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Abstract 

Masonry is a composite material, whose behavior is strongly influenced by the presence of 

vertical and horizontal mortar joints. With reference to the shear behavior of masonry structural 

elements, which is crucial during a seismic event, three different failure mechanisms can be 

identified: rocking, sliding and diagonal cracking. The great damages experienced by existing 

masonry constructions during the seismic events which struck Italy in recent years, have 

highlighted the need of a systematic vulnerability assessment of this construction typologies. 

One of the crucial aspect, in this framework, is the evaluation of the mechanical properties of 

the materials, which can be achieved through the execution of non-destructive, slightly-

destructive and destructive tests. 

On existing buildings, it is often unpracticable to perform experimental tests or, when they 

are performed, their reduced number and local nature do not allow to obtain reliable estimation 

of the mechanical parameters. Therefore, it is fundamental to identify experimental procedures 

having the minimum impact on the construction, obtaining, at the same time, representative 

results. To this aim, the combination of different experimental tests can be a very powerful 

possibility. In parallel, the reliability of the single technique should be analyzed as well. 

The scope of the present work is to investigate the shear behavior of masonry structural 

elements, both from the experimental and the numerical point of view. Slightly-destructive and 

destructive techniques were applied in the field and, starting from the observations of the typical 

failure mechanisms, numerical simulations of shear tests were performed. 

In the first part of the research, an extended experimental campaign was conducted on 

existing masonry buildings. The main objective of this activity was to evaluate the most suitable 

techniques that can be applied to get reliable information on the material mechanical properties. 

Slightly-destructive and destructive tests were performed on eight masonry buildings, severely 

damaged by the 2012 Emilia earthquake (Italy) and intended to be demolished. Concerning 

slightly-destructive tests, shove tests and splitting tests on cores with inclined mortar joint were 

chosen. As destructive tests, diagonal compression and shear-compression tests were adopted. 

The tests results are here analysed and discussed, focusing on the strength parameters obtainable 

from each test type and on the construction of appropriate failure domains. 

In the second part of the research, the shear-sliding failure mechanism was studied in detail 

through numerical simulations of triplet tests (EN 1052-3) and shove tests (ASTM C1531). The 

scope was to investigate factors that could affect the shear-sliding behavior of masonry. Among 

others, the influence of the boundary conditions, the development of the stress distributions 

along the mortar joints, the cracking formation and evolution, and the role of dilatancy were 
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studied. In the numerical analysis, a simplified micro-modeling strategy was adopted. Bricks 

were modelled as a linear, elastic and isotropic material, while the nonlinearities were 

concentrated in the joints, where the sliding failure was expected to take place. A composite 

interface model was used, including a tension cut-off, a Coulomb friction criterion and a 

compressive cap. The input strength parameters used to set the yield functions were selected 

from results of experimental tests. 

The results of the numerical analyses allowed to gain a better interpretation and 

understanding of the outcomes of the shear tests considered. Moreover, factors that could 

influence the shear-sliding behavior of masonry were analyzed by performing parametric 

studies. The numerical models were validated through comparisons with the results from 

experimental tests, in terms of failure load, post-peak behavior and specimen deformability. 

The understanding gained from numerical simulations of shear tests allowed to propose some 

improvements of the testing procedure and of the results interpretation.  
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1 Introduction 

Masonry can generally be defined as a composite material, made of natural or artificial elements 

assembled in different ways and bonded together with mortar. One of the best characteristics 

of a masonry construction is its simplicity. Indeed, laying pieces of stone, bricks, or blocks on 

top of each other, either with or without cohesion via mortar, is a simple, though adequate, 

technique that has been successfully used ever since remote ages (Rots 1997). In Italy, both 

bricks and stones were used from very ancient times until today in many types of buildings, 

both monumental and residential. Along the past centuries, the great variability of historical, 

geographic, economic and social conditions determined an extreme diversification of the 

construction technologies. Therefore, existing masonry buildings have not only different 

aesthetic qualities but also different mechanical properties and durability characteristics. 

From the mechanical point of view, masonry is a non-homogeneous, plastic and anisotropic 

material, characterized by a very low tensile strength. It is usually described as a material 

exhibiting distinct directional properties due to the mortar joints, which act as planes of 

weakness (Lourenço 1996). Masonry can be typically unreinforced or reinforced and an 

understanding of the behavior of this composite material requires the characterization of its 

components. Indeed, the properties of masonry are strongly dependent upon the properties of 

its constituents. Clay bricks, stones, and mortar are quasi-brittle materials, which fail due to a 

process of progressive internal crack growth (Lourenço 2014). An adequate characterization of 

both the single components and the bond between mortar and bricks, as well as of masonry 

assemblages, is needed for an effective structural analysis of masonry structures and should be 

performed through extensive experimental testing. 

The evaluation of the structural safety of existing masonry buildings is a current and a crucial 

issue throughout the world. In seismic prone regions, especially, the high vulnerability of these 

structures increases the seismic risk also for low and medium hazard levels, as the most recent 

earthquakes have highlighted. The situation is even more critical when dealing with old 

masonry constructions, either built without a proper seismic design or subjected to damages 

and degradation through years and decades and, therefore, particularly vulnerable to horizontal 

actions. Several challenges and difficulties have to be faced in the structural analysis and the 

safety assessment of historical constructions due to their geometrical complexity, the variability 

of materials and building techniques adopted, the poor knowledge on past events which might 

have affected the current condition of the constructions and the lack of design codes. In this 

context, the use of a multidisciplinary approach is strongly recommended, which is based on 
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four key-steps: anamnesis, diagnosis, therapy, and control (Masciotta et al. 2001). It should 

integrate a variety of complementary activities, such as historical investigations, use of non-

destructive or slightly-destructive techniques, and monitoring (Roca et al. 2010). 

1.1 Masonry structures 

Masonry buildings are structural systems composed of vertical and horizontal structural 

elements, walls and floors, which have to be connected in every direction to obtain a box-like 

behavior. Horizontal connecting elements (e.g. steel ties or ring beams) should be provided at 

each floor level to connect the walls. The typical structural elements characterizing ordinary 

masonry buildings are: (i) vertical wall panels (piers), (ii) horizontal masonry panels 

(spandrels), and (iii) rigid nodes, located at the intersections of vertical and horizonal panels. 

According to available materials, climatic and functional requirements, technical knowledge 

and traditional practice specific to different countries, a variety of masonry typologies can be 

found (Tomaževič 1999). Indeed, a wide variety of materials, both natural and artificial, and 

different structural typologies have been adopted in the past centuries for the construction of 

traditional masonry buildings. In Mediterranean countries, typical stone or brick masonry 

buildings have a regular structural layout, characterized by the presence of walls distributed in 

two orthogonal directions. Wooden floors or brick vaults were adopted as horizontal structural 

elements in old constructions, while wall ties were not always present. 

1.1.1 Materials and masonry typologies 

The identification of the masonry quality is of crucial importance, especially when dealing with 

existing constructions, since it is strongly correlated to the mechanical behavior of the structural 

elements. It should be gained by diagnostic analyses, in which the materials characteristics 

should be investigated, as well as the characteristics of the masonry typology. In particular, the 

following features needs to be analyzed: 

- Type of the resisting elements: natural stones, fired clay bricks, adobe bricks, etc.; 

- Shape and dimensions of the resisting elements; 

- Type of mortar: cementitious mortar, lime-based mortar, pozzolanic mortar, etc. 

- Type and characteristics of the texture; 

- Presence of passing through stones (headers). 

In the Italian Building Code (NTC 2008), the principal masonry typologies characterizing 

existing constructions on the national territory are listed. However, given the extreme 

diversification of the masonry typologies, every Italian Region can provide further 
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specifications to better identify and assess the masonry quality. Different classifications have 

been proposed in past years, such as the ones provided by the National Group for the Earthquake 

Protection (GNDT) and by the Emilia Romagna Region (Figure 1.1). 

 

  
(a) (b) 

Figure 1.1. Examples of abaci for the identification of masonry typologies: (a) GNDT Manual; (b) 
Abacus of masonry typologies, Emilia Romagna Region, 2009. 

1.1.2 Structural typologies 

A classification based on the global behavior of a building allows to highlight the structural 

problems both for vertical and horizontal loads and, especially in the post-seismic surveys, it 

helps in bearing in mind the entire range of problems, typical of a certain class. The 

classification is particularly useful for a better understanding of the structural behavior of the 

building and of its critical issues, which are the bases to provide a first assessment of its 

vulnerability. Here, a quite simple but useful classification proposed by Pagano (1968) and 

reported by Lenza & Ghersi (2011) with some additional seismic considerations is presented. 

Three classes of masonry buildings were identified, as shown in Figure 1.2, having decreasing 

level of vulnerability from the first to the third class: 
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- First class: arches and vaulted systems; 

- Second class: plane decks with simply supported beams; 

- Third class: concrete slabs and ring beams. 

In the Italian historical city centers it is possible to find the characteristics of the three classes 

in a single building due to the evolution of the construction along the past decades and centuries. 

 

  
(a) (b) 

  
(c) (d) 

Figure 1.2. Classification of masonry buildings: (a) first class; (b-c) second class; (d) third class 
(Preite, 1986) 

First class buildings 

Buildings belonging to the first class (Figure 1.3a) are entirely constituted by masonry and are 

characterized by the presence of vaulted systems. Vertical walls, continuous from the 

foundations to the roof, exhibit arches above the openings. The presence of arches and vaults 

affects the behavior of the structure under vertical loads: the thrusts are balanced in the internal 

nodes, but they have an overturning effect on the external walls. The combination of these 
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factors can determine the activation of out-of-plane overturning, which could be prevented by 

effective connections between orthogonal walls. 

With regards to the resistance against horizontal actions, one of the crucial aspects is the 

absence of rigid slabs able to distribute the seismic actions to the resisting elements according 

to their stiffness. Therefore, each wall panel has to directly carry the seismic accelerations. With 

regards to actions perpendicular to the masonry walls, they can be transmitted to the orthogonal 

walls through the arch effect. However, the small thickness of the wall determines high 

thrusting actions, which are balanced in the internal nodes but difficult to be absorbed by the 

external walls. The presence of steel chains, parallel to the wall panel, is thus necessary. 

Considering the effect of the seismic action in the plane of the walls, the horizontal forces 

could be tackled by a truss mechanism with compressed struts able to transfer the actions to the 

foundations. However, in absence of horizontal tensile resisting elements, the formation of the 

truss mechanism is not activated in all the panels. The walls, indeed, could behave as many 

independent cantilevers since the spandrel elements do not provide a sufficient coupling. 

Second class buildings 

Buildings belonging to the second class (Figure 1.3b) are characterized by vertical masonry 

panels (piers) and by plane slabs consisting of simply supported beams. Instead of arches above 

the compartments or the openings, masonry or timber lintels are present. The presence of the 

horizontal slabs eliminates the problem of the thrusting forces given by arches and vaults in 

first class buildings and therefore it is common to find, in this category, buildings with a higher 

number of floors and thinner walls. Nevertheless, the global behavior of the building can be 

influenced by some phenomena that can produce the outward opening of the structure, such as: 

the eccentricity of the external walls, and the arch effect of the lintels, that generates thrusting 

actions, balanced in the internal nodes but not in the external ones. The existence of efficient 

connections between the structural elements can reduce the effect of the mentioned issues. 

In presence of horizontal seismic actions, out-of-plane failure could be activated if good 

connections between the beams of the slabs and the masonry walls are not provided. External 

walls loaded by the slabs exhibit a safer behavior due to the effect of the weight of the floor 

which counteract the overturning mechanism. 

Third class buildings 

Buildings belonging to the third class (Figure 1.3c) are characterized by the presence of 

concrete slabs and ring beams due to the increasingly widespread use of reinforced concrete 

starting from the beginning of the 20th century. In many cases, it can be also noticed the 
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presence of reinforced concrete lintels well embedded above the openings, which ensure the 

elimination of the thrusting actions due to the arch effect. 

These buildings exhibit an improved seismic behavior and the critical issues of the other 

classes are reduced or eliminated. The slabs work both as a restraint for the external walls 

(preventing overturning mechanisms) and as a rigid diaphragm able to distribute the seismic 

action on the vertical structural elements. Moreover, the presence of tensile resisting elements 

(ring beams and lintels) allows the formation of a truss mechanism in all the masonry panels, 

ensuring the transmission of forces to the foundations. 

 

Figure 1.3. Masonry structural typologies, characteristics and critical issues: (a) first class buildings; 
(b) second class buildings; (c) third class buildings (Pagano, 1990). 

1.2 Failure mechanisms of masonry structures 

Failure mechanisms of masonry structures subjected to a seismic action can be associated to 

out-of-plane or in-plane response of the masonry walls. Usually, as demonstrated by the post-

earthquake damage surveys, the main sources of vulnerability for masonry structures are 

associated to local out-of-plane failure modes (Magenes & Penna 2009). These mechanisms 

(Figure 1.4) can be activated in presence of very poor connections between orthogonal walls 

(e.g. lack of interlocking, absence of tie rods or ring beams) and between walls and floors (e.g. 

simply supported wooden floors) or in presence of thrusting roof. Once out-of-plane failure is 

prevented by proper measures, local mechanisms can be prevented, and a global behavior 

governed by the wall in-plane response can develop. In this case, the in-plane walls provide the 

stability necessary to avoid collapse. (Magenes & Calvi 1997). 

   
(a) (b) (c) 
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Figure 1.4. Typical out-of-plane failure mechanisms (Reluis document). 

1.2.1 In-plane shear strength of masonry piers 

Masonry piers can fail in shear according to three well-known mechanisms: toe crushing 

associated to rocking, sliding and diagonal cracking (Figure 1.5). In order to quantitatively 

describe these different behaviors, several models were proposed in the past (Turnšek & 

Čačovič 1971, Benedetti & Tomazevic 1984, Mann & Muller 1980). In this work, the attention 

will be focused on the sliding and the diagonal cracking failure modes only, which were 

investigated in the experimental campaign presented in the followings. Indeed, the toe crushing 

was not observed in the testing program, because it typically occurs in case of slender walls or 

with high levels of vertical stress, which is not typical of the analyzed types of masonry 

structures. 
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Figure 1.5. Typical failure modes of masonry piers: (a) crushing associated to rocking; (b) sliding; (c) 
diagonal cracking (Calderini et al. 2009). 

The sliding failure takes place along a mortar joint, usually at the bottom of squat masonry piers 

subjected to low compressive stress. The well-recognized model for describing the sliding 

failure is the Mohr-Coulomb’s model, in which the governing parameters of the phenomenon 

are the cohesion and the friction coefficient, according to the linear formulation: 

   c , (1.1) 

where τ is the shear strength, σ is the compressive stress, c is the cohesion and μ is the friction 

coefficient. These latter parameters can be determined from slightly-destructive tests in which 

the sliding along a mortar joint is investigated, as will be shown in the followings. 

The diagonal cracking failure mode, typical of moderately slender masonry panels with 

higher compressive stress applied, is characterized by the presence of diagonal cracks, which 

generally develop starting from the center of the panel and then propagate towards the corners. 

The failure criterion proposed for the interpretation of this mechanism is based on the 

assumption that the crack will appear in correspondence of the reaching of the masonry tensile 

strength in the center of the panel. The formulation, initially proposed by Turnšek and Čačovič 

(1971), defines a parabolic failure domain, in which the governing parameter is the diagonal 

tensile strength ft: 

1t

t

f
b f

   , (1.2) 

where b is a shape factor which accounts for the distribution of shear stresses over the cross 

section of the panel. Several proposals can be found in literature (Turnšek & Čačovič 1971, 

Benedetti & Tomazevic 1984, Augenti 2000) for the definition of the parameter b, which in 

general represents the ratio between the maximum tangential stress in the centre of the panel 

and the mean tangential stress. According to Benedetti and Tomaževič (1984), it can range from 
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1 to 1.5, depending on the geometry of the panel (height H and width W) and on the state of 

stress during the test. For slender panels, characterized by an aspect ratio H/W ≥ 1.5, it can be 

assumed equal to 1.5, while for squat panels, having an aspect ratio H/W ≤ 1, it can be set equal 

to 1; the actual value of the aspect ratio can be taken for intermediate cases.  

The two models, describing the sliding failure and the diagonal cracking failure, summarized 

above, were modified by Mann and Müller (1980), in order to better interpret the diagonal 

cracking failure mode. Differently from the previous model, where masonry is assumed to be 

elastic, homogeneous and isotropic until failure, they analyzed masonry as a composite 

material. Therefore, they considered the possibility for the crack to develop according to the 

features of the constituents, and not rigidly along a principal stress direction. From the 

observation of real damages, indeed, the diagonal failure can be characterized either (i) by a 

“stair-stepped path”, with cracks mainly passing through mortar joints, or (ii) by a smooth 

diagonal crack causing the brick tensile failure (Figure 1.6). 

 

 

Figure 1.6. Diagonal cracking failure mechanism: (a) stair-stepped crack; (b) brick tensile failure 
(Magenes 2000). 

The first diagonal failure mode (stair-stepped crack), typical of masonry panels with poor-

quality mortars with respect to that of bricks, is characterized by a sliding mechanism and can 

be interpreted through a linear failure criterion, very similar to Eq. (1.1): 

c     . (1.3) 

Here, the cohesion c  and the friction coefficient   are “global” parameters, related to the “local” 

parameters of the mortar, presented in Eq. (1.1), through the following formulas: 

1

c
c 

 
  (1.4) 

1


 

 
 , (1.5) 

where φ is a parameter related to the masonry pattern, for regular pattern: 2 h l  , h and l 

being the height and the length of the bricks, respectively. Particular attention has to be paid on 
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the definition of this parameter in case of irregular pattern, because  can be determined by 

knowing the inclination of the diagonal crack, as will be done in the interpretation of the 

destructive tests here presented. 

According to Mann and Müller, the second diagonal failure mode, involving bricks, can be 

interpreted with a model built on the one proposed by Turnšek and Čačovič, by substituting the 

diagonal tensile strength of masonry ft with the tensile strength of bricks fbt, according to the 

formula: 

1
b

bt

bt

f
b f

   , (1.6) 

where bb is a coefficient which accounts for the distribution of shear stresses on the block, taken 

to be equal to 2.3 (Magenes & Calvi 1997, Calderini et al. 2009). 

The choice of the failure model is of fundamental importance in order to appreciate and 

analyse the mechanism which is more likely to be activated. Together with the theoretical 

knowledge of the masonry behavior, the observation of the actual failure mechanisms in 

experimental tests – in-situ and in laboratory – is essential in order to understand which model 

best fits the reality. 

1.2.2 Shear verifications in Building Codes 

In this section, a brief description of the indications contained in the Building Codes for the 

shear verification of masonry walls is reported. The Italian Code is here taken into 

consideration, together with the Eurocode. 

In Eurocode 8 – Part III, the evaluation of the shear strength of an existing unreinforced 

masonry wall controlled by shear is based on a shear-sliding mechanism, according to Mohr-

Coulomb’s criterion (Eq. (1.1)). The compressive stress σ is evaluated considering the 

compressed portion of the cross section only and the friction coefficient μ is assigned and equal 

to 0.4. According to Eurocode 8, the initial shear strength, corresponding to the cohesion, can 

be obtained from in situ tests and from additional sources of information. Alternative 

formulations are not reported. 

The indications provided by the Italian Code (NTC 2008) for the verifications of masonry walls 

of existing buildings against shear are based on the evaluation of the shear strength according 

to the diagonal cracking mechanisms. The formulation reported in the Italian Code is the one 

of Eq. (1.2). It is recommended that the value of the diagonal tensile strength, if evaluated 

through diagonal compression tests, is calculated according to the elastic interpretation (see 
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Section 2.2.1). The value of the coefficient b should be determined as proposed by Benedetti 

and Tomaževič (1984). 

1.3 Seismic vulnerability assessment procedures 

The approach proposed by the Building Codes (Eurocode 8 – Part III, NTC 2008) for the 

seismic vulnerability assessment of existing constructions is based on the knowledge of the 

building under investigation. The great variability of materials and structural typologies 

determines a substantial complexity in the verification process and, consequently, in the design 

of strengthening interventions. However, rehabilitation can be successfully accomplished only 

if diagnosis of the state of damage of the building has been carefully carried out (Binda et al. 

2000). The best possible knowledge of the building, which is the essential requirement for any 

type of structural analysis and for the seismic vulnerability assessment of existing structures, 

can be achieved by means of historical analysis, survey operations and experimental 

investigations, with different levels of detail. The objective is to identify the geometry of the 

building, the structural elements, the constructive details, the masonry typology, the state of 

damage, and the quality of the materials. An accurate seismic vulnerability assessment, even if 

it is quite challenging and expensive, is fundamental for the analysis of the seismic response of 

a single building to identify its characteristics and critical issues and to design efficient 

strengthening intervention. 

In assessing the earthquake resistance of existing structures, the input data shall be collected 

from a variety of sources, including: available documentation specific to the building in 

question, relevant generic data sources (e.g. contemporary codes and standards), field 

investigations and, in most cases, in-situ and laboratory tests. The Codes define three different 

Knowledge Levels, according to the level (limited, extensive, exhaustive) of inspection and 

testing that is reached during the investigations on a building. To these knowledge levels, 

confidence factors are associated, which reduces the average mechanical properties of the 

investigated masonry (Table 1.1). 

Table 1.1. Knowledge levels and confidence factors. 

Knowledge Level Confidence Factor 

Limited knowledge (KL1) 1.35 
Normal knowledge (KL2) 1.2 
Full knowledge (KL3) 1.0 
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One of the crucial aspects, in the seismic vulnerability assessment procedures, is the evaluation 

of the mechanical properties of the materials. Non-destructive, slightly-destructive or 

destructive tests can be performed with this purpose. However, the number of tests which can 

be carried out on an existing structure is often very limited to reduce the damages on the 

construction to a minimum. 

Limited indications can be found in the Building Codes regarding the type and number of 

tests which should be executed in order to reach a certain Knowledge Level. Nevertheless, when 

destructive tests are not performed, which is typical in the engineering practice, the Italian Code 

provides values of the mechanical properties for different masonry typologies to be used for the 

structural verifications (Table 1.2). In particular, the values reported in Table 1.2 should be 

corrected with the coefficients of Table 1.3 if the characteristics of the investigated masonry 

are different from the ones to which Table 1.2 refers. 

Once the mechanical characterisation of the material is achieved, it is necessary to analyse 

the structural system through numerical models. The masonry assessment can be based on linear 

and nonlinear analyses, both static and dynamic, on finite element models or using local 

analyses with kinematic approach. Linear static analysis, according to the Codes, may be 

applied to buildings whose response is not significantly affected by contributions from modes 

of vibration higher than the fundamental mode in each principal direction and should be used 

only for simple structures. Linear dynamic analysis can also be adopted and allows to obtain 

information on the dynamic behaviour of the structure. However, as can be easily verified, 

linear analysis may be very overconservative when applied to masonry structures, which, 

instead, typically show a strongly nonlinear behavior since the first stages of the structural 

response. Therefore, since the late 1970s, nonlinear analyses, and in particular pushover 

analyses, have been used in the seismic assessment and design of masonry structures (VV.AA. 

2016). The nonlinear static analysis (pushover analysis) simulates the evolution of the condition 

of structures during earthquakes, through the application of incremental horizontal forces and 

progressive updating of the structural model until collapse. The results give information about 

the ultimate capacity of the structure, considering the nonlinear behaviour in the resisting 

elements. The displacement capacity has to be compared with the displacement demand of the 

earthquake. By performing nonlinear dynamic analyses (time-history analyses), the time-

dependent response of the structure may be obtained through direct numerical integration of its 

differential equation of motion. Structural elements have to be modelled with hysteretic 

properties that represent the effects of yielding and cyclic response. Given the complexity and 

the high computational costs, nonlinear dynamic analyses are not usually performed in practice. 
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Table 1.2. Reference values of mechanical parameters (minimum and maximum) and mean self-weight for 
different masonry typologies, referred to weak mortar, uncoursed masonry, absent connections between wall 
leaves, texture following the “rule of the art” in case of regular elements; fm = mean compressive strength of 
masonry; τ0 = mean shear strength of masonry; E = mean value of the elastic modulus; G = mean value of the 
shear modulus; w = mean self-weight of masonry. (NTC 2008 – Appendix C8A, section C8A.2, table C8A.2.1.) 

 

Table 1.3. Corrective coefficients of the mechanical parameters indicated in Table 1.2 to be applied in presence 
of: high-quality mortar, thin mortar joints, transversal connections between wall leaves, poor internal core, 
strengthening interventions such as mortar injections or reinforced plaster. (NTC 2008 – Appendix C8A, section 
C8A.2, table C8A.2.2.) 
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1.4 Objectives and scope of the thesis 

In the framework of the seismic vulnerability assessment of existing brick masonry structures, 

which constitute a great and valuable portion of the Italian building stock, this work focuses on 

the investigation of the shear behavior of masonry structural elements. The scope is pursued on 

two different levels: experimental investigations and numerical simulations. Indeed, the first 

objective of the thesis is the identification of the most suitable and reliable experimental 

techniques, which can be applied in situ for the mechanical characterization of the masonry 

material. The shear-sliding failure of masonry is often involved in the failure mechanisms of 

masonry piers, but some issues regarding the execution and interpretation of in situ shear tests 

have not been solved yet. Therefore, the second part of the thesis is devoted to the study of the 

parameters which could affect the sliding behavior of masonry, through numerical simulations 

of typical shear tests, to improve the current experimental techniques. 

In Chapter 2, a brief review of slightly-destructive and destructive tests for the evaluation of 

the masonry shear strength is presented. The focus is devoted to experimental techniques which 

can be directly applied in situ, such as: shove test, splitting test on masonry cores with inclined 

mortar joint, diagonal compression, and shear-compression test. 

The mentioned experimental tests were performed on existing buildings during an important 

experimental campaign carried out on masonry constructions severely damaged by the 2012 

Emilia earthquake. The experimental program and results are described in Chapter 3. The 

advantages and disadvantages of each technique are analyzed and discussed, considering 

obtainable mechanical parameters and the definition of appropriate failure criteria, 

representative of the failure mechanisms characteristics of the investigated masonry. The fact 

that both slightly-destructive and destructive tests were performed, allowed to investigate the 

ability of local tests to identify the global behavior of a structural element. 

Chapter 4 deals with the numerical studies of the shear-sliding behavior of masonry, which 

was a typical failure mode observed in the experimental campaign. The principal characteristics 

of an ideal shear test are presented and details about the modeling strategies and constitutive 

models used in the numerical simulations of Chapter 5 and 6 are reported. 

In Chapter 5, numerical simulations of triplet tests (EN 1052-3) are presented. Two specimen 

geometries are considered, characterized by different bond patterns. The model is calibrated 

through experimental test results on standard triplet specimens and then validated through 

comparisons with experimental tests performed on both the specimen types. 

In Chapter 6, numerical simulations of shove tests (ASTM C1531) are presented. Two 

different testing procedures, proposed in the Standard, are modeled and compared to analyze 
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advantages and disadvantages and verify the reliability of the results obtained by both the test 

methods. Moreover, comparison with the numerical results of triplet test are discussed and 

proposal for improvements of the experimental procedure and the results interpretation are 

included. 

A case study is presented in Chapter 7. Results of a shove test performed in laboratory on a 

masonry wall are reported and then compared with the results of the numerical simulations to 

validate the model. 

Chapter 8 contains a summary and the final conclusions that can be derived from this 

research work. Suggestions for future works are also included. 
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2 Experimental techniques for the mechanical characterization of 

existing masonries 

The reliability of the seismic vulnerability assessments, as stated in the Building Codes 

(Eurocode 8 – Part III, NTC 2008), strongly depends on the level of knowledge of the building 

under investigation. In order to improve the level of knowledge, one of the key aspects to deal 

with is the evaluation of the material mechanical properties. Moreover, the accuracy of the 

modeling results always depends on the correct identification of the mechanical parameters 

required to characterize masonry material (Alecci et al. 2013). However, even though there is 

the need of accurately estimating these parameters by performing experimental tests, very few 

indications are reported in the Codes regarding the number and type of tests to be executed. 

Moreover, the great variability of materials and construction typologies makes it difficult to 

define, in a unique way, the procedures and techniques to be used in experimental programs, 

especially considering that, in most cases, a very limited number of in-situ tests can be 

performed. Consequently, the choice on the investigations type and their extent has a great 

influence on the results reliability and an expert judgment is often needed, since the information 

gained from the experimental studies are then used as input data for structural models and 

analysis. 

Several in-situ experimental techniques are now available to determine the mechanical 

parameters governing the failure of masonry elements. According to their invasiveness on the 

construction, they can basically be subdivided into three categories: non-destructive, slightly-

destructive (or minor destructive) and destructive techniques. Non-destructive tests provide 

qualitative information on masonry and they are useful for establishing if the results obtained 

with destructive tests, which are usually performed on limited portions of walls, can be extended 

to the whole structure. The main goals of the non-destructive tests are: the identification of the 

hidden structural elements, the qualification of masonry and its components, the survey of the 

crack pattern and of the superficial damages and the verification of the physical and mechanical 

properties of mortar and bricks. Moreover, non-destructive tests can be applied to the same 

elements and structures many times and in different periods hence such methods are suitable 

for the diagnostic testing of buildings during both the construction and the service life. Slightly-

destructive tests are mainly performed in situ on limited portion of masonry walls and they 

involve minor damages to the structural elements, resulting in local loss of properties and 

requiring repairs. Destructive tests allow the direct measures of the mechanical characteristics 

of full-scale structural elements, but produces a great damage on the existing construction. 
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Both slightly-destructive and destructive tests, which this work is focused on, have their 

advantages and disadvantages. Slightly-destructive tests can be very promising, considering 

their easy execution and low impact on the structure, even though they could provide too 

localized information and quite scattered results. On the other hand, destructive tests, performed 

on full-scale masonry panels, can be more representative of the global behaviour of the 

structural elements, but they are often unfeasible in the engineering practice due to their 

invasiveness and economic effort. 

The importance of defining consistent procedures for the study of the masonry mechanical 

characteristics was already highlighted by other authors (Binda et al. 2000, Ceroni et al. 2012). 

Several researches were developed for the evaluation of both the compressive and shear 

strength of masonry, with the aim of analysing the reliability of slightly-destructive tests and 

defining non-standard alternative experimental procedures. Among others, the use of masonry 

cores subjected to both compressive tests and splitting tests with inclined mortar joint were 

proposed by Benedetti et al. (2008) and by Sassoni et al. (2013). Being these minor-destructive 

methods very promising, different authors performed experimental campaigns to validate the 

less invasive techniques on the basis of the results of the more representative destructive ones. 

With reference to the masonry shear behaviour, which is the topic of the present work, the 

results of splitting tests on masonry cores with a rotated mortar layer were compared with 

results obtained in laboratory by performing diagonal compression tests (Braga et al. 1993) and 

shear-compression tests (Mazzotti et al. 2014). Specific studies on the combined state of stress 

induced in the mortar joint in the splitting test were also conducted, with the aim of evaluating 

a failure criterion for mortars (Marastoni et al. 2016). Moreover, different works were focused 

on comparisons between diagonal compression tests and standard moderately destructive 

laboratory tests, such as triplet tests and shear tests (Incerti et al. 2016, Alecci et al. 2013). In 

most of these works, a good agreement between the different experimental techniques was 

found. 

It should be noticed that the cited testing programs were all executed under laboratory 

conditions, on specimens purposely built in a controlled environment. These, of course, are the 

optimal conditions in which calibrate and validate the proposed testing procedures. However, 

the mechanical behaviour in-situ can be very different and could have a significant influence 

on the test outcomes. Indeed, the materials composition, their load history and state of 

conservation can hardly be exactly reproduced in laboratory. As a consequence, there is the 

need of comparing the above-mentioned techniques also in the field. This is the reason why an 

experimental campaign, which will be presented in Section 3, was conducted on existing 
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masonry buildings. In the followings, a brief review of some in-situ slightly-destructive and 

destructive techniques for the evaluation of the shear strength of masonry is reported. 

2.1 Slightly-destructive tests 

2.1.1 Single and double flatjack tests 

The single and double flatjack tests are performed to determine the in-situ compressive stress 

level of the masonry and to study its deformability characteristics. Even if they are not 

performed to evaluate the masonry shear strength, the testing procedure is here reported since 

it will be used in the shove test on the case study (Section 7). 

The single flatjack test (Figure 2.1a), according to the Standard ASTM C1196-14, is carried 

out by introducing a thin flatjack in a horizontal cut executed in correspondence of a bed joint. 

Gauge points have to be positioned above and below the cut and measurements of the initial 

(pre-cut) distances between these points must be made using a removable extensometer. After 

the cutting, due to the release of the compressive stress, the distance between the edges of the 

slot decreases. Post-cut measurements have to be carried out in order to obtain initial deviation 

from the original gage distances. In general, the values of the displacements measured at the 

reference points are not constant; but they tend to be greater in the center of the cut due to the 

new distribution of stresses (Binda & Tiraboschi 1999). The flatjack, made with thin welded 

steel plates, is then inserted into the slot and the pressure is gradually increased to restore the 

initial distance between the gauge points. The average compressive stress σ in the masonry can 

be calculated as: 

m ak pk     (2.1) 

where p is the flatjack pressure required to restore the gage points to their initial distance, km is 

the calibration constant of the flatjack, and ka is the ratio of measured area of the flatjack to the 

average measured area of the slot. Both km and ka are constants lower than one. 

The double flatjack test (Figure 2.1b) can be performed right after a single flatjack test. Indeed, 

after the unloading of the first flatjack, a second cut is made, parallel to the first one, and a 

second flatjack is inserted at a distance of at least five courses of masonry from the previous 

one. The two flatjacks delimit a masonry portion of appreciable size on which a uniaxial 

compression stress can be applied. In this way, a compression test is carried out on an 

undisturbed sample. Linear Variable Differential Transformers (LVDTs) are used to measure 

vertical and lateral displacements, allowing for the calculation of the elastic modulus and the 

Poisson’s ratio of masonry. Several loading-unloading cycles may be performed at increasing 



2 |   Experimental techniques for the mechanical characterization of existing masonries 

 

 
35 

stress levels in order to study the stress-strain behavior of the masonry during loading and 

unloading phases. The maximum value of the stress reached by the last loading cycle can also 

be used to roughly estimate the compressive strength of masonry, if the portion of wall above 

the cut is able to provide a sufficient contrast to the applied forces. 

 

  
(a) (b) 

Figure 2.1. Flatjack test testing procedure: a) single flatjack test; b) double flatjack test. 

  
(a) (b) 

Figure 2.2. Single (a) and double (b) flatjack test setups. 

2.1.2 Shove test 

The shove test, as reported in the standard ASTM C1531-16, is aimed at evaluating an index of 

the in situ, horizontal shear resistance of mortar joints in unreinforced masonry. It consists, 

indeed, in producing the sliding of a brick with respect to the surrounding masonry, along two 

horizontal mortar joints. The test can be performed according to three different methods (Figure 

2.3), which basically differ one from the other depending on the way in which the vertical 

compression is controlled or applied. Indeed, in Method A, the vertical compression is directly 

applied by means of two flatjacks, positioned above and below the test unit, while in Method B 

and C, the vertical stress is evaluated through an estimation of the acting dead and live loads. 
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(a) 

  

(b) (c) 

Figure 2.3. Shove test setups: (a) Method A; (b) Method B; Method C. 

The testing procedure for Method A is more complicated than the one for Method B and C. 

However, the compressive stress level is controlled for the entire duration of the test and, if 

single and double flatjack tests are executed, the state of stress and the deformability properties 

of masonry can be evaluated as well. After the seating of the flatjacks, a single masonry block 

and a head joint have to be removed from opposite ends of the chosen test unit. At the beginning 

of the shove test, the pressure in the two flatjacks have to be set at a very low value (σ1=0.07 

MPa). Then, the pressure in the horizontal jack is increased gradually until the sliding failure 

of the joint is reached. During the tests, horizontal displacements should be measured using 

LVDTs. After the obtainment of this first sliding, the pressure in the flatjacks is increased and 

the sliding produced again. This process can be repeated several times and the shear strength at 

each level of normal compressive stress can be obtained: 

m ax,i
i

j

F

A
   (2.2) 

where Fmax,i is the maximum shear load at the i-th level of normal compressive stress, and Aj is 

the gross area of upper and lower bed joints. 
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According to the Standard, the coefficient of friction μ and the initial shear strength c0 can 

be determined by a linear interpolation of the failure points (σi;τi) at each compressive stress 

level, plotted in a shear strength versus normal compressive stress diagram. As an example, 

results obtained by Atkinson et al. (1988), who were the first researchers working on this topic, 

are reported in Figure 2.4. 

 

 

(a) (b) 

Figure 2.4. Typical shove test results (Method A): (a) load-displacement curve; (b) Coulomb friction 
failure domain. (Atkinson et al. 1988) 

For Method B (Figure 2.5), a single masonry block and a head joint have to be removed from 

opposite ends of the chosen test unit, which is then displaced horizontally using a hydraulic 

jack. The horizontal force required to produce the first displacement of the brick provides a 

measure of the mortar joint shear strength. In this case, only one failure point is obtained. 

Therefore, in order to calibrate a Coulomb friction failure domain, assumptions on the friction 

coefficient should be made. 

 

 
 

Figure 2.5. Setup of the shove test, Method B. 

In Method C, which will not be analyzed here, only two vertical joints at the opposite sides 

of the test unit are removed and a vertical flatjack is inserted in one of these joints to produce 

the sliding of the brick. 
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Adavantages of Method A with respect to Method B are related to the possibility of 

performing the test more than one time on a single location. In this way, a reliable estimation 

of the failure criterion can be obtained. Moreover, if the masonry quality is quite uniform 

throughout the building, the execution of the test according to Method A is the same as 

performing many shove tests with Method B at different elevations (i.e. at different compressive 

stress levels) in the building (Noland et al. 1988). However, the execution of the test is more 

complex and creates a greater disturbance of the stress state due to execution of the flatjack 

slots. 

Two main issues should be highlighted regarding the execution of the test and the elaboration 

of the results. Firstly, for both test methods, there are uncertainties about the determination of 

the normal compressive stress acting on the test unit. Indeed, the actual stress distribution could 

significantly differ from the assumed uniform one imposed by the flatjacks (Method A) or 

estimated with load analysis (Method B). This can be due to several factors, such as the wall 

geometry (e.g. single-wythe or double-wythe), the removal of lateral bricks, the dilatant 

behavior of masonry, etc. For these reasons, the Standard suggests, only for Method A, the use 

of a modification factor, to be determined case by case, to convert the flatjack stress into normal 

stress on the test unit. Secondly, for Method A, it is not well specified in the Standard that the 

first failure point is associated with an initial Coulomb friction failure criterion while the 

subsequent ones – with increased normal compressive stress – describe a pure frictional 

behavior of the bed joints and have to be associated to a residual Coulomb friction domain. The 

two mentioned issues will be discussed and analyzed in Section 6. 

2.1.3 Splitting test on masonry cores with inclined mortar joint 

The splitting test on masonry cores with inclined mortar joint was introduced as a slightly-

destructive technique for the determination of the masonry shear strength, to be applied on 

samples extracted from masonry walls (Benedetti et al. 2008, Braga et al. 1993). The aim of 

this test is to simulate a sliding failure mechanism along the mortar joint, that can be interpreted 

by a Mohr-Coulomb’s failure criterion. The cores are tested under compression – force 

orthogonal to the core axis – with different inclinations of the mortar layer with respect to the 

horizontal direction (Figure 2.6). 
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Figure 2.6. Splitting test on a masonry core with inclined mortar joint. 

Due to the inclination of the mortar joint, the state of stress along it (which is typically the 

sliding surface) can be assumed as a combination of compressive and tangential stresses. In 

recent researches (Marastoni et al. 2016, Pelà et al. 2015), the existence of a triaxial state of 

stress in the mortar joint has been investigated and the use of a continuum model for the 

interpretation of the splitting test has been analyzed, also taking into account the confinement 

effect given by the segments of bricks on the mortar layer. However, a simplified approach is 

used here to interpret the sliding behavior of bricks as rigid elements and considering the mortar 

layer as an interface – assuming an infinitesimal thickness – on which the stress components 

act. According to this model, the stress state can be represented by a single point in the Mohr 

plane. 

The stress components are therefore assumed to be uniform on the joint surface and equal 

to: 

max
, cos  f c

F

A
 (2.3) 

max
, sin  f c

F

A
, (2.4) 

where Fmax is the maximum load registered during the test, A and α are the sliding surface area 

and the inclination of the mortar joint, respectively. For each mortar layer inclination, values of 

σf,c and τf,c measured at failure can be drawn as points in the σ-τ stress plane. In order to cover a 

wide range of compression and shear stresses in the Mohr plane, at least three different 

inclinations α should be used. Regarding the choice on the mortar layer inclinations, previous 

researches showed that, for cores tested with inclinations equal to 45°, 50° and 55°, the desired 

sliding failure can be obtained (Mazzotti et al. 2014). Indeed, for inclinations lower than 40°, a 

splitting failure mode was noticed, while for values higher than 60° the failure mode was driven 

by the detachment of a brick wedge just below the strip where the force was applied. 
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2.2 Destructive tests 

2.2.1 Diagonal compression test 

The diagonal compression test consists in applying a compressive load along one diagonal of a 

square masonry sample. The in-situ procedure has been adapted from the standard laboratory 

test (ASTM E519-15) according to proposals from previous experimental campaigns 

(Chiostrini et al. 2000, Corradi et al. 2003, Borri et al. 2011). 

 

      

Figure 2.7. Setup of the diagonal compression test. 

The panel, having dimensions 120 x 120 cm2, is separated from the surrounding masonry on 

three sides, while it remains anchored to the rest of the wall, on the fourth side, for 

approximately 60 cm. The compressive load is applied monotonically up to failure and the 

diagonal displacements (along both diagonals), on both sides, can be measured using linear 

potentiometers (Figure 2.7) or LVDTs. 

The interpretation of results from this test is not unique and still rises some uncertainties. On 

one hand, the standard ASTM E519-15 assumes that in the center of the panel a pure shear 

stress state can be found. Accordingly, the corresponding Mohr circle is centered in the origin 

of the stress plane (continuous line of Figure 2.8) and the principal stress directions coincide 

with the two diagonals of the panel. Therefore, the shear strength without compression 0 and 

the principal tensile strength ft are equal and can be calculated according to the expression: 

, , 0 0.707   f
t CD ASTM

n

P
f

A
, (2.5) 

where Pf is the load at failure and An is the net area of the panel. 
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An alternative interpretation of the test was initially proposed by Frocht (1931), who studied 

the stress state in the diagonal compression test through photoelasticity. Later on, similar 

findings were obtained by other authors, who performed linear elastic analysis of the masonry 

panel modelled as an isotropic and homogeneous material (Calderini et al. 2010, Borri et al. 

2013). In the followings, this interpretation will be referred to as the elastic interpretation. The 

stress state in the center of the panel, in this case, is not a pure shear stress state but can be 

described by the Mohr circle drawn with the dashed-line in Figure 2.8, where axial stress is also 

present along the horizontal and vertical arrangements. Accordingly, the principal stresses lay 

along the diagonal directions and can be expressed as a function of the applied load: 

, . 0.5  I El
n

P

A
 (2.6) 

, . 1.62 II El
n

P

A
. (2.7) 

Correspondingly, the diagonal tensile strength of masonry (ft,CD,El.) can be obtained from Eq. 

(2.6) by introducing the failure load Pf. 

 

Figure 2.8. Mohr circles for the two different interpretations of the stress state in the diagonal 
compression test. 

2.2.2 Shear compression test 

The shear-compression test consists in applying an increasing shear load to a masonry wall 

subjected to a constant level of vertical compression. The main goal of this test is to study the 

shear behavior of masonry and to obtain the shear strength for assigned values of axial stress. 

The in-situ version of the test has not been standardized yet and two different setups have been 

proposed in literature (Chiostrini et al. 2000, Corradi et al. 2003). The test, indeed, can be 

performed either separating the panel from the surrounding masonry (laterally and above) and 

applying a known level of compression – Setup A (Figure 2.9) – or leaving the continuity along 

the vertical direction, thus considering the actual compression given by the dead loads acting 
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on the sample, determined through load analysis or by performing single flatjack tests – Setup 

B (Figure 2.10). 

 

Figure 2.9. Shear-compression test: Setup A. 

Figure 2.10. Shear-compression test: Setup B. 

In both cases, the shear load is applied in the centre of the panels up to failure. During the test, 

the diagonal displacements in the upper and lower halves of the panels are measured, together 

with the horizontal in-plane displacements in correspondence of the upper, lower and central 

cross sections of the samples. 

The shear stress acting on the panels has to be calculated according to the different structural 

schemes (Figure 2.11). In Setup A, the mean tangential stress can be calculated in the upper and 

lower half of the panel with the following formulas, considering a perfectly clamped edge at 

the bottom and an elastic support at the top: 

where T is the shear force applied, A is the cross section area of the panel and R is the horizontal 

reaction at the top of the panel, recorded through a load cell. 
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In Setup B, the panel can be considered clamped on both sides, so the mean tangential stress 

τ can be evaluated as: 

The main advantage of Setup B is to have a symmetric configuration for upper and lower 

panels, thus leading to a more robust and reliable interpretation of the results. This behaviour, 

as will be shown in Section 3, was also confirmed by the entity of the lateral displacements 

measured during the tests at the top, at the bottom and in the centre of the specimens. In Setup 

A, on the contrary, there are uncertainties on the level of constraint at the top of the panel, where 

horizontal and rotational displacements can be present. However, the drawback of the Setup B 

is related to the estimation of the vertical load, which cannot be measured like in Setup A. 

(a)  (b) 

Figure 2.11. Structural schemes of the shear-compression test: (a) Setup A; (b) Setup B. 

The state of stress in the centre of the lower panel, for a general instant of the test, can be 

represented with the Mohr circle depicted in grey in Figure 2.12, in which the points A(σn, bτn) 

and B(0, - bτn), considered for the construction of the circle, and the centre C(σn/2, 0), are 

indicated. The stresses σn and τn are the mean compressive stress and the mean tangential stress 

applied to the cross section of the panel, respectively. Since the shear stress distribution across 

the cross-section is not uniform, the maximum shear stress applied to it can be defined as bτn. 

The b factor, indeed, takes into account the distribution of the shear stresses over the cross 

section of the panel. 

Given the constant vertical load applied to the sample and increasing the shear force, the 

diagonal cracks will finally occur when the masonry diagonal tensile strength in the centre of 

the half-panel will be reached. Adopting a criterion defining the failure in terms of maximum 

tensile stress, which is the case for the Turnšek and Čačovič’s criterion, the limit state for the 

panel corresponds to the Mohr circle depicted in black (Figure 2.12), in which the principal 
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tensile stress σI reaches the masonry diagonal tensile strength ft,NT. The principal direction is 

inclined with respect to the vertical direction of an angle α. 

 
Figure 2.12. Shear-compression test: Mohr circle at failure. 
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3 Experimental campaign on rural masonries in Emilia-Romagna 

The seismic events that struck Italy in recent years highlighted the great vulnerability of existing 

masonry buildings. The 2012 Emilia earthquake, indeed, have shown the great deficiencies of 

existing constructions, often built without following the “Rule of the Art” and not designed at 

all to withstand seismic actions. In various works, the seismic vulnerability of historic 

monumental masonry buildings – such as churches, towers, city halls, etc. – was analyzed 

(Cattari et al. 2012, Parisi & Augenti 2013, Milani 2013, Cattari et al. 2014). However, limited 

studies were conducted on rural constructions (Sorrentino et al. 2014), which constitute a quite 

significant portion of the building stock in Emilia Romagna and resulted severely damaged by 

the earthquake as well. In the followings, a particular attention will be devoted to these 

construction typologies. 

The Emilia countryside, rather homogeneous concerning the geography, the social and 

economic development, is characterized by the presence of a large number of isolated buildings, 

which show similar features. In many cases, a courtyard is characterized by the presence of 

both a residential building and one or more adjacent constructions, used in the past as stable or 

barn. Despite the various functions of the buildings, the main differences were not observed in 

the constituent materials (bricks and lime-based mortar) but in the regularity (or irregularity) of 

the masonry texture and in their state of conservation. As mentioned, these construction 

typologies were significantly affected by the seismic events of May 2012. Indeed, after the 

seismic events, the damage surveys performed on these construction typologies revealed 

structural problems associated with both out-of-plane and in-plane mechanisms. 

Concerning out-of-plane failure modes, the typical observed structural deficiencies 

associated to these mechanisms were: lack of interlocking between orthogonal walls (eg. at 

building corners) and between pillars and partition walls (Figure 3.1a), absence of adequate 

connections between floors and vertical structural elements, associated with high flexibility and 

low robustness of timber floors (Figure 3.1b), absence of transverse walls, presence of thrusting 

roofs (Figure 3.1c). Particular failure mechanisms were also associated to the seismic behavior 

of masonry columns in stables and barns (Figure 3.1d). In presence of multi-wythes masonry 

walls, the lack of transversal connections between the wall leaves (sometimes associated to the 

presence of voids and rubble materials in the cross section of the wall panels), determined out-

of-plane collapses, especially when the horizontal structural elements rested on the internal leaf 

only. 
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(a) (b) 

  
(c) in (Penna et al. 2014) (d) 

Figure 3.1. Structural deficiencies associated to out-of-plane mechanisms. 

Buildings which did not suffer out-of-plane damages, generally exhibited a mainly global 

behavior governed by the in-plane wall response. The damages associated to in-plane failure 

mechanisms can be observed especially in piers and spandrels (Figure 3.2a-b). Typical diagonal 

cracks were observed in masonry piers, but also spandrel elements, sometimes considered of 

secondary importance, appeared to be rather vulnerable and suffered of both flexural and shear 

damages (Penna et al. 2014). Damages in masonry lintels were also observed (Figure 3.2c), 

which have a strong influence in the global in-plane seismic behavior of façades. Openings 

positioned too close to the corners of the building (Figure 3.2d) strongly weakened the 

connection between orthogonal walls. Moreover, their vertical misalignment could determine 

irregular paths for the transfer of the horizontal actions to the foundations. 

In-plane failure modes can be usually associated to the quality of masonry, which is strictly 

connected to the quality of the constituent materials and to the bond pattern. The very low 

quality of mortars seemed to be a great issue in many cases, since it was often characterized by 

a low lime content and by a sever degradation (Sorrentino et al. 2014). The use of adobe bricks 

was also detected in some cases, especially in rural zones, where the use of easily available and 

poor-quality materials was more frequent (Borri et al. 2013).  
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(a) (b) 

  
(c) (d) 

Figure 3.2. Structural deficiencies associated to in-plane mechanisms. 

In this framework, being crucial the study of the mechanical properties of masonry 

structures, an extended in-situ experimental campaign was conducted on rural masonry 

buildings in the zones most affected by the earthquake. In particular, with the objective of 

analyzing the shear behavior, slightly-destructive and destructive tests were performed on eight 

masonry buildings (or portions of them), located in Emilia Romagna region and seriously 

damaged by the 2012 Emilia earthquake. 

In this Chapter, the experimental program will be presented, and the experimental results 

will be analyzed and discussed. The comparison between the results of the different considered 

techniques is reported both in terms of obtainable masonry mechanical parameters and of failure 

criteria that could interpret the observed failure modes.   
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3.1 Experimental Program 

The experimental program presented in this Section aimed to investigate the shear behavior and 

to evaluate the mechanical parameters of rural masonry in Emilia Romagna (Italy). Different 

types of tests, both slightly-destructive and destructive, were applied on eight rural masonry 

buildings in order to discuss and compare the results in terms of shear strength. In particular, 

the sliding shear and the diagonal cracking failure modes were considered and in depth 

analyzed. 

 

 

 

Figure 3.3. Location of the investigated buildings. 

The eight buildings were located in the rural area of the provinces of Ferrara, Modena and 

Reggio Emilia, the areas most affected by the seismic events (Figure 3.3). These buildings 

(numbered from 01 to 08) had similar characteristics and, in general, a simple configuration, 

consisting of rectangular or square plan and two or three floors above ground (Figure 3.4). The 

vertical structural elements were double-wythe, brick-masonry walls, with or without 

transversal connections (“diatoni”). The walls were characterized by the frequent presence of 

irregular bricks and by the use of poor-quality, lime-based mortars, sometimes containing traces 

of clay. The state of conservation of the materials was found to be very different from building 

to building and from wall to wall as well. The different exposition of the walls, indeed, played 

a crucial role in the mortar degradation, as observed during the experimental campaign, where 

the walls facing North experienced the highest materials degradation. 
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Figure 3.4. Investigated masonry buildings. 

The investigated buildings, were severely damaged and intended to be demolished, thus a 

huge number of experimental tests could be executed, as reported in Table 3.1. In particular, as 

slightly-destructive techniques, shove tests and splitting tests on cores with inclined mortar 

joints were chosen and diffusely applied throughout the constructions; as destructive 
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techniques, diagonal compression and shear-compression tests were executed. On each 

building, one diagonal compression and one shear-compression tests were performed on 

masonry panels belonging to the same wall or, if not possible, having at least similar 

characteristics in terms of texture and constituent materials. A total of about 200 slightly-

destructive tests and of 16 destructive tests were conducted. 

Table 3.1. Number of performed tests. 

Building 
Code 

Splitting tests 
on cores  

Shove  
tests 

 Diagonal compression 
test (CD) 

Shear-compression 
test (NT) 

B01 34 5  1 1 
B02 18 6  1 1 
B03 25 5  1 1 
B04 14 2  1 1 
B05 20 6  1 1 
B06 13 6  1 1 
B07 8 8  1 1 
B08 14 6  1 1 

 

The planning phase, through which define locations of the tests, was essential for the efficacy 

of the experimental program. For each building, initially the walls subjected to destructive tests 

were accurately selected, avoiding already damaged walls or modified ones. Then, the slightly-

destructive tests were performed in portions of them or in adjacent walls with similar 

characteristics. As an example, the locations of the tests conducted on building B01 are shown 

in Figure 3.5, where two internal walls were selected for destructive tests (CD and NT) and 

cores were extracted from the same walls. Moreover, extraction of cores and shove tests were 

conducted in the external walls of the building to evaluate the homogeneity of the masonry 

throughout the construction.  

 

Figure 3.5. Location of the experimental tests, building B01. 
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In the followings, the interpretation of the different types of tests, together with the failure 

modes observed, will be discussed and compared with the aim of providing indications on the 

use of the most appropriate shear failure criteria based on the test typologies. A brief review of 

these criteria has been already presented in Section 1.2, highlighting their main features with 

the objective of determining their ability to describe the shear behavior experimentally 

identified. Indeed, the aim of the experimental campaign is to build a failure domain for the 

masonry walls of each building investigated, starting from the results of the slightly-destructive 

tests and the destructive tests. On the one hand, a failure domain describing the sliding failure 

mode is built based on the results of the splitting tests on cores and the shove tests. On the other 

hand, a failure criterion describing the diagonal cracking failure mode is built starting from the 

result of the diagonal compression test. Then, the reliability of the latter calibrated failure 

criterion is evaluated by taking into account the result of the shear-compression test. 

3.2 Slightly-destructive tests 

With regards to the shear-sliding behavior of masonry, two types of slightly-destructive tests 

were performed to calibrate a Mohr-Coulomb’s criterion for the masonry typologies of the 

investigated buildings. In particular, splitting tests on masonry cores with inclined mortar joint 

and shove tests were performed. Cores were extracted from the bearing walls of the investigated 

buildings and then tested in laboratory (Figure 3.6a). The shove test, instead, was directly 

executed in situ (Figure 3.6b). 

 

 (a)  (b) 

Figure 3.6. Slightly-destructive tests: (a) core extraction; (b) preparation for the shove test. 

3.2.1 Splitting test on masonry cores with inclined mortar joint 

In the experimental campaign, the splitting tests were conducted on masonry cores with a 100-

mm diameter. They were properly drilled so to obtain a central diametric mortar layer, avoiding 

vertical joints. According to the testing procedure, described in detail in Section 2.1.3, the cores 
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were tested with mortar layer inclinations equal to 45°, 50° and 55° and the corresponding 

failure states of stress were evaluated: 

max
, cos  f c

F

A
 (3.1) 

max
, sin  f c

F

A
, (3.2) 

In the data elaborations, the results for each inclination were analyzed and their mean value was 

estimated with the aim to define a failure criterion suitable for each selected building. In order 

to obtain a statistical estimation of the mean values for the three inclinations, a significant 

number of cores were tested for each building, as reported in Table 3.1. 

 

(a)

(b) 

Figure 3.7. Splitting test on masonry cores with different mortar layer inclinations: (a) building B01; 
(b) building B02. 
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After the initial visual inspections, in some of the buildings different masonry typologies were 

identified. The differences observed were mainly associated to the age, degradation and 

exposition of the materials (e.g. walls facing North). In these cases, mean values for each 

masonry typology were calculated. In general, one or two masonry typologies (denoted in the 

followings as M1 and M2) were identified in a single building. As an example, in Figure 3.7 

the results of the splitting tests performed on buildings B01 and B02 are reported, together with 

the mean values calculated for each inclination. In B01, two distinct masonry typologies were 

identified, while B02 was characterized by a unique masonry type. Despite the distinction of 

two masonry typologies for B01, the high scatter of experimental results can be graphically 

observed. 

3.2.2 Shove test 

The shove test was performed in the experimental campaign according to Method B proposed 

in the Standard (ASTM C1531-16). As reported in Section 2.1.2, in order to seat the horizontal 

hydraulic jack, a single masonry block adjacent to the test unit was removed. On the opposite 

side, a portion of brick was also removed to be sure that the test unit was free to move. 

The shove tests were conducted on masonry portions representative of the state of 

conservation of the building, with different level of compressive stress acting – e.g. at the 

ground floor (maximum stress - Figure 3.8a) or below openings (almost zero vertical stress - 

Figure 3.8b). During the test, the horizontal displacements of both the test unit and the brick 

behind the jack were measured. 

 

  

(a) (b) 

Figure 3.8. Shove test: (a) at ground floor (max vertical stress); (b) below window openings (zero 
vertical stress)  
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According to the standard interpretation of the test, the shear strength 
, f s

 can be calculated 

from the maximum horizontal force Fmax resisted by the test unit: 

max
, f s

b

F

A
, (3.3) 

where 𝐴௕ is the gross area of upper and lower bed joints, along which the sliding failure occurs. 

Considering the compressive stress acting on the tested brick, estimated through a load 

analysis or evaluated with a single flatjack test, the couples of values 
, , , m ax; )( f s f s

 at failure 

were found not to be compatible with the results from the splitting tests on cores, although the 

two tests were intended to reproduce the same sliding phenomenon. At the same time, those 

shear capacities (Fmax in Figure 3.9) were attained at very high values of non-linear shear slips, 

which are hardly compatible with the brittle nature of shear failure. This type of behavior 

occurred since the low mechanical strength of mortar, together with the uneven thickness of the 

mortar beds and the dimensions of the aggregates, led to some interlocking effects during the 

sliding mechanism. Therefore, the reaching of very high values of the failure loads could be 

associated to a dilatant behavior of masonry. For these reasons, a different interpretation of the 

results from the shove test is here proposed: the onset of the shear failure is attained with a force 

value smaller than the maximum ever reached during the test. In particular, the shear capacity 

is assumed to be equal to the force Fsliding in correspondence of which the F- curve deviates 

from the initial pseudo-elastic branch (Figure 3.9). After that point, crack propagation can be 

observed with a macroscopic sliding taking place. The couples of stresses 
, , ,; )( f s f s s lid e

 so 

determined can be represented as single points in the Mohr plane. 

 

 

Figure 3.9. Shove test: load-displacement curve with the identification of the first sliding load. 

0

10

20

30

40

50

60

70

80

90

0.00 0.20 0.40 0.60 0.80 1.00 1.20

F
ap

p
 (

kN
)

δ (mm)

Fsliding

Fmax



3 |   Experimental campaign on rural masonries in Emilia-Romagna 

 

 
55 

3.2.3 Calibration of Mohr-Coulomb’s failure domain through slightly-destructive test results 

In order to define the failure domain for the masonry typologies of a single building, the results 

of the shove tests and the splitting tests on cores with inclined mortar joint (Table 3.2 and Table 

3.3) are here used together. Concerning the splitting tests, the mean value for each inclination 

angle was determined, as already explained in Section 3.2.1, excluding the results of few tests 

in which the cores failed with a mechanism different from sliding. 

Table 3.2. Slightly-destructive tests: results and Mohr-Coulomb’s failure domain parameters, 
buildings B01-B04. 

Building Masonry 
Typology 

Test Type N° of tests σf 

(MPa) 
τf 

(MPa) 
c 
(MPa) 

μ  R2 

B01 

M1 

Cores (45°) 
Cores (50°) 
Cores (55°) 
Shove Test 

7 
8 
9 
3 

1.34 
0.91 
0.52 
0.08 
0.09 
0.09 

1.34 
1.08 
0.74 
0.35 
0.38 
0.29 

0.28 0.83 0.99 

M2 

Cores (45°) 
Cores (50°) 
Cores (55°) 
Shove Test 

4 
4 
2 
2 

0.84 
0.83 
0.46 
0.00 
0.00 

0.84 
0.99 
0.65 
0.10 
0.19 

0.16 0.93 0.96 

B02 M1 

Cores (45°) 
Cores (50°) 
Cores (55°) 
Shove Test 

7 
6 
5 
6 

0.92 
0.58 
0.39 
0.10 
0.09 
0.00 
0.00 
0.07 
0.08 

0.92 
0.69 
0.56 
0.26 
0.40 
0.35 
0.32 
0.24 
0.23 

0.26 0.71 0.92 

B03 

M1 

Cores (45°) 
Cores (50°) 
Cores (55°) 
Shove Test 

3 
3 
3 
2 

0.55 
0.53 
0.20 
0.11 
0.13 

0.55 
0.63 
0.28 
0.32 
0.28 

0.19 0.73 0.91 

M2 

Cores (45°) 
Cores (50°) 
Cores (55°) 
Shove Test 

6 
5 
5 
3 

0.48 
0.35 
0.34 
0.00 
0.10 
0.00 

0.48 
0.42 
0.49 
0.09 
0.05 
0.15 

0.08 0.93 0.86 

B04 M1 

Cores (45°) 
Cores (50°) 
Cores (55°) 
Shove Test 

5 
4 
5 
2 

0.60 
0.53 
0.28 
0.14 
0.11 

0.60 
0.64 
0.40 
0.21 
0.20 

0.11 0.91 0.96 
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Table 3.3. Slightly-destructive tests: results and Mohr-Coulomb’s failure domain parameters, 
buildings B05-B08. 

Building Masonry 
Typology 

Test Type N° of tests σf 

(MPa) 
τf 

(MPa) 
c 
(MPa) 

μ  R2 

B05 

M1 

Cores (45°) 
Cores (50°) 
Cores (55°) 
Shove Test 

3 
5 
4 
3 

1.15 
0.67 
0.58 
0.03 
0.00 
0.14 

1.15 
0.80 
0.83 
0.36 
0.05 
0.20 

0.18 0.90 0.92 

M2 

Cores (45°) 
Cores (50°) 
Cores (55°) 
Shove Test 

3 
2 
3 
3 

1.04 
0.81 
0.74 
0.13 
0.00 
0.13 

1.04 
0.97 
1.05 
0.22 
0.31 
0.33 

0.23 0.88 0.92 

B06 M1 

Cores (45°) 
Cores (50°) 
Cores (55°) 
Shove Test 

5 
4 
4 
6 

0.30 
0.23 
0.15 
0.18 
0.09 
0.00 
0.17 
0.17 
0.00 

0.30 
0.28 
0.21 
0.15 
0.12 
0.04 
0.16 
0.18 
0.08 

0.05 0.80 0.88 

B07 

M1 

Cores (45°) 
Cores (50°) 
Cores (55°) 
Shove Test 

4 
1 
1 
3 

1.18 
1.07 
0.75 
0.00 
0.15 
0.15 

1.18 
1.27 
1.07 
0.55 
0.63 
0.31 

0.45 0.71 0.87 

M2 

Cores (45°) 
Cores (50°) 
Cores (55°) 
Shove Test 

- 
1 
1 
5 

- 
0.13 
0.12 
0.37 
0.23 
0.18 
0.19 
0.00 

- 
0.15 
0.18 
0.14 
0.15 
0.05 
0.13 
0.09 

0.11 0.09 0.05 

B08 

M1 

Cores (45°) 
Cores (50°) 
Cores (55°) 
Shove Test 

3 
1 
- 
3 

0.04 
0.01 
- 
0.14 
0.11 
0.10 

0.04 
0.01 
- 
0.12 
0.12 
0.06 

0.00 0.82 0.82 

M2 

Cores (45°) 
Cores (50°) 
Cores (55°) 
Shove Test 

4 
4 
2 
3 

0.23 
0.27 
0.25 
0.04 
0.01 
0.00 

0.23 
0.32 
0.36 
0.16 
0.20 
0.08 

0.13 0.69 0.75 
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For each building, the points ; )( f f   obtained from the slightly-destructive tests at failure can 

be reported in a σ - τ plane. With a linear interpolation of the results, the Mohr-Coulomb’s 

failure criterion can be calibrated, thus obtaining the parameters c and for each specific 

masonry typology within the building. In B01, B03, B05, B07, and B08, two distinct masonry 

typologies were identified and consequently two failure criteria were built. In B02, B04, and 

B06, instead, the masonry was quite uniform throughout the building, so only one criterion was 

calibrated. As an example, in Figure 3.10 the results of the slightly-destructive tests and the 

failure domains obtained for buildings B01 and B02 are reported. 

 

(a)

(b) 

Figure 3.10. Determination of the Mohr-Coulomb’s failure domain: (a) building B01, (b) building 
B02. 
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Both types of selected tests are fundamental for the determination of the parameters c and μ, 

since they cover a wide range of possible compressive stress. In particular, given the quite low 

vertical stress present in situ, the points coming from the shove tests are close to the τ axis, 

while the points obtained from tests on cores are usually characterized by values of σ 

significantly higher. For these reasons, the results of the shove tests are more representative for 

what concerns the shear strength without compression (cohesion c), while the results of the 

splitting tests are of great help in order to determine the slope of the domain (friction coefficient 

). 

In Table 3.2 and Table 3.3 values of the cohesion c and the friction coefficient μ are reported 

for each masonry typology, together with the coefficient of determination R2. As expected, 

given the local nature of these tests, a significant difference in the results among the different 

masonries and different buildings is observed, especially for the cohesion. However, for the 

single masonry typology, the linear model shows a good match with the experimental results, 

given the quite high values of the R2 coefficient (in the range of 0.75-0.99 and higher than 0.90 

for more than half of the masonry typologies). A poor correlation was found in building B07 

for the M2 masonry typology, partially because only two intact cores were extracted and tested. 

Concerning the cohesion c, very low values were obtained for the masonry typologies 

B03_M2, B06_M1 and B08_M1, which experienced a severe degradation of the mortars, 

resulting in the almost complete absence of binder. A very high value of the cohesion was found 

for B07_M1, which probably underwent some restoration processes of bed joints in the past 

years. Intermediate values, still quite scattered (from 0.11 MPa to 0.28 MPa), were obtained for 

the remaining masonry typologies. It is worth noting that cohesion values higher than 0.20 MPa 

were obtained only for well-preserved masonries, usually covered by plaster. 

Focusing on the friction coefficient μ, the obtained values range from 0.69 to 0.93, excluding 

the non-reliable result of B07_M2. Differently from the cohesion parameter, it is more difficult 

to relate the values of the friction coefficient to the masonry quality since the frictional behavior 

is mainly dependent on the characteristics of the surfaces along which the sliding occurs, i.e. 

along the areas of adhesion between mortar and bricks or inside the mortar. However, at low 

compressive stress, a variation of the values of the friction coefficient has a lower influence on 

the shear strength than a variation of the cohesion values. It should also be highlighted that for 

all the masonry typologies, the value of the friction coefficient is much greater than the one 

suggested by the Eurocode and the Italian Code, equal to 0.4. 

One of the drawbacks of the splitting tests on cores was the fact that, in some cases, cores 

could not be tested because they were already detached after the extraction procedure. Thus, 
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the obtained results from remaining cores could overestimate to some extent the mechanical 

properties of the masonry typologies since it is impracticable to perform the mean value 

between results from tested cores and detached ones (not tested). 

3.3 Destructive tests 

With the aim of investigating the diagonal shear failure mechanism of the analyzed rural 

masonries, two types of destructive tests were performed on full-scale samples: diagonal 

compression and shear-compression tests. The choice of the appropriate panels to be tested was 

anything but trivial due to the state of damage and the inhomogeneity of the masonry walls 

throughout the buildings. Indeed, samples should not present cracks or evident modifications 

occurred in time (e.g. traces of pre-existing openings) and should be representative of the 

seismic resistant walls of the building. 

3.3.1 Diagonal compression test 

In the experimental program, eight diagonal compression tests, one for each building, were 

carried out on double-wythe masonry walls. The panels, having dimensions 120 x 120 cm2, 

were separated from the surrounding masonry on three sides, while they remained anchored to 

the rest of the wall, on the fourth side, for approximately 60 cm. The compressive load was 

applied by means of a 500 kN hydraulic jack positioned on one corner of the panel and interposed 

between a loading shoe, in contact with the samples, and a steel profile. The steel profile was 

connected with two steel bars to a similar element on the opposite corner of the panel. The load 

was applied monotonically up to failure. Linear potentiometers positioned, with a gage length 

of 120 cm, along the compressed and the tensioned diagonals of the panels, on both sides, 

allowed the measurements of the diagonal displacements of the samples during the test (Figure 

3.11 - Figure 3.12). 

The results of the diagonal compression tests, in terms of ultimate load Pf, failure state of 

stress and diagonal tensile strength, considering both the ASTM (ft,CD,ASTM) and the elastic (ft,CD,El.) 

interpretation, are reported in Table 3.4. The differences in the results are related to the variety 

of the masonry typologies, which were found to be quite significant even if the buildings 

belonged to a small geographic area. More in details, two panels, B03_CD and B07_CD, 

showed high capacity while for the panel B02_CD a very low value of the ultimate load was 

registered. These differences are related to the quality of the masonry: very good in the first 

cases while quite poor in the latter case, with special reference to the state of conservation of 
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the mortar. These remarks were also confirmed by the results of the slightly-destructive tests 

conducted on the same walls. 

 

      

Figure 3.11. Setup of the diagonal compression test. 

   

Figure 3.12. Setup of the diagonal compression test, details. 

Table 3.4. Diagonal compression test (CD): results. 

 

The load - mean diagonal deformations curves are reported in Figure 3.13 for all the tested 

panels: elongations are considered positive. A similar behavior can be found along the two 

POT. P1
(P2)

POT. P3
(P4)

120

1
20

Sample 
code 

Masonry 
Typology 

Cross section 
dimensions 

Pf Failure 
Mode 

ASTM interpretation Elastic interpretation 

σf,CD τf,CD ft,CD,ASTM σf,CD τf,CD ft,CD,El. 

(cm2) (kN) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

B01_CD M2 120 x 35 34.0 M 0.00 0.06 0.06 0.05 0.09 0.04 

B02_CD M1 120 x 32 15.2 M 0.00 0.03 0.03 0.02 0.04 0.02 

B03_CD M1 120 x 30 119.8 M 0.00 0.24 0.24 0.19 0.35 0.17 

B04_CD M1 120 x 29 63.4 M 0.00 0.13 0.13 0.10 0.19 0.09 

B05_CD M1 120 x 31 73.1 M 0.00 0.14 0.14 0.11 0.21 0.10 

B06_CD M1 120 x 28 47.5 M 0.00 0.10 0.10 0.08 0.15 0.07 

B07_CD M1 120 x 27.5 210.0 B 0.00 0.45 0.45 0.36 0.67 0.32 

B08_CD M2 120 x 27 41.9 M 0.00 0.09 0.09 0.07 0.13 0.06 



3 |   Experimental campaign on rural masonries in Emilia-Romagna 

 

 
61 

diagonals until the applied force is small. Then, elongations, as expected, increase more and 

faster due to the opening of cracks. As a general remark, a more evident nonlinear behavior can 

be noticed for panels made of poor-quality materials, which also showed a larger peak 

deformation. In most cases, panels did not experience a fragile collapse: after the diagonal 

cracking and the reaching of the peak load, they did not completely lose their bearing capacity 

and, in some tests, a load increase was registered. This behavior can be explained considering 

that after the crack development (peak), and the correspondent drop in the load bearing capacity, 

the wall self-weight produced residual strength through frictional sliding mechanisms. 

 

 

Figure 3.13. Diagonal compression test: mean diagonal deformations. 

The typical failure modes of the masonry panels, presented in Figure 3.14 for three buildings 

only, were generally characterized by the appearance of a crack along the compressed diagonal. 

The crack, which started from the center of the panel and then propagated towards the corners, 

involved mainly the mortar joints (failure mode M), thus confirming the poor quality of the 

mortar with respect to bricks. The only panel showing a different behavior was B07_CD, in 

which the tensile failure of few bricks along the compressed diagonal was observed (failure 

mode B). This can be attributed, as already noticed, to the good quality of the mortar. 

Since the “stair-stepped crack path” (failure mode M in Figure 3.14) was activated by a 

splitting mechanism along the diagonal under traction (onset of cracking), it seems consistent 

to consider the failure (peak load) driven by the reaching of the tensile strength of the material 
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in the center of the sample. Therefore, in the followings, the value of the diagonal tensile 

strength here obtained will be used to calibrate the Turnšek and Čačovič’s failure domain for 

each building, according to Eq. (1.2). The diagonal tensile strength is, indeed, the only 

mechanical parameter needed to set this criterion. The different interpretations of the test 

(ASTM and elastic) will be both considered in Section 3.4, where the failure criteria calibrated 

for each building will be presented. 

 

Figure 3.14. Diagonal compression test: failure modes. 
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3.3.2 Shear-compression test 

In the experimental campaign, eight shear-compression tests were conducted, one for each 

investigated building. In particular, tests were performed according to both the setups presented 

in Section 2.2.2: Setup A (Figure 3.15) for buildings B01 and B02 and Setup B (Figure 3.16) 

for the other buildings. A compressive load was directly applied at the top of the panels in Setup 

A, while the compressive stress level was only estimated for Setup B. In both cases, the shear 

load was applied in the center of the panels by means of a 500 kN hydraulic jack positioned in 

between two steel profiles, one acting as a contrast and in contact with the masonry, the other 

connected, by means of two steel bars, with another steel profile positioned in correspondence 

of the center line of the panels. During the test, the diagonal displacements in the upper and 

lower halves of the panels were measured using 8 linear potentiometers. The horizontal in-plane 

displacements, instead, were measured by means of 6 linear variable displacement transducers 

(LVDT) positioned, on each side, in correspondence of the upper, lower and central cross 

sections of the samples. 

 

Figure 3.15. Shear-compression test: Setup A. 

Figure 3.16. Shear-compression test: Setup B. 
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In addition to the differences regarding the boundary conditions and the level of compressive 

stress applied, also the geometry of the samples changed in the two setups. More in details, the 

size of the panels was chosen to be equal to 90 x 180 cm2 in Setup A and to 100 x 140 cm2 in 

Setup B. On the one hand, the dimensions of the samples in Setup A are the most common ones 

proposed in literature. On the other hand, the modified geometry in Setup B was chosen to 

reduce the slenderness of the panels in order to induce a proper diagonal shear failure and to 

avoid the flexural one, given the very low value of actual compressive stress (0.10-0.20 MPa). 

The results of the shear compression tests are reported in Table 3.5 in terms of mean vertical 

and shear stresses at failure 
, ,; )( f N T f N T

. It can be observed that, except from buildings in 

which Setup A was used, the values of the estimated compressive stress acting on the panel 

were quite low (in the range of 0.13 MPa – 0.22 MPa) since buildings had usually one or two 

floors only. The choice of the value of the compressive stress to be applied in tests with Setup 

A (approximately equal to 0.3 MPa) was made in order to give a vertical load comparable to 

the one present in situ (service life), but not too low, so to induce a diagonal cracking shear 

failure. 

Table 3.5. Shear-compression test (NT): results. 
(FF: Flexural Failure, DSF: Diagonal Shear Failure) 

Sample code Masonry 
Typology 

Cross section 
dimensions 

 σf,NT τf,NT 
Failure 
Mode 

  (cm2)  (MPa) (MPa)  

B01_NT_A M1 90 x 35  - - FF 

B02_NT_A M1 90 x 32  0.34 0.30 FF-DSF 
B03_NT_B M1 100 x 15  0.21 0.35 DSF 

B04_NT_B M1 100 x 29  0.13 0.30 DSF 
B05_NT_B M1 100 x 32  0.14 0.34 DSF 

B06_NT_B M1 100 x 30  0.17 0.25 DSF 
B07_NT_B M2 100 x 29  0.22 0.09 DSF 

B08_NT_B M1 100 x 31  0.14 0.14 DSF 

 

In Figure 3.17 the typical failure modes observed for the masonry panels are reported, for both 

the setups. It has to be highlighted that in shear-compression tests with Setup A (B01_NT_A 

and B02_NT_A) a flexural behaviour was observed, with the appearance of a horizontal crack 

in the central cross section of the sample. In the test B01_NT_A, after the first cracking, the 

specimen was unloaded and reloaded in shear with an increased value of the compressive stress 

applied (up to 0.67 MPa). Despite this, the desired shear failure was not obtained. The results 

of this test, therefore, are not included in further discussions. Instead, in the test B02_NT_A, 

after the horizontal cracking, the panel continued to carry the shear load until the formation of 
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an inclined crack in the lower half of the panel. Because of the flexural behaviour observed 

during these two tests and the uncertainties on the level of constraint at the top, it was decided 

to change the geometry of the panels and to perform shear-compression tests with Setup B. With 

this change, the observed failure modes were characterized by the presence of diagonal cracks, 

both in the upper and lower half-panels (Figure 3.17). These cracks developed along the 

compressed diagonals and ran mainly through mortar joints, given the poor-quality of mortars 

already observed in the diagonal compression tests. Focusing on the details in Figure 3.17, 

differently to what happened in the diagonal compression tests, along the surface of the cracks 

only a horizontal displacement occurred. 

 

Sample code Failure Mode Detail of the crack 

B01_NT_A 
(Flexural 
Failure) 

  

B02_NT_A 
(Mixed 
Failure) 

  

B04_NT_B 
(Diagonal 
Shear Failure) 

  

Figure 3.17. Shear-compression test: failure modes. 
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The mean diagonal deformations registered during the tests in the lower half of the panels are 

presented in Figure 3.18, with elongations considered positive. In general, also in this case, it 

can be observed that the deformations, in tension and in compression, are comparable in the 

first part of the tests. Then, the elongations become higher because of the cracking of the 

specimens. For the sample B01_NT_A the diagonal deformations are very low, confirming the 

predominant flexural behaviour of the panel. In Figure 3.19, the corresponding shear stress vs 

slip curves are presented. As also evidenced from the diagonal compression tests, the nonlinear 

behavior of the samples was quite apparent and, in most cases, failure was not so fragile. 

Furthermore, it can be observed that at higher compressive stresses do not always correspond 

higher ultimate loads due to the differences of the masonry quality among the investigated 

typologies. 

 

 

Figure 3.18. Shear-compression test: mean diagonal deformations in the lower half of the masonry 
panel. 
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Figure 3.19. Shear-compression test: shear stress vs horizontal displacement in the lower half of the 
masonry panel. 

 

  
(a) (b) 

Figure 3.20. Shear-compression test - Deformed shapes of the panels: (a) elastic phase; (b) maximum 
load. 

Considering the absolute displacements measured by the LVDTs, the deformed shapes of the 

samples in the first pseudo-elastic phase (at approximately 1/3 of the ultimate load) and in 

correspondence of the peak load are represented in Figure 3.20. The trend of the majority of the 

curves confirms the symmetric behaviour of upper and lower panels for the entire duration of 
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the test and validates the assumption of the structural scheme considered in Setup B. For the 

panel B01_NT_A and B02_NT_A, instead, the deformed shapes in the elastic phase evidence 

the issues already highlighted regarding the level of constraint at the top of the panel. However, 

at the maximum load, the sample B02_NT_A shows an almost symmetric deformed shape, 

probably consistent with the transition from flexural to shear failure observed during the test. 

3.4 Discussion on the calibrated failure criteria 

The objective of this section is to analyze the different failure criteria available and calibrated 

with slightly-destructive tests or diagonal compression tests results, and to check their 

agreement with the experimental results coming from the shear-compression tests. The failure 

domains obtained by slightly-destructive tests and diagonal compression tests will be analyzed 

separately and then compared when referred to the same type of masonry. Due to the variability 

of the masonry constructions, observed during the in-situ inspections and confirmed also by the 

experimental results, the buildings will be analyzed one by one. 

In Figure 3.21, the failure criteria selected for describing the behavior observed during the 

tests are reported in a σ – τ plane for each building. In Figure 3.21f  two Mohr-Coulomb’s 

failure domains are reported (M1 and M2), corresponding to the two masonry types 

characterizing walls where destructive tests were conducted (CD and NT respectively). 

Together with the Mohr-Coulomb’s criterion, the Turnšek and Čačovič’s failure domains are 

also reported and the Mann and Müller’s criterion is introduced. Data from buildings B01 and 

B07 are not presented. Indeed, no conclusions can be drawn for these buildings since a shear 

failure was not obtained in the shear-compression test for B01 and in B07 the quality of the 

panels in the two destructive tests was not comparable at all. 
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(a) 
 

(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 3.21. Comparison of failure criteria for the investigated buildings. 

3.4.1 Mohr-Coulomb’s failure criterion from slightly-destructive tests 

The Mohr-Coulomb’s failure criterion has confirmed to be a good model for the interpretation 

of the results coming from the shove tests and the splitting tests on cores, since it describes a 

sliding behavior which is the one observed during both the tests. More in details, the 

combination of the results of the two slightly-destructive tests and the alternative interpretation 

used for the shove test helped in obtaining reliable strength parameters. The drawbacks of using 

these slightly-destructive techniques for the calibration of the model are: (i) the need of 
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performing a great number of tests in order to get reliable results; (ii) the fact that the weakest 

cores, already split into two parts after the extraction procedure, are not tested and are excluded 

in the elaboration of the data, thus leading to a possible overestimation of the parameters c and 

μ because of the use of the strongest cores only for their evaluation. 

3.4.2 Turnšek and Čačovič’s failure criterion for destructive tests 

For the calibration of the Turnšek and Čačovič’s failure criterion, the first issue to deal with is 

related to the different interpretations of the state of stress in the diagonal compression test, 

presented in Section 2.2.1. Some drawbacks of the two interpretations should be highlighted: 

on the one hand, the elastic interpretation is based on assumptions – isotropic, linear, elastic 

masonry – which may not be suitable in case of strong nonlinear behavior of the material, 

observed in the tests; on the other hand, the ASTM interpretation could not adequately describe 

the actual stress state during the test. In this work, both interpretations were used to estimate 

the tensile strength ft,CD,ASTM and ft,CD,El., respectively, and the value of the parameter b was set 

equal to 1 according to the proposal of Benedetti and Tomaževič (1984). The two curves are 

reported for each type of masonry in Figure 3.21, where a reduced difference between them can 

be found with respect to the distance from the results of the shear-compression tests. 

Nevertheless, it can be noticed how the point 
, ,; )( f NT f N T

 from the shear-compression test (NT) 

is closer to the Turnšek and Čačovič’s criterion calibrated with ft,CD,ASTM and 1b , and almost 

aligned with it for building B03. In many cases, the distance between the shear-compression 

test result and the Turnšek and Čačovič’s criterion can be quite significant (independently from 

the criterion applied). This can be explained bearing in mind, on the one hand, the intrinsic 

heterogeneity of the masonries, even if belonging to the same masonry typology, and, on the 

other hand, the differences between the two destructive tests. These differences can be 

attributed to various aspects: in the diagonal compression test the panel can be considered a free 

body since it is almost completely detached from the surrounding masonry, while in the shear-

compression test it is more restrained. This aspect is consistent with the observed failure modes, 

one characterized by a splitting failure along the diagonal and the other characterized by a 

horizontal sliding after the appearance of the fracture. Then, the geometry of the samples, the 

texture and the state of stress have an influence on the crack inclination and, consequently, on 

the direction of the principal tensile stress, which is different in the two tests (Figure 3.22). 

Therefore, the anisotropy of masonry can surely be a further explanation of the differences 

encountered in the results of the destructive tests here presented. Finally, the stress state at 

failure is far away from being in the elastic range and this is in contrast with the main hypothesis 
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of both the elastic interpretation of the diagonal compression test and the Turnšek and Čačovič’s 

formulation. This is especially true for this type of poor masonry. 

 

(a) (b) 

Figure 3.22. Comparison between crack inclinations for building B04: (a) CD test; (b) NT test. 

3.4.3 Mann and Müller’s failure criterion for destructive tests 

From the observations on the sliding phenomenon occurred in the shear-compression tests and 

considering the issues introduced in the previous section, an additional failure criterion is here 

presented: the Mann and Müller’s formulation (Eq. (1.3)). It is based on the evaluation of the 

“global” parameters of the masonry (Table 3.6), by knowing the values of the “local” 

parameters obtained from slightly-destructive tests (Table 3.2 and Table 3.3) and of the 

coefficient φ (Eqs. (1.4) and (1.5)). Even if the texture of masonry was quite regular, in the 

present case φ was determined by looking at the path of the actual crack, thus it could be 

calculated as the tangent of the angle of its inclination, as suggested by Calderini et al. (2010) 

for irregular patterns (Figure 3.23). 

 

 

Figure 3.23. Definition of the parameter φ for different type of masonry (Calderini et a. 2010) 
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Table 3.6. Mann and Müller’s failure domain parameters. 

Building   c  
(MPa) 

  

B02 1.00 0.15 0.42 

B03 0.55 0.13 0.52 

B04 0.68 0.07 0.56 

B05 0.75 0.11 0.54 

B06 0.63 0.04 0.53 

B08 0.53 0.00 0.57 

 

The Mann and Müller’s criterion just introduced is plotted together with the previous ones for 

sake of comparison (Figure 3.21). In most of the cases, it can be observed that for low 

compressive stresses, the Mann and Müller’s domain lies below the Turnšek and Čačovič’s 

criteria, at least below the one calibrated with the ASTM interpretation. Moreover, it is worth 

noting that this domain, even if theoretically suitable in case of “stair-stepped” cracks, in most 

cases underestimates significantly the shear strength with respect to the result of the shear-

compression test. An exception is represented by building B02, where the Mann and Müller’s 

criterion is higher than the parabolic failure domain by Turnšek and Čačovič. In particular, the 

domain is very close to the result of the shear-compression test. However, in this building, the 

behavior of the panel was slightly different with respect to the others, with the appearance of a 

flexural crack followed by the shear failure. 

3.4.4 Comparison between failure criteria and shear-compression test results 

All calibrated failure criteria will be considered together in this section and compared with the 

results of the shear-compression tests, with the aim of determining which one is more 

appropriate for interpreting the shear behavior observed in the tests. With reference to Figure 

3.21, it is possible to notice that the Mohr-Coulomb’s criterion is the closest to the results of 

the shear-compression tests for all buildings, except B02. Indeed, as already observed, the 

Turnšek and Čačovič’s criterion underestimates significantly the experimental capacities. The 

better agreement of the Mohr-Coulomb’s criterion with the shear-compression test results could 

confirm the important role of the sliding behavior, occurred after the diagonal cracking, in 

assessing the shear capacity of the masonry panels, at least of the poor-quality masonry 

considered in the paper. Even if introduced for describing a failure mode similar to the one 

observed in the tests, the Mann and Müller’s criterion does not fit effectively the experimental 

results. As a possible explanation of this aspect, the presence of very poor-quality mortars in 

the panels subjected to shear-compression tests, could have determined a behavior more 
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influenced by the local properties of the materials than by the features of the structural elements. 

In this way, a local criterion can be used to predict the structural capacity of the masonry. 

3.5 Conclusions 

In the present Chapter, the results of an extensive experimental campaign on rural masonry 

buildings were presented. Slightly-destructive tests (shove tests and splitting tests on cores with 

inclined mortar joint) and destructive tests (diagonal compression and shear-compression tests) 

were conducted on eight existing buildings with the scope of studying the masonry shear 

behavior. The poor-quality masonry, with a weak degraded lime mortar, led usually to failure 

of the specimens driven by the latter. The execution of both slightly-destructive and destructive 

tests allowed to compare their results in terms of shear strength, through different failure 

criteria. First of all, an attempt of identifying the most suitable formulation, for the different 

techniques, was made. On the one hand, the Mohr-Coulomb’s failure criterion was determined 

with the results of slightly-destructive tests for the different masonry typologies. On the other 

hand, the Turnšek and Čačovič’s failure domain was calibrated with the masonry diagonal 

tensile strength, evaluated through diagonal compression test, for the interpretation of the 

diagonal cracking failure mode observed in the destructive tests. Then, a comparison between 

the cited failure criteria was presented. For most buildings, the results were in line with the 

expected masonry behavior, with a sliding failure mode characterizing panels with low 

compressive axial stress applied and a diagonal cracking failure mode at higher axial stress 

values. 

The execution of two destructive tests on a single building could not be sufficient for the 

accurate determination of a failure criterion for masonry. However, these kinds of results are 

quite rare and, when destructive tests are performed on an existing building, their number is 

often very limited. From here, the need of verifying the correspondence of the existing failure 

criteria with the results of the destructive tests for each single construction investigated. Indeed, 

understanding how the results from these tests could be used is of great help in the engineering 

practice. In particular, the definition of the diagonal tensile strength from the results of the 

diagonal compression test seemed quite accurate, given the failure modes observed in the tests 

and considering that the panels were almost completely detached from the surrounding 

masonry. However, the choice about the interpretation to be used for the diagonal compression 

test is still controversial. This of course affects the calibration of the Turnšek and Čačovič’s 

criterion, which in most cases underestimated the results of the shear-compression test, 
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especially when the elastic interpretation of the diagonal compression test was taken into 

account. 

With reference to the shear-sliding observed in the shear-compression test after cracking, the 

use of the Mann and Müller’s formulation was also investigated. From a theoretical point of 

view, differently from the local Mohr-Coulomb’s domain, the criterion should take the 

characteristics of the entire wall (in terms of geometry, texture, etc.) into account and should be 

adequate to describe this failure mode. However, when compared to the experimental results, 

in most cases it did not match adequately the stress state of the shear-compression tests at 

failure. Instead, the Mohr-Coulomb’s criterion, calibrated from local tests, gave better 

correspondence with the results from destructive tests. Therefore, also compared to the Turnšek 

and Čačovič’s domain, it seems to be the most suitable for describing the shear behavior of the 

masonry typologies investigated, characterized by very poor-quality mortars. These 

conclusions cannot be extended to other different types of masonry, where possibly a stronger 

mortar or a different brick arrangement could modify the failure mode and the prediction 

capability of considered criteria. Nevertheless, it seems credible to consider these results as 

representative of the mechanical behavior of masonry buildings located in the rural areas of 

Emilia Romagna (Italy). 

The testing procedures and typologies here presented can be applied in the seismic 

vulnerability assessments for the evaluation of the materials mechanical properties. It should 

be stressed, on the basis of the results obtained, that the execution of a limited number of in-

situ tests often implies the obtainment of highly scattered results, which may not provide 

adequate strength parameters for the investigated masonry. Therefore, the accurate planning of 

an experimental campaign is fundamental and different type of tests should be executed on the 

same masonry typology in order to get more reliable results. 
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4 Numerical studies on the shear-sliding behavior of masonry 

The shear failure modes of a masonry structural element – toe crushing associated to rocking, 

sliding or diagonal cracking – depend mainly on its geometry, boundary conditions, level of 

compression applied, quality of the component materials and texture (Magenes & Calvi 1997, 

Calderini et al. 2009). Regarding brick masonry, the presence of horizontal and vertical mortar 

joints surely affects the shear response of a masonry pier. Indeed, they constitute a major source 

of nonlinearities and, in many cases, they represent planes of weakness along which the failure 

can occur (Lourenço 1996, Rots 1997). 

In a masonry panel subjected to shear, the typical sliding failure mode is characterized by a 

horizontal crack in a bed joint, located usually at the bottom of the pier. However, the activation 

of a sliding mechanism could also take place in presence of a stair-stepped diagonal crack, as 

evidenced in the experimental campaign performed on existing constructions. In this case, the 

diagonal cracking failure mode is the leading collapse mechanism and the crack formation 

could be associated to the reaching of the masonry diagonal tensile strength in the center of the 

panel. Then, in presence of a stair-stepped crack passing mainly through the joints, that is a 

typical situation when dealing with poor-quality mortars, the activation of a sliding mechanism 

could be identified and can influence, to some extent, the lateral capacity of the masonry panel. 

For this reason, the following Sections will be devoted to the study of the aspects and 

parameters which can affect the shear-sliding behavior of masonry. 

The sliding failure mode can usually be described by a Coulomb friction model. Thus, the 

local properties of the mortar joints, in terms of initial shear strength and friction coefficient, 

are the most important parameters to be evaluated. Experimental tests may be performed with 

this purpose, and if a displacement controlled procedure is applied, the sliding along mortar 

joints can be characterized both in the pre-peak, at failure and in the post-peak phase. For a 

complete understanding of this nonlinear behavior, together with experimental tests, on a 

different – but complementary – level, numerical simulations should also be carried out. 

The experimental tests, executed in laboratory or in situ, consist in producing the sliding 

failure along a mortar joint in a specimen, composed by two or more bricks, subjected to a 

certain value of orthogonal pre-compression. To ensure the reliability of the results in a 

compression-shear test, various aspects have to be taken into account (Riddington et al. 1997). 

First of all, normal and shear stress distributions should be uniform along the sliding mortar 

joint. Secondly, the failure should initiate far away from the joint edges and should propagate 
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quickly on the entire length of the joint. Finally, the presence of tensile stresses should be 

checked and avoided since they could affect the test outcomes.  

 

Figure 4.1. Shear test setups for the evaluation of the masonry shear strength: (a) Schubert test; (b) 
DIN test; (c) Hamid & Drysdale test; (d) Hoffman & Stöckl test; (e) Triplet test, Riddington & Jukes; 

(f) Van der Pluijm test; (g) Popal & Lissel test; (h) Atkinson test. 
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Due to the difficulty in finding a testing procedure satisfying all the criteria, many different 

laboratory test methods have been proposed and studied in the past (Schubert 1978, DIN 18555: 

Part 5, Drysdale et al. 1979, Stöckl et al. 1990, Riddington & Jukes 1994, Van der Pluijm 1993, 

Popal & Lissel 2010). They basically differed one from another in the geometry of the specimen 

– e.g. considering one or more bed joints – and in the loading arrangement (Figure 4.1). They 

were aimed at obtaining reliable results in terms of initial shear strength and friction coefficient, 

maintaining the test setup as simple as possible. Few test methods included the presence of head 

joints (Atkinson et al. 1989). 

Finite element analyses were also carried out to investigate peculiar aspects of the different 

methodologies, highlight their advantages and disadvantages and propose new test methods 

(Jukes & Riddington 2000, Van Zijl 2004b, Popal & Lissel 2010). It was observed that none of 

the test methods was capable to completely fulfill all the Riddington’s criteria and could not, 

therefore, be considered as an ideal test (Riddington et al. 1997). In particular, one of the most 

crucial aspect, observed in almost all the tests, was the unevenness of stress distributions along 

the sliding mortar joint, especially the normal stress one (Stöckl et al. 1990). Indeed, it was 

affected by the presence of bending moment along the joint and stress concentrations were 

detected close to the loading plates (Montazerolghaem & Jaeger 2014). 

A particular focus is here devoted to the triplet test, as proposed by Riddington & Jukes 

(1994) and adopted by the Standard EN 1052-3 (Figure 4.3a). The specimen, composed by 

three bricks arranged with a stacked bond, is subjected to a constant axial pre-compression, 

while shear load is applied to the central brick to produce its sliding. This test is really common 

since it does not need any specific or complex equipment (if compared to other testing methods) 

and, above all, it was found to be adequate to provide reliable results (Vermeltfoort, 2010). By 

performing the test with pre-compression, the presence of tensile stresses in the joints could be 

avoided. Moreover, the position of the support in the standard setup ensure the minimum 

bending moment inside the joints (Jukes & Riddington 2001). 

By performing a shear test, such as the triplet test, the following properties may be 

determined (Figure 4.2), which are very useful for the characterization of masonry and for the 

numerical modeling (Rots 1997): 

- Shear strength τmax, which is dependent on the acting compressive stress; 

- Shear stiffness G of the mortar joint; 

- Mode-II fracture energy Gf
II, defined as the amount of energy that is needed to create a 

unit area of a shear crack; 
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- Angle of dilatancy ψ between the relative transverse (orthogonal) displacement u and 

the relative tangential displacement v: 

where Δupl and Δvpl are the plastic normal and tangential relative displacements on the 

interface. 

 

 

 

Figure 4.2. Shear test: typical diagram and mechanical properties to be derived. (Rots 1997) 

The dilatancy angle ψ represents a relevant feature of masonry and indicates the volume change 

upon shearing. Usually, the dilatancy angle is positive, indicating expansion, but tends to zero 

upon increasing shear displacement and increasing normal confining stress (Lourenco et al. 

2004). Dilatancy is highly relevant in case of confinement. Indeed, if the volume increase is 

prevented, a wedging effect is created, which causes an increase in the compressive stress. For 

materials characterized by pressure-dependent strength, this phenomenon can lead to a 

significant strength increase (Rots 1997, Van Zijl 2004a). Therefore, the accurate study of the 

dilatant behavior of masonry is a very important aspect when performing shear tests. 

In parallel to the aforementioned tests, in-situ slightly-destructive techniques were also 

developed in order to evaluate the masonry mortar joint shear strength. Indeed, given the 

difficulties in extracting undamaged samples from in-situ masonry walls, laboratory techniques 

can hardly be performed on existing masonry. According to the Standard ASTM C1531-16, 

one of the tests which can be carried out with this purpose is the shove test (Figure 4.3b), already 

presented and described in Section 2.1.2. Even if the shear resistance of a single unit is not, 

strictly speaking, the same as the shear resistance of a masonry wall, the shove test still yields 

the most accurate and direct approximation of the in-situ shear strength (Noland et al. 1988). 

The scope of the work presented in Chapters 4, 5 and 6 is to investigate the factors that could 

affect the shear-sliding behavior of masonry, by performing numerical simulations of the triplet 

tan pl

pl

u

v


 


. (4.1) 
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test and the shove test. Many parameters play a role in the sliding behavior observed in the 

mentioned experimental tests, such as the boundary conditions, the uniformity of the stress 

distributions along the mortar joints, the cracking formation and evolution, the dilatancy. 

Moreover, different outcomes from the two experimental tests could be observed. Typically, 

higher results were found for the shove test with respect to the triplet test, for the same nominal 

value of compressive stress applied to the sliding brick. This is basically related to the 

evaluation of the compressive state of stress on the bed joints during the shove test (Atkinson 

et al. 1988, Rossi et al. 2015), which will be discussed in the followings. Indeed, since these 

tests were introduced to capture the same shear-sliding behavior, there is the need of assessing 

which factors, and to what extent, determine these discrepancies in the tests outcomes. 

 

Figure 4.3. Shear tests: (a) triplet test (EN 1052-3); (b) shove test (ASTM C1531). 

4.1 Numerical modeling of masonry 

Masonry is a composite, non-homogeneous and anisotropic material, which exhibits a strong 

nonlinear behavior. Due to its intrinsic complexity, there is often the need of using robust 

numerical tools to study and analyze the behavior of masonry elements, both in the pre-peak 

and post-peak phase. In this framework, different modeling strategies and different constitutive 

models have been proposed and developed in the past (Anthoine 1992). The attention will be 

focused in the followings on the nonlinear analysis of masonry structures which can be 

approximated as being in a state of plane stress. The finite element method offers a variety of 

possibilities concerning the description of the masonry structures within the framework of 

detailed nonlinear analyses (Roca et al. 2010). 

4.1.1 Modeling strategies 

Among the modeling strategies that can be found in literature for the modeling of masonry 

structures (Rots 1991, Lourenço et al. 1995, Rots 1997, Roca et al. 2010), it is basically possible 

  

(a) (b) 
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to distinguish between micro-modeling and macro-modeling approaches, depending on the way 

in which the constituents (units and mortar) and their interactions are considered (Figure 4.4). 

On the one hand, if a very accurate representation of masonry is needed – e.g. for small scale 

problems or for the study of local phenomena – a micro-modeling approach can be used, in 

which the single components are separately modeled. In this case, a very detailed description 

of the material is needed, and the mechanical properties required as input parameters in the 

numerical models have to be obtained from laboratory tests on the constituents or on small scale 

samples. On the other hand, the macro-modeling strategy can be adequate to study the global 

behavior of masonry structural elements. Indeed, this approach does not make any distinction 

between bricks and mortar and masonry is modeled as a fictitious homogeneous continuum. 

The computational effort can, therefore, be significantly reduced. In this case, the mechanical 

properties to be assigned to the continuum should be determined by performing experimental 

tests on specimens of sufficient size subjected to homogeneous states of stress. 

Within the framework of micro-modeling, two different strategies can be adopted: the 

detailed micro-modeling (Figure 4.4b) and the simplified micro-modeling (Figure 4.4c). The 

detailed micro-modeling is probably the most accurate tool to simulate the real behavior of 

masonry (Roca et al. 2010). The single components (bricks and mortar) are separately modeled 

with continuum elements and the brick-mortar interface is modeled with discontinuous 

elements. In the simplified micro-modeling, masonry is considered as a set of elastic blocks 

bonded by potential fracture/slip planes in the joints. Indeed, units are modeled with continuum 

elements, while the mortar joint and the brick-mortar interface are lumped and modeled with 

discontinuous elements (Lourenço 1996). 

 

 

Figure 4.4. Modeling strategies for masonry structures: (a) masonry sample; (b) detailed micro-
modeling; (c) simplified micro-modeling; (d) macro-modeling. (Lourenço 1996) 
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With the aim of studying the shear-sliding behavior along a mortar joint in triplet and shove 

tests, a high level of accuracy is needed. Therefore, given also the relatively small dimensions 

of the specimens in the two tests considered, a micro-mechanical model was chosen. Moreover, 

the simplified micro-modeling strategy was considered adequate to capture the shear behavior 

observed in the tests, also allowing for the reduction of the computational effort, and was 

adopted in this research. According to this strategy, the mortar joints were modeled as zero-

thickness interface elements and the units were modeled using continuum elements with 

expanded geometry, so to maintain the overall dimensions of the sample unchanged. 

4.1.2 Constitutive models 

The shear-sliding failure mode, intended to be reproduced in the numerical simulations, was 

characterized by a sliding mechanism taking place along the brick-mortar interfaces. Therefore, 

bricks were modeled as a linear, elastic and isotropic material and the nonlinear behavior was 

only assigned to the interface elements along which the sliding failure was expected to take 

place. In the followings, the constitutive models assigned to the plane-stress elements (bricks) 

and to the interface elements (joint) will be described. More details about the modeling of the 

triplet test and the shove test will be presented in the dedicated Sections 5 and 6, respectively. 

In the linear elastic range, the constitutive law for plane stress elements reads: 

where Eb and νb are the elastic modulus and the Poisson’s ratio of the bricks, respectively. 

The constitutive behavior of the interface elements can be described through a relationship 

between the stresses and the relative displacements along the interface. In the linear elastic 

range, it is possible to express it as: 

where σ and τ are the compressive and shear stresses along the interface, kn and kt are the normal 

and shear elastic stiffness components, respectively, and u and v are the normal and tangential 

relative displacements on the interface. 

As introduced in Section 4.1.1, in the simplified micro-modeling strategy, a modified 

geometry of the masonry elements is considered, with zero-thickness mortar joints and blown-
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up units. Therefore, the elastic stiffness parameters of the brick-mortar interfaces should be 

evaluated according to Eq.(4.4) and Eq. (4.5) (Rots 1997): 

where Eb and Gb are the elastic and shear moduli of the bricks, Em and Gm are the elastic and 

shear moduli of the mortar, and tm is the mortar joint thickness. 

To mortar joints on which the sliding failure could occur, a nonlinear behavior is assigned, 

considering a composite interface model. It was formulated in the context of multi-surface 

plasticity by Lourenço (1996). As mentioned in his numerous publications on the topic, the 

theory of plasticity is a natural constitutive description for metals, but it can also be used for 

quasi-brittle materials in shear-compression problems where plastic irreversible strains are 

observed. Due to the incapability of the theory to reproduce elastic stiffness degradation, it 

cannot be used for cyclic loads, but good results have been found for monotonic loading 

conditions (Feenstra 1993, Lourenço 1995). The fundamental notion in the plasticity theory is 

the existence of a yield function bounding the elastic domain. In the considered interface model, 

a composite yield surface is defined, including all failure mechanisms which characterize the 

masonry behavior: tensile failure (Mode I), shear failure (Mode II), and compressive failure. A 

Coulomb friction failure criterion is assumed for shear, with a tension cut-off and an elliptical 

compressive cap (Figure 4.5). Both the tensile failure mode and the shear failure mode are 

characterized by a post-peak softening behavior (Figure 4.6a-b), observed in experimental tests, 

which is considered in the model. The compressive failure, instead, is characterized by a 

hardening-softening behavior (Figure 4.6c). 

 

 

Figure 4.5. Combined cracking-shearing-crushing model for nonlinear interface elements. (Diana 
Manual). 

 
b m

n
m b m

E E
k

t E E



 (4.4) 

 
b m

t
m b m

G G
k

t G G



 (4.5) 



4 |   Numerical studies on the shear-sliding behavior of masonry 

 

 
83 

   

(a) (b) (c) 

Figure 4.6. Stress-displacement diagrams for interface elements according to the different failure 
modes: (a) tensile behavior; (b) shear behavior; (c) compressive behavior. (Lourenco, 1996). 

For the complete description of the numerical implementation of the composite interface model 

refer to Lourenço & Rots (1996) and Van Zijl (2004a). In the followings, the yielding functions 

are reported for each failure mode, together with the functions defining the post-peak behavior. 

Since the focus of the present work is the shear-sliding behavior of masonry, a more detailed 

description of the Coulomb friction mode will be reported. 

 

Tension mode (Mode I) 

The yield function for the tension mode reads: 

 1 1 1, ( )f      (4.6) 

Exponential softening is considered, according to the following expression: 

1 1 1( ) exp t
t I

f

f
f

G

 
     
 
 

 (4.7) 

where ft is the tensile strength of masonry, Gf
I is the mode-I fracture energy and κ1 is the plastic 

normal displacement. An associated flow rule and a strain softening hypothesis are considered. 

 

Coulomb friction mode (Mode II) 

The Coulomb friction yield criterion, describing the shear slip along the interface, reads: 

 2 2 2, tan ( ) ( )f c         . (4.8) 

The cohesion and friction softening are defined according to the following expressions: 
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In the previous equations, c0 is the cohesion of the brick-mortar interface, ϕ0 and ϕres are the 

initial and the residual friction angle, respectively, Gf
II is the mode-II fracture energy, and κ2 is 

the shear plastic displacement. Exponential softening is assumed for both the cohesion and the 

friction angle. In particular, the friction softening is taken proportional to the cohesion 

softening. Under these hypothesis, the expression for the mode-II fracture energy, determined 

by appropriate integration of the stress-crack width response, results: 

 *
0

0

1 tan tanII II
f f resG G

c

 
     

 
, (4.11) 

which shows the linear relation between the mode-II fracture energy and the normal 

compressive stress, also found experimentally (Rots 1997). 

Non-associated plasticity (Vermeer & De Borst 1984) is here considered, given that masonry 

joints are characterized by a dilatancy angle which is usually significantly lower than the 

internal friction angle. Therefore, a non-associated plastic potential g2 is defined, with a 

dilatancy angle ψ and a strain softening hypothesis: 

2 tang c    . (4.12) 

In the computational implementation of the model, according to the proposal by Van Zijl 

(2004a), who improved the previous formulations by Lourenço (1996) and Giambanco et al. 

(2001), a variable dilatancy is considered. This was done to capture the pressure buildup and 

shearing resistance increase accurately. Results of shear experiments (Figure 4.7) showed that 

the plastic normal displacement upl component depends on the confining stress σ and the plastic 

shear slip vpl. 

 

 
Figure 4.7. Dilatant displacement normal to the joint upon plastic shear displacement – Curves from 

experiments by Van der Pluijm. (Van Zijl 2004a) 
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The functions defining the plastic normal displacement upon shearing and, consequently, the 

dilatancy angle are the followings: 

 0 1 1
vpl

pl
u

u e
 

  
 

 (4.13) 
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, (4.14) 

where Ψ0 = tanψ0 is the dilatancy at zero confining stress and shear-slip, σu is the confining 

compressive stress at which the dilatancy becomes zero, and δ is the dilatancy shear slip 

degradation coefficient. From these expressions, which reflects experimental observations, it 

can be noticed that a linear dependence is assumed between plastic normal displacement and 

plastic shear slip. Moreover, given a constant confining pressure, the rate of plastic normal 

displacement decreases exponentially with plastic shear slip.  

 
Compressive mode (Mode III) 

The compressive cap is defined through an elliptic function: 

where Cnn and Cn are parameters controlling the center of the cap and its intersection with the 

positive σ-axis (tensile stresses), Css is a parameter controlling the contribution of shear stresses 

to the failure, and κ3 is the plastic compressive displacement. 

For the hardening-softening behavior, the following laws are adopted: 
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(4.18) 

In these equations, fc is the compressive strength of masonry, i  is the initial yield value 

(corresponding to 1/3 of the compressive strength), m is the medium yield value (equal to half 

the compressive strength), r is the residual yield value (corresponding to 1/7 of the 

compressive strength), κp is the plastic displacement at the peak, and κm is the plastic 

displacement associated with m . 

 

  2 2 2
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5 Numerical simulations of triplet test 

In the triplet test (EN 1052-3), a sliding failure is reproduced, in which the mortar joints are 

subjected to a prescribed level of axial compression (orthogonal to the bed joints) and to an 

increasing tangential shear load. The Standard prescribes the execution of at least three tests at 

three different pre-compression levels, typically equal to 0.20 MPa, 0.60 MPa and 1.00 MPa.  

By performing the triplet test using a displacement controlled procedure, all properties 

characterizing the nonlinear shear-sliding behavior of mortar joints, according to a Coulomb 

friction model, can be derived: shear strength, cohesion and friction softening, mode-II fracture 

energy, dilatancy. The typical shear load vs tangential relative displacement relationship (Figure 

5.1) is characterized by an initial almost linear behavior up to the peak load, followed by a 

softening branch and a residual tail, corresponding to a dry friction condition. Sometimes, a 

degradation of stiffness can be recognized just before the peak load. 

 

 

Figure 5.1. Typical shear stress vs shear displacement curves for different values of pre-compression 
applied. (Rots 1997)  

By plotting the peak shear strength τ against the normal compressive stress σ for each pre-

compression level, it is possible to calibrate the Coulomb friction failure criterion: 

tanc   0 0 , (5.1) 

where c0 is the cohesion or initial shear strength, and ϕ0 is the friction angle. In a similar way, 

by plotting the residual shear strength τres against the normal compressive stress σ and 

performing a linear interpolation, the residual failure criterion could be evaluated as well. It is 

characterized by a residual shear strength cres and by a residual friction angle ϕres. 
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The standard triplet specimen (EN 1052-3) is composed by three bricks, arranged with a stacked 

bond pattern (Figure 5.2a). However, considering a typical masonry pattern, the situation in 

which two bricks slide one over the other is not common. A more representative condition is 

the one in which also head joints are included. In order to study the influence of the vertical 

mortar joints on the sliding failure of masonry, modified triplet specimens can also be 

considered, characterized by a running bond pattern (Figure 5.2b). 

 

 
Figure 5.2. Specimen geometry: (a) standard triplet specimen (stacked bond); (b) modified triplet 

specimen (running bond). 

With the objective of investigating the shear properties of bed joints in calcium silicate brick 

masonry, a laboratory experimental campaign was carried out at Delft University of 

Technology on replicated masonry samples (Jafari & Esposito 2016). Both geometries were 

considered. Accordingly, numerical simulations of the standard triplet test and the modified 

triplet test were carried out, and will be presented in Sections 5.1 and 5.2, respectively. In 

particular, the results of the experimental tests on standard triplets allowed to calibrate the input 

parameters for the numerical model, which was then applied also to the modified triplet test 

geometry. Comparisons between numerical and experimental results were carried out to 

validate the model. 

5.1 Standard triplet test 

5.1.1 Experimental campaign 

Standard triplet specimens were built using calcium silicate bricks (dimensions: 214x102x72 

mm3) and pre-mixed cementitious mortar (class M5), with joint thickness of 10 mm. The 

mechanical properties of the materials, summarized in Table 5.1, were determined through 

standard laboratory tests on the components and on masonry wallets (Jafari & Esposito 2016). 
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Table 5.1. Mechanical properties of calcium silicate masonry. 

Property Symbol Unit Value 
Compressive strength of bricks fb MPa 13.26 
Elastic modulus of bricks Eb MPa 10000 
Compressive strength of mortar fm MPa 7.57 
Flexural strength of mortar fm,fl MPa 3.21 
Compressive strength of masonry fM MPa 6.35 
Elastic modulus of masonry EM MPa 4972 
Poisson’s ratio of masonry νM - 0.16 
Mode-I fracture energy Gf

c N/mm 20.0 

 

The triplet test setup is presented in Figure 5.3. At the beginning of the test, the pre-

compression was applied by means of a manually operated hydraulic jack (load controlled) and 

kept constant. The lateral steel plates ensured the diffusion of the compressive load on the entire 

lateral surfaces of the sample. The shear load was then applied, along the vertical direction, to 

the intermediate brick, by using a displacement controlled apparatus composed of a 100 kN 

hydraulic jack and of a spherical joint. The assigned shear displacement rate was equal to 0.005 

mm/s during the loading phase and to 0.05 mm/s in the unloading phase. During the test, 

displacements tangential and orthogonal to the mortar joints were continuously measured with 

Linear Variable Differential Transformers (LVDT), positioned on both sides of the specimen. 

Nine specimens were tested at three levels of pre-compression: 0.20 N/mm2, 0.60 N/mm2 and 

1.20 N/mm2. Moreover, one sample was tested with a pre-compression equal to 0.05 N/mm2, 

to better estimate the initial shear strength. For all the pre-compression levels, after the 

attainment of the first sliding, the pre-compression load was increased and the sliding produced 

again. This procedure was repeated several times to obtain a better estimation of the residual 

strength criterion. 

 

 

Figure 5.3. Standard triplet test: experimental setup. 
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The observed failure modes were all characterized by a sliding failure along the area of adhesion 

between bricks and mortar (Figure 5.4). In few cases, at high pre-compression stress levels, the 

shear failure involved also the mortar, with a diffuse crack pattern (Figure 5.5). 

 

      

Figure 5.4. Standard triplet test: typical failure mode. 

      

Figure 5.5. Standard triplet test: shear failure involving mortar. 

The results of the triplet tests are reported in Figure 5.6a in terms of shear stress vs tangential-

displacement. As in the typical relationship shown in Figure 5.1, it can be observed that the 

curves are characterized by a first peak, followed by a softening branch and then by a plateau, 

in correspondence of large sliding displacements (>0.5 mm). The resistance in this last phase 

can be associated to friction only. 

The results of the tests were plotted together in a shear stress vs compressive stress diagram 

(Figure 5.6b). By performing a linear interpolation of the so obtained points, both at the peak 

load and in the residual phase, the initial and the residual failure criteria could be evaluated, as 

already mentioned. The obtained domains are shown in Figure 5.6b and the values of the 

mechanical properties are reported in Table 5.2. It is worth noting that the friction coefficients 

of the initial and residual failure criteria are very similar. Moreover, it is possible to observe 
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that the residual failure criterion, as expected, is characterized by a zero cohesion, thus 

confirming the pure frictional behavior after the attainment of the first sliding. 

 

Figure 5.6. Standard triplet test results: (a) shear stress vs relative displacement of the central brick 
(LVDTs readings); (b) shear stress vs pre-compression stress. 

Table 5.2. Shear properties of standard triplets. 

Property Symbol Unit Value 
Initial shear strength c0 MPa 0.13 
Coefficient of friction  - 0.50 
Friction angle ϕ0 rad 0.463 
Residual shear strength cres MPa 0.01 
Residual friction coefficient res - 0.52 
Residual friction angle ϕres rad 0.480 

 

The mode-II fracture energy Gf
II was calculated for each test and the mean value for each pre-

compression stress level was evaluated. According to previous researches (Rots 1997, Van der 

Pluijm 2000), its linear dependence on the pre-compression level can be described by the 

following equation: 

where a and b were determined from linear regression of experimental data (Figure 5.7). 

 

 

 

(a) (b) 

0.114 0.011II
fG a b     (5.2) 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

S
h

ea
r 

st
re

ss
 (

M
P

a)

Tangential shear displacement (mm)

Standard triplet test
16AK

16AO

16AI

16AF

16AM

16AG

16AD

16AL

16AB

16AE

τ = 0.50σ + 0.13

τ,res = 0.52σ + 0.01

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 0.5 1 1.5 2

S
he

ar
 s

tr
es

s 
(M

P
a)

Pre-compression stress (MPa)

Standard triplet test

τ
τ,res



5 |   Numerical simulations of triplet test 

 

 
92 

σ Gf
II 

(Mpa) (N/mm) 

0.05 0.035 
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1.2 0.155 

 

 

Figure 5.7. Standard triplet test results: mode-II fracture energy vs pre-compression stress. 

Transverse expansion upon shearing was observed during experimental tests, as can be noticed 

from Figure 5.8, where the graphs of normal displacement δu vs tangential displacement δv are 

presented. Very low values – almost null – of normal displacements can be noticed for a pre-

compression level of 0.60 N/mm2, while, for a pre-compression level of 1.20 N/mm2, negative 

normal displacements were registered, associated to a shear failure involving mortar. 

Parameters governing the dilatant behavior of mortar joints were evaluated by least-squares 

fitting of experimental data, according to the variable formulation for dilatancy (Van Zijl 2004), 

presented in Section 4.1.2. Their values are reported in Table 5.3. 

 

 

Figure 5.8. Standard triplet test results: normal displacement vs tangential displacement. 

Table 5.3. Standard triplet test results: dilatancy parameters. 

Parameter Symbol Unit Value 
Dilatancy angle ψ0 rad 0.374 
Confining normal stress σu N/mm2 0.58 
Exp. degradation coeff. δ - 9.63 
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5.1.2 Numerical model 

The detail of the mesh used in the numerical model is shown in Figure 5.9. A 2D model was 

adopted and, making use of symmetry, only half of the sample was considered. According to 

the simplified micro-modeling approach, bricks were modeled using quadratic 8-noded plane 

stress elements, while zero-thickness mortar joints were modeled using line 3-noded interface 

elements, both based on quadratic interpolation. The DIANA finite element software (Release 

10.1) was used for the numerical analyses. 

 

 

Figure 5.9. Standard triplet test: finite element model. 

A linear elastic behavior was considered for plane stress elements (bricks), with the typical 

stress-strain relations for continuum elements. For interface elements, the elastic constitutive 

behavior described in Section 4.1.2 was adopted. Since the sliding failure was expected to take 

place along the bed joint, the nonlinear behavior was only assigned to this failure plane. 

The input parameters used in the numerical models for masonry are reported in Table 5.4, 

where distinction is made between parameters obtained directly from tests and calibrated ones. 

Concerning calibrated parameters, tensile strength and mode-I fracture energy were determined 

as a fraction of the cohesion and mode-II fracture energy, respectively (Rots 1997). The 

parameters for the Coulomb friction model were calibrated from standard triplet tests results, 

as explained in Section 5.1.1. 
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To entirely reproduce the test setup, the loading steel plates were also modeled using 

quadratic plane stress elements, with a linear elastic behavior. The elastic modulus Es and the 

Poisson’s ratio νs for steel were equal to 210000 N/mm2 and 0.30, respectively. Interface 

elements were adopted for the brick-to-steel contact surfaces. These elements were modeled as 

a no-tension material, with a dummy value for the normal stiffness in compression, to allow 

both the transfer of compressive stress and the separation between steel plates and bricks in 

presence of tensile stresses. A very low value (10 N/mm3) was given to the shear stiffness to 

avoid lateral confinement of bricks. 

Numerical simulations were performed with the finite element software DIANA FEA 

(Release 10.1), at 4 different pre-compression levels σp (0.05 – 0.20 – 0.60 – 1.20 N/mm2), to 

reproduce the loading conditions of the experimental tests. The numerical simulations were 

carried out by imposing an increasing vertical displacement to the top plate. Regular Newton-

Raphson method was adopted to solve the nonlinear problem. 

Table 5.4. Input parameters for masonry. 

 

5.1.3 Numerical results 

The results of the numerical simulations for standard triplet tests, at each pre-compression 

level, are reported in Figure 5.10 and Figure 5.11 in terms of shear stress τ vs tangential 

 Description Symbol Units Value 

Pa
ra

m
et

er
s 

fr
om

 te
st

s 

Elastic modulus of brick Eb  N/mm2 10000 
Poisson’s ratio of brick νb - 0.16 
Elastic modulus of mortar Em  N/mm2 1088 
Poisson’s ratio of mortar νm - 0.20 
Cohesion c0  N/mm2 0.13 
Friction angle ϕ0  rad 0.463 
Residual friction angle ϕres rad 0.463 
Compressive strength fc N/mm2 6.35 
Compr. fracture energy Gf

c  N/mm 20 
Equiv. plastic shear displ. κp - 0.005 

C
al

ib
ra

te
d 

Pa
ra

m
et

er
s 

Interface normal stiffness kn  N/mm3 122.1 
Interface shear stiffness kt  N/mm3 50.7 
Tensile strength ft  N/mm2 0.09 
Mode-I fracture energy Gf

I  N/mm 0.01 
Dilatancy angle ψ0 rad 0.374 
Confining normal stress σu N/mm2 0.58 
Exp. degradation coeff. δ - 9.63 
Mode-II fracture energy

 II
fG a b    

a mm 0.114 

b N/mm 0.011 
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displacement δv and normal displacement δu vs tangential displacement δv, respectively. They 

are compared with experimental results. Concerning τ-δv diagram, it can be noticed how 

numerical results are in good agreement with the experimental ones, for all pre-compression 

levels. The presence of multiple peaks in some of the experimental curves could indicate that 

the failure was not activated at the same time on both mortar joints. However, given the 

symmetric model considered, this aspect is not studied here. 

 

 
Figure 5.10. Standard triplet test, shear stress vs tangential displacement. 

 
Figure 5.11. Standard triplet test, normal displacement vs tangential displacement. 

Looking at Figure 5.11, it can be noticed that, for pre-compression levels of 0.60 N/mm2 and 

1.20 N/mm2, the experimental curves show a compression orthogonal to the bed joint which is 

not well captured by the numerical results. This can be explained by some setup features – e.g. 

lateral loading plate not free to displace at high pre-compression stress levels – or by 

considering that the failure mode observed in these experimental tests, especially for the pre-
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compression level of 1.20 N/mm2, was not a pure sliding failure along the brick-mortar interface 

but involved the mortar itself. Indeed, cracking in the mortar occurred along the compression 

lines, especially close to the upper joint edge. In order to capture the very low – even negative 

– values of normal displacements δu, variations to the numerical model could be made. On the 

one hand, a modification of the boundary conditions could be considered, as will be discussed 

in detail in Section 5.1.4. On the other hand, to properly describe the mortar failure, a detailed 

micro-modeling strategy, not reported in this work, could be adopted. 

The principal stress distributions in Figure 5.12, reported as an example for a pre-

compression level of 0.20 N/mm2, show high stress concentrations close to the loading plates 

and the presence of a compressed strut. 

 

(a)  (b) 

Figure 5.12. Standard triplet test at pre-compression 0.20 N/mm2 – Principal stress distributions: (a) 
pre-peak (δv = 0.02 mm); (b) post-peak (δv = 0.08 mm). 

Considering the results of the nonlinear analyses for standard triplet specimens, it is interesting 

to investigate the development of the stress distributions along the joint and the propagation of 

the failure, given that they could influence the reliability of the results, as mentioned at the 

beginning. In Figure 5.13 and Figure 5.14 the stress evolution along the sliding failure plane is 

shown, both for normal and tangential stresses, at pre-compression equal to 0.20 N/mm2. It can 

be noticed that the stress distributions are not uniform along the joint and that concentrations 

of stresses occur at the joint edges, as already observed. Due to the diffusion of the shear load, 

in the first part of test, the normal compression increases at the joint extremities (always greater 
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at the top), while it decreases in the middle of the specimen. In the post-peak phase, instead, the 

normal compression is greater at mid-height than at the extremities. The shear stress 

distributions develop accordingly. 

Failure did not initiate far away from the joint edges but close to the bottom extremity and 

then propagated upwards. Nevertheless, a shear displacement increase of less than 0.01 mm 

was needed for it to propagate along the entire joint length. 

Similar results were obtained in previous researches, where finite element analyses of 

different shear tests were performed, and stress distributions compared (Riddington et al. 1997, 

Stöckl et al. 1990). In almost all shear tests, except the one proposed by Van der Pluijm (1999), 

non-uniform stress distributions were observed and peak stresses at the joint extremities were 

quite high. 

 
Figure 5.13. Standard triplet test at pre-compression 0.20 N/mm2, normal stress evolution along the 

nonlinear interface. 

 
Figure 5.14. Standard triplet test at pre-compression 0.20 N/mm2, tangential stress evolution along the 

nonlinear interface. 
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5.1.4 Influence of boundary conditions 

Dilatancy is one of the most important parameters governing the sliding failure of mortar 

joints. Indeed, the dilatant behavior of masonry could affect the results in two different ways, 

depending on the boundary conditions of the triplet tests. It could either produce an increase in 

the peak load, in case of restrained lateral displacement, or an increase in the displacements 

orthogonal to the bed joint, if the specimen is free to displace laterally. In particular, an increase 

in the shear capacity is determined by the fact that, during the sliding, when the transverse 

expansion is restrained, the pre-compression level on the joint increases, which consequently 

leads to higher peak loads. Therefore, the way in which the pre-compression is applied to the 

sample plays a crucial role in the outcomes of the test. 

To study the influence of the boundary conditions, additional numerical simulations were 

performed, in which the pre-compression load was applied as a constant lateral displacement, 

i.e. to reproduce the restrained displacements condition. The mechanical properties and the pre-

compression levels considered were the same of the previous analyses. The results of the 

numerical simulations for the laterally restrained model are here reported for standard triplet 

tests only. 

The shear stress τ vs tangential displacement δv diagrams are reported in Figure 5.15. It can 

be stated that the laterally restrained condition is not representative of standard triplet tests at 

low pre-compression stress levels, i.e. 0.05 N/mm2 and 0.20 N/mm2. Indeed, differently to what 

can be observed in Figure 5.10, the numerical curves do not correspond at all to the 

experimental ones. On the opposite, for higher pre-compression levels (0.60 N/mm2 and 1.20 

N/mm2), there is a good agreement between numerical and experimental results. This is related 

to the fact that, in these latter cases, dilatancy is playing a very marginal role, given the high 

compression acting on the joint. 

The normal displacement δu vs tangential displacement δv diagrams are reported in Figure 

5.16 for triplet tests at 0.60 N/mm2 and 1.20 N/mm2. Here, the results already presented for 

standard triplets with free lateral displacements are reported as well. The portion of the diagram 

for low values of tangential displacements is considered, since it is the most interesting part, 

corresponding to the activation of the sliding failure and the reaching of the peak load. It can 

be noticed that for the restrained displacement condition, the normal displacement is 

considerably low. However, the behavior of the samples at high pre-compression levels is still 

not properly captured. Indeed, as already observed, the simplified micro-modeling seems to be 

not adequate to reproduce the failure modes observed in these tests, and detailed micro 

modeling is probably needed. 
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Figure 5.15. Standard triplet test with restrained lateral displacement, shear stress vs tangential 

displacement. 

 
Figure 5.16. Standard triplet test, shear stress vs tangential displacement – Free vs restrained lateral 

displacement conditions. 
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attainment of the first sliding, the pre-compression load was increased and the sliding produced 

again. This procedure was repeated several times to obtain a better estimation of the residual 

strength criterion. 

 

 

 

Figure 5.17. Modified triplet test: experimental setup. 

The observed failure modes were all characterized by a sliding failure along the area of adhesion 

between bricks and mortar (Figure 5.18). In some cases, a “bridging” failure was identified: the 

sliding surface was located on one side of the sliding joint in the upper portion of the specimen 

and on the other side of the joint in the lower portion (Figure 5.19). Only in two tests, the head 

joint was involved in the failure process (Figure 5.20). As in standard triplet tests, at high pre-

compression stress levels, the shear failure involved also the mortar, with a diffuse crack 

pattern. 

 

      

Figure 5.18. Modified triplet test: typical failure mode. 
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Figure 5.19. Modified triplet test: “bridging” failure mode. 

      

Figure 5.20. Modified triplet test: shear failure involving the head joint. 

The results of the modified triplet tests are reported in Figure 5.21a in terms of shear stress vs 

tangential-displacement. As in the typical relationship shown in Figure 5.1, it can be observed 

that the curves are characterized by a first peak, followed by a softening branch and then by a 

plateau, in correspondence of large sliding displacements (>0.5 mm). The resistance in this last 

phase can be associated to friction only. 

The results of the tests were plotted together in a shear stress vs compressive stress diagram 

(Figure 5.21b). By performing a linear interpolation of the so obtained points, both at the peak 

load and in the residual phase, the initial and the residual failure criteria could be evaluated, as 

already mentioned. The obtained domains are shown in Figure 5.21b and the values of the 

mechanical properties are reported in Table 5.5. It is worth noting that the friction coefficients 

of the initial and residual failure criteria are equal. Moreover, it is possible to observe that the 

residual failure criterion, as expected, is characterized by a zero cohesion, thus confirming the 

pure frictional behavior after the attainment of the first sliding. 
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Figure 5.21. Modified triplet test results: (a) shear stress vs relative displacement of the central brick 
(LVDTs readings); (b) shear stress vs pre-compression stress. 

Table 5.5. Shear properties of modified triplets. 

Property Symbol Unit Value 

Initial shear strength c0 MPa 0.15 

Coefficient of friction  - 0.48 

Friction angle ϕ0 rad 0.448 

Residual shear strength cres MPa 0.03 

Residual friction coefficient res - 0.48 

Residual friction angle ϕres rad 0.448 

 

The mode-II fracture energy Gf
II was calculated for each test and the mean value for each pre-

compression stress level was evaluated, as already done for standard triplet tests. The linear 

dependence on the pre-compression level can be described by the following equation: 

where a and b were determined from linear regression of experimental data (Figure 5.22). 

σ Gf
II 

(Mpa) (N/mm) 

0.05 0.035 

0.2 0.052 
0.6 0.095 
1.2 0.241 

 

 

Figure 5.22. Modified triplet test results: mode-II fracture energy vs pre-compression stress. 
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Transverse expansion upon shearing was observed during experimental tests, as can be noticed 

from Figure 5.23, where the graphs of normal displacement δu vs tangential displacement δv are 

presented. In this case, positive values of the normal displacements can be noticed also at high 

pre-compression stress level, at the beginning of the test. Afterwards, in most of the cases, 

negative normal displacements were registered, indicating a shear failure involving the mortar, 

as already observed for standard triplet tests. Due to the high dispersion of the results, especially 

for the pre-compression level of 0.20 N/mm2, the parameters governing the dilatant behavior 

of mortar joints, evaluated by least-squares fitting of experimental data, were found not to be 

reliable and, therefore, are not reported here. 

 

 

Figure 5.23. Modified triplet test results: normal displacement vs tangential displacement. 

5.2.2 Numerical model 

The detail of the mesh used in the numerical model is shown in Figure 5.24. A 2D model was 

adopted and, making use of symmetry, only half of the sample was considered. According to 

the simplified micro-modeling approach, bricks were modeled using quadratic 8-noded plane 

stress elements, while line 3-noded interface elements were adopted to model the zero-thickness 

mortar joints. 

A linear elastic behavior was considered for plane stress elements (bricks), with the typical 

stress-strain relations for continuum elements. For interface elements, the elastic constitutive 

behavior described in Section 4.1.2 was adopted. Since the sliding failure was expected to take 

place along the bed joint, the nonlinear behavior was only assigned to this failure plane. The 

head joint was supposed to remain elastic during the shear failure. The steel plates were 

modeled as already described for standard triplet tests. 
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In the numerical simulations, the input parameters calibrated for standard triplet tests (Table 

5.4) were adopted to validate the model. The nonlinear analyses were carried out with the finite 

element software DIANA FEA (Release 10.1), considering 4 different pre-compression levels 

σp (0.05 – 0.20 – 0.60 – 1.20 N/mm2), to reproduce the loading conditions of the experimental 

tests. The numerical simulations were carried out by imposing an increasing vertical 

displacement to the top plate. Regular Newton-Raphson method was adopted to solve the 

nonlinear problem. 

 

Figure 5.24. Modified triplet test: finite element model. 

5.2.3 Numerical results 

The results of the numerical simulations for modified triplet tests are reported in terms of shear 

stress τ vs tangential displacement δv (Figure 5.25) and in terms of normal displacement δu vs 

tangential displacement δv (Figure 5.26). Experimental results are also included. It can be 

noticed a good agreement between numerical and experimental results, especially in the τ-δv 

diagram. In the δu-δv diagram, their agreement is quite good for almost all pre-compression 

levels, especially in correspondence of low tangential displacement values. Exceptions are 

represented by the sample tested at 0.05 N/mm2 and by one specimen at 0.20 N/mm2, which 

showed a great expansion upon shearing. The issue previously highlighted for standard triplets 
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– which registered negative δu values for high pre-compression stresses – is here present only 

for two samples at pre-compression equal to 1.20 N/mm2. 

The results of the numerical analysis for modified triplet specimens are satisfactory if 

compared with experimental results, even if the numerical model was calibrated with results 

from standard triplet tests. This fact could be explained by considering the failure modes 

observed in modified triplet tests. Indeed, in the majority of the cases, the sliding failure 

involved the brick-mortar interface close to the central brick. Only in few cases, the mortar 

continuity between the head and bed joint was damaged. Therefore, the presence of the head 

joint, for the masonry typology investigated, did not seem to have a great influence on the 

outcomes of the tests, especially in terms of peak and residual shear loads. 

 

 
Figure 5.25. Modified triplet test, shear stress vs tangential displacement. 

 
Figure 5.26. Modified triplet test, normal displacement vs tangential displacement. 
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Figure 5.27 and Figure 5.28 show the stress evolution along the sliding failure plane of the 

vertical joint for increasing values of shear slip, both for normal and tangential stresses, at a 

pre-compression of 0.20 N/mm2. As already observed for standard triplet tests, the stress 

distributions are not uniform along the joint and concentrations of normal stresses are present 

at the joint extremities. The jump in the stress distributions in correspondence of the head joint 

can be explained by considering that the upper left brick was subjected to a variable lateral 

shortening (prevalent at the top) and a clockwise rotation. With respect to the stress distributions 

for the standard triplet tests (Figure 5.13 and Figure 5.14), these movements caused, along the 

upper portion of the sliding surface, higher peak stresses at the top and reduced stresses in the 

middle, even leading to tensile normal stresses in a small portion of the sliding interface. 

 

 
Figure 5.27. Modified triplet test at pre-compression 0.20 N/mm2, normal stress evolution along the 

nonlinear interface. 

 
Figure 5.28. Modified triplet test at pre-compression 0.20 N/mm2, tangential stress evolution along the 

nonlinear interface. 
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Figure 5.29. Modified triplet test at pre-compression 0.20 N/mm2, normal stress evolution along the 

head joint. 

The normal stress evolution on the head joint is presented in Figure 5.29. Maximum values of 

compressive stresses are located at the right-end side, close to the sliding failure plane. This is 

consistent with the diffusion of the shear load inside the specimen and with the clockwise 

rotation of the upper left brick. With the failure propagation, the reduction of the compressive 

stresses along the head joint can be related to the reduction of the upper left brick deformation 

due to the lateral relaxation of the sample in the softening phase. 

5.2.4 Influence of dilatancy parameters 

The uplift upon shearing is governed by the dilatancy function (Eq. (4.14)) and, therefore, by 

the parameters ψ0, σu and δ. In this context, parametric studies were performed for models with 

free lateral displacements, varying the values of these parameters. In the followings, results of 

numerical simulations for modified triplet tests are shown, where increased values of ψ0 and σu 

were considered (Table 5.6). Indeed, experimental results showed that modified triplet 

specimens were characterized by higher normal displacements δu with respect to standard 

triplets. Given the observations reported in Section 5.1.4, the results were not expected to be 

different from the previous models in terms of shear capacity, but in terms of normal 

displacements. Figure 5.30 shows an increase in the normal uplift for all tests, except for the 

case with pre-compression equal to 1.20 N/mm2. Comparing it with Figure 5.26, it is possible 

to observe that a better agreement between numerical and experimental results is found, 

especially at low pre-compression levels. 
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Table 5.6. Modified dilatancy parameters. 

Parameter Symbol Value 

Dilatancy angle ψ0 [rad] 0.561 (+50%) 

Confining normal stress σu [N/mm2] 0.70   (+20%) 

Exp. degradation coeff. δ 9.63 

 

 
Figure 5.30. Modified triplet test, normal displacement vs tangential displacement. 

5.2.5 Influence of the elastic properties of the head joint 

With reference to the modified triplet specimens, parametric studies were carried out on the 

elastic stiffnesses of the head joint. Indeed, in the engineering practice, it is quite common to 

deal with masonry structures in which head joints have lower mechanical properties than bed 

joints. This is due to construction reasons and, moreover, to the fact that head joints are not 

subjected to compression during the curing. Therefore, imperfections or microcracks are often 

present. To simulate this situation, the elastic modulus of mortar was reduced by 50% and the 

elastic stiffness parameters of the interface elements were modified accordingly. Results are 

here reported in terms of normal stresses for the pre-compression level of 0.20 N/mm2 (Figure 

5.31). Distributions at peak load and in the residual phase are shown and results from Figure 

5.29 are also included. In presence of weak head joint, a 20% compressive stress reduction can 

be observed on the right-end side of the joint, in correspondence of the peak load (δv = 0.030 

mm), as expected. In the residual phase, instead, where the shear load has already been 

transferred and a pure friction behavior can be observed, the two stress distributions are almost 

coincident. 
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Differences were not observed neither in terms of peak and residual shear load nor in terms 

of orthogonal displacements. Similar observations can be done for the other pre-compression 

levels, which are not reported here, for sake of brevity. 

The variation of the elastic properties of the head joint was not sufficient to influence the 

sliding failure during the triplet test. In order to consider different behaviors, e.g the failure 

within the head joint or in the contact point between head and bed joint, the use of a detailed 

micro-modeling strategy could be useful, in which nonlinearities could be assigned to the head 

joint. However, these variations were not considered here, given that the head joint was almost 

never involved in the sliding failure during experimental tests. 

 

 
Figure 5.31. Modified triplet test at pre-compression 0.20 N/mm2, normal stress evolution – Intact vs 

weak head joint. 
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displacements, an overestimation of the shear capacity was observed for samples at pre-

compression equal to 0.05 N/mm2 and 0.20 N/mm2. At higher pre-compression levels, instead, 

the restrained displacements condition could partially capture the very low values registered for 

normal displacements. On the other hand, in case of free lateral displacements, the dilatancy 

can affect the values of the normal displacements along the sliding failure plane. To investigate 

this aspect, parametric studies were performed on the variables defining the dilatancy function. 

In particular, for modified triplet tests, in which the registered transverse displacement upon 

shearing was higher than in standard triplet tests, these parametric studies allowed to better 

capture the behavior of the samples, at least for low pre-compression levels.  

The presence of a head joint did not have a great influence on the tests outcomes. This was 

confirmed both by numerical and experimental results and can be related to the specific 

masonry typology investigated. Indeed, the head joint was almost never involved in the failure 

process. Parametric studies were performed, reducing the normal and shear stiffness values, 

and the only difference in the results was represented by a change in the stress distributions 

along the head joint. In order to include failure modes involving the head joint, it is advisable 

to use a detailed micro-modeling strategy. 

Aspects related to the triplet test setup and execution were analyzed and briefly discussed, 

such as the presence of non-uniform stress distributions along the sliding bed joint, the 

concentration of stresses at its extremities, the failure initiation and propagation. Even if the 

objective of the research was not to reduce or eliminate the influence that these aspects have on 

the test outcomes, they all represents intrinsic issues in the triplet test, which is important to be 

aware of. 

In conclusion, the numerical simulations here presented allowed to gain a better 

understanding of the sliding failure in triplet tests. Future works can be done with the objective 

of better capturing the shear failure within the mortar at high pre-compression level. The 

detailed micro-modeling approach could be used to this purpose, in which failure inside the 

mortar can be included. 
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6 Numerical simulations of shove test 

To investigate the shear-sliding behavior of existing masonry directly in situ, the shove test can 

be performed (ASTM C1531-16), according to one of the three methods presented in Section 

2.1.2. It has been already discussed about the main advantages and disadvantages of each test 

setup. In the followings, a more detailed analysis of the differences between the proposed 

methods will be presented, by performing numerical simulations of the shove test. Method A 

and Method B will be considered. 

The numerical analyses will be carried out considering a full-scale masonry panel, trying to 

reproduce as close as possible the in-situ conditions of the test. The wall geometry and the test 

setup were chosen to be equal to the ones adopted in an experimental campaign conducted at 

the Delft University of Technology on single-wythe calcium silicate brick masonry (Figure 

6.1). 

 

 

Figure 6.1. Shove test: wall geometry and test setup. (TUDelft) 
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Given that triplet tests were performed on the same masonry typology (Sections 5.1.1 and 

5.2.1), the input parameters were calibrated with triplet test results and used also in the 

numerical models of the shove test, since the two tests aim at describing the same shear-sliding 

behavior. Factors influencing the sliding failure mechanism and the shear capacity in the shove 

test will be analyzed in detail with the objective of investigating the differences between the 

triplet and the shove test outcomes. Moreover, a validation of the numerical model used for the 

shove test will be carried out in Chapter 7, where a case study will be presented. 

6.1 Shove test – Method A 

6.1.1 Testing procedure 

The testing procedure consists in applying a uniform distributed load at the top of the panel, 

reproducing the dead and live loads which can be present in situ. Then, the masonry unit to be 

subjected to the test is chosen and two cuts are executed in order to seat the flatjacks. The 

distance between the cuts and the tested unit shall be at least two masonry courses. Two bricks 

have then to be removed from the opposite end of the test unit. After setting the flatjack pressure 

to a very low value, the horizontal load is applied to the test unit by means of a hydraulic jack. 

The load is increased monotonically until the obtainment of the sliding failure of the brick. The 

geometry of the wall, with the identification of the test location, is reported in Figure 6.2. 

 

 

 

Figure 6.2. Shove test – Method A: wall geometry and test location. 
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6.1.2 Numerical model 

The detail of the mesh used in the numerical model is shown in Figure 6.3. Given the geometry 

of the masonry panel, which was a single-wythe wall, a 2D model was considered adequate to 

reproduce the testing conditions. The simplified micro-modeling approach was adopted. 

Therefore, bricks were singularly modeled using 32 quadratic 8-noded plane stress elements, 

while line 3-noded interface elements were adopted to model the zero-thickness mortar joints, 

both vertical and horizontal. 

 
(a) 

(b) 

(c) 

Figure 6.3. Shove test - Method A, finite element model: (a) entire wall panel; (b) detail of the flatjack 
pressure application; (c) detail of the shear load application. 

The elastic constitutive behaviors presented in Section 4.1.2 for plane stress elements, modeling 

bricks, and for interface elements, modeling mortar joints, were considered. For horizontal 

mortar joints, a material behavior with a constant normal stiffness for compression and a 

stiffness reduction in tension was adopted. In particular, the normal stiffness coefficient was set 

to zero in correspondence of a tensile normal relative displacement equal to 0.001 mm. Vertical 

joints, instead, were modeled as a no-tension material. The choice of assigning weaker 

properties to the vertical joints is justified by considering that, during the construction process, 

a greater attention is paid to the realization of the horizontal mortar joints. Moreover, vertical 

joints are not subjected to vertical loads during the curing, thus micro-cracks or even loss of 
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bond between bricks and mortar are often more present in these joints. A nonlinear behavior 

with a composite interface model, whose description can be found in Section 4.1.2, was 

assigned to the mortar joints on which the sliding failure was expected to take place, i.e. upper 

and lower bed joints of the test unit. No connection was considered between the edges of the 

flatjack holes. 

The beam at the top of the wall was not modeled as well as the loading steel plates used for 

the application of the shear load on the lateral surfaces of the brick. However, to take into 

account the presence of the steel elements, tyings (i.e. linear dependencies between nodal 

variables) were adopted to force the nodes along these edges to equally displace. 

The input parameters used in the numerical models for masonry are the same used for the 

numerical simulations of the triplet test and have been reported in Table 5.4. 

The finite element software DIANA FEA (Release 10.1) was adopted for the numerical 

simulations. Phased analyses were carried out to exactly reproduce the testing procedure: 

- Phase 1: application of the self-weight and the overburden;  

- Phase 2: execution of the first cut for the seating of the superior flatkjack; 

- Phase 3: execution of the second cut for the seating of the inferior flatjack; 

- Phase 4: removal of bricks; 

- Phase 5: application of the flatjack pressure; 

- Phase 6: application of the shear load. 

The nonlinear analyses were performed by imposing an increasing horizontal load both to the 

sliding and the contrast brick, to reproduce the presence of the horizontal hydraulic jack. 

Regular Newton-Raphson method and arc-length method were adopted to solve the nonlinear 

problem. 

6.1.3 Numerical results 

The results of three numerical simulations of the shove test, according to the procedure reported 

in the Standard for Method A, will be presented in this Section. Different loading conditions 

were considered, as reported in Table 6.1. In particular, the same flatjack pressure – set to a 

very low value, as suggested by the Standard – was considered, while three different overburden 

loads were applied at the top of the masonry wall to study the influence of the acting vertical 

load on the test outcomes. 
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Table 6.1. Shove test – Method A: loading conditions for the numerical simulations. 

Model Overburden Load 

(kN) 

Vertical compression* 

(MPa) 

Flatjack pressure 

(Mpa) 

A1 21.28 0.15 0.05 

A2 41.74 0.25 0.05 

A3 113.36 0.60 0.05 

*given by self-weight and overburden on the sliding brick at the beginning of the test 

First of all, the results of Model A1 will be analyzed in detail to properly understand the shear-

sliding behavior investigated in the shove test. Then, a comparison between the main outcomes 

of the three numerical simulations will be presented. 

The shear load F vs tangential displacement δv curve and the shear stress τ vs tangential 

displacement δv curve are presented in Figure 6.4 and Figure 6.5; respectively. They are both 

characterized by an initial linear behavior up to the peak load, followed by a softening branch 

and a residual phase, namely the dry-friction phase. 

 

Figure 6.4. Model A1 – Numerical results: shear load F vs tangential displacement δv diagram. 

  

Figure 6.5. Model A1 – Numerical results: shear stress τ vs tangential displacement δv diagram. 
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To investigate dilatancy, which could influence, to some extent, the shear capacity of masonry, 

the orthogonal displacement δu vs tangential displacement δv graph is reported in Figure 6.6. 

To evaluate the average orthogonal displacement δu, the differences between the vertical 

displacements of two pairs of points, positioned above and below the test unit, were considered. 

The presence of a positive displacement δu indicates a vertical expansion upon shearing, which 

could reveal that the uplift is not restrained. Therefore, the dilatant behaviour of masonry seems 

not to have an influence on the results in terms of shear capacity. Indeed, for this model, the 

failure load – corresponding to the point in which the failure domain is reached for all the 

integration points of the sliding surface – and the peak load coincide. This latter aspect will be 

discussed in the followings. 

 

 

Figure 6.6. Model A1 – Numerical results: orthogonal displacements δu vs tangential displacement δv. 
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- Phase 2 - Execution of the first cut for the seating of the superior flatjack (Figure 6.7c): due 
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- Phase 3 - Execution of the second cut for the seating of the inferior flatjack (Figure 6.8a): as 

in the previous step, the compression lines deviate from the vertical direction with an angle 

of about 45°; the masonry portion between the flatjacks results almost unloaded. 

- Phase 4 - Removal of the two bricks adjacent to the sliding brick (Figure 6.8b): the removal 

of two bricks produces a strong variation in the principal stress distribution. The vertical load 

given by the self-weight and the overburden partially deviates inwards on the tested brick, 

producing and increase in the compression stress and stress concentrations at the joint edges. 

- Phase 5 - Application of the flatjack pressure (Figure 6.8c): due to the removal of the bricks, 

the compression lines between the two flatjacks are not vertical – this is particularly evident 

for low flatjack pressure values – but deviate partially on the sliding brick and partially 

outside the tested region, i.e. beyond the holes of the removed bricks. Also in this case, a 

stress concentration is evident at the joint edges of the sliding brick. 

- Phase 6 - Application of the shear load (Figure 6.9): the in-plane principal stress distribution 

is strongly influenced by the presence of a shear load. Indeed, it produces lateral compression 

on the sliding brick, which is transferred with a diffusion cone, through the sliding joints, to 

the masonry above and below the test unit. The diffusion of the shear load inside the masonry 

produces also a variation in the compressive stress along the sliding joint. In Figure 6.9, three 

different steps of the analysis are considered: the application of the shear load (Figure 6.9a), 

the peak load (Figure 6.9b) and the residual phase (Figure 6.9c). The peak load obviously 

corresponds to the maximum shear stress sustained by the test unit. However, for Model A1, 

it also corresponds to the load step in which all the integration points reached the Coulomb 

friction failure domain. This aspect will be discussed later since it could be related, as already 

mentioned, to the identification of a dilatant behavior of masonry. 

Focusing on the masonry portion between the two flatjacks, the in-plane principal stress 

distributions on the deformed configuration are shown in Figure 6.10, for three specific steps 

of the analysis: 

- Application of the flatjack pressure (Figure 6.10a); 

- Peak shear load (Figure 6.10b): activation of the sliding along the entire interfaces and 

reaching of the maximum shear stress; 

- Post-peak phase (Figure 6.10c): it is possible to observe the sliding of the brick with respect 

to the surrounding masonry and the dilatant behavior of the bed joints, i.e. the uplift upon 

shearing. 
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(a) 

(b) 

(c) 

Figure 6.7. Model A1 – Principal stress distributions: (a) self-weight; (b) overburden application; (c) 
execution of the first cut. 
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(a) 

(b) 

(c) 

Figure 6.8. Model A1 – Principal stress distributions: (a) execution of the second cut; (b) removal of 
bricks; (c) application of the flatjack pressure. 
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 (a) 

(b) 

(c) 

Figure 6.9. Model A1 – Principal stress distributions: (a) application of the shear load; (b) peak load; 
(c) residual branch. 
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(a) 

(b) 

(c) 

Figure 6.10. Model A1 – Principal stress distributions between flatjacks: (a) application of the flatjack 
pressure; (b) peak load; (c) post-peak phase. 
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The normal and tangential stress evolutions along the top and bottom sliding interfaces are 

reported in Figure 6.11 and Figure 6.12, respectively. The steps already analyzed for the in-

plane principal stress distributions are here considered. For the tangential stresses, only the 

stress distributions at the peak load and in the residual phase are shown, given that they are null 

or negligible during the application of the vertical loads. 

With reference to the normal stress evolutions on both the interfaces, uniform distributions 

are associated with the application of the self-weight and the overburden load, as expected. 

Then, relaxation of the masonry portion between the two cuts is registered, with decreasing 

compressive stresses along the interfaces, eventually going to zero after the execution of the 

second cut. Compressive stresses are slightly higher in this phase at the extremities of the sliding 

interfaces. Due to the bricks removal, the non-uniformity of the normal stress distributions 

becomes apparent, whit quite high compressive stresses at the extremities of the joints. 

Analogous situation can be noticed in correspondence of the application of the flatjack pressure, 

which determines an increase of the compressive stress. When the shear load is applied – here 

the step corresponding to the peak load is considered – the compressive stresses increase 

significantly on the right-end side of the sliding interfaces, close to the application of the shear 

load. On the left-end side, instead, the state of stress remains almost unchanged with respect to 

the previous phase, where the flatjack pressure was applied. In the central portion of the joint, 

the discontinuity of the stress distributions is justified by the presence of the head joints above 

and below the superior and inferior interface, respectively. This determines, on one side of the 

head joint, a consistent decrease of the compressive stress, which results almost null or even 

positive; on the other side of the head joint, instead, a compression increase can be noticed. 

From a qualitative point of view, in correspondence of the peak load, the tangential stress 

distributions on both interfaces are similar to the normal stress ones, with higher shear stresses 

on the right-end side and a discontinuity in correspondence of the head joints. Smoothen 

distributions can be observed in the residual phase, both for normal and tangential stresses. 

The results presented for the Model A1 shows, in a quite evident manner, the extreme 

complexity connected to the execution of the shove test according to the Method A proposed 

by the ASTM Standard. In particular, great uncertainties are related to the estimation of the 

compressive stress acting on the joints during the entire duration of the test. The presence of 

the flatjacks, even if introduced to better control the state of stress on the tested brick, produces 

a great disturbance in the masonry wall – due to the cutting procedure – and strongly affects the 

in-plane stress distributions. 
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(a) (b) 

Figure 6.11- Model A1 – Stress evolution along the top sliding interface: (a) normal stress; (b) 
tangential stress. 

  

(a) (b) 

Figure 6.12- Model A1 – Stress evolution along the bottom sliding interface: (a) normal stress; (b) 
tangential stress.  

The results of the numerical analyses for Model A1, A2 and A3 are reported together in Figure 

6.13 and Figure 6.14 in terms of shear load F vs tangential displacement δv curves and shear 

stress τ vs tangential displacement δv curves, respectively. The curves are all characterized by 

an initial almost linear branch up to the peak load, followed by softening and a residual phase, 

corresponding to the plateau. A smoother post-peak phase can be observed for Model A1 and 

A2. The increase of the overburden load in Model A2 and A3 determines an increase in the 

shear capacity of the tested brick. This is consistent with what observed for Model A1: due to 

the cutting of the slots for the seating of the flatjacks and the removal of bricks, the state of 

compression along the sliding interfaces is affected by the presence of the compressive stress 

given by the overburden, which partially goes on the test unit. In Figure 6.15, orthogonal 
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compressive stress on the test unit, increases. This is consistent with the dilatancy formulation 

presented in Section 4. 

 

Figure 6.13. Numerical results – comparison: shear load F vs tangential displacement δv diagram. 

  

Figure 6.14. Numerical results - comparison: shear stress τ vs tangential displacement δv diagram. 

 

Figure 6.15. Numerical results - comparison: orthogonal displacements δu vs tangential displacement 
δv.  
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6.1.4 Parametric studies on dilatancy 

According to the variable formulation for dilatancy proposed by Van Zijl (2004) and used in 

this research, the dilatant behavior of masonry is governed by three parameters: the dilatancy 

angle at zero normal confining stress and shear slip (ψ0), the confining compressive stress at 

which the dilatancy becomes zero (σu), and the dilatancy shear-slip degradation coefficient (δ). 

With the objective of analyzing the effect that each parameter can have on the shear-sliding 

response of a masonry unit in the shove test, parametric studies were performed by varying one 

parameter at a time, maintaining the others unchanged. In total, nine parametric analyses were 

carried out, as reported in Table 6.2, aimed at increasing the role of dilatancy for the considered 

models. In particular, greater values for ψ0 and σu, - considering the same increments - and 

lower values for δ were chosen. In the followings, the results will be presented for Model A1 

only, given that for lower acting compressive stresses, the effect of dilatancy is more evident. 

Table 6.2. Shove test – Method A: parametric studies on dilatancy. 

Numerical 

simulation 

ψ0 

(rad) 

σu 

(MPa) 

δ 

(-) 

A1* 0.374 -0.58 9.63 

A1_1b 0.561 -0.58 9.63 

A1_1c 0.842 -0.58 9.63 

A1_1d 1.262 -0.58 9.63 

A1_2b 0.374 -0.87 9.63 

A1_2c 0.374 -1.31 9.63 

A1_2d 0.374 -1.96 9.63 

A1_3b 0.374 -0.58 6.42 

A1_3c 0.374 -0.58 4.28 

A1_3d 0.374 -0.58 2.85 

*Reference parameters, calibrated through triplet test results. 

In Figure 6.16, the plastic orthogonal displacement upl vs plastic tangential displacement vpl 

curves are reported, for each set of parameters. These curves were not obtained from the 

numerical analyses, but were built according to Eq. (6.1), already introduced in Section 4.1.2, 

considering the average compressive stress σ present on the joint after the removal of the bricks 

in Model A1: 

 0 1 1
vpl

pl
u

u e
 

  
 

. (6.1) 
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Therefore, considering also that the compressive stress is variable during the test, they just 

provide general indications to be compared with the results of the parametric analyses. For a 

better comparison, the values of the plastic orthogonal displacement from Eq. (6.1) were 

doubled to account for the presence of both the joints along which the sliding occur. From 

Figure 6.16, it is possible to observe that the parameter influencing the most the value of the 

plastic orthogonal displacement is the initial dilatancy angle ψ0. In the compressive stress range 

considered, variations of the confining stress σu do not seem to be relevant. The parameter δ, 

instead, besides having a slight influence (if compared with ψ0) on the value of the plastic 

orthogonal displacement, affects more the position of the curve plateau, which is linked to a 

slower exponential decay of the function. 

 

Figure 6.16. Theoretical plastic orthogonal displacement upl vs plastic tangential displacement vpl 
curves: (a) parametric studies on ψ0; (b) parametric studies on σu; (c) parametric studies on δ. 

Before analyzing the results of the parametric analyses, it should be noticed that, in the 

numerical model of the shove test, the vertical displacement cannot be considered completely 

free. Indeed, even if the vertical translation is not constrained at the top of the panel, the 

masonry outside the tested region could act as a sort of impediment to the uplift along the sliding 

joints. Consequently, if volume expansion is restrained to some extent, the orthogonal 

displacements registered are lower than the ones from the theoretical curves of Figure 6.16, and 

correspondent increases in the compressive stress state on the sliding interfaces can be 

observed, leading to an increase in the shear strength. Notice that in Figure 6.19, Figure 6.22, 

Figure 6.25, and Figure 6.28, total orthogonal (δu) and tangential (δv) displacements are 

reported, not their plastic components. Indeed, the displacement δu is calculated as the average 

of the differences between the vertical displacements of two pairs of points, positioned above 

and below the test unit, including both the joints involved in the sliding failure. This 

representation is more practical since it gives an average value of the orthogonal displacement, 

which can be directly compared with results from experimental tests. 
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The results of the parametric analyses are presented in Figure 6.17-Figure 6.25, in terms of: 

load F vs tangential displacement δv, shear stress τ vs tangential displacement δv, and 

orthogonal displacement δu vs tangential displacement δv. In Figure 6.26-Figure 6.28, global 

comparisons are shown. In Table 6.3, a summary of the results is presented to quantitatively 

evaluate the differences between the considered models in terms of peak load (Ppeak), average 

shear strength (τmax), average compressive stress at the peak (σmax), tangential displacement at 

the peak (δvpeak), and orthogonal displacement at the peak (δupeak).  

The parametric studies on ψ0 (Figure 6.17-Figure 6.19) shows significant increments in the 

shear capacity with respect to Model A1 (up to 54%), which are obviously related to 

compressive stress increases. Indeed, in these cases, the orthogonal displacements registered 

are much smaller than the theoretical ones (Figure 6.16a), indicating that they are restrained 

due to the test conditions. Dilatancy is therefore playing a role and determines an increase in 

the peak load. The effect of dilatancy on the shear response is also visible looking at the F- δv 

and τ- δv curves, where the failure load (corresponding to the point in which the failure criterion 

is reached in all the integration points of the interfaces) and the peak load can de distinctly 

identified. In particular, the failure load coincides with the peak of the curve for Model A1 and 

it is the same in all the models. Beyond this point, the dilatant behavior of masonry, which plays 

a role in the nonlinear field, determines the mentioned increase in capacity. 

For parametric studies on σu (Figure 6.20-Figure 6.22) it can be noticed how variations on 

this parameter do not produce significant changes in the sliding behavior during the shove test, 

except from a smoother transition between the peak load and the softening branch. Orthogonal 

displacements are slightly lower than the theoretical ones, but not as much as to produce an 

increase in the shear capacity. These observations are strictly connected to the compressive 

state of stress in the model considered, since it is the ratio σ/σu which governs the phenomenon. 

The parameter δ, looking at the results reported in Figure 6.23-Figure 6.25, rather than 

influencing the shear response in terms of capacity, affects the trend of the post-peak branch. 

The lower its value, the less steep is the softening branch, even reaching an almost constant 

plateau after the failure load for the lowest δ value considered. Orthogonal displacements are 

globally lower than the theoretical ones for all the considered analyses, but no increases in the 

peak load are observed. This can be explained considering that the orthogonal displacements at 

the peak load, for Model A1_3b and A1_3c, are almost the same as for Model A1 and equal to 

the theoretical ones. Therefore, an increase in the capacity could not be expected for these 

models. 
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Figure 6.17. Parametric studies on ψ0: shear load F vs tangential displacement δv diagram. 

 

Figure 6.18. Parametric studies on ψ0: shear stress τ vs tangential displacement δv diagram. 

 

Figure 6.19. Parametric studies on ψ0: orthogonal displacements δu vs tangential displacement δv. 
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Figure 6.20. Parametric studies on σu: shear load F vs tangential displacement δv diagram. 

 

Figure 6.21. Parametric studies on σu: shear stress τ vs tangential displacement δv diagram. 

 

Figure 6.22. Parametric studies on σu: orthogonal displacements δu vs tangential displacement δv. 
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Figure 6.23. Parametric studies on δ: shear load F vs tangential displacement δv diagram. 

 

Figure 6.24. Parametric studies on δ: shear stress τ vs tangential displacement δv diagram. 

 

Figure 6.25. Parametric studies on δ: orthogonal displacements δu vs tangential displacement δv. 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.0 0.5 1.0 1.5 2.0

τ
(M

P
a)

δv (mm)

Model A1
Model A1_3b
Model A1_3c
Model A1_3d

0.00

0.04

0.08

0.12

0.16

0.20

0.0 0.5 1.0 1.5 2.0

δ u
(m

m
)

δv (mm)

Model A1
Model A1_3b
Model A1_3c
Model A1_3d

 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0.0 0.5 1.0 1.5 2.0

F
 (

kN
)

δv (mm)

Model A1
Model A1_3b
Model A1_3c
Model A1_3d



6 |   Numerical simulations of shove test 

 

 
131 

Figure 6.26. Parametric studies - comparison: shear load F vs tangential displacement δv diagram. 

 

Figure 6.27. Parametric studies - comparison: shear stress τ vs tangential displacement δv diagram. 

 

Figure 6.28. Parametric studies - comparison: orthogonal displacement δu vs tangential displacement 
δv diagram. 
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Table 6.3. Model A1 – Results of the parametric analyses. 

Model ψ0 σu δ Ppeak τmax σmax δv,peak δu,peak 
  (rad) (MPa) (-) (kN) (MPa) (MPa) (mm) (mm) 
Model A1 0.374 -0.58 9.63 9.23 0.211 0.163 0.036 0.003 

Model A1_1b 
0.561 -0.58 9.63 9.63 0.221 0.181 0.087 0.030 
50.0% (-) (-) 4.3% 4.3% 11.2% 140.6% 1021.2% 

Model A1_1c 
0.842 -0.58 9.63 11.00 0.252 0.244 0.138 0.068 
125.1% (-) (-) 19.1% 19.1% 49.7% 282.7% 2396.9% 

Model A1_1d 
1.262 -0.58 9.63 14.23 0.326 0.39 0.140 0.125 
237.4% (-) (-) 54.2% 54.2% 140.6% 289.7% 4512.8% 

Model A1_2b 
0.374 -0.87 9.63 9.29 0.215 0.17 0.054 0.011 
(-) 50.0% (-) 0.6% 1.7% 4.5% 48.6% 316.2% 

Model A1_2c 
0.374 -1.31 9.63 9.39 0.215 0.17 0.071 0.020 
(-) 125.9% (-) 1.7% 1.7% 4.5% 97.4% 626.9% 

Model A1_2d 
0.374 -1.96 9.63 9.49 0.217 0.17 0.083 0.025 
(-) 237.9% (-) 2.8% 2.8% 7.3% 129.7% 833.3% 

Model A1_3b 
0.374 -0.58 6.42 9.23 0.212 0.16 0.037 0.003 
(-) (-) -33.3% 0.0% 0.0% 0.0% 2.9% 19.8% 

Model A1_3c 
0.374 -0.58 4.28 9.24 0.212 0.16 0.036 0.003 
(-) (-) -55.6% 0.1% 0.1% 0.1% -0.2% 1.8% 

Model A1_3d 
0.374 -0.58 2.85 9.56 0.219 0.18 2.420 0.109 
(-) (-) -70.4% 3.6% 3.6% 9.3% 6615.8% 3907.5% 

 

6.1.5 Correction factors for vertical loads 

As introduced in previous Sections, the in-plane principal stress distributions and the 

compressive state of stress along the sliding joint could be strongly influenced, during the 

different phases of the test, by the presence of the slots for the seating of the flatjacks, by the 

removal of bricks, by the diffusion of the shear load, and by dilatancy. Therefore, the 

compressive stress acting on the sliding brick is far away from being equal to the pressure 

applied by flatjacks. In the model considered, given the reduced effect of dilatancy on the 

results, the actual value consists of basically two contributions: the first one is given by the 

vertical load acting on the wall, namely the self-weight and the overburden, the second one is 

given by the flatjacks. In order to evaluate these contributions, one possibility is to calibrate 

correction factors, given the stress distributions in the different phases of the test from the 

numerical model. 

The characteristics of masonry surely affect the way in which vertical loads are deviated 

from the vertical direction, e.g. head joints not transmitting tensile stresses, etc. Therefore, in 

the followings, four different cases are considered for the evaluation of the above-mentioned 

correction factors: 

- Elastic joints; 
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- No tension material for vertical and horizontal mortar joints with constant shear stiffness; 

- No tension material for vertical and horizontal mortar joints with reduced shear stiffness (a 

reduction of 50% is considered); 

- No tension material for vertical and horizontal mortar joints with zero shear stiffness. 

The stress distributions are evaluated for top and bottom sliding joints, in each test phase. 

Then, the average compressive stress is calculated and compared with the nominal value applied 

(as overburden or as flatjack pressure) in that phase. In this way, by multiplying the correction 

factors and the nominal values of the overburden load and the flatjack pressure, the compressive 

stress acting on the sliding joint can be correctly evaluated. In Table 6.4-Table 6.7 are reported 

the results obtained in terms of average stresses in each phase, and in Table 6.8 is reported a 

summary of the correction factors. It can be noticed how, by decreasing the shear stiffness of 

the joints, the correction factor for vertical load decreases, while the correction factor for the 

flatjack pressure increases, which is consistent with the influence that the shear stiffness has on 

the diffusion of the stresses inside the masonry. 

Table 6.4. Model A1 – Elastic joints: equivalent normal and tangential stresses. 

Step 
Top joint Bottom joint Mean 

σequiv. 

(MPa) 
τequiv. 

(MPa) 
σequiv. 

(MPa) 
τequiv. 

(MPa) 
σequiv. 

(MPa) 
τequiv. 

(MPa) 
1 - Self-Weight -0.045 0.000 -0.046 0.000 -0.045 0.000 
2 - Overburden -0.149 0.000 -0.151 0.000 -0.150 0.000 
3 - First cut -0.059 0.000 -0.079 0.000 -0.069 0.000 
4 - Second cut -0.018 0.000 -0.018 0.000 -0.018 0.000 
5 - Brick removal -0.111 -0.006 -0.112 0.007 -0.111 0.000 
6 - FJ Pressure -0.166 -0.006 -0.167 0.006 -0.166 0.000 

Table 6.5. Model A1 – No tension & constant shear stiffness: equivalent normal and tangential 
stresses. 

Step 
Top joint Bottom joint Mean 

σequiv. 

(MPa) 
τequiv. 

(MPa) 
σequiv. 

(MPa) 
τequiv. 

(MPa) 
σequiv. 

(MPa) 
τequiv. 

(MPa) 
1 - Self-Weight -0.045 0.000 -0.046 0.000 -0.045 0.000 
2 - Overburden -0.149 0.000 -0.151 0.000 -0.150 0.000 
3 - First cut -0.052 0.000 -0.070 0.000 -0.061 0.000 
4 - Second cut -0.010 0.000 -0.010 0.000 -0.010 0.000 
5 - Brick removal -0.095 0.000 -0.097 0.000 -0.096 0.000 
6 - FJ Pressure -0.155 0.000 -0.157 0.000 -0.156 0.000 

Table 6.6. Model A1 – No tension & reduced shear stiffness: equivalent normal and tangential 
stresses.  
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Step 
Top joint Bottom joint Mean 

σequiv. 

(MPa) 
τequiv. 

(MPa) 
σequiv. 

(MPa) 
τequiv. 

(MPa) 
σequiv. 

(MPa) 
τequiv. 

(MPa) 
1 - Self-Weight -0.045 0.000 -0.046 0.000 -0.045 0.000 

2 - Overburden -0.149 0.000 -0.151 0.000 -0.150 0.000 

3 - First cut -0.053 0.000 -0.068 0.000 -0.060 0.000 
4 - Second cut -0.010 0.000 -0.010 0.000 -0.010 0.000 
5 - Brick removal -0.094 0.000 -0.096 0.000 -0.095 0.000 
6 - FJ Pressure -0.155 0.000 -0.156 0.000 -0.155 0.000 

Table 6.7. Model A1 – No tension & zero shear stiffness: equivalent normal and tangential stresses. 

Step 
Top joint Bottom joint Mean 

σequiv. 

(MPa) 
τequiv. 

(MPa) 
σequiv. 

(MPa) 
τequiv. 

(MPa) 
σequiv. 

(MPa) 
τequiv. 

(MPa) 
1 - Self-Weight -0.045 0.000 -0.046 0.000 -0.045 0.000 

2 - Overburden -0.149 0.000 -0.151 0.000 -0.150 0.000 

3 - First cut -0.056 0.000 -0.058 0.000 -0.057 0.000 
4 - Second cut -0.009 0.000 -0.011 0.000 -0.010 0.000 
5 - Brick removal -0.085 0.000 -0.087 0.000 -0.086 0.000 
6 - FJ Pressure -0.148 0.000 -0.150 0.000 -0.149 0.000 

Table 6.8. Model A1 – Correction factors. 

Model Vertical loads* Flatjack pressure 
Elastic joints 0.74 1.10 
No tension & constant shear stiffness 0.64 1.21 
No tension & reduced shear stiffness 0.63 1.21 
No tension & zero shear stiffness 0.58 1.25 

*self-weight and overburden 
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6.2 Shove test – Method B 

6.2.1 Testing procedure 

The testing procedure consists in applying a uniform distributed load at the top of a masonry 

panel, reproducing the dead and live loads which can be present in situ. Then, the masonry unit 

to be subjected to the test is chosen and two bricks have to be removed from its opposite ends. 

The horizontal load is applied to the test unit by means of a hydraulic jack. The load is increased 

monotonically until the obtainment of the sliding failure of the brick. The geometry of the wall, 

with the identification of the test location, which is the same considered for Method A, is 

reported in Figure 6.29. 

 

 

 

Figure 6.29. Shove test – Method B: wall geometry and test location. 

6.2.2 Numerical model 

The detail of the mesh used in the numerical model is shown in Figure 6.30. A 2D model and a 

simplified micro-modeling strategy were considered also in this case. The same modeling 

choices described for Method A in Section 6.1.2 were here adopted. The input parameters used 

in the numerical models for masonry are the same used for the numerical simulations of the 

triplet test and have been reported in Table 5.4. 
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(a) 

 
(b) 

Figure 6.30. Shove test - Method B, finite element model: (a) entire wall panel; (b) detail of the shear 
load application. 

The finite element software DIANA FEA (Release 10.1) was adopted for the numerical 

simulations. Phased analyses were carried out to exactly reproduce the testing procedure: 

- Phase 1: application of the self-weight and the overburden;  

- Phase 2: removal of bricks; 

- Phase 3: application of the shear load. 

The nonlinear analyses were performed by imposing an increasing horizontal load both to the 

sliding and the contrast brick, to reproduce the presence of the horizontal hydraulic jack. 

Regular Newton-Raphson method and arc-length method were adopted to solve the nonlinear 

problem. 

6.2.3 Numerical results 

The results of three numerical simulations of the shove test, according to the procedure reported 

in the Standard for Method B, will be presented in this Section. Different loading conditions 

were considered, as reported in Table 6.9. In particular, the same overburden loads considered 

in Method A were applied at the top of the masonry wall to provide a comparison of the two 

methodologies when the tests are executed on the same existing masonry wall. 
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Table 6.9. Shove test – Method B: loading conditions for the numerical simulations. 

Model Overburden Load 

(kN) 

Vertical compression* 

(MPa) 

B1 21.28 0.15 

B2 41.74 0.25 

B3 113.36 0.60 

*given by self-weight and overburden on the sliding brick at the beginning of the test 

First of all, the results of Model B1 will be analyzed in detail to properly understand the shear-

sliding behavior investigated in the shove test. Then, a comparison between the main outcomes 

of the three numerical simulations will be presented. 

The shear load F vs tangential displacement δv curve and the shear stress τ vs tangential 

displacement δv curve are presented in Figure 6.31 and Figure 6.32; respectively. They are both 

characterized by an initial linear behavior up to the failure load, followed by a hardening phase, 

in which the peak load is reached, a softening branch and a residual phase, namely the dry-

friction phase. 

 

Figure 6.31. Model B1 – Numerical results: shear load F vs tangential displacement δv diagram. 

  

Figure 6.32. Model B1 – Numerical results: shear stress τ vs tangential displacement δv diagram. 
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To investigate dilatancy, the orthogonal displacement δu vs tangential displacement δv graph is 

reported in Figure 6.33. Also in this case, to evaluate the average orthogonal displacement δu, 

the differences between the vertical displacements of two pairs of points, positioned above and 

below the test unit, were considered. It is possible to observe that, in the first part of the test, 

the masonry portion is subjected to compression. Then, as soon as the failure load is reached, 

the orthogonal displacement δu registered a positive increase, indicating a volume expansion 

during the sliding of the brick. Here, dilatancy seems to play a role in enhancing the shear 

capacity of masonry, with a little increase noticeable from the failure load to the peak load. 

 

  

Figure 6.33. Model B1 – Numerical results: orthogonal displacements δu vs tangential displacement 
δv. 

The evolution of the in-plane principal stress distributions on the masonry portion where the 

shove test is conducted is shown in Figure 6.34 and Figure 6.35. For each test phase, it is 

possible to recognize the following features: 

- Phase 1a - Self-weight of the wall panel (Figure 6.34a): the compression lines are vertical, 

and the in-plane principal compressive stresses are uniform on the cross section of the panel; 

the compressive stress due to vertical loads at the sliding brick height is 0.046 MPa. 

- Phase 1b - Application of the overburden at the top of the wall (Figure 6.34b): the 

compression lines are vertical, providing a total uniform compressive stress at the sliding 

brick height equal to 0.15 MPa, including the self-weight. 

- Phase 2 - Removal of the two bricks adjacent to the sliding brick (Figure 6.34c): the removal 

of two bricks produces a strong variation in the principal stress distribution. The vertical load 

given by the self-weight and the overburden partially deviates inwards on the tested brick, 

producing a significant increase in the compression stress and stress concentrations at the 

joint edges. 
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- Phase 3 - Application of the shear load (Figure 6.35): the in-plane principal stress distribution 

is influenced by the presence of a shear load. Indeed, it produces lateral compression on the 

sliding brick, which is transferred with a diffusion cone, through the sliding joints, to the 

masonry above and below the test unit. The diffusion of the shear load inside the masonry 

produces also a variation in the compressive stress along the sliding joint. In Figure 6.35, 

three different steps of the analysis are considered: the application of the shear load (Figure 

6.35a), the peak load (Figure 6.35b) and the residual phase (Figure 6.35c). The peak load 

obviously corresponds to the maximum shear stress sustained by the test unit. However, for 

Model B1, it does not correspond to the load step in which all the integration points reached 

the Coulomb friction failure domain (failure load). 

Focusing on the tested masonry portion, the in-plane principal stress distributions on the 

deformed configuration are shown in Figure 6.36, for three specific steps of the analysis: 

- Removal of bricks (Figure 6.36a); 

- Peak shear load (Figure 6.36b): reaching of the maximum shear stress; 

- Post-peak phase (Figure 6.36c): it is possible to observe the sliding of the brick with respect 

to the surrounding masonry; the dilatant behavior of the bed joints is not clearly visible here, 

since the orthogonal displacements are significantly lower than the ones observed for Model 

A1. 
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(a) 

(b) 

(c) 

Figure 6.34. Model B1 – Principal stress distributions: (a) self-weight; (b) overburden application; (c) 
removal of bricks. 
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(a) 

(b) 

(c) 

Figure 6.35. Model B1 – Principal stress distributions: (a) application of the shear load; (b) peak load; 
(c) residual branch. 
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(a) 

(b) 

(c) 

Figure 6.36. Model B1 – Principal stress distributions on the tested masonry portion: (a) application of 
the vertical load and removal of bricks; (b) peak load; (c) post-peak phase. 



6 |   Numerical simulations of shove test 

 

 
143 

The normal and tangential stress evolutions along the top and bottom sliding interfaces are 

reported in Figure 6.37 and Figure 6.38, respectively. The steps already analyzed for the in-

plane principal stress distributions are here considered. For the tangential stresses, only the 

stress distributions at the failure load, at the peak load, and in the residual phase are shown, 

given that they are null or negligible during the application of the vertical loads. 

With reference to the normal stress evolutions on both the interfaces, uniform distributions 

are associated with the application of the self-weight and the overburden load, as expected. 

Then, due to the bricks removal, the non-uniformity of the normal stress distributions can be 

noticed, whit quite high compressive stresses, especially at the extremities of the joints. With 

the application of the shear load, considering the step at failure, the compressive stresses 

increase significantly on the right-end side of the sliding interfaces, close to the application of 

the shear load. On the left-end side, instead, the state of stress remains almost unchanged with 

respect to the previous phase. In the central portion of the joint, the discontinuity of the stress 

distributions is justified by the presence of the head joints above and below the superior and 

inferior interface, respectively. This determines, on one side of the head joint, a consistent 

decrease of the compressive stress; on the other side of the head joint, instead, a compression 

increase can be noticed. Considering the step corresponding to the peak load, the compressive 

stress is still high on the right-end side of the joint, but a more uniform distribution can be 

recognized elsewhere. From a qualitative point of view, in correspondence of both the failure 

and the peak load, the tangential stress distributions on top and bottom interfaces are similar to 

the normal stress ones, with higher shear stresses on the right-end side and a discontinuity in 

correspondence of the head joints. Smoothen distributions can be observed in the residual 

phase, both for normal and tangential stresses. 

The results presented for the Model B1 shows the lower complexity of the shove test 

performed according to Method B with respect to Method A proposed by the ASTM Standard. 

However, also in this case, there are uncertainties related to the estimation of the compressive 

stress acting on the joints during the entire duration of the test. A major contribution to the 

compressive stress state is given by the vertical loads during the phase in which the bricks are 

removed.  
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(a) (b) 

Figure 6.37- Model B1 – Stress evolution along the top sliding interface: (a) normal stress; (b) 
tangential stress. 

  

(a) (b) 

Figure 6.38- Model B1 – Stress evolution along the bottom sliding interface: (a) normal stress; (b) 
tangential stress. 

The results of the numerical analyses for Model B1, B2 and B3 are reported together in Figure 

6.39 and Figure 6.40 in terms of shear load F vs tangential displacement δv curves and shear 

stress τ vs tangential displacement δv curves, respectively. The graphs are all characterized by 

an initial almost linear branch up to the failure load. For Model B2 and B3, the failure load and 

the peak load coincide, while for Model B1, as already observed, the peak load is greater than 

the failure load. In all cases, after the reaching of the peak load, a softening and a residual phase 

can be recognized. The increase of the overburden load in Model B2 and B3 determines a 

significant increase in the shear capacity of the tested brick. In Figure 6.41, orthogonal 

displacement δu vs tangential displacement δv curves are reported. It is worth noting that the 

orthogonal displacement δu decreases as the overburden load, and consequently the 

compressive stress on the test unit, increases. This is consistent with the dilatancy formulation 

presented in Section 4. In particular, for Model B3, in which the overburden is very high (higher 
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than the confining compressive stress σu), the tested masonry portion is compressed for the 

entire duration of the test. 

 

Figure 6.39. Numerical results – comparison: shear load F vs tangential displacement δv diagram. 

  

Figure 6.40. Numerical results - comparison: shear stress τ vs tangential displacement δv diagram. 

  

Figure 6.41. Numerical results - comparison: orthogonal displacements δu vs tangential displacement 
δv.  
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6.2.4 Parametric studies on dilatancy 

As already done in Section 6.1.4, parametric studies on dilatancy were performed for the 

Method B of the shove test. In total, nine parametric analyses were carried out, as reported in 

Table 6.10, aimed at increasing the role of dilatancy for the considered models. In particular, 

greater values for ψ0 and σu, - considering the same increments - and lower values for δ were 

chosen. In the followings, the results will be presented for Model B1 only, given that for lower 

acting compressive stresses, the effect of dilatancy is more evident. 

Table 6.10. Shove test – Method B: parametric studies on dilatancy. 

Numerical 

simulation 

ψ0 

(rad) 

σu 

(MPa) 

δ 

(-) 

B1* 0.374 -0.58 9.63 

B1_1b 0.561 -0.58 9.63 

B1_1c 0.842 -0.58 9.63 

B1_1d 1.262 -0.58 9.63 

B1_2b 0.374 -0.87 9.63 

B1_2c 0.374 -1.31 9.63 

B1_2d 0.374 -1.96 9.63 

B1_3b 0.374 -0.58 6.42 

B1_3c 0.374 -0.58 4.28 

B1_3d 0.374 -0.58 2.85 

*Reference parameters, calibrated through triplet test results. 

In Figure 6.42, the plastic orthogonal displacement upl vs plastic tangential displacement vpl 

curves are reported, for each set of parameters. These curves were not obtained from the 

numerical analyses, but were built according to Eq. (6.2), already introduced in Section 4.1.2, 

considering the average compressive stress σ present on the joint after the removal of the bricks 

in Model B1: 

 0 1 1
vpl

pl
u

u e
 

  
 

. (6.2) 

Therefore, considering also that the compressive stress is variable during the test, they just 

provide general indications to be compared with the results of the parametric analyses. For a 

better comparison, the values of the plastic orthogonal displacement from Eq. (6.2) were 

doubled to account for the presence of both the joints along which the sliding occur. Similarly 

to what observed in the parametric studies for Method A, from Figure 6.42, it is possible to 

notice that the initial dilatancy angle ψ0 influences the most the value of the plastic orthogonal 
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displacement, while variations of the confining stress σu do not seem to be very relevant. The 

parameter δ, besides having a slight influence (if compared with ψ0) on the value of the plastic 

orthogonal displacement, affects more the position of the curve plateau, which is linked to a 

slower exponential decay of the function. 

 

Figure 6.42. Theoretical plastic orthogonal displacement upl vs plastic tangential displacement vpl 
curves: (a) parametric studies on ψ0; (b) parametric studies on σu; (c) parametric studies on δ. 

Before analyzing the results of the parametric analyses, it is worth pointing out that, in the 

numerical model of the shove test according to Method B, the vertical displacements along the 

sliding interfaces cannot be considered completely free. Besides the impediment to the vertical 

uplift given by the surrounding masonry, already observed for Method A, the continuity of 

masonry (not disturbed by the presence of the flatjacks) can provide a greater confinement of 

the tested brick. Consequently, if volume expansion is restrained to some extent, the orthogonal 

displacements registered are lower than the ones from the theoretical curves of Figure 6.42, and 

correspondent increases in the compressive stress state on the sliding interfaces can be 

observed, leading to an increase in the shear strength. Moreover, it is also important to point 

out that, in correspondence of quite high values of the compressive stress σ, which is the case 

when performing the test with Method B, the ratio σ/σu in Eq. (6.2) can become the governing 

parameter and can have a higher effect on dilatancy. Indeed, in the parametric analyses here 

presented, the increase in the compressive stress due to dilatancy, with respect to Model B1, 

resulted to be quite high (10%-40%). 

The results of the parametric analyses are presented in Figure 6.43-Figure 6.51, in terms of: 

load F vs tangential displacement δv, shear stress τ vs tangential displacement δv, and 

orthogonal displacement δu vs tangential displacement δv. In Figure 6.52-Figure 6.54, global 

comparisons are shown. Notice that in Figure 6.45, Figure 6.48, Figure 6.51, and Figure 6.54, 

total orthogonal (δu) and tangential (δv) displacements are reported, not their plastic 

components. The displacement δu is calculated as already explained in previous sections. In 

Table 6.11, a summary of the results is presented to quantitatively evaluate the differences 
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between the considered models in terms of peak load (Ppeak), average shear strength (τmax), 

average compressive stress at the peak (σmax), tangential displacement at the peak (δvpeak), and 

orthogonal displacement at the peak (δupeak). 

The parametric studies on ψ0 (Figure 6.43-Figure 6.45) shows significant increments in the 

shear capacity with respect to Model A1 (up to 23%), which are obviously related to 

compressive stress increases. Indeed, in these cases, the orthogonal displacements registered 

are much smaller than the theoretical ones (Figure 6.42a), indicating that they are restrained 

due to the test conditions. Dilatancy is therefore playing a role and determines an increase in 

the peak load. The effect of dilatancy on the shear response is also visible looking at the F- δv 

and τ- δv curves, where the failure load (corresponding to the point in which the failure criterion 

is reached in all the integration points of the interfaces) and the peak load can de distinctly 

identified. In particular, the failure load coincides with the point of the curve for Model B1 from 

which the behavior is no more linear, and it is the same in all the models. Beyond this point, 

the dilatant behavior of masonry, which plays a role in the nonlinear field, determines the 

mentioned increase in capacity. 

For parametric studies on σu (Figure 6.46-Figure 6.48) it can be noticed how variations on 

this parameter, differently to what expected by looking at the theoretical curves (Figure 6.42a), 

do produce significant changes in the sliding behavior during the shove test, with increases in 

the shear capacities (up to 25%) comparable to the ones observed from parametric studies on 

ψ0. Trying to explain this apparent contradiction, it should be reminded that, being the other 

parameter constant, it is the ratio σ/σu which influences the most the phenomenon. This is the 

reason why the increments for these models are comparable with the ones observed in the 

parametric analyses on ψ0. Indeed, in that case, given a constant σu, an increase in the 

compressive stress σ, associated to a confined dilatant behavior of masonry, counteract the 

increase that ψ0 can produce on the orthogonal displacement. Moreover, this is also the reason 

why the increments for these models are greater than the ones observed from parametric 

analyses for Method A. Therefore, in general, also the variation of the compressive stress σ have 

to be accurately taken into account. 

The parameter δ, looking at the results reported in Figure 6.49-Figure 6.51, rather than 

influencing the shear response in terms of capacity, affects the trend of the post-peak branch. 

The lower its value, the less steep is the softening branch. Orthogonal displacements are 

globally lower than the theoretical ones for all the considered analyses, but no significant 

increases in the peak load are observed.  
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Figure 6.43. Parametric studies on ψ0: shear load F vs tangential displacement δv diagram. 

 

Figure 6.44. Parametric studies on ψ0: shear stress τ vs tangential displacement δv diagram. 

 

Figure 6.45. Parametric studies on ψ0: orthogonal displacements δu vs tangential displacement δv. 
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Figure 6.46. Parametric studies on σu: shear load F vs tangential displacement δv diagram. 

 

Figure 6.47. Parametric studies on σu: shear stress τ vs tangential displacement δv diagram. 

 

Figure 6.48. Parametric studies on σu: orthogonal displacements δu vs tangential displacement δv. 
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Figure 6.49. Parametric studies on δ: shear load F vs tangential displacement δv diagram. 

 

Figure 6.50. Parametric studies on δ: shear stress τ vs tangential displacement δv diagram. 

 

Figure 6.51. Parametric studies on δ: orthogonal displacements δu vs tangential displacement δv. 
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Figure 6.52. Parametric studies - comparison: shear load F vs tangential displacement δv diagram. 

 

Figure 6.53. Parametric studies - comparison: shear stress τ vs tangential displacement δv diagram. 

 

Figure 6.54. Parametric studies - comparison: orthogonal displacements δu vs tangential displacement 
δv. 
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Table 6.11. Model B1 – Results of the parametric analyses. 

Model ψ0 σu δ Ppeak τmax σmax δv,peak δu,peak 

  (rad) (MPa) (-) (kN) (MPa) (MPa) (mm) (mm) 

Model B1 0.374 -0.58 9.63 14.13 0.324 0.387 0.113 0.007 

Model B1_1b 
0.561 -0.58 9.63 14.93 0.342 0.424 0.128 0.011 
50.0% (-) (-) 5.7% 5.7% 9.5% 12.8% 67.6% 

Model B1_1c 
0.842 -0.58 9.63 15.99 0.366 0.473 0.129 0.016 
125.1% (-) (-) 13.2% 13.2% 22.1% 14.4% 137.8% 

Model B1_1d 
1.262 -0.58 9.63 17.34 0.397 0.53 0.107 0.020 

237.4% (-) (-) 22.8% 22.8% 38.0% -5.1% 200.2% 

Model B1_2b 
0.374 -0.87 9.63 15.28 0.350 0.44 0.173 0.016 
(-) 50.0% (-) 8.2% 8.2% 13.6% 52.6% 138.9% 

Model B1_2c 
0.374 -1.31 9.63 16.54 0.379 0.50 0.218 0.024 
(-) 125.9% (-) 17.1% 17.1% 28.6% 92.8% 266.1% 

Model B1_2d 
0.374 -1.96 9.63 17.61 0.403 0.55 0.253 0.031 

(-) 237.9% (-) 24.7% 24.7% 41.2% 123.7% 367.8% 

Model B1_3b 
0.374 -0.58 6.42 14.32 0.328 0.40 0.135 0.009 
(-) (-) -33.3% 1.4% 1.4% 2.3% 19.7% 36.3% 

Model B1_3c 
0.374 -0.58 4.28 14.50 0.332 0.40 0.152 0.011 
(-) (-) -55.6% 2.6% 2.6% 4.4% 34.3% 64.6% 

Model B1_3d 
0.374 -0.58 2.85 14.65 0.336 0.41 0.169 0.013 

(-) (-) -70.4% 3.7% 3.7% 6.2% 49.2% 90.6% 
 

6.2.5 Correction factors for vertical loads 

As observed in previous Sections, the in-plane principal stress distributions and the compressive 

state of stress along the sliding joint could be strongly influenced, during the different phases 

of the test, by the removal of bricks, by the diffusion of the shear load, and by dilatancy. 

Therefore, the compressive stress acting on the sliding brick is far away from being equal to the 

overburden pressure. In the model considered, differently to what observed for Method A, the 

actual value consists of three contributions: the first one is given by the vertical load acting on 

the wall, namely the self-weight and the overburden, the second one is given by the diffusion 

of the shear load, and the third one is given by dilatancy. Ideally, all these contributions should 

be assessed to obtain a correct evaluation of the failure state of stress. However, here, a 

correction factor is calibrated for vertical loads only, as already done for Method A, for sake of 

comparisons. 

The characteristics of masonry surely affect the way in which vertical loads are deviated 

from the vertical direction, e.g. head joints not transmitting tensile stresses, etc. Therefore, in 

the followings, four different cases are considered for the evaluation of the above-mentioned 

correction factor: 
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- Elastic joints; 

- No tension material for vertical and horizontal mortar joints with constant shear stiffness; 

- No tension material for vertical and horizontal mortar joints with reduced shear stiffness (a 

reduction of 50% is considered); 

- No tension material for vertical and horizontal mortar joints with zero shear stiffness. 

The stress distributions are evaluated for top and bottom sliding joints, in each test phase. Then, 

the average compressive stress is calculated and compared with the nominal pressure applied 

in that phase. In this way, by multiplying the correction factors and the nominal values of the 

self-weight and the overburden load, the compressive stress acting on the sliding joint, at least 

at the beginning of the test, can be correctly evaluated. 

In Table 6.12-Table 6.15 are reported the results obtained in terms of average stresses in 

each phase, and in Table 6.16 is reported a summary of the correction factors, which basically 

are not influenced by the changes in the shear stiffness values. 

Table 6.12. Model B1 – Elastic joints: equivalent normal and tangential stresses. 

Table 6.13. Model B1 – No tension & constant shear stiffness: equivalent normal and tangential 
stresses. 

Step 
Top joint Bottom joint Mean 

σequiv. 

(MPa) 
τequiv. 

(MPa) 
σequiv. 

(MPa) 
τequiv. 

(MPa) 
σequiv. 

(MPa) 
τequiv. 

(MPa) 
1 - Self-Weight -0.045 0.000 -0.046 0.000 -0.045 0.000 
2 - Overburden -0.149 0.000 -0.151 0.000 -0.150 0.000 
3 - Bricks removal -0.289 0.000 -0.290 0.000 -0.290 0.000 

Table 6.14. Model B1 – No tension & reduced shear stiffness: equivalent normal and tangential 
stresses. 

Step 
Top joint Bottom joint Mean 

σequiv. 

(MPa) 
τequiv. 

(MPa) 
σequiv. 

(MPa) 
τequiv. 

(MPa) 
σequiv. 

(MPa) 
τequiv. 

(MPa) 
1 - Self-Weight -0.045 0.000 -0.046 0.000 -0.045 0.000 
2 - Overburden -0.149 0.000 -0.151 0.000 -0.150 0.000 
3 - Bricks removal -0.289 0.000 -0.290 0.000 -0.289 0.000 

 

 

Step 
Top joint Bottom joint Mean 

σequiv. 

(MPa) 
τequiv. 

(MPa) 
σequiv. 

(MPa) 
τequiv. 

(MPa) 
σequiv. 

(MPa) 
τequiv. 

(MPa) 
1 - Self-Weight -0.045 0.000 -0.046 0.000 -0.045 0.000 
2 - Overburden -0.149 0.000 -0.151 0.000 -0.150 0.000 
3 - Bricks removal -0.285 -0.005 -0.286 0.005 -0.285 0.000 
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Table 6.15. Model B1 – No tension & zero shear stiffness: equivalent normal and tangential stresses. 

Step 
Top joint Bottom joint Mean 

σequiv. 

(MPa) 
τequiv. 

(MPa) 
σequiv. 

(MPa) 
τequiv. 

(MPa) 
σequiv. 

(MPa) 
τequiv. 

(MPa) 
1 - Self-Weight -0.045 0.000 -0.046 0.000 -0.045 0.000 
2 - Overburden -0.149 0.000 -0.151 0.000 -0.150 0.000 
3 - Bricks removal -0.288 0.000 -0.289 0.000 -0.289 0.000 

Table 6.16. Model B1 – Correction factors. 

Model Vertical loads* 
Elastic joints 1.90 
No tension & constant shear stiffness 1.93 
No tension & reduced shear stiffness 1.93 
No tension & zero shear stiffness 1.92 

*self-weight and overburden 
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6.3 Results comparison and discussion 

The objective of this Section is to discuss the findings of the numerical analyses and provide 

some useful indications for the everyday practice, in which the studied experimental tests are 

actually applied to real structures. To this aim, comparisons between Method A and Method B 

of the shove test, and between shove test and triplet test, will be discussed. 

6.3.1 Shove test – Method A vs Shove test – Method B 

The main advantages of Method A with respect to Method B are: the possibility to perform 

single and double flatjack test on the tested masonry portion, thus obtaining an estimation of 

the acting vertical loads and of the deformability properties of masonry, and the possibility to 

execute the shove test at different pre-compression levels. This is good to obtain an accurate 

estimation of the residual Coulomb friction criterion from a single test. However, in order to 

calibrate the initial failure criterion, without making any assumptions on the friction coefficient, 

the execution of more than one test (if possible, at least three tests on the same masonry 

typology) is needed. The drawback of Method A is the complexity of the test itself and the great 

uncertainties determined by the cutting of the flatjacks slots and the removal of bricks, which 

significantly influence the in-plane stress distributions and the compressive stress on the sliding 

brick. In practice, it can be quite difficult to correctly evaluate these contributions, because they 

substantially depend on the ability of masonry of transferring loads, which is extremely variable 

in existing, and maybe damaged or deteriorated, masonries. Moreover, in correspondence of 

very low flatjack pressures, the compressive stress state on the brick is much more influenced 

by the overburden load. Therefore, if a correct evaluation of the overburden contribution to the 

compressive stress state is not carried out, the results, in terms of failure state of stress, can lead 

to the calibration of an incorrect failure domain. Furthermore, when dilatancy is relevant for 

the shear-sliding response of masonry, which was not the case for the calcium silicate brick 

masonry here considered, the problem could become even more complex. 

The main advantage of Method B is the quite simple and quick execution with respect to 

Method A, which are surely aspects to be taken into account when planning an experimental 

campaign on existing constructions. Moreover, a lower disturbance is created in the wall panel 

since the cuts for the seating of the flatjacks are not executed. To obtain information on the 

compressive state of stress of the wall prior to testing, single and double flatjack tests could be 

performed on the same masonry, close to the tested portion. In this way, less uncertainties will 

be related to the estimation of the compressive stress on the sliding brick. However, for Method 
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B, more than one test have be executed on the same masonry typology to calibrate both the 

residual and the initial Coulomb friction failure criterion. 

Comparing the results of Models A1 and B1, it is evident that the shear capacity is greater 

in the latter case, due to the fact that a higher compressive stress state is present. Also, due to 

test conditions, vertical uplifts upon shearing are much more restrained for Model B1, and this 

can determine a greater impact of dilatancy on the shear capacity of masonry. From the 

performed numerical simulations, the diffusion of the shear load seems to have a greater 

influence on the compressive stresses for Method B. However, this latter observation could be 

also related to the features of the masonry considered and may not be generalized for different 

masonry typologies, eg. clay brick masonry, typical of many Italian regions. 

To improve the testing procedures, for both methods, vertical LVDTs should be positioned 

in correspondence of the sliding brick. On the one hand, they can be useful to monitor the 

displacements during the removal of bricks in order to evaluate the average increase of the 

compressive stress in the tested masonry portion. In this way, it is possible to obtain information 

on the correction factor for vertical loads. On the other hand, they can be of great help in the 

detection of a dilatant behavior of masonry. To calibrate the Coulomb friction failure criterion, 

indeed, it is important to detect the failure load rather than the peak load. Indeed, the peak shear 

strength, if different from the failure one, is associated to an increase in the compressive stress 

due to dilatancy and should not be confused with the actual shear strength of the material. Using 

vertical LVDTs, the failure load can be identified as the point from which positive vertical 

displacements are registered. 

6.3.2 Shove test vs Triplet test 

Triplet tests are performed on small masonry samples and allow to identify the mechanical 

properties of masonry according to a Coulomb friction failure criterion. Since they are 

performed in laboratory, displacement controlled procedures may be used, even if requiring 

quite complex setup, and the post-peak phase can be characterized as well. This is very useful 

to obtain accurate input parameters to be used in the numerical simulations. On the contrary, 

with the shove test, which is executed in force control, the identification of the post-peak phase 

is really difficult and cannot be properly achieved. Even if the tests are executed with different 

control procedures, similar results in terms of calibrated failure criteria would be expected. 

However, differences can be detected both in the test setup and in the conditions of the samples, 

leading to different test outcomes.  
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First of all, the boundary conditions are not the same and they influence the stress 

distributions along the sliding joints. Being the non-uniformity of compressive and shear 

stresses one of the most important features of a shear test (Riddington et al. 1997), it is evident 

that this aspect can determine discrepancies in the triplet and shove test results. 

Secondly, triplet tests are very small samples compared to the wall panels considered for the 

shove tests. Even if the presence of head joints is included in the triplet test specimens (i.e. 

modified triplet test), thus considering the same bond pattern of the shove test, the construction 

process of the triplet samples and their curing conditions (e.g. vertical loads to which they are 

subjected) are very different from the ones of the walls used for the shove test. Therefore, the 

presence of head joints above and below the sliding brick could determine a better performance 

of masonry in the shove test, differently to what happened in triplet tests, in which almost no 

differences were observed for standard and modified triplets.  

Finally, the compressive stress state along the joints can be very different in the two tests. In 

the shove test, it is not simply the applied one, but it is influenced by many contributions, as 

previously described. Moreover, in the triplet test, the displacement orthogonal to the sliding 

joint is completely free while in the shove test, due to the test conditions already discussed, it 

is more restrained. Therefore, in the shove test, dilatancy could determine a further increase in 

compressive stress, while in the triplet test, dilatancy is only recognizable in terms of orthogonal 

displacements registered along the joints during the sliding failure. 

The mentioned aspects should be taken into account when the results of the numerical 

analyses of the shove test, in which the model was calibrated with the triplet test results, are 

compared with the experimental results of a shove test, as will be done in Chapter 7 with a case 

study. 

 



7 |   Case study 

 

 
159 

7 Case study 

The case study here presented is part of an experimental campaign conducted at Delft 

University of Technology, in which the shove test was performed on a replicated single-wythe 

calcium silicate masonry wall, according to Method A of the ASTM Standard. For the 

construction of the wall, calcium silicate bricks (dimensions: 214x102x72 mm3) and 

cementitious mortar (joint thickness: 10 mm) were used. The mechanical parameters of the 

materials were the same presented for the triplet tests (Table 5.4). The geometry and the texture 

of the wall panel were chosen to reproduce a typical Dutch masonry wall, with one-storey 

height. Moreover, to simulate the in-situ state of stress, an overburden load was applied at the 

top of the wall, by pre-stressing four steel rods connected to a transverse beam. The shove test 

was performed in the lower portion of the wall, applying an overburden load such as to obtain 

a vertical compressive stress equal to 0.25 MPa at the single flatjack test height (Figure 7.1). 

 

 

Figure 7.1. Case study: wall geometry and test setup. (TUDelft) 

The test procedure consisted in: (i) selecting the masonry portion to be subjected to the test; 

(ii) performing a single and a double flatjack tests to estimate the compressive state of stress 

and the Young’s modulus, respectively; (iii) removing of the two bricks adjacent to the sliding 

brick; (iv) performing a double flatjack test to evaluate the fictitious Young’s modulus in this 

modified configuration, according to the proposal by Rossi et al. (2015); (v) apply a vertical 

32
90

2006

10
76

22
1

4
Test Location

Overburden Load



7 |   Case study 

 
160 

compressive stress by loading the flatjacks; (vi) increase the pressure in the horizontal jack to 

obtain the sliding failure of the tested unit. In the followings, the test setup and the results in 

each phase will be presented. 

 
- Single flatjack test 

By performing a single flatjack test, the compressive stress of masonry can be evaluated. In 

this case, the test was carried out to check the correspondence with the compressive stress 

state given by the self-weight and the overburden load. After the positioning of the gauge 

points and the measurements of their pre-cut distances, the cut was executed and the flatjack 

seated (Figure 7.2). Then, post-cut measurements were taken and the flatjack pressure was 

gradually increased to restore the initial distance between the gauge points. The result of the 

test, in terms of acting compressive stress, is reported in Table 7.1. 

 

  
(a) (b) 

Figure 7.2. Case study – Single flatjack test: (a) execution of the cut; (b) seating of the faltjack. 

Table 7.1. Case study – Single flatjack test results. 

 

- Double flatjack test (undisturbed masonry) 

In order to perform the double flatjack test, a second cut was made, parallel to the the first 

one, at a distance of 5 courses. Four vertical LVDTs, with a gage length of 290 mm, were 

positioned for the measurement of the vertical displacements (Figure 7.3a). Four load cycles 

were performed, at 25%, 50%, 75% and 100% of the acting compressive stress. In Figure 

7.3b, the compressive stress σ vs strain ε graph is shown. The elastic modulus E was 

evaluated and resulted to be equal to 9975 MPa, considering all the LVDTs, and 7945 MPa, 

considering the central LVDTs only. 

Single FJ test Symbol Unit Value 
Flatjack calibration factor km - 0.794 
Flatjack area / Slot area ka - 0.870 
Flatjack pressure to restore the initial distance p bar 3.15-3.95 
Average compressive stress σ MPa 0.22-0.27 
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(a) (b) 

Figure 7.3. Case study – Double flatjack test (undisturbed masonry): (a) setup; (b) σ-ε curves. 

- Removal of bricks 

The two bricks adjacent to the test unit and their mortar joints were accurately removed. 

Unfortunately, in this phase, the LVDTs were detached from the masonry surface in order 

not to damage them during the extraction procedure. Therefore, the increase in the 

compressive stress due to vertical load was not measured in this test. 

 
- Double flatjack test (shove test configuration) 

The double flatjack test was performed again after the removal of the bricks, in the shove 

test configuration, to determine a second elastic modulus E* (Figure 7.4a). This was done 

according to the proposal by Rossi et al. (2015) in order to evaluate the jack to brick 

correction factor: 

,
*

brick FJ
bj

FJ

E
k

E


 


, (7.1) 

where σbrick,FJ is the vertical compressive stress on the brick, σFJ is the pressure applied by 

the flatjacks, E is the elastic modulus evaluated with the double flatjack test in the 

undisturbed configuration, E* is the elastic modulus evaluated in the shove test 

configuration. In Figure 7.4b, the compressive stress σ vs strain ε graph is shown. The 

fictitious elastic modulus E* was evaluated considering the two central LVDTs and was 

equal to 6750 MPa. Only the two central LVDTs were considered. Therefore, the value of 

the jack to brick correction factor kbj resulted to be equal to 1.18. 
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(a) (b) 

Figure 7.4. Case study – Double flatjack test (shove test configuration): (a) setup; (b) σ-ε curves. 

- Shove test 

The setup of the shove test is presented in Figure 7.5a. During the test, horizontal and vertical 

displacements were measured by means of LVDTs: two horizontal LVDTs were positioned 

on both sides of the sliding brick to measure its relative displacement with respect to the 

surrounding masonry, and two vertical LVDTs were positioned in correspondence of the 

sliding brick to monitor the displacements orthogonal to the mortar joint (dilatancy) during 

the sliding failure. Moreover, LVDTs were placed at the wall sides to check undesired failure 

modes, e.g. failure of the contrast portion behind the horizontal jack. 

At the beginning of the test, the pressure in the two flatjacks was set at a very low value 

(σ1=0.065 MPa) and the shear force was applied monotonically by means of the horizontal 

jack. The failure mode (Figure 7.5b) was characterized by a sliding along the brick-mortar 

interface, with a “bridging” failure. 

 

  
(a) (b) 

Figure 7.5. Case study – Shove test: (a) setup; (b) failure mode. 
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After the obtainment of this first sliding, the pressure in the flatjacks was increased and the 

sliding produced again. The results of the test, at each load step, are reported in Table 7.2, 

where: τ is the maximum shear stress (only for the first step it is necessary to distinguish 

between the peak shear strength and the residual one), σFJ is the flatjack pressure, σbrick,FJ is 

the vertical compressive stress on the brick due to the flatjack pressure (evaluated as σFJ*kbj), 

and σreal is the compressive stress on the brick given by the sum of σbrick,FJ and the 

contribution of the vertical load, evaluated using the correction factor for vertical loads 

(equal to 0.64) determined in Section 6.1.5. 

Table 7.2. Case study – Shove test results. 

Load Step 
σFJ σbrickFJ σReal τ 

(MPa) (MPa) (MPa) (MPa) 
Load Step 1 - Peak 0.065 0.076 0.236 0.292 
Load Step 1 0.065 0.076 0.236 0.087 
Load Step 2 0.140 0.164 0.324 0.171 
Load Step 3 0.272 0.320 0.480 0.256 
Load Step 4 0.427 0.503 0.663 0.389 
Load Step 5 0.565 0.665 0.825 0.398 

 

The failure points obtained can be reported in a σ - τ diagram for the evaluation of the 

residual criterion. From the diagram in Figure 7.6a, where the failure points were plotted 

considering σbrick,FJ as the acting compressive stress on the brick, it is possible to notice that 

the residual failure criterion is not characterized, as it should be, by a zero cohesion. This 

can be explained considering that these values of the compressive stresses are not corrected 

accounting for the contribution of the vertical loads. Since this contribution was not 

experimentally determined, here the correction factor found for vertical loads in the 

numerical models (see Section 6.1.5) was used for a proper evaluation of the actual 

compressive stress on the brick. It can be seen that, plotting the (σreal;τ) points in the diagram 

(Figure 7.6b), an almost null cohesion is obtained. The value of the friction coefficient is 

0.55, which is quite close to the value of the friction coefficient found in the experimental 

campaign on triplet tests (equal to 0.50). It is the same in both cases since, in the second 

graph, the points are simply translated to the right by the same quantity. It is worth pointing 

out that, with the corrections considered for the compressive stress values, it is tacitly 

assumed that dilatancy is not affecting the results in terms of capacity, as was found in the 

results for Model A1. Therefore, an increase in the compressive stress on the sliding brick is 

not expected due to dilatancy. With the execution of a single test, only one initial failure 

point is available. Therefore, an estimation of the cohesion cannot be provided. 
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(a) (b) 

Figure 7.6. Case study – Shove test results: σ-τ diagrams. 

In Figure 7.7, the experimental shear stress τ vs tangential displacement δv and the 

orthogonal displacement δu vs tangential displacement curves δv are reported. The dashed 

line in the first step connected two consecutive registered points, highlighting the fact that 

the post-peak phase could not be correctly identified. The results of the numerical 

simulations, carried out as described in Section 6.1, are reported as well to compare the 

results and validate the model. In particular, in Figure 7.7b, only the first step is considered, 

given that dilatancy is effective for low values of the plastic tangential displacements, 

according to its definition. With reference to Figure 7.7a, it is possible to notice that, in the 

first step, a lower peak stress and a higher residual stress were obtained in the numerical 

analysis with respect to the experimental results. A slight difference in the failure criteria 

calibrated from triplet test and shove test results, in correspondence of a low compressive 

stress, can determine these discrepancies. In the subsequent load steps, instead, a better 

agreement was found, especially in the third and fourth steps. A very good agreement can 

be noticed in the first part of the graph of Figure 7.7b. However, in corresponding of the 

reaching of the peak load, the experimental orthogonal displacements are much higher than 

the ones obtained with the numerical analysis. This can be related to a dilatant behaviour 

which is not correctly taken into account in the model, or to the fact that during the 

experimental tests rigid movements of the sliding brick (e.g. rotation) influenced the final 

value of the orthogonal displacements. Despite this, the numerical model seems to be capable 

of reproducing the shear-sliding failure mode observed experimentally in the shove test and, 

moreover, reliable estimation of the actual compressive state of stress helped in the 

interpretation of the results and in the calibration of the residual failure criterion. 
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(a) (b) 

Figure 7.7. Case study – Shove test: experimental vs numerical results: (a) tangential stress τ vs 
tangential displacement δv; (b) orthogonal displacement δu vs tangential displacement δv. 
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8 Conclusions 

8.1 Summary 

The research work presented in this thesis was related to the investigation of the shear behavior 

of existing masonries, through experimental tests and numerical simulations. In particular, an 

experimental campaign was conducted on eight existing masonry buildings with the objective 

of identifying the most suitable techniques that can be used in the seismic vulnerability 

assessment procedures. Then, starting from the observations of the failure mechanisms obtained 

in the tests, a detailed study on the shear-sliding behavior of masonry was carried out, by 

performing numerical simulations of triplet tests and shove tests. 

During the experimental campaign, slightly-destructive tests (shove tests and splitting tests 

on cores with inclined mortar joint) and destructive tests (diagonal compression and shear-

compression tests) were conducted. Slightly-destructive tests were aimed at reproducing a 

sliding failure mode and, therefore, a Coulomb friction failure criterion was determined for the 

investigated masonry typologies. The combination of the two experimental slightly-destructive 

techniques was fundamental to provide a reliable calibration of the mechanical parameters of 

the criterion. A different interpretation of the results of the shove test was also proposed and 

resulted to be adequate to correctly evaluate the state of stress at failure. Destructive tests were 

conducted to analyze the diagonal cracking failure mechanism and to build Turnšek and 

Čačovič’s failure domains. However, also in this case, a sliding mechanism was recognized 

after the formation of the diagonal crack, which was able to influence, to some extent, the shear 

capacity of the masonry panels. From the comparison of the outputs obtained from the slightly-

destructive and destructive tests, in terms of failure state of stress and failure domains, the 

Coulomb friction criterion, calibrated with local tests, gave better correspondence with the 

results from destructive tests. Therefore, it seems to be the most suitable criterion for describing 

the shear behavior of the masonry typologies investigated, characterized by very poor-quality 

mortars. This confirms the important role of the sliding mechanism associated to the diagonal 

cracking failure mode. 

The testing procedures and typologies presented can be applied in the seismic vulnerability 

assessments and it should be stressed, on the basis of the results obtained, that the execution of 

a limited number of in-situ tests often implies the obtainment of highly scattered results, which 

may not provide adequate strength parameters for the investigated masonry. Therefore, the 
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accurate planning of an experimental campaign is fundamental and different type of tests should 

be executed on the same masonry typology in order to get more reliable results. 

The numerical simulations of triplet tests and shove tests allowed to understand which 

aspects could most affect the shear-sliding behavior of masonry. In particular, the influence of 

dilatancy was analyzed in both cases. It was observed that dilatancy can affect the results of the 

shove test in terms of shear capacity, while in the triplet tests, dilatancy have only an influence 

in terms of displacements orthogonal to the sliding joint, which were not restrained in the test. 

Aspects related to the test setup and execution were also discussed, such as the presence of non-

uniform stress distributions along the sliding bed joints, the concentration of stresses, the failure 

initiation and propagation. 

With reference to the shove test, the advantages and disadvantages of two test methods were 

deeply analyzed and various numerical simulations, including parametric studies on dilatancy, 

were performed. It was found that one of the most important aspect, when conducting a shove 

test, is the correct evaluation of the compressive state of stress acting on the sliding brick. 

Indeed, it can be influenced by the presence of the slots for the seating of the flatjacks, by the 

removal of bricks, by the diffusion of the shear load, and by dilatancy. The determination of 

these contributions is, therefore, fundamental. In the present research, correction factors for 

vertical load and for flatjack pressure were proposed for the masonry typology investigated. 

For the considered case study, given that dilatancy did not influence to a great extent the 

experimental results in terms of capacity, the evaluation of these two contributions only was 

sufficient for the correct estimation of the compressive stress state of the brick. Consequently, 

proposals for modifications of the test procedure and setup were made (e.g. additional LVDTs) 

with the objective of evaluating these contributions in situ. Comparisons between triplet test 

and shove test results confirmed that, if the correct failure state of stress is identified in the 

shove test, a quite good correspondence between the two tests can be found. 

In conclusion, the numerical simulations allowed to gain a better understanding of the sliding 

failure in triplet and shove tests. From the comparisons between experimental and numerical 

results, it was noticed that the simplified micro-modeling strategy and the combined interface 

model are very adequate for the study of the shear-sliding phenomenon. 

 

8.2 Future works 

Future works can be done, both from the experimental and the numerical point of view, on the 

following aspects: 
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- Experimental laboratory tests on clay brick masonries representative of the Italian existing 

constructions: it is believed that dilatancy would be more important in case of clay brick 

masonries rather than calcium silicate brick masonry, which was investigated with the 

experimental tests performed at TU Delft. Therefore, the calibration of the dilatancy 

parameters, together with parametric studies, could be of great help, also to confirm the 

interpretation of the shove test given in Section 3.2.2. 

- For masonries characterized by a significant dilatant behavior, it would be important to 

calibrate correction factors or analytical formulations for the evaluation of the contribution 

given by dilatancy on the compressive state of stress of the sliding brick in the shove test. 

- Numerical simulations of the shove test on 3D models: the redistribution of the stresses in 

double-wythe or multi-wythe masonry panels can be extremely different from the one in 

single-wythe walls and the effect of the collar joint could be studied as well. Moreover, 

detailed micro-modeling strategy can be adopted to model sliding failure mechanism 

occurring inside the mortar. 

- Numerical and analytical studies on diagonal compression and shear compression tests, to 

better interpret the role of the sliding failure mechanism on the shear capacity of the masonry 

panel. 
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