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Abstract 

 

Background 

Multiorgan dysfunction syndrome (MODS), the progressive dysfunction of organ systems following 

an acute threat to systemic homeostasis, is a common complication of systemic inflammatory 

response syndrome (SIRS) and sepsis in the intensive care unit (ICU). Bloodstream biomarkers for 

MODS prediction and prognostication have received growing attention in human medicine. 

Literature concerning MODS occurrence and significance is scant in dogs and absent in cats. 

Criteria for the systematic evaluation of organ dysfunction are lacking, and the use of diagnostic 

and prognostic biomarkers is limited in veterinary critical care medicine. 

 

Aims 

The aim of the proposed research is to investigate novel biomarkers for the prediction of illness 

severity, organ dysfunction and prognosis in critical dogs and cats hospitalized in the ICU of a 

veterinary university hospital (VUH).  

 

Materials and Methods 

Critically ill dogs and cats hospitalized in the ICU of the VUH of Bologna during the PhD (2014-

2017) and diagnosed with SIRS and sepsis have been selected for the studies. The first part of the 

thesis has been focused on biomarkers evaluating the host response, with diagnostic and prognostic 

purposes. The following studies are presented: 

• "Prognostic significance of the	acute	patient	physiologic	and	laboratory	evaluation	score 

and an extended clinicopathological profile in canine SIRS: a prospective observational 

study" 

• "Serum amyloid A in the diagnosis of feline sepsis" 
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• "Evaluation of the delta neutrophil index from an automated blood cell analyser in septic 

dogs" 

• "Canine procalcitonin in dogs with sepsis and gastric dilatation-volvulus" 

The second part of the thesis has been addressed to specifically evaluate the relevance of organ 

dysfunction and MODS during critical illness, leading to the following investigations:  

• "Acute kidney injury in critically ill dogs" 

• "Retrospective evaluation of circulating thyroid hormones in critically ill dogs with systemic 

inflammatory response syndrome" 

• "Multiorgan dysfunction syndrome in feline sepsis" 

 

Description of the studies 

 Prognostic significance of the acute patient physiologic and laboratory evaluation score and 

an extended clinicopathological profile in canine SIRS: a prospective observational study 

The study investigated the prognostic relevance of the APPLEfast score, a validated index of disease 

severity in critically ill dogs, and other clinicopathologic markers of systemic inflammation in dogs 

with SIRS. Thirty-three dogs with SIRS were prospectively included and compared to 35 healthy 

controls; a further comparison between dogs with non-infectious SIRS and sepsis was performed. 

The study highlighted the usefulness of an extensive panel of traditional and novel blood and 

urinary biomarkers of canine SIRS. The utility of acute phase proteins to early identify SIRS was 

confirmed, while laboratory variables including blood lactate, base excess, serum albumin, serum 

creatinine, urinary protein to creatinine ratio and plasma antithrombin activity were moderately 

accurate for outcome prediction. Higher values of APPLEfast score were significantly related to 

increased odds for mortality, confirming the prognostic role of this score of illness severity in a 

specific clinical setting, like SIRS and sepsis.  

 

 



 3 

 Serum amyloid A in the diagnosis of feline sepsis 

Cats show unique responses to systemic inflammation, making diagnosis of sepsis more 

challenging. The study aimed to evaluate the clinical value of serum amyloid A (SAA), the major 

feline acute phase protein, for sepsis diagnosis and prognostication in critically ill cats. A panel of 

hematological and chemical variables including SAA was retrospectively compared between 27 

cats with trauma as a model of non-infectious SIRS, 29 cats with sepsis and 18 healthy controls. 

SAA concentrations were significantly higher in sick cats compared to controls. Septic cats had 

greater SAA concentrations compared to cats with trauma, but the best SAA cut-off detected (>81 

mg/l) had only moderate performances to diagnose sepsis. Higher serum bilirubin concentration and 

toxic neutrophil changes at the blood smear evaluation were further documented in patients with 

sepsis. The results of the present study significantly enhance the limited literature on feline sepsis 

and support the role of a complete clinicopathologic evaluation and SAA measurement as valuable 

tools to facilitate sepsis diagnosis in cats. 

 

 Evaluation of the delta neutrophil index from an automated blood cell analyser in septic 

dogs 

Immature granulocytes and toxic neutrophil changes at the blood smear evaluation are markers of 

illness severity and infection in human and veterinary medicine. The delta neutrophil index (DNI) is 

automatically calculated by the ADVIA-series hematological analysers, and provides an estimate of 

circulating immature granulocytes in people. Despite many clinicians are still unfamiliar with this 

biomarker, there is a growing number of studies supporting its value for sepsis diagnosis and 

prognostication in humans. Our retrospective study evaluated the reference interval of the DNI in 

healthy dogs, and its diagnostic and prognostic utility in dogs with sepsis and immune-mediated 

hemolytic anemia. The preliminary results of the study support a possible role for the DNI as an aid 

for sepsis diagnosis and for prediction of sepsis severity: higher DNI values were detected in dogs 

with sepsis compared to dogs with immune-mediated hemolitic anemia and controls. Moreover, 
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dogs with septic shock had greater DNI values compared to dogs having sepsis without circulatory 

failure. 

 

 Procalcitonin in dogs with sepsis and gastric dilatation-volvulus 

Procalcitonin (PCT), the most promising biomarker for sepsis diagnosis and prognostication in 

people, has received limited attention in dogs. Validation of a commercially available ELISA kit for 

quantification of canine PCT was performed. Then, plasma PCT value was tested in two clinical 

studies involving dogs with sepsis and gastric dilatation-volvulus (GDV). In the first investigation, 

baseline and serial plasma PCT were measured in 53 dogs with sepsis aiming to evaluate its 

association with sepsis severity, MODS occurrence and outcome. Baseline PCT concentration was 

related to sepsis severity, being greater in dogs with septic shock. Baseline PCT was also correlated 

with MODS occurrence, but not with outcome. Early declining PCT concentrations (during the first 

48h of hospital stay) were significantly associated with survival in this population of septic dogs.  

The second study evaluated the prognostic significance of plasma PCT, cell-free DNA and high-

mobility group box 1 in a population of dogs with gastric dilatation-volvulus syndrome (GDV) 

undergoing surgery. Citrated plasma samples collected upon admission from 29 GDV dogs and 24 

healthy controls were analysed. Presenting lactate concentrations, outcome and evidence of gastric 

necrosis were recorded. Dogs with GDV had significantly higher biomarkers concentrations 

compared to healthy controls. A potential prognostic role for plasma PCT and blood lactate 

concentrations emerged from the results of the study: increased PCT concentrations were detected 

in non-survivors, while increased lactate concentrations were measured in dogs with evidence of 

gastric necrosis. A moderate, positive correlation was documented between PCT and lactate 

concentrations.  
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 Acute kidney injury in critically ill dogs 

Acute kidney injury (AKI) is a common clinical condition of the critically ill patient. The aim of 

this prospective observational study was to evaluate the role of urinary chemistry and fractional 

excretion (FE) of electrolytes to characterize and prognosticate AKI in critically ill dogs. A total of 

135 dogs with AKI were included and graded according the International Renal Interest Society 

guidelines. Dogs were grouped based on AKI features (volume-responsive vs. intrinsic) and 

outcome (survivors vs. non-survivors). Blood and urinary variables were measured at the time of 

AKI diagnosis. The results of the study confirmed the diagnostic and prognostic role of FE of 

electrolytes in canine AKI as indicators of the severity of renal impairment, as they were greater in 

dogs with intrinsic AKI and in non-survivors. FE can be considered feasible and cost-effective 

biomarker able to early differentiate between volume-responsive and intrinsic AKI and aid in 

outcome prediction.  

  

 Retrospective evaluation of circulating thyroid hormones in critically ill dogs with systemic 

inflammatory response syndrome 

Non-thyroidal illness (NTI) occurs in critical illness and seems associated with disease severity and 

outcome. The purpose of the study was to characterize NTI in dogs with SIRS and sepsis and 

identify its prognostic significance. Serum total T3, free T3, reverse T3 and total T4 were 

retrospectively measured at the time of admission in 10 dogs with pancreatitis (non-infectious 

SIRS), 31 dogs with sepsis (22 parvovirosis, 9 septic peritonitis) and 15 healthy controls. The 

APPLEfast score was calculated to assess illness severity. SIRS dogs had several thyroid hormones 

changes indicating NTI. Lower total T3 and T4 were documented in dogs with sepsis and were 

associated with the APPLEfast score, suggesting NTI occurrence as a marker of higher disease 

severity. 
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 Multiorgan dysfunction syndrome in feline sepsis 

The aim of this prospective observational study was to evaluate the clinical presentation and organ 

dysfunction in cats with sepsis. Fourty-three cats admitted at the ICU for highly suspected or 

confirmed sepsis were enrolled and grouped according to final outcome (survivors, non-survivors). 

Criteria to define selected organ dysfunction were adapted from the available canine literature; 

MODS was defined as presence of at least two dysfunctional organs simultaneously. Results of the 

current study significantly enhance the limited literature on feline sepsis, and propose criteria to 

detect organ dysfunction in this species. Presence of MODS was a common finding in the study 

population both at the time of admission and during ICU stay. Presence of renal dysfunction, 

cardiocirculatory dysfunction and MODS was significantly associated with increased odds for 

death. 

 

Conclusion 

The role of biomarkers is becoming crucial in critical care medicine, as they can assist in patient 

management and predict early and late complications of critical illness. The present thesis 

contributes to characterize SIRS and sepsis in dogs and cats, and gives novel insights on biomarkers 

of disease severity and organ dysfunction. A systematic screening for MODS has been proposed in 

the performed studies, highlighting the need to early recognize this condition at the time of ICU 

admission and during hospital stay. The prognostic impact of selected organ dysfunction and 

MODS development has been observed. The presented results improve our understanding of the 

host response to inflammation and infection, and are the basis for an on-going process to 

characterize MODS and its sequelae in critical care veterinary medicine. 
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Riassunto 

 

Stato dell'arte 

La Sindrome da Disfunzione Multiorganica (MODS), definita come la progressiva disfunzione 

degli organi a seguito di un insulto acuto che compromette l'omeostasi corporea, rappresenta una 

complicazione comune della sindrome della risposta infiammatoria sistemica (SIRS) e della sepsi 

nei reparti di terapia intensiva. L'utilizzo di biomarcatori circolanti che predicano lo sviluppo di 

MODS e abbiano un ruolo prognostico è sempre più frequente in medicina umana. La letteratura 

inerente alla MODS è estremamente ridotta in medicina veterinaria, ed è rappresentata da pochi 

studi soltanto nella specie canina. Negli animali d'affezione, infatti, non sono ad oggi stabiliti dei 

criteri standardizzati per la valutazione sistematica della disfunzione d'organo, e l'applicazione 

routinaria di biomarker diagnostici e prognostici risulta piuttosto limitata.  

 

Obiettivi 

La presente tesi si propone di valutare il valore clinico di biomarker innovativi nel paziente 

veterinario ricoverato in terapia intensiva, con l'obiettivo di predirre la gravità della patologia 

critica, lo sviluppo di disfunzione d'organo e la prognosi. 

 

Materiali e metodi 

Le popolazioni di studio considerate sono rappresentate da cani e gatti ospedalizzati in terapia 

intensiva presso l'Ospedale Veterinario Universitario dell'Università di Bologna nel periodo del 

dottorato di ricerca (2014-2017), e affetti da SIRS e sepsi. La prima parte della tesi è stata 

focalizzata su biomarker indicativi della risposta dell'ospite, e ha portato alla finalizzazione dei 

seguenti studi:  

• "Prognostic significance of the acute patient physiologic and laboratory evaluation score and 

an extended clinicopathological profile in canine SIRS: a prospective observational study" 
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• "Serum amyloid A in the diagnosis of feline sepsis" 

• "Evaluation of the delta neutrophil index from an automated blood cell analyser in septic 

dogs" 

• "Procalcitonin in dogs with sepsis and gastric dilatation-volvulus" 

La seconda parte della tesi è stata incentrata sul significato prognostico della disfunzione d'organo e 

della MODS in corso di malattia critica, ed è stata sviluppata attraverso i seguenti lavori scientifici: 

• "Acute kidney injury in critically ill dogs" 

• "Retrospective evaluation of circulating thyroid hormones in critically ill dogs with systemic 

inflammatory response syndrome" 

• "Multiorgan dysfunction syndrome in feline sepsis" 

 

Descrizione degli studi  

 Prognostic significance of the acute patient physiologic and laboratory evaluation score and 

an extended clinicopathological profile in canine SIRS: a prospective observational study 

Lo studio ha valutato il significato prognostico dell'APPLEfast score, uno score di gravità clinica 

validato nel cane critico, e di un profilo esteso di variabili clinicopatologiche in una popolazione di 

cani in corso di SIRS. La popolazione di studio era rappresentata da 33 cani con SIRS confrontati 

con 35 soggetti sani; i cani affetti da SIRS sono stati ulteriormente suddivisi in due gruppi di 

comparazione in relazione all'origine della flogosi sistemica (SIRS non-infettiva vs. sepsi). Lo 

studio ha evidenziato il valore di numerosi biomarker sierici ed urinari nel corso di questa 

sindrome: è stato confermato il ruolo delle proteine di fase acuta come sensibili indicatori di SIRS 

nel cane, ed è emerso il possibile ruolo prognostico di variabili quali base excess, lattati, albumina 

sierica, creatinina sierica, rapporto proteine urinarie/creatinina urinaria e attività plasmatica 

dell'antitrombina. Infine è stata confermata la capacità predittiva di outcome dell' APPLEfast score in 

questa popolazione, in quanto all'aumentare di tale indice si riscontrava un aumento significativo 

del rischio di morte. 
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 Serum amyloid A in the diagnosis of feline sepsis 

Le manifestazioni cliniche della sepsi sono uniche nella specie felina, e tali per cui la diagnosi 

precoce di questa sindrome nel gatto è particolarmente complessa. L'obiettivo dello studio è stato 

quello di valutare il significato diagnostico e prognostico della siero amiloide A (SAA), la 

principale proteina di fase acuta maggiore nella specie felina, in una popolazione di gatti 

ospedalizzati in terapia intensiva. Si è proceduto con la comparazione retrospettiva di variabili 

ematologiche e chimiche, oltre che della SAA sierica, tra 27 gatti con trauma (modello di SIRS non-

infettiva), 29 gatti con sepsi e 18 soggetti sani di controllo. Sono state documentate concentrazioni 

di SAA sieriche significativamente maggiori nei gatti critici rispetto ai soggetti sani, e 

significativamente maggiori nei gatti con trauma rispetto a quelli con sepsi. In particolare, una SAA 

>81mg/l ha presentato una capacità moderata per la diagnosi di sepsi all'interno della popolazione 

ogetto di studio. In aggiunta, i gatti con sepsi erano caratterizzati da concentrazioni più elevate di 

bilirubina sierica e più frequenti segni di tossicità neutrofilica evidenziate alla lettura dello striscio 

ematico. Tali risultati apportano utili informazioni alla limitata letteratura disponibile sulla sepsi 

felina, e supportano il ruolo di una completa valutazione laboratoristica e della misurazione della 

SAA sierica per facilitare la diagnosi di sepsi nel gatto. 

 

 Evaluation of the delta neutrophil index from an automated blood cell analyser in septic 

dogs 

La presenza di granulociti immaturi alla lettura manuale dello striscio ematico è un marker di 

gravità della malattia e di possibile sepsi sia in medicina umana che veterinaria. Il Delta Neutrophil 

Index (DNI) è un parametro calcolato in modo automatizzato dagli analizzatori ematologici della 

serie ADVIA, e rappresenta una stima dei granulociti immaturi circolanti nell'uomo. Nonostante il 

DNI sia un biomarker di recentissima introduzione in medicina umana e la sua misurazione non 

risulti ancora validata in modo sistematico, vi sono numerosi studi a supporto del suo significato 

diagnostico e prognostico in corso di sepsi. Lo scopo di questo studio retrospettivo è stato quello di 
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stabilire l'intervallo di riferimento del DNI nel cane sano, e di valutarne il ruolo diagnostico e 

prognostico in cani affetti da sepsi e da anemia emolitica immunomediata primaria. I risultati 

preliminari ottenuti supportano il ruolo del DNI come biomarker di sepsi nel cane: in particolare 

nella popolazione di studio, il DNI è risultato più elevato nei soggetti con sepsi (n=118) rispetto ai 

cani con anemia emolitica immunomediata (n=20) e ai soggetti sani (n=99). Inoltre, nell'ambito dei 

soggetti settici, il DNI è risultato più elevato nei cani in shock settico rispetto ai soggetti affetti da 

sepsi non complicata da disfunzione cardiocircolatoria, a supporto di una possibile correlazione con 

la gravità della sepsi.  

 

 Canine procalcitonin in dogs with sepsis and gastric dilatation-volvulus 

La procalcitonina (PCT) rappresenta il biomarker più promettente per la diagnosi, il monitoraggio e 

la formulazione di una prognosi in corso di sepsi nell'uomo. L'attenzione che la PCT ha ricevuto nel 

cane è, tuttavia, limitata. All'interno di questo progetto di dottorato ho partecipato ad un primo 

studio di validazione di un kit ELISA disponibile in commercio per la misurazione della PCT 

plasmatica nel cane, e ho portato avanti due studi clinici preliminari volti alla quantificazione della 

PCT nel cane affetto da sepsi e sindrome da dilatazione-torsione gastrica (GDV). Nel primo lavoro 

clinico si è proceduto alla misurazione retrospettiva della PCT plasmatica all'ammissione in terapia 

intensiva e in modo seriale (a 24h e 48h di ospedalizzazione) in 53 cani con sepsi, al fine di 

valutarne l'associazione con la gravità della sepsi, lo sviluppo di MODS e l'outcome. La 

concentrazione plasmatica di PCT all'ammissione è stata associata alla gravità della sepsi (maggiore 

nei soggetti in shock settico) e allo sviluppo di MODS, ma non all'outcome. La valutazione seriale 

della PCT plasmatica ha mostrato un potenziale ruolo prognostico di tale biomarker, con 

concentrazioni decrescenti dall'ammissione alle 48h nei soggetti sopravvissuti, e differenze non 

significative nei tempi di monitoraggio nei cani non sopravvissuti. 

Nel secondo studio è stato valutato il significato prognostico della PCT plasmatica, del cell-free 

DNA e dell' high-mobility group box 1 in una popolazione di cani con GDV. Le misurazioni sono 
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state effettuate su campioni di plasma citrato prelevati all'ammissione da 29 cani con GDV 

sottoposti a successiva chirurgia, e su campioni di 24 cani sani di controllo. Sono state registrate ai 

fini dello studio numerose variabili cliniche, di laboratorio (lattati ematici) e di outcome 

(sopravvivenza alla dimissione, presenza di necrosi gastrica evidenziata in chirurgia). Le 

concentrazioni plasmatiche dei biomarker oggetto di studio si presentavano tutte significativamente 

più elevate nei soggetti con GDV rispetto ai cani sani. È inoltre emerso un possibile significato 

prognostico di PCT e lattati ematici: le concentrazioni di PCT risultavano maggiori nei non-

sopravvissuti, mentre quelle dei lattati più elevate nei cani con evidenza di necrosi gastrica. Si 

evidenziava inoltre una correlazione positiva, moderata, tra PCT plasmatica e lattatemia. 

 

 Acute kidney injury in critically ill dogs 

Il danno renale acuto (AKI) rappresenta una complicazione frequente del paziente intensivo. È stato 

condotto uno studio prospettico osservazionale con lo scopo di valutare il ruolo della chimica 

urinaria in cani con AKI, per caratterizzare il danno renale acuto e individuare biomarker 

prognostici. Si è proceduto all'inclusione di 135 cani con AKI stadiati in accordo alle linee guida 

della International Renal Interest Society, e suddivisi in relazione al tipo di AKI (volume-

responsivo vs. intrinseco) e all'outcome (sopravvissuti vs. non sopravvissuti). Numerose variabili 

chimiche ed urinarie sono state confrontate nei gruppi di studio, con particolare attenzione alle 

frazioni di escrezione degli elettroliti urinari. Queste, in particolare, si presentavano 

significativamente maggiori nei cani con AKI intrinseca, e più elevate nei soggetti non 

sopravvissuti. I risultati dello studio confermano le potenzialità delle frazioni di escrezione degli 

elettroliti urinari come indicatori di facile e rapida applicabilità clinica nella pratica veterinaria per 

caratterizzare la gravità del danno renale acuto e aiutare nella formulazione della prognosi nel corso 

di tale sindrome. 
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 Retrospective evaluation of circulating thyroid hormones in critically ill dogs with systemic 

inflammatory response syndrome 

L'euthyroid-sick syndrome (o non-thyroidal illness, NTI) è una transitoria disfunzione tiroidea che 

si manifesta in soggetti precedentemente eutiroidei nel corso della malattia critica. Lo sviluppo di 

tale sindrome è associato alla gravità della patologia sottostante e alla prognosi. Lo studio effettuato 

ha avuto l'obiettivo di caratterizzare la NTI in cani con SIRS e sepsi, e di valutarne il significato 

prognostico. Sono stati inclusi in modo retrospettivo 10 cani con pancreatite (modello di SIRS non-

infettiva), 22 cani con parvovirosi e 9 cani con peritonite settica (modelli di sepsi), confrontati con 

15 soggetti sani per la misurazione delle concentrazioni sieriche di T3 totale, T3 libero, T4 totale e 

reverse T3 al momento della presentazione in ospedale. È stato calcolato l'APPLEfast score come 

indice di gravità clinica. I cani con SIRS presentavano numerose alterazioni nelle concentrazioni 

degli ormoni tiroidei suggestive di NTI. Si è riscontrato un calo più significativo di T3 e T4 nei cani 

con sepsi rispetto ai soggetti con SIRS non-infettiva, e una correlazione tra questi ormoni e 

l'APPLEfast score, a supporto della presenza di NTI come marker di gravità della malattia critica.  

 

 Multiorgan dysfunction syndrome in feline sepsis 

È stato condotto uno studio prospettico osservazionale sulla disfunzione d'organo nel gatto con 

sepsi. Sono stati inclusi 43 gatti ammessi in terapia intensiva con un forte sospetto clinico e/o 

diagnosi confermata di sepsi, e successivamente suddivisi in relazione all'outcome (sopravvissuti, 

non sopravvissuti). I criteri per la definizione delle singole disfunzioni d'organo sono stati adattati 

dalla letteratura presente nel cane; la MODS è stata definita come la presenza concomitante di 

almeno due disfunzioni d'organo. I risultati dello studio contribuiscono in modo significativo, 

seppur preliminare, alle limitate informazioni disponibili nella letteratura scientifica sulla sepsi nella 

specie felina. Nello specifico, la presenza di MODS è stata diagnosticata frequentemente nella 

popolazione oggetto di studio, sia al momento della presentazione in clinica che durante 

l'ospedalizzazione in terapia intensiva. La presenza e lo sviluppo di disfunzione renale, 
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cardiocircolatoria e di MODS erano associate in modo significativo all'aumento del rischio di 

morte. 

 

Conclusioni 

L'utilizzo di biomarker è di crescente importanza nella gestione del paziente intensivo, con le 

molteplici finalità di assistere nella diagnosi e nel monitoraggio clinico, e favorire il riconoscimento 

precoce delle complicazioni della malattia critica, in particolare della disfunzione multiorganica. La 

tesi oggetto di questo dottorato di ricerca arricchisce la letteratura veterinaria in merito alla 

caratterizzazione della SIRS e della sepsi nel cane e nel gatto, e indaga l'utilità di biomarker 

innovativi di gravità della malattia critica e disfunzione d'organo. Gli studi presentati propongono 

un approccio nuovo nel panorama veterinario, incentrato sulla valutazione sistematica della MODS 

per il notevole impatto prognostico che questa presenta sul paziente sia al momento dell'ingresso in 

ospedale che durante il ricovero in terapia intensiva. I risultati presentati confermano il ruolo 

prognostico della MODS in diversi modelli di patologia critica spontanea nel cane e nel gatto, e 

migliorano le conoscenze mediche in merito alla risposta dell'ospite in corso di infiammazione 

sistemica e sepsi. Gli studi presentati in questa tesi, pertanto, costituiscono dei tasselli iniziali nel 

contesto di un filone di ricerca in costante e continuo sviluppo, volto ad anticipare le manifestazioni 

della disfunzione d'organo e a caratterizzarne le conseguenze, al fine di migliorare in modo 

complessivo la gestione del paziente critico veterinario.  
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1. Introduction 

Multiorgan dysfunction syndrome (MODS), the progressive dysfunction of organ systems following 

an acute threat to systemic homeostasis, is a common complication of critical illness, and represents 

a leading cause of mortality in human intensive care unit (ICU) regardless of the inciting injury 

which can be infectious (sepsis) or not (Mongardon et al. 2010). The higher the number of failed 

organs, the higher the mortality risk (Vincent et al. 2006).  

Multi-organ dysfunction syndrome represents a state of cellular "metabolic shut-down": 

mythocondrial dysfunction, alteration in oxygen delivery and utilization, and cellular 

reprogramming are some of the features explaining the functional -rather than structural- organ 

failure. Hence, the degree of cellular necrosis documented during hystopathological studies is 

usually scarce or even absent, and organ recovery frequently occurs in surviving patients without 

pre-existing organ dysfunction. These findings might suggest the concept of MODS as an adaptive 

hypometabolic state to survive condition of extreme severe illness, rather than a major irrespective 

ICU-killer (Abraham and Singer 2007; Mondardon et al. 2010). 

Recent years have seen advances in the understanding of the patophysiologic mechanisms 

underlying MODS in human sepsis: specifically, changes in the concentrations of metabolites, 

hormones and inflammatory mediators have been investigated as potential bloodstream biomarkers 

for MODS prediction and characterization, and as aids for individual prognostication (Abraham and 

Singer 2007; Visser et al. 2008).  

Very little is known regarding MODS in veterinary medicine. The association between 

development of organ dysfunction and decreased survival has emerged in few canine studies 

(Simpson et al. 2009; Kenney et al. 2010; Ripanti et al. 2012; Ateca et al. 2014). However, 

standardized criteria to identify dysfunctional organs are lacking, and veterinary clinical practice is 

far behind the routinary use of biomarkers for MODS prediction and patients stratification. 
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2. Epidemiology 

The history of MODS paralels the advances in medical knowledge and technology. Individual 

forms of organ dysfunctions were firstly reported during World War II and the Vietnam War, as 

soldiers surviving the initial battelfield injuries died later on from renal or respiratory failure 

(Cheadle et al. 2005). In the late 60s and 70s, deaths from multiorgan involvement following 

systemic diseases were reported with increasing frequency in people: a "lethal and unsolved 

problem" following initial injury was described, characterized by jaundice, respiratory distress and 

hypotension (Skillman et al. 1969; Tilney et al. 1973; Baue 1975). Analyses of retrospective clinical 

studies found that the main threat to survival was not the initial underlying illness, but rather a 

process of progressive physiologic failure of several interdependant organ systems. Sophystication 

of life-support technologies, as well as the application of these technologies to an increasingly high-

risk patient population, made the occurrence of systemic organ dysfunction more and more 

common. A new class of ICU patients was created, representing the chronically critically ill with 

long-term sequelae. Hence, MODS is the complex disease of the latters (Seely and Christou 2000). 

In 1991 the American College of Chest Physicians and the Society of Critical Care Medicine held a 

Consensus Conference to address significant clinical syndromes definitions. The syndrome of 

multiple organ dysfunction and failure that had been described over the previous 20 years was 

officially termed "MODS", and defined as the progressive dysfunction of two or more organ 

systems following an acute threat to systemic homeostasis. The term multiorgan failure (MOF) was 

deemed less appropriate because it implied a static dicothomus event (absence or presence of organ 

impairment), a more pessimistic outcome, and did not reflect the continuum of physiologic 

functional derangements observed in the critically ill patient (Bone et al. 1992). The syndrome was 

further divided into primary MODS, which represents the organ dysfunction resulting from the 

initial local insult itself (e.g. acute respiratory insufficiency as the immediate result of pneumonia), 

and secondary MODS, which is the presence of organ dysfunction in distant organ due to systemic 
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inflammation and the host response (e.g. acute kidney injury and coagulopathy secondary to 

pneumonia) (Bone et al. 1992; Seely et al. 2000; Johnson et al. 2004). 

MODS usually manifests after a lag time (days to weeks) from the major initial insult (e.g. trauma, 

shock, sepsis, pancreatitis), progresses with the involvement of several organ systems and, 

ultimately, worsen prognosis. Current therapeutic approaches are based on vital organ systems 

support, untill they spontaneously recover, without speficic cellular or organ "cure". This generates 

significant costs from prolonged hospitalization, and poses ethical dilemma regarding withdrawal of 

therapies in potential survivors versus unnecessarily prolonged life-supports in fatally non-survivors 

(Mongardon and Singer 2009; Seely and Christou 2000). Sepsis is the main leading cause of MODS 

in people compared to other forms of critical illness. Mortality rates in people developing MODS is 

extremely high, ranging between 30-100%, regardless of the initial insult; the higher the numbers of 

failing organs, the greater the mortality (Seely et al. 2000; Vincent et al. 2006). Moreover, long-

term quality of life in people surviving MODS could be scant, due to residual clinical symptoms 

like asthenia and depression. Interestingly, persistence of residual sequele and long-term symptoms 

has been related to MODS severity and lenght of ICU stay (Rodriguez-Villar et al 2017). 

Recognition of MODS in veterinary medicine has paralleled the human experience, firstly 

mentioning multiple organ failure in the Veterinary Clinic of North America in 1989 (Hackett 

2015). Since that, occurrence of MODS has been occasionally reported in veterinary critical care 

medicine, and attempts to its monitoring and therapeutics discussed. The attention on veterinary 

MODS is, however, only recent, and standardized criteria for its definition and extensive 

investigations are lacking (Hackett 2011; Ripanti et al. 2015; Kenney et al. 2010). 

Reported incidence of MODS varies from 4% to 50% in dogs, with sepsis and trauma being the 

major inciting causes (Kenney et al. 2010; Osteburn et al. 2014; Ateca et al. 2014). MODS 

development in canine diseases has been associated with poor outcomes. In a large cohort of dogs 

with blunt trauma and retrospectively analyzed, presence of respiratory, cardiovascular and 

hemostatic dysfunctions were independently associated with a worse prognosis. Specifically, none 
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of the dogs developing MODS, defined as dysfunction of at least two organ systems, survived at 

discharge (Simpson et al. 2009). Similarly, in a retrospective case study including dogs with severe 

bite wound trauma, MODS occurrence greatly increased the odds ratio for death: dogs with 

dysfunction of 4 or more organs showed ad an overall mortality of 67% (Ateca et al. 2014). In a 

prospective study including dogs surgically treated for septic peritonitis, MODS incidence was 

50%, and incidence of at least one dysfunctional organ was as high as 78%. Patients with MODS 

had a significantly lower survival rate (25%) compared to dogs without the syndrome (70%), and 

mortality increased with the number of dysfunctional organs. Multivariate analysis indicated that 

respiratory, cardiovascular, renal or coagulation system dysfunction significantly increased the odds 

of death, independent of other factors (Kenney et al. 2010). Similarly, higher mortality rates were 

reported in another study including dogs with septic peritonitis when MODS was identified (Craft 

& Powell 2012). Finally, in a recent canine study, the applicability of the SOFA (Sequential Organ 

Failure Assessment) score was evaluated in critically ill dogs with systemic inflammation and 

sepsis. Highest SOFA values were associated with reduced survival, thus supporting that both 

MODS presence and severity affect outcome (Ripanti et al. 2012). No veterinary report describing 

MODS in cats is currently available.  
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3. MODS: a complex non-linear system of adaptation to critical illness? 

MODS is a complex clinical syndrome, recognizing a complex pathophysiology. Several theories 

have been proposed to explain its occurrence in the ICU. It was initially believed that MODS 

originated from an overwhelming and uncontrolled infection able to precipitate organ failure. 

However, MODS is frequently encountered in non-infectious inflammatory diseases, where a septic 

focus is not clinically identifiable (Mongardon and Singer 2009; Seely and Christou 2000). Then, in 

1991 the American College of Chest Physicians estabilished the criteria defining the systemic 

inflammatory response syndrome (SIRS), and defined MODS as the presence of altered organ 

function in an acutely ill patient such that homeostasis cannot be mantained without intervention". 

As such, MODS has been indicated as a major SIRS-related complication, arising from the 

imbalance between the pro- and the anti-inflammatory forces (Bone et al. 1992; Osteburn et al. 

2014; Sapan et al. 2016). However, clinical trials attempting to target inflammation in MODS (e.g. 

attenuating the exaggerated pro-inflammatory host response through cytokines inhibition) have 

been disappointing overall, as they failed to demonstrate a real benefit, or even showed deleterious 

effects (Cui et al. 2017).  

Modern concepts in physiology and pathology of critical illness propose to consider MODS as a 

complex, non-linear system, representing the host response to a chronic, potentially lethal, 

overwhelming systemic injury. In this regard MODS could potentially be an adaptive and protective 

mechanism, aiming to increase the chances of survival of cells and organs (Mongardon and Singer 

2009; Seely and Christou 2000).  

A complex non-linear system is a system with interaction between variables are constantly altered 

and can change as a result of changes in other variables (there is marked connectivity and 

interdependence between variables). Thus, interconnections and relationships between variables are 

far more important to be understood rather than the single variables themselves (Seely and Christou 

2000). In such systems, homeostasis arises not from the constancy of conditions, but from the 

complexity of interactions among its dynamic agents. This principle is of utmost importance in 
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critical illness: complexity belongs to healthy states, while loss of complexity (e.g. loss of specific 

organ function during MODS) challenges and jeopardizes homeostasis. Recovery from critical 

illness is, infact, characterized by restoration of complexity and variability in physical parameters 

(Papathanassoglou et al. 2008). Several biological systems, including animal physiological systems 

(e.g. immune system, coagulation cascade) as well as their responses to insults (e.g. shock, trauma, 

infection) are complex non-linear systems by nature, and can be seen as "chaotic systems regulated 

by emergent orders". Understanding MODS as a complex non-linear syndrome involving endocrine 

and metabolic processes, explains the lack of success or the unpredictable results in trials 

investigating specific antimediators therapy, inhibiting or enhancing specific pathways of the 

inflammatory cascade, or supplementing deficient hormones or metabolites in sepsis (e.g. thyroidal 

hormones, ionized calcium) (Seely and Christou 2000; Papathanassoglou et al. 2008). 

As stated before, MODS carries a negative connotation: it is the most severe threat to body 

homeostasis, and the major complication of critical illness. On the other hand, MODS represents a 

transient state: when survival occurs, complete recovery of organ functions is fairly common, 

especially in the absence of pre-existing organ disease. This is a remarkable event, considering that 

costituents of organs like liver or kidneys have poor regenerative capacities (Singer et al. 2004). 

Even in patients who die as a consequence of MODS, hystopathological evidence of cell death or 

damage in the affected organs is minimal (Mongardon and Singer 2009). Hence, organ failure in the 

context of MODS is functional, rather than structural. As an example, sepsis-associated acute 

kidney injury (AKI) is usually characterized by preserved or increased renal blood flow, reversible 

decrease in glomerular filtration rate (GFR) and tubular dysfunction. Acute tubular necrosis is 

marginal in hystopathological studies, corroborating the idea of MODS leading to cell dysfunction 

over cell death (Dellepiane et al. 2016). Signs of programmed cell suicide (e.g. apoptosis, 

necroptosis) can be prevalent over necrosis in several parenchimal tissues (Hattori et al. 2017). 

Finally, tissue content of oxygen is often normal in septic patients dying of MODS in face of severe 

cellular hypoxia and reduced oxygen consumption (Kreymann et al. 1993). These findings might 
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support the idea of MODS as an energy-saving state, a condition of metabolic shutdown 

orchestrated by organisms coping with overwhelming and potentially lethal injuries, aiming to 

survive. In this novel scenario, MODS could be viewed as an attempt to pursue cell survival during 

prolonged critical illness towards complex endocrine and metabolic changes, with affected cells 

experiencing a dormant state analogous to hybernation (Singer et al. 2004; Mongardon and Singer 

2009). Mitochondrial dysfunction, indeed, appears to be a major feature of critical illness-related 

MODS, being the hallmark of reduced cellular metabolism (Singer et al. 2004).  

The theory of MODS as an adaptive/protective state of critical illness might also give new insights 

into its therapeutical approach. People with MODS usually die as a result of iatrogenic interventions 

rather than their primary disease. Numerous medical procedures are invasive and have risks, and in 

some cases the harms outweight the benefits. Similarly, excess of supportive cares (e.g. liberal 

transfusion strategies, aggressive fluid resuscitation, aggressive ventilatory settings, hormone 

supplementation) have been associated with adverse outcomes in the late phase of diseases. In this 

regard, major advances in patient prognosis have been reached through a reduction of iatrogenic 

harm (e.g. conservative fluidtherapy, protective ventilatory strategies) and through the paradigm of 

"less is more" accepted in critical care (Vincent & Creteur 2015). A better understand of MODS 

pathophysiology and MODS-related biomarkers might enable us to anticipate complications, 

ameliorate patient management and avoid counter-adaptive treatments, keeping in mind that 

reversibility and organ function recovery are possible. 
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4. Pathophysiology and mechanisms of MODS 

MODS is a disease of the cells involving multiple organs at the same time (Papathanassoglou et al. 

2008). The pathophysiology of MODS is complex and not entirely understood. According to the 

historical overview of MODS, three theories have been proposed to explain its development. The 

"one-hit theory" considers MODS as the early sequela of a massive, systemic insults (massive insult 

è severe SIRS è early MODS). The alternative scenario, the "two-hit model", views MODS as 

the consequence of multiple sequential insults: following a severe inflammatory insult, patients 

enter a less intense SIRS state but remain vulnerable to secondary inflammatory insults (e.g. 

surgery, or secondary infection) that can amplify SIRS and precipitate late MODS (moderate insult 

è moderate SIRS è second insult è late MODS). Finally, the "sustained-hit model" postulates 

that a continuous insult (e.g. drug-resistant infection) can both cause and sustain MODS (Moore & 

Moore 1995; Hackett 2011).   

Regardless of the models behind MODS occurrence, a plethora of mechanisms have been proposed, 

involving several mediators (cytokines, reactive oxygen species, nitric oxide), different processes 

(e.g. cellular hypoxia, bacterial translocation, immune dsysregulation, mithocondrial dysfunction) 

and selected organ dysfunctions (e.g. endothelial dysfunction, coagulation abnormalities) promoting 

systemic decompensation through organ cross-talk (Johnson et al. 2004; Abraham et al. 2007; 

Osteburn et al. 2014). In the following chapters the major proposed mechanisms behind MODS in 

the critically ill will be discussed, with a focus on the causes of specific organ dysfunctions and the 

pertinent literature available in veterinary medicine. 

 

4.1 MODS effectors 

Cytokines 

Cytokines synthesis and release characterize the host's innate immune response to a systemic insult, 

which could be infectious or non-infectious in nature. The rate and the type of cytokines release 

depend on the severity of the underlying injury (Visser et al. 2008). Tumor necrosis factor alpha 
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(TNFα), interleukin (IL) 1, IL6, IL10, IL8, high-mobility group box 1 (HMGB1) are some of the 

cytokines occupying important role in the pathogenesis of MODS during systemic illnesses. 

Cytokines patterns have been described in several human and veterinary studies during different 

inflammatory conditions, aiming to understanding the temporal phases of the disease and finding 

novel pharmacological strategies to modulate inflammation (Visser et al. 2008; DeClue et al. 2009; 

DeClue et al. 2012). The link between circulating cytokines levels and MODS development has 

arised from the results of several human studies. In people with trauma, increasing concentrations of 

selected cytokines (e.g. TNFα, IL6, IL10) are significantly associated with late organ failure and 

death (Maier et al. 2007). Similarly, in human patients with postoperative sepsis, high TNFα 

producers tend to develop MODS to a greater extent compared to low TNFα producers (Stuber et al. 

1996). Enhanced IL6 and IL8 concentrations have been correlated with the severity of injury and 

the incidence of organ failure and sepsis in human patients with severe trauma (Visser et al. 2008; 

Maier et al. 2007). The study of cytokine patterns have received attention in veterinary critically ill 

patients, too. Increased concentrations of various cytokines (e.g. IL6, monocyte chemoattractant 

protein-1, IL7, IL15) are well-demonstrated in canine and feline inflammatory diseases (Duffy et al 

2010; Schuttler & Neumann 2015; Karlsson et al. 2012; DeClue et al. 2012; DeClue et al. 2009), 

although their prognostic significance remains unclear (DeClue et al. 2012; Schuttler & Neumann 

2015). A biphasic pattern of cytokines release has been proposed in early human and experimental 

studies, wherein a first hyper-inflammatory phase develops acutely after injury and is characterized 

by the rise of circulating pro-inflammatory cytokines (e.g. TNF, IL6, IL8), and a subsequent late 

hypo-inflammatory period is reported after the 24h postinjury. The latter is mainly mediated by 

other anti-inflammatory cytokines (e.g. IL10), and follows to down-regulate the inflammatory host 

response to injury. However, this state is usually associated with immunoparalysis and immune 

dysfunction (Visser et al. 2008; Maier et al. 2007). The imbalance between proinflammatory 

cytokines and their anti-inflammatory counterpart has been considered as a mechanism for MODS 

development in human and veterinary critically ill patients (Maier et al 2007; Hackett 2011). 
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Cytokines play significant roles as systemic inflammatory mediators. As a result, indiscriminate 

injury concurs to MODS development through a variety of mechanisms, including induction of 

cellular apoptosis, influence on leukocyte function, enhance of endothelial permeability and 

activation of coagulation cascade (Johnson & Mayer 2001). Therapeutic approaches aiming to 

inhibit or modulate the actions of specific inflammatory cytokines have been attempted in 

experimental trials, and potential beneficial effects have been demonstrated in experimental model 

of diseases. However, when the same pharmacological strategies were applied to clinical trials, the 

outcome on clinically meaningful variables remained unclear or even detrimental (Abraham et al. 

2007). Pharmacological interventions targeting specific cytokines are likely to be unsuccessful if 

carried out in spontaneous illness, without the knowledge of the host response phase (hyper vs. 

hypo-inflammatory response) and the multitude of the modulating effects in which cytokines 

themselves are involved. However, novel treatments based on continuous cytokines hemoadsorption 

appear to be beneficial in animal models of sepsis (Kim et al. 2015). Similarly, the use of cytokine 

adsorbing columns seems promising in preliminary studies in critically ill human patiens, as they 

contribute to reduce duration of hypotension and vasopressor supports in people with septic shock, 

preventing additional organ failures (Houschyar et al. 2017).  

 

Nitric oxide and Reactive oxygen species 

Nitric oxide synthase (NOS) is enhanced during systemic conditions like SIRS and sepsis, leading 

to an increase in circulating nitric oxide (NO) concentrations. Circulating NO mainly affects smooth 

muscles relaxation, thus being major effectors for SIRS- and sepsis-induced hypotension and 

cardiocirculatory dysfunction (Abraham et al. 2007). Derangement of calcium and NO production 

are the main mechanisms underlying myocardial dysfunction, as NO is a major circulating 

myocardial depressant factor. Moreover, NO promotes pro-inflammatory pathways and modulates 

cytokines release. In addition, NO promotes the synthesis of hypoxia-inducible factors (HIF) and 

favors the pathways of hypoxia-induced inflammation and organ failure even under non-hypoxic 
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conditions (Hirota 2015). For instance, NO expressed within the brain favors apoptosis in neurons 

and microglial cells, while modulates activity of Na/K-adenosine triphosphatase (ATP) membrane 

pumps in liver cells (Abraham et al. 2007). Finally, NO and its congeners act as potent 

mitochondrial inhibitors, promoting cytopathic hypoxia and consequent variations in cells 

bioenergetic status during critical illness (Brealey et al. 2002). 

Reactive oxygen species (ROS) are unstable highly reactive molecules characterized by one or 

more unpaired electrons in their outer orbitals. They are toxic by-product deriving from 

hypoperfused tissues once blood flow and oxygen supply are restored, hence being considered 

markers of ischemia-reperfusion injury. However ROS production is not limited to ischemia-

reperfusion injury, but can follow non-infectious SIRS (e.g. trauma, pancreatitis) and sepsis (Teng 

et al. 2017; Gaykwad et al. 2017). Because their high electrical activity, ROS can promote a severe 

degree of tissue injury, which can be even worse than hypoperfusion alone, through a variety of 

ways ultimately leading to oxidative stress and cell damage/death. For instance, ROS enhance 

systemic inflammation acting as secondary mediators in the inflammatory cascade. Additionally 

they exert direct cytotoxic effect, are involved in the production of reactive nitrogen and ferric 

oxidant species, and have been described as significant effectors for the development of specific 

organ dysfunction (e.g. lung dysfunction, endothelial dysfunction) (Johnson & Mayer 2001; 

Abraham et al. 2007). Uncontrolled ROS production is a common finding in human patients dying 

from sepsis and trauma, as ROS release leads to cell death, shock and organ failure (Leliefeld et al. 

2016; Teng et al. 2017). The subsequent depletion in anti-oxidant molecules results in 

oxidant/antioxidant imbalance, further worsening the damage inflicted by ROS. In this regard, 

plasma concentrations of ROS-associated biomarkers have been associated with survival in sepsis, 

and anti-oxidant therapies are potentially advocated in critically ills at risk of developing MODS 

(Bime et al. 2016; Johnson & Mayer 2001; Gaykwad et al. 2017). Even if current bundle of care do 

not address the need of specfic antioxidan therapy, the rational of giving anti-oxidant and ROS 

scavenging treatments to critically ills does exist. Recent double-blinded clinical trials in people 
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showed that ascorbic acid (vitamin C) administration was associated with a reduction in organ 

dysfunction scores, inflammatory biomarkers and vasopressor requirements (Teng et al. 2017). A 

recent preliminary study showed potential beneficial results linked to the administration of N-acetyl 

cystein, the precursor of gluthatione and one of the major anti-oxidant molecule of the body, in 

puppies with parvoviral enteritis (Gaykwad et al. 2017).  

 

Leukocytes 

A great body of evidence supports the pivotal role of specific leukocytes patterns and their 

dysfunctions into MODS developing (Cabrera et al. 2017; Liliefeld et al. 2016). Neutrophils are 

considered the first-line effectors of innate immunity against both microbial and non-microbial 

insults. In response to tissue injury, functional neutrophils are capable of chemotaxis, phagocytosis 

and ROS production, and degranulation of antimicrobials substances into the bloodstream (Leliefeld 

et al. 2016). Uncontrolled neutrophils activation is, however, responsible of indiscriminate tissue 

injury and organ failure. Primed neutrophils contribute to ischemia-reperfusion injury through 

excessive ROS elaboration and release, and marginate to end organs causing direct cytotoxic 

effects. Once adherent to the endothelium, primed neutrophils release massive amounts of granules 

containing elastase and proteases that further promote endothelial injury and cellular disruption 

(Moore & Moore 1995; Dewar et al. 2009; Leliefeld et al. 2016). The process of extracellular 

killing through formation of neutrophil-extracellular traps (NETs) has received much interest in 

recent years, and has been implicated in MODS pathogenesis (Leliefeld et al. 2016; Nakazawa et al. 

2017). NETs are constituted of DNA fibrils, chromatin and proteins derived from a peculiar 

mechanism of neutrophils death called NETosis. NETosis occurs in response to a variety of 

inflammatory stimuli, and NETs possess important antimicrobial functions that help in infections 

control. However, their excessive and/or inappropriate production has been associated with local 

and distant organ damage. NETs have cytotoxic components able to induce ongoing inflammation, 

local cellular necrosis and apoptosis. In turn, necrotic cells further promote neutrophils to undergo 
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NETosis. Finally, injured organs release NETs and their cytotoxic components into the 

bloodstream, promoting also systemic inflammation and distant organ injury (Nakazawa et al. 

2017).  

Other than causing overwhelming and uncontrolled inflammation leading to local and remote tissue 

damage, leukocytes can also express dysfunctional phenotypes. Disruption of immunity can affect 

neutrophils in critically ills by means of a variety of mechanisms (e.g. inefficient chemotaxis; 

downregulation of signalling pathways necessary for pathogen recognition; defective phagocytosis; 

suppression of the physiological adaptive immunity), and incompetent neutrophils contribute to 

immunoparalysis and its sequele (e.g. nosocomial infections) (Leliefeld et al. 2016; Hotchkiss et al. 

2013). Local conditions like oxygen-tension and tissue levels of antioxidants affect the cellular 

immune response, thus reducing the proliferation and the respiratory burst of peripheral blood 

lymphocytes and monocytes, respectively. Experimental data in septic mice reveal specific gene 

expression profiles of immune cells, that can either be organ specific or common to more than one 

organ, suggesting the phenomenom of leukocyte reprogramming as the inciting event toward 

anergy and immunoparesis (Abraham & Singer 2007). 

Persistent severe inflammation might also lead to bone marrow exhaustion, with the subsequent 

marked release of immature neutrophils into the circulation. Few experimental and human studies 

demonstrated that immature neutrophils have impaired microbicidal functions. Other than reduced 

phagocytic capacity, immature neutrophils possess abnormal rheological properties, hence they can 

accumulate in specific microvasculature sites promoting blood sludging, microcirculatory 

impairment and local organ dysfunction (Leliefeld et al. 2016; Poschl et al. 2005). The number of 

immature granulocytes has been associated with disease severity and worse outcomes in people 

with sepsis (Mare et al. 2015). Although no veterinary study has addressed the role of leukocyte 

patterns and functions to MODS occurrence, there is preliminary evidence suggesting that 

leukocyte phenotypes influence illness progression and final outcome. Presence of a degenerative 

left shift (supranormal number of immature granulocytes exceeding the number of mature 
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neutrophils) has been associated with worse outcomes in dogs and cats regardless of the underlying 

disease process (Burton et al. 2013; Burton et al. 2014), and functional defects in leukocytes have 

been demonstrated in sick dogs (Klenner et al. 2010; LeBlanc et al. 2013). 

 

4.2 Effects: major drivers for MODS  

There is evidence that a combination of different processes originates MODS in critical illness. 

Cellular hypoxia, bacterial translocation, immune dysregulation and mitochondrial dysfunctions are 

recognized as the main pathophysiological mechanisms underlying organ-specific dysfunction. 

Emerging evidence, however, suggests that immune system dysregulation and mitochondrial 

dysfunctions have major roles in MODS development (Osteburn et al. 2014). 

 

Cellular hypoxia 

Multiple organ injury and shock usually coexist in experimental and clinical models of MODS, 

pointing out the role of sustained cellular hypoxia as a driver force promoting organ failure (Moore 

& Moore 1995). The balance between oxygen distribution (DO2) and oxygen consumption (VO2) 

characterizes cells in the healthy. Systemic inflammation and sepsis are characterized by the 

uncoupling between DO2 and VO2 promoting tissue hypoxia and organ dysfunction (Moore and 

Moore 1995). 

There is a large body of evidence postulating hypoxia as both the consequence and the cause of 

systemic inflammation and organ failure. Hypoxia in the context of SIRS and sepsis recognizes 

several causes, including microvascular dysfunction, decreased blood and oxygen supply, impaired 

mithocondrial function and failure for tissues to extract and use oxygen properly (Hirota 2015) 

(Figure 1). However, tissue hypoxia during inflammation is not a simple bystander process, but it is 

actively involved in enhancing or attenuating inflammation itself and favoring organ dysfunction. 

Cells adapt to sustained tissue hypoxia by the transcription of hypoxia-inducible factors (HIF). In 
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addition, and as stated before, HIF induction can be promoted also under non-hypoxic conditions 

through several inflammatory mediators including NO, ROS and cytokines (Hirota 2015). 

 

Figure 1. In SIRS and sepsis regulation of oxygen delivery is abnormal. Blood supply and oxygen distribution 

can be altered, and tissues and organs fail to use oxygen. Responses to hypoxia induce dysregulation in organ 

function (modified from Hirota 2015).  

 

HIF are key regulator of hypoxia-induced inflammation: they modulate leukocyte patterns and 

function, and crosstalk with tissue factors (e.g. NF-kB) to modulate inflammation and oxygen 

homeostasis at tissue levels (Hirota 2015).  

Hypoxia and its mediators mainly contribute to MODS development through endothelial cells 

activation: because endothelial cells line the vascular lumen, they are the first to experience the 

effects of blood composition alterations, including reduction in oxygen content and blood supply. 

However, compared to the cells constituting other body systems, the endothelial ones are 

particularly capable of adaptation during hypoxic states. Indeed, the endothelial physiologic 

response to hypoxia is called endothelial activation, and is characterized by endothelial 

constrinction (thus systemic vasoconstrinction), development of procoagulant tendencies and 

further enhance in the inflammatory pathway by means of cytokines release and leukocytes 

activation. Although protective at the cellular level, systemic endothelial activation triggered by 
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hypoxia is dramatically deleterious, and plays a significant role in organ failure and death, and 

hence be maladaptive (Ten and Pinsky 2002). 

 

Bacterial translocation 

Initially MODS was thought to be the result of uncontrolled systemic infection (Mongardon and 

Singer 2009; Seely and Christou 2000). However, infection as the unique etiology for MODS was 

not in accordance with the various non-infectious causes of organ failure (e.g. trauma, pancreatitis, 

burns) and the lack of identifiable microrganisms in the affected patients (Mongardon and Singer 

2009; Seely and Christou 2000; Johnson & Mayer 2001). The unifying theory of uncontrolled 

infection recognized the gut as a potential source of circulating infectious agents and/or bacterial 

products. The gut is normally colonized by an overwhelming number of aerobic and anaerobic 

bacteria, and bacterial translocation occurs in a variety of physiological and pathological conditions. 

The liver, which receives a third of its blood supply from the portal circulation, is mainly involved 

in the processes of microbes and toxins clearance. This explains why bacterial translocation is well-

described in the healthy, and usually has limited prognostic implication in conditions of mild/short-

term disease (Sertaridou et al. 2015; Unterer et al. 2015; Dahilinger et al. 1997). As examples, 

bacterial translocation has been described in canine diseases such as acute hemorragic diharrea 

syndrome and gastric dilatation/volvulus, but no association with illness severity and outcome was 

documented (Unterer et al. 2015; Winkler et al. 2003). However, in the presence of dysregulated 

immune function and/or immunoparalysis, liver hypo-function and altered gut environment, 

bacterial translocation could be the inciting insult for MODS (Sertaridou et al. 2015; Klingensmith 

& Coopersmith 2016). Several factors sustain the hypothesis of the gut as a driver for MODS: 

decreased gut perfusion, damage and disruption of the intestinal barrier, gut cells apoptosis, 

abnormal bowel movements and gut hypomotility, gut microbiome alterations, might favor 

translocation of bacteria and their toxic products into the systemic circulation, promoting a "second 

hit" that augments the initial injury (Johnson & Mayer 2001; Sertaridou et al. 2015; Klingensmith & 
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Coopersmith 2016). The lack of a repeatable isolation of bacteria into the mesenteric lymphnodes 

(thus of a consistently demonstrable bacterial translocation) (Sertaridou et al. 2015; Moore et al. 

1991) arose the theory of "gut-derived sepsis": microbial and non-microbial bacterial products are 

able to translocate from the intestinal tract, reach the lymphatic flow and be motors of sustained 

SIRS and distant organ damage (Sertaridou et al. 2015; Klingensmith & Coopersmith 2016). 

Several investigations support the toxic role of these non-bacterial proinflammatory mediators 

(mainly proteins and lipid factors) in promoting sepsis and MODS during critical illness: in 

experimental models of critical disease, ligation of the mesenteric lymphatic duct abrogates lung 

injury and prevents mortality. Interesting novel lines of therapies promoting the restoration of 

normal gut environment have been proposed in the ICU. Use of prebiotics and probiotics, early 

enteral nutrition, fecal transplant and selective gut decontamination through the use of short-course 

antimicrobial treatments showed promising results in large human trials and metanalyses, even if 

they have not yet modified the standard of care (Sertaridou et al. 2015; Klingensmith & 

Coopersmith 2016). 

 

Endothelial activation 

Impairment in endothelial functions occurs during systemic inflammation and sepsis, and is thought 

to be a key factor in MODS development. The endothelial cell lining (ECL) constitutes the interface 

between blood and parenchymal cells, and is essential for the regulation of coagulation, vasomotor 

tone, osmotic balance, solute transport, immunological functions and trans- and intra-cellular 

signaling. Thus, failure of the ECL is critical for the progression to MODS (Ince et al. 2016). The 

endothelial cytoskeleton and the glycocalyx, a gel-like layer lining the luminal membrane of the 

ECL, mediate the vascular barrier function, leukocyte adhesion, hemostasis control and 

transmission of shear stress. Cytokines, ROS and different inflammatory mediators instigate 

glycocalix shedding and disruption, and contribute to failure in endothelial functions. For instance, 

loss of vascular barrier favors tissue edema, which reduces microvascular perfusion and damages 
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the glycocalyx layer itself. Additionally, endothelial activation results in a procoagulant state 

leading to disseminated microvascular thrombosis and local organ ischemia. Glycocalyx shedding 

exposes adhesion molecules for platelets and leukocytes, which can transmigrate into the 

parenchyma and participate in loss of tissue function. Finally, endothelial disruption causes loss of 

miogenic responses at the vascular level, promoting vasoplegia and hypotension (Abraham & 

Singer 2007; Mikacenic et al. 2015; Ince et al. 2017). Collectively, these changes likely evolved as 

an adaptive host response to sterile insults and/or extravascular pathogens, allowing for increased 

blood supply and leukocyte and protein efflux to the affected area. This state may be considered 

dysfunctional, when an overactive endothelium impairs homeostasis instead of restoring it (Shapiro 

et al. 2010).  

Circulating biomarkers of endothelial activation are currently available for prognostic purpose in 

human patients with systemic inflammation. In a recent study involving a large cohort of people 

with SIRS of both infectious and non-infectious causes, markers of inappropriate endothelial 

activation/dysregulation were independently linked to ongoing inflammation, development of shock 

and MODS, pointing to their contribution to SIRS-related organ dysfunction and death (Mikacenic 

et al. 2015).  

An activated endothelial phenotype has been demonstrated in animal models of sepsis, as well as in 

spontaneous diseases, further supporting the role of endothelial dysregulation in SIRS and sepsis 

patophysiology (Shapiro et al. 2009; Shapiro et al. 2010; Kules et al. 2017). An increase in Von 

Willebrand factor antigen concentration, a possible marker of endothelial activation, was 

documented in dogs with sepsis (Rogers & Rozanski 2010). Similarly, circulating markers of 

endothelial activation were reported in systemic canine diseases like babesiosis and gastric dilation 

volvulus, and were associated with disease severity and survival (Uhrikova et al. 2015; Kules et al. 

2017). 
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Mitochondrial dysfunction 

Mitochondrial respiration through oxidative phosphorylation represents the main cellular process 

for energy production in form of adenosine triphosphate (ATP) molecules. ATP availability, in turn, 

is the major rate-limiting step of cellular metabolism (Brealey et al. 2002; Singer et al. 2004). While 

oxidative phosphorylation is increased in the acute phases of critical illness, it is reported to fall 

dramatically in presence of ongoing inflammation (>12-16 hours) (Singer et al. 2004). The fall in 

mitochondrial respiration usually occurs in the presence of normal arterial oxygen content and 

oxygen delivery, stating the inability for the cells to use oxygen properly (inappropriate VO2 despite 

normal DO2) (Papathanassoglou et al. 2008). These changes in mitochondrial function are 

prominent for MODS development, and happen under specific circumstances due to the effects of 

inflammatory, endocrine and metabolic abnormalities (Singer et al. 2004). Various experimental 

animal studies demonstrate mitochondrial alterations in response to several inflammatory 

mediators, including NO, ROS and cytokines. In other studies severe hypoxia, rather than 

inflammation, acts as the main driver for mitochondrial dysfunction through microcirculatory 

impairment and shock (Brealey et al. 2002; Singer et al. 2004; Kozlov et al. 2017). The influence of 

hormones on mitochondrial function has recently been recognized: low thyroid hormones reduce 

ATP synthesis and slow cellular metabolism, thus the non-thyroidal illness syndrome of the 

critically ill might be associated with a decreased, albeit more efficient, mitochondrial respiration. 

Similarly, hypercortisolemia associated with chronic or intermittent illness is reported to cause 

mitochondrial dysfunction (Singer et al. 2004). 

The process of mitochondrial shut-down is triggered by induction of ultra-structural mitochondrial 

changes such as swelling, hyperthrophy and inhibition of mitochondria respiratory enzymes (Singer 

et al. 2004; Kozlov et al. 2017). Moreover, designated pathways of mitochondrial suicide are 

activated, leading to the opening of holes into the inner mitochondrial membrane and the 

subsequent release of mitochondrial DNA (mDNA) (Papathanassoglou et al. 2008). Even in those 

studies where electron microscopic examination of mitochondria is normal, signs of cellular 
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damage (e.g. intracellular vacuoles) indirectly linked to mitochondrial dysfunction are present. 

However, species-specific differences are reported, wherein cats and pigs seem to be particularly 

predisposed to mitochondrial dysfunction after endotoxin inoculation, while rodents are reported to 

be more resistant (Kozlov et al. 2017). 

The issue of mitochondrial dysfunction as a causative mechanism for MODS or a simple 

epiphenomenal process is still unsolved. The fall in oxidative phosphorylation reduces ATP 

availability and profoundly modifies the bioenergetic status of the cells. In this regard, experimental 

and clinical studies in both humans and animals consistently show a reduction in tissue ATP supply 

that is associated with organ failures and worse outcomes (Brealey et al. 2002; Kozlov et al. 2017). 

Mitochondria are also a significant source of ROS, and mitochondrial ROS have been implicated in 

the genesis of acute liver failure during critical illness (Kozlov et al. 2017). To further support these 

statements, desensitization of the mitochondrial permeability pore prevents cellular apoptosis and 

liver damage induced by TNFα administration (Soriano et al. 2004; Kozlov et al. 2017). 

Interestingly, mitochondrial dysfunction is a reversible process. Hence the hypothesis that cellular 

metabolic shut-down and changes in ATP turnover might be seen as attempts by the body to cope 

with severe critical illness and ensure cell survival (Singer et al. 2004). 
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4.3 Organ cross-talk in MODS developement 

One of the first uses of the term MODS in human medicine came in the late 70s to describe the 

progressive failure of several organ systems following an acute overwhelming systemic insult. At 

that time it was already emphasized that failure of one organ system could cause dysfunction of 

others (Baue 1975). The intricate cross-talk provided by temporal changes in inflammatory 

mediators, hormones, metabolities and oxygen delivery and utilization is behind the interaction 

between different organ systems (Abraham et al. 2007). 

The brain plays an essential role in MODS development through the field of organ cross-talk, as 

direct or differed damage of the central nervous system has detrimental effects on remote organ 

functions. In this regard, significant brain injury in people is related with development of respiratory 

failure, acute kidney injury, hemodynamic instability and sepsis (Junior & da Silva 2014). Brain 

injury-triggered sympathetic activation and release in neurokinins and neuropeptides are thought to 

mediate brain-induced MODS by favoring systemic vasoconstrinction and hypertension, endothelial 

damage and leukocyte adhesion (Quìlez et al., 2012) (Figure 2). On the other hand, distant organ 

damage could enhance neurologic complications (e.g. uremic and hepatic encephalopathy in the 

context of AKI and hepatic failure, respectively) and worsen the prognosis of primary neurologic 

injuries (Doi & Rabb 2016, Junior & da Silva 2014) 

 

Figure 2. Schematic rappresentation of organ crosstalk during acute lung injury and mechanical ventilation 

(modified from Quìlez et al. 2012).  
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Multiorgan failure could also be analyzed from the "heart perspective", since cardiovascular 

function is the major driver of cardiac output (CO) and hence DO2 at tissue level. The occurrence of 

both systolic and diastolic cardiac dysfunction increases mortality in several critical care human and 

veterinary settings (Donati et al. 2016; Hamacher et al. 2015; Kokaturk et al. 2012), and evidence of 

myocardial damage has been associated with development of new organ failure and worse 

outcomes in ICU (Wu et al. 2004; Hamacher et al. 2015; Langhorn et al. 2013). Cardiac dysfunction 

promotes distant organ failure through different mechanisms resulting in hypoperfusion and 

inadequate oxygen supply. The cardiocirculatory and the pulmonary systems are tightly 

interconnected: in this regard, left cardiac dysfunction favors congestive pulmonary edema, while 

presence of pulmonary hypertension in the context of respiratory dysfunction and ARDS reduces 

cardiac performances and causes acute cor pulmonare and right cardiac failure (Donati et al. 2016). 

The terms cardio-renal and cardio-hepatic syndromes fully underline the bidirectional interactions 

between the heart and distant organ systems. For instance, acute kidney injury can occur secondary 

to acute cardiac diseases when cardiac output and renal blood supply is abruptly reduced (e.g. 

hypovolemic shock). Similarly, increased venous pressures during cardiac overload are recognized 

as a risk factor for AKI in critically ill people (Legrand et al. 2013; Donati et al. 2016; Doi & Rabb 

2016; Orvalho & Cowgill 2017). AKI in the context of hemodynamic instability has been 

occasionally described in small animals (Vaden et al. 1997, Cowgill & Langstone 2011; Ross 2011; 

Buckley et al. 2017). On the other hand, cardiac arrhythmias and myocardial injuries commonly 

occur in canine AKI (Keller et al. 2016; Orvalho & Cowgill 2017). 

Conditions of both decreased visceral blood supply (low cardiac output) and venous congestion 

(elevated right-filling pressures) can affect splanchnic perfusion and induce liver and gut 

impairment (Donati et al. 2016). 

Results from experimental studies and significant epidemiologic data link kidney-lung interaction in 

critically ill patients. For instance, AKI is extremely common in people with ARDS, where 

increased circulation in inflammatory cytokines and proapoptotic factors might be responsible for 



 38 

AKI and MODS occurrence. The systemic effects of the biotrauma induced by mechanical 

ventilation further contribute to hormonal and hemodynamic patterns modifications promoting renal 

damage (Qulez et al. 2012). Presence of renal failure, in turn, promotes lung injury through a 

variety of mechanisms, including the increase in lung capillaries permeability, leukocyte adherence 

and infiltration, inflammatory cytokines and chemokines expressions (Doi & Rabb 2016). The 

occurrence of AKI in the course of systemic diseases and distant organ failures is still not well 

documented in veterinary patients. A recent retrospective study reported a common incidence of 

pulmonary abnormalities and respiratory dysfunction in dogs with acute azotemia (Le Boedec et al. 

2012), and the overall attention on kidney injury and concomitant MODS has been arised in small 

animal practice (Hoareau et al. 2017; Keir & Kellum 2015). 

The spleen too has been recently recognized as a player into the complex framework of organ cross-

talk: specifically, the spleen is part of the reticuloendothelial system responsible for host defense. 

Potential protective roles of the spleen emerged in the context of experimentally-induced ischemic 

AKI, as splenectomy before ischemic AKI induction was associated with higher renal damage. 

Additionally, vagal nerve activation through the splanchnic cholinergic pathway ameliorated 

inflammation and reduced organ damage in experimental models of sepsis, and novel ultrasound 

technologies targeting the cholinergic anti-inflammatory pathways might have a role in modulating 

inflammation and MODS development (Doi & Rabb 2016; Gigliotti & Okusa 2014). 

The interplay between coagulation abnormalities and microcirculatory dysfunction has been 

highlighted from experimental and human data, and development of disseminated intravascular 

coagulation is thought to have a dominant role in the pathogenesis of organ failure. Microvascular 

thrombosis occurring during the hypercoagulable phase of disseminated intravascular coagulation 

contributes to reduce tissue perfusion, while thrombocytopenia and coagulation factors 

consumption put critically ill patients at risk of bleeding episodes. Additionally, many anticoagulant 

proteins such as antithrombin and protein C modulate inflammation and influence leukocytes 

functions. The cross-talk between inflammation and coagulation is actively mediated by endothelial 
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cells activation: up-regulation of tissue factor leads to local thrombin generation and fibrin 

deposition in the liver, intestine, kidney and lungs, ultimately contributing to local organ 

dysfunction (Levi et al. 2012).  

Liver is particularly susceptible to inflammation, and is one of the first organ to experience damage 

and dysfunction in the setting of SIRS. Liver dysfunction, in turn, is associated with encephalopathy 

and cerebral edema, coagulopathy, renal and respiratory failure and cardiovascular instability, 

supporting the hypothesis of liver-induced multiorgan failure in the context of critical illness 

(Kozlov et al. 2017). For example, both acute and chronic liver failure is associated with AKI 

development (hepato-renal syndrome) by splanchnic vasodilation and vasoconstriction of the renal 

vascular bed, hence promoting renal hypoperfusion (Doi & Rabb 2016). 

Gut functions and gut-microbiome have a tremendous impact on the well-being of other organ 

systems. Gut-derived bacterial and non-bacterial factors could incite SIRS and MODS in 

predisposed patients, as already discussed in the chapter above. Alteration in gut-microbiome (e.g. 

dysbiosis) have been linked with the bloodstream release of uremic toxins contributing to 

progression of kidney injury, as well as with development of nephropathies with an immune-

mediated pathogenesis (e.g. IgA nephropaty, lupus nephritis) (Khodor & Shatat 2017). Occurrence 

of endotoxemia has been demonstrated during canine parvovirus infection (Isogai et al. 1989; Turk 

et al. 1990; Otto et al. 1997), and histological evidence of pulmonary alveolitis was documented in 

a significant percentage of puppies affected by the disease (Turk et al. 1990).  

Even iatrogenic interventions supporting the function of one organ system might cause significant 

distant-organ impairment. Mechanical ventilation with high-PEEP setting, which has long been 

advocated to support pulmonary function during ARDS, has noticeable hemodynamic effects, as the 

positive intrathoracic pressures lower CO and reduce myocardial performances, thus negatively 

affecting preload, afterload and contractility (Donati et al. 2016, Quìlez et al. 2012). Moreover the 

biotrauma caused by mechanical ventilation has been deemed responsible for the systemic 

bloodstream release of inflammatory mediators and proapoptotic factors inciting distant organ 
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failure (Quìlez et al. 2012). Similarly, despite catecholamines are cornestore therapies in the 

treatment of refractory hypotension in septic shock patients, they have negative non-hemodynamic 

biologic effects on immune status, mitochondrial function and tissue oxygen requirements. 

Particularly, catecholamines aggravate hypermetabolism resulting in hyperglicemia and 

hyperlactatemia, increase oxygen tissue demand, promote immunosuppression, reduce splanchinc 

perfusion and gastrointestinal motility (Hartmann et al. 2017). 
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5. Specific organ dysfunction  

The most commonly affected organ systems during MODS are the respiratory, cardiocirculatory, 

renal, coagulation system, central nervous, hepatic and gastrointestinal systems. In some instances, 

other organ systems including the musculoskeletal and the endocrine systems may be involved 

(Johnson et al. 2004). An in-detail description of specific organ system dysfunction during systemic 

diseases is given below, with significant reminds to the available veterinary literature.  

 

Respiratory dysfunction 

Lung damage and dysfunction in the course of systemic disease is documented in people and 

animals and described using the term "ARDS" (Acute Respiratory Distress Syndrome). 

Specifically, ARDS is defined as acute lung insufficiency characterized by diffuse bilateral alveolar 

infiltrate, decreased pulmonary compliance and moderate to severe hypoxemia (PaO2/FiO2 ratio < 

300) in the absence of left-sided heart failure or circulatory overload (Ranieri et al. 2012; 

Confalonieri et al. 2017). The hallmarks of ARDS are neutrophil infiltration of the lung, damage of 

alveolar-capillary barrier and vascular leakage. Subsequent accumulation of rich-protein edema into 

the alveoli and the systemic release of pro-inflammatory mediators contribute to the exudative 

phase, impair the gas exchange and enhance pneumocytes disruption. The proliferative phase 

follows after several days through progressive fibrotic tissue formation into the fluid-filled alveoli. 

Pulmonary thromboembolism and transient pulmonary hypertension might develop. Mechanical 

ventilation represents the cornerstone of ARDS treatment, aiming to improve the degree of 

hypoxemia, recruit atelectic lung and reduce the work of breathing. Protocols based on protective 

ventilation strategies are currently employed to minimize the trauma associated with positive 

pressure ventilation and the development of ventilator-associated acute lung injury in humans. 

These include the use of low tidal volumes, higher positive-end expiratory pressures and permissive 

hypercapnia. Non-invasive ventilation (NIV) and continuous positive airway pressure (CPAP) have 

been contemplated for the early management of patients with ARDS, but their routine use is 
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controversial. Protective ventilation has significantly improved outcomes of people suffering from 

ARDS. The mortality rate reported, however, is still high, reaching an average of 60% in the elderly 

patients. Nonetheless, many human patients recovering from ARDS do not exhibit signs of long-

term pulmonary compromise (Brower et al. 2000; Rubenfeld et al. 2005; Confalonieri et al. 2017). 

Data regarding prevalence and prognosis of veterinary patients with ARDS are scant. According to 

the results of a necropsy-based study in dogs, ARDS was associated with both pulmonary and 

extra-pulmonary diseases like pulmonary contusions, bacterial pneumonia, sepsis, gastric dilatation 

volvulus and shock. Clinical correlates of human ARDS were identified in some of the included 

dogs (Parent et al. 1996). In 2007, the first clinically based veterinary consensus definitions on 

ARDS and ALI (Acute Lung Injury) were published (Wilkins et al. 2007) (Table 1). The clinical 

application of such criteria was the topic of a recent retrospective study conducted in dogs and cats 

presenting for or developing peracute onset of severe hypoxemia. A plethora of risk factors for ALI 

or ARDS were identified in this setting including SIRS, pneumonia, multiple transfusions, trauma 

and adverse drug reactions. In mechanically ventilated patients, the median tidal volumes used were 

generally higher than the ones deemed to be lung-protective in people. An overall survival rate of 

10% was documented in the study, with euthanasia due to financial constraint and poor prognosis 

accounting for the majority of the deaths in both species (Balakrishnan et al. 2017). The elevated 

costs associated with mechanical ventilation and the need for high-level intensive care support 

account for the lack of ARDS systematic description in veterinary medicine, and hamper the 

accurate evaluation of its prognosis. Additionally, no study addressing the benefits of protective 

ventilator strategies has been published in small animals. 
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Table 1. Diagnostic criteria for ALI and ARDS in small animals (modified from Wilkins et al. 2007).  

 

Cardiocirculatory dysfunction 

Cardiovascular dysfunction is a severe complication of MODS in people, and is generally 

evidenced by hypotension despite adequate fluid resuscitation, requiring vasopressors or inotropic 

treatment. When fluid-refractory hypotension occurs during sepsis this condition is referred to as 

septic shock (Vincent et al. 1998; Kakihana et al. 2016; Silverstein & Beer 2015). The hallmarks of 

cardiovascular dysfunction during MODS are myocardial depression and reduction in systemic 

vascular resistance (SVR). Cardiac contractility could be altered in the course of SIRS and sepsis, 

leading to ventricular dilatation, reduced left ventricular ejection fraction, and ultimately reduced 

cardiac output and hypotension. Several inflammatory mediators including TNF-α, NO, platelet 

activating factor, oxygen free radicals and arachidonic acid metabolites have been implicated in 

myocardial depression. The fall in SVR is primarily due to the effects of vasodilating mediators 

such as NO, histamine, prostaglandins and various cytokines, and is clinically apparent with clinical 

signs of distributive shock (Vincent et al. 1998). However, pathophysiology of septic shock 

comprises both warm and cold types. The early phase of septic shock is called hyperdynamic, being 

characterized by high cardiac output, low SVR and warm extremities. In the late phase hypotension 
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occurs, followed by a reduction in cardiac output, poor peripheral perfusion, cold extremities and 

finally death. Notably, ejection fraction is lower and end-diastolic volume is higher in survivors, 

compared to non-survivors of shock, suggesting that ventricular dilation might be compensatory in 

order to maintain adequate cardiac output and protect against myocardial depression (Kakihana et 

al. 2016). Cardiocirculatory dysfunction carries a poor prognosis in people with sepsis and MODS, 

as it is associated with a mortality rate of 70-90% compared to septic patients without 

cardiovascular impairment (Kakihana et al. 2016).  

Microcirculatory alterations further contribute to the impaired cellular oxygen metabolism 

occurring in the context of cardiovascular dysfunction. The first imbalance between oxygen 

distribution (DO2) and oxygen demand (VO2) is due to increased oxygen demand and reduced 

supply. In this first stage, however, oxygen extraction is increased at the tissue level, and DO2 and 

VO2 remain independent. As DO2 falls further (e.g. with a reduction in cardiac output) and a critical 

DO2 is reached, VO2 becomes DO2 dependent, and blood lactate levels rise reflecting tissue 

hypoperfusion and anaerobic metabolism (Vincent et al. 1998). Despite hypotension is generally 

included in the diagnosis of septic/distributive shock, preserved blood pressure can be associated 

with markers of tissue hypoperfusion and microcirculatory abnormalities like increased lactate 

levels and reduced central venous oxygen saturation (ScvO2). Hence, shock has been re-defined as a 

life-threatening generalized form of acute circulatory failure characterized by decreased oxygen 

utilization by the cells (Cecconi et al. 2014).  

Once appropriate volume resuscitation has been performed, hemodynamic stabilization in the 

context of septic shock is usually addressed with inotropes and vasopressors administration 

(Cecconi et al. 2014). In agreement with the 2012 Surviving Sepsis guidelines, norepinephrine is 

the first-choice vasopressor followed by epinephrine and low-dose vasopressin (Dellinger et al. 

2012). A definitive consensus regarding the role of novel inotropic agents (e.g. levosimendan), 

beta-blockers and vasodilator therapy during septic shock is not currently available in people 

(Kakihana et al. 2016; Correa et al. 2017). 
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Myocardial dysfunction and shock have been accepted as one of the most important manifestations 

of sepsis in small animals, too (Bulmer et al. 2011; Osteburn et al. 2014). Critical-illness induced 

left ventricular dysfunction has been described in dogs without primary heart disease, mainly 

affected by sepsis and cancer, and is reported to be reversible (Nelson et al. 2006; Dickinson et al. 

2007). Evidence of myocardial injury reflected by increased cardiac troponins has been described in 

dogs with pyometra, as well as in dogs with various causes of systemic inflammation, and predicts 

poor prognosis (Hagman et al. 2007; Langhorn et al. 2013). Similarly, a study including 43 puppies 

diagnosed with parvoviral enteritis documented a more significant reduction in diastolic and 

systolic function and increased cardiac biomarkers in non-survivors compared to survivors 

(Kocaturk et al. 2012). 

Reported mortality rate of septic dogs suffering from cardiocirculatory dysfunction is as high 80-

90%, with increased mortality being associated with a greater number of vasopressors (Kenney et 

al. 2010; Conti-Patara et al. 2012; Osteburn et al. 2014; Ateca et al. 2014; Gravelyn & Guillaumin 

2016). Literature regarding cardiovascular dysfunction is lacking in cats. Relative bradycardia 

seems to be a peculiar manifestation of shock in cats, but its prognostic significance is controversial 

(Osteburn et al. 2014; Klainbart et al. 2017). There is still insufficient data to provide conclusions 

regarding vasopressor choices in animals with naturally occurring septic shock (Silverstein & Beer 

2015). 

 

Hepatic dysfunction 

Hepatic dysfunction is frequently detected in the context of MODS and is usually defined as 

progressive hyperbilirubinemia associated with increased liver enzymes (Johnson et al. 2004; 

Nesseler et al. 2012). Assessing liver dysfunction during critical illness, however, is challenging, as 

neither static nor dynamic tests can be considered as gold standard. Development of liver 

dysfunction has several negative consequences during critical illness: aminoacid synthesis and 

glucose release are impaired; additionally, coagulopathy may be profound and become clinically 
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significant. Besides its metabolic functions, the liver is also involved in the immune system 

activation and contributes to host defense and tissue repair during SIRS and sepsis. Thus, bacteria 

scavenging and detoxification are compromised leading to bacteremia, infections and 

immunosuppression. In septic people with MODS, liver dysfunction might present with two 

different clinical features: hypoxic hepatitis as a consequence of hepatocellular hypoperfusion, and 

sepsis-induced cholestasis (Nesseler et al. 2012; Osteburn et al. 2014). Similarly, in experimental 

models of canine endotoxemia, liver hystopathology suggested ischemia as the trigger for hepatic 

injury (Manson et al. 1981). Despite criteria to define hepatic dysfunction differ between studies, 

the occurrence of liver dysfunction is reported in veterinary patients with MODS. Its overall 

incidence ranges between 30 and 70% in canine sepsis, with a controversial prognostic significance 

(Kenney et al. 2010; Osteburn et al. 2014; Bush et al. 2016). Hyperbilirubinemia is also a common 

finding in cats with sepsis, and has been associated with worse outcomes during this syndrome 

(Brady et al. 2000; Klainbart et al. 2017; Troìa et al. 2017). 

No specific recommendation is currently available to treat hepatic dysfunction during critical illness 

and sepsis in people and animals. Avoidance of drugs inducing cholestasis or hepatocellular 

damage, early enteral feeding and therapy with ursodeoxycholic acid, which has choleretic, 

cytoprotective and immunomodulatory properties, could be used to treat sepsis-induced cholestasis 

(Nesseler et al. 2012). 

 

Gastrointestinal dysfunction 

The gastrointestinal system is a target organ for injury during critical illness, and gastrointestinal 

motility is frequently affected by systemic diseases. Commonly reported gastrointestinal motility 

disorders in critically ill humans and animals include esophageal dysmotility, delayed gastric 

emptying, ileus and colonic motility abnormalities. Despite a reported incidence ranging between 

50 and 60% in humans, the exact frequency of overall gastrointestinal dysfunction in people is 

difficult to gauge compared to other forms of organ dysfunction, due to lack of clear definition and 
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diagnostic criteria. In humans, gastrointestinal dysfunction predisposes to hyporexia or anorexia, 

intolerance to enteral feeding, diarrhea, increased gut permeability and bacterial translocation, 

contributing to prolonged ICU stay and mortality (Chapman et al. 2007; Whiteheat et al. 2016). 

Additional reported consequences of gastrointestinal dysmotility include esophageal reflux and 

aspiration, development of gastric ulceration, bacterial overgrowth, fluid sequestration into the 

gastrointestinal tract, electrolyte abnormalities and delay of nutritional delivery (Chapman et al. 

2007; Osteburn et al. 2014; Whitehead et al.2016).  

The prevalence of gastrointestinal dysfunction in critically ill dogs and cats has not been reported. 

Its occurrence, however, is thought to be common in both experimental and spontaneous models of 

systemic diseases (Johnson et al. 2004; Ostburn et al. 2014). In addition, the gastrointestinal tract is 

considered to be one of the shock organs in dogs (Hackett 2011). Plasma citrulline concentration 

has been proposed as a reliable marker of global enterocyte mass in people. A recent canine study 

reported decreased plasma citrulline concentration in dogs with parvoviral enteritis compared to 

control dogs, suggesting severe gastrointestinal damage associated with the disease (Dossin et al. 

2011). Similarly, markers of increased gut permeability have been reported in critically ill dogs with 

trauma, parvoviral enteritis and necrotizing pancreatitis (Streeter et al. 2002; Mohr et al. 2003; Chen 

et al. 2004). The prognostic implication of gastrointestinal damage and dysfunction in critically ill 

veterinary patients, however, remains controversial (Dossin et al. 2011). 

Treatment for gastrointestinal dysfunction is mainly supportive, and include early enteral feeding, 

use of prokinetics and multi-modal pain control (Mohr et al. 2003; Chen et al. 2004; Whitehead et 

al. 2016). 

 

Renal dysfunction 

Acute kidney injury (AKI) is a severe complication of sepsis and MODS in critically ill people. 

AKI occurrence in the ICU is extremely common in humans, with septic AKI accounting for 

approximately the 50% of all AKI diagnosed in the ICU (Bellomo et al. 2017). Diagnosis of AKI in 
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people relies on clinical assessment, measurement of urinary output and relative or absolute changes 

in serum creatinine (Kellum et al. 2013). Pathophysiology of AKI in the context of MODS is poorly 

defined, due to the lack of consistent findings in experimental and clinical studies, and the paucity 

of renal biopsies performed during the acute setting. Renal ischemia and acute tubular necrosis are 

documented only in the minority of cases; on the other hand, renal blood flow is usually normal or 

increased during systemic inflammation and sepsis. Apoptosis of renal tubular cells, local 

microcirculatory dysfunction, inflammatory and immunological factors concur to incite and 

promote AKI in the course of critical illness. Moreover nephrotoxic drugs, overzealous fluid 

therapy, hypoalbuminemia, electrolyte abnormalities and distant organ injuries further predispose 

the critically ill patient to AKI development (Lunn et al. 2011; Antoniotti et al. 2016). Despite being 

associated with a significant increase in morbidity and mortality, AKI is usually completely 

reversible in people surviving sepsis and MODS (Kellum et al. 2013; Antoniotti et al. 2016). 

There is limited information on AKI as a component of MODS in veterinary patients: AKI has been 

mainly investigated as single-organ dysfunction/failure rather than as part of a multisystemic 

impairment during critical illness; in addition, universally accepted diagnostic criteria are lacking 

(Johnson et al. 2004; Osteburn et al. 2014; Keir & Kellum 2015). In a study including dogs 

undergoing surgery for septic peritonitis, AKI was defined as a 0.5 mg/dl increase in post-surgical 

serum creatinine. An AKI prevalence of 12.3% was documented, and an independent association 

between development of renal dysfunction and mortality was identified (Kenney et al. 2010). 

Similarly, in a study including dogs with infectious and non-infectious SIRS, 15% of patients were 

azotemic; greater serum creatinine concentration and quantitative proteinuria were documented in 

non-survivors (Giunti et al. 2015). 

The overall survival rate of dogs and cats with AKI is variable and strongly related to the 

underlying disease. Although information regarding the prognostic impact of AKI during MODS 

are not available in veterinary medicine, developing of acute azotemia is recognized as a strong 

predictor for mortality in hospitalized dogs and cats (Harison et al. 2012). 
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Treatment of MODS-related AKI is mainly supportive. Adequate fluid resuscitation, normalization 

of electrolytes and acid base imbalances and correction of anuria or oliguria are advocated. Renal 

replacement therapy should be considered in cases of severe azotemia with life-threatening 

complications, oligo/anuria and fluid overload (Lunn et al. 2011). 

Recently, a canine AKI grading system proposed by Cowgill (2010) and accepted by the IRIS 

(International Renal Interest Society) group has been increasingly applied in clinical settings (De 

Loor et al. 2013; Segev et al. 2015; Sigrist et al. 2015) (Table 2). Other than classyfing AKI severity 

based on glomerular filtration rate impairment (hence serum creatinine increase), the above-

mentioned criteria point attention on non-azotemic AKI and volume-responsive AKI, whose 

prevalence and clinical implications are unknown in veterinary medicine.  

 

 

Table 2. IRIS AKI grading criteria (modified from www.iris-kidney.com) Cowgill 2010, Proceeding of the 

ACVIM Forum. Measured oliguria: urinari output <1ml/kg/h. 

 

Coagulation dysfunction 

The interactions between inflammation and coagulation are well documented in critically ill 

humans. Coagulation abnormalities can predispose intensive care patients to thrombotic or 
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hemorrhagic events, and act as independent risk factors for mortality. The mechanisms behind 

coagulation dysfunction in critical illness are numerous, and involve anticoagulant factor 

consumption, hyperfibrinolisis, thrombocytopenia, thrombocytopathia and coagulation factors 

deficiencies (Fourrier et al. 1992; Davies et al. 2014). The link between coagulation and SIRS has 

been repeatedly demonstrated during sepsis and trauma in people, with progression toward 

hypocoagulability being generally associated with increased transfusion requirements and worse 

outcomes (Johansson et al. 2011; Davies et al. 2014). The utilization of more accurate methods for 

in vitro assessment of coagulation status (e.g. rotational thromboelastometry, thrombin generation 

assay, platelet aggregometry) has increased the availability of information concerning hemostatic 

imbalances in veterinary critical care too. Coagulation dysfunction defined as reduced platelet count 

and increased coagulation times was reported in a population of dogs with septic peritonitis, and 

significantly increased the odds of death (Kenney et al. 2010). In a different study, a complete 

coagulation profile and thromboelastography were combined to characterize hemostasis in dogs 

with septic peritonitis. Decreased activity of endogenous anticoagulants and hypercoagulability 

were commonly detected, with survivors being more hypercoagulable than non-survivors (Bentley 

et al. 2013). Similar data were documented in the course of canine leptospirosis, where presence of 

thromboelastometric evidence of hypocoagulability was related with hemorrhagic complications 

and increased mortality (Barthèlemy et al. 2017). A recent canine study investigating platelet 

function using multiple electrode platelet aggregometry, documented decreased platelet function in 

the course of septic peritonitis. Interestingly, and similarly to human data, collagen-activated 

aggregometry was significantly reduced in non-survivors, suggesting its role in assessing illness 

severity (Li & Chan 2016). 

 

Neurologic dysfunction 

Neurologic dysfunction is common in the critical care patient, as evidenced by deterioration in 

mental status, cognitive deficits, changes in awareness and behaviour. In this regard, sepsis-
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associated encephalopathy is well described in people hospitalized in the ICU, and is related with a 

worse prognosis and long-term neurologic complications. Due to its frequent occurrence and its 

prognostic role in human sepsis, presence of neurologic impairment is also included in the quick 

Sequential Organ Failure Assessment (qSOFA) score aiming to rapidly identify high-risk patients 

with suspected infection outside the ICU (Rhodes et al. 2016). Several causes including brake-down 

of the blood-brain barrier, inflammatory mediators, microcirculatory and coagulation dysfunction 

contribute to neurologic dysfunction pathogenesis, leading to cerebral edema, thrombosis, infarcts 

and neuronal cell death (Sharshar et al. 2004). 

Incidence and long-term outcomes of neurologic dysfunction in critically ill dogs and cats are not 

known. However, mental status is usually abnormal in veterinary patients with sepsis and MODS, 

and its evaluation is included as a required criteria in scores evaluating disease severity and 

prognosis (Hayes et al. 2010; Hayes et al. 2011). Similarly, the Glasgow Coma Scale, a scoring 

system created to recognize and grade neurologic impairment in patients with head trauma, has 

been comprised in the canine SOFA score to assess presence and severity of neurologic dysfunction 

during critical illness (Ripanti et al. 2015). 

 

Endocrine dysfunction 

Acute illness is responsible of dramatic changes in endocrine function, and specifically impairs the 

hypothalamic-pituitary-thyroid axis and the hypothalamic-pituitary-adrenal axis (Boonen & Van 

den Berghe 2014).  

The term euthyroid-sick syndrome (ESS) specifically refers to the occurrence of low plasma 

concentration of T3, increased concentration of reverse T3 and low to normal TSH and T4 

concentrations in the critically ill patient, in the absence of pre-existing thyroidal disease. Fasting, 

cytokines, hypoalbuminemia and hypoxia are some of the possible factors involved into ESS 

pathogenesis. Several human studies reveal an inverse association between the magnitude of 
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thyroidal hormones alterations and survival, as decreased thyroid function predicts worse outcomes 

in patients with sepsis and septic shock (Boonen & Van den Berghe 2014; Angelousi et al. 2011). 

ESS occurrence has been demonstrated in critically ill dogs with various diseases: specifically, low 

T3 and T4 concentrations were detected in a wide population of dogs with non-thyroidal illness, as 

well as in dogs with SIRS and sepsis of different etiologies (Mooney et al. 2008; Schoeman JP & 

Herrtage ME 2008; Pashmakova et al. 2014; Giunti et al. 2017). Although not consistent, low 

thyroid hormones concentrations seem to paralel disease severity and prognosis in dogs (Mooney et 

al. 2008; Schoeman JP & Herrtage ME 2008; Giunti et al. 2017). 

The clinical implications of ESS are still not completely known. If ESS development is thought to 

represent an adaptive response to reduce body energy expenditure in the acute phase, it may be 

maladaptive during prolonged critical illness. That being said, supplementation of thyroidal 

hormones is not recommended in the acute phase of critical illness, while replacement therapy 

during persistent disease remains controversial (Boonen & Van den Berghe 2014). 

The effects of critical illness on the hypothalamic-pituitary-adrenal axis are even more apparent. 

High cortisol levels during critical illness likely contribute to provide support to vital organs by 

influencing glucose metabolism, enhancing inotropic and vasopressor responses to endogenous 

cathecolamines and modulating inflammation. The initial rise in cortisol concentrations is thought 

to be dissociated from ACTH stimulus, suggesting tissue-specific glucocorticoid regulation. Despite 

higher basal levels of serum cortisol, however, tissue resistance to glucocorticoids occurs in the 

critically ill. The concept of "relative adrenal insufficiency" or "critical illness-related corticosteroid 

insufficiency" (CIRCI) have emerged in people in the last decade, and refers to the condition in 

which cortisol production is insufficient despite a maximally ACTH-activated adrenal cortex. 

Presence of CIRCI is usually defined by low basal cortisol levels and/or a low cortisol response to 

an ACTH injection, regardless of the initial basal cortisol concentration, indicating the inhability of 

the body to cope with the stress of illness. Due to inconsistent findings among studies, CIRCI in 

people is currently diagnosed by evaluating response to treatment with low-dose hydrocortisone, 
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which is recommended to treat pressor-resistant septic shock (Boonen & Van den Berghe 2014; 

Annane et al. 2017).  

CIRCI has been described in small animals as a reversible, transient adrenal dysfunction causing 

inappropriately low glucocorticoid concentrations during acute disease. Its overall incidence among 

veterinary patients is unclear. Earlier studies failed to identify adrenal insufficiency in sick dogs; 

however populations were heterogeneous and disease severity not always elevated (Prittie et al. 

2002; Martin et al. 2011). More recent investigations diagnosed relative adrenal gland insufficiency 

in dogs with SIRS and sepsis, and noticed that lower delta cortisol concentrations after ACTH 

stimulation test were related to hypotension and increased mortality (Burkit et al. 2007; Burkitt 

Creedon 2015). Although alterations in cortisol concentrations and ACTH responses have been 

reported in critically ill cats, abnormalities were similar between survivors and non-survivors 

(Prittie et al. 2003; Burkitt Creedon 2015). There is little evidence supported by case reports and 

expert opinions stating succesfull management of refractory septic shock with low dose 

glucocorticoid therapy in dogs, cats and foals, but no definitive recomendation is currently available 

(Burkitt Creedon 2015). 
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6. Introduction to our experiments: MODS, sepsis and the role of biomarkers 

MODS is the leading cause of death in human ICU (Seely et al. 2000; Vincent et al. 2006; 

Mongardon et al. 2009; Pierrakos & Vincent 2010). Many critical patients with organ dysfunction 

and failure usually have a concomitant SIRS, which can be infectious or non-infectious in origin. 

Years of research have shown that it is the host immunological response to this state of systemic 

inflammation, rather than the inciting insult itself, mainly responsible for organ dysfunction 

progression, therapeutical success or failure and outcome. Because of the high mortality associated 

with established MODS, prevention and early recognition of risk factors for organ dysfunction 

significantly improve patient management and survival (Cheadle & Turina 2005). 

Sepsis, the life-threatening organ dysfunction caused by a dysregulated host response to infection, 

is the major inciting condition for MODS (Seely et al. 2000; Gotts & Matthay 2016). Previous 

approaches considered the spectrum of systemic inflammation and sepsis syndromes (SIRS, sepsis, 

septic shock) proceeding along a single dimension. Novel approaches, on the other hand, emphasize 

a continuum of acute inflammation and organ dysfunction. Sepsis definitions have changed, and 

sequential organ failure scores have been incorporated into its classification (Gotts & Matthay 

2016).  

Much is known about how sepsis promotes organ injury. As sepsis progresses from a localized 

infection to SIRS and shock, major perturbations of the cardiocirculatory system develop, leading to 

tissue hypoperfusion and altered oxygen delivery. Significant alterations to the endothelium occurs, 

including activation of coagulation, leukocyte adhesion, vasodilation and tissue edema. The loss of 

endothelial barrier function and the aberrant inflammatory response of the host are the main 

underlying mechanisms for acute lung injury, acute kidney injury, bacterial translocation from the 

gut and widespread lethal organ dysfunction. Furthermore, septic organ dysfunction often 

perpetuates critical illness through self-reinforcing processes, like immune system dysfunction and 

the potential for iatrogenic arm (Gotts & Matthay 2016). 
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Due to the wide array of syndromic presentation of sepsis and the variable therapeutical patient 

responses, studies characterizing the phenotype of the critical patient and the immune systems have 

emerged (Howell et al. 2011). The PIRO (Predisposition, Infection, Response, Organ dysfunction) 

model describes septic patients across four domains, on the basis of their predisposing conditions, 

the nature and extent of the insult, the nature and the magnitude of the host response, and the degree 

of organ dysfunction (Howell et al. 2011; Granja et al. 2013; Gotts & Matthay 2016). 

The use of circulating biomarkers of the host response and organ dysfunction has recently 

experienced an exponential growth in human medicine, aiming to assess the individual phenotype 

of the critical patient, classify the degree of disease severity and predict early and late complications 

of systemic inflammation and sepsis. In this latter regard, biomarkers could be used to anticipate 

MODS development, moving clinician perspectives from reactive (e.g. following disease 

progression) to proactive (starting monitoring and treatments before the patient deteriorates) 

(Vincent & Creteur 2015). Although organ dysfunction is a dynamic complication of critical illness 

with non-predictable evolution, many physiological and biological biomarkers have been 

individually shown to be strongly predictive of outcome, even on the first day of ICU admission 

(Mongardon et al. 2009). Thus, role of early biomarkers seems crucial, as it may be possible that the 

early response of the immune system plays a pivotal role for healthy or adverse outcomes (Cabrera 

et al. 2017). 

The major challenge of the current research is to approach SIRS and sepsis in dogs and cats in light 

of the PIRO system, with a main focus on the host response and development of organ dysfunction.  

The primary aim of the project is to investigate the host response to inflammation and infection, 

testing novel and promising diagnostic and prognostic biomarkers of SIRS and sepsis. The 

following studies have been carried on:  

• "Prognostic significance of the acute patient physiologic and laboratory evaluation score and 

an extended clinicopathological profile in canine SIRS: a prospective observational study" (J 

Vet Emerg Crit Care 2015; 25: 226-233) 
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• "Serum amyloid A in the diagnosis of feline sepsis" (J Vet Diagn Invest 2017; 29: 856-859) 

• "Evaluation of the delta neutrophil index from an automated blood cell analyser in septic 

dogs" (Vet J 2017; 230: 13-19) 

• "Procalcitonin in dogs with sepsis and gastric dilatation-volvulus" (two manuscripts 

currently under revision). 

The second purpose of the present research is to in-depth analyze occurrence and prognostic 

implication of MODS and selected organ dysfunctions in critically ill dogs and cats. Most 

investigations have focused on acute kidney injury in critically ill dogs, and non-thyroidal illness in 

dogs with non-infectious SIRS and sepsis. A preliminary study regarding MODS in septic cats has 

been performed, too. Results have been finalized with the following studies: 

• "Acute kidney injury in critically ill dogs" (manuscript currently under revision) 

• "Retrospective evaluation of circulating thyroid hormones in critically ill dogs with systemic 

inflammatory response syndrome" (J Vet Sci 2017; 4) 

• "Multiorgan dysfunction syndrome in feline sepsis" (manuscript to be finalized) 

Extended manuscripts are given below. A short summary concerning available human and 

veterinary data is provided for canine delta neutrophil index and procalcitonin. Abstracts and a 

summary of major results are given for the manuscripts currently under revision or yet to be 

finalized. 
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7. Biomarkers of the host response 

7.1 

 

Original Study Journal of Veterinary Emergency and Critical Care 25(2) 2015, pp 226–233
doi: 10.1111/vec.12257

Prospective evaluation of the acute patient
physiologic and laboratory evaluation score
and an extended clinicopathological profile
in dogs with systemic inflammatory response
syndrome
Massimo Giunti, DVM, PhD; Roberta Troia, DVM; Paolo Famigli Bergamini, DVM and
Francesco Dondi, DVM, PhD

Abstract

Objective – To investigate the prognostic value of the acute patient physiologic and laborartory evaluation
(APPLE) score and relevant clinicopathological markers in dogs with systemic inflammatory response syndrome
(SIRS).
Design – Prospective observational cohort study.
Setting – Veterinary teaching hospital.
Animals – Thirty-three dogs with SIRS admitted to the intensive care unit (ICU) were compared to 35 healthy
control dogs. Dogs with SIRS were divided into septic (n = 20) and nonseptic (n = 13) etiologies and as survivors
(alive to discharge, n = 22) and nonsurvivors (n = 11: died, n = 6, or humanely euthanized, n = 5).
Measurements and Main Results – For all dogs, physiological and laboratory parameters were prospectively
collected for the calculation of the APPLEfast score. No difference between septic and nonseptic SIRS dogs was
detected for any parameter evaluated. Survivors had significantly higher total protein, albumin concentrations,
antithrombin activity (ATA), and base excess (BE), as well as significantly lower lactate, urea, creatinine con-
centrations, urinary protein to creatinine ratio and APPLEfast score compared to nonsurvivors. Higher values
of creatinine, lactate, anion gap, alanine transaminase (ALT), and APPLEfast score were significantly associated
with an increased risk of death in SIRS dogs, while higher values of total protein, albumin, ATA, and BE were
associated with a significantly reduced risk of mortality. When a multivariate binary logistic regression analysis
was performed, the APPLEfast score was the only significant parameter retained.
Conclusions – The determination of the APPLEfast score in clinical setting, as well as the measurement of APP,
ATA, lactate, BE, anion gap, ALT, urinary proteins, and electrolytes may be beneficial for a better assessment of
dogs with SIRS. Identified parameters were significantly related with the presence of SIRS and their evaluation
should be considered for the assessment of disease severity, and guidance of the decision-making process in
critically ill dogs.

(J Vet Emerg Crit Care 2015; 25(2): 226–233) doi: 10.1111/vec.12257
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Introduction

Systemic inflammatory response syndrome (SIRS) and
sepsis are frequently observed conditions in critically
ill human patients.1 Despite the lack of data on the
prevalence of SIRS in veterinary patients, this syndrome
has gained increasing attention and interest in recent
years.2–12 SIRS is characterized by activation of the acute
phase response, hemostatic derangements, impaired tis-
sue perfusion and oxygenation, and can ultimately
progress to multiple organ dysfunction syndrome and
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Abbreviations

APP acute phase proteins
APPLE acute patient physiologic and laboratory eval-

uation
ATA antithrombin activity
AUC area under the curve
BE base excess
CRP C-reactive protein
FECa fractional excretion of calcium
FENa fractional excretion of sodium
FEP fractional excretion of phosphorus
iCa ionized calcium
iHCa ionized hypocalcemia
ROC receiver operating characteristic
SIRS systemic inflammatory response syndrome
TIBC total iron-binding capacity
TP total protein
UAC urinary albumin to creatinine ratio
UPC urinary protein to creatinine ratio
uUA:C urinary uric acid to creatinine ratio
OR odds ratio
CI confidence interval

death.2–10 Despite advances in supportive care, SIRS and
sepsis remain leading causes of mortality in the ICU set-
ting, with overall mortality rates ranging from 27% to
64% in dogs.2–4,6–12 Thus, the prompt diagnosis and as-
sessment of disease severity still remain primary goals
to improve the therapeutic decision making and the out-
come in septic patients. Furthermore, the development
of appropriate methods to precisely stratify critical pa-
tients according to disease severity, would better assist
clinical researchers in the design of clinical trials.

A user-friendly scoring system, acute patient phys-
iologic and laboratory evaluation (APPLE) score, has
been recently validated to stratify mortality risk in
hospitalized dogs, independent of the underlying dis-
ease, by illness severity.13 The scoring system includes
a 10-variable and a 5-variable model (APPLEfast) that
enable a rapid cage-side calculation based on simple and
objective clinical data. Receiver operating characteristic
(ROC) curve analysis showed that the area under the
curve (AUC) of the APPLE score had a robust value
to predict death in ICU patients in both models (AUC
0.91 and 0.85, respectively) and supported their use as
prognostic indicators for research purposes in dogs with
SIRS.13

The number of studies aimed to identify predic-
tive biomarkers for SIRS/sepsis in dogs has grown
dramatically in the last decade and several clinico-
pathological parameters have been evaluated,2,14,15

including acute phase proteins (APP), antithrom-
bin activity (ATA), ionized calcium (iCa), and urine
protein.3–8,11,16–24

The aim of this study was to examine the prognostic
value of the APPLEfast score (5-variable model) and to
evaluate the predictive power of an extended panel of
routinely measured clinicopathological markers in dogs
with SIRS. In addition, all parameters evaluated were
compared between dogs with SIRS and a population of
healthy control dogs.

Materials and Methods

A prospective observational study was carried out at
the University of Bologna’s Veterinary Teaching Hospital
between December 2010 and December 2011.

Dogs admitted to the intensive care unit (ICU) were
included in the study as nonseptic SIRS if they exhibited
2 or more of the following criteria at admission to the
hospital: body temperature <38.1°C or >39.2°C; heart
rate >120/min; respiratory rate >20/min; WBC count
< 6.0 × 109/L [6,000/!L] or >16.0 × 109/L [16,000/!L],
percentage of bands >3% of the total WBC count.25

Septic SIRS dogs were identified as patients meeting
the above criteria (nonseptic SIRS) in addition to iden-
tification of a concurrent septic focus documented by
means of cytology or positive culture. Dogs with SIRS
were also classified as survivors (alive to discharge)
or nonsurvivors (died despite medical treatment or
humanely euthanized by the clinical investigators
because of moribund conditions or end-stage disease).
Dogs that were euthanized for financial reasons were
excluded from the study. For all dogs, the length of
hospitalization in ICU was also recorded.

Dogs that were younger than 1 year of age, that
were diagnosed with chronic kidney disease or parathy-
roid gland disease, based on history, clinical and
clinicopatholgical findings, and imaging results, or that
received drugs (eg, steroids, diuretics, vitamin D, phos-
phate enemas) known to alter calcium metabolism before
the admission to the ICU were excluded from the study.

Thirty-five control dogs (client owned and hospital
staff-owned dogs) were considered healthy based on
history, physical examination, and clinicopathological
data, including concentrations of creatinine, glucose,
urea, total protein (TP), total bilirubin, cholesterol,
phosphorus, total calcium, ionized calcium (iCa),
total iron, albumin, Na, K, Cl, Mg, total iron-binding
capacity (TIBC), C-reactive protein (CRP), fibrinogen
as well as activities of alkaline phosphatase, alanine
transaminase (ALT), aspartate transaminase, and
" -glutamyltransferase. Urinalyses including quantita-
tive protein and albumin concentration on urine samples
collected by cystocentesis (n = 35) were also performed.
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Blood and urine from all dogs were collected and
analyzed within one hour of ICU admission. Blood sam-
pling was performed by venipuncture with vacutainer
systema according to standard operating procedures.
Urine was collected via cystocentesis or urinary catheter-
ization. The following analyses were performed: venous
blood gas with iCa, CBC, serum biochemistry (albumin,
TP, glucose, ALT, aspartate transaminase, alkaline phos-
phatase, total bilirubin, ! -glutamyltransferase, choles-
terol, total calcium, phosphorus, total iron) lactate, ATA,
APP including CRP, fibrinogen, transferrin (as TIBC),
and urinalysis including urinary protein to creatinine ra-
tio (UPC), urinary albumin to creatinine ratio (UAC), uri-
nary electrolytes, and urinary uric acid to creatinine ratio
(uUA:C). A previously described standardized method11

was used to collect venous blood samples to measure
iCa and blood gas. Venous blood gas analysis also
included pH, base excess (BE), HCO3, monovalent elec-
trolytes, PvCO2, PvO2, and anion gap measurements. All
parameters were also measured in healthy control dogs.

Ionized hypocalcemia (iHCa) was defined as values
lower than the lowest value of iCa measured in healthy
control dogs (iCa < 1.21 mmol/L). The presence of an
acute phase response was defined by an increased con-
centration above the reference interval of our lab for CRP
(0 – 0.5 mg/dL) or fibrinogen (1.45 – 3.85 g/L). For each
dog included in the study an APPLEfast score (5-variable
model: glucose, albumin, mentation score, platelet count,
and lactate) was calculated. In dogs with SIRS, the score
was determined using data collected upon admission
to ICU. The study protocol was approved by the local
Scientific Ethical Committee for Animal Testing.

Laboratory methods
CBC was determined with an automated cell counter.b

Lactate concentrations were measured using a portable
lactate analyzer.c CRPd and urine albumine were mea-
sured using immunoturbidimetric assays previously
validated in our group for dog samples.26,f TIBCg and
ATAh were measured using colorimetric methods.
Ionized calcium and venous blood gas analysis were
obtained using a blood gas analyzer.i UPC and UAC
were calculated. Fractional excretion of calcium (FECa),
sodium (FENa), and phosphorus (FEP) were calculated
according to the following equation: fractional excre-
tion = (UX/PX)/(UC/PC), where UX and PX were
the concentrations of a specific analyte in urine and
plasma, respectively, while UC and PC were creatinine
concentrations in urine and plasma, respectively.27

Urinary uric acid concentrations were measured using
a colorimetric methodj and normalized to urinary
creatinine (uUA:C). All analyses were performed with
an automated chemistry analyzer.k

Statistical Analysis

All data are described using standard descriptive
statistics and reproted as median and range or mean
± standard deviation for nonnormal and normal
distributions, respectively. Normality was assessed
using D’Agostino–Pearson test. Mann–Whitney U test
and Student’s t-test were used to evaluate differences
between groups. Results were considered statistically
significant with P value < 0.05. In the population of dogs
with SIRS, univariate logistic regression was used to
assess the association between clinical and clinicopatho-
logical parameters and outcome. Parameters associated
with outcome in the univariate analyses were entered
into a multivariable model (backward selection, remov-
ing factors with P value > 0.1). Binary logistic regression
results were presented as odds ratio (OR) and 95% confi-
dence interval (CI). Overall model fit was assessed by the
percentage of outcome correctly classified by the ROC
curves analysis and by a significant Hosmer–Lemeshow
test (P > 0.05). ROC curves were used to find optimal
cut-off values for parameters predicting prognosis and
to calculate the AUC. Correlations between parameters
were assessed using Pearson or Spearman’s rank corre-
lation coefficients. All analyses were performed using
an online available statistical software.l

Results

Sixty-two dogs (age >1 year) with signs of SIRS were
admitted to ICU during the study period. Of these cases,
11 were excluded due to the presence of chronic kidney
disease, and 10 were not enrolled due to investigators not
being notified, causing incomplete blood and urine sam-
pling upon admission. Eight dogs were euthanized for
financial reasons and were ineligible for study inclusion.

A total of 33 dogs with SIRS were included in the
study. Median age was 7.8 years (range: 1.3–15 y) and
median body weight was 25.6 kg (range: 5.1–42 kg).
Twenty-two dogs (67%) survived to hospital discharge
(survivors), while 11 (33%) died (n = 6) or were hu-
manely euthanized (n = 5) (nonsurvivors). Of the non-
survivors, 6 septic SIRS dogs died despite treatments
for refractory hypotension and multiple organ failure
(4 dogs with septic peritonitis in the postoperative pe-
riod, 2 dogs with severe urosepsis), 5 were euthanized
due to the concomitant presence of multiple organ fail-
ure and a diagnosis of malignancy (Table 1). Rectal tem-
perature <38.1°C or >39.2°C was identified in 2 and
26 dogs, respectively. Twenty-four dogs had tachycardia
(HR>120/min) and 30 had tachypnea (RR > 20/min),
as previously defined.25 Twenty-six dogs had leukocy-
tosis (WBC count > 16.0 × 109/L [16,000/"L]) and 3
had leukopenia (WBC count < 6.0 × 109/L [6,000/"L]).
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Table 1: Diseases affecting 33 dogs with systemic inflammatory response syndrome (SIRS) stratified by outcome

Outcome Septic SIRS group (20) Nonseptic SIRS group (13)
Survivors (n = 22) Septic pleuritis (4) Osteomyelitis (2)

Bite wound infection (4) Eosinophilic pneumonia (2)
Septic peritonitis (2) Neoplasia (1)
Pyometra (1) diskospondylitis (1)
Pyoderma (1) Polyarthritis (1)
Pyelonephritis/urosepsis (2) Pneumonia (1)

Nonsurvivors (n = 11) Septic peritonitis (4) Neoplasia (5)
Urinary tract infection/urosepsis (2)

SIRS, systemic inflammatory response syndrome.
Number of affected patients in parentheses. To be classified as septic, diagnosis had to be confirmed cytologically or via positive bacterial culture result.

Thirteen dogs (39%) were classified as nonseptic, and 20
(61%) classified as septic. The most common cause of
nonseptic SIRS was neoplasia (n = 6), while for septic
SIRS was septic peritonitis (n = 6) (Table 1). For all the
performed analyses, none of the tested parameters was
significantly different between septic and nonseptic SIRS
dogs.

Parameters that were significantly different between
control and SIRS dogs, upon admission, are reported
in Table 2. Positive (CRP and fibrinogen) and neg-
ative (TIBC, albumin, and antithrombin) APP val-
ues were all significantly different from control dogs
(Table 2). The 22 survivors had significant higher values
of albumin and ATA compared to the 11 nonsurvivors,
while no differences were detected for the other APP
(Table 3).

Urine specimens were collected in all patients; how-
ever, samples from 4 dogs were excluded from UPC
and UAC analyses because a urinary tract infection
with active sediment was observed. UPC and UAC
were significantly higher in SIRS compared to the
control dogs. UPC was significantly lower in survivors
compared to nonsurvivors, while UAC did not vary
(Table 3). FENa values were significantly correlated
with both UAC and UPC (Table 4).

Survivors also had significantly higher values of
serum TP and BE, as well as lower values of anion gap,
APPLEfast score, lactate, urea, creatinine, and ALT con-
centrations compared to nonsurvivors (Table 2).

The APPLEfast score was significantly correlated with
TP, urea, BE, total bilirubin, UPC, TIBC, and ATA
(Table 4). Length of ICU stay was not significantly corre-
lated to any of the investigated parameters.

Table 5 shows the parameters that were significantly
associated with outcome using the univariate binary
logistic regression analysis. There were positive associa-
tions between odds of mortality and values of creatinine,
lactate and APPLEfast score, respectively. Higher values
of albumin, TP, ATA, and BE were associated with a sig-
nificant mortality risk reduction. When the multivariate
binary logistic regression analysis was performed, the

APPLEfast score was the only parameter retained by the
model (Table 5).

Discussion

SIRS and sepsis are important syndromes in critically
ill dog.2–12 It is widely acknowledged that clinical
criteria alone fail to identify and stratify these patients
adequately. In our study, the potential prognostic
significance of a wide panel of clinical and clinicopatho-
logical parameters that could be routinely measured in
hospitalized dogs was investigated.

The APPLE score has been recently validated to strat-
ify illness severity by mortality risk in hospitalized
dogs.13 In order to obtain a simple and practical calcu-
lation of the score, we applied the 5-variable APPLEfast
model to a population of critically ill dogs. This score
was able to discriminate between survivors and non-
survivors upon admission with the highest predictive
power. Thus, our results support the application of the
APPLEfast score in the clinical setting to identify and
properly manage high-risk ICU patients. However, its
use as an exclusive tool to guide therapeutic decisions
needs to be addressed in further clinical trials.

The quantification of APP, particularly C-reactive pro-
tein (CRP), allows an early identification of inflamma-
tory processes, and represents an objective monitoring
tool to evaluate the response of the patient to selected
therapies.5,16,28 However, the prognostic value of APP
still remains controversial.3–5,20,24 A panel of APP was in-
vestigated in the present study, including positive (CRP
and fibrinogen) and negative (albumin and transferrin-
TIBC) acute phase proteins. The activation of an acute
phase response,29 defined by a concentration above
the reference interval of the measured positive APP
(CRP, fibrinogen), was noted in all the dogs with SIRS.
However, the prognostic role of positive APP is ques-
tionable, as their concentrations were not related with
outcome, disease severity, or duration of hospital stay.
In contrast, dogs with higher albumin concentrations
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Table 2: Clinical and clinicopathological parameters in cohort of critically ill dogs with systemic inflammatory response syndrome
(SIRS) and healthy controls on admission

Parameter Units Reference interval Control dogs n SIRS dogs n P value

iCa mmol/L 1.21–1.35 1.30 ± 0.03 35 1.22 ± 0.08 33 < 0.0001
Total calcium mmol/L 2.25–2.95 2.6 [2.4–2.8] 35 2.3 [1.8–3.2] 33 <0.0001
Total calcium mg/dL 9.0–11.8 10.2 [9.7–11.2] 35 9.3 [7.2–12.9] 33 < 0.0001
Anion gap mmol/L 9–22 20 ± 3 35 23 [20–31] 33 0.008
BE mmol/L −2.0 to 2.0 0 [–1 to 3] 35 –2 [–10 to 5] 33 0.0001
Phosphorus mmol/L 0.84–1.6 1.3 [0.65–1.6] 35 1.8 ± 0.8 33 0.001
Phosphous mg/dL 2.6–4.9 4.1 [2.0–4.9] 35 5.5 ± 2.5 33 0.001
Creatinine !mol/L 57.5–119.3 98.1 ± 14.1 35 77.8[38.8–556.0] 33 0.005
Creatinine mg/dL 0.65–1.35 1.11 ± 0.16 35 0.88 [0.45–6.29] 33 0.005
UPC 0–0.4 0.09 [0.05–0.20] 35 0.80 [0.10–5.80] 29 < 0.0001
UAC 0–0.024 0 [0–0.020] 35 0.100 [0–3.100] 29 < 0.0001
FECa % 0–0.5 0.09 [0.03–0.68] 35 0.23 [0.06–1.86] 33 0.0007
FEP % 3–45 11.1 [0.9–48.1] 35 7.3 [0–61] 33 0.009
uUA:C 0.05 [0.03–0.15] 35 0.19 [0.01–0.62] 33 < 0.0001
Applefast score 13 [7–15] 35 24 [14–39] 33 < 0.0001
CRP mg/dL 0–0.5 0.28 [0.01–0.6] 35 7.9 [0.20–31.1] 33 < 0.0001
Fibrinogen g/L 1.45–3.85 2.70 ± 0.70 35 3.25 [1.64–9.60] 33 < 0.0001
ATA % 105–166 130 ± 14 35 86 ± 18 33 < 0.0001
Albumin g/L 28.0–37.0 32.9 ± 3.1 35 24.6 ± 7.0 33 <0.0001
Albumin g/dL 2.80–3.70 3.29 ± 0.31 35 2.46 ± 0.70 33 < 0.0001
TIBC !mol/L 50.1–84.1 66.6 [51.9–86.6] 35 46.0 ± 15.4 33 <0.0001
TIBC !g/dL 280–470 372 [290–484] 35 257 ± 86 33 < 0.0001
Total iron !mol/L 13.4–50.1 28.5 ± 7.5 35 12.5 [5.2–37.9] 33 < 0.0001
Total iron !g/dL 75–280 159 ± 42 35 70 [29–212] 33 < 0.0001

iCa, ionized calcium; BE, base excess; UPC, urinary protein to creatinine ratio; UAC, urinary albumin to creatinine ratio; FECa, fractional excretion of
calcium; FEP, fractional excretion of phosphorus; uUA:C, urinary uric acid to creatinine ratio; CRP, C-reactive protein; ATA, antithrombin activity; TIBC,
total iron-binding capacity.
Results are expressed as median and [range] or mean ± standard deviation based on data distribution.

and higher ATA at admission were less likely to die,
confirming their prognostic significance in dogs with
SIRS and critical illness, as previously reported.6,7,12,17

Ionized hypocalcemia has been associated with mor-
tality and longer duration of hospital stay in critically
ill dogs.11,18,19 The pathophysiology of iHCa associated
with critical illness remains unclear but could involve
increased renal excretion of calcium.30 No significant as-
sociation between iCa and mortality, duration of ICU
stay or severity of disease was identified in our popula-
tion. A significant correlation between FECa and iCa in
our population was not found, suggesting that calcium
excretion should not have a major influence on blood
iCa.

An increased loss of urinary proteins, particularly al-
bumin, has been reported in dogs with SIRS and in
a variety of ICU settings.2,21 Presence of albuminuria
may be a risk factor for death in critically ill veterinary
patients.20,22 Our findings support that proteinuria and
albuminuria are common features during SIRS and SIRS-
associated kidney injury.21 UPC (but not UAC) was sig-
nificantly different in survivors versus nonsurvivors in
our population, suggesting that nonglomerular protein-
uria could play a prognostic role in dogs during SIRS.21

The possibility of a preexisting proteinuria could not be
completely excluded and should be considered when
interpreting these results.

Although the evaluation of FENa is influenced by nu-
merous parameters, a value above 1% in human patients
with acute kidney injury usually indicates intrinsic renal
injury, while levels < 1% support prerenal azotemia.31–33

FENa above 1% was reported in 5 of the 33 SIRS dogs,
of whom 3 were azotemic. The significant correlation be-
tween FENa and both UAC and UPC might represent
an additional relevant index of SIRS-associated kidney
injury.

Urinary uric acid is a marker of oxidative stress in peo-
ple and animals.34 In normal dogs, 98–100% of glomeru-
lar filtrated uric acid is reabsorbed into the proximal
tubule and metabolized by the liver.35 The significant
increase in uUA:C noted in dogs with SIRS (Table 2)
might have resulted from tissue hypoperfusion or renal
damage caused by the underlying condition, since none
of the dogs included in our study had a known breed
predisposition to hyperuricosuria. The relevance of this
finding warrants further evaluation.

A number of limitations of the current study should
be considered when interpreting the data presented.
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Table 3: Comparison between survivors and nonsurvivors in respect to selected initial clinical and clinicopathological parameters in
cohort of critically ill dogs with systemic inflammatory response syndrome (SIRS)

Parameter Units Reference interval Survivors n Nonsurvivors n P value

Albumin g/L 28.0–37.0 26.8 ± 5.9 22 20.4 ± 7.3 11 0.011
Albumin g/dL 2.80–3.70 2.68 ± 0.59 22 2.04 ± 0.73 11 0.011
TP g/L 56.0–79.0 69.3 ± 12.3 22 54.9 ± 15.8 11 0.007
TP g/dL 5.60–7.90 6.93 ± 1.23 22 5.49 ± 1.58 11 0.007
ATA % 105–166 94 ± 15 22 72 ± 15 11 0.0004
BE mmol/L −2.0 to 2.0 −1 ± 2 22 −4 [−10 to 5] 11 0.004
Anion gap mmol/L 9–22 22 [20–30] 22 25 ± 3 11 0.025
Lactate mmol/L 0–2 1.8 [0.5–7.5] 22 3.8 [2.5–8.6] 11 0.005
Creatinine !mol/L 57.5–119.34 66.3 [39.8–245.8] 22 88.4 [65.4–556.0] 11 0.009
Creatinine mg/dL 0.65–1.35 0.75 [0.45–2.78] 22 1.00 [0.74–6.29] 11 0.009
Urea mmol/L 6.4–19.6 8.2 [4.2–79.3] 22 17.5 [8.6–106.7] 11 0.0005
Urea mg/dL 18–55 23 [12–222] 22 49 [24–299] 11 0.0005
ALT U/L 20–55 29 [11–163] 22 195 ± 213 11 0.016
UPC 0–0.4 0.83 ± 0.63 20 1.60 [0.20–5.80] 9 0.04
APPLEfastscore 22 ± 4 22 31 ± 4 11 <0.0001
iCa mmol/L 1.21–1.35 1.20 ± 0.09 22 1.23 ± 0.07 11 0.80
CRP mg/dL 0–0.5 8.2 [2.3–31.1] 22 7.3 [0.2–9.8] 11 0.44
Fibrinogen g/L 1.45–3.85 3.02 [1.96–9.60] 22 4.65 ± 2.47 11 0.48
TIBC !mol/L 50.1–84.1 48.3 ± 15.4 22 40.9 ± 15.0 11 0.22
TIBC !g/dL 280–470 270 ± 86 22 229 ± 84 11 0.22

TP, total protein; ATA, antithrombin activity; BE, base excess; ALT, alanine transaminase; UPC, urinary protein to creatinine ratio; iCa, ionized calcium;
CRP, C-reactive protein; TIBC, total iron-binding capacity.
Results are expressed as median and [range] or mean ± standard deviation based on data distribution.

Table 4: Correlations between the acute patient physiologic laboratory evaluation (APPLE) score, base excess, urinary: albu-
min:creatinine ratio, urinary protein:creatinine ratio and select laboratory parameters in a cohort of 33 dogs with systemic inflammatory
response syndrome

Urinary albumin: Urinary protein:
APPLE score Base excess creatinine ratio creatinine ratio

Parameter r P value Parameter r P value Parameter r P value Parameter r P value

TP −0.3 0.02 FECa −0.4 0.03 FECa 0.42 0.02 FECa 0.57 0.001
Urea 0.4 0.004 FENa 0.48 0.008 FENa 0.5 0.004
BE −0.4 0.02
TBil. 0.4 0.01
TIBC −0.4 0.02
ATA −0.4 0.01
UPC 0.3 0.03

BE, base excess; UAC, urinary albumin to creatinine ratio; UPC, urinary protein to creatinine ratio; TP, total proteins; TBil, total bilirubin; TIBC, total
iron-binding capacity; ATA, antithrombin activity; FECa, fractional excretion of calcium; FENa, fractional excretion of sodium.

The relatively small sample size may have resulted in
insufficient statistical power for some of the investigated
parameters (eg, iCa, UAC). Furthermore, the intrinsic
limitations of the SIRS criteria may have resulted in the
inclusion of a very heterogeneous population of patients
in terms of disease processes and with varying severity.
The low specificity of SIRS criteria25 utilized may have
allowed the inclusion of false-positive SIRS dogs in
our population; however, measured APP were highly
suggestive that dogs evaluated had systemic inflam-
matory processes. Four dogs with suspected infection
(2 osteomyelitis, 1 dyskospondylitis, 1 pneumonia),

but that did not have a focus of infection confirmed
by cytology or bacterial culture results, were classified
as nonseptic SIRS. The diagnostic challenges of identi-
fying septic patients in the clinical setting could have
biased the comparison between septic and nonseptic
SIRS dogs in our study. Since we defined survival as
an outcome, the inclusion among the nonsurvivors
that died naturally and those that were humanely
euthanized could have influenced the analysis of the
data. However, the exclusion of dogs euthanized for
financial constraints may have partly limited this
bias.
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Table 5: Univariate and multivariate binary logistic regression and receiver operator curve (ROC) analysis results of clinical and
clinicopathological parameters measured at admission that were associated with the outcome (survivors/nonsurvivors) in 33 dogs
with systemic inflammatory response syndrome (SIRS)

Univariate binary logistic regression ROC curve analysis

Parameter Units Regression coefficient SE Odds ratio [95% CI] P value AUC [95% CI] SE P value

Albumin g/dL −1.799 0.809 0.166 [0.034–0.809] 0.026 0.785 [0.608–0.908] 0.104 0.006
TP g/dL −0.940 0.405 0.391 [0.177–0.864] 0.020 0.777 [0.599–0.903] 0.098 0.005
Creatinine mg/dL 1.390 62.259 4.016 [1.185–13.607] 0.025 0.783 [0.606–0.907] 0.080 0.0006
Lactate mmol/L 0.706 0.315 2.027 [1.092–3.761] 0.025 0.861 [0.693–0.957] 0.065 < 0.0001
BE mmol/L −0.424 0.199 0.655 [0.443–0.967] 0.033 0.826 [0.641–0.941] 0.103 0.002
Anion gap mmol/L 0.325 0.164 1.384 [1.003–1.910] 0.048 0.795 [0.601–0.923] 0.085 0.0005
ATA (%) −0.114 0.043 0.893 [0.820–0.972] 0.009 0.855 [0.686–0.954] 0.066 < 0.0001
APPLEfast score 0.511 0.175 1.667 [1.183–2.346] 0.003 0.942 [0.798–0.994] 0.038 < 0.0001

Multivariate binary logistic regression ROC curve analysis

APPLEfast score 0.560 0.213 1.751 [1.154–2.658] 0.008 0.95∗ [0.793–0.998] 0.0468 < 0.0001

SE, standard error; CI, confidence interval; TP, total protein; BE, base excess; ATA, antithrombin activity.
∗Sensitivity 80% and specificity 90.4% for APPLEfast score >27.
Only parameters with P < 0.05 are presented.

In conclusion, the present study underlines the useful-
ness of performing an extensive evaluation of traditional
and newer blood and urinary biomarkers in a popu-
lation of dogs with SIRS for prognostic purposes. The
routine measurement of positive APP could improve the
sensitivity and specificity of the criteria commonly used
to detect SIRS in dogs.25 Clinicopathological parameters,
including lactate, BE, albumin, creatinine, UPC, and
ATA were moderately accurate in predicting outcome in
this study population. The APPLEfast score was highly
accurate in predicting mortality in dogs with SIRS in
the present study, hence its use in the clinical setting is
recommended for the early assessment of critically ill
dogs. Based on our data, screening of canine patients
with SIRS for early renal injury is recommended.
The potential role of using illness severity scores in
guiding therapeutic decisions should also be further
evaluated.

Footnotes
a S-Monovette, Sarstedt, Germany.
b Advia 2120 Hematology System, Siemens Healthcare Diagnostics,

Tarrytown, NY.
c Lactate Scout Analyzer, Senslab, Leipzig, Germany.
d CRP OSR6147, Olympus/Beckman Coulter, Munich, Germany.
e Microalbumin OSR6167, Olympus/Beckman Coulter.
f Gentilini F, Mancini D, Dondi F, et al. Validation of a human immunotur-

bidimetric assay for measuring canine C-reactive protein. Vet Clin Path
2005; 34(suppl):318.

g UIBC OSR61205, Olympus/Beckman Coulter.
h Antithrombin III, Roche/Hitachi, Mannheim, Germany.
i IDEXX VetStat, IDEXX Laboratories, Westbrook, ME.
j Uric acid OSR6098 Olympus/Beckman Coulter.
k Olympus AU 400, Olympus/Beckman Coulter.
l MedCalc Statistical Software 9.5.2.0.
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32. Pépin MN, Bouchard J, Legault L, et al. Diagnostic performance of
fractional excretion of urea and fractional excretion of sodium in
the evaluations of patients with acute kidney injury with or without
diuretic treatment. Am J Kidney Dis 2007; 50(4):566–573.

33. Steiner RW. Interpreting the fractional excretion of sodium. Am J
Med 1984; 77(4):699–702.

34. Hinchcliff KW, Reinhart GA, DiSilvestro R, et al. Oxidant stress in
sled dogs subjected to repetitive endurance exercise. Am J Vet Res
2000; 61(5):512–517.

35. Roch-Ramel F, Wong NL, Dirks JH. Renal excretion of urate in mon-
grel and Dalmatian dogs: a micropunture study. Am J Physiol 1976;
231(2):326–331.

C⃝ Veterinary Emergency and Critical Care Society 2014, doi: 10.1111/vec.12257 233



 65 

7.2  

 

https://doi.org/10.1177/1040638717722815

Journal of Veterinary Diagnostic Investigation
2017, Vol. 29(6) 856 –859
© 2017 The Author(s)
Reprints and permissions: 
sagepub.com/journalsPermissions.nav
DOI: 10.1177/1040638717722815
jvdi.sagepub.com

Brief Communication

The systemic inflammatory response syndrome (SIRS) and 
sepsis are complex clinical syndromes in critically ill cats, and 
are associated with substantial disease effect and mortality.3 
Clinical response to sepsis is less predictable and specific in 
feline patients, potentially delaying early diagnosis and prompt 
treatment.17

Serum amyloid A (SAA), a major feline acute-phase pro-
tein (APP), is reported to increase early during inflammation 
and in cases of tissue damage.11,12,18 Although its biological 
role is still unclear, SAA appears to have immunomodulatory 
activities and protective properties.16,18 SAA has been shown 
to be a significant prognostic marker in sick cats with various 
diseases20; however, its potential to discriminate between a 
septic and a non-septic origin of SIRS is not well defined.16

Diagnosis of feline sepsis is still challenging, given that 
veterinary reports that have investigated the diagnostic per-
formance of selected clinicopathologic variables are limited.3 
A higher percentage of circulating band neutrophils and more 
severe hypoalbuminemia were associated with the presence 
of sepsis in a small prospective case-control study of cats with 
SIRS.3 The presence of toxic neutrophils was shown to be a 
common finding in feline diseases of inflammatory and/or 
infectious origin.19

We investigated the potential diagnostic utility of serum 
SAA concentrations and selected clinicopathologic variables 
measured at the time of hospital admission for discriminat-
ing between SIRS of infectious (sepsis) and non-infectious 

(trauma) origin in a population of critically ill cats. In addi-
tion, SAA data were also assessed for outcome prediction.

Critically ill cats with a clinical condition of SIRS related to 
trauma or sepsis, hospitalized at the ICU of the University of 
Bologna Veterinary Teaching Hospital between March 2012 
and March 2014, were included retrospectively. The presence 
of SIRS was defined according to published criteria.2 Addi-
tional inclusion criteria were hospitalization in ICU, complete 
medical records, and SAA evaluated upon admission, or pres-
ence of at least an aliquot of serum collected upon ICU admis-
sion and stored frozen at −80°C. The overall population of 
SIRS cats was divided into 2 subgroups according to the infec-
tious or non-infectious SIRS origin (sepsis vs. trauma). Spe-
cifically, the trauma group included cats with blunt trauma 
associated with motor vehicle accident or high-rise syndrome; 
the sepsis group included cats with cytologic or bacteriologic 
evidence of bacterial infection. SIRS cats were also classified 
as survivors (alive to discharge) or non-survivors (died despite 
medical treatment or euthanized because of moribund condi-
tions or end-stage disease). Cats euthanized for financial rea-
sons or discharged against medical advice were excluded from 
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Abstract. Systemic inflammatory response syndrome (SIRS) and sepsis can be challenging to diagnose in cats. 
Retrospectively, we investigated the diagnostic and prognostic potential of serum amyloid A (SAA), a major feline acute-
phase protein (APP), in a population of critically ill cats with SIRS related to trauma or sepsis. A total of 56 SIRS cats (trauma 
n = 27; sepsis n = 29) were included and compared with healthy controls (n = 18). SAA concentration was significantly 
increased in SIRS cats compared to controls, confirming its potential for the detection of systemic inflammation in this species. 
Significantly higher values of SAA were detected in cats belonging to the sepsis group; however, according to the results of 
the receiver operating characteristic curve analysis, the value of using SAA (>81 mg/L) to discriminate septic cats was only 
moderate (AUC = 0.76). Additionally, cats with sepsis had significantly higher serum bilirubin concentrations and toxic 
neutrophil changes compared to the trauma group. Overall, 38 of 56 cats were survivors; 18 of 56 were non-survivors, with 
83% of the non-survivors (15 of 18) belonging to the sepsis group. Serum bilirubin concentration, but not SAA, was able to 
predict outcome. Prospective studies are needed to assess the potential of SAA in the diagnosis of feline sepsis and outcome 
prediction.

Key words: Acute-phase protein; biomarker; feline; sepsis; serum amyloid A protein; trauma.
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the study. Controls were client-owned blood donor cats (n = 
18) considered healthy according to history, physical examina-
tion, and clinicopathologic data.

Hematologic and biochemistry profiles performed upon 
hospital admission were reviewed in all of the cats enrolled. 
When SAA values were not available, frozen serum samples 
were used for analysis. Blood count was determined by an 
automated hematology system (ADVIA 2120 hematology 
system, Siemens Healthcare Diagnostics, Tarrytown, NY). 
May-Grünwald/Giemsa–stained (Merck, Darmstadt, Ger-
many) blood smears were examined, and neutrophil mor-
phology and toxic changes were recorded. The occurrence of 
Döhle bodies, cytoplasmic basophilia, vacuolation or foami-
ness, and toxic granulation of neutrophils were recorded.19 
SAA concentrations were measured on serum samples using 
a commercial immunoturbidimetric assay designed for 
human SAA (LZ Test Eiken SAA, Eiken Chemical, Tokyo, 
Japan), as validated previously for cats in our laboratory.7 All 
biochemical analyses were performed with an automated 
chemistry analyzer (AU 400, Olympus/Beckman Coulter, 
Munich, Germany). All of the investigated variables were 
also measured in healthy controls.

Nonparametric statistics with post hoc analysis were 
used to compare variables between the different groups. 
Data were expressed by standard descriptive statistics and 
presented as median and range. Categorical variables were 
compared using Fisher exact test. Univariate logistic regres-
sion was used to assess the association between clinical and 
clinicopathologic variables at the time of hospital admission 
and the diagnosis of sepsis. Variables associated with a diag-
nosis of sepsis in the univariate analyses were entered into a 
multivariable model (stepwise selection). Binary logistic 
results were presented as odds ratio (OR) and 95% confi-
dence interval (CI). Overall model fit was assessed by the 
percentage of outcome correctly classified by the receiver 
operating characteristic (ROC) curve analysis and by a  

significant Hosmer–Lemeshow test (p > 0.05). ROC curve 
analysis was used to find optimal cutoff values for variables 
predicting sepsis and to calculate the area under the ROC 
curve (AUC). Correlation between variables was assessed 
using the Spearman rank correlation coefficient. A p value 
<0.05 was considered significant. All analyses were per-
formed using MedCalc statistical software (v.15.6.1, Med-
Calc Software, Ostend, Belgium).

A total of 56 cats with SIRS satisfied the inclusion criteria 
and were included in the study. The median age was 4.8 y 
(0.5–21), and the sex distribution was as follows: 18 of 56 
male neutered, 15 of 56 spayed females, 13 of 56 intact 
males, and 10 of 56 intact females. Overall, 27 of 56 cats 
were included in the trauma group; 29 of 56 cats were 
included in the sepsis group. The origin of sepsis was related 
to pyothorax (10 of 29), septic peritonitis (7 of 29), pyelone-
phritis (4 of 29), septic arthritis (1 of 29), systemic toxoplas-
mosis (1 of 29), septic cholangitis (2 of 29), and suppurative 
cellulitis or abscesses (4 of 29). Data regarding lifestyle were 
available for 29 of 56 patients; among them, only 3 of 29 
lived indoors exclusively; the others were outdoor or indoor 
and outdoor cats. Frequency of an outdoor lifestyle was not 
significantly different between the trauma (15 of 27) and the 
sepsis group (11 of 29). Overall, 38 of 56 (68%) cats were 
survivors; 18 of 56 (32%) were non-survivors; diagnosis of 
sepsis was significantly associated with a higher mortality 
rate (15 of 18, 83%).

Cats in the sepsis group had significantly increased serum 
SAA and total bilirubin concentration, and a significantly 
higher frequency of toxic neutrophil changes in blood smears 
compared to both the trauma group and controls (Table 1). 
SAA, total bilirubin concentrations, and the presence of toxic 
neutrophil changes were significantly associated with a diag-
nosis of sepsis (Table 2). When the multivariate logistic 
regression was performed, the only variables retained in the 
model were SAA concentration (OR = 1.01, CI = 1.0–1.02) 

Table 1. Clinicopathologic results of controls and cats with systemic inflammatory response syndrome (sepsis and trauma groups) 
analyzed with the Kruskal–Wallis analysis of variance test for comparisons. Only variables with p < 0.05 are presented.

Variable Controls (n = 18) Sepsis (n = 29) Trauma (n = 27)

SAA (mg/L) 4 (1–9) 173a (1–265) 28ab (1–258)
ALT (U/L) 51 (35–80) 49 (15–3,600) 292ab (70–3,300)
AST (U/L) 24 (15–36) 130a (20–4,000) 310ab (43–2,500)
Total bilirubin (µmol/L) 1.7 (1.2–5.8) 6.8a (1.7–114) 3.4ab (1.7–32)
Albumin (g/L) 37 (33–41) 34a (10–41) 28ab (15–38)
Total protein (g/L) 81 (72–88) 67a (44–107) 59ab (29–83)
A/G 0.87 (0.63–1.2) 0.51a (0.25–0.94) 0.92a (0.51–1.3)
Creatinine (µmol/L) 131 (113–169) 98a (45–1,630) 101ab (70–597)
Glucose (mmol/L) 5.6 (1.8–8.2) 5.8 (0.3–15.0) 9.3ab (3.1–19.1)
Leukocytes (cells × 109/L) 8.4 (2.7–14.9) 27.0a (0.5–63.6) 13.8a (4.3–37.9)
Hematocrit (L/L) 0.41 (0.35–0.47) 0.33a (0.18–0.50) 0.31a (0.06–0.42)

Values for each analyte are presented as median and range (in parentheses). A/G = albumin-to-globulin ratio; ALT = alanine transaminase; AST = aspartate transaminase;  
SAA = serum amyloid A. Superscript letters indicate significant differences: from controls (a); from sepsis group (b).
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and neutrophil toxic changes (OR = 10.4, CI = 2.2–49.8). 
However, according to the ROC curve analysis, no signifi-
cant difference to correctly predict a diagnosis of sepsis was 
found among serum SAA, serum bilirubin, and neutrophil 
toxic changes: serum SAA >81 mg/L had a 79.3% sensitivity 
and a 77.7% specificity (AUC = 0.76); serum bilirubin >3.8 
µmol/L had a 72.4% sensitivity and a 74% specificity (AUC 
= 0.79). The value of AUC for the neutrophil toxic changes 
was 0.74. No significant correlation was noticed between 
SAA concentration and the other investigated variables. No 
difference between survivors and non-survivors was detected 
for serum SAA concentration and neutrophil toxic changes 
upon admission. Conversely, serum bilirubin >3.6 µmol/L 
had a 94.4% sensitivity and a 68.4% specificity (AUC = 
0.85) to predict outcome in cats included with a diagnosis of 
sepsis.

Despite the limited value of the SIRS criteria in humans 
and dogs,8,10 diagnosis of sepsis still relies on the evaluation 
of these criteria in clinical settings. Similar criteria in cats 
derive from a retrospective autopsy-based study, and their 
specificity and sensitivity for the detection of feline sepsis 
have not been reported and evaluated extensively. Diagnosis 
of feline sepsis is additionally challenging because of the 
peculiar clinical manifestations of SIRS and the poor diag-
nostic value of leukocyte counts in cats.2,16

In our study, significantly higher SAA concentrations 
were documented in cats with SIRS of infectious and non-
infectious origin compared to healthy controls. This result 
confirms the role of this APP for the detection of systemic 
inflammation in cats, and suggests its potential value as a 
biomarker of feline sepsis. The lack of statistical correlation 
between SAA concentration and leukocyte count in our pop-
ulation raises a concern regarding the traditional methods 
used to detect systemic inflammation in cats. Furthermore, 

significantly higher concentrations of SAA were docu-
mented in cats with sepsis compared to cats with trauma. 
Although higher values of SAA were previously reported in 
cats with inflammatory and/or infectious diseases compared 
to other sick cats,18 we evaluated the potential of SAA in 
discriminating between septic and non-septic SIRS. How-
ever, according to the results of the ROC curve analysis, the 
performance of a SAA arbitrary cutoff (>81 mg/L) to cor-
rectly predict a diagnosis of sepsis in this cohort of animals 
was only moderate.

Cats included in the sepsis group had significantly 
increased serum bilirubin concentrations compared to those 
in the trauma group. Furthermore, this variable was able to 
predict outcome in the former group, although the accuracy 
was only moderate. Hyperbilirubinemia is a common finding 
in critically ill septic humans, being potentially related to 
sepsis-induced cholestasis or hepatic damage or dysfunc-
tion.9 Increased bilirubin concentration and icterus have been 
reported previously as common abnormalities in cats with 
sepsis,2 potentially indicating the presence of cholestasis in 
cats with this condition. Further studies evaluating the inci-
dence of cholestasis and its prognostic significance in feline 
sepsis are warranted.

Leukocytosis with left shift has been reported to be more 
common in septic cats compared to cats with non-infectious 
SIRS,3 and the presence of toxic neutrophils has been associ-
ated with various infectious feline diseases.19 According to 
our findings, toxic neutrophil changes associated with ele-
vated SAA values may aid clinicians in the diagnosis of 
feline sepsis.

No association between SAA concentration measured at 
the time of hospital admission and final outcome was identi-
fied in our population of SIRS cats. In humans, elevated SAA 
concentrations predicted outcome in people with neoplastic 
or immune-mediated diseases,5,15 but failed to reach this pur-
pose in other conditions.1 Similar controversies with respect 
to prognosis have been reported for SAA in horses,4,21 and for 
other APPs in veterinary medicine,6,14 suggesting that serial 
monitoring or combined APP profiles rather than single APP 
values may better predict outcomes. In a retrospective study 
including 175 cats with various diseases (neoplastic, inflam-
matory, and other diseases), cats with a SAA concentration 
above the reported reference interval at the time of the first 
evaluation had a significantly shorter median survival time 
compared to cats with non-elevated SAA concentration, 
regardless of the final diagnosis.20 However, diagnostic crite-
ria of these diseases were not uniform in the latter study and 
different treatments before and after diagnosis among the cats 
might have affected the prognosis.20 Furthermore, mortality 
data of the cats with neoplasia were more abundant compared 
with the cats with other diseases. This might have led to a 
biased result.

The overall mortality rate for cats with SIRS was 32% in 
our study, with 83% of the non-survivors belonging to the 
sepsis group; the mortality rate in the latter group was 52%. 

Table 2. Univariate and multivariate binary logistic regression 
of clinicopathologic variables associated with sepsis diagnosis at 
the time of hospital admission in cats with systemic inflammatory 
response syndrome. Only variables with p < 0.05 are presented.

Variable
Regression 
coefficient

Standard 
error Odds ratio

Univariate binary  
logistic regression

 Total bilirubin 
(µmol/L)

0.10 0.048 1.10 (1.00–1.21)

 SAA (mg/L) 0.01 0.003 1.01 (1.0–1.01)
 Toxic changes 

(y/n)
2.20 0.67 9.02 (2.4–33.86)

Multivariate binary  
logistic regression

 SAA (mg/L) 0.01 0.004 1.01 (1.0–1.02)
 Toxic changes 

(y/n)
2.34 0.79 10.4 (2.18–49.79)

Numbers in parentheses are 95% confidence intervals. SAA = serum amyloid A;  
y/n = presence/absence.
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These data are consistent with other reports of mortality of 
septic cats.3,13

Several limitations exist in our study. We included in the 
sepsis group only SIRS cats with bacteriologic or microbio-
logic confirmation of sepsis, being confident of their final 
diagnosis. However, we cannot exclude that some of the cats 
included in the trauma group may have indeed developed 
septic complications upon admission or during hospitaliza-
tion. We included a relatively small number of patients, and 
this may have limited the statistical evaluation or the prog-
nostic power of the investigated variables. Additionally, 
because the study was retrospective, we were not able to 
evaluate a clinical scoring system to stratify patients accord-
ing to the severity of the clinical condition, preventing fur-
ther statistical comparisons. Finally, blood sampling was 
performed at the time of hospital admission only; monitoring 
over time could have improved the prognostic value of the 
investigated variables.

Our results support the value of SAA as a potential diag-
nostic marker of feline SIRS and sepsis. The power of serum 
SAA in predicting the occurrence of sepsis was only moder-
ate in this population; however, association with the mea-
surement of serum bilirubin concentration and evaluation of 
the blood smear for the presence of neutrophil toxic changes 
may further aid the diagnosis of sepsis in cats. The prognos-
tic potential of serum bilirubin in feline sepsis seems promis-
ing. Finally, further prospective large-cohort studies are 
needed to assess the prognostic significance of SAA, serum 
bilirubin, and neutrophil toxic changes in cats with SIRS, 
and to assess their value for the early detection of feline sep-
sis and the prompt recognition of critically ill patients.
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7.3 The Delta Neutrophil Index: background 

Granulocytes are key effectors of the host response to inflammation and infection. During severe 

SIRS and in presence of infection, less mature granulocytes forms enter circulation, including an 

increased number of bands, metamyelocytes or myelocytes. Presence of immature granulocytes 

(IG) is still used as a marker of infection or sepsis in clinical practice. Similarly, morphologic 

changes of granulocytes including toxic granulation, Dohle bodies and cytoplasmatic vacuoles have 

good sensitivity in predicting infection in humans (Seebach et al. 1997; Park et al. 2011; Mare et al. 

2015). Increased IG have been related with disease severity, systemic complications and worse 

prognosis in septic people (Mare et al. 2015). Whether IG reflect sepsis severity or actively 

contribute to organ dysfunction is still a matter of debate: interestingly, IG are usually characterized 

by altered rheological properties compared to mature cells, and might promote obstruction of small 

vessels, endothelial injury and impaired microcirculation during severe sepsis and septic shock. 

Additionally, few experimental and human studies indicated that IG have impaired microbicidal 

functions, and might concurr to immunoparalysis and MODS development (Poschl et al. 2005; 

Leliefeld et al. 2016). The main limitation to IG assessment and enumeration is related to the 

manual blood smear examination, which is operator-dependant, non-repeatible and time-consuming 

(Park et al. 2011).  

The Delta Neutrophil Index (DNI) is a relatively new biomarker of sepsis in people. Despite the 

increasing number of studies evaluating its value in sepsis diagnosis and prognostication, DNI is 

still unfamiliar to many clinicians and has not been studied world-wide (Park et al. 2017). The DNI 

can be calculated by hematological analyzers of the ADVIA series (ADVIA 120, Siemens, inc.) as 

the difference in leukocyte subfractions measured by a cytochemical myeloperoxidase reaction and 

by a nuclear lobularity assay. Previous human studies demonstrated a high correlation between DNI 

value and manual IG count, pointing its role in representing the circulating fraction of IG (Nahm et 

al. 2008). Several investigators documented the usefulness of the DNI to predict early diagnosis, 

disease severity and outcome in patients with sepsis (Cha et al. 2016). Greater DNI values have 
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been demonstrated in critically ill patients with sepsis compared to sterile inflammatory conditions 

mimicking infection, including superimposed pneumonia in heart-failure patients, acute graft 

pyelonephritis, spontaneous bacterial peritonitis and bacteremia (Park et al. 2011; Lim et al. 2014; 

Shin et al. 2015; Cha et al. 2016). A recent meta-analysis including 12 articles on the performances 

of DNI in sepsis reported a pooled sensitivity of 0.67 and specificity of 0.94 (area under the curve 

0.89) for the DNI as a predictive factor for infection. Similar data (sensitivity 0.70, specificity 0.78, 

area under the curve 0.84) were documented for the DNI as a prognostic factor for death. Hence, the 

DNI seems to have a moderate specificity for sepsis diagnosis, being applicable as a confirmative 

diagnostic tool, and a moderate prognostic role comparable to other well-studied biomarkers as 

procalcitonin (Park et al. 2017).  

Recent investigations focused on IG as diagnostic and prognostic tools in dogs and cats (Segev et 

al. 2006; deClue et al. 2011; Burton et al. 2013; Burton et al. 2014). The ADVIA-series 

hematological analyzers have been used in veterinary medicine to support the manual evaluation of 

the blood smear. Novel ADVIA parameters able to reflect changes in neutrophil maturity and 

toxicty have been assessed in dogs. For istance, lower myeloperoxidase index indicating acquired 

myeloperoxidase deficiency has been demonstrated during localized and systemic canine infections 

(Klenner et al. 2010). Similarly, changes in myeloperoxidase index and lobularity index suggested 

myeoperoxidase deficiency and left-shift, respectively, in experimental and spontaneous canine 

ehrlichiosis (Gianopoulos et al. 2017). Being based on human calculations, the validity of such 

markers in veterinary patients is still uncertain. However, confirming their significance in future 

studies might be beneficial, and will emphasize the value of the routinary hematological profile 

without additional costs or requirements. 

As a part of the current PhD research (2014-2016), we conducted a study to retrospectively evaluate 

the diagnostic and prognostic significance on the DNI in dogs with sepsis and non-infectious SIRS. 

Preliminary results were presented at the 2016 EVECCS Congress as an oral presentation; the full 

paper is provided below.  
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A B S T R A C T

Immature granulocytes (IG) are a marker of severe inflammatory states in human beings and animals,
and have been linked to a diagnosis of sepsis and poor prognosis. The delta neutrophil index (DNI),
automatically calculated by a haematological analyser, provides an estimate of circulating IG. In
particular, an increased DNI value has been associated with the severity of sepsis, and mortality, in
critically ill human beings. The aims of this study were to determine the DNI reference interval (RI) in
healthy dogs, and to evaluate its diagnostic and prognostic significance in dogs with sepsis. A total of
118 dogs with sepsis undergoing a complete blood cell count (CBC) at the time of hospital admission were
included retrospectively. Dogs with sepsis were compared to 20 dogs with primary immune-mediated
haemolytic anaemia (IMHA) and 99 healthy controls. The DNI RI was set from 0 to 9.2%. The DNI was
significantly higher in dogs with sepsis compared to dogs with IMHA and healthy dogs (P < 0.001), and
significantly higher in dogs with septic shock compared to septic dogs without circulatory failure
(P < 0.03). No differences were detected between survivors (78/118) and non-survivors (40/118). Septic
dogs with a DNI above the RI had significantly higher frequencies of IG and toxic neutrophil changes on
manual blood smear evaluation (P = 0.03 and P < 0.001, respectively). The DNI had a fair performance in
identifying dogs with sepsis in this population and predicted septic shock. Larger prospective studies are
needed to validate DNI measurement in dogs and to test its clinical utility.

© 2017 Elsevier Ltd. All rights reserved.

Introduction

Sepsis is a common disease recognised in the intensive care unit
(ICU) and results in high morbidity and mortality in human and
veterinary patients (Silverstein, 2012; Gotts and Matthay, 2016).
Despite a reduction of in-hospital mortality in the last 40 years, the
incidence of sepsis seems to have increased in human beings (Gotts
and Matthay, 2016) and the early diagnosis of this syndrome
remains a major goal in order to implement prompt and effective
treatment (Silverstein, 2012; Hayden et al., 2016).

Neutrophil precursors, including band neutrophils, metamye-
locytes and myelocytes, are defined as immature granulocytes
(IGs) (Stockham and Scott, 2008; Mare et al., 2015). They are
released into the circulation in response to severe inflammation
and are included in the diagnostic criteria for systemic inflamma-
tory response syndrome (SIRS) in human beings and animals
(Hauptman et al., 1997; Nierhaus et al., 2013; Mare et al., 2015).
Recent evidence suggests an association between increased blood

concentrations of IGs and a diagnosis of sepsis in human beings
(Nierhaus et al., 2013; Mare et al., 2015). In addition, increased
concentrations of IGs have been associated with increased disease
severity, progression and poor prognosis in different settings of
human sepsis (Mare et al., 2015). IGs have altered rheological
properties compared to mature cells (Poschl et al., 2005) and, due
to poor cell membrane deformability, they may accumulate in
specific microvasculature sites, promoting endothelial injury,
microcirculatory impairment and local organ dysfunction (van
Eden et al., 1997; Poschl et al., 2005). Obstruction of small vessels
from activated immature leukocytes has been demonstrated in
animal models of low perfusion pressure conditions, such as shock
and local ischaemia (Hansell et al., 1993), and in children with
Gram negative septicaemia (Poschl et al., 2005).

The potential diagnostic and prognostic value of circulating IGs
has been recognised in a number of veterinary studies (Segev et al.,
2006; Burton et al., 2013, 2014). The presence of a leukocyte
degenerative left shift, defined as the number of IGs exceeding the
number of mature neutrophils in circulation, has been associated
with an increased risk of death or euthanasia in dogs (Burton et al.,
2013). Although the definition of a degenerative left shift is still
questionable in respect of the overall number of mature
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neutrophils to consider (Stockham and Scott, 2008), these data
suggest that the presence of IGs may have clinical relevance in
diseased animals.

The presence and magnitude of a degenerative left shift may be
associated with worse outcomes in cats (Burton et al., 2014). In a
prospective study, cats with sepsis were more likely to have severe
left shift compared to cats with non-infectious inflammation,
although no association between IGs and outcome was identified
(DeClue et al., 2011). However, although assessment of circulating
IGs by manual evaluation of blood smears currently represents the
gold standard for leukocyte classification in veterinary medicine, it
can be operator dependent and time consuming (Stockham and
Scott, 2008; Park et al., 2011).

The delta neutrophil index (DNI) represents the fraction of
circulating IGs in the peripheral blood; it is automatically
calculated by the ADVIA-series haematological analysers as the
leukocyte difference between the myeloperoxidase channel and
the nuclear lobularity channel count (Nahm et al., 2008). The DNI
has been associated with positive blood cultures, disseminated
intravascular coagulation scores, progression of disease and
mortality in septic adult and neonatal human patients (Nahm
et al., 2008; Park et al., 2011; Lee et al., 2013; Kim et al., 2014). The
DNI also appears to be helpful in identifying human patients with
an impending risk of organ dysfunction and septic shock (Park
et al., 2011).

No data regarding the diagnostic performance of the DNI have
been reported in veterinary medicine. The primary aim of the
current study was to evaluate the diagnostic and prognostic
significance of the DNI in canine sepsis. A specific preliminary aim
was to determine the DNI reference interval (RI) in a population of
healthy control dogs.

Materials and methods

Study design

This was a retrospective study conducted at the Veterinary Teaching Hospital of
the University of Bologna. The study included three groups of dogs: (1) dogs with
sepsis; (2) dogs with primary immune-mediated haemolytic anaemia (IMHA); and
(3) healthy control dogs. Dogs with sepsis comprised critically ill septic dogs
hospitalised in the ICU from January 2014 to January 2016 with a complete blood
count (CBC) performed by a standard operative procedure (ADVIA 2120, Siemens
Healthcare Diagnostics) at the time of hospital admission. Medical records
including outcome information were reviewed. Bacterial sepsis was defined as
the presence of SIRS (Hauptman et al., 1997) plus evidence of a septic focus by
means of cytology or microbiology. Molecular and serological analyses were used
for the diagnosis of specific diseases. Parvoviral enteritis was confirmed by a
positive real-time PCR on faecal samples (Battilani et al., 2011). Leptospirosis was
diagnosed by combining suggestive clinical and clinicopathological abnormalities
with a positive leptospiral microagglutination test (MAT) on serum samples (single
titre ! 1:800 for non-vaccinal serogroups and/or a four-fold increase in titre in
paired sera; Mastrorilli et al., 2007).

A diagnosis of primary IMHA was based on the presence of anaemia (packed cell
volume < 37%) associated with a positive saline agglutination test and/or a positive
Coombs’ test and/or evidence of moderate to marked spherocytosis on examination
of blood smears (Goggs et al., 2015). Dogs that had received immunosuppressive
treatment for IMHA and dogs with evidence of predisposing disease were excluded.

Haematological data of blood donor dogs considered to be healthy according to
complete clinical and clinicopathological data were selected in order to determine
the DNI RI and for comparative purposes.

Classification of dogs with sepsis

Dogs with sepsis were categorised according to severity of severity (sepsis;
severe sepsis; septic shock) based on the following criteria present upon admission
or during hospitalisation: (1) severe sepsis was defined by evidence of dysfunction
in one of more organs (Kenney et al., 2010); and (2) septic shock was defined as
persistent hypotension (systolic blood pressure < 90 mmHg) despite adequate fluid
resuscitation (Silverstein and Beer, 2015). Dogs with sepsis were further divided
into survivors (alive at hospital discharge) and non-survivors (died despite medical
therapy or humanely euthanased because of moribund conditions or end-stage
disease).

Haematological analysis

Blood was collected by peripheral vein or jugular venipuncture using a vacuum
system and K3 ethylene diamine tetra-acetic acid (EDTA) tubes (Vacutest Kima) and
analysed on a routine basis within 4 h in all dogs. In addition to the CBC, the DNI was
calculated automatically by the system and expressed as a percentage according to
the following formula (Park et al., 2011):

DNI (%) = (the neutrophil and eosinophil sub-fractions assayed in
the myeloperoxidase channel by cytochemical reaction) " (the
polymorphonucleated sub-fraction counted in the nuclear lobu-
larity channel by the reflected light beam).

Cellular morphology and toxic changes were assessed by microscopic
examination of blood smears stained by the May–Grünwald–Giemsa technique
(Merck KGaA, 64271 Darmstadt). Chemistry profiles including C-reactive protein
concentrations (CRP) (CRP OSR6147, Olympus/Beckman Coulter) performed at the
time of hospital admission were reviewed retrospectively. Analyses were
performed using an automated chemistry analyser (AU 400, Olympus/Beckman
Coulter). The Acute Patient Physiological and Laboratory Evaluation (APPLE) fast
score was retrospectively calculated in the sepsis, IMHA and healthy control groups
(Hayes et al., 2010).

Statistical analysis

Normality was tested graphically and using the D’Agostino Pearson test. In view
of the non-normal distribution of most variables, non-parametric testing was
adopted for all analyses. Data were evaluated using standard descriptive statistics
and are reported as median (range). The DNI RI of healthy dogs was determined
using the robust method, and 90% confidence intervals (CIs) were specified.
Differences between groups were evaluated using the Mann–Whitney U test and
the Kruskal–Wallis one-way analysis of variance. If the Kruskal–Wallis test result
was significant, a post-hoc analysis for pairwise comparison of subgroups was
performed. Receiver operating characteristic (ROC) curve analysis was used to find
the optimal cut-off value of the DNI for prediction of sepsis and septic shock, and the
presence of IGs and toxic neutrophils on evaluation of blood smears. The areas
under the ROC curves (AUC) were compared according to Hanley and McNeil (1983).
Correlations between variables were assessed using Spearman’s rank correlation
coefficients. Categorical results were compared using Fisher’s exact test. Statistical
analyses were performed using MedCalc Statistical Software version 13.3.1 bvba
and GraphPad Prism version 7.02 for Windows. A P value of <0.05 was considered to
be significant.

Results

A total of 118 dogs with sepsis were considered to be eligible
according to the inclusion criteria and were enrolled in the study.
Thirty-six of 118 (31%) dogs were intact males, 7/118 (6%) were
castrated males, 58/118 (49%) were intact females and 17/118 (14%)
were spayed females. The median age was 8 years (range 2 months
to 16 years), and the median body weight was 20 kg (range 2–
68 kg). Causes of sepsis included pyometra (n = 47), leptospirosis
(n = 15), septic peritonitis (n = 16), parvoviral enteritis (n = 13) and
miscellaneous causes (urosepsis, n = 6; pneumonia, n = 5; septic
cholangitis, n = 4; bite wounds, n = 3; deep pyoderma, n = 2; septic
arthritis, n = 2; endocarditis, n = 2; pyothorax, n = 2; septic pericar-
ditis, n = 1). Fifty-two of 118 (44%) dogs were diagnosed with severe
sepsis, 12 dogs (10%) were diagnosed with septic shock and 54/118
(46%) had sepsis without evidence of organ dysfunction. Seventy-
eight of 118 (66%) dogs were survivors, while 40/118 (34%) were
non-survivors; 20 dogs died and 20 were euthanased because of
moribund conditions. All dogs with septic shock (n = 12) did not
survive to hospital discharge.

Twenty dogs with IMHA were included in the study. Nine of 20
(45%) were intact males, 1/20 (5%) was a castrated male, 4/20 (20%)
were intact females and 6/20 (30%) were spayed females. The
median age was 7.5 years (range 8 months to 13 years) and the
median body weight was 14.6 kg (range 4.3–29.4 kg).

Ninety-nine blood donor dogs were enrolled as healthy
controls. Forty-six of 99 (47%) were intact males, 4/99 (4%) were
castrated males, 26/99 (26%) were intact females and 23/99 (23%)
were spayed females. The median age was 3 years (range 1–
9 years) and the median body weight was 27.7 kg (3–70 range).
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The RI for the DNI was set 0–9.2% (90% CI 7.8–10.5%). Results of
the comparison among groups, including descriptive DNI values,
CRP concentrations and the APPLE fast score in septic, IMHA and
healthy dogs, are reported in Table 1. Dogs with sepsis had
significantly higher leukocyte counts and DNI values than controls,
and significantly lower leukocyte counts and higher DNI values
compared with dogs with IMHA (P < 0.05) (Table 1,Fig. 1a).
According to the results of the ROC curve analysis, a DNI > 2.3%
had a sensitivity of 67% and a specificity of 75% to correctly predict
the diagnosis of sepsis (AUC = 0.71; P < 0.001). Dogs with septic
shock had significantly higher DNI and APPLE fast score results, and
significantly lower leukocyte counts, than dogs with sepsis
without circulatory failure (P = 0.03, P < 0.001 and P = 0.01,
respectively) (Table 2; Fig. 1b). According to the results of the
ROC curve analysis, a DNI > 14.3% had a sensitivity of 58.3% and a
specificity of 89.9% to correctly predict septic shock (AUC = 0.69;
P = 0.02). Comparing ROC curves, no significant differences were
found in the prediction of septic shock between DNI, APPLE fast
score and leukocyte count (data not shown). When results were
compared according to the cause of the septic disease, significantly
higher DNI values were documented in dogs with septic
peritonitis, pyometra and miscellaneous causes of sepsis, while
the APPLE fast score was significantly higher in dogs with septic
peritonitis, parvoviral enteritis and miscellaneous causes (Table 3).

Non-survivors had a significantly higher APPLE fast score than
survivors; values > 23 had a sensitivity of 81% and a specificity of
67% to correctly predict outcome (AUC = 0.77; P < 0.0001).
Conversely, serum CRP concentrations, leukocyte count and DNI
values were not different according to the final outcome (Table 4).

In dogs with sepsis and IMHA, the frequencies of IGs were 20/
118 (17%) and 10/20 (50%), respectively, while the frequencies of
toxic neutrophils were 35/118 (30%) and 1/20 (5%), respectively.
Both proportions were significantly different between the two
groups (P < 0.05). Septic dogs with a DNI value above the reported
RI (>9.2%) had significantly higher frequencies of IGs and toxic
neutrophil changes at the manual blood smear evaluation
compared to septic dogs with a DNI value within the RI (42% vs.
6%, P < 0.01; 61% vs. 28%, P = 0.004, respectively) (Figs. 2a and b).

Table 1
Reference intervals (RIs) and medians (ranges) of APPLE fast scores, delta neutrophil index (DNI) values, C-reactive protein (CRP) concentrations and complete blood counts in
dogs with sepsis (n = 118), immune-mediated haemolytic anaemia (IMHA; n = 99) and healthy control dogs (n = 20).

RI Sepsis IMHA Control group

APPLE fast score 0–50 22 (7–43) 28 (17–39) 11 (7–15)a,b

DNI % 0–9.2 4.6 (0.0–86.4)b,c 0.6 (0.0–44.1) 2.6 (0.0–14.6)
CRP mg/dL 0–0.5 9.01 (0.34–41.40) 9.44 (5.56–33.84) 0.22 (0.01–0.5)a,b

Albumin g/dL 2.8–3.7 2.49 (1.02–4.11) 2.51 (1.76–3.42) 3.32 (2.56–3.89)
Lactate mmol/L 0.2–1.5 1.7 (0.6–16.0) 1.85 (0.70–10.80) 1.2 (0.5–1.8)a,b

Glucose mg/dL 70–125 94 (13–725) 98 (49–192) 87 (70–110)
HCT % 37.0–55.0 41.95 (8.4–68.3) 12.75 (4.80–28.00) 48.15 (43.50–57.60)
Hb g/dL 12–18 14.4 (2.5–21.1) 4.3 (2.0–8.9) 16.3 (14.7–16.5)
MCH pg 19.5–24.5 22.7 (19.0–73.1) 24.4 (22.2–60.3) 23.7 (20.9–25.2)
MCV fL 60.0–77.0 66.0 (25.5–81.9) 73.5 (59.1–111.6) 67.5 (62.1–72.4)
MCHC g/dL 32.0–38.0 34.2 (29.9–39.2) 33.75 (26.50–72.40) 34.8 (33.7–35.9)
RDW % 13.0–15.7 12.9 (11.3–20.2) 20.0 (12.7–39.5) 12.6 (11.8–20.2)
RBCs ! 106/mm3 5.5–8.5 6.37 (1.23–9.63) 1.67 (5.70–3.69) 7.17 (6.53–8.65)
WBC ! 103/mm3 6–17 19.1 (0.3–101.9)b,c 25.5 (7.6–68.7)c 9.5 (5.4–20.4)
Neutrophils/mm3 3000–12,000 15,010 (50–80,320) 19400 (6130–62,426) 6505 (4060–10,320)
Band neutrophils/mm3 0–300 0.0 (0.0–5981.0)b 0.5 (0.0–7546.0)a 0.0 (0.0–0.0)a,b

Lymphocytes/mm3 1000–4800 1670 (50–37,920) 2445 (920–8980) 2205 (1710–4270)
Monocytes/mm3 100–1400 1380 (7–10,830) 1640 (310–3018) 500 (150–910)
Eosinophils/mm3 0–750 110 (0–2380) 140 (0–740) 620 (100–1710)
Basophils/mm3 0–180 80 (0–1480) 40 (0–650) 55 (20–100)
Platelets ! 103/mm3 160–500 266 (16–3800) 147.5 (4.1–465.0) 269 (184–453)
MPV fL 6.6–10.9 12.85 (7.70–30.80) 14.4 (10.8–35.7) 11.3 (9.5–14.2)

HCT, haematocrit; Hb, haemoglobin concentration; MCH, mean corpuscular haemoglobin; MCV, mean corpuscular volume; MCHC, mean corpuscular haemoglobin
concentration; RBC, red blood cell; RDW, red blood cell distribution width; WBC, white blood cell; MPV, mean platelet volume.

a Significantly different from sepsis (P < 0.05).
b Significantly different from IMHA (P < 0.05).
c Significantly different from control group (P < 0.05).

Fig. 1. (a) Box and whisker plots of white blood cells (WBCs, cells ! 103/mm3) and
delta neutrophil index (DNI, %) values in healthy control dogs (white, n = 99), dogs
with sepsis (light grey, n = 118) and dogs with immune-mediated haemolytic
anaemia (IMHA) (dark grey, n = 20). *Significant difference from healthy controls
and dogs with IMHA (P < 0.05). (b) Box and whisker plots of WBCs, DNI and APPLE
fast scores among dogs with sepsis (light grey, n = 106) and dogs with septic shock
(dark grey, n = 12). *Significant difference from dogs with sepsis (P < 0.05).
Boxes represent interquartile ranges, solid horizontal lines through boxes represent
medians and whiskers represent minimum and maximum.

R. Troìa et al. / The Veterinary Journal 230 (2017) 13–19 15



 74 

 

 

Table 2
Reference intervals (RIs) and medians (ranges) of APPLE fast scores, delta neutrophil index (DNI) values, C-reactive protein (CRP) concentrations and complete blood counts in
dogs with sepsis (n = 106) and septic shock (n = 12).

Variable RI Sepsis Septic shock P

APPLE fast score 0–50 21 (7–32) 31 (24–43) <0.001
DNI % 0–9.2 4.45 (0.0–86.40) 15.85 (0.40–58.30) 0.03
CRP mg/dL 0–0.5 8.98 (0.34–41.40) 9.74 (6.84–40.46) NS
Albumin g/dL 2.8–3.7 2.35 (1.02–4.11) 2.265 (1.260–3.060) NS
Lactate mmol/L 0.2–1.5 1.6 (0.6–16) 4.6 (0.9–10.9) 0.01
Glucose mg/dL 70–125 93 (13–733) 87 (16–220) NS
HCT % 37.0–55.0 41.75 (8.40–68.30) 45.0 (30.6–56.9) NS
Hb g/dL 12–18 14.35 (2.50–21.10) 15.4 (9.2–19) NS
MCH pg 19.5–24.5 22.7 (19.0–73.1) 22.8 (19.2–73.1) NS
MCV fL 60.0–77.0 66.0 (58.2–78.7) 66.05 (25.50–87.90) NS
MCHC g/dL 32.0–38.0 34.4 (30.1–39.2) 33.45 (29.90–39.10) 0.03
RDW % 13.0–15.7 12.85 (11.30–20.20) 12.95 (11.60–15.50) NS
RBCs ! 106/mm3 5.5–8.5 6.34 (1.23–9.63) 6.67 (4.03–8.44) NS
WBC ! 103/mm3 6–17 19.5 (0.3–101.9) 4.0 (0.4–66.8) 0.01
Neutrophils/mm3 3000–12,000 15350 (100–80,320) 3020 (50–58,180) 0.01
Band neutrophils/mm3 0–300 0.0 (0.0–5981.0) 0.0 (0.0–2983.0) NS
Lymphocytes/mm3 1000–4800 1940 (50–37,920) 665 (240–8250) 0.04
Monocytes/mm3 100–1400 1470 (7–10,830) 260 (30–2650) 0.006
Eosinophils/mm3 0–750 120 (0–2380) 50 (0–1050) 0.02
Basophils/mm3 0–180 80 (0–1480) 50 (20–410) NS
Platelets ! 103/mm3 160–500 266 (16–3800) 221 (33–584) NS
MPV fL 6.6–10.9 12.7 (7.7–24.80) 13.7 (9.0–30.8) NS

HCT, haematocrit; Hb, haemoglobin concentration; MCH, mean corpuscular haemoglobin; MCV, mean corpuscular volume; MCHC, mean corpuscular haemoglobin
concentration; RBC, red blood cell; RDW, red blood cell distribution width; WBC, white blood cell; MPV, mean platelet volume.
NS, not significant.

Table 3
Reference intervals (RIs) and medians (ranges) of APPLE fast scores, delta neutrophil index (DNI) values, C-reactive protein (CRP) concentrations and white blood cell (WBC)
counts in healthy control dogs (n = 99) and dogs with sepsis, including dogs with pyometra (n = 47), septic peritonitis (n = 16), parvovirus (n = 13), leptospirosis (n = 15) and
miscellaneous causes (n = 27).

Causes of sepsis

RI Control dogs Pyometra Septic peritonitis Parvovirus Leptospirosis Miscellaneous causes

APPLE fast score 0–50 11 (7–15) 18 (7–30)a,c,d,f 28 (16–43)a 25 (18–32)a 21 (13–29)a,c,f 26 (18–33)a

DNI % 0–9.2 2.6 (0.0–14.6) 4.6 (0.0–77.7)a 9.5 (0.0–86.4)a 7.3 (0.0–53.6) 0.7 (0.0–10.4)b,c,d 6.6 (0.0–75.1)a

CRP mg/dL 0–0.5 0.22 (0.01–0.5) 9.05 (0.34–41.40)a 9.39 (1.04–40.46)a 9.44 (6.54–30.55)a 7.81 (1.85–33.64)a 9.64 (0.97–38.85)a

WBC ! 103/mm3 6–17 9.5 (5.4–20.4) 21.8 (3.3–79.7)a 16.0 (1.6–76.2) 2.4 (0.3–29.7)a,b,c,e,f 18.8 (10.1–47.1)a 20.5 (3.2–101.9)a

a Significant different from control group (P < 0.05).
b Significant different from pyometra (P < 0.05).
c Significant different from septic peritonitis (P < 0.05).
d Indicates significant different from parvovirus (P < 0.05).
e Indicates significantly different from leptospirosis (P < 0.05).
f Indicates significantly different from miscellanea (P < 0.05).

Table 4
Reference intervals and medians (means) for APPLE fast scores, delta neutrophil index (DNI) values, C-reactive protein (CRP) concentrations and complete blood counts in
survivors (n = 78) and non-survivors (n = 40).

Variable RI Survivors Non-survivors P

APPLE fast score 0–50 21 (7–32) 26 (16–43) <0.001
DNI % 0–9.2 5.9 (0.0–77.7) 3.2 (0.0–86.4) NS
CRP mg/dL 0–0.5 9.05 (0.34–41.40) 8.58 (1.04–40.46) NS
Albumin g/dL 2.8–3.7 2.56 (1.28–4.11) 2.325 (1.020–3.660) NS
Lactate mmol/L 0.2–1.5 1.6 (0.6–9.0) 2.0 (0.7–16.0) 0.008
Glucose mg/dL 70–125 93 (13–725) 97.5 (16–733) NS
HCT % 37.0–55.0 41.9 (21.2–68.30) 42.1 (8.4–60.7) NS
Hb g/dL 12–18 14.5 (7.0–21.1) 14.4 (2.5–21.1) NS
MCH pg 19.5–24.5 22.75 (19.00–25.20) 22.75 (19.20–73.10) NS
MCV fL 60.0–77.0 65.8 (58.4–78.7) 67.3 (25.5–81.9) NS
MCHC g/dL 32.0–38.0 34.6 (30.2–39.2) 33.8 (29.9–39.1) 0.01
RDW % 13.0–15.7 12.8 (11.3–20.2) 13.0 (11.60–18.70) NS
RBCs ! 106/mm3 5.5–8.5 6.38 (3.08–9.06) 6.40 (1.23–9.63) NS
WBC ! 103/mm3 6–17 19.4 (0.3–79.7) 17.4 (0.4–101.9) NS
Neutrophils/mm3 3000–12,000 15,220 (100–67,770) 14,455 (50–80,320) NS
Band Neutrophils/mm3 0–300 0 (0–5981) 0 (0–2983) NS
Lymphocytes/mm3 1000–4800 1945 (50–5840) 1260 (174–37,920) NS
Monocytes/mm3 100–1400 1520 (7–7860) 1220 (30–10,830) NS
Eosinophils/mm3 0–750 130 (0–2380) 60 (0–1050) <0.001
Basophils/mm3 0–180 80 (0–1350) 90 (20–1480) NS
Platelets ! 103/mm3 160–500 272 (16–3800) 237 (29–1274) NS
MPV fL 6.6–10.9 12.9 (7.7–24.80) 12.35 (8.80–30.80) NS

HCT, haematocrit value; Hb, haemoglobin concentration; MCH, mean corpuscular haemoglobin; MCV, mean corpuscular volume; MCHC, mean corpuscular haemoglobin
concentration; RBC, red blood cell; RDW, red blood cell distribution width; WBC, white blood cell; MPV, mean platelet volume.
NS, not significant.
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Moreover, according to the ROC curve analysis, a DNI value > 7.3%
had a sensitivity of 87% and a specificity of 71% to correctly predict
the presence of IG (AUC = 0.87; P < 0.0001), while a value > 10.9%
had a sensitivity of 52% and a specificity of 87% to correctly predict
the presence of toxic neutrophils (AUC = 0.74; P < 0.0001). DNI
values were significantly correlated with both IG (r = 0.5; P
< 0.0001) and toxic neutrophil changes (r = 0.4; P = 0.0002) in
dogs with sepsis. On the contrary, the DNI was not able to predict
the presence of both IG and toxic neutrophils in IMHA dogs
(Figs. 2c and d).

Discussion

An early and accurate diagnosis of sepsis is still a major
challenge in order to implement appropriate treatments and
interventions, and to reduce sepsis related mortality (Silverstein,
2012; Gotts and Matthay, 2016). Various inflammatory markers
have been considered to aid clinicians in the diagnosis of sepsis in
human beings and animals; however, they often lack specificity
(Karlsson et al., 2013; Du et al., 2016; Pradhan et al., 2016).
Circulating IGs have potential diagnostic and prognostic value in

Fig. 2. (a) Frequency bar charts with 100% stacked columns in the presence (dark grey) or absence (light grey) of immature granulocytes (IGs) on blood smear evaluation in
dogs with sepsis. Frequencies were significantly different between groups (P < 0.01). (b) Frequency bar charts with 100% stacked columns in the presence (dark grey) or
absence (light grey) of toxic neutrophil changes detected on blood smear evaluation in dogs with sepsis. Frequencies were significantly different among groups (P = 0.004). (c)
Frequency bar charts with 100% stacked columns in the presence (dark grey) or absence (light grey) of IGs on blood smear evaluation in dogs with immune-mediated
haemolytic anaemia (IMHA). No significant differences were detected (P = 1.0). (d) Frequency bar charts with 100% stacked columns in the presence (dark grey) or absence
(light grey) of toxic neutrophil changes on blood smear evaluation in dogs with immune-mediated haemolytic anaemia (IMHA). Cases are divided by delta neutrophil index
(DNI) cut-off, set to the upper limit of the reference interval (RI, %). Left columns, dogs with DNI ! 9.2%; right columns, dogs with DNI > 9.2%.
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human patients with systemic infection (Nierhaus et al., 2013;
Mare et al., 2015). A degenerative left shift in dogs has been
associated with severe inflammatory and septic conditions, and
with higher risks of death or euthanasia, depending on the
underlying disease (Burton et al., 2013). Similar results have been
reported in cats (Burton et al., 2014); in this species, leukocytosis
with left shift has been linked to sepsis and the presence of toxic
neutrophils has been associated with infectious diseases (Segev
et al., 2006; DeClue et al., 2011).

The DNI has been used early in the disease course to
successfully differentiate septic conditions from non-septic
inflammatory states in human beings (Lee et al., 2013; Shin
et al., 2015). The DNI is superior to leukocyte counts and CRP
concentrations for predicting mortality, as well as the occurrence
of severe sepsis and septic shock (Nahm et al., 2008; Park et al.,
2011). The results of our preliminary study are partially in line with
these human studies. Specifically, serum CRP concentrations were
elevated in the overall population of sick dogs, making it
impossible to discriminate patients with sepsis from those with
non-infectious SIRS (exemplified in our study by IMHA). Con-
versely, the DNI could be used to identify septic patients with
relative accuracy. Furthermore, the DNI in septic dogs had good to
fair accuracy in predicting the presence of circulating IGs and toxic
neutrophils, respectively, confirming the potential diagnostic value
of this automatically calculated variable in canine sepsis. A partial
overlap was evident between the DNI values of septic dogs and
controls (Table 1). This result is not completely expected and
requires further clarification, since the relevance of the DNI may
vary according to clinical context, and thus DNI results should be
interpreted carefully. Our study enrolled a heterogeneous popula-
tion of dogs with various causes and severities of sepsis. These
factors may have reduced the diagnostic accuracy of the DNI,
which appears to be more relevant in specific and more critical
septic conditions.

When DNI values were compared according to the category of
sepsis severity, no difference was noted between sepsis without
organ dysfunction and severe sepsis (data not shown); however, at
the time of hospital admission, significantly higher DNI values
were found in dogs presenting with or developing septic shock
during hospitalisation. This observation is consistent with human
data supporting the value of the DNI for prediction of septic shock
(Park et al., 2011), although the overall number of dogs with septic
shock in our study was low (12/118, 10%). Thus, the prognostic
relevance of the DNI needs to be confirmed by further studies in a
wider population of dogs with severe sepsis or septic shock.

The APPLE fast score and the leukocyte count showed similar
performances in the prediction of septic shock in our study
population. The former is a validated score of disease severity,
whose prognostic significance has been already documented in
critically ill dogs with SIRS (Giunti et al., 2015), while the
prognostic role of the leukocyte count could have been influenced
by the relative frequency of dogs with septic shock due to
parvoviral enteritis (5/12, 42%; data not shown).

The analysis of the DNI values according to the final diagnosis of
sepsis showed significantly increased values in dogs with septic
peritonitis and pyometra. Although a significant difference was
documented between the DNI of these sepsis subgroups and
control dogs, only dogs with septic peritonitis had a median DNI
above the reported RI. On the other hand, the DNI of dogs with
parvoviral enteritis and leptospirosis was not different from the
healthy controls. According to the APPLE fast score, dogs with
parvoviral enteritis were among the most critical patients in our
study population; however, the younger age of the patients and
virus-mediated myelosuppression may have had an impact on the
DNI results, since IG synthesis and circulation may be different in
immunosuppressive states. Limitations of the DNI in assessing

bacteraemia have been reported in immunocompromised children
(Ahn et al., 2014). These findings suggest that the clinical relevance
of the DNI may vary according to the underlying disease or patient
characteristics.

When dogs with sepsis were compared on the basis of the final
outcome, the APPLE fast score was the only variable that was
significantly different between survivors and non-survivors,
confirming its prognostic significance in critically ill dogs. No
significant association with outcome was found for the DNI. The
timing of DNI evaluation for prediction of mortality in the septic
human patient is controversial, since DNI values at the time of
hospital admission are not necessarily associated with a stronger
predictive power (Hwang et al., 2015). The increment of the DNI
during hospitalisation has been independently associated with
early mortality in human beings with Gram negative bacteraemia
(Kim et al., 2014), suggesting that serial DNI assessment may be of
value.

The inclusion of a group of dogs with a diagnosis of IMHA was
based on the frequent association of IMHA with a strong
inflammatory response, representing a well-recognised model of
non-infectious SIRS (Goggs et al., 2015). Furthermore, leukocytosis
with a left shift is frequently reported in the course of IMHA (Piek,
2011). In the present study, the frequency of IGs on blood smear
evaluation was significantly higher in dogs with IMHA than in
septic dogs; however, the median DNI in IMHA dogs was not
different from that in healthy controls, and the DNI was not able to
predict the presence of circulating IGs in dogs with IMHA. These
results are not entirely expected and require additional inves-
tigations in larger canine populations. If confirmed, they may
indicate that interpretation of the DNI in diseased dogs is complex.
These findings highlight the potential of the DNI as a marker of
sepsis in dogs, although its diagnostic performance in differenti-
ating sepsis and non-septic inflammatory conditions needs to be
clarified in further studies.

In this study, 15/118 (12.7%) septic dogs had evidence of toxic
neutrophils without a left shift. A lack of correlation between toxic
changes and left shift has been reported previously in an
experimental canine model of acute inflammation (Gosset et al.,
1985) and in cats with spontaneous inflammatory and infectious
diseases (Segev et al., 2006). These observations, partially
corroborated by our results, suggest that toxic neutrophil changes
in the peripheral blood may precede changes in the leukogram.

There are some limitations to consider when interpreting our
results. The relatively small number of dogs in some groups,
particularly dogs with septic shock and dogs with IMHA, may have
reduced the statistical power of the analysis. Dogs with sepsis had
a range of diseases and grades of severity of sepsis. In future
studies, the inclusion of dogs with non-septic SIRS other than
IMHA (e.g. pancreatitis, trauma) may provide more information on
the diagnostic performance of the DNI in dogs with systemic
inflammation. Due to the retrospective nature of the study, only
partial data regarding IGs and toxic neutrophil changes at the
blood smear evaluation were available. A prospective study may
permit more detailed characterisation of IGs and severity of toxic
changes, and clarify their impact on the DNI. Finally, although the
DNI has been identified as a promising marker of sepsis in several
human case series, there is a need for validation studies of the
stability and repeatability of this index in human beings and
animals.

Conclusions

This study evaluated the performance of the DNI, measured at
the time of hospital admission, as a diagnostic and prognostic
variable in canine sepsis. The DNI had fair diagnostic accuracy in
identifying dogs with sepsis and had a better performance in
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predicting septic shock that current inflammatory biomarkers.
Although DNI analysis is limited by the use of a specific
haematological analyser requiring myeloperoxidase and lobularity
based methods for counting leukocytes, it is performed routinely
and thus does not require additional time or costs in the clinical
setting. No additional benefit in terms of mortality prediction was
evident in our study population. Larger prospective studies are
required to determine the diagnostic and prognostic validity of DNI
measurement in canine sepsis.
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7.4 Canine procalcitonin: background  

Procalcitonin (PCT), the pre-hormone of calcitonin in C cells of the thyroid, is a reliable diagnostic 

and prognostic biomarker for sepsis in humans. Plasma PCT concentration is low in heatlhy states, 

while rises early after the exposure to an infectious stimulus. Several studies highlighted its role to 

early identify bacterial sepsis in people, as well as to assess prognosis and mirror the severity of the 

septic process (Schuetz et al. 2017). Plasma PCT concentrations have also been proposed as an 

early predictor of MODS (Zurek & Vavrina 2015). Circulating PCT concentrations are down-

regulated during the recovery phase of sepsis; several studies revealed a relationship between 

persistently elevated PCT concentrations during the first days of ICU stay and increased odds for 

mortality. Thus, PCT is serially evaluated to guide antimicrobial therapy in selected systemic 

infections in humans (Schuetz et al. 2017). 

Data regarding PCT assessment in dogs are limited. Canine PCT was firstly sequenced in the early 

90s (Mol et al. 1991). Increased procalcitonin mRNA expression was then demonstrated in sick 

dogs compared to healthy ones, and its role as an acute phase protein was suggested (Kuzi et al. 

2008). A subsequent study documented the extrathyroidal transcription of PCT gene in dogs with 

SIRS and sepsis (Giunti et al. 2010). Although increased concentrations of circulating PCT were 

detected in canine SIRS and sepsis, the lack of reliable species-specific methods limited the value of 

the results (Giunti et al. 2006; Yilmaz et al. 2008; Floras et al. 2014). 

7.4.1 Procalcitonin in dogs with sepsis and gastric dilatation-volvulus 

Preliminary studies have been conducted as part of the current PhD thesis to investigate 

procalcitonin in critically ill dog involving two Veterinary Teaching Hospitals (University of 

Bologna, Italy, and Cornell University, Ithaca, NY). 

A commercially available ELISA assay (Biovendor LLC, Asheville, NC) was used to measure 

plasma canine PCT. The ability of the assay to identify canine PCT, in addition to assay 

imprecision and lower limit of detection, were established from our group of research (manuscript 

currently under revision). Then, two clinical studies were retrospectively performed in order to 
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evaluate the prognostic significance of canine PCT in dogs with sepsis and gastric dilatation-

volvulus (GDV), respectively.  

For the first clinical investigation, citrated plasma samples from 53 dogs with sepsis (≥2/4 SIRS 

criteria plus evidence of infection) were used to measure PCT at the time of ICU admission (T0, 

n=53) and at 24h (T1, n=35) and 48h (T2, n=30) of ICU stay. Twelve healthy dogs were used as 

controls. PCT was analyzed using the afore-mentioned commercial canine PCT ELISA. Clinical, 

clinicopathologic and outcome data were collected, patients were classified as sepsis, severe sepsis 

or septic shock, and the Acute Patient Physiologic and Laboratory Evaluation (APPLE) score was 

calculated. Non-parametric statistics was used, and alpha was set at 0.05. 

Of the 53 dogs, 18 had sepsis without organ dysfunction, 24 had severe sepsis and 11 had septic 

shock. Thirty-eight dogs survived to hospital discharge (mortality rate 28.3%). PCT concentrations 

were significantly higher in dogs with sepsis versus healthy controls and significantly higher in 

dogs with septic shock versus dogs with sepsis. Declining PCT concentrations were documented in 

survivors at T1 and T2 compared to PCT at T0. PCT concentrations were mildly positively 

correlated with the number of dysfunctional organs at the time of admission and duration of hospital 

stay, and mildly negatively correlated with leukocyte count.  

According to these preliminary results, plasma PCT concentrations are increased in dogs with sepsis 

and are able to early predict occurrence of MODS and septic shock. Serial PCT monitoring seems 

to be promising in canine sepsis, with early declining in PCT concentrations being associated with 

survival.  

The second study was performed to assess the prognostic significance of procalcitonin in dogs with 

GDV syndrome, in association with relevant biomarkers previously assessed during the disease. 

Concentrations of cell-free DNA (cfDNA; Quant-iT High Sensitivity DNA assay Kit, Life 

Technologies, Grand Island, NY), high-mobility group box 1 (HMGB1, IBL-International, 

Hamburg, Germany) and PCT (Biovendor LLC, Asheville, NC) were assessed in citrated plasma 

samples collected from 29 dogs with GDV at the time of hospital admission. Only dogs undergoing 
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surgery were included. A group of 24 healthy dogs were enrolled as controls. Baseline lactate 

concentrations, APPLEfast score, evidence of gastric necrosis, post-surgical complications and 

outcome were recorded. Non-parametric statistics was used, and alpha was set at 0.05.  

Dogs with GDV had significantly higher concentrations of cfDNA, HMGB1 and PCT compared to 

controls, potentially indicating systemic inflammation, tissue hypoperfusion and 

ischemia/reperfusion injury. PCT concentrations were significantly greater in non-survivors 

compared to survivors, while lactate concentrations resulted significantly higher in dogs with 

gastric necrosis compared to the ones without gastric necrosis.  

These results, overall, confirm the role of canine PCT as an acute phase reactant able to detect 

systemic inflammation and sepsis. Baseline and serial PCT measurement might be used as a 

prognostic tool in critically ill dogs. Both the afore-mentioned studies are currently under revision. 

  



 81 

8. MODS and selected organ dysfunctions 

8.1 Acute kidney Injury in critically ill dogs 

A significant part of this research has been focused on acute kidney injury in dogs, in terms of 

prevalence, characteristics and overall prognosis.  

Acute kidney injury is defined as an abrupt damage or dysfunction of the kidney, frequently 

associated with electrolytes and acid base disturbances, reduction in glomerular filtration rate and 

decrease in urine production. AKI diagnosis in humans is based on relative or absolute changes in 

serum creatinine concentration and urine output (Kellum et al. 2013). Despite AKI occurrence is 

recognized in dogs and cats, standardized diagnostic criteria are lacking (Harison et al. 2012; Keir 

& Kellum 2015; Brown et al. 2015).  

More recently, the concepts of volume-responsive and volume-unresponsive AKI have emerged in 

humans. According to this new approach, AKI is characterized by a continuum of volume 

responsivness/unresponsivness stating different severity of injury and prognosis. The term volume-

responsive AKI has replaced the historical "prerenal azotemia", and describes a transient, functional 

impairment of the kidney that can be usually restored with adequate fluid administration. In most 

circumstances, a volume-responsive kidney will occur in a volume-responsive patient (e.g. during 

hypovolemia). However, a patient can be volume-responsive (and experience an increase in cardiac 

output after fluid administration) whereas kidney function is not. On the other hand, the term 

volume unresponsive or intrinsic AKI refers to structural damage to the renal parenchyma, usually 

implying a more severe reduction in kidney function, greater need of assistance and worse 

outcomes (Himmelfarb et al. 2008; Makris & Spanou 2016). 

FE of electrolytes have been proposed as a tool to early differentiate between volume-responsive 

and volume-unresponsive AKI and aid in its prognostication in humans Specifically, volume-

responsive AKI has been characterized by low (<1%) FE of sodium and increased (>35%) FE of 

urea; this diagnostic paradigm, however, has been questioned in clinical practice, due to the impact 

of different confounders (Makris & Spanou 2016). The prognostic value of FE of electrolytes has 
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emerged in a recent study on canine AKI, as sequential reduction in FE of sodium were associated 

to recovery of kidney function and survival (Brown et al. 2015). 

In the course of the PhD (2014-2016), a prospective investigation on critically ill dogs with AKI 

requiring hospitalization at the Veterinary University Hospital of Bologna has been performed. The 

main purpose of the study was to evaluate the performance of the fractional excretion (FE) of 

electrolytes and urea, to early differentiate between volume-responsive and volume-unresponsive 

AKI and to aid in AKI prognostication. Dogs were diagnosed with AKI according to the IRIS AKI 

grading system proposed by Cowgill (2010) and previously applied in similar clinical settings (De 

Loor et al. 2013; Segev et al. 2015; Sigrist et al. 2015). Complete clinical and laboratory data 

including IRIS AKI grade, the APPLEfast score, complete blood cell count, chemistry profile and 

complete urinalysis were performed at the time of AKI diagnosis (T0), at 24 h (T1), 48h (T2), 72 h 

(T3), and 7 days (T7) of hospitalization. Complete urinalysis included measurement of proteinuria 

(urinary protein to creatinine ratio), albuminuria (urinary albumin to creatinine ratio), FE of 

electrolytes (sodium, potassium, chloride, magnesium, calcium) and urea, and urinary uric acid to 

creatinine ratio. FE were calculated according to the following equation: 

FEX = uX sCr/uCr sX (based on spot urine sample) 

where uX and sX were the concentrations of a specific analyte in urine and serum, respectively. 

Non-parametric statistics was used, and alpha was set at 0.05. 

According to our results, dogs with volume-unresponsive AKI (n=69) had significantly greater 

alterations in conventional variables indicating kidney function (greater serum creatinine 

concentration, IRIS AKI grade and proteinuria) and higher FE of electrolytes compared to dogs 

with volume-responsive AKI (n=52). Dogs with volume-responsive AKI had significantly higher 

blood lactate concentration and urinary uric acid to creatinine ratio compared to dogs with volume-

unresponsive AKI.  

Overall mortality was 41% in the current study population, with volume-unresponsive AKI dogs 

showing significantly higher frequencies of death compared to the volume-responsive ones. 
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Variables of renal damage/dysfunction including FE of electrolytes were significantly higher in 

non-survivors (n=55) compared to survivors (n=80).  

The reported results suggest that FE of electrolytes can be routinely applied in the clinical setting 

with both relevant diagnostic and prognostic implications. Additionally, a role for urinary uric acid 

as a marker tissue hypoxia/hypoperfusion could be suggested.  

The complete study in currently under revision. Preliminary data were presented as an oral 

presentation at the 2015 EVECCS Congress and published in form of abstract.  

A sub-group of this population including dogs with AKI and systemic inflammation was used to 

specifically evaluate urinary uric acid performances as a marker of volume-responsive AKI and 

tissue hypoperfusion, and to investigate its relationship with variables of hypoxia and shock. Data 

were presented as a poster at the 2016 EVECCS Congress and published in form of abstract. 
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APPLE FAST SCORE AND FRACTIONAL EXCRETION OF ELECTROLYTES IN DOGS 

WITH ACUTE KIDNEY INJURY 

 

R. Troia, C. Grisetti, L. Azzalini, M. Gruarin, C. Agnoli, M. Giunti and F. Dondi1 
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Oral communication at the 2015 EVECCS Congress, Lyon, France, J Vet Emerg Crit Care doi: 

10.1111/vec.12366, S23. 

 

Introduction: aim of the study was to investigate the prognostic role of Apple Fast Score (AFS) and 

fractional excretion of electrolytes and urea (FE) in dogs with acute kidney injury (AKI). 

Methods: dogs hospitalized at a veterinary teaching hospital (February 2014-January 2015) with 

AKI graded according to IRIS guidelines were prospectively included. AFS was calculated upon 

admission (T0) as previously reported. Laboratory analytes including FE (sodium, potassium, 

calcium, phosphorus, and magnesium and urea) and urinary output (UO) were measured at T0 and 

after 24 hours (T1). Dogs were divided according to outcome (survivors/non-survivors) and 

compared to healthy controls (n=56). Non-parametric statistics were used for comparisons. Cox 

proportional regression analysis was performed to evaluate short term survival (14 days) and hazard 

ratios (HR) calculated. The significance level was set at p<0.05. 

Results: 53 AKI dogs were enrolled. FE resulted significantly increased in AKI dogs compared to 

controls. Non-survivors (n=22) had significantly increased AFS (median 26; range 16-34) and FE 

(e.g. FE of sodium; median 8.2%; range 0.04-68.9) compared to survivors (n=31) at T0. Non-

survivors (n=15) had significantly increased serum creatinine (median 9.0 mg/dL; range 0.98-

20.41) and FE (e.g. FE of sodium; median 9.5%; range 0.5-203.2) and decreased UO (median 0.8 

mL/kg/h; range 0-2.6) than survivors (n=31) at T1. Survival was significanlty associated with AFS 

and FE at T0 and with FE, IRIS grade and UO at T1.  
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Conclusion: AFS and FE have a prognostic value in this cohort suggesting more severe renal 

tubular dysfunction in non-survivors. Larger prospective studies are needed to confirm these data.  
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URINARY URIC ACID EXCRETION IN DOGS WITH ACUTE KIDNEY INJURY  

AND SYSTEMIC INFLAMMATION 
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Introduction: Acute kidney injury (AKI) can be frequently associated with systemic inflammation in 

human and veterinary patients and tissue perfusion can be severely compromised during these 

conditions. Urinary Uric Acid (uUA) is reported to increase in conditions of acute and chronic 

systemic hypoxia in humans. In normal dogs, 98-100% of glomerular filtrated uUA is reabsorbed 

into the proximal tubule; however, no data regarding its role as a marker of tubular damage or 

systemic hypoxia is reported in canine AKI.  

Methods: dogs hospitalized at a veterinary teaching hospital (February 2014-December 2015) with 

a diagnosis of AKI and with evidence of systemic inflammation, were prospectively included. 

According to the IRIS guidelines, AKI dogs were sub-grouped in volume-responsive and volume-

unresponsive (intrinsic AKI). Systemic inflammation was defined according to the presence of at 

least 2/4 of the systemic inflammatory response syndrome (SIRS) criteria for dogs (Hauptman et 

al., 1997) and/or an increased serum C-reactive protein concentration. Blood donor dogs (n=81) 

were included as controls. Clinical data, recorded upon admission included the evaluation of the 

Shock Index (heart rate/systolic blood pressure). Urinalysis, including uUA to urinary creatinine 

ratio (uUA/C), and blood gas analysis, including blood lactate, were performed. The Mann Whitney 

U Test and Kruskall Wallis Test were used to compare variables between different groups. A p 

value of <.05 was considered significant. Correlations between variables were assessed using the 

Spearman rank correlation coefficient. 
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Results: volume-responsive AKI dogs had a significant increase in Shock Index and blood lactate 

concentrations compared to dogs with intrinsic AKI and a significant increase in uUA/C compared 

to dogs with intrinsic AKI and to healthy dogs. Differences in BE and blood pH were not 

significant between groups. 

Conclusion: increased uUA seems to be associated with volume-responsive AKI in this population 

of dogs with naturally occurring acute kidney disease and systemic inflammation, suggesting its 

potential as an indirect marker of cellular hypoxia. The presence of intrinsic acute kidney injury did 

not seem to impact uUA in this population. Further studies investigating the role of uUA as a 

marker of cellular hypoxia and oxidative stress in different conditions of systemic hypoperfusion 

are warranted. 
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Critical illness can be associated with transient alterations in circulating thyroid hormone concentrations, indicating the presence of 

non-thyroidal illness (NTI). NTI is well described in humans, but there are few reports on its occurrence and prognostic significance in dogs. 

This retrospective study assessed the occurrence of NTI in a population of dogs with systemic inflammatory response syndrome (SIRS) and 

investigated its association with disease severity (APPLEfast scores). A total of 41 SIRS dogs were included and were divided by SIRS origin 

(non-septic SIRS, n = 10; septic SIRS, n = 41) and final outcome (survivors, n = 37; non-survivors, n = 4). Healthy, age-matched dogs (n = 

15) were included as controls. Serum thyroid hormone levels including total T3, free T3, total T4, and reverse T3 were measured upon 

admission. Compared to controls, there were significant changes in serum thyroid hormone concentrations in SIRS dogs, suggesting the 

presence of NTI. Septic SIRS dogs had higher APPLEfast scores and lower serum thyroid hormones concentrations than those in non-septic 

SIRS and control dogs. In conclusion, NTI was frequent in dogs with SIRS and may be associated with the presence of sepsis or high illness 

severity.

Keywords: canine, euthyroid sick syndrome, systemic inflammatory response syndrome, thyroid hormones

Introduction

Critical illness can be associated with dysfunction in multiple 

organs and remarkable endocrine and metabolic changes 

[6,25]. Alterations in the circulating levels of thyroid hormones 

have been widely documented in human medicine and may 

affect 60% to 70% of critically ill patients with various diseases 

[6]. This condition is typically characterized by a reduction in 

the concentration of serum total triiodothyronine (TT3) and a 

concurrent rise of serum reverse-T3 (rT3) levels; as well, low 

serum total thyroxine (TT4), free thyroxine (fT4), and, 

occasionally, thyrotropin (TSH) concentrations are reported 

with severe and protracted illness [1,4,27]. These are usually 

transient abnormalities in otherwise euthyroid patients and are 

commonly recognized under the name of non-thyroidal illness 

(NTI) [4,27]. The pathogenesis of NTI seems to be multifactorial 

and mainly attributed to a reduced peripheral deiodination of 

TT4 to TT3, increased deiodination of TT3 to diiodothyronine, 

reduced binding of thyroid hormones to transport proteins and 

nuclear receptors, and impaired intracellular uptake; behind 

these mechanisms the roles of protracted fasting, hypoxia, 

ischemia-reperfusion injury, and inflammatory cytokines have 

been investigated [4].

Thyroid hormones are important for homeostasis and 

adaptation to stress and pathological conditions, and several 

studies in critically ill human patients have linked the presence 

of NTI with poor outcomes and disease severity [1,4]. There is 

evidence that an acute fall in circulating thyroid hormone 

concentrations during acute critical illness could represent an 

adaptive response to reduce energy expenditure and protein 

breakdown; in contrast, low TT3 and TT4 serum levels during 

a prolonged or chronic phase of critical illness could be 

maladaptive [4]. Consensus on therapeutic implications of the 

above-mentioned abnormalities is currently lacking [4].

There are few reports regarding NTI in veterinary critical 

care. The syndrome has been documented in some acute 

conditions in dogs, but its prognostic significance remains 

unclear [20,24,25]. In a population of puppies with parvoviral 

enteritis, non-survivors had significantly lower concentrations 

of serum TT4 during hospitalization [24]. In addition, in a group 
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of dogs with naturally occurring infection by Babesia canis 
rossi, lower values of serum TT4 and fT4 were documented 
in non-survivors [26]. Alterations in TT4, fT4, and TSH 
concentrations were demonstrated upon admission in dogs with 
systemic inflammatory response syndrome (SIRS) and sepsis, 
but no relationship to outcome was identified [20]. Derangement 
of the thyroid axis was documented in chronic inflammatory 
conditions and during heterogeneous non-thyroidal diseases 
[13,15,23]. Finally, significant abnormalities in thyroid function 
test results have been reported in healthy euthyroid dogs during 
anesthesia or surgical procedures [28].

The aim of the present retrospective study was to assess the 
prognostic significance of serum thyroid hormones, including 
free T3 (fT3), TT3, rT3, and TT4, in a population of dogs with 
SIRS. We hypothesized that lower serum thyroid hormones 
concentrations were associated with disease severity (APPLEfast 
scores) and mortality (survival at hospital discharge).

Materials and Methods

This study involved a retrospective analysis of a population of 
dogs affected by SIRS associated with acute pancreatitis, 
parvoviral enteritis, or septic peritonitis that was prospectively 
enrolled in a previous study performed at our Veterinary 
Teaching Hospital (VTH) between February 2012 and January 
2014. The study was approved by the local Scientific Ethical 
Committee for Animal Testing (ID 22/79/2014).

Dogs were included in the study if they exhibited two or more 
of the following criteria: body temperature G38.1oC or G39.2oC; 
heart rate G120/min; respiratory rate G20/min; WBC count 
G6,000/PL or G16,000/PL, percentage of band cells G3% of 
the total WBC count, or a serum C-reactive protein (CRP) 
concentration 1.68 mg/dL [5,10]. At least one aliquot of 
serum collected at the time of hospital admission and stored 
frozen at 80oC was obtained from each dog. Dogs were 
excluded if thyroid hormones or drugs capable of suppressing 
the thyroid axis (e.g., glucocorticoids, anti-inflammatory drugs, 
anticonvulsants, and sulphonamides) had been administered in 
the month prior to hospital admission. Age-matched dogs (n = 
15), presented at the VTH for routine screening and 
prophylaxis, were included as healthy controls based on their 
anamnestic, physical, and clinicopathological data.

The study population of SIRS dogs was divided in groups 
according to the origin of SIRS. Specifically, the non-septic 
SIRS group included dogs affected by acute pancreatitis, while 
the septic SIRS group included dogs with parvoviral enteritis 
and septic peritonitis.

Acute pancreatitis was diagnosed by the presence of 
consistent clinical signs, characteristic ultrasonographic findings 
(i.e., hypoechoic and/or enlarged pancreas, hyperechoic mesentery, 
peritoneal effusion), and a positive canine pancreatic lipase 
immunoreactivity (cPLI) test result (Canine SNAP cPL; 

IDEXX Laboratories, USA) [14,22]. Clinical diagnosis of 
parvoviral enteritis was confirmed by a positive real-time 
polymerase chain reaction for a fecal sample. Sequencing of the 
VP2 gene was performed to identify antigenic variants of canine 
parvovirus (CPV) and evaluate their potential associations with 
disease severity [2]. Septic peritonitis was diagnosed based on 
cytological or bacteriological evidence of bacterial abdominal 
infection. The APPLEfast score [11], calculated at the time of 
hospital admission in order to assess disease severity, and the 
length of hospital stay were recorded and included as analysis 
variables. SIRS dogs were also classified as survivors (survived 
to hospital discharge) or non-survivors (died despite medical 
treatment or humanely euthanized by the clinical investigators 
due to moribund conditions or end-stage disease). Dogs that 
were euthanized for financial reasons were excluded from the 
study.

Hematological and chemistry profiles, including CRP and 
albumin concentrations, obtained upon hospital admission were 
reviewed in all enrolled dogs. Complete blood count was 
determined by an automated cell counter (ADVIA 2120 
Hematology System; Siemens Healthcare Diagnostics, USA). 
CRP (CRP OSR6147; Beckman Coulter, Germany) level was 
measured by using an immunoturbidimetric assay that had been 
previously validated by our group for dog serum samples [8]. 
All analyses were performed by using an automated chemistry 
analyzer (OYMPUS AU 400, Olympus Optical, Germany). 
Serum thyroid hormone levels were measured at the end of the 
study period in a single batch assay of serum collected upon 
admission and stored frozen at 80oC. The TT3 and TT4 levels 
were measured by performing radioimmunoassays (RIA) as 
previously described [17,19]. For analytical purposes, RIA 
results below the detection limit of the assay (G0.4 nmol/L for 
TT3 and G3.0 nmol/L for TT4) were considered equal to 0.2 
nmol/L and 1.5 nmol/L, respectively. The fT3 and rT3 levels 
were assayed by performing ultraperformance liquid 
chromatography coupled to tandem mass spectrometry 
operating in multiple reaction monitoring mode and electrospray 
ionization positive mode. All analytes were directly determined 
without the need of derivatization. The linearity of the 
analytical method was assessed over a wide range of 
concentrations (0.01�50 ng/mL). The recovery of both fT3 and 
rT3 was G82%, with a coefficient of variation G7%. The 
within-day and between-day precision ranges were 1.82% to 
7.81% and 2.29% to 15.62%, respectively. All investigated 
variables were also measured in healthy control animals.

Statistical analysis
Normality was checked graphically and by applying the 

Kolmogorov-Smirnov test. Because of the presence of non-normal 
distributions for most variables, nonparametric testing was 
adopted for all analyses. Data were expressed by using standard 
descriptive statistics and are presented as median and range. 
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Table 1. APPLEfast score, acute phase proteins, and thyroid hormone concentrations in dogs with systemic inflammatory response 
syndrome (SIRS) and control dogs

Variable
SIRS dogs (range)

(n = 41)
Control dogs (range)

(n = 15)
Reference interval 

(range)
p value

APPLEfast score 25 (12�38) 14 (8�22) � G0.0001
Albumin (g/L) 25.6 (11.3�42.9) 33.6 (27.2�37.1) (28.0�37.0)     0.0004
CRP (mg/dL)   6.80 (1.80�31.84) 0.01 (0.01�0.3) (0.01�0.5) G0.0001
fT3 (pmol/L) 0.79 (0.41�2.42)   1.0 (0.71�1.71) (1.41�5.34) 0.05
TT3 (nmol/L) 0.2 (0.2�1.4) 1.1 (0.4�1.6) (0.8�2.1) G0.0001
rT3 (pmol/L)   1.0 (0.29�3.18) 1.23 (0.78�2.21) (1.23�5.13) 0.09
TT4 (nmol/L) 13.0 (1.50�66.0) 30.0 (15.0�57.0) (11.0�60.0)   0.001

CRP, C-reactive protein; fT3, free triiodothyronine; TT3, total triiodothyronine; rT3, reverse triiodothyronine; TT4, total thyroxine.

Table 2. Variables with statistically different results between non-septic systemic inflammatory response syndrome (SIRS; pancreatitis, 
n = 10), septic SIRS (parvoviral enteritis, n = 22; septic peritonitis, n = 9) and control (n = 15) dogs 

Variable
Non-septic SIRS (range)

(n = 10) 
Septic SIRS (range)

(n = 31)
Controls (range)

(n = 15)
p value

APPLEfast score 20 (12�23)* 25 (18�38)*,� 14 (8�22) G0.0001
Albumin (g/L) 29.8 (18.6�42.9)    23.7 (11.3�34.6)*,�   33.6 (27.2�37.1) G0.0001
TT3 (nmol/L) 0.5 (0.2�1.3)*  0.2 (0.2�1.4)*,� 1.1 (0.4�1.6) G0.0001
TT4 (nmol/L) 22.5 (6.0�66.0)  10.0 (1.5�39.0)*,�   30.0 (15.0�57.0) 0.0001

TT3, total triiodothyronine; TT4, total thyroxine; rT3, reverse triiodothyronine. *Difference from controls; �Difference from non-septic SIRS.

The Mann�Whitney U test was used to evaluate differences 
between the overall population of SIRS and control dogs and for 
comparisons between survivor and non-survivor SIRS dogs, 
while a Kruskal�Wallis test was used to compare variables 
between different groups (controls, septic SIRS, and non-septic 
SIRS). If the Kruskal�Wallis test result was positive, a Conover 
test post hoc analysis for pairwise comparison of subgroups was 
performed. Test result p values G0.05 were considered statistically 
significant. Correlation between variables was assessed by 
using Spearman’s Rank correlation coefficient. All analyses 
were performed by using statistical software (MedCalc Software, 
Belgium).

Results

Forty-one patients met the inclusion criteria and were 
classified as SIRS dogs. Among the SIRS dogs, median age (8 
months, range 2 months to 15 years) and median body weight 
(17.3 kg, range 3.9�40.2 kg) were not significantly different 
from those of the control dogs (median age 4.8 years, range 2 
months to 8 years; median body weight 20.6 kg, range 4.7�38.0 
kg). Overall, 20 dogs were male and 21 were female. Breed 
distribution of the study population was as follows: mixed breed 
dogs (18), Spanish Greyhound (4), Labrador Retriever (3), 

Spanish Mastiff (3), Standard Poodle (3), American Staffordshire 
Terrier (2), English Bulldog (2), Rottweiler (1), Weimaraner 
(1), American Pitbull Terrier (1), Manchester Terrier (1), Great 
Dane (1), and Bernese Mountain Dog (1). Breed distribution of 
the control dogs was German Shepard Dog (3), mixed breed 
dogs (3), Flat Coated Retriever (2), Argentine Mastiff (2), 
Labrador Retriever (1), Whippet (1), Cocker Spaniel (1), Dogue 
de Bordeaux (1), and Great Dane (1). Thirty-seven of the 41 
dogs were survivors, while 4 were non-survivors. All 
non-survivors were in the septic SIRS group and had a diagnosis 
of septic peritonitis. Median duration of hospitalization in SIRS 
dogs was 7 days (range 1�13 days). SIRS dogs had significantly 
higher APPLEfast score and serum CRP concentration and 
significantly lower TT3, TT4, and albumin levels compared to 
those in control dogs (Table 1).

The overall population was divided in two groups according 
to the origin of SIRS and final diagnosis. Specifically, the 
non-septic SIRS group consisted of dogs diagnosed with acute 
pancreatitis (n = 10), while the septic SIRS group included dogs 
with septic peritonitis (n = 9) and parvoviral enteritis (n = 22). 
The CPV variants identified by sequencing of the VP2gene 
were CPV-2c (19/22) and CPV-2b (3/22).

Significantly different clinical and clinicopathological results 
between septic SIRS and non-septic SIRS dogs are summarized 
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Fig. 1. Box plots of serum total triiodothyronine (TT3) 
concentrations among dogs with non-septic systemic inflammatory 
response syndrome (SIRS), dogs with septic SIRS, and control 
dogs; the central box represents the values from the lower to 
upper quartile (25 to 75 percentile). The middle line represents 
the median. The vertical line extends from the minimum to the 
maximum value, excluding outside and far out values which are
displayed as down-pointing triangles. Asterisk indicates significant
(p G0.05) differences among groups. 

Fig. 2. Box plots of serum total thyroxine (TT4) concentrations 
among dogs with non-septic systemic inflammatory response 
syndrome (SIRS), dogs with septic SIRS, and control dogs; the 
central box represents the values from the lower to upper quartile
(25 to 75 percentile). The middle line represents the median. The
vertical line extends from the minimum to the maximum value, 
excluding outside and far out values which are displayed as open
circles. Asterisk indicates significant (p G0.05) difference from
septic SIRS.

in Table 2. The septic SIRS dogs had a significantly higher 
APPLEfast score and significantly lower concentrations of 
serum albumin, TT3, and TT4 than those in non-septic SIRS 
and control dogs (Figs. 1 and 2). Non-survivors (n = 4) had 
significantly lower serum albumin (median 15.6 g/L, range 11.3�
23.0 g/L) and TT4 concentrations (median 1.5 nmol/L, range 
1.5�6.0 nmol/L) compared to survivors (n = 37; median 26.2 
g/L, range 18.1�42.9 g/L; median 16 nmol/L, range 1.5�66.0 
nmol/L, respectively). Among the survivors, there were no 
significant correlations between duration of hospital stay and 
serum thyroid hormone concentrations. Both serum TT4 and 
TT3 concentrations were negatively correlated with APPLEfast 
scores (r = 0.4, p G 0.01 and r = 0.3; p G 0.05, 
respectively). Serum TT4 and albumin concentrations were 
positively correlated (r = 0.56; p = 0.0001), while the correlation 
between TT3 and albumin was not significant (r = 0.3; p = 0.05).

Discussion

The presence of NTI has been documented in different human 
and veterinary critical conditions including systemic inflammation 
[1,20]. In the current study, a panel of serum thyroid hormones 
was assayed in specific canine diseases: acute pancreatitis, 
parvoviral enteritis, and septic peritonitis. These diseases were 
included as they are representative and homogeneous spontaneous 
models of canine infectious and non-infectious SIRS. The high 
serum CRP concentration in the SIRS dogs confirmed the 
presence of systemic inflammation in our study population [5]. 
In order to stratify SIRS patients according to disease severity 
and mortality risk, as has been previously done [9,20], the dogs’ 

APPLEfast scores were calculated. There was a significantly 
higher value APPLEfast score in the septic SIRS group than in 
the non-septic SIRS and control dogs. The reduction in serum 
TT4 value in the septic SIRS group is in agreement with 
previous veterinary reports investigating NTI in similar settings 
[20,24,25], and is a common finding in clinical studies on 
canine NTI [13,15].

Changes in serum TT3, fT3, and rT3 concentrations have 
been widely documented in critically ill human patients, but are 
less reported in veterinary literature [7,13,15,18]. Low levels of 
TT3 are the most common finding and had the strongest 
correlation with outcome in a retrospective evaluation of 
thyroid hormones among heterogeneous non-thyroidal diseases 
in dogs [15]. Similar results were obtained in a retrospective 
evaluation of thyroid hormones in critically ill dogs requiring 
intensive care therapy; low TT3 levels were frequently detected 
and associated with mortality [7]. In our study, a significant 
reduction in serum TT3 concentration in canine SIRS was 
observed, indicating its potential as a sensitive marker of NTI, 
as has been described in humans [27].

An increase in serum rT3 has been reported during NTI in 
humans [27]. A similar increase has been reported in healthy 
euthyroid dogs during general anesthesia and surgery [28], and 
in a small population of healthy dogs following endotoxin 
administration [18]; however, no similar results in canine 
species during spontaneous SIRS have been reported. In the 
present study, the median concentration of rT3 was not 
significantly different between SIRS and control dogs. This 
may indicate that rT3 variations may be less susceptible to NTI 
in spontaneous severe canine disease, at least with respect to 
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TT3 abnormalities. It is also possible that rT3 variations are 
somehow influenced by the onset of the disease, and that serial 
monitoring of that hormone may reveal different changes in its 
concentrations. The relevance of the measurement of serum rT3 
during canine NTI was apparently limited in this population of 
SIRS dogs, and that limited role needs to be examined in further 
studies.

Regarding serum fT3 concentrations, the difference between 
SIRS and control dogs was not significant, although lower 
values were detected in the SIRS group. This may indicate that, 
as observed in humans [27], serum fT3 values do not parallel 
changes in serum TT3 concentrations and are little affected by 
the presence of NTI in dogs, at least under acute inflammatory 
conditions. However, the performance and accuracy of the 
assay used in this study should be considered when interpreting 
our result.

The pathogenesis of NTI is incompletely described but is 
assumed to be multifactorial. The binding of thyroid hormones 
to circulating proteins and their metabolism at the tissue level 
are possibly involved. Circulating thyroid hormones are tightly 
bound to thyroid-binding proteins, including albumin. Such 
molecules are negative acute phase proteins and may decrease 
in acute critical illness. The high prevalence of hypoalbuminemia 
in SIRS dogs, particularly in septic SIRS, may account for the 
decreased thyroid hormones concentrations observed in our 
study population. This observation is partially supported by the 
moderate correlation between TT4 and albumin concentrations. 
However, other mechanisms in the fall of serum thyroid 
hormones, particularly for TT3, should be considered. However, 
such investigations were beyond the scope of the present study.

Dogs with septic SIRS had significantly lower serum thyroid 
hormones (TT3 and TT4) and higher APPLEfast scores than 
those in non-septic SIRS and control dogs. These results may 
suggest that the prevalence and the degree of NTI is strictly 
related to severity of illness. The negative correlation observed 
between thyroid hormones (TT3 and TT4) and the APPLEfast 
score may further support this statement. Derangement in serum 
thyroid hormone levels have been previously demonstrated in a 
cohort of dogs with SIRS; however, no relationship with 
survival or with SIRS origin (infectious versus non-infectious) 
was reported [20]. Different analytical methods, case series 
compositions, and disease categories may have accounted for 
the different results observed in our study. The presence of NTI 
has been associated with a negative outcome in different canine 
diseases [15,24,25,26], and low TT3 levels were correlated 
with mortality in critically ill dogs and in canine heterogeneous 
non-thyroidal diseases [7,15]. In addition, low TT4 concentrations 
were significantly associated with a negative outcome in 
puppies with parvoviral enteritis at 24 and 48 hours after 
admission [24].

In our study, significantly lower TT4 values were found in 
non-survivor dogs with SIRS. In contrast, there was no difference 

detected between survivors and non-survivors among the other 
serum thyroid hormones assessed in this study. However, our 
survival analysis was limited by the low number of non-survivors 
in our population; the prognostic significance of thyroid 
hormones in terms of outcome prediction in canine SIRS should 
be addressed by further studies.

There are some limitations to be considered before interpreting 
the results of the current study. The retrospective nature of the 
study limited the measurement of thyroid hormones in multiple 
standardized time points, and partially restricted the availability 
of serum samples for evaluation of a more extended thyroid 
panel (e.g., to also include fT4 and TSH). However, only dogs 
diagnosed with selected causes of SIRS and with complete 
clinical and clinicopathological data were included in the study, 
allowing improved completeness of data available for analysis 
upon admission. Concerning the method of subgrouping our 
patients, we decided to include both dogs with parvoviral 
enteritis and septic peritonitis in the septic SIRS category. 
Despite both diseases being considered reproducible models of 
abdominal sepsis [3,16], a potential age-related difference in 
clinical and clinicopathological variables among disease groups, 
including controls, could be a major concern. Specifically, 
younger dogs with parvoviral enteritis may have partially 
influenced concentrations of some of the variables investigated 
(e.g., serum albumin). However, statistical tests performed to 
compare the different groups divided according to final 
diagnosis (acute pancreatitis, parvoviral enteritis, septic peritonitis, 
and controls) produced similar results without adding any other 
significant information (data not shown). The predominance of 
variant CPV-2c in our population did not allow comparative 
analysis of variants in dogs affected by CPV. In addition, breed 
and sex-related differences have been reported to affect thyroid 
hormone concentrations in healthy dogs [12,21]. Although sex 
distribution was homogeneous in our population, and only 
medium-large breed dogs were included, no breed- or sex-matched 
controls were considered, which may have partially biased the 
results. It is theoretically possible that some of the SIRS dogs 
included in the study may have had concurrent hypothyroidism 
despite the low prevalence of this disease and the lack of 
historical and clinical features consistent with its presence. 
Although the authors consider the occurrence of hypothyroidism 
unlikely in this population, the additional measurement of TSH 
and fT4 would have better ruled out this hypothesis and 
completed the thyroidal evaluation in our SIRS dogs. Finally, 
the data generated from the current study refer to specific 
categories of canine SIRS and should not be overinterpreted or 
extended to different diseases or more chronic situations.

In conclusion, our study confirms a wide frequency of serum 
thyroid hormones alterations can indicate the presence of NTI 
in a cohort of dogs with SIRS. Serum concentrations of TT3 and 
TT4 might be considered useful and reproducible markers of 
NTI during acute inflammatory states in dogs. Thyroid hormones 
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abnormalities were more severe in septic than in non-septic 
SIRS dogs, and they were positively correlated with APPLEfast 
scores. The results suggest the presence of extensive thyroid 
axis impairment in SIRS dogs with severe illness. Whether the 
presence of NTI should be considered as an adaptive response 
to a critical disease or the consequence of endocrine system 
dysfunction and failure remains a topic of debate; as well, there 
is uncertainty about the need for therapeutic strategies with 
hormone supplementation. Further prospective, large-scale 
studies investigating the pathogenesis and the prognostic role of 
NTI in canine SIRS are warranted.
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8.3 Multiorgan dysfunction syndrome in feline sepsis 

There are limited data regarding SIRS, sepsis and organ dysfunction in cats (Brady & Otto 2000; 

DeClue et al. 2011). Increased bilirubin concentration has been reported in septic cats, potentially 

reflecting hepatic dysfunction and sepsis-induced cholestasis (Brady & Otto 2000). Evidence of 

coagulopathy has been described in feline inflammatory conditions including neoplasia, pancreatitis 

and sepsis (Estrin et al. 2006). Similarly, acute kidney injury and respiratory dysfunction have been 

reported in the context of systemic diseases (Harison et al. 2012; Balakrishan et al. 2017). However, 

diagnostic criteria for MODS have not been proposed in this species, and a systematic investigation 

focused on multiple organ system dysfunction in feline critical care patients is lacking.  

A significant part of the present PhD project has been focused on feline sepsis, aiming to evaluate 

organ dysfunction in the course of this syndrome. We hypothesize that MODS is a frequent 

complication of feline sepsis, and its development is associated with increased sepsis severity and 

worse outcomes. 

For the purposes of the study, critically ill cats with sepsis presented to the Veterinary Teaching 

Hospital of the University of Bologna (October 2015-September 2017) were prospectively included. 

Sepsis was diagnosed as presence of SIRS plus infection, as previously reported (Brady & Otto 

2000). Cats were classified as having sepsis and septic shock, and criteria adapted from the 

available canine literature (Kenney 2010; Ripanti et al. 2012) were used to define organ dysfunction 

(hepatic, renal, cardiovascular, respiratory, hemostatic). MODS was defined as the simultaneous 

presence of at least two dysfunctional organs. 

A total of 43 cats with sepsis of different origins (thoracic, abdominal, related to feline 

panleukopenia and miscellaneous diseases) were included in the study. Frequency of organ 

dysfunction was high in the current population, reaching 58% at the time of hospital admission and 

86% during hospital stay. Specifically, all cats developed at least one organ dysfunction during ICU 

stay. Non-survivors (n=17) had a greater number of dysfunctional organs compared to survivors 

(n=26) both at the time of admission and during hospitalization. Presence of renal dysfunction, 
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septic shock and MODS were significantly and independently associated with increased odds for 

mortality both at the time of presentation and during hospital stay. 

Preliminary data of the current study were presented at the LXXI Sisvet Conference. 
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Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. 

Feline sepsis is associated with substantial morbidity and mortality, however is scarcely 

documented in veterinary literature. The aim of this prospective observational study was to evaluate 

the clinical response and the presence of multiorgan dysfunction syndrome (MODS) in relation to 

outcome in feline sepsis. Cats admitted to the Veterinary University Hospital of Bologna (October 

2015 - February 2017) with a diagnosis of sepsis defined by the presence of systemic inflammation 

associated with cytological or microbiological evidence of infection were included [1]. History, 

comorbidities, clinical and clinicopathological data including the Feline Acute Patient and 

Laboratory Evaluation (APPLE) score and serum amyloid A (SAA), origin of infection, treatments 

and exitus were recorded. Major systems dysfunctions (respiratory, cardiovascular, renal, hepatic 

and hemostatic) were reported at the time of admission and during hospitalization. Non-parametric 

statistics with post hoc analysis were used to compare variables between the different groups; 

P<0.05 was considered significant. Thirty-seven cats were included in the study: 20 males (14/20 

castrated), 17 females (9/17 spayed). Median age was 6 years (0,2-15). Origin of sepsis was 

categorized as: thoracic (13/37, 34%), abdominal (8/37, 22%), feline panleukopenia (8/37, 22%) 

and miscellanea (8/37, 22%). Comorbidities were reported in 26/37 (70%) cats. Clinical 

presentation was characterized by depressed mental status, hypothermia and hypotension associated 

with hypovolemic and/or distributive shock in the majority of the subjects. Upon admission, 26/37 
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(76%) cats had MODS (≥2 organs involved) with an increment up to 86% (32/37) during 

hospitalization. Mortality rate in the study population was 38% (14/37). Non survivors had 

significantly lower body temperature, systolic blood pressure, white blood cells count and higher 

APPLE score and coagulation times at the time of hospital admission, compared with survivors. 

Frequencies of death were significantly higher in cats with septic shock, acute kidney injury and 

MODS. By univariate logistic regression analysis, variables independently associated with a poor 

outcome were: APPLE score, body temperature, septic shock, acute kidney injury and the number 

of affected organs upon admission. The latter was the only variable retained in the multivariate 

analysis. No association with outcome was reported for SAA and the presence of comorbidities. 

The present study contributes to describe the clinical features of sepsis in cats, which is mainly 

characterized by signs of hypodynamic shock. Septic shock and acute kidney injury are critical 

sequelae of feline sepsis with prognostic implications. MODS is a common complication of feline 

sepsis, and seems to significantly increase the odd of death, as reported in dogs [2]. Further studies 

in a wider population are needed to better characterize MODS in feline sepsis. 
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Conclusion 

Multiorgan dysfunction syndrome is a relatively new concept in critical care medicine, since its 

occurrence has paralleled the advances in scientific knowledge and patient management. Today, 

MODS represents the unique manifestation of critical illness, greatly contributing to ICU deaths in 

humans and animals. A better understanding of SIRS, sepsis and MODS pathogenesis is mandatory 

in order to provide the best possible care for all critically ill patients. Advances in critical care 

medicine have also modified the way ICU patients are approached. Critical illness is not seen as a 

disease in itself, but rather as part of a continuing disease trajectory: identifying the early signs of 

patient decline is of major importance in order to maximize close monitoring, provide adequate 

supportive care and predict complications of critical illness. The intensivist's perspective has 

become less reactive and more proactive, anticipating complications and starting treatments before 

a patient deteriorates too much. Biomarkers have been incorporated in the clinical assessment of 

patients as objective and reproducible indicators of immune function, disease severity and risk of 

organ dysfunction and treatment failure.  

Valuable insights on emergent biomarkers of disease severity and organ dysfunction are provided 

through the presented studies. Some of the investigated biomarkers are feasible and cost-effective, 

and might find a place in the routine monitoring of critically ill veterinary patients. In feline 

medicine, for istance, the clinical identification of sepsis and systemic inflammation might be 

particularly ambiguous. The measurement of serum amyloid A along with a complete laboratory 

evaluation could be easily used to better recognize SIRS. Additionally, elevated SAA 

concentrations coupled with other potential biomarkers of sepsis, like hyperbilirubinemia and 

presence of neutrophil toxic changes, could significantly increase the clinical suspect of infection, 

leading to prioritize diagnostic and therapeutic choices.  

Similar positive conclusions could be drown for the use of urinalysis in the contex of acute kidney 

injury. Several points of controversy have challenged the role of urine biochemistry and fractional 

excretions of eletrolytes in humans; nonetheless, urine biochemistry is still a major tool in AKI 
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management. The performed investigation tests biomarkers to early evaluate AKI severity and aid 

in prognostic assessment. Urine biochemistry and fractional excretions of electrolytes, in particular, 

emerged as suitable and affordable markers of AKI type, severity and prognosis early at the time of 

diagnosis. This result corroborates recent veterinary findings supporting the routine use of fractional 

excretions of electrolytes for the assessment of canine acute kidney injury.  

On the other hand, measurement of other biomarkers considered for the present thesis is still 

restricted to research purposes due to the lack of point-of-care tests available in clinical practice or 

the need of specific analyzers. Canine procalcitonin, for example, shows some potentials as an acute 

phase protein in dogs, able to recognize systemic inflammation and sepsis, and as a possible 

prognostic tool being associated with disease severity, MODS development and outcome in the 

presented studies. Plasma procalcitonin evaluation, however, is still limited by the method of 

analysis, as the ELISA test available is not easily performed in clinical practice on an individual 

basis. Similarly, our preliminary data investigates the delta neutrophil index as a hematological 

marker of sepsis in dogs. No additional costs and blood requirements are needed for its calculation 

once the complete blood count is performed; however, its evaluation is intrinsically related to the 

presence of specific hematological analyzers. Despite these limitations, our data might positively 

affect the current analytical tecniques and instruments available for biomarkers assessment in 

veterinary practice. If the validity and reliability of such biomarkers will be confirmed in future 

studies, user-friendly and practical methods might become available for their analyses.  

The present research strongly supports the systematic assessment of organ dysfunction during 

canine and feline SIRS and sepsis. The results reported here establish that selected organ 

dysfunction and MODS can be identified in critically ill dogs and cats. Specifically, our 

investigation proposes a novel approach to characterize canine AKI as a volume-responsive or 

intrinsic disease. This classification, that parallels the human ones, might aid in the assessment and 

the prediction of complications associated with the disease in dogs. Concerning dogs with SIRS and 

sepsis, the occurrence of non-thyroidal illness has been confirmed, and insights of its prognostic 
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potentials have emerged. Finally, interesting results have been documented in cats with sepsis, 

which may be particularly valuable due to the lack of scientific information in this species. MODS 

occurrence has been demonstrated as a frequent complication of feline sepsis, with development of 

septic shock and acute kidney injury acting as negative prognostic factors.  

In conclusion, the presented preliminary results significantly enrich the limited veterinary data 

regarding MODS and sepsis, and represent the basis for future in-depth analyses on organ 

dysfunction and outcome prediction in critically ill dogs and cats. Dysfunction of potentially any 

organ system documented in the ICU should be considered as a negative outcome predictor both in 

canine and feline species. Future research is warranted in order to define specific consensus criteria 

to define MODS and improve its early recognition and management in high-risk animals. 
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