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1Chapter

Introduction

If we embark on a journey beyond the disc of the Milky Way, we encounter a variety
of interesting objects including the nearest galaxies that form the so-called Local
Group as shown in Fig. 1.1. Within 100 kpc from the Sun, we can observe stars
and globular clusters belonging to the diffuse stellar halo surrounding our Galaxy, in
this same range and slightly farther away (< 300 kpc) a number of dwarf spheroidal
galaxies stream around the Milky Way (e.g. Fornax and Sculptor, see Fig. 1.1)
together with the Magellanic Clouds (Small and Large Magellanic Clouds, see Fig.
1.1), the closest gas-rich dwarf galaxies. Going a little farther, we find the closest
“sister” of the Milky Way, M31 also known as the Andromeda spiral galaxy with its
“court” of dwarf spheroidal (e.g. Andromeda I and Andromeda II, see Fig. 1.1) and
dwarf elliptical (e.g. M 110 and M 32, see Fig. 1.1) satellites orbiting around. Finally,
from ∼ 500 kpc to beyond 1 Mpc a number of gas-rich dwarf irregular galaxies live
a “solitary” life in a very lower-density environment. The nearest of them, as for
example NGC 6822 (∼ 500 kpc), IC 1613 (∼ 700 kpc), WLM (∼ 1 Mpc), DDO 210
(Aquarius dwarf, ∼ 2 Mpc) and DDO 216 (Pegasus dwarf, ∼ 2 Mpc) are shown in
Fig. 1.1. These galaxies and their components (e.g. the stellar halo of the Milky
Way or the gaseous discs of the dwarf irregulars) represent the nearest objects that
we can study outside the disc of the Milky Way. Because of their vicinity, we can
study them in great detail and this should facilitate our understating of how they
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Figure 1.1: Spatial distribution of the galaxies in the Local Group. The distance between
the Milky Way and Adromeda is 0.78 Mpc. Sagittarius dwarf, the nearest neighbour of
the Milky Way, is at a distance of 0.02 Mpc from the Galaxy, while the distance between
WLM and the Milky Way is 1 Mpc. Credit: Andrew Z. Colvin

form and evolve. Moreover, they can help us to interpret what we see, with lower
level of details, in most distant objects.

The stellar halo of the Milky contains extremely old (∼12 billion year) and metal-
poor stars (Carollo et al., 2007) distributed both smoothly in a spheroidal volume
around the Galactic disc (e.g. Deason, Belokurov & Evans 2011; Xue et al. 2015;
Das, Williams & Binney 2016; Iorio et al. 2017a) and “clustered” in substructures
(e.g. Helmi et al. 1999; Newberg et al. 2002; Belokurov et al. 2006). These stars
are fossils of the time when our Galaxy formed, in particular the halo substructures
are likely remnants of the past interactions of the Milky Way with smaller galaxies.
Therefore, studying the distribution of the stars in the halo is important to under-
stand the processes which led to the formation of the Galactic stellar halo and to
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unravel the evolutionary history of the Milky Way (Helmi et al., 1999; Helmi, 2008).
The dwarf irregular galaxies are tiny gas-rich galaxies with ongoing star forma-

tion activity. Given that they are preferentially located in the outskirts of galaxy
groups and in the field, the study of these objects is fundamental to understand how
a galaxy can evolve in a low-dense environment with a small number of interactions
with other objects (e.g. Lelli, Verheijen & Fraternali 2014b; Starkenburg, Helmi &
Sales 2016). Another fundamental property is that these systems are the smallest
galaxies harbouring a Hi disc. The kinematics of the Hi discs is one of most power-
ful tool to trace the total distribution of matter in the galaxies (Bosma, 1978; van
Albada et al., 1985; Begeman, 1987; Swaters, 1999; de Blok et al., 2008; Oh et al.,
2015). Therefore, the analysis of such discs is fundamental to test the prediction of
the cosmological models at the extreme low-mass end of the galaxy mass function
(e.g. Brook, Santos-Santos & Stinson 2016; Read et al. 2017; Sales et al. 2017).

In this thesis, we focus on the study of the stellar distribution in the inner parts
of the Galactic stellar halo and on the study of the kinematics and dynamics of a
sample of dwarf irregular galaxies. In the first case, we exploited the unprecedented
dataset of the first data release of the Gaia satellite (Gaia Collaboration et al.,
2016b). In the second case, we exploited the high resolution Hi data obtained form
the survey LITTLE THINGS (Hunter et al., 2012) and state-of-the-art techniques
to analyse the Hi discs of a sample of dwarf irregular galaxies.

In this Chapter, we briefly introduce our work. In Sec. 1.1, we summarise the
properties and the differences among the observed galaxy types and the current
theories of galaxy formation and evolution of galaxies. Then, in Sec. 1.2 and in
Sec. 1.3, we introduce the Galactic stellar halo and the study of the Hi emission in
dwarf irregular galaxies, respectively. Finally, in Sec. 1.4, we outline the structure
and the content of this thesis.

1.1 A Universe of galaxies

1.1.1 Galaxy Zoo

The first comprehensive classification of the galaxies in the Universe was made by
Hubble (1936) through the so-called Hubble sequence (Fig. 1.2). Despite its name,
this classification scheme does not imply an evolutive sequence from the left to right
or vice-versa. It is a pure morphological classification going from the homogeneously
smooth, feature-less elliptical galaxies (often referred to as early-type galaxies) and
ending with spiral galaxies frequently exhibiting spiral arms and/or bars (also known
as late-type galaxies). The morphological differences mark also different physical
properties. In fact, the dichotomy between early-type galaxies and late-type galaxies
is considered a benchmark of any galaxy formation and evolution theory, and it has
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Figure 1.2: Schematic view of the Hubble classification of galaxies (Hubble, 1936). The
elliptical galaxies are classified as En where n is related to the observed axial ratio q
by q = 1 − n/10, hence E0 indicates a spherical shape and E7 an elliptical shape with
axial ratio q = 0.3. The spiral galaxies are classified considering the presence (indicated
with the capital B, bottom sequence) or the absence (top sequence) of a bar. Then, they
are classified with the letters a,b,c considering the disc to bulge ratio and the opening
angle of the spiral arms (both increasing from the left (Sa) to the right (Sc)). Credit:
https://www.wwu.edu/skywise/astronomy101.html

been shown to be closely linked with other galactic properties such as stellar mass,
halo mass, bolometric luminosity, black hole activity, galaxy size, and the relative
ages of the stellar populations (Willett et al. 2017 and references therein).

Nowadays, more physical classification criteria have been proposed (e.g. Kor-
mendy & Bender 2012; Romanowsky & Fall 2012), however the Hubble sequence
remains a valid support to present the main properties of the galaxies observed in
the local Universe.

Following Fig. 1.2 from the left to the right we find the following objects.

• Elliptical galaxies: these objects are smooth, featureless stellar systems
containing little or no cool interstellar gas and with, in general, no significant
stellar disc. The stars in these galaxies are old and metal-rich, compatible
with the fact that these galaxies are likely to have formed most of their stars
in a rapid star formation burst more than 10 Gyr ago (see e.g. Nelan et al.
2005; Renzini 2006; Citro et al. 2016). Thus, elliptical galaxies are fossils of
the galaxy formation processes happened when the Universe was significantly
younger than today.

https://www.wwu.edu/skywise/astronomy101.html
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• Lenticular galaxies: these galaxies show an “hybrid” morphology between
ellipticals and spirals (see below): they have a predominant bulge and a rapidly
rotating stellar disc without spiral structures and without signs of ongoing star
formation. It is still a matter of debate whether these galaxies are the product
of mergers (e.g. Falcón-Barroso, Lyubenova & van de Ven 2015; Querejeta
et al. 2015) or just faded spirals in which the star formation have been halted
(e.g. Laurikainen et al. 2010; Williams, Bureau & Cappellari 2010, see also the
results of our recent work in Rizzo, Fraternali & Iorio 2017).

• Spiral galaxies: these are galaxies, like the Milky Way and M 31 (see Fig.
1.1), that contain a prominent disc composed of stars, gas, and dust. The spiral
galaxies are currently forming stars, especially along the filamentary structure
of the spiral arms. Most of them contain an inner bulge and/or a bar. At
least some of these galaxies, for instance the Milky Way, are surrounded by
a diffuse stellar halo (see e.g. Zibetti, White & Brinkmann 2004; Zibetti &
Ferguson 2004; Mouhcine et al. 2005; Ibata et al. 2007; Helmi 2008; Harmsen
et al. 2017) that can stores important information about the galaxy formation
history (see Sec. 1.2)

At smaller scales (stellar mass . 109 M�) the galaxies are defined as dwarf
due to their smaller extent with respect to elliptical, spiral and lenticular galaxies.
They can be divided in gas-poor quiescent dwarfs and gas-rich star forming dwarfs.
Among the first we can find the dwarf ellipticals that can be considered the low-
mass extensions of elliptical galaxies (Ferguson & Binggeli, 1994) and the dwarf
spheroidals that have a luminosity similar to the dwarf ellipticals but a much
shallower surface brightness (Mateo, 1998). Both these two families of objects show
little or no evidence of gas and of star formation activity (McConnachie, 2012).
Despite the common quiescent nature and the smooth spheroidal shape they are
truly distinct kind of objects (Kormendy & Freeman, 2016). The gas-rich dwarfs are
the smallest systems with ongoing star formation activity and they contain a rotating
disc of cool gas. However, they do not have bulges or spiral arms. Considering the
intensity of the star formation activity, they can be classified as dwarf irregular
galaxies (dIrrs) with low star formation rates (Hunter & Elmegreen, 2004; Zhang
et al., 2012) and blue compact dwarfs that can be considered starburst galaxies
(Lelli, Verheijen & Fraternali, 2014a), see Sec. 1.3 for further details.

In the Local Group there is a strong spatial segregation between the dIrr and
the dSph galaxies. The dSphs are preferentially found as satellites of more massive
galaxies while the dIrrs are located in more distant and low-dense regions (Weisz
et al., 2011). However, apart from their difference in gas content, dSphs and dIrrs
appear to be similar in other properties, and they are probably closely related types
of objects (Kormendy & Djorgovski, 1989; Da Costa, 1992; Kormendy & Freeman,
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2016). Some scenarios suggest that the dIrrs evolve into dSphs losing their gas
as they approach the massive galaxies (e.g. Mayer et al. 2001), while other models
assume that these objects are truly distinct at birth and follow different evolutionary
paths.

Despite the significant morphological differences, all galaxies are believed to be
surrounded by a dark matter halo. This component is not visible, but its presence
is needed to explain the observed kinematics in both rotating discs (spirals, dIrrs,
e.g. Bosma 1978; Rubin, Ford & Thonnard 1980) and dispersion dominated galaxies
(ellipticals, dSphs, e.g. Danziger 1997). In particular, the mass budget of both dSphs
and dIrrs are totally dominated by the DM component (see e.g. Battaglia et al. 2008;
Walker et al. 2009; Breddels & Helmi 2013; Oh et al. 2015), hence they are perfect
DM probes, especially in the case of dIrrs where we can exploit the kinematics of
the rotating gaseous disc (see Sec. 1.3). The study of the DM content of galaxies is
fundamental to test the predictions of the various cosmological models (e.g. Read
et al. 2017).

1.1.2 Galaxy formation and evolution

How structures in the Universe form and evolve from a primordial hot and dense
state is today reasonably well understood, at least in general terms. After a very
rapid phase of expansion called “inflation” (Guth, 1981), the evolution is driven by
the gravity and by the presence of random small density fluctuations. Thus, the
first stages of the Universe evolution are quite straightforward: the regions with
a density higher than the average are able to contrast the expansion and become
progressively denser; conversely, in regions with a density lower than the average
the expansion proceeds faster and they become less and less dense. The first regions
form the seeds of the first structures, while the second regions the seeds of the inter-
galactic voids. The presence of such primordial fluctuations is not only a theoretical
speculation: the fluctuations can be indirectly measured by the anisotropies in the
cosmic microwave background and from measurements of the distribution of matter
at large scales (e.g. Peebles 1982a; Planck Collaboration et al. 2016a). When the
densest regions become dense enough, they start to collapse decoupling from the
universal expansion. During the collapse phase, which involves both the dark mat-
ter and the baryonic matter, the first proto-structures of the Universe are created.
The current concordance cosmological model that describes the formation and the
evolution of the Universe is the Λ cold dark matter (ΛCDM) framework (White &
Rees, 1978; Peebles, 1982c,b). In this model, the components of the Universe are
the dark energy (∼ 69%1, responsible for the current Universe acceleration of expan-
sion), the DM (∼ 26%1) and the baryonic matter (∼ 5%1). In particular, the DM

1 Planck Collaboration et al. (2016b)
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is assumed to be composed by massive and weakly interactive particles that had
non-relativistic velocities at the time of decoupling from the Universe expansion.
The “cold” behavior of the DM particles implies that the first structures to form are
the one at the smallest scales; then, the larger structures are formed hierarchically
by the merging of the smaller ones (see e.g. Lacey & Cole 1994; Navarro, Frenk &
White 1996; Bullock et al. 2001; Ishiyama 2014).

During the collapse, when the gas starts to be dense enough, the first stars
form and eventually explode as supernovae (SNe) releasing gas and metals into the
interstellar medium. New stars are formed from the new metal-enriched gas and
this cycle continues until the reservoir of cool gas runs out due to the internal (e.g.
AGN/SNe feedback) or external (e.g. gas removal in dense environments) effects.
The detailed understanding of the steps that lead from the collapse of the proto-
structures to the creation of the variety of galaxies we see today (Sec. 1.1.1) is one
of the main unsolved problem in astrophysics.

The first theory of the galaxy formation was proposed by Eggen, Lynden-Bell &
Sandage (1962) and it is known as monolithic collapse. In this scenario, the forma-
tion of galaxies occurs very rapidly from the primordial collapsing gas, therefore all
the stars of the galaxy are formed “in situ”. Few years later, Searle & Zinn (1978)
proposed a theory in which galaxies form progressively assembling mass from smaller
proto-structures. This last scenario is compatible with the hierarchical growth of
structures predicted by ΛCDM. In this context, dwarf galaxies are expected to be
the first systems to form, providing the building blocks for the formation of more
massive systems through continuous merging and accretions. Therefore, the study
of dIrr galaxies, especially of the most metal poor, is very important to understand
the properties of the primordial building blocks (e.g. Sacchi et al. 2016). At the
same time, the study of the stellar halo of galaxies in general, and of the Milky Way
in particular, is useful to discern between different galactic formation scenarios. For
example, if most of the stars in the stellar halo are smoothly distributed in space
and show a radial gradient and/or a little spread in metallicity, it is likely that
mergers have not been too important, at least in the recent time. Conversely, the
predominance of clumpy substructures and/or of large spread in stellar metallicity
favour a model in which the accretion of smaller structures have had a relevant role
in shaping the halo and in the evolution of the galaxies (see Sec. 1.2).

1.2 The stellar halo of the Milky Way

The first glimpse of the existence of a stellar halo component in our Galaxy was
caught when Roman (1955) found that the high-velocity stars around the Sun are
systematically more metal poor than the Sun. Moreover the velocities of these
objects imply that their orbits are highly eccentric and/or inclined with respect to
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Figure 1.3: A map of some halo substructures in the outer part of the Milky Way, derived
from the Sloan Digital Sky Survey (SDSS, Abazajian et al. 2009) images of the northern
sky and adapted from Belokurov et al. (2006). The image is shown in a Mercator-like
projection. The colour indicates the distance of the stars, while the intensity indicates
the density of stars on the sky. Structures visible in this map include: streams of stars
from the Sagittarius dwarf galaxy, the “orphan” stream (Belokurov et al., 2007b; Newberg
et al., 2010), the “Monoceros Ring” that encircles the Milky Way disk (Newberg et al.,
2002), trails of stars being stripped from the globular cluster Palomar 5 (Odenkirchen
et al., 2001), and excesses of stars found towards the constellations Virgo and Hercules
(Jurić et al., 2008; Vivas et al., 2001; Belokurov et al., 2007a). Circles enclose new Milky
Way companions discovered by the SDSS; two of these are faint globular clusters, while
the others are faint dwarf galaxies. Credit: V. Belokurov and the SDSS.

the plane in which the circular orbit of the Sun lies. Years later, Eggen, Lynden-Bell
& Sandage (1962) discovered that among high-velocity stars the metallicity decreases
for increasing orbital energy and angular momentum. Given this evidence, they
stated that the most metal poor stars reside in a halo-like structure created during
the initial stage of the formation of the Milky Way. In the eighties, Zinn (1985) and
Armandroff (1989) found a clear bimodality in the metallicity of globular clusters
and they advocated the existence of a new component of our Galaxy, different from
the disk in both shape and formation history. Nowadays, we know that the stellar
halo is a diffuse cloud of stars (and globular clusters) located all around the Milky
Way. The stars belonging to the halo are old (∼ 13 Gyr, Sneden et al. 1996; Hill
et al. 2002; Frebel et al. 2007) and metal poor. The metallicity distribution peaks
around [Fe/H] ∼ −1.6, but it has significant tail at low metallicities extended well
below [Fe/H] ∼ −3 (e.g. Ryan & Norris 1991; Carollo et al. 2007). The distribution
of stars in the halo can be considered rather smooth, especially in the inner part of
the Galaxy (e.g. Deason, Belokurov & Evans 2011; Xue et al. 2015; Das, Williams
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& Binney 2016; Iorio et al. 2017a), but a series of substructures and streams are
clearly visible spatially (see Fig. 1.3) and/or in the phase space (e.g. Helmi et al.
1999; Newberg et al. 2002; Belokurov et al. 2006). The kinematics inferred from
local samples of halo stars indicates that the local halo shows a small amount of
prograde rotation (V < 50 km s−1, e.g. Carney et al. 1996; Chiba & Beers 2000;
Deason et al. 2017b) and is dominated by the velocity dispersion (Chiba & Beers,
2000).

The stellar halo contains only a very small fraction (. 2%) of the Galactic
light and an even smaller fraction (. 0.2%) of the total Galactic mass (Bland-
Hawthorn & Freeman, 2000). However, the stellar halo can be considered the “alter
ego” of the much more massive structure, whose presence is inferred indirectly:
the dark matter halo. The two halos emerge alongside each other, sharing the
formation mechanism, i.e. a combination of the accretion onto the Galaxy and the
subsequent relaxation and phase mixing. In particular the metal poor stars of the
halo can be considered “fossil” of the early Galactic formation as nicely explained
by Eggen, Lynden-Bell & Sandage (1962): “ ... a study of these subsystems allow
us partially to reconstruct the Galactic past because the time required for stars in
the Galactic system to exchange their energies and momenta is very long compared
with the age of the Galaxy. Hence knowledge of the present energy and momenta
of individual objects tell us something of the initial dynamic conditions under which
there were formed.” Given that the stellar halo contributes negligibly to its host
gravitational potential, the stars belonging to the halo are also perfect tracers for
the DM content. For example, by positing the continuity of the phase-space flow,
the dark matter distribution can be inferred if the stellar halo spatial shape is known
and complemented by stellar kinematics (see e.g. Jeans 1915; Helmi 2008; Posti et al.
2015; Helmi et al. 2017). Therefore, the study of stellar halo of the Milky Way is
important to understand the formation history and evolution of both the baryonic
and the DM component of the Galaxy.

1.2.1 Formation scenarios

The formation scenarios of the galactic stellar halos in general, and of the stellar halo
of the Milky in particular can be roughly classified following the “classical” galactic
formation scenarios discussed in in Sec. 1.1.2. In the “monolithic collapse” scenario
(Eggen, Lynden-Bell & Sandage, 1962), the stars in the halo are mostly formed
during the initial collapse of the gas in the proto-galactic structure; while, in the
“hierarchical” scenario (Searle & Zinn, 1978) the stars are deposited continuously
in the halo through accretion of smaller structures. These two models are not
really in contraposition, rather it is likely that both of them have a role in the
formation and evolution of galaxies and their stellar halos (Helmi, 2008). Therefore,
as suggested by Helmi (2008), it is more instructive to classify formation models in
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Figure 1.4: Surface brightness (left-hand panel), line-of-sight velocity (middle panel)
and line-of-sight velocity dispersion (right-hand panel) of a simulation of purely accreted
stellar halo from Bullock & Johnston (2005). Each box is 300×300 kpc. The central galaxy,
containing ∼ 99 % of the stars, is not shown. Credit: Sanjib Sharma, Kathryn Johnston,
James Bullock.

dissipative and non-dissipative scenarios: in the first case the stars in the halo are
formed during a dissipative process (i.e. the collapse of gaseous clouds), while in the
second case the stars are just put in the halo volume without involving dissipative
processes. In order to link the information coming from the stellar halo to the
theory of galaxy formation and evolution, the formation scenarios can be further
classified considering the origin of the single stars (e.g. Johnston 2016). In this case,
we can considered in situ models in which the stars born in the potential of the
Milky Way (e.g. Zolotov et al. 2009) or ex situ/accreted models where the stars
have an external origin (e.g. Pillepich, Madau & Mayer 2015). The latter case is
compatible with the non-dissipative scenario, while the in situ stars can have both a
dissipative and a non-dissipative origin. In the first case (dissipative) the stars were
born in the halo volume from the primordial collapsing gas (as originally supposed
by Eggen, Lynden-Bell & Sandage 1962); while, in the second case (non-dissipative)
they were born in the disc and then they are “heated” or “kicked-out” in the halo
changing significantly their circular-like orbits (e.g. Purcell, Bullock & Kazantzidis
2010) . Moreover, there is also the possibility of an hybrid dissipative in situ/ex situ
scenario in which the gas has an external origin (e.g. accreted through merging) and
then the stars are formed inside the stellar halo volume (e.g. the “endo-debris” stars
described in Tissera et al. 2013).

Discriminating between different formation models is not straightforward. Each
scenario predicts certain stellar halo properties, as for example the spatial distri-
bution of the halo stars or a certain spread or gradient in the stellar metallicity.
However, these properties can be strongly degenerate among different scenarios.
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For this reason a parallel exploitation of both data from observations and from N-
body simulations is needed. For example, it is natural to think that the presence
of a break in the density profile of the halo and/or the fact that the halo is more
flattened in the outskirts that in the central parts, as is found in many works (e.g.
Xue et al. 2015; Das, Williams & Binney 2016), could be the sign of the transition
between an in situ dominated halo in the inner parts and an accretion dominated
halo in the outer parts. However, many simulations of purely accreted stellar halos
(see Fig. 1.4) show that a break in the density profile could be a natural consequence
of a pure non-dissipative ex situ scenario (e.g. Bullock & Johnston 2005; De Lucia
& Helmi 2008; Deason et al. 2013; Amorisco 2017). At the same time, pure in situ
simulations are also able to reproduce to some extent the observed distributions of
stars in the inner part of the halo (e.g. Samland & Gerhard 2003; Pérez-Villegas,
Portail & Gerhard 2017).

In the outer part of the Milky Way stellar halo, the spatial distribution of the
stars is very lumpy favouring a non-dissipative formation scenario via accretion of
external galaxies. However, the nature of the accreted objects is still uncertain. In
particular, it is still unclear whether the dSphs, like the ones that we see today
around the Milky Way, can contribute significantly to the mass of the stellar halo.
Although most of the metal-poor stellar halos ([Fe/H] < −2) can have been accreted
from low-mass dwarf galaxies (Deason, Mao & Wechsler, 2016), at higher metallicity
the stars in the halo show significant difference with respect to the stellar populations
found in dSphs (e.g. Fiorentino et al. 2015). In particular, the halo stars tend to
be more α-enhanced at a given metallicity compared to the stars in the dSphs (e.g.
Tolstoy et al. 2006; Letarte 2007). As a consequence, these objects can not have
been significant contributors of the mass assembly in the stellar halo (Shetrone, Côté
& Sargent, 2001; Tolstoy et al., 2003; Venn et al., 2004; Deason, Mao & Wechsler,
2016). Recent works by Fiorentino et al. (2015) and Deason, Mao & Wechsler (2016)
concluded that massive and the metal-rich satellites, such as the Large Magellanic
clouds and the Sagittarius dSph, can have contributed to the Galactic halo formation
more than classical dwarf spheroidals. In particular, one or two completely destroyed
dwarfs with stellar masses between 108 M� and 1010 M� could have contributed to
the majority of the accreted mass of the stellar halo (Deason, Mao &Wechsler, 2016).
In this context, the Milky Way stellar halo is destined to transform dramatically
with the dissolution of the debris from the Sagittarius dwarf and the Magellanic
Clouds. Another possible scenario is that the building blocks of the halo and the
dwarfs we see today are essentially different (Helmi, 2008). The first object can
be associated to primordial high-density peaks (see Sec. 1.1.2) that collapse faster
and at higher redshifts, while the current dwarf galaxies descend from less peaked
density fluctuations with a slower evolution causing a lower level of α enrichment.

To solve all these puzzles it is fundamental to have high quality data (e.g. phase
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space positions, metallicity measurements) sampling the stellar halo from its inner-
most part (∼ 5 kpc) to its extreme outer parts (∼ 100 kpc). In this context, the
forthcoming data from the Gaia mission promise prominent breakthroughs in the
field. It is likely that, by the end of the mission (∼ 2020− 2021), our understanding
of the formation of the Galactic halo and hence of the Milky Way formation will be
drastically improved. In this thesis, we started to set the ground for this “revolution”
by exploiting the already unprecedented richness of the first Gaia data release (see
Sec. 1.4).

1.3 The Hi in dwarf irregular galaxies

Dwarfs galaxies are the most numerous galaxies in the Universe (Ferguson & Binggeli,
1994). For example, around the Local Group (Fig. 1.1), about 70% of the galaxies
are dwarfs (McConnachie, 2012). The fraction remains this high also considering the
Local Volume within 11 Mpc from the Milky Way (Dale et al., 2009). Understand-
ing their structure, formation, and evolution is a fundamental goal for astrophysics
and cosmology. Dwarf galaxies are low-mass systems with low surface brightness
and, except for the most massive ones, they have low metallicities (Tremonti et al.,
2004; Hunter et al., 2012). Among them, the gas-rich dwarf galaxies represent an
extraordinary “mine” of information. They can be divided between dwarf irregular
galaxies (dIrrs) and blue compact dwarfs (BCDs). The latter have typically higher
surface brightness and intense blue colors in the optical band. As already discussed,
gas-rich dwarfs are the smallest systems with an ongoing star formation activity, in
particular the BCDs can be considered starburst galaxies (Lelli, Verheijen & Frater-
nali, 2014a). Therefore, dIrrs and BCDs are perfect laboratories to understand the
physics of the star formation in the most extreme conditions, namely low metallic-
ity, low content of molecular gas and no evident star formation triggers (e.g. Lelli,
Verheijen & Fraternali 2014b; Starkenburg, Helmi & Sales 2016).

The interstellar medium of these galaxies is dominated by the presence of the
atomic hydrogen (Hi) that is extended well beyond the optical disc. While it was
clear since the first observations that the Hi medium in spiral galaxies is settled in a
rotating disc, the situation for dIrrs/BCDs was initially more uncertain. Some dwarf
galaxies studied in the early 1960s with single-dish radio telescopes showed sign of
rotation (e.g. Volders & Högbom 1961; Epstein 1964), others did not (e.g. Roberts
1962). The advent of the radio interferometers, as the Westerbork Synthesis Radio
Telescope, improved drastically the spatial resolution of the observations allowing
to study the kinematics of the Hi in dIrrs with unprecedented details. Nowadays,
the modern interferometers, such as the Very Large Array or the Giant Metrewave
Radio Telescope, have the sensitivity and the spatial resolution needed to detect and
analyse in detail the Hi discs of even the smallest dwarf galaxies (e.g. Begum et al.
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2008b; Hunter et al. 2012). Based on several studies, the general picture emerged
that also dIrrs host rotating Hi discs, but they have a lower rotation amplitude with
respect to the spirals and they have slowly rising rotation curves (e.g. Shostak 1974;
Tully et al. 1978; Swaters 1999; Lelli, Verheijen & Fraternali 2014a; Oh et al. 2015;
see also Fig. 1.8).

The presence of a rotating disc is a unique tool to investigate the dynamics and
the content of dark matter of galaxies. The dIrrs, which are one of the focuses
of this thesis, usually have a less “disturbed” Hi kinematics with respect to the
BCDs (Swaters, 1999; Lelli, Verheijen & Fraternali, 2014a), so they can be used
to estimate quite robustly the galactic potential. Therefore, dIrrs represent also
unique cosmological probes to test the predictions of the cosmological models at the
low-mass end of the galaxy mass function. In this Section, we briefly introduce the
physics behind the Hi emission line from dIrr gaseous discs and the information that
we can derive from it.

1.3.1 The Hi emission line

Hydrogen is the most abundant element in the Universe: it is located in the stars, in
the interstellar medium (ISM) and in the intergalactic medium (IGM). In the ISM
of the galaxies, hydrogen is present in the thermal phases described below (Field,
Goldsmith & Habing, 1969; Wolfire et al., 1995, 2003).

• Hot: in this phase the hydrogen is totally ionized (Hii) and very hot (T≥106

K) and diffuse (n ≤ 10−2 cm−3). This temperature can be reached as a
consequence of a SN explosion or in the diffuse coronae around galaxies.

• Warm: in this phase the temperature ranges from 6000 K to 10000 K and the
density is n ∼ 0.1− 1 cm−3. This hydrogen can be both ionized, by radiation
from young stars (Hii regions) or from the background radiation field, and
neutral (warm neutral medium, WNM), heated by background radiation fields.

• Cold: At temperatures of the order 40 − 100 K the hydrogen is all neutral
(cold neutral medium, CNM) and dense (n ∼ 4− 80 cm−3).

• Molecular: at the lowest temperatures (T ≤ 50 K) and highest densities (n ≥
102 cm−3), the hydrogen is found in molecular form (H2).

Both Hii and H2 are strongly related to star forming regions, while the Hi is more
uniformly diffused in all the galaxy. In particular, in dIrrs the Hi is settled on discs
typically detected well beyond the stellar disc. The molecular gas is irrelevant in
the mass budget of dIrrs (Tacconi & Young, 1987; Taylor, Kobulnicky & Skillman,
1998) and in most of the dIrrs the Hi medium contains even more mass that the
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stellar component (McConnachie, 2012).

In the typical conditions of the ISM, all the neutral hydrogen is in the ground
state, so no electronic transitions can occur. However, van de Hulst (1945) the-
oretically predicted a Hi emission line due to the interaction between the spin of
the electron ~S and the angular momentum of the proton ~I. We can introduce the
hyperfine quantum number ~F = ~I+ ~S: in case of parallel ~I and ~S, F = 1, otherwise
F = 0. The difference of energy from F = 1 to F = 0 leads to an emission line
at λHI ' 21 cm (νHI ∼ 1420 Mhz) with a Einstein coefficient of 2.9 × 10−15 s−1.
This line is strongly forbidden, but the large amount of Hi in the ISM of late-type
galaxies allows us to detect it easily in the spiral and dIrr galaxies. Few years later,
both Ewen & Purcell (1951) and Muller & Oort (1951) confirmed with radio ob-
servations the prediction of van de Hulst and the first pioneering work using radio
observation with single-dish (e.g. van de Hulst, Raimond & van Woerden 1957; Ar-
gyle 1965) and interferometers (e.g. Rogstad & Shostak 1971; Allen, Goss & van
Woerden 1973) started to explore the Hi properties in the Milky Way and other
nearby galaxies.

Radio observations at the wavelengths of the Hi emission detect the spin-flip
transition of the Hi over the radio continuum of the galaxies (e.g. Heesen et al.
2011, 2014). Once the continuum is removed, the final data contain only the line
emissions of the Hi medium (see e.g. Hunter et al. 2012). The final products of
single-dish/interferometers observations of the Hi in galaxies are 3D dimensional
arrays, typically called “datacubes”. A datacube has two spatial dimensions indi-
cating the position of the emission in the sky and one spectral dimension indicating
the actual frequency/wavelength/velocity at which the Hi line is emitted due to
the Doppler shift (see below). Therefore, each pixel of the datacubes (sometimes
called “voxel”), stores the brightness (S) of the Hi emission (typically in units of
2[Jy beam−1]) at a given position on the sky and at a given frequency/velocity. In
practice, a datacube can be read as a collection of Hi line profiles at different spatial
positions, or as a collection of 2D images, called “channel maps”, that represent the
spatial distribution of the emitting source at a given velocity or frequency, namely
at a given channel.

Considering the density and the temperature of the Hi in the WNM and CNM,
the Hi emission can be assumed optically thin for column densities of the hydro-
gen lower than ∼ 1022 cm−2 (Spitzer, 1978; Haynes & Giovanelli, 1984; Watson &
Deguchi, 1984), which is generally a value rarely found in dIrrs (Hunter et al., 2012).
The negligible amount of Hi self-absorption and the lack of dust extinction in the
radio band imply that the Hi flux can be directly related to the “quantity” of atoms

2The beam indicates the solid angle of the instrumental beam.
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Figure 1.5: Information derived from the Hi datacube of the dIrr CVnIdwA by Hunter
et al. (2012). Upper-left: false color picture combining Hi (red), V -band (green),
and FUV (blue). Upper-right: integrated Hi map. The colour wedge is in units of
Jy beam−1 m s−1. Bottom-left: intensity-weighted velocity field (1st-moment map).
Bottom-right: intensity-weighted velocity dispersion (2nd-moment map). The colour
wedge for both bottom panels is in km s−1. The circle in the bottom-left corner of the
panels indicate the dimension of the beam. Credit: Deidre A. Hunter.

intercepted along the line of sight. In particular, the Hi column density along the
line of sight is (Roberts, 1975)

Nobs

cm−2
=

1.106 · 1024(
Bmaj

arcsec

)
×
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while the surface density is
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)
dV

km s−1 . (1.2)

In Eq. 1.1 and Eq. 1.2, Bmaj and Bmin represent the major and the minor full width
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half maximum of the instrumental beam and the brightness S is integrated through
all the datacube spectral channels. Notice that, applied to actual datacubes, the
integrals are converted to summations over the channels. Integrating Eq. 1.2 over
the surface of the emitting source, we obtain the total Hi mass

MHI = 2.356× 105

(
D

Mpc

)2( FHI

Jy km s−1

)
, (1.3)

where FHI is the total flux of the source in the datacube multiplied by the channel
width (∆V). An example of an Hi emission map is shown, for the dIrr CVnIdwA,
in the upper-right panel of Fig. 1.5 .

1.3.2 Hi disc kinematics: observations

The emission profile (flux as a function of the frequency or velocity) of the hyper-
fine Hi transition (Sec. 1.3.1) has an extremely small natural quantum broadening
(σq � 10−3 km s−1). Hence, the emission profile from a single emitting atom can
be considered a Dirac delta centred at the rest frequency νHI = 1420 Mhz. If the
atom that emits the Hi line is moving with respect to the observer, the line will
be not received at the rest frequency but it will be shifted to large or smaller fre-
quencies depending on whether the atom is moving toward or away from us. This
phenomenon is simply due to the Doppler effect, so the observed shift in frequency,
∆ν, can be easily interpreted as a velocity, V, of the emitting source along the line
of sight (V = c∆ν

ν
, where c is the speed of light). Obviously, during an observation

we do not discern the single atomic line emissions, rather the observed Hi line pro-
file is the result of the convolution of all the single emissions intercepted along the
line of sight inside our instrumental beam. This final line can be considered as a
density distribution (in terms of line intensity, I) of the emitters as a function of
their velocity (or frequency), I(V). Therefore, the first moment of the distribution,

M1 = Vlos =

∫
I(V) V dV∫
I(V) dV

, (1.4)

namely the the mean of the velocities weighted over the line intensity, is a measure
of the “bulk” velocity of the gas along the line of sight (Vlos). Similarly, the second
moment of the distribution,

M2 = σv =

√∫
I(V) (V− Vlos)2 dV∫

I(V) dV
, (1.5)

namely the standard deviation of the velocities weighted over the line intensity, is
a measure of the broadening of the emission line. The latter is also a measure of
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Figure 1.6: Global Hi line emission profiles obtained by Hunter et al. (2012) summing
the flux in each channel of the datacubes of the dIrr galaxies DDO210 (left-hand panel),
UGC8508 (middle panel) and DDO52 (right-hand panel). The colored profiles are
obtained from observations made with the Very Large Array interferometers using different
methods to produce the final datacube (robust-weighted in blue and natural-weighted in
red), while the black profiles have been obtained from single-dish observations (see Hunter
et al. 2012 for further details). Figure adapted from the original in Hunter et al. (2012).

the velocity dispersion (σv), along the line of sight, due to the the chaotic thermal
motion of the single particles (σTh) and to the chaotic turbulent motions of the
gas (σTu), see e.g. Sec. 5.3. Other spurious effects that can broaden the emission
line are unresolved streaming and rotational motions inside the beam area (σbeam,
also known as “beam smearing”) and the convolution for the instrumental spectral
resolution (σinstr, typically of the order of the channel width). As for Eq. 1.1 and
Eq. 1.2, in the analysis of actual datacubes, the integrals in Eq. 1.4 and Eq. 1.5 are
converted to summations over the datacube channels.

If the Hi disc is not spatially resolved (all the disc is inside the instrumental
beam), as is the case of the first single-dish observations of dIrrs (e.g. Roberts 1962),
the only reliable information at our disposal is the global Hi emission profile from
the whole disc. This can be calculated measuring the total flux in each channel
of the datacube. If the Hi emitting source is non rotating, or if the rotation is
much lower than the velocity dispersion, the Hi profile will be almost a Gaussian
centered on the systemic velocity of the galaxy and the broadening of the line gives
us information on the chaotic motions (convolved with the instrumental spectral
resolution) of the gas. If the gas is rotating, the receding half of the galaxy will
be shifted toward lower frequencies (larger velocities), while the approaching half
toward higher frequency (larger velocities). In this case, the emission will be still
centred on the systemic velocity of the galaxy, but the shape of the Hi line profile
will depend on the ratio between the amplitude of the rotation velocity projected
along the ling of sight, Vamp and the velocity dispersion, σv, of the gas:

• Vamp/σv ∼ 1: this case is similar to the non-rotating case, hence the Hi line
profile is nearly a Gaussian but the line broadening is due both to the chaotic
motion of the gas and to the (non resolved) gas rotation (see the left-hand
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panel of Fig. 1.6);

• Vamp/σv � 1: in this case the Hi line profile starts to deviate from a simple
Gaussian, in particular the peaks is less and less pronounced for increasing
values of Vamp/σv and it tends to become a “flat-topped” distribution (see the
middle panel of Fig. 1.6). When the rotation of the gas is rapidly increasing in
the inner parts and then almost constant in the outer parts, the Hi line profile
exhibits the typical “double-horn” shape (see the right-hand panel of Fig. 1.6),
commonly seen in spiral galaxies.

If the rotation is dominant with respect to the velocity dispersion, a rough measure
of the amplitude of the gas rotation can be obtained measuring the width of the line
profile. A typically used value is W20, the width at the 20% of the peak emission
(e.g. Tully & Fisher 1977; Brook, Santos-Santos & Stinson 2016).

If the Hi disc is spatially resolved we can measure the “local” kinematics (Vlos, σv)
of the Hi disc analysing the Hi line profile in each pixel of the datacube. There are
mainly two methods to extract the kinematic information from the observed Hi line
profiles. In the first case, we just apply Eq. 1.4 and Eq. 1.5 using the observed line
intensity in each datacube channel. In the second case, we assume a certain density
distribution (e.g. a Gaussian) which is fitted to the observed Hi line profile; then, we
use the best-fit parameters to estimate Vlos and σv. Both the approaches have pros
and cons: in the first case we do not need to make a priori assumptions, but the
results could be heavily biased by the presence of the noise; in the second case, we
are less influenced by the noise, but the final results could depend on the assumed
density distribution. The optimal choice depends on the quality of the data and
on the scientific interest. Applying one of the above methods in each spatial pixel,
we obtain two 2D maps: a velocity field containing all the estimates of Vlos and a
velocity dispersion map containing all the estimates of σv. The bottom panels of Fig.
1.5 show the two maps obtained with the moments method for the dIrr CVnIdwA
(Hunter et al., 2012). In particular, the velocity field (bottom-left panel) shows the
typical “feature” of a rotating disc: half of the galaxy is approaching (green-blue
colours) and the other half is receding (red-orange colours).

1.3.3 Hi disc kinematics: the tilted-ring model

The observed velocity along the line of sight (Vlos) can be used to obtain the rotation
curve of the Hi discs, namely the one-dimensional representation of the rotational
velocity of the gas as a function of the radius. Since Rogstad, Lockhart & Wright
(1974), the most common approach to estimate the rotation curve of the Hi discs
from the observed kinematics (Sec. 1.3.2) is the so-called ‘tilted-ring model’. In
practice the rotating disc is broken into a series of independent circular rings with
radius R, each with its kinematic and geometric properties (see Fig. 1.7). The
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Figure 1.7: Left: Hi total intensity map of the spiral galaxy M83 from Park et al. (2001).
Right: Tilted-ring description of M83 by Rogstad, Lockhart & Wright (1974). The model
refers to the region highlighted with the white rectangle.

projection of each ring on the sky is an elliptical ring with semi-major axis R and
semi-minor axis R cos i. Notice that using R, we indicate both the radius of the
circular ring and the semi-major axis of its projection. For a given point with
projected coordinates (x, y), the projected velocity along the line of sight (Vlos) is

Vlos(x, y) = Vsys + Vrot(R) cos θ sin i, (1.6)

where Vsys is the systemic velocity of the galaxy, Vrot is the rotation velocity of the
gas at radius R and θ is the azimuthal angle of the rings in the plane of the galaxy.
θ is related to i, to the galaxy centre (with coordinates x0, y0) and to the position
angle, PA, through:

cos θ =
−(x− x0) sinPA + (y − y0) cosφ

R

sin θ =
−(x− x0) cosPA− (y − y0) sinφ

R cos i
.

The PA is defined as the angle between the north direction on the sky and the
projected major axis of the receding half of the rings. Eq. 1.6 indicates that the
largest Vlos (in absolute terms) are found along the disc major axis (θ ∼ 0◦), while
along the minor axis (θ ∼ 90◦) the velocity of the gas is constant and equal to the
systemic velocity of the galaxy. Using the ring decomposition it is possible also to
obtain radial profiles from the integrated 2D maps (e.g. the Hi surface density or
the velocity dispersion profile).

It is worth noting that the Eq. 1.6 is strictly valid only assuming that the gas
is settled in a razor-thin disc and it describes only the circular motion of the gas.
Deviations from pure circular orbits can include radial motions due to inflow-outflow,
non-circular motions due to deviation from symmetry of the galactic potential (spiral
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arms, mergers, misaligned DM halo and so on; see e.g. Schoenmakers, Franx & de
Zeeuw 1997 and Swaters et al. 1999) and small-scale perturbations due to the star
formation activity (stellar winds, SNe, see e.g. Read et al. 2016). The tilted-ring
model allows us to trace the radial variation of the Hi disc geometry and model
the so-called ‘warp’ as shown in Fig. 1.7 (García-Ruiz, Sancisi & Kuijken, 2002;
Battaglia et al., 2006).

1.3.4 Hi disc kinematics: rotation curve
13 1.5. Tully-Fisher relations
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Figure 38. ISO and NFW rotation curve fits for the single-disk model of NGC 3198. Lines and symbols are as in Figure 25.

Figure 39. Surface brightness and ϒ3.6
⋆ profiles for NGC 3521. Lines and symbols are as in Figure 24.
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Figure 46. ISO and NFW rotation curve fits for DDO 154. Lines and symbols are as in Figure 25.

6.10. NGC 4736

The surface brightness profiles of NGC 4736 are shown in
Figure 43. The 2MASS J, H, and K profiles can be traced out
to ∼250′′, whereas the 3.6 µm profile can be traced out to the
edge of the H i disk at ∼400′′.

The stellar component of NGC 4736 has a complex structure.
A prominent stellar ring can be seen in various wavelengths at
a radius R ∼ 40′′. The ring, visible in the 3.6 µm image, is also
prominently visible in the 20 cm radio continuum. The presence
of this fairly strong continuum suggests active star formation
and may mean that at this particular radius the assumption that
the 3.6 µm emission is proportional to the stellar mass is not
valid. For this reason, we will not take this feature into account
in our subsequent analysis of the surface brightness profile.
The IRAC 3.6 µm profile flattens out at 250′′ � R � 400′′,
caused by the faint stellar ring surrounding the main body of
NGC 4736. At larger radii (beyond the edge of the H i disk)
the profile starts decreasing again. Also visible is a significant
steepening in the inner parts. We will treat this as evidence for
a separate central component with parameters µ0 = 11.8 mag
arcsec−2 and h = 0.26 kpc. To model the outer disk, we fitted
an exponential disk to the radial range 80′′ < R < 240′′ and
found parameters µ0 = 15.9 mag arcsec−2 and h = 1.99 kpc.
We used the extrapolated fit for radii R < 80′′ and the observed
radial surface brightness for R > 80′′.

NGC 4736 exhibits a small color gradient in the outer parts
with a steeper inner reddening. We have adopted a constant
value of ϒ3.6

⋆ = 0.6 for the outer disk beyond the last reliable
2MASS (J−K) value, and have additionally assumed a constant
ϒ3.6

⋆ = 0.7 for the innermost 20′′. For the central disk, we assume
a constant ϒ3.6

⋆ = 0.9 which is the average value for R > 20′′.

The rotation curves are shown in Figure 44. It is imme-
diately obvious that NGC 4736 must be close to maximum
disk. The predicted ϒ3.6

⋆ value for the inner disk yields a
curve that overestimates the rotation velocity (not shown here).
We therefore left ϒ3.6

⋆ of the inner disk as a free parameter after
fixing the ϒ3.6

⋆ value of the main disk. This resulted in an inner
disk mass of about a factor of ∼2 less than predicted (and is the
model shown in Figure 44). While the discrepancies are slightly
less for the Kroupa ϒ3.6

⋆ values, the resulting models still over-
predict the rotation velocity. Because of these uncertainties and
because of the large noncircular motions in this galaxy (Tra-
chternach et al. 2008), it is virtually impossible to say anything
definite about the distribution of dark matter in this galaxy based
purely on rotation curve arguments.

6.11. DDO 154

DDO 154 is barely detected in the 2MASS images and we
cannot therefore use the same (J −K) color method as with the
other galaxies. We therefore use the (B −V ) and (B −R) colors
as proxies, as described in Oh et al. (2008). For the color, we
use the values given in Carignan & Beaulieu (1989): (B −V ) =
0.37 ± 0.06 and (B − R) = 0.64 ± 0.07. No significant color
gradient is detected, and we therefore assume a constant color
as a function of radius in our models. Using the equations from
Oh et al. (2008), we find values ϒ3.6

⋆ = 0.34 ± 0.04 using the
(B − V ) colors and ϒ3.6

⋆ = 0.31 ± 0.02 using the (B − R)
colors. We adopt the weighted average ϒ3.6

⋆ = 0.32 as our
best estimate. The IRAC 3.6 µm profile can be described by
a single exponential disk with µ0 = 20.8 mag arcsec−2 and
h = 0.72 kpc.

The rotation curves are shown in Figure 46. The ISO
model consistently fits better than the NFW model. The latter

Figure 1.6: Rotation curves decomposition for the large spiral galaxy NGC3198 (right)
and the dwarf galaxy DDO 154 (right). Plots are taken from ?. For each galaxy, a fit
with isothermal (top) and NFW (bottom) dark matter halo is shown. In all panels black
dots represent the observed curve and the thin full lines represent the uncertainties. The
gray dotted curve shows the rotation curve of the gas Vg and the thin dashed gray curve
shows the rotation curve of the stellar disk V⇤. Thick, gray full curves show the resulting
rotation curve of the halo VDM. The thick long-short dashed curve the resulting best-fit
model rotation curve Vrot.

like the absolute magnitude in di↵erent band. In particular, it has been observed

that the power-law exponent varies from about 3 in the B-band to 4.5 in H-band,

with a decreasing scatter towards redder filters (Sakai et al., 2000) resulting from

the fact that the radiation at larger wavelengths is less a↵ected by dust absorption

and by current star formation rate. Proxies of rotation velocities are usually the

inclination-corrected width of the Hi global profile WHI, the maximum rotation

velocity Vmax or the velocity of the flat part Vflat of the rotation curve. Verheijen

(2001) found the tightest relation using the Vflat as a kinematic measure, hence this

proxy has been preferably used when extended rotation curves are available.

NGC 3198 DDO 154

Figure 1.8: Rotation curve for the spiral galaxy NGC 3198 (left-hand panel) and the
dIrr galaxy DDO 154 (right-hand panel). Plots are taken from de Blok et al. (2008).
In all panels, black dots represent the observed curve and the thin full lines represent the
uncertainties. The gray dotted curves and the thin dashed grey curves show the rotation
generated from the observed distribution of gas and stars, respectively (see Appendix 5.A).
The thick long-short dashed curves show the best-fit rotation curve models obtained as-
suming an isothermal (Eq. 4.26, upper panels) and an NFW (Eq. 4.27, bottom panels)
profile for the dark matter halo (assumed spherical). The thick, grey full curves show the
rotation curve generated by the dark matter halo only.

Using the tilted-ring model we can estimate the intrinsic geometrical parameters
(i, PA) and the rotation curve (Vrot) of Hi discs both fitting the model to 2D velocity
fields (bottom-left panel of Fig. 1.5) or comparing 3D tilted ring models to the data
directly in the 3D space of the datacube.
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The 2D approach has been used in several numerical algorithms such as ROTCUR (Bege-
man, 1987), RESWRI (Schoenmakers, Franx & de Zeeuw, 1997), KINEMETRY (Kra-
jnović et al., 2006) and DISKFIT (Spekkens & Sellwood, 2007). All of these codes
have been very useful to improve our understanding of the kinematics of late-type
galaxies. However, working in 2D has a drawback: the results depend on the as-
sumptions made when extracting the velocity field and are also affected by the
instrumental resolution (the so-called beam smearing; Bosma 1978; Begeman 1987).
These problems are especially relevant in the study of the kinematics of dIrrs since
the Hi line profiles can be heavily distorted by both non-circular motions and noise.
As a consequence, the extraction of the velocity field can be challenging (see e.g. Oh
et al. 2008).

The pioneering work of Swaters (1999) showed that these problems can be solved
with an alternative approach: the properties of the Hi disc can be retrieved with
a direct modelling of the 3D datacube without explicitly extracting velocity fields.
In practice, a 3D method consists of a data-model comparison of nch maps (where
nch is the number of spectral channels) instead of the single map represented by the
velocity field. The best advantage of this approach is that the datacube models are
convolved with the instrumental response, so the final results are not affected by
the beam smearing. Swaters (1999), Gentile et al. (2004), Lelli, Fraternali & Sancisi
(2010) and Lelli, Verheijen & Fraternali (2014a) used a 3D visual comparison be-
tween datacubes and model cubes to correct and improve the results obtained with
the classical 2D methods. However, a by-eye inspection of the data is time intensive
and subjective. Modern software like TiRiFiC (Józsa et al., 2007) and 3DBAROLO
(Di Teodoro & Fraternali, 2015) can perform a full 3D numerical minimisation on
the whole datacube. In this thesis, we exploit the code 3DBAROLO to measure the
rotation curve for a sample of dIrrs (see Chapter 3).

The rotation curves of discs are unique tools to trace the gravitational potential
of galaxies. In fact, assuming centrifugal equilibrium, the rotation of the gas is
related to the radial force generated by the total galactic mass distribution. If the
observed baryons (gas+star) were the only component in the galaxy, the theoretical
rotation curve generated by their matter distribution would be compatible with the
rotation curve measured for the Hi disc. This is not the case, for either spirals or
dIrrs. In particular, the rotation curves of Hi discs in spirals remain nearly flat
also in the outermost disc, where the visible matter fades and one would expect
a nearly Keplerian fall-off of the rotation curve (e.g. Bosma 1978; Bosma, Goss
& Allen 1981; Bosma 1981; van Albada et al. 1985; Begeman 1987, 1989). The
discrepancy between the “observed” rotation curve and the one expected from the
baryonic matter can be used to estimate the radial profile of the dark matter halo
(e.g. van Albada et al. 1985; Begeman 1987; de Blok et al. 2008; Oh et al. 2015).
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However, the inner parts of the rotation curve of spirals can be dominated by the
contribution of the stellar components (see the left-hand panels of Fig. 1.8). In these
cases, the estimate of the DM profile is complicated by the large uncertainties in the
estimate of the stellar mass-to-light for the bulge and/or the stellar disc (van Albada
et al., 1985). Conversely, the potential of the dIrrs are totally dominated by the DM
halo at all radii (see the right-hand panels of Fig. 1.8), moreover these galaxies are
bulgeless. As a consequence, the uncertainties on the stellar mass-to-light ratio are
totally negligible. In conclusion, the dIrrs represent excellent laboratories to study
the basic properties of dark halos in the low mass regime (Swaters, 1999).

These scales are particularly interesting because of the presence of some tension
between the observations and the predictions of cosmological ΛCDM (see Sec. 1.1.2)
simulations. For example, pure dark matter cosmological simulations of structure
formation predict that the dark matter density distribution within galaxies should
have an inner cusp (ρDM ∝ r−1, Navarro, Frenk & White 1996); however, the
rotation curves of dIrr and low surface brightness galaxies favour a central constant
density core (e.g. Flores & Primack 1994; de Blok & Bosma 2002; Kuzio de Naray &
Kaufmann 2011; Read et al. 2017). In order to understand whether this discrepancy
owes to observational biases (e.g. Pineda et al. 2017) or to failures of the simulations
in catching all the relevant physical processes (e.g. Read, Agertz & Collins 2016) or
to a real failure of ΛCDM (e.g. Kamada et al. 2017), it is mandatory to estimate
the dark matter density profile of galactic halos with high precision.

In conclusion, a robust determination of the Hi rotation curves in dIrrs is fun-
damental to investigate the properties of the DM halo in galaxies and to compare
these results with the predictions of the cosmological models (see e.g. Read et al.
2017).

1.4 This Thesis

As discussed in the previous Sections, the study of the Galactic stellar halo and the
study of the Hi disc of dIrrs are important to test the predictions of cosmological
models. In particular, the study of the smooth structure of the stellar halo is fun-
damental both to discern among different formation scenarios (Sec. 1.2.1) and to
highlight the presence of halo substructures that can be directly related to accreted
objects in the Milky Way. On the other side, if the dwarf galaxies are really similar
to the primordial building blocks predicted by cosmological models, it is important
to understand their dynamics. In this context, the dIrrs are very unique objects in
that they are the smallest systems with a rotating disc that can be used to trace
the galaxy potential. We can roughly divide our “off piste tour” beyond the disc of
the Milky Way in two parts.

In the first part, in Chapter 2, we study the structure of the innermost regions of
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the Galactic stellar halo exploiting the unprecedented “richness” of first data release
of the Gaia mission. This first data release represents only the “tip of the iceberg”
of what will be at our disposal by the end of the mission. Nonetheless, we present
an original method to select RR Lyrae stars cross-matching the Gaia catalogue with
the 2MASS catalogue and using only photometric quantity to define a proxy of the
stellar variability. Thanks to this method, we obtain the first all-sky sample of
RR Lyrae stars located in the inner part of the Galactic halo. We use these data to
study, in detail, the spatial distribution of the stars in the halo both with parametric
and non-parametric methods. Thanks to the excellent sky coverage of our sample,
we are able to test also complex halo models not yet explored in the literature.

In the second part (Chapter 3 - Chapter 5) we analyse the Hi discs of a sample
of dIrrs. In Chapter 3, we make use of a new state-of-the-art code (3DBAROLO)
to obtain the kinematics of dIrrs fitting directly the 3D datacubes. This approach
represents a robust way to infer the kinematics since it takes into account the in-
strumental resolution and exploit the whole information in the datacube instead to
work on the projected 2D maps as in previous methods. We also give particular
attention to the correction for the pressure support that is especially relevant for
these objects. In particular, for the first time, we propose a method to include the
uncertainties in this correction process. The results of this work are reliable and
ready-to-use rotation curves.

In Chapter 4, we study the effect that the presence of thick gaseous disc can
have on the analysis of the Hi discs. Then, we present a new original technique to
estimate the properties of the Hi discs and the dynamics of the host galaxies tak-
ing into account the presence of the disc thickness, assuming vertical hydrostatical
equilibrium. We applied our method to three of the galaxies analysed in Chapter 3
assuming a razor-thin disc and discuss the differences of the obtained results.

In Chapter 5, we use the data obtained in Chapter 3 to test scaling relations at
the low-mass end of the galaxy mass function. We investigate the Baryonic Tully-
Fisher relation and the radial acceleration relation comparing our results with what
is found for a sample of more massive galaxies. Then, we try to understand whether
the energy injected in the ISM by the star formation activity can feed the turbulence
that we see in the Hi medium of dIrrs.

Finally, in Chapter 6 a summary of the results of this work is presented.

Get ready, check your equipment, our off piste tour beyond the disc of the Milky Way is about to begin!
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The first all-sky view of the Milky Way stel-
lar halo with Gaia+2MASS RR Lyrae†

Although the Galactic stellar halo stores less than the 2% of the Galactic baryons, it
contains valuable information about the Milky Way (MW) formation history and the
properties of the DM halo (see Sec. 1.2). Therefore, it is important to determine its
shape and its density distribution. The radial density profile of the stellar halo has so
far been measured with a variety of stellar tracers. Studies based on Main Sequence
Turn-Off stars (e.g. Sesar, Jurić & Ivezić, 2011; Pila-Díez et al., 2015), Blue Straggler
and Horizontal Branch stars (e.g. Deason, Belokurov & Evans, 2011) and RR Lyrae
(e.g. Sesar et al., 2007; Watkins et al., 2009) seem to favour a “broken” power-law
profile. According to these datasets, somewhere between 20 and 30 kpc from the
MW centre, the density slope changes from a relatively shallow one, as described
by power-law index of approximately −2.5, to a much steeper one, consistent with
a power-law index of ≈ −4.

While the radial density profile can also be gauged using data from a limited
number of sight-lines through the Galaxy, the shape of the stellar halo requires a
much more complete coverage of the sky. So far, much of the halo modelling has
relied on the Sloan Digital Sky Survey data, which is biased towards the Northern
celestial hemisphere. It is therefore possible that the incomplete view has troubled
the efforts to simultaneously infer the details of the radial density distribution and
the shape of the halo. For example, using A stars, Deason, Belokurov & Evans (2011)
measured substantial flattening of the stellar halo in the direction perpendicular to

†Based on G. Iorio, V. Belokurov, D. Erkal, S. E. Koposov, C. Nipoti, F. Fraternali, 2017,
MNRAS, in print (arXiv:1707.03833). This work has made use of data from the European Space
Agency (ESA) mission Gaia (http://www.cosmos.esa.int/gaia), processed by the Gaia Data
Processing and Analysis Consortium (DPAC, http://www.cosmos.esa.int/web/gaia/dpac/
consortium). Funding for the DPAC has been provided by national institutions, in particular
the institutions participating in the Gaia Multilateral Agreement.

http://adsabs.harvard.edu/abs/2017arXiv170703833I
http://adsabs.harvard.edu/abs/2017arXiv170703833I
http://www.cosmos.esa.int/gaia
http://www.cosmos.esa.int/web/gaia/dpac/consortium
http://www.cosmos.esa.int/web/gaia/dpac/consortium
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the Galactic disc plane, but no change of the shape with radius. On the other hand,
Xue et al. (2015) used a sample of spectroscopically-confirmed K giants and detected
a noticeable change of flattening with radius. Furthermore, they argue that if the
halo shape is allowed to vary with radius, then a break in the radial density profile
is not required. Finally, to add to the puzzle, based on a set of BHB stars with
spectra, Das, Williams & Binney (2016) reported both an evolving halo shape and
a break in the radial density.

Looking at some of the earliest halo studies, which inevitably had to rely on much
more limited samples of tracers, it is worth pointing out that, strikingly, glimpses of
the variation of the halo shape were already caught by Kinman, Wirtanen & Janes
(1966). This pioneering work took advantage of perhaps the most reliable halo
tracer, the RR Lyrae stars (RRLs, hereafter). These old and metal-poor pulsating
stars suffer virtually no contamination from other populations of the Milky Way and
have been used to study the Galactic halo with unwavering success over the last 50
years (see e.g. Hawkins, 1984; Saha, 1984; Wetterer & McGraw, 1996; Ivezić et al.,
2000; Vivas & Zinn, 2006; Catelan, 2009; Watkins et al., 2009; Sesar et al., 2010;
Akhter et al., 2012; Soszyński et al., 2014; Torrealba et al., 2015; Soszyński et al.,
2016).

While deep, wide-area samples of RRLs now exist, for example provided by the
Catalina Sky Survey (CSS, Drake et al., 2013), Palomar Transient Factory (PTF,
Sesar et al., 2014) and Pan-STARRS1 (PS1, Hernitschek et al., 2016; Sesar et al.,
2017), they have yet to be used to model the Galactic halo globally. In case of CSS,
this might be due to the varying completeness of the sample. For PTF and PS1 to
the fact that the data are not publicly available. To remedy this, here we attempt
to extract an all-sky sample of RRLs from the Gaia Data Release 1 (GDR1, Gaia
Collaboration et al., 2016a) data. Our primary goal is to use the thus procured RRL
candidates to model the global properties of the MW stellar halo. Therefore, we
are not concerned with maximizing the completeness but instead strive to achieve
homogeneous selection efficiency and reasonably high purity. While GDR1 does
not contain any explicit variability information for stars across the sky, Belokurov
et al. (2017) and Deason et al. (2017a) show that likely variable objects can be
extracted from the GaiaSource table available as part of GDR1. We build on these
ideas and combine Gaia and Two Micron All Sky Survey (2MASS) photometry (and
astrometry) to produce a sample of ≈ 21, 600 RRLs out to ≈ 20 kpc from the Sun,
with constant completeness of ≈ 20% and purity of ≈ 90%.

Armed with this unprecedented dataset, we simultaneously extract the radial
density profile as well as the shape of the Galactic stellar halo. Furthermore, taking
advantage of the stable completeness and the all-sky view provided byGaia+2MASS,
we explore whether the density slope and the shape evolve with Galactocentric ra-
dius out to ≈ 30 kpc. Finally, we also allow the halo to be i) arbitrary oriented ii)
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triaxial and iii) off-set from the nominal MW centre.
The analysis of the density distribution of the stars in our sample is based on

the fit of density models, rather than on the fit of full dynamical models (see e.g.
Das & Binney 2016; Das, Williams & Binney 2016). The main reason behind this
choice is that we do not have any kinematic information, so the use of self-consistent
dynamical models does not add any significant improvement to our study. Moreover,
the knowledge of the spatial density distribution of the stellar halo is a useful piece
of information not only if the halo is stationary, but also if it is not “phase-mixed”,
as suggested by cosmological N -body simulations (Helmi et al., 2011).

This Chapter is organized as follows. In Section 2.1 we describe the Gaia data
as well as the method used to select an all-sky sample of RRL candidates from a
cross-match between Gaia and the 2MASS. Here, we also give the estimates of the
purity and completeness of the resulting sample. In Section 2.2 we show and discuss
the spatial distribution of the selected RRLs. Section 2.3 presents the details of the
maximum likelihood approach employed to fit the data with different halo density
models and the final results of this analysis. In Section 2.4 the best-fit halo model is
discussed together with the possible biases that can affect our results. The summary
of the results can be found in Section 2.5.

2.1 The RR Lyrae Sample

In this Section we describe the method used to select a sample of RRLs from GDR1.

2.1.1 Gaia Data release 1

Gaia is an all-sky scanning space observatory, currently collecting multi-epoch pho-
tometric and astrometric measurements of about a billion stars in the Galaxy. More
details on the Gaia mission and on GDR1 can be found in Gaia Collaboration et al.
(2016b). In the first data release, the information available for most faint sources
is limited to basic properties, such as positions on the sky and fluxes in the broad
Gaia G band, which covers most of the visible spectra from approximately 400 nm
to 10000 nm (Jordi et al., 2010).

In this work, we used the table GaiaSource released as part of the GDR1 (Gaia
Collaboration et al., 2016a). GaiaSource contains a number of auxiliary pieces of
information, which provide plenty of added value to the GDR1. For example, the
errors on the mean flux measurements can be used to separate constant and vari-
able sources, and even gauge the amplitude of the variability (see, e.g. Belokurov
et al., 2017; Deason et al., 2017a). Moreover, the quality of the astrometric fit, en-
capsulated by the so-called astrometric excess noise, contains information regarding
the morphology of the source, and can be used to separate stars from galaxies (see
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Koposov, Belokurov & Torrealba, 2017). The relevant GaiaSource quantities used
here (other than the sky coordinates RA, Dec), are:

• Nobs, the number of times a source has crossed a CCD in the Gaia’s focal
plane;

• FG, the flux (electron per second) measured in the G band averaging over Nobs

single flux measurements;

• σFG
, the standard deviation of the Nobs flux measurements;

• G, the mean magnitude in the Gaia G band (van Leeuwen et al., 2016)
calculated from FG;

• AEN, the astrometric excess noise, which measures strong deviations from
the best astrometric solution. The AEN should be large for objects whose
behaviour deviates from that of point-like sources, as, for example, unresolved
stellar binaries or galaxies (see Lindegren et al. 2012 for details).

Additionally, relying on the cross-match between Gaia and 2MASS, we calcu-
lated:

• PM, the total proper motion of each object. PM=
√
µ2
α cos2 δ + µ2

δ , where µα
and µδ are the proper motions measured along RA and Dec, respectively.

2.1.2 RR Lyrae in Gaia DR1

We use the parameters provided in GaiaSource to select RRLs from the GDR1.
Following the method outlined in Belokurov et al. (2017) and Deason et al. (2017a),
we defined the quantity

AMP ≡ log10

(√
Nobs

σFG

FG

)
, (2.1)

which can be used as a proxy for the amplitude of the stellar variability. Indeed, for
variable stars with well sampled light curves, σFG

is proportional to the amplitude of
the flux oscillation, while for non-variable stars it is just a measure of photon-count
Poisson errors. Thus, it is possible to set a threshold value for AMP that will select
only variable candidates. For instance, Belokurov et al. (2017) showed that most
variable stars like Cepheids and RRLs have AMP > −1.3.

The selection of variables through the AMP parameter suffers from the limita-
tions that AMP is a time-averaged information and does not allow to distinguish
between various types of variable objects: RRLs, Cepheids or Mira variables. How-
ever, these different classes of pulsating stars populate a well-defined strip in the
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Figure 2.1: Diagnostic diagrams for the selection criteria of our RRL sample. Left-
hand panel: distribution of stars in the AMP-Nobs space; middle panel: distribution
of stars in the colour-magnitude diagram (G magnitude from Gaia, J magnitude from
2MASS); right-hand panel: distribution of stars in the AEN-G magnitude space. The
colour-maps show the distribution of objects in the G2M catalogue, while points show a
randomly selected subsample of bona fide RRLs from GCSS (red circles, 5% of the original
sample) and GS82 (orange squares, 35% of the original sample) catalogues (see Sec. 2.1.2).
The horizontal-black and vertical-black lines show the selection cuts used to obtain the
final sample of RRLs (see Tab. 2.2), while the green arrows indicate the regions used to
obtain the final sample.

colour-magnitude diagram. Therefore, as we show below, one can overcome this
problem by applying selection cuts both in AMP and in colour obtaining a fairly
clean sample of RRLs. Note that high values of AMP are also expected for contam-
inants (e.g. eclipsing binaries) and artefacts (e.g. spurious variations related to Gaia
cross-match failures). We discuss their importance in Sec. 2.1.2.

The Gaia + 2MASS sample

As mentioned, GDR1 reports photometric information only in the G band. We
derived a colour (J − G) for each source by cross-matching GaiaSource with the
2MASS survey data (Skrutskie et al., 2006) using the nearest-neighbour method
with an aperture of 10 arcsec obtaining the final GaiaSource + 2MASS sample
of stars (G2M, hereafter). We chose 2MASS mainly due to its uninterrupted all-
sky coverage. The observed magnitudes have been corrected for extinction due to
interstellar dust using the maps of Schlegel, Finkbeiner & Davis (1998) and the
transformation AG = 2.55E(B−V ) for the G band (see Belokurov et al., 2017) and
AJ = 0.86E(B − V ) for the J band (Fitzpatrick, 1999).
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Auxiliary RR Lyrae datasets

In order to extract a reliable sample of RRL stars from the G2M catalogue, we
must apply ad-hoc selection criteria. To this aim, we used two samples of bona-
fide RRLs: the CSS (Drake et al., 2013, 2014) and the Stripe 82 (S82, Sesar et al.
2010) catalogues. These samples allowed us to identify the optimal selection criteria,
analyse the completeness and the contamination of the catalogue1 and estimate the
RRL absolute magnitude in the G band. The CSS contains about 22700 type-
ab RRL stars distributed over a large area of the sky (about 33,000 deg2 between
0◦ < α < 360◦ and −75◦ < δ < 65◦) and extended up to a distance of 70 kpc. The
completeness of this sample is constant (at ∼ 65%) only for 13 < V < 15, while it
quickly decreases outside this range. Most importantly, as shown in Fig. 13 of Drake
et al. (2013), for objects fainter than V ∼ 15, the completeness is a strong function
of the number of observations and thus varies appreciably across the sky. SDSS’s
Stripe 82 covers a 2.5◦-wide and 100◦-long patch of sky aligned with the celestial
equator and contains “only” 483 RRLs. However, the sample is very pure (with less
than < 1% of contaminants) and complete up to a distance of 100 kpc.

The large number of stars in CSS is useful to define the selection criteria (see
Sec. 2.1.2) and to estimate the absolute magnitude in the G band (see Sec. 2.1.2),
while the high quality of S82 sample is ideal to analyse the completeness and con-
tamination of our final sample (see Sec. 2.1.2 and Sec. 2.1.2). A cross-matching of
the CSS and S82 catalogues with G2M using an aperture of 1 arcsec led to the two
samples CSS+G2M (GCSS hereafter) and S82+G2M (GS82 hereafter).

RR Lyrae selection cuts

In this section we describe how the final sample of RRLs was obtained from the
G2M catalogue. The selection was driven by the properties of the bona fide RRLs
in the GCSS and GS82 catalogues (see Sec. 2.1.2) in order to maximise completeness
of the sample and its spatial uniformity, while keeping the level of contamination
low (see Sec. 2.1.2).

First of all, in order to exclude a region likely dominated by the Galactic disc, we
removed all the stars in the G2M catalogue located between the Galactic latitudes
b = −10◦ and b = 10◦. Our limit in latitude (|b| = 10◦) is lower with respect to
other works in literature (e.g. Deason, Belokurov & Evans 2011; Das, Williams &
Binney 2016), in which, however, the choice was mainly motivated by the limited
sky-coverage of the used survey. Given the unprecedented sky-coverage of our data
sample, we decided to push forward the study of the halo structure exploring also

1The completeness indicates the fraction of recovered true RRLs as a function of the apparent
magnitude, while the contamination is an estimate of the fraction of spurious objects (non RRLs)
that “pollute” our sample.
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Selection cuts
|b| [deg] > 10
G [mag] (10, 17.1)
AMP (-0.7, -0.4)
J −G (-0.95, -0.4)
Nobs > 30
AEN < 0.65
PM [mas/yr] < 50
|θ| [deg] † > 20

Structure cuts
LMC DLMC > 9◦

SMC DSMC > 7◦

S1 l /∈ [167◦, 189◦] ∨ b /∈ [16◦, 22◦]
S2 l /∈ [160◦, 190◦] ∨ b /∈ [63◦, 73◦]
Nstars 21643 (13713†)
fV [%] 58 (44†)

Table 2.2: Summary of the selection cuts used to obtain the final sample of RRLs from the
G2M catalogue. The description of parameters used in the sample selection and the details
on the cut substructures can be found in Sec. 2.1.1. DLMC and DSMC are the sky angular
distances from the LMC and SMC, respectively. θ is the Galactocentric latitude (defined
in Eq. 2.7) and was estimated by assuming an RRL absolute magnitude of MRLL = 0.525.
The † refers to the subsample used in the likelihood analysis in Sec. 2.3. The bottom part
of the table gives a summary of the whole sample. Nstars is the number of stars in the
sample and fV is the fraction of the spherical volume of the halo sampled by our stars
between Galactocentric distance 0 kpc and 28 kpc.

the region at low Galactic latitude that is usually not well sampled by other surveys.
We are aware that our final sample could be polluted by Galactic disc contaminants,
but in the following sections we carefully analyse the level of contamination and all
our results are obtained taking into account the possible biases due to stars of the
Galactic disc.

Figure 2.1 shows the distribution of the G2M stellar density (yellow-blue-purple
colour-maps), a randomly selected subsample of RRLs in GCSS (red points) and in
GS82 (orange squares) in the Nobs-AMP (left-hand panel), color-magnitude (middle
panel) and AEN-G (right-hand panel) planes. The bona fide RRLs occupy a well
defined strip in colour, thus we excluded all the stars with the J − G colour index
greater than −0.4 and lower than −0.95 as shown by the vertical black lines in the
middle panel of Fig. 2.1. It is worth noting that most of the “normal” stars occupy
this colour interval, therefore this cut mostly eliminates artefacts. The left-hand
panel shows that the genuine RRLs are almost uniformly distributed in the AMP
range of the G2M sample, however the contamination by spurious objects increases
rapidly for AMP< −0.7 (see Sec. 2.1.2 and Fig. 2.6), thus we only retained stars
with variability amplitudes above this value. With regards to completeness, the faint
magnitude limit plays an important role. According to our analysis, G = 17.1 is
the faintest magnitude that we can reach to obtain a sample with spatially uniform
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completeness (see Sec. 2.1.2 for further details). The number of bright stars with
G < 10, corresponding to RR Lyrae with distances less than 1 kpc from the Sun,
is very small compared to the number of objects in our final catalogue. Therefore,
instead of extending our completeness/contamination analysis at the very bright
magnitudes (see Sec. 2.1.2 and 2.1.2), we decided to put the bright magnitude limit
at G = 10.

The selection criteria described above involving colour, AMP and magnitude
have the largest impact on the definition of our sample of RR Lyrae. However, we
also applied a few minor refinements. The right-hand panel of Fig. 2.1 shows that
most of the bona fide RRLs have a very small value of AEN, so we excluded all
sources with AEN > 0.65 as shown by the horizontal-black line. This cut likely
removes contaminant extragalactic objects since they typically have AEN ≈ 2 (Be-
lokurov et al., 2017) and some of the eclipsing binaries that survive the colour
selection. Additionally, to further clean the sample from possible nearby Galactic
disc contaminants, we cull all the stars with a total proper motion, PM, greater than
50mas/yr. Given differences in the light-curves and its sampling, the significance
of AMP (Eq. 2.1) might depend on the number of photometric measurements Nobs.
With this in mind, we impose Nobs > 30: the focal plane of Gaia has an array of
9×7 CCDs, so all objects with less than 3 complete Gaia transits are excluded.

It would be useful to have an estimate of the photometric metallicity to retain
only genuine metal poor stars from the halo and effectively exclude metal rich con-
taminants from the Galactic disc. However, the photometric metallicity estimate
requires a basic knowledge of the shapes of the RRL light curves which is not avail-
able in our dataset (see e.g. Jurcsik & Kovacs 1996).

Finally, we masked a few regions of the sky. First we removed the area near the
Magellanic Clouds using two circular apertures: one centred on (l, b) = (280.47◦,−32.89◦)

with an angular radius of 9◦ for the Large Magellanic Cloud (LMC) and the other
centred on (l, b) = (302.80◦,−44.30◦) with a radius of 7◦ for the Small Magellanic
Cloud (SMC). By inspecting the sky distribution of the stars in our RRL sample, we
noticed the presence of two extended structures (S1 and S2, hereafter), that were not
connected to any known halo substructures, but are likely objects instead produced
by Gaia cross-match failures (see Sec. 2.1.2) that “survived” our selection cuts. We
decided to mask these sky regions as well by removing all the stars in the following
boxes: l = [167◦, 189◦] b = [16◦, 22◦] for S1 and l = [160◦, 190◦] b = [63◦, 73◦] for
S2. The final sample has been further cleaned to exclude “hot pixels” using a simple
median-filter method. We first built a sky-map using pixels of 30′, then we replaced
the number of stars in each pixel by the median of the star-counts calculated in a
squared window of four pixels. Finally, we calculated the ratio between the original
sky-map and the one processed with the median filter and all the objects in pixels
with a ratio larger than 10 were removed. The properties of the median-filter has
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Figure 2.3: Distribution of G band absolute magnitudes for bona fide RRLs in the
GCSS catalogue (Gaia+CSS, see Sec. 2.1.2). The coloured lines show the fit with a single
Gaussian (red) and a double Gaussian (blue, with blue dashed lines showing individual
Gaussian components of the fit).

been gauged to reveal small-scale features, since the most evident large-scale struc-
tures have been already removed (LMC, SMC, S1 and S2). The “spotted” hot-pixels
correspond to known globular clusters (e.g. M3 and M5) or are connected to “rem-
nants” of cross-match failure structures (see Sec. 2.1.2). In order to fully exploit
the all-sky capacity of our sample, we decided not to exclude a priori any portion
of the sky containing known substructures (e.g. unlike Deason, Belokurov & Evans
2011 which masked out the Sagittarius stream). The analysis of the most significant
substructures found in this work can be found in Sec. 2.2 and 2.4.

The final sample contains about 21600 RRLs that can be used to have a direct
look at the distribution of stars in the Galactic halo (Sec. 2.2). The final number
of object is similar to the one in the CSS catalogue, however we cover a larger area
of the sky (almost all-sky). Our sample populates 58% of the halo spherical volume
within the Galactocentric distance of about 28 kpc which represents a significant
improvement in volume fraction as compared to previous works (e.g. 20% in Deason,
Belokurov & Evans 2011). A summary of the applied selection cuts can be found in
Tab. 2.2.

Absolute magnitude and distance estimate

Despite photometric variability, RRLs have an almost constant absolute magnitude
and, having the apparent magnitudes G, we can directly estimate the heliocentric
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distances through

log

(
D�
kpc

)
=
G−MG

5
− 2, (2.2)

where MG is the absolute magnitude in the Gaia G band. To estimate MG we used
the RRLs in GCSS, as they have heliocentric distances estimated from the period-
luminosity relation. The resultingMG distribution is shown in Fig. 2.3: it has a well
defined peak at MG ≈ 0.5 and a small dispersion. We fit this distribution with a
Gaussian function obtaining a mean of 0.525 and a dispersion of 0.090, comparable to
the uncertainties of the V-band absolute magnitude of RRLs (see e.g. Vivas & Zinn
2006). The above Gaussian function perfectly describes the data in the central parts,
but the distribution shows broader wings for MG < 0.3 and MG > 0.7. The objects
that populate the wings could be Oosteroff type II RRLs and objects influenced by
the Blazhko effect (Drake et al. 2013 and references therein). A better fit can be
obtained using a double Gaussian model, where two Gaussian components peak at
about the same absolute magnitude of the single Gaussian fit (see Fig. 2.3). Given
the small dispersion around the mean, we decided to set the absolute magnitude for
all the RRLs in our sample to a single valueMRRL = 0.525. An analysis of the effect
of this approximation on the results can be found in Sec. 2.4.2.

Completeness

Before studying the properties of the stellar halo (as traced by RRLs), it is funda-
mental to consider the completeness of our sample of RRLs.

First of all, we checked that the scanning law of Gaia does not cause an intrinsic
decrease of the completeness at low Galactic latitude. We compared the number of
objects in GaiaSource with the number of stellar sources in the Data Release 7 of
the Sloan Digital Sky Survey (SDR7, Abazajian et al. 2009) in a series of stripes at
fixed Galactic longitudes, selected using the footprint of SDR7. The top panel of
Fig. 2.4 shows the position of the stripes in Galactic coordinates. We selected all
stellar sources in the SDR7 with 16 < r < 18, where r is the r-band magnitude. In
this magnitude range the SDR7 can be considered 100% complete2. We chose the
r band because the peak of the filter response is almost coincident in wavelength
with the one of the Gaia G band (see Sec. 2.1.1), therefore the two magnitudes
are directly comparable. The bottom panel of Fig. 2.4 shows the ratio between the
number of stars in Gaia and SDR7 in bins of Galactic latitude for individual SDSS
stripes and considering all the stripes together. The ratio does not show significant
variations as a function of b with values between 0.9 and 1.0. We conclude that there
is no evidence for strong intrinsic completeness variations in the Gaia catalogue for
b > 10◦.

2http://classic.sdss.org/dr7/products/general/completeness.html

http://classic.sdss.org/dr7/products/general/completeness.html
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Figure 2.4: Completeness analysis of the sources in GaiaSource (Sec. 2.1.1) as a function
of Galactic latitude. Top panel: regions of the sky considered in this analysis, each stripe
has a constant Galactic longitude. Bottom panel: ratio between the number of stars in
the GaiaSource (NGaia) and stellar sources in the SDSS DR7 (NSDSS, Abazajian et al.
2009) in bins of Galactic latitude. The lines refer to the ratio obtained for stars located in
regions of the same colour shown in the top panel. The dots and the black line indicate
the ratio obtained considering the stars in all the “stripes”. The stars in Gaia have been
selected using the 16 < G < 18 cut, and the SDSS sources using the 16 < r < 18 cut
(further details on the text).

We estimated the completeness (and the contamination) using the RRLs in our
auxiliary catalogues: CSS and S82 (Sec. 2.1.2). In particular, S82 represents a
complete (∼100 %) and pure (∼99 %) catalogue of RRLs located up to 100 kpc
from the Sun, so it is perfect to test both the contamination and the completeness
of our sample. We compared the number of stars in the original S82 sample with
the ones contained in the GS82 after the selection cuts described in Sec. 2.1.2, in
bins of heliocentric distance. Fig. 2.5 shows the level of completeness as a function
of magnitude/distance assuming different lower limits in AMP (−0.65 red triangles,
−0.70 blue circles, −0.75 green diamonds) in the range of magnitudes 15 < G < 17.
The results are in agreement with the distance-based estimate of completeness as
shown by the dashed lines. The level of completeness is relatively low, ranging from
about 15% for AMP > −0.65 to about 30% for AMP > −0.75, but it is reasonably
constant up to about G = 17.5 then it abruptly decreases to 0 at G ≈ 18, so we
decided to conservatively cut our sample at G = 17.1 (vertical black line in Fig. 2.5,
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Figure 2.5: Completeness of our samples of RRLs as a function of distance from the
Sun (D�) or G magnitude. The conversion from D� to G has been obtained from Eq. 2.3
assuming a constant absolute magnitude MRRL = 0.525. Different symbols indicate com-
pleteness for samples obtained using different AMP cuts: red-triangles for AMP > −0.65,
blue circles for AMP > −0.70 and green diamonds for AMP > −0.75 The error bars were
calculated using the number of stars in each magnitude range and Poisson statistics. The
dashed lines indicate the completeness estimated in the Gmagnitude range of 15 < G < 17,
while the vertical black line marks the G = 17.1 faint magnitude limit of our final sample
(see Sec. 2.1.2).

see Sec. 2.1.2).
We also used the GCSS catalogue and found no significant variation of the com-

pleteness as a function of the Galactic sky coordinates l and b, although we found a
mild trend for increasing Nobs. This is expected since the larger the number of flux
measurements the better the sampling of the light curves and, as a consequence,
the AMP cut (Eq. 2.1) improves its effectiveness in selecting RRLs. However, the
increase is not dramatic as all the differences are within 10%. In conclusion, for
the purpose of this work, we considered the completeness of our catalogue of RRLs
uniform across our sky coverage and the considered magnitude range (see Tab. 2.2).

Contamination

We estimated the contamination of spurious sources as

Contamination =
NS −NGS82

NS

, (2.3)
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Figure 2.6: Contamination of the RRL sample as a function of the AMP cut. The
contamination is estimated using the S82 catalogue (see Sec. 2.1.2) in the range of G
magnitudes 15 < G < 17. The error-bars have been calculated by propagating Poisson
uncertainties from the number of stars in AMP bins.

where NS and NGS82 indicate the number of stars in our samples and in GS82
catalogue after the selection cuts in Sec. 2.1.2. The S82 sample is pure (Sesar et al.,
2010), so all the stars in our sample that are not present in the GS82 catalogue are
likely contaminants. As before, we considered the magnitude range 15 < G < 17

for different lower limits of AMP. For AMP threshold larger than −0.7 the level of
contamination is lower than 10% (Fig. 2.6) with a mild increase toward low Galactic
latitudes, where the contribution of the Galactic disc is larger. For AMP cut lower
than −0.7 the contamination fraction rapidly increases (about 25% for AMP =

−0.8). We expect that the contaminants of our sample are eclipsing-binaries in the
Galactic disc and possible instrumental artefacts. As shown and discussed in detail
in Belokurov et al. (2017) some regions of the Gaia all-sky map are crossed by sharp
strips with a large excess of objects. These strips are similar in width to the field of
view of Gaia and are regularly spaced on the sky. Belokurov et al. (2017) propose
that these are spurious features due to failures in the cross-match procedure of Gaia,
so that at some epochs the flux of a star comes from a different object. The spurious
measurement of the flux increases σFG

and moves the stars in the region of high
AMP “polluting” our samples. We found that for AMP > −0.8 the contaminants
are mostly related to cross-match failures. Unlike the disc contaminants, the cross-
match failures have a complicated and poorly understood spatial distribution, so
these structures are difficult to be taken in account in the study of the properties
of the Galactic halo. For this reason, we decided to use AMP = −0.7 as the lower
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Figure 2.7: Star-count all-sky maps in the Galactic coordinates (l, b) for the RRLs in
our sample (Sec. 2.1.2) in the magnitude intervals 10 < G < 15.5 (upper panel) and
15.5 < G < 17.1 (lower panel). The “holes” between l = −50◦ and l = −100◦ are due
to the mask used to eliminate the contribution of the Large and Small Magellanic Clouds
(see Sec. 2.1.2).

limit in our selection cut (see Sec. 2.1.2).

2.2 Distribution of the RRLs in the inner stellar Halo

2.2.1 A first Gaia look at the stellar halo

Fig. 2.7 shows the distribution of the RRLs of our final sample as a function of
the Galactic coordinates (l, b). We split the stars in the sample into G magnitude
intervals: 10 < G < 15.5, corresponding to heliocentric distances between ∼1 kpc
and 10 kpc (Eq. 2.2), and 15.5 < G < 17.1, i.e. with heliocentric distances between
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10 kpc and 20 kpc (assuming that all RRLs have absolute magnitude MG = 0.525).
We stress that Fig. 2.7 represents the first all-sky view of the distribution of the
RRLs in the inner halo.

The first magnitude range covers a portion of the Galaxy mostly located in the
side of the Galaxy containing the Sun between the Galactic radii 1.4 kpc and 18
kpc. The distribution of stars in this region is quite regular: as expected most
of the stars are in the direction of the Galactic centre (l ≈ 0) and there are not
evident asymmetries with respect to the Galactic plane. The second magnitude
range covers the Galactic distances between 18 kpc and 28 kpc in the side of the
Galaxy containing the Sun and between 3 kpc and 12 kpc in the other side. In this
distance range the distribution of the RRLs is less regular with clear asymmetries: in
particular, an excess of stars is evident at high Galactic latitude around l = −50◦.
In both magnitude intervals an over-dense band of stars at low Galactic latitude
(|b| < 15◦ − 20◦) can be seen running all around the Galaxy. A discussion of the
nature of these structures can be found in Sec. 2.4.3.

2.2.2 Setting the frame of reference

We set a left-handed Cartesian reference frame (Xg,Yg,Zg) centred in the Galactic
centre and such that the Galactic disc lies in the plane (Xg,Yg), the Sun lies on
the positive X-axis and the Sun rotation velocity is Ẏg > 0. The actual vertical
position of the Sun with respect to the galactic disc is uncertain, but it is estimated
to be be smaller than 50 pc (Karim & Mamajek 2017 and reference therein), and
thus negligible for the purpose of this work. In this Cartesian reference frame, the
coordinates of an object with Galactic longitude l, Galactic latitude b and at a
distance D� from the Sun are

Xg = Xg,� −D� cos b cos l,

Yg = D� cos b sin l,

Zg = D� sin b,

(2.4)

where Xg,� is the distance of the Sun from the Galactic centre. In this work we
assume Xg,� = 8 kpc (Bovy et al., 2012), but the main results of our work are
unchanged for other values of Xg,�, within the observational uncertainties (between
7.5 kpc, e.g. Francis & Anderson 2014, and 8.5 kpc, e.g. Schönrich 2012).

For a star with Galactocentric Cartesian coordinates (Xg,Yg,Zg) we define the
distance from the Galactic centre

Dg =
√

X2
g + Y2

g + Z2
g, (2.5)
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the Galactocentric cylindrical radius

R =
√

X2
g + Y2

g, (2.6)

the Galactocentric latitude
θ = arctan

Zg

R
, (2.7)

and the Galactocentric longitude

φ = arctan
Yg

Xg
. (2.8)

Assuming that the stellar halo is stratified on concentric ellipsoids, it is useful
to introduce another Cartesian frame (X,Y,Z), aligned with the ellipsoid principal
axes, and to define the elliptical radius

re =

√
X2 + Y2p−2 + Z2q−2, (2.9)

where p and q are, respectively, the Y-to-X and Z-to-X ellipsoid axial ratios. In
general we will allow the (X,Y,Z) to differ from (Xg,Yg,Zg) in both orientation
and position of the origin. When the origin of (X,Y,Z) is the Galactic centre and
p = 1, as we will assume in this section, the system (X,Y,Z) can be identified with
(Xg,Yg,Zg) without loss of generality.

2.2.3 Density distribution of the halo RRLs

Given the all-sky RRL sample illustrated in Fig. 2.7, we can compute their volume
number density distribution ρ. In particular we define the number density of halo
RRLs in a cell ∆~ε centred at ~ε, where ~ε is a coordinate vector, such as for instance
(R,Zg), as

ρ(~ε,∆~ε) ≈ N(~ε,∆~ε)f−1
V (~ε,∆~ε)V−1(~ε,∆~ε), (2.10)

where N(~ε,∆~ε) is the number of stars observed in the cell, V is the volume of the cell
and fV is the fraction of this volume accessible to our analysis, which depends on the
sky coverage, on the selection cuts and the mask that we applied (see Sec. 2.1.2), and
on the off-set between the Sun and the Galactic centre. We estimate fV numerically
as follows. First, we define a Cartesian Galactic grid sampling each of the axes
(Xg,Yg,Zg) with 300 points linearly spaced between−Dg,max and Dg,max (Dg,max ' 28

kpc is the maximum value of Dg, given our magnitude limit at G = 17.1), so the
reference Galactic volume (a cube of 56 kpc side centred on the Galactic centre) is
sampled with 27 million points with a density of about 125 points per kpc3. Each
of the points of the grid is a “probe” of the Galactic volume. We assign to each of
them Galactic coordinates, heliocentric coordinates and observational coordinates
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Figure 2.8: Number density in the Galactic R − Zg plane for the RRLs in our sample.
The number density is calculated dividing the number of stars found in a cylindrical ring
by the volume of the ring corrected for the non-complete volume sampling of the data
(Eq. 2.10). The black contours are plotted with spacing ∆ log ρ = 0.4 from log ρ = −1.2
to log ρ = 1.6, where ρ is in units of kpc−3; the white dashed lines represent elliptical
contours with an axial ratio q = 0.6.

(l, b, α, δ). A secondary (non-uniform) grid is built by applying the selection cuts
in Tab. 1 to the points on the primary grid, so we end up with a grid sampling the
complete Galactic volume and a grid sampling the portion of the volume accessible
to our analysis. Given a cell in a certain coordinates space (e.g. R, Zg), we define fV
as the ratio between the number of points of the secondary grid and the number of
points of the primary grid contained in the cell. In summary, when we estimate the
number density in a 1D or 2D space we build three binned maps: the first contains
the number of stars in each bin/cell (N), the second the total volume of each bin/cell
(V) and the third the fraction of this volume that we are actually sampling (fV).
These three quantities are inserted in Eq. 10 to estimate the stellar number density.
We tested this method with both simple analytic distributions and mock catalogues
(see Sec. 2.3.3).

Meridional plane

Fig. 2.8 shows the number density of the RRLs of our sample in the Galactic merid-
ional plane R−Zg. The shape of the iso-density contours clearly shows the presence
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Figure 2.9: 1D number density profiles of the halo RRLs as functions of the elliptical
radius re (Eq. 2.9) assuming that the halo is stratified on spheroids with p = 1 and different
values of q: q = 1.0 (blue diamonds), q = 0.6 (green dots) and q = 0.3 (red squares). The
black-dashed line shows, for comparison, a single power law with index α = −2.7. The
Poisson errors are smaller than the size of the symbols. The density normalisation is
arbitrary and different for each profile.

of two components: a spheroidal component and a discy component. The discy
component causes the flattening of the contours at low Zg. The nature of this com-
ponent is uncertain: it could represent the disc RRL stars, it could be a low-latitude
substructure of the MW halo or, finally, it could be due to non-RRL contaminants
from the Galactic disc (both genuine variables such as eclipsing binaries as well as
artefacts, e.g. due to cross-match failures). A more detailed analysis of this low-
latitude substructure can be found in Sec. 2.4.3. The density at higher Zg is less
contaminated by the discy component and it represents more directly the density
behaviour of the RRLs in the halo. The iso-density contours nicely follow the the
q = 0.6 elliptical contours (overplotted in Fig. 2.8) out to R ≈ 15 − 20 kpc. At
larger radii the contours tend to be rounder. The overall density distribution looks
reasonably symmetric with respect to the Galactic plane, although there is an over-
dense region at Zg > 10 kpc, which does not seem to have a counterpart below the
Galactic plane (see Sec. 2.2.3 for further details).
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Density profile

Fig. 2.8 demonstrates that the RRLs in the inner halo are consistent with being
stratified on spheroids (except in the region close to the Galactic plane), thus we
estimate the 1D RRL density profile by counting the stars in spheroidal (p = 1)
shells and dividing this number by the shell volume corrected by the coverage of
our sample (Eq. 2.10). The profiles are shown in Fig. 2.9 for q = 1.0, q = 0.6 and
q = 0.3. Independently of the assumed value of q, the density of RRLs follows a
single power law with no significant evidence of change of slope out to an elliptical
radius of 35 kpc. It must be noted that the most distant region is only sampled
by a low number of stars located in a small portion of the total volume, so it is
possible that a change of slope starting near the edge of our elliptical radial range
could be missed with this analysis. As the elliptical radius depends on the assumed
axial ratios, the results of this analysis are not straightforwardly comparable with
previous works (see Sec. 2.4.4 for a detailed comparison with results obtained in the
literature).

The slope of this power law is similar in the three cases and very close to α =

−2.7 (see Fig. 2.9), but, based on this simple analysis, all values of α in the range
−3 < α < −2.5 are consistent with the data.

Halo flattening

The distribution of RRLs in the meridional Galactic plane (Fig. 2.8) suggests that
the inner halo should be reasonably well represented by a spheroidal stratification
with q ≈ 0.6. However, in order to more rigorously study the halo flattening, we
estimate the density in the re − θ plane (see equations 2.4 and 2.9). In practice, for
a given value of q, we scan the density as a function of θ at fixed re. If the RRLs are
truly stratified on similar spheroids with axial ratio q, the density is independent of
θ, so the isodensity contours in the re − θ plane are vertical stripes. If the assumed
value of q is smaller than the true value qtrue, re is underestimated, the estimated
density is a monotonic decreasing function of θ and the isodensity contours in the
re − θ plane are bent in the direction of |θ| increasing with re (provided that the
density is a decreasing function of re). The isodensity contours are bent in the
opposite direction, if one assumes q > qtrue. The shape of the isodensity contours
in the re − θ plane is a very efficient and direct diagnostic of the evolution of q as
function of the elliptical radius.

The number density maps in the re−θ plane of the RRLs in our sample are shown
in Fig. 2.10 for q = 0.75, q = 0.55 and q = 0.35, assuming p = 1. Below |θ| = 20◦

(indicated by the white-dashed lines) the contours are nearly horizontal, because
the density is dominated by the highly flattened discy component (see Fig. 2.8) for
which q is over-estimated in all the panels. At higher latitudes (|θ| > 20◦) the
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Figure 2.10: Number density of RRLs in the elliptical radius (re) - Galactocen-
tric latitude (θ) space for q = 0.75 (left-hand panel), q = 0.55 (middle panel)
and q = 0.35 (right-hand panel), assuming p = 1. The density is normalized to
the maximum value of each panel. The contours show the normalised density levels
(0.0002, 0.00055, 0.001, 0.002, 0.004, 0.02, 0.04, 0.2), while the dashed lines indicate |θ| =
20◦.

contours give a direct indication on the flattening of the halo: in the right-hand
panel of Fig. 2.10 (q = 0.35) the iso-density contours are significantly inclined in a
way that implies qtrue > 0.35. For re < 20 kpc a flattening of about 0.55 gives a good
description of the data as shown by the vertical iso-density contours in the middle
panel of Fig. 2.10 (q = 0.55), but beyond 20 kpc the contours start to bend so that
qtrue > 0.55. The last two iso-density contours in the left-hand panel (q ≈ 0.75) look
vertical enough to assert that at the outer radii the halo becomes more spherical.
This analysis, together with the recent works of Liu et al. (2017), shows the first
direct evidence of a change of shape of the stellar halo going from the inner to the
outer halo. Moreover the unique all-sky view of our sample allows us to confirm
that this trend is symmetric with respect to the Galactic plane. A variation of the
halo flattening was also proposed in previous works (e.g. Xue et al. 2015 and Das,
Williams & Binney 2016). In Sec. 2.3.4 we perform a comprehensive model fitting
analysis of the RRL dataset and compare our results to those found in the literature.

Vertical asymmetries

Contours of the RRL density shown in Fig. 2.8 and Fig. 2.10 display an overall
symmetry between the Northern and Southern Galactic hemispheres, however at
Zg > 10 kpc and around θ ≈ 60◦ an over-density of RRLs above the disc plane is
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Figure 2.11: Number counts of stars in the Xg−Yg plane for different Zg-slabs: left-hand
panels with 0 < |Zg/kpc| < 5, middle panels with 5 < |Zg/kpc| < 10 and right-hand
panels with |Zg/kpc| > 10. The top and bottom panels show the layers above (Zg > 0)
and below (Zg < 0) the Galactic plane, respectively. The colour maps are normalised to
the maximum number in each column of plots. Ntot is the total number of stars found on
each Zg-slab. The black dots show the position of the Sun (at Zg = 0), while the crosses
indicate the maximum of the star counts. The maps have been smoothed with a spline
kernel.

evident. Thanks to the unprecedented sky coverage of our sample we can directly
analyse the distribution of stars in different Zg-slabs to understand whether the
over-density is compatible with the Poisson star-count fluctuations or it is due to a
genuine halo substructure.

Fig. 2.11 shows star-count maps in the Xg-Yg plane integrated along three dif-
ferent Zg-slabs. Close to the plane (left-hand panels) the two maps look very similar
and the difference between the total number of stars is small (less than 2%) and
compatible within the Poisson errors. In these maps, an elongated component (also
visible in the other density maps, Figs. 2.8 and 2.10) can be seen stretching from
the Galactic centre to the Sun and beyond: this component appears symmetric with
respect to the Galactic plane but is present only in the side of the Galaxy containing
the Sun. In the intermediate Zg-slabs (middle panels) the difference between the
number of stars in the region above and below the Galactic plane is small (less than
5%) as in the previous case, but the maps look less symmetric. In particular the
peaks of the star counts are now apart by about 10 kpc. Finally, the slabs at the
highest Zg (right-hand panels) show a significant difference in the total number of
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stars (about 20%) that can not be explained by Poisson fluctuations only. More-
over the excess of stars above the Galactic plane is strongly clustered in the regions
between Xg ≈ (5, 15) kpc and Yg ≈ (0, 10) kpc.

Note that some of the differences between the star counts in the regions above and
below the Galactic plane could be due to the mask used to eliminate the contribution
of the Magellanic Clouds (see Sec. 2.1.2). Indeed, some mismatch is expected given
that we have excluded a relatively large region of the halo volume below the Galactic
plane. In order to quantify the differences introduced by the mask, we produce mock
catalogues (see Sec. 2.3.3) of different halo models and find that the Magellanic
Clouds mask introduces a difference of about the 7% in the number of objects above
and below the Galactic plane for |Zg| > 10 kpc, significantly less than the value of
20% obtained here. Therefore, the structure seen at high positive Zg appears to be
genuine, and is most likely related to the “Virgo over-density” (Jurić et al., 2008;
Vivas et al., 2016). Across all Zg > 0 slabs, portions of the Virgo Cloud are visible
as an excess of stars at positive Xg. Virgo’s counterpart underneath the disc is the
Hercules-Aquila Cloud (see Belokurov et al., 2007a; Simion et al., 2014), discernible
in middle bottom panel as strong over-density at negative Xg (and Zg).

2.3 Model fitting

In this section we present the stellar halo models and we compare them with the
observed sample of RRLs.

2.3.1 Clean sample

Fig. 2.8 and Fig. 2.10 show the presence of a highly “flattened” structure close
to the Galactic plane. The properties of this structure are clearly at odds with
the distribution of stars at high Galactic latitude that are more likely a “genuine”
tracer of the halo population. The “flattened” component contains about 35% of the
RRLs in our sample, so it must be taken into account to infer the properties of the
stellar halo. Therefore, we built a “clean” sample of RRLs eliminating all the stars
belonging to the substructure from our original catalogue (Sec. 2.1.2). Fig. 2.10
suggests that the substructure can be effectively eliminated with a selection in angle
θ (see Eq. 2.7).

In particular, at |θ| = 20◦ there is a transition between a very flattened com-
ponent and a more spheroidal structure. Therefore, we define our clean sample of
halo RRLs as the stars with |θ| > 20◦: this subsample contains 13713 objects and
covers approximately 44% of the halo volume within a sphere of radius 28 kpc (see
Tab. 2.2). We stress that this cut is based on values of θ obtained from Eq. 2.2 and
Eq. 2.7 assuming the same value of the absolute magnitude, M = MRRL = 0.525,
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for all the stars (see Sec. 2.1.2).
We also tried to exclude the flattened structure with alternative cuts, e.g. using a

higher cut on the Galactic latitude b or a direct cut on Zg. We found that the results
obtained for the sample with |θ| > 20◦ (see Sec. 2.3.4) are qualitatively similar to
the results obtained using a sample with |b| > 30◦ (the lowest Galactic latitude used
in most of the previous works, e.g. Deason, Belokurov & Evans 2011) or a sample
with |Zg| > 6 kpc (Fermani & Schönrich 2013 uses |Zg| > 4 kpc to cut disc stars).
The cuts on b and Zg significantly reduce the number of tracers in the inner part of
the halo and the final number of stars is smaller, in both cases, with respect to the
one obtained cutting the original sample at |θ| = 20◦.

In the following subsections we present the method used to fit halo models to
this subsample of RRLs and the final results.

2.3.2 Halo models

As in Sec. 2.2.1, we assume here that the number density of the halo RRLs is
stratified on ellipsoids with axial ratios p and q. Therefore, a halo model is defined
by a functional form for the density profile (number density as a function of the
elliptical radius) and a “geometrical” model for the ellipsoidal iso-density surfaces
(in practice, characterized by values of p and q, and the orientation of the principal
axes with respect to the Galactic disc).

Density profiles

We consider five families of number density profiles: double power-law (DPL), single
power-law (SPL), cored power-law (CPL), broken power-law (BPL) and Einasto
profiles (EIN). The DPL profile has a number density

ρ(re) ∝
(

re
reb

)−αinn
(

1 +
re
reb

)−(αout−αinn)

, (2.11)

where αinn and αout indicate the inner and outer power-law slopes and reb is the
scale length. The number density of the SPL is given by Eq. 2.11 when αinn = αout,
while the number density of the CPL has αinn = 0, in which case reb represents the
length of the inner core. The BPL number density profile is given by a piecewise
function:

ρ(re) ∝

{
r−αinn
e re ≤ reb
rαout−αinn
eb r−αout

e re ≥ reb
. (2.12)
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The EIN profile (Einasto, 1965) is given by

ρ(re) ∝ exp

[
−dn

((
re
reb

) 1
n

− 1

)]
, (2.13)

where dn = 3n−0.3333+ 0.0079/n for n ≥ 0.5 (Graham et al., 2006). The steepness
of the EIN profile, αEIN, changes continuously as a function of re tuned by the
parameter n,

αEIN = −dn
n

(
re
reb

) 1
n

. (2.14)

The EIN profile is the only density law among those considered here that assures
a halo model with a finite total mass for any choice of the parameters. The power-
law profiles with αinn < −3 or with αout > −3 imply halos with infinite total mass,
however our study focuses only on a limited radial range and we do not exclude
a priori any solution. We anticipate that our best density model is a SPL with
αinn < −3 (see Sec. 2.3.4), therefore there should be a physical radius, outside our
radial range, beyond which the profile becomes, either abruptly (e.g. BPL or an
exponential truncation) or gently (e.g. DPL), steeper.

Iso-density ellipsoidal surfaces

Concerning the iso-density ellipsoidal surfaces we define four different models:

• spherical (SH): we set p = 1 and q = 1 in Eq. 2.9, so that re is just the
spherical radius Dg (see definition 2.5) in the Galactic frame of reference;

• disc-normal axisymmetric (DN): we set p = 1, the axis of symmetry is normal
to the Galactic disc, and q is a free-parameter;

• disc-plane axisymmetric (DP): we set q = 1, the axis of symmetry is within the
Galactic plane making an (anticlockwise) angle γ with respect to the Galactic
Y-axis, and p is a free-parameter,.

• triaxial (TR): both p and q are considered free-parameters, the Z-axis of sym-
metry is coincident with the normal to the Galactic plane and the X and Y
axes are within the plane making an (anticlockwise) angle γ with respect to
the Galactic X and Y axes, respectively.

Given the unprecedented sky coverage of our sample, we also tested more complex
models for the iso-density ellipsoidal surfaces:
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• q-varying (qv): q depends on the elliptical radius as

q(re) = q∞ − (q∞ − q0)exp

[
1−

√
r2
e + r2

eq

req

]
, (2.15)

so q varies from q0 at the centre to the asymptotic value q∞ at large radii and
the variation is tuned by the exponential scale length req;

• (tl): in this model we assume that the principal axes of the ellipsoids are tilted
with respect to the Galactic plane; in practice, before calculating the elliptical
radii (Eq. 2.9), we transform the Galactic coordinates (see Eq. 2.4) of each
star by applying a rotation matrix R(γ, β, η) following a ZYX formalism so
that γ is the rotation angle around the original Z-axis, β the one around the
new Y-axis and finally η is the rotation angle around the final X-axis; all the
rotation are defined in the anticlockwise direction;

• (off ): in this model the elliptical radius of each star is estimated with respect
to a point offset by (Xoff, Yoff, Zoff) with respect to the Galactic centre.

The specific functional form of Eq. 2.15 is empirical: the same expression was
adopted by in Xue et al. (2015) and Das, Williams & Binney (2016), where, however,
q is a function of the spherical radius (Dg). We decided to maintain the dependence
on re given that this approach is self-consistent with our assumption that the RRLs
are stratified on ellipsoidal surfaces. If follows that, for our models with a varying
q, the elliptical radius re of a star with coordinates (Xg,Yg,Zg) is the root of

r2
e − X2

g − Y2
gp
−2 − Z2

gq(re)−2 = 0, (2.16)

where q(re) is defined in Eq. 2.15. In our fitting code we solve this equation numer-
ically with a Newton-Raphson root finder.

Complete halo model

Each complete halo model is defined by a model for the density law (SPL, DPL, CPL,
BPL, EIN) plus a model for the shape of the iso-density surfaces (SH, DN, DP, TR)
and any combination of geometrical variants (qv, tl and off). For instance, a SPL-SH
model has a spherical distribution of stars with a single power-law density profile,
while a EIN-TRqv,tl model is a triaxial tilted model with varying flattening along
the Z-axis of symmetry and an Einasto density profile (see Tab. 2.12 for a reference
on the various model labels). In the next sections when we discuss the properties
or the results of density models (e.g. SPL models), unless otherwise stated, we are
implicitly referring to all the models that share the same density model whatever
the geometrical and geometrical variants properties are. The same applies when we
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focus on geometrical models only. We fit our data with all possible combinations of
density laws (SPL, DPL, CPL, BPL, EIN), geometrical models (SH, DN, DP, TR)
and model variants (qv, tl, off). See Tab. 2.13 for a summary of results obtained
with a sample of such models.

2.3.3 Comparing models with observations

Density of stars in the observed volume

Given a certain halo model (Sec. 2.3.2), the normalised number density of stars in
an infinitesimal volume dVg = dXgdYgdZg is given by

ρ̃(Xg,Yg,Zg|~µ) ∝ dN
dVg

, (2.17)

where ~µ is the vector containing all the model parameters (e.g. ~µ = (αinn, q) for an
SPL+disc-normal axisymmetric model, see Sec. 2.3.2) and ρ̃ is defined such that∫

ρ̃(Xg,Yg,Zg|~µ)dV = 1. (2.18)

It is useful to define the normalised star number density

ν̃(m, l, b|M, ~µ) = |J|ρ̃(Xg,Yg,Zg|m, l, b,M, ~µ) (2.19)

within the infinitesimal projected (onto the sky) volume element dS = dmdldb
centred at (m, l, b), where m is the observed magnitude, l and b are the Galactic
longitude and latitude, and

|J| = ln 10

5
D3
�(m,M) cos b (2.20)

is the determinant of the Jacobian matrix J =
[
dVg
dS

]
(Appendix 2.A). The num-

ber density ν̃ depends also on the additional parameter M , which is the absolute
magnitude needed to pass from the observable variables (m, l, b) to the Cartesian
variables (see Eqs. 2.2 and 2.4). Substituting Eq. 2.20 in Eq. 2.19 we obtain

ν̃(m, l, b|M, ~µ) =
ln 10

5
ρ̃(Xg,Yg,Zg|m, l, b,M, ~µ)D3

�(m,M) cos b. (2.21)

Likelihood of a single star

From the normalised density function (Eq. 2.21) we can define the expected rate
function for finding a star with (m, l, b) given the absolute magnitudeM and a halo
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Model
component

Model
label

Density parameters Iso-density surfaces parameters
αinn/n αout reb (kpc) p q(q0/q∞) rq (kpc) Xoff/Yoff/Zoff (kpc) γ/β/η (degree)

Single power-law SPL U[0,20] δ(αinn) δ(1)
Cored power-law CPL δ(0) U[0,20] U[0.01,10]
Double power-law DPL U[0,20] U[0,20] U[rmin

e ,rmax
e ] †

Broken power-law BPL U[0,20] U[0,20] U[rmin
e ,rmax

e ] †
Einasto EIN U[0,100] U[0.1,500]
Spherical SH δ(1) δ(1)

Disc-normal axsym DN δ(1) U[0.1,10]
Disc-plane axsym DP U[0.1,10] δ(1) U[-80,80]

Triaxial TR U[0.1,10] U[0.1,10] U[-80,80]
q-var qv U[0.1,100]
Offset off U[0,10]
Tilted tl U[-80,80]

Table 2.12: Prior distribution Π (Eq. 2.28) of the halo model parameters. Each
row refers to a given component of the halo models, each column indicates a single param-
eter or a group of parameters if they share the same prior distribution. The second column
indicates the labels used to indicate the halo models throughout the text (Sec. 2.3.2). The
third column refers to the parameter n for the Einasto profile and to the parameter αinn for
the other density models. The U indicates a uniform distribution within the values shown
inside the square brackets; a δ indicates a Dirac delta distribution. † The prior range of
the parameter reb for the BPL and DPL density models is not the same in all models,
depending on the minimum (rmin

e ) and maximum (rmax
e ) elliptical radius of the stars in the

sample.

model with parameters ~µ

λ(m, l, b,M |~µ) = Aν̃(m, l, b|M, ~µ)W (m, l, b|MRRL)P (M). (2.22)

In Eq. 2.22, A is a constant, P (M) represents the probability density function (pdf)
of the absolute magnitude of the stars, while the functionW is the selection function
that takes into account the incomplete coverage of the Galactic volume. It is a
function of l, b and m and returns a result in the Boolean domain B = (0, 1). In
particular, W is always equal to 1 except for the points (m, l, b) that are outside
the volume covered by our clean sample (see Tab. 2.2).

In this work, we decided to set the absolute magnitude of the RRLs to a single
value, MRRL = 0.525 (Sec. 2.1.2), so we are assuming that P (M) in Eq. 2.22 is a
Dirac delta. As a consequence, we can marginalize Eq. 2.22 over M to obtain

λ(m, l, b|MRRL, ~µ) = Aν̃(m, l, b|MRRL, ~µ)W (m, l, b|MRRL), (2.23)

and we define the normalised rate function as

λ̃(m, l, b|MRRL, ~µ) =
λ(m, l, b|MRRL, ~µ)∫

λ(m, l, b|MRRL, ~µ)dm dl db
. (2.24)

The normalised rate function in Eq. 2.24 is the pdf of stars, i.e. the likelihood per
star, at a certain position (m, l, b) for halo model parameters ~µ.
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The total likelihood

Consider a sample of stars D with coordinates (m,l,b) and a halo model with param-
eters ~µ. Given the pdf of the stellar distribution λ̃(m, l, b) (Eq. 2.24) the logarithmic
likelihood is

lnL =
Ns∑
i=1

ln λ̃(mi, li, bi|~µ), (2.25)

where Ns is the number of stars in our sample. Plugging Eq. 2.21 and Eq. 2.23 into
Eq. 2.24 we can write the logarithmic likelihood as

lnL =
Ns∑
i=1

ln
ρ̃(Xg,Yg,Zg|mi, li, bi,MRRL, ~µ)D3

�(mi,MRRL) cos b
Vc(~µ)

, (2.26)

where

Vc(~µ) =

∫ 90◦

−90◦
cos b db

∫ 360◦

0◦
dl
∫ Gmax

Gmin

ρ̃D3
�Wdm (2.27)

is the normalisation integral. Notice that the numerator of Eq. 2.26 is evaluated
only in regions of the sky where W = 1 (i.e. where we observe stars).

Sampling of the parameter space

Considering the Bayes’s law, the logarithmic posterior probability of the parameters
~µ of an halo model given the data is

lnP (~µ|D) = lnP (D|~µ) + ln Π (~µ) = lnL+ ln Π (~µ) , (2.28)

where P (D|~µ) = L is the probability of the data, D, given the parameters ~µ (See
Sec. 2.3.3) and Π (~µ) represents the prior probability of ~µ (Tab. 2.12). In Eq. 2.28 we
omit the Bayesian evidence term P (D) that is defined as the integral of the likelihood
over the whole parameter space. This term is negligible in the determination of the
best set of parameters for a given model (see below).

Using Eq. 2.26 we can write the posterior probability as

lnP (~µ|D) =
Ns∑
i=1

ln
ρ̃(Xg,Yg,Zg|mi, li, bi,MRRL, ~µ)D3

�(mi,MRRL) cos b
Vc(~µ)

+ ln Π (~µ) .

(2.29)
In order to explore the parameter space without biases, we decided to use very large
priors for most of our parameters (see Tab. 2.12). In particular, the very large ranges
for αinn and αout approximate uniform infinite priors.

Concerning the parameter reb, we assume, for both the BPL and DPL density
models, that the prior distribution is uniform between rmin

e and rmax
e which represent
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the minimum and maximum elliptical radii (Eq. 2.9) of stars in our sample. For most
of our models, rmin

e remains constant at about 2.4 kpc, while rmax
e ranges between

roughly 31 kpc and 38 kpc.
We analysed the posterior probability of the parameters, ~µ, for a given halo

model using the Eq. 2.29 and we sampled the parameters space with Goodman &
Weare’s Affine Invariant Markov chain Monte Carlo (mcmc, Goodman & Weare
2010), making use of the Python module emcee3 (Foreman-Mackey et al., 2013).
The technical details of our approach can be found in Appendix 2.B.

The final best-fit values of the model parameters have been estimated using the
50th percentile of the posterior distributions and the 16th and 84th percentiles have
been used to estimate the 1σ uncertainties.

Tests on mock catalogues

In order to test our fitting method, we developed a simple Python script to generate
mock catalogues with the same properties (e.g. number of stars, magnitude limits)
as our clean sample of RRLs (Sec. 2.3.1). This algorithm distributes the stars using
a combination of the density laws (Sec. 2.3.2) and according to the assumptions
on the properties of the iso-density ellipsoidal surfaces (Sec. 2.3.2). The absolute
magnitude of the stars in the mock catalogues are distributed using the best-fit
double Gaussian functional form shown in Fig. 2.3. The final mock catalogues do
not include Gaia and 2MASS photometric and sky-coordinates errors because the
uncertainties they cause on the estimate of the distance are negligible.

We applied our fitting method to mock catalogues finding that we are able to
recover the input parameters for all possible model combinations, including in the
sample a fraction of Galactic disc contaminants (see Sec. 2.4.2).

Analysing the mock catalogues, we can estimate what properties of the halo we
are able to measure and constrain using the stars in our catalogue. We found that
we are able to detect a core in the density profile (CPL density model) all the way
down to 100 pc. However for a very small core size most of the information comes
from a relative small region where the transition between the inner core and the
outer density profile takes place. The detection of a change of slope depends on the
halo flattening: for p = 1 and q = 1 we can detect a break in the density profile
within about reb = 28 kpc (Eq. 21). For more flattened models (q around 0.5/0.6)
this range extends up to about reb = 35 kpc. However, in this latter case most of
the information for regions where re > 28 kpc comes from a small number of stars
at very high Galactic latitude, therefore the fit can be easily biased by the presence
of substructures such as the one highlighted in Sec. 2.2.3 and Fig. 9. In conclusion,
we are confident that we are able to robustly detect significant deviations from a

3https://github.com/dfm/emcee

https://github.com/dfm/emcee
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Model
Density law Surface Parameters ∆ ln(Lmax) ∆BIC

SPL SH αinn = 2.61± 0.01 (2.61)† -868 1688

SPL DP αinn = 2.64± 0.01 (2.64)†,
p = 1.59± 0.03 (1.59), γ = −22.0± 1.7 deg (−22.3 deg)‡ -405 779

SPL DN αinn = 2.71± 0.01 (2.71)†,
q = 0.58± 0.01 (0.58)

-81 124

BPL DN αinn = 2.70± 0.01 (2.70), αout = 2.90± 0.11 (2.87),
reb = 22.3+3.3

−2.8 (22.2) kpc, q = 0.58± 0.01 (0.58)
-79 141

DPL DN αinn = 2.70± 0.03 (2.71), αout = 2.74+0.04
−0.02 (2.72),

reb = 21.1+5.7
−9.9 (23.1) kpc, q = 0.58± 0.01 (0.58)

-81 143

CPL DN αout = 2.72± 0.02 (2.71), reb = 0.03+0.03
−0.01 (0.03) kpc,

q = 0.58± 0.01 (0.58)
-81 134

EIN DN n = 37.5+3.5
−4.6 (40), reb = 391.1+84.6

−169.8 (474.0) kpc,
q = 0.58± 0.01 (0.58)

-87 145

SPL DNqv
αinn = 2.93± 0.05 (2.93)†,
q0 = 0.52± 0.02 (0.52), q∞ = 0.74± 0.05 (0.75),
req = 14.8± 1.9 (15.0) kpc

-66 113

SPL TR
αinn = 2.71± 0.01 (2.71)†,
p = 1.27± 0.03 (1.27), γ = −21.1± 2.6 deg (−21.1 deg)‡
q = 0.65± 0.01 (0.65)‡

-22 23

SPL TRqv

αinn = 2.96± 0.05 (2.96)†,
p = 1.27± 0.03 (1.27), γ = −21.3± 2.6 deg (−21.3 deg)‡
q0 = 0.57± 0.02 (0.57), q∞ = 0.84± 0.06 (0.84),
req = 12.2+2.4

−1.8 (12.2) kpc

0 0

Table 2.13: Summary of properties and results for a sample of families of halo
models. For each family we report the assumed density law (Sec. 2.3.2) and geometry
of the iso-density surfaces (Sec. 2.3.2). See Tab. 2.12 for a reference on the model labels.
For each fitted parameter we report the median and the uncertainties estimated as the
16th and 84th percentiles of the posterior distribution, the values in parentheses indicate
the value for which we obtain the maximum value of the likelihood Lmax (Eq. 2.26). The
last two columns indicate the logarithmic likelihood and BIC differences between the best
model of the family and the best of of all the presented models. † In the SPL models
αinn = αout, see Sec. 2.3.2. ‡ The (anticlockwise) angle γ indicates the tilt of the X and Y
axes of symmetry of the halo with respect to the Galactic X and Y axes, see Sec. 2.3.2.

SPL within a range of elliptical radii from less than 1 kpc to about 30 kpc. Finally,
we verified that the method described above can recover a variation of the halo
flattening given a realistic mock dataset.

2.3.4 Results

In this section we present the main results obtained applying the method described
in Sec. 2.3.3 to the RRLs in our clean sample (Sec. 2.3.1).
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Model comparison

In addition to estimating the parameters for a single model, it is important to
compare the results of different models to determine which of them gives the best
description of the data. The most robust way to perform a model comparison is
through the ratio of the Bayesian evidences. Under the assumption that the posterior
distributions are almost Gaussian, the Bayesian evidence can be approximated by
the Bayesian information criterion (BIC, Schwarz 1978) defined as

BIC = dim(~µ) ln (NS)− 2 ln (Lmax) , (2.30)

where NS is the number of objects in the sample and Lmax is the maximum value of
the likelihood (Eq. 2.26).

The BIC is often used to compare different models with different dimensions in
parameter space and the model with the lowest BIC is preferred. The BIC is similar
to the maximum likelihood criterion, but it includes a penalty depending on the
number of free parameters dim(~µ), such that for two models with the same likelihood,
the one with more parameters is penalised. The best-fit parameters together with
a comparison of the maximum likelihood and the BIC for a representative sample
of halo models can be found in Tab. 2.13. These quantities have been calculated
taking the maximum of the 14400 likelihood estimates obtained with the final mcmc
sampling (see Sec. 2.3.3).

Other than the BIC, we also compared the ability of the different models to
describe the observed properties of the RRLs (e.g. distribution of the stars in the
sky).

RRLs density law

We tested different density profiles assuming a DN geometrical model: the SPL
(Eq. 2.11 with αinn = αout), the DPL (Eq. 2.11), the BPL (Eq. 2.12), the CPL
(Eq. 2.11 with αinn = 0) and the EIN profile (Eq. 2.13).

The logarithmic maximum likelihoods and the BICs obtained for these different
models are very similar as shown in Tab. 2.13, moreover Fig. 2.14 shows that the
predicted fraction of RRLs in bins of magnitude, for the different density models,
are practically coincident. Therefore, the DPL, BPL, CPL and EIN models do not
offer any significant improvement in the description of the RRLs distribution with
respect to the simpler SPL. Fig. 2.15 shows the comparison between the (elliptical)
radial profiles of the density slope for different halo models. The slopes have been
calculated as the logarithmic (elliptical) radial derivative of the logarithmic density,
therefore the result for a SPL is just a constant (as shown by the black-dashed line
in the four panels). The best-fit broken radius for the BPL is reb ≈ 22 kpc: in
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Figure 2.14: Top panel: the black points show the fraction of stars in magnitude bins,
while the curves show the same fraction expected for halo models with different density
laws: SPL (blue), BPL (orange), DPL (green), CPL (red) and EIN (magenta). Error
bars on the data points and on the model distributions indicate Poisson uncertainties.
Bottom panel: relative residual (Data-Model/Model). In all the cases we assumed a DN
geometrical halo model (see Tab. 2.13).

the inner part the best-fit slope is practically the same as the SPL model then it
decreases to a slightly larger slope of about 2.9.

Concerning the DPL, the posterior distributions of the slopes are compatible
with αout = αinn, such that the final density profile is again an SPL with a slope
compatible with the best-fit SPL model (panel B in Fig. 2.15), moreover the posterior
distribution of re is almost uniform in the prior range interval (Tab. 2.12). Similarly,
the core radius of the CPL model is very small and the final CPL model is compatible
with no-core and the outer slope is the same of the SPL model (panel C panel in
Fig. 2.15).

Finally, for the EIN the fit favours very large values both for n (≈ 38) and for
reb (≈ 390 kpc), so that in the analysed radial range the variation of the slope is
minimal and the density profiles effectively mimic an SPL. However, since the BIC
of the EIN model is higher than the BIC of the SPL models, there is no evidence in
favour of an EIN profile for the inner part of the stellar halo.
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Figure 2.15: Radial profile of the density slope (∂(ln ρ)/∂(ln re)) for different density
law models: BPL (panel A), DPL (panel B), CPL (panel C) and EIN (panel D). The
bands represent the posterior distribution between 16th and 84th percentiles. The coloured
lines represent the median of the posterior obtained fitting only the stars above (b > 10◦,
dotted line) and below (b < −10◦, solid line) the Galactic plane. The dashed-black line
shows the best-fit slope obtained for the SPL model. In all the cases we assumed a DN
geometrical halo model (Tab. 2.13).

The break radius of the BPL model is compatible with the one obtained in Xue
et al. (2015) after the subtraction of halo substructures, although the change of slope
is much more significant in their work with respect to our result (see Tab. 2.24). In
principle, the over-density of stars described in Sec. 2.2.3 might make it difficult to
detect the break, so we repeated the maximum likelihood analysis using the RRLs
only above and below the Galactic plane. The results are shown in Fig. 2.15 by the
solid (b < −10◦) and dashed (b > 10◦) coloured curve: in general the stars above
the Galactic plane prefer a mean slope of about 2.65 while the ones below have a
mean slope of about 2.78. Concerning the change of slope above the Galactic plane,
the posterior distribution of the parameters of the BPL, DPL and CPL models are
such that these models are similar to the SPL profile. Below the Galactic plane
both the BPL and the DPL favour a change of slope, however the one of the BPL
model is much more significant going from about 2.73 in the inner part to about 3.3
beyond re ≈ 20 kpc. It is evident that the stars below the Galactic plane have a
steeper decrease of the density with respect to the stars above the Galactic plane.
This result could be due to the excess of stars at high latitude, however in both the
sub-samples the minimum BIC is still obtained for the SPL model. Therefore, the
change of slope is not highly significant and the fact that the DPL and the BPL
show a different behaviour could indicate that the change of slope could be due to
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Figure 2.16: As in Fig. 2.15 but for halo models SH (blue, q = 1 and p = 1), DN (orange,
q = 0.58 and p = 1), DP (green, q = 1 and p = 1.59) and TR (red, q = 0.65 and p = 1.27).
In all cases we assumed a SPL for the density profile of the RRLs (with parameters given
in Tab. 2.13).

some local artefact (such as a local decrease of the completeness).
The comparisons discussed above refer only to DN halo models, however we

obtained similar results also for DP and TR halo models. In particular, we found
that the SPL density model always provides the lowest BIC value, independent of
the assumed halo geometry.

In conclusion, there is no significant evidence of deviation from a SPL density
law: the RRLs follows an SPL with an exponent that ranges between 2.6, assuming
a SH model, to 3 assuming a TRqv halo. These results agree with the estimate of the
density profiles obtained in Sec. 2.2.3 counting stars in ellipsoidal shells (Fig. 2.9).

Iso-density surfaces

As shown by the BIC comparison in Tab. 2.13, the SH and DP models give signifi-
cantly worse fits with respect to the DN and TR models. This result is confirmed by
a comparison of the properties of the RRLs in our sample with the ones expected for
the best-fit models. For example, Fig. 2.16 shows the fraction of RRLs in our sam-
ple in different observed magnitude bins (black points) compared to the predicted
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distribution for different halo models (assuming a SPL, see Tab. 2.13). The SH and
the SP models predict too low a fraction of stars at lower G and a significant excess
around G = 15, while the DN and the TR models give a good match to the data.

As a further refinement we tested the DNqv and TRqv models. Allowing q to
vary, we obtained a better description of the distribution of RRLs as shown by the
decreases of the BICs in Tab. 2.13. The variation of the flattening is quite significant
as it is shown in Fig. 2.17. The halo is largely flattened (q ≈ 0.57) in the very inner
part and then it becomes more spherical reaching a flattening of about 0.75 at the
border of the Galactic volume analysed in this work (re ≈ 30 kpc). These results
are in agreement with what we have seen directly in the distribution of stars in the
re-θ plane in Sec. 2.2.3 and Fig. 2.10. Essentially the same result is obtained by
considering the stars only above or only below the Galactic plane. Fig. 2.18 shows
the comparison between the magnitude distribution of the stars in our sample and
the one expected for the varying q model.

In the (non-tilted) TR and the DP models the elongated axis makes an (anti-
clockwise) angle γ ≈ −20◦ with respect to the positive part of the Galactic Y-axis.
It is interesting to compare the orientation of the halo principal axes to the one of
the Galactic bar. The orientation of the Galactic bar Φbar

4 is uncertain (Antoja
et al., 2014), depending on the works it ranges from about −10◦ (e.g. Robin et al.
2012) to about −45◦ (e.g. Benjamin et al. 2005). Given these large uncertainties,
the angle γ can be considered compatible with Φbar. Since gamma represents the
angle between the X-axis/Y-axis of the halo and the X-axis/Y-axis of the Galactic
frame of reference, the orientation of the bar is compatible with the X-axis of the
halo. In other terms, the elongated axis (Y-axis) of the halo is almost perpendicular
to the orientation of the Galactic bar. It is unclear if this correlation is a coinci-
dence, due to the large errors, or if it reflects a real link between the two structures.
For the purpose of this work, we note that the fact that the elongated axis is almost
perpendicular to the Galactic bar rules out the hypothesis that the fit has been
influenced by some contaminants coming from the inner Galactic bar.

Tilt and offset

As a final analysis, we considered halo models that can be tilted with respect to the
Galactic plane and offset from the Galactic centre (see Sec. 2.3.2). We added these
refinements to the SPL-TR model.

For the offset model, the best-fit parameters are

• Xoff = 0.39± 0.05 kpc,

• Yoff = −0.17± 0.06 kpc,
4Φbar is defined as the anticlockwise angle between the direction of the bar and the Galactic

X-axis.
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Figure 2.17: Halo flattening, q, as a function of the elliptical radius re (Eq. 2.9). The
black solid-line shows the median of the functional-form distribution of q obtained for our
best halo model (SPL-TRqv ; last row in Tab. 2.13) while the dark and light green bands
indicate the 68% and 95% confidence intervals. The dashed line indicates the best-fit q
obtained for the SPL-TR halo model (8th row in Tab. 2.13). The orange curve shows the
best-fit functional form of q found in Xue et al. (2015) using a sample of K giants. The
other curves show the non-parametric estimate of q from Das & Binney (2016) (magenta
line) using a sample of K giants stars and from Das, Williams & Binney (2016) (red line)
using a sample of BHB stars. Concerning the best-fit parametric functional forms of Das,
Williams & Binney (2016), we note that they found a profile that is very similar to the one
of Xue et al. (2015) (practically coincident, except at the innermost radii). In the work of
Xue et al. (2015), q is a function of the spherical radius Dg rather than the elliptical radius
re. In order to compare their and our results the orange line has been calculated along
the Galactic vertical direction where Xg = Yg = 0, Dg = Zg (Eq. 2.5) and req(re) = Zg
(Eq. 2.9). In this case our estimate of the flattening q at re should be compared with their
estimates calculated at Dg = qre.

• Zoff = −0.01± 0.01 kpc,

and the size of the displacement vector with respect to the Galactic centre is
Doff = 0.43 ± 0.07. The offset we found is small and quite insignificant compared
to the radial extent of the halo. Indeed these small values could also be due to
the over-fitting of some local substructure at small elliptical radii. Moreover, both
the posterior distribution of Yoff and Zoff are compatible (within 3σ and 1σ, respec-
tively) with 0 and most of the displacement is along the Galactic X-axis. This axis
connects the Sun to the Galactic centre, therefore the offset in this direction can
be also interpreted as changing the distance of the Sun from the Galactic centre.
Considering our results, the estimated Sun position is X� = 7.61± 0.05 kpc, which
is totally compatible with the Sun-distance estimates in literature (e.g. McMillan &
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Figure 2.18: As in Fig. 2.14 but for triaxial halo models with varying q (blue), halo tilt
(green), centre offset (yellow) and a combination of the previous models (red), see Sec. 2.3.4
for further details.

Binney 2010).
For the tilt model, we take the triaxial model and allow the axes of symmetry to

be arbitrarily oriented. The best-fit results for the (anticlockwise) angles describing
the orientation of the halo (see Sec. 2.3.2) are

• γ = −20.1◦ ± 2.7◦ (rotation around the Z-axis),

• β = 5.7◦ ± 0.8◦ (rotation around the new Y-axis),

• η = 3.13◦ ± 0.5◦ (rotation around the final X-axis).

The angle γ represents the tilt of the elongated axis of the halo with respect to the
Galactic Y-axis and it is compatible with the orientation found for the non-tilted
DN and TR disc-plane models (Tab. 2.13). The angles β and η measure the tilt
of the halo meridional plane with respect to the plane of the Galactic disc. Even
though the BIC indicates a mild improvement with respect to the non-tilted triaxial
model (∆BIC ≈ −40), the tilt is quite small.

Finally, we compared the ability of tilted and non-tilted models to reproduce the
observed distribution of stars. Fig. 2.18 shows the comparison between data and
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different models for the magnitude distribution of the stars. The models are TRqv ,
TRtl , TRoff and TRqv ,tl ,off . Note that all of them are capable to give a good match
to the data.

In conclusion, we conservatively assume that there is no need for a significant
tilt to describe the RRL distribution in the inner halo.

2.4 Discussion

2.4.1 Best halo model

We have explored the properties of the Galactic stellar halo using two independent
methods. First, we analysed the density of the RR Lyrae candidates binned along
the Z and R dimensions. This direct method was followed by an approach where
the probability of observing each individual star in the space spanned by celes-
tial coordinates and the apparent magnitude was described by a 3D model, whose
parameters were optimized using mcmc likelihood sampling. Additionally, we aug-
mented each method with a model comparison exercise. The results of the direct
analysis (Sec. 2.2) and the maximum likelihood fit (Sec. 2.3) are highly compatible.
Namely, i) the density of the RRL stars in the inner 25 kpc of the halo appears
to be stratified on ellipsoids with a pronounced flattening along the Galactic Z-axis
(Fig. 2.8), and ii) the radial density profile can be described by a single power-law
(SPL, Fig. 2.9). While - as evidenced by Tab. 2.13 - this simple model gives an
adequate description of the RRLs density distribution, it can be further refined by
adding a mild elongation in the Galactic plane in combination with a radially vary-
ing flattening (along the Z-axis). Based on the BIC analysis (Sec. 2.3.4) as well as
the direct comparison between the properties of the data and the best-fit models,
we chose to highlight this SPL-TRqv (last row in Tab. 2.13) as the best-performing
model amongst the family examined.

The distribution of the RRLs in the inner halo as described by the above best-fit
model has the following properties: the radial density is an SPL power-law with
an exponent α = 2.96 ± 0.05 and the iso-density surfaces of triaxial shape. The
minor axis of the density ellipsoids is aligned with the Galactic Z-axis. We find
strong evidence for an evolution of the vertical density flattening: the inner parts are
squashed with (q ≈ 0.57), however the flattening becomes less pronounced (q ≈ 0.75)
at the border of the Galactic volume analysed in this work (re ≈ 30 kpc). Note that
the signs of the evolution of the halo flattening can be observed in the data directly
as demonstrated in Fig. 2.10. In the plane of Galactocentric latitude and elliptical
radius, the iso-density contours should appear vertical for the correct (and constant)
value of q. Clearly, the contours are slanted in the left and the right panels of
the Figure, where the halo flattening is over- and under-estimated correspondingly.
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Figure 2.19: Same as in Fig. 2.10 but for mock stellar halos. Top: density maps for the
best-fit SPL-DN model. Bottom: density maps for the best-fit SPL-DNqv (see Tab. 2.13).
The maps have been obtained by averaging over 1000 halo mock realisations. Note that
for a halo with a fixed flattening, for the (almost) correct value of q (middle panel) the
iso-density contours remain vertical across the whole range of elliptical radii. This is at
odds with the RRL distribution in the Milky Way. As the middle panel of Fig. 2.10
demonstrates, the contours indeed start vertical for re < 20 kpc, but at larger radii there
is a noticeable bending away from the centre. Our best-fit model with varying q displays
exactly the same behaviour (see middle panel of bottom row).

However, in the middle panel (corresponding to our best-fit fixed q model), for
a large range of radii, the iso-density contours do look vertical. Beyond 20 kpc,
the contours start to bend away from the Galactic centre, signalling a change in
the halo shape. Fig. 2.19 illustrates the effect of the radial halo shape evolution
with the θ − re views of the mock RRL realisations for two of our best-fit (in each
class) models. Note that the middle panel in the bottom row of the Figure displays
the same trend as the middle panel of Fig. 2.10, albeit with a lot less noise. With
regards to the halo’s major axis, in the Galactic plane, we measure a mild elongation
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Figure 2.20: Top panels: all-sky star number density maps in Galactic coordinates.
Bottom panels: sky-maps density plots in equatorial coordinates. The left-hand panels
show the data, while the middle panels show our best model (SPL-TRqv , see Sec. 2.4.1
and Tab. 2.13), the right-hand panels show the relative data-model residuals. The model
maps have been obtained integrating the star density distribution (Eq. 2.21) through the
magnitude interval 10 < G < 17.1 assuming a constant absolute magnitude M = MRRL =
0.525.

(p = 1.27±0.03) in the direction which is rotated with respect to the Galactic Y-axis
by γ = −21.3◦ ± 2.6◦ (anticlockwise).

The measured RRL (as represented by the clean sample, see Sec. 2.3.1) distri-
bution can be compared to the best-fit model in Figs. 2.20, 2.21 and 2.22. Fig. 2.20
presents all-sky maps in both Galactic (top panels) and equatorial (bottom) coor-
dinates. Fig. 2.21 gives the number density in the meridional plane, and, finally,
Fig. 2.22 shows the number density in the re−θ space. In each Figure, the right-most
column displays the map of residuals in the corresponding projection.

Reassuringly, the residual maps indicate that the model gives a reasonable de-
scription of the RRL distribution in the G2M sample. Overall, the Milky Way’s
inner halo appears smooth, but some systematic model-data mismatches are visi-
ble. The most prominent (with residuals in some pixels corresponding to a density
excess of order of 200%) is the overdensity of stars visible in Fig. 2.20 at Galactic
longitudes around -70◦ or RA of about 190◦. This structure is also discernible in
Fig. 2.21 for Zg > 15 kpc and at about re = 35 kpc and above θ = 50◦ in Fig. 2.22.
Most likely, this large stellar cloud is related to the Virgo over-density, as discussed
in Sec. 2.2.3.

Amongst other differences, a mild deficiency of stars is visible at the edge of the
Galactic volume (available to us) in the anti-centre direction, i.e. around l=180◦.
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Figure 2.21: Number density in the Galactic R − Zg plane. Left-hand panel: density
map for the RRLs in our clean sample (Sec. 2.3.1); middle panel: density map for our
best model (SPL-TRqv , see Sec. 2.4.1); right-hand panel: relative data-model residuals.
The black iso-density contours are plotted with interval of ∆ log ρ = 0.4 from log ρ = −3 to
log ρ = 4, where ρ has the dimension kpc−3. The model map has been obtained averaging
the maps of 1000 different mock catalogues made assuming the best-fit parameters obtained
for the SPL-TRqv halo model (see Tab.2.13).
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Figure 2.22: Same as in Fig. 2.21 but for the number density in the Galactic re−θ plane.
The re in the plot have been obtained assuming q = 0.6 and p = 1 (see Sec. 2.2.3).

This mild depletion is especially noticeable below the Galactic plane, however the
amplitude of these outer Galaxy residuals is much smaller as compared to the mis-
match caused by the Virgo over-density. We argue that this deficiency of stars may
be a hint of the steepening of the radial density profile, but, as discussed in Sec. 2.3,
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it does not obey the smooth parametric model considered here.

2.4.2 Possible sources of bias in the maximum likelihood analysis

Assumption on the absolute magnitude

Our halo fitting method (Sec. 2.3.4) relies on the assumption that all RRLs in the
sample have the same absolute magnitude MRRL = 0.525. However, as Fig. 2.3
demonstrates, this is not strictly true as indicated by the Gaussian-like wings in the
MG distribution. To understand the possible bias introduced by this simplification,
we assumed that the pdf of the absolute magnitude P (M) in Eq. 2.22 is represented
by the best-fit double Gaussian (blue line in Fig. 2.3). With this addition to the
model, we repeated the fit of our best halo model (Sec. 2.3.3), this time marginalising
the likelihood over M . Perhaps unsurprisingly, the final posterior distributions of
the model parameters are totally compatible with the ones obtained assuming a
constant absolute magnitude.

Dust

Regions with high dust extinction add severe uncertainties in the study of distribu-
tion of stars in the Galaxy. In these regions it is difficult to recover the faintest stars
and the completeness could be much lower compared to the rest of the sky. Note
however, that applying the cut on θ (Sec. 2.3.1), we eliminated most of the regions
with high Galactic dust extinction: the 85% of the stars in our “clean” sample has
E(B − V ) < 0.25 and only the 1% are located in regions with E(B − V ) > 0.8.
To be sure that our results are not influenced by the regions with high reddening,
we repeated the fit of our best halo model (Sec. 2.4.1) masking the regions with
E(B − V ) > 0.4. We did not find any appreciable differences with respect to the
un-masked analysis.

Contamination from the Galactic disc

The final results of the fitting analysis (Sec. 2.3.4) have been obtained considering
the presence of only one smooth stellar component, however disc RRLs (if any) and
other disc variables, including artefacts (see Sec. 2.1.2) could pollute our sample.
Although the cut on Galactic b (Sec. 2.1.2) and θ (Sec. 2.3.1) is employed to limit
such contamination, we repeated the modelling with the addition of an extra disc
component. Thus, this new model has contribution from an ellipsoidal halo with
normalised density ρ̃h (Sec. 2.3.2) as well as a double-exponential disc with nor-
malised density ρ̃d ∝ exp[−R/Rd]exp[−|Z|/Zd]. Here Rd and Zd are the radial and
the vertical disc scale-lengths. Considering the two components, the global pdf of
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the stellar distribution is

λ̃(m, l, b|f, ~µh, ~µd) = (1− f)λ̃h(m, l, b|~µh) + fλ̃d(m, l, b|~µd), (2.31)

where λ̃h and λ̃d represent the pdf of the halo and the disc stars, while f is the
the disc-to-total stellar number ratio. The pdfs that appear in Eq. 2.31 above have
been already marginalised over the absolute magnitude distribution of the halo and
disc stars. For the halo we used a Dirac delta centred on M = MRRL = 0.525

(Sec. 2.1.2), while for the disc a uniform distribution between M = −2 and M = 5.
The absolute magnitude distribution of the stars in the disc could be much more
complicated with respect to a uniform distribution. However, making use of mock
catalogues we found that our assumption is a good choice to minimise the bias also
in the presence of a truly complicated multi-peak distribution.

The RRL sample was modelled (Sec. 2.3.3) using Eq. 2.31 in the logarithmic
likelihood in Eq. 2.25: we considered f as a free parameter, but fixed the disc’s
stellar density profile assuming values for Rd and Zd. We tested a wide range of thin
and thick disc models using Rd values between 2 and 4 kpc and Zd values between
0.1 and 1 kpc. In general, we did not find significant differences with respect to the
results shown in Tab. 2.13, except for the SH and DP models. In these two cases, the
models try to reproduce the vertical flattening observed in the data with an high-
percentage of disc stars, but the final fits are poor as evidenced by the presence of
large residuals. For all the other models considered we found that the final posterior
distribution for f is lower than 3% and is consistent with 0. Therefore, we conclude
that our “clean” sample (Sec. 2.3.1) does not harbour stars coming from the Galactic
disc and the observed flattening along the vertical direction is a genuine property of
the distribution of RRLs in the halo.

2.4.3 Halo substructures

The main focus of this work is the study of the overall distribution of RRLs in the
inner halo. Reinforcing the principal assumption behind the modelling, the distri-
bution of RRLs in our sample appears smooth. Nonetheless, several substructures
are present, of which the following two are the most obvious: i) a highly flattened
distribution of stars at low Galactic latitudes and ii) an excess of stars at high Zg.
The first substructure is clearly evident in Fig. 2.8 and in Fig. 2.10 below θ = 20◦.
In our investigation of this substructure we have attempted two approaches: first,
we tried to exclude the regions most affected, i.e. those close to the disc from influ-
encing the halo fit, and, second, we aimed to model the excess as a contamination
coming from the Galactic disc. In particular, we repeated the fit using our original
catalogue of about 22600 RRLs (see Tab. 2.2) and the halo+disc stellar pdf defined
in Eq. 2.31. The disc in the model was a realistic double exponential distribution:
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Figure 2.23: Left-hand panel: number density of stars in the Galactic R − Zg plane
for a multi-component model with an halo and a disc; the black iso-density contours are
plotted with interval of ∆ log ρ = 0.4 from log ρ = −3 to log ρ = 4, where ρ are in unit of
kpc−3. Right-hand panel: relative residuals (Data-Model/Model) between the density
in the R− Zg plane for our complete sample of RRLs as shown in Fig. 2.8 and the model
shown in the left-hand panel. The model map has been obtained averaging the maps of
1000 different mock catalogues made assuming the best-fit parameters obtained for the
disc + SPL-DN halo model (See 2.4.3). The stars in the disc follow a double exponential
distribution with a radial scale length Rd = 2.7 kpc and a vertical scale height Zd = 0.2
kpc.

we fixed the radial (Rd) and vertical (Zd) thin and thick disc scale-lengths to the
classical values found in literature (e.g. Das, Williams & Binney 2016). Fig. 2.23
gives the density distribution in the R − Zg plane for a disc+halo model in which
the disc has Rd = 2.7 kpc and Zd = 0.2 kpc. As illustrated by the residual map
(right panel), the halo+disc model is able to explain the flattened distribution of
stars but only within about 10 kpc. As a consequence, the posterior distribution of
the halo parameters favours a more flattened density (q ≈ 0.4), thus concealing the
evidence of the radial variation of q, as measured and discussed above (Tab.2.13)
as part of the analysis of the “clean” sample of RRLs (Sec. 2.3.1). The residuals
suggest that the two-component model gives a poor fit with a significant mismatch
both at low Zg for R > 10 kpc and at high Zg for R < 10 kpc. Note that these
results do not change if different values for the disc scale lengths are assumed (Rd

between 2 and 4 kpc and Zd between 0.1 and 1 kpc). As a further test, we repeated
the fit leaving the scale lengths of the disc model as free parameters. This test
yielded unrealistically large values of Rd ≈ 25 kpc and Zd ≈ 3 kpc. This can be
compared to the results of the study of the thick disc’s RR Lyrae by Mateu et al.
(2011) who find the disc to be “anti-truncated”, i.e. having a flatter density profile
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in the outer parts. In conclusion, it seems that this flat and elongated structure
can not be modelled simply by adding a double exponential disc with the properties
expected for the Milky Way. Instead, we conjecture that the observed excess could
possibly be related to the Monoceros Ring (Newberg et al., 2002). Notice, however
that it is still debated (see de Boer, Belokurov & Koposov, 2017, and references
therein) whether Monoceros represents a portion of the accreted halo (e.g. Sollima
et al. 2011) or a structure related to the Galactic disc such as a warp and/or a flare
in the outer disc (e.g. López-Corredoira & Molgó 2014).

Another, a more prosaic, explanation could simply mean that the excess of stars
at low latitude is due to Gaia artefacts such as the cross-match failures (discussed
in Belokurov et al. 2017). Such conclusion is supported by the fact that no survey
so far has reported a clear detection of RRL in the Monoceros Ring. Additionally,
this structure is not observed in a sample of metal poor K-Giants [Fe/h] < −1 from
the LAMOST (Large Sky Area Multi-Object Fibre Spectroscopic Telescope) survey
(Liu et al., 2017). Of course, Monoceros Ring is indeed a prominent feature of the
stellar density maps in the direction of the Galactic anti-centre. However, so far it
has only been traced by typical disc stellar populations such as metal-rich MS stars
(Yanny et al., 2003; Jurić et al., 2008; Morganson et al., 2016) or M giants (see e.g.
Crane et al., 2003).

The second substructure is a significant over-density of stars above the Galactic
plane: it is visible in the density map in Fig. 2.8 for Zg > 15 kpc and in Fig. 2.10
for θ > 50◦ and large elliptical radii; it is the cause of the mismatch between the
star counts above and below the Galactic plane for |Zg| > 10 kpc (right-hand panels
in Fig. 2.11). Moreover, it is also traced by the significant increases of the residuals
in the data-model comparison in Fig. 2.20 and Fig. 2.21. The spatial location and
shape of this structure indicate that it is most likely related to the Virgo over-density
(Jurić et al., 2008), a large and diffuse halo substructure detected with a variety of
tracers, but most notably with horizontal branch stars, such as BHBs and RRL (see
Duffau et al., 2006; Vivas & Zinn, 2006; Deason, Belokurov & Evans, 2011; Vivas
et al., 2016). As far as the quality of the halo models is concerned, by repeating the
fit using the stars only below the Galactic plane, we find that the Virgo Cloud does
not strongly influence our final results (see Sec. 2.3.4).

2.4.4 Comparison with other works

Thanks to the all-sky view, stable completeness and substantial purity, we have been
able to test Galactic stellar halo models with a degree of complexity previously un-
explored. Indeed, our best halo model (SPL-TRqv , see Sec. 2.4.1) can not be directly
compared with results from other works. In fact, to date, only Deason, Belokurov
& Evans (2011) attempted to fit a triaxial model to the stellar halo. They found
that the triaxial model does increase the quality of the model of the distribution
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Authors Tracer
(1)

Range [kpc]
(2)

Slope (α)
(3)

Axial ratios
(4)

Catalogue
(5)

Das, Williams & Binney (2016) BHB 10-70 ≈ −4.7± 0.3 q = 0.39± 0.09 −→ 0.81± 0.05 SegueII
Xue et al. (2015) K-Giants 10-80 −4.2± 0.1 q = 0.2± 0.1 −→ 0.80± 0.03 SDSS
Sesar et al. (2013) RRLs 5-30 ≈ −2.4 q ≈ 0.65 LINEAR

Deason, Belokurov & Evans (2011) BHB 10-80 −2.3± 0.1
Rb≈27 kpc−−−−−−→ −4.6± 0.2 q = 0.59± 0.02 SDSS

De Propris, Harrison & Mares (2010) BHB 10-100 ≈ −2.5 q ≈ 1.0 2dF QSO
Watkins et al. (2009) RRLs 5-110 −2.4

Rb≈25 kpc−−−−−−→ −4.5 q=1 (assumed) Stripe82
Jurić et al. (2008) MSTO 0-20 ≈ −2.8 q ≈ 0.6 SDSS
Miceli et al. (2008) RRLs 3-30 −3.15± 0.07 q = 0.5 −→ 1.0 (assumed) SegueII
Vivas & Zinn (2006) RRLs 4-60 ≈ −2.8 q ≈ 0.6 QUEST-1

This work RRLs 1.5-28 −2.96± 0.05
q = 0.57± 0.02 −→ 0.84± 0.06

p = 1.27± 0.03
Gaia DR1 + 2MASS

Table 2.24: Galactic halo properties found in a sample of literature works. 1:
used halo tracers, Blue horizontal branch stars (BHB), K-Giants stars (K-Giants), RR
Lyrae stars (RRLs), stars near the main-sequence turn-off (MSTO). 2: range of sampled
Galactocentric distances. 3: exponent of the power-law describing the density profile of
the stars in the halo; when two values are present they represent the exponents in the inner
part and in the outer part of the halo separated by the transition cylindrical radius Rb. 4:
results on the shape of the halo iso-density surfaces, q represents the the Z-to-X axial ratio,
p the Y-to-X axial ratio (if not shown p = 1); when two values are present they represent
the axial ratio in the inner part and in the outer part of the halo. 5: Survey or Catalogue
used, SDSS (Abazajian et al., 2009), Stripe82 (Sesar et al., 2010), SegueII (Yanny et al.,
2009), 2dF QSO (Shanks et al., 2000), QUEST-1 (Vivas et al., 2004), LINEAR (Stokes
et al., 2000), Gaia DR1 (Gaia Collaboration et al., 2016a), 2MASS (Skrutskie et al.,
2006).

of A-colored stars, however they considered this to be an overfit, mainly due to
the presence of substructures such as Monoceros and the Sagittarius stream. We
have taken care to remove stars that may be related to Monoceros in our modelling
(Sec. 2.2 and 2.3.1). With regards to the Sagittarius stream, we have not found
any worrying levels of contamination by its members in the volume covered in this
analysis. Indeed, a recent work by Liu et al. (2017) shows that the residuals due to
the Sagittarius stream are in regions not sampled in our work. Comparing the two
triaxial models, the best-fit p in Deason, Belokurov & Evans (2011) is smaller than
1, while we infer p ≈ 1.3. Pérez-Villegas, Portail & Gerhard (2017) found that, due
to the gravitational effect of the bar/bulge, a triaxial distribution of RRLs arises
also from an initially oblate distribution of stars. This effect is restricted to a very
small Galactic region (Dg < 5 kpc), however gravitational effects at large scale (e.g.
the influence of the LMC and/or of the spiral arms) could also cause halo triaxiality
outside the innermost region of the Galaxy. In this context, in the future, it will be
interesting to study the trend of p as a function of the elliptical radius as already
done in this and previous works for the vertical flattening q (see below).

Perhaps not totally unexpectedly, we have found strong evidence for the evo-
lution of the shape of the stellar halo as a function of the position in the Galaxy.
Both parametric (Sec. 2.3.4) and non-parametric (Sec. 2.2.3) analysis require the
flattening of the halo along the Galactic Z-axis to decrease from the inner to the
outer regions, i.e. q to increase at larger distances. Most recently, similar claims
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have been put forward in the works of Xue et al. (2015), Das, Williams & Binney
(2016), Das & Binney (2016) and Liu et al. (2017) (see Sec. 2.2.3 and Fig. 2.17).
The results of Xue et al. (2015) have been obtained by employing the same func-
tional form q(re) used in this work (Eq. 2.15), while Das & Binney (2016) used a non
parametric measure of q(re) estimated by the iso-density contours of their best-fit
dynamical model. Finally, Das, Williams & Binney (2016) estimated the flattening
using both the methods described above. Fig. 2.17 shows the results of these works
compared to our best-fit flattening profile: the non-parametric radial profile of Das,
Williams & Binney (2016) is compatible with our results, while the results found
in Das & Binney (2016) point towards a distribution of stars that is systematically
more spherical. While the best fit parametric functional forms of both Xue et al.
(2015) and Das, Williams & Binney (2016) are compatible with our measurement
of the flattening trend for re > 20 kpc, there are several important differences. First
of all, these studies postulated the dependence of q on the spherical radius. Here, to
make our models self-consistent, we chose to express q as a function of the elliptical
radius re (see Eqs. 2.9 and 2.15). Second, the largest discrepancies are at small radii
(re < 15 kpc): in our best-fitting model q is almost constant at ∼ 0.6, while in the
other works the halo flattening keeps increasing (q decreasing) towards the centre.
For example, around the Galactic centre, (q ≈ 0.4 in Das, Williams & Binney 2016
and q ≈ 0.2 in Xue et al. 2015). Note however that the samples used in both these
studies are actually depleted in stars within 10 kpc from the Galactic centre, and
thus the reported behaviour of q there is an extrapolation rather than a measure-
ment. It is interesting to report that, in a recent work, Xu et al. (2018) analysed
the distribution of a sample of metal poor K giants with a novel non-parametric
technique and found that the halo becomes almost spherical (q > 0.8) already at
small elliptical radii (re ≈ 20 kpc). Curiously, Deason, Belokurov & Evans (2011)
found no evidence for the variation of the halo flattening within 40 kpc from the
Galactic centre. The reason of these discrepancies is not clear, but we note that both
the sky coverage and the halo tracer population is different compared to our study.
In conclusion, we are still a long way from a general convergence about the details
of the flattening of the stellar halo, even for the same halo tracers. In this respect,
we stress again that the superior sky coverage of our study (and of Gaia in general)
should assure very robust results, especially in the study of the halo flattening.

Our best SPL-DN model (see Tab. 2.13) is highly compatible with the previous
results relying on RRLs (see Tab. 2.24) such as Miceli et al. (2008) and Vivas &
Zinn (2006), but partially in contrast with the result of Sesar et al. (2013) who
found a similar slope outside of 16 kpc but a flatter radial density profile (α ≈ −1)
in the very inner part of the halo. However, the distribution of their RRLs in this
region is very clumpy and can not be properly fitted by a simple smooth power-law
model. Similarly, Watkins et al. (2009) found that the overall distribution of RRLs
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can not be described by a smooth model, but we note that their results are based on
a drastically lower sky coverage with respect to this and other RRL-based studies.

Comparing to inference with tracers other than RRL, our best SPL-DN model
is in good agreement with the work of Liu et al. (2017) based on RGB stars and
to Jurić et al. (2008) who used MS main-sequence and MSTO main-sequence turn-
off stars. The studies employing other tracers such as BHB and K-Giants (Das,
Williams & Binney, 2016; Xue et al., 2015; Deason, Belokurov & Evans, 2011) derive
similar flattening of the halo, but usually report a steeper profile for the density law
(α > −4) beyond 20-30 kpc. Note however that the work of De Propris, Harrison
& Mares (2010) found a more shallow profile (α ≈ −2.5) up to 100 kpc. Some of
the differences can simply be due to different stars used to trace the Galactic halo.
In particular the RRLs tend to be more metal-rich as compared to the BHBs - an
important difference given that there is evidence of a metallicity gradient in the halo
(Carollo et al., 2007). While we are not sensitive to the changes in the radial density
profile outside of 25 kpc, there have been claims that such “break” is an artifact of
not taking the shape evolution into account (see e.g. Liu et al., 2017; Xue et al.,
2015). Further discussion can be found in Sec. 2.3.4. Table 2.24 summarises the
properties of the Galactic stellar halo as reported in the literature.

As a final note, it is important to mention that the distribution of our RRLs
is nicely in agreement (in terms of both density profile and halo shape) with the
one estimated by Pietrukowicz et al. (2015) for a sample of genuine RRL stars
in the Galactic bulge. This result seems to strengthen the hypothesis that the
RRL population in the bulge is consistent with being the inward extension of the
Galactic stellar halo, as also found in N-body simulations by Pérez-Villegas, Portail
& Gerhard (2017).

2.5 Summary

In this Chapter, we presented the very first use of the Gaia DR1 photometric cat-
alogue to study the properties of the Galactic stellar halo as traced by RR Lyrae.
The key points of our study are listed below.

1. We used the method proposed by Belokurov et al. (2017) to mine the Gaia
DR1 for variable stars in advance of the official variable object release by the
Collaboration. It is based on the estimate of the object’s variability, AMP
(Eq. 2.1) derived from the Gaia’s mean flux and its associated error.

2. Our principal selection cuts are those based on the AMP statistics and the
colour index, J−G obtained from the cross-match between Gaia and 2MASS.
It is the depth of the latter survey which governs the reach of our most dis-
tant RR Lyrae. Our sample extends over the whole sky and contains 21643
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stars within a sphere of 20 kpc centred on the Sun, covering an unprecedented
fraction of the volume (∼ 58%) of the inner halo (R < 28 kpc). While the
overall completeness of our sample can not compete with the levels attained
by dedicated RRL surveys, it is stable across the sky and the magnitude range
explored - the property most important for robust measurements of the stellar
density in the halo. Additionally, we demonstrate that the sample’s contami-
nation of non RRL stars is close to zero, and is not expected to exceed ∼10%.

3. Assuming a constant absolute magnitude for all RRLs in our sample (MRRL =

0.525), we analysed their density distribution in the inner Galaxy. To that
end, Figure 2.7 presents the first all-sky stellar halo maps. These heliocentric
slices reveal a relatively smooth nearby halo, with prominent inter-quadrant
asymmetries starting to become noticeable beyond 10 kpc from the Sun.

4. We point out two main substructures superimposed on the otherwise smooth
distribution of the Galactic RRLs. One is visible as a highly flattened dis-
tribution of stars close to the disc plane, at odds with the more ellipsoidal
distribution observed at high Zg. It contains a little less than half of the stars
in our sample, but given its large radial extent it can not be explained as a
contamination of the Galactic disc. It may be related to the Monoceros ring
(Newberg et al., 2002), but most likely it is caused by artefacts in the Gaia
data at low Galactic latitude (see discussion in Belokurov et al., 2017). At high
Galactic latitudes, a large over-density of stars is evident, clustered in a region
with Zg ≈ 15 kpc and between a Galactic radius of 5-10 kpc, as illustrated
in Figure 2.11. This is likely a portion of the well-known Virgo over-density
(Jurić et al., 2008) and in a recent work we found that this excess of stars could
be related to the Magellanic stream (Boubert et al., 2017). Its counterpart at
negative Z is the Hercules-Aquila Cloud, also discernible in the Figure, on the
other side of the Galaxy, beyond the bulge.

5. The RRL density distribution is stratified on ellipsoidal surfaces flattened along
the direction perpendicular to the Galactic disc. The density decreases regu-
larly following a power-law, without evidence of an inner-core or any change
of slope within the radial range accessible, as demonstrated in Figure 2.9.

6. For the first time, we are able to show the evolution of the halo flattening
with radius directly in the data (see Figure 2.10). The Milky Way’s stellar
halo is rather flat in the inner parts but becomes more spherical at R ∼ 20

kpc. A similar property has been glimpsed in the sample of RGB halo stars
considered by Liu et al. (2017).

7. To mitigate possible biases associated with the low-latitude excess of the RRL
candidates, we extracted a subset of 13713 stars from the original sample. We
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applied to this “clean” sample a maximum likelihood fitting method, testing
a large variety of halo models. The parameters of our final best-fit model are
in good agreement with the results obtained by the non-parametric analysis
of the RRLs distribution. The halo is mildly triaxial with its major and
intermediate axes in the Galactic pane (p = 1.27) and a significant flattening
along the Galactic Z-axis which varies from q ≈ 0.57 in the centre to q ≈ 0.75

at the edge of the radial range analysed. The halo’s major axis is rotated in
the anticlockwise direction by a angle γ ≈ −21◦ with respect to the direction
of the Galactic Y-axis. The density slope is well approximated by a single
power-law with exponent α = −2.96.

We have demonstrated the power of the Gaia data for the Galactic stellar halo
exploration. The wealth of the information available in GDR1 is unexpected and
signals that a paradigm shift in the halo studies is imminent. One only has to wait
for the GDR2 to be unleashed (see Sec. 6.3).
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2.A Jacobian

The Jacobian needed to go from the set of Cartesian coordinate (X,Y,Z) to the
observed one (m,l,b) is the determinant of the following matrix (see Sec. 2.3.3):

J =


∂X
∂m

∂X
∂l

∂X
∂b

∂Y
∂m

∂Y
∂l

∂Y
∂b

∂Z
∂m

∂Z
∂l

∂Z
∂b

 .

Therefore, the intrinsic and observed coordinates are related as
X = D� cos l cos b

Y = D� sin l cos b

Z = D� sin b

, (2.32)

where D� = 10
m−M

5
−2 kpc is the distance of the object from the Sun. The Jacobian

matrix becomes

J =


dD� cos l cos b −D� sin l cos b −D� cos l sin b

dD� sin l cos b D� cos l cos b −D� sin l sin b

dD� sin b 0 D� cos b

 .
The determinant is

|J| = D2
�dD� cos b =

ln 10

5
D3
� cos b. (2.33)

The result of Eq. 2.33 has been obtained for a frame of reference centred at the Sun,
however it is also valid for a Galactocentric frame of reference. The two coordinate
systems differ only by an additive constant (the distance of the Sun from the Galactic
centre) in the first row of the system 2.32, so the determinant is the same in the two
cases.
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2.B Exploration of the parameters space

The exploration of the parameter space is performed evaluating the likelihood in
Eq. 2.29, which is a very time-consuming step. The bottleneck of the process is the
calculation of the normalisation integral Vc in Eq. 2.27. Given the presence of the
selection function W , the integrand function is not continuous and shows abrupt
decreases to 0 in some regions of the integration domain. For this reason, the
classical multi-dimensional quadrature methods are not able to give robust results,
so we decided to make use of a Monte Carlo integration technique. In particular,
we used the vegas algorithm (Lepage, 1978) through its Python implementation5.
The final estimate of the integral comes from the average of Nit vegas runs with
Neval integrand evaluations. The values of Nit and Neval have been chosen after
comparing the results of vegas and an adaptive quadrature technique6 setting W=1
in the integrand (Eq. 2.27). In particular we used two settings:

• fast with Neval = 105 and Nit = 20;

• robust with Neval = 5 · 105 and Nit = 100.

In principle, we can also divide our integration domain into multiple regions where
W = 1 and use the faster quadrature methods. However, given our cut in θ, the
integral extremes G, l and b become non-trivially interconnected and further time
is expended on their calculation. Moreover, we also note that the time spent by a
quadrature integral solver is roughly independent of the dimension of the sample
space, therefore N different evaluations increase the computational time by about N
times. In conclusion, using this approach we do not obtain a significant decrease of
the computational time.

In order to have the best compromise between computational time and good
sampling of the parameter space we adopt a two-stage procedure.

1. In the first “explorative” stage we sample the parameter space using 200 walkers
with 300 steps each after 100 “burn-in” steps and using the fast estimate of
the normalisation integral (see Sec. 2.3.3). The initial positions of the walkers
are randomly extracted from their prior distributions (Tab. 2.12). Given the
wide prior ranges (see Tab. 2.12), a large number of walkers is needed to have
an unbiased sampling of the posterior distributions.

2. In the second stage we use 48 walkers with 300 steps each after 100 “burn-in”
steps using the robust estimate of the normalisation integral (see Sec. 2.3.3).
The walkers are initially placed in a small region around the parameters for
which we obtained the maximum value of the likelihood in the first stage.

5https://github.com/gplepage/vegas
6https://github.com/saullocastro/cubature

https://github.com/gplepage/vegas
https://github.com/saullocastro/cubature
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LITTLE THINGS in 3D: robust determi-
nation of the kinematics of dwarf irregular
galaxies†

The Hi 21 cm emission line is a powerful tool for studying the dynamics of late-type
galaxies since it is typically detected well beyond the optical disc and is not affected
by dust extinction (see Sec. 1.3). The flat rotation curves of spirals are one of the
most robust indications for the existence of dark matter (DM); in particular, gas-
rich late-type galaxies are ideal laboratories for studying the properties of DM halos.
In this context, dwarf irregular galaxies (dIrrs) are particularly interesting. Unlike
large spirals, they appear to be dominated by DM down to their very central regions.
Thus, the determination of the DM density distribution is nearly independent of the
mass-to-light ratio of the stellar disc (e.g. Casertano & van Gorkom 1991; Côté,
Carignan & Freeman 2000).

There are two main approaches to estimate the rotation curve of a Hi disc and
both are based on the fitting of a tilted-ring model (see Sec. 1.3.3) to the data. In
the first (“standard”) method the “data” consist in a 2D velocity field (e.g. Begeman
1987; Schoenmakers, Franx & de Zeeuw 1997); conversely, in the second method the
“data” is the full 3D datacube (two spatial dimensions and one spectral dimension,
see Sec. 1.3.1).

In this Chapter, we exploit the power of a state-of-the-art 3D fitting software,
3DBAROLO (hereafter 3DB; Di Teodoro & Fraternali 2015), to study the kine-
matics of a sample of 17 dIrrs taken from the LITTLE THINGS (hereafter LT)
sample (Hunter et al., 2012) and already analysed with a 2D approach in Oh et al.

†Based on G. Iorio, F. Fraternali, C. Nipoti, E. Di Teodoro, J. I. Read, Battaglia G., 2017,
MNRAS, 466, 4159. This research made use of the LITTLE THINGS data sample (Hunter et al.,
2012).

http://adsabs.harvard.edu/abs/2017MNRAS.466.4159I
http://adsabs.harvard.edu/abs/2017MNRAS.466.4159I
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(2015) (hereafter O15). 3DB has been extensively tested on mock Hi datacubes
corresponding to low mass isolated dIrrs. In Read et al. (2016) we have shown that
the rotation curve is well-recovered even for a star-bursting dwarf, provided that the
inclination of the Hi disc is higher than 40◦. We focus in particular on the correc-
tion of the rotational velocity for the pressure support of the chaotic motion of the
gas, this process is conceptually similar to the asymmetric-drift correction applied
in the study of the velocity distributions of the stars in the galactic disc (Marchuk
& Sotnikova, 2017), but it is simplified by the fact that the Hi velocity dispersion
in discs can be considered isotropic. This correction term is usually applied with-
out considering the errors made in its calculation, but if the velocity dispersion is
comparable with the rotational velocity, as is the case of the less massive dIrrs, the
uncertainties can be very large and should be taken into account. We developed
a method to calculate and propagate the pressure support correction errors: as a
result, the quoted errors on the final corrected rotation curves (circular velocity) are
a robust description of the real uncertainties.

This chapter is organised as follows. In Section 3.1, we illustrate the sample and
the data used in this work. In Section 3.2, we briefly introduce the code 3DB and
our working assumptions. In Section 3.3, we describe in detail the analysis applied
to our data. In Section 3.4 we discuss the individual galaxies and we compare our
results with previous work. A summary is given in Section 3.5. The plots and the
tables containing the results for all the galaxies in our sample can be found in the
Atlas (Appendix 3.A).

3.1 The Data

3.1.1 Sample selection

The galaxies used in this work represent a subsample of the galaxies of the LT
survey (Hunter et al., 2012) which is a sample of 37 dIrrs and 4 Blue Compact
Dwarfs (BCDs) located in the Local Volume within 11 Mpc from the Milky Way.
LT combines archival and new Hi observations taken with the Very Large Array
(VLA) to obtain a very high spatial and spectral resolution dataset (see Table 3.2).
The objects in the LT sample have been chosen to be both isolated and representative
of the full range of dIrr properties (Hunter et al., 2012).

We built our sample selecting dIrrs that are well-suited to study the circular
motion of the Hi discs. To this end, we excluded from our selection all the objects
seen at low inclination angles and the 4 BCDs. The inclination angle i is defined as
the angle between the plane of the disc and the line of sight such that i = 90◦ for an
edge-on galaxy and i = 0◦ for a face-on galaxy. The estimate of i in nearly face-on
galaxies (i < 40◦) is extremely difficult both from the kinematic fit (Begeman, 1987)
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Figure 3.1: Distribution of the Galactocentric distances (left-hand panel) and of the
absolute magnitudes (right-hand panel) for the sample of galaxies studied in this work
(red histograms) and for the whole LT sample (blue dashed histograms). Data from Hunter
et al. (2012) and reference therein.

and from the analysis of the Hi map (Read et al., 2016). Moreover, for i < 40◦,
relatively small errors on i have a great impact on the deprojection of the observed
rotational velocity (see Eq. 1.6). As a consequence, the final rotation curves of these
nearly face-on galaxies could be biased and unreliable with both 2D (Oman et al.,
2016) and 3D methods (Read et al., 2016). Among the objects with i > 40◦, we
selected 17 dIrrs.

We checked, using a Kolmogorov-Smirnov (KS) test, that our subsample pre-
serves the statistical distribution of the galactic properties such as distance (KS
p-value 0.96), absolute magnitude (KS p-value 0.99), star formation rate density
(SFRD, KS p-value 0.92) and baryonic mass (KS p-value 0.99). Because of our
rejection criterion, the average i in our subsample (58◦) is higher than the one mea-
sured in the LT sample (50◦). Figure 3.1 shows the distributions of the distances
and of the absolute magnitudes of our sample and the original LT sample.

It is worth pointing out that our rejection criterion is based on i estimated for
the stellar disc using the V -band photometry (Hunter & Elmegreen, 2006). When
we re-estimated i from the Hi datacubes (see Sec. 3.3.2), we found that four galaxies
(DDO 47, DDO 50, DDO 53, and DDO 133) have an average i lower than 40◦ (see
Tab. 3.8). We did not exclude these galaxies from our sample, but our results for
these objects should be treated with caution. In particular the formal errors on
the velocities and on i could underestimate the real uncertainties (see notes on the
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individual galaxies in Sec. 3.4).
In conclusion, our sample comprises 17 objects covering the stellar mass range

5 × 105 . M∗/M� . 108, with a mean SFRD of about 0.006 M�yr−1kpc−2 and a
mean specific SFRD (SSFRD) of about 2.26 × 10−10 yr−1kpc−2 (data from Hunter
et al. 2012 and reference therein). For comparison the SFRD and the SSFRD of the
complete LT sample are 0.007 M�yr−1kpc−2 and 2.95×10−10 yr−1kpc−2 respectively
(Hunter et al. 2012 and references therein).

3.1.2 The Data

The Hi datacubes were taken from the the publicly available archive of the LT sur-
vey1. For each galaxy, LT provides two datacubes that differ in the weight scheme
used to reduce the raw data: the natural datacube offers the best signal-to-noise
ratio, the robust datacube gives the best angular resolution. We preferred the nat-
ural datacubes for two main reasons: (i) a high signal-to-noise ratio allows us to
have enough sensitivity to extend the study of the kinematics to large radii; (ii) 3D
methods are not dramatically influenced by the resolution of the data (see Sec. 3.2).
In some cases (DDO 50, DDO 154, NGC 1569, NGC 2366, UGC 8508 and WLM)
the galaxies are so extended in the sky that we further smoothed the datacube
maintaining a good spatial resolution. Instead, we have chosen the robust datacube
when the natural datacube gives too few resolution elements to sample the Hi disc
(five cases, see Tab. 3.2). The mean spatial resolution is about 240 pc ranging from
about 60 pc (DDO 210) to about 460 pc (DDO 87). These data are summarised in
Cols. 4-6 of Table 3.2. The rotation curves of all the galaxies in our sample have
been already derived with the classical 2D approach in O15. The masses and the
surface density profiles of the stellar discs for all the galaxies can be found in Zhang
et al. (2012), except for DDO 47 for which they can be found in Makarova (1999)
and in Walter & Brinks (2001).

3.2 3DBAROLO

In this work we measure the kinematic and geometric properties of the galaxies in
our sample with the publicly available software 3DB2 (Di Teodoro & Fraternali,
2015).

3DB is a 3D method that performs a tilted-ring analysis (see Sec. 1.3.3) on the
whole datacube. In practice, for each sampling radius it builds a ring model based
on Eq. 1.6, then it calculates the residuals between the emission of the model and of
the data pixel-by-pixel along the ring in the datacube. The final parameters of each

1https://science.nrao.edu/science/surveys/littlethings
2http://editeodoro.github.io/Bbarolo/.
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Galaxy
D

(Mpc)
(1)

MV

(mag)
(2)

fc
(pc arcsec−1)

(3)

cube

(4)

Beam
(arcsec×arcsec)

(5)

Ch. sep
( km s−1)

(6)

MHi

(107 M�)
(7)

σch
(mJy beam−1)

(8)

σ3T
(M� pc−2)

(9)
CVnIdwA 3.6 -12.4 17.4 ro 10.9 x 10.5 1.3 4.5± 0.1 0.63 0.96
DDO 47 5.2 -15.5 25.2 na 16.1 x 15.3 2.6 35.3± 0.6 0.61 0.41
DDO 50 3.4 -16.6 16.5 na† 15.0 x 15.0 2.6 59.5± 1.6 0.82 0.65
DDO 52 10.3 -15.4 49.9 na 11.8 x 7.2 2.6 22.3± 0.1 0.46 1.20
DDO 53 3.6 -13.8 17.4 ro 6.3 x 5.7 2.6 4.7± 0.3 0.57 3.80
DDO 87 7.4 -15.0 35.9 na 12.8 x 11.9 2.6 20.7± 1.0 0.51 0.90
DDO 101 6.4 -15.0 31.0 ro 8.3 x 7.0 2.6 1.8± 0.2 0.50 0.90
DDO 126 4.9 -14.9 23.7 na 12.2 x 9.3 2.6 12.8± 0.1 0.41 1.27
DDO 133 3.5 -14.8 17.0 ro 12.4 x 10.8 2.6 10.0± 0.2 0.35 0.89
DDO 154 3.7 -14.2 18.0 na† 15.0 x 15.0 2.6 25.1± 0.1 0.44 0.52
DDO 168 4.3 -15.7 20.8 na 15.0 x 15.0 2.6 25.1± 0.1 0.47 0.54
DDO 210 0.9 -10.9 4.4 na 16.6 x 14.1 1.3 0.2± 0.1 0.75 0.59
DDO 216 1.1 -13.7 5.3 ro 16.2 x 15.4 1.3 0.5± 0.1 0.91 0.40
NGC 1569 3.4 -18.2 16.5 na† 15.0 x 15.0 2.6 17.3± 0.1 0.77 1.10
NGC 2366 3.4 -16.8 16.5 na† 15.0 x 15.0 2.6 64.0± 1.2 0.52 0.59
UGC 8508 2.6 -13.6 12.6 na† 15.0 x 15.0 1.3 1.7± 0.1 1.31 0.54
WLM 1.0 -14.4 4.8 na† 25.0 x 25.0 2.6 5.6± 0.1 2.00 0.58

Table 3.2: Properties of the galaxies studied in this work. - (1) distance in
Mpc (Hunter et al. 2012 and references therein); (2) V band absolute magnitude (Hunter
et al. 2012 and references therein); (3) conversion factor from arcsec to pc; (4) weighted
scheme used to produce the final datacube: "na" for natural "ro" for robust. A † means
that we have further smoothed the original datacube to the beam indicated in Col. 5; (5)
beam major x minor axis in arcsec of the data used for the kinematic fits (see Sec. 3.1.2);
(6) channel separation in km s−1 (this value indicates also the velocity resolution of the
datacube in terms of FWHM); (7) total Hi mass (see Sec. 3.3.1); (8) rms noise per channel
estimated with 3DB; (9) 3σ pseudo noise in the total map (see Sec. 3.1.1). Note that DDO
87 has a slightly different distance with respect to the one reported in Hunter et al. (2012)
because their value is a typo (the correct value is given in Croxall et al. 2009)

ring are found through the minimisation of these residuals. Before the comparison
between the datacube and the model, the latter is smoothed to the spatial and
spectral instrumental resolution. This ensures full control of the observational effects
and in particular a proper account of beam smearing that can strongly affect the
derivation of the rotation velocities in the inner regions of dwarf galaxies (see e.g.
Swaters 1999). Moreover 3DB fits, at the same time, the rotation velocity and the
velocity dispersion instead of treating them as separate components as done in the
classical 2D approach (e.g. Tamburro et al. 2009, O15).

In conclusion, 3DB fits up to 8 parameters for each ring in which the galaxy is
decomposed: central coordinates, Vsys, i, PA, Hi surface density (Σ), Hi thickness
(zd), Vrot and the velocity dispersion (σv). 3DB separates the genuine Hi emission
from the noise by building a mask: only the pixels containing a signal above a certain
threshold from the noise are taken into account. The noise estimated with 3DB for
each galaxy is reported in the Col. 8 of Table 3.2. Further details on 3DB can be
found in Di Teodoro & Fraternali (2015).
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3DB works well both on high-resolution and low-resolution data (Di Teodoro
& Fraternali, 2015). This allows us to use the optimal compromise between spatial
resolution and sensitivity, as already discussed in Sec. 3.1.2. In Read et al. (2016) we
showed that 3DB is capable of obtaining a good estimate of the kinematic parameters
of mock Hi datacubes corresponding to low-mass isolated dIrrs, similar to those that
we will study here.

3.2.1 Assumptions

As the focus of this work is the kinematics (Vrot and σv) of the Hi discs, we can
consider the other 6 variables fitted by 3DB as “nuisance parameters”. We decided
to reduce the relatively high number of parameters making assumptions on the Hi
surface density, Hi scale height, systemic velocity and the position of the galactic
centre.

• H i surface density: we remove the surface density from the list of the free
parameters by normalising the flux locally to the value of the total Hi map.
This approach is also convenient to take into account the asymmetry of the
Hi distribution and to avoid that regions with peculiar emission (e.g. clumps
or holes) affect the global fit (see Lelli et al. 2012a and Lelli et al. 2012b). For
a full description of this normalisation technique, see the 3DB reference paper
(Di Teodoro & Fraternali 2015).

• H i scale height: 3DB includes the possibility to fit the Hi scale height. This
is something exclusive to 3D methods since there is no information about the
scale height in the integrated 2D velocity field. However, the assumption of a
thick disc is somewhat inconsistent with the ‘tilted-ring model’ (see Sec. 1.3.3):
in the presence of a thick disc along the line of sight we are accumulating
emission form different rings, hence a ring-by-ring analysis can not incorporate
this effect. To be fully consistent, we should set the value of the scale height
zd to 0: however, it turns out that, assuming zd = 0 the galactic models made
with 3DB have a too sharp cut-off at the border of rings. Therefore, we assume
a Gaussian vertical profile for the gas and we set for all the galaxies a scale
height of 100 pc, constant in radius. In Chapter 5 (Sec. 4.3) we show the effect
of the presence of a thick disc in the kinematic analysis for three galaxies of
our sample.

• Systemic velocity: we fix the systemic velocity for all rings to the value calcu-
lated as

Vsys = 0.5(V20app + V20rec), (3.1)

where V20 is the velocity where the flux of the global Hi profile is 20% of
the flux peak, while ‘app’ and ‘rec’ indicate the approaching and the receding
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halves of the galaxy.

• Centre of the galaxy: we fix the position of the galactic centre for all rings to
the value found with one of the methods described in Sec. 3.3.2.

3.3 Data Analysis

3.3.1 Hi total map

Before starting the kinematic fit procedure, for each galaxy we produce Hi total maps
from the datacubes. This step is needed both to have an initial rough estimate of
the geometrical properties of the Hi discs and to define the maximum radius to use
in the kinematic fit. Moreover, we use it to extract the Hi surface density profiles
using the best-fit parameters of the disc (Sec. 3.3.2). The Hi surface density profile is
crucial to correct the estimated rotation curve for the asymmetric drift (Sec. 3.3.3).

Hi spatial distribution

Integrating the signal of each pixel along the spectral axis one obtains a 2D total
map that represents the spatial distribution (on the sky) of the Hi emission. To
build these maps, we masked the original datacube with the following procedure:
first we smoothed the original data to obtain a low-resolution cube (between 2 and
3 times the original beam, depending on the galaxy); then, a pixel is included in
the mask only if its emission is above a certain threshold (2.5 of the noise σch of
the smoothed cube) in at least three adjacent channels. Finally we sum, along the
spectral axis, all the flux of the pixel included in the mask obtaining a 2D map.
This method produces a very clean final map with only a small contribution from
the noise.

Using Eq. 1.2, we can directly relate the intensity of the radio emission (S) to
the projected surface density of the gas (Σobs) as

Σobs(x, y)

M� pc−2
= 8794

(
S(x, y)

Jy beam−1

)(
∆V

km s−1

)(
BmajBmin

arcsec2

)−1

, (3.2)

where Bmaj and Bmin are the FWHM of the major and minor axis of the beam and
∆V is the channel separation of the datacube. We obtained the radial profile of
Σobs averaging the total map along elliptical rings defined by the disc geometrical
parameters (see Sec. 3.3.2). The errors on Σobs are calculated as the standard
deviation of the averaged values3.

3 Pixels in datacubes are correlated by the convolution with the instrumental beam occurring
during the observations. As a consequence, the estimated errors are an underestimate of the real
uncertainties (see Sicking 1997). However, the estimated errors for the surface density are already
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The intrinsic surface density (Σint) is defined as the density of the Hi disc in-
tegrated along the vertical axis of the galaxy. Assuming a razor-thin Hi disc, the
relation between Σobs and Σint is simply

Σint(R) = Σobs(R) cos i, (3.3)

because the area of the projected ring is smaller than the one of the intrinsic ring by
a factor cos i. Throughout this Chapter, R indicates both the radius of the circular
ring and the semi-major axis of its projection (see Sec. 1.3.3). Finally, we can have
a measure of the total mass of the Hi disc summing the observed surface densities
of all pixels in the total map multiplied by the physical area of the pixels

MHI

M�
= 23.5

(
δ

arcsec

)2( D
Mpc

)2 ∑
pixels

(
Σobs(x, y)

M�pc−2

)
, (3.4)

where δ is the size of the pixel and D is the distance of the galaxy. To have an
estimate of the uncertainties in this measure we have built two other maps: a low-
resolution map using the smoothed cube that we used to build the mask and an
extremely low-resolution map smoothing again the cube to a beam of 40-60 arcsec.
As described above, we clean these maps removing all the pixels that have not a flux
larger 2.5σch in at least three consecutive channels. We applied the primary beam
correction to the total Hi map using the task PBCORR of GIPSY (van der Hulst
et al., 1992). For each map the mass is estimated using Eq. 3.4 and the method
described above. In particular, we take as measure of the disc mass the average
and the associated error the standard deviation of the values obtained in the three
maps. The final estimates of MHI are listed in Table 3.2 (Col. 7). The intrinsic
surface density profile and the Hi map contours are shown respectively in the box
B (bottom right panel) and in the box C (left panel) of the summary plot of each
galaxy in the Atlas (Appendix 3.A.1).

Figure 3.3 shows the comparison between the mass estimated with our method
and those estimated by O15 and Hunter et al. (2012). The relative difference between
our measures and those of O15 is on average 20%, with the largest discrepancies (up
to 50%) found at the low-mass end; these differences are mainly due to the different
method used to estimate the total mass. The method used in Hunter et al. (2012) is
similar to the one used in this work (Hunter et al. 2012 used only robust datacubes
while we used both robust and natural datacubes; see Col. 4 in Tab. 3.2): in this
case the average relative difference is about 10%. Because of the data-reduction
methods used in Hunter et al. (2012), the natural datacubes have systematically

very large and we did not correct them. Moreover, the elliptical rings are usually much larger than
the beam, so the correlation of the data is not expected to affect significantly the final estimate of
the average and the error of the surface density.
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Figure 3.3: Comparison of the Hi mass estimated in this work and in other works (O15,
blue circles; Hunter et al. 2012, red diamonds.)

lower flux with respect to the robust ones (see Hunter et al. 2012 for the details),
therefore our values are slightly lower.

Noise in the total map and maximum radius

In order to define a maximum radius for the Hi disc, we need to calculate the noise
level in the total map. If we sum N independent channels each with noise σch the
final noise will be equal to σch

√
N . However, using a mask, the number of summed

channels is different from pixel to pixel, moreover the datacubes in our sample have
been Hanning-smoothed and adjacent channels are not independent (see Verheijen
& Sancisi 2001). To have a final estimate of the noise in the total map we follow the
approach of Verheijen & Sancisi (2001) and Lelli, Verheijen & Fraternali (2014b):
we constructed a signal-to-noise map and we defined as the 3σ pseudo level (σ3T)
the mean value of the pixels with a S/N between 2.75 and 3.25. We fit our kinematic
model only to the portion of the datacube within the contour defined by σ3T and
avoiding to use rings which do not intercept, around the major axis, Hi emission
coming from the disc. This ensures a robust estimate of the galactic kinematics
avoiding regions of the galaxy dominated by the noise and with poor information
about the gas rotation. The 3σ pseudo noise levels σ3T are listed in Table 3.2
(Col. 9), while the maximum radii Rmax used in the fit are reported in Table 3.8
(Cols. 1-2).
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Figure 3.4: Initial estimate of the inclination angle for DDO 52 with 3DB (left-hand
panel) and with the fit of the iso-density contours of the Hi total map (right-hand panel).
The red lines show the inclination of the optical disc. See the text for details.

3.3.2 Datacube fit

Given the assumptions we made (Sec. 3.2.1), we are left with two geometrical (i,
PA) and two kinematic (Vrot and σv) parameters. Eq. 1.6 shows that the rotational
velocity and the geometrical parameters are coupled: in particular they become
degenerate for galaxies with rising rotation curves (Kamphuis et al., 2015) as it is
the case for most of the dIrrs. As a consequence, the fitting algorithm tends to be
sensitive to the initial guesses, so it is important to initialise the fit with educated
guess values.

Initial guesses

We estimate the initial values of the the geometrical parameters (centre, i and PA)
using three different methods:

• 3DB: 3DB can automatically estimate the geometrical parameters analysing
the 0th moment (Hi total map) and the 1st moment (velocity field) of the
datacube. The i is estimated by fitting Hi model maps to the observed Hi total
map, while the PA is calculated as the orientation of the line that maximises
the velocity gradient in the velocity field. Finally, the centre is estimated as
the flux-weighted average position of the source. 3DB builds the total map
and the velocity field using a source-finding algorithm (DUCHAMP, Whiting
2012), separating the source pixels from the noise pixels on the basis of a
S/N threshold. As a consequence, the final maps and the estimate of the disc
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Figure 3.5: Same as Fig. 3.4 but for DDO 210.

parameters depend on the choice of this threshold. For this reason we repeat
this analysis using S/N threshold ranging from 2.5 to 5. Finally, we average
the values on the range of S/N where the estimated parameters are almost
constant.

• RingFit: We developed a simple script, called RingFit, to fit ellipses to the
iso-density contours at different radii of our total Hi maps (Sec. 3.3.1). From
the properties of the fitted ellipses we can estimate the geometrical parameters
of the Hi disc at different radii.

• Isophotal fitting of the optical maps: The geometrical parameters are derived
from the V -Band photometry by Hunter & Elmegreen (2006).

Figs. 3.4 and 3.5 show two examples of the estimate of i with the three different
methods. In the first case (DDO 52) the methods are in good agreement, while
in the second case (DDO 210) the results are not compatible (notice that in this
case the Hi contours deviate strongly from elliptical shape, see Box C in Fig. 3.21).
Usually, the optical disc has a more regular morphology with respect to the Hi disc,
therefore we give more weight to the geometrical parameters estimated by Hunter
& Elmegreen (2006). When the geometry of the stellar and of the Hi disc do not
show a clear agreement (Fig. 3.5) or the stellar disc presents peculiar features such
as strong bars, we use the other two methods. More details can be found in the
description of the individual galaxies in Sec. 3.4.

3DB allows to use an azimuthal weighting function w(θ) (see Eq. 1.6) to “weigh”
the residuals non-uniformly across the rings (see Di Teodoro & Fraternali 2015). We
decided to use w(θ) = cos θ to weigh the most the regions around the major axis,
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where most of the information on the galactic rotation lies. If we fit at the same time
the four parameters, we can obtain rotation curves and velocity-dispersion profiles
that show unphysical discontinuities due to the scatter noise of the geometrical pa-
rameters. For this reason, we run 3DB with the option TWOSTAGE (see Appendix
3.C) turned on: first a fit with four free parameters is obtained, then the geometrical
parameters are regularised with a polynomial, and finally a new fit of only Vrot and
σv is obtained. We chose to use the lowest polynomial order allowed by the data:
in practice, we set the geometrical parameters to a constant value, unless there is a
clear evidence of radial trends of i and/or of PA as for example in DDO 133 and in
DDO 154.

The result of the fit is compared by eye with the real datacube both analysing
the position-velocity diagrams (PV, hereafter) along the major axis and the minor
axis, and channel by channel. Figures 3.6 and 3.7 show the comparison in the
channel maps between the observations and the best-fit model found with 3DB for
DDO 154 and NGC 2366: the emission of DDO 154 is reproduced quite well, while
the best-fit model found for NGC 2366 traces the global kinematics but it is not
able to reproduce the extended feature in the North-West of the galaxy (see e.g.
channel at 120 km/s). The presence of such kind of peculiarities makes the study
of the dIrrs Hi disc kinematics challenging and requires careful visual inspection.
Whenever we notice that the model was not a good representation of the data, we
restart the fit changing the initial guesses and/or varying the order of the polynomial
regularisation.

Concerning the errors on the estimated parameters, it is worth spending a few
words about the differences between the standard 2D approach and 3DB. In the
first case the errors are a combination of (i) nominal errors coming from the tilted
ring fit (typically using a Levenberg-Marquardt algorithm) and (ii) the differences
between the fit of the approaching and receding sides. It is well know that nominal
errors are very small. The uncertainties are dominated by the difference between the
approaching and receding sides, an ‘asymmetric-error’ that is not straightforward to
quantify. 3DB uses a Monte Carlo method to estimate the errors further exploring
the parameters space around the best fit solutions (see Di Teodoro & Fraternali 2015
for further details), therefore our quoted errors should be a robust and statistically
significant measure of the uncertainties of the kinematic parameters.

Given that we use the errors estimated with 3DB, we did not fit separately
the approaching and receding halves of the galaxy as often done in the classical 2D
methods. The only exception is DDO 126: in this case the best-fit model found with
3DB using the whole galaxy does not give a good representation of the datacube
because of the strong kinematic asymmetries (see Sec. 3.4).
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 v = 457 km/s  v = 449 km/s  v = 439 km/s  v = 431 km/s  v = 421 km/s

 v = 411 km/s  v = 403 km/s  v = 393 km/s  v = 385 km/s  v = 375 km/s

 v = 364 km/s  v = 356 km/s  v = 346 km/s  v = 338 km/s  v = 328 km/s

Figure 3.6: Channel maps showing the Hi emission for DDO 154: data (top panels,
blue contours) and the best-fit model found with 3DB (bottom panels, red contours).
The velocity of each channel is reported above the panels. The minimum contour is 3σch
(Col. 8 in Tab. 3.2) and adjacent contours differ by a factor of 2 in emissivity; the grey
contours in the the data channels indicate the emission at −3σch. The size of the field is
about 14′ x 14′.
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 v = 195 km/s  v = 185 km/s  v = 174 km/s  v = 164 km/s  v = 151 km/s

 v = 141 km/s  v = 130 km/s  v = 120 km/s  v = 107 km/s  v = 97 km/s

 v = 87 km/s  v = 76 km/s  v = 63 km/s  v = 53 km/s  v = 43 km/s

Figure 3.7: Same as Fig. 3.6 but for NGC 2366. The size of the field is about 20’ x 20’.
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3.3.3 The final circular velocity

Assuming that the gas is in equilibrium, the rotation velocity of the gas (Vrot) can
be related to the galactic gravitational potential (Φ) through the radial component
of the momentum equation

1

ρ

∂ρσ2
v

∂R
= −∂Φ

∂R
+

V2
rot

R
, (3.5)

where ρ is the volumetric density of the gas and σv is the velocity dispersion. There-
fore, the observed Vrot is not a direct tracer of the galactic potential when the
pressure support term (ρσ2

v) due to the random gas motions is non-negligible.

Pressure support correction

Eq. 3.5 can be re-written as

V2
c − V2

rot = −R
ρ

∂ρσ2
v

∂R
= −Rσ2

v

∂ ln(ρσ2
v)

∂R
= V2

A, (3.6)

where Vc =
√

R∂Φ
∂R is the circular velocity and VA is the pressure support or

asymmetric-drift term, which becomes increasingly important at large radii and
is heavily dependent on the value of the velocity dispersion. When the rotation
velocity is much higher than the velocity dispersion the asymmetric-drift correction
is negligible. This is the case in spiral galaxies where typically Vrotσ

−1
v > 10 (e.g.

de Blok et al. 2008). Instead, for several dIrrs the rotation velocity is comparable
to the velocity dispersion, making the asymmetric-drift correction indispensable for
an unbiased estimate of the galactic potential.

The volumetric density in the equatorial plane (z=0) is proportional to the ra-
tio of the intrinsic surface density and the vertical scale height (zd), therefore the
asymmetric drift V2

A is given by

V2
A = −Rσ2

v

∂ ln
(
σ2
vΣintz−1

d

)
∂R

. (3.7)

We can ignore the term with the radial derivative of zd assuming that the thickness
of the gaseous layer is independent of radius (but see Sec. 4.3). Furthermore,
assuming that the Hi disc is thin, the ratio between the intrinsic and the observed
surface density is just the cosine of i (Eq. 3.3). Under these assumptions, from Eq.
3.7 we derive the classical formulation of the asymmetric-drift correction (see e.g.
O15):

V2
A = −Rσ2

v

∂ ln (σ2
vΣobs cos i)

∂R
. (3.8)
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Except for DDO 168, NGC 1569 and UGC 8508, all the analysed galaxies have a
constant i and the cosine in Eq. 3.8 can also be ignored.

Application to real data

Fluctuations of the observed surface density and of the measured velocity dispersion
at similar radii can have dramatic effects on the numerical calculation of the radial
derivative in Eq. 3.8. As a consequence, the final asymmetric-drift correction can
be very scattered causing abrupt variations in the final estimate of the circular
velocity. For this reason, we decided to use functional forms to describe both the
velocity dispersion and the argument of the logarithm in Eq. 3.8. The velocity
dispersion is regularised with a polynomial σp(R, np) with degree np lower than 3.
If there is not a clear radial trend, we consider a fixed velocity dispersion taking the
median of σv(R). The radial variation of the velocity dispersion is usually small,
therefore the radial trend of Σintσ

2
v is dominated by the behaviour of the surface

density: this falls off exponentially at large radii, while in the centre it is almost
constant or it shows an inner depression. In analogy with Bureau & Carignan (2002)
we chose to fit Σintσ

2
v with the function

f(R) = f0

(
Rc

arcsec
+ 1

)(
Rc

arcsec
+ e

R
Rd

)−1

, (3.9)

where f0 is a normalisation coefficient, and Rc and Rd are characteristic radii. The
function f is characterised by an exponential decline at large radii and by an inner
core almost equal to f0. Read et al. (2016) showed that the Eq. 3.9 is a good
compromise between a pure exponential that overestimates the asymmetric-drift
correction in the inner radii, and a functional form with an inner depression that
can produce unphysical negative values of V2

rot. Combining Eq. 3.9 and Eq. 3.8 we
can write the asymmetric-drift correction as

V2
A = R

σ2
p(R, np)e

R
Rd

Rd

(
Rc

arcsec
+ e

R
Rd

)−1

. (3.10)

Error estimates

We can calculate the final errors on Vc by applying the propagation of errors to Eq.
3.6 to obtain

δc =

√
V2

rotδ
2
rot + V2

Aδ
2
A

Vc
, (3.11)

where δrot is the error found with 3DB and δA is the uncertainty associated with the
estimated values of the asymmetric-drift term. Usually δA is simply ignored (e.g.
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Bureau & Carignan 2002; O15), thus the uncertainties on the final corrected rotation
curve are equal to δrot. This is a reasonable assumption if the rotational terms in
Eq. 3.11 are dominant, but for some galaxies in our sample (e.g. DDO 210) the
final circular rotation curve is heavily dependent on the asymmetric-drift correction.
In these cases it is important that δc includes the uncertainties introduced by the
operations described in Sec. 3.3.3. We decided to estimate δc with a Monte Carlo
approach:

1. First we make N realisations of the radial profile of both the velocity dispersion
and of the surface density. For each sampling radius R the values of a single
realisation σiv(R) or Σi

int(R) are extracted randomly from a normal distribution
with the centre and the dispersion taken respectively from the values and errors
of the parent populations.

2. For each of the N realisations we apply the method described in Sec. 3.3.3 to
obtain the asymmetric-drift correction at each sampling radius Vi

A(R).

3. The final asymmetric-drift correction is calculated as VA(R) = mediani(Vi
A(R)),

where each Vi
A is obtained with the Eq. 3.10. The associated errors are

δA(R) = K ×MAD(Vi
A(R)) where the MAD is the median absolute deviation

around the median. The factor K links the MAD with the standard deviation
of the sample (K ≈ 1.48 for a normal distribution). We chose to use the
median and the MAD because they are less biased by the presence of outliers
with respect to the mean and the standard deviation.

We found that N = 1000 is enough to obtain a good description of the error intro-
duced by the asymmetric-drift correction.

3.4 Results and discussion

We applied the techniques described in Sec. 3.3 to each of the dIrrs presented in
Sec. 3.1. The final results are ready-to-use high quality kinematic data that we
made publicly available (see the on-line version of Iorio et al. 2017b4).

In the following sections we discuss the individual galaxies (Sec. 3.4.1) and
we compare our estimated rotation curves with the one obtained with classical 2D
method in O15 (Sec. 3.4.2).

The assumptions made in the analysis and the general properties derived for
each of the dIrrs can be found in in Tab. 3.8, in particular in Col. 8 we report the
value of the velocity of the outer disc (Vo) defined as the mean circular velocity of

4The data tables can be downloaded also from http://www.filippofraternali.com/
resources/finalrot.zip

http://www.filippofraternali.com/resources/finalrot.zip
http://www.filippofraternali.com/resources/finalrot.zip
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the last three fitted rings (see Sec. 3.3.2). The error on Vo is conservatively assumed
as the maximum error between these three values.

In the Appendix 3.A we present the summary plots (Appendix 3.A.1) and the
Tables (Appendix 3.A.2) with the radius-by-radius kinematic (circular velocity, ve-
locity dispersion) and Hi mass distribution information (intrinsic surface density)
for each analysed galaxy.

3.4.1 Notes on individual galaxies

- CVnIdwA. The Hi morphology of CVnIdwA (Fig. 3.10) looks regular, but
the orientation of the Hi iso-density contours is quite different with respect to
the direction of the velocity gradient. The emission of the stellar disc is very
patchy, so we estimated the geometrical parameters of the Hi disc using 3DB
(see Sec. 3.3.2).

- DDO 47. The Hi disc of DDO 47 (Fig. 3.11) is nearly face-on, while the stellar
disc looks highly inclined at 64◦ (Hunter & Elmegreen, 2006) and probably
hosts a bar-like structure (Georgiev, Karachentsev & Tikhonov, 1997). We
decided to use only the Hi data to estimate iini, PAini and the galactic centre.
The best-fit i (see Tab. 3.8) is consistent with previous works (35◦ in Gentile
et al. 2005, 30◦ in de Blok & Bosma 2002 and Stil & Israel 2002a) and seems
a reasonable upper limit for this galaxy (see ellipses in Box C in Fig. 3.11). In
the very outer part of the disc, the inclination is probably even lower, therefore
given the large uncertain estimate of the rotational velocities in nearly face-on
discs (see Sec. 3.1.1), we decided to limit our analysis to the maximum radius
of 210 arcsec. The final rotation curve shows a flattening at R < 60′′: analysing
the PVs and the channel maps we found that at these radii the emission is
dominated by small high-density regions that can bias the kinematic fit. For
this reason, we consider the velocities for R < 120′′ not completely reliable
(empty circles in Box A in Fig. 3.11).

- DDO 50. The gaseous disc of DDO 50 (Fig. 3.12) is “drilled” by medium-
large Hi holes ranging from 100 pc to 1.7 kpc (Puche et al., 1992). Despite
this peculiarity, the large scale kinematics is quite regular and typical of a flat
rotation curve. The estimates of the i and PA are difficult given that this
galaxy is nearly face-on. The i of the optical disc (47◦) looks too high to be
compatible with the Hi contours: the best agreement between the datacube
and the model has been found using initial values of 30◦ for iini and 180◦ for
PAini. The centre was set using the coordinates of the centre of the stellar disc
(Hunter & Elmegreen, 2006).

- DDO 52. The best-fit i of DDO 52 (Fig. 3.13) tends to be more edge-on
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Galaxy Rmax

(arcsec)
(1)

Rmax

(kpc)
(2)

∆R
(pc)
(3)

centre Vsys

(km/s)
(5)

iini
(◦)
(6)

PAini

(◦)
(7)

Vo

(km/s)
(8)

〈σv〉
(km/s)
(9)

〈i〉
(◦)
(10)

〈PA〉
(◦)
(11)

RA
(4a)

DEC
(4b)

CVnIdwA 90 1.6 170 12 38 40.2B 32 45 52B 307.9B 41B 55B 21.5± 3.9 7.7± 0.5 49.2± 10.9 60.6± 18.5
DDO 47 210 5.3 380 7 41 54.6H 16 48 10H 272.8B 35H 310H 62.6± 5.2† 7.9± 0.2 37.4± 1.7† 317.4± 7.3
DDO 50 390 6.4 190 8 19 08.7S 70 43 25S 156.7B 30T 180T 38.7± 10.1† 9.0± 1.5 33.1± 4.6† 174.9± 5.9
DDO 52 108 5.4 450 8 28 28.5S 41 51 21S 396.2B 51S 5S 51.1± 6.3 8.0± 0.8 55.1± 2.9 6.5± 2.0
DDO 53 60 1.1 110 8 34 08.0S 66 10 37S 20.4B 35T 120T 20.3± 6.6† 7.9± 0.1 37.0± 2.0† 123.4± 3.8
DDO 87 144 5.2 430 10 49 34.7S 65 31 46S 338.7B 40T 240B 50.3± 9.1 6.3± 2.4 42.7± 7.3 238.6± 4.7
DDO 101 60 1.9 190 11 55 39.4S 31 31 8S 586.6B 49S 290S 59.2± 3.6 4.8± 1.7 52.4± 1.7 287.4± 3.6
DDO 126 140 3.3 240 12 27 06.3H 37 08 23H 214.3B 63B 138B 38.6± 3.1 9.1± 1.6 62.2± 2.9 140.7± 3.5
DDO 133 165 2.8 190 12 32 55.4S 31 32 14S 331.3B 38B 20B 47.2± 5.1† 8.1± 0.7 38.9± 3.7† −3.8± 8.9
DDO 154 390 7.0 270 12 54 06.2S 27 09 02S 375.2B 65S 224S 47.1± 5.1 8.5± 0.9 67.9± 1.1 226.1± 2.6
DDO 168 225 4.7 310 13 14 27.9B 45 55 24B 191.9B 60T 300− 270T 56.2± 6.9 8.8± 1.3 62.0± 2.6 272.7± 4.2
DDO 210 100 0.4 40 20 46 52.0S -12 50 51S -140.0B 60T 65T 16.4± 9.5 6.2± 0.6 63.2± 3.2 77.3± 15.2
DDO 216 195 1.0 80 23 28 32.1H 14 44 50H -188.0T 65H 130H 13.6± 5.5 5.6± 0.5 70.0± 5.0 130.4± 9.0
NGC 1569 150 2.5 250 4 30 49.8S 64 50 51S -75.6B 61S 122S 55.6± 22.4 21.0± 4.0 67.0± 5.6 114.6± 4.0
NGC 2366 384 6.3 260 7 28 48.8S 69 12 22S 100.8B 65B 35B 57.7± 5.4 12.6± 1.8 65.1± 4.2 39.8± 2.8
UGC 8508 110 1.4 130 13 30 44.9S 54 54 29S 59.9B 65H 120H 33.8± 6.4 9.1± 1.8 67.6± 5.3 123.2± 1.7
WLM 600 2.9 120 0 01 59.2S -15 27 41S -124.0B 70S 178S 38.7± 3.4 7.7± 0.8 74.0± 2.3 174.0± 3.1

Table 3.8: Fit results: - (1) outermost radius in arcsec (see Sec. 3.3.1); (2) outermost radius in kpc (see Sec. 3.3.1); (3) sampling
radius used in the datacube fitting; (4a)(4b) assumed galactic centre in RA (hh mm ss.s) and DEC (dd mm ss) coordinate system
(J2000); (5) assumed systemic velocity (see Sec. 3.2.1); (6) initial guesses for i; (7) initial guesses for PA. S indicates that the values
is estimated from the stellar disc (Hunter & Elmegreen, 2006), B using 3DB, H using the fit of the contours of the Hi total map (see
Sec. 3.3.2 for details). T indicates peculiar cases (see the individual galactic description for details). Results: (8) mean circular velocity
of the outer disc, calculated as the median of the Vc at three most external radii; (9) median of the best-fit velocity dispersion found with
3DB; (10) median of the best-fit PA found with 3DB; (11) median of the best-fit i found with 3DB.† indicates nearly face-on galaxies in
which the quoted errors on 〈i〉 and Vo could underestimate the real uncertainties.
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at the end of the disc. However, the analysis of the channels and of the PVs
indicates that the model with a constant i gives a better representation of the
data.

- DDO 53. The stellar disc and the Hi disc of DDO 53 (Fig. 3.14) are misaligned
and the galaxy is nearly face-on. As a consequence, i and PA are very difficult
to constrain: we tried different values in the range 30◦-50◦ for iini and 100◦-
140◦ for PAini. The best match with the data has been found using iini = 35◦

and PA= 120◦, but the rotational and the circular velocities should be taken
with caution. In the northern part of the galaxy there is some extra emission
possibly connected with an inflow/outflow: this region is clearly visible in the
PV along the minor axis around −50 arcsec at a velocity of about 5 km s−1 .

- DDO 87. The morphology of DDO 87 (Fig. 3.15) is clearly irregular in the
inner part, but the outer disc looks more regular. We decided to set the
initial guesses for the PA using 3DB (see Appendix 3.3.2). We tried different
initial guesses for i: the best representation of the data has been obtained with
iini = 40◦ and PAini = 240◦, approximately 15◦ lower than the orientation of
the optical disc (Hunter & Elmegreen, 2006).

- DDO 101. The Hi disc of DDO 101 (Fig. 3.16) is extended only slightly
beyond the optical disc and the Hi emission is almost constant with some high
density structures around 1.0 kpc. Notice that the estimates of the distance
for this galaxy are very uncertain (ranging from 5 to 16 Mpc) since they all
rely on a poor distance estimator (Tully-Fisher relation, e.g. Karachentsev,
Makarov & Kaisina 2013).

- DDO 126. DDO 126 (Fig. 3.17) shows kinematic asymmetries, so we sepa-
rately run 3DB also on the approaching and the receding halves of the galaxy.
Beyond 1.5 kpc the fit on the whole galaxy gives a good representation of the
datacube and the errors found with 3DB are larger than (or comparable to)
the differences due to the kinematic asymmetries (black circles in Box A in
Fig. 3.17). The inner regions are less regular and the best model has been
found taking the mean between the approaching and receding rotation curves
(empty circles in Box A in Fig. 3.17), while the errors have been calculated
as half the difference between the two values following the recipe of Swaters
(1999).

- DDO 133. The Hi disc of DDO 133 (Fig. 3.18) has a regular kinematics,
although there is evidence of non-circular motions, especially in the region of
the stellar bar (Hunter et al., 2011). The final PA found with 3DB is about
20◦ in the inner part of the disc (R < 0.5 kpc) and it becomes almost zero
in the outer disc. We decided to take the radial trend of the PA into account
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with a fourth order polynomial. This galaxy is close to face-on, therefore the
rotational and circular velocities should be taken with some caution.

- DDO 154. The Hi morphology and the kinematics of DDO 154 (Fig. 3.19)
is quite regular. However, the contours of the Hi map clearly show a radial
trend of the PA, as confirmed by the values found with 3DB. We followed this
radial trend with a fourth order polynomial. The polynomial gives too large
values of the PA at small radii (R < 1 kpc), so we decided to fix the PA in this
region to the mean values of the first three points (see Box B in Fig. 3.19). As
in O15, we do not confirm the almost Keplerian fall-off of the rotation curve
claimed by Carignan & Purton (1998) beyond 5 kpc. The channel maps are
shown in Fig. 3.6

- DDO 168. The velocity gradient of DDO 168 (Fig. 3.20) is misaligned with
respect to both the Hi and the stellar disc. Moreover, the presence of a promi-
nent bar visible both in the stellar disc (Hunter & Elmegreen, 2006) and in
the inner part of the Hi disc makes the initial estimate of the geometrical
parameters very uncertain. We obtained a first estimate of the PA using the
2D tilted-ring fitting of the velocity field shown in Fig. 3.20: the resultant PA
decreases from 300◦ to about 270◦. We used these values as initial guesses
for all sampling radii in 3DB (see Appendix 3.3.2). The centre was set to
the value found with 3DB which roughly corresponds to the optical centre.
We tried different values for iini between 40◦ − 70◦: the best reproduction of
the datacube has been obtained with iini = 60◦. The final results still show
a variation of PA that we regularised with a second order polynomial. The
outer disc of DDO 168 is quite irregular. There is extra emission at velocities
close to Vsys possibly related to inflow/outflow, while the distortions of the
iso-velocity contours (Box C. in Fig. 3.20) could be due to the presence of an
outer warp.

- DDO 210. DDO 210 (also know as Aquarius dIrr, Fig. 3.21) is the least
massive galaxy in our sample and it is classified as a transitional dwarf galaxy
(McConnachie 2012 and reference therein). The kinematics is dominated by
the velocity dispersion, however a weak velocity gradient is visible. The ve-
locity gradient looks misaligned with both the stellar and the Hi disc, so we
set the initial values of i and PA (60◦ and 65◦, respectively) using a by-eye
inspection of the velocity field. The estimate of the galactic centre is very
uncertain and we decided to set it to the optical value (Hunter & Elmegreen,
2006), but we excluded from our analysis the first two points (10 and 20 arc-
sec). This procedure is quite arbitrary, but it is important to note that the
final circular-velocity curve is quite independent of our procedure since it is
totally dominated by the asymmetric-drift correction (see Sec. 3.3.3). Notice
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that along the minor axis there is an extended region with Hi emission ap-
parently not connected with the rotating disc. As in the case of DDO 53 this
emission could trace an inflow/outflow.

- DDO 216. DDO 216 (also know as Pegasus dIrr, Fig. 3.22) is defined as
a transitional dwarf galaxy (Cole et al., 1999). The galaxy shows a velocity
gradient aligned with the Hi and the optical disc, but it could be entirely due
to a single ‘cloud’ at a discrepant velocity in the approaching side of the galaxy
(Stil & Israel, 2002b). For the purpose of our work, we assumed the gradient
genuine and caused entirely by the gas rotation. The analysis of the alternative
scenario can be found in Appendix 3.B. Given the kinematic peculiarities (see
Appendix 3.B), we did not use 3DB to estimate the Vsys (Sec. 3.2.1). We
tried different values between −186 and −190 km s−1 and we decided to use
Vsys = −188 km s−1 because this value minimises the kinematic asymmetries
between the receding and the approaching halves of the galaxy. We set the
centre, iini (65◦) and PAini (130◦) using the values obtained from the elliptical
fit of the outermost Hi contours (R > 600 pc). The best-fit PA decreases from
about 140◦ to about 125◦.

- NGC 1569 NGC 1569 (Fig. 3.23) is a starburst galaxy with a very disturbed
Hi kinematics and morphology (Stil & Israel, 2002a; Johnson et al., 2012; Lelli,
Verheijen & Fraternali, 2014a). We found that the best-fit model shows a slight
increase of i and a slight decrease of PA as a function of radius. The best-fit
model is a good representation of the large scale structure and kinematics of
the Hi disc, but it fails to reproduce the small scale local features. The ISM
of this galaxy is highly turbulent: the velocity dispersion found with 3DB is
about 20 km s−1 and the asymmetric-drift correction dominates at all radii.
For this reason the kinematic data reported here should be used with caution
especially at the inner radii (empty circles in Box A in Fig. 3.23) where no
significant rotation of the gas is observed (see also Lelli, Verheijen & Fraternali
2014a).

- NGC 2366. The Hi disc of NGC 2366 (Fig. 3.24) is quite regular, although it
shows some peculiar features. The Hi emission on the channel maps (Fig. 3.7)
indicates the presence of two ridges located in the North-West and South-East
(less prominent) of the disc running parallel to the major axis. The ridges
show different kinematics with respect to the disc (see Oh et al. 2008) and
their origin is not clear (see Hunter, Elmegreen & van Woerden 2001 for a
detailed discussion). We checked that 3DB was not affected by the presence
of this feature. From the PV along the major axis (Panel D in Fig. 3.24) it
is clear that the 3DB model does not reproduce some emission close to the
systemic velocity, especially in the receding side where the gas is seen also
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at ‘forbidden’ velocities below Vsys. As already stated by Lelli, Verheijen &
Fraternali (2014a) this is probably due to the presence of some extraplanar
gas that is rotating at lower velocity with respect to the gas in the disc (see
e.g. Fraternali et al. 2002). As in Lelli, Verheijen & Fraternali (2014a) and in
O15 we do not find that the rotation curve declines beyond 5 kpc, as instead
claimed by both Hunter, Elmegreen & van Woerden (2001) and van Eymeren
et al. (2009).

- UGC 8508. The Hi and the stellar disc of UGC 8508 (Fig. 3.25) are aligned
but the analysis of the Hi map favours an i slightly higher than the value ob-
tained from the stellar disc (Hunter & Elmegreen, 2006). We found that the
datacube is better reproduced with a linearly increasing i. Notice that in the
inner part of the galaxy (R < 0.6 kpc) the kinematics is very peculiar as it is
visible by the S-shaped iso-velocity contours (left-panel C in Fig. 3.25). This
kind of distortions can be related to an abrupt variation of the PA and/or to
the presence of radial motions (Fraternali et al., 2001) as well as to a deviation
from axisymmetry of the galactic potential (Swaters et al., 1999). We tested
the hypothesis of a radially varying PA and the presence of non-zero radial
velocities (Vrad) performing a 2D analysis of the velocity field with ROTCUR
(Begeman, 1987). We found that the combination of the two effects can par-
tially explain the distortions of the velocity field, but their magnitude is too
large to be physically plausible. Fortunately, the final rotation curves obtained
including radial motions and/or the varying PA are compatibles with the re-
sults we found with 3DB, though the inner points (empty circles in Box A in
Fig. 3.25 ) should be treated with caution.

- WLM. The Hi and the optical discs of WLM (Fig. 3.26) are well aligned, but
the best-fit i looks slightly too edge-on with respect to the Hi contours (see
ellipses in Fig. 3.26). The excess of the emission around the minor axis could
be due to the Hi disc thickness (see Fig. 4.14 and Sec. 4.3.4, see also Leaman
et al. 2012). Further details on the analysis of WLM can be found in Read
et al. (2016).

3.4.2 Comparison to the standard 2D approach

In this Section we compare the rotation curves obtained with our method with the
ones obtained in O15 for the same dataset with the classical 2D approach. As a
general feature, the rotation curves of O15 reach larger radii: the median difference
on the radial extension is about 700 pc and the galaxies with the largest discrepancies
are: DDO 50 (3.4 kpc), DDO 87 (2.2 kpc) and NGC 2366 (1.8 kpc). DDO 216
has rotation curves of similar extensions, while our rotation curves for DDO 210
and DDO 168 are more extended by about 200 pc and 700 pc respectively. These
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Figure 3.9: Circular velocity (Vc) and asymmetric-drift term (VA) for four representative
galaxies in our sample (a: WLM, b: DDO50, c: DDO 168, d: NGC 1569). The red squares
and the red curves show the results found in this work, while the grey circles and the grey
curves show the results obtained in O15.

differences are due to the different approach in the choices on the outermost radii
considered in the kinematic fit. We decided to include only the part of the galaxy
with clear information on the rotation motion and not dominated by the noise (see
Sec. 3.3.1), as shown by the elliptical rings over plotted to the Hi maps and Hi
velocity fields (Box C in Figs. 3.10-3.26). In contrast, O15 extended the fit as
much as possible, but in some cases the outer part of the rotation curves might be
extracted mainly from emission around the minor axis which have poor information
on the rotational motion. The peril of this approach is that the rotation curves at
large radii can be quite unreliable or show artifacts as for example in WLM (Fig.
3.9a) where the rotation curve of O15 shows an abrupt drop-off after the outermost
radii used in our analysis.

Concerning the shapes of rotation curves, about half of our results are compatible
with O15 within the errors. When differences are present they can be due to a
combination of three different reasons: (i) an intrinsic difference in the best-fit
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projected rotational velocities (Vrot sin i), (ii) a difference in the best-fit i, PA or
centre and (iii) a difference in the asymmetric-drift correction terms (VA). Most
of the cases are due to (ii) and (iii); only one galaxy (DDO 168) seems to have a
significant discrepancy caused by the two different fitting methods. This galaxy is
shown in Fig. 3.9c, while examples of (ii) and (iii) are shown in Figs. 3.9b and 3.9d.
The galaxies showing the largest discrepancies are listed below.

- CVnidwa. Our final rotation curve is systematically higher than that of O15
by about 5 km s−1. This difference is totally dominated by the discrepancy
in the asymmetric-drift correction term. Our VA is already significant at the
inner radii, while the VA of O15 is negligible out to 2 kpc. These differences
are ascribed to the different radial trend of the intrinsic surface density profile
caused by discrepancies in the best-fit PA .

- DDO 47. The circular velocity shows a discrepancy of about 7 km s−1 in the
inner part of the disc (R < 2 kpc) due to a discrepancy on the best-fit i: O15
used i ≈ 55◦ while we used i = 37◦ independent of radius.

- DDO 50. Discrepancies of about 10 km s−1 (see Fig. 3.9b) are due to the
different assumption on the value of i (about 50◦ in O15 and 33◦ in this work).
Our curve is also less extended (see Fig. 3.12).

- DDO 52. The final rotation curve of O15 is systemically higher due to the
different values of i (about 37◦ in O15 and 55◦ in this work).

- DDO 87. Our final rotation curve shows a steeper rising due to a discrepancy
in the assumed i: we used i = 40◦ independent of radius, while in O15 i varies
between 60◦ and 40◦.

- DDO 168. The final rotation curves are quite different (see Fig. 3.9c). In
O15 the curve flattens at about 2 kpc and starts to decrease at 3 kpc, while
our rotation curve shows a less steep rising in the inner part and a flattening
at about 3.5 kpc. These discrepancies are due mainly to an intrinsic difference
in the best-fit projected rotation curve found with the two methods. The
differences are further increased by the different assumptions on i (i ≈ 60◦ in
this work, i ≈ 40◦ in O15).

- NGC 1569. The circular rotation curve found in this work rises steeper with
respect to the rotation curve reported in O15 (see Fig. 3.9d). The difference
is caused by the asymmetric-drift correction given that with our 3D method
we find a different radial trend of both the velocity dispersion and the intrinsic
surface density.
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- NGC 2366. Our final rotation curve is systematically lower in the inner disc
(R < 2 kpc). The cause is a combination of a different position of the galactic
centre and different PA. We used a constant PA of about 40◦, while in O15
the PA grows from 20◦ to 40◦ in the first two kpc.

3.5 Summary

We presented a study of the kinematics of the HI discs for 17 dwarf irregular galaxies
taken from the public survey LITTLE THINGS (Hunter et al., 2012). The main
goal of this work is to make available to the community a sample of high-quality
rotation curves of dIrrs ready-to-use to perform dynamical studies. The tabulated
quantities (Vrot, Vc, VA, σv) and HI surface-density profile (Σint) are available in the
Appendix 3.A.2 and in the on-line version of Iorio et al. (2017b). The key points of
this work are listed below.

1. We derived the rotation curves from the HI datacubes with a state-of-art
technique: the publicly available software 3DBAROLO (Di Teodoro & Frater-
nali, 2015). It fits 3D models to the datacubes without explicitly extracting
velocity fields. The fit in the 3D space of the datacubes ensures full control of
the observational effects and in particular a proper account of beam smearing.

2. The maximum radii used in the fits have been chosen with great care from
the HI total map. This ensures a robust estimate of the kinematics avoiding
regions of the galaxy dominated by the noise and with scant information about
the gas rotation.

3. We developed a method to take into account the uncertainties of the asymmetric-
drift correction. As a consequence, the quoted errors on the rotation curves
are representative of the real uncertainties. The inclusion of these errors are
fundamental in galaxies for which the calculation of the circular velocity is
highly dominated by the asymmetric-drift correction (e.g. DDO 210).

In Chapter 4, we will use a new original method to explore whether the presence
of a significant Hi disc thickness can introduce biases in the results presented in this
work. In Chapter 5, we will further exploit the results obtained in this Chapter to
test scaling relations for the smallest galaxies in the Universe.
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3.A Atlas and Data

3.A.1 Atlas

This Appendix includes the summary plots for all the galaxies in our sample. The
general descriptions for the different boxes shown in the Figures are reported below.

• Box A: Rotation velocity estimated with 3DB (Vrot, blue line), asymmetric-
drift correction (VA, grey circles) and final corrected circular velocity (Vc,
black circles).

• Box B:

Top: Inclination (left-hand panel) and position angle (right-hand panel)
found with 3DB as functions of radius R. The red lines show the fit used
to obtain the rotation velocity (see Sec. 3.3.2), while the black dashed
line indicates the median of the data.

Bottom: HI velocity dispersion estimated with 3DB (left-hand panel)
and intrinsic surface density of the HI disc not corrected for Helium (right-
hand panel) as a function of the radius R. In the left-hand panel the
black dashed line indicates the median of the data. The empty circles
(if present) represent the points excluded both from the calculation of
the asymmetric-drift correction (see Sec. 3.3.3) and from the calculation
of the median. The excluded points belong to rings where the velocity
dispersion found with 3DB is discrepant or peculiar with respect to global
trend.

• Box C:

Left-hand panel: Stellar emission overlaid with the iso-density contours
of the total HI emission. The thick contour indicates σ3T , the 3σ pseudo
noise of the total map (see Sec. 3.3.1 and Tab. 3.2).

Right-hand panel: Velocity field obtained as the 1th moment of the data
cube. The thick contour highlights the systemic velocity (see Tab. 3.8).
A physical scale is plotted on the bottom right corner of the panel, while
the beam of the HI observation is shown in the bottom left corner.

The crosses and the ellipses show the assumed galactic centre and the last used
ring respectively (see Tab. 3.8).
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• Box D: PV diagram along the major (left-handed panel) and the minor (right-
handed panel) axis of the HI disc. The black and the red contours show
respectively the iso-density contours of the galaxy and the best-fit model found
with 3DB. The horizontal black dashed lines indicate the systemic velocity.

The physical radii have been calculated assuming the distance in Tab. 3.2. Fur-
ther information on the step of the iso-density and of the iso-velocity contours can
be found in the caption below each Figure.
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Figure 3.10: Notes. C (left-hand panel): Contours at 2nσ3T and σ3T = 0.96 M�pc−2

(thick contour), stellar map in SDSS r band (Baillard et al., 2011); C (right-hand panel):
Contours at Vsys±∆V where ∆V = 6.0 km s−1 and Vsys = 307.9 km s−1 (thick contour).
D: Contours at (2+4n)σch, where σch = 0.63 mJy beam−1, the grey contours are at -2σch.
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Figure 3.11: Notes. A: The empty circles indicate the region in which the estimate
of the rotation curve can be biased by small HI regions at anomalous velocity along the
major axis (see the text for further details); C (left-hand panel): Contours at 2nσ3T and
σ3T = 0.41 M�pc−2 (thick contour), stellar map in SDSS r band (Baillard et al., 2011); C
(right-hand panel): Contours at Vsys ±∆V where ∆V = 20.0 km s−1 and Vsys = 272.8
km s−1 (thick contour). D: Contours at (2 + 6n)σch, where σch = 0.61 mJy beam−1, the
grey contours are at -2σch.



3.A. Atlas and Data 107

0 1 2 3 4 5 6
R [kpc]

0

10

20

30

40

50

60

V
 [

km
/s

]

Vrot

Vc

VA

0

10

20

30

40

50

60

i
[d

e
g
]

140

160

180

200

220

240

P
A

[d
e
g
]

0 1 2 3 4 5 6

R [kpc]

0
2
4
6
8

10
12
14
16

σ
v

[k
m

/s
]

0 1 2 3 4 5 6

R [kpc]

0

2

4

6

8

10

12

in
t
[M

p
c-2

]

24'36'48'00'12'
RA (J2000)

+36'

+40'

+44'

+48'

+52'

D
e
c 

(J
2
0
0
0
)

3.0 kpc

120

128

136

144

152

160

168

176

184

V
 [

km
/s

]

400 200 0 200 400

R [arcsec]

100

120

140

160

180

200

V
 [

km
/s

]

PA 174.1 deg

400 200 0 200 400

R [arcsec]

PA 264.1 deg

5 0 5
R [kpc]

5 0 5
R [kpc]

DDO 50
A B

C

D

Figure 3.12: Notes. C (left-hand panel): Contours at 3nσ3T and σ3T = 0.65 M�pc−2

(thick contour), stellar map in R band from Cook et al. (2014); C (right-hand panel):
Contours at Vsys±∆V where ∆V = 12.0 km s−1 and Vsys = 156.7 km s−1 (thick contour).
D: Contours at (2+7n)σch, where σch = 0.82 mJy beam−1, the grey contours are at -2σch.
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Figure 3.13: Notes. C (left-hand panel): Contours at 2nσ3T and σ3T = 1.20 M�pc−2

(thick contour), stellar map in SDSS r band (Baillard et al., 2011); C (right-hand panel):
Contours at Vsys±∆V where ∆V = 10.0 km s−1 and Vsys = 396.2 km s−1 (thick contour).
D: The contours start from (2 + 4n)σch, where σch = 0.46 mJy beam−1, the grey contours
are at -2σch.
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Figure 3.14: Notes. C (left-hand panel): Contours at 2nσ3T and σ3T = 3.80 M�pc−2

(thick contour), stellar map in R band from Cook et al. (2014); C (right-hand panel):
Contours at Vsys ±∆V where ∆V = 8.0 km s−1 and Vsys = 20.4 km s−1 (thick contour).
D: Contours at (2+4n)σch, where σch = 0.57 mJy beam−1, the grey contours are at -2σch.
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Figure 3.15: Notes. C (left-hand panel): Contours at 2nσ3T and σ3T = 0.90 M�pc−2

(thick contour), stellar map in SDSS r band (Baillard et al., 2011); C (right-hand panel):
Contours at Vsys±∆V where ∆V = 10.0 km s−1 and Vsys = 338.7 km s−1 (thick contour).
D: Contours at (2+4n)σch, where σch = 0.51 mJy beam−1, the grey contours are at -2σch.
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Figure 3.16: Notes. C (left-hand panel): Contours at 4nσ3T and σ3T = 0.90 M�pc−2

(thick contour), stellar map in SDSS r band (Baillard et al., 2011); C (right-hand panel):
Contours at Vsys±∆V where ∆V = 20.0 km s−1 and Vsys = 586.6 km s−1 (thick contour).
D: Contours at (2+6n)σch, where σch = 0.50 mJy beam−1, the grey contours are at -2σch.
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Figure 3.17: Notes. A: The empty circles indicates the region in which the circular
velocity has been calculated as the mean between the approaching and receding rotation
curves; C (left-hand panel): Contours at 2nσ3T and σ3T = 1.27 M�pc−2 (thick contour),
stellar map in SDSS r band (Baillard et al., 2011); C (right-hand panel): Contours at
Vsys±∆V where ∆V = 8.0 km s−1 and Vsys = 214.3 km s−1 (thick contour). D: Contours
at (2 + 6n)σch, where σch = 0.41 mJy beam−1, the grey contours are at -2σch.
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Figure 3.18: Notes. C (left-hand panel): Contours at 2nσ3T and σ3T = 0.89 M�pc−2

(thick contour), stellar map in R band from Cook et al. (2014); C (right-hand panel):
Contours at Vsys±∆V where ∆V = 8.0 km s−1 and Vsys = 331.3 km s−1 (thick contour).
D: Contours at (2+5n)σch, where σch = 0.35 mJy beam−1, the grey contours are at -2σch.
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Figure 3.19: Notes. C (left-hand panel): Contours at 2nσ3T and σ3T = 0.52 M�pc−2

(thick contour), stellar map in R band from Cook et al. (2014); C (right-hand panel):
Contours at Vsys±∆V where ∆V = 10.0 km s−1 and Vsys = 375.2 km s−1 (thick contour).
D: Contours at (2+8n)σch, where σch = 0.44 mJy beam−1, the grey contours are at -2σch.
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Figure 3.20: Notes. C (left-hand panel): Contours at 3nσ3T and σ3T = 0.54 M�pc−2

(thick contour), stellar map in r band from (Baillard et al., 2011); C (right-hand panel):
Contours at Vsys±∆V where ∆V = 15.0 km s−1 and Vsys = 191.9 km s−1 (thick contour).
D: Contours at (2+15n)σch, where σch = 0.47 mJy beam−1, the grey contours are at -2σch.
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Figure 3.21: Notes. C (left-hand panel): Contours at 2nσ3T and σ3T = 0.59 M�pc−2

(thick contour), stellar map in R band from Cook et al. (2014); C (right-hand panel):
Contours at Vsys±∆V where ∆V = 2.5 km s−1 and Vsys = −140.0 km s−1 (thick contour).
D: Contours at (2+4n)σch, where σch = 0.75 mJy beam−1, the grey contours are at -2σch.
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Figure 3.22: Notes. C (left-hand panel): Contours at 2nσ3T and σ3T = 0.40 M�pc−2

(thick contour), stellar map in SDSS r band (Knapen et al., 2014); C (right-hand panel):
Contours at Vsys±∆V where ∆V = 5.0 km s−1 and Vsys = −188.0 km s−1 (thick contour).
D: Contours at (2+6n)σch, where σch = 0.91 mJy beam−1, the grey contours are at -2σch.
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Figure 3.23: Notes. A: The empty circles indicate the region in which there are no
significant signs of gas rotation; C (left-hand panel): Contours at 4nσ3T and σ3T =
1.10 M�pc−2 (thick contour), stellar map in J band from (Jarrett et al., 2003); C (right-
hand panel): Contours at Vsys±∆V where ∆V = 15.0 km s−1 and Vsys = −75.6 km s−1

(thick contour). D: Contours at (2 + 8n)σch, where σch = 0.77 mJy beam−1, the grey
contours are at -2σch.
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Figure 3.24: Notes. C (left-hand panel): Contours at 3nσ3T and σ3T = 0.59 M�pc−2

(thick contour), stellar map in R band from Cook et al. (2014); C (right-hand panel):
Contours at Vsys±∆V where ∆V = 10.0 km s−1 and Vsys = 100.8 km s−1 (thick contour).
D: Contours at (2+10n)σch, where σch = 0.52 mJy beam−1, the grey contours are at -2σch.
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Figure 3.25: Notes. A: The empty circles indicate the region of the galaxy with
peculiar kinematics (see the text); C (left-hand panel): Contours at 3nσ3T and
σ3T = 0.54 M�pc−2 (thick contour), stellar map in R band from Cook et al. (2014); C
(right-hand panel): Contours at Vsys ±∆V where ∆V = 10.0 km s−1 and Vsys = 59.9
km s−1 (thick contour). D: Contours at (2 + 6n)σch, where σch = 1.31 mJy beam−1, the
grey contours are at -2σch.
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Figure 3.26: Notes. C (left-hand panel): Contours at 2nσ3T and σ3T = 0.58 M�pc−2

(thick contour), stellar map in R band from Cook et al. (2014); C (right-hand panel):
Contours at Vsys ± ∆V where ∆V = 20.0 km s−1 and Vsys = −124.0 km s−1 (thick
contour). D: Contours at (2 + 4n)σch, where σch = 2.00 mJy beam−1, the grey contours
are at -2σch.
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3.A.2 Data

In the following Tables, one for each dIrr in our sample, we report all the kinematic
and structural properties of the Hi discs obtained in this Chapter. The Tables can
be downloaded from the online version of Iorio et al. (2017b)5.

CVn I dwA
R

(arcsec)
(1)

R
(kpc)
(2)

Vrot

( km s−1)
(3)

VA

( km s−1)
(4)

Vc

( km s−1)
(5)

σv
( km s−1)

(6)

Σint

(M� pc−2)
(7)

10.00 0.17 4.80± 0.91 4.18± 2.30 6.37± 1.66 9.58± 0.47 12.33± 2.74
20.00 0.35 6.04± 1.54 6.40± 2.10 8.80± 1.86 9.09± 0.82 12.55± 3.99
30.00 0.52 7.50± 1.93 8.15± 1.41 11.08± 1.67 7.79± 1.17 11.78± 3.99
40.00 0.70 11.71± 1.70 9.55± 1.45 15.12± 1.61 7.60± 0.91 9.40± 3.26
50.00 0.87 12.42± 1.98 10.93± 2.02 16.55± 2.00 7.49± 1.06 6.57± 2.38
60.00 1.05 13.96± 2.89 12.21± 2.61 18.54± 2.77 5.95± 1.78 4.26± 1.78
70.00 1.22 14.70± 3.73 13.44± 3.20 19.92± 3.50 8.13± 0.61 2.71± 1.34
80.00 1.40 16.68± 3.73 14.58± 3.54 22.15± 3.65 2.44± 1.17 1.81± 0.99
90.00 1.57 15.72± 3.73 16.00± 4.13 22.43± 3.94 7.57± 0.72 1.11± 0.73

Table 3.27: Kinematics and structural properties obtained for CVn I dwA.
-(1)(2) Sampling radii; (3) rotational velocity; (4) pressure-support correction term (see
Sec. 3.3.3); (5) circular velocity; (6) velocity dispersion; (7) intrinsic Hi surface density.

5The data tables can be downloaded also from http://www.filippofraternali.com/
resources/finalrot.zip

http://www.filippofraternali.com/resources/finalrot.zip
http://www.filippofraternali.com/resources/finalrot.zip
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DDO 47
R

(arcsec)
(1)

R
(kpc)
(2)

Vrot

( km s−1)
(3)

VA

( km s−1)
(4)

Vc

( km s−1)
(5)

σv
( km s−1)

(6)

Σint

(M� pc−2)
(7)

15.00 0.38 18.23± 3.23 0.53± 0.79 18.24± 3.22 9.90± 1.30 4.29± 1.12
30.00 0.76 26.91± 2.61 0.90± 1.34 26.92± 2.61 7.88± 1.98 3.80± 1.18
45.00 1.13 25.72± 3.79 1.31± 1.94 25.75± 3.79 8.38± 1.78 3.66± 1.22
60.00 1.51 29.66± 2.61 1.81± 2.68 29.71± 2.61 8.70± 1.78 3.80± 1.58
75.00 1.89 27.33± 2.49 2.48± 3.67 27.45± 2.50 7.95± 1.36 3.90± 1.74
90.00 2.27 28.88± 2.76 3.20± 4.11 29.06± 2.78 7.81± 1.29 3.77± 1.32
105.00 2.65 34.73± 2.30 4.07± 3.96 34.97± 2.33 7.74± 1.24 3.98± 1.07
120.00 3.03 39.85± 2.37 5.05± 3.48 40.17± 2.39 7.89± 0.80 3.87± 1.34
135.00 3.40 46.64± 2.35 5.92± 3.35 47.02± 2.37 8.10± 1.20 3.44± 1.30
150.00 3.78 53.45± 3.15 6.79± 3.63 53.88± 3.16 7.87± 1.17 2.98± 1.07
165.00 4.16 57.87± 3.27 7.42± 4.21 58.35± 3.28 7.40± 1.36 2.74± 1.04
180.00 4.54 60.23± 2.97 8.02± 5.33 60.76± 3.03 8.14± 1.27 2.49± 1.31
195.00 4.92 62.27± 3.45 9.10± 6.36 62.93± 3.54 8.01± 1.66 2.11± 1.31
210.00 5.29 63.20± 5.08 10.03± 7.91 63.99± 5.17 8.00± 0.80 1.66± 1.16

Table 3.28: Same as Tab. 3.27 but for DDO 47
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DDO 50
R

(arcsec)
(1)

R
(kpc)
(2)

Vrot

( km s−1)
(3)

VA

( km s−1)
(4)

Vc

( km s−1)
(5)

σv
( km s−1)

(6)

Σint

(M� pc−2)
(7)

15.00 0.25 5.79± 10.14 0.75± 1.11 5.83± 10.06 11.42± 1.70 9.43± 1.68
30.00 0.49 13.03± 2.76 1.23± 1.82 13.08± 2.75 12.62± 2.42 8.16± 2.66
45.00 0.74 29.18± 4.58 1.80± 2.67 29.23± 4.57 10.88± 2.41 7.50± 3.18
60.00 0.99 34.67± 4.80 2.45± 3.64 34.75± 4.79 9.19± 2.50 7.38± 3.62
75.00 1.24 39.88± 5.02 3.21± 4.75 40.01± 5.02 7.99± 2.34 6.76± 3.83
90.00 1.48 40.08± 7.46 4.07± 6.04 40.29± 7.45 10.57± 2.19 6.81± 4.43
105.00 1.73 43.17± 5.62 5.04± 6.67 43.47± 5.64 9.63± 2.06 6.86± 4.26
120.00 1.98 41.72± 5.54 5.83± 6.37 42.13± 5.56 9.57± 1.82 7.11± 4.14
135.00 2.23 41.60± 5.64 6.69± 5.71 42.13± 5.65 9.43± 1.79 7.42± 4.11
150.00 2.47 40.27± 6.61 7.35± 5.15 40.94± 6.56 9.57± 2.09 7.64± 4.04
165.00 2.72 40.81± 6.02 7.95± 4.68 41.57± 5.98 10.12± 2.10 7.00± 3.32
180.00 2.97 40.85± 4.39 8.36± 4.57 41.69± 4.40 9.00± 2.29 6.57± 2.56
195.00 3.21 38.98± 3.92 8.77± 4.18 39.96± 3.93 8.80± 2.11 6.64± 2.61
210.00 3.46 38.18± 4.01 9.44± 4.42 39.33± 4.04 8.83± 1.96 6.33± 3.03
225.00 3.71 37.23± 3.90 10.13± 4.91 38.59± 3.98 8.88± 1.69 5.41± 2.75
240.00 3.96 38.62± 4.10 10.91± 5.99 40.13± 4.27 7.74± 1.60 4.58± 2.40
255.00 4.20 42.37± 3.61 11.19± 7.22 43.82± 3.94 6.71± 1.48 3.94± 2.29
270.00 4.45 44.13± 3.62 11.45± 8.11 45.59± 4.05 8.04± 2.70 3.46± 2.10
285.00 4.70 43.15± 3.75 11.49± 8.98 44.66± 4.30 6.26± 1.18 3.09± 1.67
300.00 4.95 43.90± 3.72 11.36± 9.20 45.34± 4.28 8.01± 3.90 2.86± 1.27
315.00 5.19 41.74± 4.26 11.22± 9.59 43.22± 4.81 8.00± 4.67 2.82± 1.27
330.00 5.44 38.88± 5.12 10.95± 9.86 40.39± 5.60 7.97± 2.94 2.75± 1.30
345.00 5.69 37.47± 6.25 10.84± 9.72 39.00± 6.58 8.01± 1.40 2.46± 1.21
360.00 5.93 36.81± 7.47 10.54± 9.65 38.29± 7.66 8.03± 0.76 2.02± 1.08
375.00 6.18 38.73± 9.62 10.20± 9.87 40.04± 9.63 8.03± 0.74 1.50± 0.94
390.00 6.43 36.33± 10.14 9.80± 10.00 37.63± 10.13 1.64± 1.64 1.02± 0.85

Table 3.29: Same as Tab. 3.27 but for DDO 50
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DDO 52
R

(arcsec)
(1)

R
(kpc)
(2)

Vrot

( km s−1)
(3)

VA

( km s−1)
(4)

Vc

( km s−1)
(5)

σv
( km s−1)

(6)

Σint

(M� pc−2)
(7)

9.00 0.45 11.76± 3.14 0.02± 0.09 11.76± 3.14 6.88± 1.91 3.18± 0.52
18.00 0.90 19.91± 4.33 0.06± 0.18 19.91± 4.33 5.80± 2.63 3.23± 0.48
27.00 1.35 28.53± 3.02 0.12± 0.28 28.53± 3.02 5.87± 1.80 2.89± 0.67
36.00 1.80 34.82± 2.73 0.22± 0.37 34.82± 2.73 8.04± 0.50 2.39± 0.69
45.00 2.25 37.06± 3.47 0.41± 0.60 37.07± 3.47 8.01± 0.57 2.19± 0.59
54.00 2.70 39.59± 3.68 0.74± 1.10 39.60± 3.68 7.64± 0.48 2.03± 0.73
63.00 3.15 43.36± 3.26 1.37± 2.03 43.39± 3.26 8.00± 0.54 2.09± 0.69
72.00 3.60 43.76± 4.36 2.26± 3.34 43.82± 4.36 7.89± 0.54 2.14± 0.65
81.00 4.04 47.29± 4.39 3.64± 4.66 47.43± 4.40 8.09± 0.64 2.04± 0.68
90.00 4.49 48.74± 4.89 5.66± 5.35 49.06± 4.90 8.08± 0.70 1.83± 0.63
99.00 4.94 50.28± 6.32 7.95± 7.12 50.91± 6.34 8.03± 0.62 1.56± 0.59
108.00 5.39 52.01± 3.91 11.20± 10.90 53.20± 4.46 8.04± 0.93 1.21± 0.51

Table 3.30: Same as Tab. 3.27 but for DDO 52

DDO 53
R

(arcsec)
(1)

R
(kpc)
(2)

Vrot

( km s−1)
(3)

VA

( km s−1)
(4)

Vc

( km s−1)
(5)

σv
( km s−1)

(6)

Σint

(M� pc−2)
(7)

12.00 0.21 3.14± 4.92 0.12± 0.37 3.14± 4.92 7.81± 1.45 9.22± 2.93
18.00 0.31 5.80± 4.92 0.28± 0.60 5.81± 4.92 7.74± 1.08 10.77± 3.83
24.00 0.42 7.09± 1.82 0.60± 0.95 7.11± 1.82 6.64± 1.17 12.49± 4.48
30.00 0.52 11.14± 4.92 1.16± 1.72 11.20± 4.90 7.99± 0.86 12.04± 3.95
36.00 0.63 12.85± 4.14 2.12± 3.15 13.02± 4.11 7.98± 1.84 10.39± 3.33
42.00 0.73 14.10± 3.91 3.65± 5.42 14.56± 4.02 7.96± 0.62 8.62± 2.91
48.00 0.84 17.11± 4.92 5.89± 7.19 18.10± 5.21 8.00± 0.58 7.40± 2.63
54.00 0.94 17.97± 4.92 7.79± 11.56 19.59± 6.44 7.99± 0.69 5.94± 2.77
60.00 1.05 21.58± 4.92 8.59± 12.73 23.23± 6.56 7.93± 0.72 4.65± 2.80

Table 3.31: Same as Tab. 3.27 but for DDO 53
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DDO 87
R

(arcsec)
(1)

R
(kpc)
(2)

Vrot

( km s−1)
(3)

VA

( km s−1)
(4)

Vc

( km s−1)
(5)

σv
( km s−1)

(6)

Σint

(M� pc−2)
(7)

12.00 0.43 13.11± 3.43 1.30± 1.33 13.17± 3.41 7.29± 1.46 2.64± 0.54
24.00 0.86 21.23± 2.62 1.94± 1.66 21.32± 2.61 6.42± 1.14 2.66± 0.76
36.00 1.29 25.92± 2.95 2.47± 1.69 26.04± 2.94 6.26± 1.22 2.44± 0.81
48.00 1.72 34.06± 3.06 2.97± 1.60 34.19± 3.05 6.65± 1.29 2.79± 1.36
60.00 2.15 37.68± 2.48 3.38± 1.56 37.83± 2.47 6.04± 1.28 2.56± 1.06
72.00 2.58 38.68± 2.94 3.81± 1.53 38.87± 2.93 4.81± 1.42 1.92± 0.88
84.00 3.01 40.32± 4.67 4.27± 1.57 40.54± 4.64 7.98± 0.57 1.60± 0.88
96.00 3.44 43.67± 3.52 4.74± 1.82 43.93± 3.50 4.67± 1.62 1.68± 0.87
108.00 3.87 44.94± 2.87 5.23± 2.08 45.24± 2.86 4.67± 1.37 1.89± 0.73
120.00 4.31 48.12± 4.11 5.94± 2.56 48.49± 4.09 8.05± 0.57 1.75± 0.51
132.00 4.74 49.83± 3.36 6.86± 3.68 50.30± 3.37 1.70± 1.67 1.37± 0.47
144.00 5.17 51.43± 9.16 7.38± 4.40 51.96± 9.08 8.03± 0.52 0.97± 0.48

Table 3.32: Same as Tab. 3.27 but for DDO 87

DDO 101
R

(arcsec)
(1)

R
(kpc)
(2)

Vrot

( km s−1)
(3)

VA

( km s−1)
(4)

Vc

( km s−1)
(5)

σv
( km s−1)

(6)

Σint

(M� pc−2)
(7)

6.00 0.19 19.42± 4.12 0.00± 0.04 19.42± 4.12 3.58± 3.69 1.22± 0.46
12.00 0.37 29.47± 4.90 0.01± 0.07 29.47± 4.90 6.36± 2.38 1.44± 0.51
18.00 0.56 37.92± 3.67 0.03± 0.11 37.92± 3.67 6.74± 1.95 1.67± 0.64
24.00 0.74 43.59± 3.08 0.13± 0.21 43.59± 3.07 6.12± 1.74 1.91± 0.67
30.00 0.93 49.90± 3.22 0.44± 0.66 49.90± 3.22 5.69± 1.81 1.89± 0.56
36.00 1.12 54.73± 2.66 1.34± 1.98 54.75± 2.66 4.65± 1.84 1.88± 0.67
42.00 1.30 56.47± 2.41 3.24± 4.80 56.56± 2.42 4.84± 1.42 1.74± 0.66
48.00 1.49 58.14± 2.42 4.81± 7.13 58.34± 2.48 4.12± 1.71 1.41± 0.64
54.00 1.68 59.52± 2.46 5.11± 7.57 59.74± 2.54 3.69± 1.59 0.98± 0.63
60.00 1.86 59.76± 3.55 4.43± 6.57 59.93± 3.57 3.01± 1.94 0.53± 0.56

Table 3.33: Same as Tab. 3.27 but for DDO 101
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DDO 126
R

(arcsec)
(1)

R
(kpc)
(2)

Vrot

( km s−1)
(3)

VA

( km s−1)
(4)

Vc

( km s−1)
(5)

σv
( km s−1)

(6)

Σint

(M� pc−2)
(7)

20.00 0.48 6.01± 2.48 4.90± 2.05 7.75± 2.32 11.96± 0.60 5.06± 1.01
30.00 0.71 9.65± 4.48 6.31± 2.01 11.53± 3.91 10.86± 1.18 5.04± 1.07
40.00 0.95 14.57± 4.66 7.63± 1.73 16.44± 4.20 10.70± 1.37 4.76± 1.44
50.00 1.19 19.94± 4.55 8.72± 1.28 21.77± 4.20 10.46± 1.10 4.26± 1.17
60.00 1.43 23.13± 3.80 9.60± 1.26 25.05± 3.54 10.15± 1.10 3.91± 1.03
70.00 1.66 28.03± 2.60 10.49± 1.42 29.93± 2.49 10.19± 0.97 3.70± 1.12
80.00 1.90 29.07± 1.95 11.36± 1.72 31.21± 1.92 9.10± 1.26 3.66± 1.10
90.00 2.14 31.84± 1.31 12.12± 2.06 34.07± 1.43 8.27± 1.04 3.63± 1.39
100.00 2.38 32.61± 1.68 12.73± 2.56 35.00± 1.82 7.79± 0.62 3.36± 1.39
110.00 2.61 33.59± 1.58 13.08± 2.97 36.05± 1.82 8.02± 1.01 2.84± 1.11
120.00 2.85 35.31± 1.57 13.40± 3.20 37.77± 1.85 7.56± 1.05 2.25± 1.02
130.00 3.09 36.37± 2.31 13.51± 3.46 38.79± 2.47 8.05± 4.00 1.74± 1.01
140.00 3.33 36.82± 2.99 13.49± 3.51 39.22± 3.06 8.05± 0.78 1.29± 0.86

Table 3.34: Same as Tab. 3.27 but for DDO 126

DDO 133
R

(arcsec)
(1)

R
(kpc)
(2)

Vrot

( km s−1)
(3)

VA

( km s−1)
(4)

Vc

( km s−1)
(5)

σv
( km s−1)

(6)

Σint

(M� pc−2)
(7)

11.00 0.19 9.93± 2.00 2.26± 1.98 10.19± 2.00 10.20± 1.06 4.96± 1.18
22.00 0.37 16.77± 3.21 3.54± 2.48 17.14± 3.19 9.64± 1.35 6.01± 1.44
33.00 0.56 20.30± 2.70 4.72± 2.52 20.84± 2.69 8.92± 1.27 5.93± 1.81
44.00 0.75 24.39± 2.87 5.80± 2.32 25.07± 2.84 8.82± 1.30 5.37± 1.74
55.00 0.93 28.15± 2.70 6.84± 1.96 28.97± 2.66 9.09± 1.18 5.02± 1.84
66.00 1.12 31.74± 2.44 7.72± 1.63 32.66± 2.40 8.55± 1.30 5.21± 2.27
77.00 1.31 33.89± 2.56 8.53± 1.66 34.94± 2.52 8.07± 1.34 5.15± 2.54
88.00 1.49 36.51± 2.99 9.41± 1.98 37.70± 2.94 7.80± 0.79 4.58± 2.41
99.00 1.68 38.62± 2.84 10.34± 2.25 39.98± 2.81 6.93± 1.23 4.14± 2.16
110.00 1.87 40.50± 2.90 11.27± 2.87 42.04± 2.90 7.87± 1.56 3.65± 1.93
121.00 2.05 43.19± 3.14 12.04± 3.46 44.84± 3.17 8.02± 1.84 3.23± 1.60
132.00 2.24 44.19± 3.49 12.87± 4.14 46.02± 3.54 8.02± 1.37 2.86± 1.26
143.00 2.43 44.39± 3.29 13.51± 4.69 46.40± 3.43 8.06± 4.71 2.55± 1.03
154.00 2.61 44.13± 3.40 14.04± 5.12 46.31± 3.59 5.56± 1.55 1.89± 0.98
165.00 2.80 46.75± 5.09 14.42± 5.46 48.92± 5.12 8.06± 0.48 1.25± 0.77

Table 3.35: Same as Tab. 3.27 but for DDO 133
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DDO 154
R

(arcsec)
(1)

R
(kpc)
(2)

Vrot

( km s−1)
(3)

VA

( km s−1)
(4)

Vc

( km s−1)
(5)

σv
( km s−1)

(6)

Σint

(M� pc−2)
(7)

15.00 0.27 10.29± 2.27 2.69± 1.26 10.64± 2.22 10.90± 1.16 2.78± 0.67
30.00 0.54 13.89± 2.01 3.77± 1.51 14.39± 1.98 10.61± 1.01 2.97± 0.94
45.00 0.81 19.18± 1.52 4.59± 1.57 19.72± 1.52 10.50± 0.93 3.24± 1.16
60.00 1.08 24.36± 1.21 5.28± 1.53 24.92± 1.22 10.08± 1.15 3.50± 1.15
75.00 1.35 27.27± 1.75 5.91± 1.45 27.90± 1.74 9.74± 1.03 3.39± 0.92
90.00 1.61 29.57± 1.52 6.51± 1.29 30.28± 1.51 9.21± 0.98 3.27± 0.94
105.00 1.88 31.44± 1.60 7.07± 1.14 32.23± 1.58 8.69± 1.00 3.10± 0.87
120.00 2.15 33.92± 1.58 7.68± 1.00 34.78± 1.56 8.38± 1.07 2.79± 0.83
135.00 2.42 36.06± 1.45 8.30± 0.97 37.00± 1.43 7.97± 0.83 2.53± 0.84
150.00 2.69 38.35± 1.62 8.96± 0.98 39.38± 1.59 7.88± 1.02 2.29± 0.84
165.00 2.96 41.11± 1.38 9.61± 1.06 42.22± 1.37 7.98± 0.96 2.12± 0.82
180.00 3.23 43.02± 1.37 10.36± 1.14 44.25± 1.36 8.31± 0.96 2.00± 0.77
195.00 3.50 44.51± 1.35 11.11± 1.29 45.87± 1.34 8.05± 0.78 1.90± 0.74
210.00 3.77 44.89± 1.35 11.87± 1.54 46.44± 1.37 8.51± 0.96 1.81± 0.73
225.00 4.04 45.71± 1.41 12.61± 1.71 47.41± 1.43 8.58± 0.98 1.60± 0.71
240.00 4.31 46.08± 2.24 13.25± 1.93 47.95± 2.22 9.12± 1.14 1.34± 0.67
255.00 4.57 46.66± 1.96 13.81± 2.03 48.66± 1.97 8.76± 1.48 1.12± 0.61
270.00 4.84 45.96± 2.44 14.25± 2.14 48.12± 2.41 9.10± 1.32 0.94± 0.56
285.00 5.11 45.88± 2.50 14.46± 2.12 48.11± 2.47 8.52± 1.46 0.82± 0.50
300.00 5.38 45.26± 2.35 14.62± 2.12 47.56± 2.33 8.22± 1.34 0.76± 0.44
315.00 5.65 44.96± 2.24 14.49± 2.19 47.24± 2.24 7.77± 1.22 0.70± 0.39
330.00 5.92 45.24± 2.35 14.05± 2.36 47.37± 2.35 7.02± 1.65 0.64± 0.34
345.00 6.19 45.24± 2.17 13.47± 2.61 47.20± 2.21 6.03± 1.76 0.58± 0.30
360.00 6.46 45.30± 3.39 12.42± 3.14 46.97± 3.37 8.07± 0.97 0.50± 0.25
375.00 6.73 46.50± 3.64 10.72± 4.04 47.72± 3.66 8.21± 0.70 0.42± 0.21
390.00 7.00 45.86± 5.08 9.00± 5.28 46.74± 5.09 8.12± 0.64 0.37± 0.19

Table 3.36: Same as Tab. 3.27 but for DDO 154



3.A. Atlas and Data 129

DDO 168
R

(arcsec)
(1)

R
(kpc)
(2)

Vrot

( km s−1)
(3)

VA

( km s−1)
(4)

Vc

( km s−1)
(5)

σv
( km s−1)

(6)

Σint

(M� pc−2)
(7)

15.00 0.31 9.18± 2.06 6.88± 6.80 11.47± 4.40 13.52± 0.92 16.43± 2.87
30.00 0.63 15.02± 2.42 10.03± 4.49 18.06± 3.21 12.40± 1.59 12.12± 4.26
45.00 0.94 16.66± 3.25 12.03± 3.22 20.55± 3.24 12.96± 1.57 9.26± 4.49
60.00 1.25 24.52± 2.67 13.24± 3.17 27.86± 2.79 12.14± 1.75 6.94± 4.18
75.00 1.56 32.22± 2.98 13.98± 4.09 35.12± 3.18 10.00± 2.44 5.23± 3.66
90.00 1.88 38.70± 2.62 14.42± 5.11 41.30± 3.03 10.53± 1.35 4.29± 3.46
105.00 2.19 44.59± 3.20 14.73± 6.09 46.96± 3.59 8.89± 1.75 3.65± 3.01
120.00 2.50 48.30± 3.38 14.86± 6.89 50.53± 3.81 8.74± 1.70 3.30± 2.60
135.00 2.81 50.71± 3.11 14.93± 7.40 52.86± 3.64 8.82± 1.59 2.81± 2.17
150.00 3.13 51.66± 3.45 15.01± 7.68 53.80± 3.95 8.44± 1.60 2.37± 1.91
165.00 3.44 52.41± 3.91 15.04± 8.16 54.53± 4.38 7.73± 1.87 1.98± 1.80
180.00 3.75 53.31± 5.10 15.05± 8.36 55.39± 5.41 8.05± 1.60 1.62± 1.74
195.00 4.07 55.88± 5.05 15.00± 8.51 57.85± 5.36 7.97± 4.54 1.37± 1.60
210.00 4.38 53.24± 6.75 14.96± 8.52 55.30± 6.90 8.13± 1.60 1.10± 1.37
225.00 4.69 53.25± 6.45 14.92± 8.67 55.30± 6.64 8.04± 0.76 0.86± 1.07

Table 3.37: Same as Tab. 3.27 but for DDO 168

DDO 210
R

(arcsec)
(1)

R
(kpc)
(2)

Vrot

( km s−1)
(3)

VA

( km s−1)
(4)

Vc

( km s−1)
(5)

σv
( km s−1)

(6)

Σint

(M� pc−2)
(7)

30.00 0.13 3.31± 1.68 1.42± 2.08 3.60± 1.75 6.42± 0.46 3.54± 0.54
40.00 0.17 3.47± 1.83 2.84± 3.25 4.48± 2.50 6.29± 0.62 3.17± 0.56
50.00 0.22 3.90± 1.08 4.87± 3.36 6.24± 2.70 6.65± 0.66 2.80± 0.57
60.00 0.26 4.40± 1.17 7.51± 3.25 8.70± 2.86 6.71± 0.91 2.36± 0.65
70.00 0.31 4.82± 1.44 10.63± 4.70 11.67± 4.33 5.78± 1.23 1.92± 0.70
80.00 0.35 4.53± 1.40 13.76± 6.76 14.49± 6.44 5.71± 1.87 1.51± 0.73
90.00 0.39 5.56± 1.56 15.86± 8.81 16.80± 8.22 4.71± 1.25 1.15± 0.74
100.00 0.44 3.87± 1.83 17.37± 9.74 17.80± 9.52 7.95± 0.42 0.86± 0.70

Table 3.38: Same as Tab. 3.27 but for DDO 210
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DDO 216
R

(arcsec)
(1)

R
(kpc)
(2)

Vrot

( km s−1)
(3)

VA

( km s−1)
(4)

Vc

( km s−1)
(5)

σv
( km s−1)

(6)

Σint

(M� pc−2)
(7)

30.00 0.16 7.57± 2.06 0.30± 0.44 7.58± 2.06 6.21± 2.11 2.18± 0.33
45.00 0.24 9.50± 1.57 0.65± 0.97 9.52± 1.57 5.61± 1.22 2.04± 0.55
60.00 0.32 9.66± 1.20 1.31± 1.94 9.75± 1.22 5.57± 1.05 1.83± 0.92
75.00 0.40 9.67± 1.32 2.29± 3.40 9.93± 1.51 5.92± 0.90 1.54± 0.88
90.00 0.48 10.32± 1.38 3.61± 5.15 10.93± 2.14 5.98± 0.90 1.30± 0.74
105.00 0.56 9.95± 1.46 4.95± 5.24 11.11± 2.67 5.70± 0.95 1.18± 0.71
120.00 0.64 10.50± 1.25 5.41± 6.17 11.81± 3.04 5.36± 0.95 1.09± 0.67
135.00 0.72 11.95± 1.24 6.52± 8.37 13.61± 4.16 5.00± 0.99 0.96± 0.57
150.00 0.80 10.87± 1.34 6.65± 9.86 12.74± 5.27 4.46± 1.06 0.82± 0.49
165.00 0.88 11.80± 2.51 6.58± 9.76 13.51± 5.23 7.92± 0.83 0.69± 0.42
180.00 0.96 11.72± 3.36 6.49± 9.63 13.40± 5.52 7.93± 0.56 0.53± 0.33
195.00 1.04 12.40± 3.36 6.08± 9.01 13.81± 4.98 8.08± 0.46 0.40± 0.27

Table 3.39: Same as Tab. 3.27 but for DDO 216

NGC 1569
R

(arcsec)
(1)

R
(kpc)
(2)

Vrot

( km s−1)
(3)

VA

( km s−1)
(4)

Vc

( km s−1)
(5)

σv
( km s−1)

(6)

Σint

(M� pc−2)
(7)

15.00 0.25 2.27± 8.27 2.67± 3.89 3.51± 6.12 21.45± 1.22 10.20± 3.24
30.00 0.49 0.81± 8.27 5.53± 7.18 5.59± 7.21 21.43± 1.72 11.85± 4.23
45.00 0.74 3.94± 1.25 9.96± 10.02 10.71± 9.33 22.72± 3.40 11.71± 4.72
60.00 0.99 16.76± 2.92 15.84± 9.20 23.06± 6.67 26.47± 10.63 10.06± 4.95
75.00 1.24 27.07± 7.20 21.87± 7.86 34.80± 7.47 23.03± 8.77 8.43± 4.24
90.00 1.48 31.81± 4.73 28.96± 8.82 43.02± 6.89 20.50± 3.94 7.03± 3.53
105.00 1.73 34.87± 4.86 36.17± 12.66 50.25± 9.72 17.65± 3.69 5.19± 2.59
120.00 1.98 34.55± 6.43 42.41± 17.44 54.71± 14.12 17.50± 4.71 3.61± 1.80
135.00 2.23 30.89± 8.27 47.13± 21.48 56.35± 18.53 17.21± 5.62 2.54± 1.28
150.00 2.47 23.04± 8.27 50.90± 24.25 55.87± 22.35 14.53± 6.25 2.18± 1.38

Table 3.40: Same as Tab. 3.27 but for NGC 1569
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NGC 2366
R

(arcsec)
(1)

R
(kpc)
(2)

Vrot

( km s−1)
(3)

VA

( km s−1)
(4)

Vc

( km s−1)
(5)

σv
( km s−1)

(6)

Σint

(M� pc−2)
(7)

32.00 0.53 2.57± 5.48 3.16± 3.09 4.07± 4.21 13.18± 2.42 9.54± 1.81
48.00 0.79 9.85± 1.87 4.34± 3.86 10.77± 2.31 15.52± 3.23 9.63± 2.80
64.00 1.05 17.18± 4.86 5.65± 4.45 18.09± 4.82 14.62± 3.08 9.79± 3.14
80.00 1.32 21.15± 4.84 6.96± 4.82 22.27± 4.84 14.99± 2.52 10.01± 3.05
96.00 1.58 28.14± 3.48 8.53± 4.80 29.41± 3.61 14.91± 2.54 10.10± 3.22
112.00 1.85 29.27± 2.43 10.05± 4.50 30.95± 2.72 13.89± 2.31 9.36± 3.04
128.00 2.11 37.77± 2.95 11.53± 4.17 39.49± 3.07 12.39± 1.78 8.05± 2.55
144.00 2.37 41.89± 2.73 12.74± 3.86 43.78± 2.84 11.98± 1.80 7.00± 2.13
160.00 2.64 44.76± 3.48 13.99± 3.61 46.89± 3.49 12.61± 2.25 6.22± 2.12
176.00 2.90 46.92± 4.04 15.19± 3.42 49.32± 3.98 13.80± 2.37 5.67± 2.19
192.00 3.16 49.94± 4.42 16.26± 3.26 52.52± 4.32 13.72± 2.67 5.39± 2.18
208.00 3.43 52.28± 3.70 17.42± 3.26 55.10± 3.66 13.69± 2.61 5.12± 2.18
224.00 3.69 50.80± 3.97 18.55± 3.48 54.09± 3.92 12.62± 2.70 4.65± 2.06
240.00 3.96 49.38± 3.43 19.52± 3.66 53.10± 3.47 12.86± 2.43 4.23± 1.90
256.00 4.22 47.86± 3.50 20.63± 4.14 52.11± 3.61 12.24± 2.31 4.01± 1.96
272.00 4.48 47.17± 3.05 21.44± 4.51 51.81± 3.35 11.52± 1.93 3.72± 1.97
288.00 4.75 49.64± 3.42 22.10± 4.74 54.34± 3.67 12.10± 1.91 3.44± 1.93
304.00 5.01 51.47± 3.32 22.35± 4.92 56.11± 3.62 10.74± 2.25 3.01± 1.77
320.00 5.27 52.23± 3.44 22.31± 5.07 56.80± 3.74 10.16± 2.50 2.68± 1.60
336.00 5.54 52.88± 3.06 22.15± 5.06 57.33± 3.43 9.37± 2.50 2.36± 1.48
352.00 5.80 52.53± 3.52 21.60± 5.02 56.80± 3.78 8.83± 2.76 2.06± 1.38
368.00 6.07 53.41± 4.64 21.02± 4.92 57.40± 4.68 9.32± 3.07 1.69± 1.28
384.00 6.33 55.20± 5.48 20.29± 5.11 58.82± 5.44 8.15± 3.84 1.37± 1.20

Table 3.41: Same as Tab. 3.27 but for NGC 2366
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UGC 8508
R

(arcsec)
(1)

R
(kpc)
(2)

Vrot

( km s−1)
(3)

VA

( km s−1)
(4)

Vc

( km s−1)
(5)

σv
( km s−1)

(6)

Σint

(M� pc−2)
(7)

10.00 0.13 2.30± 0.71 5.07± 4.58 5.56± 4.18 13.41± 1.50 7.28± 1.38
20.00 0.25 9.42± 1.36 8.37± 4.40 12.60± 3.09 13.36± 2.37 6.78± 1.48
30.00 0.38 11.04± 3.11 11.35± 3.34 15.83± 3.23 12.21± 1.83 6.01± 1.31
40.00 0.50 15.50± 1.88 13.73± 2.68 20.70± 2.27 10.95± 1.71 5.03± 1.29
50.00 0.63 17.82± 1.92 15.25± 2.85 23.45± 2.36 9.48± 2.22 3.77± 1.18
60.00 0.76 21.10± 2.46 16.10± 3.32 26.54± 2.81 9.02± 2.79 2.59± 0.91
70.00 0.88 23.11± 2.97 16.75± 4.13 28.54± 3.42 7.23± 2.90 1.82± 0.65
80.00 1.01 24.60± 3.74 17.04± 4.98 29.93± 4.18 7.85± 2.47 1.32± 0.45
90.00 1.13 25.62± 4.36 17.30± 5.47 30.91± 4.74 7.98± 2.03 0.97± 0.33
100.00 1.26 29.37± 5.08 17.27± 6.07 34.07± 5.35 8.20± 1.68 0.71± 0.23
110.00 1.39 32.13± 6.23 17.09± 6.95 36.39± 6.39 8.01± 1.46 0.60± 0.31

Table 3.42: Same as Tab. 3.27 but for UGC 8508
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WLM
R

(arcsec)
(1)

R
(kpc)
(2)

Vrot

( km s−1)
(3)

VA

( km s−1)
(4)

Vc

( km s−1)
(5)

σv
( km s−1)

(6)

Σint

(M� pc−2)
(7)

25.00 0.12 5.92± 0.90 0.54± 0.38 5.94± 0.90 7.15± 0.46 4.41± 0.38
50.00 0.24 8.81± 0.98 0.86± 0.58 8.86± 0.97 7.00± 0.50 4.97± 0.47
75.00 0.36 12.37± 1.16 1.20± 0.75 12.43± 1.16 7.38± 0.92 5.40± 0.64
100.00 0.48 14.95± 1.12 1.57± 0.92 15.04± 1.12 7.57± 0.75 5.77± 0.98
125.00 0.60 16.48± 1.33 2.10± 1.07 16.61± 1.33 7.36± 0.93 5.86± 1.15
150.00 0.72 18.66± 1.32 2.53± 1.20 18.83± 1.32 7.07± 0.86 5.50± 1.10
175.00 0.84 20.86± 1.31 3.14± 1.29 21.10± 1.31 7.06± 0.95 4.97± 1.04
200.00 0.96 22.30± 1.67 3.86± 1.36 22.63± 1.66 7.29± 1.16 4.31± 1.02
225.00 1.07 23.44± 2.31 4.69± 1.35 23.90± 2.28 7.89± 1.28 3.73± 0.98
250.00 1.19 26.49± 1.83 5.65± 1.29 27.09± 1.81 8.31± 1.27 3.35± 0.85
275.00 1.31 27.19± 1.61 6.72± 1.20 28.01± 1.59 8.16± 1.08 2.95± 0.82
300.00 1.43 27.11± 1.90 7.89± 1.14 28.24± 1.86 8.16± 1.00 2.61± 0.75
325.00 1.55 28.01± 1.62 9.15± 1.13 29.47± 1.58 7.90± 1.22 2.38± 0.65
350.00 1.67 29.31± 1.98 10.46± 1.19 31.12± 1.92 7.82± 1.45 2.25± 0.57
375.00 1.79 30.82± 1.86 11.76± 1.43 32.98± 1.81 8.49± 1.24 2.06± 0.51
400.00 1.91 32.13± 2.00 13.01± 1.74 34.66± 1.97 8.65± 1.39 1.83± 0.48
425.00 2.03 32.74± 2.24 14.14± 2.06 35.67± 2.21 8.71± 1.48 1.59± 0.46
450.00 2.15 33.11± 2.54 15.11± 2.40 36.39± 2.51 8.60± 1.61 1.38± 0.45
475.00 2.27 33.42± 2.83 15.85± 2.77 36.99± 2.82 8.42± 1.75 1.20± 0.44
500.00 2.39 34.32± 2.94 16.32± 2.99 38.01± 2.95 7.88± 1.85 1.06± 0.43
525.00 2.51 34.35± 3.26 16.48± 3.23 38.10± 3.26 7.65± 1.84 0.92± 0.43
550.00 2.63 34.94± 3.25 16.28± 3.48 38.54± 3.30 7.28± 1.92 0.79± 0.42
575.00 2.75 35.39± 3.38 15.70± 3.58 38.72± 3.43 6.51± 2.10 0.69± 0.40
600.00 2.87 36.08± 3.03 14.70± 3.70 38.96± 3.20 6.10± 1.93 0.63± 0.37

Table 3.43: Same as Tab. 3.27 but for WLM
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3.B An alternative scenario for DDO 216
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Figure 3.44: PV along the major axis (upper panel) and the minor axis (bottom
panel) for the scenario2 of the galaxy DDO 216 (see text). The black contours indicate
the datacube while the red contours show the best-fit model found with 3DB. Contours at
(2 + 6n)σch, where σch = 0.91 mJy beam−1, the grey contours are at -2σch. The yellow
points indicate the rotational velocity found with 3DB.

DDO 216 shows a peculiar kinematics: a velocity gradient of about 10 km s−1

appears clearly in the velocity field (right-hand panel in Box C in Fig. 3.22) and in the
channel maps, but it could be entirely due to a single ‘cloud’ at a discrepant velocity
in the approaching side of the galaxy (Stil & Israel, 2002b). The analysis of the
channel maps partially supports this hypothesis: the receding and the approaching
sides of the galaxy seem to have a slightly distinct kinematics and the emission of the
two halves overlaps between −186 km s−1 and −190 km s−1, while the Vsys found
with 3DB is around -180 km s−1. At the same time, the total Hi map does not show
the clear presence of a separate component at the supposed position of the cloud
(left-hand panel in Box C in Fig. 3.22). In conclusion we did not have sufficient
elements to confirm or exclude the existence of a Hi component other than the disc
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Figure 3.45: Rotational velocities (red dashed line) and circular velocities (red points)
found for the scenario2 of DDO 216 (see text). The rotation curves of the scenario1 are
also shown for comparison.

of DDO 216. We can summarises the two hypotheses as:

- scenario1: The main velocity gradient is genuine and totally due to the rota-
tion of the Hi disc.

- scenario2: The main velocity gradient is due to an Hi substructure with a
systemic velocity that differs by about 20 km s−1 from that of the Hi disc.

The scenario1 is analysed in Sec. 3.4 while in this Appendix we describe the analysis
of the scenario2. First of all we masked the region of the datacube containing the
emission of the supposed Hi cloud. The mask has been build by inspecting the
channel maps using the task PYBLOT of GIPSY. Then we performed the kinematic
fit of the ‘clean’ datacube with 3DB. We set iini, PAini and the galactic centre to the
values obtained from the stellar disc (Hunter & Elmegreen, 2006). Contrarily to the
scenario1 (Sec. 3.4) we used the Vsys estimated with 3DB, the two estimates differ
by about 8 km s−1, while the final best-fit PA (120◦) is tilted of about 10◦-15◦ with
respect to the values found in the scenario1 (Box B in Fig. 3.22).

Without the ‘cloud’ the velocity gradient almost disappears and the kinematics
is dominated by the chaotic motion of the gas as it is clearly visible in the PVs in Fig.
3.44. As a consequence, the final rotation curve is “shaped” by the asymmetric-drift
correction. Fig. 3.45 compares the rotation curve found for the scenario1 and for
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the scenario2: the velocities are compatible within the errors, but in scenario1 the
Vc is systematically higher by about 4 km s−1 and it extends to larger radii.

Kirby et al. (2014) found that the stellar component of DDO 216 is rotating in the
same direction as the gas with a Vrot of about 10 km s−1, perfectly compatible with
scenario1 (see Fig. 3.45). This velocity gradient is observed also in red giant stars,
so the rotation is genuine and it is not caused by short-term hydrodynamical events
(e.g. bubbles), which would influence the gas kinematics but not the kinematics
of the old stellar populations. However the centre of the rotation and Vsys are
quite different from what we found for scenario1 and they are instead compatible
with scenario2. Further studies are needed to understand if the gas in this peculiar
galaxy is rotating, which is crucial to accurately estimate its dynamical mass.
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3.C Typical setup for 3DBAROLO

In this Appendix we report the keywords and their values for our typical parameter
file input of 3DB. For a detailed description of the keywords see the documentation
of 3DB6 (‘...’ means that the values depends on the analysed galaxy).

- FITSFILE ...; name of the datacube to fit.

- GALFIT TRUE; enable the 3D fitting of the datacube.

- NRADII ...; number of rings to be used in the fit.

- RADSEP ...; separation between rings in arcsec.

- VROT 30; initial guess for the rotation velocity in km s−1.

- VDISP 8; initial guess for the velocity dispersion in km s−1.

- INC ...; initial guess for i in degrees (iini, see Tab. 3.8).

- PA ...; initial guess for the PA in degrees (PAini, see Tab. 3.8).

- VSYS ...; initial guess for the systemic velocity in km s−1.

- XPOS ...; initial guess for the x coordinate of the centre in pixel.

- YPOS ...; initial guess for the y coordinate of the centre in pixel.

- Z0 100/fc; initial guess for the scale height in arcsec, fc is the conversion factor
from arcsec to pc and it is listed in Tab. 3.2 for each galaxy.

- LTYPE 1; use a Gaussian profile for the HI vertical distribution.

- FREE VROT VDISP INC PA; parameters to fit with 3DB.

- FTYPE 2; use the absolute differences between models and datacube as resid-
uals.

- WFUNC 1; use the cosine of the azimuthal angle as weigthing function for the
fit (see Sec. 3.3.2).

- CDENS 10; this parameter sets (in a non-trivial way) the number of ‘clouds’ to
be used in the building of the ring models (see the GALMOD documentation7).

- NV 200; number of sub-clouds in which each cloud (see above) is divided to
populate the spectral axis of the ring models.

6http://editeodoro.github.io/Bbarolo/documentation/
7https://www.astro.rug.nl/~gipsy/tsk/galmod.dc1

http://editeodoro.github.io/Bbarolo/documentation/
https://www.astro.rug.nl/~gipsy/tsk/galmod.dc1
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- TOL 1E-3; tolerance condition to stop the fit.

- MASK Smooth; create a mask for the fit smoothing the datacube.

- FACTOR 2; set the the smooth level of the mask (see above), the original
datacube is smoothed with a beam larger FACTOR times the original beam.

- BLANKCUT 2.5; include in the mask (see above) only the pixels with S/N>
2.5 in the smoothed cube.

- SIDE B; fit the whole galaxy (B=both).

- TWOSTAGE TRUE; enable the two-stage method described in Sec. 3.3.2.

- BWEIGHT 1; set the weight of the blank pixels in the fit: the final sum of
residuals between data and model is multiplied by the factor (1 +nb)

BWEIGTH,
where nb is the number of pixels having the model but not the observation
(see Di Teodoro & Fraternali 2015 for details).

- DELTAINC 40; i can assume values only between INC-DELTAINC and INC+DELTAINC.
The used value is large enough to let the code to trace possible warps.

- DELTAPA 40; same as above, but for the PA.

- FLAGERRORS TRUE; enable the estimate of the errors on the fitted param-
eters.

- STARTRAD 1; avoid the fit of the first ring placed by default at RADSEP/2.

- LINEAR 0.424; instrumental resolution (σinst) in unity of channel width. In
all our galaxies the instrumental FWHM is equal to the channel separation,
so σinst = 1/2.355 = 0.424.

If the parameters XPOS,YPOS,VSYS,PA,INC are omitted, 3DB estimates them as
described in Appendix 3.3.2.



4Chapter

Beyond Flatland: the thickness of the Hi
disc in dwarf irregulars

The vertical profile of the Hi layer in disc galaxies is one of the most difficult pa-
rameters to estimate from observations: we can infer it directly only in discs seen
edge-on and close enough to us to sample the vertical profile with more than one
resolution element (see e.g. van der Kruit 1981). However, there are serious limita-
tions due to the fact that edge-on galaxies can have warps along the line of sight
(e.g. Zschaechner et al. 2011) that can introduce severe biases in the study of the Hi
vertical profile. In the literature, there are a only few attempts to derive informa-
tion on the Hi scale height indirectly from other observables in non-edge galaxies.
Sicking (1997) tried to estimate the Hi scale height in discs analysing the increase
of the velocity dispersion that a Hi thick layer produces along the line of sight. He
applied his method to NGC 2403 and NGC 3198, but the estimate of the Hi thick-
ness results poorly constrained. Olling (1995) stated that it should be possible to
infer the gas vertical profile from the analysis of the emission contours in individ-
ual channel maps of the Hi datacubes, nevertheless he never designed this kind of
method. Finally, in my Master thesis1, I tried to measure the Hi thickness from the
azimuthal periodic patterns it causes on the Hi total emission map. I found that
the expected azimuthal oscillations are too small and, in real galaxies, they are lost
in the noise and in the intrinsic azimuthal inhomogeneities.

As a consequence, to date there are estimates for the Hi vertical profile only
for a small number of edge-on galaxies (e.g. Olling 1996; Kamphuis 2008; O’Brien,
Freeman & van der Kruit 2010; Peters et al. 2017) and the Milky Way (e.g. Kalberla
et al. 2007). Moreover, there are studies on the estimate of the Hi disc thickness
applying statistical methods to the observed axial ratio distribution of Hi discs
(e.g. Roychowdhury et al. 2010). All these studies conclude that the dIrrs have Hi

1Iorio (2014), http://amslaurea.unibo.it/7411

http://amslaurea.unibo.it/7411
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discs that are significantly thicker than the Hi discs in large spirals, like the Milky
Way, both in absolute term and with respect to the radial extension, especially in
the inner regions. This result is expected also from a theoretical point of view:
assuming that the gas is in vertical hydrostatic equilibrium, the thickness of the
Hi disc depends on the vertical component of the gradient of the galactic potential
(Olling, 1995; Elmegreen & Hunter, 2015). dIrrs are dynamically dominated by
the DM halo that has a spheroidal distribution producing a vertical force that is
relatively weaker with respect to that of spirals with heavy stellar discs. Moreover,
since the vertical force tends to decrease with radius we expect that the Hi layers
“flare” becoming thicker in the outer parts of the discs (Olling, 1995).

Given the difficulties and the uncertainties discussed above, the Hi vertical profile
is rarely exploited for dynamical studies (see e.g. Olling 1996 for an application to
the study of the DM halo shape in NGC 4244) and usually it is not even taken into
account properly in the study of the kinematics and dynamics of disc galaxies. As
done in Chapter 3, the classical way to deal with the Hi vertical profile is to assume
a thin disc with constant scale height or even a razor-thin disc whose the vertical
profile is a Dirac delta (e.g. de Blok et al. 2008; Oh et al. 2015). As discussed above,
this simplistic approach can be justified in large spirals (e.g. Brinks & Burton 1984)
but it is not clear what kind of biases these assumptions can introduce in the study
of dIrrs. Indeed, this has not extensively studied in literature except for the work
of Sicking (1997) concerning spiral galaxies.

In this Chapter, we aim to fill this gap, studying the effect that the presence of
thick Hi layers can have on the observed properties of Hi discs, focusing on models
that have properties typical of dIrrs (Sec. 4.1). Then in Sec. 4.2 we present, for the
first time, a method to derive the kinematics and dynamics of galaxies taking into
account the Hi vertical profile in a dynamically self-consistent way. In order to test
whether the results obtained in Chapter 3 and used in Chapter 5 are biased by the
presence of thick Hi discs, in Sec. 4.3 we exploit our original method to re-derive
the intrinsic properties for three galaxies analysed in Chapter 3. Finally, in Sec. 4.4
we draw our conclusions.

In this Chapter, we make use of the datacube analysis package GIPSY (van der
Hulst et al., 1992), through the Chapter every name written in capital letters refers
to a GIPSY task2. As in Chapter 3, 3DB refers to 3DBAROLO (Di Teodoro &
Fraternali 2015, see Sec. 3.2).

2see https://www.astro.rug.nl/~gipsy/dc123doc/alltasks.html for GIPSY tasks docu-
mentation.

https://www.astro.rug.nl/~gipsy/dc123doc/alltasks.html
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4.1 Effect of the Hi thickness on observables

In the presence of a thin disc the observed Hi emission can be easily related to the
intrinsic properties of the galaxy: the observed velocity is a measure of the gas rota-
tion in the equatorial plane, the observed velocity dispersion is an unbiased measure
of the chaotic motion of the gas and the intrinsic profile of the Hi surface density
can be obtained by simply correcting the observed profile for the disc inclination. In
the presence of a thick gaseous layer, the line of sight (los) intercepts the emission
coming from different radial and vertical positions. In particular, assuming that the
Hi disc is inclined with an angle i, a given position along the los, s, and a given
azimuthal angle, θ, the intercepted emission comes from a generic emitting cloud
with coordinates {

z = s cos i

R =
√
|R2

0 + z2 tan2 i+ 2zR0 sin θ tan i|,
(4.1)

where z and R refer to a cylindrical frame of reference aligned with the equatorial
plane of the galactic disc and centred in the galactic centre; R0 is the “elliptical”
radius3 of the point intercepted by the los on the disc equatorial plane4. From
Eq. 4.1, it is apparent that, in the presence of a significant disc thickness, the
intrinsic structural and kinematics properties of the Hi disc cannot be obtained
with the simple deprojection factors sin i (Eq. 1.6) and cos i (Eq. 3.3).

4.1.1 Datacube models

In order to study the difference between thin and thick disc models, we decided to
compare mock datacubes of the Hi emission. The model datacubes have been made
using GALMOD (Sicking, 1997). Notice that, in this Chapter, the term pixel refers
both to the 3D (two spatial dimensions and one spectral dimension) cells of the
datacubes (sometimes called voxel) and to the 2D (two spatial dimensions) cells of
the derived 2D maps (see Sec. 1.3.1). This software creates a Hi disc model using the
concept of tilted rings (see Sec. 1.3.3): the disc is divided in a series of circular rings
and each of them is filled with discrete “clouds” to reproduce the density distribution
of the gas considering the intrinsic surface density and the vertical density profile
given in input. The inclination, the position angle and the vertical scale height of
the rings are allowed to vary with radius. In order to complete the model, GALMOD
also needs the kinematic information, such as the rotation curve of the Hi disc and
the radial profile of the velocity dispersion. The velocity dispersion given in input

3R2
0 = x2 + y2 cos−2 i, where x and y are the coordinates in the plane of the sky and i is the

inclination angle of the disc.
4see Iorio (2014) (http://amslaurea.unibo.it/7411) for a complete geometrical description

of a thick disc.

http://amslaurea.unibo.it/7411
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is
σinput(R) =

√
σ2
v(R) + σ2

instr, (4.2)

where σ2
v is the intrinsic velocity dispersion of the gas and σ2

instr takes into ac-
count the instrumental resolution. In order to simulate Hanning-smoothed dat-
acubes (see Sec. 3.3), we consider the instrumental resolution as a Guassian with
FWHM = 2∆Vch, where ∆Vch is the channel separation of the datacube; therefore,
the instrumental broadening is σinstr = ∆Vch (2 ln 2)−0.5.

The clouds are distributed using a Monte Carlo method, both in the azimuthal
and in the vertical direction. Each cloud generated by GALMOD has a velocity that
is the sum of the systemic velocity of the galaxy and the rotation velocity corrected
for the azimuthal angle of the ring (Eq. 1.6). In order to create the profile of the HI
emission, the clouds are further divided into subclouds to which the code assign a
velocity equal to the velocity of the parent cloud plus a random contribution drawn
from a Gaussian distribution with dispersion equal to σinput (Eq. 4.2). Once each
ring has been constructed, GALMOD produces a final “observed” cube in which the
Hi flux in each pixel is the sum of the signal of every subcloud there located.

In order to be directly comparable with real datacubes, the mock datacubes are
then smoothed spatially to simulate the instrumental resolution; before the smooth-
ing, the datacube can also be contaminated with a random signal with dispersion
σnoise to simulate the observational noise.

4.1.2 Comparing thick and thin disc models

In order to analyse the biases that a thick Hi disc can cause, if the thickness is not
taken into account, we build a series a datacube models. The intrinsic properties
have been chosen to mimic the ones obtained for a sample of dIrrs in Chapter 3. For
each disc model, we use GALMOD to make a thin (TN) datacube model considering
a Dirac delta distribution for the vertical profile of the gas and a thick (TK) datacube
model with a constant scale height, zd, comparable to or larger than the radial scale
length Rd. In Sec. 4.3 we will see that the scale height of dIrrs is expected to increase
with radius and reaches zd ∼ Rd only in the very outer parts of the discs. However,
the choice of maximizing the Hi thickness over the whole disc is done deliberately to
make more evident its effects on observable properties. In the following, we focus in
detail on the TK-TN comparison of disc models with properties similar to the dIrr
WLM (Fig. 3.26).

The input properties of the Hi disc models are shown in Fig. 4.1: the intrinsic
surface density follows a radial profile with an inner depression and an exponential
fall-off in the outer parts; the rotation curve is slowly rising and reaches about 40
km s−1 in the outer disc, the velocity dispersion is fixed at 8 km s−1. We assume
that the rotation velocity is cylindrical, i.e. it depends only on the radius R and
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Figure 4.1: Input properties for a thin and a thick Hi disc models (the properties are the
same except for the Hi disc thickness). Clockwise from the upper-left panel to the bottom-
right panel: intrinsic surface density; half width half maximum of the vertical profile of
the gas (assumed Gaussian); rotational velocity of the gas (assumed cylindrical, see text);
intrinsic velocity dispersion of the gas.

does not have vertical gradient (see Sec. 4.2.1). The TK disc model has a Gaussian
vertical profile and a constant scale height of ∼ 100′′, comparable with the radial
scale length (Rd = 120′′). We assume a constant inclination angle of 65◦, a PA of
0◦ and a null systemic velocity. The resultant datacubes have 177x177 pixels with
dimension 9.4′′, a channel separation of 2.5 km s−1 and 81 channels. The models
have been spatially smoothed with a Gaussian with FWHM=25′′ × 25′′ mimicking
the instrumental beam and the velocity dispersion in input has been increased to
σinput = 8.27 km s−1 to simulate the Hanning-smoothing (Eq. 4.2).

Mimicking a classical 2D analysis of the Hi datacubes (e.g. Oh et al. 2015), we
build the total Hi map summing all the signal in the channels, then we fit a Gaussian
to the Hi profile in each pixel using the task GAUFIT. The best-fit centroids and
standard deviations are used to build the velocity fields and the velocity dispersion
maps. The maps are shown in Fig. 4.2 together with the residual maps between the
TK and TN disc models. The Hi total maps are significantly different: the TN map
reflects immediately the profile of the surface density given in input including the
central Hi hole (Fig. 4.1), while the gas distribution in the TK is more diffuse and
the presence of the inner deficit of Hi has been smoothed out. These differences are
more evident in the residual map: in the very inner part the TK model has a deficit
of about 4 M� pc−2, while in the outer disc, the TK models contains more gas than
the TN model especially near the minor axis where we accumulate flux coming from
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Figure 4.2: “Observed” maps of the Hi disc models made with GALMOD given the input
properties shown in Fig. 4.1 (see text). The first two columns show the maps obtained
for the thick and thin disc model, while the third column shows the differences between
them. The first row shows the observed surface density maps integrated across the cube
channels, the black iso-density contours indicate the levels 5, 10, 15 M� pc−2, the red
and orange (solid and dashed) contours show the level 1 M� pc−2 for the thick and thin
model, respectively; the second row shows the velocity fields, the iso-velocity contours span
from -30 km s−1 to 30 km s−1 with step of 10 km s−1; the third row shows the velocity
dispersion maps. In order to make the plot clearer, we blanked from the maps all the pixels
where Σobs < 0.01 M� pc−2. The red circle in the bottom left corner of the panels show
the assumed instrumental beam. The Field of View is 14′ × 14′.

the Hi layers above and below the equatorial plane. Therefore, the presence in the
real datacube of a consistent excess of emission near the disc minor axis could be
an hint of the existence of a thick Hi disc (see e.g. UGC 8508 in Fig. 3.25 or WLM
in Fig. 3.26, see also Fig. 4.14).

The velocity fields show differences not only in the very outer disc, where the
observed velocities depends only on the kinematics of the gas above and below the
equatorial plane, but also in the inner parts. The iso-velocity contours of the TK
model are “stretched” with respect to the TN case, hence just looking at the velocity
field the radial gradient of the gas rotation can be misinterpreted to be steeper than
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Figure 4.3: Hi line profiles from the thick (dashed) and thin (solid) datacube models
shown in Fig. 4.2. The profiles are from three different pixels: one located on the major
axis (left-hand panel), one located at an azimuthal angle of 45◦ (middle panel) and the
last located on the minor axis (right-hand panel). The profiles have been normalised to
the peak value.

it actually is5. More quantitative information on the differences can be obtained
focusing on the “cross-shape” pattern in the residual map: along the major axis the
TK velocities underestimate (in terms of absolute values) the real gas rotation in
the equatorial plane of 2 km s−1 at most, while at intermediate azimuthal angles the
effect is reversed and the in TK velocities overestimate the intrinsic velocities up to 5
km s−1. Notice, however, that the information at these angles have usually a lower
weight in the fitting of the observed velocities (see Sec. 3.3.2). Along the minor
axis and in a small region around the major axis the two velocity fields show no
differences. The reason behind these differences is shown in Fig. 4.3: in the presence
of a thick disc the final Hi line profile observed in a certain pixel is the resultant
of the convolution of all the Hi profiles intercepted along the los, each with its own
value of Vlos that depends on the radius and on the azimuthal angle (Eq. 1.6). In
some regions this causes the shift of the line centroids and the broadening of the
lines (see below). All the los passing for the minor axis intercept Hi layers with
Vlos = Vsys, hence there is no shift of the centroids (see right-hand panel in Fig. 4.3)
as shown in the residual map in Fig. 4.2.

The TN velocity dispersion map clearly shows the constant value of the velocity
dispersion given in input (σv ∼ 8.3 km s−1, including also the instrumental resolu-
tion, see Eq. 4.2), while the TK map shows a X-shape pattern of inflated dispersion

5The “opening angle” of the iso-velocity contours is related to the shape of the rotation curve:
the larger is the angle the steeper is the rising of the rotation curve.
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Figure 4.4: Same as Fig. 4.2, but we added Gaussian noise in the datacube models (noise-
per-channel σch = 0.06 M� pc−2). The maps have been obtained after that the datacubes
have been cleaned applying a noise mask (see text).

that is clearly shown also in the residual map. The X-shape is not typical only
of thick discs (Sicking, 1997), but it is a general pattern due to the mixing of Hi
line profile with different Vlos. At intermediate azimuthal angles, the velocities in
nearby pixels show large differences and this effect is maximized. Actually, the TN
dispersion velocity map exhibits this pattern, but it is not appreciable in Fig. 4.4
because the increase of the observed dispersion is lower than 0.1 km s−1.

The two models discussed above represent an idealized situation in which the
datacubes have no noise. In order to present a more realistic analysis, we add
artificial noise to the mock datacubes as follows. We take the datacubes created
by GALMOD and we add in each pixel a flux taken from a Gaussian centered on
0 and with a standard deviation σnoise, finally we apply the spatial smoothing as
described at the beginning of this Section. The standard deviation of the Gaussian
has been tuned to have in the final smoothed data cube a noise-per-channel σch ∼
1 mJy beam−1 = 0.06 M� pc−2 similar to the level of noise found in the datacubes
analysed in Chapter 3 (see Tab. 3.2). We have cleaned the noisy datacubes as
follows.
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• We smooth the original datacube with a Gaussian that has a FWHM two
times larger than the beam dimension;

• we estimate the noise in the smoothed cube, σsmch , calculating the standard
deviation of the flux in channels free from the Hi emission of the source;

• we blank all the pixels of the smoothed cubes with signal below 3σsmch and we
set the value of the remnant pixels to 1 obtaining a boolean mask;

• each pixel of the original datacube is multiplied by the correspondent pixel of
the masks so that in the cleaned datacube all the pixels containing only noise
are blanked.

Using the cleaned datacubes, we repeat the same analysis described for the “ide-
alized” datacubes, but given the presence of the noise we use some more stringent
conditions in GAUFIT: the fitted amplitude of the Gaussian needs to be larger
than 3σch; the fitted dispersion needs to be larger than the velocity resolution of
the datacubes (σv > 1.8 km s−1); the fitted velocity centroid needs to be between
−60 km s−1 and 60 km s−1, i.e., it needs to be in the velocity range of the datacube
in which the emission from Hi source starts to be evident against the noise. The
pixels in which at least one of the above conditions is not satisfied are blanked. The
results are shown in Fig. 4.4. The differences shown in Fig. 4.2 are still present but
now they are less evident, especially in the outer regions of the disc where they are
lost in the noise. In particular the two velocity dispersion maps and their residual
map are now very noisy and the X-shape pattern disappears, however the systematic
increase of σv is still visible across all the disc.

Fig. 4.2 and Fig. 4.4 clearly show that the presence of a thick disc produces final
maps that appear more “face-on” with respect to the thin disc case. In this context,
it is interesting to note that the 1 M� pc−2 contour of the TN disc model overplotted
to the TK Hi total map (dashed-orange) in Fig. 4.4 highlights the excess of emission
along the minor axis. This feature is similar to the ones observed in some Hi map of
the dIrrs analysed in Chapter 3 (e.g. WLM, see Box C in Fig. 3.26). Therefore, in the
case of thick discs, it is possible to obtain a wrong estimate of the disc inclination and,
as a consequence, we introduce further errors on the estimate of the gas rotational
velocity (Eq. 1.6). In order to have an estimate of the magnitude of this effect, we
made new thick and thin disc models with the same intrinsic properties shown in
Fig. 4.1, but projecting the disc with different inclinations, itrue ranging from 20◦

to 80◦ with steps of 10◦. We add noise (σch ∼ 0.06 M� pc−2) to the datacubes
and then we highlight the Hi emission from the source as described above for the
models shown in Fig. 4.4. For each disc model we fit ellipses to the the iso-density
contours of the Hi total map using the code RingFit described in Sec. 3.3.2, then
the final inclination of the Hi disc, iobs, is estimated as the mean of the axial ratios
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Figure 4.5: “Observed” inclinations recovered fitting the iso-density contours of the Hi
total maps (see text) versus the true inclinations of thin (circles) and thick (squares)
galactic disc models. The color of the points indicates | sin−1 iobs − sin−1 itrue| × sin itrue ,
i.e. the relative error that is produced on the estimate of the rotational velocity using the
observed value of the inclination (see Eq. 1.6). Notice that the thin and thick estimates of
iobs for itrue = 20◦ are practically coincident.

of the fitted ellipses. Fig. 4.5 shows the final results of this analysis. At very low
inclination angles itrue < 30◦, the inclination is difficult to recover both for thick
and thin disc models (see our analysis in Read et al. 2016), but for larger itrue the
differences are evident: in the case of thin disc the axial ratio of the Hi iso-density
contours is a very robust proxy of the intrinsic inclination angle, while in the case
of thick disc, itrue is systematically underestimated. This effect is more severe going
toward higher intrinsic inclination angles: in these cases the los intercepts more and
more Hi layers above the galaxy midplane, increasing the observed Hi emission along
the minor axis. As a consequence, the final map looks more face-on than it actually
is. However, the color scheme in Fig. 4.5 shows us that the mistake one makes in the
inclination angle causes errors on the estimate of the intrinsic gas rotational velocity
(Vrot ∝ Vobs sin−1 i, see Eq. 1.6) that are almost constant and not larger than 10%,
except at very low inclinations. This is due do the fact that at large inclination
angles, where the itrue − iobs discrepancy is more significant, the sin function varies
much more slowly with the angle.

Based on the above analysis and further analysing different disc models with
different properties, we conclude that the assumption of a thin disc, when a thick



4.2. An original method to account for gas thickness 149

disc is present, biases the results as follows:

(i) the surface density profile tends to be shallower than the real profile;

(ii) the measured broadening of the Hi line profiles is larger than the intrinsic
velocity dispersion of the gas (σv is overestimated);

(iii) the representative velocity estimated from the Hi line profiles may not trace
the gas rotation velocity at certain locations;

(iv) the observed Hi total map looks more face-on than it actually is.

Notice that the surface density is the observable that shows the largest relative
differences (Fig. 4.2 and Fig. 4.4). Obviously, these effects influence the estimate
of the final rotation curve: due to (iii) the observed velocities are no longer tracing
the rotation on the equatorial plane, due to (iv) the intrinsic inclination can be
underestimated and the rotation wrongly deprojected (Eq. 1.6), while (i) and (ii)
bias the calculation of the asymmetric-drift correction (see Sec. 3.3.3). Geometrical
properties as the galactic centre and the PA as well as the systemic velocity are not
influenced by the presence of a thick disc.

In the presence of very thick disc, the combination of above effects causes the
circular velocities, obtained with both 2D and 3D methods assuming a thin disc, to
be lower than the intrinsic velocities at smaller radii (similar to the beam smearing)
and higher in the outermost disc. The magnitude of these differences depends mainly
on the thickness of the Hi discs, but the i of the disc, the shape of the rotation curve
and the instrumental properties (beam dimension) are also important parameters.
In particular a rising rotation curve, typical of dIrrs, amplifies the errors.

In the next Section we will present a new original method to retrieve the Hi disc
properties (circular velocity, velocity dispersion, surface density) taking into account
the biases introduced by the Hi thickness.

4.2 An original method to account for gas thickness

4.2.1 Theoretical background

We assume that the gas in the Hi disc can be treated as a fluid with an axisymmetric
distribution, hence its intrinsic properties depend only on the cylindrical coordinates
(R, z) in which R lies on the disc equatorial plane and z is normal to the disc plane.
We further assume that the gas rotates around the z-axis with angular velocity Ω

and rotational velocity Vrot = ΩR. Finally, we assume that there are not streaming
motions along either the vertical direction (Vz = 0, hydrostatic equilibrium) or the
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radial direction (VR = 0, centrifugal equilibrium). Using the above assumptions the
cylindrical components of the Euler equation can be expressed as

1

ρ

∂P

∂z
= −∂Φtot

∂z

1

ρ

∂P

∂R
= −∂Φtot

∂R
+ Ω2R

, (4.3)

where ρ is the 3D density of the Hi and P its pressure. Assuming that the thermal
pressure is negligible and that the gas is isotropic, the pressure and the density are
related by the equation of state

P (R, z) = σ2
v(R)ρ(R, z), (4.4)

where σv is the Hi velocity dispersion that is due mainly to the turbulent chaotic
motions of the gas (see Sec. 5.3). Therefore, in Eq. 4.4, P refers to a turbulent
pressure. A fluid with the above equation of state is isothermal in the vertical
direction since σv is independent of z, but it is not isothermal in the radial direction
since σv can vary with the radius. Therefore, it is not guaranteed that the isopycnic
surfaces (equal density) and the isobaric surfaces (equal pressure) are coincident and
the fluid cannot be considered barotropic. The assumption of a radially varying σv
is justified by the observations (see e.g. Figs 3.10-3.26 or Tamburro et al. 2009),
while the constant value assumed along the vertical direction is an assumption we
make for simplicity. However, we note that σv = f(R) is also adopted in the study
of edge-on galaxies where in principle a vertical variation of σv can be measured
from the data (e.g. O’Brien, Freeman & van der Kruit 2010).

If the fluid is not barotropic, from the Poincaré Theorem (e.g. Tassoul 1980 and
Barnabè et al. 2006) it follows that the angular velocity in Eq. 4.3 depends both on
the radial and vertical coordinates (Ω = Ω(R, z)). Therefore, the assumed equation
of state (Eq. 4.4) predicts the existence of a vertical gradient in the gas rotational
velocity. However, the assumption of cylindrical rotation (Vrot = Vrot(R)) may be
not so far from the reality. In order to justify this statement, we start using Eq. 4.4
to write the pressure gradient as

~∇P (R, z) =

[
σ2
v(R)

∂ρ(R, z)
∂R

+ 2σv(R)ρ(R, z)
∂σv(R)

∂R

]
R̂+

[
σ2
v(R)

∂ρ(R, z)
∂z

]
ẑ. (4.5)

In disc galaxies, except for the very inner part, the Hi velocity dispersion pro-
files (σv(R)) show an almost constant or slightly decreasing, radial trend (see Ap-
pendix 3.A for the dIrrs in our sample or Tamburro et al. 2009 for larger spirals). In
these conditions, the radial variation of the density is much larger than the one of
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Figure 4.6: Comparison between the iso-density (black curves) and iso-pressure (red and
green curves) contours for two disc models (left-hand panel). The two models have the
same density ρ ∝ exp

[
− R

Rd

]
exp

[
−0.5 z

zd(R)

]
where Rd = 1.5 kpc and zd(R) is shown

in the bottom-right panel. The gas pressure is calculated using Eq. 4.4; the velocity
dispersion profiles of the two models are shown in the top-right panel.

the velocity dispersion and the second term of the radial component of the pressure
gradient in Eq. 4.5 is negligible, hence from Eq. 4.5 it follows

~∇P ' σ2
v
~∇ρ. (4.6)

Eq. 4.6 implies that, locally, the vectors normal to the the iso-density and iso-
pressure surfaces have the same direction, hence these two surfaces can be considered
coincident as it is the case of barotropic fluids. This concept is illustrated in Fig. 4.6
where we compare the iso-density and iso-pressure contours in the R − z plane for
two disc models. The two models have the same density, ρ, but different velocity
dispersion profiles, hence different turbulent pressures. ρ is exponential along the
radial direction with scale length Rd = 1.5 kpc, while in the vertical direction the
gas is distributed following a Gaussian. The vertical scale height zd(R) flares from
about 0.2 kpc in the inner part to about 1.6 kpc at R = 5 kpc as shown in the
bottom-right panel of Fig. 4.6. The velocity dispersion profiles (top-right panel of
Fig. 4.6) have been set to reproduce the cases of non-constant σv profiles observed
for some galaxies in Chapter 3. The first model decreases from about 14 km s−1 to
8 km s−1 within R ∼ 2 kpc and then remains constant, similar to what we observe
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for DDO 168 (Fig. 3.20); in the second model the decrease is shallow as we observe
in DDO 133 (Fig. 3.18) or in DDO 126 (Fig. 3.17). The comparison between the iso-
pressure contours (calculated using Eq. 4.4 ) and the iso-density contours (equal for
the two models), shown in the left-hand panel of Fig. 4.6, confirms our prediction:
for most of the disc the isopycnic and the isobaric surfaces are coincident and the
largest discrepancies are found in the innermost regions where the gradient of σv
is significant. We also found that the radial profile of the vertical scale height
does not influence significantly the magnitude of this effect. In conclusion, given the
conditions observed in the ISM, the Hi discs can be considered reasonably barotropic
with a cylindrical rotation. Moreover, the regions where these assumptions are less
justified are in the innermost parts, where we expect that the disc is thin (see
Sec. 4.3). Therefore, even if a vertical gradient of the rotation speed is present, it
is expected to affect only an almost irrelevant (in term of density) portion of the
gas. For these reasons, in the rest of the Chapter, we implicitly assume that the Hi
rotation is cylindrical.

Using Eq. 4.4 in Eq. 4.3 we obtain
σ2
v

∂ ln ρ

∂z
= −∂Φtot

∂z

σ2
v

∂ ln ρ

∂R
= −∂Φtot

∂R
+ ω2R,

(4.7)

where
ω2 = Ω2 − ∂σ2

v(R)

R∂R
(4.8)

Dynamical studies based on Hi data usually focus on the radial part of Eq. 4.7: the
total potential is retrieved fitting the observed rotation curve of the gas Vrot = ΩR
sometimes taking into account the pressure support terms (see Sec. 3.3.3). These
results are obtained assuming that the Hi disc is thin and the scale height equal
to some arbitrary constant value, for example we assumed zd = 100 pc in the
study of dIrrs in Chapter 3 (see Sec. 3.3.2). However, these assumptions are not
compatible with the vertical component of Eq. 4.7 that, for a typical potential of
dIrrs and spirals, predicts the presence of thick and flaring Hi discs (see Sec. 4.3
and Fig. 4.15). The requirement that both the equilibrium equations are satisfied
is not only for formal theoretical consistency because, as we have shown in Sec. 4.1,
if not taken into account the presence of a thick Hi disc can influence the observed
properties introducing biases also in the dynamical analysis. In the following Section,
we present a new original method in which the final kinematic and dynamic results
are both consistent with the equilibrium conditions in Eq. 4.4 and corrected for the
Hi disc thickness.
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4.2.2 The method

Our technique focuses on the 3D density distribution of gas, ρ and it takes advan-
tage both of methods borrowed from the 2D analysis (e.g. ROTCUR) and of the
exploitation of the the whole 3D datacube information as made in 3DB (Sec. 3.2).
We define the Hi 3D density as

ρ(R, z) = Σint(R)
ζ(z, zd(R))

zd(R)k
, (4.9)

where Σint is the intrinsic surface density profile, ζ is the functional form depending
on the scale height zd describing the Hi vertical profile, k is a constant such that
the integral of ρ along the vertical layer is exactly Σint, for example k = 2 when ζ is
an exponential or a squared hyperbolic secant and k =

√
2π if ζ is a Gaussian. Our

method consists of an iterative process in which at each step we improve the estimate
of the Hi density profile (Eq. 4.9), using the observed information corrected for the
Hi thickness, and the total galactic potential obtained by the fit of the rotation curve.
At the end of the iterations, the code returns the 3D density profile of the Hi (Σint

and zd), the unbiased estimate of the Hi circular velocity and of the total galactic
potential. The final results are totally compatible with the set of Euler equation
in 4.3. The code is written as a Python extension of GIPSY. It recursively calls
the tasks ELLINT, GAUFIT and ROTCUR to analyse the data and GALMOD to
build disc models (see Sec. 4.1.1), while the parts of the code involving the dynamics
(potentials, rotation curves, estimate of the scale height) make use of our Python
module galpynamics6. A single code iteration consists in 5 sequential steps: each
step is an independent part of the code that takes some data in input and returns
new data or improve the data in input. These steps are briefly summarised below,
while the detailed descriptions can be found in the next subsections. A 	 indicates
a step with a proper sub-iterative process: in this case, the main iteration is “frozen”
until the sub-iteration is concluded.

1 Intrinsic surface density profile (	): taking into account the spatial in-
strumental resolution and the current model for the vertical profile of the Hi
disc, we deproject the observed surface density of the gas, Σobs, to obtain the
intrinsic surface density Σint and the 3D density, ρ, using Eq. 4.9.

2 Disc kinematics: taking into account the current model for the 3D density
profile of the Hi disc and the current estimate of the rotational velocity Vrot and
of the velocity dispersion σv, we correct the “observed” velocity field and the
velocity dispersion maps to obtain improved maps of the kinematic properties
in the disc equatorial plane. Then we use them to update the Hi rotation

6https://github.com/iogiul/galpynamics

https://github.com/iogiul/galpynamics
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curve and the Hi velocity dispersion profile.

3 Pressure support correction: given the current model of the 3D Hi
density and the velocity dispersion profile, we correct the observed rotation
curve obtaining the circular velocities that are tracers of the total galactic
potential (see Sec. 3.3.3).

4 Estimate of the DM density: we find the best DM halo parameters fitting
the circular velocity rotation curve.

5 Estimate of the Hi scale height (	): Given the current dynamical model
(DM halo + stellar disc + Hi disc) we estimate the Hi vertical profile solving
the vertical equilibrium conditions in Eq. 4.7.

The steps above are iterated until a converge on the Hi properties (3D density,
circular velocity and velocity dispersion) is reached. In each iteration we assume the
knowledge of the geometrical properties of the galaxy (inclination angle, position
angle and the coordinates of the centre). The position angle and the position of
the centre is not affected by the presence of a thick disc (Sec. 4.1) and they can be
found with the classical 2D (e.g. Oh et al. 2015) or 3D methods (see Sec. 3.3.2).
The inclination angle could be influenced by the presence of a thick disc because the
Hi layers, above and below the equatorial plane, can produce an excess of emission
near the minor axis that can artificially inflate the disc axial ratio (Sec. 4.1). Our
method can be applied assuming a range of inclination angles comparing the final
3D datacube models with the observations to select the inclination angle that give
the best representation of the data (see e.g. Fig. 4.14). Below we describe all the
steps in detail.

Preliminary steps

Before starting our iterative process, we need to produce preliminary data from the
observed quantities. First of all, we separate the Hi emission from the noise using a
mask as described in Sec. 4.1.2. We use this “clean” datacube to make the Hi total
map (0th moment of the datacube) summing the emission through all the channels
(see Sec. 3.3.1). The observed surface density profile, Σobs, and the related errors,
δΣobs , are obtained calculating the mean and the standard deviation in the Hi total
map along elliptical rings defined by the disc geometrical parameters using the task
ELLINT (see Sec. 3.3.1). The velocity field and the velocity dispersion map are
obtained fitting the Hi line profile in each pixel of the datacube with a Gaussian
using the task GAUFIT. For each pixel, GAUFIT fits the Hi line velocity profile
and it returns an estimate of the best-fit Gaussian parameters: the amplitude A,
the velocity centroid Vobs and the velocity dispersion σobs. Then, we blanked all the
pixels that do not meet the following conditions.
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• A > nσch, where σch is the noise per channel and n is typically set to 3;

• Vmax > Vobs > Vmin, where Vmin and Vmax are the values of the velocity in
the first and last channels of the datacube that contain the source emission.

• (Vmax − Vmin) > σobs > σinst, where σinst is the instrumental resolution.

Finally, as initial guess, we assume that the Hi emission lies in a razor-thin disc, i.e.
the vertical profile ζ in Eq. 4.9 is a Dirac delta.

Intrinsic surface density profile (step 1)

In this step we estimate the intrinsic surface density, Σint, needed to reproduce the
observed radial surface density profile Σobs after the convolution with the instru-
mental beam. The initial guess for Σint is obtained simply correcting the observed
surface density for the deprojection factor cos i (Eq. 3.3). This first guess of Σint

is then inserted in Eq. 4.9 to obtain a new estimate for the Hi 3D density which
is employed to make a Hi datacube model using the task GALMOD (see Sec. 4.1).
Once the datacube has been convolved with the instrumental beam, a model surface
density, Σmod, is obtained using ELLINT in the same way we estimate Σobs. Σmod

and Σobs are compared radius-by-radius and a new variable is defined as

δΣ(R) = Σi
mod(R)− Σobs(R), (4.10)

then the new guess for the intrinsic surface density is

Σi+1
int (R) = Σi

int(R) + δiΣ(R). (4.11)

This process is iterated until the maximum difference between two successive esti-
mates of the intrinsic surface density, δmax = max(δiΣ(R)/h), is lower than a certain
threshold. Different values of h leads to use different types of residual: if h = 1, δmax

represents the maximum absolute difference between the observation and the pro-
jected model; if h = Σobs(R) or h = δΣobs(R), δmax is the maximum relative residual
with respect to the observational values or with respect to their 1σ errors. Fig. 4.7
shows the result of this iterative method compared with the simple deprojection
approach (Eq. 3.3) in the case of a Hi disc model with a scale height flaring from
50′′ in the centre to 120′′ at last radius. Notice that to make the plot we assume to
know the Hi scale height at each radius, but in our code this information is improved
at each step of the main iterative cycle. The final errors on Σint are estimated as
δΣint = δΣobs cos i.

Some steps of the main iterative cycle involve the calculations of integrals in
which the density of the gas appears in the integrand functions (Eq. 4.22 and
Eq. 4.33). In order to avoid that scatter noise in the intrinsic surface density adds
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Figure 4.7: Performances of the classical deprojection method (Σint = Σobs cos i) and
of our iterative method in retrieving the intrinsic surface density of a Hi disc model.
The scale height of the model flares from 50′′ in the centre to 120′′ at last radius, the
instrumental beam resolution is 25′′ and the disc is tilted 65◦ with respect to the los.
Top panel: the points show the intrinsic surface density given in input, the dashed line
indicates the estimate obtained with the classical deprojection method (Eq. 3.3), while the
solid line shows the result obtained with our iterative method (see text). Bottom panel:
relative errors (estimate-intrinsic/intrinsic) for the classical method (dashed line) and for
our method (solid line).

“unrealistic” numerical scatters in the integral estimates, this step returns also a
smooth functional form for the intrinsic surface density obtained fitting the final
estimate of Σint. Currently the code supports the following fitting functions:

ΣintR = Σ0 exp

[
−

R
Rd

]
, (4.12)

ΣintR = Σ0

(
1 +

R
Rd

)α

exp

[
−

R
Rd

]
, (4.13)

ΣintR = Σ0 exp

[
−0.5

(R− Rc)
2

R2
d

]
(4.14)

and

ΣintR = Σ0

(
1 +

n∑
i=1

aiRi

)
exp

[
−

R
Rd

]
. (4.15)
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Eq. 4.12 is a simple exponential profile, Eq. 4.13 and Eq. 4.14 are useful to describe
profiles that show an inner depression (e.g. WLM, Fig. 3.26), while Eq. 4.15 tuning
the degree of the polynomials, n, can be adapted to a large variety of observed
profiles. In particular, if n is large Eq. 4.15 is a sort of interpolating function that
maintains the property to have an exponential decreases beyond a given radius.

Disc kinematics (step 2)

In the presence of a thick Hi disc the observed velocity field and velocity dispersion
map (Vobs, σobs) are not tracing directly the kinematic properties of the gas in the
equatorial plane of the disc (Sec. 4.1). In order to correct for this effect, we use
the current estimate of Vrot, σv, Σint and zd to build two models using GALMOD
(Sec. 4.1.1): a thin-model assuming ζ as a Dirac delta in Eq. 4.9 and a thick-model
using the current estimate of the 3D Hi density (Eq. 4.9). Using GAUFIT (see
Sec. 4.1) we extract the velocity fields (Vthin, Vthick) and the velocity dispersions
maps (σthin, σthick) from the two datacube models. Then we compare the thin and
thick maps and we define two new maps in which each pixel, with coordinates (x, y),
contains the quantities{

δV(x, y) = Vthick(x, y)− Vthin(x, y)

δσ(x, y) = σthick(x, y)− σthin(x, y)
. (4.16)

An example of residual maps δV and δσ is shown in Fig. 4.2.
The “improved” kinematic maps on the equatorial plane (Veq, σeq) are obtained

as {
Veq(x, y) = Vobs(x, y)− δV(x, y)

σeq(x, y) = σobs(x, y)− δσ(x, y).
(4.17)

Each pixel of the velocity dispersion map is corrected for the instrumental resolution
as σ̂eq(x, y) =

√
σ2
eq(x, y)− σ2

inst assuming that the instrumental broadening is a
Gaussian with FWHM equal to two times the channel separation of the datacube.
Finally the rotation curve and the velocity dispersion are estimated, as usual in 2D
methods (e.g. Oh et al. 2015), from the “improved” maps. The Hi rotation curve is
obtained by fitting Eq. 1.6 ring-by-ring to the unbiased velocity field using ROTCUR
in which we kept fixed all the geometrical parameters (inclination, PA, centre) and
we fit only for Vrot. As done in Chapter 3 (Sec. 3.3.2), we give different weights, w,
to the observed velocities across the disc using w = cos θ, where θ is the azimuthal
angle. This step is repeated two times considering separately the approaching (Vapp

rot )
and the receding (Vrec

rot) halves of the disc, the final Vrot and the related error are
calculated as the mean and the standard deviation of Vapp

rot and Vrec
rot at each radius.

The velocity dispersion profile, σv, and the related errors, δσv , are obtained taking
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the average and the standard deviation of the observed values in σ̂eq along elliptical
annuli using ELLINT as done for the observed surface density profile.

Pressure support correction (step 3)

The Hi circular velocities, Vc, are now obtained correcting the Vrot estimated in
the previous step for the gas pressure support using the current estimate of σv, Σint

and zd. Essentially, we use the method described in Sec. 3.3.3, but we take into
account also the radial variation of the scale height. In this case, using Eq. 3.7, the
asymmetric-drift correction term (Eq. 3.8) becomes

V2
A(R)|z=0 = −Rσ2

v(R)
∂ ln

(
σ2
v(R)Σint(R)z−1

d (R)
)

∂R
. (4.18)

The errors on VA and on Vc are calculated with the same procedure described in
Sec. 3.3.3.

Estimate of the DM density (step 4)

In this step, we improve the dynamical model of the galaxy by fitting a DM halo
model to the DM velocity defined as

VDM =

√
V2

c − V2
∗ − fHe|VHI|VHI, (4.19)

where Vc is the current circular velocity, V∗ and VHI are the rotational components
due do the radial acceleration produced by the stellar disc and the Hi disc, respec-
tively (see Appendix 5.A). The factor fHe takes into account the presence of the
Helium (we assume fHe = 1.33 in this work, see e.g. Begum et al. 2008a; Lelli, Mc-
Gaugh & Schombert 2016b). The VHI term is not squared because in some cases the
Hi distribution has an inner depression that causes a radial force directed outward
in the opposite direction with respect to the centripetal acceleration required to sus-
tain the observed Vc (see Appendix 5.A). The uncertainties on VDM are calculated
applying the errors propagation to Eq. 4.19:

δVDM =

√
V2

cδ
2
Vc

+ V2
*δ

2
V∗

+ f 2
HeV

2
HIδ

2
VHI

VDM
. (4.20)

The rotation curves of the disc components are calculated from the matter dis-
tribution ρ∗ for the star and ρHI for the gas as

V(R) =
√
−Rg(R, z = 0) (4.21)

where g is the radial component of the gravitational acceleration. g is estimated
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calculating the integral (Casertano, 1983)

g(R, z = 0) = 4 G

∫ ∞
0

dR′
∫ ∞

0

dz′
2
√
R′√
Rp

[K(p)− E(p)]
∂ρ(R′, z′)
∂R′

, (4.22)

where K and E are the complete elliptical integrals of the first and second kind as
defined in Abramowitz & Stegun (1972), p = ε−

√
ε2 − 1 and

ε =
R2 + R′2 + (z′ − z)2

2RR′
. (4.23)

Concerning the stellar disc, the ρ inside the integral in Eq. 4.22 is usually expressed
as a double exponential with a constant scale length, while for the Hi disc the ρ
comes from Eq. 4.9, where we use the current estimate of Σint and zd. The errors
on V∗ and VHI can be derived from the uncertainties of the observed surface density
profiles using the method described in Appendix 5.A. However, when the DM matter
is dominant, as it is the case for dIrrs, Vc is much larger than V∗ and VHI, hence
Eq. 4.20 becomes

δVDM ≈
Vc

VDM
δVc . (4.24)

In the analysis of the dIrrs in Sec. 4.3, we calculate the errors on VDM using Eq. 4.24.
Following Binney & Tremaine (2008), we assume that the DM halo is an oblate

spheroid with axial ratio q and density ρh(m; ~Θ), where m is the elliptical radius
defined as m2 = R2 + z2q−2 and ~Θ contains all the model parameters (e.g. central
density and core radius for an isothermal halo, see Eq. 4.26 and Eq. 4.27). The
circular velocity for a given halo model is

V2
h

(
R; ~Θ

)
= 4πGq

∫ R

0

dm
m2ρh

(
m; ~Θ

)
√

R2 −m2(1− q2)
. (4.25)

Currently our code implement the possibility to use an isothermal halo with density

ρh(m; ρ0, rc) = ρ0

(
1 +

m2

r2
c

)−1

, (4.26)

or a NFW halo with density

ρh(m; ρs, rs) = ρs

(
m

rs

)−1(
1 +

m

rs

)−2

; (4.27)

the axial ratio q of the halo can be set between 0.01 (disc-like) and 1(spherical).
Finally, the best set of halo parameters ~Θbest are obtained maximizing the loga-
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rithmic likelihood

lnL = −
∑
R

[Vh(R; ~Θ)− VDM(R)]2

δ2
VDM

(R)
. (4.28)

Estimate of the Hi scale height (step 5)

Integrating the vertical component of Eq. 4.7 we obtain

ρ̃(R, z) =
ρ(R, z)
ρ(R, 0)

= exp
[
−Φtot(R, z)− Φtot(R, 0)

σ2
v(R)

]
, (4.29)

where the total potential Φtot is the sum of the potentials due to the DM halo (Φh),
the stellar disc (Φ∗) and the gaseous disc (Φgas = fHeΦHI). Through Eq. 4.29, at each
R, we obtain the normalised vertical profile of the Hi, from which we can estimate
the vertical scale height zd(R).

The potential of the spheroidal halo is calculated through (Binney & Tremaine,
2008)

Φh(R, z) = −2πG
q√

1− q2

(
2

ψ(∞)

sin(
√

1− q2)
−
√

1− q2

∫ ∞
0

dτ
ψ(mτ (R, z, τ))

(τ + 1)
√
τ + q2

)
,

(4.30)
where

ψ(m) =

∫ m

0

dm′m′ρh(m′) (4.31)

and

mτ =
R2

τ + 1
+

z2

τ + q2
. (4.32)

Notice that ψ(∞) can diverge for certain density halo models (e.g. isothermal halo,
Eq. 4.26), however Eq. 4.29 depends only on the vertical gradient of the potential,
hence the term that depends on ψ(∞) in Eq. 4.30 vanishes in Eq. 4.29.

Following Cuddeford (1993), the potential for the disc components are evaluated
as

Φ(R, z) = − 2G√
R

∫ ∞
−∞

dR′
∫ ∞

0

dz′
√
R′Q− 1

2
(ε)ρ(R′, z′), (4.33)

where Q is the Legendre function of the second kind and ε is defined in Eq. 4.23.
From Eq. 4.33 it is clear that the both the right-hand and the left-hand terms

in Eq. 4.29 depend on the Hi gas density, actually Eq. 4.29 is a differential equation
that must be solved numerically. For this purpose, we developed an iterative method
in which at each step the vertical profile of the Hi, ρ̃i, is evaluated from Eq. 4.29
considering the potential of the gaseous disc (Φi

gas) obtained from the previous 3D
Hi density estimate ρi−1. For each sampling radius, we fit ρ̃i(R) with the functional
form ζ (Gaussian, exponential or squared hyperbolic secant) obtaining a measure of
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Partial estimate
Final estimate
Best-fit

Figure 4.8: Step-by-step zd estimate using the iterative method described in the text
(“Estimate of the Hi scale height” subsection). The grey points show the i-th partial
estimates, in particular the upper-limit profile shows the first guess obtained considering
only the potential due to the DM halo and the stellar disc. The blue points show the final
estimate of the scale height and the red curve is the related best-fit functional form. In this
particular case, the convergence is reached after 4 iterations, the last two are too similar
to be appreciated in the Figure.

the scale height zd. Finally, the radial trend of zd is fitted with another functional
form, typically a polynomial. In order to avoid strong unphysical discontinuities in
the radial profile of zd, we regularise the radial profile of the velocity dispersion with
a smooth functional form as a low order polynomial. If a strong radial trend is not
present, we assume a constant σv averaging the radial profile. The current estimate
of ζ(z, zd) is used in Eq. 4.9 to define a new 3D density model and the cycle is
repeated until the maximum difference between two successive estimates of zd is less
than a certain value, typically 1 pc. In the first iteration we consider only the DM
halo and the stellar disc obtaining an upper limit for zd. In order to have an estimate
of the uncertainties in zd, this step is repeated two times: one time considering an
upper profile for the velocity dispersion as σupv (R) = σv(R) + δσv(R) and an other
time considering a lower profile as σlowv (R) = σv(R)− δσv(R). The final values of zd
and the related errors are obtained taking the mean and the standard deviation of
the two separated estimates of the scale height described above. Fig. 4.8 shows an
example of how the convergence in the zd profile is reached step-by-step. We stress
that during the iterative estimate of zd, the main iterative cycle is frozen.

After this last step, the code checks whether the convergence of the Hi disc
parameters (Σint, zd, Vc, σv) is reached. If this is the case, the code stops the
iterations and it makes a final disc model using GALMOD, otherwise a new iteration
begins starting from the new estimate of the intrinsic surface density.
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Figure 4.9: Comparison between the results obtained in the analysis of a Hi disc model
using a “classical” razor-thin 2D method (blue points) and our iterative method (red points)
described in Sec. 4.2.2. The input properties of the Hi disc are shown by the black curves.

4.2.3 Tests

We test our method with a series of dynamically self-consistent Hi disc models made
using GALMOD (Sec. 4.1.1): our method is able to nicely retrieve the intrinsic Hi
properties also in the presence of very thick discs.

As a comparison, we repeated these tests using the razor-thin 2D and 3D tilted
ring approaches (see Sec. 1.3.3). 2D methods work on integrated maps (velocity
fields) and they can not take into account the presence of a thick disc. 3DB is more
promising since the scale height is one of the parameters needed in the datacube
fitting (see Sec. 3.2 and Appendix 3.C), but we found that the fit is essentially
insensitive of the Hi thickness for small-medium values of the scale height and returns
unacceptable results for very thick Hi discs. The reason for this is that, even if 3DB
works on the whole datacube, it fits one single ring at the time and it can not include
the emission coming from the extended vertical layers of the other rings.

As an example, in Fig. 4.9, we show the results obtained for aWLM-like (Fig. 3.26)
Hi disc model: our method is able to retrieve the radial profile of the Hi scale height,
accordingly also the other estimated properties are totally compatible with the input
profiles. Compared to our method, the classical 2D tilted-ring approach is obviously
biased by the fact that the Hi thickness is not taken into account: as expected
(Sec. 4.1.2), it estimates a too shallow intrinsic surface density, larger velocity dis-
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persions and the rotation curve tends to be artificially higher in the outer parts.

4.3 Application to real galaxies

4.3.1 The sample

In Chapter 3, we have analysed a sample of dIrrs assuming for each of them a very
thin Hi disc with a Gaussian vertical profile and a constant scale height of 100 pc
(see Sec. 3.2.1). However, in Sec. 4.1, we have shown that, if not properly accounted
for, the presence of a thick Hi disc can bias the final results. In this Section, we
applied the method presented in Sec. 4.2.2 to estimate the thickness of the Hi discs
to a subsample of dIrrs from Chapter 3 and we check whether the results obtained in
that Chapter are significantly biased by the naive treatment of the Hi disc thickness.

Among the 17 dIrrs (Tab. 3.2), we choose three galaxies: DDO 210, WLM
and NGC 2366. DDO 210 (Fig. 3.21) is the smallest galaxy in our sample (Rmax =

0.4 kpc) with a very low rotational velocity (. 5 km s−1) and a final circular velocity,
dominated by the asymetric-drift corrections (Sec. 3.3.3), that reaches ∼ 16 km s−1

in the outer disc. WLM (Fig. 3.26) is a galaxy with intermediate properties, a very
regular kinematics and it reaches a circular velocity of about 40 km s−1. Finally,
NGC 2366 is an “extended” dIrr (Rmax = 6.3 kpc) with a rotation curve that be-
comes almost flat (Vc ∼ 57 km s−1) in the outer parts. These three galaxies are
representative of all the different properties shown by dIrrs analysed in Chapter 3:
radial extent, dynamical mass and importance of the asymmetric-drift correction.

4.3.2 Results

The galaxies presented in Sec. 4.3.1 have been analysed using our original method
(Sec. 4.2): we assume a Gaussian vertical profile for the Hi discs and we adopt the ge-
ometrical parameters (i, PA, centre) reported in Tab. 3.8. The dynamical model for
the galaxies has three components: a spherical isothermal spherical halo (Eq. 4.26),
an exponential stellar disc (with a sech2 vertical profile) and a gaseous disc taking
into account the Helium with a multiplicative factor fHe = 1.33 (see Eq. 4.19). The
smooth profiles of the Hi surface density are obtained using Eq. 4.13. In the analysis
of the three galaxies, we assume that the velocity dispersion is constant across the
disc and it is calculated as the mean of the σv(R) estimates. The iterative cycle is
stopped when the maximum relative difference between two successive estimate of
Vc and zd is lower than 5%. Below we describe the results obtained.

• DDO 210, Fig. 4.10: the Hi disc of this galaxy is very thick compared to the
radial dimension, we estimate an almost constant thickness of ∼ 200 pc, larger
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Figure 4.10: Comparison between the Hi disc properties of DDO 210 (see Fig. 3.21)
obtained with our method to take into account the Hi thickness presented in Sec. 4.2.2
(red squares) and using 3DB in Chapter 3, assuming a thin disc (blue dots). The black-
dashed lines indicate the kinematic results obtained at first step of our iterative method,
i.e. assuming a razor-thin Hi disc.

than the Hi radial scale length (∼ 180 pc) and about half of the observed ra-
dial extent. The presence of such thick disc combined with the large beam
of ∼ 70 pc (Tab. 3.2) causes the observed surface density to be significantly
smoothed. In fact, our unbiased estimated of the intrinsic radial profile, Σint,
is much steeper with respect to the profile obtained with the classical depro-
jection method (Eq. 3.3). Since the circular velocity of this galaxy is totally
dominated by the pressure support correction (Fig. 3.21), the steep radial pro-
file of Σint increases the asymmetric-drift terms (Eq. 3.8) and the final circular
velocity is systematically larger than the one estimated in the first iteration
assuming a razor-thin disc.

Notice that our estimate of Vc at first iteration is different with respect to the
Vc obtained with 3DB in Chapter 3. The differences are due to the fact that in
our analysis we assume the velocity dispersion constant in the estimate of the
asymmetric-drift correction (Sec. 3.3.3), while in Chapter 3 we follow its de-
creases in the outer part (R > 0.3 kpc, see the bottom-right panel in Fig. 4.10).
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As a results the Vc estimated with 3DB are higher beyond R = 0.3 kpc. The
different assumptions on the estimate of the asymmetric-drift correction are
also at the base of the different magnitudes of the Vc errors. Given that the
final Vc is dominated by the contribution of the pressure support, the final
errors also are dominated by the uncertainties of the correction process (see
Sec. 3.3.3) and the presence of a varying σv introduces an additional term in
the error budget.

The best-fit parameters obtained for the DM halo are ρh = 0.07+0.02
−0.01 M� pc−3

and rc = 0.55+0.52
−0.23 kpc (given the steep increase of the rotation curve and

the small radial extent of the disc, the core radius is not well constrained).
As comparison, (Oh et al., 2015) found ρ = 0.11 ± 0.02 M� pc−3 and rc =

0.20± 0.05 kpc. In this analysis, we have assumed a stellar disc with a central
surface density Σ∗0 = 2.7 M� pc−2, a radial scale length R∗d = 200 pc and
vertical scale height z∗d = 100 pc. The vertical scale height is from Oh et al.
(2015), while the central surface density and the radial scale length have been
obtained fitting an exponential to the SED profile in Zhang et al. (2012). Given
that we found zd ∼ 200 pc for the Hi disc, it is quite unlikely that the stars
are settled on a thinner disc. However the contribution of the stellar disc to
the global galactic potential is negligible, so the assumption of larger vertical
scale height for the stellar disc has practically no impact on the final results.

Although the Hi disc of DDO 210 is quite thick, the results on the kinematics
obtained with our method and the ones estimated in Chapter 3 using 3DB
are compatible within the errors. Moreover, the differences shown in Fig. 4.10
are mainly due to the different method used to estimate the kinematics (from
2D maps in our method and exploiting the whole datacube in 3DB) and on
the assumption in the estimate of the asymmetric-drift, rather than to the
different assumptions on the Hi scale height.

• WLM, Fig. 4.11: this galaxy has a flaring thick Hi disc in which the vertical
scale heigth increases almost linearly from ∼ 200 pc in the centre to ∼ 700 pc
in the outer part where it becomes larger than he Hi radial scale length (Rd ∼
560 pc). Including the Hi thickness in the analysis, the intrinsic surface density
shows a deeper depression in the inner part; the velocity dispersion in the last
iteration is systematically lower by about 0.6 km s−1 in the inner disc and
by 0.3 km s−1 in the outer disc with respect to the first iteration where we
assumed a razor-thin disc; the circular velocities have a maximum difference
of about 5 km s−1 that is compatible with the errors. The observed differences
between the circular velocities are due to the naive treatment of the vertical
profile employed in Chapter 3.

The best-fit parameters obtained for the DM halo are ρ0 = 0.12±0.03 M� pc−3



166 Chapter 4. Beyond Flatland: the thickness of the H i disc in dwarf irregulars

0 1 2 3
R [kpc]

10

20

30

40

V c
[k

m
/s

]

New method 1th iteration

0 1 2 3
R [kpc]

4

6

8

10

v
[k

m
/s

]

0

2

4

6

8
in

t
[M

pc
2 ]

3DB
New method

0.0

0.2

0.4

0.6

0.8

HW
HM

 [k
pc

]

3DB assumed

Figure 4.11: Same as Fig. 4.10 but for WLM (see Fig. 3.26).

and rc = 0.44 ± 0.06 kpc, as comparison Oh et al. (2015) found ρ0 = 0.06 ±
0.01 M� pc−3 and rc = 0.74 ± 0.01 kpc. The stellar disc parameters used in
this analysis have been taken from Leaman et al. (2012), who reported a total
mass M∗ = 1.1× 107 M�, a radial scale length R∗d = 0.99 kpc and a constant
vertical scale height z∗d = 0.71 kpc.

• NGC 2366, Fig. 4.12: the scale height of the Hi disc in this galaxy is slightly
lower than 500 pc in the inner part and then it flares linearly to ∼ 1.30 kpc
at the last measured point. In absolute terms, the Hi disc of NGC 2366 is
the thickest among the three analysed galaxies: in the centre zd is already two
times larger than the one measured in DDO 210 and it is comparable with the
maximum scale height reached in WLM. The main reason is that the velocity
dispersion measured for this galaxy is quit high, especially in the inner part
where it is almost two times larger than what it is observed in the other two
galaxies. However, compared to the radial extent (Rmax = 6.3 kpc) and the
radial scale length (Rd ∼ 1.74 kpc) of the Hi disc, the vertical extent is not
so relevant. As a consequence, the properties estimated with our method are
largely compatible with the one obtained in Chapter 3 using 3DB.

The best-fit DM halo parameters obtained in our analysis are ρ0 = 0.04 ±
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Figure 4.12: Same as Fig. 4.10 but for NGC 2366 (see Fig. 3.24).

0.02 M�pc−3 and rc = 1.40± 0.33 kpc; they are compatible within the errors
with ρ0 = 0.04 ± 0.01 M� pc−3 and rc = 1.21 ± 0.04 kpc obtained by Oh
et al. (2015). We have assumed a stellar disc with a central surface density
of Σ∗0 = 3.3 M� pc−2, a radial scale R∗d = 1.6 kpc and vertical scale height
z∗d = 260 pc. As for WLM, the vertical scale height is from Oh et al. (2015),
while the central surface density and the radial scale length have been obtained
by fitting an exponential to the SED profile in Zhang et al. 2012 (private
communication). As already discussed for DDO 210 (see above), it is unlikely
that the stellar disc is so much thinner with respect to the Hi disc. However,
also in this case the assumption of thicker stellar disc does not change our
results.

In conclusion, although we estimated a significant Hi disc thickness for the three
analysed galaxies, we also showed that it does not have a significant impact in the
study of the kinematics and dynamics.

4.3.3 Testing working assumptions

The results of Sec. 4.3.2 have been obtained with the assumption that the DM halo
is spherical and with an isothermal density law. Moreover, we used the inclination
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Figure 4.13: Results obtained applying the method described in Sec. 4.2.2 to WLM with
different assumptions for the DM halo and the disc inclination i: spherical isothermal halo
and i = 74◦ (black curves); spherical isothermal halo and i = 84◦ (green curves); flattened
isothermal halo (axial ratio q = 0.5) and i = 74◦ (red curves); spherical NFW halo and
i = 74◦. The points with errorbars indicate the mean errors of the different properties for
the four cases.

angles estimated in Chapter 3 without considering the presence of a thick Hi disc,
but we have shown that in this case the true inclination angle can be underestimated
(Fig. 4.5). In order to analyse how these assumptions influence the final results, we
repeat the analysis of WLM (Sec. 4.3.2) making different assumptions on the DM
halo properties and on the inclination angle:

(i) spherical isothermal halo and disc inclination angle i = 74◦, this is the same
case already analysed in this section and it is used as benchmark;

(ii) spherical isothermal halo and disc inclination angle i = 84◦, in this case we
highlight the differences introduced by a different inclination angle;

(iii) flattened isothermal halo with axial ratio q = 0.5 and disc inclination angle
i = 74◦, with these assumptions we highlight the differences introduced by a
non-spherical DM halo;
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(iv) spherical NFW halo and disc inclination angle i = 74◦, in this case, we analyse
the differences introduced by a different density model (Eq. 4.27) for the DM
halo.

The comparison of the final results is shown in Fig. 4.13. The assumptions (i)
and (iv) give very similar results, all compatible within the errors. Therefore the
assumption of isothermal or NFW DM halos does not have a large impact on the
final outcomes. Using a (quite) flattened halo in (iii), we obtain that the Hi disc
is thinner; this is expected since in this case the DM halo is more concentrated in
the equatorial plane and the vertical gradient of the potential is steeper (Eq. 4.29).
Considering a thinner Hi disc, the peak of the intrinsic surface density results less
pronounced. Concerning the kinematics, the assumption of a flattened halo does
not have any influence on the final results.

The largest differences are obtained using the assumption (ii), although the radial
profile of the vertical scale height is compatible with the results obtained using (i)
and (iv). The large discrepancy shown by the intrinsic surface density profiles is
due mainly to the fact that the observed disc surfaces are “shrunk” by a factor cos i

and the difference between cos(84◦) and cos(74◦) is relevant. The differences on the
results obtained for Vc and σv are due to the fact that changing the inclination
the tilted-rings used in ROTCUR for Vc and in ELLINT for σv (see Sec. 4.2.2)
encircle different disc regions with respect to the case of i = 74◦. In particular,
between 2 kpc and 3 kpc, they do not “intercept” the regions of the disc with high
velocity dispersion that cause the visible “bump” in the σv profiles. However, all the
estimated Vc and σv are compatible within the errors with results obtained assuming
(i), (iii) and (iv).

4.3.4 Understanding the Hi emission near the minor axis

In Sec. 4.1.2 we found, using disc models, that the presence of a thick disc is ex-
pected to produce an excess of Hi emission near the minor axis. In particular, we
argued that the features shown in Fig. 4.4 for the disc models are similar to the
what see for WLM in Chapter 3 (Fig. 3.26) and also in other galaxies (e.g. UGC
8508, see Fig. 3.25). In this Section, we use the results obtained in Sec. 4.3.2 to
investigate whether the excess of emission found in WLM can be explained with the
emission from the Hi layers above and below the equatorial plane. To this aim, we
use GALMOD (Sec. 4.1.1) to make an Hi disc model using as input the properties
estimated taking into account the Hi disc thickness (Fig. 4.11). Given that in the
presence of a thick disc the intrinsic inclination of Hi disc can be underestimated
(see Fig. 4.5), as comparison, we build an other disc model using the Hi intrinsic
properties (Σint,Vc, σv, zd) estimated with our method (Sec. 4.2.2) assuming an in-
clination angle of 84◦ (see Sec. 4.3.3 and Fig. 4.13). Finally, we make a last model
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Figure 4.14: Comparison between the iso-density contours at 1 M� pc−2 of the Hi total
map of WLM (black contour) and of the disc models obtained with GALMOD (Sec. 4.1.1)
using the Hi parameters obtained Sec. 4.3 (see Fig. 4.13) taking into account the Hi thick-
ness and assuming a disc inclination of 74◦ (red contour) and 84◦ (green contour). The
magenta contour indicates the emission from the disc model obtained using the results
found in Chapter 3 with 3DB and assuming a constant scale height zd = 100 pc. The
image in background shows the integrated emission of WLM in units of M� pc−2.

using the results obtained in Chapter 3 with 3DB and assuming a thin disc with
zd = 100 pc (Fig. 3.26). In Fig. 4.14 we compare the performance of the three
models to “populate” the regions around the minor axis overplotting the iso-density
contours at 1 M� pc−2 of the total maps of the three models with the one of the
observed Hi total map of WLM. As already discussed, the model obtained using
the results of 3DB is not able to reproduce the excess of emission along the minor
axis. The thick disc model with i = 84◦ is able to account for the excess of the
emission near the major axis but it is still not able to reproduce the emission near
the minor axis. On the contrary, the thick disc model with the inclination i = 74◦

gives a very good match to the data. Therefore, we can conclude that the excess of
the emission near the minor axis observed in WLM, and likely also in other dIrrs
(e.g. UGC 8508, Fig. 3.25), is produced by the thick Hi layers intercepted along the
los. This result introduces a further warning (see Sec. 3.4.2) in the study of the gas
kinematics around the minor axis. In fact, in these regions the Hi signal has poor
information on the gas rotation, moreover it can be dominated by the noise and in
the outer parts of the disc it can come from regions of the galaxy outside the disc
equatorial plane. If these effects are not take into account, the final results can be
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heavily biased.

4.4 Conclusions

In this Chapter we have demonstrated, using mock datacubes, that the presence of
a thick disc can bias the estimate of intrinsic properties of the Hi discs. If the Hi
thickness is not taken into account the recovered intrinsic surface density is shallower
than the real one, the rotation curve tends to be artificially higher in the outer parts
and the velocity dispersion is overestimated.

In order to take into account these biases, we have developed the first dynamical
self-consistent method to recover the intrinsic properties of thick Hi discs under the
assumption of vertical hydrostatic equilibrium. We found that, even in the presence
of a significant thick disc, as it is the case for dIrrs, the magnitude of the biases
described before is not dramatic and surely the introduced errors represent a second-
order effects with respect to uncertainties due to the correction for the pressure
support (Sec. 3.3.3), the estimate of the inclination (Sec. 3.3.2) and the observational
limitations (noise, instrumental resolution, datacube reduction systematics).

Concerning the study of dIrrs, given the above results, we are confident that the
results obtained in Chapter 3 for a sample of 17 dIrrs are robust even if we did not
take into account properly the Hi disc thickness. We have confirmed quantitatively
this result for three galaxies in the sample, the galaxies are representative of the
different properties of the whole sample. The small differences that we found between
the results obtained in this Chapter and the ones obtained in Chapter 3 are mainly
due to the different techniques used to extract the rotation curve and the velocity
dispersion from the datacube rather than in the assumptions made for the Hi vertical
profile.

Since our work focuses on dIrrs, we have not tested our method with larger
spirals, however we expect that the deep potential of these objects produces Hi
discs that are both absolutely and relatively (with respect to the radial dimensions)
thinner than the Hi discs in dIrrs. As an example, in Fig. 4.15 we compare the
radial trends of the Hi thickness obtained for three dIrrs in Sec. 4.3 with the ones
estimated for three spiral galaxies with different Hubble types: NGC 2403 (Sc),
NGC 7331(Sb), NGC 2841 (Sa), the dynamical models used for the spirals are from
Bacchini et al. (in prep.). In conclusion, the biases introduced by the Hi thickness
in the study of the kinematics and dynamics in spirals should be totally negligible.

In conclusion, we have demonstrated that the assumption of razor-thin disc usu-
ally used in the study of Hi discs, even if conceptually wrong, is a reasonable sim-
plification that does not introduce significant errors in the study of kinematics and
dynamics also in the case of dIrrs. Notice, however, that we have also found that a
thick Hi disc has a non-negligible effect on the analysis of the intrinsic distribution
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Figure 4.15: Radial profiles of the Hi disc thickness (measured as the HWHM of the
gas vertical distribution) for three dIrrs (DDO 210, WLM, NGC 2366) and three spirals
of different Hubble types (NGC 2403, Sc; NGC 7331, Sb; NGC 2841, Sa). The profiles of
the spirals have been obtained estimating the scale height with the method described in
Sec. 4.2.2 adopting the dynamical models by Bacchini et al. (in prep.). The profiles of the
dIrrs have been obtained in Sec. 4.3.2

of Hi in galaxies. The combination of the wrong estimate of the surface density
and arbitrary assumptions on the vertical profile the makes the estimate of the 3D
density of the Hi in discs very uncertain and prone to biases. As a consequence
studies that use these quantities (e.g. gas density-star formation relations) should
carefully analyse the impact of such errors on their results. In this context, the orig-
inal method that we present in this Chapter represents a very useful tool to obtain
a robust and dynamically self-consistent estimate of the gas distribution in discs.



5Chapter

Scaling relations of dwarf irregulars†

Scaling relation involving the kinematic properties of galaxies are very useful to in-
vestigate the elusive properties of the dark matter (DM) and its possible origin. It
is well know that the visible matter is not enough to explain the global dynamics of
disc galaxies (e.g. Bosma 1978, Rubin, Ford & Thonnard 1980). As a consequence,
one could naively expect that the large-scale kinematics of these galaxies is fully
dominated by their DM halos with no relation to baryons. Instead, there is clear
evidence of strong connection between global kinematical properties of disc galaxies
and their baryonic content (e.g. Sancisi 2004; Swaters et al. 2012, 2014). For exam-
ple, the well known Tully-Fisher relation (Tully & Fisher, 1977; Combes, 2009) links
the intrinsic luminosity of a spiral galaxy and its rotation velocity or emission line
width that are tracers of the dynamical mass. A modern version of the Tully-Fisher
relation is the so called baryonic Tully-Fisher relation in which the luminosity is
replaced by the total baryonic mass of the galaxies (stars+gas) and the emission
line width by the rotation speed in the flat part of the rotation curves. McGaugh
et al. (2000) found that the relation between these two properties is very tight and
extends over 6 order of magnitude in baryonic mass. In Read et al. (2017), we fitted
DM halo models to the rotation curves obtained in Chapter 3 finding a monotonic
stellar mass-halo mass relation with little scatter.

Recently, McGaugh, Lelli & Schombert (2016) and Lelli et al. (2017) com-
pared the observed “local” radial accelerations based on the visible rotation curves
(gobs(R) = V2(R) R−1) and the acceleration expected from to the baryonic matter
(gbar(R)) for a large sample of discs and elliptical galaxies, finding that these two
quantities are tightly correlated (this correlation is known as radial acceleration re-
lation, RAR). In the region of high acceleration (inner parts of large galaxies) the
potential is dominated by the baryonic matter and gobs ' gbar (see e.g. Sancisi 2004),

†This research made use of the LITTLE THINGS (Hunter et al., 2012) and the SPARC (Lelli,
McGaugh & Schombert, 2016a) data sample.
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while for gbar . 10−13 km s−2 the data deviate from the Newtonian linear relation
following instead gobs ∝

√gbar.
The above scaling relations are usually used to test and validate cosmological

models. For example, in Read et al. (2017) we compared our stellar mass-halo mass
relation with the results of the abundance matching analysis using the “field galaxy”
stellar mass function from the Sloan Digital Sky Survey (Abazajian et al., 2009)
and the halo mass function from ΛCDM simulations (Klypin, Trujillo-Gomez &
Primack, 2011). We found that the distribution of our data is perfectly compatible
with the theoretical expected relation. However, the local coupling as implied by
the RAR could pose some challenges for ΛCDM and it could be at the basis of
other ΛCDM tensions, such as the unexpected diversity of the rotation curves in
dwarf galaxies (Oman et al. 2015, see also our work in Read et al. 2016). Keller &
Wadsley (2017) and Navarro et al. (2017) found that the RAR is a natural product
of the galaxy formation in a ΛCDM N-body simulations, none the less the physical
motivation behind the existence of such relation is matter of debate and the RAR
is often used to test alternative gravitational theories (see e.g. Lelli, McGaugh &
Schombert 2017) or alternative DM models (see e.g. Cai, Liu & Wang 2017). In
this context, dwarf galaxies are of great interest given that their baryonic content
is essentially negligible in the total mass budget. Therefore, it is very important to
assess whether the Baryonic Tully-Fisher relation and the RAR are still in place at
this very small scales and if they have the same properties found using samples of
more massive galaxies.

A study by Tamburro et al. (2009) revealed that in star-forming disc galaxies,
the kinetic energy of the turbulent motions correlates with the star formation rate
density. Based on this finding Tamburro et al. (2009) argued that the source of
energy sustaining the ISM turbulence can be provided by the SN explosions in
region with high star-formation rate density. However, there is evidence that the
star formation cannot account for all the required energy, especially in the outer
part of the discs where the star formation rate is low (e.g. Dib, Bell & Burkert
2006). Other proposed mechanisms are the rotational shear (e.g. Wada, Meurer &
Norman 2002; Schaye 2004), the kinematic and dynamic influence of spiral arms
(e.g. Elmegreen, Elmegreen & Leitner 2003; Elmegreen et al. 2003), gravitational
instability due to gas accretion (e.g. Krumholz & Burkhart 2016) and the thermal
and magnetic instabilities (e.g. Sellwood & Balbus 1999; Piontek & Ostriker 2005;
Hennebelle & Audit 2007; Hennebelle, Audit & Miville-Deschênes 2007). In this
context, the dIrr galaxies are of great interest, because they are characterized by
lack of spiral arms, low rotational velocities and shallow gravitational potentials. All
these features suggest that in dIrrs the star formation activity is the main source of
energy feeding the turbulence.

In this Chapter, we make use of circular velocity, velocity dispersion and the Hi
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density profiles obtained in Chapter 3 for a sample of 17 dIrrs (see Sec. 3.1, see also
Tab. 3.2 and Tab. 3.8) taken form the LITTLE THINGS survey (Hunter et al., 2012)
to investigate scaling relations and their possible implications. In Sec. 5.1, we use the
Hi circular velocities to build a low-mass baryonic Tully-Fisher, in Sec. 5.2 we test
the radial acceleration relation using the circular velocities and the Hi surface density
profiles. Finally, in Sec. 5.3 we analyse the correlation between the turbulence in
the Hi and the star formation rate density. A summary is given in Sec. 5.4.

5.1 Test of the baryonic Tully-Fisher relation

The baryonic Tully-Fisher relation (BTFR) links a characteristic circular velocity
(V) of a galaxy with its total baryonic mass (Mbar). The relation, which can be
written as

log

(
Mbar

M�

)
= s log

(
V

km s−1

)
+ A, (5.1)

is very tight and extends over 6 orders of magnitude in Mbar (McGaugh, 2012;
Lelli, McGaugh & Schombert, 2016c). The existence of this relation represents a
fundamental benchmark for cosmological models and for galaxy formation theories
(Brook, Santos-Santos & Stinson, 2016; Di Cintio & Lelli, 2016; McGaugh et al.,
2000). In this context it is very important to extend the study of the BTFR down
to extremely low-mass dwarf galaxies (e.g. Begum et al. 2008a).

In this section we present the BTFR for the galaxies analysed in Chapter 3
(Fig. 5.1) and then we compare it with the results of Lelli, McGaugh & Schombert
(2016c) (Fig. 5.2). The derivation of the baryonic mass and of the characteristic
velocity is described in the following Section.

5.1.1 Estimate of the characteristic velocity and baryonic mass

Rotation velocity

The rotation velocities used in the Tully-Fisher relation (TFR) are W20 and Vflat:
W20 is the velocity width of the global Hi line profiles, while Vflat is the value of the
flat portion of the rotation curve. Verheijen (2001) found that Vflat minimises the
scatter in the TFR, so it is the best way to study the BTFR using high resolution
Hi data (see also Brook, Santos-Santos & Stinson 2016). However, several rotation
curves of dIrrs do not reach the flat part (e.g DDO 53, Fig. 3.14) or the flattening
is entirely due to the asymmetric-drift correction (e.g. NGC 1569, Fig. 3.23). As
indicator of the rotation velocity, we therefore used the velocity of the outer disc
(Vo) estimated in Chapter 3 as the mean circular velocity of the last three fitted
rings (see Sec. 3.4). Vo is a measure of Vflat for galaxies in which the flat part of
the rotation curve is observed. For galaxies with a rising rotation curve Vo is an
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Figure 5.1: BTFR for the galaxies analysed in Chapter 3 (see Sec. 3.1). The empty and
the solid symbols indicate galaxies with rising or flat rotation curve, respectively. The
squares indicate nearly face-on galaxies. The blue bars indicate 1σ errors. The light-blue
and the magenta bars indicate intervals of allowed values (see text).

estimate of the maximum circular velocity within the analysed radial range. The
values of Vo and the related uncertainties for the galaxies in our sample are reported
in Tab. 3.8. Galaxies with rising rotation curves are indicated with empty markers
in Fig. 5.1 and Fig. 5.2. For the five galaxies with low inclinations i (squares in
Fig. 5.1 and Fig. 5.2) the uncertainties on i and on the velocities can be largely
underestimated, so we present these galaxies with a bar that indicates the interval
between a minimum (assuming i = 40◦) and a maximum (assuming i = 20◦) value
of Vo (see Eq. 1.6).

Baryonic mass

The total baryonic mass of the galaxies has been calculated as

Mbar = M∗ + 1.33MHI, (5.2)

where M∗ is the stellar mass, MHI is the mass of the atomic hydrogen and the factor
1.33 takes into account the the presence of Helium (Begum et al., 2008a; Lelli,
McGaugh & Schombert, 2016c). The molecular gas is likely irrelevant in the mass
budget of dwarf galaxies (Taylor, Kobulnicky & Skillman, 1998). The mass of atomic
gas is measured from the Hi datacubes (Sec. 3.3.1 and Tab. 3.2), while the stellar
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masses are fromWalter & Brinks (2001) for DDO 47 and from Zhang et al. (2012) for
all the other galaxies. The estimate of the mass is proportional to the square of the
galactic distance, therefore errors on the distance add further uncertainties on the
final estimate of the baryonic mass. Unfortunately, the works from which we have
taken the stellar masses (Walter & Brinks, 2001; Zhang et al., 2012) and the distances
(Hunter et al., 2012) do not report the errors on their measures, so we assumed a
conservative error of the 30% for Mbar motivated by the stellar population synthesis
models (McGaugh & Schombert, 2014; Meidt et al., 2014; Schombert & McGaugh,
2014). We also performed a deeper analysis for the distance uncertainties. The
relative difference between the masses estimated assuming two different distances is

δD =
M(D1)−M(D2)

M(D1)
=

D2
1 −D2

2

D2
1

. (5.3)

For each galaxy in our sample we choose the best distance estimator1 available
on NED (NASA/IPAC Extragalactic Database) and we considered the minimum
(Dmin

NED) and the maximum (Dmax
NED) estimate of the distance. DDO 101 has only

two distance estimates in NED: 5.9 Mpc from Tully (1988) and 16.6 Mpc from
Karachentsev, Makarov & Kaisina (2013). Hence, we use these two values as Dmin

NED

and Dmax
NED. Notice that Karachentsev, Makarov & Kaisina (2013) used the TFR to

estimate the distance, thus Dmax
NED is very uncertain and it is not surprising that using

this distance the galaxy “moves” exactly on the BTFR (see Fig. 5.1 and Fig. 5.2).
Using Eq. 5.3 we calculate

δ
min /max
D = 1−

min
[
D,Dmin /max

NED

]
max

[
D,Dmin /max

NED

]
2

, (5.4)

where D is the distance assumed in this work (see Tab. 3.2). When δD is large the
error on the total mass is dominated by the uncertainty on the distance. Three
galaxies have δD larger than 60%: DDO 47 (δmax

D = 62%), DDO 101 (δmax
D = 85%)

and NGC 1569 (δmin
D = 68%). For these galaxies we do not show the 1σ error on the

baryonic mass, but a magenta bar indicating the interval of mass found assuming
the distance D or the distance Dmin /max

ned .

5.1.2 Results

In Fig. 5.1 we show the distribution of the data for the dIrrs of our sample in the
Mbar−V plane, while in Fig. 5.2 we compare our data with a recent fit to the BTFR
(Lelli, McGaugh & Schombert, 2016c) using the galaxies in the SPARC sample (Lelli,

1The scale of distance estimators is, from the best to the worst: Cepheids, RGB-Tip, CMD,
Brightest-Stars.
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Figure 5.2: Same data as in Fig. 5.1 compared with the galaxies and the BTFR from
Lelli, McGaugh & Schombert (2016c).

McGaugh & Schombert, 2016a). Interestingly the two datasets overlap between 108

M� and 109 M�. In this range our data are perfectly compatible with the parameters
of the BTFR estimated in Lelli, McGaugh & Schombert (2016c) (s = 3.95 and
A = 1.86 in Eq. 5.1); moreover, we have fitted our data with a linear relation leaving
the intrinsic scatter (f) as the only free parameter (the other parameters have been
fixed to the values found by Lelli, McGaugh & Schombert 2016c). The best-fitting
result is f = 0.1± 0.1, so we also confirm the very small scatter around the relation
in contrast to Begum et al. (2008a). This remains the case, even when including
galaxies with rising rotation curves: the only two outliers are DDO 50 (a nearly
face-on galaxy) and DDO 101 (for which the uncertainty on the distance is large;
Sec. 3.4.1, see also Read et al. 2016). Below 108 M� the distribution of the galaxies
looks again compatible with the relation of Lelli, McGaugh & Schombert (2016c).
It appears more scattered, but this could owe entirely to the large error bars for
these low-mass systems (that results from the increasingly important asymmetric-
drift correction). Furthermore, there are only a few galaxies in this mass range and
all of them have rising rotation curves (with the exception of DDO 216 that has
rather peculiar kinematics; see Fig. 3.22, Sec. 3.4.1 and Appendix 3.B). In order to
further investigate the positions of these galaxies, we exploited the rotation curve
predicted by the best-fit Core-NFW DM profiles (Read, Agertz & Collins, 2016)
obtained in Read et al. (2017). Using these theoretical rotation curves, we estimated
the expected maximum velocity (Vmax) for the five galaxies with Mbar < 108 M�
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(CVnIdwA, DDO 53, DDO 210, DDO 216 and UGC 8508, see Figs in the Appendix
3.A.1). In case of dIrrs, Vmax is very similar to the velocity of the flat part of the
rotation curve (Read et al., 2017). The obtained Vmax are all compatible, within
the errors, with the Vo estimated in Sec. 3.4 (see Tab. 3.8). If we use the values
of Vmax, the galaxy with the lowest baryonic mass (DDO 210) maintains the same
position shown in Fig. 5.2, the three galaxies (DDO 53, DDO 216 and CVnIdwA)
located to the left with respect to the best-fit green line move to the right by about
0.10/0.15 dex; finally, the last galaxy (UGC 8508) moves slightly to the right by
about 0.07 dex. In conclusion, using Vmax for the galaxies with Mbar < 108 M�, the
main results of our analysis are still valid, moreover in this case the scatter at the
low-mass end of the relation turns out to be even lower.

The presence of a small scatter is compatible with recent results from ΛCDM
simulations (e.g. Brook, Santos-Santos & Stinson 2016; Sales et al. 2017), however
these works also predict that the BTF should become increasingly steep at the low-
mass end starting from Mbar ∼ 108 M�. This result is not supported by our data
and by other similar works (e.g. Begum et al. 2008a; Adams et al. 2014; Papastergis
et al. 2015). It is still debated whether this low-mass tension owes to some failure
of the hydrodynamical simulations to catch properly the baryonic physics or to
observational biases. A common argument supporting the latter hypothesis is that
the observed rotation curves of low-mass dIrrs do not reach the flat part, as a
consequence the final velocities used to build the BTF are systematically lower.
In our view, it is quite unlikely that the systematic errors “conspire” to move the
galaxies exactly on the relation found for more massive galaxies. Moreover, fitting
the observed rotation curves with physical models (Cored NFW profile, see above),
we found that the values of the flat part of the rotation curves are not significantly
different with respect to the velocities estimated in the outer part of the discs (Read
et al. 2017, see also Oman et al. 2016 for similar conclusions).

5.2 Test of the radial acceleration relation

The radial acceleration relation (RAR) is a relation found by McGaugh, Lelli &
Schombert (2016) and Lelli et al. (2017) between the observed “local” radial ac-
celerations based on the observed rotation curves (gobs(R) = V2(R) R−1) and the
accelerations expected from the distribution of the baryonic matter (gbar). In order
to simplify the notation, in the following Equations log gobs and log gbar are equiva-

lent to log
gobs

km s−2
and log

gbar
km s−2

, respectively.

Concerning the RAR, dwarf galaxies are of great interest: their baryonic con-
tent is essentially negligible in the total mass budget and they probe the lowest
acceleration regime (gbar < 10−14 km s−2). Lelli et al. (2017) found that dSphs are
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compatible with the RAR in the range −15 . log gbar . −14 while at very low ac-
celeration the data seem to indicate a flattening of the RAR around log gobs ∼ −14.
Given that dSphs do not have rotating discs, their gobs cannot be estimated at every
radius and each galaxy adds only one point in the log gbar− log gobs plane. Moreover,
all the known dSphs are satellites of more massive galaxies, hence their measure of
gobs can be biased by the influence of tidal fields as it is not guaranteed that they are
in equilibrium (e.g. Roderick et al. 2016, 2015; Palma et al. 2003, see also Battaglia,
Sollima & Nipoti 2015). Hence, the properties of the RAR estimated using such
galaxies are uncertain: in particular, the low-acceleration end of the RAR is mainly
due to a sample of recently discovered ultra-faint dSphs (e.g. Koposov et al. 2015;
Willman et al. 2005) for which the estimates are even more uncertain. In this con-
text, dIrrs can come to our rescue: they probe almost the same low acceleration
regime as the dSphs, but their rotating Hi discs allow us to populate the RAR plane
in the same way as it has been done for larger galaxies. In this Section, we will use
the circular velocities obtained in Chapter 3 for 17 dIrrs to test the low acceleration
regime of the RAR and compare our results with the findings of Lelli et al. (2017).

5.2.1 Estimate of the observed and baryonic acceleration

The observed and baryonic accelerations have been estimated as follows.

Observed acceleration

Following Lelli et al. (2017) we define

gobs =
V2

c(R)

R
. (5.5)

gobs traces the gravitational potential at every radius, so it is important to use the
circular velocities Vc corrected for the asymmetric-drift (Eq. 3.6, see Sec. 3.3.3) in-
stead of the observed rotational velocities Vrot, especially for the less massive galaxies
(e.g. DDO 210, see Fig. 3.21 and Tab. 3.38). The error on gobs (δgobs

) depends on
the uncertainties, δVc , on Vc (Eq. 3.11, see Sec. 3.3.3) and on the uncertainties δD on
the distance estimate that it is needed to transform R from the angular scale to the
physical one. The final value of the circular velocity depends also on the assumed
value of the disc inclination (Eq. 1.6), hence the uncertainty on i must be added to
the total error budget. In conclusion, using the error propagation theory, we obtain
(Lelli et al., 2017):

δgobs
= gobs

√(
2δVc

Vc

)2

+

(
2δi

tan i

)2

+

(
δD
D

)2

. (5.6)
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The values and the errors of the circular velocity are reported for each radius and for
each galaxy in the Tables 3.27-3.43 in the Atlas in Chapter 3 (Appendix 3.A.2), the
used value for i and δi can be found in Col. 10 of Tab. 3.8. Concerning the distances,
we used the values reported in Col. 1 of Tab. 3.2 while the related errors have been
estimated using the standard deviation of various flux measurements reported in
NED.

Baryonic acceleration

The radial acceleration due to the observed distribution of matter can be written as

gbar =
V2

gas(R) + V2
∗(R)

R
, (5.7)

where Vgas and V∗ are the rotation speeds expected considering the distribution of
matter in the gaseous and stellar disc, respectively. Given that both the numerator
and the denominator of Eq. 5.7 depend linearly on the distance D, gbar is distance
independent. Therefore, to estimate the error on gbar we ignore the contribution of
the distance uncertainties in the estimates of the errors on Vgas and V∗ (Eq. 5.10).

V∗ is taken from Oh et al. (2015) multiplying their estimates by the factor
f = cos i(cos iO15)

−1 that takes into account the possible mismatch between our
best-fit inclinations, i (see Tab. 3.8), and ones assumed in Oh et al. (2015) (iO15).
The estimate of the stellar rotation curve depends on the assumed inclination angle
and on the assumed stellar mass-to-light ratio Υ. These quantities are needed to
obtain, from the observed surface brightness profile of the stellar disc, the intrinsic
surface density profile, Σ∗ , and V∗ ∝

√
Σ∗ ∝

√
cos i Υ. Propagating the errors, we

get

δV∗ =
V∗
2

√(
δΥ

Υ

)2

+ (tan i δi)
2, (5.8)

where, motivated by stellar population synthesis models (e.g. Meidt et al. 2014), we
set δΥ Υ−1 = 0.30 for all the galaxies in our sample. The assumed value of Υ for
each galaxy in our sample can be found in Oh et al. (2015).

The rotation curve due to the gaseous component is calculated as Vgas =
√

1.33VHI,
where 1.33 takes into account the presence of helium (see Sec. 5.1.1) and VHI and
the related errors δVHI

are estimated as explained in Appendix 5.A. The final value
of circular velocity also depends on the assumed inclination angle of the Hi disc
(Vgas ∝

√
cos i), therefore, propagating the uncertainties the final error is

δVgas = Vgas

√(
δVHI

VHI

)2

+

(
tan i δi

2

)2

. (5.9)
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Figure 5.3: Distribution of the data for the dIrrs of our sample in the RAR plane
(log gobs − log gbar): each colour indicates a different galaxy as shown in the legend (see
Sec. 3.4 for a detailed descriptions of each galaxy). The error bars on the right indicate
the median δloggobs

and δloggbar
calculated in bins of log gobs: from the bottom to the top

−15.0 < log gobs < −14.3, −14.3 < log gobs < −13.7 and −13.7 < log gobs < −13.0. The
black contours indicate regions with 5, 10 and 15 counts for a 2D binned map built in the
range log gobs = [−16,−13] and log gbar = [−16,−13] using 15x15 bins.

Applying the error propagations to Eq. 5.7 the final error on gbar is

δgbar
= 2gbar

√
V2

gasδ
2
Vgas

+ V2
∗δ

2
V∗(

V2
gas + V2

∗
) , (5.10)

where δV∗ and δVgas are given by Eq. 5.8 and Eq. 5.9, respectively. Finally the
errors on the related logarithmic quantities log gobs and log gbar (see Fig. 5.3) are
δloggobs

= δgobs
(gobs ln 10)−1 and δloggbar

= δgbar
(gbar ln 10)−1.

Fig. 5.10 in Appendix 5.A shows the VHI and the V∗ estimates for the dIrrs in
our sample.

5.2.2 Results and discussions

In Fig. 5.3 we show the gobs− gbar estimates for the dIrrs in our sample, we exclude
2 points from DDO 101 and one point from WLM because they have negative
values of Vgas (see Appendix 5.A for details). Most of the points are located around
log gobs ∼ −13.8 as shown by the black contours. There are some outliers, especially



5.2. Test of the radial acceleration relation 183

16 15 14 13 12
Log(gbar [km s 2])

16

15

14

13

12

11
Lo

g(
g o

bs
[k

m
s

2 ]
)

Lelli+17 LTGs
Lelli+17 LTGs + dSph
This work
This work binned
SPARC all
SPARC binned

Figure 5.4: Same as Fig. 5.3, but with additional points (gray markers) taken from the
SPARC data sample (Lelli, McGaugh & Schombert, 2016a) and the best-fit RAR obtained
in Lelli et al. (2017) for the SPARC data (Eq. 5.11, solid line) and for the SPARC+dSphs
data (Eq. 5.12, dashed line). The yellow squares and the red squares show the binned profile
of the SPARC data (from Lelli et al. 2017) and of our data, respectively. Concerning
our data, the estimated values and the errors of the binned profile have been obtained
calculating the median and the MAD (see text) of the different gobs estimates.

at lower gobs, but most of them come from two galaxies: DDO 101 (log gobs ∼ −13)
and DDO 216 (log gobs . −14.3), both of which are peculiar galaxies. DDO 101 is
an outlier in all the relations analysed in this Chapter (see Sec. 5.1.2 and Sec. 5.3.3):
it has a very uncertain estimate of the distance (see Sec. 5.1) that afflicts gobs
and it is also the only galaxy in our sample for which gbar is dominated by the
stellar component (see Fig. 5.9), hence the error δgbar is dominated by the large
uncertainties in the mass-to-light ratio Υ. Concerning DDO 216, the estimate of
gobs is highly uncertain due to a combination of effects: it has peculiar kinematics as
discussed in Appendix 3.B and the error in distance is about 50% of the estimated
distance. However, even the most distant outliers can be considered compatible with
the position of the bulk of the other points within the errors. The overall distribution
can be considered flat in gobs, although the black contours show a shallow increase
of gobs as a function of gbar.

In Fig. 5.4, we show the binned profile obtained calculating the median and
the MAD (median absolute deviation, see Sec. 3.3.3 and Appendix 5.A for further
details) of the points shown in Fig. 5.3. The obtained profile is compared with the
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points and the best-fitting relations found in Lelli et al. (2017):

gobs = gbar

(
1 + exp

[
−
√gbar

g†

])−1

(5.11)

with g† = 1.2 × 10−13 km s−2, considering the late-type galaxies (LTGs) in the
SPARC data sample (Lelli, McGaugh & Schombert, 2016a), and

gobs = gbar

(
1 + exp

[
−
√gbar

g†

])−1

+ ĝ exp

[
−
√

gbar
g†
ĝ2

]
(5.12)

with g† = 1.1× 10−13 km s−2 and ĝ = 9.2× 10−13 km s−2, adding also a sample of
dSphs (see Lelli et al. 2017 for details).

Interestingly most of our points are around log gbar ∼ −14.8 where the statistic
of the SPARC sample starts to be less significant. Consistently with the distribution
of points shown in Fig. 5.3, our binned profile shows a flat distribution gobs = const
independent of gbar; however, within the errors, the profile is totally compatible with
the binned profile and the best-fit relation obtained in Lelli et al. (2017) using the
complete SPARC sample.

In the very low acceleration regime (log gbar . −15), we do not have large statis-
tics, but our data seems to deviate from the RAR (solid line) and approaches the
acceleration floor at log gobs ∼ −14 as traced by dSphs in Lelli et al. (2017) (dashed
line). As already discussed, we can further speculate that our data are compatible
with a constant gobs independently of the value of the gbar, hence the presence of a
“common” constant gobs acceleration, can be a general property of dwarf galaxies,
both dSphs and dIrrs. Following this idea, we fit our data with

gobs = gdyn, (5.13)

where we use the term gdyn to define the “common” observed acceleration. We find
that the best-fit value is log gdyn = −13.75 (gdyn ' 1.8× 10−14 km s−2). In order to
compare how the three functional forms discussed above (RAR, Eq. 5.11; RAR +
acceleration floor Eq. 5.12; and constant, Eq. 5.13) adapt to our data we calculate
the χ2

ν statistics as

χ2
ν = ν−1

N∑
i

[yi − f(xi)]
2

δ2
yi

+ δ2
xi

[
∂f
∂x

(xi)
]2 (5.14)

where x = gbar, y = gobs and f represent the theoretical function to test (Equations
5.11-5.13); the ν term indicates the degrees of freedom and it is defined as the
difference between the number of data N and the number of fitted parameters. We
take into account the error on gbar considering that locally f can be approximated
with a linear relation with the slope equal to the partial derivative of f with respect
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to gbar. Notice that using Eq. 5.13, we are considering an actual fit to our data,
while the parameters of Eq. 5.11 and Eq. 5.12 have been obtained by Lelli et al.
(2017) fitting the whole SPARC data sample (including a sample of dSphs) over
∼ 4 (6 considering the dSphs) dex in gbar as opposed to the ∼ 2 dex sampled with
our data. Therefore, independently from the number of parameters, the degrees of
freedom of Eq. 5.11 and Eq. 5.12 are equal to the total number of points (ν = 248).
Our best-fit relation (Eq. 5.13) has been obtained fitting one parameter (gdyn), hence
ν = 247. The χ2

ν obtained for the best-fit function to the SPARC data (Eq. 5.11)
is 0.94, considering the best-fit function with the acceleration floor obtained for the
SPARC+dSphs (Eq. 5.12) we find χ2 = 0.88, finally considering our best-fit constant
acceleration, gdyn (Eq. 5.13), we obtain χ2 = 0.72. We tested if these differences are
significant exploiting the fact that the ratio between two reduced chi squares with
degrees of freedom ν1, ν2 follows the F-distribution F (ν1, ν2). We found that the use
of a constant acceleration represents, at the significance level of 5%, a significant
improvement in the description of the data; while, the χ2 obtained for Eq. 5.12
(acceleration floor at low gbar) and Eq. 5.13 (constant acceleration) are compatible
at the same level of significance (5%).

In conclusion, using the galaxies analysed in Chapter 3 we have found that dIrrs
are compatible with the RAR found by McGaugh, Lelli & Schombert (2016) and
Lelli et al. (2017), while a statistical analysis reveals that our galaxies favour models
that takes into account the presence of a floor in gobs as already found by Lelli et al.
(2017) using a sample of dSph.

5.3 What is feeding the turbulence?

The Hi medium in galaxies consist of two stable co-existing phases: the cold neu-
tral medium (CNM) and the warm neutral medium (WNM) (see Sec. 1.3.1). The
expected thermal broadening of the HI line emission is ∼ 1 km s−1 for the CNM
and ∼ 6 − 8 km s−1 for the WNM. The Hi emission from the disc of spirals and
dIrrs shows a continuous range of line widths (i.e. velocity dispersion, σv), that
can reach values up to 20 km s−1 in the inner part of the discs and rarely goes below
∼ 6−8 km s−1 in the outer parts (see e.g. Dickey & Lockman 1990; Kamphuis 1993;
Boomsma et al. 2008; Tamburro et al. 2009, see also Tables 3.27-3.43 in Appendix
3.A.2 for the dIrrs analysed in Chapter 3 ). The values of the velocity dispersion
found in the outer parts of the Hi discs can be explained if most of the gas is in
the warm phase, but the very high values of σv reached in the rest of the disc re-
quire an additional source of “chaotic” motion along the line of sight. The general
consensus is that broadening of Hi lines beyond larger than ∼ 8 km s−1 can be at-
tributed to stochastic fluctuations of velocity and pressure driven by the turbulence
(Elmegreen & Scalo, 2004; Scalo & Elmegreen, 2004). The decay time scale of the
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turbulence is quite small (∼ 10 Myr, Mac Low 1999), therefore the turbulence needs
to be sustained by a continuous supply of energy. As discussed at the beginning
of the Chapter, several mechanisms have been proposed as sources of the turbu-
lent energy, including rotational shear (e.g. Wada, Meurer & Norman 2002; Schaye
2004), gravitational (e.g. Krumholz & Burkhart 2016) and/or magnetic instabilities
(e.g. Piontek & Ostriker 2005). However, in the case of dIrrs the predominant source
of energy could be the kinetic energy injected in the ISM by the Supernova (SN)
explosions. SNe are due to young and massive stars, therefore the rate of energy
injected by SNe in the ISM correlates with the star formation rate.

In this Section, we analyse possible correlations between proxies of the turbulence
(velocity dispersion and kinetic energy) and the star formation rate densities for 16
dIrrs analysed in Chapter 3 (we exclude DDO 210 because it does not have an
estimate of the SFR, see Sec. 5.3.1).

5.3.1 Star formation rate data

The integrated star formation rates for the galaxies in our sample have been taken
from the work of Hunter & Elmegreen (2004). They estimated the current star
formation activity for a large sample of dIrrs using the Hα luminosity. The relevant
quantities we use in this analysis are:

• RHα : the largest radius that contains Hα emission;

• Rd : the stellar disc scale length in the V -band reported in Hunter & Elmegreen
(2004);

• SFR: the star formation rate estimated from the integrated Hα flux within
RHα;

• SFRD: the SFR normalised to a characteristic disc surface, we consider two
definitions of SFRD: SFRDα when the surface is the area containing the Hα
emission (πR2

Hα) and SFRDd when the surface is calculated within the stellar
scale length (πR2

d).

The SFRDα is a proper estimate of the mean SFR over the whole area in which
the SFR has been measured, however RHα is an “observational” scale that could
depend on the observational methods and instrumental properties. For example for
a number of galaxies in Hunter & Elmegreen (2004), including two objects in our
sample (DDO 50 and NGC 1569), the Hα emission exceeds the size of the imaged
region. Moreover if the SFR shows a significant radial gradient, as it is the case
for most of the galaxies in our sample (see Fig. 1 in Zhang et al. 2012), most of
the SF takes place in an area much smaller than the area inside RHα. The SFRDd

can represent a more meaningful physical estimate of the characteristic SFRD, thus
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the radial scale length in the V -band is more indicative of the older rather than
the current star formation activity. However, Zhang et al. (2012) found that Rd

in the V -band (RV
d ) is roughly comparable to/or larger than the scale lengths of

the emission at shorter wavelengths corresponding to younger stellar populations.
Therefore, using RV

d we are confident that we are not excessively overestimating the
SFRD and consequently the rate of energy injected in the ISM (see Sec. 5.3.4).

In the following analysis, we divide our galaxies in two samples: the com-
plete sample (labelled as “All” in Fig. 5.5, Fig. 5.6 and Tab. 5.7), which contains
all the galaxies (except DDO 210 that has no detected Hα emission in Hunter
& Elmegreen 2004), and a subsample (labelled as “subsample”) obtained exclud-
ing NGC 1569 (see Fig. 3.23) that shows a very intense star formation activ-
ity (SFRDd ∼ 1.3 M�yr−1kpc−2) compared to the other galaxies (mean SFRDd

∼ 0.006 M�yr−1kpc−2), and DDO 101 (see Fig. 3.16) that is an outlier in all the
analysed relations (see Sec. 5.3.2 and Sec. 5.3.3). In the following Sections, when the
units are not explicitly reported, we are giving σv in km s−1, SFRD in M�yr−1pc−2

and kinetic energy per units area (Ekin) in 1043 erg pc−2.

5.3.2 Velocity dispersion

Being the velocity dispersion a direct proxy for the turbulence, we would expect to
find a correlation with the SFRD. We calculate the characteristic velocity dispersion,
〈σv〉 as the median of the velocity dispersion estimates (see Appendix 3.A) out to
RHα, while the errors have been obtained using the MAD as done in Sec. 3.3.3.
Fig. 5.5 shows the position of the galaxies in our sample in the logarithmic σv-
SFRDα plane (left-hand panel) and in the logarithmic σv-SFRDd plane (right-hand
panel).

In both panels a linear relation appears: the properties of this relation have
been obtained by fitting a linear functional form, including also an intrinsic scatter,
through an MCMC posterior sampling method. The results are summarised in
Tab. 5.7. Using the complete sample the best-fit slope is ∼ 0.14 considering the
SFRDd and ∼ 0.16 considering the SFRDα: the relation is shallow, but the posterior
distributions of the slopes (shown by the red histogram in the small sub-panels in
Fig. 5.5) are not compatible with 0, so a flat distribution is statistically excluded (as
shown also by the grey bands). The only clear outlier in the relations is DDO 101,
shown in Fig. 5.5 as the yellow circle at log SFRDα ∼ log SFRDd ∼ −9. However
given the large uncertain on 〈σv〉 (see Fig. 3.16) and considering the intrinsic scatter,
it is still compatible with the relations. Moreover, we note that a significant part
of the visible gradient can be due to the presence of NGC 1569, the galaxy with
the most extreme SFRD properties, therefore we repeated the fit considering only
the galaxies in the subsample (square points in Fig. 5.5), i.e. excluding DDO 101
and NGC 1569. In this case the best-fit relations becomes flatter, but they are



188 Chapter 5. Scaling relations of dwarf irregulars

Figure 5.5: Median velocity dispersion 〈σv〉 as a function of SFRDα (left-hand panel)
and SFRDd (right-hand panel) for the galaxies in our sample, see the text for details on
these quantities. The squares indicate the galaxies included in the subsample (see text), the
black lines show the best-fit linear relation (considering all galaxies), while the grey bands
indicate the 1σ and 2σ uncertainties. The dashed lines show the best-fit relation ± the
best value found for the intrinsic scatter. The histograms in the insets show the posterior
distributions of the relation slopes for both the whole sample (red) and the subsample
excluding NGC 1569 and DDO 101 (orange). The colour code of the markers indicates the
mean value of the Hi surface density within RHα.

still compatible with the results obtained for the complete sample, as shown by
the orange histograms. Removing NGC 1569, we have significantly reduced the
dynamical range of the SFRD, as a consequence the uncertainties on the slope are
doubled and the distribution of points in the left-hand panel becomes marginally
compatible with a flat distribution. In both cases, the intrinsic scatter estimated
for the relation is . 0.1 dex, so most of the uncertainties are due to errors on the
velocity dispersion estimates.

The colour code of the points indicate the mean surface density 〈ΣHI〉 estimated
dividing the mass of HI disc inside RHα by the area of the disc within RHα: it is
visible a trend of increasing surface density as function of the SFRD, this is expected
since the SFRD correlates with ΣHI (Kennicutt-Schmidt law, Kennicutt 1998).

5.3.3 Kinetic energy

The possible sources that feed the turbulence need to inject an amount of energy in
the ISM comparable with the kinetic energy of the turbulent motions. Therefore,
if the star formation activity is one of the main players in sustaining the turbu-
lence, we expect that the kinetic energy per unit area correlates with the SFRD.
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Figure 5.6: Same as Fig. 5.5 but for the relation between the kinetic energy per unit
area and the SFRD. The values of 〈Eαkin〉 and 〈Ed

kin〉 have been calculated considering the
velocity dispersion and HI mass estimated within RHα or Rd (further details in the text).
The blue lines have a unity slope and represent the SN energy input in the ISM considering
an efficiency εSN = 0.5, 0.1, 0.01. The color code of the markers indicates the ratio between
the mean value the three last points of the rotational velocities and the median of the
velocity dispersion estimated across all the disc (see Tables 3.27-3.43 in Appendix 3.A.2).

The kinetic energy per unit area is defined as Ekin = (3/2)ΣHIσ
2
v , where σv is the

velocity dispersion measured along the line of sight and the factor 3 takes into ac-
count the three components of the velocity dispersion assumed isotropic. We use
two estimators for the characteristic kinetic energy: 〈Eαkin〉 = (3/2)〈Σα

HI〉〈σv〉
2 and

〈Eαkin〉 = (3/2)〈Σd
HI〉〈σv〉

2, where 〈σv〉 is estimated as in the previous Section and the
mean surface density is calculated dividing the mass of the galaxy within RHα by the
disc surface inside RHα and Rd in the case of 〈Σα

HI〉 and 〈Σd
HI〉, respectively. Fig. 5.6

shows the distribution of the galaxies in our sample in the logarithmic 〈Eαkin〉-SFRDα

(left-hand panel) and 〈Eαd〉-SFRDd (right-hand panel) planes: considering the com-
plete sample, the data follows a linear relation with a best-fit slope s ∼ 0.6 in the
first case and s ∼ 0.8 in the second case (see Tab. 5.7 for further details). The
two slopes are compatible within 1σ and the existence of a flat relation is strongly
unlikely as shown by the slope posteriors (red histograms in the small panels in
Fig. 5.6).

As before, DDO 101 is an outlier in the relation as shown by the red dot with
log SFRDα ∼ log SFRDd ∼ −9; in this case, DDO 101 is even more off set from
the best-fit relation because it has not only a velocity dispersion lower than other
galaxies with similar SFRD (as shown in Fig. 5.5), but also a lower mean value of
the surface density inside RHα (see Fig. 3.16).
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Excluding DDO 101 and NGC 1569 (the galaxy with the highest SFRD), our
best-fit slopes increases to s ∼ 0.7 and s ∼ 0.9, while the intrinsic scatter decreases
of about 0.1 dex (see Tab. 5.7), hence a consistent part of the scatter is due to the
position of these two galaxies. Interestingly, using the subsample, the slope of the
relation in the 〈Eαkin〉-SFRDd is compatible with one within 1σ, as also shown by the
slope posterior distribution (the orange histogram in the small subplots); a linear
scaling could be expected for the correlation between the rate energy injected in the
ISM by the SNe and the SFRD (see below).

5.3.4 Kinetic energy from SN explosions

Most of the energy released by the star formation activity is through the explosion
of young massive stars as core-collapse SNe. For a give initial mass function (IMF),
the rate of these events is proportional to the rate of newborn stars, hence to the
SFR. The total kinetic energy per unit area released by SN explosions is

Ekin = ηESNτ, (5.15)

where η is the rate of SNe per unit area per unit time, ESN is the mean total
energy released in a single SN and τ is the decay time of the turbulence. Following
Tamburro et al. (2009) we make a series of assumptions:

• we consider only core-collapse SNe, so η ∝ SFRD;

• we assume a Kroupa IMF (Kroupa, 2001), considering stars in the mass range
0.1-120 M�;

• only stars above 8 M� produce core-collapse SNe;

• the energy released per single SN event is 1051 erg;

• we assume steady state equilibrium between the energy input rate and the
energy loss rate of the turbulence. In this case, τ represents the decay time
of the turbulent energy that depends on the driving scale length λ and the
velocity dispersion σv, we assume λ = 100 pc (Joung & Mac Low, 2006; de
Avillez & Breitschwerdt, 2007) and σv = 8.7 km s−1 calculated as the mean
of all the median σv estimated for the galaxy in our sample (see Tab. 3.8), so
τ ' 11 Myr. This last assumption is discussed in detail in the last part of this
Section.

Using the above assumptions in Eq. 5.15, the kinetic energy per unit time injected
in the ISM is

Ekin

1056erg pc−2
= 1.46εSN

SFRD
M�yr−1pc−2

, (5.16)
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log(y) = A+ s log(x) All galaxies Subsample
x y s A scatter s A scatter

SFRDα 〈σv〉 0.16± 0.03 2.45± 0.31 0.09± 0.02 0.14± 0.06 2.23± 0.58 0.08± 0.02

SFRDd 〈σv〉 0.14± 0.02 2.11± 0.14 0.05± 0.02 0.13± 0.04 2.07± 0.24 0.05± 0.03
SFRDα 〈Eαkin〉 0.55± 0.09 8.25± 0.81 0.23± 0.07 0.65± 0.10 9.16± 1.03 0.14± 0.05

SFRDd 〈Ed
kin〉 0.75± 0.10 10.30± 0.82 0.35± 0.09 0.90± 0.10 11.70± 0.9 0.21± 0.06

Table 5.7: Best fit parameters for the log-log linear relations between turbu-
lence proxies (velocity dispersion and kinetic energy) and SFRD. 〈σv〉 is in units
of km s−1, 〈Eαkin〉 and 〈Ed

kin〉 are in units of 1043 erg pc−2, while the SFRDα and the SFRDd

are in units of M�yr−1pc−2. The details about these quantities can be found in the text.

where εSN is the efficiency, i.e., the fraction of the SN energy effectively transferred
to the ISM. If the turbulence is fed by the energy released in SN explosions we
expect a linear relation Ekin ∝ SFRD with a normalisation that depends on the
efficiency εSN. In Fig. 5.6 we plot the expected relation for three levels of efficiency
(0.5, 0.1, 0.01, blue lines). Qualitatively, tuning the level of efficiency, the blue lines
can be considered a good fit to the galaxies in the subsample (squares in Fig. 5.5
and Fig. 5.6), more quantitatively the posterior distributions of the slopes from the
fit to the subsample (orange histograms in the subpanels) are compatible with the
expected s = 1 within 3σ considering the 〈Eαkin〉-SFRDα relation and within 1σ

considering the 〈Ed
kin〉-SFRDd relation. All our galaxies are located below a level of

efficiency εSN = 0.5, interestingly Tenorio-Tagle et al. (1991) argued that this level
of efficiency is an upper limit for the SN explosions.

The kinetic energy injected by the SNe depends on the assumed decay time scale
for the turbulence (Eq. 5.15). As already said, τ depends both on the turbulence
driving scale, λ, and on the velocity dispersion as

τ ' 9.8

(
λ

100 pc

)(
σv

10 km s−1

)−1

. (5.17)

Replicating the analysis presented in Tamburro et al. (2009), we evaluated Eq. 5.17
using a constant value both for λ and for σv. However, in Sec. 5.3.2 we found
that σv and the SFRD are mildly correlated (σv ∝ SFRD0.14−0.16). Taking into
account this correlation, the expected relation between the kinetic energy and the
SFRD is less steep with respect to a purely linear relation, in particular Ekin ∝
SFRD0.84−0.86. These slopes are even more compatible with what we found fitting
our data, especially using the SFRDd as shown in Fig. 5.8 (see also Tab. 5.7 and the
slope distributions in the insets of Fig. 5.6). The assumption of λ = 100 pc has been
obtained from hydrodynamical simulations considering the properties of our Galaxy
(Joung & Mac Low, 2006; de Avillez & Breitschwerdt, 2007). It is not clear if in the
presence of a shallower potential, as it is the case of dIrrs, the value of λ could be
larger. We note that a factor 2 (λ = 200 pc) is enough to increase the normalisation
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Figure 5.8: Same as right-hand panel of Fig. 5.6 but considering that the SN energy
input in the ISM (blue lines) has a less steep dependence on the SFRD (Ekin ∝ SFRD0.86),
see text for details.

of the blue lines in Fig. 5.7 by about 0.3 dex; as a consequence, smaller values of
the SN efficiency would be required to sustain the turbulence.

Moreover, the velocity dispersions used to calculate the kinetic energy contains
both the thermal σTh and the turbulent σTu components, so what we are really
measuring is the total kinetic energy of the chaotic motion, rather than the kinetic
energy of the turbulent motion ETu. The unbiased estimator of the turbulent energy
can be calculated as logETu = logEkin + log(1 − σ2

Th/σ
2
v). Since σ2

Th < σ2
v , the last

term is always negative and the points in Fig. 5.16 can be shifted down by 0.3-
0.5 dex if most of the gas is the warm phase (σ2

Th ∼ 6− 8 km s−1), approaching the
efficiency of 0.1 or less. NGC 1569 is the only galaxy with a robust unbiased estimate
of the turbulent kinetic energy, as it has 〈σv〉 ∼ 20 km s−1 and the component of
the thermal kinetic energy is negligible. Interestingly it is located very close to the
line indicating the lowest level of efficiency (εSN = 0.01). Finally, we note that the
observed value of σv can be further overestimated due to the possible presence of
thick HI discs (see Fig. 4.9 and Sec. 4.3), hence the reported values of the kinetic
energy in Fig. 5.6 can be considered upper limits of the value of the kinetic energy
held in turbulent motions.

The colour code of the points in Fig. 5.6 shows the ratio between the mean of the
outer part of the rotational velocity (calculated as the last three points of Vrot) and
the mean of the velocity dispersion calculated over the whole disc (see Tab. 3.8). A
mild increase of the rotational support perpendicular to the relation appears; one
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could speculate that, at fixed SFRD, galaxies more supported by rotation also have
higher turbulent energy because when the rotation is significant part of the energy is
due to other mechanisms such as rotational shear (e.g. Schaye 2004) and/or magneto
rotational instability (e.g. Sellwood & Balbus 1999; Piontek & Ostriker 2005).

In this analysis, we have considered the properties of dIrr galaxies only within
the region where star formation is currently ongoing. Outside RHα all the galaxies in
our sample have velocity dispersion compatible with or even lower than ∼ 8 km s−1,
so we are in a regime where all the broadening of the HI line widths could be
explained by thermal motion assuming that most of the HI is in the warm phase
with T ≈ 8000 K.

5.4 Summary

In this Chapter, we have analysed correlations between global galactic properties
for a sample of dIrrs. The main results of this Chapter are listed below.

1. We tested the baryonic Tully-Fisher relation in the low-mass regime (106 M� .
Mbar . 109 M�). We found that our results are compatible in slope, normal-
isation and scatter with the work of Lelli, McGaugh & Schombert (2016c) at
higher mass (Mbar > 108M�). In particular, there is no evidence for a break
of the relation at the low-mass end as predicted in ΛCDM simulations (e.g.
Brook, Santos-Santos & Stinson 2016; Sales et al. 2017).

2. We tested the radial acceleration relation (McGaugh, Lelli & Schombert,
2016) for dIrrs. We found that our results are compatible with the results
obtained by Lelli et al. (2017) for larger galaxies. However, our data are
also compatible with a constant value of the galactic acceleration (gobs '
1.8 × 10−14 km s−2), independently of the baryonic properties. This result is
compatible with what Lelli et al. (2017) found for a sample of dSphs.

3. We found a correlation between proxies of the turbulence in the ISM (velocity
dispersion and kinetic energy) and the star formation rate density. We also
found that the kinetic energy ejected from the SN explosions is sufficient to
cover the budget of kinetic energy held in the turbulent motions. These results
suggest that the star formation activity is likely the main player in the feeding
of the turbulence in the ISM of dIrrs.
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5.A Rotation curve generated by the Hi distribution

In this Appendix we estimate the rotation speed, VHI, and the radial acceleration,
gHI, generated by the distribution of Hi in the disc of the dIrrs analysed in Chapter 3.
The rotation speeds have been used in Sec. 5.2 to test the radial acceleration relation
for the dIrr galaxies in our sample.

We begin with the condition that the centrifugal acceleration (V2
HIR) must ex-

actly balance the gravitational attraction. Therefore the rotational velocity on the
galactic plane (z=0) expected from an Hi disc is

VHI(R) =
√
−RgHI(R), (5.18)

where gHI is the radial component of the gravitational acceleration due to the Hi
distribution (Eq. 4.22, see Sec. 4.2.2).

Assuming a razor-thin Hi disc ρHI = Σobs cos i ζ(0), where i is the inclination
angle of the Hi disc. cos i takes into account the deprojection of the observed surface
density profile Σobs and the vertical distribution ζ is a Dirac δ centred on z = 0,
hence using Eq. 4.22 we obtain

gHI(R) = 4 GΣ0 cos i

∫ ∞
0

dR′
2
√
R′√
Rp

[K(p)− E(p)]
∂Σ̃obs(R′)
∂R′

, (5.19)

where Σ̃obs is the observed radial surface density profile normalised to Σ0, p =

ε−
√
ε2 − 1 and

ε =
R2 + R′2

2RR′
. (5.20)

We can calculate the rotation curve expected for each of the Hi disc analysed
in Chapter 3, using Eq. 5.18, Eq. 5.19 and the observed Hi profile (see the Atlas
in Appendix 3.A). The Eq. 5.19 is solved numerically using our Python module
galpynamics2, in order to avoid large artificial scatter due to the radial derivative
inside the integral we use the functional form

Σobs = Σ0

(
1 +

R
Rd

)α
exp

[
− R
Rd

]
(5.21)

to describe the radial trend of the surface density. In order to take into account
the error on the intrinsic profile of the Hi surface density (see Figures and Tables in
Appendix 3.A) we used a method similar to the one used in Sec. 3.3.3 to estimate
the final errors of the circular velocities. This method consists of the following steps.

1. First, we make N realisations of the radial profile of the surface density. For

2https://github.com/iogiul/galpynamics

https://github.com/iogiul/galpynamics
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Figure 5.9: Rotation curve generated by the Hi surface density distribution for CVn I
dwA. Left-hand panel: the black points indicate the intrinsic surface density (Σobs cos i)
obtained in Chapter 3, the grey lines show the best-fits functional forms (Eq. 5.21) to
the 1000 Σj realisations (see text), while the magenta line shows the best-fit to the black
points. Right-hand panel: The black points show the estimate of the rotation speed,
VHI generated by the Hi surface density shown in the left-hand panel calculated as the
median of the 1000 VjHI estimates (grey lines), the errors are calculated using the MAD
statistic (see text for further details); the magenta line shows the rotation curve expected
for the surface density profile shown by the magenta line in the left-hand panel. The red
line indicates the rotation curve due to the distribution of matter in the stellar disc, it is
taken from the value reported in Oh et al. (2015) correcting for the mismatch between our
and their assumption on the disc inclination (see Sec. 5.2).

each sampling radius R the values of a single realisation Σj
obs(R) are extracted

randomly from a normal distribution with the mean and the dispersion taken
respectively from the values and errors of the parent populations.

2. For each of the N realisations we fit Σj
obs(R) using the functional form in Eq.

5.21 as shown by the grey lines in the left-hand panel in Fig. 5.9, then we
calculate numerically the integral in Eq. 5.19 obtaining gjHI and Vj

HI using Eq.
5.18 (see grey lines in the right-hand panel in Fig. 5.9).

3. The final velocities are calculated as VHI = medianj(Vj
HI), while the associated

errors are δVHI
(R) = K ×MAD(Vj

HI) where the MAD is the median absolute
deviation around the median (black points and error bars in Fig. 5.9). The
factor K links the MAD with the standard deviation of the sample (K ≈ 1.48

for a normal distribution). We chose to use the median and the MAD because
they are less biased by the presence of outliers with respect to the mean and
the standard deviation.
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Figure 5.10: Black points and red lines are the same as in Fig. 5.9. Notice that DDO 47
does not have an estimate of the stellar rotation curve in Oh et al. (2015).

We found that N = 1000 is enough to obtain a good description of the errors
introduced by the uncertainties in the observed Σobs.

In Fig. 5.9 we show the results obtained with our method for the galaxy CVn
I dwA (see Sec. 3.4 and Fig. 3.10), a summary plot with the VHI estimated for all
the other dIrrs presented in Chapter 3 can be found in Fig. 5.10. In some cases VHI

has a negative value (e.g. WLM or DDO 101), this is an artefact that we introduce
when gHI > 0 and the argument of the square root in Eq. 5.18 becomes negative,
hence a more general definition of VHI is

VHI(R) = −sign[gHI(R)]
√
|RgHI(R)|. (5.22)
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The sign of gHI is defined by the radial derivative of the Hi surface density
profile in Eq. 5.19, generally Σobs exhibits an exponential decrease and gHI is always
negative, i.e. directed inward causing a centripetal acceleration. However, in the
very inner part of the disc some galaxies show a significant deficit of Hi (e.g. WLM,
see Fig. 3.26). In these cases, the value of Σobs increases with radius and gHI > 0,
the acceleration is direct outward and no centripetal acceleration is produced, hence
Eq. 5.9 is not defined anymore. The negative VHI that we introduce in Eq. 5.22 does
not have physical meaning: an Hi disc alone cannot rotate in the region where Eq.
5.22 predict negative velocities. However it is a useful “trick” in the study of galactic
dynamics. In this sense, a negative velocity means just that we need more radial
acceleration from other components (dark matter halo, stellar disc) to balance the
observed rotation of the gas and the outward acceleration produced by the Hi disc
(see Sec. 4.2.2).





6Chapter

Concluding remarks

Eventually, we have reached “safe and sound” the end of our “off piste tour” be-
yond the disc of the Milky Way. In this concluding Chapter, we summarise the
contents and the results of this thesis (Sec. 6.1), then in Sec. 6.2, we briefly present
related works that use results obtained in this thesis. In Sec. 6.3, we describe the
improvement expected in our study of the halo with the next Gaia data release.

6.1 Summary

In the first part of this thesis we present a study of the distribution of stars in
the inner part of the Galactic halo exploiting the unprecedented dataset of the first
Gaia data release. Then, in the second part of the thesis we focus on the properties
of the dwarf irregular galaxies (dIrrs) making use of the state-of-the art 3D fitting
tool 3DBAROLO (Di Teodoro & Fraternali, 2015) and developing a new original
approach to take into account the Hi disc thickness. The brief summaries and the
main results of each Chapter are reported below

• In Chapter 2, we exploited the first Gaia data release to study the properties
of the inner Galactic stellar halo as traced by RR Lyrae stars. We demon-
strated that it is possible to select a pure sample of RR Lyrae stars using
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only photometric information available in the Gaia+2MASS catalogue. The
final sample contains about 21600 RR Lyrae stars covering an unprecedented
fraction (∼ 60%) of the volume of the Galactic inner halo (R < 28 kpc). We
studied the morphology of the stellar halo by analysing the RR Lyrae stars
distribution with parametric and non-parametric techniques. A consistent pic-
ture emerges: the inner halo is well reproduced by a smooth distribution of
stars settled on triaxial density ellipsoids. The shortest axis is perpendicular
to the Milky Way’s disc, while the longest axis forms an angle of ∼ 70◦ with
the axis connecting the Sun and the Galactic centre. The elongation along the
major axis is mild (p = 1.27), and the vertical flattening is shown to evolve
from a squashed state with q ≈ 0.57 in the centre to a more spherical q ≈ 0.75

at the outer edge of our dataset. Within the radial range probed, the density
profile of the stellar halo is well approximated by a single power-law with ex-
ponent α = −2.96. We do not find evidence of tilt or offset of the halo with
respect to the Galaxy’s disc.

• In Chapter 3, we studied the Hi kinematics of 17 galaxies extracted from the
‘Local Irregulars That Trace Luminosity Extremes, The HI Nearby Galaxy
Survey’ (LITTLE THINGS). Our approach differs significantly from previ-
ous studies in that we directly fit 3D models (two spatial dimensions plus
one spectral dimension) using the software 3DBAROLO, fully exploiting the
information in the Hi datacubes. For each galaxy we derived the geometric
parameters of the HI disc (inclination and position angle), the radial distribu-
tion of the surface density, the velocity-dispersion (σv) profile and the rotation
curve. The circular velocity (Vc), which traces directly the galactic potential,
is then obtained by correcting the rotation curve for the pressure support in
the HI disc. The final products of this work are high-quality, ready-to-use
kinematic data (Vc, σv).

• In Chapter 4, we investigated the effect that the presence of thick gaseous
layers can have on the study of the Hi discs. In particular, we focused on discs
with properties similar to the dIrrs studied in Chapter 3. We found that, in the
presence of a thick Hi disc, if the effects of the thick disc is not accounted for,
the observed surface density profile is shallower with respect to the intrinsic
profile, the disc appears more face-on than it actually is and the parameters of
the Hi line profile (mean and standard deviation) are not a robust measurement
of the kinematic properties (rotational velocity and velocity dispersion) of the
gas in the meridional plane of the galaxy. In order to deal with the above
observational biases, we presented, for the first time, a technique to analyse Hi
galaxies taking into account the presence of thick discs under the assumption
of hydrostatic equilibrium. We applied this method to three galaxies already
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analysed in Chapter 3. We found that the thickness of the Hi discs of these
three galaxies is significant, both in absolute terms and relative to the radial
scale length and the radial extent of the discs. However, the final rotation
curves are compatible with the ones obtained in Chapter 3 using 3DBAROLO
and assuming thin Hi discs with a constant scale height (zd ∼ 100 pc, for
all the galaxies). Therefore, the presence of such thick discs does not have
a significant impact in the study of the kinematics and dynamics. We can
conclude that the results obtained in Chapter 3 represent robust estimates
of the properties of dIrrs in our sample. Finally, we also demonstrated that
the excess of emission along the minor axis of some galaxies (e.g. WLM and
UGC 8508) can be nicely explained by the presence of thick gaseous layers
intercepted along the line of sight.

• In Chapter 5, we presented three scaling relations of dIrrs using the results
obtained in Chapter 3. We used the circular velocities of the outer part of the
Hi discs to test the baryonic Tully-Fisher relation in the low-mass regime of
dwarf galaxies, we found that the properties of the analysed galaxies are totally
compatible with the relation found for larger spirals. The circular velocities
and the Hi surface densities have been used to test the radial acceleration re-
lation between the acceleration obtained from the observed circular velocities,
gobs, and the one expected from the baryonic matter, gbar. The values found
for our dwarf galaxies are compatible with the relation found for larger spirals
and elliptical galaxies at large gbar, while at small gbar our data seem to indi-
cate the presence of a constant observed acceleration independent of the value
of the baryonic acceleration as already found for a sample of dSphs by Lelli
et al. (2017). Finally, we found that both the Hi velocity dispersion and the
Hi “chaotic” kinetic energy per unit area (Ekin = ΣHIσ

2
v) show a relation with

the star formation rate (SFR) of the galaxy. In particular, σv ∝ SFR∼0.14−10.6

and Ekin ∝ SFR∼0.55−0.75. Studying these correlations, we found that the tur-
bulence observed in the neutral medium of dIrrs can be sustained by the star
formation activity assuming an average efficiency of about 30% in transferring
the supernova explosions energy into the ISM.

6.2 Related works

In this thesis, we made use of state-of-the-art datasets and techniques and we further
proposed new original approaches for data analysis giving a contribution to the field
of kinematics and dynamics of Hi discs and to the study of the Galactic stellar halo.
Parts of the results of this thesis have been presented in accepted papers (Iorio et al.
2017b; Iorio et al. 2017a) and they have been already exploited in other works.

In a recent work (Boubert et al., 2017), we used the residuals between the dis-
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tribution of stars in the halo and our best halo model to highlight the presence of a
“genuine” excess of stars aligned with the Magellanic stream. This property suggests
that this structure could contain either debris from a disrupted dwarf galaxy that
was orbiting in the Vast Polar Structure (Pawlowski, Pflamm-Altenburg & Kroupa,
2012) or stars once belonging to the Small Magellanic Cloud, lost in a recent (3 Gyr)
tidal interaction with the Large Magellanic Cloud.

The data and the techniques presented in Chapter 3 have been used in Read
et al. (2016), where we analysed the observed diversity of the dwarf galaxy rotation
curves. In particular, we applied the method described in Sec. 3.3 to a sample of
dwarf galaxies from non-cosmological hydrodynamical simulations (Read, Agertz &
Collins, 2016) and to four real dIrrs. We concluded that the large variations in
shape and diversity of the rotation curves observed in dIrrs and in contrast with the
“regularity” found in the ΛCDM simulations (Oman et al., 2015, 2016) owe only in
few cases to the fact the gas is out of equilibrium. In general, the rotation curves
trace the galactic potential very well as long as the inclination of the disc and the
distance of the galaxy are properly determined.

In Read et al. (2017), we used the rotation curves derived in Chapter 3 to obtain
an estimate of the virial mass for the dIrrs in our sample taking into account the
cusp-core transformation of the DM density profile due to stellar feedback (Read,
Agertz & Collins, 2016). Using these results, we found a monotonic relation with
little scatter between the total stellar mass and the halo virial mass for the galaxies
in our sample. This relation is totally compatible with what we obtained with the
abundance matching technique comparing the stellar mass function of field galaxies
from the Sloan Digital Sky Survey (Blanton et al., 2001) and the halo mass function
from the ΛCDM Bolshoi simulation (Klypin, Trujillo-Gomez & Primack, 2011).
Based on these results, we concluded that small scale cosmological problems, such
as the “missing satellites” (e.g. Klypin et al. 1999; McConnachie 2012) or “too big to
fail” (e.g. Read et al. 2006; Boylan-Kolchin, Bullock & Kaplinghat 2011) problems,
are confined to group environment and must owe to “galaxy formation physics”
rather than exotic cosmology.

The data obtained in Chapter 3 have been also already used by other groups,
see Allaert, Gentile & Baes (2017); Santos-Santos et al. (2018).

Finally, we are currently exploiting the methodology presented in Chapter 4 to
estimate the 3D density of Hi discs and investigate the fundamental relation between
the gas density and the star formation rate density in disc galaxies (Bacchini et al.,
in prep.)
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6.3 Waiting for Gaia DR2

The Gaia collaboration announced the new data release (GDR2) for April 20181.
The GDR2 will have a series of important improvements with respect to the data
that we used in Chapter 2:

• the sky-coverage will be more uniform and the number of flux measurements
(Nobs) for each star will increase, thus making our simple variability estimator
AMP (Eq. 2.1) more precise and more robust;

• the photometry for a large sample of variable stars will be used to fine-tune
the selection cuts of RR Lyrae stars without relying only on external auxiliary
datasets (Sec. 2.1.2);

• most importantly, two photometric colours will be available: GRP in the red
band (∼ 700 nm− 1000 nm) and GBP in the blue band (∼ 300 nm− 600 nm).
They will be used for RR Lyrae colour selection without cross-matching Gaia
with other surveys (as we did with 2MASS in Chapter 2).

We envisage applying the method presented in Chapter 2 to the GDR2, avoiding
the necessity to rely on shallow 2MASS data and thus extending our analysis out
to Galactocentric distances of about 100 kpc. This unprecedented volume coverage,
combined with stellar proper motions, will allow us to trace the overall shape of the
halo and to shed light on the substructures hidden in the Galactic halo and thus
decipher the Galaxy’s formation history.

1https://www.cosmos.esa.int/web/gaia/release

https://www.cosmos.esa.int/web/gaia/release
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