

α1 =

(
1 2 3 4 5 6 7

6 4 7 1 2 3 5

)
α2 =

(
1 2 3 4 5 6 7

7 4 1 2 3 6 5

)
(9.43)

α3 =

(
1 2 3 4 5 6 7

4 1 2 3 6 7 5

)
α4 =

(
1 2 3 4 5 6 7

3 1 2 6 7 4 5

)
(9.44)

α5 =

(
1 2 3 4 5 6 7

2 1 6 7 4 3 5

)
α6 =

(
1 2 3 4 5 6 7

1 6 7 2 4 3 5

)
(9.45)

α7 =

(
1 2 3 4 5 6 7

6 7 1 2 4 3 5

)
(9.46)

The initial state x(t1−) and the final state x(t7+) are shown in Fig. (9.6). Since

the origin of times was set at the onset of the first event, we have x5(t1−) = 0.

Some peculiar features stand out. First of all, the initial (α0) and final (α7)

permutations do not coincide; what is more, they are both different from the

permutation α∗ giving the order of events during the 2012 sequence. This is a

direct consequence of the heterogeneous distribution of seismic moment in the

fault system and of the dissimilar magnitude of the stress drops on the faults. In

particular, we notice that fault 5 permanently occupies the last position in all

permutations from α1 to α7, as a consequence of its larger stress drop. Further-

more, the permutations αi suggest that the stress transfers ∆σij play a major role

in determining the evolution of the sequence and that the rearrangement in the

permutations cannot be entirely ascribed to the stress drops ∆σi, as supposed in

§9.5.2. In fact, Eq. (9.38) does not hold for any value of k.

The duration of the sequence is

∆t = t7 − t1 ' 15 d. (9.47)
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Figure 9.6: Initial (a) and final (b) states calculated from the model for the 2012 Emilia

(Italy) seismic sequence. Histograms show the components of the state vector x at the

beginning and at the end of the sequence.

In the absence of fault interaction, it would have been

∆t′ = −x6 (t1−)

ẋ
' 46 a (9.48)

where Eq. (9.21) was employed. Hence, the process of stress transfer between the

faults of the system caused a severe shortening of the duration of the seismic
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sequence, with a ratio ∆t′/∆t ' 103.

I now compare the stress states on the fault system at the beginning and at

the end of the sequence. To this aim, the mean value (9.24) of the state vector x

and its standard deviation (9.23) at t = t1− and t = t7+ are considered. At the

beginning of the sequence, we have

x̄ ' −0.05 MPa, s ' 0.03 MPa (9.49)

whereas at the end of the sequence

x̄ ' −1.2 MPa, s ' 0.4 MPa. (9.50)

Accordingly, Coulomb stresses are more spread out at the end of the sequence than

before, since the standard deviation in Eq. (9.50) is one order of magnitude larger

than in Eq. (9.49). As an additional means to visualize the particular distribution

of stress on the fault system before and after the seismic sequence, I consider the

average values

d̄i =

n∑
j=1

|dij|

n− 1
, j 6= i. (9.51)

At the beginning of the sequence, we find

d̄i ' (20, 30, 30, 30, 60, 50, 30) kPa, (9.52)

whereas at the end of the sequence we have

d̄i ' (400, 400, 600, 400, 700, 400, 400) kPa. (9.53)

We conclude that, at the end of the sequence, the average difference between the

Coulomb stress on the i-th fault and the other (n− 1) faults is increased by about

one order of magnitude with respect to the average difference characterizing the

state at the beginning of the sequence. This result confirms that the distribution

of stress on the fault system is eventually made more heterogeneous by the seismic

events. This feature will play an essential role in the evolution of the system

during the next seismic sequence.

The permutation α7 in Eq. (9.46) shows that, according to the present model,

the next sequence will start with the failure of fault 6, i.e, at the eastern end of

the fault system. It will take place after an interseismic interval

∆T = −x6 (t7+)

ẋ
' 440 a (9.54)
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where Eq. (9.35) was employed. This figure appears to be representative of typical

recurrence times of moderate-size earthquakes along the Ferrara-Romagna arc:

the largest event in this area before the 2012 sequence was the Mw 5.5 November

17, 1570, Ferrara earthquake (Rovida et al., 2011).

9.6.2 The 1997 - 1998 Umbria-Marche sequence

I consider the 1997-1998 Umbria-Marche (Italy) seismic sequence, which was made

up of eight events with moment magnitudes between 5 and 6 (Morelli et al., 2000).

The geographic location of the sequence is shown in Fig. (9.7).

0 5 10

km

Figure 9.7: Geographic location of the 1997-1998 Umbria-Marche (Italy) seismic sequence.

Stars indicate the epicentres; numbers indicate the order of fault activation.

The sequence started on 26 September 1997 and lasted for more than six months,

ending on 3 April 1998. The earthquakes are ascribed to a fault system of n = 8

faults approximately lined up in the North West - South East direction, with

a total length of about 40 km. All sources are treated as pure normal dip-slip

faults with shallow hypocentres between 2 and 8 km in depth (Bindi et al., 2004).
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Averaging the figures given by Morelli et al. (2000) for the eight seismic events,

the dip angle of the fault system is δ = 40°. The geometry and the location of each

fault are chosen using the models proposed by Hunstad et al. (1999), Capuano

et al. (2000), Cocco et al. (2000) and Tallarico et al. (2005) as a starting point

(Fig. 9.8).
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Figure 9.8: Geometry of the model for the 1997-1998 Umbria-Marche (Italy) seismic

sequence. The rectangles are the projections of faults on the Earth surface. Stars

correspond to epicenters; each fault is labelled with the corresponding index i = 1, 2, ...8.

I take µ = 30 GPa for the rigidity of the medium and ks = 0.6 as the effective

coefficient of static friction. With a strain rate ė = 2× 10−15 s−1 (Riguzzi et al.,

2013) and a Poisson modulus ν = 0.25, the rate of Coulomb stress calculated from

Eq. (9.4) is

ẋ = κσ̇ ' 3 kPa a−1 (9.55)

where κ and σ̇ are given by Eq. (9.5) and Eq. (A.3), respectively. All other data

required by the application of the model are listed in Table (9.2). The origin times

and the seismic moments mi are taken from Bindi et al. (2004), whereas the slips

ui are constrained according to the values of mi and Ai.

From the knowledge of the UTM coordinates and depths of the hypocentres, I

constrain the location of the centres of the faults according to the geometry shown

in Fig. (9.8) and to the value of the dip angle of the fault system. The matrix r
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of the distances between the centres of the faults is then given by

r (km) =



0 14 17 23 25 29 37 36

14 0 4 10 12 15 23 23

17 4 0 6 9 12 20 20

23 10 6 0 6 6 14 14

25 12 9 6 0 6 12 12

29 15 12 6 6 0 8 8

37 23 20 14 12 8 0 1.8

36 23 20 14 12 8 1.8 0


. (9.56)

Table 9.2: Data for the seismic events of the 1997-1998 Umbria-Marche (Italy) sequence.

See Fig. (9.8) for fault numbers.

Event Fault

Origin time (UTC)

yyyy/mm/dd

hh:mm

ti (d) mi (N m) Ai (km2) ui (m)

1 5 1997/09/26 00:33 0 4.0× 1017 36 0.37

2 2 1997/09/26 09:40 0.38 1.2× 1018 120 0.33

3 3 1997/10/03 08:55 7.3 8.6× 1016 16 0.18

4 4 1997/10/06 23:24 11 1.7× 1017 25 0.23

5 8 1997/10/12 11:08 16 7.8× 1016 6.3 0.41

6 7 1997/10/14 15:23 19 3.4× 1017 33 0.34

7 6 1998/03/21 16:45 180 4.0× 1016 6.3 0.21

8 1 1998/04/03 07:26 190 5.7× 1016 6.3 0.30

According to Table (9.2), the order of events is expressed by the permutation

α∗ =

(
1 2 3 4 5 6 7 8

5 2 3 4 8 7 6 1

)
, (9.57)

indicating that the sequence started approximately in the middle of the fault

system (5, 2, 3, 4), migrated to its southeastern end (8, 7, 6) and finally involved

its northwestern end (1). Combining the data in Table (9.2) with the distances

rij reported in Eq. (9.56), the stress change matrix ∆xij is computed. For the

diagonal components, I make use of Eq. (9.11); for the nondiagonal components,

the model of Appendix H is employed, taking

φi = 135◦, ψi = 40◦, λi = −90◦ (9.58)
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with i = 1, 2, . . . 8. Following the procedure discussed in §9.2, it is possible to

retrieve the state of the system at any time during the sequence, together with

the associated permutations. Specifically, at the beginning of the sequence we find

α0 =

(
1 2 3 4 5 6 7 8

5 2 8 1 6 4 7 3

)
(9.59)

whereas the state after the i-th event of the sequence is described by

α1 =

(
1 2 3 4 5 6 7 8

2 8 1 4 6 7 5 3

)
α2 =

(
1 2 3 4 5 6 7 8

3 1 8 4 6 2 7 5

)
(9.60)

α3 =

(
1 2 3 4 5 6 7 8

4 1 8 6 2 7 3 5

)
α4 =

(
1 2 3 4 5 6 7 8

8 1 6 2 7 3 4 5

)
(9.61)

α5 =

(
1 2 3 4 5 6 7 8

7 1 6 2 3 4 5 8

)
α6 =

(
1 2 3 4 5 6 7 8

6 1 8 2 3 4 5 7

)
(9.62)

α7 =

(
1 2 3 4 5 6 7 8

1 8 2 3 4 5 7 6

)
α8 =

(
1 2 3 4 5 6 7 8

8 2 3 4 5 7 6 1

)
(9.63)

Figure (9.9) shows the states at the beginning (t = t1−) and at the end (t = t8+)

of the sequence. Since the origin of times was set at the onset of the first event, we

have x5(t1−) = 0. In the first place, we notice that the initial (α0) and final (α8)

permutations do not coincide and they are both different from the permutation

α∗ giving the order of events during the 1997-1998 sequence. As a result, the

next sequence generated by the system will be associated with a different order

of events. Furthermore, the permutations αi suggest that the stress transfers

within the system are such that the failure of certain faults is delayed by some of

the seismic events, as a consequence of the relative positions of the faults. For

example, a comparison between α0 and α1 clearly points out that the slip of fault

5 promoted the failure of fault 4, while it delayed the failure of fault 6.

The duration of the sequence is

∆t = t8 − t1 ' 190 d. (9.64)

In the absence of fault interaction, it would have been

∆t′ = −x3 (t1−)

ẋ
' 790 a (9.65)
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Figure 9.9: Initial (a) and final (b) states calculated from the model for the 1997-1998

Umbria-Marche (Italy) seismic sequence. Histograms show the components of the state

vector x at the beginning and at the end of the sequence.

where Eq. (9.21) was employed. Accordingly, the process of stress transfer between

the faults of the system yielded a dramatic shortening of the duration of the

seismic sequence, with a ratio ∆t′/∆t ' 103. Interestingly, we notice that ∆t′/∆t

is of the same order of magnitude as the ratio calculated for the 2012 Emilia

sequence (§9.6.1), suggesting this might be a general feature of seismic sequences.
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In order to compare the stress states on the fault system at the beginning and

at the end of the sequence, let us consider the mean value (9.24) of the state vector

x and its standard deviation (9.23) at t = t1− and t = t8+. At the beginning of

the sequence, we have

x̄ ' −0.49 MPa, s ' 0.79 MPa (9.66)

whereas at the end of the sequence

x̄ ' −1.7 MPa, s ' 0.96 MPa. (9.67)

These figures point out that Coulomb stresses are slightly more spread out at the

end of the sequence than before, since the standard deviation in Eq. (9.67) is larger

than in Eq. (9.66). An additional way to further understand and visualize the

particular distribution of stress on the fault system before and after the seismic

sequence is given by considering the average values

d̄i =

n∑
j=1

|dij|

n− 1
, j 6= i. (9.68)

At the beginning of the sequence, we find

d̄i ' (0.54, 0.55, 2.1, 0.61, 0.56, 0.54, 1.0, 0.54) MPa, (9.69)

whereas at the end of the sequence we have

d̄i ' (2.2, 1.2, 0.86, 0.84, 0.84, 1.3, 0.86, 1.5) MPa. (9.70)

In agreement with the features suggested by Eq. (9.66) and Eq. (9.67), we conclude

that, at the end of the sequence, the average difference between the Coulomb stress

on the i-th fault and the other (n− 1) faults is of the same order of magnitude of

the average difference characterizing the state at the beginning of the sequence.

However, the variations in the differences dij entail a different order of events

during the next sequence, as well as different durations of the time intervals

between two subsequent events.

Finally, the permutation α8 in Eq. (9.63) suggests that, according to the

present model, the next sequence will start with the failure of fault 8, i.e, at the

southeastern end of the fault system. According to Eq. (9.35), it will take place

after an interseismic interval

∆T = −x8 (t8+)

ẋ
' 100 a. (9.71)
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Conclusions

A model describing different aspects of fault dynamics in the framework of discrete

dynamical systems was presented.

A plane fault (or a fault system) lying in an elastic shear zone and enclosed

by two tectonic plates moving at constant relative velocity was considered. As

a consequence of tectonic motion, the fault is subject to a uniform and con-

stant strain rate. It was assumed that the fault contains one or more asperities

and possibly one or more weak regions. The fault was treated as a discrete

dynamical system whose state is described by the state of the asperities and

weak regions (or the fault segments in the fault system). The state variables

are the slip deficits or the Coulomb stresses associated with the regions on the fault.

In correspondence with specific properties associated with the asperities, the

weak regions or the fault segments and with the form of their interactions, five

different cases were discussed. For the first four of them, the dynamics was

described in terms of a number of dynamic modes, each one associated with a

specific system of autonomous ordinary differential equations.

The characterization of the system as made of a finite number of asperities,

weak regions or fault segments allowed a description by means of a finite number

of degrees of freedom. Thus, a deeper understanding of the processes controlling

the dynamics of seismic sources and the retrieval of the analytical solutions of

the evolution equations were possible. In turn, the orbit of the system in the

state-space was calculated: via this geometrical approach, it was possible to follow

the different phases of the evolution of the system, highlight their distinctive

features and predict the long-term evolution of the system.

In Chapter 4, a fault with a single asperity was considered. It was assumed
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that the asperity is responsible for the majority of seismic moment release during

an earthquake. From the solutions of the equations of motion, it was possible

to distinguish between a loading phase and a slipping phase, associated with a

seismic event on the fault. The system is characterized by the existence of a limit

cycle, with earthquakes associated with a fixed recurrence time and slip amplitude.

The model is capable to reproduce the typical features of the source function of

an earthquake and predicts a seismic spectrum with the classical high-frequency

behaviour described by Brune (1970). As an application of the model, the great

2004 Sumatra-Andaman earthquake was considered, describing the event as the

result of the failure of one large asperity. The modelled source function and seismic

spectrum were found to be in good agreement with the observations.

Chapter 5 was devoted to the analysis of a fault containing two mechanically

different regions, namely an asperity and a stable, velocity-strengthening region.

The generation of earthquakes on the fault is ascribed to the slip of the sole

asperity. The dynamics of the system was studied in terms of three dynamic

modes, corresponding to the evolution during interseismic intervals, seismic slip of

the asperity and afterslip in the stable region. In agreement with observations, the

amount of afterslip resulted to be proportional to the seismic slip of the asperity. In

the absence of stress perturbations due to earthquakes on surrounding faults, the

system exhibits a cycle made of a sequence of the three dynamic modes, with fixed

amplitudes of seismic slip and afterslip and given recurrence time of earthquakes.

An interesting feature of the model was found in its potentiality to discriminate

between different sources of post-seismic deformation: in fact, the model predicts

that afterslip reaches a maximum amplitude in a finite time interval, in contrast

with descriptions based on indefinitely increasing time functions. The model was

applied to the fault that generated the 2011 Tohoku-Oki earthquake, which was

ascribed to the slip of a large asperity and was followed by a prolonged afterslip

episode. The dominant part of the source function was reproduced and the surface

displacement due to afterslip was described as a function of time: according to

the model, post-seismic deformation was governed by afterslip in the first four

months after the event, while the subsequent deformation was probably due to

viscoelastic relaxation.

In Chapter 6, a fault with two asperities of different areas and strengths was

considered, assuming purely elastic coupling between the asperities. The dynamics
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of the system was characterized in terms of four dynamic modes: a sticking mode,

associated with stationary asperities, and three slipping modes, corresponding to

the slip of one or both asperities at a time. The kind of seismic event generated

by the fault can be discriminated from the knowledge of the state of the system

at the beginning of the interseismic interval preceding the event. Specifically, the

different seismic events predicted by the model correspond with specific values of

a variable related with the difference between the slip deficits of the asperities at

the beginning of the interseismic interval. The difference between the asperity size

affects several features of the system, such as the force rates on the asperities, the

slip duration and amplitude, the corner frequency of the seismic spectrum, the set

of states corresponding to stationary asperities, the probability of events involving

the simultaneous slip of the asperities and the radiation of seismic energy. As an

application of the model, the 2007 Pisco, Peru, earthquake was considered. This

event was ascribed to the consecutive, but separate, failures of two asperities with

significantly different sizes. The earthquake was modelled as a two-mode event

starting with the slip of the weaker asperity, followed by the slip of the stronger

one after a finite time interval. The model allowed to characterize the state of the

fault at the onset of the event and to adequately replicate the observed source

function and seismic moment release.

In Chapter 7, a fault with two asperities of equal areas and different frictional

resistance was considered. It was assumed that the coseismic stress field due to

earthquakes produced by the fault undergoes viscoelastic relaxation. In addition

to the slip deficits of the asperities, the state of the fault was described in terms

of a third variable: the variation of the difference between the slip deficits of the

asperities resulting from viscoelasticity. The occurrence of earthquakes on the

fault can be anticipated or delayed, with respect to the case of purely elastic

coupling between the asperities, owing to viscoelastic relaxation, the specific effect

depending on the state of the system at the beginning of an interseismic interval.

The system is characterized by one sticking mode, corresponding to stationary

asperities, and three slipping modes, associated with the failure of one of both

asperities at a time. It was showed how the state of the system at the beginning

of an interseismic interval constrains the state at the onset of the subsequent

seismic event, and vice-versa. In turn, these details were related to the number

and sequence of slipping modes involved in the earthquake, which determine the

amount of seismic moment released, the shape of the source function and the
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stress drops on the asperities. A notable result of this study is that the knowledge

of the source functions of a sufficiently large number of consecutive earthquakes

allows to constrain the orbit more and more precisely and, in turn, to predict

its evolution with smaller uncertainty. The model was applied to the fault that

generated the 1964 Alaska earthquake. The event was due to the failure of two

asperities and was followed by remarkable post-seismic deformation mainly due

to viscoelastic relaxation in the lithosphere. The earthquake was modelled as

a two-mode event associated with the separate slips of the asperities and the

subsets of the state space in which the system laid before and after the event were

determined; these subsets where further constrained on the basis of the duration

of the interseismic interval to date.

The fault model discussed in Chapter 7 was considered again in Chapter 8 in

order to study the effect of earthquakes on neighbouring faults. The stress transfer

was described in terms of a perturbation vector yielding changes to the state of

the system: the specific effect on the future evolution of the fault is related with

the orientation of this vector in the state space. The perturbation also causes

a variation in the frictional resistances of the asperities: in turn, the amount of

slip allowed to the asperities and the energy released during a subsequent seismic

event are altered. Due to changes in the parameters of the system, the subsets

the state space can be divided into, associated with the different seismic events

that the fault can generate, are modified as well: accordingly, the probability

of occurrence of the various events is altered. Following a stress perturbation,

the anticipation/delay of the failure of one asperity is connected with the change

in the associated Coulomb stress. In particular, the variation in the difference

between the Coulomb stresses of the two asperities influences the possibility of

their simultaneous slips during the next seismic event. However, the presence of

viscoelastic relaxation prevents any prediction about the change in the interseismic

time of the fault, which is conditioned by the particular state of the fault at the

time of the stress perturbation and immediately after it. As an application, the

stress perturbation imposed by the 1999 Hector Mine, California, earthquake to

the 1992 Landers, California, fault was considered. Like the 1964 Alaska earth-

quake, the 1992 Landers earthquake was generated by the slip of two asperities

and a significant post-seismic deformation was observed in the aftermath, mainly

associated with viscoelastic relaxation in the lithosphere. In order to model the

event, the same analysis as for the 1964 Alaska earthquake was carried out. As
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for the stress transfer due to the 1999 Hector Mine earthquake, the complexity of

its influence on the possible future events generated by the 1992 Landers fault

was discussed in terms of the associated energy release, the sequence of dynamic

modes involved and the duration of the interseismic interval.

Finally, Chapter 9 was devoted to the study of the seismic sequences generated

by a system of faults with the same strike and dip angles and the same faulting

mechanism. The fault system was characterized as a dynamical system whose

state variables are the Coulomb stresses associated with the faults. In order to

determine the conditions required for the occurrence of seismic sequences and the

processes controlling the order of events in a sequence, each state of the system

was associated with a permutation expressing the order of the faults in terms

of the magnitudes of their Coulomb stresses. The permutation does not change

as long as the system is at rest; each time a fault produces an earthquake, the

stress drop on the activated fault and the stress transfers to the surrounding faults

cause a change in the order of Coulomb stresses, so that the state of the system

is described by a different permutation. Ultimately, the order of activation in a

seismic sequence can be associated with a particular permutation of the faults:

it is determined by the initial stress state of the fault system, the stress drops

and the stress transfers associated with each event. It is noteworthy that the

characteristics of consecutive sequences originated by the system are bound to

change: in fact, the order of activation suggested by the initial stress distribution

is generally changed during the sequence, owing to the different order of magnitude

of the stress drops and stress transfers. As a result, the state of the system at the

end of a sequence does not coincide with the initial one. In addition, the durations

of the interseismic intervals between consecutive sequences and between events in a

sequence are different. As an application of the model, two seismic sequences were

considered: the 1997-1998 Umbria-Marche, Italy, sequence and the 2012 Emilia,

Italy, sequence. The former was ascribed to a system of non-coplanar faults,

whereas a system of coplanar, lined up faults was assumed for the latter. In both

cases, the knowledge of the order of activation during the seismic sequence allowed

the retrieval of the state of the system at any time during the sequence. The

model predicts that, in the absence of external perturbations, the next sequence

on both fault systems will occur after an interseismic interval of a few centuries

and will be completely different from the previous one.
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Of course, all discussed models present a simplified description of real fault

dynamics. In the author’s opinion, they nonetheless provide a useful tool for the

characterization of the seismic source, enlarging the understanding of the most

significant aspects of the seismic activity in an analytical framework. As a matter

of fact, if we aim to a neat understanding of the physics of a process, unnecessary

complications must be set apart: focusing on the essential dynamics, discrete fault

models offer a deep insight into the basic mechanisms of seismic sources.

Several further developments may be object of future work, such as a model of

a fault containing three or more asperities, a model describing stress perturbations

due to post-seismic deformation processes, the introduction of dynamic stress

triggering, and more.
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Appendix A

Stress rates in different tectonic

settings

A plane fault located in a homogeneous and isotropic elastic shear zone with the

features of a Hooke solid with Lamé constants λ and µ is considered. As a conse-

quence of tectonic motion, the fault is subject to a uniform and constant strain

rate ė. A coordinate system (x, y, z) is introduced, with x, y and z defined as the

strike direction of the fault, the horizontal direction perpendicular to strike and

depth, respectively. Let δ be the dip angle of the fault. I retrieve the expressions

of the normal stress rate σ̇n and the tangential stress rate (in the slip direction) σ̇t

acting on the fault, distinguishing between dip-slip faulting and strike-slip faulting.

In the case of normal and reverse faulting, plane strain is assumed, according

to the Anderson model (Anderson, 1951; Sibson, 1974; Turcotte and Schubert,

2002). The nonvanishing strain components are

eyy = ėt, ezz = − λ

λ+ 2µ
eyy (A.1)

where ė is positive for tensile strain and negative for compressive strain. The

associated stress components are

σxx = νσyy, σyy =
2µ

1− ν eyy (A.2)

where ν is the Poisson modulus. Introducing the stress rate

σ̇ =
2µ

1− ν ė, (A.3)

the rates of normal and tangential traction on the fault are given by

σ̇n = − σ̇
2

(1− cos 2δ), σ̇t = ± σ̇
2

sin 2δ (A.4)
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where the upper and lower sign in σt corresponds to normal and reverse faulting,

respectively.

In the case of transcurrent faulting, simple shear is considered, with strain and

stress components

exy = ėt, σxy = 2µexy. (A.5)

In this case, the stress rate is

σ̇ = 2µė (A.6)

and the rates of normal and tangential traction on the fault are given by

σ̇n = 0, σ̇t = σ̇. (A.7)

For both source mechanisms, a particular expression of σ̇t can be written in the

framework of the elastic rebound model of a fault, first proposed by Reid (1911).

It is assumed that the fault is embedded is a shear zone of width d enclosed by

two tectonic plates moving at constant relative velocity v (Fig. A.1). The tectonic

velocity is parallel to the slip direction on the fault.

−v
2

+v
2

d

Figure A.1: The elastic rebound model of a fault. A plane fault (dashed line) is

embedded in a shear zone of width d (gray patch) enclosed by two tectonic plates

moving at constant relative velocity v.

According to the boundary conditions, the fault is subject to a tangential

strain rate

ė =
v

2d
(A.8)

corresponding to a tangential stress rate

σ̇t =
µv

d
. (A.9)
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Appendix B

Traction due to different

dislocation sources

A dislocation source in a homogeneous and isotropic Poisson medium of rigidity

µ is considered. The dislocation is characterized in four different ways, namely

as (i) a point-like source in an unbounded medium, (ii) a point-like source in a

half-space, (iii) a finite square source in an unbounded medium and (iv) a finite

square source in a half-space. In each case, the tangential traction σt produced

on the fault plane in the slip direction is calculated, as a function of the distance

from the source along the strike direction.

A coordinate system (x, y, z) is introduced, with x, y and z defined as the strike

direction, the horizontal direction perpendicular to strike and depth, respectively.

Let ni be the unit vector perpendicular to the fault and mi the unit vector in

the slip direction. Also, let m0 be the scalar seismic moment of the dislocation,

while δ and λ are the dip and rake angles of the fault, respectively. Given the

static stress field σij produced by the dislocation, the tangential traction in the

direction of slip σt is given by

σt = σijminj. (B.1)

B.1 Point-like source in an unbounded medium

Let us consider a point-like dislocation source (a double-couple of forces) in an

unbounded elastic medium, located at the origin of the coordinate system. The
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fault lies on the plane y = 0, so that

ni = (0, 1, 0). (B.2)

As for the slip direction, it is given by

mi = (cosλ, 0,− sinλ) . (B.3)

The static displacement field generated by the dislocation is (Love, 1944)

ui = −MjkGij,k (B.4)

where Mij is the moment tensor associated with the dislocation source

Mij = m0 (minj +mjni) (B.5)

and Gij is the Somigliana tensor

Gij =
1

8πµ

(
2

r
δij −

2

3
r,ij

)
(B.6)

with

r =
√
x2 + y2 + z2. (B.7)

The stress field due to the dislocation is

σij = µ(ekkδij + 2eij), (B.8)

where eij is the strain field associated with the displacement field (B.4). In the

case of strike-slip faulting (λ = 0) and setting y = z = 0, we get

σt =
5m0

12π|x|3 . (B.9)

In the case of dip-slip faulting (λ = π/2) and setting again y = z = 0, we get

σt =
m0

6π|x|3 . (B.10)

B.2 Point-like source in a half-space

Let us consider a point-like dislocation source (a double-couple of forces) in a half

space, located at (0, 0, c). The unit vector perpendicular to the fault is

ni = (0,− sin δ,− cos δ) , (B.11)
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while the slip direction is given by

mi = (cosλ, sinλ cos δ,− sinλ sin δ) . (B.12)

The cases of strike-slip and dip-slip faulting correspond to λ = 0 and λ = π/2,

respectively. The displacement, strain and stress field due to the dislocation can be

calculated from the formulae provided by Okada (1992). The tangential traction

σt(x) is then obtained by setting y = 0 and z = c. Due to its complexity, I do not

report its analytical expression and only show its trend later on.

B.3 Finite square source in an unbounded medium

Let us consider a finite square dislocation source of side L in an unbounded

medium, centred at the origin of the coordinate system. The fault lies on the

plane y = 0, so that

ni = (0, 1, 0). (B.13)

As for the slip direction, it is given by

mi = (cosλ, 0,− sinλ) . (B.14)

The cases of strike-slip and dip-slip faulting correspond to λ = 0 and λ = π/2,

respectively. The displacement, strain and stress field due to the dislocation can be

calculated from the formulae provided by Rybicki (1970). The tangential traction

σt(x) is then obtained by setting y = 0 and z = 0. Its analytical expression is too

complicated to be reported here: thus, I only show its trend later on.

B.4 Finite square source in a half-space

Let us consider a finite square dislocation source of side L in a half-space. The

unit vector perpendicular to the fault is

ni = (0,− sin δ,− cos δ) , (B.15)

while the slip direction is given by

mi = (cosλ, sinλ cos δ,− sinλ sin δ) . (B.16)

The cases of strike-slip and dip-slip faulting correspond to λ = 0 and λ = π/2,

respectively. In order to exploit the formulae for the displacement, strain and
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stress field due to the dislocation provided by Okada (1992), the lower edge of the

fault is placed on the plane y = 0 at depth c ≥ L (Fig. B.1). Also, the centre of

the fault is placed at (0, 0.5L cos δ, c− 0.5L sin δ). The tangential traction σt(x)

is then obtained by setting y = 0.5L cos δ and z = c − 0.5L sin δ. Due to its

complexity, I do not report its analytical expression and only show its trend in

the following.

c

δL

x

y

z

Figure B.1: Square dislocation source in an elastic half-space.

B.5 Comparison

In order to compare the results corresponding to the four cases presented above, it

is assumed c = L and δ = π/4 in §B.2 and §B.4. Also, all distances are expressed

in units of L: accordingly, the average slip of the fault is assumed to be of the

order of 10−4, taking into account that a fault typically extends in width and

length for tens of kilometres, whereas maximum fault slips are in the order of

meters or less.

The tangential traction produced on the fault plane in the slip direction σt(x)

is shown in Fig. (B.2) and Fig. (B.3) in the case of strike-slip and dip-slip faulting,

respectively. In both cases, a singularity appears in correspondence with the

border of the finite source (x = 0.5L) or, in the case of a point-like source, in

correspondence with the source location (x = 0). Looking at the trends associated
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with the different dislocation sources, the graphs clearly point out that the value

of σt becomes essentially the same at distances x ≥ 1.5L. Furthermore, the elastic

medium in which the fault is embedded can be indifferently treated as an infinite

space or a half-space if the depth c of the dislocation source is at least comparable

with the side of the fault.
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(a) Unbounded medium.
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(b) Half-space.

Figure B.2: Tangential traction produced by a strike-slip dislocation in the slip direction

on the fault plane, in the case of a point-like source (solid line) and a finite square

source (dashed line).
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Figure B.3: Tangential traction produced by a dip-slip dislocation in the slip direction

on the fault plane, in the case of a point-like source (solid line) and a finite square

source (dashed line).
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Appendix C

Constants in mode 11 - Chapter 6

The fault can enter mode 11 from mode 10, 01 or 00. I list the constants A, B, C

and D appearing in the solution for mode 11, discriminating between these three

initial conditions.

C.1 Case 10→ 11

The initial conditions are

X(0) = X̄, Y (0) = Ȳ , Ẋ(0) = V̄ , Ẏ (0) = 0 (C.1)

with X̄ and Ȳ satisfying the equation of line 2. The constants are

A =
1

ω0

(
γ

2
B +

1

1 + ξ
V̄

)
(C.2)

B =
1

1 + ξ

[
X̄ + ξȲ − ε (1 + βξ)

]
(C.3)

C =
1

ω3

(
γ

2
D − ξ

1 + ξ
V̄

)
(C.4)

D =
ξ

1 + ξ

[
X̄ − Ȳ − ε (XP − YP )

]
(C.5)

C.2 Case 01→ 11

The initial conditions are

X(0) = X̄, Y (0) = Ȳ , Ẋ(0) = 0, Ẏ (0) = V̄ (C.6)
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with X̄ and Ȳ satisfying the equation of line 1. The constants are

A =
1

ω0

(
γ

2
B +

ξ

1 + ξ
V̄

)
(C.7)

B =
1

1 + ξ

[
X̄ + ξȲ − ε (1 + βξ)

]
(C.8)

C =
1

ω3

(
γ

2
D − ξ

1 + ξ
V̄

)
(C.9)

D =
ξ

1 + ξ

[
X̄ − Ȳ − ε (XP − YP )

]
(C.10)

C.3 Case 00→ 11

The initial conditions are

X(0) = XP , Y (0) = YP , Ẋ(0) = 0, Ẏ (0) = 0. (C.11)

The constants are

A =
γ

2ω0

B (C.12)

B =
1

1 + ξ
(1− ε) (1 + βξ) (C.13)

C =
γ

2ω3

D (C.14)

D =
ξ

1 + ξ
(1− ε) (XP − YP ) (C.15)
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Appendix D

Events resulting from p = p1 and

p = p2 - Chapter 6

Here, the values p1 and p2 of the variable p defined in Eq. (6.34) are calculated

and the kind of seismic event resulting from these stress distributions is discussed.

In view of the following discussion, I recall that the maximum slip of asperity

1 during mode 10 is κ1U , corresponding to the slip duration T1b, whereas the

maximum slip of asperity 2 during mode 01 is βκ2U
′, corresponding to the slip

duration T2b.

Let us calculate the value of p1. The coordinates of point P1, where mode 10

starts, are

X1 = 1 + αp, Y1 = 1 + (1 + α)p. (D.1)

The coordinates of point P2, where mode 10 ends, are

X2 = X1 − κ1U, Y2 = Y1. (D.2)

Since it must belong to line 2, we obtain

p1 =
(β − 1)ξ − ακ1U

α + ξ + αξ
. (D.3)

Let us calculate the value of p2. The coordinates of point P1, where mode 01

starts, are

X1 = β − (1 + α′)p, Y1 = β − α′p. (D.4)

The coordinates of point P2, where mode 01 ends, are

X2 = X1, Y2 = Y1 − βκ2U
′. (D.5)
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Since it must belong to line 1, we obtain

p2 =
(β − 1)ξ + αβξκ2U

′

α + ξ + αξ
. (D.6)

The kind of seismic event resulting from p = p1 and p = p2 is related to the degree

of symmetry of the system, as discussed in the following.

Case p = p1

If p = p1, asperity 1 triggers the motion of asperity 2 after completing mode 10.

The earthquake then continues with mode 01, starting at point P2 with coordinates

given in Eq. (D.2). If the orbit of mode 01 does not meet line 1 before time T2b

has elapsed, the slip of asperity 2 terminates at point P3 with coordinates

X3 = X2, Y3 = Y2 − βκ2U
′. (D.7)

If P3 belongs to line 1, mode 01 is followed by a second phase of mode 10. This

situation corresponds to a specific value of β, namely

β = β1 =
(α + ξ)κ1

αξκ2

. (D.8)

In the particular case in which β > β1, the orbit of mode 01 reaches line 1 before

time T2b has elapsed and the system enters mode 11. The different cases are

summarized in Table (D.1).

Table D.1: Seismic events resulting from p = p1 defined in Eq. (D.3), as functions of β.

The particular value β = β1 is defined in Eq. (D.8).

β < β1 β = β1 β > β1

Seismic event 10-01 10-01-10 10-01-11-

Finally, I investigate whether the system can generate four-mode events 10-01-10-

01. At the end of a three-mode event 10-01-10, the system is at point P4 with

coordinates

X4 = X3 − κ1U, Y4 = Y3, (D.9)

where it was assumed that the orbit of mode 10 starting at P3 did not meet line 2

before asperity 1 had stopped. The event will then continue with another phase of

mode 01 if P4 belongs to line 2. Introducing the coordinates of P4 in the equation

of line 2 and taking into account that β = β1, we end up with the condition

α = − ξ

1 + ξ
(D.10)
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which is unacceptable, since α is defined as positive. In conclusion, if seismic

events involving the alternate slips of the asperities and starting with the slip

of asperity 1 are considered, the system can only generate a two-mode event

10-01 and, under particular conditions related with the symmetry of the system,

a three-mode event 10-01-10.

Case p = p2

If p = p2, asperity 2 triggers the motion of asperity 1 after completing mode 01.

The earthquake then continues with mode 10, starting at point P2 with coordinates

given in Eq. (D.5). If the orbit of mode 10 does not meet line 2 before time T1b

has elapsed, the slip of asperity 1 terminates at point P3 with coordinates

X3 = X2 − κ1U, Y3 = Y2. (D.11)

If P3 belongs to line 2, mode 10 is followed by a second phase of mode 01. This

situation corresponds to a specific value of β, namely

β = β2 =
ακ1

ξ(1 + α)κ2

. (D.12)

In the particular case in which β < β2, the orbit of mode 10 reaches line 2 before

time T1b has elapsed and the system enters mode 11. The different cases are

summarized in Table (D.2).

Table D.2: Seismic events resulting from p = p2 defined in Eq. (D.6), as functions of β.

The particular value β = β2 is defined in Eq. (D.12).

β < β2 β = β2 β > β2

Seismic event 01-10-11- 01-10-01 01-10

Finally, I investigate whether the system can generate four-mode events 01-10-01-

10. At the end of a three-mode event 01-10-01, the system is at point P4 with

coordinates

X4 = X3, Y4 = Y3 − βκ2U
′, (D.13)

where it was assumed that the orbit of mode 01 starting at P3 did not meet line 1

before asperity 2 had stopped. The event will then continue with another phase of

mode 10 if P4 belongs to line 1. Introducing the coordinates of P4 in the equation

of line 1 and taking into account that β = β2, we end up with the same condition

197



given by Eq. (D.10). In conclusion, if seismic events involving the alternate slips

of the asperities and starting with the slip of asperity 2 are considered, the system

can only generate a two-mode event 01-10 and, under particular conditions related

with the symmetry of the system, a three-mode event 01-10-01.

For the sake of simplicity, the condition

β2 < β < β1 (D.14)

is assumed throughout Chapter 6. Accordingly, the stress distributions associ-

ated with p = p1 and p = p2 correspond to two-mode events 10-01 and 01-10,

respectively.
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Appendix E

Constants in mode 11 - Chapter 7

The fault can enter mode 11 from mode 10, 01 or 00. I list the constants A, B, C,

D, E1, E2 and E3 appearing in the solution for mode 11, discriminating between

these three initial conditions.

E.1 Case 10→ 11

The initial conditions are

X(0) = X̄, Y (0) = Ȳ , Z(0) = Z̄ (E.1)

Ẋ(0) = V̄ , Ẏ (0) = 0, Ż(0) = −V̄ (E.2)

with Ȳ and Z̄ satisfying the equation (7.19) of plane Π2. The constants are

A =
1

2ω0

(
V̄ + γB

)
(E.3)

B =
1

2

[
X̄ + Ȳ − ε (XP + YP )

]
(E.4)

C =
1

2ω2

(
V̄ + γD

)
(E.5)

D =
1

2

(
εZP +

X̄ − Ȳ − 2αZ̄

1 + 2α

)
(E.6)

E1 = εXP +
α

1 + 2α

(
X̄ − Ȳ + Z̄

)
(E.7)

E2 = εYP −
α

1 + 2α

(
X̄ − Ȳ + Z̄

)
(E.8)

E3 = εZP +
1

1 + 2α

(
X̄ − Ȳ + Z̄

)
(E.9)
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E.2 Case 01→ 11

The initial conditions are

X(0) = X̄, Y (0) = Ȳ , Z(0) = Z̄ (E.10)

Ẋ(0) = 0, Ẏ (0) = V̄ , Ż(0) = V̄ (E.11)

with X̄ and Z̄ satisfying the equation (7.18) of plane Π1. The constants are

A =
1

2ω0

(
V̄ + γB

)
(E.12)

B =
1

2

[
X̄ + Ȳ − ε (XP + YP )

]
(E.13)

C =
1

2ω2

(
−V̄ + γD

)
(E.14)

D =
1

2

(
εZP +

X̄ − Ȳ − 2αZ̄

1 + 2α

)
(E.15)

E1 = εXP +
α

1 + 2α

(
X̄ − Ȳ + Z̄

)
(E.16)

E2 = εYP −
α

1 + 2α

(
X̄ − Ȳ + Z̄

)
(E.17)

E3 = εZP +
1

1 + 2α

(
X̄ − Ȳ + Z̄

)
(E.18)

E.3 Case 00→ 11

The initial conditions are

X(0) = X̄, Y (0) = Ȳ , Z(0) = Z̄ (E.19)

Ẋ(0) = 0, Ẏ (0) = 0, Ż(0) = 0 (E.20)

with X̄, Ȳ and Z̄ satisfying both equations (7.18) and (7.19) of planes Π1 and Π2.

The constants are

A =
γ

2ω0

B (E.21)

B =
1− ε

2
(XP + YP ) (E.22)

C =
γ

2ω2

D (E.23)

D =
ε− 1

2
ZP (E.24)
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E1 = εXP +
α

1 + 2α

(
X̄ − Ȳ + Z̄

)
(E.25)

E2 = εYP −
α

1 + 2α

(
X̄ − Ȳ + Z̄

)
(E.26)

E3 = εZP +
1

1 + 2α

(
X̄ − Ȳ + Z̄

)
(E.27)

201



Appendix F

Details of the faces AECD and

BCDF - Chapter 7

I provide here a description of the subsets of the faces AECD and BCDF of the

sticking region H as they appear in Fig. (7.3).

Let us first focus on the face AECD and consider a seismic event starting at

a point P1 = (X1, Y1, Z1) on this face. Accordingly, the coordinates of P1 verify

the equation (7.18) of plane Π1

X1 = 1 + αZ1 (F.1)

and the event starts with mode 10. If the orbit of mode 10 does not intercept

plane Π2 before time T1b has elapsed, the slip of asperity 1 terminates at a point

P2 with coordinates

X2 = X1 − κ1U, Y2 = Y1, Z2 = Z1 + κ1U. (F.2)

Combining the no overshooting condition X2 ≥ 0 with Eq. (F.1), we end up with

the constraint

Z1 ≥
κ1U − 1

α
. (F.3)

Accordingly, we can define the points

J1 =

(
κ1U, β − κ1U + 1,

κ1U − 1

α

)
(F.4)

K1 =

(
κ1U, 1− κ1U,

κ1U − 1

α

)
(F.5)

corresponding to the intersection of the face AECD of H with the plane

Z =
κ1U − 1

α
. (F.6)
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In order to obtain a two-mode event 10-01, one must have P2 ∈ Π2: hence, using

Eq. (7.19),

Y2 = β − αZ2. (F.7)

If the orbit of mode 01 does not meet plane Π1 before time T1b has elapsed, the

slip of asperity 2 terminates at point P3 with coordinates

X3 = X2, Y3 = Y2 − βκ1U, Z3 = Z2 − βκ1U. (F.8)

Imposing the no overshooting conditions

X3 ≥ 0, Y3 ≥ 0 (F.9)

and expressing all coordinates in terms of Z1 by means of the previous equations,

we are left with the constraint

κ1U − 1

α
≤ Z1 ≤

β − (α + β)κ1U

α
. (F.10)

In turn, this condition constrains the admissible values of X1 and Y1 giving rise

to a two-mode event 10-01. We conclude that such a seismic event takes place

from the segment s1 with end points

H1 =

(
β − κ1U(α + β) + 1, βκ1U,

β − κ1U(α + β)

α

)
(F.11)

I1 =

(
κ1U, β − κ1U(1 + α) + 1,

κ1U − 1

α

)
(F.12)

lying on the line {
X + Y − β + ακ1U − 1 = 0

X − αZ − 1 = 0
(F.13)

As a result, we can define the point

G1 =

(
β − ακ1U + 1, 0,

β − ακ1U

α

)
(F.14)

corresponding to the intersection of line (F.13) with the edge CE of the sticking

region H. To sum up, the vertices of the trapezoid Q1 are the point E given in

Eq. (7.23) and the points G1, I1 and K1. Finally, the vertices of the trapezoid R1

are the end points of s1 and the points J1 and

J2 =

(
β (1− κ1U) + 1, βκ1U,

β (1− κ1U)

α

)
(F.15)

defined as the intersection of the edge CD with the plane

Y = βκ1U. (F.16)
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Let us now turn our attention to the face BCDF and consider a seismic event

starting at a point P1 = (X1, Y1, Z1) on this face. Accordingly, the coordinates of

P1 verify the equation (7.19) of plane Π2

Y1 = β − αZ1 (F.17)

and the event starts with mode 01. If the orbit of mode 01 does not meet plane

Π1 before time T1b has elapsed, the slip of asperity 2 terminates at a point P2

with coordinates

X2 = X1, Y2 = Y1 − βκ1U, Z2 = Z1 − βκ1U. (F.18)

Combining the no overshooting condition Y2 ≥ 0 with Eq. (F.17), we end up with

the constraint

Z1 ≤
β (1− κ1U)

α
. (F.19)

Accordingly, we can define the point

K2 =

(
β (1− κ1U) , βκ1U,

β (1− κ1U)

α

)
(F.20)

corresponding to the intersection of the face BCDF of H with the plane

Z =
β (1− κ1U)

α
. (F.21)

In order to obtain a two-mode event 01-10, one must have P2 ∈ Π1: hence, using

Eq. (7.18),

X2 = 1 + αZ2. (F.22)

If the orbit of mode 10 does not meet plane Π2 before time T1b has elapsed, the

slip of asperity 1 terminates at point P3 with coordinates

X3 = X2 − κ1U, Y3 = Y2, Z3 = Z2 + κ1U. (F.23)

Imposing the no overshooting conditions

X3 ≥ 0, Y3 ≥ 0 (F.24)

and expressing all coordinates in terms of Z1 by means of the previous equations,

we are left with the constraint

κ1U(αβ + 1)− 1

α
≤ Z1 ≤

β (1− κ1U)

α
. (F.25)
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In turn, this condition constrains the admissible values of X1 and Y1 giving rise

to a two-mode event 01-10. We conclude that such a seismic event takes place

from the segment s2 with end points

H2 =

(
κ1U, β − κ1U(αβ + 1) + 1,

κ1U(αβ + 1)− 1

α

)
(F.26)

I2 =

(
β (1− κ1U − ακ1U) + 1, βκ1U,

β (1− κ1U)

α

)
(F.27)

lying on the line {
X + Y − β (1− ακ1U)− 1 = 0

Y + αZ − β = 0
(F.28)

As a result, we can define the point

G2 =

(
0, β (1− ακ1U) + 1, βκ1U −

1

α

)
(F.29)

corresponding to the intersection of line (F.28) with the edge DF of the sticking

region H. To sum up, the vertices of the trapezoid Q2 are the point F given in

Eq. (7.23) and the points G2, I2 and K2. Finally, the vertices of the trapezoid R2

are the end points of s2 and the points J1 and J2.

A straightforward calculation yields the lengths l1 and l2 of segments s1 and

s2, respectively:

l1 = |β + 1− κ1U(1 + α + β)|
√

1 + 2α2

α2
(F.30)

l2 = |β + 1− κ1U(1 + αβ + β)|
√

1 + 2α2

α2
(F.31)

The distances of segments s1 and s2 from the edge CD are, respectively,

d1 = ακ1U

√
1 + α2

1 + 2α2
, d2 = βd1. (F.32)
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Appendix G

Particular events generated on

segments s1 and s2 - Chapter 7

The aim of the present Appendix is to investigate the conditions under which

states belonging to the subsets s1 and s2 of the sticking region H generate n-mode

events involving the separate slips of the asperities, with n > 2. In view of the

following discussion, I recall that the slip deficit of asperity 1 is reduced by an

amount κ1U each time it slips alone; analogously, the slip deficit of asperity 2 is

reduced by an amount βκ1U each time it slips alone.

G.1 Three-mode events 10-01-10

At the end of a two-mode event 10-01, starting at a point P1 = (X1, Y1, Z1) on

the segment s1 on the face AECD of the sticking region, the system is at a point

P2 with coordinates

X2 = X1 − κ1U, Y2 = Y1 − βκ1U, Z2 = Z1 + κ1U(1− β). (G.1)

The event will then continue with a third mode 10 if P2 ∈ Π1: thus, introducing

the coordinates of P2 in Eq. (7.18) and bearing in mind that

X1 = 1 + αZ1, (G.2)

we get the following condition:

α =
1

β − 1
. (G.3)

As 0 < β < 1, this result is unacceptable, since α is defined as positive. In

conclusion, if we consider seismic events involving the alternate slips of the
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asperities and starting with the slip of asperity 1, the system can only generate

a two-mode event 10-01. Any additional slip phase is prevented by the stronger

frictional resistance of asperity 1 with respect to asperity 2.

G.2 Three-mode events 01-10-01

At the end of a two-mode event 01-10, starting at a point P1 = (X1, Y1, Z1) on the

segment s2 on the face BCDF of the sticking region, the system is at a point P2

with the same coordinates as given in Eq. (G.1). The event will then continue with

a third mode 01 if P2 ∈ Π2: thus, introducing the coordinates of P2 in Eq. (7.19)

and bearing in mind that

Y1 = β − αZ1, (G.4)

we get the following condition:

α = α∗ =
β

1− β . (G.5)

Since 0 < β < 1, the constraint α∗ ≥ 0 is always satisfied. Accordingly, under

the particular condition α = α∗, the system can give rise to three-mode events

01-10-01.

G.3 Four-mode events 01-10-01-10

At the end of a three-mode event 01-10-01, the system is at a point P3 with

coordinates

X3 = X1 − κ1U, Y3 = Y1 − 2βκ1U, Z3 = Z1 + κ1U(1− 2β). (G.6)

The event will then continue with a fourth mode 10 if P3 ∈ Π1: thus, introducing

the coordinates of P3 in Eq. (7.18), bearing Eq. (F.28) in mind and taking into

account that α = α∗, we end up with

β = −1, (G.7)

which is unacceptable, since β is defined as positive. In conclusion, if we consider

seismic events involving the alternate slips of the asperities and starting with the

slip of asperity 2, the system can only generate two-mode events 01-10 and, under

particular conditions related with the degree of coupling between the asperities,

three-mode events 01-10-01.
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For the sake of simplicity, the condition α 6= α∗ is assumed throughout all

Chapter 7. Accordingly, seismic events taking place on s2 are two-mode events

01-10 and three-mode events 01-10-01 are not considered.
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Appendix H

Stress perturbations between

neighbouring faults

Let us consider two plane faults, namely fault 1 and fault 2, embedded in an infinite,

homogeneous and isotropic Poisson medium of rigidity µ (Fig. H.1). Following the

slip of fault 1 (perturbing fault), stress is transferred to fault 2 (receiving fault). I

calculate the normal traction σn and the tangential traction in the direction of slip

σt transferred to the receiving fault, estimated as the average value at its centre.

1 2

φ1 φ2

ψ1 ψ2

E

N

D

x

y

z

Figure H.1: Geometry of the model employed to study the stress transfer between

neighbouring faults. Fault 1 is the perturbing fault, while fault 2 is the receiving fault.

The coordinates (E,N,D) are the UTM coordinates and depth of the centres of the

faults, respectively, whereas the axes (x, y, z) correspond with the directions of dip,

strike and normal on fault 1, respectively. The angles φ and ψ are the strike and dip

angles of the faults, respectively.

Let us define a coordinate system (x, y, z) with axes corresponding with the

directions of dip, strike and normal on fault 1, respectively. Fault 1 lies on the
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plane z = 0 and its centre is in the origin of the coordinate system. Accordingly,

the unit vector perpendicular to fault 1 is n1i = (0, 0, 1). Let φ1, ψ1 and λ1 be the

strike, dip and rake angles of fault 1, respectively. The slip direction of fault 1 is

then given by

m1i = (− sinλ1, cosλ1, 0) . (H.1)

Fault 2 is characterized by strike and dip angles φ2 and ψ2, respectively. Accord-

ingly, the unit vector perpendicular to fault 2 is given by

n2i = (sin ∆ψ cos ∆φ,− sin ∆ψ sin ∆φ, cos ∆ψ) (H.2)

where

∆φ = φ2 − φ1, ∆ψ = ψ2 − ψ1. (H.3)

Let λ2 be the preferred rake angle on fault 2, correlated with the orientation of

tectonic loading: λ2 = 0◦ for left-lateral strike-slip, λ2 = 180◦ for right-lateral

strike-slip, λ2 = −90◦ for normal dip-slip and λ2 = 90◦ for reverse dip-slip. The

components of the corresponding slip direction m2i are

m2x = cosλ2 sin ∆φ− sinλ2 cos ∆ψ cos ∆φ (H.4)

m2y = cosλ2 cos ∆φ+ sinλ2 cos ∆ψ sin ∆φ (H.5)

m2z = sinλ2 sin ∆ψ (H.6)

Let (Ei, Ni) and Di be the UTM coordinates and depths of the centres of the

faults, respectively. In the (x, y, z) reference system, the coordinates of the centre

of fault 2 are identified by the following three steps:

1. placing the origin at the centre of fault 1:

x′ = E2 − E1, y′ = N2 −N1, z′ = D2 −D1 (H.7)

2. clockwise rotation about the z axis by the angle φ1:

x′′ = x′ cosφ1 − y′ sinφ1 y′′ = x′ sinφ1 + y′ cosφ1, z′′ = z′ (H.8)

3. counterclockwise rotation about the y axis by the angle ψ1:

x = x′′ cosψ1 − z′′ sinψ1, y = y′′, z = x′′ sinψ1 + z′′ cosψ1. (H.9)

The perturbing fault is treated as a point-like dislocation source (a double-couple

of forces) located at the origin. This is good approximation for nonoverlapping

regions (Appendix B). Let m0 be the scalar seismic moment of the dislocation.
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The i-th component of the static displacement field generated by the slip of fault

1 is

ui = −MjkGij,k (H.10)

where Mij is the moment tensor associated with the dislocation source

Mij = m0 (m1in1j +m1jn1i) (H.11)

and Gij is the Somigliana tensor

Gij =
1

8πµ

(
2

r
δij −

2

3
r,ij

)
(H.12)

with

r =
√
x2 + y2 + z2. (H.13)

The components of the stress field are given by

σij = µ(ekkδij + 2eij), (H.14)

where eij is the strain field associated with the displacement field (H.10). Finally,

the normal traction σn and the tangential traction in the direction of slip σt on

fault 2 are

σn = σijn2in2j, σt = σijm2in2j. (H.15)

The signs of σn and σt define the effect of the stress transfer on fault 2. If

σn > 0, the amount of compressional stress on the receiving fault is reduced,

and vice-versa. If σt > 0, the slip of the receiving fault is promoted, and vice-versa.

Finally, the particular case in which fault 1 and fault 2 are coplanar and lined

up in the strike direction is discussed. Also, it is assumed that the faults are

characterized by the same dip angle and faulting mechanism. Accordingly, we

have

φ1 = φ2, ψ1 = ψ2, λ1 = λ2 (H.16)

so that it results

n1 = n2, m1 = m2. (H.17)

Under this circumstance, the tangential traction in the direction of slip is given by

σt =
5m0

12πr3
(H.18)

in the case of strike-slip faulting (λi = 0, π) and by

σt =
m0

6πr3
(H.19)
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in the case of dip-slip faulting (λi = ± π/2), where the results reported in §B.1

were employed. Since the faults are coplanar, the normal traction σn is always

null; what is more, it is always σt > 0, so that the slip of the receiving fault is

always promoted by the failure of the perturbing fault.
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Appendix I

Poroelastic effect

Let us consider a system made up of n plane faults characterized by the same strike

and dip angles (§9). The fault system is placed in a homogeneous and isotropic

Poisson poroelastic medium characterized by an hydraulic diffusivity c and drained

and undrained Poisson moduli ν and νu, respectively. Let rij be the distance

between the centres of the i-th and the j-th fault. The stress field produced by a

seismic event is discussed, treating each fault as a point-like dislocation source

and distinguishing between strike-slip and dip-slip faulting. The solutions are

provided by Carvalho and Curran (1998) and Cheng and Detournay (1998).

The stress field consists of two terms: a constant term, corresponding to the

coseismic stress, and a time-dependent term, associated with pore fluid diffusion.

The former was discussed in §B.1. In order to study the latter term, I introduce

the nondimensional variable

ξ(t) =
rij

2
√
ct

(I.1)

and a coefficient

b =
νu − ν

(1− ν)(1− νu)
(I.2)

where t is time. After the failure of the i-th fault, associated with a seismic

moment mi, the j-th fault is subject to the time-dependent tangential traction

∆σ′ij(t) =
bmi

2πr3
ij

f(t), (I.3)

where

f(t) = − 2√
π
ξe−ξ

2

+ 3
erf ξ

ξ2
− 6√

π

e−ξ
2

ξ
+ erfc ξ (I.4)

for strike-slip faulting and

f(t) = −3

4

erf ξ

ξ2
+

3

2
√
π

e−ξ
2

ξ
− 1

2
erfc ξ (I.5)
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for dip-slip faulting. As t→∞, the traction (I.3) approaches an asymptotic value

∆σ∞ij =
bmi

2πr3
ij

(I.6)

for strike-slip faulting and

∆σ∞ij = − bmi

4πr3
ij

(I.7)

for dip-slip faulting. The function f(t) is shown in Fig. (I.1).

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

f
(t
)

t/τ

Figure I.1: Function f(t) in the case of strike-slip faulting (solid line) and dip-slip

faulting (dashed line). Time is in units of the characteristic diffusion time τ .

According to the choice of a Poisson solid, I take νu = 0.25. For a typical value

ν = 0.2 under drained conditions (e.g. Rice and Cleary, 1976), it results b ' 0.1.

Then the ratio |∆σ∞ij |/∆σij between the asymptotic poroelastic stress and the

coseismic stress reported in Eq. (B.9) and Eq. (B.10) is about 0.12 for strike-slip

faulting and 0.15 for dip-slip faulting. These are the maximum values, which may

be reached for t� τ , where τ = r2
ij/(4c) is the characteristic diffusion time. For

distances of tens of km, τ is much longer than the typical duration of a seismic

sequence: as a result, the poroelastic effect is at least one order of magnitude

smaller than the coseismic stress transfer.
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