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“La volontà, abdicando, aveva ceduto lo scettro agli istinti; 

il senso estetico aveva sostituito il senso morale. 

Ma codesto senso estetico a punto, 

sottilissimo e potentissimo e sempre attivo, 

gli manteneva nello spirito un certo equilibrio; 

cosìche si poteva dire che la sua vita fosse una continua lotta di forze contrarie 

chiusa ne’ limiti d’un certo equilibrio. 

Li uomini d’intelletto, educati al culto della Bellezza, 

conservano sempre, 

anche nelle peggiori depravazioni, 

una specie di ordine. 

La concezione della Bellezza è, dirò così, 

l’asse del loro essere interiore, 

intorno al quale tutte le loro passioni gravitano.” 

 

“Il piacere” 

Gabriele D’Annunzio 

 

 

"Professore, un'ultima cosa. È vero tutto questo? 

O sta succedendo dentro la mia testa?" 

"Certo che sta succedendo dentro la tua testa, Harry. 

Dovrebbe voler dire che non è vero?" 

 

H. J. P and A. P. W. B. S. 

 

 

“...volontà, istinti, equilibrio, intelletto, la bellezza del bilanciamento nonchè quella del 

simmetrico e asimmetrico, desideri, verità, immaginazione, passione... Per me non porre 

limiti a tutto ciò e alla propria mente è basilare per farci piacere quello che ci piace 

fare.” 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 



 

 

 

ABSTRACT 

Over the past decade, great efforts have been devoted in the field of biomass valorization 

to the development of reductive processes for the sustainable production of bio-fuel 

additives and chemicals. Catalytic transfer hydrogenation, which uses alcohols as the 

hydrogen source, offers an interesting approach that avoids the use of both high H2 

pressure and precious metal catalysts. In this work, the vapour-phase production of 

furfuryl alcohol (FAL) and 2-methylfuran (MF) from biomass-derived furfural (FU), 

using methanol as the H-transfer agent was studied. Two class of catalysts were 

employed: basic-based systems such as MgO, Mg/Fe/O, Mg/Al/O and CaO; and a mixed 

iron-vanadium oxide FeVO4. With the latter at the temperature of 320°C it was possible 

to achieve 80% yield to 2-methylfuran, with small amounts of 2,5-dimethylfuran (DMF) 

and 2-vinylfuran (VINFU) as by-products. Catalyst characterization highlighted that 

FeVO4 reduction took place under the studied conditions, leading to the in-situ 

development of the true active phase. The study of the reaction network permitted us to 

infer on the relative contribution of H-transfer and hydrogenation, the latter from the in-

situ generated formaldehyde and H2, to 2-methylfuran formation. On the other hand, with 

the basic-base catalysts, it was demonstrated that both the pristine systems MgO and CaO 

were totally selective towards the formation of the unsaturated alcohol FAL as the only 

reduction product of FU at mild temperature condition, thus allowing selective H-transfer 

from methanol to the substrate. Conversely, the distribution of compounds obtained with 

Mg/Fe/O was significantly different, with 2-methylfuran formation prevailing when the 

reaction was carried out between 300 and 400 °C. In this temperature range, upon tuning 

the reaction conditions, a very high yield of 2-methylfuran was produced, thus indicating 

that the mixed oxide allows efficient sequential transfer hydrogenation/hydrogenolysis 

reactions. Furthermore the use of different hydrogen sources such as 2-propanol, acetone, 

acetaldehyde, formaldehyde and molecular hydrogen allow to identify the complete 

reaction network for the vapor-phase transformation of FU, demonstrating that both the 

in-situ produced molecular hydrogen and formaldehyde played a direct role in MF 

formation. 

The reported results indicate the potential application of the catalytic transfer 

hydrogenation reaction as an efficient process for the selective de-oxygenation of 

biomass-derived molecules. 



 

 

 

Negli ultimi decenni sempre maggiori sforzi sono stati effettuati nel campo della 

valorizzazione di prodotti derivanti da biomasse, in particolar modo lo sviluppo di 

processi sostenibili volti alla riduzione di building-block derivanti da fonti rinnovabili per 

la produzione di molecole base per l’industria chimica e additivi per bio-barburanti risulta 

un argomento di grande interesse. La reazione di Hydrogen Transfer, che prevede 

l’utilizzo di un alcol come fonte di idrogeno, costituisce un approccio interesante ed 

alternativo che evita l’utilizzo di H2 ad alte pressioni e catalizzatori contenenti metalli 

nobili. Nel presente lavoro viene studiata la produzione in fase gassosa di alcol furfurilico 

(FAL) e 2-metilfurano (MF) per riduzione selettiva della molecola piattaforma furfurale 

(FU), ottenibile da biomasse di seconda generazione, utilizzando metanolo come reagente 

di Hydrogen Transfer. Nello specifico lo studio è stato basato sull’utilizzo di due 

categorie di catalizzatori eterogenei: la prima è costituita da catalizzatori basici come il 

MgO, Mg/Fe/O, Mg/Al/O e CaO; in secondo luogo l’attività dell’ossido misto FeVO4 è 

stata studiata. Con l’ossido misto a base di ferro e vanadio è stato possibile ottenere, alla 

temperatura di 320°C, rese dell’80% in MF, con piccole tracce di 2,5-dimetilfurano 

(DMF) e 2-vinilfurano come principali coprodotti. La caratterizzazione effettata sul 

catalyzzatore ha permesso di evidenziare come la riduzione del FeVO4 nelle condizioni 

di reazione porti alla formazione della reale fase attiva. Lo studio del meccaniso di 

reazione ha inoltre permesso di dedurre come la produzione di MF in elevate quantità 

derivi dal contemporaneo effetto della reazione di hydrogen transfer, dell’attivazione 

dell’H2 molecolare e della formaldeide prodotte in situ dalla de-idrogenazione del 

metanolo. D’altro canto con i catalizzatori basici è stato dimostrato come i sistemi puri 

MgO e CaO siano completamente selettivi nella conversione della FU ad alcol furfurilico 

come unico prodotto di riduzione in condizioni blande di temperatura. Al contrario la 

distribuzione dei prodotti otteuta con il catalizzatore Mg/Fe/O si dimostra profondamente 

differente in quanto il MF viene ottenuto come prodotto principale nel caso in cui la 

reazione venga condotta nell’intervallo di temperatura compreso tra 300 e 400°C. Nel 

menzionato intervallo di temperatura il MF viene ottenuto con rese elevate indicando 

come il catalizzatore contenente ferro presenti un’elevata attività verso la reazione di 

idrogenolisi consecutiva. L’utilizzo di fonti di idrogeno alternative come 2-propanolo, 

acetone, acetaldeide, formaldeide e idrogeno molecolare hanno permesso inoltre di 

identificare il meccanismo completo tramite il quale avviene la conversione, in fase 

gassosa, della FU utilizando metanolo come reagente di H-Transfer dimostrando che sia 



 

 

 

la formaldeide che l’idrogeno molecolare prodotti in situ influenzano direttamente la 

produzione di MF. 

I risultati ottenuti sottolineano come la reazione di Hydrogen Transfer possa costituire un 

efficiente processo da utilizzare per diminuire il ocntenuto di ossigeno nelle molecole 

piattaforma derivanti da biomasse. 
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AIM OF THE WORK 
 

In recent decades the continuing growing global demand for petrochemical products and 

fossil fuels, with the associated increase in CO2 emission, has forced researchers to seek 

some renewable alternative feedstock for the production of chemicals and fuels1,2. In this 

field, the conversion of non-food lignocellulosic second-generation biomasses such as 

wood chips and agricultural and municipal wastes into chemicals and fuels has gained 

increasingly more importance. Indeed, lignocellulose can be converted into different 

chemicals and liquid fuels via biological and chemical pathways3. Furan derivatives play 

an important role in the transformation of this renewable feedstock4,5,6,7. For instance 

furfural (FU), which is available on an industrial scale via the hydrolysis–dehydration of 

the hemicellulose part of lignocellulosic biomass8,9, is a key precursor for the synthesis 

of derivatives with applications in the fuel and polymer industries10. The FU upgrade 

processes involve the selective hydrogenation of the carbonyl group into the 

corresponding unsaturated furfuryl alcohol (FAL), which finds application in industry for 

the production of resins and fine chemicals11,12, and into 2-methylfuran (MF) (Scheme 

1), used as a renewable fuel. Indeed, this furan compound has superior properties as 

compared to bio-ethanol because of its higher energy density and octane values13. The 

octane number of MF is higher than that of gasoline (103 vs. 97 RON), while their energy 

densities are very close (28.5 MJ L−1 vs. 31.9 MJ L−1), which means that with the same 

volume of fuel, MF contains 34% more energy than the market-leading biofuel ethanol14.  

 

Scheme 1. Production of furfuryl alcohol (FAL) and 2-methylfuran (MF) from xylose and furfural 

(FU). 

For the synthesis of MF from FU, the selective hydrodeoxygenation of the formyl group 

is necessary, avoiding the opening or hydrogenation of the furan ring. Indeed, one of the 

key challenges for upgrading FU is product selectivity, since the hydrogenation of FU 

often results in a mixture of side-chain and ring-hydrogenated products along with ring-

opening products. Nickel-, copper-, and noble metal-based catalysts have been reported 

to be active in the conversion of FU to MF15,16. Zheng et al. reported an 87% yield to MF 
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with a catalyst of composition Cu/Zn/Al/Ca/Na=59:33:6:1:117. A SiO2-supported Cu/Fe 

bimetallic catalyst at 1 bar H2 is reported to produce a 98% yield to MF18. On the other 

hand, a comparison of silica-supported monometallic Ni and bimetallic Ni-Fe catalysts 

for the conversion of FU at 1 bar of H2 and 210-250°C showed that FAL is the primary 

reduction product obtained in high yield through the monometallic system. The 

introduction of Fe leads to an increased MF yield; indeed, Fe suppresses the 

decarbonylation activity of Ni and promotes the hydrogenation-hydrogenolysis of the FU 

carbonyl group19. 

An alternative approach for the reduction of the FU carbonyl group to produce FAL and 

MF, bypassing the need for high hydrogen pressure and noble metal-based catalysts, is 

the Meerwein–Ponndorf–Verley (MPV) reaction, in which an alcohol is used as the 

hydrogen source. The catalytic transfer hydrogenation is indeed a classic organic 

chemistry reaction discovered at the beginning of the XXth century by Meerwein, 

Ponndorf and Verley, who discover that carbonyl compounds are reduced in the presence 

of 2-propanol while, Oppenauer finds that secondary alcohols are oxidized in the presence 

of acetone. Under appropriate conditions, the reaction can be highly chemo-selective 

towards carbonyl groups20,21,22.  

Catalysts studied for this reaction may be divided into three main groups: Lewis basic, 

Lewis acid, and metal-supported catalysts23,24,25. 

Di Cosimo and co-workers reported on the use of MgO as selective catalyst for the 

conversion of a wide range of unsaturated ketones to the corresponding alcohols using 

isopropanol as the hydrogen source26.  

Dumesic and co-workers have demonstrated that ZrO2 can be used as a catalyst with 

isopropanol as the H-donor to hydrogenate levulinic acid and ethyl levulinate for the 

production of γ-valerolactone. They also reported a systematic computational study on 

the MPV reaction applied to biomass derived molecules such as ethyl levulinate and FU27. 

Hermans et al. have reported that Cu, Ni and Pd supported on Fe2O3 are active in the 

catalytic transfer hydrogenation of FU to produce a mixture of FAL, MF and 2-

methyltetahydrofuran (MTHF) both in batch and continuous flow reactor, using 2-

propanol as the hydrogen donor. They demonstrated that the high activity of Pd/Fe2O3 is 

due to strong metal-support interaction28. 

Additionally, Vlachos and co-workers reported on the vapour-phase hydrodeoxygenation 

of FU to MF with 50-60% selectivity using MoC as the catalyst29. They also described a 



Aim of the work 

 

3 

 

liquid-phase catalytic transfer hydrogenation of FU over Ru/C and Ru/RuO catalysts, 

using various alcohols as hydrogen sources30. 

Nevertheless, there are only a few studies in literature concerning the vapour-phase 

production of MF from FU with heterogeneous catalysts, and most of them require noble 

metal-supported catalysts, together with high hydrogen pressure and reaction 

temperature. Therefore, the development of a continuous catalytic process based on non-

noble metal catalysts for the hydrodeoxygenation of FU to MF is a very attractive topic. 

Moreover, the use of H-transfer instead of classical hydrogenation could make it possible 

to use bio-alcohols as hydrogen sources, thus increasing the sustainability of the entire 

process. 

In this specific field, our research group recently reported on the use of methanol as a 

clean and efficient H-transfer reactant for carbonyl reduction in the liquid phase31. 

Compared to other molecules used in H-transfer, methanol showed the advantage of 

producing gaseous components as the only co-products. Using high-surface area MgO as 

a simple, easily recoverable and reusable catalyst for FU reduction, a 100% FAL yield 

was obtained. 

As an alternative, mixed iron-vanadium mixed oxides could be used for the catalytic 

transfer hydrogenation on FU. Indeed, these materials were reported to be able to activate 

methanol in several reactions, for potential industrial applications. For example, Asahi 

Company reported that FeVO4 is a very active and stable catalyst for the gas-phase 

methylation of phenol to o-cresol using methanol as the alkylating agent32. It was 

demonstrated that the strong de-hydrogenating properties of the catalyst make possible 

the in-situ formation of a high quantity of formaldehyde, which is the real 

(hydroxyl)alkylating agent. Furthermore, Andersson and co-workers reported that FeVO4 

is very active and selective in methanol oxidation to formaldehyde33. 

In this view, the aim of the present PhD Thesis is focused on the development of a new 

continuous gas-phase process, based on the catalytic transfer hydrogenation reaction, for 

the valorization of the second generation lignocellulose biomass-derived platform 

molecule furfural (FU). In particular the attention has been focused on the possibility to 

produce, as the target products, furfuryl alcohol (FAL) and 2-methylfuran (MF) using 

methanol as alternative hydrogen source and two main class of catalysts.  

The first considered class of catalysts consists in the basic-based systems such as MgO, 

CaO and the Mg/Fe/O-Mg/Al/O mixed oxides. The second catalyst consists in the bulk 

mixed iron-vanadium oxide FeVO4.  
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More in detail the work could be resumed as follow: 

 Synthesis and characterization of the catalysts with the main techniques such as: 

- determination of the specific surface area through the single point model BET; 

- powder X-ray diffraction (XRD) for the determination of the crystalline 

structure; 

- thermogravimetric and differential thermal analysis (TGA-DTA) for the 

investigation of the catalyst’s precursor decomposition and the determination 

of the heavy carbonaceous compounds formed during the catalytic tests; 

- Raman spectroscopy for the determination of the carbon deposits nature; 

- elemental analysis by-means of atomic adsorption; 

- in-situ DRIFT (Diffuse Reflectance Infrared Fourier Transform Spectroscopy) 

for the study of the interaction between the catalyst and the reagents; 

- temperature programmed-desorption-reduction-oxidation (TPDRO) for the 

determination of the acid-base and reducibility properties of the catalysts. 

 Evaluation of the catalytic activity of the synthesized systems in the gas-phase 

catalytic transfer hydrogenation of FU to FAL and MF using methanol as 

hydrogen transfer reactant; 

 Study of the overall reaction network in order to explain the role of the in-situ 

produced formaldehyde and molecular H2 and the relationship between their 

direct involvement in the transformation of FU and the features of the catalysts in 

terms of acid-base, de-hydrogenating and de-oxygenating properties. 

Nevertheless, the study of the reaction mechanism for the formation of both the 

reduced product FAL and MF and the main side-products of the process has been 

evaluated feeding the possible reaction intermediates. 
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CHAPTER 1  IInd generation lignocellulose 

biomass upgrading 

 

1.1. Introduction 

In the last decades the continue increase of global demand for petrochemical products and 

fossil fuels associated with the increase of CO2 emission have forced the researchers to 

find renewable alternative feedstock for the production of chemicals and fuels1,2. 

Nowadays more than 75% of the energy produced all over the world derives from fossil 

sources as carbon coke, oil and natural gas3. In this field the conversion of biomass into 

fuels and chemicals has been considered one the most attractive alternative to the use of 

the fossil sources. Indeed, the use of these renewable material allow to decrease the CO2 

emission in the atmosphere considering that carbon dioxide is involved itself in the 

process of biomass re-generation. In 2002 a report published from 26 experts and named 

“Roadmap for Biomass Technologies” has predicted that within the 2030 the 20% of the 

fuels and the 25% of the chemicals would be produced from biomass4. Taking into 

account this, the challenge for the researcher is the development of new economic and 

environmentally friendly process for the conversion of biomass-derived materials into 

fuels and high value chemicals. The use of renewable starting materials represent an 

attractive route for the production of chemicals due to the high functionalization degree 

of the platform molecules deriving from their transformation. For instance, the 

valorization processe involve a less number of step with the result of minimize the by-

products5,6.  

At the moment the biomass feedstock could be divided into three different groups 

depending on the origin. The first generation (1G), comprising corn, sugar cane, oily seed 

and bagasse shows an high potential in terms of valorization but, at the same time, 

presents reasonable ethic drawbacks related to the competition with food culture. On the 

contrary, the second generation (2G), based on the use of wood chips, agricultural and 

municipal wastes represents a promising alternative considering the non-ethic problem. 

Finally, in the last years, the use of the third generation (3G) biomass, such as algae, 

become always more relevant7. 
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In order to reach the mentioned targets, consisting in the development of process for the 

valorization and the production of fuels and chemical from renewable sources, a biomass-

transformation industry layout has been proposed on the base of the classic refinery. The 

National Renewable Energy Laboratory (NREL) creates the bio-refinery industry model, 

a new concept in which the process for the conversion of biomass into fuels, chemicals 

and energy are integrated. 

1.2. The integrated Biorefinery 

As introduced above the main challenge for the biorefinery consists in the possibility to 

produce fine chemicals and fuels starting from renewable sources optimizing and 

integrating to these process the production of energy, in order to improve the balance 

between the input of energy and raw materials required for the biomass transformation 

and the output (chemicals, energy and waste treatment)8,9. 

Figure 1-1 shows the simplified scheme of an integrated biorefinery, in which the 

conversion of the biomass into fuels, chemicals energy and added value products are 

integrated in order to maximized the raw materials used and the gain deriving from the 

sale of the products. 

 

Figure 1-1. Simplified scheme of integrated biorefinery 
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One of the main drawback connected to the production of biofuels, bioethanol and fine 

chemicals from renewable sources in the biorefinery plant is that the transformation 

process are not still sustainable from the economic point of view. Indeed, the thermo-

catalytic process for the oil transformation into fuels and starting materials for the 

chemical industries have been developed from more than a century, with optimized 

technologies and an economic feasibility related to the possibility to build big plants in 

terms of annual production.  

To make up for that drawback the development of an economically sustainable 

biorefinery has to be made on the integration idea. That means to place side by side the 

production of fuels and energy, process that bring to a loss of money at the moment, and 

the production of high value chemicals that allow to reach an overall positive economic 

balance. In this field, the production process that take place in an integrated biorefinery 

for the transformation of the biomass could be summarized as follow: 

 production of syn-gas and bio-oil through gasification and pyrolysis process; 

 production of high value chemicals from carbohydrates such as glucose, fructose 

and xylose through catalytic or enzymatic process; 

 production of chemicals through new synthetic strategies based on single step 

transformation in order to minimize the cost of the process, the formation of by or 

co-products and the waste treatment. 

In the last years, a list of the 12 most important building blocks deriving from sugar 

transformation has been published (Figure 1-2); these compounds could be transformed 

into an high number of products with direct application in the polymer industry or as 

fuels. On the other hand, for some of them a direct application as monomer for the 

production of polymers is possible. 

 

Figure 1-2. Most promising buiding blocks deriving from sugars. 
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1.3. Lignocellulose materials 

In the prospective for the development of an integrated and economically sustainable 

biorefinery, lignocellulose biomass has been considered one of the main alternative to the 

fossil sources for the production of fuels and chemicals thanks to its abundance and to the 

non-food-based renewable carbon availability10. In the family of the lignocellulose 

materials could be considered the agricultural and municipal wastes, the wood chips 

produced from the wood industry. These kind of second generation biomass has attracted 

the researcher’s interest thanks to their composition. Indeed, these materials are 

composed by three main fractions: cellulose, hemicellulose and lignin (Figure 1-3). 

These could be treated and transformed into platform molecules and high value chemicals 

by-means of thermos-catalytic and enzymatic process. 

 

Figure 1-3. Structure of lignocellulose materials. 

Considered one of the most attractive renewable resource, lignocellulose is extremely 

stable against chemical and biochemical processing due to its rigid structure. To date, 

different strategies have been proposed for the valorization of cellulose and hemicellulose 

such as the complete gasification, high temperature pyrolysis, as well as stepwise 

transformation through fractionation and depolymerization of the lignocellulosic 

polysaccharides8,11,12. A potential bio-refinery scheme aiming for a controlled 

fractionation and depolymerization of lignocellulose comprehends a sequence of the 

following steps:  
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1. fractionation of lignocellulose into biopolymers: cellulose, hemicelluloses and 

lignin;  

2. depolymerization of the biopolymers into the forming monomers;  

3. transformation of the monomers into value-added products.  

Due to distinct differences of structure and reactivity of cellulose, hemicelluloses and 

lignin, they have to be processed under different reaction conditions13. A general 

approach toward fractionation is a selective solubilization of lignin or hemicelluloses 

leaving the least-reactive cellulose intact14. Examples of potential fractionation processes 

include steam explosion for solubilization of hemicelluloses or alkaline treatment for 

dissolution of lignin and partial defunctionalization of hemicelluloses15,16. In any case, it 

is important to note that the structure and composition of lignocellulosic biomass is highly 

dependent on the plant type. For instance, hardwoods contain more cellulose and 

hemicellulose, but softwoods are reported to contain more lignin17. Table 1-1 shows the 

typical compositional characteristics of various common lignocellulosic biomass 

resources. 

Biomass 
Composition (%) Method of 

analysis Cellulose Hemicellulose Lignin 

Corn stover 40.8 20.6 21.3 

NREL: LAPa Hardwood barks 39-44 19-25 18-22 

Miscanthus straw 44.5 26.2 26.5 

Poplar wood 49.3 21.5 25.4 TAPPI methodb 

Rice straw 36.5 20.8 16.9 

NREL: LAP 

Softwood barks 16-41 18-21 23-40 

Sugarcane bagasse 41.0 30.1 21.1 

Switchgrass 34.8 28.5 23.5 

Wheat straw 35.2 22.2 22.1 

a NREL: LAP stands for “National Renewable Energy Laboratoty: Laboratory Analytical 

Procedure” 

b TAPPI method stands for “Technical Association of the Pulp and Paper Industry 

Methods” 

Table 1-1. Typical compositional properties for various common lignocellulosic biomass. 

Adapted from [18] 
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1.3.1. Structure of cellulose, hemicellulose and lignin 

Cellulose is the most abundant homo-polysaccharide in nature representing about 1.5 × 

1012 tons of the annual biomass production. The cellulose macromolecule is composed of 

D-glucose monomer units connected to each other via α-1,4-glycosidic bonds (Figure 

1-4).The degree of polymerization of cellulose depending from the cellulose source. 

Cellulose chains in primary plant cell walls, have a degree of polymerization (DP) ranging 

from 5000 to 7500 glucose units, and in wood and cotton-based materials between 10,000 

and 15,00019. Each repeating unit of cellulose contains three hydroxyl groups which are 

involved in networking of the units with hydrogen bonds (Figure 1-4). The intra-chain 

hydrogen bonding between hydroxyl groups and oxygen of the adjacent ring molecules 

makes the linkage stable and results in the linear configuration of the cellulose 

chains20.The cellulose structure consists of crystalline and amorphous domains. The 

hydroxyl groups in cellulose chains form intra-and intermolecular hydrogen bonds 

constituting the crystalline structure.  

 

Figure 1-4. Schematic structure of cellulose. 

The arrangement of cellulose molecules with respect to each other and to the fiber axis 

determines the physical and chemical properties of cellulose. The fiber structure of 

cellulose provides its high chemical stability. Crystalline domains of cellulose are less 

accessible to chemical reactants. On the other hand, amorphous regions are easily 

penetrated by reactants during chemical reactions20.The reactivity of cellulose can be 

determined by several factors such as hydrogen bonding, the length of chains, the 

distribution of chain length, the crystallinity and the distribution of functional groups 

within the repeating units and along the polymer chains19. 
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Hemicelluloses are the second major polysaccharides in plant cell. Unlike cellulose, 

hemicelluloses are hetero-polymers, they are composed of different monomeric units. 

Hemicelluloses are often branched (Figure 1-5): they have a main chain and side groups 

attached to it. A number of monosaccharides and organic acids can be produced by 

hydrolysis of hemicelluloses, e.g. xylose, arabinose, mannose, galactose, acetic acid, 

glucuronic acid, etc. 

 

Figure 1-5. Schematic structure of hemicellulose. 

Importantly, the sub-class and polymerization degree of hemi-celluloses depends on not 

only the plant species, but also the tissue type and development stage21,22. Hemicelluloses 

were reported to be chemically associated with lignin, cellulose or proteins. Spectroscopic 

data suggest that most probably hemi-celluloses are not connected to cellulose via 

chemical bonding, but rather via hydrogen bonds or van der Waals forces21. On the 

contrary, chemical association of hemicelluloses with phenolic lignin compounds has 

been known for a long time. As shown below, such chemical association is considered as 

a reason for existence of slow-reacting xylan. Alike cellulose, backbones of 

hemicelluloses consist of β-(1,4)-linked monomers, but the branched structure of 

hemicelluloses prevents extensive formation of hydrogen bonds. Hence, in contrast to 

cellulose, hemicelluloses are amorphous, and therefore exhibit higher reactivity for 

hydrolysis. 

Lignin is an amorphous phenolic bio-polymer composed by an high heterogeneity of 

phenolic-based molecules, and it plays a vital role in the recalcitrance of biomass by 

acting as a physical barrier that protects the biomass against attack from microorganisms 



Chapter 1: IInd generation lignocellulose biomass upgrading 

 

14 

 

as well as chemical degradation23,24,25. In short, the impermeability of lignocellulosic 

biomass towards mechanical and biological degradation is contributed by the complex 

structure of cellulose that provides strength over cell walls, hemicellulose that serve as 

wire mesh that circulate around cellulose, while lignin fills up any remaining space and 

prevents the polysaccharide environment from water26. 

 

Figure 1-6. Schematic structure of lignin. 

 

1.3.2. Strategies for cellulose and hemicellulose hydrolysis 

According to the recent scientific reports, a large portfolio of chemical compounds can 

be synthesized based on monosaccharides8,11,12. Several carbohydrate-based processes 

have already been commercialized, but the majority of them relies on monosaccharides 

derived from edible resources such as starch or sucrose27. Obviously, hydrolysis of 

cellulose and hemicelluloses still poses challenges, which need to be solved. Different 

techniques can be applied for depolymerization of polysaccharides, e.g. acid-catalyzed 

aqueous-phase hydrolysis28, hydrolysis using ionic liquids29, enzymatic 

depolymerization30, and solubilization in super-critical water with subsequent 

hydrolysis31,32. Known for a long time, acid hydrolysis of cellulose and hemicelluloses 

still receives great attention due to high attractiveness for commercial application. Indeed. 

It is well known that from the hydrolysis of cellulose glucose could be obtained as the 
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main product while, from the hemicellulose fraction, xylose is the main produced 

monosaccharide. A further acid de-hydration process over these monosaccharides allow 

to form two of the most considered platform molecules deriving from renewable sources: 

5-hydroxymethylfurfural (HMF) and 2-furaldehyde or furfural (FU)33,34. 

One of the attempts to utilize the polysaccharides comprising lignocellulose considered 

the treatment of wood with an acid to conduct simultaneous hydrolysis of hemicelluloses 

and cellulose13. However, amorphous hemicelluloses undergo hydrolysis under milder 

conditions than crystalline cellulose. In addition, under the harsh reaction conditions 

required for acid hydrolysis of cellulose, monosaccharides derived from hemicelluloses 

suffer from decomposition. Elaboration of two-step processes improved the overall yield 

of derived monosaccharides13. The first step of such processes is treatment of wood with 

diluted acids under mild conditions to accomplish hydrolysis of hemicelluloses leaving 

solid cellulose and lignin unaltered. Dissolved hemicellulosic monosaccharides can be 

easily isolated with the liquid phase. The second step of the process is hydrolysis of 

cellulose under harsher conditions. Processes for “wood saccharification” are known for 

a longtime including examples such as the two-step Scholler process or the Noguchi 

process35. 

 

Cellulose 

Hydrolysis of cellulose with dilute or concentrated sulfuric acid and HCl has been used 

since the 1940s36.37,38. Two different methods have been applied for acid hydrolysis of 

cellulose. The first method uses a high concentration of mineral acids (e.g.,15–16 N HCl 

or 31–70 wt% H2SO4) and low operation temperatures(20–50°C). The major drawbacks 

of this method are the high cost of acid recovery and the need for expensive construction 

materials. In the second method, a highly diluted acid (pH 1.5–2.5) at high operation 

temperatures (200–230°C) is utilized. This method is more favorable and most frequently 

applied39,40. Reaction conditions dramatically influence the yield of glucose. An 

optimization of reaction parameters requires considering conditions such as reaction time, 

initial concentration, reactor con-figuration (CSTR, plug flow, percolation reactor), 

operation mode (batch, continuous), the applied temperature and acid concentration. For 

example, the yield of glucose was about 50% when using a plug flow reactor with short 

residence time of 0.22 min and 1 wt% of sulfuric acid at 240◦C. In batch operation with 

0.07 wt% of sulfuric acid, 65% yield of glucose could be obtained after 30 min. It should 
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be noted that harsh reaction conditions, i.e. high temperature and long time, lead to 

enhanced degradation to dehydration products including HMF, furfural and levulinic 

acid. Due to the presence of minerals in cellulose, partial neutralization of acidic catalysts 

takes place41,42,43. Therefore, several investigators proposed including the neutralization 

capacity of cellulose into the rate of hydrolysis44,45. 

Although mineral liquid acids are highly active even under mild conditions for many acid-

catalyzed reactions including the hydrolysis of cellulose, their fatal problem is the 

difficulty in recycling the acids and the consequent costly post-treatments such as 

neutralization and effluent processing, which is environmentally unfriendly. Therefore, 

highly active and stable solid acid catalysts are very fascinating for numerous “green” 

chemical processes. Hara et al.46,47,48,49 recently developed a type of carbon-based solid 

acid with a high density of Brönsted acid sites (SO3H and COOH) to pyrolytically 

carbonize sugars such as glucose, sucrose, or cellulose and subsequently sulfonate the as-

prepared carbons. It is interesting that these sulfonated carbon materials are very active 

for the hydrolysis of microcrystalline cellulose to produce water-soluble saccharides even 

at a low reaction temperature (100 °C), and conventional strong solid Brönsted acid 

catalysts such as niobic acid, H-mordenite, Nafion, and Amberlyst-15 had no activity47. 

The specific surface area of the sulfonated carbon was only around 2 m2/g but the yield 

of soluble saccharides reached nearly 70%. Using sulfonated silica-carbon 

nanocomposites Van de Vyver et al.50 improved the glucose yield to 50% at 61% 

conversion of cellulose under similar reaction conditions. Furthermore, Pang et al.51 

reported a 75% glucose yield with 94% conversion of cellulose on sulfonated mesoporous 

carbon CMK-3. Although many other solid acid catalysts such as layered niobium 

molybdate (HNbMoO6)52 and wormhole-type mesoporous TaxW10-x oxides53 in 

addition to conventional solid acids like sulfonated zirconia, Amberlyst and Nafion were 

used for cellulose conversion, low catalytic activities have been obtained until now.  

 

Hemicellulose 

For the recent 20–30 years, the attention to acid hydrolysis of hemicellulosic components 

of lignocellulose has increased. This development is connected with novel “bio-refinery 

concepts” and growing interest in microbial synthesis of bioethanol28.Switching from a 

starch, sucrose and glucose-based production of bioethanol to lignocellulosic bioethanol 

is very beneficial from an economical point. However, cellulose as a part of lignocellulose 
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is strongly associated with lignin and hemicelluloses dramatically hampering the access 

of microorganisms to cellulose28,30. The accessibility of cellulose can be increased by 

treating lignocellulose with diluted acids28,30. Efficient removal of hemi-celluloses prior 

to fermentation is crucial, because the cellulose enzyme is significantly inhibited by 

xylose, xylan and especially xylo-oligosaccharides54,55,56. In this case, the process can be 

considered both as a pre-treatment technique and as a way to recover hemicellulosic 

monosaccharides. Therefore, such approaches are sometimes referred to as “acid pre-

hydrolysis”. Acid pre-hydrolysis of lignocellulose is carried out in the presence of diluted 

acids with a concentration of 0.25–6 wt.%57,58,59. Investigations mainly focus on H2SO4 

as catalyst, but other mineral acids such as HCl60, H3PO4
61, or HNO362, and organic acids, 

e.g. maleic63, oxalic64, acetic65 or trifluroacetic acids were also tested. At pH 2 and lower, 

the rate of hydrolysis is a function of proton concentration and does not depend on the 

nature of the acid catalyst.The reaction is usually conducted in a temperature range of 70 

to 220°C. At low temperatures, hydrolysis is too slow, while at high temperature, also 

cellulose starts to hydrolyse. Many efforts were made preventing monosaccharide 

decomposition. A high selectivity toward monosaccharides is crucial, as side products 

such as furfural inhibit subsequent fermentation. Hydrolysis at high temperature is often 

complete within less than 2 h but is associated with the mentioned by-products 

formation66. Lowering the temperature to 90◦C increases selectivity to 100%. However, 

up to 24 hare required for full conversion of hemicelluloses under these conditions. 

Hydrolysis of hemicelluloses using pure water is also the focus of numerous 

investigations67. The main motivation for using non-acid aqueous hydrolysis is exclusion 

of soluble acids. Although diluted sulfuric acid is an extremely cheap reagent, its 

exploitation dramatically increases the capital costs, as it requires a corrosion resistant 

construction. Furthermore, classic removal of sulfuric acid from monosaccharide 

hydrolysates proceeds via precipitation with calcium ions. Consequently, lime is 

produced as side product and needs disposal. Aqueous hydrolysis can be performed as 

e.g. treatment of lignocellulose with hot water or applying steam explosion. The process 

is usually conducted at 150–220°C68, i.e. it requires higher temperatures compared to acid 

hydrolysis. 
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1.4. Furanic sugar-derived platform molecules: 5-

hydroxymethylfurfural (HMF) and 2-furaldehyde or 

furfural (FU) 

The de-hydration of the 5 or 6 carbon atoms monosaccharides obtained from the 

depolymerization of the cellulose and hemicellulose fraction of lignocellulose materials 

bring to the formation of the 5-hydroxymethylurfural (HMF) and 2-furaldehyde or 

furfural (FU). These compounds have been considered two of the most important 

platform molecules deriving from renewable sources due to the possibility to produce, 

from their transformation, several molecules with application as fuels, monomer for the 

polymer industry and as fine chemical. 

1.4.1. 5-hydroxymethylfurfural (HMF) 

As mentioned above, the possibility to produce HMF in high yield starting from 

renewable lignocellulose feedstock represent one of the most attractive route for the 

production of fuels, fine chemicals and monomers for the polymer industry as alternative 

to the classic fossil sources. In particular HMF could be synthesized from different 

starting monosaccharides or oligo-saccharides mainly deriving from the cellulose fraction 

of the lignocellulose feedstock. Fructose, glucose, sucrose inulin and starch itself 

compose the main raw materials used as starter for the production of HMF33. The general 

strategy applied for the conversion of these sugars into the desired six carbon atoms 

furanic platform molecule involve the use of an acid catalyst, both homogeneous mineral 

acids and heterogeneous acid catalysts have been used, that is able to promote the 

hydrolysis and the de-hydration of the monosaccharides. Obviously different type of acid 

catalysts are used depending on the initial substrate used. For instance, starting from 

fructose and inulin the possibility to obtain HMF yield between 24 and 97% was claimed. 

Qi et al.69,70 studied the dehydration of fructose in the presence of a strong acidic resin 

Dowex 50wx8-100 in water–acetone and acetone–DMSO, HMF yields of 73.4 and 89.8% 

were achieved, respectively. Nafion-H was used for the dehydration of fructose in 

DMSO, HMF yield was 75%. When the reaction was performed under mild evacuation, 

the yield of HMF could be improved to 94%71. Subsequently, another acidic resin 

Amberlyst-15 was also tested for the formation of HMF from fructose, and yield of 83.3% 

was reached72. 
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Moreau et al.73 examined the application of H-form mordenite for the dehydration of 

fructose and obtained 74% HMF yield in water/MIBK. When H-ZSM-5 and Hβ-zeolite 

were used in the same solvent, HMF yields of 45 and 32% were achieved, respectively74. 

Recently, SBA-15-SO3H was also synthesized and used for the dehydration of fructose, 

81% HMF yield was obtained. Moreover, the evaluation of these catalysts indicated that 

the acidity and pore size of zeolites have a large effect on catalytic activities in the 

synthesis of HMF75. 

Yang found that Nb2O5 and Ta2O5 also possessed good performance on fructose 

dehydration and the latter was more effective than the former. More importantly, H3PO4–

modified Ta2O5 (TA-p) exhibited stronger acidity, which is highly favorable for the 

synthesis of HMF, and a yield of 90% was obtained in water/2-butanol. When inulin was 

used as feedstock, 87% HMF yield was achieved76. 

As can be seen from the above description, the dehydration of fructose into HMF is very 

easy and efficient. However, it should be pointed out that fructose is not abundant in 

nature because it mainly exists only in fruit and honey. Moreover, fructose is very 

expensive because its manufacturing process is very complicated. Thus, the two major 

problems limit the large-scale and sustainable production of HMF from fructose. On the 

contrary, glucose, which is the most abundant and the cheapest monosaccharide, has been 

considered as the preferred feedstock for the production of HMF. Disappointingly, many 

catalytic systems in which fructose is readily converted into HMF are normally 

ineffective for glucose, which is attributed to the stable pyranoside ring structure of 

glucose33. 

The synthesis of HMF from glucose in the presence of solid acid catalysts is now also 

established. TiO2 and ZrO2 were employed in various solvents including water, DMSO, 

NMP, water/MIBK and [BMIM]Cl–water for the dehydration of glucose into HMF. The 

results indicated that TiO2 and ZrO2 could not only promote the isomerization of glucose 

into fructose acting as base catalysts, but also promote the dehydration of fructose into 

HMF acting as acid catalysts77,78. 

Sulfonated-ZrO2 and Sulfonated-ZrO2–Al2O3 were also prepared and used for the 

synthesis of HMF from glucose. The results demonstrated that the latter was more 

effective than the former in DMSO, this might be ascribed to the introduction of Al, which 

resulted in an increase in basicity that promoted the isomerization of glucose into 

fructose79. Nakajima et al.80 and Yang et al.81 investigated the dehydration of glucose into 
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HMF using H3PO4-modified Nb2O5 (NA-p) as catalyst in water and water/2-butanol, 

yields of 52.1 and 49% were obtained, respectively. 

 

Scheme 1-1. Proposed mechanisms for the production of HMF from glucose. Adapted from 

[82,83]. 
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The mechanism for the production of HMF from glucose (Scheme 1-1) with acid catalysts 

involves a cyclic pathway and an acyclic pathway. However, in recent years, an 

increasing number of studies suggested that the cyclic pathway may be dominant, 

especially in ionic liquids using metal chlorides as catalysts. In this pathway, the 

isomerization of glucose into fructose through the 1,2-enediol mechanism or 1,2-hydride 

shift mechanism is the rate-controlling step. As a consequence, the conversion of glucose 

into HMF is much slower than fructose, indicating that once fructose is formed, the 

subsequent dehydration of fructose into HMF is readily accomplished82,83. 

Among various biomass-derived products, 5-hydroxymethylfurfural (HMF), is 

considered to be one of the most appealing and promising platform compounds84,85, this 

is because that it contains a marvelous and reactive structure involving an aldehyde group, 

a hydroxyl group and a furan ring and then can be further transformed into higher added 

value molecules that find application mainly as fuels or as monomers for the polymer 

industry (Scheme 1-2). 

 

Scheme 1-2. Main HMF derivatives with application as fuels or as monomers for the polymer 

industry. 

To obtained high quality fuels additive such as 2,5-dimethylfuran (DMF), 2,5-

dimethyltetrahydrofuran (DMTHF) or ethyl levulinate (EL) the hydro-deoxygenation of 

the main oxygenates functionality of HMF is the main applied strategy.  

Indeed, DMF, possessing excellent energy density, boiling point, octane value, 

hydrophobic property and production efficiency, is considered to be very promising liquid 

fuels or excellent additive for gasoline86, and can be produced from the selective 
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hydrogenation of HMF involving the hydrogenation-hydrogenolysis of both the aldehyde 

and the hydroxyl preserving the aromatic function of furan ring (which otherwise lead to 

unnecessary hydrogen consumption). However, it should be noted that DMF can be 

further hydrogenated into DMTHF, which is also an excellent liquid fuel (Scheme 1-3). 

In 2007, Roman-Leshkov et al.86 reported the synthesis of DMF from HMF using Cu–

Ru/C as catalyst, a yield of 71% was achieved in 1-butanol at 220°C for 10 h with 6.8 bar 

H2. Two years later, in the same reaction conditions, Binder et al.7 studied the 

hydrogenation of crude HMF obtained from corn straw in the presence of Cu–Ru/C, 

leading to 49% DMF yield.  

 

Scheme 1-3. General pathway for the production of DMF and DMTHF from HMF. 

More importantly, a breakthrough in the synthesis of DMF was reported by 

Thananatthanachon et al.87 An excellent yield of DMF with up to 95% from HMF was 

reached in the presence of HCOOH, H2SO4, THF and Pd/C under reflux for 15 h. When 

the reaction was started from fructose, a DMF yield of 51% was also achieved. In this 

one-pot synthesis of DMF, HCOOH could be used not only as an acid catalyst for the 

dehydration of fructose into HMF and as a hydrogen source for the hydrogenation of 

HMF into DHMF but also as a reagent for the deoxygenation of furanylmethanols.  

Another interesting HMF derivative obtained from the selective reduction of the aldehyde 

group is the 2,5-bishydroxymethylfuran (BHMF) which is widely used as an intermediate 

for the synthesis of resins88, fibers89, foams90, drugs91, polymers92 and crown ethers93. 

Traditionally, DHMF is readily obtained by the stoichiometric hydrogenation of HMF 

with the help of sodium borohydride (NaBH4)94. However, this strategy has some 

problems such as the treatment of reductive agents and the production of equivalent salts. 

To overcome these drawbacks, considerable efforts have been devoted to seek the 

appropriate catalytic systems that are able to effectively and selectively hydrogenate 

HMF into DHMF. 

In 2012, Balakrishnan et al.93 studied the selective hydrogenation of HMF over carbon-

supported platinum (Pt/C) in ethanol. Under 14 bar molecular hydrogen (H2), the 

moderate DHMF yield of 82.0% was obtained at 23 °C for 18 h. 
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Similarly, in the same reaction medium, titania-supported iridium (Ir/TiO2), zeolite-

supported platinum (Pt/MCM-41) and iron oxide-supported gold (Au/FeOx) were also 

adopted by Cai et al.95, Chatterjee et al.96 and Satsuma et al.97 as catalysts for the selective 

hydrogenation of HMF in 2014 and 2016. After 3, 2 and 2 h at 50, 35 and 80 °C, the 

yields of DHMF were up to 94.9%, 98.9% and 96.0% under 60, 8 and 30 bar H2, 

respectively. Recently, the selective hydrogenation of HMF was investigated by Pasini et 

al. in the presence of toluene and Shvo’s catalyst, an excellent DHMF yield of 99.0% was 

achieved at 90 °C for 1 h under 10 bar H2
98. 

On the other hand, one of the most important HMF derivative consists in 2,5-

furandicarboxylic acid (FDCA), obtained from the oxidation of both the aldehyde and the 

hydroxyl group, used as a monomer for the synthesis of a new class of polymers, 

alternative to those obtained from terephthalic acid. The Department of Energy identifies 

FDCA as a key platform molecule serving as a starting point for the synthesis of various 

polymers. The preparation of FDCA from HMF has been studied widely over the past 20 

years and various methods have been proposed for this oxidative process. Studied paths 

range from the use of stoichiometric oxidants to heterogeneous metal catalysts or 

biochemical production99,100. At the present time, there is no commercial process 

available for producing FDCA. However Avantium, among others, is pursuing the use of 

FDCA to produce polyethylene furandicarboxylate (PEF) by replacing terephthalic acid 

(Scheme 1-4). 

 

Scheme 1-4. Simplified scheme for the production of PEF from renewable sources. 

Recently, Au-supported catalysts have been found to be very active for HMF oxidation 

to FDCA101,102. Many researchers have focused their attention on the study of the best 

supports and reaction conditions for improving FDCA yield. For instance Au/CeO2, 

Au/TiO2, and bimetallic Au–Cu supported over the same materials showed to be highly 

active in FDCA formation in mild reaction conditions103. 
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1.4.2. 2-furaldehyde or furfural (FU) 

In the last years FU, together with the previously mentioned HMF, has been considered 

one of the most attractive platform molecule deriving from renewable lignocellulose 

feedstock due to the possibility to upgrade it to a numerous molecules with application as 

bio-fuels or as monomers for the polymer industry. FU, instead of HMF, is just produced 

at large scale industrial process that allow an annual production of more 300000 tonn, the 

most of which are produced in China. The purification and separation steps are easier and 

so the final cost of FU is much lower than that of HMF, addressing FU as the most 

important platform molecule for the production of bio-fuels in the optic of the future bio-

refinery scenario. 

Furfural is typically derived from xylose that is mainly present as xylan in the 

hemicellulose. The traditional processes for the production of furfural are based on 

homogeneous acid catalysts such as HCOOH, CH3COOH, HCl, H2SO4, HNO3 and 

H3PO4 in aqueous solution104,105,106. However, these homogeneous acid catalysts are very 

corrosive and possess higher environmental risks107,108. Recently, numerous 

modifications based on the use of solid acids, Lewis acids and various solvents have been 

proposed to design a cleaner and more environmental friendly process. For example, 

O’Neill et al.109 studied the dehydration of xylose in water by the use of H-ZSM-5 

catalyst, 46% furfural yield was obtained at 200°C over 18 min. Dhepe and Sahu110 

reported a one-pot conversion of hemicellulose into furfural using K10 and HUSY in 

aqueous media, gave 12% yields at 170 °C for 3 h, respectively. In addition, Sn-beta, 

MSHS-SO3H, graphene, graphene oxide (GO), sulfonated graphene (SG) and sulfonated 

graphene oxide (SGO) are also synthesized and used for furfural formation, and yields of 

14.3, 43.5, 51, 53, 55 and 62% have been achieved, respectively111,112. It is worth noting 

that water is the most economical solvent for the synthesis of furfural. 

In recent years, ionic liquids, which possess some specific properties such as low melting 

point, negligible vapor pressure, non-flammability, high thermal stability, remarkable 

solubilizing ability and close to infinite structural variation113,114, have been successfully 

used for the production of furfural from xylose and xylan. Lima et al.115 and Tao et al.116 

found that acidic ionic liquids 1-ethyl-3-methylimidazolium hydrogen sulfate 

([EMIM][HSO4]) and 1-(4-sulfonic acid)butyl-3-methylimidazolium hydrogen sulfate 

([SBMIM][HSO4]) as both solvents and catalysts were effective for the conversion of 

xylose into furfural, and yields of 84 and 91.5% could be reached, respectively. Neutral 
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ionic liquid 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) as solvent was also 

active when H2SO4 was used as catalyst. 

 

Scheme 1-5. Proposed mechanisms for the production of FU from xylose. Adapted from 

[82,83]. 

According to considerable previous studies, the conversion of xylose into furfural 

involves two possible pathways (Scheme 1-5): one is based on cyclic intermediates, while 

the other is based on acyclic intermediates. The isomerization of xylose into xylulose 

involving hydrogen transfer, which is much slower than the dehydration of xylulose and 

is thought to be the rate-limiting step in the formation of furfural can occur not only 

through the 1,2-enediol mechanism but also through a 1,2- hydride shift mechanism. To 

be specific, in the former mechanism, the hydrogen atom is first removed from C2 and a 

proton from the solvent is subsequently incorporated into O1 to form the 1,2-enediol 
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intermediate. Then, the hydrogen atom of O2 is deprotonated and another proton from 

the solvent is incorporated into C1 to form xylulose. In the latter mechanism, the 

deprotonation in O2 is first required; then, the hydrogen atom located in C2 moves to C1. 

Finally, the proton from O2 goes back to O1 to form xylulose. However, the mechanism 

for furfural production is still debated, and may be dependent on various catalysts, 

solvents or reaction conditions. Thus, this aspect remains to be further investigated82,83. 

As mentioned above FU could be considered the most promising biomass-derived 

platform molecule for the future bio-refinery scenario due to the low cost of production, 

the easy handling and storing and the possibility to produce from the upgrade of it 

functionalities chemicals that find application as fuels, fuels-additive or monomers for 

the synthesis of polymers. 

Among various biomass-derived products, FU, is considered to be one of the most 

appealing and promising platform compounds, this is because that it contains a marvelous 

and reactive structure involving an aldehyde group, a hydroxyl group and a furan ring and 

then can be further transformed into higher added value molecules that find application 

mainly as fuels or as monomers for the polymer industry (Scheme 1-6). 

 

Scheme 1-6. Main FU derivatives with application as fuels or as monomers for the polymer 

industry. 

In the case of FU the most of the derivatives with application as a fuels, fuel-additives or 

as monomer for the polymer industry are produced by-means of hydrogenation process 

that involved the aldehyde group or the aromatic furanic double bonds. In this scenario 
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furfuryl alcohol (FAL), 2-methylfuran (MF), 2-methyltetrahydrofuran (MTHF) represent 

the most attractive derivative of FU.  

FAL derives from the selective reduction of the aldehyde group of FU and is used for the 

production of thermostatic resins or as intermediate in the fine chemical industry; The 

most of the reported production process are performed in batch reactor117,118. 

On the other hand, MF, as well as MTHF, is considered one of the most appealing bio-

fuels thanks to its properties such as an excellent energy density, boiling point, octane 

value, hydrophobic property and production efficiency. 

Cu-based catalysts are generally used for the hydrogenation of furfural into MF through 

furfuryl alcohol as an intermediate. In the earlier studies, Raney-Cu, Cu-chromite, Cu–

Zn–Al–Ca–Na, Cu/Al2O3, Cu–Fe/SiO2 and Cu-chromite/C showed 87–98% MF yields at 

200–300°C with 0.15–0.3 h-1 LHSV (liquid hourly space velocity), 0.1 MPa and 5–25 

H2/furfural molar ratio119,120. However, these catalysts were reported to deactivate 

rapidly, which is most likely caused by thermal polymerization and coking of furfuryl 

alcohol on the surface of catalysts under high temperature34. Subsequently, a novel 

process involving the coupling of the dehydrogenation of 1,4-butanediol (BDO) or 

cyclohexanol (CHL) and the hydrogenation of furfural using Cu–Zn or Cu–Zn–Al as 

catalysts has been reported, respectively121122. The coupled process could be conducted 

at a lower temperature (typically lower by 10–20°C) than conventional processes while 

also leading to higher MF yields of 96.5 and 92.8%, respectively, which was thought to 

be ascribed to that the rich activated hydrogen species on the surface of catalysts from 

BDO or CHL dehydrogenation may promote furfural hydrogenation reaction. More 

recently, a few papers reported the hydrogenation of furfural into MF under milder 

temperatures. Sun et al.123 claimed that a yield of MF of 100% from furfural at 18°C for 

57 min with 0.1 MPa H2 using Pd complex/SiO2 as catalyst. At the same time, a variety 

of solvents was screened, and the best results were obtained from small, polar alcohols 

such as methanol and ethanol. Lange et al. studied the synthesis of MF from furfural, 50% 

yield was observed in ethanol at 30°C for 1 h with 0.25 MPa H2 by the use of Pd/C or 

Pd/SiO2 in the presence of a small amount of HCl that could depress undesired side 

reactions. More interestingly, Li et al.124 investigated the electrocatalytic hydrogenation 

of furfural into MF using the cathode metal as catalysts. Among the tested anode and 

cathode metals, a combination of Ni anode and Ni cathode exhibited the best result. In 

addition, the formation of MF was favored at pH 1.0. 
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CHAPTER 2 Hydrogen-Transfer reaction as a 

tool for the catalytic reduction of bio-based 

building block 

 

2.1. Introduction  

In the former chapter it has been reported on the importance and the appeal for the 

possibility to produce fuels, fuel-additives, chemicals and high added value chemicals for 

the fine industry starting from short-life cycle renewable sources in order to decrease the 

dependency from the fossil sources. Indeed, the continue increase for fuels and chemicals 

for the industries demand, coupled with continued increase of the pollutant emission in 

the atmosphere, have forced in the researcher community to find renewable alternatives 

on which in the future the chemical industries could find their feedstock. In this scenario, 

the second generation lignocellulose biomass materials, mainly composed by wood chips, 

agricultural and municipal wastes, have been identified as one of the min alternative to 

the fossil sources thanks to the possibility to produce from their thermo-chemical 

treatment new platform molecules considered highly appealing. Indeed, after further 

transformation, fuels, fuel-additives, monomer for the polymer industry and fine 

chemicals could be obtained. 

HMF and FU, respectively produced by the acidic hydrolysis-dehydration of the cellulose 

and hemicellulose fraction of the lignocellulose biomass, have been considered, in the 

last years, two of the most appealing platform molecules deriving from renewable 

sources. As reported previously mainly fuels and monomers could be produced from their 

transformation. DMF and MF, produced as a consequence of the selective hydrogenation-

hydrogenolysis of the hydroxyl and aldehyde functionality of HMF and FU are 

considered two of the most promising bio-fuels or fuel-additives considering their 

excellent energy density, boiling point, octane value, hydrophobic property and 

production efficiency. 

So their production represent an extremely interesting route for the production of liquid 

renewable fuels. Indeed these furan compounds are superior compared to bio-ethanol 

because of the higher energy density and higher octane values1. Table 2-1 summarize the 
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main fuel properties of MF and DMF compared with that of bio-ethanol, commercial 95 

octane gasoline. The octane number of both MF and DMF are higher than that of gasoline 

(103 and 101 respectively vs. 96.8 RON), while their energy densities are very close (28.5 

and 30 MJ L−1 vs. 31.9 MJ L−1 ), which means that with the same volume of fuel, MF 

and DMF contains 34% more energy compared to the market-leading biofuel ethanol2. 

Thewes et al. have performed combustion tests on bench engines to compare MF and 

DMF with bio-ethanol and 95-octane gasoline. The reported results confirm that the two 

furanic compounds could be considered a promising bio-fuels. Indeed they have a faster 

initial evaporation compared to that of ethanol and similar to that of 95-octane gasoline; 

furthermore both the particulate emission and partially combusted species are lower 

compared to that obtained with the other fuels 1. 

Feature 
95-octane 

gasoline 
Ethanol MF DMF 

Chemical formula   
  

H/C ratio 1,795 3 1,2 1,3 

O/C ratio 0 0,5 0,2 0,17 

Density @ 20°C 

(kg/m3) 
745 791 913 890 

Research Octane 

Number (RON) 
97 107 103 101 

Motor Octane 

Number (MON) 
85,7 89 86 88 

Energy density 

(MJ/L) 
31,9 21 28,5 30 

Initial boiling 

point (°C) 
32,8 78,4 64,7 93 

Autoignition 

Temperature (°C) 
257 363 450 286 

Water miscibility 

at 25°C (g/l) 
Miscible Miscible 3 2,3 

Table 2-1. Comparison of the fuel properties of MF and DMF versus Gasoline and ethanol. 

Adapted from [1, 2]. 
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The main applied strategy for the production of fuels such as MF and DMF from the 

renewable platform molecules FU and HMF is the classic catalytic hydro-de-oxygenation 

(HDO); indeed, the aim is the removal of the oxygen-containing functional groups 

(Figure 2-1). As reported above, the most of the patented or literature process involve the 

use of molecular hydrogen as reducing agent at high pressure and temperature in liquid-

phase batch set-up reactors.  

 

Figure 2-1. HDO strategy for the production of fuel-range target molecules from lignocellulose 

biomass. 

The use of molecular hydrogen as reducing agent decrease the overall sustainability of 

the process considering that nowadays more than 95% of the produced H2 derives from 

fossil sources by-means of CH4 steam reforming, CPO, dry-reforming or from carbon 

gasification. On the other hand, the catalysts reported to be active in the HDO process of 

FU and HMF are mainly based on noble metal supported catalysts or on transition-metal 

oxides such as Cu, Cr, Ni and Fe. In the case of noble metal based catalysts and systems 

containing Cr and Ni the main drawbacks are represented by the high cost of the active 

phase or by the toxicity of the used metal oxide. 

Taking into account these information, a completely different approach for the reduction 

process of the biomass-derived building block could be the catalytic transfer 

hydrogenation reaction (CTH) or Meerwein-Ponndorf-Verley reaction (MPV). In brief, 

that alternative process consists in a classic organic chemistry reaction developed in the 

first years of the XXth century in which, usually, an alcohol is used as hydrogen-source 

or hydrogen-donor for the selective reduction of a carbonyl group. In terms of biomass 

upgrading the possibility to use an alcohol as hydrogen source for the HDO process opens 



Chapter 2: H-Transfer as a tool for the catalytic reduction of bio-based building block 

 

36 

 

to the possible use of bio-alcohols, obtained from biomass fermentation or enzymatic 

transformation of simple sugars, increasing the overall sustainability of the process and 

untying to the use of molecular hydrogen. 

2.2. The catalytic transfer hydrogenation reaction (CTH) 

The catalytic transfer hydrogenation reaction (CTH) or Meerwein-Ponndorf-Verley 

(MPV) reaction is a catalytic carbonyl reduction performed in the presence of an alcohol 

as a hydrogen donor. It has been independently discovered in the early years of XXth 

century by Meerwein, Ponndorf and Verley when they found that, in the proper conditions 

and with the proper catalyst, carbonyl group-containing compounds were reduced in the 

presence of 2-propanol3. Later, Oppenauer found that secondary alcohols were oxidized 

in the presence of acetone4 (Scheme 2-1). 

 

Scheme 2-1. Meerwein-Ponndorf-Verley reduction and Oppenauer oxidation. 

CTH is effective in reducing functional groups by adding hydrogen to either unsaturated 

bonds (hydrogenation), e.g., C-C double and triple bonds, carbonyl group, nitro group, 

N-N triple bonds, and C-N triple bonds, or single bonds leading to bond cleavage 

(hydrogenolysis), e.g., C−O, C−N, C−S, and C−X (halogen)5. 

The first catalysts employed are homogeneous: Lewis acids such as Al, B, or Zr alkoxides 

salts and complexes of Pd, Pt, Ru, Ir, Rh, Fe, Ni and Co. Then heterogeneous catalysts 

with acid properties such as Lewis acid cations such as Al3+, Zr4+, or Sn4+ incorporated in 

zeolite framework or supported on oxides are employed in CTH as well as basic or 

amphoteric oxides (MgO, ZrO2)
6. 

The efficiency of the reduction is determined in part by thermodynamic considerations. 

Indeed, secondary alcohols are stronger reductants than primary ones and aldehydes are 

more easily reduced than ketones. As a consequence, iso-propanol is the most commonly 

used H-donor. The reaction is an equilibrium and it is usually driven to the right by using 

a large excess of reductant; this is the reason why in liquid phase processes alcohols are 

often used both as H-donor and as the solvent.  
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Transfer hydrogenation has the advantages of operational simplicity and environmental 

friendliness: no hydrogen pressure is used and no special equipment is required. In 

addition, no hazardous waste is produced, as in the case of stoichiometric reduction by 

borane reagents. When 2-propanol is used as hydrogen donor, the only side product 

formed is acetone, which is easily removed by distillation during workup. 2-Propanol and 

formic acid, which are both often used as hydrogen donors, are non-toxic and also 

inexpensive reactants. One drawback of the use of this reaction is that each step in the 

cycle is reversible and the selectivity is driven by the thermodynamic properties of 

products and intermediates. This disadvantage can be overcome by the use of a formate, 

since the reaction in this case is irreversible, with loss of CO2. Pasini et al. recently report 

on the use of methanol as hydrogen source in the liquid-phase CTH using MgO as highly 

active catalyst; the C1 alcohol is less active as hydrogen source compared to iso-propanol 

but shows the advantage to produced only gaseous co-products (CO. CO2 and CH4) 

deriving from formaldehyde degradation. The formation of gaseous light compounds 

consist in an optimal thermodynamic driving force that push the CTH equilibrium to the 

right7. 

 

2.2.1. CTH with homogeneous catalysts 

The CTH with homogeneous catalysts have been deeply studied8 and it has been 

demonstrated that could proceed through two main mechanisms: 

- The direct hydrogen transfer route (MPV); 

- The metal hydride route9,10. 

When an alcohol acts as the hydrogen donor in reducing a carbonyl group following the 

direct hydrogen transfer pathway, the α-H is transferred from the α-C of the alcohol to 

the carbonyl carbon in a concerted step via a six-membered-ring intermediate, without 

forming a metal hydride. This is also commonly referred to as the Meerwein−Ponndorf−

Verley (MPV) mechanism (Scheme 2-2). 
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Scheme 2-2. Direct hydrogen transfer mechanism with homogeneous catalysts. Adapted from 

[5]. 

On the other hand, the formation of metal hydride is the signature of the metal hydride 

route (Scheme 2-3), which could be grouped into two subcategories: i.e., the 

monohydride and di-hydride mechanisms. In the monohydride route, only the hydrogen 

on the α-C of the hydrogen donor, e.g., alcohols and formic acid, is transferred to the 

metal. In contrast, the di-hydride mechanism entails that both the hydrogen atom in the 

hydroxyl group and that bonded to the α-C are transferred to the metal. The key difference 

between these two pathways is whether the hydrogen atoms in O−H and C−H maintain 

their identity in the product. 

 
Scheme 2-3. Metal hydride route hydrogen transfer mechanism with homogeneous catalysts. 

Adapted from [5]. 

One of the main advantages in the use of MPV reaction for the reduction of carbonyl 

compounds, is its high selectivity for C=O double bond. As a matter of fact, α,β-

unsaturated carbonyl compounds can be selectively reduced via MPV reaction, leaving 

C=C untouched.  

Besides aluminum complexes, the zirconium complex, bis(cyclopentadienyl)zirconium 

di-hydride, has also been reported to be active in the MPV reaction for several carbonyl 

compounds such as benzaldehyde, acetone and benzophenone. Different linear (e.g. 

butanol, octanol, dodecanol, allyl alcohol) and cyclic alcohols (cyclohexanol, benzyl 
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alcohol) were used as hydrogen donor and they were all active in the hydrogen transfer 

reaction11. 

Shvo’s catalyst has also been demonstrated to be a powerful catalyst for transfer 

hydrogenation98. 5-hydroxymethylfurfural (HMF) reduction to 2,5-

bishydroxymethylfuran (BHMF) occurred under mild conditions (10 bar H2, 90°C) and 

with complete selectivity towards the formation of the desired product. Catalyst has been 

successfully recycled, after removing the product from the reaction mixture by 

precipitation and filtration.  

In addition to these homogeneous catalysts some others alternative materials have also 

been reported, based on either non-precious metals, such as Fe12,13,14 or alkali metal ions, 

such as Li alkoxides15,16 or KOH17. 

 

2.2.2. CTH with heterogeneous catalysts 

The requirement of a large amount of reagents and the presence of undesired side 

reactions are the main drawbacks of the MPV reduction using homogeneous catalysts. To 

overcome these problems, the reaction has been investigated over different heterogeneous 

catalysts, including metal oxides, hydrous zirconia, hydrotalcites, zeolites and even metal 

alkoxides immobilized on mesoporous materials. As a matter of fact, H-transfer reduction 

by means of hydrogen donors on heterogeneous catalysts has many interesting 

advantages, if compared to the classical reduction procedure, which requires molecular 

hydrogen. Using the H-transfer reaction, no gas tank is necessary, avoiding any possible 

hazards connected to the presence of a gas with a low molecular weight and high 

diffusibility in a chemical plant. Therefore, over the past two decades, an increasing 

number of reports on heterogeneous catalysts for the MPV reaction have been 

published18. 

Most of the solid catalysts reported in literature are based on alkali and alkaline earth 

oxides, which sometimes are characterized by the insertion of metal atoms, bringing 

Lewis acid properties. The solid catalysts, which have been investigated for this kind of 

reaction, can be divided into three main groups: Lewis base or Lewis acid catalysts and 

metal supported catalysts. 

Metal doped zeolites are included in Lewis acid type catalysts together with Zr containing 

systems. In particular, beta zeolite has been found to be highly stereoselective catalysts 

in the MPV reduction especially when some guest element such as Ti, Sn and Zr was 
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introduced in the structure. For example, zeolites such as H-beta19,20,21 and alumina22 were 

used in the H-transfer reaction using isopropanol, ethanol, or cyclopentanol as donor. 

Furthermore, high surface area mesoporous materials should be included: Ti or Sn 

incorporated in MCM23,24,25 were used as catalysts with isopropanol or 2-butanol as the 

reducing agents.  

As far as the Zr based systems are concerned, the most relevant results were obtained 

with ZrO2 and hydrous zirconia, either doped or as it is, anchored/grafted Zr over 

supports26,27. 

In the field of solid base materials, magnesium oxide has been widely used in H- transfer 

reactions. More specifically, examples include: (a) MgO, either doped or as it is and 

Mg/M mixed oxides, which have been used for the reduction of substrates such as citral, 

cyclohexanone, acetophenone, hexenone, acetone, benzaldehyde, crotonaldehyde, and, in 

general, for various aliphatic aldehydes and ketones or aralkylketones. In most of the 

cases, isopropanol was used as the H-transfer reactant, with a few exceptions in which 

ethanol and other C4 alcohols were taken into consideration. The majority of these 

processes were carried out in liquid phase. 

Some gas phase reactions over MgO were reported by Cosimo and coworkers28. The 

author concluded that the unsaturated ketone conversion pathways toward unsaturated 

alcohols and other compounds also depended on the ketone structure. Unsaturated 

alcohols were formed on MgO as a primary product from both 2-cyclohexenone and 

mesityl oxide. However, the saturated alcohol can be produced by a consecutive reaction 

of unsaturated alcohols in the presence of 2-cyclohexenone and not with mesityl oxide. 

The reduction of the C=C bond was negligible regardless the reactant structure, whereas 

competing reactions such as the C=C bond shift were more likely to contribute during 

reduction of the acyclic reactant. 

Among the heterogeneous catalytic systems, supported noble metal catalysts such as 

Pt29,30, Au31,32, Pd33, and Ir34 acted as effective and reusable heterogeneous catalyst for 

the same reaction. Au supported onto different support (TiO2, Fe2O3, Carbon) and Pd/C 

were used as catalyst for H-transfer hydrogenation of acetophenone and many other 

carbonyl compounds, using 2-propanol as H-donor. 

Concerning the investigation of the reaction mechanism for the CTH over heterogeneous 

catalysts numerous studies have been performed and the general conclusion reached 

consists in the possibility, for the solid materials, to follow three main pathways: 
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- The general acid-base pair mechanism; 

- The basic oxide catalysts “direct” hydrogen transfer route (likely MPV); 

- The basic oxide hydride route. 

Although both Lewis acidic and basic materials have been reported to be active in 

mediating CTH processes following the MPV mechanism, it is important to recognize 

that both Lewis acid and base sites are necessary to catalyze the reaction. The role of the 

Lewis acid site, typically an electron-deficient metal center, is to bond with the electron-

rich oxygen in the hydroxyl and carbonyl groups in the hydrogen donor and acceptor, 

respectively, whereas the adjacent base site attracts the proton in the hydroxyl and 

weakens the O−H bond. The stronger the interaction between the hydroxyl oxygen and 

the Lewis acid site, the more acidic the hydroxyl hydrogen in the hydrogen donor 

becomes, which facilitates the abstraction of the hydrogen by the base site. Conversely, 

strongly basic sites can effectively abstract the hydrogen from the hydroxyl group of the 

alcohol, leading to the formation of an alkoxide adsorbed on the adjacent Lewis acid site, 

thus promoting the hydride transfer. Thus, both strong acids and strong bases facilitate 

CTH, but it is unlikely that strong Lewis acid and base sites can coexist on the same 

catalyst. Although either the acid or base property of a catalyst could dominate, an acid−

base pair is needed to complete the catalytic cycle and allow the formation of the six-

membered-ring intermediate (Scheme 2-4). 

 

Scheme 2-4. General acid-base pair heterogeneous catalysts CTH mechanism. Adapted from 

[5]. 

On the other hand, in the case of the basic oxide catalysts that proceed through a 

mechanism that could be assimilated to the classic “direct” hydrogen transfer route 

described above for the homogeneous systems. In this case it has to be highlighted that 

the reaction is driven by the basic sites on the catalyst surface and can be divided into two 

following steps. The first consists in the coordination of the hydrogen source over the 

catalyst surface with the results of the proton abstraction from the R-OH specie by-means 

of the basic site (generally the O2- anion). The second step consists in the coordination of 



Chapter 2: H-Transfer as a tool for the catalytic reduction of bio-based building block 

 

42 

 

the carbonyl group through the C-O- over the acidic site (generally an M2+ cation). Also 

in this case the neighboring presence of both acid and base sites are necessary in order to 

allow the formation of the six-membered-ring intermediate that then evolves in the 

formation of the reduced product after the transfer of hydrogen (Scheme 2-5). 

 

Scheme 2-5. CTH mechanism for the basic catalysts that follow an MPV-like mechanism. 

Adapted from [5]. 

Finally, it has been discovered another pathway through which the CTH could proceed 

with the heterogeneous basic catalysts. This is the case of that kind of basic catalysts for 

which the behavior are similar to that exhibited by the metal hydride-route homogeneous 

systems. Base-mediated CTH reactions are proposed to proceed through a two-step 

process: the alcohol (hydrogen donor) dissociates to form the corresponding alkoxide on 

a weekly acidic metal cation, e.g., Mg2+, while the hydroxyl proton resides on the basic 

O2− anion. The α-H of the alkoxide and the proton adsorbed on the base site are then 

transferred to the carbon and oxygen atoms in the carbonyl group, respectively. This 

pathway is quite different from the typical MPV mechanism because the six-membered-

ring intermediate does not involve the metal site (Scheme 2-6). 

 

Scheme 2-6. CTH mechanism for the basic catalysts that follow the hydride-like mechanism. 

Adapted from [5]. 
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2.3. CTH as new strategy for the upgrade of biomass-derived 

platform molecules 

It has just been reported in the former sections of this work that the in the last years the 

second generation lignocellulose biomass feedstock has been considered one of the most 

appealing alternative to the fossil sources for the production of fuels and chemicals. In 

order to upgrade and valorize the platform molecules produced from the cellulose and 

hemicellulose fraction of the renewable feedstock it is necessary to set up an oxygen 

removal step targeted to the decrease of the high oxygen content characterizing these new 

platform molecules. In this part of the work are summarized the main catalytic strategies 

involved in the use of the CTH as a tool for the upgrade of the biomass-derived building 

block.  

The renewable-feedstock building block can be divided into two main groups on the base 

of the relevance and the appealing found in the scientific community: 

- HMF, FU and levulinic acid are the most used platform due to the possibility to 

produce from their direct transformation numerous target molecules with 

application as monomers, fuels or fuel-additives; 

- Lignin, vanillin, sorbitol and glycerol that started to became attractive, from the 

CTH upgrade point of view, only in the last years. 

 

2.3.1. CTH upgrade of furanic-platform molecules: HMF and FU 

As deeply described in the first chapter, furfuryl alcohol (FAL) and methylfuran (MeF) 

as well as 2,5-bishydroxymethylfuran (BHMF) and 2,5-dimethylfuran (DMF), which are 

respectively produced from the selective hydrogenation of biomass-derived FU and 

HMF, have been considered as new-fashioned monomers for the polymer industry or 

liquid bio-fuels for transportation, receiving much more attention from many researchers 

in the world. Furfural and HMF are considered the most important platform molecules 

obtained from the dehydration of C5 and C6 sugars, which are present in the hemicellulose 

and cellulose part of the biomass feedstock (Scheme 2-7). 

The most of the reported process for the production of these interesting furanic derivatives 

involve the use of molecular hydrogen as reductant and metal supported catalysts. At the 
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best of our knowledge these process are not yet competitive, from an economical point of 

view, with the petrochemical technologies. Hence, the development of new approaches 

which decreases the number of reaction and purification processes is becoming 

fundamental. The hydrogen transfer approach could be considered as a relevant approach 

to produce biofuels, avoiding molecular hydrogen and in some cases also an expensive 

metal based catalyst. 

 

Scheme 2-7. Production of FAL, MF, BHMF and DMF from lignocellulose biomass. 

In this field, at the beginning, the researcher has focused their attention on the 

development of process for the production of BHMF and DMF from HMF, highlighting 

the different reactivity and catalysts performances as a function of the alcohol used as 

hydrogen source and discussing the possible reaction mechanism. It has also to be 

highlighted that one of the key challenges for upgrading furans is product selectivity; a 

mixture of side chain ring-hydrogenated and ring-opened products is often formed. 

In 2010, Rauchfuss and coworkers35 proposed a mild catalytic system, in which formic 

acid (FA) was first used as a hydrogen donor for the selective hydrogenation of HMF. 

When the reaction was carried out in THF over the Pd/C catalyst, more than 95% DMF 

yield with 100% HMF conversion was observed at 70°C after 15 h. Furthermore, a one-

pot process for the synthesis of DMF from fructose was also investigated. In the presence 

of FA, H2SO4, Pd/C and THF, fructose was initially dehydrated at 150°C for 2 h, and the 

generated HMF was subsequently hydrogenated at 70°C for 15 h, obtaining 51% DMF 

yield. It is worth noting that using FA as catalyst it is possible to perform three different 

reactions, thanks to its peculiar characteristics: it is an acid catalyst for the dehydration of 
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fructose into HMF and a reagent for the deoxygenation of furanylmethanols as well as a 

hydrogen donor for the hydrogenation of HMF into DHMF.  

The use of FA for these processes is very attractive because it can be derived from 

biomass and it can be regenerated by hydrogenation of formed CO2. Furthermore, its 

presence was reported to inhibit the decarbonylation of molecules, which can occur quite 

easily at 120°C in the presence of Pd/C even at low reaction time (2-8 hours)36. On the 

other hand the main drawback related to the use of FA consists in the necessity for a 

special corrosion-resistant equipment, in the view of an industrial scale-up, that surely 

increases the cost of the possible investment. 

Beside formic acid, some alcohols can also be used as H-donor in HMF reduction.  

The use of isopropyl alcohol, as hydrogen donor as well as reaction medium, was 

alternatively studied by Vlachos and coworkers37 for HMF reduction. When the reaction 

was conducted over the Ru/C based catalyst, 100% conversion of HMF and a 81% of 

yield in DMF were achieved at 190°C after 6 h. Unfortunately, when the recovered Ru/C 

was reused in the second cycle, HMF conversion and DMF yield were significantly 

decreased to 47% and 13% respectively,, showing a considerable deactivation of Ru/C 

even after its first use, which might be due to the formation of high molecular weight by-

products on ruthenium surfaces. More recently, Pd and Rh supported onto carbon were 

used for HMF hydrogenation in the presence of MeOH at 150°C and 20 bar of H2 

pressure38. ZrCl2 was used as co-catalyst since it is claimed to improve DMF selectivity 

thanks to the presence of a strong synergistic effect between Pd and Zr; the addition of Zr 

salt to the reaction mixture has been fundamental also when Ru/C was used as catalyst. 

DMF yield reached 39% in 2 hours with a conversion of HMF around 75%. However, in 

the presence of methanol HMF etherification occurred, forming 5-

methoxymethylfurfural; this reaction was catalyzed by Lewis acid sites, that belonged to 

the used catalyst. On the contrary, the use of THF as solvent led to 85% yield of DMF in 

8h with a complete conversion of HMF, demonstrating the inability of these systems to 

transform completely HMF into DMF in the presence of an alcoholic solution.  

Another stable catalyst based on Pd supported on Fe2O3 was prepared and used by 

Hermans and coworkers39. The yield of DMF reached 72% when a continuous-flow 

reactor at 180 °C was used. Due to its similarity to HMF, furfural can be easily reduced 

via H-transfer using the same methodology already reported for this molecule. In fact, in 

the same paper it is reported that 2-propanol on Fe2O3-supported Cu, Ni and Pd catalysts 

can carry out the sequential transfer hydrogenation/hydrogenolysis of furfural to 2-
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methylfuran. An optimal yield of 57% of furfuryl alcohol and the formation of 10% of 

MF were observed in a batch reactor at 180°C after 7.5 hours of reaction with Pd/Fe2O3. 

The remarkable activity of Pd/Fe2O3 in both transfer hydrogenation and hydrogenolysis 

is attributed to a strong metal-support interaction. Using a noble metal catalyst, the active 

site for H-production seems to be the same used for substrate hydrogenation.  

An unconventional H-transfer reactant was used by Cavani and coworkers40, who 

reported that HMF could be selectively reduced to BHMF (100% yield) over MgO using 

methanol as both H-donor and reaction solvent, under mild condition (160°C). In the 

same reaction conditions, furfural was hydrogenated reaching 97% of furfuryl alcohol 

yield. MgO was demonstrated to be an excellent catalyst because it was able to activate 

methanol at low temperature, which is the key step of this process; moreover, the only 

formed by-products were gaseous (CO, CO2, CH4) easily separable for the reaction 

mixture. 

In the last years the development of CTH process for the production of FAL and MF from 

FU takes place, demonstrating the increase appealing for the large-scale production of 

these interesting biomass derivatives with several and appealing application. 

Recently a recent paper has been published by Marchi and coworkers41 on furfural 

hydrogenation by means of H-transfer with copper based catalyst (Cu/SiO2 and Cu-Mg-

Al) prepared by co-precipitation. The authors investigated the effect of metal-support 

interaction and concluded that smaller particles with stronger interaction with the spinel-

like matrix had higher capability for transferring hydrogen than large ones. Under the 

optimal conditions (150°C, 8 hours), 100% conversion of furfural to furfuryl alcohol can 

be obtained. Moreover, ethanol, propanol and isopropanol have been tested as H-donor 

and the last one showed better performances. Vlachos and coworkers42 studied the effect 

of H-donor on Ru/RuOx/C catalyst, using different primary and secondary alcohols. 

Secondary alcohols have shown greater activity in MF production and it has been 

discovered that alcohol polarity can affect the hydrogenolysis reaction. The optimum 

methyl furan yield of 76% was achieved using 2-butanol and 2-pentanol (180°C, 10 

hours). Meanwhile, the author indicated that methylfuran yield increased with increasing 

alcohol dehydrogenation activity and decreasing alcohol polarity. Another paper has just 

been published by Vlachos and co-workers43 with the aim of clarifying the reaction 

mechanism in MF formation when Ru/RuOx/C was used as catalyst and 2-propanol as H-

donor. The reaction mechanism was studied using isotopically labeled chemicals and 

performing a mass fragmentation analysis. These mechanistic investigations highlighted 
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the presence of a MPV Lewis acid mediated pathway for furfural hydrogenation. The 

usual six-member intermediate was formed and the β-H of 2-propanol was transferred to 

the carbonyl carbon atom of the substrate in a concerted step without transferring the 

hydrogen to the surface of the catalyst, as it usually happens in metal-mediated 

hydrogenation. 

Chen and coworkers44 prepared a series of metal supported carbon nitrile catalyst (M/CN, 

where M = Ag, Pt, Au and Pd) which could proceed the reduction of  unsaturated 

compounds including furfural at room temperature in water using formic acid as the 

hydrogen source. The author indicated that the reusability of such a hybrid catalyst is high 

due to the strong Mott–Schottky effect present between the metal nanoparticles and the 

carbon nitride support. The highest conversion of furfural was 64% with 99% selectivity 

towards MF.  

 

2.3.2. CTH for levulinic acid (LA) reduction 

The acid hydrolysis of lignocellulosic materials led to levulinic acid (LA) formation. The 

hydrogenation of LA then gives γ-valerolactone (GVL), which is a sustainable liquid for 

energy and carbon based chemicals. In Scheme 2-8, the main products that can be 

obtained from GVL are reported, with application in fuels, additive for fuels and 

chemicals production. 

 

Scheme 2-8. Reaction pathways for conversion of γ-valerolactone (GVL) into fuels and 

chemicals. 
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Many processes have been reported for hydrogenation of levulinic acid (LA) to GVL 

using gaseous H2 and metal based catalyst (Ru, Pd, Pt) either in homogeneous or in 

heterogeneous conditions. However, reaction parameters must be carefully controlled to 

prevent further hydrogenation reaction, forming MTHF and pentanoic acid, even if they 

are both products with a high added value45,46. GVL can also be synthesized by catalytic 

transfer hydrogenation, using alcohols as hydrogen donor. Several catalytic systems have 

recently been reported for the production of GVL via the H-transfer process. Dumesic 

and coworker47 compared different metal oxides in H-transfer reduction of levulinate 

derivatives to GVL and ZrO2 was found to be a highly active material for H-transfer in 

both batch reactions and continuous flow reactor. Using isopropanol/isobutanol as H-

donors at 150°C under pressurized inert gas flow the reaction reached a yield of 84% in 

16 hours. Analogously, Lin and coworkers48 investigated an H-transfer reaction of ethyl 

levulinate (EL) over ZrO2 catalyst in a supercritical ethanol. Using ethanol as H-donor, 

an integrated biomass utilization chain will be created, since ethanol can also be produced 

from biomass feedstock. 

Microporous zirconosilicate molecular sieves (Zr-beta) have recently been reported to be 

more active and stable catalysts if compared to bulk zirconia. Chuah and co-workers49 

developed Zr–Beta zeolite as a robust and active catalyst for the hydrogen transfer 

reduction of levulinic acid to γ-valerolactone using 2-propanol as H-donor. They also 

explained its high activity with the presence of both Lewis acid sites with moderate 

strength and relatively few basic sites. The presence of a low amount of basic sites 

prevented catalyst poisoning due to the absorption of the acid reactant. In a batch reactor, 

γ-valerolactone was formed with the selectivity higher than 96% and 100% LA 

conversion, whereas quantitative conversion with > 99% yield of GVL was obtained with 

a steady generation rate of 0.46 molGVLgZr
-1h-1. 

Besides Zr based oxide, some noble metal supported catalysts were also investigated in 

LA transformation using H-transfer processes. 

Fujitani and coworkers50 reported LA reduction via H-transfer over a cheap noble metal 

supported catalyst, Ru hydroxide supported on anatase. Since Ru in the form of hydroxide 

had already been reported as an efficient catalyst in carbonyl compounds hydrogenation, 

this study demonstrated that it worked as well for biomass-derived carbonyl compounds 

reduction. Further improvements were obtained by Yamashita and coworkers51, using a 

catalyst made up of uniformly dispersed Ru nanoparticles supported on Zr-containing 

spherical mesoporous silica. This system showed a superior activity for the hydrogenation 
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of both LA and its ester under mild conditions; the Zr sites embedded within the spherical 

mesoporous silica were demonstrated to have the ability to disperse and stabilize the Ru 

NPs, giving rise to an improved catalyst stability and reusability, and to provide acidity, 

which highly improved GLV selectivity. Cao and coworkers studied Au-ZrO2 catalyst to 

catalyze the hydrogenation of levulinic acid to γ-valerolactone using formic acid (FA) or 

butyl formate52,53 as H-donor. The superior performance of Au catalysts for formate-

mediated transfer reduction was attributed to the nature of gold nanoparticles, which had 

been demonstrated to be an excellent catalyst in formate media decomposition. Indeed, 

they can directly convert a 1:1 aqueous mixture of LA and FA into GVL with high yields. 

This means that GVL can be synthesized from an integrated process, which starts from 

the solution of LA and FA derived from HMF synthesis and decomposition in acidic 

aqueous medium.  
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CHAPTER 3 Heterogeneous basic catalysis 

 

3.1. Introduction  

Acid and base are paired concepts; a number of chemical interactions have been 

understood in terms of acid-base interaction. Among chemical reactions which involve 

acid-base interactions are acid-catalyzed and base-catalyzed reactions which are initiated 

by acid-base interactions between the catalyst and the substrate followed by catalytic 

cycles. In acid-catalyzed reactions, reactants act as bases toward catalysts which act as 

acids. On the contrary in base-catalyzed reactions reactants act as acids toward catalysts 

which act as bases.  

In homogeneous systems, a huge number of acid-catalyzed reactions and base-catalyzed 

reactions are known. In heterogeneous systems, a limited number of reactions are 

recognized as acid or base-catalyzed reactions. In particular, base-catalyzed reactions 

have been studied to a lesser extent as compared to acid-catalyzed reactions in 

heterogeneous systems. Heterogeneous acid catalysis attracted much attention primarily 

because heterogeneous acidic catalysts act as catalysts in petroleum refinery and are 

known as a main catalyst in the cracking process which is the largest process among the 

industrial chemical processes. Extensive studies of heterogeneous cracking catalysts 

undertaken in the 1950s revealed that the essential nature of cracking catalysts are acidic, 

and generation of acidic sites on the solids was extensively studied. As a result, 

amorphous silica-alumina was utilized as a cracking catalyst, and then crystalline 

aluminosilicate (zeolite) was used afterward.  

In contrast to these extensive studies on heterogeneous acidic catalysts, fewer studies 

have been performed over heterogeneous basic catalysts. The beginning of the 

heterogeneous basic-catalysts-era could be pointed after the studies of Pines et al. that 

demonstrated the ability of supported metal Na to acts as electrons donor acting as a basic 

system1.  

In a second moment it has been reported that certain metal oxides, composed by a single 

metal cation, act as heterogeneous basic catalysts in the absence of such alkali metals as 

Na and K. 
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In the 1970s, Kokes et al. reported that hydrogen molecules were adsorbed on zinc oxide 

by acid-base interaction to form proton and hydride on the surface. They proved that the 

heterolytically dissociated hydrogens act as intermediates for alkene hydrogenation. In 

the same period, Hattori et al. reported that calcium oxide and magnesium oxide exhibited 

high activities for 1-butene isomerization. The reaction is recognized as a base-catalyzed 

reaction in which the reaction was initiated by abstraction of a proton from 1-butene by 

the basic site on the catalyst surfaces. 

Type of material Examples of heterogeneous basic catalyst 

Single component metal 

oxides 

alkaline-earth oxides 

alkali-metal oxides 

rare-earth oxides 

ThO2, ZrO2, ZnO, TiO2 

Zeolites 
alkali-ion-exchanged zeolites 

alkali-ion-added zeolites 

Supported alkali-metal ions 

alkali-metal ions on alumina 

alkali-metal ions on silica 

alkali-metal on alkaline-earth oxides 

alkali-metal and alkali-metal hydroxides on alumina 

Clay minerals 

hydrotalcite 

chrysotile 

sepiolite 

Non-oxides 
KF supported on alumina 

lanthanide imide and nitride in zeolite 

Table 3-1. Types of heterogeneous basic catalysts. Adapted from [2]. 

In addition to the acid-zeolites, that find several application as industrial catalyst in the 

oil refinery process, in early 1970s have been developed basic-type zeolites. For instance, 

Yashima et al. reported that side chain alkylation of toluene was catalyzed by alkali ion-

exchanged X and Y type zeo1ites.j The reaction is a typical base-catalyzed reaction, and 

the activity varied with the type of exchanged alkali cation and with type of zeolite, 

suggesting that the basic properties can be controlled by selecting the exchanged cation 

and the type of zeolite. 
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In addition to the above mentioned catalysts, a number of materials have been reported 

to act as heterogeneous basic catalysts (Table 3-1). Except for non-oxide catalysts, the 

basic sites are believed to be surface O2- atoms2.  

In the last years have been identified, as a general rule, 4 main features that an 

heterogeneous catalysts should present in order to be considered an heterogeneous basic 

catalyst: 

1. Characterizations of the surfaces by various methods such as color change of the 

acid-base indicators adsorbed, surface reactions, adsorption of acidic molecules, 

and spectroscopies indicate that basic sites exist on the surfaces; 

2. There is a parallel relation between catalytic activity and the amount and/or 

strength of the basic sites: The catalytic activities correlate well with the amount 

of basic sites or with the strength of the basic sites measured by various methods. 

Furthermore, the active sites could be poisoned by acidic molecules such as HC1, 

H2O, and CO2; 

3. The material has similar activities to those of homogeneous basic catalysts for 

“base-catalyzed reactions” well-known in homogeneous systems. There are a 

number of reactions known as base-catalyzed reactions in homogeneous systems. 

Certain solid materials also catalyze these reactions to give the same products. 

The reaction mechanisms occurring on the surfaces are suggested to be essentially 

the same as those in homogeneous basic solutions; 

4. There are indications of anionic intermediates participating in the reactions: 

Mechanistic studies of the reactions, product distributions, and spectroscopic 

observations of the species adsorbed on certain materials indicate that anionic 

intermediates are involved in the reactions. 

 

3.2. Generation of basic sites 

One of the reasons why the studies of heterogeneous basic catalysts are not as extensive 

as those of heterogeneous acidic catalysts seems to be the requirement for severe 

pretreatment conditions to allow the formation of the basic sites over the catalysts surface. 

Indeed, in the most of the cases, the surface of the synthesized heterogeneous basic 

systems are covered by simple molecules such as carbon dioxide, water, oxygen, etc. thus, 
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the generation of the basic sites usually requires an high-temperature pretreatment to 

remove the mentioned adsorbed molecules. Furthermore, the nature of the basic sites 

generated by the removal of the adsorbed molecules mainly depends by the desorption 

temperature; the lower is the desorption temperature the lower is the strength of the 

generated basic site. For instance, the molecules weakly interacting with the surfaces are 

desorbed at lower pretreatment temperatures, and those strongly interacting are desorbed 

at higher temperatures. The sites that appeared on the surfaces by pretreatment at low 

temperatures are suggested to be different from those that appeared at high temperatures. 

If simple desorption of molecules occurs during pretreatment, the basic sites that appeared 

at high temperatures should be strong.  

However, rearrangement of surface and bulk atoms also occurs during pretreatment in 

addition to the desorption of the molecules, which is evidenced by a decrease in the 

surface area with an increase in the pretreatment temperature. 

 

Figure 3-1. Schematic representation of the low-coordinated atoms over the surface of an 

heterogeneous basic catalyst. 

Coluccia and Tench proposed a surface model for MgO (Figure 3-1)3. There exist several 

Mg-O ion pairs of different coordination numbers. Ion pairs of low coordination numbers 

exist at corners, edges, step or kink. The different strength and nature of the basic sites 

generated at the increase of the pre-treatment temperature could be related to the 

coordination degree of the atoms on the surface. However, the correspondence between 
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the catalytically active sites for different reaction types and the coordination number of 

the ion pairs is not definite yet.  

In the case of MgO, considered as an example, the ion pair of 3-fold Mg2+-3-fold O2-

(Mg2+
3C-O2-

3C) is most reactive and adsorbs carbon dioxide most strongly. To reveal the 

ion pair Mg2+
3C-O2-

3C the highest pretreatment temperature is required. At the same time, 

the ion pair Mg2+
3C-O2-

3C is most unstable and tend to rearrange easily at high 

temperature. Thus, the formation of these high active basic sites as the consequence of 

carbon dioxide desorption is in competition with their rearrangement to more stable 

coordination sites. 

Although the surface model shown in Figure 3-1 is proposed for MgO, the other metal 

oxide heterogeneous bases may be in a situation similar to that of MgO. The nature of 

basic sites varies with the severity of the pretreatment conditions for most heterogeneous 

basic catalysts.  

3.3. Catalytic application of heterogeneous basic catalyst 

In the next few pages an overall review of the main catalytic application of the 

heterogeneous basic catalysts is reported. Despite the era of the heterogeneous basic 

catalysis is young, numerous application have been developed in the recent years, creating 

always more appeal in the scientific community. The main reaction in which the 

heterogeneous basic catalysts have found application is reported as follows: 

- Double bond migration/alkene isomerization; 

- Dehydration and dehydrogenation reactions; 

- Hydrogenation reaction; 

- Amination reaction; 

- Dehydrocyclodimerization of conjugated diens; 

- Alkylation; 

- Aldol addition and condensation; 

- The Tishchenko Reaction; 

- Michael Addition; 

- The Wittig-Horner Reaction and Knoevenagel Condensation; 

- Synthesis of ag-Unsaturated Compound by use of methanol; 

- Meerwein-Ponndorf-Verley Reduction. 
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3.3.1. Double bond migration/alkene isomerization 

1-Butene isomerization to 2-butenes has been extensively studied over many 

heterogeneous basic catalysts to elucidate the reaction mechanisms and to characterize 

the surface basic properties. The reaction proceeds at room temperature or below over 

most of heterogeneous basic catalysts. Over MgO, for example, the reaction occurs even 

at 223 K if the catalyst is properly activated. The reaction mechanisms for 1-butene 

isomerization are shown in Scheme 3-14. The reaction starts by abstraction of allylic H 

by basic sites to form cis or trans forms of the allyl anion. In the form of the allyl anion, 

the cis form is more stable than the trans one. Therefore, cis-2-butene is predominantly 

formed at the initial stage of the reaction. A high cis to trans ratio observed for the base-

catalyzed isomerization is in contrast to the value close to unity for acid-catalyzed 

isomerization. The cis to trans ratio in 2-butenes produced could be used to judge whether 

the reaction is a base-catalyzed or acid-catalyzed one.  

 

Scheme 3-1. Reaction pathway for the 1-butene isomerization to cis-trans-2-butene mixture. 

The fundamental studies of 1-butene double bond isomerization over heterogeneous basic 

catalysts were extended to the double bond migration of olefins having more complex 

structures such as pinene, carene, protoilludene, illudadiene5,6,7. These olefins contain 

three-membered and four-membered rings. If acidic catalysts were used, the ring-opening 

reactions would easily occur, and the selectivities for double bond migration should 

markedly decrease. A characteristic feature of heterogeneous basic catalysts is a lack of 

C-C bond cleavage ability. Thus, the double bond migration selectively occurs without 

C-C bond cleavages over heterogeneous basic catalysts. This particular behavior showed 

by the basic catalysts represent an advantage in the case of thermal unstable olefins that 

can indeed isomerized at low temperature by means of heterogeneous basic catalysts 

preventing the degradation phenomena. For instance, because of this advantage, the 
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heterogeneous basic catalyst, Na/NaOH/A12O3, is used for an industrial process for the 

selective double bond migration of 5-vinylbicyclo[2.2.l]heptane8. 

Finally, the heterogeneous basic catalysts show to have another advantage in double 

bonds migration process compared to the acid systems. Indeed, in the isomerization of 

heteroatoms-containing olefins, such as nitrogen-containing, heterogeneous basic 

systems are much more efficient than the acidic ones. That feature of the basic systems is 

connected to the low interaction established between the basic active site and the 

heteroatoms, interaction that are strongly in the case of the acid catalysts and that bring 

to the catalysts inactivity9. 

3.3.2. Dehydration and dehydrogenation 

In general, alcohols undergo dehydration to olefins and ethers over acidic catalysts, and 

dehydrogenation to aldehydes or ketones over basic catalysts. In some cases, however, 

heterogeneous basic catalysts promote dehydration of alcohols in which the mechanisms 

and product distribution differ from those for acid-catalyzed dehydration. The 

characteristic features of base-catalyzed dehydration are observed for 2-butanol 

dehydration. The products consist mainly of 1-butene over the rare earth oxides10, ThO2
11, 

and ZrO2
12. This is in contrast to the preferential formation of 2-butenes over acidic 

catalysts. The initial step in the base-catalyzed dehydration is the abstraction of an H+ at 

C-1 and 2-butanol to form anion. Dehydration of 1-cyclohexylethanol to 

vinylcyclohexane has been industrialized by use of ZrO2 as a catalyst. In the dehydration 

of 2-alcohols to the corresponding 1-olefins over ZrO2, the selectivity for 1-olefins 

depends on the amount of Si contained in ZrO2 as an impurity. Indeed, silicon 

contamination in ZrO2 generate acidic sites. By treatment of ZrO with NaOH to eliminate 

the acidic sites, the byproducts of 2-olefins are markedly reduced and the selectivity for 

1-olefins is increased.  

3.3.3. Hydrogenation  

The use of the heterogeneous basic catalysts to catalyze hydrogenation reaction starts 

from the observation that MgO pretreated at 1273 K exhibits olefin hydrogenation 

activities13. The hydrogenation occurring on heterogeneous basic catalysts present 

fundamental differences with the classic hydrogenation performed with supported metals 

catalysts, supported transition metals or transition metals oxides. The main features of the 

base-catalyzed hydrogenation process are reported as follows: 



Chapter 3: Heterogeneous basic catalysis 

 

60 

 

1. A deep difference between the hydrogenation rate of olefins and conjugated-

dienes has been observed. The latter undergo into hydrogenation with a much 

higher rate compared to the olefins; furthermore, the main reduction product for 

the dienes hydrogenation consist in the olefin; 

2. The hydrogenation of conjugated dienes, such as 1,3-butadiene, takes mainly 

place as 1,4-hydrogen addition over the heterogeneous basic systems instead of 

the most common 1,2-hydrogen addition that occur over the classic hydrogenation 

catalysts. The main consequence is the preferable formation of 2-butenes over the 

basic systems while, with the conventional systems 1-butenes are the predominant 

products; 

3. There is retention of the molecular identity of the H atoms during the reaction. 

This means that either two the hydrogen atoms added to the olefin or diene 

molecule are provided from the same molecule of hydrogen that dissociates over 

the surface of the catalyst. 

Direct hydrogenation (or reduction) of aromatic carboxylic acids to corresponding 

aldehydes has been industrialized by use of ZrO2. Although the reaction mechanism is 

not clear at present, the hydrogenation and dehydration abilities, which are associated 

with the basic properties of ZrO2, seem to be important for promoting the reaction. The 

catalytic properties are improved by modification with the metal ions such as Cr3+ and 

Mn4+ ions. Crystallization of ZrO2 is suppressed and coke formation is avoided by 

addition of the metal ions14. 

3.3.4. Dehydrocyclodimerization of conjugated dienes 

Conjugated dienes such as 1,3-butadiene and 2-methyl-1,3-butadiene (isoprene) react 

over ZrO2 and MgO to yield aromatics at 643 K15,16. Heterogeneous basic catalysts other 

than ZrO2 and MgO scarcely exhibit appreciable activities. For the formation of aromatics 

from dienes, two kinds of mechanisms are possible. One involves the Diels-Alder reaction 

followed by double bond migration and dehydrogenation. The other involves anionic 

intermediates. Over MgO 1,3-butadiene mainly produces o- and p-xylenes, which will 

not be formed via the Diels- Alder reaction. On the other hand, over ZrO2, the main 

product from1,3-butadiene is ethylbenzene which will be formed via the Diels-Alder 

reaction. For instance, two mechanisms for dehydrocyclodimerization are shown in 
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Scheme 3-2: the former one, involving the Diels-Alder reaction, takes place over ZrO2 

while the anionic one takes place over MgO. 

 

Scheme 3-2. Mechanisms for dehydrocyclodimerization of conjugated dienes. 

 

3.3.5. Alkylation of aromatics compounds 

In general, alkylation of aromatics occurs at a ring position over an acidic catalyst, while 

side chain alkylation takes place over a basic catalyst. Toluene undergoes side chain 

alkylation with methanol to produce ethylbenzene and styrene over Cs+ ion-exchanged-

X-zeolite.The first step in this reaction is dehydrogenation of methanol to formaldehyde, 

which undergoes aldol type reaction with toluene to form styrene. Ethylbenzene is formed 

by hydrogenation of styrene. The basic sites in the zeolite catalyst participate in both the 

dehydrogenation of methanol and the aldol type reaction17. 

As mentioned in the previous chapter another reaction with several industrial application 

is the methylation of phenol that indeed could be classified as an alkylation of aromatic 

compound.The methylation of phenol and phenol derivatives has a high industrial 

relevance. 2,6-Xylenol is, for example, the monomer for the production of poly-(2,6-

dimethyl)phenylene oxide resin, 2-methylphenol (o-cresol) is the monomer for the 

synthesis of epoxycresol paints, 2,5-dimethylphenol is the intermediate for the synthesis 
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of dyes, antiseptics, and antioxidants, and 2,3,6-trimethylphenol is the starting compound 

for the synthesis of vitamin E. The products of ortho-methylation of phenol or anisole and 

of diphenols, such as guaiacol, are intermediates in the production of skin-protecting 

agents and food additives. 

The ring methylation of phenol to o-cresol is industrially carried out with methanol as 

alkylating agent over basic catalysts. Typical catalysts are (supported) alkali and alkaline-

earth metal oxides, (mixed) transition metal oxides, and combination of both. These 

catalysts show very high regioselectivity in the methylation of the aromatic ring as well 

as high chemo-selectivity with only minor amounts reacting via oxofunctionalization. 

In this field Cavani et al. have deeply studied the application of MgO as heterogeneous 

basic catalyst for the gas-phase methylation of phenol. As first pristine MgO is used for 

the determination of the overall reaction network through the performing of catalytic tests 

in different conditions of temperature, contact time and also varying the feed substrates; 

furthermore, IR spectroscopy and DFT calculation strategies have been applied to 

elucidate the real pathway18 (). 

 

 

Scheme 3-3. Overall reaction network for the gas-phase methylation of phenol over MgO 

catalyst. Adapted from [18] 



Chapter 3: Heterogeneous basic catalysis 

 

63 

 

Under conditions at which the extent of methanol dehydrogenation is low, i.e., low 

temperature, the main primary products of reaction are anisole and o-cresol. Under 

conditions more favorable for methanol dehydrogenation, anisole is no longer formed, 

and o-cresol becomes the only reaction product. 2,6-Xylenol forms in significant 

concentrations above 350°C and for high phenol conversion. The adsorption of phenol on 

MgO generates a phenolate species, and the energetically preferred mode of adsorption 

is on the corner site of MgO, with an almost orthogonal orientation of the aromatic ring 

with respect to the catalyst surface. 

The reaction between adsorbed phenolate and formaldehyde generates salicylic alcohol 

via hydroxymethylation, which is rapidly transformed to salicylic aldehyde. At low 

temperature and for very low conversions and short residence time, salicylic aldehyde is 

one of the primary reaction products. However, the aldehyde is very rapidly transformed 

into o-cresol. 

In a second moment the products distribution for the methylation process of phenol has 

been studied with mixed Mg/M/O oxides (M = Al3+, Fe3+, Cr3+). Introducing and host 

heteroatom in the structure of MgO both the acid-base and redox properties are affected 

and it has been demonstrated that this has a direct consequence on the reactivity in terms 

of products distribution. For instance, the change of these properties directly affect the 

methanol activation mechanism over the catalyst surface, changing the ability of the 

catalyst to de-hydrogenate the latter into formaldehyde, identified as the real alkylating 

agent. Mg/Cr/O and Mg/Fe/O show a typical basic/dehydrogenating catalytic reactivity, 

with high chemo- and regio-selectivity and the favor formation of o-cresol as main 

product. On the other hand, Mg/Al/O exhibits a catalytic behaviour quite similar to that 

shown by conventional Brønsted-type acid catalysts (e.g., zeolites) bringing to the 

formation of the O-methylation product, indeed, anisole is detected as main product19. 

 

 

 



Chapter 3: Heterogeneous basic catalysis 

 

64 

 

3.4. MgO and CaO: heterogeneous basic catalysts for biomass 

upgrading 

In the last years the heterogeneous basic catalysts have found several application in the 

field of biomass upgrade and renewable feedstock valorization. As just described in the 

section “2.2.2” heterogeneous systems with basic properties has been reported as high 

active catalysts for the catalytic transfer hydrogenation reaction for the upgrade of 

oxygenated building block produced from lignocellulose biomass treating.  

Another appealing process in which the heterogeneous basic catalysts have recently found 

always more application is the production of the FAME, fatty-acid-methyl-esters, 

considered one of the most valid alternative to the market diesel produced from the oil. 

Indeed, the non-food vegetable oil is considered one of the biomass resources and is used 

as a feedstock of an alternative to fossil diesel fuel. The alternative fuel, named as 

‘‘Biodiesel’’, consists of fatty acid methyl esters produced by the transesterification of 

vegetable oil with methanol20. In addition to the renewable nature peculiar to the biomass 

resources, biodiesel has another advantage of the good fuel properties: high flash point, 

good lubricity and so on21,22. Moreover, it was reported that emissions of both carbon 

monoxide and particulate was reduced by fueling the engine with biodiesel23,24,25.  

In 2003, European Community has decided to replace at least 5.75% of the yearly-

consumed fossil fuels with biofuels, by the year 2010. This decision accelerated the use 

of biodiesel and its production has been constantly growing. The total of biodiesel yearly 

produced in the world was 7.75 million metric tons in 200826. For the existent biodiesel 

production process, vegetable oil is transesterified with the help of homogeneous base 

catalysis of alkali hydroxide dissolved in methanol. The base-catalyzed transesterification 

is faster than the acid-catalyzed one for which sulfonic acid or p-toluenesulfonic acid is 

employed27. Furthermore, the reactants are accessible to the catalytic site in the 

homogeneous form. Thus, the existent biodiesel production process is characterized by 

the very fast transesterification. For instance, Freedman et al. reported that the yield of 

FAME produced from the transesterification of sunflower oil in the presence of 1% 

sodium hydroxide dissolved into methanol at the temperature of 333 K is above 90% in 

10 minutes28. 97% conversion of palm oil into its methyl esters is detected by the base-

catalyzed transesterification performed at 306 K for 1 h on a continuous-flow reaction 
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system29. It should be noted that methanol is the alcohol appropriate to biodiesel 

production from an economical and available point of view30. 

However, for the existent process the main drawbacks consist in the massive amount of 

the waste water, which is due to the purification to wash the homogeneous catalyst off 

the crude biodiesel with water. And besides, emulsification of biodiesel occurs during the 

purifying operation, which causes not only obstruction of the process operation but also 

loss of biodiesel. 

 

Scheme 3-4. General reaction pathway for the production of FAME from triglycerides. 

In this view, the use of heterogeneous basic catalysts could be a valid alternative for the 

FAME production process leading also to a decrease of the biodiesel production cost due 

to the easier recover and reuse of the catalyst. Oxides of magnesium and calcium (MgO 

and CaO) have been tried as solid base catalyst owing to their easy availability, low cost, 

and non-corrosive nature31. 

At the beginning the results obtained with MgO and CaO have been considered not-

comparable with those obtained in the same reaction conditions with the homogeneous 

systems. For instance, when both homogeneous and heterogeneous catalysts are tried for 

the transesterification of sunflower oil, NaOH (homogeneous catalyst) performed much 

better than MgO (heterogeneous catalyst) in terms of conversion. 100% conversion is 

reported to have been achieved in 8 h reaction time and 60°C with NaOH, while only 

11% with MgO31. The main reason of the low activity showed by the heterogeneous 

system has been attributed to the low surface area of MgO resulting of an high 

temperature pretreatment.  

More recently MgO has shown to possess catalytic activity for synthesis of biodiesel. A 

pioneering work on catalytic activity of MgO has been reported by Di Serio et al.32 where 

92% yield has been achieved using 12:1 methanol to oil molar ratio, 5.0 wt.% of the 

catalyst in 1 h. Dossin et al. reported that MgO is efficient in batch reactor at ambient 

temperature in the transesterification reaction with production of 500 tonne of biodiesel. 
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As heating is not required during batch process, and so the overall cost of production of 

biodiesel is reduced33. 

Furthermore, MgO supported over different mesoporous silicas (MCM-41, SBA-15, and 

KIT-6), ahows to be quite effective resulting in high conversion. For instance, MgO 

loaded on SBA-15 shows an interesting 96% of conversion in batch system at 220°C after 

5h34. 

Finally, the possibility to support alkaline metal hydroxides or carbonates over MgO, has 

been considered as a strategy for the production of an active basic heterogeneous catalysts 

for the synthesis of FAME. KOH loaded on MgO by wet impregnation method shows 

high conversion (99.36%) and yield (95.05%) of biodiesel from canola oil35. 

Like magnesium oxide, calcium oxide (CaO) has gained attention as heterogeneous basic 

catalyst for the development of biodiesel production process thanks to its low cost and 

easy preparation. However this simple basic oxide shows two main drawbacks that could 

negatively affect its industrial employment. Indeed, it is very sensitive to structural 

modification, and so to catalytic performance variation, depending on the calcination 

temperature. Furthermore, it shows several leaching problem due to its solubility in 

methanol, the most common alcohol used for the transesterification process31. 

Despite these problems. Huaping et al.36 used CaO as heterogeneous catalyst for biodiesel 

synthesis from Jatropha curcas oil. They demonstrate that an increase of the basic strength 

of the pristine CaO could be induced with a pre-calcination treatment with ammonium 

carbonate solution. This results, after a calcination at 900°C, in 93% of conversion of the 

oil to the biodiesel at the optimized conditions (70°C temperature, 2.5 h reaction time, 

1.5% catalyst amount, and 9:1 methanol to oil molar ratio). They also reported that an 

high calcination temperature is necessary for the decomposition of the calcium carbonate 

and for the formation of superficial crystalline structural defects that are crucial for the 

formation of calcium methyloxide which is a surface intermediate in the 

transesterification reaction. The catalyst is further reused three times with 92% 

conversion of jatropha oil37. 

Calcium oxide has also been tried in combination with other compounds to enhance its 

catalytic activity. For instance, wet impregnation combined with thermal treatment 

method is used to adhere aqueous solutions of calcium acetate on porous silica such as 

SBA-15, MCM-41, and fumed silica, and tried as catalyst for biodiesel development from 

castor and sunflower oils. CaO is incorporated on porous silica after drying and calcining 

at 60°C and 600°C, respectively. The siliceous support has been demonstrated to have an 



Chapter 3: Heterogeneous basic catalysis 

 

67 

 

important influence on the activity of the catalyst. Among the catalysts, SBA-15 

possessed highest thermal stability at a higher calcination temperature of 800°C and not 

suffer any structural modifications. CaO (14 wt.%) supported on SBA-15 is found to be 

most active for reaction and thermally resistant. High calcination temperature (800°C) 

has been reported to transform the calcite phase (CaCO3) and the calcium hydroxide into 

calcium oxide. An important finding by incorporation of CaO on silica is prevention of 

lixiviation of the active phase in methanol. CaO and carbonate particles adhere to the 

surface of the catalyst38. 

Finally, the alkaline metal doping (LiNO3, NaNO3, and KNO3) of CaO has been studied 

in order to evaluate an eventual synergetic effect. A correlation is observed between the 

base strength and the activity of the catalyst. Calcination of the catalyst results in decrease 

in the surface area of the catalyst from 10 to 1–2 m2/g. Higher surface area of the catalyst 

is not even desired as triglycerides are large molecules and would not be able to diffuse 

into the pores unless a mesoporous substrate is used. Conversion obtained from not-

calcined catalysts (LiNO3/CaO, KNO3/CaO, and NaNO3/CaO) showes to be 85%, 90% 

and 98%, respectively. With the calcined samples, the conversion reached 99–100%. 

Leaching of the catalyst has been observed also for these catalysts, representing one of 

the major constraint for their application as a heterogeneous catalyst39. 

Despite the main drawback consisting in the leaching of the active phase, economic 

assessment has also favored CaO as heterogeneous catalyst, which can be separated either 

by hot water purification process or vacuum distillation process when compared with the 

similar process adopted with homogeneous catalyst (KOH). It is observed that the 

manufacturing cost of biodiesel from waste cooking oil using CaO as catalyst 

manufactured in batch process with a plant capacity of 7260 tonne/year with hot water 

purification process and vacuum distillation process was 584 and 622 $/tonne of 

biodiesel. Using KOH as catalyst, the manufacturing cost of biodiesel with same plant 

capacity utilizing hot water purification process and vacuum distillation process is 598 

and 641 $/tonne of biodiesel40. 
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CHAPTER 4. Experimental section 

4.1. Introduction  

The aim of the present PhD thesis has been focused on the synthesis, characterization and 

evaluation of the catalytic activity of different heterogeneous catalysts, showing different 

properties, in the gas-phase catalytic transfer hydrogenation of furfural (FU) into the 

products deriving from the selective reduction of the carbonyl group furfuryl alcohol 

(FAL) and 2-methylfuran (MF). The catalysts used for this purpose can be divided in two 

main groups: FeVO4 based catalyst and basic oxides-based catalysts. In this section the 

synthetic procedure for the preparation of the different heterogeneous systems, the 

characterization techniques used for the determination of the properties of the solids as 

well as the characteristics of the lab-scale plant used for the catalytic tests and the analysis 

for the determination of conversion and yield will be described. 
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4.2. Raw materials and reagents 

Compound  Physical aspect 
M.W. 

(g/mol) 
Purity  Supplier  

NH4VO3 
Light yellow 

powder 
117 99 Alfa Aesar 

Fe(NO3)3 nona-hydrate Light brown solid 404 98 Sigma-Aldrich 

Mg(NO3)2 hexahydrate White solid 256 98 Alfa Aesar 

Ca(NO3)2 tetra-hydrate White solid 236 99 Sigma-Aldrich 

Li2CO3 White solid 74 99 Alfa Aesar 

Na2CO3 deca-hydrate White solid 286 99 Sigma-Aldrich 

Oxalic acid  White powder 90 99 Sigma-Aldrich 

NaOH White pellets 40 98 Sigma-Aldrich 

HNO3 Colorless liquid  63 
65% solution 

in water 
Fluka 

NH3 Colorless liquid 17 
33% solution 

in water 
VWR Chemicals 

2-furaldehyde (FU) Light yellow liquid 96 99 Sigma-Aldrich 

Furfuryl alcohol (FAL) Dark orange liquid 98 99 Sigma-Aldrich 

2-methylfuran (MFU) Yellow liquid 82 99 Sigma-Aldrich 

2,5-dimethylfuran (DMF) Dark yellow liquid 96 99 Sigma-Aldrich 

2-furyl methyl ketone Brown solid 110 99 Sigma-Aldrich 

(±)-1-(2-Furyl)ethanol Colorless liquid 112 99 Sigma-Aldrich 

Trifluoroacetaldehyde 

methyl hemiacetal 
Colorless liquid 130 99 Alfa Aesar 

Methanol  Colorless liquid 32 100 VWR Chemicals 

Cyclopentanone (CP) Colorless liquid 84 99 Sigma-Aldrich 

Acetonitrile Colorless liquid 41 99 VWR Chemicals 

Acetone Colorless liquid 58 99 VWR Chemicals 

2-propanol Colorless liquid 60 99 VWR Chemicals 

CH2O Colorless liquid 30 

37% in water 

solution with 

10÷12% of 

methanol 

Sigma-Aldrich 

Table 4-1. List of the main raw materials and reagents used. 
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4.3. Catalysts preparation 

The preparation of the catalysts could be divided into two main procedure depending on 

the type of catalyst: 

- FeVO4 bulk catalyst; 

- Heterogeneous basic-based catalysts. 

4.3.1. Preparation of bulk FeVO4 

The FeVO4 catalyst has been prepared by co-precipitation from an aqueous solution 

containing the corresponding metal precursors, to obtain an atomic ratio Fe3+/V5+ equal 

to 1. For the synthesis of 20 g FeVO4, a solution containing 47.32 g of Fe(NO3)3*9H2O 

(Sigma Aldrich, 99% purity) in 105 ml of distilled water is usually prepared. A second 

solution containing 13.70 g NH4VO3 (Sigma Aldrich, 99% purity) in 105 ml of distilled 

water is prepared and added dropwise under vigorous stirring to the Fe solution. The pH 

of the resulting solution is then adjusted to the value of 6.8 with an ammonia solution 

(14%) to precipitate the FeVO4 precursor. After 1 h of aging under stirring, the resulting 

precipitate is filtered and washed with an excess of water and dried overnight at 110°C. 

Finally, dried solid is ground and calcined at 650°C in static air for 3 h in order to form 

the crystalline structure of the mixed iron-vanadium catalyst. 

4.3.2. Preparation of heterogeneous basic-based catalysts 

The list of the catalysts prepared and grouped in this type of heterogeneous catalyst 

include numerous systems such as: MgO, CaO, mixed Mg/Fe/O and Ta2O5 supported on 

MgO. 

Pristine MgO and the mixed Mg/Fe/O have been prepared by thermal treatment of 

hydrotalcite-like precursors. The latter has been synthesized by precipitation, at 

controlled pH, temperature and stirring rate, from an aqueous solution containing the 

corresponding metal nitrates Mg(NO3)2·6H2O and Fe(NO3)3·9H2O, Sigma Aldrich) into 

a solution of Na2CO3. The use of the carbonate is necessary in order to balance the excess 

of positive charge in the hydrotalcite-sheet deriving from the replacement of Mg2+ cations 

with Fe3+ cations. Lastly, the filtered samples are dried at 120 °C overnight and then 

calcined in air at 500 °C for 6 h. The precursors have been synthesized using a Mg2+/Fe3+ 

molar ratio equal to 2, which is within the range of values at which the corresponding 

hydrotalcite-like material is formed. 
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For the preparation of the Lithium-doped MgO catalysts the wet impregnation method 

has been used. First the high surface MgO is synthesized following the procedure 

described above. In a second moment a water solution of Li2CO3 has been prepared, the 

amount of the lithium precursor dissolved has been calculated in order to prepare different 

catalysts with a weight percentage of Li in the range between 1 and 10. Once dissolved 

the metal precursor the high surface MgO, or the commercial one, is introduced into the 

solution and stirred for two hours. Then the solvent is eliminated by-means of a rotavapor, 

the resulting solid has been dried overnight at 120°C and finally calcined in static air at 

500°C. 

4.4. Catalyst characterization 

BET specific surface area. The BET surface area of catalysts has been determined 

by means of N2 absorption–desorption at liquid N2 temperature, using a Sorpty 1750 

Fison instrument. 0.3 g of the sample is used for the measurement, and the sample is 

outgassed at 150°C before N2 absorption. 

X-ray diffraction analyses (XRD). XRD powder patterns of the catalysts have been 

recorded with Ni-filtered Cu Kα radiation (λ = 1.54178 Å) on a Philips X'Pert vertical 

diffractometer equipped with a pulse height analyzer and a secondary curved graphite-

crystal monochromator. The acquisition of the diffractograms have been performed in the 

2θ degree window between 5÷80° with 0.1° steps each 2 seconds. 

Thermogravimetric/differential thermal analyses (TGA/ DTA). TGA/DTA 

analysis of fresh and spent catalysts have been carried out using a SDT Q 600 instrument, 

to identify the amount of heavy compounds absorbed on the catalyst surface. 5-10 mg of 

sample are typically used, from room temperature up to 900°C, with a heating rate of 

10°C min-1 in air or in nitrogen depending on the catalyst. 

Raman spectroscopy. Laser Raman spectra have been recorded at room temperature 

using a Renishaw 1000 spectrometer equipped with a Leica DLML microscope (5x, 20x, 

50x lenses were used) and a CCD detector. Samples are excited with a diode laser beam 

(782 nm or 514 nm). Raman spectra have been recorded in the spectral window 500-2000 

cm-1. 
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Atomic absorption. The elementary analysis has been carried out with a VARIAN 

SpectrAA 100 (equipped with a graphite tube atomizer); the solutions resulting from the 

mineralization process performed with hot aqua regia on both fresh and spent catalysts 

have been analysed to determine the Fe/V ratio in the mixed iron-vanadium-based 

catalysts. 

In-situ DRIFTS (Diffuse Reflectance Infrared Fourier Transform 

Spectroscopy) experiment with mass spectrometer. The IR apparatus used is a Bruker 

Vertex 70 with a Pike DiffusIR cell attachment. Spectra have been recorded using a MCT 

detector after 128 scans and 2 cm-1 resolution. The mass spectrometer used is an EcoSys-

P from European Spectrometry Systems. In most cases the catalyst is loaded into the 

sample holder and the cell is closed and inserted into the DRIFT apparatus. A 

pretreatment up to 320-450°C in helium flow is then performed to remove any molecules 

adsorbed on the material, mainly carbon dioxide and water. The sample is then cooled 

down to 85°C and the spectra of the pure catalyst is recorded and used as a background 

for the following measurement. In particular the DRIFT characterization has been applied 

to determine the interaction between methanol and the FeVO4 catalyst. A first set of 

experiments have been performed at 85°C by feeding methanol in a helium flow and 

vaporising it using heating strips. Then methanol is stopped and only helium is flowed 

inside the IR cell. This way, the low-temperature adsorption and desorption process has 

been monitored. The second set of experiments is performed with a low-temperature 

adsorption and a programmed temperature desorption during which the following 

temperatures have been monitored: 125°C, 175°C, 225°C, 275°C, and 320°C. 

Thermogravimetric-Mass spectrometry desorption of n-propylamine (NPA 

TGA-MS). NPA TGA-MS analysis have been carried out on the fresh catalysts with xxx 

instrument in order to quantify the total amount of acid sites. The irreversible adsorption 

of light amines, such as n-propylamine, represents an alternative method to the most 

common NH3-TPD for the determination of the total amount of the acid sites. 

Nevertheless, depending on the desorption mechanism of NPA, information related to the 

strength or to the Lewis/Bronsted nature of the sites could be obtained. Generally, 25-30 

mg of powder were saturated with liquid n-propylamine for 30 minutes; after that the 

sample was treated overnight in a vacuum oven at 30°C in order to remove the excess of 

physisorbed NPA. Finally, the sample was heated from 40 to 800°C (10°C/min) in a 
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nitrogen flow (40 ml/min). The exiting stream from the TGA was then transferred to the 

MS through an heated line. 

Acrylic acid irreversible adsorption (A.A. ADS). The A.A. ADS, as well as for the 

irreversible adsorption of NPA, represents an alternative method to the most common 

CO2-TPD for the determination of the total basic sites of a catalyst. In particular this 

method have been found suitable for the hydrotalcite-type-precursor derived-mixed 

oxides for which the formation of carbonate species as a consequence of the treatment in 

CO2 stream is well known. Generally 20-40 mg of powder was added to 20 ml of ca. 20 

mM acrylic acid solution in cyclohexane. The adsorption was performed for 4 h in closed 

vessels, after that the material was filtered off using syringe filters (Chromafil, PTFE, 

pore size 0,2 µm). Concentration of acrylic acid in the filtrate was determined by-means 

of HPLC analysis using an Agilent Technologies 1260 Infinity instrument equipped with 

a DAD UV-Vis detector and Aminex HPX-87H 300 mm x 7.8 mm column, using a 0,005 

M H2SO4 solution in water as mobile phase. 

Temperature programmed Desorption-Reduction-Oxidation (TPDRO). The 

reducibility behavior, as well as the total acidity or basicity of the catalysts were 

determined using a TPD/TPR/TPO Micromeritics instrument equipped with a MKS MS 

Spectrometer. Generally 15-30 mg of catalyst were pretreated up to 500°C under He flow. 

After cooling down to 50°C, a mixture of 5% H2 or 5% O2 in He was used for the TPR-

TPO experiments; after a stabilization time of 20 minutes the temperature was increased 

from 50 to 800°C (10°C/min) and maintained at 800°C for 30 minutes. For the NH3-TPD 

and CO2-TPD experiment the sample was cooled down to 100°C and 40°C respectively 

and the adsorption of the probe molecule was performed for 1 h flowing a mixture of 10% 

NH3 or 5% CO2 in He. Then, He flow was used for 30 minutes at the adsorption 

temperature in order to remove the excess of physisorbed molecule; finally the 

temperature was increased up to 800°C (10°C/min) and maintained at 800°C for 30 

minutes. 

4.5. Gas-phase catalytic tests 

Catalytic tests have been conducted in a continuous-flow fixed-bed micro-reactor (Pyrex, 

length 38 cm, internal diameter ⅓ inch) (in Scheme 4-1 it is reported the flow-sheet of 

the entire plant used to perform the catalytic tests). The catalyst (30-60 mesh particles) is 
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usually placed into the reactor in a quantity appropriate for changing the contact time 

from 0.01 to 2.0 s, and then heated to the desired reaction temperature (200-500°C) under 

N2 flow (26÷54 ml min−1). The catalytic reaction starts by the vaporization of the reagents, 

usually methanol and FU, in a 10/1 molar ratio using nitrogen as the carrier gas. FU has 

been purified via azeotropic distillation prior to being feed into the flowing gas stream in 

order to avoid the blockage of the feeding stainless-steel pipe due to the deposition of the 

oligomers formed during the storage. The total volumetric inlet flow rate has been kept 

constant at 60 ml min−1 and the molar concentrations of FU, methanol, and nitrogen are 

respectively 1, 10, and 89% in the case of the catalytic tests performed with the mixed 

iron-vanadium oxide while, for the basic-based materials the molar concentration are 

respectively 5, 50 and 45%. In all cases, results are taken after 1 h reaction time. Analysis 

of reactants and products have been carried out as follows: the outlet stream are scrubbed 

for 1 h in cold acetonitrile, which is maintained at -26°C by a F32 Julabo thermostat. The 

condensed products are then analyzed by means of HPLC, using an Agilent Technologies 

1260 Infinity instrument equipped with a DAD UV-Vis detector and an Agilent 

POROshell 120 C-18 column (see Figure 4-1 for an example of the acquired 

chromatogram). Non-condensable gases (CO, CO2, CH4 and H2) have been analyzed on-

line with a PerkinElmer Clarus 500 gas chromatograph equipped with a TCD detector 

and a Carbosphere® 80/100 mesh column. FU Conversion, product selectivity, and C loss 

have been expressed as follows: 

𝐹𝑢𝑟𝑓𝑢𝑟𝑎𝑙 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 =
�̇�𝑓𝑢𝑟𝑓𝑢𝑟𝑎𝑙

𝑖𝑛 − �̇�𝑓𝑢𝑟𝑓𝑢𝑟𝑎𝑙
𝑜𝑢𝑡

�̇�𝑓𝑢𝑟𝑓𝑢𝑟𝑎𝑙
𝑖𝑛

 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
�̇�𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑜𝑢𝑡

�̇�𝑓𝑢𝑟𝑓𝑢𝑟𝑎𝑙
𝑖𝑛 − �̇�𝑓𝑢𝑟𝑓𝑢𝑟𝑎𝑙

𝑜𝑢𝑡
 

𝐶 − 𝐿𝑜𝑠𝑠 = 100 − ∑ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑖

 

Preliminary tests have conducted, making it possible to exclude any problems originating 

from interparticle and intraparticle diffusion limitations. More specifically, some catalytic 

tests have been conducted by changing the catalyst particle size for the same catalyst 

weight/inlet flow ratio; no effect on catalyst performance is observed. The catalytic tests 

performed while keeping the contact time constant but doubling or halving the total 
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volumetric flow and catalyst volume, compared to the conditions typically used, showed 

no performance changes.  

 

Scheme 4-1. Gas-phase plant flow sheet. 

 

Figure 4-1. Example of HPLC-chromatogram acquired monitoring two different wavelength 

(253 and 215 nm). 
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CHAPTER 5. Catalytic transfer hydrogenation 

over heterogeneous basic-based catalysts 

 

5.1. Introduction  

In the present section of the work the results concerning the gas-phase catalytic transfer 

hydrogenation of furfural (FU) to the corresponding unsaturated alcohol (furfuryl 

alcohol-FAL) and to the de-oxygenated 2-methylfuran (MF) by-means of methanol as H-

transfer reactant and basic oxides-based catalysts have been presented and discussed. 

Both catalytic performances and details regarding the reaction mechanism for the 

transformation of FU over different basic-based systems have been considered in order 

to find a correlation between the catalytic activity and the catalyst properties such as acid-

base strength, redox or de-oxygenation properties and de-hydrogenation. The latter 

properties could be introduced or tuned for a pristine basic catalyst thanks to the 

introduction of a guest-metal-heteroatoms into the lattice of the basic system (e.g. 

introduction of Fe3+ or Al3+ into the structure of MgO through the synthesis of the 

corresponding hydrotalcite-type precursor). Nevertheless, the basic material could be 

used as a support for the deposition of a metal oxide having different properties.  

As a matter of fact, in the chapter regarding the catalytic transfer hydrogenation (CTH) 

as a tool for the hydrogenation of the biomass-derived building blocks, it has been 

highlighted that basic, acid or systems with both properties have been considered the most 

active and promising for the considered reaction due to the ability to catalyze the 

formation of the six-membered ring transition state that then evolve into the formation of 

the hydrogenation products. 

In the present PhD project, the investigation of basic-based systems in the CTH reaction 

for the reduction of biomass-derived building block has been deeply studied both in the 

liquid-phase and in the gas-phase lab-scale plant layout. In particular the catalytic activity 

of alkaline-earth metal oxides and mixed or supported transition metal oxides over 

alkaline-earth metal oxides such as MgO, CaO, mixed Mg/M/O (M = Fe or Al) and LiCO3 

supported over MgO have been studied. 
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Scheme 5-1. Selective reduction of FU to FAL by-means of CTH with methanol. 

The first work in this field concerned the liquid-phase selective reduction of FU to FAL 

using methanol as hydrogen source and high surface MgO as heterogeneous basic catalyst 

(Scheme 5-1). In that work we demonstrated that MgO acted as high active and selective 

catalyst for the reduction of the carbonyl group of FU. Indeed, in the proper reaction 

condition, 100% of FU conversion with 100% of FAL yield were obtained1. 

Figure 5-1 shows the effect of the amount of catalyst loaded in the reactor on FU 

conversion and FAL selectivity. Increasing the amount of MgO progressively increased 

the conversion of the substrate up to the total conversion obtained loading 1 g of MgO; 

on the other hand the catalyst showed to be totally selective toward FAL independently 

from the mass of catalyst. 

 

Figure 5-1. FU conversion and FAL selectivity as a function of the mass of MgO loaded. Reaction 

conditions: 50 ml of CH3OH, 1.21 mmol of FU, T = 160°C, t = 3h. Legend: FU conversion (♦), 

FAL selectivity (■). 

The high surface area MgO (~200 m2/g) showed also to be totally selective toward the 

formation of FAL as the only reduction product in the catalytic tests performed changing 

the reaction time. Indeed, at the increase of the latter a progressive increase of both the 
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substrate conversion and the FAL yield was obtained; furthermore, for all the tested 

reaction time, the registered FAL yield corresponded always, within the experimental 

errors, with the values of the conversion (Figure 5-2). Moreover, a comparison between 

the synthesized high surface area MgO and the commercial MgO, having a very low 

surface area (~10m2/g), allowed to demonstrate that the surface area, and so the number 

of the basic site, was a crucial parameter that directly affected the catalyst performance 

of basic catalyst in the CTH reaction. Thus, the comparison between the trends reported 

in Figure 5-2, clearly showed that the CTH reaction performed with the high surface 

MgO was much faster if compared to that performed with the commercial sample 

highlighting another important feature of the synthesized catalyst. 

 

Figure 5-2. FU conversion and FAL yield as a function of the reaction time for the high surface 

area MgO (bold line) and the commercial low surface area MgO (dotted line). Reaction 

conditions: 50 ml of CH3OH, 1.21 mmol of FU, T = 160°C, t = 0 ÷ 180 min, 1 g of catalyst. 

Legend: FU conversion (▬), FAL yield (▬). 

Nevertheless, the synthesized high surface area MgO showed a relevant drawback related 

to the reusability tests. Indeed, as reported in Figure 5-3, the catalyst showed a non-

marginal loss in the catalytic activity in the second use performed after a simple 

separation and drying procedure. That loss in the activity was demonstrated to be related 

to the formation, over the surface of the catalyst, of carbonaceous deposits deriving from 

methanol degradation reactions. TGA-DTA analysis over the sample used after the 
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second use showed a weight loss in the range 200÷350°C coupled with an exothermic 

peak, confirming the hypothesis of carbonaceous compounds formation. Furthermore, a 

second use of the catalyst performed after a re-calcination treatment in static air at 450°C, 

allow to remove the carbonaceous compounds formed and recover almost all the catalytic 

performance in FU reduction. 

 

Figure 5-3. FAL yield in the 2nd use as a function of the post-reaction treatment performed on the 

spent catalyst. Reaction conditions: 50 ml of CH3OH, 1.21 mmol of FU, T = 160°C, t = 3h, 1 g 

of catalyst. 

In a second moment, the liquid-phase catalytic transfer hydrogenation of FU to FAL by-

means of methanol as hydrogen source has been examined with Ca-based materials. In 

that second work it was demonstrated that CaO, despite its very low surface area 

(2,4m2/g), was highly active and stable in the studied reaction. Indeed, in the proper 

reaction conditions, 100% of FU conversion with 100% of FAL yield were obtained. 

CaO showed to be very active at a reaction temperature higher if compared to that at 

which MgO showed its maximum activity. Indeed, the best catalytic performance was 

obtained at 210°C instead of 160°C, temperature required for MgO.  

Another difference between the catalytic activities of the two pure basic oxides consisted 

in the trend of FU conversion and FAL yield as a function of the reaction time. As reported 

above, both the FU conversion and the FAL yield increased together with corresponding 

values with MgO. On the other hand, these trends showed to be very different in the case 

of CaO (Figure 5-4). The latter catalyst showed an high substrate conversion (> 80%) for 

a very short reaction time coupled with an initial nil production of FAL. Then, the 
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conversion slightly increased up to the total value registered after three hours while, the 

yield in FAL, progressively increased up to the final value of 93%. The deep difference 

between the trend of conversion and yield as a function of the reaction time was 

demonstrated to be ascribable to an initial rapid, but reversible, formation of furan 

oligomeric species as a consequence of the interaction between FU and catalyst. This was 

confirmed both from ESI-MS analysis that revealed the presence of high molecular mass 

species in the low-reaction time solution and also from the color of these. In the box of 

Figure 5-4 is reported the comparison between the colors of the reaction solutions 

obtained increasing the reaction time; it is clear that at low reaction time the solution was 

colored due to the presence of oligomeric species that is well known to have higher UV-

VIS absorption thanks to the high number of conjugated double bonds deriving from the 

condensation of several furanic molecules2. 

 

Figure 5-4. FU conversion and FAL yield as a function of the reaction time for the CaO catalyst. 

Reaction conditions: 50 ml of CH3OH, 1.21 mmol of FU, T = 210°C, t = 0 ÷ 180 min, 1 g of 

catalyst. Legend: FU conversion (▬), FAL yield (▬). In the box were reported the reaction 

solutions obtained at different reaction time. 

Finally, it has to be highlighted that CaO exhibited an important feature if compared to 

MgO. Indeed, we reported that for the latter it was possible to recover almost all the 

catalytic activity in a second use only treating it in static air at 450°C, procedure needed 

to guarantee the removal of carbonaceous compounds formed on the catalyst surface. On 

the other hand, CaO exhibited an higher stability considering that with a simple drying 
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work-up procedure it was possible to recover almost all the catalytic activity up to the 5th 

use (Figure 5-5). 

 

Figure 5-5. Stability tests for CaO catalyst. Reaction conditions: 50 ml of CH3OH, 1.21 mmol of 

FU, T = 210°C, t = 3h, 1 g of catalyst. Legend: FU conversion (♦), FAL selectivity (■). 

Then, the evaluation of the activity of these heterogeneous basic catalysts for the CTH of 

FU by-means of methanol as hydrogen source, has been continued with the development 

of a continuous gas-phase lab-scale plant. The possibility to shift the catalytic transfer 

hydrogenation process to a continuous plant was very attractive from an industrial scale-

up point of view. Indeed, passing from a discontinuous liquid-phase process to a 

continuous gas-phase set-up, an intrinsic higher productivity could be reached; in a 

second view, it could also be possible to evaluate the catalytic performance of the 

different heterogeneous catalysts at higher temperature. The liquid-phase process showed 

some constrain due to the high autogenic pressure of methanol reached inside the batch 

reactor at the increase of the reaction temperature (~55 bar at 210°C). 

In this view the catalytic activity of pristine MgO and that of a mixed Mg/Fe/O, obtained 

by the thermal decomposition of the hydrotalcite-like precursor (molar ratio Mg2+/Fe3+ 

equal to 2) has been studied as first example. Then the catalytic activity of the pristine 

CaO basic catalyst has been evaluated.  
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Scheme 5-2. Gas-phase catalytic transfer hydrogenation of FU to FAL and MF. 

In the vapor-phase catalytic tests performed with the MgO-based catalysts, FAL and MF 

were the main products detected in the reaction with FU (Scheme 5-2); some 

cyclopentanones (CPs) were identified at very high temperatures (450–500 °C). These 

by-products resulted from FU rearrangement that occurs under reducing conditions and 

was previously observed by Hronec and co-workers3,4 in their studies on FU 

hydrogenation. 

 

Figure 5-6. Effect of reaction temperature on FU conversion and product selectivity with the 

MgO catalyst. Feed composition: 5% FU, 50% CH3OH, 45% N2; pressure of 1 atm, overall gas 

residence time of 1,1 s, reaction time of 1 h. Legend: FU conversion (■), FAL selectivity (■), MF 

selectivity (■), C-Loss (■). 

With pristine MgO, at low temperature (250 °C), the results obtained in liquid phase were 

confirmed; the catalytic transfer hydrogenation occurred selectively and FAL was the 

only molecule produced. 

No products of ring hydrogenation or decarbonylation were detected. Moreover, although 

formaldehyde was supposed to be initially produced, it was never detected in the present 

experiments; therefore, in addition to the main reaction involving FAL formation, the 
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process was accompanied by the decomposition of formaldehyde to CO, CO2, CH4 and 

H2, which were the only co-products detected in the stream exiting from the reactor. 

At the increase of the reaction temperature (Figure 5-6) an increase of FU conversion 

from the initial value of ~55% to the ~90% registered at 500°C. Concerning the products 

distribution, a progressively decrease of FAL selectivity was registered increasing the 

reaction temperature. Parallel, from 380°C, MF started to be produced reaching a 

maximum selectivity of ~40% registered at 500°C; unfortunately increasing the reaction 

temperature increased also the amount of heavy carbonaceous compounds formed on the 

catalyst surface due to thermal degradation of the furanic species involved in the reaction. 

Since the catalyst showed to be totally selective toward FAL, 250°C has been chosen as 

the optimal reaction temperature at which the stability of pristine MgO was evaluated. 

Monitoring the catalytic performances for six hours it was demonstrated that the 

formation of carbonaceous species deriving from methanol degradation reactions caused 

a slight deactivation of the catalysts during the monitored time on stream; TGA-DTA 

analysis performed on the spent catalyst confirmed the presence of C-species. Despite 

this deactivation, decrease of conversion from 54 to 35%, the catalyst showed to be 

always totally selective toward FAL5 (Figure 5-7). 

 

Figure 5-7. Effect of reaction time on FU conversion and FAL selectivity with the MgO catalyst. 

Feed composition: 5% FU, 50% CH3OH, 45% N2; pressure of 1 atm, T = 250°C, overall gas 

residence time of 1,1 s. Legend: FU conversion (♦), FAL selectivity (■). 
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Then, the catalytic behavior of a mixed Mg/Fe/O has been studied in the gas-phase 

catalytic transfer hydrogenation of FU using methanol as hydrogen source. The 

introduction of iron into the lattice of MgO allowed us to tune the acid-base properties of 

the catalyst, introducing also de-hydrogenating and de-oxygenating characteristics. The 

mixed iron-magnesium oxides showed to be active in the CTH reaction but the products 

distribution was deeply different to that obtained with pristine MgO considering that MF 

was always detected as the main reduction product instead of FAL. Indeed, as showed in 

Figure 5-8, FU conversion reached a maximum at 380°C (~93%), temperature at which 

the mixed oxide showed also an 80% of selectivity in MF. 

 

Figure 5-8. Effect of reaction temperature on FU conversion and product selectivity with the 

Mg/Fe/O catalyst. Feed composition: 5% FU, 50% CH3OH, 45% N2; pressure of 1 atm, overall 

gas residence time of 1,1 s, reaction time of 1 h. Legend: FU conversion (■), FAL selectivity (■), 

MF selectivity (■), C-Loss (■). 

Thus, under our conditions, it has been demonstrated that MgO easily carried out the 

reduction of FU to FAL via the MPV reaction, confirming the data obtained in the liquid 

phase. In addition, the catalytic activity of MgO for the hydrogenolysis of FAL to MF is 

significantly enhanced with the addition of Fe. In particular, at 380 °C, MF selectivity 

increases from 2 to 79%. The previously reported characterization of Mg/Fe/O6 indicated 

that this catalyst shows Lewis-type acid features, which were associated with the presence 

of a guest Fe3+ metal cation. Moreover, this material showed a strong dehydrogenating 

capacity. Therefore, we demonstrated that the excellent performance of Mg/Fe/O in FU 
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reduction to MF may be correlated with its higher dehydrogenation properties7 and Lewis 

acidity, both properties having been introduced in MgO because of Fe addition.  

Concerning the stability, the catalytic activity of the mixed iron magnesium oxide has 

been evaluated increasing the reaction time at the optimal reaction temperature of 380°C, 

condition at which both FU conversion and MF production were maximized. The iron 

containing system showed a deep deactivation due to the formation of heavy 

carbonaceous species over the catalyst surface; that phenomena brought also to a 

differentiation in the products distribution. Indeed, during the six monitored hours the 

conversion dropped down to the initial value of 93% to 24%; parallel the selectivity in 

MF decreased while that of FAL progressively increased (Figure 5-9). 

 

Figure 5-9. Effect of reaction time on FU conversion and product selectivity with the Mg/Fe/O 

catalyst. Feed composition: 5% FU, 50% CH3OH, 45% N2; pressure of 1 atm, T = 380°C, overall 

gas residence time of 1,1 s. Legend: FU conversion (♦), FAL selectivity (■), MF selectivity (▲), 

C-Loss (●). 

Despite the deep deactivation showed, some regeneration tests with the mixed iron-

magnesium catalysts have been performed in order to verify if an in-situ thermal treatment 

in air at 450°C for 2 h could be enough to promote the removal of the carbonaceous 

species formed and recover the initial catalyst activity. The data reported (Figure 5-10) 

indicate that the treatment led to an almost complete recovery of the original catalytic 

performance. The major variation in activity was shown after the 1st use; after the 2nd use, 
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in fact, both FU conversion and MF selectivity at the start of the next cycle were similar 

to those observed during the previous cycle. 

 

Figure 5-10. FU conversion and MF selectivity in the regeneration tests performed with the mixed 

Mg/Fe/O catalyst. Feed composition: 5% FU, 50% CH3OH, 45% N2; pressure of 1 atm, T = 

380°C, overall gas residence time of 1,1 s. Legend: FU conversion (♦), MF selectivity (■). 

Summing up the initial part of the work concerning the use of the heterogeneous basic-

base catalysts for the catalytic transfer hydrogenation of FU to the corresponding reduced 

products using methanol as hydrogen transfer reactant it could be briefly concluded that: 

- Pristine MgO and CaO showed to be very active and selective toward the 

formation of FAL as the only reduction product in the liquid-phase process. For 

CaO it was demonstrated that an higher reaction temperature was required to reach 

the maximum activity, 210°C instead of 160°C used with MgO. On the other hand 

CaO showed an higher stability in the recycle tests; a simple drying procedure 

showed to be enough in order to recover almost all the activity for 5 following run 

while, with MgO, a re-calcination treatment at 450°C in air was necessary to 

remove C-species; 

- Pristine MgO confirmed, also in the gas-phase tests, to be active and selective 

toward FAL as the only reduction product at low temperature (250°C). On the 

contrary, the products distribution obtained with the Mg/Fe/O system was 
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significantly different, with prevailing 2-methylfuran formation when the reaction 

was carried out between 300 and 400°C. 

Taking into the background concerning the activity of the reported heterogeneous basic 

catalysts described above, the activity of pristine CaO in the gas-phase CTH of FU will 

be described in detail in the next section of the present work. In particular, the primary 

aim to test CaO in the continuous set-up layout was that to evaluate if the higher stability 

showed in the liquid phase tests, compared to that of MgO, was maintained also in the 

vapor-phase. 

In a second moment, a detailed paragraph will be dedicated to a depth study of the reaction 

mechanism, with particular regard to the MF formation pathways on the base of the 

catalyst properties such as acid-base strength and de-hydrogenating/de-oxygenating 

features. Catalysts characterization and catalytic tests performed feeding different 

hydrogen sources have been used as a general strategy to gain information regarding the 

reaction mechanism. 
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5.2. Gas-phase catalytic transfer hydrogenation of FU with 

bulk CaO 

In this section of the present work the catalytic activity of the heterogeneous Ca-based 

catalysts in the gas-phase catalytic transfer hydrogenation of FU by-means of methanol 

as hydrogen source have been described. 

 

5.2.1. Bulk features of the catalyst 

The CaO catalyst was obtained by thermal treatment of the synthesized CaCO3 precursor. 

The latter, as described in the experimental section, was produced from the precipitation 

at controlled pH, temperature and stirring of the metal precursor (Ca(NO3)2) into a CO3
2- 

solution. In order to obtain the formation of the crystalline phase of CaO the precursor 

was calcined in static air at different temperature: 500°C, 700°C and 900°C. 

Calcination 

Temperature 

(°C) 

Crystalline 

phase 

(XRD) 

SSA 

m2/g 

Total 

basicity 

(mmol/g)a 

Total 

basicity 

(mmol/g)b 

CO2 T 

desorption 

(°C) 

Total 

acidity 

(mmol/g)c 

Total 

acidity 

(mmol/g)d 

120 

CaCO3 

(Vaterite + 

Calcite) 

1,7 0 - - 0 0 

500 
CaCO3 

(Calcite) 
1,4 0,22 - - 0 0 

700 
CaO 

(Lime) 
2,4 2,57 2,49 700 0 0 

900 
CaO 

(Lime) 
2,3 1,10 1,13 700 0 0 

Table 5-1. Main features of the catalysts depending on the calcination temperature. 

a. Determined by irreversible adsorption of acrylic acid; 

b. Determined by CO2-TPD; 

c. Determined by irreversible adsorption of n-propylamine (NPA); 

d. Determined by NH3-TPD. 

Table 5-1 summarized the main features of the catalysts obtained calcining the 

synthesized precursor at different temperature. All the prepared samples showed a very 

low specific surface area, lower than 5m2/g; values in agreement with those reported in 
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literature in several works employing CaO as solid base catalyst for bio-refinery process 

such as the methanol transesterification reaction of triglycerides to produce bio-diesel 

additives such as the fatty acid methyl esters (FAME)8,9. In Figure 5-11 were reported 

the diffractograms of the samples treated at different calcination temperature. The 

analysis of the reported XRD pattern and the comparison with JCPD library demonstrated 

that the as synthesized dried precursor consisted in a mixed phase of two polymorphs of 

CaCO3, named calcite and vaterite respectively. The former one, from a thermodynamic 

point of view, was considered the most stable crystalline polymorph of calcium carbonate. 

On the other hand, vaterite was considered the less stable polymorph and Wolf et al. have 

reported that a thermal treatment in static air at 330°C allowed the complete structure 

transition from vaterite to calcite10. Indeed, in our case, the sample calcined in air at 500°C 

showed a perfect calcite structure, confirming the transition from the mixed crystalline 

structure to the pure polymorph of calcite. In literature it was also reported that calcium 

carbonate could be present in a third polymorph, named aragonite, itself 

thermodynamically less stable than calcite, which was never detected in the structure of 

the catalyst precursor and of the calcined samples. In any case, only for calcination 

temperatures of 700°C and 900°C the formation of CaO was observed. The diffraction 

patterns of the samples treated at these temperatures fitted very well with that of the 

reference pattern of CaO (lime); traces of Ca(OH)2 were detected in the sample calcined 

at 700°C and then completely disappeared in that treated at 900°C.  

The decomposition of CaCO3 for calcination temperature equal or higher than 700°C was 

in agreement with the results obtained from the thermogravimetric (TGA) analysis 

performed on the catalyst precursor (Figure 5-12). Indeed, the synthesized catalyst 

precursor, having CaCO3 crystalline structure, showed a weigh loss of 44% in the range 

of temperature between 550°C and 750°C that corresponded to the theoretical transition 

from the carbonate specie to the oxide one. Moreover, that specific weight loss was 

coupled with an endothermic peak, registered by the difference thermal analysis (DTA), 

characteristic of decomposition process. 

Concerning the acid-base properties, both the irreversible adsorption of n-propylamine 

and the NH3-TPD experiments confirmed the pure basic features of the Ca-based 

catalysts. Indeed, none acid sites were detected for the samples treated at the different 

calcination temperature. Nevertheless, the irreversible acrylic acid adsorption 

experiments confirmed the basic feature of the systems and, furthermore, a correlation 

between the calcination temperature and the total amount of the basic sites was observed. 
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The as synthesized precursor, dried at 120°C and having a mixed crystalline-phase of 

CaCO3, showed no basic feature while, the sample treated at 500°C, with pure CaCO3 

calcite structure, showed a slight increase of the basicity. The latter showed to increase 

of more than a magnitude order for the samples treated at 700°C and 900°C. Thus, the 

basic features of the Ca-based systems were demonstrated to be strictly related to the 

crystalline structure of the samples, in particular the decomposition of calcium carbonate 

to form the oxide form showed to be essential for obtaining the higher density of basic 

sites. Similar results were obtained with CO2-TPD characterization. 

 

Figure 5-11. XRD patterns of the dried CaO precursor and that of the samples calcined at 

different temperature. Reference patterns: (●) CaO, (◊) Ca(OH)2, (▬) CaCO3 Vaterite, (▬) 

CaCO3 Calcite. 

 

Figure 5-12. Thermogravimetric and differential thermal analysis performed in air over the 

synthesized CaCO3. 
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5.2.2. Catalytic transfer hydrogenation of FU over CaO catalyst: effect 

of calcination temperature 

The catalytic transfer hydrogenation of FU by-means of methanol as H-transfer reactant 

was carried out using CaO catalyst as heterogeneous basic catalyst. The interaction 

between methanol and CaO have been studied, prior to the catalytic tests, through DRIFT 

experiments (Diffuse Reflectance Infrared Fourier Transform Spectroscopy). In these 

experiments methanol was adsorbed on the catalyst surface at room temperature and then 

the interaction between the basic catalyst and the hydrogen source have been studied 

increasing the temperature in order to promote both the desorption of the alcohol and the 

detection of specific IR band attributable to species formed as a consequence of methanol 

activation.  

 

Figure 5-13. DRIFT spectra registered after methanol adsorption over CaO at different 

temperatures. Spectral windows 700÷1900 cm-1 and 2500÷3800 cm-1. 
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In particular, we demonstrated that at room temperature methanol interact with the 

catalyst through two main route: physi-adsorption or dissociative adsorption. The 

presence of the physi-adsorbed un-dissociated methanol on the catalyst surface was 

confirmed by the detection of the characteristic band related to the stretching of the C—

O at 1052 cm-1 while, the presence of the dissociate chemisorbed methanol, was 

confirmed by the formation of the characteristic band at 1082 cm-1 related to the di-

coordinate methoxy specie11. At the increase of temperature, the dissociative 

chemisorption of methanol became the most important interaction and the transition from 

the methoxy to the aldehyde specie, coupled with the release of molecular hydrogen, was 

demonstrated to take place on the catalyst surface. 

A light surface carbonatation starts at 300°C and it is confirmed by the broad and small 

band around 1600 cm-1. A band at 1790 cm-1 might be related to v1+v4 CO3 or to some 

carboxylate formation due to carbonates degradation. The bands at 2779, 2823, 2920 cm-

1 appear due to C-H stretching vibration related to CH3. Positive band at 3636 cm-1 

indicates the formation of new surface OH. The negative band is due to the interaction of 

the terminal surface OH12. 

In our catalytic tests FAL was the main reduction product detected in the reaction with 

FU and methanol over CaO catalyst, only traces of MF were detected at the higher 

reaction temperature tested. No ring opening or hydrogenation products were identify for 

all the performed catalytic tests. 

Calcination 

T (°C) 
FU Conversion (%) 

Product Selectivity (%) 
FAL Yield (%) 

FAL MF C-Loss 

500 15 19 0 81 3 

700 20 67 1 32 13 

900 15 58 1 41 9 

Table 5-2. Effect of calcination temperature of catalyst precursor over FU conversion FAL 

selectivity and Yield. Feed composition: FU 5%, CH3OH 50%, N2 45%; Pressure 1 atm, reaction 

temperature 350°C, overall gas residence time 1.0 s. 
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Figure 5-14. Effect of calcination temperature of catalyst precursor over FU conversion FAL 

selectivity and Yield. Feed composition: FU 5%, CH3OH 50%, N2 45%; Pressure 1 atm, reaction 

temperature 350°C, overall gas residence time 1.0 s. Legend: FU conversion (♦), FAL selectivity 

(■), FAL Yield (■), C-loss (■). 

Since the synthesized Ca-based material was shown to undergoes in a crystalline-phase 

transition and also to a deep change of basicity as a function of the calcination temperature 

(Figure 5-11), we have first investigated the effect of the latter parameter on the catalytic 

activity in the CTH reaction of FU. 

The sample treated at 500°C, presenting a crystalline structure of CaCO3 calcite and the 

lower total amount of basic sites, showed to be partially active but not selective in the 

conversion of the substrate (Figure 5-14 and Table 5-2). Indeed, 15% conversion of 

furfural was registered with only few percentage point of FAL yield. The most of FU fed 

during the catalytic test was degraded to heavy carbonaceous deposits formed over the 

catalyst surface. Increasing the calcination temperature an increase of the catalytic 

performance was registered in terms of both FU conversion and FAL selectivity and yield. 

This trend was in agreement with the bulk features of the catalyst described in the former 

section where it was demonstrated that a calcination temperature at least of 700°C was 

necessary to decompose the catalyst precursor to form the CaO crystalline structure and 

to obtain the higher amount of basic sites over the surface. More in detail, the sample 

treated at 700°C showed the best performances, the higher values of FU conversion, FAL 

selectivity and yield were obtained (respectively 20% of FU conversion, 67% of FAL 
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selectivity and 13% of yield). Finally, the catalyst calcined at 900°C showed a better 

catalytic performances than that obtained with the sample treated at 500°C but worse if 

compared to that obtained with the sample treated at 700°C. Lower FU conversion, FAL 

selectivity and yield were registered. In literature, it was generally reported that the 

activity of a basic catalyst in the hydrogen transfer reaction was related to two main 

catalyst features. The first was the number of the basic sites present on the surface of the 

catalyst; that parameter was generally related to the surface area meaning that the higher 

was the surface area the higher should be the number of basic sites. The second was the 

number of structural defects on the surface of the solid such as kink, step and corner 

defective sites; in this case the higher activity was related to the lower coordination of the 

atoms that composed these particular structures13,14. In this view, the lower activity 

showed by the sample treated at 900°C compared to that treated at 700°C, could be 

explained by the lower number of basic sites titrated over the surface. Furthermore, an 

effect related to the lower surface defectivity could not be excluded. It has been 

demonstrated that the number of defects on the catalyst surface was related to the thermal 

treatment temperature, the higher was the temperature of the treatment the lower was the 

number of defects and higher the crystallinity of the solid; the increase of the calcination 

temperature promote the formation of the most stable thermodynamic structure that was 

the one with the lower surface defectively sites. In this view, for the sample treated at 

700°C, it could be hypothesized the presence of an higher number of defectively sites on 

the surface compared to the sample calcined at 900°C. As a matter of fact, 700°C was the 

minimum temperature required for the complete decomposition of CaCO3 to form CaO 

(Figure 5-12); indeed, at this temperature the crystalline transition was just completed 

and so an higher number of defectively sites on the surface could be present. On the 

contrary, the sample treated at 900°C could be less defectively because the treatment at 

high temperature could promote some superficial-reconstruction phenomena the 

consequence of which were the formation of the lower energy-content structure, 

identified as the one with the lower number of defectively sites. 

Summarizing this part it was possible to conclude that 700°C was the best calcination 

temperature at which the catalyst performance was maximized both in term of activity 

and selectivity. Thus, all the catalytic results reported in the further sections were obtained 

with CaO catalyst calcined at 700°C. 
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5.2.3. Catalytic transfer hydrogenation of FU over CaO catalyst: effect 

of reaction temperature 

The second reaction parameter investigated was the reaction temperature. In Figure 5-15 

was reported the effect of the reaction temperature over FU conversion, MF selectivity, 

FAL selectivity and yield. The reported results were related to catalytic tests performed 

in the range of temperature between 250°C and 400°C at 1,0 s of contact time. Since the 

catalyst performance showed to be different between the first and the following reaction 

hours of the monitored time on stream, the plotted results consisted in the average values 

registered between the 2nd and the 6th hour. Further details regarding the behavior of the 

catalyst during the time on stream will be given in the following section. 

 

Figure 5-15. Effect of reaction temperature over FU conversion, products selectivity and FAL 

yield with CaO catalyst calcined at 700°C. Feed composition: FU 5%, CH3OH 50%, N2 45%; 

Pressure 1 atm, reaction temperature 250 ÷ 400°C, overall gas residence time 1.0 s. Legend: FU 

conversion (♦), FAL selectivity (■), FAL Yield (●), MF selectivity (▲), C-loss (●). 

At low temperature the catalyst was not active in the catalytic transfer hydrogenation of 

FU by-means of methanol. Indeed, at 250°C, nil FU conversion or reduced products 

formation was detected. Furthermore, it was also demonstrated that FU was stable under 

these reaction conditions; no thermal degradation, or transformation into by-products, as 

a consequence of the interaction between FU and catalyst surface, were registered. 
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Reaction T 

(°C) 
FU Conversion (%) 

Product Selectivity (%) 
FAL Yield (%) 

FAL MF C-Loss 

250 0 0 0 - 0 

300 5 97 1 2 5 

350 15 92 2 6 14 

400 42 46 6 48 19 

Table 5-3. Effect of reaction temperature on FU conversion, product selectivity and FAL yield 

with CaO catalyst calcined at 700°C. Feed composition: FU 5%, CH3OH 50%, N2 45%; Pressure 

1 atm, reaction temperature 250 ÷ 400°C, overall gas residence time 1.0 s. 

At the increase of the reaction temperature the catalyst became active in the catalytic 

transfer hydrogenation process and a progressive increase of FU conversion was 

registered. A final value of 42% of FU conversion was registered at 400°C, higher to the 

5% and 15% registered at 300 and 350°C respectively. The trend showed by the 

conversion was in agreement to that obtained in the liquid-phase catalytic transfer 

hydrogenation of FU with methanol. As reported above, the comparison between CaO 

and MgO in the liquid-phase process demonstrated that for the former heterogeneous 

basic catalyst was required an higher reaction temperature to activate the CTH process; 

210°C was demonstrated to be the optimal temperature instead of 160°C, the optimal 

condition for MgO. The same behavior was confirmed also in the gas-phase process in 

which it was demonstrated that 300°C was the minimal temperature necessary to activate 

the CTH, instead of the 200°C at which MgO was still active. 

Despite the high conversion obtained at 400°C, the catalyst showed to become 

progressively less selective towards the formation of the selective reduction products of 

FU when the reaction temperature was increased from 300°C to 400°C. Indeed, CaO 

showed to be totally selective in the formation of FAL as the only reduction product at 

300°C while, increasing the temperature to 350°C and 400°C, the selectivity in the 

unsaturated alcohol decrease to 92% and 48% respectively. 

Concerning the formation of MF, product of the consecutive hydrogenolysis of FAL, only 

some traces were obtained for temperature equal or higher than 350°C; the highest 

selectivity was obtained at 400°C and it was equal to 6%. Parallel to the decrease of FAL 

selectivity an increase of the C-Loss term, in which were enclosed the heavy 

carbonaceous compounds formed over the catalyst surface was registered. In our previous 

work concerning the catalytic transfer hydrogenation of FU by-means of methanol as 

hydrogen source and MgO-based catalysts, we have just demonstrated that the formation 
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of heavy carbonaceous species was the consequence of thermal degradation processes in 

which the furanic compounds involved in our reaction undergoes at high temperature. 

Furthermore, we were able to demonstrate that also the methanol, used as hydrogen 

source, could form oligomeric species over the catalyst surface. In order to confirm that 

CaO could show a similar behavior, TGA/DTA analysis were performed over the spent 

catalyst used in the tests performed varying the temperature.  

 

Figure 5-16. Thermogravimetric (bold line) and differential thermal analysis (dotted line) 

performed in air over different sample of CaO. Legend: CaO fresh calcined at 700°C (▬), CaO 

used in the catalytic test at 300°C (▬), CaO used in the catalytic test at 350°C (▬), CaO used in 

the catalytic test at 400°C (▬). 

In Figure 5-16 were reported the thermograms obtained from the TGA/DTA analysis 

performed over the catalysts used in the reaction at different temperature. The fresh CaO 

calcined at 700°C (black line) as expected showed none weight loss in all the monitored 

temperature range. On the contrary, all the catalysts used in reaction showed non-

negligible weight loss that could be related to the removal, through combustion, of the 

heavy carbonaceous deposits formed during the reduction catalytic tests. In particular, the 

different TGA profiles collected were related to the catalysts used in the tests performed 

at 300°C (red line), 350°C (green line) and 400°C (blue line).  

The three samples used in reaction showed a weight loss in the temperature range between 

250°C and 450°C that, according to the exothermic peaks registered by the differential 

thermal analysis, could be related to the combustion of the carbonaceous species formed 
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over the catalyst surface during the catalytic test. Furthermore, it was possible to find a 

correlation between the registered weight loss and the C-Loss term determined during the 

catalytic tests. Indeed, as mentioned above, it was observed a progressive increase in the 

C-loss term at the increase of the reaction temperature and the same trend was observed 

for the weight loss determined with the TGA analysis. As a matter of fact, an increase of 

the latter was observed at the increase of the reaction temperature. The sample used in the 

reaction at 300°C showed a weight loss of 3%, the one used at 350°C lost the 5% of the 

initial weight while the one used at 400°C showed a weight loss of 19% that was in 

agreement with the trend of C-Loss (Figure 5-15).  

The weight loss showed by the catalyst used in the reaction at 300°C seemed to disagree 

with the C-Loss; indeed at that temperature the carbon balance was closed and a nil carbon 

loss value, related to the furanic aromatic component, was registered. Therefore, we could 

hypothesized that the 3 point percentage of weight loss registered were related to the 

removal of some oligomeric species deriving from methanol degradation. Indeed, we 

previously demonstrated that formaldehyde, produced as a consequence of methanol 

dehydrogenation, could form some polyoxomethylene oligomers that were removed for 

combustion at temperature between 250°C and 350°C. 

It has also to be highlighted that increasing the reaction temperature from 300°C to 400°C 

an increase of the temperature at which the carbonaceous deposits burned was registered. 

This could be connected to the formation of deposits with much-ordered structures; we 

have just observed a similar phenomenon in our work concerning the use of MgO-based 

catalyst. The differential thermal analysis (Figure 5-16) supported the former hypothesis. 

The reported thermograms showed two different peaks, in the case of the samples used at 

300°C and 350°C, and three in the case of the sample used in the reaction at 400°C that 

could be related to the combustion of different carbonaceous species having progressively 

an higher ordered structure. 

Summing up this part, it could be concluded that CaO catalyst showed a reaction 

temperature (350°C) at which the catalytic performance was maximized in terms of FU 

conversion, FAL selectivity and yield.  
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5.2.4. Catalytic transfer hydrogenation of FU over CaO catalyst: effect 

of contact time 

In this part of the present work the effect of the contact time on the catalytic performance 

of the heterogeneous basic catalyst in the gas-phase catalytic transfer hydrogenation 

reaction of FU my-means of methanol as the hydrogen source has been investigated. 

Since in the previous section it has been demonstrated that 700°C was the optimal 

calcination temperature and 350°C was the best reaction temperature, the influence of the 

contact time was evaluated at these reaction conditions.  

 

Figure 5-17. Effect of time over FU conversion, products selectivity and FAL yield with CaO 

catalyst calcined at 700°C. Feed composition: FU 5%, CH3OH 50%, N2 45%; Pressure 1 atm, 

reaction temperature 350°C, overall gas residence time 0,1 ÷ 2,0 s. Legend: FU conversion (♦), 

FAL selectivity (■), FAL Yield (●), MF selectivity (▲), C-loss (●). 

In these catalytic tests the overall gas residence time was varied, changing the volume of 

the catalyst loaded inside the tubular reactor and keeping fixed the total volumetric flow, 

from 0,1 s to 2,0 s in order to evaluate the effect over the substrate conversion and the 

products distribution. 

In Figure 5-17 (Table 5-4) was reported the effect of the contact time over FU conversion 

and products distribution; the plotted results were related to the average values obtained 

between the 2nd and the 6th hour of the monitored time on stream; as described above for 

the effect of reaction temperature further detail regarding the possibility to mediate the 



Chapter 5: Results and discussions: Heterogeneous basic-based catalyst 

 

105 

 

results obtained after the first reaction hour will be described in the section regarding the 

effect of the reaction time.  

Contact 

time (s) 
FU Conversion (%) 

Product Selectivity (%) 
FAL Yield (%) 

FAL MF C-Loss 

0,1 3 100 0 0 3 

0,5 10 100 0 0 10 

1,0 15 92 2 6 14 

1,5 20 88 2 10 18 

2,0 25 73 2 25 18 

Table 5-4. Effect of contact time on FU conversion, product selectivity and FAL yield with CaO 

catalyst calcined at 700°C. Feed composition: FU 5%, CH3OH 50%, N2 45%; Pressure 1 atm, 

reaction temperature 350°C, overall gas residence time 0,1 ÷ 2,0 s. 

At low contact time the catalyst showed to be totally selective in the production of FAL 

as the only reduction product then, at the increase of the overall residence time, the 

catalyst became always less selective towards the production of the unsaturated alcohol 

against the progressive increase of the heavy carbonaceous compounds formed over the 

catalyst surface. Indeed, 100% of FAL selectivity with no C-Loss were obtained at 0,1 

and 0,5s while, at 2,0 s the selectivity towards FAL decreased to 73% and the C-Loss 

increased up to 25%. Concerning the formation of MF, only a slight increase was 

observed in the contact time windows tested. 

In our previous work concerning the evaluation of the catalytic activity of MgO in the 

same reaction we reported that the heavy deposits formed on the catalyst surface mainly 

derive from a thermal degradation of the furanic species involved in our reaction, in 

particular from FU or better from the unsaturated alcohol FAL5. As a matter of fact, FAL 

was a monomer used in the polymer industries for the production of thermostatic resins; 

thus, could undergoes into oligomerization processes to form heavy compounds over the 

catalyst’s surface15,16. The polymerization process of FAL could be considered a 

consecutive reaction, favored at the increase of the contact time and so in agreement with 

the increase of the C-Loss term registered as a function of the contact time.  

Finally, regarding the conversion of FU, a progressive increase was registered at the 

increase of the tested contact time. At 0,1s the registered conversion was 3% and then 

increase up to the value of 25% obtained at 2,0s. 
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Summarizing the information obtained evaluating the effect of the contact time it was 

possible to confirm two main aspect related to the catalytic activity of a basic catalyst in 

the catalytic transfer hydrogenation of furfural by-means of methanol as hydrogen source. 

The first consisted in the possibility to identify an optimal contact time at which the 

catalyst showed the best catalytic performance at which the best compromise between 

substrate conversion, FAL selectivity and yield was reached. In particular 1,5 s was 

identified as the optimal residence time considering the 20% of FU conversion and the 

selectivity in FAL next to the 90%. 

On the other hand, the obtained results allow to confirm that over a basic catalyst, in 

condition of low-medium temperature, the catalytic transfer hydrogenation proceed 

through the classic MPV (Meerwin-Poondorf-Varley) mechanism. In particular the 

mechanism provide the presence of both the molecules, the carbonyl substrate and the 

hydrogen source, absorbed and activated simultaneously over the catalyst surface; then, 

the reduction proceed through the formation of a six-membered ring intermediate that 

bring to the formation of the product. Furthermore, it was also confirmed that using CaO 

FAL was the primary reduction product while MF and the oligomer produced from FAL 

degradation were consecutive products considered that their selectivity increased at the 

increase of the contact time. In Scheme 5-3 was reported an overall reaction pathway for 

the catalytic transfer hydrogenation over CaO that summarized the main information 

reported. 

 

Scheme 5-3. Overall reaction pathway for the catalytic transfer hydrogenation of FU by-means 

of methanol over CaO catalyst. 
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5.2.5. Catalytic transfer hydrogenation of FU over CaO catalyst: effect 

of reaction time 

The stability of the catalyst in the catalytic transfer hydrogenation reaction has been 

examined by conducting catalytic tests with the catalyst for 6 h at the optimized reaction 

condition determined above. In particular, the calcination temperature of the precursor 

was 700°C, the reaction temperature 350°C and the overall gas residence time 1,5s. 

Figure 5-18 showed the effect of the reaction time over FU conversion, products 

selectivity and FAL yield. 

CaO catalyst clearly showed a different behavior both in terms of substrate conversion 

and in terms of products distribution between the first and the following hours of the 

monitored time on stream. Indeed, in the first hour, FU conversion was close to the 30% 

with a selectivity in FAL slightly higher than the 60% and the C-Loss term, related to the 

formation of carbonaceous deposits over the catalyst surface, attested at 34%. Starting 

from the second hour of reaction, the catalytic performance changed completely and a 

lower FU conversion (20%) was registered coupled with a notable increase of FAL 

selectivity that grew up to the value of 85%, according to this a deep decrease of the C-

Loss was observed.  

A second important feature showed by the catalyst was the almost stable performance, in 

terms of conversion and selectivity, registered starting from the second hour. Indeed, both 

FU conversion and products selectivity showed to be constant, within the experimental 

errors, during the remaining five monitored hours of reaction. 

The stable catalytic performance showed by CaO consisted an important feature if 

compared to the activity showed by MgO in the same reaction5. Therefore, we 

demonstrated that CaO was a stable and highly selective catalyst for the process of 

catalytic transfer hydrogenation of FU to produce FAL using methanol while, MgO 

showed the drawback to suffer of a slight deactivation phenomena at low temperature 

during the time on stream due to the deposition of heavy compounds over the surface that 

caused a decreasing of FU conversion. 

Furthermore, it that has to be highlighted that, in contrast to the trend of FAL selectivity, 

a stable yield toward the unsaturated alcohol was obtained starting from the first hour of 

reaction. Thus, considering the higher FU conversion and the lower FAL selectivity in 

the first hour, it could be concluded that during the first 60 minutes the higher amount of 
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furfural converted, compared to that transformed in the other hours, was degraded to 

heavy compounds. 

 

Figure 5-18. Effect of reaction time over FU conversion, products selectivity and FAL yield with 

CaO catalyst calcined at 700°C. Feed composition: FU 5%, CH3OH 50%, N2 45%; Pressure 1 

atm, reaction temperature 350°C, overall gas residence time 1,5 s. Legend: FU conversion (♦), 

FAL selectivity (■), FAL Yield (●), MF selectivity (▲), C-loss (●). 

Time on 

stream (h) 
FU Conversion (%) 

Product Selectivity (%) 
FAL Yield (%) 

FAL MF C-Loss 

1 29 65 1 34 19 

2 19 85 2 13 16 

3 20 86 1 13 17 

4 18 88 2 10 16 

5 20 90 2 8 18 

6 21 87 2 11 18 

Table 5-5. Effect of reaction time over FU conversion, products selectivity and FAL yield with 

CaO catalyst calcined at 700°C. Feed composition: FU 5%, CH3OH 50%, N2 45%; Pressure 1 

atm, reaction temperature 350°C, overall gas residence time 1,5 s. 

The catalytic tests performed at 350°C, with different contact time, confirmed the 

different behavior showed by the catalyst during the time on stream. As an examples in 

Figure 5-19 were reported the trends of FU conversion and FAL selectivity for the 

catalytic tests performed at 350°C at 1,0-1,5-2,0s respectively. For all the tested 
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conditions a notable decrease of FU conversion was observed between the first and the 

following hours; furthermore, starting from the second hour the performance became 

stable. Concerning the selectivity toward FAL the tests performed at 1,0 s and 2,0 s 

showed the same trend of the test performed at 1,5 s; after an initial low selectivity 

registered in the first hour a notable increase was observed from the second hour. These 

results suggested that the catalyst probably undergoes in a change during the first hour of 

reaction. 

 

Figure 5-19. Effect of reaction time, at different contact time, over FU conversion and FAL 

selectivity with CaO catalyst calcined at 700°C. Feed composition: FU 5%, CH3OH 50%, N2 

45%; Pressure 1 atm, reaction temperature 350°C, overall gas residence time 1,0 ÷ 2,0 s. Legend: 

contact time 1,0 s (▬), contact time 1,5 s (▬), contact time 2,0 s (▬); FU conversion (bold line), 

FAL selectivity (dotted line). 

CH3OH → H2CO + H2     (1) 

CH2O → CO + H2       (2) 

CO+H2O → CO2+H2     (3) 

2 CH2O → CH3O-C(O)H    (4) 

CH3OC(O)H →  CO2 + CH4    (5) 

2 CH2O + H2O→CH3OH+HCOOH    (6) 

HCOOH→CO2+H2     (7) 

CH3OH+H2O → CO2 + 3H2             (8) 

Scheme 5-4. Summary of main reactions occurring to methanol in the catalytic transfer 

hydrogenation reaction with FU. 
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In order to gain more information about the different behavior showed by the catalyst 

during the time on stream, the trend of the light compounds in the outlet stream exiting 

from the reactor have been monitored. Indeed, in several our previous works, we have 

demonstrated that in our typical reaction condition methanol could be subjected to various 

reactions, summarized in Scheme 5-4, that finally bring to the formation of only light 

compounds such as CO, CO2, CH4 and H2. Briefly, regarding the main reaction reported 

in Scheme 5-4, methanol could de-hydrogenate into H2 and formaldehyde, while the 

decomposition of the latter bring to the formation of CO and H2 (Reaction 1 and 2). 

Alternatively, two adsorbed CH2O may disproportionate to formate and a methoxy 

species yielding methylformate (reaction 4) (the latter can also be formed by Tishchenko 

dimerization), which decomposes at high temperatures to CH4 and CO2 (reaction 5). In 

the presence of water in the feed, formaldehyde may also produce formic acid and 

methanol through the Cannizzaro reaction (reaction 6), with formic acid then easily 

decomposing to CO2 and H2 (reaction 7) Moreover, the role of water in WGS (reaction 

3) or methanol reforming (reaction 8) cannot be disregarded. 

According to that described above, in our catalytic tests the only light compounds 

detected were CO, CO2, CH4 and H2; the amount of these, formed as a function of the 

time on stream at the residence time of 1,5 s and 350°C, were reported in Figure 5-20. It 

was clear that the trend of the lights reflected the same behavior observed for the organic 

compounds collected and analyzed after each hour of reaction. Indeed, the analysis of the 

plotted results, clearly highlighted that the catalyst suffered of some modification during 

the first hour of reaction. As a matter of fact, the amount of the light compounds, formed 

as a consequence of methanol and formaldehyde degradation, showed a different trend 

between the first and the following reaction hour confirming what previously obsereved 

for FU conversion and products distribution. 

Taking the catalytic test performed at the residence time of 1,5s as an examlpe, it has to 

be highlighted that in the first hour of reaction H2 was the main light compound produced, 

it was detected in amount about ten times higher compared to other lights that were 

produced in a very low quantity. Then, starting from the second hour, the trend of the 

lights was completely overturned; the molecular hydrogen production dropped down but, 

despite this, H2 was still the light with the higher production but, if compared to the value 

registered in the first hour, the difference with other gaseous products decreased many 

times. CO and CH4 were almost produced in the same quantity of the first hour while CO2 

progressively increased. According to the reaction set reported in Scheme 5-4 carbon 
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dioxide could be mainly produced as a consequence of the methylformate decomposition 

or as a co-product of the Tishchenko reaction in which traces of water in the feed as 

impurities reacts with formaldehyde. 

A further confirmation of the initial high production of H2 and of the progressively 

increase of the CO2 detected starting from the second hour of reaction was obtained from 

the monitoring of these light compounds in the catalytic tests performed at 350°C and 

overall gas residence time of 1,0 s and 2,0 s respectively (Figure 5-21). The comparison 

between the moles of H2 and CO2 produced, on the base of reacion time, at the different 

contact time allowed also to demonstrate that increasing the latter an overall increase of 

both H2 and CO2 moles was observed. 

 

Figure 5-20. CaO catalyst. Number of moles of gas formed, based on the time, in the reaction of 

FU reduction with methanol. Feed composition: FU 5%, CH3OH 50% , N2 45% ; Pressure 1 atm, 

T = 350°C, overall gas residence time 1,5 s. Legend: CO (♦), CO2 (■), CH4 (▲), H2 (●). 
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Figure 5-21. Comparison between the moles of CO2 and H2 produced, based on the time, in the 

reaction of FU reduction with methanol over CaO calcined at 700°C. Feed composition: FU 5%, 

CH3OH 50%, N2 45% ; Pressure 1 atm, T = 350°C. Legend: CO2 (■), H2 (●); bold line τ = 1,0 s; 

dotted line τ = 1,5 s; punctuated line τ = 2,0 s. 

In the present work it has been demonstrated that CaO acted as an heterogeneous basic 

catalyst, furthermore, in the former part, it was determined that its precursor consisted in 

CaCO3 and that, once calcined at the proper temperature to form the oxide phase, the 

latter was able to interact with CO2 to reform the carbonate specie. Thus, it could be 

hypothesized that the interaction between the calcined CaO and the in-situ produced CO2 

was the main cause for the different catalytic behavior showed by the catalyst in the first 

reaction hour. In order to gain evidence that supported the formulated hypothesis XRD 

and TGA/DTA characterization over the spent catalysts were performed. 

In Figure 5-22 was reported the comparison between the diffraction patterns of the fresh 

CaO calcined in static air at 700°C and that of the samlpe used in the catalytic transfer 

hydrogenation test performed at 350°C and contact time of 1,5s. It was clear that the two 

patterns showed to be different. Indeed, as described above, the sample calcined at 700°C 

showed the lime CaO structure while, the sample used in reaction, showed an higher 

number of reflexes that was demonstrated to agree with those of CaCO3 (calcite). Thus, 

it could be concluded that the used catalyst consisted in a mixed crystalline phase of CaO 

(lime) and CaCO3 (calcite).  
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In order to gain more information about the phenomena just described, the spent catalysts 

used in reaction were also characterized with TGA/DTA analysis. In Figure 5-23 were 

compared the thermograms and the differential thermal analysis performed over the spent 

catalysts and the precursor. All the spent catalysts showed two main weight loss in the 

analized range of temperature. The former, between 200°C and 450°C, considering the 

exothermic peaks registered at the differential thermal analysis could be assigned to the 

removal of the carbonaceous deposits formed over the catalyst surface during the 

reaction. The second was instead observed in the range between 600°C and 750°C, 

considering the endothermic peaks at the DTA and the temperature corresponding to that 

of the catalyst’s precursor decomposition, could be related to the decomposition of the 

partial carbonate phase formed during the reaction.  

Furthermore, it could be also concluded that the re-carbonatation of CaO was partial and 

not affected all the bulk of the solid. Indeed, XRD analysis showed that the most intense 

reflex detected were the ones related to the calcite phase; in addition the weight loss in 

the region of carbonate decomposition was lower than 15% for the catalysts used in 

reaction instead of the 44% registered in the case of the decomposition of the precursor. 

 

Figure 5-22. XRD patterns of the fresh CaO sample calcined at 700°C and that of the spent used 

in the catalytic test at 350°C. Reference patterns: (●) CaO, (*) CaCO3 Calcite. 

 

 

 

 



Chapter 5: Results and discussions: Heterogeneous basic-based catalyst 

 

114 

 

 

Figure 5-23. Thermogravimetric and differential thermal analysis performed in air over different 

sample of CaO. Legend: CaO precursor (▬), CaO used in the catalytic test at 300°C (▬), CaO 

used in the catalytic test at 350°C (▬), CaO used in the catalytic test at 400°C (▬). 

Since it was demonstrated that the catalyst suffered of a structural change during the first 

hour of reaction due to the interaction with the reagents, it could be also concluded that 

the different catalytic perfomances, in terms of conversion and products distribution, 

showed by the catalyst between the first and the following hours of reaction was 

connected to the carbonatation process. 

Furthermore, it has also to be highlighted that the mixed phase obtained after the re-

carbonatation process was much more selective in the hydrogen transfer process 

considered the minimization of the heavy compounds formed and the higher FAL 

selectivity obtained starting from the 2nd hour. As well as the high H2 production in the 

first hour could be related to a low efficiency of the catalyst in the hydrogen transfer 

mechanism. Indeed, in literaure it was reported that the mechanism for the hydrogen 

transfer reaction over basic catalyst follow the MPV mechanism for which, the reduction 

proceed through a concerted step that involve the contemporary adsorption and activation 

of both the carbonyl and the hydrogen source molecule to form a six-membered ring 
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intermediate that then evolved to the desortion of the products. Thus, considering the 

concerted reaction mechanism, the lower was the amount of molecular hydrogen 

produced during the process the higher was the efficiency of the catalyst in hydrogen 

transfer mechanism. 

 

5.2.6. Catalytic transfer hydrogenation of FU over CaO catalyst: effect 

of feed composition 

The effect of the feed composition has been investigated in order to evaluate if the 

catalytic activity of the basic CaO catalyst could be influenced by the amount of the 

organic content present in the feed. The reasons why the effect of the feed composition, 

in particular in term of the total organic content, has been investigated were mainly two. 

The former was related to the low surface area showed by the catalyst while, the second, 

was related to the possibility to further improve the catalytic performance in terms of FU 

conversion and FAL selectivity, yield and productivity. 

Concerning the low surface area it was reported above that CaO calcined at 700°C had a 

specific surface area of 2,4 m2/g. In our previous work concerning the same process 

performed using FeVO4 as heterogeneous catalyst with low surface area (12 m2/g), it was 

demonstrated that an overall improvement of the catalytic performance was obtained 

decreasing the organic content present in the feed17. In the case of the mixed vanadium-

iron oxide decreasing the total organic content from 55% molar (5% molar of FU and 

50% molar of methanol) to 11% molar (1% molar of FU and 10% molar of methanol), an 

overall increase of FU conversion from the few percentage points obtained in the 

condition of high organic content to the complete conversion with yield in MF up to the 

90% in the condition of low organic content was obtained. 

Taking into account these information the effect of the organic content in the feed on the 

catalytic activity was evaluated following the same strategy applied for the mixed iron-

vanadium oxide. The catalytic tests were performed at the optimized reaction conditions 

(calcination temperature 700°C, reaction temperature 350°C, overall gas residence time 

1,5 s), decreasing the total organic molar content in the feed from 55% (5% mol FU + 

50% mol CH3OH) to 11% (1% mol FU + 10% mol CH3OH), keeping constant the relative 

methanol to furfural molar ratio. 
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Entry 

Feed composition 

(%mol) 

Total 

organic 

content 

(%) 

CH3OH/FU 

mol ratio 

FU 

Conversion 

(%) 

Selectivity (%) FAL 

Yield 

(%) FU CH3OH N2 FAL MF 
C-

Loss 

1 1 10 89 11 10 35 45 1 54 20 

2 5 50 45 55 10 20 88 2 10 18 

3 5 5 90 10 1 4 46 0 54 2 

4 5 25 70 30 5 10 50 0 50 5 

5 5 75 20 20 25 20 97 1 2 19 

Table 5-6. Effect of the feed composition on FU conversion and products distribution for CaO 

catalyst. Feed composition: variable, Pressure 1 atm, reaction temperature 350°C, overall gas 

residence time 1,5 s. 

The results obtained were reported in Table 5-6 (Entries 1 and 2). At a first analysis the 

results seemed to be in opposition to what previously observed. Indeed, in the test 

performed feeding the low amount of organic, only a slight increase of FU conversion, 

from 20% to 35%, was registered in comparison to that obtained with the high organic 

content. Moreover, the trend showed by FAL selectivity was much more surprisingly, 

considering that the value obtained with the low organic condition was about the half, 

45% instead of 88%. Furthermore, the lower selectivity in FAL was accompanied by an 

increase of the C-Loss and, in general, a poorer carbon balance was registered.  

Considering the results obtained in the condition of low organic content, a possible 

phenomenon of FU preferential adsorption over the catalyst surface towards methanol 

was hypothesized to explain the lower FAL selectivity and the slight increase of FU 

conversion. 

In order to find evidence to support the formulated hypothesis several catalytic tests have 

been performed keeping constant the molar percentage of FU in the feed, equal to 5%, 

and varying progressively the molar percentage of methanol, in the range between 5% 

and 75%; thus resulted also in a change of the relative methanol to furfural molar ratio. 

Therefore, if a progressive increase of both FU conversion and FAL selectivity would be 

observed at the increase of the methanol to furfural molar ratio, the hypothesis of FU 

preferential adsorption over the catalyst surface could be demonstrated. 
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Figure 5-24. Effect of feed composition over FU conversion, products selectivity and FAL yield 

with CaO catalyst calcined at 700°C. Feed composition: FU 5%, CH3OH 5 ÷ 50%, N2 20 ÷ 90%; 

Pressure 1 atm, reaction temperature 350°C, overall gas residence time 1,5 s. Legend: FU 

conversion (♦), FAL selectivity (■), FAL Yield (●), C-loss (●). 

In Figure 5-24 were reported the results of these catalytic tests. The results obtained 

showed to be in agreement with the formulated hypothesis of a preferential absorption of 

FU towards methanol over the catalyst surface. Indeed, at the increase of the methanol to 

furfural molar ratio in the feed a progressive increase of the conversion of FU from the 

4% obtained with the unitary molar ratio to the 20% detected at the higher molar ratio 

was registered (Table 5-6 Entries 2, 3, 4 and 5). A second evidence that supported the 

formulated hypothesis was the trend showed from both the FAL selectivity and the C-

Loss. As a matter of fact, the progressively increase of the conversion at the increase of 

the methanol to furfural molar ratio was accompanied with the rapid increase of the 

selectivity in the unsaturated alcohol and a drop of the heavy carbonaceous compounds 

formed as a consequence of degradation phenomena. In particular, FAL selectivity grew 

up from the 45% obtained with the unitary molar ratio to the 97% detected in the condition 

of the larger excess of methanol in the feed. The greater excess of methanol could be a 

drawback in the case of a possible scale up to bigger plant; despite this, considering the 

boiling points of the main involved compounds (b.p. FU = 96°C, b.p. FAL = 170°C, b.p. 

methanol = 65°C), an easy recycle, after a separation by distillation, of the unreacted 

methanol and FU could be possible, increasing the feasibility of the scale up. 
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Summarizing this part it was possible to demonstrate that the composition of the feed, 

both in terms of total organic content and relative methanol to furfural molar ratio, was a 

parameter that directly affected the catalytic activity of CaO in the catalytic transfer 

hydrogenation process. Furthermore, it was demonstrated that FU had a preferential 

absorption towards methanol over the surface of the catalyst. Finally, tuning the reaction 

conditions in terms of methanol to substrate molar ratio, a condition in which the catalyst 

showed to be totally selective in the formation of FAL as the only reduction product was 

found; thus, an improvement of the catalytic performance has been reached. 

 

5.2.7. Conclusions regarding the use of bulk CaO as heterogeneous 

basic catalyst for the gas-phase catalytic transfer hydrogenation 

of FU to FAL 

CaO was shown to be active in the gas-phase catalytic transfer hydrogenation of the 

biomass-derived FU using methanol as the hydrogen source. 350°C was demonstrated to 

be the optimal reaction temperature at which the selectivity toward FAL was maximized 

and the formation of the heavy compounds formed, on the catalyst surface, as a 

consequence of thermal degradation involving FU and FAL in our reaction conditions 

was minimized. Furthermore, it was demonstrated that FU undergoes in a preferential 

adsorption toward methanol over the surface of the catalyst. The understanding of this 

phenomena allow also to tune the reaction conditions, in terms of total organic content in 

the feed and relative methanol to furfural molar ratio, in order to improve the catalyst 

performance and the possibility to produce FAL with total selectivity was observed 

feeding a relative methanol to furfural ratio equal to 15. Moreover, considering that FAL 

was the only reduction product obtained with CaO, it was demonstrated that the catalytic 

transfer hydrogenation process proceed through the classic MPV mechanism that involve 

the formation of the six-membered ring intermediate.  

Due to the high selectivity, CaO offers an alternative to FAL production from FU without 

the need for H2 at high pressure and precious metal catalysts. 
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5.3. MgO and CaO: a comparison between the catalytic 

activity of two heterogeneous basic catalysts in the gas-

phase catalytic transfer hydrogenation of FU to FAL using 

methanol as H-transfer reactant 

In the present section of the work, a comparison between the activity of the basic materials 

MgO and CaO in the gas-phase catalytic transfer hydrogenation of FU by-means of 

methanol as the hydrogen source has been examined. Indeed, in our previous work, we 

reported on the activity of MgO in the mentioned process. Briefly, in that work it was 

demonstrated that at low temperature the magnesium-based catalyst was completely 

selective toward the production of FAL as the only reduction product; despite this, the 

catalyst showed to suffer of limited deactivation phenomena during the time on stream 

due to the deposition of oligomeric carbonaceous species over the surface. On the other 

hand, in the present work, we reported that also CaO, in the proper reaction condition, 

could be totally selective in the production of FAL. Thus, a comparison between the two 

catalysts has been performed in order to find an explanation able to correlate the very 

similar catalytic activity and the deep difference of surface area showed by the two metal 

oxides considering that the latter has been identified as one of the main feature that 

directly affected the activity of a basic catalyst in the catalytic transfer hydrogenation 

process. 

In Table 5-7 were reported the main features at which the two catalysts showed the best 

performance in the studied reaction. In addition to the deep difference of specific surface 

area the two systems showed several different characteristics. First of all, a different 

calcination temperature was required to decompose the precursor and form the oxide 

phase. Indeed, Mg(OH)2, precursor of MgO, decomposed in the temperature range 

between 250°C and 400°C; thus the magnesium precursor was treated at 500°C in order 

to keep a stable structure with an high surface area. On the other hand, for CaCO3, 

precursor of CaO, only calcination temperature equal or higher than 700°C allow to form 

the oxide structure. 
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Entry Feature  MgO CaO 

1 Specific surface area (m2/g) 200,0 2,4 

2 Calcination Temperature (°C) 500 700 

3 Total Basicity (mmol/g) a 7,05 2,57 

4 Basicity surface density (mmol/m2) a 0,0353 1,0708 

5 Total Basicity b 7,51 2,35 

6 FU molar % in the feed 5 5 

7 CH3OH molar % in the feed 50 75 

8 N2 molar % in the feed 45 20 

9 CH3OH/FU molar ratio 10 15 

10 Reaction Temperature (°C) 250 350 

11 Contact Time (s) 1,5 1,5 

12 FU Conversion (%) 60 20 

13 FAL Selectivity (%) 100 97 

14 MF Selectivity (%) 0 2 

15 C-Loss 0 1 

16 FAL Yield (%) 60 19 

17 
FAL Production 

(mol FAL produced/h) 
3,97E-3 1,34E-3 

18 
FAL Specific Productivity  

(mol FAL/h*m2) 
1,98E-5 5,37E-4 

19 
CaO/MgO specific productivity 

ratio 
27 

Table 5-7. Main characteristics of MgO and CaO. The reported catalytic performance are related 

to the gas-phase reduction process. 

a. Determined by irreversible adsorption of acrylic acid; 

b. Determined by CO2-TPD. 

The total basicity (Table 5-7 Entry 3), determined by-means of the irreversible adsorption 

of acrylic acid, showed that MgO was characterized by the presence of an higher number 

of basic sites compared to CaO. Despite this, taking also into account the difference of 

specific surface area, the number of basic sites characterizing the surface of CaO was not 

so low. Thus means that the density of the basic sites on the surface was clearly higher 

for CaO (Table 5-7Entry 4). In order to gain more insight regarding the total basicity of 

the solids as well as the strength of the basic sites, CO2-TPD analysis were performed 

over the analyzed systems. The amount of the basic sites determined using CO2 as the 
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probe molecule were very similar to the ones titrated with acrylic acid for both the 

catalysts used; in particular the presence of an higher number of basic sites for MgO, 7,51 

instead of the 2,35 observed for the calcium-based oxide, was confirmed. Regarding the 

strength of the sites, the analysis of the CO2-desorption curve demonstrated that CaO 

basic-sites were stronger compared to the ones of MgO. Indeed, for the latter the 

desorption of the CO2 was in the temperature range between 50 and 500°C while for CaO 

the desorption took place at higher temperature (500÷750°C). Another important 

difference between the two catalysts was the composition of the feed, both in term of total 

organic content and in term of relative methanol to furfural molar ratio, at which the best 

catalytic performance was obtained. With CaO the best performance was obtained 

feeding a methanol to furfural molar ratio equal to 15 instead of the 10 necessary with 

MgO. The higher methanol amount needed with CaO was related to the preferential 

absorption phenomena that FU showed to have towards methanol over the catalyst 

surface. 

Concerning the reaction temperature, MgO showed the maximum of activity at 250°C 

while for CaO 350°C was identified as the optimal condition; the latter catalysts was 

indeed completely not active at 250°C. This trend confirmed the data obtained in the 

liquid phase catalytic transfer hydrogenation of FU by-means of methanol. Indeed, as 

reported in the former part of the present chapter, an increase of the reaction temperature 

from 160°C to 210°C was necessary with CaO in order to obtain the same catalytic 

performance showed by MgO at the lower temperature (100% of FAL yield). 

FU conversion, FAL selectivity and the FAL specific productivity calculated on the base 

of the surface area of the catalysts were reported in Figure 5-25 (Table 5-7 Entries 13, 

14 and 19). Both the systems showed to be almost totally selective toward the production 

of FAL as the only reduction product; with MgO 100% of FAL selectivity was registered 

while, with CaO, 97% of FAL selectivity was detected with the addition of MF traces. 

Concerning FU conversion (Table 5-7 Entry 13), with MgO the 60% of substrate 

conversion was registered instead of the 20% showed by CaO.  

In the previous paragraphs of the work it was mentioned that the number of basic sites 

present over the surface and so, in the most of the cases, the specific surface area of the 

catalyst, was a key parameter directly affecting the activity of a basic catalyst in the 

process of catalytic transfer hydrogenation. Nevertheless, also the number of the defective 

sites over the surface play an important role on the catalyst’s activity. In this view, 

considering the deep difference of surface area between the two catalysts (SSA of MgO 
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~ 80 times of SSA of CaO), the 20% of FU conversion obtained with CaO could be 

considered an unexpected value if compared to the 60% observed with MgO. Indeed, with 

a specific surface area 80 times lower a conversion of “only” one third was obtained.  

In order to gain more insight about this phenomenon, a specific FAL productivity based 

on the surface area of the catalysts was calculated for both the sample (Table 5-7 Entry 

19). For CaO this value was about 27 times higher compared to that of MgO, suggesting 

that the basic active sites of the former were more active in the catalytic transfer 

hydrogenation reaction. In addition, the superficial basic-sites density, calculated 

referring the total number of the basic sites to the specific surface area (Table 5-7 Entry 

4), seemed also to play a direct role in the explanation of the higher specific activity of 

CaO. That value was indeed more than one magnitude order higher of that showed by 

MgO indicating that the basic-sites density directly affected the activity. Furthermore, the 

strength of the basic sites must not be disregarded.  

 

Figure 5-25. Comparison of the catalytic performances of MgO and CaO at their best reaction 

conditions. Legend: FU conversion (■), FAL selectivity (■), FAL specific productivity (▬). 

Summing up this part, it could be concluded that the limited difference in term of catalytic 

activity between MgO and CaO in the gas-phase catalytic transfer hydrogenation of FU 

for the production of FAL, was related to particular basic features of the latter catalyst 

that make up for the deep difference of specific surface area. In particular, it could be 

concluded that both the higher superficial basic-sites density as well as the higher strength 

of the basic sites characterizing the bulk CaO compared to that of MgO were the 

responsible for the high specific activity of the calcium-based material. 
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5.4. Study of the CTH reaction network over heterogeneous 

basic-based catalysts 

In the last paragraph of the present chapter, the study of the catalytic transfer 

hydrogenation reaction network has been conducted in order to summarize and explain 

the main differences highlighted by the used catalysts. Indeed, as deeply discussed above, 

the reaction of FU reduction to produce FAL and MF has been studied with two different 

plant-layout strategies. The former consisted in a discontinuous liquid-phase plant in 

which it was demonstrated that, in the proper condition of reaction temperature, both 

MgO and CaO could be used as stable and reusable heterogeneous basic catalysts for the 

selective production of FAL. As a matter of fact, both the catalysts showed to produce 

FAL as the only reduction product with 100% of yield.  

In a second moment, considering the interesting results obtained in the liquid-phase 

process, a continuous gas-phase plant in which were evaluated the catalytic performances 

of the pristine MgO and that of the mixed oxide Mg/Fe/O in the catalytic transfer 

hydrogenation process was developed. In that work it was confirmed that at low 

temperature (250°C) MgO was totally selective in the production of FAL as the only 

reduction product while, with the mixed magnesium-iron oxide, at 380°C, the 75% of 

yield in MF was detected5. 

It was clear and it was also reported in literature7, that the introduction of the iron into the 

lattice of the MgO caused a modification of the acid-base, de-hydrogenating, de-

oxygenating and redox properties of the catalyst. The key point was to investigate and 

understand if these properties, introduced by the insertion of iron, could be used to explain 

the difference MF production showed by the two magnesium-based catalysts. 

Furthermore, considering that the introduction of iron lead to the introduction of both acid 

and redox properties, due to the redox couple Fe3+/Fe2+, a mixed Mg/Al/O system was 

tested in the same reaction in order to gain more insight about the effect deriving by the 

introduction of a pure acid guest cation into the lattice of MgO. The aluminum-containing 

system showed higher FU conversion compared to the pristine MgO and lower than that 

obtained with the iron-containing system (Table 5-8), highlighting that the introduction 

of aluminum could increase the activity of MgO towards the CTH reaction but, at the 

same time, it was confirmed that the major increase in activity was obtained with the iron-

system. Concerning the products distribution, the introduction of aluminum lead to a 
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decrease of FAL selectivity with a parallel increase of MF production if compared to 

MgO; on the other hand, a lower MF production was registered if the iron-containing 

systems was considered as the reference catalyst. Moreover, the poorest carbon balance 

was obtained. 

Finally, we also reported on the activity of CaO in the gas-phase CTH reduction of FU to 

FAL. It was demonstrated that the calcium-based catalyst was totally selective towards 

the formation of FAL as the only reduction product exhibiting a catalytic activity similar 

to that showed by MgO. 

Entry  Catalyst 

FU 

Conversion 

(%) 

Selectivity (%) Yield (%) 

FAL MF C-Loss FAL MF 

1 MgO a 52 75 5 20 39 3 

2 CaO b 20 97 2 1 19 < 1 

3 Mg/Fe/O a 93 1 80 19 1 75 

4 Mg/Al/O a 63 41 22 37 26 14 

Table 5-8. FU conversion, products selectivity and yield obtained with the different basic-based 

catalysts. Reaction conditions: 

a. Feed composition: 5% FU, 50% CH3OH, 45% N2; pressure of 1 atm, T = 380°C, overall 

gas residence time of 1,1 s, reaction time 1 h; 

b. Feed composition: 5% FU, 75% CH3OH, 20% N2; pressure of 1 atm, T = 350°C, overall 

gas residence time of 1,5 s, reaction time 1 h. 

Thus, with the aim to further investigate the reaction mechanism of the CTH reduction of 

FU to produce FAL and MF over the pristine basic catalysts MgO and CaO and the mixed 

Mg/M3+/O (M3+ = Fe or Al) using methanol as hydrogen source we tried to verify the 

involvement of the formaldehyde, produced as a consequence of the methanol de-

hydrogenation in our typical reaction condition, for the production of MF. The methanol 

to formaldehyde de-hydrogenation reaction was indeed strongly influenced, for the 

magnesium-based catalysts, by the insertion of heteroatoms such as Fe3+ or Al3+ into the 

lattice of pristine MgO. 

Indeed, in our previous work concerning the gas-phase methylation of phenol over MgO-

based catalysts18 , we have demonstrated that a direct disproportion reaction, involving 

salycilic aldehyde, or salycilic alcohol, and the formaldehyde produced from methanol, 

with the parallel release of CO2, could be a possible reaction pathways for the direct 

formation of o-cresol (Scheme 5-5). This work also demonstrated that salycilic alcohol 
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was the primary product derived from nucleophilic attack of formaldehyde on the 

activated orto position of the aromatic ring. Furthermore, it was established that the 

salycilic aldehyde could be produced as a consequence of the disproportion process in 

which two salycilic alcohol molecules were respectively converted into one molecule of 

salycilic aldehyde and one of o-cresol. Important experimental evidence that supported 

the involvement of the direct disproportion reaction involving formaldehyde in the 

formation of high quantity of o-cresol was the detection of a high amount of CO2 in the 

outlet stream. Indeed, the amount of the latter was higher to that expected considering the 

main reaction of methanol decomposition over MgO-based catalysts. 

 

Scheme 5-5. Overall reaction pathway of phenol alkylation with methanol over MgO-based 

catalysts. In dashed square were highlighted the two possible disproportion reactions involving 

salycilic alcohol or salycilic aldehyde and formaldehyde. 
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In order to gain more information about the reaction mechanism for the formation of FAL 

and MF and to evaluate the possible involvement of the formaldehyde in a direct 

disproportion reaction, similarly to that reported above for the alkylation of phenol, 

several catalytic tests with MgO, CaO, Mg/Fe/O and Mg/Al/O feeding both FU and FAL 

as reducible substrates and different hydrogen sources such as methanol, formaldehyde, 

isopropanol, acetone and acetaldehyde have been performed. In particular, these catalytic 

tests were performed with the aim to demonstrated if the acid-base features, but also de-

hydrogenating and de-oxygenating properties of the tested catalysts and, furthermore, the 

ability to activate the formaldehyde as a reducing agent could play a direct role in the 

conversion of FU to FAL and MF. 

Prior to the catalytic tests the different systems have been characterized with BET, XRD, 

irreversible adsorption of acrylic acid and n-propylamine, CO2 and NH3-TPD, H2-TPR in 

order to gain information on the relative acid, basic and redox properties. In Table 5-9 

are summarized the main characteristics of the catalysts used. 

Table 5-9 summarizes the main features of the catalysts. First, it has to be highlighted 

that different calcination temperatures are necessary in order to allow the formation of 

the active phase between the Mg-based systems and CaO. For the latter 700°C has been 

identified as the optimal condition at which the carbonate precursor is transformed into 

the oxide specie while, for the former catalysts, 500°C is enough to decompose the 

hydrotalcite-type precursor. The XRD pattern collected over the calcined samples 

confirmed the formation of the active phases; CaO shows a calcite crystalline structure 

while MgO a single well-defined periclase phase. Conversely, the dried Mg/Fe/O and 

Mg/Al/O showed a hydrotalcite-like structures, leading after calcination to broad XRD 

lines, corresponding to a quasi-amorphous MgO phase. The latter XRD pattern well 

agrees with those reported in the literature19,20,21 for the formation of a Mg/Fe and Mg/Al 

mixed oxide, in which incorporation of a trivalent Fe3+, or Al3+, cation into the MgO 

lattice generates cationic defects and produces a low degree of crystallinity. No 

appreciable shifts of XRD reflexes have been observed, because the ionic radius of the 

Fe3+ (0.69 Å) cation is similar to the radius of Mg2+ (0.65 Å) and the one of Al3+ is lower 

(0.50 Å). 
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Entry  Feature  
Catalyst  

MgO CaO Mg/Fe/O Mg/Al/O 

1 M2+/M3+ molar ratio - - 2 2 

2 Calcination T (°C) 500 700 500 500 

3 
Crystalline phase 

(XRD) 

MgO 

(periclase) 
CaO (lime) 

MgO-like 

mixed oxide 

MgO-like 

mixed oxide 

4 SSA (m2/g) 200 2,4 140 132 

5 
Total basicity 

(mmol/g) a 
7,05 2,57 3,89 4,87 

6 
Surface basic-site 

density (mmol/m2) a 
0,0353 1,0708 0,0278 0,0369 

7 
Total basicity 

(mmol/g) b 
7,51 2,35 3,72 4,48 

8 
Total acidity 

(mmol/g) c 
0 0 0,087 0,224 

Table 5-9. Main characteristics of the basic-based catalysts. 

a. Determined by irreversible adsorption of acrylic acid; 

b. Determined by CO2-TPD; 

c. Determined by NH3-TPD; 

Concerning the trend showed by the surface area the deep difference showed between the 

calcium- and the magnesium-based materials well agrees with the general values reported 

in literature8,9; the lower surface area showed by CaO is mainly related to the higher 

temperature required to decompose the precursor and form the oxide phase. Nevertheless, 

the decrease of surface area observed in the Mg/Fe/O and Mg/Al/O compared to that 

exhibited by pristine MgO could be related to the distortion of the crystalline structure of 

the material deriving from the introduction of the trivalent cations into the lattice of MgO. 

The determination of the total amount of basic sites was performed by means of two 

different techniques: the irreversible adsorption of acrylic acid and the CO2 temperature 

programmed desorption. The results obtained with the two different probe molecules well 

agree one with each other (Table 5-9 Entries 5 and 7) confirming the basic feature of the 

studied catalysts. Getting more into the details, pristine MgO shows the higher number of 

basic sites while, according to the introduction of the acid cations iron and aluminum, a 

decrease of the basicity has been observed for the mixed oxides Mg/Fe and Mg/Al. 

Indeed, the higher electronegativity which characterized both Fe3+ and Al3+ with respect 
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to Mg2+ decreases the charge density and makes the O2- less electrophilic than in pure 

MgO; the iron containing mixed oxide, which is characterized by a number of basic sites 

between 3,7 and 3,9 mmol/g, resulted the sample with the lower basicity in the Mg-based 

family. On the other hand CaO was found to be characterized by the lower amount of 

basic sites, equal to 2,57 mmol/g. Despite this it has to be highlighted once more, as 

reported in the former section of the chapter, that the number of basic sites characterizing 

CaO material has to be referred to the lower specific surface area, resulting in the higher 

surface basic-sites density (Table 5-9 Entry 6). 

Furthermore, the CO2-TPD analysis allow to get more insight about the strength of the 

basic sites. In literature is indeed generally reported that, based on the CO2 desorption 

temperature, the curve could be divided into three regions each of that represents different 

basic sites22. The classification could be resumed as follows: 

- weak basic sites (surface hydroxyl groups): CO2 desorption in the temperature 

range 25÷125°C; 

- medium basic sites (oxygen atoms in Mg2+-O2- pairs): CO2 desorption in the 

temperature range 125÷225°C; 

- strong basic sites (low coordinated oxygen anions in superficial defectively sites): 

CO2 desorption at temperature higher than 225°C. 

The analysis of the CO2 desorption profiles reported in Figure 5-26 demonstrates that the 

catalysts are mainly characterized by medium and strong basic sites; furthermore, the 

introduction of iron and aluminum into the lattice of MgO seems to mainly decrease the 

number of the strong basic sites.  
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Figure 5-26. Example of CO2-TPD analysis performed over the MgO-based catalysts. Legend: 

MgO (▬), Mg/Al/O (▬), Mg/Fe/O (▬). 

The determination of the acid features of the catalysts, performed by-means of NH3-TPD 

desorption (Table 5-9 Entry 8), demonstrated that the pristine oxides MgO and CaO do 

not exhibit any acidic behavior while, for the mixed oxides Mg/Fe/O and Mg/Al/O, the 

presence of acid sites has been confirmed. According to that reported in literature by Di 

Cosimo et al.23 the introduction of aluminum into the lattice of MgO brings to the 

formation of the higher number of Lewis acid sites. Furthermore, it has to be highlighted 

that the introduction of Al is generally reported to be crucial only for the formation of 

Lewis acid sites while, the introduction of iron allow the formation of both acid and redox 

properties6. The ammonia desorption profiles (Figure 5-27) also demonstrated that the 

strength of the acid sites introduced with aluminum and iron were similar; both the doped 

MgO-systems showed an ammonia desorption peak in the range between 125 and 450°C. 
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Figure 5-27. Example of NH3-TPD analysis performed over the MgO-based catalysts. Legend: 

MgO (▬), Mg/Al/O (▬), Mg/Fe/O (▬), CaO (▬); TCD signal (bold line), NH3-MS signal 

(dotted line). 

In order to gain more insight about the redox properties of the studied systems H2-TPR 

characterization have been performed. Figure 5-28 reported the hydrogen signal 

registered at the mass detector. According to the information reported in literature the 

only catalyst exhibiting redox features was the iron-containing one. Indeed, for MgO, 

CaO as well as for the magnesium-aluminum mixed oxide, nil hydrogen consumption 

was observed up to 900°C; on the contrary, the iron containing system showed the 

consumption of hydrogen in the temperature range between 300 and 600°C.  

The typical Fe2O3 (hematite) TPR pattern shows two peaks at 500 °C and 650 °C and a 

broad reduction feature at temperature higher than 700°C. Based on literature data, these 

peaks can be assigned to the reduction of Fe2O3 to Fe3O4, Fe3O4 to FeO and FeO to 

metallic iron, respectively24,25,26. Compared to pure hematite the co-precipitated Mg/Fe/O 

mixed oxide showed a significant shift to lower temperature of the peaks related to 

reduction of hematite to magnetite and the following to FeO. Furthermore, the separation 

of the two peaks was not observed indicating that the iron containing system was 

characterized by the presence of iron-species with higher reducibility behavior. 
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Figure 5-28. H2-TPR profile of the studied catalysts. H2-MS signal legend: MgO (▬), Mg/Al/O 

(▬), Mg/Fe/O (▬), CaO (▬); TCD signal for Mg/Fe/O (dotted line). 

In light of the above, the analysis of the catalytic performances in the catalytic transfer 

hydrogenation reaction of FU (Table 5-8) clearly shows that a simple correlation between 

the acid-basic features of the catalysts, deriving from the introduction of the guest cations 

Fe and Al, and the products distribution, in terms of de-oxygenation properties towards 

the formation of MF, is not present. 

In the literature, the hydro-deoxygenation ability of a catalyst is generally associated with 

the Lewis acid sites present in the system; typical example are niobium oxide and zeolite 

which are used in liquid phase reactions. Indeed, the acid functionality catalyzes the 

dehydration of alcohol to form intermediates which will be substituted by surface hydride. 

On metal oxides, it is reported that the electron rich oxygen anions show basic properties 

and electron donating character, while the electron deficient metal cations show acidic 

character27,28. 

Nevertheless, in the case of the magnesium-based catalysts the modulation of acidity by-

means of the introduction of iron and aluminium as guest cations brings to different 

results to that expected. Indeed, the higher acidity showed by the mixed oxide Mg/Al/O 

is not reflected into higher MF production that is instead obtained with the iron-containing 

catalyst. In order to better clarify the effect of acid-base properties over the catalytic 

activity the trend for MF Yield and C-Loss as a function of the total acidity as well as the 

trend of FAL Yield as a function of the total basicity showed by the different systems 
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have been reported in Figure 5-29. The analysis of the reported results further confirms 

that a direct correlation between the total acidity showed by the catalyst and the yield in 

MF is not present; despite this, it has to be highlighted that only with the mixed oxides 

Mg/Fe/O and Mg/Al/O MF is produced in appreciable amount. Thus, allow to 

hypothesized once more that the introduction of acidity could play a direct role in the 

mechanism of MF formation but, at the same time, that this characteristic is not the only 

and probably the most relevant to enhance the de-oxygenating feature of the catalyst. 

On the other hand, a direct relationship between the total acidity and the formation of 

heavy carbonaceous compounds as a consequence of degradation reactions in which 

mainly FU and FAL undergoes in our reaction conditions is demonstrated. The higher is 

the acidity the higher is the C-Loss term; in the case of pristine MgO the carbon balance 

loss registered in the test at 380°C is mainly related to the thermal degradation of the 

species involved in the reaction; indeed, decreasing the temperature at 250°C nil loss is 

registered confirming the high selectivity towards the formation of FAL as the only 

reduction product. 

Regarding the production of the latter compound a direct relationship with the total 

basicity has been highlighted. Indeed, for the pure basic systems MgO and CaO, the 

higher is the basicity the higher is the yield in FAL. 

Thus, the overall comparison of the catalytic performance showed by the catalysts and 

the features of these it has been possible to further confirm that the acidity feature tuned 

with introduction of a guest cations into the lattice of a pristine basic catalyst is not the 

only characteristic that play a direct role in the mechanism of MF formation. This 

suggestion further confirms the necessity to investigate on the role of the in-situ generated 

formaldehyde that could be involved in a direct disproportion reaction with FU and FAL 

similarly to that previously demonstrated in the phenol methylation process (Scheme 

5-5). 

Therefore, to gain more information related to the former hypothesis, a complete series 

catalytic tests changing the hydrogen source have been performed. 
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Figure 5-29. (a) MF Yield and total amount of heavy carbonaceous species formed over the 

catalyst surface (C-Loss) as a function of the total acidity for the different catalysts. (b) FAL Yield 

as a function of the total basicity for the different catalysts. Legend: MF Yield (■), C-Loss (■), 

FAL Yield (■), total acidity/total basicity (▬). Reaction conditions: 

- MgO-based catalysts. Feed composition: 5% FU, 50% CH3OH, 45% N2; pressure of 1 

atm, T = 380°C (or 250°C in the case of the second result reported for pristine MgO), 

overall gas residence time of 1,1 s, reaction time 1 h; 

- CaO. Feed composition: 5% FU, 75% CH3OH, 20% N2; pressure of 1 atm, T = 350°C, 

overall gas residence time of 1,5 s, reaction time 1 h. 
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Entry Catalyst Substrate H-source 
Reaction T 

(°C) 

FU 

conversion 

(%) 

Selectivity (%) 

FAL MF 
C-

Loss 

1 

MgO a FU 

CH3OH 
250 54 100 0 0 

2 380 52 75 5 20 

3 
2-

propanol 

200 100 100 0 0 

4 250 100 100 0 0 

5 380 100 93 2 5 

6 
acetone 

250 33 0 0 100 

7 380 40 0 0 100 

9 CH2O 380 8 0 0 100 

10 
H2 

250 0 0 0 - 

11 380 0 0 0 - 

12 

CaO b FU 

CH3OH 

350 

20 97 2 1 

13 
2-

propanol 
57 98 2 0 

14 acetone 19 0 0 100 

15 CH2O c 0 0 0 - 

16 H2 0 0 0 - 

Table 5-10. Catalysts MgO and CaO. FU conversion and products distribution as a function of 

the hydrogen-source molecule used at different reaction temperature. Reaction conditions: 

a. MgO catalyst: Feed composition: 5% FU, 50% CH3OH, 45% N2; pressure of 1 atm, T = 

380°C, overall gas residence time of 1,1 s, reaction time 1 h; 

b. Feed composition: 5% FU, 75% CH3OH, 20% N2; pressure of 1 atm, T = 350°C, overall 

gas residence time of 1,5 s, reaction time 1 h; 

c. CH2O from formalin solution in water: 37% w/w CH2O, 7-8% w/w CH3OH. 

The first sets of experiments were performed feeding furfural as substrate over the pure 

basic oxides MgO and CaO using different molecules as hydrogen source (methanol, 

isopropanol, formaldehyde, acetone and acetaldehyde). In Table 5-10 were reported FU 

conversion and products distribution as a function of the hydrogen source molecule used 

at different reaction temperature. The trend observed using MgO and methanol has been 

previously described5; briefly both at 250°C and 380°C (Table 5-10 Entries 1 and 2) the 

catalyst showed 50% FU conversion and total selectivity towards FAL at the lower 

temperature. On the contrary, at 380°C the FAL selectivity decreased to 75% due to the 

formation of heavy carbonaceous compounds deriving from thermal degradation 
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processes involving the unsaturated alcohol. Furthermore, MgO at the higher 

temperature, lead to the formation of traces of MF (5% of selectivity). 

 

Figure 5-30. Effect of reaction time over FU conversion and FAL selectivity with MgO catalyst 

with different H-source. Feed composition: FU 5%, CH3OH or isopropanol 50%, N2 45%; 

Pressure 1 atm, reaction temperature 250°C, overall gas residence time 1,1 s. Legend: FU 

conversion with CH3OH (bold line), FU conversion with isopropanol (dotted line). 

Using a different hydrogen source, such as isopropanol, very efficient in the H-transfer 

process13, the activity of MgO was strongly affected (Table 5-10 Entries 3, 4 and 5). 

Indeed, complete FU conversion and almost total yield in FAL were registered at very 

low temperature (200°C). The higher conversion and FAL yield obtained feeding 

isopropanol instead of methanol supported the occurrence in the reaction of the classical 

H-transfer pathway mediated by a basic catalyst. Indeed, the intermolecular hydride 

transfer of the β-H in the alcohol to the carbonyl group, following the 

Meerwein−Ponndorf−Verley (MPV) mechanism, was favoured by secondary alcohols 

that were stronger reductants than primary ones. Furthermore, using isopropanol as the 

H-source, a higher stability during the time on stream was observed. Indeed, total 

conversion and total yield in FAL (100% of selectivity) were obtained for all the 

monitored time on stream while, using methanol, a slight and continue deactivation was 

observed due to the deposition of carbonaceous species deriving from methanol 

degradation (Figure 5-30). 
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Replacing isopropanol with acetone (Table 5-10 Entries 6 and 7) very low activity was 

registered, both at 250°C and at 380°C, due to the absence of β-H acting as a hydrogen 

donor and a nil FAL production was obtained. The whole FU converted was transformed 

into heavy deposits over the catalyst surface. Furthermore, the effect as reducing agent of 

the molecular hydrogen produced in-situ as a consequence of the methanol 

dehydrogenation on the catalyst surface was investigated (Table 5-10 Entries 10 and 11); 

the results of the catalytic tests confirmed that MgO, at both the temperature tested, was 

not able to activate H2 as reducing agent. 

The results obtained performing the same set of catalytic tests, replacing MgO with CaO, 

validated the ones observed with the former catalyst. Indeed, an increase of FU 

conversion from 20 to 57% was obtained feeding isopropanol instead of methanol as the 

hydrogen source, validating the former hypothesis for which the use of a more activated 

alcohol as hydrogen source allow to improve the catalyst performance. In the test 

performed using the secondary alcohol (Figure 5-31) was also observed that the catalyst 

kept a stable activity during the monitored time on stream. Nevertheless, it was also 

confirmed that a pure basic catalyst was not able to catalyze the following hydrogenolysis 

step to convert FAL into MF. Finally, CaO, as demonstrated above for MgO, was not able 

to activate both the formaldehyde and the molecular hydrogen produced in situ from 

methanol hydrogenation. 

In conclusion, the results obtained with pristine MgO and CaO, demonstrated the 

hypothesis for which the gas-phase reduction of FU with methanol over the pure basic 

catalysts followed the classic mechanism of the catalytic transfer hydrogenation. The 

latter, as reported in literature, involved the formation of a six-membered transition state 

over the catalyst surface as the consequence of the simultaneous absorption and activation 

of the carbonyl specie and the hydrogen donor, this mechanism occurred in a concerted 

step, in which the H transferred never adsorbed onto the surface of the catalyst, that than 

evolve into the desorption of the reduced specie29. 
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Figure 5-31. Effect of reaction time over FU conversion and FAL selectivity with CaO catalyst 

with different H-source. Feed composition: FU 5%, CH3OH or isopropanol 75%, N2 20%; 

Pressure 1 atm, reaction temperature 350°C, overall gas residence time 1,5 s. Legend: FU 

conversion with CH3OH (bold line), FU conversion with isopropanol (dotted line), FAL 

selectivity with CH3OH (■-left/full bar), FAL selectivity with isopropanol (■-right/empty bar). 
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The second sets of experiments were performed feeding FU or FAL as substrates over the 

mixed oxides Mg/Fe/O and Mg/Al/O at the fixed contact time of 1,1 s and 380°C as 

reaction temperature. These experiments were performed in order to find more insight 

about the mechanism for the formation of MF and gain more information to explain the 

deep different catalytic performance showed between the pristine basic catalysts and that 

containing iron or aluminum as guest cations (Table 5-8). Specifically, the intention was 

to evaluate if the formaldehyde, produced from methanol dehydrogenation, could act as 

“reducing agent” for a direct disproportion reaction in which FU or FAL were 

transformed into MF with the parallel release of CO2 (Scheme 5-6) with a mechanism 

similar to that demonstrated for the gas-phase methylation of phenol (Scheme 5-5). 

 

Scheme 5-6. Possible reaction pathway for the direct production MF from FU and FAL as a 

consequence of the direct disproportion reaction involving the in-situ generated formaldehyde.  

As reported above the mixed Mg/Fe/O and Mg/Al/O were characterized by similar basic 

feature while, the acidity of the aluminium containing system was about three times 

higher to the one of the former. On the other hand, the iron containing catalyst showed 

redox properties, related to the Fe3+/Fe2+ couple, that the aluminium one did not display. 

In Table 5-11 were reported FU or FAL conversions and products distribution as a 

function of the used hydrogen source molecule with the two Mg/M/O mixed oxides.  

Considering at first the activity of the mixed Mg/Fe/O system, the catalytic test performed 

using methanol as the hydrogen source bring to the formation of the highest MF yield 

(Table 5-11 Entry 1). The latter was also higher than to that obtained feeding isopropanol 

(Table 5-11 Entry 2), a hydrogen transfer reactant much more active of methanol. 
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n° Catalyst 
Substrat

e 
H-source 

Conversion (%) Selectivity (%) MF 

yield 

(%) 
FU FAL FU FAL MF 

C-

loss 

1 

Mg/Fe/O FU 

CH3OH 93 - - 1 80 19 75 

2 2-propanol 69 - - 18 55 27 38 

3 acetone 20 - - 0 0 100 0 

4 acetaldehyde 15 - - 22 0 78 0 

5 CH2O a 34 - - 14 39 47 13 

6 H2 20 - - 0 25 75 5 

7 

Mg/Al/O FU 

CH3OH 63 - - 41 22 37 14 

8 2-propanol 89 - - 81 18 1 16 

9 acetone 43 - - 0 0 100 0 

10 CH2O a 29 - - 26 40 34 12 

11 H2 15 - - 0 0 100 0 

12 

Mg/Fe/O FAL 

CH3OH - 55 16 - 60 26 33 

13 2-propanol - 68 9 - 74 17 50 

14 acetone - 77 12 - 10 78 8 

15 acetaldehyde - 60 15 - 16 69 10 

16 CH2O a - 83 48 - 40 12 33 

17 No source - 34 25 - 40 35 14 

18 H2 - 100 5 - 42 53 42 

19 

Mg/Al/O FAL 

CH3OH - 55 21 - 33 46 18 

20 2-propanol - 59 2 - 33 65 19 

21 acetone - 52 26 - 29 45 15 

22 CH2O a - 88 64 - 13 23 11 

23 H2 - 58 20 - 18 62 10 

Table 5-11. Catalysts Mg/Fe/O and Mg/Al/O. FU or FAL conversion and products distribution 

obtained using different molecules as the hydrogen-source. Reaction conditions: 5% FU or FAL, 

50% hydrogen source, 45% N2, pressure of 1 atm, T = 380°C, 1 atm, overall gas residence time 

1,1s, reaction time 1h. 

a. CH2O from formalin solution in water: 37% w/w CH2O, 7-8% w/w CH3OH. 
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These results could suggest that formaldehyde, formed from methanol dehydrogenation, 

but not from isopropanol, could be directly involved in the mechanism of MF formation. 

Indeed, using isopropanol, acetone instead of formaldehyde was released in the reaction 

mixture; lower FU conversion and lower yield in MF compared to that obtained with 

methanol were obtained.  

In addition, the results obtained using isopropanol with FAL (Table 5-11 Entry 13), 

suggested that with iron containing catalyst, the FAL hydrogenolysis to produce MF 

could proceed through the classic hydrogen transfer mechanism. Indeed, the results 

obtained feeding FAL with methanol and isopropanol indicated that the reduction process 

became more efficient in the case of the test conducted using isopropanol (higher FAL 

conversion and MF yield).  

The direct involvement of formaldehyde in the mechanism of MF formation was also 

suggested by the comparison between the quantities of MF formed respectively from FU 

and FAL using methanol as the hydrogen donor (Table 5-11 Entries 1 and 12). Indeed, 

using the alcohol a significantly lower production of MF respect to FU feeding was 

detected. This could lead to the hypothesis that the formation of MF from FU proceed 

through two parallel mechanisms. The first was identified as the classic catalytic transfer 

reduction of FU to produce FAL as the primary reduction specie that was subsequently 

reduced to MF; the second pathway was identified in the direct disproportion reaction 

involving formaldehyde and FU to produce MF and CO2. 

The feeding of FU or FAL in the presence of formaldehyde at 380°C over the mixed oxide 

Mg/Fe/O validates the former hypothesis. In fact, feeding formaldehyde with FU (Table 

5-11 Entry 5), a mixture mainly composed of MF and FAL (39 and 14% selectivity 

respectively) was obtained while, in the test performed feeding FAL in the presence of 

formaldehyde (Table 5-11 Entry 16), an equimolar amount of FU and MF was obtained. 

The obtained results seemed to confirm that the mixed Mg-Fe catalyst was able to activate 

the in-situ generated formaldehyde for the direct disproportion reaction involving the 

light aldehyde and FU to produce both FAL and MF with the parallel release of CO2. 

Nevertheless, the results suggested that the same disproportion process between 

formaldehyde and FAL was not catalyzed. In this view, the formation of an equimolar 

amount of FU and MF in the test performed feeding FAL with formaldehyde could be 

explained as the consequence of a different disproportion reaction in which two molecules 

of FAL undergoes, over the catalyst surface, to produce one molecule of MF and one of 

FU. The same behaviour was observed in the process of phenol alkylation in which two 
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molecules of salycilic alcohol disproportionate into one of o-cresol and one of salycilic 

aldehyde.  

In order to gain more information about the ability of the iron-containing catalyst to 

activate a light aldehyde, such as formaldehyde, as alternative hydrogen source for the 

selective reduction of FU to FAL, two catalytic tests have been performed using 

acetaldehyde instead of formaldehyde (Table 5-11 Entries 4 and 15).  

The obtained results confirmed the formulated hypothesis. Indeed, feeding FU, none MF 

production and FAL traces were detected. On the contrary, feeding FAL instead of FU, 

equimolar amount of FU and MF were obtained, as a consequence of the disproportion 

process in which two FAL molecules undergoes. These latter results confirmed the ability 

of the catalyst to partially activate an aldehyde as H-donor for the reduction of the 

carbonyl group to the alcoholic function but not for the consecutive step of 

hydrogenolysis. 

Finally, the effect as reducing agent of the in-situ produced molecular H2 has been 

evaluated. The obtained results (Table 5-11 Entries 6 and 18) suggested that a direct 

involvement of the latter must not be excluded as one of the possible pathways for the 

formation of MF starting from FU. Indeed, according to the TPR profile reported in 

Figure 5-28, which demonstrated the ability for the iron containing system to partially 

activate molecular hydrogen starting from temperature slight higher than 350°C, both FU 

and FAL showed to be converted into MF when H2 was fed instead of methanol as 

reducing agent. The conversion of the unsaturated alcohol was higher in comparison to 

that of FU and an overall yield in MF of 42% was obtained. 

On the other hand, the results obtained with the Mg/Al/O allow to demonstrate that the 

acidic properties of the iron containing system, reported in literature to be the key factor 

necessary to enhance the de-oxygenation activity of a pure basic system in the catalytic 

transfer hydrogenation reaction, was not the only factor responsible for the high MF yield 

observed. As a matter of fact, the aluminium catalyst, characterized by an higher acidity 

compared to the iron one, showed to produce the 14% of MF yield instead of the 75% 

obtained with the latter.  

Replacing methanol with the more active hydrogen source isopropanol it was 

demonstrated that the doping of MgO with a pure Lewis guest cation such as Al increased 

the activity of the resulting system towards the classic MPV reaction pathway, which was 

supposed to be the mechanism for the transformation of FU to FAL. Indeed, feeding FU 

in the presence of isopropanol (Table 5-11 Entries 7 and 8) the overall activity of the 
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catalyst was enhanced compared to that observed using methanol. Higher FU conversion 

and FAL yield were registered while, the amount of MF produced resulted comparable, 

suggesting that with aluminium, on the contrary to that observed with iron, the 

involvement of the in-situ produced formaldehyde could be less important in the 

mechanism of MF formation. The result obtained feeding FAL with isopropanol 

supported even more the one observed feeding FU; the same amount of MF was indeed 

produced indicating that the addition of Al increased only the activity towards the 

reduction of FU to FAL and left unaltered the ability of the catalyst in the following 

hydrogenolysis step. 

Two catalytic tests have been performed feeding FU and FAL in the presence of 

formaldehyde (Table 5-11 Entries 10 and 22). The results were surprising considering 

that the activity showed by the Al-doped system was only a bit lower to the Fe-doped one 

when FU was used as reducible substrate. On the other hand, when FAL was fed with 

formaldehyde on the aluminium system the resulting MF yield, deriving from the 

disproportion reaction involving two FAL molecules, was lower than in case of the iron 

system. Finally, according to the inability of the Mg/Al/O catalyst to activate hydrogen 

(Figure 5-28), nil MF formation was observed feeding FU with molecular hydrogen 

while, the low amount produced replacing FU with FAL derived once again from the 

disproportion mechanism in which two FAL molecules undergoes (Table 5-11 Entries 

11 and 23). 

Summarizing the information collected using different hydrogen sources and the two 

mixed oxides it was possible to demonstrate that the higher acidity of the Al-containing 

system, compared to that of the Fe one, generally considered the key factor to generate 

an higher de-oxygenating activity, was not true in the process of FU reduction using 

methanol as hydrogen source. Indeed, the higher de-oxygenating activity of the Mg/Fe/O 

was related to three main features not characterizing the aluminium containing system: 

- the iron containing catalyst showed an higher activity to catalyze the disproportion 

reaction involving the in-situ produced formaldehyde and furfural which produce 

MF with the parallel release of CO2; 

- the iron containing catalyst was also demonstrated to catalyze the reduction of FU 

to FAL and the following hydrogenolysis step to produce MF activating the in-

situ produced molecular hydrogen; 
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- finally, the contribution of the disproportion reaction involving two FAL 

molecules to produce equimolar amount of MF and FU, resulted much more 

important with the iron system. 

Finally, summing up the information described above, an overall reaction mechanism for 

the gas-phase catalytic transfer hydrogenation of FU by-means of methanol as hydrogen 

source over the basic-based systems has been proposed (Scheme 5-7). When pristine 

heterogeneous basic catalyst was used, such as MgO and CaO, the catalytic transfer 

hydrogenation proceed through the classic MPV reaction mechanism reported in 

literature, which involve the formation of a six-membered ring reaction intermediate over 

the catalyst surface after the simultaneous adsorption and activation of the hydrogen 

source and the reducible substrate. In this case the reaction resulted highly selective 

towards the reduction of FU to FAL which was produced with selectivity next to the 

100%. On the other hand, over the mixed Mg/M/O (M = Fe or Al) catalysts, in addition 

to the classic mechanism, a direct disproportion reaction involving the in-situ produced 

formaldehyde and FU to produce MF with the parallel release of CO2 it was demonstrated 

to play a direct role in the production of MF with high yield. Furthermore, a disproportion 

mechanism involving two adsorbed FAL molecules to produce equimolar amount of FU 

and MF took place. Finally, the activation of the in-situ produced molecular hydrogen as 

reducing agent for the transformation of FU to FAL and for the following hydrogenolysis 

to produce MF it was demonstrated to be another possible pathway for the production of 

MF. 

Considering the comparison between Fe and Al it was also demonstrated that the lower 

MF yield obtained with the latter guest cation was mainly related to the poorer activation 

of the in-situ produced formaldehyde toward the disproportion reaction with FU as well 

as the lower activity toward the FAL disproportion and the complete lack of molecular 

hydrogen activation as reducing agent. In this view, the trend of the released CO2 moles 

together with the obtained MF yield (Figure 5-32), further support the hypothesis for 

which, introducing iron or aluminium into the lattice of MgO, the increase of MF yield 

could be related to the disproportion reaction between formaldehyde and FU. It was 

indeed clear that the higher was the ability of the catalyst to activate that disproportion 

mechanism the higher was the MF yield and the parallel CO2 released into the stream 

exiting from the reactor. 
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Scheme 5-7. Overall proposed reaction pathway for the gas-phase catalytic transfer 

hydrogenation of FU using methanol as the hydrogen source and basic-based catalysts. 

 

Figure 5-32. Moles of CO2 produced and obtained MF yield in the catalytic tests performed 

feeding FU or FAL in the presence of methanol as the hydrogen source over the different basic-

based catalyst. 
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CHAPTER 6. FeVO4 bulk catalyst 

6.1. Introduction  

In the former chapter it was demonstrated that the catalytic transfer hydrogenation 

reduction of FU to FAL and MF using methanol as the H-transfer reactant and 

heterogeneous basic catalysts could proceed through two main pathways depending on 

the catalyst’s features. The systems exhibiting pure basic feature, such as MgO and CaO, 

were mainly active in the selective reduction of FU to FAL through the classic MPV 

reaction mechanism, which involved the formation of a six-membered ring reaction 

intermediate over the catalyst’s surface. On the other hand, the mixed magnesium-iron 

catalyst, which was characterized by different acid-base properties and higher de-

hydrogenating/de-oxygenating features compared to the pristine MgO, it was 

demonstrated to catalyze the formation of high MF quantity through a reaction 

mechanism consisting in more parallel pathways. Indeed, in addition to the classic MPV 

mechanism, the addition of iron into the lattice of the pristine MgO allow the activation 

of the in-situ produced formaldehyde for a direct disproportion reaction with FU to 

produce both FAL and MF with the parallel release of CO and CO2.  

On the base of the obtained results, the evaluation of the catalytic activity of a catalyst, 

which was active in the production of formaldehyde, could represent a valid option to 

gain further information on the involvement of the latter in the direct transformation of 

FU to MF. 

In this view, the vanadium based catalysts such as bulk vanadium oxide, supported 

vanadium oxide or as mixed vanadium oxide with metal of the first two transition state 

as well as rare earth element has become always more important. Indeed, many 

researchers have focused their attention over the synthesis of these materials and their 

application as catalysts for the removal of NOx form the exhaust gas (Selective Catalytic 

Reduction plant), in the selective oxidation of methanol to formaldehyde and, as a general 

rule, in the selective oxidation reactions1,2,3. 

In the last years the metal-vanadate compounds became always more attractive from a 

catalytic point of view due to the lower toxicity compared to that of the pristine vanadium 

oxide, the higher thermal and chemical stability in the classic operating reaction 
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conditions and medium and a catalytic performance very similar. Thus, in the next future 

the bulk vanadium oxide could be replaced by the more appealing metal-vanadate.  

More specifically, FeVO4, showed to be one of the most stable and active vanadate 

gaining always more attention also from an industrial point of view. 

6.2. Catalytic application of FeVO4 

As mentioned above in the last years the metal-vanadates have been considered one of 

the main alternative to the use of the bulk vanadium oxide thank to the quite similar 

catalytic activity showed and the numerous advantages such as the lower toxicity, the 

higher thermal and chemical stability. The latter is understood in the terms of a lower 

vanadium-loss, as a consequence of volatilization phenomena, that took place especially 

in the methanol involved process.  

The chemical process in which FeVO4 has been studied as catalyst can be divided in three 

main groups, the same in which the pristine vanadium oxide find nowadays application: 

- Selective Catalytic Reaction (SCR) process for the removal of NOx form exhaust 

gas; 

- Selective oxidation of methanol to formaldehyde; 

- Gas-phase phenol alkylation using methanol as alkylating agent. 

 

Figure 6-1. Structure of FeVO4. Adapted from [4]. 
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Lehnen et al. has deeply studied the structure changes occurred during the synthesis of 

porous FeVO4 nanorods. It is demonstrated that the as-prepared samples, dried overnight 

at 90°C in static air oven, assume a fervanite-like monoclinic structure (FeVO4*1.1H2O). 

In the latter the Fe3+ cations are located only in octahedral positions to form Fe2O9(H2O) 

domains, vanadium cations are mainly present as VO3(OH) tetrahedron domains while 

water could be incorporated both in axial positions of edge connected iron octahedral and 

vanadium tetrahedron. The thermal treatment up to 650°C induces a structural change in 

iron-vanadate material from the fervanite-like monoclinic structure to the triclinic FeVO4 

structure (Figure 6-1). In triclinic FeVO4, the iron atoms are located in three different 

sites: two distorted FeO6 octahedron and one distorted FeO5 trigonal bipyramid. The 

FeOx polyhedra are connected with their edges leading to doubly-bent chains, which are 

interconnected by VO4 tetrahedron5 (Figure 6-1). 

 

6.2.1. FeVO4 as catalyst for the Selective Catalytic reduction (SCR) of 

NOx 

The selective catalytic reduction (SCR) of NOx by ammonia (NH3) is to date the 

worldwide most efficient post-treatment method for reducing nitrogen oxide emissions 

from stationary sources. The harmful NOx gases react with injected NH3 to form nitrogen 

and water according to the following reaction6: 

4 𝑁𝑂 + 4 𝑁𝐻3 + 𝑂2 → 6 𝐻2𝑂 + 4 𝑁2 

The technology is well-established in industrial removal of NOx in stationary 

applications. Vanadium-based SCR catalysts of the type V2O5/WO3/TiO2 have been the 

most established systems for decades. For mobile sources such as heavy-duty engines, a 

urea solution is used as a nonpoisonous NH3 source and with the most recent NOx 

emission standards, NH3−SCR becomes a promising technology also for light-duty 

engines. Mobile sources demand more efficient catalysts which fulfill new and different 

requirements. The SCR catalyst has to operate under dynamic conditions and has to work 

properly in extreme cases, such as low temperature due to cold starts or short city driving. 

It can also be exposed to high temperature (>600°C) due to the coupled particulate filter 

which is often located upstream of the SCR catalyst that undergoes periodic regeneration. 

Therefore, future catalysts will have to exhibit both high N2 selectivity and high-

temperature stability over a broader operation temperature window7,8,9,10. 
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Present industrial vanadium-based-SCR catalysts consist of a sub-monolayer of VOx 

(0.5−3 wt % V2O5) usually supported on 10 wt % WO3/TiO2
2,11. An optimal loading of 

supported active material is essential for the performance and thermal stability of a SCR 

catalyst. A low vanadium loading is beneficial for the temperature stability while high 

loading is responsible for high activity12. Vanadium is deposited on the support by wet 

impregnation in order to homogeneously disperse the active species13. Depending on the 

loading and the preparation procedure, the VOx species form monomers, polymers, or 

V2O5 crystallites14. 

Recent studies show that various metal vanadates (MeVO4), such as FeVO4, ErVO4, or 

TbVO4 demonstrate promising NH3−SCR activity15,16,17. The high melting point of e.g. 

FeVO4 (ca. 850°C) compared to V2O5 (ca. 690°C) makes them attractive as high 

temperature stable SCR catalysts10,18. Casanova et al. reported that metal vanadates and 

mixtures thereof such as FexEr1−xVO4 (0 ≤ x ≤ 1) supported on WO3 (9 wt %)/TiO2 

modified with 10 wt % SiO2, exhibit excellent temperature stability and good SCR 

activity17. The origin of the temperature stability was interpreted as a result of the lack of 

free vanadium species on the surface of the catalyst, which is responsible for the undesired 

anatase to rutile phase transformation above 700°C. SiO2 is often added as promoter to 

the support material for vanadia based catalysts. SiO2 enhances the surface acidity, the 

structural strength, and the retention of BET surface area upon high temperature 

treatment19,20. 

Liu et al. investigated FeVO4 deposited by co-impregnation from Fe(NO3)3 and NH4VO3 

on TiO2. The catalyst with 9 wt % FeVO4/TiO2 showed an excellent NOx conversion for 

calcination temperatures below 600°C. Above this temperature, a severe NH3−SCR 

activity loss was observed. The deactivation was correlated to the phase transformation 

of TiO2, leading to a loss of surface area. The FeVO4 phase was identified by extended 

X-ray absorption fine structure (EXAFS) spectroscopy and was stable up to 800°C. 

 

6.2.2. FeVO4 as catalyst for the Selective oxidation of methanol to 

formaldehyde 

Production of formaldehyde from methanol and air is done with either methanol-rich 

(36% to 40%) or methanol-lean (8.5% to 9.5%) feed using the silver process and the oxide 

process, respectively. Historically, the silver process has been preferred over the oxide 
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process mainly due to lower investment costs21,22, but since the methanol price has almost 

been doubled over the last five years23 the more selective oxide process has been favored 

considerably. For new formaldehyde capacities, the oxide process is the most common 

choice today. The commercial MoO3/Fe2(MoO4)3 catalyst used in the oxide process is in 

many aspects superb, showing very high selectivity (> 93%) at almost complete 

conversion of methanol. However, at the reaction conditions the molybdenum is volatile, 

resulting in lowered activity and poorer selectivity of the catalyst with time on stream as 

well as increased pressure drop over the catalytic bed24,25,26,27. Owing to the deactivation, 

the catalyst has to be replaced every 1 to 2 years depending on the operating conditions. 

Higher temperature and methanol partial pressure favour the molybdenum loss, making 

it difficult to increase the plant capacity by increasing the methanol concentration. Since 

the far largest production cost is that of methanol, alternative more stable catalysts are of 

interest provided that they show comparable selectivity to formaldehyde27. 

In the area of alternative catalysts for methanol oxidation, several studies have been 

reported on vanadium-based catalysts including pure vanadium oxide, mixed oxides, and 

supported vanadium oxide3,28,29,30. In particular, vanadates with Ni, Fe, Co, Mg, Cr, Mn, 

Al, Ag, Cu, and Zn have been found to have selectivities >90% to formaldehyde at high 

methanol conversion31,32,33. According to Wachs et al.33, the vanadium in bulk metal 

vanadates is not volatile in methanol oxidation, although XPS analysis before and after 

use of the samples in methanol oxidation indicated some structural changes in the surface 

and near surface layers during catalysis. Indeed, since vanadium is toxic and because of 

increasing environmental concerns, low vanadium volatility is desirable not only to 

improve the catalyst life time, but also to minimize the spread of V inside the plant and 

in nature. Use of supported vanadium catalysts with loads in the monolayer range can be 

one approach both to decrease the amount of toxic vanadium being used and to improve 

the stability of the vanadium through its interaction with the support. 

Häggblad et al. have recently compared the activity of bulk FeVO4 with that of TiO2, 

Al2O3 and SiO2 supported FeVO4, the catalytic activity of these vanadates has also be 

compared with VOx/SiO2
34. Considering both activity and selectivity to formaldehyde, 

the most interesting catalysts on each support are those with the highest load of vanadium. 

At 80% methanol conversion, these samples show a selectivity to formaldehyde in the 

range 80% to 88%, a value which decreases in the order FeVO4/TiO2 > FeVO4/Al2O3 > 

FeVO4/SiO2 > V2O5/SiO2 and that is always lower if compared with the 90% obtained 

with bulk FeVO4.  
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In terms of vanadium and molybdenum volatility during the reaction time on stream, a 

comparison have been performed between a commercial-type iron molybdate bulk 

catalyst, the bulk FeVO4 and the supported vanadates. For the supported Fe-V-oxide, the 

volatilization of V is severer considering the limited vanadium content on the support. 

After operation at 300°C for 5 days in methanol oxidation with an approximately constant 

composition of 10 vol.% each of methanol and oxygen, depending on the load of 

vanadium and iron not less than about 40% to 80% of the total amount of vanadium in 

the TiO2 and Al2O3 supported catalysts has volatilized. For the silica supported samples, 

the volatilization is even worse. On the other hand, the iron and vanadium volatilization 

in the bulk FeVO4 showed to be lower than that of molybdenum in the commercial-type 

catalyst. Thus, the supported metal vanadate, in particular supported FeVO4, could be 

hardly considered as valid alternative to the bulk molybdates. On the contrary, bulk 

FeVO4, showing similar catalytic performances and lower metal volatilization, could be 

an alternative catalyst for the selective oxidation of methanol into formaldehyde, also at 

industrial-scale plant, thanks to its high stability and low deactivation. 

 

6.2.3. FeVO4 as catalyst for the methylation of phenol 

The alkylation of phenols is a very important industrial reaction. Olefins, alcohols and 

alkyls halides might be used as alkylating agents. Preferred alkylating agents for 

industrial purposes are methanol and dimethylcarbonate. More conventional reactants, 

such as methylchloride and dimethylsulphate, although still employed industrially, are 

less attractive nowadays due to environmental concerns35. Phenol methylation process 

consists in the alkylation of phenol with methanol. It is used to produce mainly o-cresol, 

2,6-xylenol and traces of 2,4,6-trimethylphenol. Reaction conditions can, in some cases, 

be adjusted to promote the selectivity for one of the products. Industrially the phenol 

methylation process is carried out by means of three main types of processes: i) liquid-

phase methylation; ii) fixed-bed liquid-phase methylation; iii) gas-phase methylation. 

When the reaction is carried out in the liquid phase it gives numerous products and their 

separation is very difficult and complicated. On the contrary, gas-phase alkylation is 

simpler, more selective and doesn’t require complicated separation of products. 

Classically gas phase methylations produce mainly 2,6-xylenol, while liquid phase 

methylations yield o-cresol as the main product. The other products being p-cresol, 2,4- 
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and 2,6-xylenols in a typical 7:5:2 ratio, respectively. Yields of up to 98% (based on 

phenol) have been reported for the gas phase reaction. Common side products include 

heavy compounds, methane gas, carbon monoxide and carbon dioxide. This process is 

currently used worldwide to produce almost the entire supply of 2,6-xylenol. 

Several studies have been performed in order to gain information about the real alkylating 

agent in the gas-phase methylation process. The general conclusion is that formaldehyde, 

produced as a consequence of methanol de-hydrogenation, acts as alkylating specie by-

means as an electrophilic attack on the activated aromatic ring of phenol35. 

Since the in-situ formation of formaldehyde from methanol has been identified as the key-

step for the gas-phase alkylation of phenol, the catalysts that shows an high activity in the 

selective oxidation of methanol to formaldehyde could also be considered as good 

candidates for the methylation process. As described in the previous paragraph, the metal-

vanadates, in particular the bulk FeVO4, has been reported to be very active in the 

mentioned reaction. 

For example, Asahi Company reported that FeVO4 is a very active and stable catalyst for 

the gas-phase methylation of phenol to o-cresol using methanol as alkylating agent36. It 

has been demonstrated that the strong de-hydrogenating properties of the catalyst allow 

the in-situ formation of high quantity of formaldehyde that is the real (hydroxyl)alkylating 

agent. 

Considering the several and potential industrial application of the mixed iron-vanadium 

oxide, which mainly involved the production of formaldehyde, in the present section of 

the work the catalytic activity of the mixed oxide in the gas-phase catalytic transfer 

hydrogenation of FU using methanol as the H-source has been evaluated with the aim to 

gain more information related to the direct involvement of the formaldehyde in the 

production of MF. 
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6.3. Results and discussion 

The catalyst was characterized via different techniques such as BET surface area, atomic 

absorption, X-ray diffraction, and Raman spectroscopy. After calcination at 650°C, the 

catalyst showed a specific surface area of 12 m2g-1, a value in agreement with that 

reported by other authors37,38.  

XRD patterns of the dried precursor and the calcined material are compared in Figure 

6-2. The dried sample showed an amorphous structure: no reflection was registered, while 

the calcined catalyst presented a well-defined FeVO4 triclinic structure with traces of 

segregated iron oxide phase (hematite). 

 

Figure 6-2. XRD patterns of the dried (black) and calcined (red) FeVO4. Reference patterns: 

(▬) FeVO4, (●) Fe2O3. 

The Raman analysis confirmed these results. The spectrum reported in Figure 6-3 can be 

divided into four spectral regions which agree well with those reported in literature for 

crystalline FeVO4
37:  

- (i) at Raman shift 1050-880 cm-1, there are bands attributable to terminal V=O 

bond stretching;  

- (ii) at 880-700 cm-1, to V—O--Fe bond stretching;  

- (iii) at 700-550 cm-1 to V—O--Fe and V--O--Fe stretching;  

- (iv) at < 550 cm-1, to the deformation of V—O—V bonds and Fe—O stretching;  

- in addition to these bands, at 1300 cm-1 a weak broad band can be attributed to α-

Fe2O3
39, indicating the possible segregation of a small quantity of hematite.  
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Figure 6-3. Raman spectrum of calcined FeVO4. 

The elemental analysis indicated the presence of a Fe/V molar ratio equal to 1.090.02 in 

fresh catalyst. This value is slightly higher than the theoretical one, thus highlighting the 

possible loss of some vanadium during catalyst synthesis. Indeed, the analysis of the 

solution obtained after filtration and washing of the catalyst showed the presence of a 

small vanadium quantity, thus justifying the slight excess of iron in the solid. 

 

6.3.1. Hydro-deoxygenation of FU with FeVO4 catalyst: effect of 

reaction temperature 

The gas phase hydrodeoxygenation of FU was carried out using methanol as the hydrogen 

source.  

The strong interaction between methanol and FeVO4 was demonstrated by means of in-

situ DRIFTS (Diffuse Reflectance Infrared Fourier Transform Spectroscopy) 

experiments. Indeed, by feeding continuously the alcohol during the adsorption at low 

temperature (Figure 6-4), we demonstrated that methanol was mainly physi-adsorbed as 

methoxy species (IR bands at 2930 and 2828 cm-1)40,41; an evidence of the physi-nature 

of the adsorption of methanol over the surface consisted in the rapid disappearing of the 

bands related to the methoxy species after the end of the feeding of the alcohol. 
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Figure 6-4. DRIFT spectra recorded during methanol adsorption (left) and desorption (right) 

over FeVO4 catalyst at 85°C. 

 

Figure 6-5. DRIFT spectra recorded after methanol adsorption and desorption at the 

temperature of 320°C. During adsorption methanol was continuously fed over the catalyst while, 

during desorption, only He was fluxed. Legend: (a) DRIFT spectra registered during methanol 

adsorption, (b) DRIFT spectra registered during methanol desorption. 
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The same behaviour was also confirmed at high temperature, but for very short time only 

(Figure 6-5); during adsorption, the main IR bands relating to the presence of both 

methoxy and molecular physi-adsorbed methanol were identified. For prolonged 

adsorption-desorption times, the appearance of broad bands at 1670-1500 cm-1, 1350-

1300 cm-1 and 1713-1772 cm-1 could be attributed to C-O vibration of molecular 

formaldehyde42, providing evidence for the formation of chemi-adsorbed formate and 

formaldehyde species, thus confirming the ability of the catalyst to activate and 

dehydrogenate methanol at this temperature. Furthermore, the intensity of the IR bands 

remained unchanged during desorption, indicating that the interaction between activated 

methanol and catalyst was strong. 

At first the influence of the reaction temperature has been studied in order to evaluate the 

optimal temperature at which the catalyst showed the best catalytic performance. In these 

catalytic tests, MF was the main product detected, with small amounts of 2,5-

dimethylfuran (DMF) and 2-vinylfuran (VINFU). 

 

Figure 6-6. Effect of reaction temperatures on FU conversion and product selectivity in the 

second hour of reaction, catalyst FeVO4. Feed composition: FU 1%, CH3OH 10%, N2 89%; 

Pressure 1 atm, overall gas residence time 1.0 s. Symbols: ♦ FU conversion, ■ MF selectivity, ■ 

DMF selectivity, ■ VINFU selectivity, ■ C loss. 
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Since the product selectivity changed significantly between the first and the following 

monitored hour of reaction (further details concerning this behavior will be given in the 

section regarding the effect of reaction time), catalyst performances were compared at the 

second hour. Figure 6-6 (and Table 6-1) shows FU conversion and product selectivity 

based on temperature (range 250-400°C). 

At a low temperature (250°C), the hydrogenation of FU to MF occurred with very low 

efficiency. Indeed, the conversion of FU was lower than 50% and the overall selectivity 

to the identified products was around 25% (≈ 20% selectivity to MF). The low selectivity 

to MF and the high C loss indicate the poor ability of the catalyst to activate methanol for 

temperatures lower than 300°C. Indeed, the C loss could be ascribed to the formation of 

heavy carbonaceous compounds deriving from the degradation of FU. 

When the temperature was increased up to 300-350°C, the efficiency of the H-transfer 

increased significantly. In this temperature range, we registered a notable increase in FU 

conversion and a remarkable enhancement of the overall selectivity to reduction products 

to up to approximately 75% (≈ 65% selectivity to MF). The formation of heavy 

compounds, due to FU degradation, was less than 20-30%. 

The presence of the oligomeric compounds adsorbed on the used catalyst surface was 

confirmed by Raman spectroscopy (Figure 6-7), with the characteristic D3 band at 

1600cm-1, which is ascribable to the presence of amorphous carbon species43. 

Furthermore, no products of ring hydrogenation or decarbonylation were formed.  

 

Reaction 

T (°C) 

FU  

Conversion 

(%) 

Product Selectivity (%) 
MF Yield 

(%) FAL MF DMF VINFU 
C-

Loss 

250 45 0 22 1 2 75 10 

300 93 0 68 3 6 23 63 

320 98 0 68 3 6 23 67 

350 90 0 63 2 6 29 57 

400 100 0 62 1 3 34 62 

Table 6-1. Effect of reaction temperatures on FU conversion and product selectivity in the second 

hour of reaction, catalyst FeVO4. Feed composition: FU 1%, CH3OH 10%, N2 89%; Pressure 1 

atm, overall gas residence time 1.0 s. 
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Figure 6-7. Raman spectra collected over the spent FeVO4 used in the catalytic test performed 

at 320°C. 

The ability of FeVO4 to activate methanol for temperatures higher than 300°C was 

confirmed by the results in Figure 6-8, which shows the number of moles of light 

compounds formed, based on time, at 250°C and 320°C. The negligible amount of CO, 

CO2, CH4, and H2 produced at 250°C agrees with the results in Figure 6-6. As a matter 

of fact, in addition to the main reaction involving the H-transfer to MF, the process was 

accompanied by the decomposition of formaldehyde, which is produced by methanol 

dehydrogenation, into light gaseous compounds, CO, CO2, CH4, and H2. In a previous 

work, we demonstrated that in similar reaction conditions formaldehyde was decomposed 

following the formal set of reactions reported in Scheme 6-135,36,18.  

CH2O → CO + H2       (1) 

CO + H2O → CO2 + H2    (2) 

2 CH2O → CH3O-C(O)H    (3) 

CH3OC(O)H → CO2 + CH4    (4) 

HCOOH → CO2 + H2    (5) 

HCOOH → CO + H2O    (6) 

CH3OH + H2O → CO2 + 3H2   (7) 

Scheme 6-1. Summary of main reactions involving methanol in the catalytic H-transfer of 

FU35,36. 
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Figure 6-8. FeVO4 catalyst. Number of moles of gas formed, based on time, in the reaction of FU 

reduction with methanol at 320°C (bold line) and 250°C (dashed line). Feed composition: FU 

1%, CH3OH 10%, N2 89%; Pressure 1 atm, overall gas residence time 1,0 s. Legend: ♦ CO, ■ 

CO2, ▲ CH4, ● H2. 

The formaldehyde generated as the co-product of H-transfer decomposes, leading to the 

formation of CO and H2 (Reaction 1). Alternatively, two adsorbed CH2O molecules may 

disproportionate to formate and a methoxy species, yielding methylformate (reaction 3) 

(the latter can also be formed by Tishchenko dimerization), which decomposes at high 

temperatures to CH4 and CO2 (reaction 4). Formic acid may also form through the 

oxidation of formaldehyde by Fe3+, and decompose to CO2 and H2 (reaction 5) or CO and 

H2O (reaction 6). Moreover, water gas shift (WGS) (reaction 2) or methanol reforming 

(reaction 7) cannot be disregarded.  

The high amount of CH4 produced, higher than that of CO2, suggests the occurrence of a 

disproportionation involving two methanol molecules to yield an equimolar amount of 

methane, formaldehyde, and water. Ueda et al. have recently reported similar results over 

vanadium and molybdenum oxides, using various alcohols, including methanol and 

ethanol, to produce the corresponding alkanes and aldehydes in equimolar ratio44,45. 

Lastly, when FU was reduced with methanol at 400°C, the total conversion of the 

substrate was registered. The main product detected was MF with a selectivity of 62%. 

However, a lower carbon balance was registered due to the degradation of FU to 

carbonaceous compounds. 
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Figure 6-9. Thermogravimetric analysis (TGA) in nitrogen: (―) fresh FeVO4 calcined at 650°C; 

FeVO4 used in catalytic test (―) at 250°C, (―) at 320°C and (―) at 400°C. 

With the aim of studying the effect of reaction conditions on the amount of carbonaceous 

deposits, TGAs were carried out on the spent catalysts (Figure 6-9). 

Thermograms were obtained by heating up the samples in a nitrogen flow, instead of air, 

in order to avoid the re-oxidation of the catalyst that would invalidate the results. Thus, it 

is necessary to take into account that some carbonaceous compounds could remain on the 

catalyst after TGA due to the anaerobic condition utilized (see the section concerning the 

effect of reaction time on catalyst structure). 

As expected, the fresh catalyst calcined at 650°C (black line) did not show any weight 

loss. Conversely, all the used catalysts showed a weight loss that could be related to the 

desorption/decomposition of the amorphous carbon deposited during reactivity tests; 

however, the weight loss was a function of the temperature used for FU reduction. In fact, 

after heating up to 150-170°C, samples showed a common and marginal initial weight 

loss (2-3 wt %) which is related to the desorption of some physisorbed water. However, 

upon increasing the temperature, an evident weight loss (≈ 10 wt %), in the range 200-

450°C, was observed for the sample used at 250°C; a further and limited weight loss (≈ 

3-4 wt %) was then registered while heating up the sample to 700°C. This latter weight 

loss could be related to the removal of the heavier oligomeric carbonaceous species, 

whereas that registered at lower temperatures could be connected to the desorption of 
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lower molecular mass deposits. It may be hypothesized that the catalyst oxidises 

carbonaceous residua, while being itself reduced because of anaerobic conditions. 

It is also shown that, in the case of the sample used at 250°C, the formation of the lighter 

carbonaceous deposits was largely improved. The sample used at 320°C showed a lower 

weight loss (≈5-6 wt %) in the range 200-450°C, and a similar weight loss in the high 

temperature region. These results can be correlated to the trend of C loss observed in 

function of reaction temperature (Figure 6-6). Indeed, the formation of heavy 

carbonaceous deposits (oligomeric species deriving from the condensation of several 

furanic species) could represent the main contribution to C loss.  

Lastly, it should be pointed out that increasing the reaction temperature from 250°C to 

400°C significantly increased the temperature at which carbonaceous deposits were 

eliminated. This could be connected to the formation of compounds with more ordered 

structures. 

These results confirm that the catalyst has the best performance in the temperature range 

between 300 and 350°C. In particular, at 320°C a conversion higher than 95% was 

registered, with a selectivity to MF of around 70%; moreover, a fairly good C balance 

was obtained (C loss 25%).  
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6.3.2. Hydro-deoxygenation of FU with FeVO4 catalyst: effect of 

reaction time 

The stability of the catalyst was examined by conducting tests for 6 h at the optimized 

reaction temperature (320°C) (Figure 6-10 and Table 6-2). FU conversion proved to be 

almost constant during the first 3 hours of reaction, with only a slight decrease; then, 

starting from the 4th hour, a rapid decrease was observed and a final conversion of 55% 

was reached. This drop in conversion may be correlated to the previously discussed 

accumulation of heavy C residues (Figure 6-7 and Figure 6-9).  

With regard to the products formed, a notable difference in selectivity was observed 

between the first and following hours of reaction, thus highlighting a different catalyst 

behavior over time. Indeed, in the first hour of reaction, a C loss of 63% and a selectivity 

to MF of 32% only were registered; starting from the second hour, the C loss dropped to 

25%, with a significant increase in MF (66%), DMF and VINFU yields.  

 

Figure 6-10. Effect of reaction time on FU conversion and product selectivity for FeVO4 catalyst. 

Feed composition: FU 1%, CH3OH 10%, N2 89%; Pressure 1 atm, 320°C, overall gas residence 

time 1.0 s. Legend: ♦ FU conversion, ■ MF selectivity, ■ DMF selectivity, ■ VINFU selectivity, 

■ C loss. 

A further evidence of the change in catalytic behaviour occurring during the first hour 

can be inferred from Figure 6-8, showing the light gaseous compound amounts. CO and 

CO2 exhibited an initial rapid increase up to a maximum value at 15 and 30 minutes, 
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respectively. After this maximum, their concentration rapidly decreased. The high 

amounts of CO and CO2 initially produced are probably due to the oxidation of methanol 

by the catalyst. 

Time on 

stream 

(h) 

FU 

Conversion 

(%) 

Product Selectivity (%) 
MF Yield 

(%) FAL MF DMF VINFU 
C-

Loss 

1 98 0 32 3 2 63 31 

2 98 0 68 3 6 23 67 

3 95 0 67 2 6 25 64 

4 78 0 66 2 7 25 51 

5 67 0 64 2 7 27 43 

6 55 0 65 1 7 27 36 

Table 6-2. Effect of reaction time on FU conversion and product selectivity, catalyst FeVO4. Feed 

composition: FU 1%, CH3OH 10%, N2 89%; Pressure 1 atm, 320°C, overall gas residence time 

1.0 s. 

The same behavior was shown by the catalyst also for the other reaction temperature 

tested confirming that a change in the catalytic activity took place in the first hour. In 

Figure 6-11 (Table 6-3 and Table 6-4) were reported the results of the catalytic tests 

performed at 300 and 350°C respectively. For both the temperature tested was confirmed 

the different catalyst performance, in terms of products distribution. Indeed, a poor carbon 

balance coupled with low selectivities in the reduction products has been detected in the 

first hour, values that were completely overturned from the second hour. 

Time on 

stream 

(h) 

FU 

Conversion 

(%) 

Product Selectivity (%) 
MF Yield 

(%) FAL MF DMF VINFU 
C-

Loss 

1 98 0 50 3 4 43 49 

2 93 0 69 3 6 23 63 

3 85 0 66 2 5 27 56 

4 69 0 61 1 6 32 42 

5 57 0 63 1 6 30 36 

6 52 0 62 2 6 30 32 

Table 6-3. Effect of reaction time on FU conversion and product selectivity, catalyst FeVO4. Feed 

composition: FU 1%, CH3OH 10%, N2 89%; Pressure 1 atm, 300°C, overall gas residence time 

1.0 s. 
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Time on 

stream 

(h) 

FU 

Conversion 

(%) 

Product Selectivity (%) 
MF Yield 

(%) FAL MF DMF VINFU 
C-

Loss 

1 97 0 40 2 3 55 39 

2 90 0 63 2 6 29 57 

3 80 0 53 2 6 39 42 

4 68 0 67 2 8 23 46 

5 57 0 58 3 7 32 33 

6 56 0 59 1 8 32 33 

Table 6-4. Effect of reaction time on FU conversion and product selectivity, catalyst FeVO4. Feed 

composition: FU 1%, CH3OH 10%, N2 89%; Pressure 1 atm, 350°C, overall gas residence time 

1.0 s. 

 

Figure 6-11. Effect of reaction time on FU conversion and product selectivity for FeVO4 catalyst 

at 300°C (top) and 350°C (bottom). Feed composition: FU 1%, CH3OH 10%, N2 89%; Pressure 

1 atm, overall gas residence time 1.0 s. Legend: ♦ FU conversion, ■ MF selectivity, ■ DMF 

selectivity, ■ VINFU selectivity, ■ C loss. 
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In order to gain better insight into this hypothesis, the oxidation of methanol by-means of 

catalyst reduction, we performed a catalytic test in which only methanol was fed at 320°C 

for 1h. Figure 6-12 shows the number of moles of light compounds formed, based on the 

time; methanol and furfural were then fed under usual conditions. The trend of light 

compounds, obtained by feeding methanol alone, was very similar to that registered in 

the test performed by co-feeding methanol and FU (Figure 6-8). Therefore, during the 

first hour of reaction, methanol preferentially reacts with the catalyst, thus decreasing the 

amount of methanol available as the H source for the reduction of FU. In these conditions, 

FU was mainly degraded, leading to the high C loss registered. 

 

Figure 6-12. FeVO4 catalyst. Number of moles of gas formed, based on the time, in the reaction 

of methanol decomposition at 320°C (first hour) and in the reaction of FU reduction with 

methanol at 320°C. Feed composition: FU 1%, CH3OH 10% , N2 89% ; Pressure 1 atm, overall 

gas residence time 1,0 s. Legend: ♦ CO, ■ CO2, ▲ CH4, ● H2. 
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Figure 6-13. FeVO4 catalyst. Methanol conversion, light compounds yield and reduction degree, 

based on the time, in the reaction of methanol decomposition at 320°C. Legend: ■ CH3OH 

conversion, ♦ CO, ▲ CO2, ■ CH4, ♦ H2, ● H2O, reduction degree (dotted line). 

In order to further validate this hypothesis and evidence modifications to FeVO4 

occurring during the first hours of reaction, we characterized samples subjected to 

different treatments by means of XRD and elemental analysis. The analysis of the 

catalysts used, either during FU reduction or with methanol alone, showed a very similar 

Fe/V atomic ratio (1.08), a value very close to that of the fresh sample (1.09), thus ruling 

out any loss of vanadium or iron during the first hour of reaction. 

Furthermore, a test carried out by feeding methanol only over a fresh FeVO4 catalyst was 

performed in order to evaluate the reduction degree of the sample; the latter was 

calculated by taking into account reaction stoichiometries and yields to all products. In 

fact, the O content in the outlet stream was higher than that contained in the inlet methanol 

stream, an evidence that confirmed the release of O2- from the catalyst because of metal 

ions reduction. The experimental reduction degree estimated with this method was 30% 

(Figure 6-13). The patterns of the two used samples, after reaction with either methanol 

alone or with the FU/methanol mixture (Figure 6-14), were very similar and, at the same 

time, different from that one of the fresh catalyst.  

The analysis of the diffraction pattern confirms the formation of a pure spinel structure. 

However, the only two known spinels containing iron and vanadium are Fe2VO4 and 

FeV2O4 (so called coulsonites), and neither of them completely match with the pattern of 
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our spent catalyst; in coulsonites, iron can be present either as Fe3+ or Fe2+, and vanadium 

as V3+ or V2+. 

Overall, the analysis of the used catalyst confirmed the same Fe/V ratio as for the fresh 

one, and showed the formation of a single spinel structure with a reduction extent of 30%. 

All this led us to conclude that the composition of the spinel in the used catalyst was 

FeIIFe0,5
IIIV1,5

IIIO4. Nevertheless, further in-situ studies are currently being carried out in 

order to confirm this hypothesis.  

Summing up this part, by the analysis of the catalytic results in terms of substrate 

conversion, products distribution and trend of the light compounds exiting from the 

reactor it was possible to demonstrate that the catalyst was reduced as a consequence of 

the interaction with methanol at high temperature. Thus, the different catalytic behavior 

of the catalyst between the first and the following monitored hours of reaction was 

attributed to the lack of activated methanol as hydrogen source over the surface.  

 

 

Figure 6-14. XRD patterns of different FeVO4 samples. Reference patterns: (▬) FeVO4, (●) 

Fe2O3, (◊) Fe2VO4, (*) FeV2O4. 
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6.3.3. Effect of catalyst pre-reduction 

Since catalyst characterization demonstrated that FeVO4 was reduced by methanol during 

the first hour of reaction, the effect of catalyst pre-reduction was studied in order to check 

whether it can affect catalytic properties. In particular, catalyst pre-reduction was 

obtained by feeding methanol alone for 1 h at 320°C; then FU and methanol were fed 

again and activity was monitored as usual for 6 h. Results (Figure 6-15 and Table 6-5) 

demonstrated that catalyst pre-reduction improved the performance. In fact, it was not 

just a higher MF selectivity compared to the untreated catalyst that was registered during 

the first hour of reaction, but also a greater stability with lower deactivation extent during 

the 6 h reaction time.  

Accordingly, a notably lower C loss was observed and a final value of 80% conversion 

was registered after 6 h. With the fresh catalyst, final conversion was just 55%. The 

improved catalyst stability was due to the lower amount of heavy carbonaceous 

compounds formed with the pre-reduced sample during the initial period, the latter being 

due, in turn, to the catalyst’s higher efficiency in methanol activation for H-transfer.    

 

Figure 6-15. Effect of reaction time on FU conversion and product selectivity for pre-reduced 

FeVO4 catalyst, feeding only methanol at 320°C for 1 h (bold line), and non-pre-reduced catalyst 

(dotted line). Feed composition: FU 1%, CH3OH 10%, N2 89%; Pressure 1 atm, overall gas 

residence time 1.0 s. Legend: ♦ FU conversion, ▲ MF selectivity, ■ sum of DMF and VINFU 

selectivity, ● C loss. 
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Time on 

stream 

(h) 

FU 

Conversion 

(%) 

Product Selectivity (%) 
MF Yield 

(%) FAL MF DMF VINFU 
C-

Loss 

1 99 0 75 5 2 18 74 

2 99 0 76 3 6 15 75 

3 95 0 80 3 6 11 76 

4 91 0 81 2 6 11 74 

5 84 0 80 2 7 11 67 

6 80 0 79 2 6 13 63 

Table 6-5. Effect of reaction time on FU conversion and product selectivity for the pre-reduced 

FeVO4. Feed composition: FU 1%, CH3OH 10%, N2 89%; Pressure 1 atm, 320°C, overall gas 

residence time 1.0 s. 
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6.3.4. Study of the reaction network 

In this section of the work will be reported the results of several experiments that have 

been conducted aimed to elucidate the reaction network. More specifically, the aim was 

to investigate the reasons why FAL was never detected, which was supposed to be the 

intermediate for MF formation starting from FU.  

First, the effect of contact time over the catalytic performances has been studied (Figure 

6-16 and Table 6-6). Results were taken at the optimized temperature (320°C), having 

pre-reduced the catalyst with methanol and changing the contact time from 0.01 to 1.0 s. 

FU conversion increased from 16% at 0.01 s contact time up to 100%. At 0.01 s, MF was 

the main product with 32% selectivity; however VINFU and FAL, the latter with 2% 

selectivity, were also formed. Upon increasing FU conversion, MF selectivity increased 

up to 75% when contact time was set at 1 s. At the same time a lower C-loss was observed, 

from 63% down to 18%. DMF and VINFU were produced in low amounts (≈ 5%) while 

FAL was no longer formed at contact times higher than 0.01 s, due to its consecutive 

transformation. 

Contact time 

(s) 

FU Conversion 

(%) 

Product Selectivity (%) 

FAL MF DMF VINFU C-Loss 

0.01 16 2 32 0 3 63 

0.1 59 0 61 2 5 32 

0.5 95 0 71 3 5 21 

1.0 99 0 75 5 2 18 

Table 6-6. Effect of contact time on FU conversion and product selectivity for FeVO4 catalyst. 

Feed composition: FU 1%, CH3OH 10%, N2 89%; Pressure 1 atm, Temperature 320°C, overall 

gas residence time 1.0 s. 
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Figure 6-16. Effect of contact time on FU conversion and product selectivity for FeVO4 catalyst. 

Feed composition: FU 1%, CH3OH 10%, N2 89%; Pressure 1 atm, Temperature 320°C, overall 

gas residence time 1.0 s. Legend: ♦ FU conversion, ■ FAL selectivity ▲ MF selectivity, ● DMF 

selectivity, ● VINFU selectivity, ● C loss. 

Entry Substrate 
Conversion 

(%) 

Products Selectivity (%) 

FU FAL MF DMF VINFU C-Loss 

1 FU + CH3OH a 99 - 0 75 5 2 18 

2 FAL + CH3OH a 100 2 - 60 4 0 34 

3 FU a 31 - 0 21 0 0 79 

4 FU b 35 - 0 0 0 0 100 

5 FAL a 85 5 - 25 0 0 70 

6 FAL b 56 6 - 6 0 0 88 

7 MF + CH3OH a 21 0 0 - 42 0 58 

8 MF a 0 0 0 - 0 0 0 

9 DMF + CH3OH a 13 0 0 0 0 0 100 

10 DMF a 0 0 0 0 - 0 0 

Table 6-7. Reactivity experiments carried out by feeding different reactants: FU or FAL or MF 

or DMF 1%, CH3OH 10% , N2 89% or 99%; pressure 1 atm, temperature 320°C, overall gas 

residence time 1,0 s, reaction time 1 h. 

a. Catalyst pre-reduced by feeding methanol at 320°C for 1 h; 

b. Catalyst calcined in static air at 650°C. 
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Some catalytic tests were conducted using different substrates (FU, FAL, MF, and DMF) 

as starting reagents, at 320°C, with both pre-reduced and fresh FeVO4 (Table 6-7). 

Entry 1 is the result obtained in the standard catalytic test after 1 h reaction time, using 

the pre-reduced catalyst. This can be compared with the result obtained by feeding FAL 

with methanol (entry 2). Also with FAL, the total conversion of the substrate was 

registered; MF and DMF were produced with 60% and 4% selectivity, respectively: 

values very similar to those obtained by feeding FU. This further supports the hypothesis 

that in FU reduction to MF, FAL is the reaction intermediate. It is also important to 

highlight that starting from FAL the formation of VINFU is not detected. 

FU and FAL were then made to react, in the absence of methanol, on the pre-reduced 

catalyst (Table 6-7 – entries 3 and 5). These experiments demonstrate that, in the absence 

of the H-transfer reactant, these substrates undergo degradation; indeed, the C loss 

registered was 70% or higher in both cases. However, also in this case we observed the 

formation of MF from FU and FAL, despite the absence of methanol. The analysis of the 

gas stream (Figure 6-17) showed the presence of CO2, CH4, and H2. Therefore, it can be 

hypothesized that during the first half hour of reaction some adsorbed methanol, deriving 

from the previous catalyst reduction treatment, was available as the H source for the 

reduction of FU or FAL to MF. 

 
Figure 6-17. FeVO4 catalyst. Number of moles of gaseous products formed, based on the time, 

for the catalytic test performed feeding only FU over pre-reduced catalyst. Feed composition: 

FU 1%, N2 99% ; Pressure 1 atm, Temperature 320°C, overall gas residence time 1,0 s. Legend: 

♦ CO, ■ CO2, ▲ CH4, ● H2. 
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The same catalytic tests were performed by feeding FU and FAL, in the absence of 

methanol, with the fresh FeVO4 (Table 6-7 – entries 4 and 6). In these conditions, only 

small amounts of FU and MF formed from FAL (both with 6% selectivity) and C loss 

was very high. The equimolar formation of FU and MF could be due to FAL 

disproportionation; this reaction might contribute to MF and FU formation also with the 

pre-reduced catalyst (entry 5). TG/DT analysis of the spent catalyst (Figure 6-18) in air 

showed a weight loss of ≈ 3% in the temperature range 290-360°C which, coupled with 

an exothermic DTA peak, demonstrated the combustion of carbonaceous deposits. The 

absence of MF in FU reduction with the fresh catalyst confirms the hypothesis that the 

formation of MF with the pre-reduced catalyst (entries 3 and 5) was due to the presence 

of pre-adsorbed methanol. 

 

Figure 6-18. Thermogravimetric (▬) and differential thermal (▬) analysis (TGA/DTA) in air of 

spent FeVO4 (not pre-reduced with methanol before the reaction) used in the catalytic test 

performed feeding only 1% mol of FAL at 320°C. 

The catalytic tests performed by feeding MF and methanol (Table 6-7 – entry 7) showed 

that the reduced catalyst is able to convert MF into DMF through a hydroxyalkylation 

process that involves MF and formaldehyde, the latter having been formed by methanol 

dehydrogenation. Furthermore, some experiments carried out by feeding MF and DMF 

without methanol (Table 6-7 – entry 8 and 10) demonstrated that both compounds are 

stable and did not undergo consecutive degradation reactions. 
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Indeed, no substrate conversion was registered in the catalytic tests performed by feeding 

either MF or DMF. However, in the presence of methanol, DMF was converted by the 

13% (Table 6-7 – entry 9) and completely transformed into heavy carbonaceous 

compounds adsorbed over the catalyst surface; this behaviour was probably ascribable to 

the in-situ formation of formaldehyde that favours consecutive reactions on DMF. 

Based on this study, it is possible to conclude that:  

i) FAL is the intermediate for the transformation of FU into MF; however, FAL 

is very reactive, and is very rapidly reduced to MF without desorbing in the 

gas phase; indeed, it was observed only in traces at a very low contact time 

(0.01s);  

ii) MF can be transformed into DMF by reacting with the in-situ-generated 

formaldehyde; the intermediate 2-methyl-5-hydroxymethylfuran, deriving 

from the electrophilic attack of formaldehyde, is also rapidly reduced to DMF;  

iii) VINFU formed only from FU in the presence of methanol (Table 6-7 – entry 

1). 

Entry Substrate 
H-

source 

Conversion, Selectivity (%) MF 

Yield 

(%) 
FU FAL MF DMF VINFU 

C-

Loss 

1 

FU 

CH3OH 99 0 75 5 2 18 74 

2 
2-

propanol 
93 0 60 0 0 40 56 

3 acetone 58 0 8 0 0 92 5 

4 CH2O a 79 0 70 4 0 26 55 

5 H2 55 0 17 0 0 83 9 

6 

FAL 

CH3OH 2 100 60 4 0 34 60 

7 
2-

propanol 
2 97 58 0 0 40 56 

8 CH2O a 1 97 60 8 0 31 58 

9 H2 1 100 33 0 0 66 33 

Table 6-8. FU/FAL conversion and product distribution as a function of the hydrogen source 

used. Reaction conditions: 1% FU or FAL, 10% H source, 89% N2, 1 atm, temperature 320°C, 

overall gas residence time 1.0s, reaction time 1h. Pre-reduced catalyst. 

a. CH2O from formalin solution in water: 37% w/w CH2O, 7-8% w/w CH3OH.  
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We then tested the reactivity of FU and FAL on the pre-reduced catalyst with different H 

sources: formaldehyde, isopropanol, acetone, and hydrogen. Table 6-8 shows the results 

of these experiments, collected during the first hour of reaction and compared with the 

results obtained with methanol as the H source. 

It is interesting to note that the use of methanol (Table 6-8 – entry 1) led to the formation 

of MF with a yield (74%) which was even higher than that registered with isopropanol 

(Table 6-8 – entry 2), despite the latter being considered a much more active H-transfer 

reactant than methanol. It may be hypothesized that formaldehyde could also be directly 

involved in the mechanism of MF formation from FU. Conversely, with the much more 

reactive FAL, similar yields to FU were obtained with methanol and isopropanol (Table 

6-8 – entries 6 and 7). 

The direct involvement of formaldehyde in MF formation with the co-production of CO2 

through a disproportionation involving the two aldehydes, in a way similar to that 

previously reported for salicylic aldehyde reduction35 was demonstrated by reacting FU 

and FAL with formaldehyde (entries 4 and 8); the same reaction occurred only at a minor 

extent with acetone, the co-product of FU reduction with isopropanol (entry 3). 

The results of the experiments carried out with H2 (Table 6-8 – entries 5 and 9) confirmed 

the higher reactivity of FAL, and showed that substrate reduction may also occur with 

H2; the yield to MF, however, was much lower than that obtained with methanol. 

Nevertheless, these results demonstrate that a contribution to MF formation deriving from 

the in-situ generated H2 should be also taken into account. 

It is also worth noting that DMF formed in experiments conducted with methanol and 

formaldehyde, whereas VINFU formed exclusively with methanol. This confirms that the 

formation of the former compound involves the aldehyde, via an hydroxyalkylation step, 

whereas the latter forms only by reaction between FU and methanol. 

A possible mechanism for VINFU formation might occur by the formation of the 

intermediate furfural methyl hemiacetal, as shown in Scheme 6-2. Hemiacetal could then 

be dehydrated into the corresponding enol, which would rapidly rearrange to furyl-methyl 

ketone; the latter is reduced by methanol to the corresponding alcohol, which is finally 

dehydrated to VINFU. 

In order to support the mechanism proposed, we conducted an experiment entailing a 

direct feed of furylmethyl ketone and methanol onto the FeVO4 catalyst at 320°C. The 

GC-MS analysis of the products revealed the formation of VINFU and ethylfuran; the 
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latter may form by hydrogenolysis of the alcohol. When the same experiment was 

conducted without methanol, no VINFU formed. 

The formation of the hypothesized ketone was demonstrated by reacting a hemiacetal, 

trifluoroacetaldehyde methyl hemiacetal (unfortunately, the hemiacetal formed by 

reaction between furfural and methanol is not commercially available), without methanol. 

Hemiacetal was readily dehydrated to the ketone (in this case, trifluoroacetone). 

These tests support the hypothesized mechanism for the formation of VINFU.  

 

Scheme 6-2. Possible reaction pathways for the formation of VINFU from FU in the presence of 

methanol on FeVO4 catalyst. 

The overall network for the vapour-phase reduction of FU with methanol and the FeVO4 

catalyst is summarized in Scheme 6-3. MF can form via three different routes: 

i. the classic H-transfer two-step mechanism with the reduction of FU to FAL 

and of FAL to MF. Indeed, under normal conditions FAL is not isolated as an 

intermediate, because of its very high reactivity, also because of the possible 

involvement of formaldehyde (co-product of the MPV reaction) in the 

immediate reduction of FAL to MF (see the following point); 

ii. the disproportionation reaction involving the in-situ-generated formaldehyde, 

with reduction of FU to MF and co-production of CO2; 

iii. the hydrogenation of FU and FAL to MF involving the in-situ-generated H2. 
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DMF forms by the hydroxyalkylation of MF with formaldehyde, and the reduction of the 

alcohol. VINFU forms by reaction between FU and methanol to the corresponding 

hemiacetal, which is then dehydrated to furylmethyl ketone and finally reduced again via 

H-transfer. 

 

Scheme 6-3. Overall reaction pathways for the transformation of FU on FeVO4 catalyst in the 

presence of CH3OH as H-source. 
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6.7. Conclusions regarding FeVO4 as bulk catalyst for the gas-

phase catalytic transfer hydrogenation of FU to MF 

FeVO4 is a very active catalyst in the gas-phase production of 2-methylfuran from 

biomass-derived furfural using methanol as the H-transfer reactant. 320°C was the 

optimum reaction temperature at which the selectivity to MF was the highest and, at the 

same time, the formation of heavy carbonaceous residues was minimized. The deposition 

of the latter was the main cause of catalyst deactivation.  

A simple procedure of FeVO4 pre-reduction with methanol increased both catalyst 

stability and MF selectivity. Indeed, it was demonstrated that the catalyst was reduced by 

methanol to form a reduced oxide with spinel structure. 

Due to its high activity, FeVO4 offers an alternative to MF production from FU with a 

high yield without the need for H2 at high pressure and precious metal catalysts. The 

formation of MF occurred via three different reaction pathways. In addition to the classic 

H-transfer mechanism, the in-situ-generated formaldehyde and H2 played a direct role in 

the formation of MF. Furthermore, it has to be highlighted that the mixture of MF, DMF 

and VINFU could be directly used as fuel-additive thanks to the high energy content, high 

RON (higher than that of ethanol and 95-RON commercial gasoline), excellent auto-

ignition behavior.  
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APPENDIX A Lithium-doped MgO: an highly 

active catalyst for the liquid-phase catalytic 

transfer hydrogenation process 

 

A.1. Introduction 

In the present section the results concerning the liquid-phase catalytic transfer 

hydrogenation of furfural (FU) and 5-hydroxymethylfurfural (HMF) to the corresponding 

unsaturated alcohols (furfuryl alcohol-FAL and 2,5-bishydroxymethylfuran-BHMF) by-

means of methanol as H-transfer reactant and Lithium-doped MgO have been presented 

and discussed.  

In a previous section of this work it was indeed reported that an high surface area MgO 

acted as active and selective catalyst for the reduction of the carbonyl group of FU and 

HMF. Indeed, in the proper reaction condition, 100% of substrate conversion with 100% 

of yield into the corresponding unsaturated alcohol was obtained1. 

Figure A-1 shows the effect of the amount of catalyst loaded in the reactor on FU and 

HMF conversion and selectivity towards the corresponding unsaturated alcohol. 

Increasing the amount of MgO progressively increased the conversion of the substrate up 

to the total value obtained loading 1 g; on the other hand, independently from the loaded 

mass, the catalyst showed to be always totally selective toward both FAL and BHMF. 

Despite this, MgO exhibited the drawback to suffer of a slight deactivation in the 

following stability tests performed treating it with a simple work-up procedure of 

separation and drying. The formation of carbonaceous deposits over the catalyst surface 

deriving from methanol degradation process in our reaction condition was identified as 

the main cause of the deactivation. Furthermore, a work-up procedure consisting in a 

thermal treatment in static air at 450°C allow the complete removal of the carbon deposits 

and the recovery of the initial activity. 

On the base of the obtained results with pristine MgO, the aim of the present section of 

the work is to evaluate the effect deriving from the doping of MgO with Lithium. Indeed, 

in literature is reported that the activity of MgO in the reaction of methane oxidative 

coupling could be increased by lithium doping. 
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Figure A-1. Substrate conversion and unsaturated alcohol selectivity as a function of the mass of 

MgO loaded. Reaction conditions: 50 ml of CH3OH, 1.21 mmol of FU or HMF, T = 160°C, t = 

3h, 1 g of MgO. Legend: FU conversion (♦-bold line), HMF conversion (■-dotted line), FAL 

selectivity (■), BHMF selectivity (■). 

A.2. Lithium-doped MgO 

Research on the oxidative coupling of methane (OCM) has increased in intensity over the 

past decade due to the potential for converting natural gas directly to higher value 

chemicals, such as ethylene2,3. Indeed, methane, one of the main component of natural 

gas, is highly underutilized due to two problems: the conversion into value added products 

is difficult, because CH4 is the most stable hydrocarbon and therefore difficult to activate; 

difficulties in transporting natural gas from the source to the consumer. 

The oxidative coupling of methane (OCM), could overcome these problems and 

therefore, it is a reaction of great industrial interest. However, this reaction showed some 

drawbacks that make not possible the development of industrial plants. The main ones 

are the high temperature at which this process runs and the lack of activity and selectivity 

of the catalysts.  

The simplest catalysts for this reaction, among a large number of complex solid oxides, 

is Li-doped MgO4. Early, Lunsford proposed that the active sites are O•- radicals 

neighbored to Li+, with Li+O•- formally replacing Mg2+O2- 5 and that the C―H bond is 

activated by homolytic splitting involving hydrogen atom transfer to the O•- sites6. 
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Lunsford et al. correlated electron paramagnetic resonance (EPR) signals with the methyl 

radical formation rate, concluding that a [Li+O-] defect is the active center. 

It has become a widely accepted fact, even so contradictory results exist in the literature. 

Mirodatos et al. found that a tight interface between Li2CO3 and MgO is necessary for a 

good catalytic performance but it only occurs after pretreatment at temperatures allowing 

the liquefaction of Li2CO3
7,8. 

Due to the high initial selectivity and activity of this system, Li/MgO was long the main 

comparison for any OCM study. However, while catalyst stability was rarely probed in 

the earlier studies, it has become a key component of the OCM literature, since the 

Li/MgO catalyst was found to deactivate rapidly during time on stream experiments due 

to Li volatility9,10.  

However, there is also evidence that the Li+O•- site may not be the active site and that the 

C―H bond activation may be through heterolytically split11. Recently, crucial ENDOR 

experiments showed that in none of the powder catalysts that were run under an OCM 

atmosphere Li+O- centers could be found12,13 although they were detectable in Li-doped 

MgO single crystals prepared by arc fusion of MgO/Li2CO3. On the other hand, by careful 

multi-method characterization13,14, Li addition was found to lead to restructuring of the 

MgO surface exposing steps and corner sites and high-index crystallographic surfaces 

compared to pristine MgO.  

Kwapien et al. Recently demonstrated that the higher catalytic performances of the Li-

doped MgO is related to possibility to create more defectively sites in the doped materials 

compared to the pristine one15. Quantum chemical calculations and temperature 

programmed reaction experiments support this conclusion. Indeed, on both Li-doped 

MgO and pure MgO catalysts conversion of CH4 and O2 starts at about 410°C and 

formation of C2 species at about 540°C. The difference is that in this initial phase of the 

reaction Li-MgO is far more active and selective in forming C2 coupling products than 

pure MgO. We conclude that the reaction pathways are the same for both materials and 

that the same active sites are present. The role of Li-doping is increasing the number of 

active sites, which is most likely due to changes of the morphology connected with the 

formation of a larger number of low-coordinate O2- ions at edges, corners, and kinks. 

Further confirmation of the strong morphological promotion of MgO by Li was also 

predicted by using atomistic and density functional theory approaches by Watson and co-

workers16. Watson calculated that a particularly stable configuration was achieved when 

one surface Mg2+ ion on the 50% vacant surface Mg layer of the {111} MgO surface was 
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substituted for two Li ions, leading to a 100% surface layer composed of Li. They finally 

predicted a transition from the cubic morphology of un-doped MgO to {111} truncated 

cubes and finally octahedrons at high Li concentrations. 

Finally Zavyalova and co-workers demonstrated, thanks to a systematic characterization 

procedure involving several techniques such as XRD, BET and pore size analysis, 

SEM/TEM electron microscopy, IR and thermogravimetric mass spectroscopy (TG-MS) 

in combination with XRD, Diffuse reflectance UV/Vis (DR-UV/Vis) and electron 

paramagnetic resonance (EPR), that the effect of Li addition on MgO could be 

rationalized as a roughening of the MgO surface on an atomic level, leading to exposition 

of more low coordinated O2- surface ions and higher index planes such as fourfold and 

threefold coordinated surface O2- ions, O2-
4c and O2-

3c
17. 

Therefore, the aim of this part of the work is to evaluate if the lithium-doping of MgO 

could positively affects the activity of the catalyst in the liquid-phase catalytic transfer 

hydrogenation of FU and HMF to the corresponding unsaturated alcohols FAL and 

BHMF by-means of methanol as H-transfer reactant.  

The effect of the lithium addition has been evaluated over two MgO support: the high 

surface synthesized MgO (MgO-HSA) and the commercial MgO with low surface area 

(MgO-C). At first the catalytic activity of the pristine supports and that of the doped 

systems have been compared preparing two doped material containing the 2% weight of 

lithium and testing it in the reduction of both FU and HMF. In a second moment the effect 

of the lithium doping has been evaluated with the commercial support. 

 

 

 

 

 

 

 



Appendix A: Lithium-doped MgO 

 

187 

 

A.3. Results and discussion 

A.3.1. Bulk features of the catalysts 

The lithium-doped catalysts were synthesized following the wet-impregnation 

methodology described by Arndt et al.18; after the dissolution in water of the right amount 

of lithium precursor (Li2CO3) the support was added and the resulting suspension was 

stirred for two hours at room temperature. Then, the water was evaporated by-means of a 

rotavapor; the obtained white solid was dried at 120°C overnight and then calcined at 

500°C in static air for 5h. 

n° Catalyst 

Li 

content 

(wt%) 

Calcination 

Temperature 

(°C) 

Crystalline 

phase 

(XRD) 

SSA 

m2/g 

Total 

basicity 

(mmol/g)a 

Total 

basicity 

(mmol/g)b 

Total 

acidity 

(mmol/g)c 

1 
MgO-

HSA 
0 500 

MgO 

(periclase) 
200 7,05 7,51 0 

2 

2-

Li/MgO-

HSA 

2 120 
Mg(OH)2 + 

Li2CO3 
- - - - 

2 500 
MgO + 

Li2CO3 
200 6,94 7,43 0 

3 MgO-C 0 - 
MgO 

(periclase) 
14 0,44 0,39 0 

4 

2-

Li/MgO-

C 

2 120 
MgO + 

Li2CO3 
- - - - 

2 500 
MgO + 

Li2CO3 
13 1,45 0,92 0 

5 

5-

Li/MgO-

C 

5 500 
MgO + 

Li2CO3 
11 1,86 1,65 0 

6 

10-

Li/MgO-

C 

10 500 
MgO + 

Li2CO3 
9 1,95 1,84 0 

Table A-1. Main features of the Li-doped catalysts. 

a. Determined by irreversible adsorption of acrylic acid; 

b. Determined by CO2-TPD; 

c. Determined by NH3-TPD. 
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Table A-1 summarizes the main features of the synthesized materials using both the 

MgO-HSA and the MgO-C as support for the deposition of lithium. At first only doped 

catalysts containing a fixed Li-content equal to the 2% weight were prepared in order to 

check the effect deriving from the addition of the alkaline metal in a series of preliminary 

tests.  

The two materials used as support showed the same well defined MgO periclase 

crystalline structure (Table A-1 Entries 1 and 3). The main difference characterizing the 

two samples of magnesium oxide consisted in the specific surface area and in the amount 

of the total basic sites. Concerning the former parameter, the synthesized material showed 

a surface area of 200 m2/g while, for the commercial one, that value was many times 

lower (14 m2/g). Different synthesis method or different calcination temperature used for 

the preparation of the commercial sample could be the explanation for the difference. The 

lower surface area showed by the latter sample was also reflected by the number of basic 

sites detected by means of the irreversible adsorption of acrylic acid and CO2-TPD as 

probe molecules. Indeed, the commercial materials showed a lower amount of total basic 

sites if compared to the synthesized one. Nevertheless, both the materials showed the 

complete absence of acidity confirming their basic feature. 

Concerning the surface area of the lithium-doped materials, the addition of the 2 weight 

% of dopant seemed to leave unaltered that parameter. Indeed, for both the supports used, 

the surface area measured for the calcined materials obtained after the addition of lithium 

showed to be, within the experimental errors, very similar. A very limited decrease of 

surface area was indeed observed for the samples prepared loading the 5 and 10 weight 

% of lithium over the commercial support.  

In Figure A-2 are collected the X-ray diffraction patterns of the dried and calcined 

materials obtained after the addition of lithium. In the case of the synthesized MgO-HSA 

the consequence of the wet impregnation procedure used for the deposition of lithium 

was the crystalline phase transition from the original MgO periclase structure to the one 

of Mg(OH)2 brucite. That transition was the consequence of a well-known property of 

magnesium oxide and hydrotalcite-like materials named memory effect, which consisted 

in the ability to hire back the structure of their precursor if exposed to water or carbon 

dioxide19. Despite this phase change, the periclase structure was formed again after the 

calcination treatment at 500°C. According to the literature17 it was demonstrated that the 

alkaline metal was present on the support’s surface as Li2CO3 also after the high 
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temperature treatment, demonstrating that the latter was not strong enough to decompose 

it to the oxide form. 

The same structural features were confirmed for the materials obtained using the MgO-C 

as support for the lithium deposition. Indeed, the calcined sample showed a well-defined 

magnesium oxide periclase structure with the addition of Li2CO3; furthermore, the 

reflexes related to the latter structure showed a progressively increase in the intensity at 

the increase of the lithium content. The main difference with the sample synthesized using 

the high surface magnesium oxide consisted in the structure of the dried sample obtained 

after the impregnation procedure. In the case of the catalyst obtained using the 

commercial support the phase transition due to the memory effect was only partial, the 

reflexes related to the brucite phase were indeed observed but their intensity was very 

low; a possible higher calcination temperature used to stabilize the periclase crystalline 

phase in the industrial production process could be the reason. 

 
Figure A-2. XRD patterns of the dried and calcined samples obtained after the addition of Li by-

means of wet impregnation over the supports MgO-HSA and MgO-C. Reference patterns: (▬) 

Mg(OH)2 brucite, (▬) MgO Periclase, (●) Li2CO3. 
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Concerning the basicity of the synthesized lithium doped catalysts, the irreversible 

adsorption of acrylic acid demonstrated the existing of basic features for all the prepared 

systems; nevertheless, the addition of lithium differently influenced that parameter 

depending on the used support. The doping of the MgO-HSA (Table A-1 entries 1 and 

2) left unaltered, within the experimental errors, the total amount of basic sites detected 

while, for the series of the doped Li/MgO-C materials a correlation between the total 

amount of the basic sites and the lithium loading was observed. Indeed, a progressively 

increase of the basicity, in term of sites number, was observed at the increase of the 

amount of lithium loaded over the commercial support, leading to a value of 1,95 mmol/g 

for the sample containing the 10% wt of lithium. Nevertheless, the basicity of the doped 

Li/MgO-C catalysts was always lower to that of the MgO-HSA synthesized material, 

indicating that the synthetic procedure used for the preparation of the latter allow the 

production of a material with higher surface area and higher amount of basic sites. 

A further confirmation of the existing relationship between the lithium addition and the 

change of the basic features in the doped Li/MgO-C materials compared to the un-doped 

one has been found in the CO2-TPD results that well agree with those determined by-

means of the irreversible adsorption of acrylic acid. The analysis of the CO2 desorption 

profiles (Figure A-3) allow also to find information related to the strength of the basic 

sites. In literature is indeed generally reported that, based on the CO2 desorption 

temperature, the curve could be divided into three regions each of that represent different 

basic sites: the weak basic sites correspond to the CO2 desorbed in the temperature range 

between 25 and 125°C, the medium sites to that desorbed in the range 125÷225°C while, 

the strong basic sites, were correlated to the CO2 desorbed at temperature higher than 

225°C20. 

The investigation of the basic sites distribution demonstrated that the number of weak 

basic sites, related to the presence of hydroxyl groups over the surface of the catalyst, was 

very low for all the tested catalysts, indicating the almost total absence of the –OH groups 

that were completely removed during the calcination process. All the materials resulted 

mainly characterized by the presence of strong basic sites but, a correlation between the 

lithium doping and the strength distribution seemed to be present. As a matter of fact, 

increasing the amount of lithium a progressive shift to lower temperature for the CO2 

desorption peak was observed indicating that the doping with lithium decreased the 

strength of the sites. The pristine support showed indeed the desorption peak centered 

around 380°C while, the samples containing the 2, 5 and 10% of lithium were 
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characterized by a shift for the maximum of the desorption curve to 340 and 260°C 

respectively. Thus, the doping of the commercial magnesium oxide with lithium allow to 

generate an higher basicity in the material; the higher was the amount of lithium added 

the higher was the resulting basicity. At the same time, the new basic sites generated over 

the surface as a consequence of the lithium addition were characterized by a lower 

strength if compared to the ones characterizing the pristine MgO-C. 

 

Figure A-3. Example of CO2-TPD profile for the Li/MgO-C catalysts. CO2-MS signal legend: 

MgO-C (▬), 2-Li/MgO-C (▬), 5-Li/MgO-C (▬), 10-Li/MgO-C (▬). 

Finally, in order to gain more information related to the superficial morphology, TEM 

characterization over the Li/MgO-C catalysts were performed. Indeed, Zavyalova and co-

workers demonstrated with the same technique that the addition of lithium over MgO 

caused a roughening of the MgO surface on an atomic level, leading to exposition of more 

low coordinated O2- surface ions and higher index planes such as fourfold and threefold 

coordinated surface O2- ions, O2-
4c and O2-

3c
21; which were responsible for the formation 

of the basic sites.  

The TEM images collected over the synthesized Li/MgO-C samples (Figure A-4) 

confirmed that increasing the lithium content increased the roughening of the surface. 

The images related to the un-doped MgO-C showed indeed a well-defined and squared 

shape for the crystallites while, at the increase of the lithium content, the shape of these 

became progressively less defined and characterized by an higher number of crystallites 



Appendix A: Lithium-doped MgO 

 

192 

 

with smaller dimension demonstrating once again that the introduction of lithium induced 

a superficial reconstruction leading to the formation of an high number of defective sites 

and so to an increase of the total basicity of the catalyst. 

 

Figure A-4. TEM images of the lithium-doped catalysts based on MgO-C as support. Legend: (a) 

MgO-C, (b) 2-Li/MgO-C, (c) 5-Li/MgO-C, (d) 10-Li/MgO-C. 
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A.3.2. Liquid-phase catalytic transfer hydrogenation of HMF over Li-

doped MgO catalysts 

In the present section of the work the preliminary catalytic tests aimed to evaluate the 

effect deriving from the addition of lithium as dopant to increase the activity of MgO as 

basic catalyst for the liquid-phase catalytic transfer hydrogenation have been performed 

using HMF as the reducible substrate and methanol as the hydrogen source. In particular 

these preliminary tests were performed to make a comparison between the catalytic 

activity of the pristine supports, MgO-HSA and MgO-C, and the corresponding doped 

materials containing the 2% weight of Lithium. 

In the chapter concerning the description of the catalytic transfer hydrogenation reaction 

(CTH) as a tool for the valorization of the biomass-derived building block was indeed 

reported that in literature the activity of a basic catalyst in the CTH has been related to 

two main features of the materials: the number of the basic sites, and so in the most of the 

cases, to the surface area considering that the higher was the latter the higher was 

generally the number of basic sites; the number of defectively sites over the surface.  

On the base of these information and considering that in the former part of the present 

chapter it was reported that the doping of MgO with lithium could increase the number 

of the defective sites and the resulting activity of the doped systems in the oxidative 

coupling of methane reaction, the aim was to evaluate if the same increase in activity 

could be obtained in the CTH reaction. 

 

Entry Catalyst 
HMF 

Conversion (%) 

BHMF  

Yield (%) 
C-Loss (%) 

1 MgO-C 5 5 0 

2 2-Li/MgO-C 87 14 73 

3 MgO-HSA 100 100 0 

4 2-Li/MgO-HSA 100 95 5 

5 Li2CO3 100 0 100 

Table A-2. HMF conversion and BHMF yield obtained with the different catalysts used for the 

preliminary tests. Reaction conditions: 50 ml of CH3OH, 1.21 mmol of HMF, T = 160°C, t = 3h, 

1 g of catalyst. 
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Figure A-5. HMF conversion and BHMF yield obtained with the different catalysts used for the 

preliminary tests. Reaction conditions: 50 ml of CH3OH, 1.21 mmol of HMF, T = 160°C, t = 3h, 

1 g of catalyst. Legend: HMF conversion (■), BHMF yield (■), total basicity determined by 

irreversible adsorption of acrylic acid(●).  

The results reported in Table A-2 and Figure A-5 demonstrated that both the pristine 

supports were active and totally selective towards the production of the unsaturated 

alcohol BHMF as the only reduction product. According to that reported above the two 

systems, characterized by different basic features and surface area, exhibited conversion 

values very different after three hours of reaction. With the synthesized MgO-HSA total 

conversion of HMF was obtained instead of the few percentage point displayed from the 

commercial sample.  

The addition of lithium brought to different effect depending on the nature of the support 

used. If the alkaline metal, that was demonstrated to be deposit in the form of Li2CO3 

over the surface of the doped systems, was added to the MgO-HSA the resulting catalytic 

performance was comparable to that of the un-doped material; indeed, total conversion 

of the substrate with 95% yield in BHMF were detected. These results well agree with 

the similar amount of basic sites determined for both the doped and un-doped materials 

based on the MgO-HSA. On the other hand, if the lithium was added on the MgO-C 

support, the resulting activity showed to deeply change in comparison to that of the 

pristine support. The 2-Li/MgO-C catalyst showed indeed an higher conversion, 87% 

instead of 5% of the un-doped material, but, despite the high activity, the selectivity 
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towards the formation of BHMF was very low considering the 14% of yield registered. 

Thus, the most of the HMF was converted to humin and degradation compounds that were 

observed in the form of black fouling on the reactor’s walls at the end of the reaction. 

Considering the basic feature of the catalysts and taking into account that HMF was 

reported to undergoes into humin formation in basic environment, such as sodium 

hydroxide solution or in the presence of strong basic catalysts22, it has been hypothesized 

that the higher basicity of 2-Li/MgO-C, in terms of total number of basic sites, compared 

to that of the un-doped material could be the cause for the substrate degradation in our 

reaction conditions. The latter hypothesis was then rejected considering that the MgO-

HSA, characterized by 7,05 mmol/g of basic sites instead of the 1,45 mmol/g observed 

for the 2-Li/MgO-C, showed nil humin formation.  

The degradation of HMF to humin compounds with 2-Li/MgO-C was then hypothesized 

to be related to the presence of lithium in the form of Li2CO3 (Figure A-2) that was the 

only difference with the pristine commercial support. Considering that HMF usually 

undergoes into humin formation in strong basic environment two degradation tests were 

performed preparing a water suspension of HMF with both the doped and un-doped 

catalysts prepared with MgO-C that was stirred for three hours. The pH of the solution as 

well as the conversion of HMF were monitored as a function of the time (Figure A-6) 

demonstrating that the higher pH registered using the lithium doped material could be 

identify as the main cause responsible for humin formation. Indeed, with the un-doped 

catalyst nil HMF conversion was observed for all the monitored time while, with the 

lithium containing sample, an increase of HMF conversion, coupled with a progressively 

darkening of the solution, was observed at the increase of the time confirming the 

formation of humin. 

A final evidence confirming the direct involvement of Li2CO3 in the process of humin 

formation was found performing a catalytic test using it as catalyst (Table A-2 Entry 5); 

total HMF conversion with nil BHMF formation were registered while humin compounds 

were find in the reactor confirming that the addition of Li2CO3 mainly enhance the ability 

of the commercial support to catalyze HMF degradation reactions. 

Taking into account the degradation phenomena highlighted using HMF, the evaluation 

of the catalytic activity for the Li-doped catalysts and the comparison with that of the un-

doped materials was continued changing the reducible substrate to furfural, that showed 

stronger resistance to humin formation and degradation reactions. 
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Figure A-6. pH values and HMF conversion as a function of the time obtained during the HMF 

degradation tests performed with the pristine MgO-C and the doped 2-Li/MgO-C catalysts; in the 

square is reported the pictures of the solution at the increase of the time. Degradation test 

conditions: 50 ml of water, 1g of catalyst, 1.21mmol HMF, T = 90°C, 150 min. Legend: pH (▬) 

MgO-C (bold line), 2-Li/MgO-C (dotted line), HMF conversion (▬) MgO-C (bold line), 2-

Li/MgO-C (dotted line). 
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A.3.3. Liquid-phase catalytic transfer hydrogenation of FU over Li-

doped MgO catalysts 

In the former paragraph it was demonstrated that a change in the catalytic activity deriving 

from the addition of lithium on the surface of both the MgO-HSA and the MgO-C could 

not be possible using HMF as reducible substrate due to the easy propensity of this to 

undergo in degradation process to form humin compounds. For this reason FU has been 

identified as alternative substrate due to the stronger resistance to humin formation and 

degradation reactions. 

The results reported in Table A-3 and Figure A-7 demonstrated once more that both the 

pristine supports were active and totally selective towards the formation of the 

unsaturated alcohol FAL as the only reduction product. Despite this, unlike to that 

previously reported using HMF, in the case of the tests performed using FU the difference 

in term of substrate conversion between the two supports was lower considering the total 

conversion registered with the MgO-HSA and the 55% obtained with the commercial 

sample instead of the 90% point of difference displayed with HMF. Thus, an higher 

reactivity of FU compared to HMF in the catalytic transfer hydrogenation reaction has 

been demonstrated. Nevertheless, the higher activity of the MgO-HSA compared to that 

of the MgO-C could be once more explained on the base of the difference, in terms of 

both total number of basic sites and surface area, displayed by the two systems. 

The addition of lithium brought to different effect depending on the nature of the used 

support also in the tests carried out using FU as substrate. If the alkaline metal was added 

to the MgO-HSA the resulting catalytic performance was comparable to that of the un-

doped material considering that with both the catalysts total conversion and total yield 

were observed. The same behavior was further confirmed in the tests performed 

decreasing the reaction time to 1 h (Table A-3 Entries 5 and 6), condition at which both 

the Li-doped and the un-doped catalyst displayed the same performance, confirming that 

the addition of lithium to the high surface area MgO did not improve the catalytic activity 

of the latter; once more the obtained results well agree with the similar basicity displayed 

by the doped and un-doped catalyst. A possible explanation could be find in the high 

surface area and high number of basic sites, related to the presence of defective sites, for 

the synthesized support that make not relevant the effect deriving from lithium addition. 

Indeed, as reported above, the increase in the activity of MgO as a consequence of the Li-

doping was mainly ascribable to superficial reconstruction phenomena deriving by the 
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deposition of the alkaline metal the consequence of which was the formation of an higher 

number of defective sites. In the case of the high surface material these phenomena could 

be marginal, or limited to a low fraction of the entire surface area of the catalyst, making 

the variation not detectable considering also that the pristine support had itself an high 

activity in the studied reaction. 

On the other hand, if the lithium was added on the MgO-C support, an improvement of 

the catalytic activity was registered. With the doped 2-Li/MgO-C catalyst an increase of 

more than 30% for both the substrate conversion and the yield towards FAL were 

obtained compared to the un-doped material. Unlike to that highlighted above in the case 

of HMF reduction, in which the addition of lithium to the commercial support brought to 

an increase of activity and a drop in the unsaturated alcohol yield due to humin formation, 

using FU as reducible substrate, the increase of FAL yield well agree with the increase of 

conversion, confirming the high selectivity of the catalyst. The enhancement of the 

catalytic activity displayed by the doped catalyst was in agreement with the increase of 

the basicity (Table A-1 Entries 3 and 4) that could be considered the main reason for the 

better performance registered. 

On the base of these preliminary tests that showed a change in the catalytic activity 

between the doped and un-doped material only for the MgO-C support, it could be 

concluded that the effect of the lithium doping could be evaluated only if the alkaline 

metal was added over the low surface area support. Thus, the work was continued 

focusing the attention over the effect of the reaction time and on the lithium loading using 

only the commercial oxide as support and making a comparison between the different 

doped materials with the activity of both the materials used as supports, MgO-C and 

MgO-HSA. 

Entry Catalyst 
Reaction time 

(h) 

FU  

Conversion (%) 

FAL 

Yield (%) 
C-Loss (%) 

1 MgO-C 3 55 54 1 

2 2-Li/MgO-C 3 88 86 2 

3 MgO-HSA 3 100 100 0 

4 2-Li/MgO-HSA 3 100 100 0 

5 MgO-HSA 1 79 79 0 

6 2-Li/MgO-HSA 1 83 82 1 

Table A-3. FU conversion and FAL yield obtained with the different catalysts used for the 

preliminary tests. Reaction conditions: 50 ml of CH3OH, 1.21 mmol of HMF, T = 160°C, 1 g of 

catalyst. 
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Figure A-7. FU conversion and FAL yield obtained with the different catalysts used for the 

preliminary tests. Reaction conditions: 50 ml of CH3OH, 1.21 mmol of FU, T = 160°C, t = 3h, 1 

g of catalyst. Legend: FU conversion (■), FAL yield (■). 

The results obtained changing the reaction time in the range 15÷180 minutes (Figure A-8 

and Table A-4) further validated the former hypothesis for which the addition of lithium 

over the commercial support brought to an enhancement of the catalytic activity. Indeed, 

for all the studied reaction time both the FU conversion and the FAL yield registered with 

the doped material were higher than that obtained with the un-doped one. Furthermore, 

considering short reaction time, such as 30 and 60 minutes, the difference of activity was 

much more relevant considering that after one hour of reaction the un-doped commercial 

support showed only 3% of FU conversion while, with the doped sample the 71% of 

substrate conversion was obtained. Nevertheless, according to the basic feature of the 

systems the activity of the 2-Li/MgO-comm sample was always lower than that exhibited 

by the MgO-HSA. Finally, a general comment concerning the trend of the conversion and 

the yield exhibited by the three catalysts as a function of the reaction time was necessary. 

Indeed, regardless the difference in the activity, all the catalysts showed to be totally 

selective towards the formation of FAL as the only reduction product for all the reaction 

time tested; furthermore, for each of them a general increase of FU conversion was 

registered at the increase of the reaction time. 
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Figure A-8. FU conversion and FAL yield as a function of the reaction time with the different 

catalysts used for the liquid-phase catalytic transfer hydrogenation. Reaction conditions: 50 ml 

of CH3OH, 1.21 mmol of FU, T = 160°C, t = 0 ÷ 180 min, 1 g of catalyst. Legend: FU conversion 

(▬), FAL yield (▬); MgO-HSA (bold line), MgO-C (dotted line), 2-Li/MgO-C (pointed line).  

Entry Catalyst 
Reaction time 

(min) 

FU  

Conversion (%) 

FAL 

Yield (%) 
C-Loss (%) 

1 

MgO-C 

15 0 0 0 

2 60 3 3 0 

3 120 11 10 1 

4 180 55 54 1 

5 

2-Li/MgO-C 

15 38 38 0 

6 30 56 55 1 

7 60 71 70 1 

8 120 75 74 1 

9 180 88 84 4 

10 

MgO-HSA 

15 45 44 1 

11 30 64 64 0 

12 60 80 79 1 

13 120 86 84 2 

14 180 100 100 0 

Table A-4. FU conversion and FAL yield as a function of the reaction time with the different 

catalysts used for the liquid-phase catalytic transfer hydrogenation. Reaction conditions: 50 ml 

of CH3OH, 1.21 mmol of FU, T = 160°C, t = 0 ÷ 180 min, 1 g of catalyst.  
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Finally the effect of the lithium loading on the catalytic activity of the commercial support 

has been investigated; for this purpose catalysts containing 5 and 10 weight % of Li were 

prepared by-means of the same procedure described above for the preparation of the 2-

Li/MgO-C sample and named 5-Li/MgO-C and 10-Li/MgO-C respectively. In the former 

part of the chapter (Table A-1) it was already reported that the acid-base characterization 

demonstrated the total absence of acidic properties for all the doped catalysts while, 

concerning the basic properties, a correlation between the lithium addition and the 

number of the basic sites was demonstrated; the higher was the lithium content the higher 

were the number of basic sites. 

Furthermore, considering also that the largest difference in terms of catalytic activity 

between the doped and un-doped catalyst was obtained for reaction time between 30 and 

60 minutes, the trends for FU conversion and FAL yield for the catalysts containing 

different lithium loading were compared in the range of 60 minutes.  

In Figure A-9 (a) are reported the values of FU conversion as a function of the reaction 

time for the catalysts synthesized with different lithium loading; the performance of both 

MgO-C and MgO-HSA are reported as the reference trends. First, it has to be highlighted 

that for all the tested catalysts, both the doped and un-doped one, a progressively increase 

of FU conversion was registered at the increase of the reaction time; furthermore, the 

systems showed to be always totally selective towards the formation of FAL as the only 

reduction product (for this reason only the trends for the conversion were reported on the 

graph). 

Concerning the effect of the lithium addition, the tests performed confirmed a relevant 

enhancement of the catalytic activity for the doped materials if compared to the pristine 

support. 

Despite this, only for very short reaction time, equal to 15 minutes, a difference between 

the systems containing different lithium loading could be observed. Indeed, for the tests 

performed at 30 and 60 minutes none appreciable difference was observed for the samples 

containing the 2, 5 and 10% of lithium respectively; these catalysts displayed catalytic 

performances very similar, making difficult the identification of an activity trend based 

on the lithium content. Furthermore, for the considered reaction time, the activity towards 

the conversion of FU to FAL for the Li-doped materials was always lower if compared 

to that of the MgO-HSA.  

On the other hand, the comparison at the fixed time of 15 min (Figure A-9 (a) and Table 

A-5) make the difference between the different systems more appreciable, allowing the 
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identification of a correlation between the activity and the lithium loading. The higher 

was the lithium content the higher were both the FU conversion and the yield in FAL. 

Indeed, starting from the un-doped commercial support that showed nil substrate 

conversion, with the increase of lithium content to 2, 5 and 10 weight % a progressively 

increase of FU conversion was registered, up to the a final value of 47% obtained with 

the catalyst loaded with the highest lithium quantity; surprisingly the latter value was also 

higher to the one obtained with the MgO-HSA.  

These results provided further evidence confirming the existence of a relationship linking 

together the amount of lithium loaded on the commercial catalyst with the amount of 

basic sites formed as a consequence of the superficial reconstruction phenomena and the 

resulting catalytic activity of the doped MgO-C catalysts in the liquid-phase catalytic 

transfer hydrogenation of FU. The correlation, for very short reaction time, between the 

catalytic activity of the different doped catalysts and the number of basic sites generated 

is reported in Figure A-9 (b). It was clear that the higher was the number of basic sites 

the higher was the catalytic activity. 
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Figure A-9. (a) Comparison of FU conversion obtained as a function of the reaction time with 

the catalysts prepared with different lithium loading over the MgO-C support. (b) FU conversion 

values obtained with the different catalysts at the fixed reaction time of 15 min. Reaction 

conditions: 50 ml of CH3OH, 1.21 mmol of FU, T = 160°C, t = 0 ÷ 60 min, 1 g of catalyst. Legend: 

MgO-C (▬), MgO-HSA (▬), 2-Li/MgO-C (▬), 5-Li/MgO-C (▬), 10-Li/MgO-C (▬). 
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Entry Catalyst 
FU 

Conversion (%) 

FAL 

Yield (%) 

Total basic sites 

(mmol/g)a 
TONb TOF (h-1)c 

1 MgO-C 0 0 0,44 0 0 

2 2-Li/MgO-C 36 37 1,45 0,309 1,24 

3 5-Li/MgO-C 38 37 1,86 0,241 0,96 

4 10-Li/MgO-C 47 45 1,95 0,279 1,12 

5 MgO-HSA 45 44 7,05 0,076 0,30 

Table A-5. FU conversion and FAL yield obtained with the catalysts prepared with different 

lithium loading at the fixed reaction time of 15 minutes. Reaction conditions: 50 ml of CH3OH, 

1.21 mmol of FU, T = 160°C, t = 15 min, 1 g of catalyst. 

a. Determined by irreversible adsorption of acrylic acid; 

b. TON expressed as mol of FAL produced per basic site; the number of basic sites was 

assumed to coincide with the acrylic acid moles adsorbed during the basicity determination 

test; 

c. TOF = TON/reaction time. 

 

In Table A-5 were also reported the values of TON and TOF for the catalysts prepared 

with the different lithium content, calculated by assuming that the surface basic sites, 

previously determined by means of the irreversible adsorption of acrylic acid, are the 

main sites contributing to the reaction. The reported values reflected the relevant increase 

observed for the substrate conversion for the doped catalysts compared to the un-doped 

commercial support. The MgO-C catalysts showed indeed a nil TOF in agreement with 

the nil registered conversion while, for the lithium doped materials based on this support, 

an increase of the TOF values in the range between 0,96 and 1,24 was registered 

confirming the deep increase in the activity towards the catalytic transfer hydrogenation 

for the low surface area lithium doped catalysts.  

Although a correlation between the amount of lithium, the generated strong basic sites 

and the catalytic performance of the doped materials compared to that of the commercial 

sample has been demonstrated, some points remained still not well understood. Indeed, 

the addition of lithium in high quantities clearly generated an increase of the basic sites 

but these were at least the five times, for the sample containing the 10%, of the ones 

detected in the commercial sample, value not enough to explain the deep increase of 

activity. Furthermore, the doped materials obtained using the MgO-C as support showed 

all a catalytic performance similar, or higher in certain case, to the MgO-HSA for which 
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the number of strong basic sites was many times higher to that detected for the doped 

materials.  

A second consideration, which was directly linked to the former one, was related to the 

structural defects generated as a consequence of the lithium addition. It was reported 

above that the enhancement of the catalytic activity for the doped materials could be 

rationalized as a roughening of the MgO surface on an atomic level, leading to exposition 

of more low coordinated O2- surface ions and higher index planes such as fourfold and 

threefold coordinated surface O2- ions, O2-
4c and O2-

3c. In this view it could be 

hypothesized that the new defective sites generated over the surface, the presence of 

which was demonstrated with TEM analysis in Figure A-4, could not be entirely titrated 

using acrylic acid or CO2 as probe molecules and that the number of the basic sites remain 

underestimate. On the other hand, the defectively sites were generally considered to be 

able to catalyze the catalytic transfer hydrogenation reaction. For this reason the 

enhancement of the superficial defectively due to the lithium doping, confirmed by TEM 

analysis, could be considered a possible explanation in addition to the higher basicity 

generated to justify the higher reactivity of the doped materials. 

 

A.4. Conclusions  

The lithium doped-MgO catalysts were synthesized by-means of the wet impregnation 

procedure using both the commercial sample characterized by a low surface area and the 

high surface area prepared by thermal decomposition of the hydrotalcite-like precursor. 

The addition of the alkaline metal was demonstrated to affect the bulk features of the 

catalysts, mainly in terms of the total basic sites as well as of the superficial defectively, 

in the case of the commercial sample doping while, no relevant change in the properties 

of the high surface area MgO was observed after the addition of lithium. The doped 

materials prepared using the commercial magnesium oxide as support showed indeed an 

overall increase of the total amount of basic sites but, analyzing the strength distribution 

of these by means of CO2-TPD, it was demonstrated that a general decrease of the strength 

for the generated sites took place at the increase of lithium content. 

According to the catalysts characterization, for which the addition of lithium 

demonstrated to leave unaltered the basicity of the high surface area support, none 

enhancement of catalytic activity was observed for the doped Li/MgO-HSA in 
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comparison to the pristine support in the liquid-phase catalytic transfer hydrogenation 

reaction using both FU and HMF as the reducible substrates and methanol as the H-

transfer reactant. 

On the other hand, for the doped Li/MgO-C series a relevant enhancement of the catalytic 

activity towards the CTH reaction was observed. Despite this, only for the tests performed 

using FU as reducible substrate the increase of the activity was clearly observed. Indeed, 

in the case of the tests performed with HMF the formation of humin due to the higher 

strength of the basic sites in the lithium doped material was the main catalyzed process. 

The tests performed with FU demonstrated the existing of a relation between the amount 

of lithium loaded, the basic sites and the resulting catalytic activity; for very short reaction 

time, equal to 15 minutes, the lithium doped materials showed a catalytic activity many 

times higher to that of the un-doped and the catalyst containing the 10% of lithium showed 

the better activity. 

Due to their high reactivity the lithium doped materials offered an alternative to FAL 

production from FU with a high selectivity and high TOF without the need for H2 at high 

pressure and precious metal catalysts. 
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