
ALMA MATER STUDIORUM - UNIVERSITÁ DI

BOLOGNA

DOTTORATO DI RICERCA IN

COMPUTER SCIENCE AND ENGINEERING

CICLO: XXX

SETTORE CONCORSUALE DI AFFERENZA 09/H1
SETTORE SCIENTIFICO DISCIPLINARE ING-INF/05

Scalable optimization-based
Scheduling approaches for HPC

facilities

Presentata da:
Thomas BRIDI

Coordinatore Dottorato:
Chiar.mo Prof.
Paolo CIACCIA

Supervisore:
Chiar.mo Prof.

Michela MILANO

Esame Finale 2018

http://www.unibo.it
http://www.unibo.it
https://www.unibo.it/sitoweb/thomas.bridi
https://www.unibo.it/sitoweb/paolo.ciaccia
https://www.unibo.it/sitoweb/paolo.ciaccia
https://www.unibo.it/sitoweb/michela.milano
https://www.unibo.it/sitoweb/michela.milano

iii

Alma Mater Studiorum - Universitá di Bologna

Abstract

Scalable optimization-based Scheduling approaches for HPC facilities

by Thomas BRIDI

This Thesis deals with the problem of scheduling applications on High-
Performance Computing (HPC) machines. The goal is to create a sched-
uler that can improve the solutions w.r.t. the state-of-the-art under different
metrics. However, improving the solution quality is not enough: creating a
scheduler for future HPC machines requires to take into account also over-
heads and scalability. In this thesis we present a comprehensive, scalable,
scheduling approach that features both an off-line and an on-line component.
The off-line component is based on Constraint Programming (CP), an opti-
mization technique that is well-suited for scheduling problems and allows
for great flexibility. We leverage this flexibility to present first a optimization
method designed to optimize the job waiting times, which is then extended
via heuristics and search strategies to deal with more complex objective func-
tions. Unfortunately, such a complex objective function cannot be handled by
a solver in an acceptable amount of time for online operation on a HPC ma-
chine in-production. We deal with this difficulty by making use of a second,
distributed, on-line scheduler. This second scheduler is designed to dramati-
cally decrease the computational overhead and achieve a scalability adequate
to future ExaFlops HPC machines. The distributed scheduler is proactive,
and it takes decisions so as to follow a desirable, pre-specified, utilization
profile. This feature makes it possible to connect these two schedulers to cre-
ate a hybrid system: the CP component computes the scheduling on a trace
of forecasted jobs one day ahead, machine learning techniques extract from
the solution a near-optimal and desirable utilization profile, and the online
scheduler takes care of the actual scheduling decisions in a scalable fashion.
The resulting architecture manages to improve the HPC machine profit by
an average 8.6%, while decreasing the computational overhead and, under
normal conditions, without any side effect.

http://www.unibo.it

v

List of Pubblications

Part of the work in this thesis have previously appeared in:

1. A. Bartolini, A. Borghesi, T. Bridi, M. Lombardi, and M. Milano. Proac-
tive workload dispatching on the EURORA supercomputer. English.
In Principles and practice of constraint programming - 20th international
conference, CP 2014, lyon, france, september 8-12, 2014. proceedings. B.
O’Sullivan, editor. Vol. 8656. In Lecture Notes in Computer Science.
Springer. Springer International Publishing, 2014, pp. 765–780. ISBN:
978-3-319-10427-0. DOI: 10.1007/978-3-319-10428-7_55

2. T. Bridi, M. Lombardi, A. Bartolini, L. Benini, and M. Milano. A
cp scheduler for high-performance computers. In. Vol. 1485, 2015,
pp. 37–42. URL: https://www.scopus.com/inward/record.
uri ? eid = 2 - s2 . 0 - 85009223255 & partnerID = 40 & md5 =
65ac2e65b77b8fbb06d15c101edd7bbd

3. T. Bridi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini. A con-
straint programming scheduler for heterogeneous high-performance
computing machines. IEEE transactions on parallel and distributed sys-
tems, 27(10):2781–2794, 2016. DOI: 10.1109/tpds.2016.2516997.
URL: http://dx.doi.org/10.1109/TPDS.2016.2516997

4. T. Bridi, M. Lombardi, A. Bartolini, L. Benini, and M. Milano. DARDIS:
Distributed And Randomized DIspatching and Scheduling. In Euro-
pean conference on artificial intelligence (ECAI 2016). Vol. 285. Gal A.
Kaminka et al., 2016, pp. 1598–1599

5. T. Bridi, M. Lombardi, A. Bartolini, L. Benini, and M. Milano. DARDIS:
Distributed And Randomized DIspatching and Scheduling. In, AI*IA
2016 advances in artificial intelligence, pp. 493–507. Springer, 2016

6. T. Bridi, A. Bartolini, M. Lombardi, P. V. Hentenryck, M. Milano, and
L. Benini. Profit-driven hpc scheduling optimization and pue analysis.
IEEE transactions on industrial informatics, under review, 2017

7. T. Bridi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini. Hybrid
offline-optimized and online-distributed profit-driven low-overhead
scheduler for hpc with automatic node shut-down and turn-on. IEEE
transactions on parallel and distributed systems, under review, 2017

8. C. Galleguillos, A. Sîrbu, Z. Kiziltan, O. Babaoglu, A. Borghesi, and
T. Bridi. Data-driven job dispatching in hpc systems. In International
workshop on machine learning, optimization, and big data. Springer, 2017,
pp. 449–461

http://dx.doi.org/10.1007/978-3-319-10428-7_55
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85009223255&partnerID=40&md5=65ac2e65b77b8fbb06d15c101edd7bbd
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85009223255&partnerID=40&md5=65ac2e65b77b8fbb06d15c101edd7bbd
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85009223255&partnerID=40&md5=65ac2e65b77b8fbb06d15c101edd7bbd
http://dx.doi.org/10.1109/tpds.2016.2516997
http://dx.doi.org/10.1109/TPDS.2016.2516997

vii

Contents

Abstract iii

List of Pubblications v

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1
1.1 Content . 2
1.2 Contribution . 4
1.3 Outline . 5

2 Related work 7
2.1 HPC systems . 7
2.2 HPC scheduling . 8

2.2.1 Rule-based . 9
2.2.2 Backfilling . 10

2.3 HPC scheduling optimization 13
2.4 Distributed scheduling . 14
2.5 On HPC energy, profit, and scheduling 16
2.6 Costraint Programming . 17

2.6.1 Constraint filtering and propagation 18
2.6.2 Modeling . 19

CP modeling for scheduling problems 20
2.6.3 Search strategies . 22

3 Preliminary study on the application of CP in HPC scheduling:
modeling and simulations 25
3.1 Introduction . 25
3.2 System Description and Motivations for Using CP 26
3.3 Design of a CP Approach . 28

3.3.1 Formal Problem Definition 28
3.3.2 CP Model . 29

3.4 Added Value of CP . 32
3.4.1 Evaluation of Our Models 33
3.4.2 Comparison with PBS 35

3.5 Conclusions . 38

viii

4 CP in HPC scheduling: a first application and evaluation on the EU-
RORA HPC 41
4.1 The HPC Scheduling problem 43
4.2 Constraint Programming . 44

4.2.1 Motivational example 45
4.3 CP Model . 47

4.3.1 General model . 47
4.3.2 Allocation of jobs within a reservation 49
4.3.3 Feasibility check . 50

4.4 Framework architecture . 51
4.5 Experimental Results . 55

4.5.1 Evaluation setup . 56
Simulation-based tests 56
Evaluation on the HPC 57

4.5.2 Test generation . 57
Test 0: Behavior at different heterogeneity levels 59
Test 1: 4 nodes 99 jobs 60
Test 2: 65 nodes 330 jobs 61
Test 3: 65 nodes 700 jobs 62
Results comparison . 62
Guidelines for algorithm portfolio selection 63

4.5.3 Execution on Eurora . 64
4.5.4 Overhead distribution 66

4.6 Conclusion . 71

5 Improving the HPC scheduling scalability with Distributed And
Randomized DIspatcher and Scheduler (DARDIS) 73
5.1 Motivational example . 75
5.2 Profile aware scheduling . 76

5.2.1 Rule-based schedulers for variable profiles 78
5.3 DARDIS approach . 78

5.3.1 Scheduling . 80
5.3.2 Dispatching . 81
5.3.3 Throughput driven DARDIS 82

Backfilling in DARDIS 82
5.3.4 Profile driven DARDIS 83
5.3.5 Balance driven DARDIS 83
5.3.6 Deadline exceeding . 84

5.4 Complexity study . 84
5.5 Experimental results . 85
5.6 Conclusion . 88

6 Optimal Profit-driven offline scheduling with cooling optimization 91
6.1 Workflow . 92
6.2 Scheduling problem . 92
6.3 Rule-based scheduling . 93
6.4 ILOG CP Optmizier default search 94
6.5 Profit-driven CP scheduler . 94

ix

6.5.1 The Model Variables . 95
6.5.2 The Constraints . 95
6.5.3 The Objective Function 96

6.6 Heuristic for the first solution 97
6.7 Searches . 98

6.7.1 Multi-Search . 98
6.7.2 Relaxation-Based Search 98
6.7.3 The Delay Search . 99

6.8 Results . 100
6.8.1 The Test Case . 100
6.8.2 The Implementation . 103
6.8.3 Profit comparison . 104

6.9 Conclusion . 106

7 Hybrid Offline-Optimized and Online-Distributed Profit-driven
low-overhead scheduler for HPC with automatic node shut-down
and turn-on 109
7.1 Scheduling problem . 110
7.2 Workflow . 111
7.3 Offline CP scheduling . 113
7.4 Profile Extraction . 114
7.5 Distributed Online scheduling 116
7.6 Results . 119

7.6.1 Profit improvement . 120
7.6.2 Makespan . 120
7.6.3 Overhead . 121

7.7 Conclusion . 121

8 Conclusion 123

Bibliography 125

xi

List of Figures

2.1 Marconi HPC, Eurora Rack, and Knights-Landing Node . . . 8
2.2 Scheduling example per and post Backfilling 11
2.3 Filtering and propagation example 19
2.4 Example of cumulative . 21

3.1 EURORA utilization on the first trace (BATCH1) 35
3.2 Waiting jobs and queue time for BATCH1 35
3.3 EURORA utilization on the second trace (BATCH2) 36
3.4 Waiting jobs and queue time for BATCH2 38
3.5 EURORA utilization on the third trace (BATCH3) 38
3.6 Waiting jobs and queue time for BATCH3 39

4.1 Feasibility check subdivision 50
4.2 Framework macro architecture 52
4.3 Workflow . 53
4.4 Test Generation . 58
4.5 Mean overhead at different heterogeneity levels 60
4.6 Weighted queue time gain w.r.t. PBSFifo 63
4.7 Average queue time gain w.r.t. PBSFifo 64
4.8 Number of jobs in late gain w.r.t. PBSFifo 65
4.9 Tardiness gain w.r.t. PBSFifo . 66
4.10 Weighted tardiness gain w.r.t. PBSFifo 66
4.11 Maximum overhead gain w.r.t. PBSFifo 67
4.12 Overhead percentage on execution time gain w.r.t. PBSFifo . . 68
4.13 Working ranges . 68
4.14 Weighted queue time extrapolated from Eurora 69
4.15 Core utilization on Eurora . 69
4.16 Overhead distribution for the simulated test 70
4.17 Overhead distribution for Eurora 70

5.1 Example of a profile aware scheduling architecture 77
5.2 DARDIS architecture . 80
5.3 DARDIS results comparison . 88

6.1 Workflow of the interaction between the proposed scheduler
and the DARDIS scheduler . 93

6.2 Percentage of improvement at submission end w.r.t. the best
rule based scheduler for the High workload scenario 100

6.3 Percentage of improvement at submission end w.r.t. the best
rule based scheduler for the Low workload scenario 101

xii

6.4 Tests makespan for the High workload scenario 102
6.5 Classification tree for the efficiency 102
6.6 Daily PUE and trend for the Delay-Search and the best Rule-

based in the High workload case for the scenarios: (a) Air -
Expensive - Summer, (b) Hybrid - Expensive - Summer, (c) Air
- Expensive - Winter, (d) Hybrid - Expensive - Winter, (e) Air -
Cheap - Summer, (f) Hybrid - Cheap - Summer, (g) Air - Cheap
- Winter, and (h) Hybrid - Cheap - Winter 103

6.7 PUE at different external temperatures and Slope change
workload in: (a) winter - air cooling, (b) summer - air cooling,
(c) winter - hybrid cooling, and (d) summer - hybrid cooling
from the results by [99] . 105

6.8 Distance from Slope change points at different system utiliza-
tion percentage with efficiency prediction 107

6.9 Efficiency prediction errors . 107

7.1 Workflow of the interaction between the Offline CP scheduler,
Profile Extractor, and the online DARDIS scheduler 112

7.2 Profit improvement by DARDIS100%, DARDIS70%, and
DARDIS50% w.r.t the best Rule-based scheduler in the sce-
nario. (a) Summer temperature, Air cooling; (b) Summer tem-
perature, Hybrid cooling; (c) Winter temperature, Air cooling;
(d) Winter temperature, Hybrid cooling. 115

7.3 Average makespan obtained by DARDIS100%, DARDIS70%,
DARDIS50%, and the best Rule-based with standard devia-
tion. (a) Low workload trace; (b) Medium workload trace; (c)
High workload trace. 116

7.4 Average overhead with standard deviation, in seconds, at dif-
ferent workload for (a) DARDIS100%, (b) DARDIS70%, (c)
DARDIS50%, and (d) the best Rule-based. 117

xiii

List of Tables

3.1 Access requirements and waiting times for the PBS queues in
EURORA . 28

3.2 An example of problem instance 32
3.3 A feasible solution for the instance from Table 3.2 32
3.4 Models comparison, queue times 33
3.5 Models comparison, system load 33
3.6 Job traces composition . 34

4.1 Node test setup . 45
4.2 Jobs set for test 1 . 45
4.3 PBS by GPUs solution to test 1 45
4.4 PBS by Walltime and optimization model solution to test 1 . . 46
4.5 Test 1 statistics . 46
4.6 Jobs set for test 2 . 46
4.7 PBS by GPUs and optimization model solution to test 2 46
4.8 PBS by Walltime solution to test 2 47
4.9 Test 2 statistics . 47
4.10 Eurora jobs utilization . 59
4.11 GPUs & MICs per node request distribution on Eurora 59
4.12 Memory per node request distribution on Eurora 60
4.13 Simulated test with 4 nodes and 99 jobs 61
4.14 Simulated test with 65 nodes and 330 jobs 61
4.15 Simulated test with 65 nodes and 700 jobs 62
4.16 Optimization model average overheads (seconds) 67

5.1 Results obtained by DARDIS and rule-based schedulers on 300
nodes and 35538 jobs scheduling 87

5.2 Overhead comparison of DARDIS and rule-based scheduler in
seconds . 88

6.1 Example of PUE table . 97
6.2 PUE efficiency in each scenario for ILOG, the proposed strate-

gies, the best Rule-based scheduler, and Slope change 101

7.1 DARDIS70% Vs. RB percentile profit improvement comparison 114

xv

List of Abbreviations

AI Artificial Intelligence
CP Constraint Programming
CSP Constraint Satisfaction Problem
DARDIS Distributed And Randomized DIspatcher and Scheduler
FLOPS FLoating point Operations Per Second
HPC High Performance Computing
LNS Large Neighborhood Search
MPI Message Passing Interface
NFS Network File System
OpenMP Open MultiProcessing
PBS Portable Batch Scheduler
PUE Power Usage Effectiveness
RCP Remote CoPy
RCPSP Resource-Constrained Project Scheduling Problem
SCP Secure CoPy
SSH Secure SHell

1

Chapter 1

Introduction

This thesis studies the job scheduling and dispatching problem for High-
Performance Computing (HPC) machines.

In these systems achieving a 1% improvement brings substantial advan-
tages in terms of money, waiting time and power savings.

HPC machines peak performance, measured in FLOPs (floating point op-
eration per second), has been continuously growing since their introduction
in 1963 of TOP500 [9] ranking. From 1963 to nowadays the #1 performance
for the Linpack benchmark [10] grown from 59.7GFlops to 93PFlops and it
is expected that the Exascale (1EFlops) [11] will be reached around the year
2020.

Due to the enormous amount of investments done for these computing
machines and the fast depreciation (3-5 years), the return of investment is one
of the most important points to keep in mind in both hardware and software
and also the scheduler can be set to be profit aware. However, also the user
experience is important in these systems. For this reason, we have to consider
also other metrics like job waiting time and number of late jobs.

With the new goal of the Exascale, a set of new opportunities comes to
the scientific and industrial communities but this brings also a set of new
challenges. The first one is the scalability. To create an ExaFlops computer
two paths can be taken: the first is to create more computationally powerful
nodes, the second is to create HPC with a higher number of nodes. For the
first path, the problem is that the integrated circuit density limit is going to
be reached an this will limit the computational power of a single chip [12].
For this reason, the most affordable way for the Exascale is to substantially
increase the number of computational nodes into an HPC machine. This
brings scalability problems both in the hardware and the software: starting
from the nodes interconnections to the application scalability and even to the
scheduler.

A second problem comes from a power limitation. Usually, energy
providers fix the power limit for industrial buildings to 20MW. This limit is
valid also for computing centers. The current #1 in the TOP500 list, the Sun-
way TaihuLight, can provide a computing power of 93PFlops with a power
consumption of 15.37MW. This means that for the future Exascale machines,
the engineers have to increase the computational power 10 times w.r.t. the
current top HPC with an increment of the consumption of 0.3 times.

In this scenario the importance of the scheduler is pervasive. With an
appositely designed scheduler, it is possible to not just to improve the system

2 Chapter 1. Introduction

utilization and the user experience with highly scalable algorithms but also
to improve the system efficiency in order to decrease the power consumption,
anticipate the return of investments, increase the profit and create a greener
computing system.

This results cannot be achieved just by a single approach like greedy and
heuristic algorithms or distributed computing or optimization techniques
but by a hybrid approach that exploits all of them.

The focus of the thesis is on the optimization of the scheduling results
under several different metrics and the scalability to make this optimization
usable in a real environment. HPC machines (also called supercomputers)
are computer composed by a set of nodes connected by a network. Each
node contains a set of resources (processors, accelerators, memory, etc.). The
scheduling problem for HPC consist of a non-preemptable batch scheduling.
Jobs are submitted to a high-level scheduler by the user, usually, through a lo-
gin node of the machine. The scheduler reacts to the events like submissions
and job terminations and tries to schedule and dispatch the waiting jobs. The
scheduler selects the node(s) and the starting time for the job execution. It has
to deal with resource requirements of the jobs and the available resources of
the machine. This means that the scheduler reserves the resources to a job un-
til its termination. This is an intentional behavior by the HPC administrator
used to prevent preemption on the resources that would lead to performance
worsening due to cache replacement and context switching. The objective
of the scheduler is to optimize different metrics (depending on the needs of
the computing center) as for example user’s related metrics as waiting times,
throughput, etc. From now on we refer to scheduling and dispatching as
scheduling.

Job dispatching in supercomputers is a special case of the wider Schedul-
ing and Allocation problem that arises in several different computing fields.

1.1 Content

This thesis deals with the job scheduling and dispatching problem in HPC
systems which can be subdivided into two components:

1. the allocation problem: choosing the set of nodes to be assigned to each
job

2. the scheduling problem: deciding the start time for each job avoiding
resource overusage.

Our attention is directed to the scalability and the profitability of the
scheduler. The idea is to create a highly scalable scheduler that can also im-
prove the profit of a computing center. In fact, the content of this work can
be subdivided into five different points:

A preliminary study on the application of Constraint Programming to the
HPC scheduling problem We study the applicability of Constraint Pro-
gramming to the HPC scheduling problem. We model the basic features of

1.1. Content 3

an HPC scheduler. The experimentations in this study demonstrated the fea-
sibility of the approach and showed promising results w.r.t. the commercial
scheduler PBS Professional 12. However, not all the features required for an
in-production HPC have been taken into account.

A real-word CP scheduler We have developed a second approach, mod-
eling the majority of the needed features for an in-production HPC such as
arrays of jobs, “critical-priority” jobs, heterogeneous jobs, reservations, etc.
Many techniques have been adopted to limit the computational overhead to
an acceptable value. Finally, the scheduler has been embedded into a com-
mercial scheduler: PBS Professional 12. Further experimentation shows that
the approach is still feasible and can improve the results obtained by PBS in
terms of makespan and waiting time but with scalability problems. More-
over, an experimentation on a real, in-production, HPC has been done with
promising results in terms of system utilization.

A distributed and randomized scheduler (DARDIS) This new schedul-
ing approach for HPC has been designed to drastically decrease the schedul-
ing overhead and increase the scalability of the scheduler. The scheduler
is designed to distribute the start time selection computation through the
nodes while the dispatching is done by the job itself on the basis of the can-
didate starting times returned by the nodes. Results show that just in some
cases it can improve the results obtained by commercial schedulers while the
scheduling computation is 10 times faster.

A profit-aware offline scheduler This CP scheduler is an offline scheduling
solution designed to optimize the profit obtained from the HPC consider-
ing not only the set of submitted jobs and the resources but also the cooling
model and the external temperature forecast. The scheduler is designed to
schedule synthetic jobs or the set of jobs submitted in the last 24h, obtain
a sub-optimal utilization profile optimizing the profit. This profile is then
sent to a profile-aware online scheduler. Moreover, this study also provides
an analysis on the system efficiency to decide if to increase or decrease the
workload of the next day to improve the profit. Experimentations in sev-
eral different scenarios have been done considering: different external tem-
peratures, cooling models, pricing schema, etc. It has been shown that the
scheduler achieves profit improvements up to 6-7% w.r.t. standard and ad-
hoc rule-based schedulers in the case of high-workload while no worsening
have been found in case of low workload.

A hybrid offline-online scheduler This scheduler is designed to combine
the near-optimal results obtained by optimization techniques such as Con-
straint Programming with a fast and scalable distributed scheduler. The
scheduler is capable to plan the resources utilization in the future giving
the possibility to turning on and off nodes of the system without any de-
lay. The scheduler proved to improve the HPC machine profit by on average

4 Chapter 1. Introduction

of a 8.6%. The scheduler also proved to be more scalable of both commer-
cial heuristic schedulers and optimized CP schedulers. Moreover, no signifi-
cant makespan improvement has been found in the case of low and medium
workload requests. However, an increment of 10% in makespan has been
found in case of high workload. This worsening is nature of the distributed
scheduler.

1.2 Contribution

In this work, we use techniques as Constraint Programming, Distributed sys-
tems, and Heuristics. Our contribution consists of the creation of several
different schedulers for HPC and analysis on the cooling efficiency of these
systems and how to modulate the future system utilization to increase the
profit. More in detail, our contribution can be summarized as follows:

• An online Constraint Programming scheduler [1, 3] that models all the
different features needed for a commercial scheduler. This scheduler
aims to minimize several different metrics such as the makespan, the
number of late jobs and the waiting time but the best results have been
obtained with the goal of minimizing the weighted queue time. The
weighted queue time is a metric designed to take into account the wait-
ing time of jobs in a fair way: each waiting is weighted on the expected
waiting of the user.

• A distributed, randomized, and profile-aware scheduler [4, 5]. This
scheduler is designed to dramatically improve the scalability of the
state-of-the-art schedulers. This is the first distributed scheduler that
enables the agent’s agreement without a handshake or an agreement
protocol. Moreover, this scheduler is shown to highly decrease the com-
putational overhead for the scheduling and dispatching components.

• An offline and profit-aware Constraint programming scheduler [6].
This scheduler models both the HPC resources and the cooling of the
system to optimize the scheduling to maximize the profit taking into
account the weather forecast. This scheduler has proven to increase the
profit of the system up to a 7% in case of high workload while no profit
decrement has been found in case of low workload. Moreover, the re-
sults of this scheduler have been used to understand when it is more
profitable for the system to increase or decrease the system utilization
to improve the profit. This lead to a simple rule to forecast which is the
best behavior of the scheduler for the next 24h to maximize the profit.

• A hybrid Online-Offline scheduling architecture [7]. This architecture
is composed by an offline scheduler capable to optimize the profit of a
chunk of jobs. This scheduler is triggered at fixed time intervals (24-48
hours) and, on the basis of a forecasted workload traces, it computes
the optimal allocation. The scheduling solution obtained by the offline
scheduler is then passed to a “desirable utilization profile generator”

1.3. Outline 5

that generates a utilization profile that contains the schedule of jobs
along with node shut down and start up. The desirable utilization pro-
file is then fed to the Online scheduler (DARDIS). The online sched-
uler is a fast distributed scheduler designed for scalability. The online
distributed scheduler is also designed to follow a desirable utilization
profile variable in times planning the scheduling in the future.

1.3 Outline

The thesis is organized as follows.
Chapter 2 shows an introduction to HPC systems and how they work. It

introduces the scheduling problem and shows the main algorithms used in
real-life HPC machines. It shows the state of the art in scheduling algorithms,
scheduling optimization, distributed scheduling. Finally, it introduces the
Constraint Programming (CP) paradigm, how it works, the modeling, and
the most used searches in this field.

Chapter 3 shows a preliminary study to the application of CP into the
HPC scheduling and dispatching problem. The chapter explains the mod-
eling of the scheduling problem on the EURORA HPC at CINECA, the first
simulations.

Chapter 4 shows a first application of a CP model into a real and online
scheduler. In this chapter, we modeled the most majority of the constraints
to make our CP scheduler a working prototype. The simulations are made
to show the scalability of the scheduler. Moreover, an evaluation on the HPC
with a real and in-production workload has been made to show its usability.

Chapter 5 shows a distributed and randomized scheduling approach de-
signed to solve the scalability problems of the CP scheduler. Distributed
And Randomized DIspatcher and Scheduler (DARDIS) is a scheduler that
offloads and parallelizes the scheduling problems to the nodes and the dis-
patching and commitment to the user. This approach has shown to be faster
than heuristic algorithms but, in some cases, obtaining not good solutions.

Chapter 6 proposes an offline CP scheduler designed to interact with the
DARDIS scheduler in order to improve its solution. The idea is to obtain
near-optimal solutions with an offline scheduler (as the one proposed in this
chapter) using traces obtained from workload forecast and then to guide the
DARDIS decision exploiting the offline solution.

Chapter 7 proposes a hybrid offline CP and online distributed schedul-
ing solution. The offline scheduler computes a sub-optimal scheduling, op-
timizing the profit, every 24 hours with the jobs submitted so far. From its
best solution an optimal utilization profile is extracted and used for the next
24 hours into the online scheduler. The online and distributed scheduler
(DARDIS) uses the utilization profiles generated from the offline scheduler
to turn off and on the HPC resources to decreases the energy expenses.

Finally, Chapter 8 contains our final consideration and future works.

7

Chapter 2

Related work

This chapter gives a view of the state-of-the-art of the scheduling and dis-
patching problem for HPC. The chapter is subdivided into sections: Section
2.1 explains the HPC systems architecture. Section 2.2 explores the com-
mercial and heuristic solutions used. Section 2.3 shows the state-of-the-art
in the HPC scheduling dispatching problem, focusing on optimization and
AI techniques. Section 2.4 explores the distributed scheduling approaches
present in literature. Section 2.5 shows works not related to the scheduling
and dispatching but still interesting for our work. Finally, section 2.6 shows
the Constraint Programming paradigm, the CP problems modeling, and its
searches.

2.1 HPC systems

High-Performance Computing is a technology widely used for research and
industry when high computational power is needed. Usually, these machines
are used for physics and chemistry simulations [13, 14, 15], fluid dynamics
[16, 17, 18], material design [19, 20, 21], pharmaceutical [22, 23, 24] and so on.

HPC machines are massively parallel machines composed by a set of
racks, each one with a set of nodes, each node usually contains multiple
multi-cores CPUs, accelerators, and RAM (Figure 2.1). In these systems,
looking to the TOP500 ranking [9], the core number lays the range from thou-
sands [25] to tens of millions [26] core per HPC. This is translated in a num-
ber of nodes in the range from hundreds to millions. The computational
power of HPC machines is measured in term of PetaFLOPS [27]. However,
the emerging target is to point to the ExaFLOPS [28] for the year 2020. All
these nodes are usually interconnected by both Gigabit Ethernet [29] and In-
finiBand [30] interconnections. This multi-core, multi-processors, and multi-
nodes infrastructure is exploited at its best using usually two computing
framework Open Multiprocessing (OpenMP) [31] and Message Passing In-
terface (MPI) [32] in a hybrid fashion. Combining both MPI and OpenMP
gives the possibility to instantiate multiple parallel tasks on different nodes
(thanks to MPI) and in each node multiple threads (thanks to OpenMP).
These resources are used without concurrency and preemption to maximize
the performance. However, to select the right (free) resources and to execute
the jobs, a scheduling and dispatching software is needed.

8 Chapter 2. Related work

FIGURE 2.1: Marconi HPC, Eurora Rack, and Knights-Landing
Node

These HPC machines are investment-intensive machines with short de-
preciation cycles. An average supercomputer reaches full depreciation in
three to five years [33]. Hence their utilization has to be aggressively man-
aged to produce an acceptable return on investment. Even relatively small
improvements in utilization, throughput, and quality of service translate into
significant financial gains.

2.2 HPC scheduling

The problem of batch scheduling is well-known and widely investigated [34,
35, 36, 37].

In the HPC jobs scheduling, we usually have a login node which is the
only interface to the web. Through this node, the users can login and ac-
cess to a remotely mounted home in which the user can develop and test its
code for a limited amount of time. The user then can send its application
to the HPC submitting its job to the scheduler. When submitting a job, the
user can specify the number of nodes required for the execution (from now
called job units), the amount of resources for each node (Cores, RAM, GPUs,
etc.), the maximum execution time (from now called walltime), the queue (or
partition) to submit. There are two different execution modes:

• Normal: in normal mode the user submit a script that executes its job,
the script is then accessed into the selected nodes through protocols
like NFS [38], scp [39], rcp [40], etc. And then it is executed without the
possibility for the user to access to the standard output.

• Interactive: an ssh [41] connection to one of the selected nodes is open
to the user. After that, the user can run commands to start a job directly
on the node. In this way, the user can interact with the job as it is exe-
cuted in its local terminal. If a user submits a job with multiple nodes, it
can access the remaining nodes through ssh or it can execute a parallel
job specifying the selected nodes through MPI.

After the submission, the scheduler takes care of the jobs selection follow-
ing the algorithms and rules chosen by the administrator. Each node is then
queried to find the set of nodes with enough free resources to execute all the
job units of the job. If the resources are available, the job is executed and the
next one is selected.

2.2. HPC scheduling 9

This scheduling problem can be classified as a variant of the Resource-
Constrained Projects Scheduling Problem (RCPSP). This kind of problem is
a well-studied problem and its complexity have been proven to be NP-Hard
[42, 43, 44].

Some of the most widespread rule-based scheduling software in HPC fa-
cilities are PBS Professional [45], Torque [46], Slurm [47]. PBS Professional
and Torque are branches of the original OpenPBS project (as described in [48]
and [49]), the first is a commercial software distributed by Altair, the second
is an open source version of the original PBS. Slurm is an open source sched-
uler: differently from PBS that uses queues, it uses resource partitioning to
give a finer management and only one queue. In general, the large majority
of commercial schedulers have a greedy component: the proposed heuristic
does not explore the solutions space and generates a “good” solution. Nei-
ther local nor global optimality can be achieved.

The reader can refer to the works [50, 51, 52] for good surveys on schedul-
ing algorithms used in HPC and computing clusters. Most of the algorithms
described in these works can be implemented within commercial schedul-
ing software by defining appropriate “scheduling rules” (e.g., the min-min
algorithm can be implemented sorting jobs by increasing amount of required
resources).

In a wider context, there is a large body of literature on scheduling and al-
location for data-center workloads [53, 54, 55, 56] relying on the key assump-
tion that partial or complete migration of parallel jobs is possible during their
execution. Even though supercomputers will reasonably move toward more
agile execution models [57, 58], the common practice today is that job migra-
tion is not allowed, to maximize performance and predictability [59].

2.2.1 Rule-based

Rule-based scheduling is one of the first types of algorithms proposed for the
scheduling problem [60, 61, 62] but is still widely used in HPC [63].

This heuristic algorithm (see Algorithm 1) processes jobs and nodes in a
given order which is specified via a customized rule (lines 1 and 2). When
a job is processed, the scheduler considers each job unit (line 4) and starts
querying the system nodes to find a sufficient amount of free resources (lines
5-10). When all job units have a candidate node, the job is started (lines 13-
15). If a job cannot be immediately started, two alternative behaviors are
possible:

• Strict ordering: This is the most priority conservative approach. If job i
cannot be started, the scheduler stops and waits for the next termina-
tion event to restart the process from i (lines 17-19).

• Non-strict ordering: This is the most utilization aggressive approach. If
job i cannot be executed, the scheduler skips it and tries to schedule job
i+ 1.

10 Chapter 2. Related work

Algorithm 1 RB(J = list of jobs, N = list of nodes, Rule1 = jobs ordering rule,
Rule2 = nodes ordering rule, Strict = true if strict ordering)

1: OJ = Order(J ,Rule1)
2: ON = Order(N ,Rule2)
3: foreach job j in OJ do
4: foreach w job unit in j do
5: foreach node n in ON do
6: foreach different resource k in the node n do
7: if the resource requirement of j is lower or equal to the free

resources of k then
8: set the execution of the job unit w of job j to the node n
9: end if

10: end for
11: end for
12: end for
13: if all the job units of job j have a node then
14: run the job
15: else
16: clear the nodes of each job unit of job j
17: if Strict then
18: return
19: end if
20: end if
21: end for

Despite the simplicity and similarity of these two approaches it is im-
portant to note that choosing a strict or non-strict ordering can lead to two
completely different behaviors. With the strict ordering, the jobs priority is
always respected thus leading to a high underutilization of the resources.
With the non-strict ordering, the priority is used as a soft constraint thus
leading to a higher system utilization at the expenses of the user’s fairness.

Many algorithms have been proposed to obtain a trade-off between these
two. The majority of these algorithms start with a Strict-ordering-rule-based
algorithm and after the first non-executed job applies a backfilling algorithm.

2.2.2 Backfilling

Backfilling algorithms are algorithms designed to fill resources left unused
from the main scheduling algorithm (see figure 2.2).

Many variants of the backfilling algorithm have been proposed [64].
However, the most used are Conservative Backfilling and EASY-Backfilling.

The Conservative Backfilling algorithm is designed to increase the sys-
tem utilization but paying high attention to the jobs fairness: the algorithm is
designed to anticipate a job without delaying any higher priority job (see Al-
gorithm 2). This requires a data structure to store the entire utilization profile
of each resource of the system. This profile keeps trace of the utilization of

2.2. HPC scheduling 11

0 2 4 6 8 10 12 14

Node1

Node2

Job1

Job2

Job3

(A) Pre-backfilling

0 2 4 6 8 10 12 14

Node1

Node2

Job1

Job2

Job3

(B) Post-Backfilling

FIGURE 2.2: Scheduling example per and post Backfilling

Algorithm 2 ConservativeBackfilling(J = list of waiting jobs,
N = list of nodes, Rule1 = jobs ordering rule, Rule2 = nodes ordering rule,
Strict = true if strict ordering, ct = current time)

1: for i in 1..|J | do
2: foreach node n in N do
3: Let esti,n = −1
4: while esti,n == −1 do
5: find the minimum possible start time esti,n for job j on the node
n

6: if for the entire job execution, the utilization profile has not
enough free resources then

7: esti,n = −1
8: end if
9: end while

10: end for
11: if a set of esti,∗ with the same start time with cardinality equal to the

number of job units have is found then
12: update the utilization profile
13: if esti,n == ct then
14: run the job
15: end if
16: end if
17: end for

the running job and also of the waiting jobs after the computation of an esti-
mated starting time. At each termination, the utilization profile is updated to
free idle resources (due to the walltime overestimation problem). And then,
the backfilling algorithm try to schedule waiting jobs in the idle resources
exploiting the utilization profile to not create overutilization or delays.

The EASY-Backfilling algorithm is designed to increase the system uti-
lization in a less fair way w.r.t. the conservative backfilling: The algorithm,
unlikely the conservative, tries not to delay just the first waiting job. The

12 Chapter 2. Related work

Algorithm 3 EASYBackfilling(J = list of jobs, N = list of nodes,
Rule1 = jobs ordering rule, Rule2 = nodes ordering rule, Strict = true if strict
ordering, ct = current time)

1: Let OJ the list of running jobs from J ordered by expected termination
time

2: Let w1 the first waiting job from J
3: Let W the list waiting job from J but w1
4: foreach node n in N do
5: Let estn = −1
6: while estn == −1 do
7: find the minimum possible start time estn for job w1 on the node
n iterating on OJ

8: end while
9: end for

10: Let fistWStart the minimum start time for the execution of all the job
units in estn

11: foreach job w in W do
12: if w can be executed on the free resources and terminates before

fistWStart then
13: run the job
14: end if
15: end for

algorithm (see Algorithm 3) computes the expected starting time of the first
queued job and stores it with the assigned nodes. After that, it tries to sched-
ule all the remaining jobs that can execute and terminate before the starting
time of the first job.

In the works presented by Feitelson [65], Alem [66], a study on perfor-
mances of these two different backfilling algorithms can be found: the study
evaluates conservative backfilling versus EASY backfilling providing guide-
lines on their potential selection.

Many extensions to these algorithms have been proposed. The work pre-
sented by Yuan et al. [67] show a new version of the EASY backfilling algo-
rithm to take into account fairness. As for the main scheduling algorithm for
HPC, this is a greedy algorithm and does not explore solutions to get a local
optimum. However, they propose an interesting concept of fairness that is
achieved when a job start time is not delayed by a lower-priority job. This
concept could lead to starvation. In our work, we propose a different concept
of fairness where the job waiting times have to be distributed on the basis of
the ratio between job priorities.

Another example of user-aware scheduling can be found in the work of
Shmueli and Feitelson [68]. This work prioritizes jobs by the estimated re-
sponse time and the seniority factor (minutes of waiting of the job). Then it
applies the EASY backfilling algorithm.

However, all these greedy algorithms do not guarantee neither global nor
local optimality of the solution.

2.3. HPC scheduling optimization 13

2.3 HPC scheduling optimization

The problem studied in this work is a resource-constrained project schedul-
ing problem (RCPSP) [44]. In the literature a plethora of works on this subject
can be found [69, 70, 71].

Focusing on search-based schedulers, it is hard to find in the literature
examples of optimization algorithms applied to a real in-production HPC
scheduler. Sarood et al. [72] show an ILP model to constrain the power us-
age within the resource manager. This work is based on assumptions that do
not hold in general for HPC workloads. For example, it proposes to improve
the overall execution time by increasing/decreasing the number of nodes
used by a job even during its execution. This is not possible in many HPC
production environments where resources are locked to the job for its entire
duration. In addition, the experiments in the work are made only by simula-
tion on trace-log on a system that is smaller than current HPC standards.

In a wider context, there is a large body of literature on scheduling and al-
location for data-center workloads [53, 54, 55, 56] relying on the key assump-
tion that partial or complete migration of parallel jobs is possible during their
execution. Even though supercomputers will reasonably move toward more
agile execution models [57, 58], the common practice today is that job migra-
tion is not allowed, to maximize performance and predictability [59].

In the work by Soner et al. [73] we find another example of optimization
in scheduling. The proposed solution always schedules jobs in arrival order
and models job dispatching as an assignment problem. Differently from the
approach described in the following sections, Soner et al. do not consider
the very significant optimization opportunities that emerge when jobs can be
extracted from queues in non-FIFO order.

An interesting approach can be found in the work of Kessaci et al. [74].
This is a meta-scheduler that uses multi-objective genetic algorithms to de-
cide in which data center of a grid to send jobs, in order to optimize CO2

emissions, energy consumption and profits providing a set of Pareto solu-
tions. This work differs from the present one for the assumption behind the
model: the authors consider the presence of hard-deadline for the jobs and
one job can be dispatched to only one node using a FIFO policy. In our case
study, hard-deadlines are not considered and each job can request more than
one node.

In the works presented by Wang and Raicu [75] and in the work pre-
sented by Jones and Nitzberg [76] some interesting studies on schedulers per-
formance and scalability are described: different infrastructure setups and
greedy algorithms are compared to scale to larger scale HPC machines.

To the best of our knowledge, the only examples that apply optimization
techniques to a scheduler in a production context are presented by Klusáček
et al. [77] and Chlumsky et al. [78]. In these papers, the authors present an
optimization technique applied to a scheduler. The second is developed as
an extension of the open-source TORQUE scheduler. This extension replaces
the scheduling core of the framework with a backfilling-like algorithm that
inserts one job at a time into the schedule starting from a previous solution

14 Chapter 2. Related work

and then applies a Tabu Search to optimize the solution. Both these works
use Tabu search to explore a number of local optimal solutions and consider a
job as a set of resources. This assumption drastically decreases the flexibility
of the scheduler by avoiding the possibility for a job to request more than one
node. In our work, we consider jobs requiring a set of resources. In this way,
we maintain the flexibility of commercial schedulers (like TORQUE and PBS
Professional) but we deal with a more complex problem w.r.t. the work of
Chlumsky.

The work presented by Shmueli and Feitelson [79] shows an interesting
approach for the optimization of the backfilling algorithm. This approach
exploits dynamic programming to improve results obtained by the classi-
cal backfilling algorithm to maximize the system utilization. However, the
author considers only the case of one type resource, neither different kind
of resources nor heterogeneous resources are considered, and a comparison
with this work cannot be done.

The work presented by Tsafrir et al. [80] focuses on the execution-time
prediction. The suggested technique uses the last two jobs execution from the
same user to predict the job execution-time. A key point of the approach is
that this prediction is used only for the scheduling and it does not substitute
the job’s walltime. This approach is shown to be lightweight and efficient,
and differently from other approaches, it does not expose users to the risk
of premature job killing. The authors state that this approach can be added
to every classical backfilling scheduler, but this approach can profitably be
added even to more complex scheduler like ours. However, the focus of our
work is on the scheduling algorithm. For this reason, we will investigate the
behavior of this technique applied to our CP scheduler in future works.

Several works such as [81] demonstrated that a job scheduler can be
proactively used to constrain the power consumption at run-time by set-
ting a desired power profile and schedule on the machine only the jobs
which satisfy this constraint. This has the potential of reducing system over-
provisioning. Moreover, the cooling power and cost required to cool down
the heat generated by the system jobs depend on the overall power and en-
vironmental conditions [82]. Borghesi [81] shows that by dynamically mod-
ulating the power profile according to the environmental temperature, it is
possible to improve the overall energy efficiency. As a matter of fact, this sce-
nario requires to schedule a set of large number of jobs (jobs) in a large num-
ber of resources (nodes) while satisfying a variable/desired profile (power
budget) which is variable in time.

Hurley et al. [83] tackled the energy-optimization problem at meta-
scheduling level. The authors combine optimization and machine learning
techniques, to minimize the energy expenses even in the case of variable and
unknown a priori energy price.

2.4 Distributed scheduling

Distributed scheduling is an emerging approach designed to split and paral-
lelize the computational overhead through different entities. The side effect

2.4. Distributed scheduling 15

of this approach is the difficulty in the entity synchronization: i.e. separated
entities, in certain scenarios, have to agree on the scheduling result.

In many works, the scheduling agreement is not necessary (e.g. the Grid
computing scheduling problem). The following are examples of this sce-
nario.

In the work by Lu and Kumar [84], the authors present a distributed ap-
proach to scheduling. The problem consists of a set of centers in which activ-
ities are dispatched. Each activity has to pass through and execute in each
center. Each center runs a heuristic algorithm to select from its activities
queue, the activity to execute. In this work, the dispatching algorithm is a
round-robin and the scheduling algorithm is a rule-based algorithm. While
there is a similarity with distributed scheduling, this work has significant
differences in the dispatching.

Ramamritham et al. [85] present a distributed scheduler. The proposed
approach is based on bids for the dispatching. These bids can be random
or based on estimations. This could lead to the condition in which a job
has to migrate to avoid exceeding its deadline. In our work, we do not use
estimations, and the dispatching phase considers all the system resources.
For this reason, our work does not need the job migration, and if a job exceeds
its deadline it is due to the high utilization of all the resources of the system.

The KDistr scheduler has presented in [86]. The system is composed of
a hierarchy of meta schedulers with one root. All jobs are submitted to the
root, then the root sends the job to K meta schedulers. The first scheduler
that executes the job informs the other schedulers that the job is already in
execution. Due to the fact that different schedulers can compute the schedul-
ing of the same job at the same time, the authors use an atomic scheduling
cycle.

Moreover, this is a meta-schedulers. This means that a job can execute
only into one cluster/node. In our case, we deal with nodes instead of clus-
ters and the main difference is that a job can have different job units executing
in parallel on different nodes. For this reason, this scheduler does not work
for the HPC scheduling problem.

A number of works using Particle Swarm Optimization for the schedul-
ing can be found in literature [87, 88, 89]. These algorithms are optimization
algorithms that explore a set of feasible solutions. The problem with these
algorithms is the computational overhead. The best result obtained in this
paper on a number of nodes and jobs halved w.r.t. our tests, show a com-
putational overhead 6 times higher than ours. Distributed implementations
of this approach have been studied [90] for different kinds of problems but
never applied to scheduling.

The work presented by Montresor [91] shows the application of an ant
colony algorithm to the problem of the scheduling in peer-to-peer systems.
In this scheduler, the resources are nests, the ants have the duty to migrate
jobs from highly loaded resources to low loaded resources. The starting as-
sumption of this work is that a job can be migrated even during its execution.
This assumption is not true in the majority of the domains studied by our

16 Chapter 2. Related work

work. Moreover, the authors consider only the load balancing objective. Fi-
nally, the ant colony approach does not consider the scheduling horizon for
further optimization.

The work presented by Ortiz et al. [92] shows a distributed approach to
the task management of activities in robotics systems. For what concerns the
activity dispatching, each agent applies two possible rules: the first searches
for the nearest goal, the second searches the further goal. This is one of the
cases in which our scheduler could introduce further optimization consider-
ing not only the dispatching but also the activity scheduling.

An other scenario that considers a complete agreement between the enti-
ties is the consensus problem. Many works [93, 94, 95] studied this problem.
However, the considered problem aim to a global agreement on the result.
This constraint is too strict w.r.t. the scenario studied in this thesis: we need
an agreement just between the nodes executing the same jobs. Moreover the
complexity if this constraint leads to a time-to-solution not feasible in the
HPC scheduling problem.

Optimization techniques have been applied to the problem of distributed
scheduling [96, 97, 98]. However, as demonstrated in [3], centralized opti-
mization approach cannot scale up to large-size systems. These distributed
approaches add to the overhead of a centralized approach also an overhead
due to communications between agents. For this reason these approaches are
unfeasible in a real-time HPC scheduler.

2.5 On HPC energy, profit, and scheduling

Conficoni et al. [99] establish the relation between the cooling cost in HPC
infrastructures, the IT power consumption, and the external ambient temper-
ature. Indeed, accordingly to these parameters, the cooling circuitry operates
at different set-point with different combinations of power consumption and
external temperature. In air-cooled data centers, the variability of the power
usage efficiency can range from 10 to 40% while, in case of hybrid cooling,
the range is 9 to 13% depending on the external temperature fluctuations.

In the last years, many works have been proposed to improve the HPC
scheduling problem. Some works target user’s experience related metrics or
the system utilization [galleguillosdata, 100, 3, 79, 80] (e.g. decreasing the
users’ waiting or improving the users’ fairness). While other works focus
on energy consumption [101, 102, 103, 104] (e.g. using power capping tech-
niques). However, reducing costs does not always give the best incomes.

Some works started exploring the scheduling optimization problem aim-
ing to improve the profit such as Zhao et al. [105]. Zhao et al. [105] propose a
scheduler for cloud computing that takes into account the service level agree-
ment to indirectly improve the profit. The difference between our work and
this is that the complexity of our scheduling problem is greater, in fact, in
cloud computing, the resource management is left to a resource manager
while the scheduling is left to the meta-scheduler. Moreover, our work di-
rectly optimizes the profit.

2.6. Costraint Programming 17

Moghaddam et al. [106] propose a scheduler for distributed data-centers
that optimizes the profit taking into account the incomes, the expenses and
a penalty for the utilization of energy by “non-green” origins (e.g. carbon
combustion). However, this work is suitable for distributed data-centers in
which the origin of the electrical power is known a priori and fixed in time.

Faragardi et al. [107] study the problem of energy consumption and profit
maximization in the geographically distributed computing centers. The goal
of this work is to find a good trade-off between CO2 emissions and profit
improvement. However, this work does not consider the possibility of shut-
down parts of the system as we do. Shutting down parts of the system en-
ables the possibility of a win-win solution in which the energy consumption
could be decreased and the profit increased at the same time.

Although resource shutdown and turn-on have been studied in fields like
cloud computing, the only works that exploit the possibility of node shut-
down and turn-on in HPC machines, at the best of our knowledge, are Hikita
et al. [108] and Mammela et al. [109].

Hikita et al. [108] consider the case of the Kyoto University’s HPC ma-
chine. The proposed scheduler is designed to act as a rule-based scheduler
with the possibility to turn-off nodes after 30 minutes of idle and turn it back
on after 30 minutes of high resources request. This approach, differently from
ours, is a reactive approach. This is translated into 30 minutes of idle con-
sumption of each node before to turn it off, 30 minutes of buffering before
the restart, and 45 minutes of waiting before the restart completion. More-
over, this scheduler is highly prone to instability: under certain conditions
(e.g. jobs request that creates high resource fragmentation or periodic sub-
missions), this scheduler can continuously shut-down and turn-on nodes.
Finally, the assumption of [108] is that the submissions distribution has a
seasonality with long periods of low workload requests. This can be true
for university workload but not for HPC designed for industry and research
[110].

Also Mammela et al. [109] propose a rule-based scheduler capable of
shutdown and turn-on nodes. As for the work by Hikita et al., this is a reac-
tive scheduler that shutdown nodes on the basis of a threshold on the node
idle time. In this case, the threshold is 50 seconds. Again, a reactive approach
can lead to the condition in which the scheduler continuously shutdown and
turn-on nodes. The behavior of the scheduler bring also security concerns:
the behavior of the system can be exploited to create a denial of service. This
seems an improvement w.r.t. the Hikita [108] work but in a real HPC system
this is still an inapplicable solution.

2.6 Costraint Programming

Constraint Programming (CP) is an optimization technique belonging to the
area of Artificial Intelligence (AI).

CP is a declarative programming paradigm in which the user can formu-
late a model, which is then fed to a solver that explores the space of possible
solutions to find the best one (according to a given objective function).

18 Chapter 2. Related work

This paradigm couple a Constraint Satisfaction Problem (CSP) to an ob-
jective function. Formally speaking, a CSP can be represented by a tuple
< X,D,C > in which X is a set of variables, D is the domain of the corre-
sponding variable inX andC is a set of constraints. For each variableXi ∈ X
we have a domain Di ∈ D. This means that each value of Di can be assigned
to the variable Xi. With the constraint Cj we can further bound the domain
of the variable in the scope Cj.S of Cj . Constraints are designed to remove
elements from the domain of the scope variable to remove unfeasible assign-
ment. A solution is a variable assignment that holds for each constraint of
the problem.

In the majority of the open problems in computer science, there are a high
or infinite number of feasible solutions but just one or some of these are the
best. For this reason CP is designed to solve CSP with the possibility to have
an objective function that model the goodness of a solution 2.1.

CP = CSP [+objectivefunction]∗ (2.1)

This process is similar to that of Mixed Integer Linear Programming (MILP).
However, unlike in MILP, in CP a user is not forced to employ only linear
constraints: instead, a model can be formulated using any constraint from a
given (solver-dependent) library. These constraints have a semantic (i.e. they
enforce certain properties on the solutions), and they are associated with one
or more filtering algorithms. At search time, the solver interleaves branch-
ing decisions with invocations of the filtering algorithms, which examine the
domains of the problem variables and remove values that are provably infea-
sible: by doing so, they enable (possibly dramatic) reductions of the search
space. The CP research community has developed specific constraints (and
filtering algorithms) for scheduling, which usually allow a CP solver to out-
perform a MILP one on this class of problems [111, 112].

2.6.1 Constraint filtering and propagation

Each constraint is associated with its filtering algorithm. A filtering algo-
rithm is an algorithm designed to remove provably infeasible elements from
the domain of the variables in the domain scope. In Figure 2.3 Step 0 shows
an example of a problem. In the problem, we have three variables A, B, and
C each one with domain [1, . . . , 5] and two constraints A > B and B > C.
Figure 2.3 Step 1 shows the result of the filtering algorithm applied on the
constraint A > B that deletes 1 from A and 5 from B. After the filtering, the
changes in the domain of a variable trigger the filtering on all the constraints
containing the same variable in the scope. This step is called constraint prop-
agation. Figure 2.3 Step 2 show the propagation triggered by the changes on
the domain of B that calls the filtering algorithm on the constraint B > C.
The filtering deletes 4 and 5 from C and 1 and 2 from B. This process is re-
peated until no more values can be deleted from the domain of the variables:

∗The notation [..] in this case represents optionality

2.6. Costraint Programming 19

(A) Step 0

(B) Step 1

(C) Step 2

(D) Step 3

FIGURE 2.3: Filtering and propagation example

The further change on B calls the filtering algorithm of A > B deleting 2 and
3 from A (Figure 2.3 Step 3).

2.6.2 Modeling

CP has powerful modeling syntax. With CP it is possible to model classical
unary and binary constraint as in MILP (e.g. A > 3 and A > B) but also
nonlinear constraints such as A 6= B. Moreover, CP introduces the concept
of global constraints [113]. A global constraint is a constraint that involves a
set of variables and it encapsulates a set of different constraints. An example
of global constraint is the AllDifferent(X). This constraint target a set of
variables X and can be formally expressed as in equation 2.2.

∀ i, j ∈ |X|, with i 6= j : Xi 6= Xj (2.2)

20 Chapter 2. Related work

Suppose X = {X1, X2, X3} with X1 ∈ 1, 2, 3 and X2, X3 ∈ 1, 2, the con-
straints generated by the global constraint AllDifferent(X) will be:

X1 6= X2, X1 6= X3, X2 6= X3 (2.3)

Modeling these constraints with binary constraints and enforcing Arc Con-
sistency [114] no value can be excluded from the variable domain. However,
it can be noticed that X2 and X3 can assume only values 1 and 2. Thus,
these values can be deleted by the domain of X1. This is achieved by by the
AllDifferent constraint due to the fact that global constraints have a wider
knowledge of the problem while binary constraints only consider two vari-
ables at time.

The difference between CP and CSP relies on the possibility to add an
objective function to the model. This function tells how a solution, among all
the feasible solutions, is good. Considering the previous example, in which
we have to assign a different value to a set of three variables, each one with
a domain [1, . . . , 4], we can for example model a problem in which the best
solution is the one with the highest possible values as result. This problem
will be modeled as in equation 2.4.

X = {X1, X2, X3}
x = [1, 2, 3, 4] ∀x ∈ X
AllDifferent(X)

maximize :
∑
x∈X

x

(2.4)

One of the optimal results obtainable from this model is X1 = 4, X2 =
2, X3 = 3.

CP modeling for scheduling problems

In this section, we will discuss the CP modeling for scheduling problems.
The problem we target here is the scheduling on non-preemptive jobs (i.e.
each started job cannot be stopped until its termination), with fixed durations
and fixed resources requirement, on a set of resources with fixed capacity (i.e.
cumulative resources).

To explain this we introduce the concept of interval variable [115]. An inter-
val variable is a variable that models an activity (or job). This kind of variable
contains several different decisional variables. For sake of simplicity, we can
say that an interval variables a is composed by a decisional variable for its
starting time a.st, a decisional variable for its duration a.d, a decisional vari-
able for its end time a.et and a decisional variable for its presence a.p. If an
interval is present, all the constraints on this variable propagate otherwise
this variables do not propagate. The interval variable has also implicit con-
straints that model its consistency (e.g. the end time is equal to the start time

2.6. Costraint Programming 21

FIGURE 2.4: Example of cumulative

plus the duration). These constraints are formally explained in equation 2.5
where inf is the highest number representable in the used architecture.

a.et = a.st = a.d = [−inf, . . . , inf]
a.p = [−1, . . . , 1]
(a.p == 1)× (a.et = a.st+ a.d)

(2.5)

Now we explain some of the most used constraints in scheduling and also
in this thesis.

Synchronize The synchronize constraint synchronize(a, b) is designed to
synchronize two different interval variables. This means that the variable
assumes the same start time, end time, duration and presence.

NoOverlap The no-overlap constraint NoOverlap(a, b) is designed to set
two activities to do not be active at the same time. Formally speaking, the
interval variable a can start after the end of b or the variable a have to end
before the start of b (Equation 2.6).

a.st ≥ b.et ∨ a.et ≤ b.st (2.6)

Cumulative The cumulative constraint Cumulative(A,U, l) (Figure 2.4) is
designed to schedule a set of activities, that requires a certain amount of re-
sources, to never overpass the resource capacity. Formally speaking, having
a set of interval variable A = {a1, . . . , an} each one with a resource require-
ment U = {u1, . . . , un} and a physical resource capacity l, the constraint hold
iff the resource utilization of the resources never overpass the capacity in any
time instant.

This constraint is used in HPC scheduling to limit the utilization within a
single node resource.

22 Chapter 2. Related work

Alternative The alternative constraint Alternative(a,B, n) is designed to
select n elements from the set of activities B to be synchronized with a. For-
mally speaking, a is a present alternative variable, B is a set with cardinality
≥ n of optional interval variables, and n is an integer. The constraint holds iff
there are exactly n variables in B that can be set as present and synchronized
with a (i.e. they assume the same start time, duration and end time). The
remaining variables in B are set as not present.

Element The element constraint c = Element(a,B) is designed to select an
element c from the array B on the basis of the decisional variable a used as
index of the array. This constraint simply select the a element from the array
B but this selection is done at solving time, this means that a changes during
the search phase of the solving engine and the variable a can be connected to
other constraints. The element is then returned to c.

2.6.3 Search strategies

The constraint filtering and propagation usually terminates reducing the
variable domains. However, to have a solution each variable has to be
fixed. Even with a program-level complete propagation algorithm this can be
achieved just in trivial problems. Thus, a search strategy have to be adopted
to obtain a solution.

Constraint Programming gives the flexibility to choose from a wide se-
lection of search strategies for the problem solution. Search strategies can
be subdivided into three main different categories: Backtrack searches, Local
searches, and Dynamic searches [116, 117].

A backtrack search for CP problems starts with a depth-first solution-tree
traversal. At each step, the search strategy selects a variable to label (label-
ing) and then starts a propagation stage for each constraint targeting all the
variables with a change in its domain. When a failure is reached, the strategy
applies a backtrack (branching) on the previous decision point. Note that the
propagation can apply not only to the model variables but also to equations,
as for example the objective function. The representation of the objective
function through a decisional variable let the solver propagate constraints
e.g. when a new best solution is found that, hopefully, dramatically decrease
the solution tree. Several heuristics can be selected for the branching deci-
sion. Different heuristics can lead to different results. A commonly adopted
selection criterion is the “First-Fail Principle” [118]. This criterion is designed
to delay failures. The criterion selects the variable with the smallest domain.
In case of ties, it selects the variable involved in the highest number of con-
straints. Other techniques (such as [119]) learn the impact of each variable on
the solution space reduction and select the branch using this information.

Improvements on the search can also be obtained by “no-goods” [120,
121, 122]. No-goods are designed to prevent the solver to repeat decisions
that always lead to failures. This forward check learns from previous failures
what caused it and then a constraint to avoid this situation is generated.

2.6. Costraint Programming 23

One of the most used and effective search strategies is the Large Neigh-
borhood Search (LNS) [123]. This search combines the strength of the CP con-
straint propagation with the performance of local search. This search strategy
starts from an initial solution of the problem. One a first solution has been
obtained, LNS selects a set of variables to be fixed and a set of open variables.
The fixed variables are assigned to the value of the last solution found while
the local search explores the neighborhood of the previous solution reassign-
ing different values to the open variables. After the local search termination,
a new set of fixed and open variables is selected allowing the search to jump
to an another neighborhood to explore. Usually, the termination condition
of a neighborhood exploration is determined by the completion of the ex-
ploration or the reaching of a predetermined number of fails, depending on
the size of the neighborhood. For what concern the neighborhood explo-
ration, different search strategies can be used (such as the one in section 6.7).
However, the most used is the schedule-and-postpone. The schedule and
postpone strategy selects the first unfixed variable and set it to the minimum
value in its domain. If this value is not feasible (it leads to a failure), mark
this variable to be left aside during the search. After that, it continues with
the next unfixed variable. When the domain of a variable left aside changes,
the strategy removes the mark and from that moment can be selected to be
assigned.

25

Chapter 3

Preliminary study on the
application of CP in HPC
scheduling: modeling and
simulations

3.1 Introduction

Computing centers play a key role in modern ICT architectures: they run our
internet services, keep track of our savings, make our research possible. They
are also well known to be power hungry: in Italy, data centers make for ∼2%
of the national energy consumption, for a total of 6.6 TWh (roughly that of
the Calabria region, according to data by Fondazione Politecnico di Milano,
2010).

The mainstream solution to reduce such a gigantic consumption is to em-
ploy efficient hardware or efficient design. By doing so, it is possible to ob-
tain remarkable reductions of the PUE index (Power Usage Effectiveness), i.e.
the ratio between the power consumption of the whole data center and the
power consumption of the IT equipment alone. Recently, a joint effort by the
CINECA inter-university consortium [124] in Italy and the Eurotech group
[125] has led to the design of the EURORA system. Thanks to an innovative
liquid based cooling system and carefully chosen hardware components, this
new machine has a PUE of just 1.05 and managed to reach the top of the
Green 500 ranking in the first half of 2013, effectively becoming for a time
the most efficient supercomputer on earth. As a comparison, PUE values of
around 3 were still common in 2009.

However, reducing the PUE is just a half of the problem. Data by McK-
insey [126] for US data centers reveals that on average only 6-12% of the
power is employed for actual computation. The reason for this dramatically
low value lies in how efficiently the existing IT resources are used. In particular,
redundant resources are usually employed to maintain the quality of service
under workload peaks. More redundant resources are also needed to com-
pensate for the fragmentation resulting from suboptimal dispatching choices.
As a consequence, a typical data center ends up packing a lot of idle muscles.
Unfortunately, idle resources still consume energy: for a 1MW center with a
1.5 PUE, a 30% utilization means a 1Me annual cost and 3,500 tons of CO2.

26
Chapter 3. Preliminary study on the application of CP in HPC scheduling:

modeling and simulations

In this context, optimization techniques can enable dramatic improvements
in the resource management, leading to lower costs, better response times,
and fewer emissions.

In this work, we tackle the problem of performing workload dispatching
over the EURORA supercomputer, operating at the CINECA computing cen-
ter in Bologna. The machine is employed for High Performance Computing
(HPC) applications and has a job submission system currently managed by
a PBS Dispatcher (Portable Batch System [127]). The dispatcher relies on a
number of heuristic techniques to tentatively maintain a high machine uti-
lization and keep the waiting times as small as possible. The CINECA staff
has hints that the current system operation could be improved, but finding
a more effective PBS configuration is a cumbersome and error-prone task:
hence there is interest in alternative approaches. We propose to tackle work-
load dispatching via proactive scheduling using Constraint Programming.
We adopt a rolling horizon approach, where our scheduler is awakened at
certain events. At each of such activations, we build a full schedule and re-
source assignment for all the waiting jobs, but then we dispatch only those
jobs that are scheduled for immediate execution. By taking into account
forthcoming jobs, we avoid making dispatching decisions with undesirable
consequences; by starting only the ones scheduled for immediate execution,
the system can manage uncertain execution times.

Our long-term goal is the development of a state of the art workload dis-
patching approach to replace the current PBS logic. However, at this stage,
our main objective is just is to assess the degree of improvement (in terms
of waiting times and reduced idleness) that can be obtained by acting on
the dispatching decisions. Since our focus is on investigating the solution
quality, we do not enforce tight restrictions on the approach run-time (over-
exploiting a bit the fact that HPC jobs tend to have large durations). We
evaluated our approach by simulating its behavior on real workload traces
from the EURORA machine. We compare the results of our approach with
those of the currently operating PBS system, demonstrating that substantial
improvements are indeed possible.

3.2 System Description and Motivations for Using
CP

This section contains a brief presentation of the architecture of the EURORA
supercomputer, a discussion about the current dispatching system, and a re-
view to the motivations behind our choice of CP for building an alternative
dispatcher.

The EURORA Supercomputer: As described in [100] EURORA has a mod-
ular architecture based on nodes (blades). In its the current state, the sys-
tem counts 64 nodes, each one comprising 2 octa-core CPUs and 2 expansion
cards configured to host an accelerator module: currently, 32 nodes host 2

3.2. System Description and Motivations for Using CP 27

powerful NVidia GPUs, while the remaining ones are equipped with 2 In-
tel MIC accelerators. Each node has 16GB of installed RAM memory. EU-
RORA is interfaced with the outside world through a few dedicated comput-
ing nodes, physically positioned outside the rack: in particular, a designated
login node connects EURORA to the users and runs the job dispatcher (PBS).
One of the main boosting factors for the energy efficiency of the supercom-
puter is the adoption of a hot liquid cooling technology, i.e. the water inside
the system can reach up to 50◦C. This strongly reduces the energy required
for operating the system, since no power is used for actively cooling down
the water, and the waste-heat can be recovered as an energy source for other
applications.

The PBS Dispatcher: The tool currently used to manage the workload on
EURORA system is PBS (Portable Batch System), a proprietary job sched-
uler by Altair PBS Works with the primary duty of allocating computational
tasks, i.e. batch jobs, among available computing resources. The main com-
ponents of PBS are a server (which manages the jobs) and several daemons
running on the execution hosts (i.e. the 64 nodes of EURORA), which track
the resource usage and answer to polling request about the host state issued
by the server component.

Jobs are submitted by the users into one of multiple queues, each one
characterized by different access requirements and by a different approxi-
mate waiting time. Users submit their jobs by specifying 1) the number of
required nodes; 2) the number of required cores per node; 3) the number of
required GPUs and MICs per node (never both of them at the same time); 4)
the amount of required memory per node; 5) the maximum execution time.
All processes that exceed their maximum execution time are killed. The main
available queues on the EURORA system are called debug, parallel, and long-
par, and are described in Table 3.1 - for each of those queues we report the
maximum number resources that a job could ask if it desires to belong to
that queue, i.e. maximum number of nodes, maximum number of cores and
GPUs (second column), maximum execution time, and also the approximate
time it might wait before starting its execution.

Cyclically, PBS selects a job for execution by polling the state of one or
more nodes, trying to find enough available resources to actually start the job
execution. If the attempt is unsuccessful, the job is sent back to its queue and
PBS proceeds to consider the following candidate. The choices are guided by
priority values and hard-coded constraints defined by the EURORA admin-
istrators with the aim to have a good machine utilization and small waiting
times. For example, the administrators decided to reserve some nodes to the
debug queue and to force jobs in the longpar queue to start at night.

Why CP? In its current state, the PBS system works mostly as an on-line
heuristic, incurring the risk to make poor resource assignments due to the
lack of an overall plan. Also the hard-coded mapping constraints, designed
as a way to ensure low waiting times for specific job classes (e.g. the debug
queue), may easily cause resource under-utilization, and long waiting times

28
Chapter 3. Preliminary study on the application of CP in HPC scheduling:

modeling and simulations

Queue Max Nodes Max Cores/GPUs Max Time Approx. Wait
debug 2 32/4 00:30:00 seconds
parallel 32 512/64 06:00:00 minutes
longpar 16 256/32 24:00:00 hours

TABLE 3.1: Access requirements and waiting times for the PBS
queues in EURORA

for the remaining jobs (e.g. those in the longpar queue). A proactive dispatch-
ing approach should intuitively be able to improve the resource utilization
and reduce the waiting times without the need of devising such hard-coded
restrictions. The task of obtaining a proactive dispatching plan on EURORA
can be naturally framed as a resource allocation and scheduling problem, for
which CP as a long track of success stories.

W.r.t. other optimization techniques, CP is better suited due to the fact
that most of its constraint are specifically designed for scheduling problem.
Moreover, CP proved to overcome the performance of other optimization
techniques, such as MIP, in scheduling problems [111, 112].

3.3 Design of a CP Approach

We adopt a rolling horizon approach, in which our scheduler is awakened
whenever a job 1) enters the system or 2) ends its execution. At each it-
eration, we build a full schedule and mapping for all the jobs in the input
queues, taking into account resource capacity limitations. We consider dif-
ferent performance metrics, which we treat either as objective functions or
as soft-constraint. Then we dispatch only those jobs that are scheduled for
immediate execution.

The schedule is computed based on the worst-case durations (as provided
by the users), but the dispatcher reactivation is triggered by the job actual
terminations (besides of course by their arrivals). Whenever this occurs, the
jobs currently in execution cannot be migrated, but all the waiting ones can
be re-scheduled to take advantage of the released resources.

3.3.1 Formal Problem Definition

We can now provide a precise definition of the scheduling problem solved
at each activation of the dispatcher. Each job i enters the system at a certain
arrival time qi, by being submitted to a specific queue (depending on the
user choices and on the job characteristics). By analyzing existing execution
traces coming from PBS, we have determined an estimated waiting time for
each queue, which applies to each job it contains: we refer to this value as
ewti.

When submitting the job, the user has to specify several pieces of infor-
mation, including the maximum allowed execution time Di, the maximum
number of nodes to be used rni, and the required resources (cores, memory,
GPUs, MICs). By convention, the PBS systems consider each job as if it was

3.3. Design of a CP Approach 29

divided into a set of exactly rni identical “job units”, to be mapped each on
a single node. It is therefore convenient to specify the resource requirements
on a job-unit basis. Formally, let R be a set of indexes corresponding to the
resource types (cores, memory, GPUs, MICs), and let the capacity of a node
k for resource r ∈ R be denoted as capk,r. We recall that the system has
m = 64 nodes, each with 16 cores and 16 GB of RAM memory; 32 nodes have
2 GPUs each (and 0 MICs), and the remaining 32 nodes have 2 MICs each
(and 0 GPUs). Finally, let rqi,r be the requirement of a unit of job i for re-
source r. The dispatching problem at time t consists in assigning a start time
si ≥ t to each waiting job i and a node to each of its units. All the resource
capacity limits should be respected, taking into account the presence of jobs
already in execution. Once the problem is solved, only the jobs having si = t
are actually dispatched.

Informally speaking, in the big picture, the goal is to increase the resource
utilization and reduce the waiting times, but those metrics can be meaning-
fully evaluated only once the actual job durations become known. Hence
we formulate the problem in terms of several objective functions that are in-
tuitively correlated with the metrics we are interested in. After extensive
preliminary experimentations, we settled for the following possible problem
objectives:

max
i=0..n−1

(si +Di) (makespan) (3.1)∑
i=0..n−1

max

(
0,
si − qi − ewti

ewti

)
(weighted tardiness) (3.2)∑

i=0..n−1

[[si − qi > ewti]] (num of late jobs) (3.3)

where n is the number of jobs and the notation [[−]] stands for the reification
of the constraint between brackets. The makespan has been chosen because
compressing the schedule length tends to increase the resource utilization.
For the tardiness and the number of late jobs, we consider a job to be late if it
stays queued for a time larger than ewti. The tardiness is weighted, because
we assume that users that are already expecting to wait more (i.e. jobs with
higher ewti) should adjust better to prolonged queue times. Both the tardi-
ness based objectives are chosen to improve the perceived response time, in
one case by avoiding (proportionally) long waiting times, in the second by
reducing the number of jobs in the queues.

3.3.2 CP Model

Employed CP Techniques: We defined for the described scheduling prob-
lem a CP model that is based on Conditional Interval Variables (CVI, see
[115]). A CVI τ represents an interval of time: the start of the interval is re-
ferred to as s(τ) and its end as e(τ); the duration is d(τ). The interval may or
may not be present, depending on the value of its existence expression x(τ).

30
Chapter 3. Preliminary study on the application of CP in HPC scheduling:

modeling and simulations

In particular, if x(τ) = 0 the interval is not present and does not affect the
model: for this situation we also use the notation τ = ⊥.

CVIs can be subject to a number of constraints, including the classical cu-
mulative [112] to model finite capacity resources, and the more specific alter-
native constraint [115]. This last global constraint has the following signature:

alternative(τ0, [τ1, .., τnτ],mτ) (3.4)

The constraint forces all the interval variables τ1, τ2, . . . to have the same start
and end time as τ0. Moreover, exactly mτ of τ1, τ2, . . . will be actually present
if τ0 is present. Formally, the constraint enforces:

s(τ0) = s(τi), e(τ0) = e(τi) ∀i = 1..nτ

nt∑
i=1

x(τi) = mτ x(τ0) (3.5)

Modeling Decisions and Constraints: In our model, we use a CVIs to
model the scheduling decisions. In particular, we introduce an interval vari-
able τi with duration Di for each job waiting in the input queues or already
in execution. Then, we fix the start of all τi corresponding to running jobs to
their real value (which is known at this point). For the waiting jobs we have
s(τi) ∈ t..eoh, where t is the time instant for which the model is built and eoh
can be given for example by t plus the sum of the maximum duration of all
jobs∗. All the τi variables are mandatory, i.e. x(τi) = 1.

Mapping decisions should be taken at the level of single job-units. The
modeling style we adopt for them is best explained by temporarily introduc-
ing a simplifying assumption, namely that no two units of the same job can
be mapped on a single node. With this assumption, the mapping decisions
can be modeled by introducing a second set of optional interval variables υi,k
such that x(υi,k) = 1 iff a unit of job i is mapped to node k.

However, mapping multiple units of the same job on the same node is
possible and can be beneficial. To account for this possibility, we have to
introduce for each job i multiple sets of υ variables. Specifically, we add one
more index and we maintain the semantic, so that we have variables υi,j,k
such that x(υi,j,k) = 1 iff a unit of job i is mapped to node k. The j index
is only used to control the number of job units that can be mapped to the
same node. Finding a suitable range for the index is a critical step: on the
one hand, allowing j to range on 0..rni− 1 (i.e. one set of υ variables for each
requested node) is a safe choice. On the other hand, it is impossible to map
multiple units of the same job on the same node if doing so would exceed the
availability of some resource. Hence, a valid upper bound on the number of
υ variable sets for a single job i is given by:

pi = min

(
rni,min

r∈R

⌊
capk,r
ri,r

⌋)
(3.6)

∗Note that it is possible to shift all the domains by subtracting the smallest si to all values,
so that at least one s(τi) has a minimum of 0

3.3. Design of a CP Approach 31

and for each job i, the index j can range in 0..pi − 1. Then we have to specify
that exactly rni job-units should be mapped, i.e. that exactly such number
of υi,j,k intervals should be present. This can be done by using an alternative
constraint:

alternative(τi, [υi,j,k], rni) ∀i = 0..n− 1 (3.7)

Additionally, the alternative constraint forces all the job-units to start at the
same time instant as τi. Now, the resource capacity restrictions can be mod-
eled via a set of cumulative constraints:

cumulative([υi,j,k], [D
(pi)
i], [r

(pi)
i,r], capi,r) ∀k = 0..m− 1, ∀r ∈ R (3.8)

where m is the number of nodes and the notation D
(pi)
i stands for a vector

containing D0 repeated p0 times, then D1 repeated p1 times, and so on. As
mentioned in Section 3.2 we disregard all the hard-coded constraints intro-
duced by the PBS administrator and we trust the decision making capabilities
of our optimization system with providing waiting times as low as possible.

Handling the Objective Function: We consider several variants of our dis-
patching problem, differing one from each other for the considered objective
and for the possible presence of soft constraints. First, we have three “pure”
models, obtained by adding on top of the presented formulation one of the
problem objectives that we have discussed in Section 3.3.1:

min max
i=0..n−1

e(τi) (makespan) (3.9)

min
∑

i=0..n−1

max

(
0,
s(τi)− qi − ewti

ewti

)
(weighted tardiness) (3.10)

min
∑

i=0..n−1

[[s(τi)− qi − ewti > 0]] (num. of late jobs) (3.11)

Then we consider three “composite” formulations obtained by choosing as
a main cost function one of Equations (3.9)-(3.11), and then by posting a
constraint on the value of the remaining ones. For example, assuming the
makespan is the main objective, we get:

min max
i=0..n−1

e(τi) (3.12)

s.t.
∑

i=0..n−1

max

(
0,
s(τi)− qi − ewti

ewti

)
≤ δ0 θ0 (3.13)∑

i=0..n−1

[[s(τi)− qi − ewti > 0]] ≤ δ1 θ1 (3.14)

The values θ0 and θ1 are obtained by solving the pure models corresponding
to the constrained functions. The parameters δ0, δ1 allow to tune the tightness
of the constraints. The three new composite formulations are loosely inspired

32
Chapter 3. Preliminary study on the application of CP in HPC scheduling:

modeling and simulations

i rni rqi,core rqi,gpu rqi,mic rqi,mem Di

000 32 4 1 0 1000000 14000
001 1 14 1 0 400000 600
002 2 4 1 0 200000 14400
003 32 16 0 0 400000 800
004 32 3 0 2 800000 400

TABLE 3.2: An example of problem instance

i s(τi) υi,0,0 υi,0,1 υi,0,2..31 υi,0,32..63 υi,1,0 υi,1,1 υi,1,2..31 υi,1,32..63
000 0 ⊥ 0 0 ⊥ ⊥ 0 ⊥ ⊥
001 0 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
002 600 600 ⊥ ⊥ ⊥ 600 ⊥ ⊥ ⊥
003 0 ⊥ ⊥ ⊥ 0 ⊥ ⊥ ⊥ ⊥
004 800 ⊥ ⊥ ⊥ 800 ⊥ ⊥ ⊥ ⊥

TABLE 3.3: A feasible solution for the instance from Table 3.2

by multi-objective optimization approaches and aim at obtaining good solu-
tions according to one global metric (say, resource utilization), while keeping
acceptable levels for the other (say, waiting times).

Example of a solution: Let us suppose we have the set of waiting jobs de-
scribed in Table 3.2, then a feasible solution to this instance is described in
Table 3.3. As reported in the table, jobs 000, 001 and 002 can execute only on
the nodes equipped with GPUs (i.e. node 0 to 31), job 004 can execute only
in nodes with MICs (i.e. node 32 to 63). Tow units of job 000 are allocated on
node 1, the other 30 units of job 000 are allocated in nodes from 2 to 31; node
0 is completely free and can run job 001 while job 000 is executing; job 003
can execute on nodes from 32 to 63; after the termination of job 001, job 002
can start its execution with two units on node 0 and after the termination of
job 003, job 004 can start in nodes from 32 to 63.

3.4 Added Value of CP

The scheduler we realized is currently a prototype: it will eventually be de-
ployed on the EURORA supercomputer, but this requires still considerable
development and research effort. At this stage we (and the CINECA con-
sortium) are interested in investigating the kind of improvements that could
be obtained by changing the dispatcher behavior. On this purpose, we have
compared the results we obtained with our dispatcher and the ones achieved
by PBS as it is currently configured on EURORA.

We performed the comparison on real PBS execution traces, which con-
tain all the information that is usually available at the job arrival times (i.e.
the chosen queue, the resource requirements, the maximum execution time).
Additionally, the traces report for each job two important pieces of informa-
tion, namely the actual duration (which we use together with the arrival time

3.4. Added Value of CP 33

Average Queue Time
Model All Debug Parallel Longpar
MKS 187.14 4.77 161.81 0.01
MKS WT/NL 165.98 0.10 160.04 0.01
NL 722.04 2.30 316.92 369.14
NL MKS/WT 201.32 0.31 145.59 18.99
WT 662.18 2.16 203.50 446.34
WT MKS/NL 861.81 0.76 278.60 572.29
PBS 6840.81 17.34 2825.05 3600.40

TABLE 3.4: Models comparison, queue times

Average Resource Utilization
Model cores GPUs MICs cores (%) Avg jobs
MKS 678.81 45.21 3.99 66% 121.68
MKS WT/NL 701.92 45.61 3.99 68% 121.92
NL 614.75 45.89 3.99 60% 116.58
NL MKS/WT 670.75 45.00 3.99 65% 121.21
WT 671.41 47.67 3.98 66% 120.50
WT MKS/NL 620.45 41.72 3.99 61% 119.07
PBS 447.98 29.16 0.33 46% 63.04

TABLE 3.5: Models comparison, system load

to simulate the scheduler activation events) and the start time assigned by
PBS.

Our approach was implemented using IBM ILOG CP Optimizer [128] us-
ing its default search strategy, which is based on Self-adapting Large Neigh-
borhood Search [129] guided by an Linear Programming relaxation. At each
scheduler activation we use the best solution found within a time limit to
decide the jobs that should start. To allow a fair comparison, all traces were
pre-processed to reset the waiting time of all jobs that are in queue at the be-
ginning of the trace, so that this is not taken into account. Additionally, we
have subtracted from the PBS waiting times the overhead required for im-
plementing the dispatching decision. This was experimentally identified by
analyzing the traces themselves.

3.4.1 Evaluation of Our Models

We performed an evaluation of all our models on a PBS execution trace con-
taining data for a batch of jobs that was considered for dispatching in a 2-
hour long interval. The main performance metrics considered are (1) the
time spent by the jobs in the queues while waiting their execution to begin
(ideally as low as possible), and (2) the overall utilization of the system (ide-
ally as large as possible). Waiting times are measure of the perceived quality
of services, while a high utilization directly translates to a low number of idle
(but still power consuming) resources.

The results for the first batch (BATCH1) are presented in Table 3.4 and
Table 3.5; the models evaluated are the three “pure” ones (Makespan [MKS],

34
Chapter 3. Preliminary study on the application of CP in HPC scheduling:

modeling and simulations

BATCH1 BATCH2 BATCH3
#jobs 437 434 619
#jobs DEBUG 237 133 127
#jobs PAR 130 240 415
#jobs LONGPAR 62 25 12
#jobs req. GPUs 85 203 224
#jobs req. MICs 3 1 1
#jobs req. 1 core 298 197 258
#jobs req. 2 cores 2 73 38
#jobs req. 4 cores 1 4 7
#jobs req. 5 cores 1 1 0
#jobs req. 6 cores 6 2 3
#jobs req. 8 cores 59 56 187
#jobs req. 8+ cores 70 101 126

TABLE 3.6: Job traces composition

Weighted Tardiness [WT] and Num. of late jobs [NL]) plus the three compos-
ite ones (i.e. with Makespan as main objective and constraints on Weighted
tardiness and Num. of late jobs [MKS WT/NL], and similarly for the others).
In the table we can see the average waiting time per job (both total and per-
queue). There is a remarkable improvement w.r.t PBS for all the models, and
those using the Makespan as main objective (MKS and MKS WT/NL). All the
composite models perform better than their pure counterparts when dealing
with the jobs from debug queue (short and with relatively low requirements).
The models with Makespan as primary objective do their best when dealing
with the long jobs from the longpar queue.

The corresponding resource utilization statistics are reported in Table 3.5,
showing for each model and PBS the average number of used cores, GPUs
and MICs over time. Again, we can see a significant improvement in compar-
ison to PBS performance, but in this case the differences between our models
are less clear. In particular, the average numbers of used GPUs and MICs
is very similar – probably because not every job needs an accelerator –, but
we can notice that MKS WT/NL is the model which performs a bit better in
terms of the average number of active cores. In the fifth column of the table
we see the average number of jobs that are in execution at each time instant:
more running jobs usually correspond to a higher utilization and a smaller
time to complete the execution of the batch. Finally in the last column we
report the average percentage of active cores on EURORA, which is a good
index for the utilization of the whole system. As one can see, our best results
(coming from the MKS WT/NL) are around 20% better than those of PBS. No
approach was able to reach a 100% utilization: to a large extent, this appears
to be due to the presence of bottleneck resources (e.g. GPUs) and to their
allocation.

3.4. Added Value of CP 35

(A) Running Jobs (B) Active cores

FIGURE 3.1: EURORA utilization on the first trace (BATCH1)

(A) Jobs in Queue

0.0 0.2 0.4 0.6 0.8 1.0
Queue time

0

5

10

15

20

25

30

35

Nu
m

be
r o

f j
ob

s

(B) Times in Queue

FIGURE 3.2: Waiting jobs and queue time for BATCH1

3.4.2 Comparison with PBS

The previous results show that our best model is a composite one, namely
MKS WT/NL, thus such mode was chosen for a more detailed comparison
with PBS on three PBS execution traces, each one corresponding once again
to a two-hour time frame of the EURORA activity. The features of the job
batches considered in each trace (i.e. BATCH1, BATCH2, BATCH3) are sum-
marized in Table 3.6, which reports the total number of jobs, the number of
jobs in each queue†, the number of jobs requiring at least one GPU or MIC
and the number of jobs requiring a certain number of cores.

We start by presenting the results for BATCH1, which is the same we
used for evaluating the model. The jobs considered in this trace belong to
a wide range of classes, with different resource requirements and different

†The sum of those values may be lower than the total, because we do not report detailed
statistics for some minor queues.

36
Chapter 3. Preliminary study on the application of CP in HPC scheduling:

modeling and simulations

(A) Running Jobs (B) Active cores

FIGURE 3.3: EURORA utilization on the second trace
(BATCH2)

execution times. In Fig. 3.1a we can observe the number of active jobs in the
considered time frame, for both our approach (solid line) and PBS (dashed
line). Fig. 3.1b reports instead the number of active cores. Our approach
significantly outperforms PBS, being able to execute more jobs concurrently
and to use a larger fraction of the available cores. Neither approach managed
to reach the optimal system usage: this could be due to (a combination of) the
presence of bottleneck resources, to suboptimal allocation choices, or simply
to the lack of more workload to be dispatched. Fig. 3.2a shows the number
of waiting jobs at each time step for our approach and PBS. From the data
in the figure, we can deduce that our approach managed to dispatch most of
the incoming jobs immediately, suggesting that the machine underutilization
is at least in part to blame on the lack of more jobs. Still, suboptimal choices
and resource bottlenecks cause some jobs to wait (a relatively high number
of them, in the case of PBS).

Fig. 3.2b contains a histogram with the waiting times for our model,
weighted by the (inverse of) the Estimated Waiting Time of the queue they
belong to. The histogram shows how many jobs (y-axis) wait for a certain
amount of times their ewti (y-axis). The majority of the waiting jobs with our
approach stay in their queue for a very short time, unlike in the case of PBS,
where especially the jobs in the longpar queue tend to be considerably de-
layed. We recall that currently these jobs (which are characterized by longer
durations than the remaining ones) are forced to execute only at night, for
fear or delaying jobs in the debug or parallel queue. The evidence we provide
here leads us to believe that such a strong constraint is in fact not needed
when using a proactive approach, and its removal could provide benefits in
terms of both queue time and average utilization of the supercomputer re-
sources.

Fig. 3.3 and Fig. 3.4 refer instead to our second trace, i.e. to the jobs in
BATCH2. This is another mixed group of jobs in terms of computational
and resource requirements, but in this case we have many more GPU re-
quests, putting a great strain on the dispatcher since GPUs in EURORA are a

3.4. Added Value of CP 37

much fewer than cores. The consequences of this situation can be observed
in Fig. 3.3a and Fig. 3.3a, respectively showing the number of running jobs
and active cores over time. For both PBS and our model we notice that the
number of jobs in execution, after an initial spike, reaches a cap in the middle
section of the trace, although the percentage of actives cores is not even close
to 100%. This cap occurs because in many cases, basically all waiting jobs
are requiring a GPU and hence, even if there are have available cores, they
cannot be used. Despite that, we still manage to achieve a largely improved
schedule than the one of PBS in term of number of running jobs. In partic-
ular, the average number of active GPUs with our dispatcher is higher than
63: given that the whole supercomputer counts only 64 GPUs, this means
that the performance obtained by our approach for the GPU-requiring jobs is
very close to the theoretical limit.

We owe this result to the proactive nature of our scheduler, which allow
us to more efficiently use constrained resources. For example, suppose we
have node A and B, where A has n cores and 1 GPU while B has only n cores,
and suppose that A and B are fully occupied by a previous job. We also have
job1 and job2 waiting to start their execution: job1 needs n cores and a GPU,
whereas job2 requires only the cores and has higher priority (for PBS). When
the job currently occupying nodes A and B terminates, PBS selects job2, then
it checks if on A there are enough cores to satisfy the requirements. Since
this is true in our example, PBS dispatches job2 on node A, using up all node
cores and leaving the GPU idle. In this scenario, job2 cannot start executing
until the other job has terminated. Conversely our dispatcher would have
made a smarter - and in this particular case obvious - decision, that is putting
job1 on B, since it only needs cores, and job2 on A, without further delay. In
Figure 3.4 we can see our performance in terms of queue times for BATCH2.
We outperform PBS again but at the same time we notice how the number
of jobs in queue (Fig 3.4a) follow a similar pattern in both systems, with a
distinctive spike after a relatively low initial value: this happens because
of the congestion on the GPUs resources we mentioned earlier – after all,
optimization can provide improvement only as long as spare resources are
available.

Finally, we can eventually consider BATCH3 and the results are displayed
in Fig. 3.5 and Fig. 3.6. The jobs considered in this trace require, on average,
a higher number of cores than all other traces and, for a large part, were sub-
mitted to the parallel queue. They require proportionally fewer GPUs than
the jobs in BATCH2, but still more than BATCH1. We manage again to ob-
tain a better usage of computational resources on EURORA, as revealed in
Fig. 3.5b and from the average percentage of actives cores (85% in our model
versus 55% with PBS). One more time, these results are due to a smarter
management of the different types of resources, although the limitations im-
posed by the relatively low number of available GPUs still has an impact on
the number of running jobs (Fig. 3.5a). In Figure 3.6a we can see our model
is able not to force to wait as many jobs as PBS, but only during the first half
of the trace, while after that point the number of jobs in queue is comparable
between the two dispatchers. One possible explanation for this is again the

38
Chapter 3. Preliminary study on the application of CP in HPC scheduling:

modeling and simulations

(A) Jobs in Queue

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Queue time

0

2

4

6

8

10

12

14

16

Nu
m

be
r o

f j
ob

s

(B) Times in Queue

FIGURE 3.4: Waiting jobs and queue time for BATCH2

limit imposed by the GPUs availability, given that not all the cores are occu-
pied, which forces more jobs to wait when a certain threshold for the number
of GPUs required is reached.

(A) Running Jobs (B) Active cores

FIGURE 3.5: EURORA utilization on the third trace (BATCH3)

3.5 Conclusions

In this work have presented a CP based proactive workload dispatcher for
the HPC EURORA supercomputer and compared its performance with those
of the system currently in use (PBS). Our goal is to manage the computa-
tional resources on the platform so as to achieve a twofold result: increase
the machine utilization and then reduce the job waiting times. A higher ma-
chine utilization translates into a lower consumption from idle resources and
a large number of accepted jobs, with benefits for the supercomputer owner

3.5. Conclusions 39

(A) Jobs in Queue

0 5 10 15 20 25 30
Queue time

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f j
ob

s

(B) Times in Queue

FIGURE 3.6: Waiting jobs and queue time for BATCH3

and on the environmental side. Short waiting times correspond to a higher
quality of service for the system users.

The problem we tackled was not an easy one, owing to the need to man-
age multiple objectives and to the limited availability of multiple, heteroge-
neous, resources. In both the considered metrics (machine utilization and
waiting times) we considerably outperformed the current scheduler, show-
ing that there are great margins for improvement when a proactive approach
is used. The current, fundamentally reactive approach currently in use
proved to have particular difficulties with the simultaneous management of
different classes of resources (e.g. cores and GPUs). As a future long-term
goal, we plan to further develop our model to replace (or at least comple-
ment) the scheduler currently in use on EURORA, with focus on improving
its energetic behavior. To achieve this result, we will need to research and de-
velop techniques to allow our approach to operate quickly enough to match
the frequency of job arrivals. Moreover, we will need to make some adjust-
ments to take into account the complex policies which regulate exactly the
services provided by the supercomputer to its users.

41

Chapter 4

CP in HPC scheduling: a first
application and evaluation on the
EURORA HPC

High-performance computing centers are investment-intensive facilities
with short depreciation cycles. An average supercomputer reaches full de-
preciation in three to five years [33]. Hence their utilization has to be ag-
gressively managed to produce an acceptable return on investment. Even
relatively small improvements in utilization, throughput, and quality of ser-
vice translate in significant financial gains. A key role in this challenge is
played by scheduling software that decides where and when a job has to exe-
cute. Users submit jobs to supercomputing machines specifying the amount
of required resources (CPUs, GPUs, memory) and the maximum expected
execution time (wall-time). In general, different “job queues” are available
in HPC machines managing, for example, jobs featuring different priorities,
execution time and user-requirements.

Commercial scheduling software (like PBS Professional [127], Torque [46],
and Slurm [47]) can be configured via a set of rules managing the priorities of
waiting jobs. These priority-rule-based algorithms are simple and reasonably
fast, but the resource allocation and schedules found can be considerably
improved in terms of job waiting time and QoS.

On the other hand, search-based approaches are much slower then pri-
ority based algorithms, but can obtain significantly better solutions. Con-
straint Programming (CP) and Integer Linear Programming (ILP) are two
well known paradigms to solve NP-hard problems by efficiently exploring
the solution space for optimizing one or more objective functions. These tech-
niques, however, have seldom been used in HPC facilities as they are com-
putational expensive and thus incompatible with the intrinsic on-line nature
of HPC job schedulers.

In this work, we contradict this claim as we notice that HPC jobs ex-
hibit a longer duration and lower arrival rate than that of e.g. enterprise
servers and data-centers workloads. This opens significant opportunities for
optimization-based scheduling.

We propose a complete and efficient CP approach for HPC machines that
computes optimal schedules that minimize the job time-in-queue, keeping
in mind the concept of fairness. Fairness is accounted by considering the

42
Chapter 4. CP in HPC scheduling: a first application and evaluation on the

EURORA HPC

expected average waiting time in queues declared by the supercomputing
center. For this reason we designed an objective function that minimizes the
job time-in-queue weighted on the expected average waiting time.

In parallel, we evaluate the impact of this optimization goal on other per-
formance metrics such as late jobs, user QoS and scheduling overhead. The
model extends the one in the work of Bartolini et al. [1], to account for multi-
ple classes of jobs and their temporal dependencies. In addition, the solution
space exploration strategies have been optimized for on-line use, taking into
account the impact of the schedule computation time on machine utilization.

The CP solver has been embedded, as a plug-in, in the software frame-
work of PBS Professional [127], a well-known commercial HPC scheduler, by
replacing its rule-based scheduling engine. By linking our solver with a state-
of-the-art HPC scheduling tool, we have been able to validate our approach
on a real-life HPC machine, Eurora, from “Consorzio INtEruniversitario per
il Calcolo Automatico” (CINECA). Eurora is a fully operational prototype of
direct-liquid cooled HPC machine for future Tier 0 and energy aware HPC.
It achieved the top GREEN500 ranking in June 2013 and has been used for
production runs since 2013.

Experiments on Eurora over several weeks of operation under production
workloads show that the new scheduler achieves significant improvements
in job waiting time with respect to PBS Professional, while at the same time
maintaining high machine utilization. In addition, an experimental evalu-
ation on a wide range of synthetic workloads shows that the approach is
flexible, robust and well-suited for integration in a portfolio of scheduling
strategies to cover different levels of machine utilizations.

Simulated tests on Eurora-sized instances obtain average improvements
of 21% on the waiting time of jobs and 22% on late jobs, although we in-
troduce an overhead for computing higher quality solutions with respect to
PBS that is 20 times higher. However, the overhead has a negligible impact
on the job execution time: in our tests the worst case maximum-overhead
over average-walltime ratio registered is only 5.26%. Experiments in a real
production environment achieved an average improvement on job waiting
times of 29% while maintaining the same average machine utilization.

While being suitable for real workloads, the CP-based approach suffers
from scalability issues limiting its use in substantially larger workloads. For
this reason, we have identified alternative approaches for an algorithm port-
folio and conditions for their automatic selection.

The chapter is organized as follows: we start formally defining the HPC
scheduling problem considered in this work in section 4.1. Section 4.2 pro-
vides some insights on Constraint Programming, the declarative program-
ming paradigm used to model and solve the problem. Section 4.3 describes
the optimization model and all the features implemented to make it usable
on a real HPC center. Section 4.4 gives an overview of PBS Professional and
the embedding of our scheduler in its framework. Overhead reduction tech-
niques are also discussed here. In section 4.5 we show results on synthetic
and real settings and we make statistics on the computational overhead.

4.1. The HPC Scheduling problem 43

4.1 The HPC Scheduling problem

Allocating and scheduling jobs on HPC machines can be defined as follows.
We consider a set of jobs J = {j1, . . . , jn}. Each job is characterized by

its maximal expected duration di (referred to as wall-time) and the number
of jobs units ui which is equivalent the number of virtual nodes required.
Each job unit starts and ends with the job, and requires a certain amount of
resources.

Every job ji ∈ J is submitted to a specific queue qh ∈ Q where Q =
{q1, . . . , qm}, to obtain the queue qh in which the job ji is submitted we can
use the fucntion queue(ji). The job i enters in queue at time stqi. Each queue
is characterized by its expected waiting time ewth, which provides a rough
indication of the queue priority. Waiting times larger than the ewth do not
result in penalties for the computing center manager, but they may be an
indication of poor QoS.

HPC machines are organized in a set of nodes Nodes =
{node1, . . . , nodeNn} and a set of resources Res = {res1, . . . , resNr}, like
for example cores, memory, GPUs and MICs. Each node nodej ∈ Nodes of
the system has a capacity capjr for each resource r ∈ Res. Note that in case a
resource is not present on a node its capacity is zero.

Each job unit k of job i requires an amount of resource reqikr for each
r ∈ Res.

The HPC allocation and scheduling problem accounts for finding for each
job i a start time si, and for each job unit k of job i the node nj where it has to
be executed. Resources on all nodes cannot be exceeded at any point in time.

There are a number of other features required for an in-production HPC
machine that the scheduler has to support

• Arrays of jobs: a user can submit a set of independent jobs with the
same characteristics (resources, wall-time, queue of submission, etc. . .).

• Heterogeneous jobs: these jobs are synchronized (i.e., they start at the
same time) but can ask multiple heterogeneous nodes (for example a
job can ask one node with GPUs and another node without).

• Reservations: a reservation locks a set of resources for a given time
window. Each reservation has an associated queue where jobs are sub-
mitted. Note that these jobs implicitly have a deadline. Jobs that do not
fit the reservation are simply not scheduled.

• Standing reservations: standing reservations are periodic repetition of
the same reservation.

• Stopped queues: a queue can be stopped at a certain point in time,
meaning that every job in that queue cannot start until the queue is
restarted.

44
Chapter 4. CP in HPC scheduling: a first application and evaluation on the

EURORA HPC

• Prime-time and non-prime-time jobs: a job is a prime-time (resp. non-
prime-time) job (and is submitted to a prime-time, resp. non-prime-
time queue) if it should execute in a specific interval of time. If a job is
neither prime-time nor non-prime-time it is an “anytime” job.

4.2 Constraint Programming

Constraint Programming is a declarative programming paradigm [130] par-
ticularly suitable for solving constraint satisfaction and optimization prob-
lems. A constraint program is defined on a set of decision variables, each
ranging on a discrete domain of values that the variable can assume, and
a set of constraints limiting the combination of variable-value assignments.
For example, decision variable x ranging on the domain [1..10], written as
x :: [1..10], means that variable x can be assigned to one (integer) value be-
tween 1 and 10.

After the creation of the model, the solver interleaves two main steps:

1. Constraint propagation: constraints are propagated by removing prov-
ably inconsistent values from variables domains. The constraint x > y
where both x and y range on [1..10] removes value 1 for x and 10 for y.

2. Search: the search strategy explores alternative assignments of
variable-values until either a solution is found or a failure is detected.

In case of optimization problems, when a solution is found its optimality
is not guaranteed. Therefore the solver searches for better solutions if they
exist, otherwise it proves optimality.

Constraint Programming is particularly suited for solving scheduling
problems providing decision variables that correspond to activities. Each ac-
tivity variable a is characterized by three features: s(a) representing its start
time, d(a) its duration and x(a) representing its execution state: if x(a) = 0
the activity is not considered in the model.

For scheduling problems, a number of global constraints have been de-
veloped the most important being the cumulative constraints for managing
resource usage. cumulative([a], [r], L) : the constraint holds if and only if all
the activities in [a] whose resource requirement is in [r] never exceed the re-
source capacity L at any point in time. A number of propagation algorithms
are embedded in the cumulative constraints for removing provably inconsis-
tent assignments of activity start time variables.

The algorithm adopted by the solver used in this work is the “Self-
Adapting Large Neighborhood Search”. The complexity of this algorithm is
exponential within the number of decisional variables. In our case the num-
ber of decisional variables is n + Nn ∗

∑n
i=1 ui. Note that this algorithm can

be considered as an anytime algorithm providing the best solution obtained
in a given amount of time. Clearly if the time is enough then the solver can
find the optimal solution and prove the optimality. Much information on CP
and how to translate a model into a program can be found in literature [131,

4.2. Constraint Programming 45

132]. Also information on the “Large Neighborhood Search” algorithm can
be found in literature [133, 134, 129].

4.2.1 Motivational example

Rule-based scheduling algorithm reach the optimal solution only in a few
cases. This is the reason why we chose to use CP because, e.g. let us suppose
we have a system with four nodes and the resources specified in table 4.1.

Node id Cores GPUs MICs Memory
node1 16 2 0 16GB
node2 16 2 0 16GB
node3 16 0 2 16GB
node4 16 0 2 16GB

TABLE 4.1: Node test setup

Suppose we have two different setups for the scheduling priority

1. PBS by GPUs: with this setup jobs are ordered by decreasing number
of requested GPUs.

2. PBS by Walltime: in this setup jobs are ordered by increasing expected
execution time (as declared by the user).

Suppose we have also an optimization model that optimizes the total time
in queue of jobs. The first example has four jobs with duration and resource
requirements as specified in table 4.2.

Id Dur. Nodes Cores GPUs MICs Mem.
Job1 600 2 32 0 4 2GB
Job2 60 1 1 2 0 2GB
Job3 720 2 32 4 0 2GB
Job4 600 2 32 2 0 2GB

TABLE 4.2: Jobs set for test 1

Job1 and Job2 are submitted at time 0, Job3 and Job4 are submitted at time
5. In table 4.3 the solution obtained by PBS ordered by GPU is described. In
table 4.4 the solution obtained by both PBS ordered by walltime and by the
optimization model is presented.

Id Start node1 node2 node3 node4
Job1 0 0 0 1 1
Job2 0 1 0 0 0
Job3 60 1 1 0 0
Job4 780 1 1 0 0

TABLE 4.3: PBS by GPUs solution to test 1

46
Chapter 4. CP in HPC scheduling: a first application and evaluation on the

EURORA HPC

Id Start node1 node2 node3 node4
Job1 0 0 0 1 1
Job2 0 1 0 0 0
Job3 660 1 1 0 0
Job4 60 1 1 0 0

TABLE 4.4: PBS by Walltime and optimization model solution
to test 1

As we can see in table 4.5, in this test PBS by walltime and the optimiza-
tion model reach the optimal solution, PBS by GPUs instead obtains a worse
solution.

PBS GPU PBS Wallt. Model
Total execution 1380 1320 1320∑

waiting 840 720 720

TABLE 4.5: Test 1 statistics

In the second test, we maintain the system behavior (nodes, PBS setups
and submission times) but we use a different set of jobs (Table 4.6).

Id Dur. Nodes Cores GPUs MICs Mem.
Job1 70 2 32 0 4 2GB
Job2 60 1 1 2 0 2GB
Job3 480 2 32 0 0 2GB
Job4 600 2 32 2 0 2GB

TABLE 4.6: Jobs set for test 2

In this case the optimization model obtains the same solution of PBS
ordered by GPUs (Table 4.7) and PBS by walltime obtains the solution de-
scribed table 4.8.

Id Start node1 node2 node3 node4
Job1 0 0 0 1 1
Job2 0 1 0 0 0
Job3 70 1 1 0 0
Job4 60 1 1 0 0

TABLE 4.7: PBS by GPUs and optimization model solution to
test 2

In table 4.9 we can observe that this time the optimal solution is obtained
only by PBS by GPUs and the optimization model.

As we can see from these two very simple examples, rules-based schedul-
ing can obtain the optimal solution only when the rule used by the adminis-
trator perfectly fits the problem instance. This is observable even with trivial
problems like the one we showed. If we increase the size of the problem, it is

4.3. CP Model 47

Id Start node1 node2 node3 node4
Job1 0 0 0 1 1
Job2 0 1 0 0 0
Job3 60 1 1 0 0
Job4 540 1 1 0 0

TABLE 4.8: PBS by Walltime solution to test 2

PBS GPU PBS Wallt. Model
Total execution 660 1140 660∑

waiting 130 600 130

TABLE 4.9: Test 2 statistics

unlikely that we find a rule that gets the optimal solution. This is why it is so
important to use complete optimization in this kind of problem.

4.3 CP Model

The problem considered is an on-line allocation and scheduling problem
which is triggered by specific events: job submission, termination, modifi-
cation of wall-time and job queue change. At any activation at time t, we
have to consider two sets of jobs: (1) A is the set of jobs waiting on a queue
and (2) B is the set of running jobs at current time t. The starting time of run-
ning job ji can be obtained through the function getStart(ji). Running jobs
cannot be migrated and therefore they should be considered as fixed. The re-
sources they use are allocated and reserved for them. The decisions we have
to take are on the waiting jobs in queues.

4.3.1 General model

We now present the CP model built at each activation of the scheduler at time
t.

We model every job ji as an activity variable ai with start time s(ai) dura-
tion d(ai) = di and x(ai) = 1.

The start time of each job s(ai) is a decision variable whose domain is
[t, Eoh] where t is the current time and Eoh is the end of the time horizon of
the scheduler. Eoh can be computed in a conservative way as min

i
(s(ai)) +∑

i d(ai) ∀i ∈ A
⋃
B (we consider both the set of waiting jobs A and the set of

running jobs B).
To model the allocation of job units to nodes, we create an activity variable

aikj for each unit k of job i and for each possible assignment of node j. The
start time and the duration of these activities are constrained to be equal to
the start time and duration of the job i: s(aikj) = s(ai) and d(aikj) = d(ai).
On activation variables x(aikj) we impose a constraint that forces only one
allocation to be feasible, namely

48
Chapter 4. CP in HPC scheduling: a first application and evaluation on the

EURORA HPC

∑Nn
j=1 x(aikj) = 1 ∀i, k

On top of these decision variables we built a model described in equa-
tions 4.1. The first set of unary constraints limit the possible starts of waiting
jobs to be greater than t. The second set of constraints assign the start time of
running jobs to the real (already decided) start time. The third set of unary
constraints limits allocation variables to be 1 if the job unit is assigned to node
j, 0 otherwise. The fourth set of constraints limits a job unit to be assigned
to only one node. Finally we have a cumulative constraint for each resource
type for each node and limit the resource usage to stay below resource capac-
ity at any point in time.

s(ai) :: [t..Eoh] ∀i ∈ A
s(ai) = getStart(ji) ∀i ∈ B
x(aikj) :: [0, 1] ∀i ∈ A
Nn∑
j=1

x(aikj) = 1 ∀k,∀i ∈ A

cumulative(aikj, reqikr, capjr) ∀j ∈ Nn∀r ∈ R

(4.1)

Note that the quantifiers on the right-hand side define how many repli-
cas of the constraints appear in the model. For the indexes of the constraint
variables not appearing among the quantifiers, we assume that they take all
the available values. This is just a compact notation to identify sub-vectors
(or sub-matrices) within data structures having a lot of indexes.

As far as the objective function is concerned, we consider the minimiza-
tion of job waiting-times weighted by the expected waiting time of the queue
where the job is submitted ewth. As often queues represent job priorities, the
waiting coefficients are proportional to these priorities.

min z =
n∑
i=1

s(ai)− stqi
ewtqueue(ji)

(4.2)

This basic model should be enriched with a number of features needed to
run the scheduler on a real HPC machine, as explained in section 4.1.

Array of jobs and heterogeneous jobs As far as array of jobs and hetero-
geneous jobs are concerned, they are very easily handled by the CP model:
in the first case jobs simply share the same resource requirements, while in
the second case they share the same starting time.

Reservations and Standing Reservations When a reservation is submit-
ted, it is associated to a set of resources and at a specific time window. There-
fore, at modeling level, we consider reservations as specific jobs, called reser-
vation jobs, using reservation resources for the time window associated to
the reservation. Standing reservations can be modeled as arrays of reserva-
tion jobs.

4.3. CP Model 49

Stopped Queue When a queue h is stopped, all jobs waiting on it cannot
be scheduled. Therefore their execution state variable should be zero.

x(ai) = 0 ∀i ∈ qh (4.3)

Prime-time and non prime-time jobs Another important feature is the
prime-time and non-prime-time jobs handling. This feature is easily handled
by constraint programming models as we simply remove from the domain of
start time variables of prime-time jobs forbidden (non-prime-time) intervals.
Conversely we act for non-prime-time jobs.

4.3.2 Allocation of jobs within a reservation

In the above model, we have considered reservations as jobs using resources
required by the reservation for the time span of the reservation itself. How-
ever, on real machines reservations can be seen as private queues where only
eligible users can submit jobs. The scheduling and dispatching of jobs in the
reservation queue have to be treated as a separate problem handled by a sep-
arate model (Equations 4.4). The motivation is that the execution time for a
job submitted to a reservation queue is the time span of the reservation and
the resources available for the job are limited to the reservation resources.
In addition, jobs submitted to the reservation queue have a deadline. Each
reservation has a fixed start time, a fixed duration and for each node a set of
reserved resources. These data can be extracted by proper functions, namely
getStart(resv), getEnd(resv) and getResource(resv, j, r) where j is the node
and r the resource type.

The resulting model considers only jobs in the reservation queue JR that,
as before, are divided into waiting jobs AJR and running jobs BJR.

s(ai) :: [max(t, getStart(resv))..getEnd(resv)− d(ai)]
∀i ∈ AJR

s(ai) = getStart(ji) ∀i ∈ BJR

x(ai) :: [0, 1] ∀i ∈ AJR
x(aikj) :: [0, 1] ∀i ∈ AJR
Nn∑
j=1

x(aikj) = x(ai) ∀k,∀i ∈ AJR

cumulative(aikj, reqikr, getResource(resv, j, r))

∀j ∈ Nn∀r ∈ R

(4.4)

The first set of unary constraints defines the domain of the start time of
activity variables that are waiting on the reservation queue. This domain
is lower bounded by the maximum between the current time and the start
of the reservation, and it is upper bounded by the end of the reservation
minus the job duration. The second sets of constraints simply fixes already
started activities. Differently from the previous model, jobs waiting on the

50
Chapter 4. CP in HPC scheduling: a first application and evaluation on the

EURORA HPC

reservation queue, and consequently all their units, can be either executed or
not. The cumulative constraint in this case is limited to jobs belonging to the
reservation queues and to resources of the reservation.

4.3.3 Feasibility check

One of the most important component of real HPC schedulers is the feasibil-
ity check. Intuitively the scheduling problem instance cannot be infeasible.
Otherwise, the whole machine would stop. The infeasibility could be due to
errors both in job and reservation submissions. A small example of wrong job
submission occurs when (1) we have two resources: one node with 2 GPUs
and another node with 2 MICs, and (2) we have a job submission with one
unit requiring one GPU and one MIC. In this case the instance is simply in-
feasible as such a resource (i.e., one node with both a GPU and a MIC) is not
available on the machine.

An example of wrong reservation submission instead is due to lack of
needed resources. We recall that a reservation is submitted with a fixed start-
ing time, a fixed duration and a number of required resources. If these re-
sources are not available for the time required the reservation is simply in-
feasible.

For both these problems we have a phase of the feasibility check (Figure
4.1). The first is the reservation feasibility check that checks if there is enough
room for executing the reservation. Then we have a feasibility check for each
job separately, ensuring that the job requires resources that are available in
the machine. This is made by solving the model 4.5.

Reserva�ons feasibility check

Job 1 feasibility check

Job 2 feasibility check

Job N feasibility check

FIGURE 4.1: Feasibility check subdivision

4.4. Framework architecture 51

jobi = s(i) ∀i ∈ A
jobi =⊥ ∀i ∈ B
jobi = s(i) ∀i ∈ S
jobi = s(i) or ⊥ ∀i ∈ F

alternative(jobi, UNijk, ui) ∀i ∈ A
⋃

B
⋃

S
⋃

F

cumulative(UNijk, d
Pij
i , r

Pij
ijkl, rljl) ∀k = 1..M, l ∈ R

(4.5)

Where S is the set of started reservations and F is the set of reservations with
start time in the future. The second part is the job feasibility check: it checks
if the m-th job can execute in the system, resulting n model 4.6.

jobm ≥ t or ⊥
alternative(jobm, UNmjk, um)

cumulative(UN1jk, d
P1j
m , r

P1j

1jkl, rljl) ∀k = 1..M, l ∈ R
(4.6)

4.4 Framework architecture

Our scheduler has been embedded in the framework of PBS Professional.
PBS Professional is composed by the following macro-components and ser-
vices:

• PBS_server is a server that handles all the events and stores all the jobs,
queues and settings, logs and information.

• PBS_mom(s) is a process running on each node of the HPC machine
managing its resources.

• PBS_scheduler implements the scheduling algorithm of PBS Profes-
sional.

• PBS binaries (i.e. qsub, qmove, qstat, PBS_rsub, etc. . .) provide the in-
terface between the users and the PBS internal components (i.e. PBS_-
server, PBS_mom).

• Hooks, PBS gives the possibility to handle events with hooks. Hooks are
scripts triggered by events. They can be used to get notifications of a
new job submission, of a reservation submission, etc...

The original scheduler PBS_sched can be disabled and replaced with an
ad-hoc scheduling algorithm. We take advantage of this functionality to em-
bed our scheduler in PBS in a plug-and-play fashion (Figure 4.2). In this way,
we leverage all the functionality of the PBS infrastructure such as tracking
the system status and implementing scheduling decisions.

The framework receives events from the PBS_server using Hooks. The
framework interacts with the PBS_mom component by asking the node state

52
Chapter 4. CP in HPC scheduling: a first application and evaluation on the

EURORA HPC

User

Server

P

B

S

b

i

n

a

r

i

e

s

PBS_server

PBS_sched

Op miza on Model

PBS_mom

Vnode 0-1

Vnode 0-N

…

Host 1

PBS_mom

Vnode 1-1

Vnode 1-N

…

Host M

PBS_mom

Vnode M-1

Vnode M-N

…

…

FIGURE 4.2: Framework macro architecture

through PBS binaries. Then our scheduler is run and its decisions are sent to
the PBS_mom component.

Figure 4.3 show the workflow of our framework. All the self-generated
events, “Job update” hook, and “New reservation” hook start a scheduling
cycle. Differently, the “New job” and “Job terminated” hooks will trigger
scheduling cycle only if the state of the system has been changed (i.e. awaken
nodes, job deleted or new job submitted) since the last scheduling cycle. This
avoids unnecessary overheads. Each scheduling cycle starts by (1) checking
if a job currently in execution exceeds its walltime request (Overrun check).

If a running job exceeds this duration we flag the resources, in which
the job is executing, as “used” to avoid other jobs to execute on the same
resources. We let PBS_server take the corrective action (i.e. killing the job).

Subsequently (2) the scheduling cycle update an internal image of the
nodes status which is used as input by the algorithm. In this phase the algo-
rithm checks if the nodes have been crashed/switched-off/activated.

This information is used to verify which reservations and jobs can be exe-
cuted (in figure as “Check reservations feasibility” and “Check jobs feasibil-
ity”). This check excludes either the jobs that does not satisfy the machine
requirements (i.e. jobs asking more accelerator per node than the maximum
available) and either the jobs which cannot execute due to the current system
state (i.e. reduced number of active nodes).

All the jobs and reservations which passed the above mentioned feasibil-
ity check are eligible to execute. Before calling our CP model for these jobs,
the scheduling cycle uses them to check if the machine starts from a feasible
job allocation. If not, the algorithm waits until the machine states converge
to a feasible starting point (i.e. it waits jobs to end in case of overutilization
of some nodes).

If all the necessary conditions are satisfied the algorithm solves the model
and checks the solution obtained does not generate overutilization.

4.4. Framework architecture 53

Hooks

New job

Self generated

events

Reserva!on star!ng

Reserva!on ending

Change interval

Delete job

Delete job

Read job
New

scheduling

cycle is

needed?

Update jobs

Update jobs Overrun check

yes

Update nodes

Check reserva!ons feasibility

Check jobs feasibility

Job and reserva!ons selec!on

Model crea!on

Execu!on

Reserva!on

Model execu!on

Results commit

A

reserva!on

is star!ng?

Finish

yes

no

no

Job updated

New reserva!on

Job terminated

FIGURE 4.3: Workflow

Then for each starting reservation the algorithm solves a sub-scheduling
problem (Section 4.3.2) considering only the jobs submitted in the reservation
queue.

Finally, the model generates for each job the start time and the nodes in
which execute, the job with starting time equal to the current time are then
executed.

54
Chapter 4. CP in HPC scheduling: a first application and evaluation on the

EURORA HPC

One of the key goals of our scheduler is reactivity. The framework has
to use meta-heuristic algorithms to explore a large set of solutions of an NP-
hard problem and to give a good solution in a reasonable amount of time.
For this purpose we introduce several new overhead-reducing techniques.
These techniques limit the execution time of the optimization model and, in
case of too large instances (bigger than 1600 jobs and 65 nodes), the size of
the instance too.

The first technique limits the CP model solution time to δ seconds where
δ is computed as follow.

• Initially δ is set to K1.

• The CP model is executed with δ as timeout.

• If the CP model does not generate any solution in the δ the model is re-
executed up to M times with δ = K2 ∗ δ. If no solutions are found at the
M-th iteration the scheduling cycle returns with no feasible schedule
and waits for the next event to restart.

• If instead the CP model returns with one or more than one valid solu-
tion the algorithm uses the last found schedule (which minimizes the
objective function). The algorithm sets δ equal to the time taken to find
the first valid solution plus K1. This ensures always to adapt the time-
out δ to the CP model complexity.

In addition, to limit the maximum solution time we implemented several
protection mechanisms. (1) We saturate δ at 300 seconds; (2) We stop after
the first solution if δ > 60s or if the search of an improved solution takes
more than 10s (3). All these values are empirically defined and guarantee
an average overhead of ∼ 6 seconds for the model solution in case of high
instances (65 nodes and 1600 jobs). At the same time, this values allows us to
find an almost optimal solution in large problems instances and gives enough
time to solve medium problems.

Under these circumstances, a second technique limits the problem in-
stance when in the previous scheduling cycle no solutions were found. In-
deed if after step 2 no solution where found the number of queued job consid-
ered in the scheduling is halved keeping the first queued jobs and excluding
the subsequent.

Three additional features have been supported: the Standing reservation,
the Job array and heterogeneous jobs.

A standing reservation is a reservation repeated over time with user de-
fined pattern. The user can specify, in addition to the default reservation in-
formation, the frequency (weekly, daily, hourly), the number of reservations
to create and the days in which these reservations have to execute. The jobs
array represent a chain of jobs. We implemented it as a sequence of different
reservations with no binding constraints. Finally, heterogeneous jobs are jobs
with different resource requirement for different jobs unit. For this job it is

4.5. Experimental Results 55

necessary to introduce a synchronization constraint (Equation 4.7) to execute
every job unit simultaneously.

synchronize(jobi, sjobit) ∀i = 1..N, t = 1..T (4.7)

4.5 Experimental Results

We have evaluated the performance of our scheduler in two distinct experi-
mental setups, namely (1) in a simulated environment; and (2) on the actual
Eurora HPC machine.

The simulation-based tests are designed to compare the behavior of our
scheduling system (referred to as CP) and PBS Professional in a controlled
environment, where we can submit the same sequence of jobs to each sched-
uler and compare their performance in a fair fashion. Testing our system
on Eurora instead enables the assessment of its effectiveness in a fully op-
erational production environment. Therefore, our experimentation consists
of:

• A direct comparison of the CP scheduler and two different PBS setups.
These experiments are executed on a set of Virtual Machines (VM). Ev-
ery VM runs a script that generates in a predictable fashion a sequence
of jobs (each composed of a single sleep command).

• A statistical evaluation on the Eurora HPC with true jobs submitted by
real users over five weeks∗.

The PBS software can be configured in different modes to suit the pur-
pose of the system administrator. The following experiments consider two
different PBS setups:

1. The CINECA PBS configuration (referred to as PBSFifo): this setup uses
a FIFO job ordering, no preemption, and backfilling limited to the first
10 jobs in the queue.

2. A PBS configuration (referred to as PBSWalltime) designed to get the
best trade-off between waiting time and computational overhead: this
setup employs a strict job ordering (by increasing wall-time), no pre-
emption and backfilling limited to the first 400 jobs. Ordering jobs by
wall-time and using a high backfilling depth allows to reduce the job
waiting times but incurs a larger overhead: this is mitigated by intro-
ducing the strict job ordering.

The quality of the schedules was measured according to a number of met-
rics. Specifically, we have defined:
Metrics on job waiting times:

∗The time needed for the scheduling team in this computing center to evaluate a schedul-
ing policy is of 1 week.

56
Chapter 4. CP in HPC scheduling: a first application and evaluation on the

EURORA HPC

• Average time in queue (AQ): total waiting time divided by the number of
jobs.

• Weighted queue time (WQT): sum of job waiting-times, each divided (for
fairness) by the maximum wait-time of the job queue.

Metrics on tardiness:

• Number of late jobs (NL): the number of jobs exceeding the maximum
wait-time of their queue.

• Tardiness (TR): sum of job delays, where the delay of a job is the amount
of time by which the maximum wait-time of its queue is exceeded.

• Weighted tardiness (WT): sum of job delays, each divided (for fairness)
by the maximum wait-time of the job queue.

Metrics on computational overhead:

• Average overhead (AO): average computation time of the scheduler.

• Maximum overhead (MO): maximum computation time of the scheduler.

• Overhead percentage on test time (%O): percentage of time spent in com-
putation during the entire test.

4.5.1 Evaluation setup

Simulation-based tests

We have designed the simulation so as to evaluate the performance of our
CP scheduler w.r.t. PBS. The experiments differ under a wide range of con-
ditions with respect to number of jobs, job units, resources heterogeneity and
platform nodes. The goal is to assess the scalability of both approaches and
their ability to deal with workloads having different resource requirements
and processing times.

Overall, the evaluation tends to be biased toward pessimistic configura-
tions, in part because of the limited computational power of the Virtual Ma-
chines. The typical workload for the Eurora supercomputer turned up to be
somewhere in the mid-range of hardness considered in the simulated tests,
and definitely manageable by our approach. Clearly all the real Eurora traces
have been considered in the simulated tests, but we have also scaled them
down and up to cover a wide range of working conditions for the scheduler.

In these experiments, different HPC environments were built on top of
virtual machines. We used a single VM for each environment and exploited
virtual nodes (supported by the PBS framework) to simulate the supercom-
puter units.

We have performed tests on small environments with 4 nodes as well as
on a Eurora-scale environments with 65 nodes. In each experiment, the same
sequence of jobs is generated and submitted to each scheduling system.

4.5. Experimental Results 57

Each VM was allowed to employ up to two cores and 5GB of RAM, on
a physical machine with two CPUs with six-cores and hyper-threading, and
96GB of RAM. The two-cores limit was due to the chosen virtualization envi-
ronment (Oracle VirtualBox). PBS logs are the source of all information about
the performance of the compared approaches.

Evaluation on the HPC

The second set of experiments is run on the Eurora HPC system. Eurora
[100] is a heterogeneous HPC machine of CINECA. It is a fully operational
prototype for future green HPC. Eurora is composed by 65 nodes, one login
node with 12 cores, 32 nodes with 16 cores at 3.1GHz and 2 GPU Kepler K20
each and 32 nodes with 16 cores at 2.1GHz and 2 Intel Xeon phi (MIC) each.

Users of this HPC machine submit jobs specifying the amount of re-
sources, nodes and wall-time to a queue. Each queue has a name, a priority
and a list of nodes where its jobs can be executed, after the submission. The
scheduling and dispatching software currently used in Eurora is PBS Profes-
sional 12 from Altair. Eurora users can choose among three main queues

• debug: for small jobs with low wall-time. CINECA declares the maxi-
mum waiting time of this queue of 1 hour.

• parallel: for large jobs with medium wall-time. CINECA declares the
maximum waiting time of this queue of 5 hours.

• np_longpar: for large jobs with high wall-time. This is a non-prime-
time queue. This means that jobs from this queue can execute only in
a non-prime-time interval (from 18:00 to 08:00). CINECA declares the
maximum waiting time of this queue of 24 hours.

4.5.2 Test generation

We have designed a software component (see Figure 4.4) to generate and sub-
mit a repeatable sequence of dummy jobs (i.e. sleep commands). The gener-
ation process has been calibrated based on real data (12,000 jobs submitted to
Eurora in December 2014). For calibrating the arrival rates, we relied instead
on statistics collected over the whole year 2013 from the Fermi HPC machine
[135] at CINECA; the Fermi was chosen in this case due to its longer history
of utilization.

In detail, for each test we generate n jobs (where n is an input parameter)
to be submitted over a 24 hours period of real-world time. A certain per-
centage of jobs is submitted during daytime (8 AM to 6 PM), and the rest is
submitted during the night (6 PM to 8 AM). Job arrival times are uniformly
spread within each interval. In all our experiments, 89% of the jobs arrive
at daytime and 11% at nighttime. All numbers mentioned above have been
extracted from the CINECA statistics on the Fermi HPC machine. The fol-
lowing statistics are extrapolated from the Eurora execution traces. A fixed
ratio of the generated jobs is then assigned to each system queue. In particu-
lar, 27% of the jobs are submitted to the debug queue, 72% to parallel, and 1%

58
Chapter 4. CP in HPC scheduling: a first application and evaluation on the

EURORA HPC

Sta s cs

System setup

Offline

Test Generator
Job N

Job N
Job N

Runner

2x Intel Xeon E5-2620, 6x 16 GB DDR3

Online

VM PBSFifo
Job N

Job N
Job NRunner

Virtualized Resources

VM PBSWall me
Job N

Job N
Job NRunner

Virtualized Resources

File genera on

File copy

Temporized submission

Execu on

Legend VM CPModel
Job N

Job N
Job NRunner

Virtualized Resources

FIGURE 4.4: Test Generation

to np_longpar. The number of required nodes, cores, and the wall-time val-
ues are randomly generated for each job so as to match the Average Volume
of Utilization (AVU) of its queue. In detail, we start by generating for each
job i the number of requested nodes RNi and the number of requested cores
per node RCi. In particular, let nminq and nmaxq be the minimum and maxi-
mum number of nodes for the queue q. Then, the node and core requests are
obtained as:

RNi = UD[1 . . .mmaxq] and RNi = UD[1 . . . 16]

where UD means a uniform distribution over the interval and nmaxq = 2 for
the debug queue and nmaxq = 32 for parallel and np_longpar. Then for each
job we compute a wall-time value Wi as:

Wi =
AV Uq

RNi ∗RCi
(4.8)

whereAV Uq is the Average Volume of Utilization for q. This value is obtained
using the formula:

AV Uq = NRi(q) ∗ CRi(q) ∗Walli(q) (4.9)

where NRi(q) is the average number of nodes requested by jobs in q, CRi(q) is
the average number of requested cores (per node) and Walli(q) is the average
wall-time of the jobs in the q. These statistics are obtained from Eurora data.
Our AV Uq values are reported in Table 4.10.

The GPU, MIC, and memory requirements are generated so as to match

4.5. Experimental Results 59

Queue AV U
debug 6465
parallel 147145
np_longpar 111372

TABLE 4.10: Eurora jobs utilization

Queue Amount of resource % for GPUs % for MICs

debug
0 96% 99%
1 3% 0%
2 1% 1%

parallel
0 31% 99%
1 4% 1%
2 65% 0%

np_longpar
0 19% 100%
1 0% 0%
2 81% 0%

TABLE 4.11: GPUs & MICs per node request distribution on
Eurora

the average requirements observed on Eurora. In particular, jobs are parti-
tioned into groups that are then assigned to a specific requirement value. The
requirement values and the size of the partitions are reported in Table 4.11 for
GPUs and MICs and in Table 4.12 for the memory.

Finally, the execution time of each job is generated via a two-step process.
First, the jobs are partitioned in two sets according to a fixed proportion: the
sizes are respectively 20% and 80% in our experiments, based on statistics
from Fermi. Then, for the jobs in the first set the execution time is identical to
the wall-time, while for the jobs in the second set the execution time is chosen
uniformly at random between 0.20 ∗Wi and Wi (excluded).

Test 0: Behavior at different heterogeneity levels

This test is designed to give an overview on how this scheduler would be-
have within different numbers of heterogeneous resources. More hetero-
geneity would increase the number of problem constraints, reduce the num-
ber of feasible job assignments, and as a consequence it would generally
make the platform more complex to manage. Heuristic scheduling methods
such as those employed by PBS would primarily be affected by this increase
in complexity. In CP, however, adding more constraints leads to an interest-
ing trade-off. On the one hand, the scheduling problem may indeed become
more complex. On the other hand, however, CP has the ability to actively
exploit the problem constraints to reduce the size of the search space. Hence,
more constraints may actually improve the performance of a CP based ap-
proach.

In figure 4.5 we have reported an experiment that show how the results
change, changing the number of resources (adding more heterogeneity). The

60
Chapter 4. CP in HPC scheduling: a first application and evaluation on the

EURORA HPC

Queue Mem in GB % of jobs

debug

1GB 5%
4GB 77%
8GB 3%
14GB 15%

parallel

1GB 22%
4GB 17%
8GB 55%
14GB 6%

np_longpar

1GB 88%
4GB 0%
8GB 4%
14GB 8%

TABLE 4.12: Memory per node request distribution on Eurora

1 Res. 2 Res. 3 Res. 4Res. 6 Res.

Mean+CI(95%) 2,798 2,882 2,760 2,766 2,639

Mean-CI(95%) 2,711 2,794 2,669 2,677 2,515

Mean 2,755 2,838 2,714 2,721 2,577

2,300

2,400

2,500

2,600

2,700

2,800

2,900

3,000

S
e

co
n

d
s

Mean Overhead at different Heterogeneity levels

FIGURE 4.5: Mean overhead at different heterogeneity levels

test consider 4 nodes and 100 jobs, we can show the computational overhead
for instance with 1, 2, 3, 4 and 6 different kind of heterogeneous resources.
The test differs only by the resources requested by the jobs. However, being
different jobs is not possible compare directly the result of metrics like ”time
in queue“, etc... The only comparable metric is the overhead.

In summary: increasing the heterogeneity is likely to decrease the perfor-
mance of PBS, but may have a beneficial effect on the performance of our
approach as the reviewers can see looking at the trend of the overhead into
the image.

Test 1: 4 nodes 99 jobs

First we tested a system with a low workload. The test simulates 4 Eurora
nodes (2 with MICs and 2 with GPUs): the results are reported in Table 4.13.

4.5. Experimental Results 61

PBSFifo PBSWalltime CPModel
WQT 347.583 170.686 168.032
AQ 31011.7 35637.6 30025.7
NL 55 52 45
TR 1954690 2349450 1832660
WT 283.219 110.034 105.985
AO 0.22 1.21 3.27
MO 1 4 5
%O 0.1 0.3 0.4

TABLE 4.13: Simulated test with 4 nodes and 99 jobs

PBSFifo PBSWalltime CPModel
WQT 152.94 137.74 119.77
AQ 10216.7 9465.42 8053.09
NL 65 60 46
TR 1298810 1223690 1003970
WT 60.03 55.97 46.40
AO 0.47 3.14 11.45
MO 3 10 19
%O 0.33 1.61 6.78

TABLE 4.14: Simulated test with 65 nodes and 330 jobs

PBSFifo has an advantage w.r.t. PBSWalltime and our model thanks to its
lower overhead. However, both PBSWalltime and CP behave much better
than PBSFifo w.r.t. all the performance metrics, in particular, those that take
into account the priority of each queue (i.e. WQT and WT). The performance
of our model is particularly good in this setting. In fact, we obtain substan-
tial improvements w.r.t both PBSFifo and PBSWalltime on all the metrics on
waitings and tardiness. This improvement is achieved at the cost of a larger
overhead that, however, represents only the 0.4% of the makespan of the ap-
plication.

Test 2: 65 nodes 330 jobs

Secondly we tested a system with a medium workload. In this test we sim-
ulate all the 65 Eurora nodes (32 with GPUs, 32 with MICs, and one log-in
node): the results are in Table 4.14. Our model manages to considerably
outperform PBSFifo and PBSWalltime in terms of all the metrics related to
waiting time and delay. Also in this case, all the metrics on waitings and tar-
diness improve w.r.t. both PBSFifo and PBSWalltime even if the cost in terms
of overhead grows to 6.78% which still justifies the gain obtained in all other
metrics.

62
Chapter 4. CP in HPC scheduling: a first application and evaluation on the

EURORA HPC

PBSFifo PBSWalltime CPModel
WQT 1034.2 853.681 2441.3
AQ 32066.1 27046.2 34816.3
NL 234 200 376
TR 16798300 13693000 16774800
WT 776.405 623.287 2013.18
AO 1.02 15.47 34.82
MO 11 57 120
%O 0.69 8.8 18.95

TABLE 4.15: Simulated test with 65 nodes and 700 jobs

Test 3: 65 nodes 700 jobs

Finally we simulate a system with a high workload. We tested a 65 node con-
figuration with a larger number of jobs (namely 700): the results are reported
in Table 4.15.

Due to the large number of jobs and (more importantly) job units, in
this case, our framework was forced to employ the overhead reduction tech-
niques from Section 4.4. Such techniques are indeed effective in limiting the
overhead, but they also have an adverse effect on the quality of the model so-
lutions. As it can be seen in the table, our model yields a little improvement
in tardiness w.r.t. PBSFifo, a small increase in the total time in queue, and a
considerable increase of the number of late jobs, the WQT, and the weighted
tardiness.

Introducing more effective overhead reduction techniques seems to be
critical to improve the performance of our CP system. This is subject of cur-
rent research activity.

In the following chapter we can have a better view of results, seeing how
the behavior of the optimization model changes by increasing the hardness
of the problem. Indeed the test seen are reported for increasing problem
hardness.

Results comparison

We now provide a thorough comparison of the results obtained on the three
tests. We will analyze each performance metric separately and investigate
how the number of jobs and nodes affects the results. In each comparison,
the performance of PBSFifo is used as a baseline and positive values denote
improvements.

Figure 4.6 reports the relative improvement of CP and PBSWalltime over
PBSFifo in terms of WQT. The two approaches behave similarly on Test 1
(i.e. the easiest one), both obtaining a ∼ 50% improvement over PBSFifo. As
the test becomes more complex, the performance of our model gets better,
beating PBSFifo by a factor 22%, against the ∼ 10% obtained by PBSWall-
time. In Test 3 (the largest), the overhead reduction techniques are active and
this leads to a degradation of our results while PBSWalltime improves over
PBFifo by a factor ∼ 17%.

4.5. Experimental Results 63

Test 1 Test 2 Test 3

CPModel 51,66 21,69 -136,06

PBSWall!me 50,89 9,94 17,45

-150,00

-100,00

-50,00

0,00

50,00

100,00
%

WQT gain w.r.t PBSFifo

FIGURE 4.6: Weighted queue time gain w.r.t. PBSFifo

In terms of average queue time (see Figure 4.7), PBSWalltime tends to
improve over PBSFifo as the test size increases. Our approach (due to the
overhead reduction techniques) follows the opposite trend. This is behavior
is similar to the one observed for the WQT metric.

The results of the last three metrics (number of late jobs, tardiness and
weighted tardiness (see Figures 4.8, 4.9, and4.10) follow the same trend as
the WQT metric: CP works better than PBSFifo and PBSWalltime until the
overhead reduction techniques are triggered (i.e. Test 3). In terms of total tar-
diness, the performance of our approach remains on par with that of PBSFifo
even on Test 3, despite the large number of jobs.

Finally, Figure 4.12 compares the overhead to test-execution-time ratio
for the three approaches. PBSFifo has the lowest overhead, followed by PB-
SWalltime, and then by our approach. The overhead of PBSWalltime is, how-
ever, the fastest growing one from Test 2 to Test 3, i.e. when the system scal-
ability is more stressed. The overhead of our CP model grows more slowly
thanks to the overhead reduction techniques.

Guidelines for algorithm portfolio selection

From the tests reported above, we can observe that the instance scale heavily
affects the performance of the scheduler. In fact, being our approach based
on search, the overhead introduced by running our scheduler grows with the
instance size. On the contrary, we can notice that for realistic-sized instances,
our approach is computationally feasible and provides significantly better
results in terms of quality.

The purpose of this section is to identify a set of methods that can be used
in a portfolio to solve HPC scheduling problems with increasing scale from
lightweight to heavy ones, (see Figure 4.13).

64
Chapter 4. CP in HPC scheduling: a first application and evaluation on the

EURORA HPC

Test 1 Test 2 Test 3

CPModel 3,18 21,18 -8,58

PBSWall!me -14,92 7,35 15,65

-20,00

-15,00

-10,00

-5,00

0,00

5,00

10,00

15,00

20,00

25,00

%

Average queue !me gain w.r.t PBSFifo

FIGURE 4.7: Average queue time gain w.r.t. PBSFifo

We have collected statistics on the execution of the Eurora HPC with the
aim to characterize its workload. We have generated lower and higher work-
loads by reducing respectively increasing, the number of job units to test the
scalability of the system.

1. On one end of the spectrum we have lightweight workloads, featuring
a small number of jobs, each requiring only few nodes. In this situation
finding a good schedule is trivial, since the machine is under-loaded,
and using powerful optimization techniques provides little benefit.

2. The second class includes mid-range realistic workloads, typically they
are characterized by less than 4’100 job units for a 65 nodes HPC ma-
chine. This is the range where making good dispatching decisions is
not trivial, but the problem size is still manageable. In this situation,
the CP system tends to provide the best results.

3. Finally, workloads with a very large number of jobs requiring many
computation nodes (namely more than 270’000 job units * nodes sub-
mitted in 24h), call for the use of overhead-reduction techniques (Sec-
tion 4.4). This allows to find solutions in a reasonable amount of time,
but with adverse effects on the solution quality. Therefore in this range
PBS heuristic approaches become the techniques of choice.

4.5.3 Execution on Eurora

Thanks to our modeling and design efforts from Section 4.3 and 4.4, we have
managed to obtain a scheduling system that is mature enough to be deployed
and evaluated on the actual Eurora HPC machine.

4.5. Experimental Results 65

Test 1 Test 2 Test 3

CPModel 18,18 29,23 -60,68

PBSWall!me 5,45 7,69 14,53

-70,00

-60,00

-50,00

-40,00

-30,00

-20,00

-10,00

0,00

10,00

20,00

30,00

40,00
%

Late jobs gain w.r.t PBSFifo

FIGURE 4.8: Number of jobs in late gain w.r.t. PBSFifo

In detail, we have compared the performance of our approach and the
PBSFifo configuration (currently employed by CINECA) over five weeks of
regular utilization of the HPC machine: the PBS scheduler was employed for
the first three weeks and the CP system during the last two weeks. During
such period, statistics were collected by relying on the PBS logs. The HPC
users were unaware of the change of the scheduling system.

Since the comparison was performed in a production environment, it is
impossible to guarantee that the two approaches process the same sequence
of jobs. For this reason, the performance metrics that we employed in Sec-
tion 4.5.1 are not meaningful in this setting and new metrics must be em-
ployed. This is due to the big variation between the number of jobs sub-
mitted in different days. For this, after some experimentation, we chose to
compare the CP approach and PBSFifo in terms of: (1) the average WQT per
job, and (2) the average number of used cores over time (i.e. the average core
utilization).

Figure 4.14 compares the two approaches in terms of the first metric. Our
CP system performed consistently better with an average WQT per job of
∼ 2.50 ∗ 10−6, against the ∼ 3.93 ∗ 10−6 of PBSFifo. The standard deviation
for the two approaches is very similar. The average core utilization obtained
by both approaches during each week is instead reported in Figure 4.15: the
two approach have similar performance in terms of this second metric, which
ranges between 520 and 599 for PBSFifo and between 510 and 573 for CP.

We recall that, since it is not possible to ensure that the two scheduling
approaches process exactly the same jobs, these results are in part workload-
dependent. The metrics we chose are designed to allow a fair comparison,
but better (e.g. more robust) metrics may definitely exist: their identification
is left as a topic for future research.

66
Chapter 4. CP in HPC scheduling: a first application and evaluation on the

EURORA HPC

Test 1 Test 2 Test 3

CPModel 6,24 22,70 0,14

PBSWall!me -20,20 5,78 18,49

-25,00

-20,00

-15,00

-10,00

-5,00

0,00

5,00

10,00

15,00

20,00

25,00

%

Tardiness gain w.r.t PBSFifo

FIGURE 4.9: Tardiness gain w.r.t. PBSFifo

Test 1 Test 2 Test 3

CPModel 62,58 22,70 -159,30

PBSWall!me 61,15 6,76 19,72

-200,00

-150,00

-100,00

-50,00

0,00

50,00

100,00

%

Weighted tardiness gain w.r.t PBSFifo

FIGURE 4.10: Weighted tardiness gain w.r.t. PBSFifo

4.5.4 Overhead distribution

Table 4.16 reports the average time for each execution phase of our system
(i.e. the steps in the flow chart from Figure 4.3). From the table, it is clear
that moving from the simulated platform to real HPC leads to a considerable
decrease of the total overhead. The distribution of the total overhead in the
simulated tests and on the real system is instead depicted in Figure 4.16 and
4.17: in the simulated tests, the model resolution makes for most of the to-
tal overhead; on the real HPC the distribution is more balanced, and some

4.5. Experimental Results 67

Test 1 Test 2 Test 3

CPModel 5 19 120

PBSWall!me 4 10 57

PBSFifo 1 3 11

0

20

40

60

80

100

120

140
S

e
c
o

n
d

s

Maximum overhead

FIGURE 4.11: Maximum overhead gain w.r.t. PBSFifo

Simulated test Eurora
Update jobs 4.11 3.96
Update queues 0 0.02
Update Nodes 3.26 1.45
Check reservations feasibility 0 1.21
Check jobs feasibility 0.05 1.02
Jobs and reservations selection 0.07 0.02
Model creation 2.62 0.93
Model execution 21.91 2.31
Reservation check 0 0
Reservations model execution 0 0
Result commit 0.33 2.53
Total 32.35 13.45

TABLE 4.16: Optimization model average overheads (seconds)

phases (reservation/job feasibility check, and result commit) are proportion-
ally much heavier than in the simulated platform.

The differences are likely due to multiple reasons. For sure, the model so-
lution time was heavily affected by the performance gap between our VMs
and the Eurora node where the scheduling system was deployed. It is, there-
fore, likely that the CP approach would in practice be more scalable (i.e. ap-
plicable successfully to even larger machines and workloads than Eurora)
than what we observed in the simulated experiments.

68
Chapter 4. CP in HPC scheduling: a first application and evaluation on the

EURORA HPC

Test 1 Test 2 Test 3

CPModel 0,39 6,78 18,95

PBSWall!me 0,34 1,61 8,80

PBSFifo 0,07 0,33 0,69

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

20,00

%
Overhead percentage on makespan

FIGURE 4.12: Overhead percentage on execution time gain
w.r.t. PBSFifo

Improvement

Instance hardness

Trivial solu�on Ovrehead reduc�on

techniques

No ovrehead reduc�on techniques

Eurora HPC

working

range

FIGURE 4.13: Working ranges

4.5. Experimental Results 69

CP Model PBS

Mean+CI(95%) 0,000002510 0,000003938

Mean-CI(95%) 0,000002498 0,000003928

Mean 0,000002504 0,000003933

0,000002400

0,000002600

0,000002800

0,000003000

0,000003200

0,000003400

0,000003600

0,000003800

0,000004000

Weigted queue !me per job

FIGURE 4.14: Weighted queue time extrapolated from Eurora

PBS PBS PBS CPModel CPModel

Mean+CI(95%) 546,12 599,01 619,49 600,57 531,56

Mean-CI(95%) 501,81 558,62 579,45 544,52 487,22

Mean 523,96 578,82 599,47 572,55 509,39

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

#
 c

o
re

s

Average cores u!liza!on on Eurora HPC

FIGURE 4.15: Core utilization on Eurora

70
Chapter 4. CP in HPC scheduling: a first application and evaluation on the

EURORA HPC

FIGURE 4.16: Overhead distribution for the simulated test

FIGURE 4.17: Overhead distribution for Eurora

4.6. Conclusion 71

4.6 Conclusion

In this work we presented a scheduler, based on Constraint Programming
techniques, that can improve the results obtained from commercial sched-
ulers highly tuned for a production environment. We implemented all the
features to make it usable on a real-life HPC setting. The scheduler has been
tested both in a simulated environment and on a real HPC machine with
promising results. We have seen that in a simulated environment with a lim-
ited computational power the model has three working ranges (delimited
by the hardness of the instance of the problem). The proposed solution can
be suitably inserted in a portfolio of scheduling algorithms and dominates
commercial approaches in the following conditions: The statistics on the Eu-
rora HPC system show an improvement on the weighted queue time while
maintaining similar levels of utilization.

Despite the system has been deployed on a real HPC machine, a num-
ber of improvements are still pending: First, the uncertainty on the execu-
tion time of jobs, can be considered in the scheduling algorithm and can be
characterized through learning techniques as done in the work by Tsafrir et
al. [80]. Considering the job execution time uncertainty heavily impacts the
scheduler model thus affecting solution algorithms: techniques such as ro-
bust optimization and stochastic constraint programming have to be consid-
ered. A second improvement can be obtained by providing hot-starts to the
optimization engine: they can be either be computed as the solution of the
previous run or via sophisticated heuristics algorithms enriched with back-
filling techniques. Finally a deeper integration of the optimization engine
into the scheduling management framework can be obtained by a changing
its source code, this would need longer development time but possibly re-
duce the overhead introduced by the interaction.

73

Chapter 5

Improving the HPC scheduling
scalability with Distributed And
Randomized DIspatcher and
Scheduler (DARDIS)

Scheduling and dispatching are critical enabling technologies in High-
Performance Computing (HPC). In this context, scalability is an issue: we
have to allocate and schedule up to millions of tasks on hundreds of thou-
sands of nodes.

If we take as an example the number of computational nodes a sched-
uler has to manage for high performance computers like the top HPC in
2015 [136] or the future HPC machine planned in the USA [137], these ma-
chines feature a number of nodes estimated between 50’000 and 1’000’000
[11, 138]. The scale of these machines is out of reach for complete and cen-
tralized scheduling approaches. This is a clear problem for today’s commer-
cial schedulers that are centralized and rule-based. It is quite clear that cen-
tralized approaches will hardly scale up to future large-scale (exascale) HPC
systems [138]. Hence, scalable, distributed schedulers are needed to handle
thousands of nodes while at the same time optimizing efficiency metrics (e.g.
reducing operating cost, maximizing utilization).

In addition, the intrinsic computational power of future HPC installations
is bounded by their total consumed power, which has a practical limit of
20 MWatt due to constraints in the energy provisioning system [139]. Un-
til today, the de-facto solution to this problem has been to statically design
a system which respects this constraint in terms of peak power. However,
the peak power is reached only for a few applications, such as the HPL lin-
pack[10], while during normal operation the machine consumes significantly
less power. This leads to a reduced operating capacity and reduced return
over investment. To avoid this issue, strict strategies try to preserve this
bound at run-time. Several works take advantage of the node HW capabili-
ties [140, 141, 142] to cap their power computation while other works tackle
this problem at the job scheduler level [81]. When the power budget is de-
cided based on exogenous inputs such as the electricity price, environmental
parameters (i.e. ambient temperature) and administrative targets, this bud-
get changes at run-time leading to a variable profile.

74
Chapter 5. Improving the HPC scheduling scalability with Distributed And

Randomized DIspatcher and Scheduler (DARDIS)

Classical job schedulers are rule-based [50]. These are heuristic schedulers
that use rules to prioritize jobs. In these scheduling systems a job requests a
set of resources on which the job will execute different job units. All the job
units of the same job execute in parallel. The scheduler checks for each job
unit of a given job if it can execute in a node while respecting the capacity of
the target resources. If all the job units can use the requested amount of re-
sources, the job is executed. To enforce fairness, supercomputing centers use
different queues or partitions, targeting jobs with different resource request
and different expected waiting time. This expected waiting time is viewed
by the final user as a sort of soft-deadline and quantifies a user-satisfactory
metrics.

In the literature there are several works on distributed scheduling [85, 86].
However, all of these approaches are suitable for the case of grid schedul-
ing (meta-scheduling). The main limitation to apply these approaches to the
HPC scheduling is that they do not support job workloads with multiple job
units. Taking multiple job units into consideration would introduce, for the
above mentioned schedulers, a stage of synchronization between nodes that
would increase dramatically the number of exchanged messages between
nodes and the overhead spent in the scheduling.

In Randomized Load Control [143], the algorithm schedules appliances
activities using a load probability distribution based on a desired total en-
ergy consumption profile. The profile can be variable and can be designed
to exploit the pricing model of the energy supplier to minimize the costs for
the users. It is shown that the approach obtains results that match well the
desired solution. Moreover, the author demonstrates that a randomized ap-
proach to the schedule of these activities can obtain results as good as an
optimization model.

In this work, we substantially extend the work in [143] and apply it to the
HPC domain, introducing the possibility to schedule tasks on more than one
resource, we introduced the concept of node, that is a collection of resources.
We, also, extended the work introducing a set of nodes and the possibility for
a job to ask a number of job units for a parallel execution.

Our contribution is a Distributed And Randomized DIspatching and
Scheduling for HPC (DARDIS) approach that is:

• Distributed to scale to very large systems. The scheduler and dis-
patcher basically leaves the dispatching choice to the job and then each
node schedules its own jobs. Moreover, this approach can match the
jobs starting times on different nodes for the jobs’ parallel execution
without communication between nodes.

• With support for variable resources’ utilization profile. Each resource,
can exhibit a variable/desired utilization profile. This feature is essen-
tial to reduce the costly overprovision in traditional power and cooling
design strategies.

• Randomized. The scheduler uses different probability distributions for
selecting the jobs starting times and dispatching policies to optimize
different objective functions.

5.1. Motivational example 75

• Customizable. We will show three different setups of DARDIS each
one designed to optimize a different goal: throughput, balancing, costs
minimization.

• Aware of user deadlines. Each job can specify a time window in which
it should start. This can be used by facility administrators to create jobs
with different priorities (the smaller the window the higher the prior-
ity). Note that a window with length of one correspond to a reservation.
The administrator could also decide to apply a pricing model inversely
proportional size of the user-specified window.

DARDIS has been implemented using the MPI library. Tests have been
executed on a server with 2xIntel Xeon DP 12 Core E5-2670v3 and 128GB
of RAM and compared with state of the art for commercial approaches. We
chose to compare DARDIS with rule-based approaches for two reasons: (1) in
literature, to the best of our knowledge, is not present a distributed approach
for the scheduling suited for HPC, i.e. all the distributed approaches studied
do not consider the parallel execution of a job on different nodes, (2) two
of the key features of DARDIS are responsiveness and scalability and the
best approach that we can compare with under this metrics is rule-based
scheduling.

In addition, to make allow a fair and meaningful comparison, we have
compared our approach to a rule-based scheduler we custom tailored to en-
force a variable profile. At each event, this scheduler tries to allocate a job
considering not only the unused resources between the resource capacity and
the current resource utilization, but also considering the unused resources
between the variable profile and its current utilization.

Results show that this approach obtains benefits derived from the reduc-
tion of the overhead and the introduction of a desirable utilization profile,
but also we show that DARDIS can improve deadline exceeding, queue wait-
ing and utilization w.r.t. rule-based schedulers from ∼ 31% to ∼ 57% with a
much lower computational cost (200x lower). Moreover, we demonstrate that
the overutilization over the variable/desired profile obtained by DARDIS is
created only to minimize metrics with a higher specified importance.

In section 5.1 we discuss the importance of variable constraints as power
and thermal bounds for current and future HPC machines. In section 5.2 we
describe a generic rule-based variable profile aware scheduling approach. In
section 5.3 we show the DARDIS approach to the scheduling, all the setups
designed and the objective they optimize. In section 5.5 we show experimen-
tal results and the comparison w.r.t rule-based schedulers. Finally, section 5.6
summarizes our conclusions.

5.1 Motivational example

Until today, the peak performance of supercomputers has been limited only
by area, investment cost and available technology at procurement time. At
operation time all the computing nodes are usually configured to run always

76
Chapter 5. Improving the HPC scheduling scalability with Distributed And

Randomized DIspatcher and Scheduler (DARDIS)

at their maximum performance level disregarding their actual efficiency. In
the recent years with the push toward the Exascale and more sustainable
computing, supercomputing centers, as well as system manufacturers, have
started facing the physical limits of the computing devices evaluating the
possibility of constraining/capping at run-time different figures of merit (i.e.
total power, used resources, node performance) to gain efficiency and cost
effectiveness. In this section we give some motivations of these trends as a
support of the proposed methodology.

Power Capping Several authors have presented strategies for constraining
at run-time the power of an entire supercomputing machine allowing to use
more computational nodes during average operations which consume lower
power than the peak one while ensuring the safe limits during the execu-
tion of jobs which consumes peak power which happens rarely. To improve
the efficiency of these solutions, authors in [144] consider variable in time
and per-job power budget of each node to speed up critical sections. In addi-
tion, Inadomi et al. [145] show that nominally similar supercomputing nodes
have different power vs performance trade-offs and that the power budget
should be reallocated proportionally to the intrinsic performance of the node
to produce a virtually homogeneous cluster.

Energy Capping Authors in [146] show that, as consequence of advanced
cooling methodology (i.e. hybrid air/liquid cooling and free-cooling), the
cooling efforts and the PUE depends on the instantaneous IT power (load
of the machine). In this domain a time variable power capping can be used
as a knobs to enforce a target PUE under different ambient temperature and
condition.

Thermal Capping Authors of [147] show that the air flow distribution, in a
supercomputer racks and rooms, strongly depends on the floorplan and on
the node position in the rack, creating heterogeneous air flows which leads to
difference in the cooling efficiency of different nodes. Effective strategies to
avoid cooling overprovisioning while preserving safe working temperatures
for all the processing elements would be to apply heterogeneous power bud-
get to different nodes accordingly to their position and cooling efficiency.

As just described, supercomputers would gain benefit by operating under
time-variable and per-resource power and resource usage constraints.

5.2 Profile aware scheduling

5.2. Profile aware scheduling 77

Nodes nl

CPU

CPU

CPU

CPU GPU

GPU

GPU

GPU

CPU

CPU

CPU

CPU GPU

GPU

GPU

GPU

Login
Node

Profiles dpn,k (t)

j3

j2

j1

j1

Un1,0

Un1,1

Un2,0

Un3,0

un1,1

un1,0

un2,0

un3,0

FIGURE 5.1: Example of a profile aware scheduling
architecture

Algorithm 4 Profile aware rule-based scheduling

1: procedure SCHEDULINGCYCLE(PRIORITYRULE, WAITINGJOBS, TIMES-
TAMP)

2: orderJobsBy(priorityRule, waitingJobs)
3: foreach job i ∈ waitingJobs do
4: foreach job unit w ∈ jui do
5: foreach node n ∈ L do
6: foreach resource kind k ∈ K do
7: if upn,k(timeStamp) + reqi,k,w <
min(dpn,k(timeStamp), cn,k) then

8: set the execution of the job unit w of job i to the node
n

9: end if
10: end for
11: end for
12: end for
13: if all the job units of job i have a node then
14: else
15: clear the nodes of each job unit of job i
16: call the backfilling algorithm
17: return
18: end if
19: end for
20: end procedure

78
Chapter 5. Improving the HPC scheduling scalability with Distributed And

Randomized DIspatcher and Scheduler (DARDIS)

Figure 5.1 show the architecture of our variable profile aware rule-based
scheduler. The scheduling under variable profiles problem can be mod-
eled by a set of different kinds of resources rkk (e.g. cores, GPU, mem,
power), with k ∈ K, a set of nodes nl, with l ∈ L and a set of jobs ai
with i ∈ A each composed by a set of job units uni,w, with w ∈ Wi. Each
node contains a resource for each kind resn,k.Each resource has a capacity
cn,k, a variable/desired profile dpn,k(t) and a utilization profile upn,k(t), with
t ∈ [0, .., Eoh]. The variable/desired profile is a profile described by the ad-
ministrator that show how the resource should be used (in term of number
of amount of resource used by jobs) in time. The utilization profile is the
amount of resource used/reserved to already scheduled jobs.

Each job is submitted to the system at a time instant qi. At the submission
the job specifies its earliest start time esti, the latest start time lsti, its walltime
wti, the number of job units jui and the amount of resource required reqi,k,w
for each kind of resource and for each job unit.

The scheduling problem consists of selecting start time sti for each job ji
and a node to each job unit uni,w of the job such that:

sti :: [esti, .., lsti] ∀i ∈ A
uni,w ∈ nl ∀i ∈ A,∀w ∈ Wi,∀l ∈ L∑
i

reqi,k,w ≤ cn,k ∀t ∈ [0, .., Eoh],∀k ∈ K,

∀i ∈ A|sti ≤ t ∧ sti + wti > t ∧ uni,w = n∑
i

reqi,k,w ≤ dpn,k(t) ∀t ∈ [0, .., Eoh], ∀k ∈ K,

∀i ∈ A|sti ≤ t ∧ sti + wti > t ∧ uni,w = n

(5.1)

5.2.1 Rule-based schedulers for variable profiles

To enforce a variable profile on the resources classical rule-based scheduler
can be extended to include in the scheduler the profile knowledge and at
each scheduling cycle to check if the resource constraint is fulfilled.

The Algorithm 4 describes the profile aware scheduling algorithm used in
our experimentation. The only difference from a normal rule-based schedul-
ing algorithm [50] is in line 7: the algorithm checks not only to not exceed the
resource capacity but also the variable/desired profile for the resource.

5.3 DARDIS approach

In this work we propose an innovative approach for variable profile schedul-
ing on massively parallel resources called DARDIS. In DARDIS we designed
a different approach which has a (i) distributed nature to tackle the prob-
lem of the exponential growth of the supercomputer capacity and comput-
ing resources and (ii) enforces the satisfaction of a variable/desired profile
not only at the current time stamp, as the rule-based scheduler does, but also
by looking at future intervals. The main idea of the proposed scheduler is

5.3. DARDIS approach 79

to partition the decision process in two main phases performed by two sep-
arate software entities: the “task manager” and the “node manager”. The
task manager is responsible for the job submission and the dispatching. This
software component executes into the user-space (e.g. into the user worksta-
tion/PC). The node manager is responsible for the scheduling. This software
component executes into the computing nodes.

Figure 5.2 shows the different phases of our approach. This phases are
subdivided in:

Job Submission (1) - Our approach starts with a task manager submitting
a job to all the node managers of the system. At submission time, it specifies
the job ID, the number of job units, the amount of required resources, the
walltime, the earliest start time and the latest start time for its execution.
After the submission to all the node managers, the task manager waits for
the responses.

Start-time probability generation (2) - Each node manager, after receiving
the submitted job request, calls the start time probability generation phase in
which the node manager generates a start time for the job according to an
internal rule (Section 5.3.1).

Start-time response (3) - After the start time generation is completed, the
node manager running in each node sends the generated start times to the
task manager which run on the user pc.

Resource selection (4) - The task manager, after receiving the responses
from all the nodes, applies a policy to select the nodes for the job units’ ex-
ecution. The policy depends on the goal of the scheduler, all the goals and
policies are discussed in sections 5.3.3, 5.3.4 and 5.3.5. In case of error (like
communication fault or node crash) a timer on the task manager let the pro-
tocol to continue with the responses obtained until that time. A number of
missing responses from the node managers could increase the probability to
do not find a feasible schedule for the job before its deadline. This probabil-
ity depends on the state of the used resources. However, if an allocation is
not found this case is ascribable to the case of a job that cannot be scheduled
within its deadline (see Section 5.3.6).

Resource confirmation (5) - The task manager sends the result to all the
node managers involved in the submission, namely, the one selected and
those not selected by the dispatching policy.

Resource reservation (6) - The node managers in which the job has to
execute, reserves the proper capacity for the execution, by modifying the uti-
lization profile.

A submission sent during the start time probability generation of a previ-
ous job, waits for the end of the resource reservation of the job. This behavior
was chosen for two reasons: (i) usually in the domains selected, the compu-
tation of the scheduling cycle takes negligible time w.r.t. the execution-time
of jobs; (ii) with this approach we do not have to manage concurrency on the
same resources (overutilization): the utilization profile cannot change during
the protocol.

It must be noted that the number of exchanged messages for scheduling
a single job depends linearly on the number of the nodes of the system. In

80
Chapter 5. Improving the HPC scheduling scalability with Distributed And

Randomized DIspatcher and Scheduler (DARDIS)

particular, for each job we exchange 3 ∗L messages where L is the number of
nodes involved in the submission.

Res0 Res1

Profile dp0,0 (t)

j1

J1

Un1,0

Un1,1

Node n0

Node nL Res0 Res1

…

Profile dp0,1 (t)

Profile dpL,0 (t)

Profile dpL,1 (t)

…

Job submission Start-time response Resource confirmation

FIGURE 5.2: DARDIS architecture

5.3.1 Scheduling

As described above, the software component responsible for the start time
generation is the node manager of the supercomputer which, computes the
list of feasible start times for a given job on a node. This component manages
the resources and the jobs present on the same node in which is running. We
call this phases start time generation.

The start time generation process for the node n, starts by computing a
fitting index for the submitted job i. This index indicates how many parallel
runs of the same job unit of the job could be executed at a given start time s
while satisfying the desired utilization profile for all the resources hosted in
the node. Since the desired profile is variable, the node manager has to check
for each time instant t ∈ {s, .., s + wti} how many times the job’s resource
requirement reqi can fit the space left between the utilization profile and the
variable/desired profile. The utilization profile represent the amount of re-
sources reserved to scheduled jobs in each time instant t. This is repeated for
each kind of resource K present in the node and the minimum index is held
(equation 5.2).

I ′(s) = mink(mint(
dpn,k(t)− upn,k(t)

reqi,k,w
))

∀t ∈ {s, .., s+ wti},∀k ∈ K
(5.2)

Note that I ′(s) = 1 means that the job unit perfectly fits into the resources
without exceeding none of the variable/desired profiles. I ′(s) > 1 means

5.3. DARDIS approach 81

that the job unit fits the variable/desired profiles and leaves some resource
for other jobs. If I ′(s) < 1, it means that the job unit exceeds at least one of
the variable/desired profiles of the node’s resources. The capacity instead
cannot be exceeded by definition. To handle this case, we use equation 5.3.
Where \ represents integer division.

I(s) = min(I ′(s),mint((cn,k − upn,k(t)) \ reqi,k,w))
∀t ∈ {s, .., s+ wti},∀k ∈ K

(5.3)

The index distribution I is calculated for each possible start time be-
tween the earliest start time esti and the latest start time lsti of the job:
I = {I(esti), .., I(lsti)}. In this way we obtain the fitting profile for the job.

There are several different ways to obtain start times from the fitting pro-
file, each way is designed to optimize a different goal. We will discuss these
in sections 5.3.3, 5.3.4 and 5.3.5. Independently from the chosen start times
generator, we can assume that this process does not generate start times in a
deterministic way from the point of view of the job. This is due to the facts
that: the generation is based on the utilization profile of each node, each
node executes different jobs and the task manager is not aware about the job
in execution on each node.

5.3.2 Dispatching

The dispatching problem, for a given job ji with jui job units, consist in se-
lecting a set of equals start times of cardinality equals to the number of job
unit jui, the job will be executed on the nodes involved in the set of start
times. Since the start times are generated by the nodes independently, the
job does not know which values it will receive. However, it needs at least
jui different resources that reply with the same start time in order to find a
feasible allocation. To solve this issue, we model the dispatching problem as
the birthday problem [148]. In its work, Von Mises shows that given a set of
people of cardinality NP , the probability to find two persons with the same
birthday date increases faster than the probability to find only one person
with a birthday in a specific day of the year while increasing the cardinal-
ity of the set of people (NP). Unfortunately, in the HPC domain we have
to guarantee that a job waits to execute only because there are no resources
available and not depending on the scheduler architecture and policy. To
have this guarantee behavior we can exploit the pigeon principle [149]. This
principle states that having n items to be placed in m containers, to be sure
that at least one container receives more than one item, n has to be greater or
equal to m + 1. We used a generalization of this principle to find a feasible
dispatching. We start from the hypothesis that each start time selected by the
scheduling algorithm has a fitting index ≥ 1. If we have a job asking jui job
units and a starting-times-window windowi = lsti − esti on a HPC cluster
composed by L nodes. We can guarantee a probability of dispatching the job
on the cluster within windowi equal to 1 simply by forcing each start-time
generator running in each node to return a number of different start times

82
Chapter 5. Improving the HPC scheduling scalability with Distributed And

Randomized DIspatcher and Scheduler (DARDIS)

equal to responsesi = b (jui−1)∗windowiL
c + 1. With this number of start times

per node we have the guarantee that at least one start time in the interval
[esti, .., lsti] is valid for at leasts jui nodes.

As for the start time generation, even the dispatching can be customized
to optimize different goals.

In the following sections we will discuss a set of different policies for cus-
tomizing the start time generation process to target different goals, namely
throughput, profile fidelity, balanced and deadline satisfaction.

5.3.3 Throughput driven DARDIS

This setup is designed to maximize jobs throughput while maintaining the
variable constraint on the resources. This can be done by making the sched-
uler always selecting the earliest feasible start time for the job. This setup
considers deadlines more important than the variable/desired profile limit.
This means that if a job cannot be scheduled within its deadline while re-
specting the variable/desired profile, the scheduler tries to schedule the job
always respecting its deadline disregarding the constraint on the profile.

The start time generator (node manager) selects from the window
windowi a set of cardinality responsesi containing the minimum time instants
with fitting index ≥ 1.

After that the task manager, in the dispatching algorithm, clusterizes the
sets of responses obtained by each node by start time and selects the mini-
mum start time with a set of nodes of cardinality jui.

Backfilling in DARDIS

Being the walltime specified by the job an estimation which is usually over-
estimated. The majority of the HPC schedulers apply a backfilling algorithm.
The objective of this algorithm is to avoid resources underutilization created
by jobs terminating before their walltime. This is usually done by anticipat-
ing the jobs that fits the unused resource but which does not introduce an
additional delay to the jobs with higher priority than the anticipated ones
[65]. Throughput driven DARDIS setup is the only designed to compute a
backfilling algorithm. The algorithm is designed to compute the backfilling
on a certain number of jobs (depth) for each node involved in the execution
of the terminating job. At each job termination, each node involved in the
job execution notifies the firsts depth task managers scheduled in the future
on that node. For this test we selected a depth equal to the number of cores
for each node (32 in our experimental setup). After the job termination, the
task manager restarts the algorithm requesting a new schedule only for the
nodes in which the job has been dispatched previously. The only difference
from the first schedule is that the window [esti, .., lsti] of the job is modified in
[currentT imeStamp, .., sti]. If the node managers return a feasible set of start
times in that interval, the start time and the utilization profiles are updated.
Otherwise, the start time generated previously is hold.

5.3. DARDIS approach 83

5.3.4 Profile driven DARDIS

This setup is designed to obtain a utilization profile proportional to the in-
put variable/desired resource profile which pays off when the profile is not
only a constraint but is also an indicator of cost/penalty: i.e. the objective
is to minimize the squared distance from the variable/desired profile. In
this case, is preferred to create more fragmentation in the system to mini-
mize the cost produced by the resource utilization. It must be noted that
with this approach the number of jobs exceeding their latest start time will
be higher with respect to the other policies. However, this setup always gen-
erates start time in the job interval [esti, .., lsti]. The higher number of jobs ex-
ceeding the deadline is due to the resource fragmentation obtained indirectly
from the schedule. This setup considers deadlines more important than the
variable/desired profile limit. This means that if a job cannot be scheduled
within its deadline while respecting the variable/desired profile, the sched-
uler tries to schedule the job always respecting its deadline disregarding the
constraint on the profile.

In this setup, the node manager generates start times with a probabilistic
selection that chooses a random number rnd in the range [0, ..,

∑lsti
s=esti

I(s)].
The start time sti is then obtained by imposing the conditions

∑sti
t=0 I(t) ≥ rnd

and
∑sti−1

t=0 I(t) < rnd. If the selected start time has a fitting index I(t) < 1, t
is increased until the condition I(t) ≥ 1 is verified. If a start time is not found
in this range, the search is repeated starting from I(esti) and the first I(t) ≥ 1
is chosen. If a start time cannot be found in the entire range, the allocation
is infeasible on the specific resource and the generator fails returning a null
value.

After that in the task manager the dispatching algorithm clusterizes the
sets of responses obtained by each node by start time and selects randomly a
feasible start time and a random subset of jui nodes.

5.3.5 Balance driven DARDIS

This setup is designed to improve balance not only in the allocation but also
on the start time generation. Meaning that, this generator achieves a trade-
off between throughput and profile chase on the start time generation and
then selects the start times and the nodes to obtain a balance workload in
each node. This setup considers deadlines more important than the vari-
able/desired profile limit. This means that if a job cannot be scheduled
within its deadline while respecting the variable/desired profile, the sched-
uler tries to schedule the job always respecting its deadline disregarding the
constraint on the profile.

The start time generator is a probabilistic generator that chooses a ran-
dom number rnd following the distribution (lsti − esti)e

−(lsti−esti)x. Then it
computes the start time by imposing the conditions

∑sti
t=0 I(t) ≥ rnd and∑sti−1

t=0 I(t) < rnd. If the selected start time has a fitting index I(t) < 1, it in-
creases t until the condition I(t) ≥ 1 is verified. If a start time is not found in
this range, the search is repeated from I(esti) and the first I(t) ≥ 1 is chosen.

84
Chapter 5. Improving the HPC scheduling scalability with Distributed And

Randomized DIspatcher and Scheduler (DARDIS)

If a start time cannot be found in the entire range, the allocation is infeasible
on the specific resource and the generator fails returning a null value.

Then the dispatching algorithm in the task manager clusterizes the sets
of responses obtained by each node by start time and applies a policy that
selects the start time that maximise :

∑
l Il(st), with l ∈ L and L the set of

nodes. After the start time selection, the subset of jui nodes is selected with
the same policy: the jui nodes with the highest Il(st).

5.3.6 Deadline exceeding

Independently from the used setup. If a job cannot be allocated it the in-
terval [esti, .., lsti], the task manager restarts the protocol with a new win-
dow [est′i, .., lst

′
i]. Where est′i = lsti and lst′i = (lsti − esti) ∗ 2. This

approach can be repeated a number of times. From experimentation we
found that a good compromise is 3 attempt. If, again, a schedule cannot be
found the task manager sets the allocation window after the last termination:
est′i = max(sti +wti) and lst′i = max(sti +wti) + lsti − esti. This last attempt
gives us the certainty that if a job cannot be scheduled, this is due only by an
error on the resource request or on the system state (e.g. the job is requiring
a quantity of resources per job unit not present in any node, the whole set of
resources required from a job is higher than the resources in the system, too
many nodes of the system are turned off or crashed, etc...).

5.4 Complexity study

DARDIS is composed by two main components: the node manager and the
task manager. The complexity of the node manager resides into the start
time generation algorithm. The algorithm calculates a fitting profile for a
submitted job. This fitting profile is composed by windowi = lsti−esti fitting
indexes for each kind of resource (K). Finally, a fitting index is derived by
checking the variable/desired profile and the resource required by the job
for each time instant of its execution wti. The complexity is given by O(K ∗
windowi ∗ wti). Being K fixed and windowi and wti dependent from the size
of the input variables, this algorithm is pseudo-polynomial.

The complexity of the task manager resides into the node selection algo-
rithm. The algorithm searches through the responses from all node managers
L for a set of equals start times of cardinality jui. Being the response com-
posed by responsesi = b (jui−1)∗windowiL

c+ 1 different values, the complexity is
O(L ∗ responsesi) = O(jui ∗ windowi). For this reason, we can say that the
complexity of the task manager is pseudo-polynomial. However, being usu-
ally jui � wti the node selection algorithm is dominated by the start time
generation algorithm in term of execution time.

The complexity of rule-based approach depends both on the number of
nodes and the number of job units: O(K ∗ jui ∗ L). The power of this ap-
proach comes from the fact that all of the terms in the DARDIS complexity

5.5. Experimental results 85

are bounded in most of the batch scheduling environments while the num-
ber of nodes L will constantly increase. For this reason we can claim that our
approach is more scalable w.r.t. a heuristic rule-based approach.

5.5 Experimental results

In this section we evaluate DARDIS against a set of rule-based schedulers.
We first describe the rules used in the rule-based schedulers we compare
with. We then describe the experiment setup and we define the performance
metrics. Finally, we show two sets of results: a performance and an overhead
comparison.

All the three different setups of DARDIS have been tested and compared
against three different setups for the rule-based scheduler. The rule-based
scheduling setups are:

• RB-FCFS: the jobs are ordered by increasing earliest start time. The al-
gorithm checks to not exceed the variable/desired profile at scheduling
time.

• RB-DF: the jobs are ordered by increasing latest start time. The algo-
rithm checks to not exceed the variable/desired profile at scheduling
time.

• RB-WT: the jobs are ordered by increasing walltime. The algorithm
checks to not exceed the variable/desired profile at scheduling time.

The test is based on the parallel workload archive of the CEA Curie sys-
tem [150]. This system originally was composed by 360 nodes with four 8-
core processors and 128 GB of RAM. The scheduler in use is Slurm, and the
system is subdivided in 33 partitions. The schedulers have been tested on
300 out of 360 of the fat nodes of the system for a total of 9600 cores and
38 TB of RAM. A total of 35538 jobs submitted in 22 days of regular work-
load have been extracted from the trace log and used for the benchmark.
This trace log does not consider explicit deadlines. However, there are im-
plicit soft deadlines in the setup which define the user satisfaction. For this
reason, we use the arrival time as esti. After that, we extrapolated the aver-
age waiting time for each partition aqt(partition) and used it to compute the
lsti = esti + aqt(partition).

The metrics used for the comparison are different and with different tar-
gets. Some metrics are of interest for the user (user criteria), others for the
system administrator (administrator criteria). We used the following metrics
for the comparison:

• Makespan: it measures the completion time of the set of jobs. This is
an administrator criteria: a scheduler that obtains a lower makespan
within the same set of job means that it will produce a higher system
utilization on average.

86
Chapter 5. Improving the HPC scheduling scalability with Distributed And

Randomized DIspatcher and Scheduler (DARDIS)

• Total waiting time of jobs: computed as the sum of all the jobs wait.
This is a user criteria: a scheduler that obtains a lower total wait means
that users will have to wait for lower time in general.

• Tardiness: computed as the sums of the delay w.r.t. the latest start time
of the job. This is a user criteria: if the tardiness is low, it means that
a few jobs have exceeded the deadline. However, it could also be an
administrator criteria if the computing center has strict service level
agreements and penalty on the job deadlines exceeding.

• Overutilization: computed as volume of resources utilization in time,
that exceeds the variable/desired profile. This is an administrator cri-
teria: a variable/desired profile exceed could be translated in too high
expenses for the computing center or event to penalty from the energy
provider.

• Number of late jobs: computed as number of jobs exceeding their dead-
line. As the tardiness this could be both a user or administrator criteria
for the same reasons.

• Dissimilarity: this metric quantifies the dissimilarity of the final uti-
lization profile and the desirable utilization profile. It is designed to
indicate if two functions have a different shape without considering
the difference of volumes. The metric uses as input two functions: the
variable/desired profile g(t) and the profile to measure f(t). These
two profiles are considered from the time instant 0 to the maximum
deadline. First, the function f(t) is multiplied by factor ψ, computed
as ψ = mint(

g(t)
f(t)

). This multiplication of the utilization profile with ψ

is used to compare the Dissimilarity of two different utilization pro-
files with the same variable/desired profile without the bias intro-
duced by high differences in the length of the two utilization profile.
Than we compute the discrete auto-correlation for g(t) Rgg and the
cross-correlation between g(t) and f(t) Rgf . The metric is obtained
as: Dissimilarity =

Rgg(0)−Rgf (0)
Rgg(0)

. This metric is not affected by the
make-span of the profile: other metrics (as for example the squared
difference between the desirable and the utilization profiles), do not
give the possibility to compare utilization profiles with different dura-
tions. Obviously, this metric is meaningful only with the presence of
jobs deadlines. This is an administrator criteria: in some cases, the cost
of a resource like e.g. power, could be proportional (or almost propor-
tional) to the variable/desired profile, in these cases a scheduler with
a low Dissimilarity tends to minimize costs. However, this could pro-
duce high waiting for the users but the computing center could apply
a pricing model that grants benefits to these.

Table 5.1 shows the first set of results in absolute values while figure 5.3
shows the results normalized by the maximum value achieved by the best
DARDIS setup for each metric. Each DARDIS setup takes its name by the
goal it optimizes.

5.5. Experimental results 87

For the makespan, total waiting and tardiness metrics the best results are
obtained by the Throughput DARDIS. Throughput DARDIS outperforms all
the rule-based schedulers of the 41-42% in Makespan, and 31-50% in total
waiting and tardiness. The other two versions of DARDIS obtain poorer re-
sults for all these metrics. This is due to the fact that their optimization goals
are in contraposition to these metrics.

For the number of late jobs metric, the best result is obtained by the Bal-
anced version of DARDIS. Balanced DARDIS outperforms all the rule-based
schedulers of the 54-57% in this metric. But also the others two versions
of DARDIS obtain good result under this metric: Throughput DARDIS out-
performs the rule-based schedulers of the 47-51% while the Profile DARDIS
outperforms the rule-based schedulers of the 53-56%.

From the table we can notice that rule-based schedulers obtain better re-
sults in overutilization. It is important to note the motivation why both these
scheduling approaches create overutilization. In these three setups, DARDIS
is configured to use the variable/desired profile as a soft constraint. More-
over, this constraint by configuration this soft-constraint has lower priority
than the deadline soft-constraint. Under this consideration we can motivate
the high overutilization as result of the strict deadline. For the rule-based
schedulers, the variable profile is a hard constraint which is checked only at
submission time. This means that the overutilization obtained by DARDIS
has been caused by a decrease in the number in job in late while the overuti-
lization obtained by the rule-based scheduler derives from the architecture
of the scheduler itself.

For the dissimilarity, Profile DARDIS outperforms the rule-based sched-
ulers by the 0,2-2,4% while Throughput and the Balanced DARDIS behave
similarly to the rule-based approaches.

MKS (day) Wait. (years) Tard. (years) Late jobs Overutil. Diss.
Thro. DARDIS 11.69 79.85 79.58 14722 781886 0.990
Bal. DARDIS 178.05 661.75 611.38 12725 1227779 0.981
Prof. DARDIS 200.44 759.96 759.46 13141 785639 0.974
RB-FCFS 19.70 158.33 158.70 29102 257856 0.976
RB-DF 19.97 129.44 128.47 30098 368234 0.980
RB-WT 19.93 116.50 115.34 27908 395657 0.998

TABLE 5.1: Results obtained by DARDIS and rule-based
schedulers on 300 nodes and 35538 jobs scheduling

The radar chart in figure 5.3 gives a synthetic view of the comparison
among the DARDIS setups on the quality metrics. In this chart all the met-
rics were normalized and better results are those nearest to the zero. The
chart shows that Throughput DARDIS obtains the best results in makespan,
waiting, tardiness and overutilization while the worst in late jobs and dis-
similarity. The Profile DARDIS obtains the best in dissimilarity, an average
result in late jobs and overutilization and the worse in makespan, waiting
and tardiness. Instead, the Balance DARDIS obtains the best in late jobs, the
worst result in overutilization but the average in all the remaining metrics.

Table 5.2 shows the overhead for the computation of an entire job schedul-
ing. The overhead of DARDIS is subdivided in scheduling and dispatching

88
Chapter 5. Improving the HPC scheduling scalability with Distributed And

Randomized DIspatcher and Scheduler (DARDIS)

0,000

0,200

0,400

0,600

0,800

1,000

Makespan

Total wai!ng

Tardiness

Jobs in late

Overu!liza!on

Dissimilarity

DARDIS-4HPC setups comparison

Throughput DARDIS-4HPC Balance DARDIS-4HPC Profile DARDIS-4HPC

FIGURE 5.3: DARDIS results comparison

Mean Std. dev.
DARDIS Scheduling 0,018 0,129
DARDIS Dispatching 0,006 0,025
Rule-based total 5,356 5,077

TABLE 5.2: Overhead comparison of DARDIS and rule-based
scheduler in seconds

while for the rule-based we have only total overhead of a scheduling cycle.
From the table we can see that the most of the overhead of DARDIS is for the
scheduling. Comparing the sum of scheduling and dispatching overhead of
our approach to the rule-based scheduler we can evince that our approach is
214 times faster.

5.6 Conclusion

In conclusion, we presented a new scheduling approach for large scale HPC
machines where the number of nodes and the number of jobs make a cen-
tralized approach infeasible. This approach is highly customizable in or-
der to cover several behaviors for several domains. The approach is highly
scalable due to its distributed nature. We evaluate three different setups of
the approach. We have shown that the approach could obtain better result

5.6. Conclusion 89

w.r.t. three different ad-hoc version of rule-based schedulers thanks to its
distributed and probabilistic nature. Moreover, the possibility to specify a
variable profile of desirable utilization increases the possibility of customiza-
tion.

The test shows impressive improvements in Makespan, Total waiting,
Number of late jobs and Tardiness metrics and good result in Dissimilar-
ity. For the Overutilization metrics the rule-based scheduler obtains better
results but at the expenses of number of late jobs. Moreover, these result
have been obtained with a substantially lower computational overhead.

Future work will explore several directions. We will introduce new tech-
niques to reduce the overhead, as for example a time-out for the job dis-
patching. Finally, we will introduce the possibility for the jobs to specify a
variable profile of resource requirement. On the other side we will evaluate
techniques for the creation of optimal variable/desired profiles to minimize
computing center expenses in cooling and energy consumption. Other future
work will evaluate the behavior of the scheduler within the introduction of
running times prediction techniques.

91

Chapter 6

Optimal Profit-driven offline
scheduling with cooling
optimization

scheduling problems are common in a variety of fields, like manufactur-
ing [151], fashion industry [152], wireless sensors networks [153], smart
grids [154], etc. Scheduling optimization is a field studied since decades
[155]. However, due to the continuous evolution of the application fields,
the emerging of new problems, and new applications, it is still a very active
research field [156, 157, 158]. Recent studies also have investigated schedul-
ing optimization in HPC (e.g. [78]): in particular, a lot of work has been
done in HPC scheduling optimization with Constraint Programming (CP)
[1, 159, 81, 3]. The strength of CP for scheduling problems has been widely
demonstrated [111, 112]. The benefits of CP are not only restricted to solution
quality but also to the modeling flexibility that is often a desirable property
in modeling complex scheduling problems.

Despite these benefits, the main limitation of CP for HPC scheduling is
scalability, as indicated in [3], due to the NP-hardness of the problem [42, 43,
44]. CP approaches require significantly more computation time compared
to rule-based schedulers, which typically produce lower-quality solutions.
This work aims at addressing this trade-off by coupling these two approaches
for a HPC scheduling problem with a complex objective function that takes
into account (1) the profit obtained from the job executions; (2) the cost for
running the workload; and (3) the cooling cost. To increase performance,
we propose a heuristic to obtain a good starting solution and three different
search strategies to improve the initial solutions.

To further increase scalability, our approach is designed for an off-line use.
In particular, we produce schedules of job batches (usually the last 24 hours)
with the goal to compute an optimized utilization profile. The obtained pro-
file can then be used as a time-varying power cap, or in conjunction with
profile aware and distributed job schedulers (e.g. [4]).

We evaluated our optimal scheduler under a wide variety of conditions,
by different external temperatures, cooling models, workloads, and different
pricing models. The proposed search strategies are compared with commer-
cial rule-based schedulers and a commercial CP solver: ILOG CP Optimizer
[132]. Moreover, we present an analysis of the efficiency and the utilization of

92 Chapter 6. Optimal Profit-driven offline scheduling with cooling optimization

the system in all the different scenarios. Finally, since many HPC centers are
constrained to use commercial software for scheduling, we provide a sim-
ple decision-tree to aid system administrators to choose the most profitable
scheduling approach (to apply to a commercial scheduler) on a day-by-day
basis of the average system utilization of the previous day (i.e. a 24-hours
rolling horizon strategy).

Results show that our approaches produce an improvement on the profit
in the range 7.5-8% w.r.t. rule-based scheduling in the case of high work-
load and comparable results in case of low workload. In addition, our ap-
proach provides shorter schedules and therefore higher system utilization.
A in-depth analysis of the PUE shows that our approach tends to increase
the system utilization when needed and decrease it (to optimize the cooling)
when the workload decreases.

The chapter is organized as follows. In Section 6.1 we show how this of-
fline scheduler will be used into the scheduling workflow to obtain an online
scheduler. Section 6.2 formally explains the job scheduling and dispatching
problem. In Section 6.3 we recap the basics of classical commercial sched-
ulers and present the setup used as a baseline for the experimental evalua-
tion. Section 6.4 discuss the default ILOG CP Optimizer default scheduling
search. Section 6.5 briefly introduces the CP paradigm and shows our opti-
mization model. In Section 6.6 we explain the search heuristic that we use
to obtain an initial solution. In Section 6.7 we present the multiple search
heuristics that we employ to reduce the cooling cost (in terms of consumed
energy) of the initial solution. In Section 6.8 we present our experimental
results. Finally, Section 6.9 contains some concluding remarks.

6.1 Workflow

Figure 6.1 proposes an overview of the workflow of our scheduling ap-
proach. The users submit jobs to the DARDIS scheduler [4]. This sched-
uler distributes starting times computation through the nodes. Each node
randomly selects a set of candidate starting times based on a desirable uti-
lization profile. After that, the job selects the nodes for the execution and the
starting time based on the candidate starting times. The job traces are stored
and, after a fixed amount of time (e.g. each day), sent to our Profit-driven CP
scheduler. This scheduler computes an offline, near-optimal, solution opti-
mizing the schedule of the entire previous day. The solution is then processed
to extract a desirable utilization profile, to be used by the DARDIS scheduler
for optimizing the profit for the next day.

6.2 Scheduling problem

The HPC job scheduling and dispatching problem can be modeled as non-
preemptive scheduling problem with cumulative resources. Informally
speaking, a solution assigns a set of nodes and a start time to each submitted
job and no resource capacity is exceeded.

6.3. Rule-based scheduling 93

Job 1

Job 2

Job 3

Submission DARDIS
(online scheduler)

Profit-driven CP scheduler
(offline scheduler)

Utilization profile
extraction

Resulting schedule
HPC machine

FIGURE 6.1: Workflow of the interaction between the proposed
scheduler and the DARDIS scheduler

More formally, the problem can be defined as follows. We are given a set
RK of resource types (e.g., cores, GPU, memory, power budget), a set N of
nodes, and a set A of jobs. Each node n ∈ N has a capacity cn,k for each type
of resource k ∈ RK. Each job i ∈ A is composed of a set of job units UNi.
Each job unit of a given job has the same start time and duration (i.e., the job
units must be synchronized). Each job i is submitted to the system at a time
instant qi, together with a specification of its walltime wti and the amount of
resource it requires in each job unit reqi,k for each type k of resource.

The job scheduling problem consists of selecting a start time sti for each
job i ∈ A and a node sni,w for each unit w ∈ UNi of the job such that:

sti ∈ [qi, .., H] (i ∈ A)
sni,w ∈ N (i ∈ A,w ∈ UNi)∑
i∈R(t,n)

reqi,k ≤ cn,k (t ∈ [0, .., H], n ∈ N, k ∈ K)
(6.1)

where H is the scheduling horizon and

R(t, n) = {i ∈ A|sti ≤ t ∧ sti + wti > t ∧ sni,w = n}

is the set of jobs executing at time t on node n.

6.3 Rule-based scheduling

Rule-based scheduling is a widely used approach in HPC job scheduling.
A rule-based scheduler processes jobs and nodes in a given order which is
specified via a customized rule. When a job is processed, the scheduler con-
siders each job unit and starts querying the system nodes to find a sufficient
amount of free resources. When all job units have a candidate node, the job

94 Chapter 6. Optimal Profit-driven offline scheduling with cooling optimization

is started. If a job cannot be immediately started, two alternative behaviors
are possible:

• Strict ordering: This is the most priority conservative approach. If job i
cannot be started, the scheduler stops and waits for the next termina-
tion event to restart the process from i.

• Non-strict ordering: This is the most utilization aggressive approach. If
job i cannot be executed, the scheduler skips it and tries to schedule the
next job.

In the experimental results section (Section 6.8) we will compare the
proposed approach against both a strict-ordering and a non-strict-ordering
scheduler, using four different rules to order jobs. The following rules will
be considered:

• EST: This rule tries to minimize the resource fragmentation. The set of
queued jobs is ordered by increasing Earliest Start Time.

• WT: This rules is designed to increase the job throuput. The set of
queued jobs is ordered by increasing Walltime.

• Profit: This rule has as goal the same metric used in our optimization
model: the profit. The set of queued jobs is ordered by profit gained
from the job execution divided by the cost of the job in decreasing order.

6.4 ILOG CP Optmizier default search

The default ILOG search uses a variation of a Large Neighborhood Search
(LNS) [160] called Self-Adaptive LNS [129]. This approach is very similar to
the approaches proposed in section 6.7. However, the default search into the
neighborhood is a classical “Schedule or postpone” [161]. This search, when
finds a job with a not feasible minimum start time, the job is no more con-
sidered until a propagation changes its minimum start time. This approach
differs from our (Section 6.6) due to the fact that we preserve the job schedul-
ing order.

6.5 Profit-driven CP scheduler

For modeling and solving the job scheduling problem, we use the Con-
straint Programming paradigm. CP is a declarative programming paradigm
in which the user can formulate a model, which is then fed to a solver that
explores the space of possible solutions to find the best one (according to a
given objective function).

This two-step process is similar to that of Mixed Integer Linear Program-
ming (MILP). However, unlike in MILP, in CP a user is not forced to em-
ploy only linear constraints: instead, a model can be formulated using any
constraint from a given (solver-dependent) library. These constraints have

6.5. Profit-driven CP scheduler 95

a semantic (i.e. they enforce certain properties on the solutions), and they
are associated to one or more filtering algorithms. At search time, the solver
interleaves branching decisions with invocations of the filtering algorithms,
which examine the domains of the problem variables and remove values that
are provably infeasible: by doing so, they enable (possibly dramatic) reduc-
tions of the search space. The CP research community has developed specific
constraints (and filtering algorithms) for scheduling, which usually allow a
CP solver to outperform a MILP one on this class of problems [111, 112].

This section presents the model, which is implemented in CP Optimizers.

6.5.1 The Model Variables

This model consists of a set of interval variables ai, each representing job
i. Each such interval variable encapsulates four integer decision variables:
ai.st denotes the job start time, ai.et the end time, ai.d the job duration, and
ai.p whether the variable is “present”, optional or “absent”. To keep track of
the job units assigned to each node, we use a set of interval variables jui,w,n,
which represents the execution of the w-th unit of job i on node n. With w ∈
[1, ..,min(MUi,n, |UNi|)], where MUi,n is the maximum number of different
job units of the i-th job that can execute simultaneously on the node n having
the node completely free. The ai variables are set to “present”, the jui,w,n are
“optional” and capture the possibility of the unit executing on a node.

6.5.2 The Constraints

The constraints of the CP model are given in Equation 6.2:

ai.setDuration(di) ∀i ∈ A
ai.setStartMin(qi) ∀i ∈ A
ai.setStartMax(H) ∀i ∈ A
Cumulative(ju(:,:,n), req(:,k), cn,k) ∀n ∈ N,∀k ∈ RK
Alternative(ai, ju(i,:,:), |UNi|) ∀i ∈ A

(6.2)

Since this is an offline scheduler, each activity ai has a fixed duration di that
corresponds to the duration obtained from logs. The notation ju(i,:,:) repre-
sents the set of all (optional) interval variables associated with job i. Simi-
larly, ju(:,:,n) represents the set of (optional) intervals associated with node n.
Finally, req(:,k) represents the set of the requirements of all job units for the
resource type k.

The ALTERNATIVE constraints ensure that exactly |UNi| intervals associ-
ated with job i are present. In other words, just the |UNi| units of the job must
be assigned to a node. Moreover, the ALTERNATIVE constraints synchronize
a job and its units: They have the same starting and ending times. The CU-
MULATIVE constraints ensure that the job units assigned to node n do not
exceed the node capacity for each resources type k at any given time instant.

96 Chapter 6. Optimal Profit-driven offline scheduling with cooling optimization

6.5.3 The Objective Function

The definition of the objective function of our model relies on a set S of time
segments. A time segment s is a portion of the day with an approximately
uniform temperature (i.e., within an interval of 5 degrees Celsius). A seg-
ment s is defined by a start time s.st, an end time s.et, and a temperature s.t.
We chosen the 5 degree tollerance as it is the discretization step in the cool-
ing model [99] we use for estimating the cooling cost for a given operating
condition. Equation 6.3 specifies the objective function, which maximizes the
total profit during each time segment. For simplicity we define sfirst as the
first segment and slast the last segment in S.

Maximize

(
G ∗K1 −W ∗K2 − J ∗K2

)

G =
∑
i∈A

(
overlapLength(ai, sfirst.st, slast.et)∗

resourceCost(jui, resi,:)
)

W =
∑
i∈A

overlapLength(ai, sfirst.st, slast.et) ∗ poweri

Ws =
∑
i∈A

overlapLength(ai, s.st, s.et) ∗ poweri

J =
∑
s∈S

Ws ∗ LUT (Ws, s)

(6.3)

We now explain all the terms of this objective function. G is the profit ob-
tained by all the jobs executed during the time segments in S. The expres-
sion overlapLength(ai, o, p) returns the amount of time the job ai has spent
executing during the interval [o, .., p], with o < p.

resourceCost(jui,w,n, resi,:) is an expression that returns the computing-
center gain of the resources used by each job unit jui. This accounting ap-
proach is used by most HPC centers (e.g. [162]) to compute the amount of
money spent by a user. The term poweri represents the average power con-
sumption measured by the system for job i. As indicated in [163] approx-
imating the variable power consumption profile to the average power con-
sumption when the whole machine is taken into account, leads to accurate
results. Based on this value, we can computeW as the expenses of energy for
the workload (i.e. to execute the jobs) during segment s. Ws contains the ex-
penses for the workload during the segment s. The computation of W have
been done without the use of Ws for better performance in the constraint
propagation, however Ws is necessary to compute the cooling expenses J .

The expression LUT (Ws, s) (Equation 6.4) returns the cooling efficiency
for the workload of segment s, given the workload energyWs of the segment,
and the external temperature s.t. This expression is based on the PUE table
from [99] and an example can be found in Table 6.1. This table contains the
piecewise linear function of the PUE varying the IT power consumption and
external temperature. With PUE[s.t] we select the row that models the PUE

6.6. Heuristic for the first solution 97

aaaaaaaaaa
Temp

Workload
55000 Watt 55500 Watt

10 1.1247272727 1.1247567568
15 1.4153090909 1.4153153153

TABLE 6.1: Example of PUE table

at the environment temperature s.t. The ELEMENT constraint ensures that
when P ′s takes the value i the value of the expression is equal to PUE[s.t][i].
We use the ELEMENT constraint to relate the workload power P ′s, the external
temperature s.t, and the efficiency of the cooling system. With LUT (Ws, s),
we compute Js as the efficiency of the cooling system times the amount of
energy for the workload during the time segment s. The equation then be-
comes:

P ′s =
Ws

s.et− s.st
LUT (Ws, s) = Element(P ′s, PUE[s.t])− 1

(6.4)

Given constants K1 (amount of money obtained per volume of job utiliza-
tion) and K2 (cost of the energy) are known, Equation 6.3 captures that the
CP model maximizes the profit as G ∗ K1 −W ∗ K2 − J ∗ K2. Note that K1

and K2 are fixed as happens in most computing-centers [164, 165, 166].

6.6 Heuristic for the first solution

The overall approach is implemented using ILOG CP optimizer, modeling jobs
and job units as interval variables. As described above, an interval variable
corresponds to a set of different decision variables (e.g., a start time, dura-
tion, presence, etc.). Each decision variable has a domain, defined by a lower
bound lb and an upper bound∗ ub.

The proposed heuristic, iterates through jobs to find a minimum starting
time. It differs from the rule-based schedulers which iterates through time
trying to schedule each job. The pseudo-code is shown in Algorithm 5. The
method is presented as iterative but actually it is implemented using the IL-
OGOAL construct provided by CP Optimizer. The algorithm selects the first
job that has yet to be fixed (line 3). It then checks whether the minimum start
time of the job is feasible (line 4). If it is a feasible start time, it is assigned
(line 5). Otherwise, the heuristic increases the lower bound by one instant
(line 7). Whenever a variable is assigned, the solver performs the constraint
propagation step (line 9).

∗We integrate the notation used above to access the bounds of each variable in a interval
(e.g., the lower bound of the start time for the interval a will be a.st.lb)

98 Chapter 6. Optimal Profit-driven offline scheduling with cooling optimization

Algorithm 5 Heuristic(J = ordered list of jobs)

1: while Some jobs have yet to be assigned a fixed start time do
2: select the first job i ∈ J with non-fixed ai.st
3: while ai.st.lb 6= ai.st.ub do
4: if |UNi| job units of i can be started at ai.st.lb then
5: ai.st.ub = ai.st.lb (fix ai.st.lb as a start time)
6: else
7: ai.st.lb = ai.st.lb+ 1
8: end if
9: (Constraint propagation, handled by the solver)

10: end while
11: end while

Algorithm 6 The Multi-Search Approach

1: foreach ordering O in Orderings do
2: J = jobs ordered by O
3: Heuristic(J)
4: end for

6.7 Searches

We now present three local search procedures to improve the solution of the
job-based heuristic.

6.7.1 Multi-Search

The first search strategy executes the job-based heuristics for different job or-
dering and it returns the best obtained solution. The considered ordering
criteria are: (1) Earliest start time, (2) Job duration, (3) Latest start time, (4)
Number of job units, (5) Number of required resources per node, (6) Total
number of required resources, (7) Total number of required resources multi-
plied by the job duration, (8) Average job power, (9) Average job power/job
profit, (10) Average job power/job profit as main ordering, increasing du-
ration in case of ties, (11) Average job power/job profit as main ordering,
decreasing duration in case of ties. Each ordering criteria is considered both
in increasing and decreasing order.

6.7.2 Relaxation-Based Search

The next strategy is called Relaxation-Search and its goal is to decrease the
search space for scalability purposes. This is obtained by deciding the dis-
patching for the most difficult jobs first, i.e., those with several job units,
which require stronger synchronization. This Relaxation-Search strategy
starts with the Multi-Search and adds two kind of constraints stated in Equa-
tion 6.5). The first constraint forces the next solution to improve the current
best solution. The second set of constraints forces the jobs that require more

6.7. Searches 99

Algorithm 7 Delay-based Search

1: Multi-Search()
2: selects the first jobToDelay
3: while termination condition not reached do
4: jobToDelay.setStartMin(jobToDelay.getStartMin() + delay)
5: if jobToDelay reached H then
6: alreadyDelayed.add(jobToDelay)
7: selects new jobToDelay
8: end if
9: foreach job ad in alreadyDelayed do

10: ad.setStart(bestSolution.ad.st)
11: end for
12: Heuristic(J)
13: update bestSolution and bestSolutionValue
14: end while

than a job unit to the dispatching fixed by the Multi-Search solution. After
these two constraints are imposed, the default search of ILOG CP Optimizer
is employed improving the solution exploring: (1) different dispatching for
the jobs with just one job unit and (2) different schedules for every job.

G ∗K1 −W ∗K2 − J ∗K2 ≥ bestSolV alue

ju(i,j,n).p = bestSol.ju(i,j,n).p

∀i ∈ B, ∀j ∈ [1, . . . , |UNi|],∀n ∈ N
where: B = {i ∈ A| |UNi| > 1}

(6.5)

6.7.3 The Delay Search

This last search strategy is called Delay-Search and is presented in Algorithm
7. Its key intuition is to delay jobs scheduled by the Multi-Search to explore
different parts of the search space. The procedure selects a job to delay (line
2) and imposes that the job cannot be scheduled before at least delay time
units from its previously assigned start time (line 4). If the job is delayed
after the time horizon H , it is stored in the list of already delayed jobs and
a new job is selected to be delayed (lines 5-8). The alreadyDelayed jobs are
fixed to the start time selected in the best solution found so far (lines 9-11).
Then, the heuristic is called (line 12) and the best solution is updated (line
13). This approach is repeated until a termination condition is reached (line
3). In our case the termination condition is a time limit or the fact that all the
jobs have been delayed to the time horizon H †. After the first solution-tree
descent, the search considers to delay all the jobs starting from the last fixed
job.

†Once again, for simplicity, we presented this search procedure as an iterative method. It
is however implemented via the CP Optimizer IloGoal

100 Chapter 6. Optimal Profit-driven offline scheduling with cooling optimization

-15

-10

Air - Cheap - Summer

-5

0
%

 i
m

p
ro

v
e
m

e
n
t

w
.r

.t
.

th
e
 b

e
st

 R
u
le

-b
a
se

d

Air - Cheap - Winter

5

Air - Expensive - Summer

10

Air - Expensive - Winter
Hybrid - Cheap - Summer

Hybrid - Cheap - Winter
Hybrid - Expensive - Summer Relaxation-Search

Hybrid - Expensive - Winter Delay-Search
Multi-Search

ILOG

FIGURE 6.2: Percentage of improvement at submission end
w.r.t. the best rule based scheduler for the High workload

scenario

6.8 Results

6.8.1 The Test Case

The purpose of this evaluation is to investigate whether it is possible to im-
prove the profit over commercial rule-based schedulers for large instances.
The experiments have been performed on a number of different scenarios on
a simulated HPC machine. The traces used for the job submission and re-
source request are based on the parallel workload archive of the CEA Curie
system [150]. Two traces have been extracted:

1. Low workload: 8125 jobs submitted in 30 days;

2. High workload: 33583 jobs submitted in 23 days.

For each job a random power consumption in the range 7.8 to 11.11 W*core
[167] has been generated to cover this missing information. The simulated
HPC machine is composed by 300 nodes with 32 cores each and 128GB of
RAM [167].

The tests have been executed in different scenarios to explore the behavior
of the proposed solutions with different cooling systems:

6.8. Results 101

-0.02

0

Air - Cheap - Summer

0.02

0.04

%
 i
m

p
ro

v
e
m

e
n
t

w
.r

.t
.

th
e
 b

e
st

 R
u
le

-b
a
se

d

Air - Cheap - Winter

0.06

Air - Expensive - Summer

0.08

Air - Expensive - Winter
Hybrid - Cheap - Summer

Hybrid - Cheap - Winter
Hybrid - Expensive - Summer Relaxation-Search

Hybrid - Expensive - Winter Delay-Search
Multi-Search

ILOG

FIGURE 6.3: Percentage of improvement at submission end
w.r.t. the best rule based scheduler for the Low workload

scenario

TABLE 6.2: PUE efficiency in each scenario for ILOG, the
proposed strategies, the best Rule-based scheduler, and Slope

change

ILOG Multi-S. Delay-S. Relax.-S. Best RB Slope change

Air cool.

Summer
High Cheap 1.43419 1.43407 1.43355 1.43406 1.43451 1.43497

Expensive 1.43417 1.43401 1.43377 1.43402 1.43451 1.43497

Low Cheap 1.41417 1.41603 1.41022 1.41603 1.41701 1.43497
Expensive 1.41397 1.41626 1.41049 1.41586 1.41701 1.43497

Winter
High Cheap 1.10795 1.11268 1.11254 1.11280 1.11295 1.11726

Expensive 1.10784 1.11261 1.11253 1.11259 1.11295 1.11726

Low Cheap 1.09427 1.09530 1.09388 1.09514 1.09478 1.11726
Expensive 1.09453 1.09590 1.09413 1.09560 1.09478 1.11726

Hyb. cool.

Summer
High Cheap 1.08863 1.09222 1.09222 1.09221 1.09207 1.08727

Expensive 1.08839 1.09218 1.09242 1.09218 1.09207 1.08727

Low Cheap 1.07419 1.07535 1.07353 1.07535 1.07513 1.08727
Expensive 1.07464 1.07544 1.07345 1.07536 1.07513 1.08727

Winter
High Cheap 1.00306 1.00323 1.00319 1.00323 1.00317 1.00302

Expensive 1.00306 1.00327 1.00326 1.00327 1.00317 1.00302

Low Cheap 1.00279 1.00280 1.00277 1.00280 1.00284 1.00302
Expensive 1.00278 1.00290 1.00284 1.00289 1.00286 1.00302

102 Chapter 6. Optimal Profit-driven offline scheduling with cooling optimization

0

20

Air - Cheap - Summer

D
a
y
s

Air - Cheap - Winter

40

Air - Expensive - Summer

60

Air - Expensive - Winter
Hybrid - Cheap - Summer

Hybrid - Cheap - Winter Best Rule-basedHybrid - Expensive - Summer Relaxation-Search
Hybrid - Expensive - Winter Delay-Search

Multi-Search
ILOG

0 10 20 30 40 50

FIGURE 6.4: Tests makespan for the High workload scenario

Hybrid cooling

Avg. utilization
 < 84.82%

Avg. utilization
 > 84.82%

Optimize the
cooling

Optimize the
cooling

Maximize the
utilization

Air cooling

FIGURE 6.5: Classification tree for the efficiency

6.8. Results 103

0 10 20 30 40 50 60

Days

1.434

1.4342

1.4344

1.4346

1.4348

1.435

1.4352

1.4354

P
U

E

(a)

Delay-Search
Rule-based
Delay-Search trend
Rule-based trend

0 10 20 30 40 50 60

Days

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

P
U

E

(b)

Delay-Search
Rule-based
Delay-Search trend
Rule-based trend

0 10 20 30 40 50 60

Days

1.09

1.095

1.1

1.105

1.11

1.115

1.12

P
U

E

(c)

Delay-Search
Rule-based
Delay-Search trend
Rule-based trend

0 10 20 30 40 50 60

Days

1.0015

1.002

1.0025

1.003

1.0035

1.004

1.0045

1.005

P
U

E

(d)

Delay-Search
Rule-based
Delay-Search trend
Rule-based trend

0 10 20 30 40 50 60

Days

1.4336

1.4338

1.434

1.4342

1.4344

1.4346

1.4348

1.435

1.4352

1.4354

P
U

E

(e)

Delay-Search
Rule-based
Delay-Search trend
Rule-based trend

0 10 20 30 40 50 60

Days

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

P
U

E
(f)

Delay-Search
Rule-based
Delay-Search trend
Rule-based trend

0 10 20 30 40 50 60

Days

1.04

1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

P
U

E

(g)

Delay-Search
Rule-based
Delay-Search trend
Rule-based trend

0 10 20 30 40 50 60

Days

1.0015

1.002

1.0025

1.003

1.0035

1.004

1.0045

P
U

E

(h)

Delay-Search
Rule-based
Delay-Search trend
Rule-based trend

FIGURE 6.6: Daily PUE and trend for the Delay-Search and the
best Rule-based in the High workload case for the scenarios: (a)
Air - Expensive - Summer, (b) Hybrid - Expensive - Summer, (c)
Air - Expensive - Winter, (d) Hybrid - Expensive - Winter, (e) Air
- Cheap - Summer, (f) Hybrid - Cheap - Summer, (g) Air - Cheap

- Winter, and (h) Hybrid - Cheap - Winter

1. An Air cooling with a Power Usage Effectiveness ‡ (PUE [168]) of∼ 1.4
(depending on the external temperature and the workload energy);

2. an Hybrid cooling system with a PUE of ∼ 1.1;

different environment temperatures:

1. Summer temperatures;

2. Winter temperatures;

and different pricing level (K1) resembling different hardware compositions:

1. Cheap pricing: 0.013 e * core * hours;

2. Expensive pricing: 0.10 e * core * hours.

The Energy pricing (K2) is set to 0.13 e/KWh.

6.8.2 The Implementation

The implementation has been done in C++ using the IBM ILOG CP Optimizer
12.7.0 solver. Tests have been executed on a 2xIntel Xeon Processor E5-2670 v3
server with 128GB of RAM. Each model instance has been executed with a
single worker (thread) with a time limit of 4000 seconds.
‡The Power Usage Effectiveness is a measure for datacenters efficiency. The calculation

is PUE = Pw+Pc

Pw
. Where Pc is the power spent in cooling and Pw is the power spent in

workload

104 Chapter 6. Optimal Profit-driven offline scheduling with cooling optimization

6.8.3 Profit comparison

This section analyzes the improvement on the profit in each scenario w.r.t.
the rule-based scheduler. For space limitation we refer to “Rule-based sched-
uler” as the rule-based scheduler that in a given scenario obtained the best
profit. Due to the high number of jobs submission in HPC machines, in gen-
eral and in the selected profile, we analyze the profit improvement at the
moment of the last submission. This is because an HPC has no jobs submis-
sion only in exceptional cases. Figure 6.2 shows the percentage of improve-
ment w.r.t. the best rule-based scheduler, for ILOG and all the proposed
search strategies, in the high workload case. While, Figure 6.3 shows the
low workload case. As shown in these figures no significant improvement
is obtained in the low workload scenario. Differently, in the high workload
scenario, the improvement obtained by our search strategies is in the range
7.6%-8.1%. In particular, the Delay-based strategy has an average improve-
ment 0.15% points higher w.r.t. the Multi-Search and the Relaxation-Search.
The default search implemented in ILOG does not improve the results ob-
tained by the rule-based scheduler and obtains, in fact, a worsening in the
range 11.8-11.9%.

A further analysis on the profit shows that this increment is due to three
factors: (1) the different set of jobs scheduled in the interval until the last
submission, (2) an increment on the utilization on the days in which a higher
number of jobs were run in the system, and (3) an improvement on the cool-
ing in the days with a low system utilization.

Indeed, Figure 6.4 shows that, in general, the proposed search strategies
have a lower makespan w.r.t. both the best rule-based scheduler and ILOG in
the high workload scenario. The indirect relation between the makespan and
the utilization proves that our strategies create a higher system utilization
w.r.t. the classical rule-based schedulers. For the low workload scenario, no
differences on the makespan are present.

Table 6.2 shows the total PUE. Comparing the Delay-Search w.r.t. the best
Rule-based we can see that our strategy obtains a higher PUE only in the
Hybrid cooling scenario just in the case of High workload leading to, in
general, a more efficient and greener system.

Since the Delay-Search is the best of our proposed search strategy, Figure
6.6 shows the PUE and the PUE trend line for the Delay-Search and the best
rule based in each scenario of the High workload case. The trend line show
the linear regressions of respectively the Delay-Search and Rule-based. From
the trend line we can note that the Delay-based strategy has a higher PUE in
the days in which the number of jobs in the system is higher and then it de-
creases within the decrement of the jobs in the system. This is not true for the
Rule-based scheduler that has a uniform or, in some cases, increasing trend.
This suggests that our strategy can decrease the system efficiency when is
unneeded and not profitable. Note that in the High workload tests just the
days from 1 to 23 have jobs submissions. The remaining days just the queued
jobs are processed.

Given the previous intuition on the behavior of our strategies, we pro-
pose a second contribution with the analysis of the near-optimal solutions

6.8. Results 105

50 100 150 200 229250 300 350 400

Workload (KWatt)

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22
P
U

E
0°C
5°C
10°C

Slope change
Workload

(A)

50 100 150 163 200 250 300 350 400

Workload (KWatt)

1.426

1.428

1.43

1.432

1.434

1.436

1.438

1.44

1.442

P
U

E

20°C
25°C
30°C

Slope change
Workload

(B)

50 100 150 200 250 300 308 350 400

Workload (KWatt)

1

1.005

1.01

1.015

1.02

1.025

1.03

P
U

E

0°C
5°C
10°C

Slope change
Workload

(C)

50 100 150 200 250 300 343 350 400

Workload (KWatt)

1

1.05

1.1

1.15

P
U

E

20°C
25°C
30°C

Slope change
Workload

(D)

FIGURE 6.7: PUE at different external temperatures and Slope
change workload in: (a) winter - air cooling, (b) summer - air
cooling, (c) winter - hybrid cooling, and (d) summer - hybrid

cooling from the results by [99]

obtained by our scheduler. The scope of this analysis is to provide a simple
guide to decide which scheduling policy (e.g. between a policy that antici-
pate heavy jobs and decreases the system utilization or a policy that increases
the utilization) is more profitable for the next day, given the average system
utilization of the previous day. Indeed, in some cases, in HPC it is not possi-
ble to use non-commercial schedulers as the one proposed in this work.

This analysis discriminates the efficiency on the basis of the “Slope
change” column in table 6.2. The column contains the efficiency point after
which the PUE increases according to the data in [99]. This happens when
the chillers need to be activated as effect of an higher IT power load or an
increase in the ambient temperature. Note that the Slope change depends on
the cooling type and external temperature. To obtain the Slope change point,
we started from the data in [99], as shown in figure 6.7 we found the work-
load in which the PUE has the higher increment in each scenario. Given the
Slope change workload and the daily external temperature traces we com-
pute the slope change point as the average PUE weighted in time. This point
is calculated daily because is unlikely for a computing center to change the
scheduler setting more than one time per day. Analysis have been realized

106 Chapter 6. Optimal Profit-driven offline scheduling with cooling optimization

through a decision-tree set to classify, starting from the cooling type and the
average system utilization of the previous day, which efficiency zone is more
profitable for the next day. The efficiency zones are two:

1. “Optimize the cooling”: In this zone is more profitable to slightly de-
crease the system utilization and save cooling costs;

2. “Maximize the utilization”: In this zone the best result is obtained in-
creasing the utilization as high as possible.

The dataset is realized using the near-optimal solutions obtained by the De-
laySearche for a total of 538 items. As shown in figure 6.5 for an Air cooling
based HPC system it is never convenient to increase the system utilization as
high as to overpass the Slope change point. For a Hybrid cooling based HPC
system, instead, it is more profitable to maximize the system utilization only
when the average system utilization of the previous day was higher than
84.82%.

Figure 6.8 shows the prediction results, red circles are exact prediction
for the “Maximize the utilization” class; blue circles are exact prediction for
the “Optimize the cooling” class. Red “x” are wrong prediction for the class
“Optimize the cooling”, while blue “x” are wrong prediction for the “Maxi-
mize the utilization”. On the x-axis the average percentage system utilization
of the previous day while on the y-axis the distance from the Slope change
point. From the figure it is possible to note that: (1) the number of wrong
prediction is small (less than 4%), and (2) the errors are limited in a small
neighborhood of the Slope change point. Note that this figure contains the
prediction for both air cooling and hybrid cooling. For this reason at high
system utilization we have both red and blue circles.

The accuracy of the system with this simple classification tree is 96.28%.
However, figure 6.9 shows the same information as the previous figure but
just with the prediction errors. From the plot it is possible to note that just six
errors are in the range [0.001 - 0.01] while all the other errors are really near
to the slope change point (range [-0.00002 - 0.001]). This suggests that errors
appear just when optimizing the cooling or maximizing the utilization lead
to similar results.

6.9 Conclusion

In conclusion we designed a CP model for the problem of jobs scheduling
and dispatching in HPC machines that maximizes the profit. The model
takes into account the gain obtained by the jobs, the money spent for the
workload and the money spent for the cooling. The cooling model has been
integrated in our objective function thanks to the results obtained by Con-
ficoni et al. [99]. We have designed several different search strategies and
we showed the results obtained by the basic search and the best two search
strategies. We tested the model using real workload traces obtained by the
parallel workload archive and simulating a real HPC with two different cool-
ing systems, different environmental temperatures, and job pricing.

6.9. Conclusion 107

10 20 30 40 50 60 70 80 90 100

Average percentage system utilization

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05
D

e
lt

a
 P

U
E

Predicted: Optimize the cooling
Real: Maximize the utilization
Predicted: Maximize the utilization
Real: Optimize the cooling
Maximize the utilization
Optimize the cooling

FIGURE 6.8: Distance from Slope change points at different
system utilization percentage with efficiency prediction

35 40 45 50 55 60 65 70 75 80 85

Average percentage system utilization

0

1

2

3

4

5

6

7

8

9

10

D
e
lt

a
 P

U
E

#10-3

Predicted: Optimize the cooling
Real: Maximize the utilization
Predicted: Maximize the utilization
Real: Optimize the cooling

FIGURE 6.9: Efficiency prediction errors

108 Chapter 6. Optimal Profit-driven offline scheduling with cooling optimization

The implemented search strategies showed to outperform the solutions
obtained by the ILOG CP Optimizer solver on makespan and profit metrics
in the majority of the cases, while no worsening is present in the remaining
cases. Results show that our approach can improve the profit by 7-8% in the
high workload scenario w.r.t. rule-based scheduler but also can decrease the
makespan. The makespan decreasing can lead to a further 2% of profit im-
provement. Moreover, in the case of non optimal cooling systems, the total
efficiency of the system can be improved. The analysis on the results suggest
that this scheduler increases the system utilization when is needed while de-
creases the utilization to improve the cooling when is more profitable.

Finally, through the analysis of the PUE we provide a simple decision tree
for system administrator to improve the profit just changing the scheduling
policy of commercial schedulers.

However, this scheduler has been designed for offline scenarios. Future
work will study the cooperation of this scheduler within an online and re-
active approach with the aim to obtain better solutions w.r.t. a pure reactive
approach, with lower response time w.r.t. an optimization approach and the
introduction of job traces predictors instead of past traces.

109

Chapter 7

Hybrid Offline-Optimized and
Online-Distributed Profit-driven
low-overhead scheduler for HPC
with automatic node shut-down
and turn-on

High-performance computing (HPC) machines are highly expensive systems
[169] with fast depreciation [33]. HPC facilities have to deal with high fixed
costs but also with high variable costs (e.g. the energy consumption). Many
works in the last years targeted the power consumption limitation of these
systems [101, 102, 103]. However, to the best of our knowledge, there are no
studies that relate the power consumption increasing to the profit increment.
In fact, limiting the resources or the computational power of a supercomput-
ing system decreases the expenses but, usually, also jeopardizes the incomes
[107]. On the other hand, increasing too much the system utilization brings
the system to an more inefficient work condition. The best result in terms
of profit is to maximize the system utilization (and consequently the power
consumption) when is needed and when the external factors are in favor and
then limit the power consumption when the whole power is unnecessary.

The job scheduler seems the right component in which these power man-
agement mechanisms could be introduced. In fact, the scheduler knows the
workload submitted to the system. However, in future supercomputers, the
number of resources that the scheduler has to manage will increase while
users want the same responsiveness of the system. Thus, scalability and low
overhead are a major issue in these systems. However, the scheduling archi-
tecture used so far has no possibility to obtain scheduling solution that in-
crease the profit considering the cooling system, the workload fluctuations,
and the external temperatures while increasing the scalability of the sched-
uler and decreasing the overhead thus the scheduling architecture have to
be rethought. In this work, we propose a new scheduling architecture. This
architecture is composed by different solutions to improve the scheduling
in terms of HPC machine profit, cooling expenses, scalability, and overhead.
This complex task is realized within different approaches and modules:

110
Chapter 7. Hybrid Offline-Optimized and Online-Distributed Profit-driven

low-overhead scheduler for HPC with automatic node shut-down and turn-on

• An Offline and optimized scheduler: This scheduler uses an opti-
mization technique called Constraint Programming (CP) to schedule
24 hours of submitted jobs to optimize the profit taking into account
the HPC model, the submitted jobs, the cooling model, and the weather
forecast.

• A profile extractor: This module exploits machine learning techniques
to extract a sub-optimal “desirable utilization profile” for the HPC re-
sources to fed to the online scheduler.

• A Online, Distributed, and Profile Aware scheduler: This distributed
scheduler is designed to minimize the overhead and improve the scal-
ability w.r.t. the commercial scheduling approaches. The scheduler is
also designed to follow a “desirable utilization profile” planning the
scheduling of the jobs in the future.

• A Job statistics and forecast module: this module generates a forcasted
synthetic jobs trace for the next 24 hours to fed to the offline scheduler.

We compare the proposed solution against commercial rule-based sched-
ulers in a number of different scenarios. The studied scenario differs by cool-
ing model and external temperatures. The workload traces are real trace
from the Parallel workload archive [150]. In particular, three traces have
been extracted to characterize different workload conditions: low (3207 jobs),
medium (8125 jobs), and high (10892 jobs). Finally, the simulated HPC is a
real HPC composed of 9600 cores.

The proposed scheduler is shown to improve the profit by an 8.6% in av-
erage in a realistic scenario. The results showed also the better scalability of
our approach. Finally, tests on the makespan show that no significant wors-
ening on the makespan has been found under low and average workload
conditions. However, a worsening of 10% is found under high workload
conditions.

This work is organized as follows. In Section 7.1 we formally describe the
HPC scheduling problem. Section 7.2 shows the workflow of our proposed
architecture. In section 7.3 we describe the offline and optimized scheduling
approach used to optimize the profit of the HPC. Section 7.4 shows the profile
extraction algorithm implemented. In section 7.5 we describe the online and
distributed scheduling approach used in our architecture. In section 7.6 we
show the results on profit, makespan and computational overhead. Finally,
section 7.7 shows our conclusions.

7.1 Scheduling problem

Job Scheduling-and-dispatching in HPC is a non-preemptive (batch)
scheduling that consists of assigning starting time and node to each job
chunk of a job submitted by the user. The main constraint is to never overuti-
lize the resources e.g. a single core can not be assigned to more than a job at
the same time.

7.2. Workflow 111

More formally, the problem can be defined as follows. Given a set RK of
resource types (e.g., cores, GPU, memory, power budget), a set N of nodes,
and a set A of jobs. Each node n ∈ N has a capacity cn,k for each type of
resource k ∈ RK. Each job i ∈ A is composed of a set of job units UNi.
Each job unit of a given job has the same start time and duration (i.e., the job
units must be synchronized). Each job i is submitted to the system at a time
instant qi, together with a specification of its walltime wti and the amount of
resources it requires in each job unit reqi,k for each type k of resource.

The job scheduling problem consists of selecting a start time sti for each
job i ∈ A and a node sni,w for each unit w ∈ UNi of the job such that:

sti ∈ [qi, .., H] (i ∈ A)
sni,w ∈ N (i ∈ A,w ∈ UNi)∑
i∈R(t,n)

reqi,k ≤ cn,k (t ∈ [0, .., H], n ∈ N, k ∈ K)
(7.1)

where H is the scheduling horizon and

R(t, n) = {i ∈ A|sti ≤ t ∧ sti + wti > t ∧ sni,w = n}

is the set of jobs executing at time t on node n.

7.2 Workflow

Our proposed scheduler is built upon three main components:

1. A jobs statistics and forecast module: This module collects data from
the jobs submissions and the obtained scheduling solutions. From this
data, it extracts statistics and implements machine-learning algorithms
to forecast the future jobs submissions (submission time, resource re-
quired, walltime, duration, power consumption etc.)

2. A Profit-driven CP scheduler [6]: This offline scheduler is triggered
at fixed time intervals (24 or 48 hours in our tests) and it is designed
to model the entire HPC machine, the jobs submitted to the system,
the HPC machine power consumption, the cooling model, the cooling
power consumption, the external temperature, and the profit incom-
ing from the machine. The scheduler sets the execution of the jobs to
a near-optimal solution that maximizes the profit by moving jobs in
cooler hours of the day or maximizing the system utilization on the
basis of the saturation of the systems and the submission requests.

3. A profile extractor: based on the analysis on the results obtained by
the Offline CP scheduler we have designed an algorithm to produce a
forcasted “desirable utilization profile” that limit the system resource
utilization to decrease the expenses when it is more profitable.

4. A Distributed Reactive scheduler (DARDIS [4]): this online scheduler
designed for high scalability and low overhead takes as input the jobs

112
Chapter 7. Hybrid Offline-Optimized and Online-Distributed Profit-driven

low-overhead scheduler for HPC with automatic node shut-down and turn-on

FIGURE 7.1: Workflow of the interaction between the Offline
CP scheduler, Profile Extractor, and the online DARDIS

scheduler

submission and the desirable utilization profile. The scheduler gives
the possibility to turn-off single resources to decrease expenses. More-
over, due to the scheduler future planning, it is also possible to program
the shut-down and the turn-on of entire nodes without creating any de-
lay in the system.

These components are connected as in Figure 7.1. The workflow requires
that the jobs are submitted to an online scheduler. After the scheduling de-
cisions, the Jobs statistics and forecast module collects the jobs data and gen-
erates a forcasted job trace with the waiting jobs and the jobs forecast to be
submitted in the near future (e.g. 24 or 48 hours). This trace is fed to the
Profit-driven CP scheduler. The Profit-driven CP scheduler optimizes the jobs
dispatching and scheduling in the near future aiming to the result with the
best profit. This is achieved by maximizing the system utilization when the
system is under a high workload request or moving job to the coolest hours
of the day to decrease the cooling expenses when the jobs requests are lower.
After that, the result of the offline CP scheduler is sent to the profile extractor.
This module, exploits heuristic and regression tree algorithms to generate a
profile designed to decrease the energy expenses of the system. In fact, the
Offline scheduler suggests when it is more profitable not to use the entire
system’s resources while the profile extractor checks if it is convenient to shut-
down and turn-on entire nodes. Finally, the generated desirable profile is
then provided to the online scheduler. The scheduler plans the scheduling
in the future, in this way, having a planned schedule and the desirable uti-
lization profile it can shut-down and turn-on entire nodes without any delay
caused by a late restart.

7.3. Offline CP scheduling 113

7.3 Offline CP scheduling

CP is a programming paradigm designed for optimization. This paradigm al-
lows to model problems with complex constraint and it is specially suited for
scheduling problems. This means that it provides many constraints designed
for this kind of problems (e.g. the cumulative constraint [161]) and widely
proved to overcome the performance of other optimization techniques, such
as MIP, in scheduling problems [111, 112]. The optimization of CP relies on
the concept of decisional variable. This variable has a domain of possible
values initially feasible for a solution. A CP solver then, starting from the
modeled problem, starts a search. During the search, the solver (1) selects
the variable to assign and assigns a value from the feasible in its domain,
(2) starts a constraint propagation to purge the domains of the remaining
variables. When a solution of a fail is reached the algorithm backtracks to
continue the exploration for better solutions.

Although the power of CP in scheduling problems, this approach
presents scalability problems showed in [3]. The work shows that this ap-
proach is feasible for no more than an average submission day on a mid-tier
HPC machine. For this reason many techniques has been adopted to im-
prove the scalability and minimize the computational overhead of this ap-
proach. However, (as [6] shows) the scalability problem is the main reason
why to apply an hybrid online-offline approach and do not use CP as online
scheduler.

To easily model scheduling problem, the adopted CP solver (IBM ILOG
CP Optimizer) provides a special variable called interval variable. An inter-
val variable is a variable that models an activity (or job). This kind of variable
contains several different decisional variables. For sake of simplicity, we can
say that an interval variables a is composed of a decisional variable for its
starting time a.st, a decisional variable for its duration a.d, a decisional vari-
able for its end time a.et and a decisional variable for its presence a.p. If an
interval is present, all the constraints on this variable propagate otherwise
this variable does not propagate.

Equation 7.2 explains the complete model [6]. The objective function is to
maximize the profit. The profit is calculated by G the gain obtained by the
jobs execution minus the energy expenses. The energy expenses are calcu-
lates as the energy spent for the HPC to execute the workload W plus the
cooling energy J times the per-Joule rate of the energy provider. Each job ai
is constrained to have a duration ai.d equal to di the duration forcasted by
the forecast module. The start time ai.st of the job has to be in the range qi –
eoh, respectively the forcasted submission time and the end of the scheduling
horizon.

For each job we have a set of interval variables ju(i,:,:) of cardinality equal
to the number of nodes of the system N times the number of job units |UNi|
of the i-th job. This set of interval variables models the possibility of each
job unit of the job to execute in each node of the system (also two differ-
ent job units in the same node). However, to do that, we have to constraint
the number of present job units to be equal to |UNi|. This is done by the

114
Chapter 7. Hybrid Offline-Optimized and Online-Distributed Profit-driven

low-overhead scheduler for HPC with automatic node shut-down and turn-on

Summer Winter
Air cooling Hybrid cooling Air cooling Hybrid cooling

Low workload 29.50% 17.84% 7.37% 15.00%
Medium workload 10.46% 18.23% 13.19% -7.50%
High workload 0.36% 0.20% 0.23% 0.01%

TABLE 7.1: DARDIS70% Vs. RB percentile profit improvement
comparison

Alternative constraint. This constraint sets the exactly |UNi| interval vari-
ables from ju(i,:,:) to be synchronized with ai, all the remaining variables in
the set are set to absent.

Finally, having a jobs resource requirement of req(i,k) for each job unit and
a resource physical capacity of cn,k for the k resource type on the node n, the
Cumulative constraints the solver to set the starting times of each job to never
overpass the resource limit utilization cn,k in any instant of time.

Maximize
(
G− (W + J) ∗K

)
subject to :

ai.d == di ∀i ∈ A
ai.st := [qi, . . . , eoh]) ∀i ∈ A
Alternative(ai, ju(i,:,:), |UNi|) ∀i ∈ A
Cumulative(ju(:,:,n), req(:,k), cn,k)

∀n ∈ N,∀k ∈ RK

(7.2)

The optimization relies of the J part of the objective function. In fact,
given a finite set of jobs to schedule, without considering the idle power of
the resources, and with a fixed energy per Joule cost, the only part of the
objective function that can change within different scheduling solution is the
cooling expenses J . In fact, J depends on the cooling system efficiency model
[99] and the external temperature, different start times for each job can move
the efficiency point of the system by changing the total consumed power but
also could move energy consumption in cooler hours of the day in which the
efficiency increases.

7.4 Profile Extraction

The profile extraction is based on the result analysis done in [6]. The work
shows that if the average system utilization is higher than the 84%, it is more
profitable for the next day to increase the system utilization rather than to
optimize the cooling in case of low-efficient cooling systems. This work does
not consider the possibility of shut-down and turn-on nodes to decrease ex-
penses. The claim of this work is that under the possibility to shut-down
and turn-on nodes, also with high-efficient cooling systems (such as hybrid
cooling systems) it is profitable to limit the utilization with the same policy.

7.4. Profile Extraction 115

3000 4000 5000 6000 7000 8000 9000 10000 11000

Submitted Jobs

0

5

10

15

20

25

30
%

 i
m

p
ro

v
e

m
e

n
t

w
.r

.t
.

R
B

DARDIS100%

DARDIS70%

DARDIS50%

(A)

3000 4000 5000 6000 7000 8000 9000 10000 11000

Submitted Jobs

-30

-20

-10

0

10

20

30

%
 i
m

p
ro

v
e

m
e

n
t

w
.r

.t
.

R
B

DARDIS100%

DARDIS70%

DARDIS50%

(B)

3000 4000 5000 6000 7000 8000 9000 10000 11000

Submitted Jobs

-20

-10

0

10

20

30

40

%
 i
m

p
ro

v
e

m
e

n
t

w
.r

.t
.

R
B

DARDIS100%

DARDIS70%

DARDIS50%

(C)

3000 4000 5000 6000 7000 8000 9000 10000 11000

Submitted Jobs

-15

-10

-5

0

5

10

15

20

%
 i
m

p
ro

v
e

m
e

n
t

w
.r

.t
.

R
B

DARDIS100%

DARDIS70%

DARDIS50%

(D)

FIGURE 7.2: Profit improvement by DARDIS100%,
DARDIS70%, and DARDIS50% w.r.t the best Rule-based
scheduler in the scenario. (a) Summer temperature, Air
cooling; (b) Summer temperature, Hybrid cooling; (c) Winter
temperature, Air cooling; (d) Winter temperature, Hybrid

cooling.

The algorithm (Algorithm 8) checks if in the last 24 hours the average
system utilization is higher than the 84% of the resources of the system (lines
1-2). If it is higher, it sets the desirable system utilization for the whole next
day to the maximum (the resource physical limit) (line 3). Otherwise, it gen-
erates the desirable profile hour by hour with the following policy. If in the
last 24 hours the average system utilization is higher than 84%, it sets the next
hour to the maximum (lines 7-8). Otherwise, it sets the desirable utilization
profile to the average of the last hours plus a percentage offsetPerc (line 10).

116
Chapter 7. Hybrid Offline-Optimized and Online-Distributed Profit-driven

low-overhead scheduler for HPC with automatic node shut-down and turn-on

DARDIS100% DARDIS70% DARDIS50% RB

2.662525

2.662526

2.662527

2.662528

2.662529

2.66253

2.662531

2.662532

M
a

k
e

s
p

a
n

 (
s
e

c
)

10 6

(A)

DARDIS100% DARDIS70% DARDIS50% RB

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

M
a

k
e

s
p

a
n

 (
s
e

c
)

10 6

(B)

DARDIS100% DARDIS70% DARDIS50% RB
2.05

2.1

2.15

2.2

2.25

2.3

M
a

k
e

s
p

a
n

 (
s
e

c
)

10 6

(C)

FIGURE 7.3: Average makespan obtained by DARDIS100%,
DARDIS70%, DARDIS50%, and the best Rule-based with
standard deviation. (a) Low workload trace; (b) Medium

workload trace; (c) High workload trace.

Algorithm 8 ProfileExtraction(offsetPerc)

1: set prevDayAV G the average percentage resource utilization of the pre-
vious day

2: if prevDayAV G > 84% then
3: set the desirable profile for the next 24h to 100%
4: else
5: foreach hours h in [0, . . . , 24] do
6: set prev24hAV G the average percentage resource utilization of the

previous 24hours
7: if prev24hAV G > 84% then
8: set the desirable profile for the next hour h to 100%
9: else

10: set the desirable profile for the next hour h to prev24hAV G +
(100− prev24hAV G) ∗ offsetPerc %

11: end if
12: end for
13: end if
14: ON = Order(N ,Rule2)

7.5 Distributed Online scheduling

The online scheduling has to be managed by a fast and reactive scheduler
that can plan the scheduling results in order to fulfill a desirable utilization
profile. For this reason, we used DARDIS [4, 5]. The DARDIS scheduler is a
highly tunable distributed and profile-aware scheduler.

The scalability of this scheduler is granted by the fact that the complex-
ity of its scheduling algorithm is not based on the number of nodes but on
the dimension of the scheduling horizon. To do that, DARDIS distributes
the scheduling computation through the nodes. This means that each node,
based on its utilization profile, decides a number of candidates starting time

7.5. Distributed Online scheduling 117

3000 4000 5000 6000 7000 8000 9000 10000 11000

Submitted Jobs

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
v
e
rh

e
a
d
 (

s
e
c
)

DARDIS100%

(A)

3000 4000 5000 6000 7000 8000 9000 10000 11000

Submitted Jobs

-1.5

-1

-0.5

0

0.5

1

1.5

O
v
e
rh

e
a
d
 (

s
e
c
)

DARDIS70%

(B)

3000 4000 5000 6000 7000 8000 9000 10000 11000

Submitted Jobs

-40

-30

-20

-10

0

10

20

30

40

O
v
e
rh

e
a
d
 (

s
e
c
)

DARDIS50%

(C)

3000 4000 5000 6000 7000 8000 9000 10000 11000

Submitted Jobs

-3

-2

-1

0

1

2

3

4
O

v
e
rh

e
a
d
 (

s
e
c
)

RB

(D)

FIGURE 7.4: Average overhead with standard deviation,
in seconds, at different workload for (a) DARDIS100%, (b)

DARDIS70%, (c) DARDIS50%, and (d) the best Rule-based.

for a submitted job. The starting times are then sent to the job itself. The job
selects the actual starting time between the candidates and thus the nodes for
the execution.

DARDIS have been designed to guarantee that, for a given deadline for
the job execution, the amount of resources is sufficient to execute the job, than
the job is executed. Moreover, this is done without nodes synchronization
and with the minimum amount of candidate starting times for each node
(i.e. minimum message size).

DARDIS implements different policies for the candidate start times gen-
eration and the nodes selection. For the candidate start time generation we
can choose:

• First: this policy is designed for scenarios in which it is important to
have a high jobs throughput. The policy selects the sets of minimum

118
Chapter 7. Hybrid Offline-Optimized and Online-Distributed Profit-driven

low-overhead scheduler for HPC with automatic node shut-down and turn-on

start times in which the resource capacity constraint is satisfied.

• Uniform: this policy is designed to introduce randomization in the re-
sults. In fact, works such as [143] demonstrate that the introduction
of randomization into the scheduling, in some scenarios, can introduce
benefits on the results. As for example, in this scenario, the uniform
policy has as results an utilization profile the better follows the desir-
able utilization profile. This policy uses to selects the start times the
ratio I(t) = mink∈RK(

D(t)−U(t)
req(i,k)

), where t is a general candidate start
time, D(t) is the desirable utilization profile at time t, and U(t) is the
resource utilization (by previously scheduled jobs) at time t. After the
computing of I(t) in each possible time instant in which the job can be
scheduled, the candidates start times are randomly selected using the
distribution I .

• Exponential: this policy is designed to obtain a trade-off between the
First and the Uniform policies. In fact, this policy introduces some ran-
domization but the distribution selected tends to select candidates start
times near to the minimum. To compute the probability distribution
I ′(t) for the candidates start times, the policy obtains the I(t) distribu-
tion that subsequently is weighted to an exponential distribution:

I ′(t) = I(t) ∗ λe−λt

λ =
1

|I(t)|
(7.3)

After the candidates start times generation, each node sent the generated
starting times to the job with the corresponding I(t). The job, after that, to
select the actual start time, applies one of the following policies:

• Min start: this policy is designed to maximize throughput. The policy
orders the candidate start times from the minimum to the maximum.
Then it checks the candidates and selects the first that allows the exe-
cution of |UNi| job units:

∑
n∈N In(t) >= |UNi|, with In(t) we mean I(t)

of the node n.

• Max probability: this policy is designed for scenarios in which high
utilization peaks have to be discouraged. The policy, in fact, selects the
starting time, within the candidates, in which the distance between the
system utilization and the desirable profile is higher. This is done by
ordering the starting time by decreasing

∑
n∈N In(t) and selecting the

first element iff
∑

n∈N In(t) >= |UNi|.

• Random: this policy is designed to completely randomize the start
time selection. This is done by ordering the starting time by decreas-
ing

∑
n∈N In(t) and deleting the candidates for which does not hold the

constraint
∑

n∈N In(t) >= |UNi|. After that, the actual start time is se-
lected with a random uniform distribution.

7.6. Results 119

7.6 Results

Tests have been made using thee different traces extracted from the parallel
workload archive of the CEA Curie system [150]:

1. Low workload: 3207 jobs submitted in 30 days;

2. Medium workload: 8125 jobs submitted in 30 days;

3. High workload: 10892 jobs submitted in 23 days.

The simulated HPC machine is composed of 300 nodes with 32 cores each
and 128GB of RAM [167].

The tests have been executed in different scenarios to explore the behavior
of the proposed solutions with different cooling systems:

1. An Air cooling with a Power Usage Effectiveness ∗ (PUE [168]) of∼ 1.4
(depending on the external temperature and the workload energy);

2. a Hybrid cooling system with a PUE of ∼ 1.1;

and different environment temperatures:

1. Summer temperatures;

2. Winter temperatures.

The core hour pricing for the execution of the jobs is taken from the Ama-
zon pricing model [170] while the energy cost is taken from the Italian energy
provider [171].

The comparison has been done w.r.t. the six setups of the Rule-based
scheduler. In each scenario, the setup with the best profit has been selected.
For seek of simplicity, from now on, we will call the best Rule-based sched-
uler in each scenario “RB”.

In the following results we will show three different version of DARDIS:

• DARDIS100%: This version is used as baseline for the results compar-
ison. This is the default DARDIS version set to use the “First” (see
section 7.5) start time generator and the “Min start” dispatching policy.
In this version, the assumption is that the scheduler can not turn-off the
nodes of the HPC.

• DARDIS70%: This version is designed to turn-off nodes following the
results of the profile generator in a conservative way. Given the for-
casted desirable utilization profile, this scheduler shut down just the
30% of the unused resources while the remaining 70% is used to com-
pensate system fragmentation. As for DARDIS100%, the selected start
time generator is “First” and the dispatching policy is “Min start”.

∗The Power Usage Effectiveness is a measure for data-centers efficiency. The calculation
is PUE = Pw+Pc

Pw
. Where Pc is the power spent in cooling and Pw is the power spent in

workload

120
Chapter 7. Hybrid Offline-Optimized and Online-Distributed Profit-driven

low-overhead scheduler for HPC with automatic node shut-down and turn-on

• DARDIS50%: This version is designed to turn-off nodes following the
results of the profile generator aggressively. Given the forcasted desir-
able utilization profile, this scheduler shut down the 50% of the unused
resources while just the remaining 50% is used to compensate system
fragmentation. As for DARDIS100%, the selected start time generator
is “First” and the dispatching policy is “Min start”.

The implementation has been done in C++ using the IBM ILOG CP Opti-
mizer 12.7.0 solver for the offline scheduler, C++ using MPI for DARDIS and
python for the profile extractor. Tests have been executed on a 2xIntel Xeon
Processor E5-2670 v3 server with 128GB of RAM.

7.6.1 Profit improvement

Figure 7.2 shows the percentile profit improvement w.r.t. the RB at the last
job termination. Each plot shows the results obtained in the different work-
load traces (x-axis) by the three different version of DARDIS: DARDIS100%,
DARDIS70%, and DARDIS50%. The figure shows four different plots repre-
senting four different scenarios: summer temperatures with air cooling sys-
tem, summer temperatures with a hybrid cooling system, winter tempera-
tures with air cooling system, and winter temperatures with a hybrid cooling
system. As the figure shows, DARDIS100% is, in the majority of the cases,
outperformed by DARDIS70% while, usually, it outperforms DARDIS50%.
This suggests that turning off nodes can improve the profit obtained by an
HPC but exceeding in the number of turned off nodes can result in a wors-
ening.

In general, DARDIS50% obtains better results w.r.t. DARDSI70% just in
the low workload trace. This confirms the hypothesis that the node turn-off
limit of DARDIS50% is too aggressive in systems with this kind of fragmen-
tation and the more conservative limit of DARDIS70% is, in general, better.

For what concerns the comparison w.r.t. the RB (table 7.1), DARDIS70%
has an average improvement of 17% in the low workload trace, 8.6% in the
medium workload trace and 0.2% in the high workload trace. Moreover, just
one worsening w.r.t the RB scheduler have been found in the winter temper-
ature, hybrid cooling, medium workload scenario.

7.6.2 Makespan

However, shutting down resources could provide an increment of the
makespan. Figure 7.3 shows the average makespan and with the standard
deviation obtained by DARDIS100%, DARDIS70%, DARDIS50%, and the
RB schedulers in the three different traces: (a) low workload, (b) medium
workload, and (c) high workload. In the low workload trace, we obtained
not only a profit increment but also a makespan decrement. In the medium
trace DARDIS100% and DARDIS70% obtained a negligible increment of the
makespan of 0.3%. Finally, in the high workload trace, we have a worsen-
ing in the makespan of 10%. However, looking the makespan obtained by
DARDIS70% and DARDIS100% we can claim that this desirable generation

7.7. Conclusion 121

algorithm in conjunction with the DARDIS70% policy does not substantially
impact the makespan. The majority of the makespan increment comes from
the DARDIS algorithm itself.

7.6.3 Overhead

Figure 7.4 shows the overhead of the schedulers in each experiment. The four
plots show respectively DARDIS100%, DARDIS70%, DARDIS50%, and the
best rule-based scheduler. The plots show the average overhead to compute
the scheduling of a job (considering also different scheduling cycles in which
the job appears) for all the scenarios with the standard deviation at different
workload dimensions.

As the plots show, the average overhead obtained by DARDIS100% and
DARDIS70% is in the range 0.01-0.2 while the RB scheduler is in the range
0.0008-0.5. The behaviors of the schedulers show that, as expected, the
overhead of the RB is lower in the low workload scenarios. In fact, the
DARDIS100% and DARDIS70% shows a better scalability, having a lower
average overhead and a consistently lower standard deviation in both the
medium and high workload scenarios.

The behavior of DARDIS50% is completely different from the other two
versions of DARDIS. In fact, it shows a decreasing overhead and standard
deviation at increasing workload dimension. This is due to the fact that the
complexity of this scheduler depends on the scheduling horizon and limiting
the resource in such aggressive way as DARDIS50% does, highly increases
the scheduling horizon. This is particularly visible by the standard devia-
tion obtained by the scheduler that affects the jobs with the highest resource
requirements (thus the most difficult to schedule).

7.7 Conclusion

In conclusion, we designed a new scheduling architecture for more profitable
and greener HPC machines. This architecture is capable of considering the
scheduling system, the cooling system, and the external temperature to gen-
erate a quasi-optimal, desirable utilization profile by an offline scheduler.
While the online scheduler can schedule jobs with low overhead, profiling
the scheduling and planning the shut-down and start-up of the nodes in the
future. Three different versions of the scheduler have been tested w.r.t. six
different setups of the rule-based scheduler in four different scenarios with
three different workload traces. Our DARDIS70% scheduler shows to im-
prove in average the HPC profit by an 8.6%. This improvement has been ob-
tained within a lower average computational overhead and lower standard
deviation. No significant worsening on the makespan has been found the
low and medium workload. However, an increment of 10% on the makespan
have been found in the high workload trace but this is imputable mainly
to the DARDIS architecture and not to the node shut-down approach by
DADIS70%.

122
Chapter 7. Hybrid Offline-Optimized and Online-Distributed Profit-driven

low-overhead scheduler for HPC with automatic node shut-down and turn-on

A lot of work has to be done to improve the solution by DARDIS in term
of makespan. Moreover, future work plans to introduce a synthetic workload
forecaster capable of precisely generate an expected trace submission with
jobs power consumption, in order to replace the current traces based on the
previous 24 hours of submissions.

123

Chapter 8

Conclusion

In this thesis, we studied the HPC scheduling problem applying an opti-
mization technique called Constraint Programming. Our target was to create
a highly scalable and optimized scheduler. Many objective functions were
taken into account.

We evaluated the applicability of CP and embedded a CP scheduler into
a commercial scheduler trying different combinations of objective functions.
The considered objective functions are the makespan, number of late jobs,
tardiness, and weighted tardiness. Tests were made on different scenarios
with increasing problem hardness and the scheduler have been compared to
PBS Professional 12. The scheduler showed to improve up to 20% the wait-
ings and 22% the number of late jobs. Even if this scheduler demonstrated to
be well suited for an in-production mid-tier HPC, this approach showed to
suffer from scalability problems.

For this reason, we designed a Distributed And Randomized DIspatcher
and Scheduler (DARDIS). This scheduler is designed to exploit two differ-
ent resources utilization profile: the first is the physical limit (capacity) of
the resources, the second is a desirable utilization. The resource capacity is
a hard constraint. This means that the capacity can never be exceeded. The
desirable utilization profile, differently, it’s just a recommended utilization
profile and can be exceeded (soft constraint) if needed. The scheduler uses
different rules to optimize the chasing of the desirable profile: random uni-
form start-time generation, random exponential start-time generation, and
deterministic minimum start-time selection. Moreover, different rules can
be adopted to select the nodes for the execution of the jobs: the nodes with
the minimum start time, the nodes with the lower utilization-rate on the de-
sirable utilization profile, and random uniform selection. The scheduler is
designed to be distributed to improve the scalability. This is achieved by
delegating the scheduling to the nodes: each node returns to the job a set of
candidate start-times for the execution. Then, the dispatching is left to the
job itself that, on the basis of the selected rule, chooses the set of nodes (and
in fact also the start time between the candidates) for the execution. Tests
were made on a critically high workload trace and DARDIS has been com-
pared w.r.t. different rule-based schedulers. Results show that with different
setups it is possible to achieve different results such as good profile chasing
or job’s throughput optimization etc. However, the tests showed that results
are biased by the goodness of the desirable utilization profile. This means
that the profile has to be finely tuned for the set of jobs we are expecting to be

124 Chapter 8. Conclusion

submitted. However, the key feature of this scheduler is the computational
overhead. Results show that w.r.t. a rule-based scheduler the overhead is
more than 200 times faster.

This brought us to study a better way to compute a desirable utilization
profile. For this reason, we designed an offline CP scheduler that optimizes
the HPC profit by modeling both the HPC and the cooling model and us-
ing as input the thermal forecast of the next 24 hours and the set of jobs
submitted in the previous 24h. A heuristic and different searches have been
designed to increase the scalability of this scheduler w.r.t. the default search
implemented in ILOG CP Optimizer. And an extensive test in several dif-
ferent scenarios has been done to compare the results of our CP model and
searches w.r.t. rule-based schedulers and the default search in ILOG CP Op-
timizer. The results show that in case of low workload no changes has been
found w.r.t. heuristic schedulers while in case of high workload, the profit
has been increased by 6-7% w.r.t. the best rule-based scheduler in that sce-
nario. The default ILOG search showed to obtain a worsening of 10% w.r.t.
the best rule-based scheduler in every condition.

Finally, we connected the two different approach we designed. The offline
CP scheduler computes a near-optimal solution to improve the profit. From
the result obtained, a profile extraction module extracts a utilization profile
designed to shutdown nodes when the full HPC power is unnecessary and
turn back on the nodes when a high computational power is required. After
that, the utilization profile is fed to the online distributed scheduler that plans
the scheduling in the future taking into account the node shutdown and turn-
on. This approach showed to improve in average the HPC machine profit
by an 8.6% and showed a better scalability w.r.t. the most used commercial
schedulers. No worsening on the makespan have been found under low and
medium workload requests, however, a 10% of worsening in the makespan
has been found in case of high workload requests.

Future work will explore machine learning techniques for the traces of the
offline CP scheduler. This will give us the possibility to compute the desir-
able future utilization profile on the basis of forcasted instead of past traces.
This will involve in the creation of several different neural networks for the
forecast of all the jobs information: submission time, resource requirement,
job duration, and so on.

125

Bibliography

[1] A. Bartolini, A. Borghesi, T. Bridi, M. Lombardi, and M. Milano. Proac-
tive workload dispatching on the EURORA supercomputer. English.
In Principles and practice of constraint programming - 20th international
conference, CP 2014, lyon, france, september 8-12, 2014. proceedings. B.
O’Sullivan, editor. Vol. 8656. In Lecture Notes in Computer Science.
Springer. Springer International Publishing, 2014, pp. 765–780. ISBN:
978-3-319-10427-0. DOI: 10.1007/978-3-319-10428-7_55.

[2] T. Bridi, M. Lombardi, A. Bartolini, L. Benini, and M. Milano. A
cp scheduler for high-performance computers. In. Vol. 1485, 2015,
pp. 37–42. URL: https://www.scopus.com/inward/record.
uri ? eid = 2 - s2 . 0 - 85009223255 & partnerID = 40 & md5 =
65ac2e65b77b8fbb06d15c101edd7bbd.

[3] T. Bridi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini. A con-
straint programming scheduler for heterogeneous high-performance
computing machines. IEEE transactions on parallel and distributed sys-
tems, 27(10):2781–2794, 2016. DOI: 10.1109/tpds.2016.2516997.
URL: http://dx.doi.org/10.1109/TPDS.2016.2516997.

[4] T. Bridi, M. Lombardi, A. Bartolini, L. Benini, and M. Milano.
DARDIS: Distributed And Randomized DIspatching and Scheduling.
In European conference on artificial intelligence (ECAI 2016). Vol. 285. Gal
A. Kaminka et al., 2016, pp. 1598–1599.

[5] T. Bridi, M. Lombardi, A. Bartolini, L. Benini, and M. Milano.
DARDIS: Distributed And Randomized DIspatching and Scheduling.
In, AI*IA 2016 advances in artificial intelligence, pp. 493–507. Springer,
2016.

[6] T. Bridi, A. Bartolini, M. Lombardi, P. V. Hentenryck, M. Milano, and
L. Benini. Profit-driven hpc scheduling optimization and pue analy-
sis. IEEE transactions on industrial informatics, under review, 2017.

[7] T. Bridi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini. Hybrid
offline-optimized and online-distributed profit-driven low-overhead
scheduler for hpc with automatic node shut-down and turn-on. IEEE
transactions on parallel and distributed systems, under review, 2017.

[8] C. Galleguillos, A. Sîrbu, Z. Kiziltan, O. Babaoglu, A. Borghesi, and
T. Bridi. Data-driven job dispatching in hpc systems. In International
workshop on machine learning, optimization, and big data. Springer, 2017,
pp. 449–461.

[9] Top500. Top500. http://www.top500.org.

http://dx.doi.org/10.1007/978-3-319-10428-7_55
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85009223255&partnerID=40&md5=65ac2e65b77b8fbb06d15c101edd7bbd
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85009223255&partnerID=40&md5=65ac2e65b77b8fbb06d15c101edd7bbd
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85009223255&partnerID=40&md5=65ac2e65b77b8fbb06d15c101edd7bbd
http://dx.doi.org/10.1109/tpds.2016.2516997
http://dx.doi.org/10.1109/TPDS.2016.2516997
http://www.top500.org

126 BIBLIOGRAPHY

[10] Top500. The linpack benchmark. http : / / www . top500 . org /
project/linpack/.

[11] N. Attig, P. Gibbon, and T. Lippert. Trends in supercomputing: the eu-
ropean path to exascale. Computer physics communications, 182(9):2041–
2046, 2011.

[12] M. M. Waldrop. More than moore. Nature, 530(7589):144, 2016.

[13] R. A. Kendall, E. Aprà, D. E. Bernholdt, E. J. Bylaska, M. Dupuis, G.
I. Fann, R. J. Harrison, J. Ju, J. A. Nichols, J. Nieplocha, et al. High
performance computational chemistry: an overview of nwchem a dis-
tributed parallel application. Computer physics communications, 128(1-
2):260–283, 2000.

[14] A. Dubey, S. Brandt, R. Brower, M. Giles, P. Hovland, D. Q. Lamb, F
Loffler, B. Norris, B. OShea, C. Rebbi, et al. Software abstractions and
methodologies for hpc simulation codes on future architectures. Arxiv
preprint arxiv:1309.1780, 2013.

[15] H. C. Greenwell, W. Jones, P. V. Coveney, and S. Stackhouse. On the
application of computer simulation techniques to anionic and cationic
clays: a materials chemistry perspective. Journal of materials chemistry,
16(8):708–723, 2006.

[16] C. Feichtinger, S. Donath, H. Köstler, J. Götz, and U. Rüde. Walberla:
hpc software design for computational engineering simulations. Jour-
nal of computational science, 2(2):105–112, 2011.

[17] A. A. Johnson and T. E. Tezduyar. 3d simulation of fluid-particle inter-
actions with the number of particles reaching 100. Computer methods
in applied mechanics and engineering, 145(3-4):301–321, 1997.

[18] T Tezduyar, S Aliabadi, M Behr, A Johnson, V Kalro, and M Litke.
Flow simulation and high performance computing. Computational me-
chanics, 18(6):397–412, 1996.

[19] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavaz-
zoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, et al. Quan-
tum espresso: a modular and open-source software project for quan-
tum simulations of materials. Journal of physics: condensed matter,
21(39):395502, 2009.

[20] K. Takahashi and Y. Tanaka. Material synthesis and design from first
principle calculations and machine learning. Computational materials
science, 112:364–367, 2016.

[21] C. R. Welch, W. F. Marcuson III, and I. Adiguzel. Will supermolecules
and supercomputers lead to super construction materials? Civil engi-
neering magazine archive, 78(11):42–53, 2008.

[22] G. Hager and G. Wellein. Introduction to high performance computing for
scientists and engineers. CRC Press, 2010.

http://www.top500.org/project/linpack/
http://www.top500.org/project/linpack/

BIBLIOGRAPHY 127

[23] S. Wan and P. V. Coveney. Rapid and accurate ranking of binding
affinities of epidermal growth factor receptor sequences with selected
lung cancer drugs. Journal of the royal society interface:rsif20100609,
2011.

[24] S. Wan and P. V. Coveney. Molecular dynamics simulation reveals
structural and thermodynamic features of kinase activation by can-
cer mutations within the epidermal growth factor receptor. Journal of
computational chemistry, 32(13):2843–2852, 2011.

[25] Top500. Hōkūle’a hpc. https://www.top500.org/system/
179103.

[26] Top500. Sunway taihulight hpc. https : / / www . top500 . org /
system/178764.

[27] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin,
and J. C. Sancho. Entering the petaflop era: the architecture and per-
formance of roadrunner. In Proceedings of the 2008 acm/ieee conference
on supercomputing. IEEE Press, 2008, p. 1.

[28] T. Geller. Supercomputing’s exaflop target. Communications of the acm,
54(8):16–18, 2011.

[29] H. Frazier. The 802.3 z gigabit ethernet standard. Ieee network, 12(3):6–
7, 1998.

[30] G. F. Pfister. An introduction to the infiniband architecture. High per-
formance mass storage and parallel i/o, 42:617–632, 2001.

[31] L. Dagum and R. Menon. Openmp: an industry standard api for
shared-memory programming. Ieee computational science and engineer-
ing, 5(1):46–55, 1998.

[32] M. Snir. Mpi–the complete reference: the mpi core. Vol. 1. MIT press, 1998.

[33] M. Feldman. With roadrunner’s retirement, petascale enters middle
age. http://www.top500.org/blog/with-roadrunners-
retirement-petascale-enters-middle-age/. 2013.

[34] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, et al. A com-
parison of eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems. Journal of
parallel and distributed computing, 61(6):810–837, 2001.

[35] M. Maheswaran, T. D. Braun, and H. J. Siegel. Heterogeneous dis-
tributed computing. Wiley encyclopedia of electrical and electronics engi-
neering, 1999.

[36] T. Braun, H. Siegel, and A. Maciejewski. Heterogeneous computing:
goals, methods, and open problems. High performance computing—hipc
2001:307–318, 2001.

[37] H. J. Siegel, H. G. Dietz, and J. K. Antonio. Software support for het-
erogeneous computing. Acm computing surveys (csur), 28(1):237–239,
1996.

https://www.top500.org/system/179103
https://www.top500.org/system/179103
https://www.top500.org/system/178764
https://www.top500.org/system/178764
http://www.top500.org/blog/with-roadrunners-retirement-petascale-enters-middle-age/
http://www.top500.org/blog/with-roadrunners-retirement-petascale-enters-middle-age/

128 BIBLIOGRAPHY

[38] S. Shepler, M. Eisler, D. Robinson, B. Callaghan, R. Thurlow, D.
Noveck, and C. Beame. Network file system (nfs) version 4 protocol.
Network, 2003.

[39] R. J. Billings. Secure copy method and device for stored programs. US
Patent 4,550,350. 1985.

[40] B. Kantor. Bsd rlogin, 1991.

[41] T. Ylonen and C. Lonvick. The secure shell (ssh) protocol architecture,
2006.

[42] B. Chen, C. N. Potts, and G. J. Woeginger. A review of machine
scheduling: complexity, algorithms and approximability. In, Handbook
of combinatorial optimization, pp. 1493–1641. Springer, 1998.

[43] J. K. Lenstra, A. R. Kan, and P. Brucker. Complexity of machine
scheduling problems. Annals of discrete mathematics, 1:343–362, 1977.

[44] J. Blazewicz, J. K. Lenstra, and A. R. Kan. Scheduling subject to re-
source constraints: classification and complexity. Discrete applied math-
ematics, 5(1):11–24, 1983.

[45] P. Works. Pbs professional 12.2, administrator’s guide, november
2013. 2013.

[46] A. Computing and G. Computing. Torque resource manager. Online]
http://www. adaptivecomputing. com, 2012.

[47] A. B. Yoo, M. A. Jette, and M. Grondona. Slurm: simple linux utility for
resource management. In Job scheduling strategies for parallel processing.
Springer, 2003, pp. 44–60.

[48] K. Qureshi, S. M. H. Shah, and P. Manuel. Empirical performance
evaluation of schedulers for cluster of workstations. Cluster comput-
ing, 14(2):101–113, 2011.

[49] R. L. Henderson. Job scheduling under the portable batch system. In
Job scheduling strategies for parallel processing. Springer, 1995, pp. 279–
294.

[50] P. Salot. A survey of various scheduling algorithm in cloud computing
environment. International journal of research and engineering technology
(ijret), issn:2319–1163, 2013.

[51] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P.
Wong. Theory and practice in parallel job scheduling. In Workshop on
job scheduling strategies for parallel processing. Springer, 1997, pp. 1–34.

[52] R. Haupt. A survey of priority rule-based scheduling. Operations-
research-spektrum, 11(1):3–16, 1989.

[53] I. A. Moschakis and H. D. Karatza. Evaluation of gang scheduling
performance and cost in a cloud computing system. The journal of su-
percomputing, 59(2):975–992, 2012.

[54] C. Du, X.-H. Sun, and M. Wu. Dynamic scheduling with process mi-
gration. In Cluster computing and the grid, 2007. ccgrid 2007. seventh ieee
international symposium on. IEEE, 2007, pp. 92–99.

BIBLIOGRAPHY 129

[55] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I.
Stoica. Job scheduling for multi-user mapreduce clusters. Eecs depart-
ment, university of california, berkeley, tech. rep. ucb/eecs-2009-55, 2009.

[56] D. Jackson. New issues and new capabilities in hpc scheduling with
the maui scheduler.

[57] S. Agarwal, R. Garg, and N. K. Vishnoi. The impact of noise on
the scaling of collectives: a theoretical approach. In, High performance
computing–hipc 2005, pp. 280–289. Springer, 2005.

[58] A. Bastoni, B. Brandenburg, and J. Anderson. Cache-related preemp-
tion and migration delays: empirical approximation and impact on
schedulability. Proceedings of ospert:33–44, 2010.

[59] R. Gioiosa, S. A. McKee, and M. Valero. Designing os for hpc applica-
tions: scheduling. In Cluster computing (cluster), 2010 ieee international
conference on. IEEE, 2010, pp. 78–87.

[60] R. Haupt. A survey of priority rule-based scheduling. Operations-
research-spektrum, 11(1):3–16, 1989.

[61] G. Bruno, A. Elia, and P. Laface. A rule-based system to schedule pro-
duction. Computer, (7):32–40, 1986.

[62] S. S. Panwalkar and W. Iskander. A survey of scheduling rules. Oper-
ations research, 25(1):45–61, 1977.

[63] R. Wang, D. Tiwari, and J. Wang. Low power job scheduler for super-
computers: a rule-based power-aware scheduler. In Data science and
data intensive systems (dsdis), 2015 ieee international conference on. IEEE,
2015, pp. 732–733.

[64] S. Srinivasan, R. Kettimuthu, V. Subramani, and P Sadayappan. Char-
acterization of backfilling strategies for parallel job scheduling. In Par-
allel processing workshops, 2002. proceedings. international conference on.
IEEE, 2002, pp. 514–519.

[65] D. G. Feitelson. Experimental analysis of the root causes of perfor-
mance evaluation results: a backfilling case study. Parallel and dis-
tributed systems, ieee transactions on, 16(2):175–182, 2005.

[66] A. W. M. Alem and D. G. Feitelson. Utilization, predictability,
workloads, and user runtime estimates in scheduling the ibm sp2
with backfilling. Parallel and distributed systems, ieee transactions on,
12(6):529–543, 2001.

[67] Y. Yuan, Y. Wu, W. Zheng, and K. Li. Guarantee strict fairness and uti-
lizeprediction better in parallel job scheduling. Parallel and distributed
systems, ieee transactions on, 25(4):971–981, 2014.

[68] E. Shmueli and D. G. Feitelson. On simulation and design of parallel-
systems schedulers: are we doing the right thing? Parallel and dis-
tributed systems, ieee transactions on, 20(7):983–996, 2009.

[69] S. Hartmann. A self-adapting genetic algorithm for project scheduling
under resource constraints. Nrl, 49(5):433–448, 2002.

130 BIBLIOGRAPHY

[70] J. Damay, A. Quilliot, and E. Sanlaville. Linear programming based
algorithms for preemptive and non-preemptive rcpsp. European jour-
nal of operational research, 182(3):1012–1022, 2007.

[71] T. Bhaskar, M. N. Pal, and A. K. Pal. A heuristic method for rcpsp with
fuzzy activity times. European journal of operational research, 208(1):57–
66, 2011.

[72] O. Sarood, A. Langer, A. Gupta, and L. Kale. Maximizing throughput
of overprovisioned hpc data centers under a strict power budget. In
Proceedings of the international conference for high performance computing,
networking, storage and analysis. IEEE Press, 2014, pp. 807–818.

[73] S. Soner and C. Özturan. Integer programming based heterogeneous
cpu–gpu cluster schedulers for slurm resource manager. Journal of
computer and system sciences, 81(1):38–56, 2015.

[74] Y. Kessaci, N. Melab, and E Talbi. A pareto-based ga for scheduling
hpc applications on distributed cloud infrastructures. In High perfor-
mance computing and simulation (hpcs), 2011 international conference on.
IEEE, 2011, pp. 456–462.

[75] K. Wang. Towards next generation resource management at extreme-
scales. Iit, phd proposal, 2014.

[76] J. P. Jones and B. Nitzberg. Scheduling for parallel supercomputing: a
historical perspective of achievable utilization. In Job scheduling strate-
gies for parallel processing. Springer, 1999, pp. 1–16.

[77] D. Klusácek, H. Rudová, R. Baraglia, M. Pasquali, and G. Capannini.
Comparison of multi-criteria scheduling techniques. 2008.

[78] V. Chlumsky, D. Klusácek, and M. Ruda. The extension of torque
scheduler allowing the use of planning and optimization in grids.
Computer science, 13:5–19, 2012.

[79] E. Shmueli and D. G. Feitelson. Backfilling with lookahead to opti-
mize the packing of parallel jobs. Journal of parallel and distributed com-
puting, 65(9):1090–1107, 2005.

[80] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Backfilling using system-
generated predictions rather than user runtime estimates. Parallel and
distributed systems, ieee transactions on, 18(6):789–803, 2007.

[81] A. Borghesi, C. Conficoni, M. Lombardi, and A. Bartolini. Ms3: a
mediterranean-stile job scheduler for supercomputers-do less when
it’s too hot! In High performance computing & simulation (hpcs), 2015 in-
ternational conference on. IEEE, 2015, pp. 88–95.

[82] X. Feng, R. Ge, and K. W. Cameron. Power and energy profiling of sci-
entific applications on distributed systems. In Parallel and distributed
processing symposium, 2005. proceedings. 19th ieee international. IEEE,
2005, pp. 34–34.

[83] B. Hurley, B. O’Sullivan, and H. Simonis. Icon loop energy show case.
In, Data mining and constraint programming, pp. 334–347. Springer,
2016.

BIBLIOGRAPHY 131

[84] S. H. Lu and P. Kumar. Distributed scheduling based on due dates and
buffer priorities. Automatic control, ieee transactions on, 36(12):1406–
1416, 1991.

[85] K. Ramamritham, J. Stankovic, W. Zhao, et al. Distributed schedul-
ing of tasks with deadlines and resource requirements. Computers, ieee
transactions on, 38(8):1110–1123, 1989.

[86] V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayappan. Dis-
tributed job scheduling on computational grids using multiple simul-
taneous requests. In High performance distributed computing, 2002. hpdc-
11 2002. proceedings. 11th ieee international symposium on. IEEE, 2002,
pp. 359–366.

[87] H. Izakian, B. T. Ladani, K. Zamanifar, and A. Abraham. A novel
particle swarm optimization approach for grid job scheduling. In, In-
formation systems, technology and management, pp. 100–109. Springer,
2009.

[88] S. Zhan and H. Huo. Improved pso-based task scheduling algorithm
in cloud computing. Journal of information & computational science,
9(13):3821–3829, 2012.

[89] H. Izakian, B. T. Ladani, A. Abraham, and V. Snasel. A discrete particle
swarm optimization approach for grid job scheduling. International
journal of innovative computing, information and control, 6(9):4219–4233,
2010.

[90] L. Vanneschi, D. Codecasa, and G. Mauri. A comparative study of
four parallel and distributed pso methods. New generation computing,
29(2):129–161, 2011.

[91] A. Montresor, H. Meling, and Ö. Babaoğlu. Messor: load-balancing
through a swarm of autonomous agents. In, Agents and peer-to-peer
computing, pp. 125–137. Springer, 2003.

[92] C. L. Ortiz, R. Vincent, and B. Morisset. Task inference and distributed
task management in the centibots robotic system. In Proceedings of the
fourth international joint conference on autonomous agents and multiagent
systems. ACM, 2005, pp. 860–867.

[93] M. J. Fischer. The consensus problem in unreliable distributed systems
(a brief survey). In International conference on fundamentals of computa-
tion theory. Springer, 1983, pp. 127–140.

[94] A. Olshevsky and J. N. Tsitsiklis. Convergence speed in distributed
consensus and averaging. Siam journal on control and optimization,
48(1):33–55, 2009.

[95] J. Cortés. Distributed algorithms for reaching consensus on general
functions. Automatica, 44(3):726–737, 2008.

[96] F. Benhamou. Principles and practice of constraint programming-cp
2006. In 12th international conference, cp. Springer, 2006, pp. 25–29.

132 BIBLIOGRAPHY

[97] C. P. Gomes, W. J. v. Hoeve, and B. Selman. Constraint programming
for distributed planning and scheduling. In Aaai spring symposium: dis-
tributed plan and schedule management. Vol. 1, 2006, pp. 157–158.

[98] C. C. Rolf and K. Kuchcinski. Distributed constraint programming with
agents. Springer, 2011.

[99] C. Conficoni, A. Bartolini, A. Tilli, C. Cavazzoni, and L. Benini. In-
tegrated energy-aware management of supercomputer hybrid cool-
ing systems. Ieee transactions on industrial informatics, 12(4):1299–1311,
2016.

[100] A. Bartolini, M. Cacciari, C. Cavazzoni, G. Tecchiolli, and L. Benini.
Unveiling eurora - thermal and power characterization of the most
energy-efficient supercomputer in the world. In Design, automation test
in europe conference exhibition (date), 2014, 2014.

[101] N. Kaur, S. Bansal, and R. K. Bansal. Towards energy efficient schedul-
ing with dvfs for precedence constrained tasks on heterogeneous clus-
ter system. In Recent advances in engineering & computational sciences
(raecs), 2015 2nd international conference on. IEEE, 2015, pp. 1–6.

[102] D. Cheng, X. Zhou, P. Lama, M. Ji, and C. Jiang. Energy efficiency
aware task assignment with dvfs in heterogeneous hadoop clusters.
Ieee transactions on parallel and distributed systems, 2017.

[103] K. Li, X. Tang, and K. Li. Energy-efficient stochastic task scheduling
on heterogeneous computing systems. Ieee transactions on parallel and
distributed systems, 25(11):2867–2876, 2014.

[104] J. Luo, L. Rao, and X. Liu. Temporal load balancing with service delay
guarantees for data center energy cost optimization. Ieee transactions
on parallel and distributed systems, 25(3):775–784, 2014.

[105] Y. Zhao, R. N. Calheiros, G. Gange, K. Ramamohanarao, and R.
Buyya. Sla-based resource scheduling for big data analytics as a ser-
vice in cloud computing environments. In Parallel processing (icpp),
2015 44th international conference on. IEEE, 2015, pp. 510–519.

[106] F. F. Moghaddam, R. F. Moghaddam, M. Cheriet, and Y. Lemieux.
Defining green profit in distributed datacenters, 2015.

[107] H. R. Faragardi, A. Rajabi, T. Nolte, and A. H. Heidarizadeh. A profit-
aware allocation of high performance computing applications on dis-
tributed cloud data centers with environmental considerations. Csi
journal on computer science and engineering jcse, 2(1):28–38, 2014.

[108] J. Hikita, A. Hirano, and H. Nakashima. Saving 200kw and $200
k/year by power-aware job/machine scheduling. In 2008 ieee inter-
national symposium on parallel and distributed processing, 2008, pp. 1–8.
DOI: 10.1109/IPDPS.2008.4536218.

http://dx.doi.org/10.1109/IPDPS.2008.4536218

BIBLIOGRAPHY 133

[109] O. Mämmelä, M. Majanen, R. Basmadjian, H. De Meer, A. Giesler,
and W. Homberg. Energy-aware job scheduler for high-performance
computing. Computer science - research and development, 27(4):265–275,
2012. ISSN: 1865-2042. DOI: 10.1007/s00450-011-0189-6. URL:
https://doi.org/10.1007/s00450-011-0189-6.

[110] D. Feitelson. Workload characterization and modeling book. http:
//www.cs.huji.ac.il/~feit/wlmod/wlmod.pdf. 2015.

[111] S Heipcke. Comparing constraint programming and mathematical
programming approaches to discrete optimisation - the change prob-
lem. Journal of the operational research society, 50(6):581–595, 1999.

[112] P. Baptiste, P. Laborie, C. Le Pape, and W. Nuijten. Constraint-based
scheduling and planning. Foundations of artificial intelligence, 2:761–
799, 2006. ISSN: 1574-6526. URL: http://linkinghub.elsevier.
com/retrieve/pii/S157465260680026X.

[113] C. Bessiere and P. Van Hentenryck. To be or not to be... a global con-
straint. Cp, 2003:789–794, 2003.

[114] P. Van Hentenryck, Y. Deville, and C.-M. Teng. A generic arc-
consistency algorithm and its specializations. Artificial intelligence,
57(2-3):291–321, 1992.

[115] P. Laborie and J. Rogerie. Reasoning with conditional time-intervals.
In Proc. of flairs, 2008, pp. 555–560. URL: http : / / scholar .
google.com/scholar?hl=en\&btnG=Search\&q=intitle:
Reasoning+with+Conditional+Time-intervals\#0.

[116] P. Van Beek. Backtracking search algorithms. Foundations of artificial
intelligence, 2:85–134, 2006.

[117] F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint programming.
Elsevier, 2006.

[118] R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for
constraint satisfaction problems. Artificial intelligence, 14(3):263–313,
1980.

[119] P. Refalo. Impact-based search strategies for constraint programming.
Cp, 3258:557–571, 2004.

[120] R. M. Stallman and G. J. Sussman. Forward reasoning and
dependency-directed backtracking in a system for computer-aided
circuit analysis. Artificial intelligence, 9(2):135–196, 1977.

[121] G. Katsirelos and F. Bacchus. Generalized nogoods in csps. In Aaai.
Vol. 5, 2005, pp. 390–396.

[122] F. Bacchus. Extending forward checking. Principles and practice of con-
straint programming–cp 2000:35–51, 2000.

[123] P. Shaw. Using constraint programming and local search methods to
solve vehicle routing problems. In International conference on principles
and practice of constraint programming. Springer, 1998, pp. 417–431.

http://dx.doi.org/10.1007/s00450-011-0189-6
https://doi.org/10.1007/s00450-011-0189-6
http://www.cs.huji.ac.il/~feit/wlmod/wlmod.pdf
http://www.cs.huji.ac.il/~feit/wlmod/wlmod.pdf
http://linkinghub.elsevier.com/retrieve/pii/S157465260680026X
http://linkinghub.elsevier.com/retrieve/pii/S157465260680026X
http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=intitle:Reasoning+with+Conditional+Time-intervals\#0
http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=intitle:Reasoning+with+Conditional+Time-intervals\#0
http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=intitle:Reasoning+with+Conditional+Time-intervals\#0

134 BIBLIOGRAPHY

[124] CINECA. Cineca inter-university consortium web site. http : / /
www.cineca.it//en. Accessed: 2014-04-14.

[125] Eurotech. Eurotech group web site. http://www.eurotech.com/
en/. Accessed: 2014-04-14.

[126] Ny times article about a survey by mc kinsey & co. http://www.
nytimes.com/2012/09/23/technology/data- centers-
waste - vast - amounts - of - energy - belying - industry -
image.html. Accessed: 2014-04-14.

[127] A. P. Works. Pbs professional R©12.2 administrator’s guide. http :
//resources.altair.com/pbs/documentation/support/
PBSProAdminGuide12.2.pdf. 2013.

[128] P. Laborie. IBM ILOG CP Optimizer for detailed scheduling il-
lustrated on three problems. In Proc. of cpaior, 2009, pp. 148–
162. URL: http : / / www . springerlink . com / index /
y7r30xh22h1gp026.pdf.

[129] P. Laborie and D. Godard. Self-adapting large neighborhood search:
Application to single-mode scheduling problems. In Proc. of mista,
2007, pp. 276–284. URL: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.107.4415\&rep=
rep1\&type=pdf.

[130] T. Frühwirth and S. Abdennadher. Essentials of constraint programming.
Springer Science & Business Media, 2003.

[131] M. Wallace. Practical applications of constraint programming. Con-
straints, 1(1-2):139–168, 1996.

[132] IBM. Constraint programming with cp optimizer. https://www.
ibm . com / support / knowledgecenter / SSSA5P _ 12 . 3 .
0 / ilog . odms . cpo . help / Content / Optimization /
Documentation / Optimization _ Studio / _pubskel /
gscpoptimizer2528.html. 2011.

[133] D. Pisinger and S. Ropke. Large neighborhood search. In, Handbook of
metaheuristics, pp. 399–419. Springer, 2010.

[134] D. Godard, P. Laborie, and W. Nuijten. Randomized large neighbor-
hood search for cumulative scheduling. In Icaps. Vol. 5, 2005, pp. 81–
89.

[135] F Falciano and E Rossi. Fermi: the most powerful computational re-
source for italian scientists. Embnet. journal, 18(A):p–62, 2012.

[136] TOP500. Tianhe-2 (milkyway-2) - th-ivb-fep cluster, intel xeon e5-2692
12c 2.200ghz, th express-2, intel xeon phi 31s1p. http : / / www .
top500.org/system/177999. 2015.

[137] BBC. Supercomputers: obama orders world’s fastest computer. http:
//www.bbc.com/news/technology-33718311. 2015.

http://www.cineca.it//en
http://www.cineca.it//en
http://www.eurotech.com/en/
http://www.eurotech.com/en/
http://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-industry-image.html
http://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-industry-image.html
http://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-industry-image.html
http://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-industry-image.html
http://resources.altair.com/pbs/documentation/support/PBSProAdminGuide12.2.pdf
http://resources.altair.com/pbs/documentation/support/PBSProAdminGuide12.2.pdf
http://resources.altair.com/pbs/documentation/support/PBSProAdminGuide12.2.pdf
http://www.springerlink.com/index/y7r30xh22h1gp026.pdf
http://www.springerlink.com/index/y7r30xh22h1gp026.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.4415\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.4415\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.4415\&rep=rep1\&type=pdf
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.3.0/ilog.odms.cpo.help/Content/Optimization/Documentation/Optimization_Studio/_pubskel/gscpoptimizer2528.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.3.0/ilog.odms.cpo.help/Content/Optimization/Documentation/Optimization_Studio/_pubskel/gscpoptimizer2528.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.3.0/ilog.odms.cpo.help/Content/Optimization/Documentation/Optimization_Studio/_pubskel/gscpoptimizer2528.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.3.0/ilog.odms.cpo.help/Content/Optimization/Documentation/Optimization_Studio/_pubskel/gscpoptimizer2528.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.3.0/ilog.odms.cpo.help/Content/Optimization/Documentation/Optimization_Studio/_pubskel/gscpoptimizer2528.html
http://www.top500.org/system/177999
http://www.top500.org/system/177999
http://www.bbc.com/news/technology-33718311
http://www.bbc.com/news/technology-33718311

BIBLIOGRAPHY 135

[138] J. Lavignon et al. Etp4hpc strategic research agenda achieving hpc
leadership in europe. http://www.etp4hpc.eu/wp-content/
uploads/2013/06/ETP4HPC_book_singlePage.pdf. 2013.

[139] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-
neau, et al. Exascale computing study: technology challenges in
achieving exascale systems. Defense advanced research projects agency
information processing techniques office (darpa ipto), tech. rep, 15, 2008.

[140] M. Etinski, J. Corbalan, J. Labarta, and M. Valero. Parallel job schedul-
ing for power constrained hpc systems. Parallel computing, 38(12):615–
630, 2012.

[141] C. Lefurgy, X. Wang, and M. Ware. Power capping: a prelude to power
shifting. Cluster computing, 11(2):183–195, 2008.

[142] B. Rountree, D. H. Ahn, B. R. De Supinski, D. K. Lowenthal, and M.
Schulz. Beyond dvfs: a first look at performance under a hardware-
enforced power bound. In Parallel and distributed processing symposium
workshops & phd forum (ipdpsw), 2012 ieee 26th international. IEEE, 2012,
pp. 947–953.

[143] M. Van Den Briel, P. Scott, and S. Thiébaux. Randomized load con-
trol: a simple distributed approach for scheduling smart appliances.
In Proceedings of the 23th international joint conference on artificial intelli-
gence. AAAI Press, 2013, pp. 2915–2922.

[144] D. A. Ellsworth, A. D. Malony, B. Rountree, and M. Schulz. Dynamic
power sharing for higher job throughput. In Proceedings of the interna-
tional conference for high performance computing, networking, storage and
analysis. ACM, 2015, p. 80.

[145] Y. Inadomi, T. Patki, K. Inoue, M. Aoyagi, B. Rountree, M. Schulz, D.
Lowenthal, Y. Wada, K. Fukazawa, M. Ueda, et al. Analyzing and mit-
igating the impact of manufacturing variability in power-constrained
supercomputing. In Proceedings of the international conference for high
performance computing, networking, storage and analysis. ACM, 2015,
p. 78.

[146] C. Conficoni, A. Bartolini, A. Tilli, G. Tecchiolli, and L. Benini. Energy-
aware cooling for hot-water cooled supercomputers. In Proceedings of
the 2015 design, automation & test in europe conference & exhibition. EDA
Consortium, 2015, pp. 1353–1358.

[147] Y. Joshi and P. Kumar. Energy efficient thermal management of data cen-
ters. Springer Science & Business Media, 2012.

[148] R. Von Mises. Mathematical theory of probability and statistics. Academic
Press, 1964.

[149] I. Herstein. Topics in algebra, blaisdell pub. Co., mass, 1964.

[150] P. W. Archive. http://www.cs.huji.ac.il/labs/parallel/
workload/l_cea_curie/index.html. 2012.

http://www.etp4hpc.eu/wp-content/uploads/2013/06/ETP4HPC_book_singlePage.pdf
http://www.etp4hpc.eu/wp-content/uploads/2013/06/ETP4HPC_book_singlePage.pdf
http://www.cs.huji.ac.il/labs/parallel/workload/l_cea_curie/index.html
http://www.cs.huji.ac.il/labs/parallel/workload/l_cea_curie/index.html

136 BIBLIOGRAPHY

[151] I. Sindicic, S. Bogdan, and T. Petrovic. Resource allocation in free-
choice multiple reentrant manufacturing systems based on machine-
job incidence matrix. Ieee transactions on industrial informatics, 7(1):105–
114, 2010.

[152] W. Du, Y. Tang, S. Leung, L. Tong, A. V. Vasilakos, and F. Qian. Robust
order scheduling in the fashion industry: a multi-objective optimiza-
tion approach. Ieee transactions on industrial informatics, 2017.

[153] S. Girs, A. Willig, E. Uhlemann, and M. Björkman. Scheduling for
source relaying with packet aggregation in industrial wireless net-
works. Ieee transactions on industrial informatics, 12(5):1855–1864, 2016.

[154] Y. Wu, X. Tan, L. Qian, D. H. Tsang, W.-Z. Song, and L. Yu. Optimal
pricing and energy scheduling for hybrid energy trading market in
future smart grid. Ieee transactions on industrial informatics, 11(6):1585–
1596, 2015.

[155] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan. Optimiza-
tion and approximation in deterministic sequencing and scheduling:
a survey. Annals of discrete mathematics, 5:287–326, 1979.

[156] S. Venugopalan and O. Sinnen. Ilp formulations for optimal task
scheduling with communication delays on parallel systems. Ieee trans-
actions on parallel and distributed systems, 26(1):142–151, 2015.

[157] Y. Hou, N. Wu, M. Zhou, and Z. Li. Pareto-optimization for schedul-
ing of crude oil operations in refinery via genetic algorithm. Ieee trans-
actions on systems, man, and cybernetics: systems, 2015.

[158] A. Zimmermann. An mip-based heuristic for scheduling projects
with work-content constraints. In Industrial engineering and engineer-
ing management (ieem), 2016 ieee international conference on. IEEE, 2016,
pp. 1195–1199.

[159] A. Borghesi, F. Collina, M. Lombardi, M. Milano, and L. Benini. Power
capping in high performance computing systems. In Principles and
practice of constraint programming. Springer, 2015, pp. 524–540.

[160] R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very
large-scale neighborhood search techniques. Discrete applied mathemat-
ics, 123(1):75–102, 2002.

[161] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based scheduling:
applying constraint programming to scheduling problems. Vol. 39. Springer
Science & Business Media, 2012.

[162] CINECA. Cineca new accounting policy. https : / / wiki . u -
gov.it/confluence/pages/viewpage.action?pageId=
64201371. 2017.

[163] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini.
Predictive modeling for job power consumption in hpc systems. In
International conference on high performance computing. Springer, 2016,
pp. 181–199.

https://wiki.u-gov.it/confluence/pages/viewpage.action?pageId=64201371
https://wiki.u-gov.it/confluence/pages/viewpage.action?pageId=64201371
https://wiki.u-gov.it/confluence/pages/viewpage.action?pageId=64201371

BIBLIOGRAPHY 137

[164] HudsonPower. https://hudsonenergy.co.uk/corporate-
businesses. 2017.

[165] S. f. Research. https : / / research . csc . fi / pricing - of -
computing-services. 2017.

[166] U. o. Maine. https : / / acg . umaine . edu / pricing / fee -
structure/. 2017.

[167] TOP500. https://www.top500.org/system/177003. 2017.

[168] M. Uddin, R. Alsaqour, A. Shah, and T. Saba. Power usage effective-
ness metrics to measure efficiency and performance of data centers.
Applied mathematics & information sciences, 8(5):2207, 2014.

[169] IDC. Analysis of the characteristics and development trends of the
next-generation of supercomputers in foreign countries. http://
www . aics . riken . jp / aicssite / wp - content / uploads /
2017 / 05 / Analysis - of - the - Characteristics - and -
Development-Trends.pdf. 2016.

[170] Amazon. Ec2 pricing. https://aws.amazon.com/it/ec2/
pricing/on-demand/.

[171] Enel. https://www.enelenergia.it/mercato/libero/it-
IT/imprese/grandi-aziende/offerte-prezzo-fisso. 2017.

https://hudsonenergy.co.uk/corporate-businesses
https://hudsonenergy.co.uk/corporate-businesses
https://research.csc.fi/pricing-of-computing-services
https://research.csc.fi/pricing-of-computing-services
https://acg.umaine.edu/pricing/fee-structure/
https://acg.umaine.edu/pricing/fee-structure/
https://www.top500.org/system/177003
http://www.aics.riken.jp/aicssite/wp-content/uploads/2017/05/Analysis-of-the-Characteristics-and-Development-Trends.pdf
http://www.aics.riken.jp/aicssite/wp-content/uploads/2017/05/Analysis-of-the-Characteristics-and-Development-Trends.pdf
http://www.aics.riken.jp/aicssite/wp-content/uploads/2017/05/Analysis-of-the-Characteristics-and-Development-Trends.pdf
http://www.aics.riken.jp/aicssite/wp-content/uploads/2017/05/Analysis-of-the-Characteristics-and-Development-Trends.pdf
https://aws.amazon.com/it/ec2/pricing/on-demand/
https://aws.amazon.com/it/ec2/pricing/on-demand/
https://www.enelenergia.it/mercato/libero/it-IT/imprese/grandi-aziende/offerte-prezzo-fisso
https://www.enelenergia.it/mercato/libero/it-IT/imprese/grandi-aziende/offerte-prezzo-fisso

	Abstract
	List of Pubblications
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Content
	Contribution
	Outline

	Related work
	HPC systems
	HPC scheduling
	Rule-based
	Backfilling

	HPC scheduling optimization
	Distributed scheduling
	On HPC energy, profit, and scheduling
	Costraint Programming
	Constraint filtering and propagation
	Modeling
	CP modeling for scheduling problems

	Search strategies

	Preliminary study on the application of CP in HPC scheduling: modeling and simulations
	Introduction
	System Description and Motivations for Using CP
	Design of a CP Approach
	Formal Problem Definition
	CP Model

	Added Value of CP
	Evaluation of Our Models
	Comparison with PBS

	Conclusions

	CP in HPC scheduling: a first application and evaluation on the EURORA HPC
	The HPC Scheduling problem
	Constraint Programming
	Motivational example

	CP Model
	General model
	Allocation of jobs within a reservation
	Feasibility check

	Framework architecture
	Experimental Results
	Evaluation setup
	Simulation-based tests
	Evaluation on the HPC

	Test generation
	Test 0: Behavior at different heterogeneity levels
	Test 1: 4 nodes 99 jobs
	Test 2: 65 nodes 330 jobs
	Test 3: 65 nodes 700 jobs
	Results comparison
	Guidelines for algorithm portfolio selection

	Execution on Eurora
	Overhead distribution

	Conclusion

	Improving the HPC scheduling scalability with Distributed And Randomized DIspatcher and Scheduler (DARDIS)
	Motivational example
	Profile aware scheduling
	Rule-based schedulers for variable profiles

	DARDIS approach
	Scheduling
	Dispatching
	Throughput driven DARDIS
	Backfilling in DARDIS

	Profile driven DARDIS
	Balance driven DARDIS
	Deadline exceeding

	Complexity study
	Experimental results
	Conclusion

	Optimal Profit-driven offline scheduling with cooling optimization
	Workflow
	Scheduling problem
	Rule-based scheduling
	ILOG CP Optmizier default search
	Profit-driven CP scheduler
	The Model Variables
	The Constraints
	The Objective Function

	Heuristic for the first solution
	Searches
	Multi-Search
	Relaxation-Based Search
	The Delay Search

	Results
	The Test Case
	The Implementation
	Profit comparison

	Conclusion

	Hybrid Offline-Optimized and Online-Distributed Profit-driven low-overhead scheduler for HPC with automatic node shut-down and turn-on
	Scheduling problem
	Workflow
	Offline CP scheduling
	Profile Extraction
	Distributed Online scheduling
	Results
	Profit improvement
	Makespan
	Overhead

	Conclusion

	Conclusion
	Bibliography

