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�"Any good poet, in our age at least, must
begin with the scienti�c view of the

world; and any scientist worth listening
to must be something of a poet, must

possess the ability to communicate to the
rest of us his sense of love and wonder at

what his work discovers.�
(E. Abbey, The Journey Home)



ABSTRACT

In the past decade, the advent of e�cient genome sequencing tools and high-throughput
experimental biotechnology has lead to enormous progress in the life science. Among
the most important innovations is the microarray technology. It allows to quantify the
expression for thousands of genes simultaneously by measuring the hybridization from a
tissue of interest to probes on a small glass or plastic slide. The characteristics of these
data include a fair amount of random noise, a predictor dimension in the thousand, and
a sample noise in the dozens.

One of the most exciting areas to which microarray technology has been applied is
the challenge of deciphering complex disease such as cancer. In these studies, samples are
taken from two or more groups of individuals with heterogeneous phenotypes, patholo-
gies, or clinical outcomes. these samples are hybridized to microarrays in an e�ort to
�nd a small number of genes which are strongly correlated with the group of individuals.
Even though today methods to analyze the data are well developed and close to reach a
standard organization (through the e�ort of International project like Microarray Gene
Expression Data -MGED- Society [5]) it is not infrequent to stumble in a clinician's
question that do not have a compelling statistical method that could permit to answer
it.The contribution of this dissertation in deciphering disease regards the development
of new approaches aiming at handle open problems posed by clinicians in handle speci�c
experimental designs.

In Chapter 1 starting from a biological necessary introduction, we revise the mi-
croarray technologies and all the important steps that involve an experiment from the
production of the array, to the quality controls ending with preprocessing steps that will
be used into the data analysis in the rest of the dissertation. While in Chapter 2 a critical
review of standard analysis methods are provided stressing most of problems that

In Chapter 3 is introduced a method to address the issue of unbalanced design of
miacroarray experiments. In microarray experiments, experimental design is a crucial
starting-point for obtaining reasonable results. In a two-class problem, an equal or
similar number of samples it should be collected between the two classes. However in
some cases, e.g. rare pathologies, the approach to be taken is less evident. We propose
to address this issue by applying a modi�ed version of SAM [17]. MultiSAM consists in
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a reiterated application of a SAM analysis, comparing the less populated class (LPC)
with 1,000 random samplings of the same size from the more populated class (MPC) A
list of the di�erentially expressed genes is generated for each SAM application. After
1,000 reiterations, each single probe given a �score� ranging from 0 to 1,000 based on its
recurrence in the 1,000 lists as di�erentially expressed. The performance of MultiSAM
was compared to the performance of SAM and LIMMA [73] over two simulated data
sets via beta and exponential distribution. The results of all three algorithms over low-
noise data sets seems acceptable However, on a real unbalanced two-channel data set
regarding Chronic Lymphocytic Leukemia, LIMMA �nds no signi�cant probe, SAM �nds
23 signi�cantly changed probes but cannot separate the two classes, while MultiSAM
�nds 122 probes with score >300 and separates the data into two clusters by hierarchical
clustering. We also report extra-assay validation in terms of di�erentially expressed
genes Although standard algorithms perform well over low-noise simulated data sets,
MultiSAM seems to be the only one able to reveal subtle di�erences in gene expression
pro�les on real unbalanced data.

In Chapter 4 a method to address similarities evaluation in a three-class problem
by means of Relevance Vector Machine [82] is described. in fact, looking at microarray
data in a prognostic and diagnostic clinical framework, not only di�erences could have
a crucial role. In some cases similarities can give useful and, sometimes even more,
important information. The goal, given three classes, could be to establish, with a certain
level of con�dence, if the third one is similar to the �rst or the second one. In this work
we show that Relevance Vector Machine (RVM) [2] could be a possible solutions to the
limitation of standard supervised classi�cation. In fact, RVM o�ers many advantages
compared, for example, with his well-known precursor (Support Vector Machine - SVM
[3]). Among these advantages, the estimate of posterior probability of class membership
represents a key feature to address the similarity issue. This is a highly important, but
often overlooked, option of any practical pattern recognition system. We focused on
Tumor-Grade-three-class problem, so we have 67 samples of grade I (G1), 54 samples of
grade 3 (G3) and 100 samples of grade 2 (G2). The goal is to �nd a model able to separate
G1 from G3, then evaluate the third class G2 as test-set to obtain the probability for
samples of G2 to be member of class G1 or class G3. The analysis showed that breast
cancer samples of grade II have a molecular pro�le more similar to breast cancer samples
of grade I. Looking at the literature this result have been guessed, but no measure of
signi�cance was provided before.
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Chapter 1

Microarray: Surveying Genetic

Information

1.1 Post-genomic Era

The 14th of April of 2003 [65]the International Sequencing Consortium announced that
The Human Genome Project (HGP) had been completed, 99% of the human genetic
code was sequenced. We are now moving from the pre-genomic era characterized by
the e�ort to sequence the human genome, to a post-genomic era that concentrates on
harvesting the fruits hidden in the genomic text.

An overarching challenge in this post genomic era is the management and analysis
of enormous quantities of sequence data. In this context the Human Genome Project
is best understood as the 20th century's version of the discovery and consolidation of
the periodic table[54]. The Human Genome Project aims to produce biology's periodic
table; not a rectangle re�ecting electron valences, but a tree structure depicting ancestral
and functional a�nities among the human genes. The biological periodic table will make
it possible to de�ne unique �signature� for each building block. Molecular biology has
tended, in the last decades, to examine genes individually. The reasons could be found in
the limits imposed by the technologies like Northern Blot or Southern Blot, prior to the
advent of high-throughput technologies like microarray [69, 60]. Recently the advent of
microarray technology has made it possible to monitor the expression levels of thousands
of genes in parallel. Arrays o�er the �rst promising tool for addressing the challenges
of the post-genomic era, by providing a systematic way to survey variation in DNA and
RNA. This technology have been widespread applied during the last several years, and
it seems likely to become a standard tool both of research in molecular biology and of
clinical diagnostic. It is now time to gain a global prospective on the cell by asking
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CHAPTER 1. MICROARRAY: SURVEYING GENETIC INFORMATION 2

genome-wide questions.

1.2 Biological Basis of Genetic Information

1.2.1 Building Blocks of Life

Cells are considered to be the most basic units of life (both for prokariotes or eukaryotes).
This is the fundamental �nding which was stated in the �rst half of the 19th century
by Matthias Schleiden and can be regarded as the cornerstone of the cell theory. The
theory was later enhanced by the discovery that all necessary genetic information for a
whole organism is present in the DNA of each individual cell in the organism.

DNA is most commonly recognized as two paired chains of chemical basis, spiraled
into what is commonly known as the double helix. DNA is a large polymer with a linear
backbone of alternating sugar and phosphate residues. The sugar molecule contains
�ve carbon atoms, labeled 1' through 5', The backbone is created by a series of bonds
between the 3' carbon of one unit's sugar molecule, the phosphate residue, and 5' carbon
of the next unit. DNA strands have an orientation determined by the numbering of
the carbon atoms, which by convention starts at the 5' end and �nishes at the 3' end.
A single-stranded DNA sequence is therefore always written in this canonical 5'→ 3'
direction , unless otherwise stated.

DNA (deoxyribonucleic acid) and RNA (ribonucleic acid), the two main information
carrying molecules in the cells, have a similar structure as both are built up from nu-
cleotide monomers. A nucleotide consists of a phosphate group, a pentose (�ve-carbon
sugar) and an organic base. In DNA, the pentose is deoxyribose and the organic bases
adenine (A), guanine (G), cytosine (C) and thymine (T). In RNA, the pentose is ribose
and thymine is replaced by uracil (U). Nucleotides can bind to each other to form pairs:
adenine pairs with thymine or uracil, cytosine pairs with guanine (see Figure 1.1 on page
3).
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Figure 1.1: The backbone and double-helix structure of DNA

This relation is called base-pair complementary and is the basic process behind th
functionality of the cell and the subsequent construction of proteins. All living organism
are composed largely of proteins, and their importance was well stated by the distin-
guished scientist Russel Doolittle, who wrote �we are our proteins�.

1.2.2 The Central Dogma of Molecular Biology

A major �nding of molecular biology is that DNA speci�es RNA and RNA determines
proteins. Speci�cally, the �ow of information from DNA to RNA to proteins is called the
central dogma of molecular biology [27]. DNA is the primary source of information for
the building and functioning of a cell. This information is encoded in nucleotide triplets
called codons. DNA is transcribed into RNA, which is then translated into proteins.
The overall process of transcription and subsequent translation is referred to as gene
expression. Although the information �ows strictly from nucleic acids to proteins, the
relation between DNA, RNA and protein is circular as proteins carry out, or at least
support, the synthesis of DNA and RNA (seeFigure 1.2 on page 4).
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Figure 1.2: The Central Dogma of Molecular Biology

1.2.3 Genes and Genetics Code

Each cell of an organism has one or more DNA molecules. Each DNA molecule forms
a chromosome. The complete set of chromosomes inside a cell is called a genome. The
number of chromosomes in a genome is characteristic of a particular species. For example,
every cell in Homo sapiens has 46 chromosomes.

A DNA molecule contains certain contiguous stretches which encode information for
building proteins. However, some portions of DNA molecule do not contain encoded
information but rather are termed �junk DNA�. This may actually be a misnomer, as
it has been suggested that junk DNA may indeed perform unrecognized and valuable
functions. A gene is a contiguous stretch of DNA that contains the information necessary
to build a protein or an RNA molecule. Gene lengths vary, but human genes normally
have 10,000 base pair. The starting and the ending points of genes can be recognizes by
speci�c cell mechanism. A protein is composed of a chain of amino acids. The mechanism
by which genes specify the sequence of amino acids in a protein is called the genetic code.
To be speci�c, a triplet of nucleotides is used to specify each amino acid. Such a triplet
is called a codon. Given the four bases types, the total number of possible combinations
within nucleotide triplets is 64. However, these 64 combinations can only refer to the
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Figure 1.3: Genetic code mapping codons to amino acids

twenty amino acids which actually occur (see Figure 1.3 on page 5).
There is therefore redundancy in coding, and several di�erent triplets will correspond

to the same amino acid. Moreover, three of the possible codons (UGA, UAG and UAA)
do not code for any amino acid and are used instead to signal the end of a gene. Such
redundancy is actually a valuable feature of the genetic code, rendering it more robust
in the event pf small errors in the transcription process.

1.2.4 Transcription and Gene Expression

Transcription is the process of synthesizing RNA using genes as a templates. A gene
is expressed when, through the transcription process, its coding is transferred to an
RNA molecule. To initiate a transcription process, the DNA double helix is �unzipped�,
starting at the promoter site of a gene. The promoter site is a region on the 5' side of
the DNA strand which indicates that a gene is forthcoming. Once the DNA double helix
has been opened at this starting point, one DNA strands serves as a template strand.
An RNA molecule is constituted by binding together ribonucleotides complementary
to the template strand until the STOP codon is met. This resulting RNA is called
messenger RNA, or, brie�y, mRNA. After the transcription process, the mRNA will be
transported to cellular structures called ribosomes to guide the manufacture of proteins.
For eukaryotes, many genes are composed of alternating parts called introns and exons.
After transcription, the introns are spliced out from the mRNA. This means that only
the exons will partecipate in protein synthesis. Alternative splicing occurs when the
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same genomic DNA can give rise to two or more di�erent mRNA molecules on the
basis of alternative selection of introns and exon, generally resulting in the production of
di�erent proteins. Because of the changes which result through the splicing of introns and
exons, the entire gene as found in the chromosome is usually called the genomic DNA,
and the spliced sequence consisting of exons only is called the complementary DNA or
cDNA. The cDNA can be obtained by a reverse transcription process which transforms
mRNA back into DNA and which is one of the basics biological step in the �owchart of
a microarray experiment. Scientist involved in gene expression research usually �nd it
easier to work with expressed sequence tags (ESTs) instead of the entire gene. An EST
is a unique short subsequnce (only few hundred base pairs in length), generated from
the DNA sequence of a gene. Scienti�c com unity also identify with ESTs sequences of
the genome which are expressed but not well annotated . Is important to stress that
not all the transcribed genetic information will be really translated into proteins, for this
reason genomics and proteomics are nowadays two di�erent branches of post-genomic
era. Research and technologies have to concentrate both on proteomic and genomic level
to gain the correct view of what is going on into the cell.

1.2.5 Genotype and Phenotype

Genomes belonging to the same species vary slightly from organism to organism in a
phenomenon known as genome variation (or genetic variation). It is subtle variability in
genomes that is responsible for the evolution and diversity of organisms. Some genomes
variations are unique to an organism, while others are passed on through generations
via reproductive cells. Most genomes variations involve only a few bases. Some common
variations include the replacement of one base by another (substitution), the excision of a
base (deletion), the addition of a base (insertion), and the removal of a small subsequene
of bases and their reinsertion in the opposite order (inversion) or in another location
(translocation). Such genome variations are due to mutations and polymorphisms. A
polymorphism is a genome variation in which every possible sequence is present in at
least one percent of a population, whereas a mutation refers to a genome variations that
is present in less than one percent of a population.

In each organism, DNA resides in chromosomes. A cell may contain a single set
of chromosomes (the haploid state) or two chromosome sets (the diploid state); in the
latter case, each chromosome is represented by two copies. An exception is the pair
of sex chromosomes, which draws one copy from the father and one from the mother.
The two members of a pair of chromosomes are called homologous chromosomes. The
existence of genome variation means that some genes may di�er slightly from individual
to individual. When this happens, each alternate version of a gene is called an allell. In
fact, every diploid cell carries two alleles of each gene, one in each of a pair of homologous
chromosomes. When both alleles are the same, the organism is said to be homozygous
for that gene. In the latter case, only one of the alleles, the dominant allele, may be
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expressed, while the other is not expressed.
The common and properly-functioning version of a gene is referred to as wild-type

allele. As with the redundancy present in genetic coding, the presence of two versions
of each gene is another protective mechanism provided by nature. If one copy should
happen to be defective, the other copy is available to compensate. Due to this protective
mechanism, many genome variations do not produce any noticeable. However, the e�ects
of a small percentage of genome variations are noticeable, with both bene�cial and
deleterious results. Most of current research focus on elucidating genotype-phenotype
relationships, as the relationships between disease and their genomic basis are termed.
Genotype refers to the genetic, makeup of an individual, while the outward characteristics
of the individual are its phenotype. They are, naturally, connected as the phenotype is
shaped, develops, and functions on the information provided by and encoded in the
genotype.

1.3 Microarrays

1.3.1 Introduction

The recent development of high-density DNA microarray technology enables researchers
to capture the snapshot of cells on a genome-wide scale at the transcriptional level. The
expression levels of thousands, or even tens of thousands, of genes can be monitored
using a single microarray chip. Microarrays measure the presence of mRNA. The mRNA
can be extracted from cells, tissues, etc. By analyzing extracted mRNA, one obtains
a quantitative assessment of the genetic activity of the location from which the mRNA
was extracted. Microarrays derive an expression level for each gene, a scalar value
corresponding to the amount of mRNA which in turn corresponds to the gene in question.
The molecular principle of microarray is the inherent ability of nucleic acids to bind
to complementary sequences (hybridization). This allows simultaneous probing of a
complex mixture of nucleic acids using an array of complementary sequences which are
spatially ordered on a glass surface. The biological sample to be analyzed is deposited
on the array where sequences of the sample hybridize to arrayed sequences. In �gure 1.4
a simple scheme of hybridization process is showed.

In the context of microarray technology, the nucleotide sequences attached to the
array surface are frequently called probes1, while sequences of the sample are termed
targets.

McLachlan brie�y reviewed the history of the microarray technology. In the 1980, a
group led by R.P. ekins in the Department of Molecular Endocrinology at the University
College, London was the �rst to use simple microspotting techniques to manufacture

1In this dissertation the nomenclature proposed by Duggan et al. [35]will be used, and the term
probes refers to the DNA on the array while target refers to the labeled DNA in solution.
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Figure 1.4: Target samples hybridizes to complementary probe samples.

arrays for high-sensitivity immunoassay studies. Numerous groups of researchers have
furthered the technology introduced by Ekins and his colleagues. In the United States,
notable research has been accomplished by Stephen P.A. Fodor and his colleagues at
A�ymetrix, Inc. (Santa Clara, California)[60], as well as groups at Stanford University,
particularly Patrick O. Brow, in the Department of Biochemestry and Biophysics[69].
Brown and his colleagues at Stanford are credited with engineering the �rst DNA mi-
croarray chip, while Fodor and colleagues at A�ymetrix, Inc., created the �rst patented
DNA microarray wafer chip, the GeneChip. Numerous commercial entities and aca-
demic groups have since contributed to advancements in DNA microarray technology,
and PubMed has registered an incredible growth in number of publications registered
since the 1995 (see 1.5) for the topic �microarray� and also for �microarray� related to
�cancer� investigation.
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Figure 1.5: PubMed records for microarray

In the most general form a DNA array is a chip made of nylon membrane, glass or
plastic. Usually the chip is arranged in a regular grid-like pattern and segments of DNA
strands are either deposited or synthesized within individual grids. Once the array is
prepared, a microarray experiment involves some basics steps like sample preparation
and labeling, sample hybridization and washing, and microarray image scanning and
processing.

A growing appreciation of the potential value of microarray results beyond the sum-
marized description found in most papers (including supplementary data) has led to
the creation of public repositories for microarray data�for example, ArrayExpress [63]
(http://www.ebi.ac.uk/arrayexpress) of the European Bioinformatics Institute (EBI)
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and the Gene Expression Omnibus (GEO;http://ncbi.nlm.nih.gov/geo)of the Na-
tional Center for Biotechnology Information (NCBI) at the National Institutes of Health.
Depositing data in these repositories has become a condition for publication in several
journals and is likely to become one for publication in most[80]. These databases rapre-
sent for biostatisticians, biophysicists and bioinformaticians a unique resources by which
they can pose many di�erent questions to the transcriptome without further money or
experimental investment. Even in this dissertation repository-data set from GEO will
be used to evaluate the feasibility of the methods.

In this context, as systems are needed for the management and storage of microarray
data, standards and the use of ontologies2 are crucial to managing and sharing these
data. The brainchild of Alvis Brazma and Alan Robinson of the EBI, the Microarray
Gene Expression Data (MGED) Society was initially formed as an international grass-
roots organization to develop standards for databases. There are several complementary
projects in the MGED:

• The MIAME (Minimum Information About a Microarray Experiment) project aims
to de�ne the information that should always be included in databases and also pro-
vides guidelines to the authors and reviewers of manuscripts that describe microar-
ray experiments. Philosophically, MIAME de�nes the information that is required
to permit another researcher to understand the experiment and the data; prac-
tically speaking, it is a checklist of what should be supplied for publication. A
complication is that each study has di�erent types of associated information that
are relevant, and judgments must be made about what is relevant. As of September
2007, two commercial and two academic databases are listed at the MGED website
as being compliant with MIAME guidelines, although there are certainly others.

• The MAGE (MicroArray and Gene Expression) project aims to provide a stan-
dard for the representation of microarray expression data that would facilitate the
exchange of microarray information between di�erent data systems. The original
MGED project provided a standard XML format, called the MicroArray Mark-up
Language format (MAGE-ML), for reporting microarray data and its associated
information.

• The MGED-OWG (Ontology Working Group) aims to provide standard terms
for the annotation of microarray experiments. These terms will enable structure

2"An ontology is an explicit speci�cation of some topic. For our purposes, it is a formal and declar-
ative representation which includes the vocabulary (or names) for referring to the terms in that subject
area and the logical statements that describe what the terms are, how they are related to each other,
and how they can or cannot be related to each other. Ontologies therefore provide a vocabulary for
representing and communicating knowledge about some topic and a set of relationships that hold among
the terms in that vocabulary."(From Stanford Knowledge Systems Lab)
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queries of elements of the experiments. Furthermore, the terms will also enable un-
ambiguous descriptions of how the experiment was performed. The terms will be
provided in the form of an ontology which means that the terms will be organized
into classes with properties and will be de�ned. A standard ontology format will
be used. For descriptions of biological material (biomaterial) and certain treat-
ments used in the experiment, terms may come from external resources that are
speci�ed in the Ontology. Software programs utilizing the Ontology are expected
to generate forms for annotation, populate databases directly, or generate �les
in the established MAGE-ML format. Thus, the Ontology will be used directly
by investigators annotating their microarray experiments as well as by software
and database developers and therefore will be developed with these very practical
applications in mind.

All these projects are contributing to �x standards for microarray databases.

1.3.2 Microarray Chip Manufacture

There are two main approaches to manufacture of microarray chips: deposition of DNA
fragments by robotic spotting and in situ synthesis[55]. Manufacture by robotic de-
position may proceed through the deposition of PCR-ampli�ed cDNA clones or the
printing of already-synthesized oligonucleotides. In situ fabrication can be divided into
photolithography, ink jet printing, and electrochemical synthesis[88].

In this dissertation the Operon deposition-based platform will be used in chapter
3 while two di�erent platforms based on in situ synthesis will be used in chapter 4
(A�ymetrix HGU133 and Whole Genome Agilent 4 x 44K).

1.3.2.1 Deposition-Based Manufacture

The manufacture of deposition-based arrays involves the consideration of three issues:
the selection of DNA probes, preparation of the probes and the printing process. To
probes that are to be printed on the array are chosen directly from databases includ-
ing GeneBank, dbEST, and UniGene. Additionally, full length cDNAs, collections of
partially sequenced cDNAs (or ESTs) or randomly chosen cDNAs from any library of
interest can be used.

In the process of deposition-based manufacture, the DNA probes are prepared away
from the chip. Process can be either be polymerase chain reaction (PCR) products or
oligonucleotides. The PCR technique was developed in 1983 through the work of Kary
B. Mullis. This techniques creates billions of copies of speci�c fragments of DNA from a
single DNA molecule. After the ampli�cation, the PCR products are partially puri�ed
by precipitation and/or gel-�ltration to remove unwanted salts, detergents, PCR primers
and proteins present in the PCR cocktail. Alternatively, DNA probes can be prepared
by pre-synthesizing DNA oligonucleotides for use on the array.
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Once the DNA probes are determined and prepared, a typical printing process follows
�ve steps:

1. Robots dip thin pins into the wells of solutions to collect the �rst batch of DNA

2. The pins touch the surface of the arrays to spot the DNA is spotted onto a number
of di�erent arrays, depending on the number of arrays to be made and the amount
of liquids the pins can hold.

3. The pins are washed to remove any residual solution and ensure no contamination
of the next sample.

4. The pins are dipped into the next set of wells.

5. Return to step 2 and repeat until the array is complete [31].

The deposition-based manufacture are based exclusively on dual labeling3 scheme.

1.3.2.2 In situ Synthesis

Arrays synthesized in situ are fundamentally di�erent from spotted arrays in the following
aspects[88]:

• Selection of probes. Probe selection is performed based on sequence informa-
tion alone. Therefore, every probe synthesized on the array is known. In contrast,
with cDNA arrays, which deal with expressed sequence tags, the function of the
corresponding sequence is often unknown. Additionally, since this selection meth-
ods avoids duplicating sequences among gene family members, this approach can
distinguish and quantitatively monitor closely-related genes.

• Preparation of probes. The probes are printed (Agilent Sureprint technology)
or photochemically synthesized (light direct synthesis for A�ymetrix) base-by-base
on the surface of the array. In the preparation of the probes there is no cloning
and no PCR process involved.

As both the Agilent and the A�ymetrix data will be used in this dissertation, below
some more details will be given in order to have in mind their speci�city in subsequent
analysis.

3Platform dependent labeling process is necessary to allow the detection of which probes are bound
to the microarray. In the most common dual labeling experiments two samples are hybridized to
arrays,each labeled with Cy3 or Cy5 dyes, which are excited by green and red lase, respectively. For
single labeling platform, biotin-labeled cDNA is constructed, with a carefully de�ned protocols to ensure
reproducibility.
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Figure 1.6: A)Light directed oligonucleotide synthesis. A solid support is derivatized
with a covalent linker molecule terminated with a photolabile protecting group. Light
is directed through a mask to deprotect and activate selected sites, and protected nu-
cleotides couple to the activated sites. The process is repeated, activating di�erent sets
of sites and coupling di�erent bases allowing arbitrary DNA probes to be constructed at
each site; B)Schematic representation of the lamp, mask and array; C)Steps of wet-lab
GeneChip experiment.
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1.3.2.3 The A�ymetrix GeneChip platform

To control the oligonucleotide synthesis, A�ymetrix uses photolithographic masking (see
�gure 1.6). They attach synthetic linkers modi�ed with photochemically removable pro-
tecting groups to a glass substrate and direct light through a photolithographic mask to
speci�c areas on the surface to produce localized photodeprotection. The �rst of a series
of chemical building blocks, hydroxyl-protected deoxynucleosides, is incubated with the
surface, and chemical coupling occurs at those sites that have been illuminated in the
preceding step. Next, light is directed to di�erent regions of the substrate by a new mask,
and the chemical cycle is repeated. Highly e�cient strategies can be used to synthesize
arbitrary polynucleotide at speci�ed locations on the array in a minimum number of
chemical steps. Thus, given a reference sequence, a DNA probe array can be designed
that consists of a highly dense collection of complementary probes with virtually no
constraints on design parameters. The amount of nucleic acid information encoded on
the array in the form of di�erent probes is limited only by the physical size of the array
and the achievable lithographic resolution. Compared to cDNAs, the gene expression
is quanti�ed by non-competitive hybridization, meaning that only one biological sample
(the sample of interest) is �uorescently labeled and hybridized to the microarray. The
expression of each gene is measured by comparing the hybridization to a set of 20 probe
pairs (probeset), each of which is 25 base pairs long. The �rst type of probe in each pair
is the perfect match (PM) which exactly corresponds to the gene sequence, whereas the
second is the mismatch (MM), created by changing the middle (the 13th) base of the
original sequence (see ). The idea of this construction is to provide a control mechanism
for random variation and cross-hybridization. Of note, the use of the MM probes in the
summarization of the values for each gene is nowadays controversial [47, 12] and many
non commercial algorithms tends today to not use the MM values in the summarization
process.

1.3.2.4 The Agilent oligonucleotide platform

There are seven main steps in the creation of Agilent microarrays. First, glass wafers
are coated with a surface that will make a strong bond with both the glass and the
nucleic acids that are to be printed. Then, the reagents for oligo synthesis are inspected
for quality and purity, while the cDNA for deposition microarrays is prepared and rigor-
ously quali�ed for printing. Next, the prepared glass and the nucleic acids come together
through the careful orchestration of inkjet printing, which involves multiple real-time
quality control feedback mechanisms to monitor the presence, size, shape and position
of every feature. Following printing, the microarrays undergo a process to permanently
bind the printed DNA to the surface of the microarray, and deactivate the surface around
the features. This minimizes the surface's ability to bind non-discriminantly with sam-
ple that could lead to high background signal. The process of printing oligonucleotide
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Figure 1.7: Probe pairs set. Gene sequences of MM and PM are shown for a speci�c
probe pair.

microarrays is nearly identical to the process described for cDNA microarrays, however,
instead of printing the oligos fully prepared onto the microarray surface, they are actu-
ally synthesized base-by-base in repetitive print layers using standard phosphoramidite
chemistry (see �gure). After the inkjet head and reservoirs are washed and thoroughly
dried, they are connected to bottles containing the four di�erent phosphoramidite nu-
cleotides that make up the building blocks of in situ nucleic acid synthesis. This ensures
a constant supply of reagents �owing to the inkjet head during printing.The oligo print
run commences with the �ring of a test pattern to select the best nozzles for printing.
Then the iterative oligonucleotide synthesis loop begins when the �rst nucleotide of each
oligo is printed onto the activated glass surface of the microarrays. In phosphoramidite
synthesis reactions, the reactive sites on the nucleotides are blocked with chemical groups
that can be removed selectively. This allows the bases to be added to the oligo chain
one base at a time in a very controlled manner. After the �rst base is printed, the trityl
group that protects the 5' hydroxyl group on the nucleotide is removed and oxidized to
activate it, enabling it to react with the 3' group on the next nucleotide. In between
each step, the excess reagents are washed away so that they won't randomly react later
in the synthesis. An advantage of Agilent platform is that can use both dual or single
labeling scheme.
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Figure 1.8: These four images communicate the general mechanism for oligo synthesis
via inkjet printing. A shows the �rst layer of nucleotides being deposited on the activated
microarray surface. B shows the growth of the oligos after multiple layers of nucleotides
have been precisely printed. C is a close-up of one oligo as a new base is being added to
the chain, which is shown in �gure D.



CHAPTER 1. MICROARRAY: SURVEYING GENETIC INFORMATION 17

Figure 1.9: Experimental steps in microarray experiments

1.3.3 About Microarray Experiments

Steps of a typical microarray experiment are described here with a particular focus on
the critical issues that regards speci�cally some of the work curated during the analyses
done for this thesis project. Figure 1.9 shortly summarize the general �owchart of a
microarray experiment.

For what concerns exclusively the wet-lab part of the experiment is instead summa-
rized here: �rstly, RNA is extracted from a tissue sample. The RNA is reverse transcribed
to cDNA that is labeled by incorporating modi�ed nucleotides. Dyes are either already
linked to these nucleotides (direct labelling) or coupled to them by a further chemical
reaction (indirect labelling). The labelled cDNA is hybridized to the microarray probes.
Each cDNA binds only to speci�c oligonucleotides on the array because of the base-pair
complementary. While A�ymetrix arrays are hybridized with a single sample, cDNA
arrays demand the co-hybridization of two samples, one of which is a reference sample.
To prevent non-speci�c hybridization, blocking agents such as Cot-1 DNA or salmon
sperm might be added. Subsequently, the dye is excited by a laser, so that the amount
of annealed cDNA can be quanti�ed by measuring the �uorescence intensities.

After the wet lab the experiments have necessary to take an interdisciplinary course
that involves a continuous exchange of ideas and competences between biologists (or
clinicians) and data analysts.
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1.3.3.1 Experimental Design

In every experiment involving data collection, in order for the experiment to provide
the data necessary for the analysis, the experiment needs to be designed. The design
of the experiment is a crucial but often neglected phase in microarray experiments. If
the experiments are not designed properly, no analysis method will be able to obtain
valid conclusions. During the design phase, the �rst problem to face with is to �nd an
equilibrium between the expensive cost of each array and the necessity to have enough
replicates to control the noise at di�erent levels.

In a strict linguistic sense, to replicate means duplicate, repeat, or perform the same
task more than once. Replication allows the experimenter to obtain an estimate of the
experimental error. This estimate of error can become the basis for drawing conclusions
whether the observed di�erences in data are signi�cant. Replication is a wide misun-
derstood term in the microarray �eld. Often, the misunderstanding is related to the
de�nition of the task to be performed. Thus, if the purpose is to understand and control
the noise introduced by the location of the spot on the slide, one can replicate spots
by printing exactly the same conditions. Finally, if the purpose is to control the bio-
logical variability, di�erent mRNA samples can be collected from similar specimens and
the microrarray should be used in exactly the same conditions from all other points of
view. The common misunderstanding is related to the fact that often researchers refer to
replicates without specifying which one factor was varied while keeping everything else
constant.

In the context of experimental design is important to make some distinctions and
punctualization:For probe and spot replicates, an empirical approach would just choose
a reasonable number knowing that any number of replicates is better than not hav-
ing replicates at all. If this approach is chosen, a good minimum for the number of
spot/probe replicates is 3. Is important to stress, however, that most of the not cus-
tom platforms do not allow the researcher to choose the number of probe replicates. In
particular, A�ymetrix HGU133 and Agilent 4x44K have decided to introduce more than
one replicate only for probes that are �well known�, i.e. to say those probes that are
known to play a central role in biological process or molecular function. This inevitably
introduce a literature bias, that can not be avoided in standard experimental designs.

Once the design of the array is �xed, the distinction between an array that is a
technical replicate or a biological replicate is often a confounding question. To make
technical replicates means to extract the mRNA from a single target and then use it into
di�erent arrays, while to have biological ones means two extract the mRNA from similar
targets and then use an array for each target mRNA. The technical replicate aims to
control the noise generated from experimental random and systematic errors. In most of
the experimental designs technical replicates are often neglected in order to collect more
biological replicates.

How many microarrays is enough? Statisticians do not like simple answers to this
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question; it depends on the goals of the study, the resources, and the reliability of the
technology � speci�cally how accurate the chips are, and how often a hybridization fails.
However the following guidelines apply to most situations. If an exploratory study aims
to �nd large (more than two-fold) di�erences between two conditions, then a design with
three samples per condition is usually adequate. If the aim is to �nd smaller di�erences,
or almost all of the large di�erences, then �ve samples per group are necessary to obtain
su�ciently reliable enough estimates of variation among samples within conditions, in
order to distinguish true di�erences between conditions. This applies to both treatment
and control conditions. Six samples per condition allows meaningful permutation tests,
which can give more accurate, and less conservative, estimates of p-values and false dis-
covery rates. If there are more than two conditions, and the treatments do not drastically
alter the cell physiology, then the number of samples within any one condition can be
somewhat less; with four or more conditions, one can obtain reasonable estimates of
within-condition variation with only four samples per condition. All of these suggestions
assume that there are no outlying samples, which should be discarded; it is wise to do one
or two more per condition in clinical situations, where outliers occur commonly, and it is
safer to do one more for animal experiments, where sometimes one animal in a condition
appears very di�erent than all the others. The question of how many replicates to do
depends on how small the di�erences are that you want to detect, and the noise level in
your system. Di�erent systems have di�erent noise levels, and the only way to estimate
the noise is to do three or four replicate hybridizations. For A�ymetrix systems with the
best analysis at NCBI �nd that 3 to 5 chips per group gives useful information. Usually
many more cDNA chips are needed for comparable levels of accuracy. To estimate repli-
cability of a two-color chip, hybridize three pairs of replicate dye-swaps (6 chips) using
the same two (di�erent) RNA samples. To do meaningful clustering requires at least 20
samples, and generally many more.

The most common design for two color (competitively hybridized spotted) arrays
is the `reference design': each experimental sample is hybridized against a common
reference sample. Although this e�ectively means that only one sample of interest is
hybridized per chip, the reference design has several practical advantages over more
e�cient designs:

• it extends easily to other experiments, if the common reference is preserved;

• is robust to multiple chip failures; and

• reduces incidence of laboratory mistakes, because each sample is handled the same
way.

The reference sample is used in many chips, therefore the reference mRNA needs to be
abundant. When comparing treatment versus control samples the most natural reference
is the wild type or the biological controls, which are often the most abundant. However if
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the study aims to compare each of several samples against all others, there is no natural
control. A reliable alternative is a common reference obtained by pooling all samples.
This enables samples to be compared with each other indirectly. A pooled reference
sample reduces the number of extreme gene ratios (which have large errors) on each
chip. Some labs take this further and create a �universal reference�: a pool of mRNA
derived from several standard cell lines, which they use most often in their experiments.
Using a universal reference enables them to compare results for all their experiments.

One complication in two-color arrays is that the two dyes don't get taken up equally
well, so that the amount of label per amount of RNA di�ers (dye bias). An early
proposal to compensate for dye bias was to make duplicate hybridizations with the same
samples using the opposite labeling scheme.The intent was to compensate dye bias by
averaging ratios from dye-swapped hybridizations. However dye bias is not consistent,
and in practice the ratios in dye-swap experiments do not precisely compensate each
other. Normalization methods such as lowess give more consistent results, although dye-
swapping makes it easier to compensate for dye-bias. However the dye-swap is the basis
for most other e�cient designs: the general principles of a good two-color design are
that it should be balanced (i.e. every sample appears equally often in red and green)
and the samples whose ratios are most interesting should appear on the same chips most
often. As explained later in this chapter some of the normalization methods are able to
e�ciently compensate for the dye-bias.

The last question about experimental design, that will be extensively addressed in
chapter 3, regards the balancing of data collection between two di�erent conditions. In
fact, to have an equal number of samples for both the conditions would be crucial in
order to respect some of the assumption made by standard microarray data analysis
methods. However, above all in disease related investigation, this is not always possible
for clinical or biological speci�c reasons.

1.3.3.2 Image Scanning and Processing

After the completion of hybridization, the surface of the hybridized array is scanned
to produce a microarray image. As previously mentioned, samples are labeled with
biotin �uorescent dyes that emit detectable light when stimulated by laser. The emitted
light is captured by the photo-multiplier tube (PMT) in a scanner, and the intensity is
recorded. Most scanners contains one or more lasers that are focused onto the array (for
two-channel microarrays, the scanner uses at least two lasers).

One-channel microarray, such as an oligonucleotide array, yields one image per array,
whereas a two-channel microarray yields two images per array, one image per channel.
The scanner reads a microarray by dividing it up into a very large number of pixels
and recording the intensity level of �uorescence at each pixel. The resulting rectangular
array of pixels and their associated intensities constitutes the image of the microarray.
The image must be converted into spot intensities for analysis. The purpose of this



CHAPTER 1. MICROARRAY: SURVEYING GENETIC INFORMATION 21

Figure 1.10: a) Gridding of microarray image; b) spot's foreground and background
intensities.

conversion is to assign to every DNA sequence that was spotted on the microarray an
intensity measure, called the spot intensity, re�ecting the amount of labeled sample that
hybridized to it. The task of quantifying a scanned image is often carried out in three
steps. First, the location of each spot in the array is de�ned by assigning coordinates
to the center of each spot: this is called gridding. Second, the signal (the set of pixels
that correspond to labeled cDNA hybridizing to its complementary sequence spotted on
the microarray), is separated from the background (the set of pixels that correspond to
labeled cDNA hybridizing non-speci�cally to the microarray): this is called segmentation.
Finally, each spot is assigned two intensity values (see 1.10):

• Foreground Intensity: denotes the average intensity of the pixels designated as
signal. The average used is often the median.

• Background Intensity: this is the average intensity of the pixels around the spot
that were designated as background. Again the average used is the median.

In principle, the intensities of those pixels not corresponding to spots should be zero.
However, this never happens. Instead, because of various reasons such as non-speci�c
binding of the labeled sample to the array substrate and substrate �uorescence, these
pixels emit a low, but not insubstantial, level of �uorescence that may vary with loca-
tion. The concern is that the spot intensities may also contain a certain amount of this
non-speci�c �uorescence, called the background �uorescence. It is customary therefore
to estimate a background intensity from data, eventually deciding to subtract the back-
ground from the foreground intensity. However actually there is much evidence that in
presence of good quality arrays is not useful to subtract the background.
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1.3.3.3 Noise

Due to their nature, microarrays tend to be very noisy. Even if an experiment is per-
formed twice with exactly the same materials and preparations in exactly the same
conditions, it is likely that after the scanning and image processing steps, many genes
will probably be characterized by di�erent quanti�cation values. In reality noise is intro-
duced at each step of various procedures:mRNA preparation (tissue, kits and procedures
vary), transcription (inherent variation in the reaction, enzymes), labelling (type and
age of label), ampli�cation, pin type, surface chemistry, humidity, target volume, slide
inhomogeneities, target �xation, hybridization parameters (time, temperature, bu�er-
ing, etc), unspeci�c hybridization (labelled cDNA hybridized on areas which do not
contain perfectly complementary sequences), non-speci�c background hybridization, ar-
tifacts (dust), scanning (gain settings, dynamic range limitations), etc.

The challenge appears when comparing di�erent tissues or di�erent experiments. Is
the variation of a particular gene due to the noise or is it a genuine di�erence between
the condition tested? Furthermore, when looking at a speci�c gene, how much of the
measured variance is due to the gene regulation and how much to noise? The noise is an
inescapable phenomenon and the only weapon that the researcher seems to have against
it is replication.

1.3.3.4 Microarray Data Cleaning and Preprocessing

1.3.3.4.1 Data Transformation It is common practice to transform DNA microar-
ray data from the normalized row intensities into log intensities, before proceeding with
high-level analysis. There are several objectives of this transformation:

• There should be a reasonable even spread of features across the intensity range.

• Variability should be constant at all intensity levels.

• The distribution of experimental errors should be approximately zero.

• The distribution of intensities should be approximately bell-shaped.

Figure 1.11 shows the histogram of intensities of a typical microarray of a typical mi-
croarray data set before and after log transformation.
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Figure 1.11: Histogram of the intensities (A) before and (B) after the log transformation
of an example data set. Histogram of the ratios of intensity (C) before and (D) after the
log transformation of an example data set.

We can see that the raw data is very heavily clumped together at low intensities and
sparsely distributed at high levels. By contrast, the data is more evenly spread over
the intensity range after the log transformation. The transformation greatly reduces
the skewness of the distribution and simpli�es visual examination. Microarray data
analysis typically uses logarithms to base 2. In processing, the ratio of the raw Cy5
and Cy3 intensities is transformed into the di�erence between the logs of intensities of
the Cy5 and Cy3 channels. Therefore, 2-fold up-regulated genes correspond to a log
ratio of +1, and 2-fold down-regulated genes correspond to a log ratio of -1. Genes
that are not di�erentially expressed have a log ratio of 0. These log ratios have a
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natural symmetry which re�ect the biological structure and is not present in the row
fold di�erences. Figure 1.11 illustrates histograms of ratios of the intensity data set
before and after log transformation.

1.3.3.5 Missing Value Estimation

DNAmicroarray experiments can generate data sets with multiple �agged spots. Flagged
values occur for diverse reasons, including insu�cient resolution, image corruption, or
slide contamination by dust or scratches. This �ag is often treated as missing values.
Missing data may also occur systematically as a result of the robotic methods employed in
generating the microarrays. Unfortunately, many algorithms for gene expression analysis
require a complete data set as input. Therefore, methods for estimating missing data
are sometimes used before these algorithms can be applied.

Suppose a microarray data set is represented by a matrix where each rows corre-
sponds to one gene and each column rapresents an experimental condition. A simple
approach is to replace a missing entry with the average expression over the rows (Row
Average Method). This method is not optimal since it does not take into account the
correlation structure of the entire data set. Troyanskaya et al. propose two more complex
algorithms based on K-nearest neighbors (KNNimpute) and singular value decomposi-
tion (SVDimpute) that are the most used in most of the microarray literature. In this
dissertation not so much details will be given about imputation methods because the
choice (analyzing the target data sets) is to not use imputation at all. In fact, accord-
ingly with Troyanskaya , it is a good rule of thumb exercising caution when drawing
critical biological conclusion from data that is partially imputed. So the choice will be
to simply �ag the data and then using some cautions about biological conclusions if the
di�erentially expressed pro�le contains �agged genes.

1.3.3.6 Background Subtraction

The scanning of arrays results in optical or background noise a�ecting pixel intensities.
Images obtained from spotted arrays contain speci�c information on this background
noise from the pixels not associated with spotted regions. High density-oligonucleotide
have minimal space between the segments of the array where probes are attached, known
as cells; therefore, background information iis di�cult to obtain and not commonly used.

Tipically, image processing software will produce an absolute expression measure
X and a background measurement B for each spot or cell. If, as is likely, X is the
result of signal and additional background noise, then it is a biased estimate of the true
hybridization that we intend to measure (that is, it is likely to be systematically too high).
To obtain an unbiased measure of expression, conventional wisdom is to subtract the
background considering X-B. If both X and B are unbiased and background adds to the
signal, then X-B is unbiased. Even in these circumstances, however, there are important
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trade-o�s to be evaluated in deciding whether and how to subtract background noise.
Because both X and B are estimates, the variability of X-B is larger then the variability
of X alone; thus, subtracting background adds variance. This especially problematic in
the low-intensity range, where the variance of B can be of the same order of magnitude
as X.

Generally, the assumptions of unbiasedness and additivity are far too optimistic.
Also some researchers have found that the background estimates produced by some of
the most popular image -process algorithms are not su�ciently reliable.

One alternative is to avoid background subtraction altogether and only use X to
estimate the expression level. This avoids introducing the additional variance from in-
accurately estimate background and is generally conservative in making declarations of
di�erential expression and practical.

To see this, say that the true expressions in two samples being compared are e1 and
e2. The observed values are X1 = e1 + B1 + ε1 and X2 = e2 + B2 + ε2 where ε1 and ε2
are errors in measurements of the true signal. Because both B1 and B2 are positive, the
log ratio of the non background-corrected raw expression values X1

X2
is likely to be closer

to 1 then the true ratio e1
e2
. this bias toward one is stronger for low intensity genes. In

summary, not subtracting background can be an attractive alternative, as it does not
rely on potentially problematic background estimates and loses sensitivity mostly for low
intensity genes; the exception are experiments with major spatial artifacts a�ecting only
one channel.

In practice, decisions about background subtraction need to be made based on careful
visualization of the data. The following rules of thumb are helpful for cDNA arrays:

• Inspect images of background alone (see 1.3.3.10 for methods and tools) and focus
on major spatial artifacts a�ecting only one channel. If those are present, then
background subtraction is critical.

• Avoid generating negative values and zeros after background subtraction; these
indicate that error in the measurements of background are greater then the signal
in the spot. The spot does not necessarily need to be discarded. Also avoid
in�nitesimal values. The resulting estimated ratio is both unreliable and likely to
generate extreme ratios.

• Inspect MAplots discussed in 1.3.3.10. Major ��shtail e�ects� as in �gure 1.3.3.6
at low intensities often indicate that spot-level background cannot be carried out
reliably. Consider alternatives such as global background subtraction, subtraction
of the faintest background, or no background subtraction.
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Figure 1.12: MAplot of the same array: (ABC) with ��shtail e�ects� caused by Adding
Background Correction and (NBC) with No Background Correction.

1.3.3.7 Probe-level Analysis of GeneChip Arrays

GeneChip arrays pose the challenge of summarizing data from a probeset into a single
measure, which estimates the level of expression of the gene of interest. A�ymetrix
software provides default approaches for this step. Two important issues suggest that the
probe-level data should be considered an integral part of GeneChip data analysis. First,
visualization of probe-level data can help identify artifacts. Second there is evidence[47,
48] that alternative summarizations to the defaults currently implemented by A�ymetrix
may provide improved ability to detect biological signal.

Typically, A�ymetrix GeneChip microarrays have hundreds of thousands of probes.
These probes are grouped together into probesets. Within a probeset each probe interro-
gates di�erent parts of the sequence for a particular gene. Summarization is the process
of combining the multiple probe intensities for each probeset to produce an expression
value.

Various measures of expression have been proposed (for example see [47, 58]). The
�rst version of A�ymetrix's analysis software used an average over probe pairs of the
di�erences (PMij−MMij), j = 1, ..., J , for each array i(where J is the number of probe
pairs for a given probeset). Speci�cally, for each probeset on each array i, AvDiff is
de�ned by:
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AvDiff =
1

#A

∑
jεA

(PMj −MMj) (1.1)

with A the subset of probes for which dj = PMj − MMj are within 3 standard
deviations from the average of the d(2), ..., d(J−1) the j − th smallest di�erence. #A
represents the cardinality of A.

Summary statistics, such as AvDi�, are motivated by the underlying statistical model:

PMij −MMij = θij + εij, j = 1, ..., J (1.2)

The expression quantity on array I is represented with the parameter θi. AvDiff
is an appropriate estimate of θi if the error term εijhas equal variance for j = 1, ..., J .
However the equal variance assumption does not hold for GeneChip probe level data,
since probes with larger mean intensities have larger variances [47].

In the latest version of their software, A�ymetrix uses a log transformation that is
successful at reducing the dependence of the variance on the mean. Speci�cally, the MAS
5.0 signal is de�ned as the anti-log of a robust average (Tukey biweight) of the values
log (PMij − IMij), where IM is the Ideal Mismatch (for details see [1]). A model for
MAS 5.0 is:

log (PMij − IM) = log (θi) + εij, j = 1, ..., J (1.3)

Li and Wong [58] reported that variation of a speci�c probe across multiple arrays
could be considerably smaller than the variance across probes within a probeset. In
the scale, the between-array standard deviation is in general �ve times smaller than the
within-probeset standard deviation [47, 58] . To account for this strong probe a�nity
e�ect, they proposed a multiplicative model

PMij −MMij = θi · φj + εij, i = 1, . . . , I, i = 1, . . . , J (1.4)

The probe a�nity e�ect is represented by φj.
Using data from a spike-in experiment, Irizarry et. al. [47] found that appropriately

removing background and normalizing probe level data across arrays results in an im-
proved expression measures motivated by a log scale linear additive model. The model
can be written as

T (PMij) = ei + aj + εij, i = 1, . . . , I, j = 1, . . . , J (1.5)

where T represents the transformation that background corrects, normalizes and
logs the PM intensities, ei represents the log2 scale expression value found on arrays
i = 1, . . . , I, ai represents the log2 scale a�nity e�ects for probes j = 1, . . . , J , and
represents error as above. A robust linear �tting procedure, such as median polish, was
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used to estimate the log scale expression values ei. The resulting summary statistic is
referred to as RMA (Robust Multi-array Analysis).

Irizarry et. al. [47] demonstrated, using a spike-in study, that RMA has many
advantages as compared to MAS 5.0. They showed that:

• RMA has a better precision; in particular, for lower expression values they found
that RMA provides a greater than 5-fold reduction of the with-in replicate variance.

• RMA provided more consistent estimates of fold change.

• RMA provided higher speci�city and sensitivity when using fold change analysis
to detect di�erential expression. This greater sensitivity and speci�city of RMA in
detection of di�erential expression provides a useful improvement for researchers
using the A�ymetrix GeneChip technology.

1.3.3.8 Within-array Normalization

The complexity of the microarray experimentation process often introduces systematic
bias into intensity measurements. Among other sources of variability, systematic bias can
be caused by the concentration and amount of DNA pooled on the microarrays, wear
to arraying equipment such as spotting pins, the quantities of mRNA extracted from
samples, reverse transcription bias, lack of spatial homogeneity of the slides, scanner
settings, saturation e�ects, background �uorescence, linearity of detection response and
ambient conditions (ozone concentration) [2].The purpose of within-array normalization
is to remove the e�ects of any systematic source of variation at array level.

For A�ymetrix microarrays there are two levels at which within array level normal-
ization can occur: probe-level, and probeset-level. The topic of probe-level normalization
is considered extensively in . At this level, it is raw probe intensities, possibly after a
background correction, that are normalized. Probeset-level normalization occurs when
all the probes in a probeset are normalized together as a group. For instance, we could
compute the mean (or median) value of a probeset, normalize these summaries and then
adjust individual probes based on the adjustment to the summary.

For multichannel data, in addition, dye bias is present in almost all multichannel
experiments. Generally, Cy5 (red) intensities tend to be higher than Cy3 (green) inten-
sities, but the magnitude of the di�erence generally depends on the overall intensity [2].
The reasons for the imbalance between the channels are as follows [79]:

• The Cy3 and Cy5 labels may be di�erentially incorporated into DNA samples with
varying frequencies of occurrence.

• The Cy3 and Cy5 dyes may have di�erent emission responses to the excitation
laser at di�erent frequencies of occurrence.
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• The Cy3 and the Cy5 emissions may be di�erentially measured by the photomul-
tiplier tube at di�erent intensities.

• The Cy3 and the Cy5 intensities measure at various areas on the array may di�er
due to a tilt in the array which results in variation in focus.

Several reports have indicated that log2 (ratio) values Can have a systematic dependence
on the intensity . This most commonly appears as a deviation from zero for low-intensity
spot.

In this context, for multichannel microarray, normalization can be applied to adjust
the bias among multiple channels, several approach are described below.

1.3.3.8.1 Standardization or Z-score Normalization Data sets are standardized
to ensure that the mean and the standard deviation of each data set are equal. The
method is simple; from each measurement on the array, subtract the mean measurement
of the array and divide by the standard deviation. After this transformation, the mean
of the measurements on each array will be zero, and the standard deviation will be one.
An alternative to using the mean and standard deviation is to use the median and the
median absolute deviation from the median (MAD). This have the advantage of being
more robust to outliers than simply using the mean and standard deviation.

1.3.3.8.2 LOWESS: Locally Weighted Linear Regression The LOWESS trans-
formation, also known as LOESS, stands for Locally Weighted polynomial regression
[22, 23]. In essence, this approach divides the data into a number of overlapping inter-
vals and �ts a polynomial of the form:

y = a0 + a1x+ a2x
2 + a3x

3 + . . . (1.6)

Polynomials are very nice mathematical objects in the sense that they can approx-
imate a large category of functions. However, the polynomial approximation has few
general problems. Firstly, the approximation is good only in a small neighborhood of
the chosen point and the quality of the approximation gets worse very quickly as one
gets further away from the point of approximation. Secondly, polynomial approximation
is very prone to over-�tting if higher degree polynomials are used. The approach used
by LOWESS/LOESS deals with both issues in an elegant way. Firstly, the degrees of
the polynomials used are limited to 1 (in LOWESS) or 2 (in LOESS) in order to avoid
the over-�tting and the excessive twisting and tuning. Secondly, since the polynomials
approximation is good only for narrow intervals around the chosen point, LOWESS will
divide the data domain into such narrow intervals using a sliding window approach. The
sliding window approach starts at the left extremity of the data interval with a window
of a given width w. The data points that fall into this intervals will be used to �t the �rst
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polynomial in a weighted manner. The points near the point of estimation will weigh
more than the points further away. The procedure continues by sliding the window to
the right, discarding some data points from the left but capturing some new data points
from the right. A new polynomial will be �tted with this local dataset and the process
will continue sliding the window until the entire data range has been processed. The re-
sult is a smooth curve that provides a model for the data. The smoothness of the curve
is directly proportional to the number of points considered for each local polynomial,
i.e., proportional with the size of the sliding window. If there are n data points and a
polynomial of degree d is used, one can de�ne a smoothing parameter f as a user-chosen
parameter between d+1

n
and 1.The LOWESS will use n · f (rounded up to the nearest

integer) points in each local �tting. Large values of f produce smooth curves that wig-
gle the least in response to variations in the data. Smaller values of q produce more
responsive curves that follow the data more closely but are less smooth. The e�ects of a
LOWESS normalization for a sample of the Lung dataset are showed in �gure 1.13.

Figure 1.13: a) MA-plots for a sample Agilent array. The blue line is the LOWESS �t.
An intensity-dependent e�ect is noticeable on the plot. b) LOWESS normalization could
remove the intensity-dependent bias.

The biggest advantage of LOWESS is that there is no need to specify a particular
type of function to be used as a model. The only parameter that need to be speci�ed by
the user are the degree of the polynomials d and the smoothing factor f . Disadvantages
of LOWESS include the fact that it does not produce a regression function, or model,
that can be easily represented by a mathematical formula. In particular, the dye bias
distortion model found on a particular dataset cannot be transferred directly to another
dataset or group of researchers. LOWESS need to be applied every time, on every data
set and will produce a slightly di�erent model in each case.

1.3.3.8.3 Within-print-tip-group normalization This would be the optimal meth-
ods if the platform under analysis is designed to have di�erent prin-tip groups. In this
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case every grid in the array is printed using the same print-tip. Di�erent experiments
may be done using di�erent printing set-ups depending on the layout of the tips in the
print-head of the arrayer (e.g. 4 by 4 or 2 by 2 print heads). Some systematic di�er-
ences may exist between the print-tips, such as slight di�erences in the length or in the
opening of the tips, and deformation after many hours printing. Alternatively, print-tip
groups are proxies for spatial e�ects on the slide. Within-print-tip-group normalization
is simply a �print-tip + A� dependent normalization, that is:

log2
R

G
→ log2

R

G
− ci (A) (1.7)

where ci (A) is the LOWESS �t to the MA plot for the i− th grid only, i = 1, . . . , I,
where I represents the number of print-tips. Within-print-tip-group normalization is
equivalent to LOWESS normalization, for each print-tip group independently (see bot-
tom panel of �gure 1.14 for an example of print-tip-group LOWESS �t).

Figure 1.14: Top panel shows a LOWESS �t (blue line) of a MA-plot for a two color
array. Bottom panel shows print-tip LOWESS �t: in this case di�erent lines represent
LOWESS �ts that were done separately for genes belonging to di�erent print-tip groups.
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After within-print-tip-group normalization, all normalized log-ratios from di�erent
print-tip groups will be centered around zero. However, it is possible that the log-ratios
from the various print-tip groups have di�erent spreads and some scale adjustment is
required. One approach is to assume that all log-ratios from the i-th print-tip group
follow a normal distribution with mean zero and variance a2

iσ
2
i , where 2σ is the variance

of the true log-ratios and ai is the scale factor for the i− th print-tip group. In order to
perform scale normalization, the scale factors ai for the di�erent print-tip groups must
be estimated and then eliminated. Enforcing the natural constraints

∑I
i=1 log a2

i = 0
with I denoting the total number of print-tips on the array, the maximum likelihood
estimate for ai is

â2
i =

∑ni

j=1M
2
i

I

√∏I
k=1

∑ni

j=1M
2
kj

(1.8)

where Mij denotes the j − th log-ratio in the i− th print-tip group, j = 1, . . . , ni .

1.3.3.8.4 Distribution Normalization (Quantile Normalization) While the pur-
pose of LOWESS is to correct the mean of the data sets, the objective of distribution
normalization is to make the distribution of the transformed spot intensities as similar
as possible across the arrays.

In , Bolstad et al. propose a method for distribution normalization. Processing
involves the following steps [88]:

1. Standardize the data

2. For each array Di, order the standardize measurements from lowest to highest. Let
Di1 be the smallest measurement in the Di, and Din be the greatest measurement,
where n is the number of measurements in Di.

3. Compute a new distribution D′ whose lowest values of all the arrays being nor-
malized, i.e., D′1 = avg {D11, . . . , Dm1}, where m is the number of arrays; whose
second-lowest value is the average of the second-lowest values from each of the ar-
rays, i.e., D′2 = avg {D12, . . . , Dm2}; and so on until the highest value is the average
value of the arrays, i.e., D′n = avg {D1n, . . . , Dmn}.

4. Replace each measurement on each array with the corresponding average in the
new distribution according with the corresponding average in the new distribution
according to its rank. For example, if a particular measurement of array Di is the
100th smallest value in the array, replace it with the 100th smallest value D′100 in
the new distribution.

Distribution normalization is an alternative to LOWESS normalization. It useful where
the di�erent arrays have di�erent distributions of values. The assumption behind this
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method is that given a series of arrays, a small number of genes may be di�erentially
expressed, however, the overall distribution of spot intensities should not vary too much.

1.3.3.9 Between-slide Normalization

After within-slide normalization was done, all normalized log ratios should be centered
around zero. However, in many experiments expression levels must be compared across
di�erent slides. It is important to note that individual slides in a multiple slide com-
parisons may need to be adjusted for scale when the di�erent slides have substantially
di�erent spreads in their intensity log-ratios. Failing to perform a scaling normalization
could lead to one or more slides having undue weight when averaging log-ratios across
slides. Same principles used for within-slide print-tip groups scaling (see 1.3.3.8) can be
used for multiple slide scale adjustment (see also ). In practice, the need for scale nor-
malization between slides will be determined empirically. In general there is a trade-o�
between the gains achieved by scale normalization and the possible increase in variability
introduced by this additional step. In case where the scale di�erences are fairly small it
may be thus be preferable to avoid this step.

1.3.3.10 Quality Control

It is useful if data analysis is not seen as the last step in a linear process of microarray ex-
ploration but rather as a step that completes a loop and provides the feedback necessary
to �ne-tune the laboratory procedures that produced the microarray. Thus array quality
assessment is as aspect that should be included among the goals of the data analysis.

Microarray data are a�ected by systematic errors, such as intensity-dependent bias or
spatial-dependent bias. Performing a �quality control analysis�, referred to microarray
data, means to identify these errors to remove them before further data analysis is
conducted. In the worst case, when is not possible to adjust for these biases, a chip
could be marked as outlier, and removed from subsequent analysis. Quality control is a
fundamental step in microarray data analysis, and should always be considered before
doing high-level analysis.

1.3.3.10.1 Two-color Arrays Quality Control The simplest approach to quality
control analysis of two-color arrays is to look at �diagnostic plots� of spot statistics,
such as red and green background intensities. Although visual inspection lacks the
rigorous basis of statistical analysis, it provides an important tool to detect artifacts.
Visual inspection of the data is usually supported by spatial false-color representations
of intensities. Is important however to join a quantitative evaluation of quality based on
some standard score, just for example signal to noise ratio, variance for replicated spots
etc.
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The ArrayQuality Bioconductor package (http://www.bioconductor.org/repository/
release1.5/package/html/arrayQuality.html) is a complete and powerful tools for
general two-color arrays quality control because it enables to obtain at the same time
qualitative (Diagnostic plot) and quantitative (Quality-score comparison plot) informa-
tion about the slides.

The arrayQuality report for Diagnostic plot, an example is showed in �gure 1.15, con-
sists of eight di�erent diagnostic plots (most of them widely accepted in the microarray
scienti�c community) described below :

Figure 1.15: arrayQuality diagnostic plot for 2 color arrays..1)MA-plots of raw data;
2)MA-plot of normalized raw data; 3)Spatial plot of rank of raw M values; 4)Spatial plot
of normalized M values ranks; 5)Spatial plot of raw A values; 6)Histogram of the signal-
to-noise log-ratio (SNR) for Cy5 and Cy3 channels; 7)Dot plot of controls normalized M
values; 8)Dot plot of controls A values, without background subtraction.

1. MA-plot of raw M. A brief introduction to the ideas behind MA-plot. In early
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e�orts in microarray quality control data were typically displayed by plotting the
log intensity log2R in the red channel versus the log intensity log2G in the green
channel. Such plots tend to give an unrealistic sense of concordance between the
red and the green intensities and can mask interesting features of the data. Is
preferable thus to plot the intensity log ratio M = log2

R
G

versus the mean log

intensity A = log2

√
RG. An MA-plot amounts to a 45◦ counterclockwise rotation

of the (log2G, log2R)-coordinate system followed by scaling of the coordinates. It
is thus another representation of the (R,G) data in terms of the log ratios M ,
which directly measure di�erences between the red and the green channels and
are quantities of interest to most investigators. MA-plots are more revealing than
their log2R versus log2G counterparts in terms of identifying spot artifacts and
for normalization purposes. The �rst plot of �gure 1.15 is an MA-plot of raw M
with no background subtraction. The colored lines represent the loess curves for
each print-tip group. The red dots highlight any spot with corresponding weighted
value less than 0. Users can create their own weighting scheme or function. Things
to look for in a MA-plot are saturation of spots and the trend of loess curves, which
is an indicator of the amount of normalization to be performed.

2. MA-plot of normalized data density. By default, print-tip loess normalization is
used. Instead of the typical MA-plot, a density MA-plot is used to highlight density
of dots on the plot. A light yellow color indicates a high density of dots, whereas
blue color represents a lower density. This plot gives you information on the bulk
of your data intensity (low/high signal).

3. Spatial plot of rank of raw M values (no background subtraction): Each spot is
ranked according to its M value. We use a blue to yellow color scale,where blue
represents the higher rank (1), and yellow represents the lower one. Missing spots
are represented as white squares. This is a quick way to visually detect uneven
hybridization and missing spots.

4. Spatial plot of normalized M values ranks. By default, print-tip loess normaliza-
tion is used. Each spot is ranked according to its M value. We use a blue to
yellow color scale,where blue represents the higher rank (1), and yellow represents
the lower one. Missing spots are represented as white squares. In addition, �agged
spots are highlighted by a black square. This type of graphical representation helps
verify that normalization removed any spatial e�ects.

5. Spatial plot of raw A values. The color indicates the strength of the signal inten-
sity, i.e. the darker the color, the stronger the signal. Missing spots are represented
in white.

6. Histogram of the signal-to-noise log-ratio (SNR) for Cy5 and Cy3 channels. The
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mean and the variance of the signal are printed on top of the histogram. In ad-
dition, overlay density of SNR strati�ed by di�erent control types (status) are
highlighted. Their color schemes are provided in the legend. The SNR is a good
indicator for dye problems. The negative and empty controls density lines should
be closer, almost superimposed.

7. Dot plot of controls normalized M values. Controls with more than 3 replicates
are represented on the Y-axis. Controls M values should be tight. and close to 0.

8. Dot plot of controls A values, without background subtraction. Controls with more
than 3 replicates are represented on the Y-axis. Intensity of positive controls should
be in the high-intensity region, negative and empty controls should be in the lower
intensity region. Positive controls range and negative/empty controls range should
be separated.

In �gure 1.16 an example of quality-score comparison plot generated via arrayQuality
package is reported. This is a more quantitative comparison of slide quality.Through the
package is possible to extract some statistical measures from the test slide and to compare
them against results obtained for a collection of slides of �good quality� to assess the
quality of the hybridization. Is possible to choose a wide range of measures to quantify
the quality of a typical hybridization: single channel measures (range of foreground
signal, MAD of background, signal to noise ratio, etc.), two channel measures (median
A values for each type of controls, amount of normalization needed, etc.), percentage
of �agged spots. Some measures have been negated such that the quality scale had an
increasing trend from problematic to good quality.

For more details about measure selected for comparison refer to http://ugrad.stat.
ubc.ca/R/library/arrayQuality/doc/guide.html. For each measure, the following is
represented on the graph:

• Boxplot of the reference slides values.

• 1st and 3rd quantiles before scaling for each boxplot.

• Y-axis on the right : for each measure, we have printed 2 values. The �rst one is
the percentage of reference slides measures under your slide's result. The second
one is your slide value for this measure before scaling.

• All the results are scaled in order to be able to compare them on the same graph.

• The red dots are the test slide scaled values

The quality check arranged by arrayQuality package are becoming a standard in two
colors microarray data, for this reasons the Agilent FeatureExtraction software provide
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a similar report for the each array. In this dissertation for the two dual-label platforms
analyzed in this data set we use both the quality control tools

Figure 1.16: Quality-score comparison plot

1.3.3.10.2 GeneChip Array Quality Control In 1.3.3.10.1 we stressed the im-
portance of quality control check in two-color arrays data analysis. Some of diagnostic
tools we described, with few modi�cations, can be also used with A�ymetrix chips. Lets
brie�y review some of them.

MA-plots for single channel microarray platforms are computed from the means and
di�erences of log-expression values from two chips. In this case we need at least two
arrays to make an MA-plot. While it would be possible to look at MA-plots for every
possible pair of arrays, this will be an immense number of plots for any dataset consisting
of many arrays. To reduce the number of possible comparisons a probewise median array
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Figure 1.17: a)Spatial defects revealed by PLM; b) Spatial defects revealed by Harshlight

can be created and then each array compared to this pseudo-array. MA-plots are a useful
tool in assessing intensity-dependent bias.

In 1.3.3.10.1 we have shown methods to detect spatial artefacts in cDNA arrays.
Suárez-Fariñas et al. proposed an extremely simple method, namely �harslight�, able to
�nd localized artifacts, like speck of dust on the face of the chip, on A�ymetrix arrays.
This methods produces an Error Image (E) for each chip, which indicates the deviation of
this chip's log intensities from the other chips in the experiment. Formally, E is calculated
as E(i) = L(i) −mediani

(
L(i)
)
where L(i)is the log-intensity matrix of the chip i. Given

that chip intensity of each cell is highly determined by the sequence of the probe , this
deviation should be near zero except for the probes belonging to the probe sets related
to the genes that are di�erentially expressed. Since probes belonging to a probe set
are (more or less) randomly distributed over the chip, probes of related genes are rarely
located next to one other (www.a�ymetrix.com/support/technical/technotes), so that
no obvious pattern should be discernible. Suárez-Fariñas et. al [81], to automatically
detect spatial defects, developed an R-Package which spots faulty patterns on E using a
battery of diagnostic tests based on both imaging processing and statistical approaches
(see [81] for more details). Figure 1.17 b) is an example of the visual output result
produced by harshlight on an A�ymetrix chip. Large black and white areas indicates
positive and negative systematic variation for E.

Based on the model of equation 1.5, Bolstadt observed that many departures from
quality standards attributable to processing failures will be re�ected by in�ated residuals
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from the �ts to the model. Summarizing the residuals on the chip can therefore be
expected to provide good discrimination among chips producing data of varying quality.
Quantities related to residuals can be imaged, highlighting pattern of residuals that
deviate substantially from an overall estimated scale (for more details about the method
see ). Using the PLM R's package, �gure 1.17 a) gives an image of residuals for the
same sample used to generate �gure 1.17 b) . Marked red and blue areas indicates large
absolute residuals, suggesting that �tted model is less than optimal. Detected spatial
artifacts in a) and b) of �gure 1.17agree each others very well.

1.3.4 Deciphering Disease with Microarray

One of the most exciting areas to which microarray technology has been applied is the
challenge of deciphering complex disease such as cancer. Also in this dissertation the
new approaches proposed in chapters 3 and 4 move in this direction trying to give an-
swers to some open questions posed by collaborators (clinicians and biologists). Since
most tumors exhibit unique expression patterns, gene expression data are often referred
to as �signatures� or �portraits� [21]. The simultaneous monitoring of large-scale gene
expression levels enables the identi�cation of cell types which share these common ex-
pression patterns. As summarized by Chung et al. [21], previous studies have shown
that DNA microarrays can help investigators to develop expression-based classi�cations
from many types of cancer, including breast [46], leukemia[53] that are targets of the
data sets analyzed during this research project.

In these studies, samples are taken from two or more groups of individuals with het-
erogeneous phenotypes, pathologies, or clinical outcomes. these samples are hybridized
to microarrays in an e�ort to �nd a small number of genes which are strongly correlated
with the group of individuals. These genes are often called informative genes [43], since
they may help biomedical researchers to understand disease mechanisms. They can also
be used to resolve levels of heterogeneity among cells that are apparent by eye and to
provide a more accurate prognosis and prediction of response therapy [21]. Figure 1.18
illustrates the mechanism of using gene expression pro�les to distinguish individuals with
di�erent phenotypes [88].

This approach is very promising since tumors of di�erent types (such as malignant
and benign tumors or good and poor prognosis tumors) can be very di�cult to distin-
guish by conventional morphological, histological, clinical or pathological means. An
examination of their expression patterns or signatures, o�er much better potential for
accurate discrimination. After Looking at this signatures from a functional point of
view, with the help of functional genomics approaches like GeneOntology[3] or pathway
analysis, can also give more insights in order to understand mechanism involved in the
development and characterization of each pathology.

The contribution of this dissertation in deciphering disease regards the development
of new approaches aiming at handle open problems posed by clinicians in handle speci�c



CHAPTER 1. MICROARRAY: SURVEYING GENETIC INFORMATION 40

Figure 1.18: A simpli�ed illustration of the mechanism of �expression signature�. The
polylines show the expressions pro�les in an example gene expression data set. The �rst
three genes are �informative genes� which exhibit expression pro�les strongly correlated
to the phenotype structure.
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experimental designs.



Chapter 2

Standard Sample-Based Analysis

Approaches

2.1 Introduction

In section 1.3.4 is declared the intention to face some open problems in micro array
sample-based gene expression analysis in order to investigate disease related data set. In
this context, take as witnesses Newton and his famous phrase �If I have seen further it
is by standing on the shoulders of Giants� (Letter to Robert Hooke 1676), it is crucial
to review what are the basis of these new approaches. As stressed before (see �gure 1.5)
we have seen an incredible growth of publications in this �eld and obviously this review
will not be exhaustive. The aim of this chapter is to give a general idea about trends in
gene expression microarray data analysis focusing the attention at two di�erent levels:

• problems faced or not in this context

• algorithms of interest for the approaches developed in the next chapters

2.2 Selection of Informative Genes

Microarray data are often extremely asymmetric in dimensionality. A speci�c character-
istic of of this data is that the number of samples in a microarray experiment is typically
by far smaller than that of the genes; this is known as �large p, small n� problem in
statistics. At one extreme, a microarray data set usually contains thousands or even ten
of thousands of genes. At the other extreme, the number of samples is usually no more
than few hundreds. Such extreme asymmetry between the dimensionality of genes and
samples presents several challenges to conventional supervised and unsupervised meth-
ods (for more details about supervised and unsupervised method (see next sections),

42
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which were generally designed to process a large number of data object with relatively
few attributes. Some of the challenges these method encounter in processing asymmetric
microarray data sets are listed below:

• Proximity measure. Most methods for sample-based analysis rely on some prox-
imity function to measure the distance or similarity between a pair of samples.
However, when the number of attributes is very high, some proximity measures,
such as the Euclidean distance, may become meaningless. That is, the distance of
an object to its nearest neighbor approaches the distance to the farthest neighbor.

• Over�tting. The problem of �over�tting� occurs when an algorithm adapts to the
training samples too exactly, loosing su�cient ability to generalize in the prediction
of new samples. In consequence, while the classi�cation of the training examples
may be perfect, the accuracy of prediction with test samples drops dramatically.
The large number of features characteristics of microarray data sets may render the
predictive algorithm prone to over�tting to the limited number of training samples.

• Multiplicity. A parallel examination of a large volume of genes may incorrectly
identify some as being di�erentially expressed between di�erent samples when, in
fact, these di�erences may be due to random variation [2, 79]. Multiple testing will
be discussed in section

• Course of dimensionality. The term course of dimensionality was coined by R.
Bellman. In the context of sample based analysis, it refers to the exponential
growth of the hypothesis space with respect to the number of features. In general,
a clustering or classi�cation method needs to search the feature space to �nd a
solution. Given the large number of genes and the exponential growth of the
search space the e�ciency of learning will drop dramatically.

These di�culties suggest the appropriateness of reducing the data dimensionality to
improve the e�ectiveness and e�ciency of the sample-based algorithms. In fact, many
genes in a microarray experiment are irrelevant to the problem under study and need
not to be considered in the clustering or classi�cation process.For example, a study of
a typical biological process, such as a determination of the di�erences between tumor
samples, seldom involves more than a few dozen of genes [88].

Determining which genes to be used in the clustering or classi�cation procedure is
essential for the success of sample-based analysis. Gene selection is necessary not only to
reduce dimensionality but also to identify those genes that are closely related to the cell
types. In general the approach to gene selection can be categorized as supervised and
unsupervised, depending on whether the class labels of the samples are given a priori.
In the following subsections, these methods will be discussed in more details.
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2.3 Selecting Di�erentially Regulated Genes

In many cases, the purpose of the microarray experiment is to compare the gene ex-
pression levels into di�erent specimens. In such comparative studies, a very important
problem is to determine those genes that are di�erentially expressed in the two class
compared [31]

Although simple in principle, this problem becomes more complex in reality because
the measured intensity values are a�ected by numerous sources of �uctuation and noise
[31]. In this context, distinguish between genes that are truly di�erentially regulated and
genes that are simply a�ected by noise becomes a real challenge. All methods discussed
here are independent of the technology used to obtain the data. The main di�erence
between the di�erent types of data is the pre-processing as we have seen in chapter 1.

2.3.1 Criteria

The performance of a gene selection method can be calculated in terms of positive pre-
dicted value (PPV), negative predicted value (NPV), speci�city and sensitivity. In gen-
eral for any diagnosis or classi�cation method, one can compare the truth with the results
reported by the method. In a binary decision situation such as changed/unchanged, the
results can always be divided into 4 categories:truly changed that are reported as changed
(True Positives - TP), unchanged that are reported as changed (False Positives - FP),
truly changed that are reported as unchanged (False Negatives - FN) and truly un-
changed that are reported as such (True Negatives - TN). Based on these is possible to
de�ne

PPV =
TP

TP + FP
(2.1)

NPV =
TN

TN + FN
(2.2)

Specificity =
TN

TN + FP
(2.3)

Sensitivity =
TP

TP + FN
(2.4)

Accuracy =
TP + TN

TP + TN + FN + FP
(2.5)

All this quantities range from 0 to 1. A perfect method would yield no false positives
and no false negatives. However in disease related experiment clinicians often ask to
optimize the selection (being more conservative) in order to avoid useless extra-assay
biological validation on genes that are not truly di�erentially regulated.
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2.3.2 Fold Change

The simplest and most intuitive approach to �nding the genes that are di�erentially
regulated is to consider their fold change. Typically an arbitrary threshold such as 2 or
3 fold is chosen and the di�erence are considered as signi�cant if it is larger than the
threshold. In a screening experiment involving many genes, most genes will not change.
Thus the experiment/control ratio of most genes will be grouped around 0 which means
that their logs will be grouped around 0, this is quite evident in the histogram of ratios
presented in �gure 1.11 on page 23. The horizontal axis of such a plot represents the log
ratio values. In consequence, selecting di�erentially regulated genes can be simply done
by setting thresholds on this axis and selecting the genes outside such thresholds. This
thresholding methods can resemble a classical hypothesis testing situation, see subsec-
tion 2.3.3 for more details. The di�erence is that in a hypothesis testing situation the
threshold are chosen very precisely in order to control the probability of the Type I error
(calling a gene di�erentially regulated by mistake) while in the fold change method, the
threshold are chosen arbitrarily.

The latter is one of the most important drawback. Another important disadvantage is
that fold change constant thresholding can introduce false positives at the low end (thus
reducing the speci�city), while missing true positives at the high end (thus reducing
the sensitivity). This is a quite evident consequence of the funnel shaped aspect of an
MA-plot (see for example 1.3.3.6 on page 26) that shows a bad signal/noise ratio for low
expression levels.

2.3.3 Hypothesis Testing

Another possible approach to gene selection is to use univariate statistical tests to select
di�erentially expressed genes.

Scienti�c theory can generally never be veri�ed, but only disproved. In statistics,
this leads to the procedure of setting up a research (or alternative) hypothesis and a
contradictory null hypothesis. The research hypothesis is supported if we can show
that there is evidence against the null hypothesis. Hypothesis testing involve several
important steps. The �rst step is to clearly de�ne the problem. Such a problem might be
stated as follows [31]: �The expression level c of a gene is measured in a given condition.
It is known from literature that the mean expression level of the given gene in normal
condition is µ. We expect the gene to be up-regulated in the condition under study and
we would like to test whether the data support this assumption�.

The second step is to generate two hypotheses. These are statistical hypotheses and,
unlike biological hypotheses, they have to take a certain, very rigid form. In particular,
the two hypotheses must be mutually exclusive and all inclusive. Mutually exclusive
means that the two hypotheses cannot be both true at the same time. All inclusive
means that their union has to cover all possibilities. In other words, no matter what
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happens, the outcome has to be included in one or the other hypothesis. One hypothesis
will be the null hypothesis. The other hypothesis will be the alternative or research
hypothesis.

The null hypothesis, traditionally denoted by H0 is the claim that is initially assumed
to be true (the �prior belief� claim). The alternative hypothesis, denoted by Ha, is the
assertion that is contradictory to H0. The null hypothesis will be rejected in favor of the
alternative hypothesis only if sample evidence suggests that H0 is false. If the sample
does not strongly contradict H0, is possible to believe in the truth of the null hypothesis.
The two possible conclusions from a hypothesis-testing analysis are then reject H0 or fail
to reject H0. The alternative hypothesis has to re�ect our expectations. If is believable
believe that the gene should be up-regulated, the research hypothesis will be:Ha : c > µ
. The null hypothesis has to be mutually exclusive and also has to include all the other
possibilities. Therefore, the null hypothesis will be H0 : c ≤ µ.

The third step is to calculate an appropriate test statistic based on data and to choose
a signi�cance level, or a rejection region. The key to a good test is a good test statistic.
The test statistic is generally a sample statistic that re�ects how far the observed data
is from the situation described by the null hypothesis. Many test statistics, T , have
the form T = r

s
. Here r could be an estimate of the size of the biological e�ect being

tested: the further the data is from the null hypothesis (i.e., the more likely that the null
hypothesis is false), the larger the value of r. The denominator, s, is a standard error
that measures the variability of r. Thus T measures how large the biological e�ect r is
relative to its variability. It is no accident that T has the form of a signal-to-noise ratio
with r as the �signal� and s as the �noise�.

The probability distribution of the test statistic under the null hypothesis is called
its null distribution. Based on the null distribution, we can calculate the p-value, the
probability of observing a value as extreme as that observed if the null hypothesis was
true. Clearly, the smaller the p-value, the greater is the weight of evidence against the
null hypothesis. A typical decision rule for a test states that the null hypothesis is rejected
if and only if the p-value is less than a speci�ed value called the signi�cance level of the
test. In other words, the p-value is the probability of drawing the wrong conclusion by
rejecting a true null hypothesis. Choosing a signi�cance level means choosing a maximum
acceptable level for this probability. The signi�cance level is the amount of uncertainty
we are prepared to accept in our studies. For instance, when we choose to work at a
signi�cance level of 10% we accept that 1 in 10 cases our conclusion can be wrong. Usual
signi�cance level are 1%, 5%. The �nal step in the hypothesis testing procedure is to
compare the value of the calculated test statistic with the rejection region, that is the
set of all test statistics values for which will be rejected; in this way is possible either to
reject or not reject the null hypothesis, with the chosen signi�cance level.

The basic for choosing a particular rejection region lies in an understanding of the
errors that one might be faced with in drawing a conclusion. Let us consider that the
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Figure 2.1: If computed statistic takes a value inside the dashed area, the Null Hypothesis
is rejected

true situation is known; let �assume that H0 is actually true and Ha is false�. In this
case:

• If we accept H0, we have drawn the correct conclusion. We will call the instances in
this category true negative: they are negative because they go against our research
hypothesis and they are true because Ha is indeed true and our Ha is false. If H0

is �the gene is not regulated�, and Ha is �the gene is either up or down regulated�,
true negatives will be those genes which are not regulated and are reported as such
by our hypothesis testing algorithm.

• If we reject H0, we have drawn an incorrect conclusion. We will call the instances
in this category false positive. They are positive because they go with our research
hypothesis and they are false because they are reported as such by our algorithm
while, in fact, they are not. Non-regulated genes reported as regulated would be
false positive.

Rejecting a null hypothesis when it is in fact true is called a Type I error. The probability
of a Type I error is usually denoted by α. Let us consider a normal distribution such as
the one presented in �gure 2.1 .

Using a threshold such as the one shown in the �gure 2.1 will classify as up-regulated
any genes expressed at a level higher than the threshold. However, this means all the
genes in the shaded area of the graph will be false positives since H0will be rejected for
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them. Therefore, the probability of a Type I error corresponds directly to the signi�cance
level chosen.

Let now �assume that H0 is false and Ha is true�. In this case:

• If we accept H0, we have drawn an incorrect conclusion. The instances in this
category will be false negative (genes that are in fact regulated but are not reported
as such by our algorithm).

• If we reject H0, we have drawn the correct conclusion. The instance in this category
are true positive.

The second type of mistake is called a Type II error. The probability of a Type II error
is denoted by β. The probability of avoiding a Type II error corresponds to correctly
picking the instances that do not belong to the distribution reference. In our case,
this corresponds to �nding di�erentially regulated genes (which do not belong to the
distribution representing the normal variation of expression levels). This is exactly the
purpose of an hypothesis testing algorithm. The higher this probability, the better will
the algorithm be at �nding such genes. This probability is called power of the test and
calculated as 1− β. A natural tendency is to try to minimize the probability of making
an error. The probability of making a Type II error is not directly controllable by the
user. However, the probability of making a Type I error, α, is exactly the signi�cance
level. Therefore, one might be tempted to use very high standards and choose very low
values for this probability. Unfortunately, this is not a good idea since α and β are
closely related and using a lower value for α has the immediate consequence of reducing
the power of the test.

The classical statistical methods to performing an hypothesis test on data of the type
control vs treatment is the t-test. Two version of this test, the paired t-test and unpaired
t-test, are applicable to data sets containing two groups of observations. Is important to
stress that t-statistics require some restrictive assumption like:

• Data are assumed to be normally distributed.

• Data are assumed to have equal variance.

However, if this is not the case, the value of this statistics may not represent the true de-
gree of di�erential expression. As result, using p-values obtained from the t-distribution
as a test of gene expression may be meaningless in these instances. In fact, there are
many sources of variability in a microarray experiment, and outliers are frequent. Thus,
the distribution of intensities of many genes are often not normal in real data set. In
this case , non-parametric methods which do not place any assumption on the observed
data. These non parametric method do not rely on the estimation of parameters (such
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as the mean and the standard deviation) in describing the distribution of the variable of
interest in the population for example and details refer to the work of Deng et al [28].

Comparing gene expression across two condition for a single gene is an instance of one
of the most statistical questions. Estimation and testing tools in this case are very well
developed, as mentioned before. In genomics applications, however, there is increasing
consensus[64]that is not e�cient to consider each gene in isolation, and gains can be
made by considering the ensemble of gene expression measures at once. This occurs for
at least two reasons: �rst, genes measured on the same array type in the same laboratory
are al a�ected by a number of common sources of noise; second, changes in expression
are all part of the same biological mechanism, and their magnitudes, although di�erent,
are not completely unrelated.

Joint estimation of many related quantities is a time-honored problem in statistics
dating back at least to the pioneering work of Stein and colleagues and continuing with
empirical Bayes approaches. In the case of microaray, examples of implementation are
provided in the work of Smith (for details see[73]) who use empirical Bayes approaches
joined with linear models to asses the di�erential expression.The method is implemented
in a R-based Bioconductor package called LIMMA [74]. Another approach of a al genes-
based modi�ed t-statistics can be found in the SAM (Signi�cance Analysis of microarray
Data) algorithm developed by Tusher et al.[84] that will be described in more details in
chapter 3. In the microarray scienti�c community, these two are the most used algorithm
for select di�erentially regulated genes, even though there are numerous di�erent methods
in literature.

2.3.4 Multiple Comparisons

In analyses aimed at selecting di�erentially expressed genes , there are several approaches
for reporting the degree of reliability of results. Conventional approaches based on gene-
speci�c p-values are generally criticized on the grounds of the multiplicity of comparison
involved. In fact, analyzing microarray data involves performing a very large number of
statistical tests, as a test is being run on each and every gene.

One important drawback of doing this is that if we perform multiple tests in parallel,
the level of signi�cance for the whole set of tests does not equal the level of signi�cance for
the single tests. Let us study this phenomenon. The signi�cance level α was de�ned as
the acceptable probability of a Type I error. This corresponds to a situation in which the
null hypothesis is rejected when it is in fact true. The genes that are called di�erentially
regulated when in fact they are not, will be false positives. In terms of hypothesis testing,
when the test statistic T for a gene is more extreme than the threshold Tα, we will call
this gene di�erentially regulated. However, the gene may be so just due to random
e�ects. This will happen with probability α. If we do not a mistake, we will be drawing
the correct conclusion for that given gene. This will happen with probability:
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Prob(correct) = 1− α (2.6)

Now we have to take in consideration the fact that there are many such genes. Let us
consider that there are G such genes. For each of them we will follow the same reasoning.
However, at the end, we would like to draw the correct conclusion from all of them. The
probability of such an event is easily computed by:

Prob(globally correct) = (1− α) · (1− α) . . . (1− α) = (1− α)G (2.7)

Then the probability of being wrong somewhere would be 1 minus the probability of
being correct in all experiments:

Prob (wrong somewhere) = 1− Prob (globally correct) = 1− (1− α)G (2.8)

In this situation being wrong means drawing the wrong conclusion for at least one
gene. Equation 2.8 is very close to unity for large G and the expected number of false
positives is α ·G, which is very large for very large G. Thus the number of false positives
can be so high as to overwhelm and totally obscure any actual e�ects.

In the multiple hypothesis literature equation 2.8 is termed, Family Wise Error Rate
(FWER), and is de�ned as the probability of one or more false positives occurring among
all signi�cant hypothesis. Most conventional multiplicity adjustment attempt to control
the FWER. The most popular approach is to report the false discovery rate (FDR)[8], for
a group of genes or for a speci�ed cuto� value of a statistic of choice. Assuming that the
population of genes truly divides into two groups, the altered and the unaltered genes,
and that a statistical approach selects a set of �signi�cant genes�, the the FDR is an
estimate of the fraction of truly altered genes among the the genes declared signi�cant.
This approach often re�ect appropriately the fact that array experiments are performed
to guide future validation work on individual genes, which is usually expensive and time-
consuming. It is also directly interpretable as the probability that a gene in the list of
selected genes if one takes the set of genes on the arrays as the population of reference for
the calculation of the probability. Additional discussion and comments are summarized
in [34]. Application of FDR within SAM is instead treated in chapter 3.

A drawback of the methods based on hypothesis testing is that they tend to be a
bit conservative. Not being able to reject a null hypothesis and call a gene di�erentially
regulated does not necessarily mean that the gene is not so. In many cases, it is just that
insu�cient data do not provide su�cient statistical proofs to reject the null hypothesis.
However, those gene that are found to be di�erentially regulated using such methods will
most likely be so.

Another point concern the experimental design, using hypothesis testing with few
number of samples for each class is really risky in order to obtain reliable answers to the



CHAPTER 2. STANDARD SAMPLE-BASED ANALYSIS APPROACHES 51

posed biological question. The method proposed in [73] claim to be able to work with a
reduced number of samples but the suggestion is to work at least with a number of sam-
ples per class greater then six. But is well known for people who works in this �eld that
sometimes for economical and clinical problems laboratory try to plan experiment with
just 3 samples per class. In this case all the hypothesis testing assumptions (requested
by parametric methods) could be not considered valid anymore. Another point is that
using this method in presence of a particularly unbalanced design is not recommended,
because such a design a�ects evidently the equality of variances.

2.3.5 Beyond Two Groups

Methods for identifying genes that are di�erentially expressed across two experimental
conditions can be extended to more general settings in which multiple conditions. Ex-
tension include time course experiments where conditions correspond to multiple time
points, factorial designs, in which the e�ects of multiple factors and their interaction
are explored simultaneously and so forth. The empirical Bayes method described in [73]
approach this kind of problems with a model-based approach. In general, multilevel
analysis can proceed by �rst specifying a statistical model for expression as a function of
conditions. In this context a particularly interesting approach to micro array data anal-
ysis and selecting di�erentially regulated genes is the Analysis Of Variance (ANOVA)
[14]. This method will be brie�y revised here. The idea behind ANOVA is to build an
explicit model about the sources of variance that a�ect the measurements and use the
data to estimate the variance of each individual variable in the model.

For instance, Kerr and Churchill [49, 50] proposed the following model to account for
the multiple sources of variation in a microarray experiment:

log (yijkg) = µ+ Ai +Dj +Gg + (AD)ij + (AG)ig + (V G)kg + (DG)jg + εijkg (2.9)

In this equation µ is the overall mean signal of the array, Ai is the e�ect of the i
th

array, Dj represents the e�ect of the jth day, Gg is the variation of gth gene, (AD)ij
is the e�ect of the array -dye interaction, (AG)ig is the e�ect of a particular spot on a

given array (array-gene interaction), (V G)kg represent the interaction between the kth

variety and the gth gene, (DG)ig is the e�ect of dye-gene interaction and εijkg represents
the error. Finally log (yijkg) is the measure log-ratio for gene g of variety k measured on
array i using dye j.

Sum of squares are calculated for each of the factors above. The mean squares will be
obtained by dividing each sum of squares by its degree of freedom. This will produce a
variance-like quantity for which an expected value can be calculated if the null hypothesis
is true. Essentially, each individual test asks the question whether a certain component
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Figure 2.2: Example of heatmap with samples ordered by class membership in the clas-
sical green (up-regulation) and red (down-regulation) scale.

has the variance signi�cantly di�erent from the variance of the noise. the di�erentially
regulated genes will be the genes for which the (V G)kg factor is signi�cant..

The advantage of ANOVA is that each source of variance is accounted for. The caveat
is that ANOVA requires a very carefully experimental design. Another limits of ANOVA
(and in general of model based approaches) is that, in a problem with more than two
classes, is possible to knows just which are the genes involved [73]. In fact, this kind of
analysis cannot reveal intrinsic correlation between specimens or direction (up/down) of
these regulations.

2.4 Visualization and Unsupervised Analysis

As with quality control and signal extraction, multivariate analysis of microarrays relies
substantially on visualization. The most commonly used tool is a color map (heatmap)
of either relative or absolute hybridization intensities after proper normalization. This
type of map was introduced by Eisen et al. [36]. An expression map is arranged as a
matrix in which each row corresponds to a gene and each column to an array, and the
color represent the expression level. Rows and columns are often sorted in a way that
facilitates visualization; for example genes may be grouped by functional classes, sample
may be ordered by time or class membership. In �gure 2.2 there is an example of a a
heatmpa order by class membership.

However the most common way to order samples and genes is, like in [36], using
cluster algorithms, in particular Hierarchical Clustering (treated more extensively later
in this section).
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Clustering algorithms divide a set of objects (genes or samples) into groups so that
gene expression pattern within a group are more alike than pattern across groups [64].
There are two broad approaches to clustering techniques. Hierarchical techniques provide
a series of successively nested clusters, and their result resembles a phylogenic classi�ca-
tion. Nonhierarchical techniques generally �nd a single partition, with no nesting. Both
are used extensively in microarray analysis for two main goals. The �rst is represent-
ing distances among high-dimensional expression pro�les in a concise visually e�ective
way, such as are tree or dendrogram. The second is to identify candidate subgroups in
complex data. The two tasks can be closely tied as a concise lower-dimensional rep-
resentation of the objects studied often simpli�es manual identi�cation of subgroups.
Clustering techniques have been successful in supporting visualization and as method
for generating hypotheses about the existence of groups of genes or samples with simi-
lar behavior. An example of the latter is the identi�cation of novel subtypes of cancer.
Oftentimes, even when phenotype information is available, unsupervised cluster analysis
are used to explore gene expression data and form gene groups that are then correlated
to phenotype,

Quackenbush [67] provides an excellent reviews of the use of cluster analysis in mi-
croarrays. Some general comments apply to the use of clustering techniques in genomic
analysis. First, these techniques are exploratory: their strength is in providing rough
maps and suggesting directions for further study. In good studies, context and meaning
for groups found by automated algorithms is provided by substantial additional work
either in the lab or on databases. The outcome of a clustering procedure is therefore the
beginning, rather then the end, of a genome biometry analysis.

Second clustering results are sensitive to a variety of user-speci�ed inputs. The clus-
tering of a large and complex set of objects, such as a genome, is akin to arrange books
in a library[31]: it can be done sensibly in many di�erent ways, depending on the goals.
From this perspective, good clustering tools are responsive to user's choices, not insen-
sitive to them, and sensitivity to input is a necessity of cluster analysis rather than a
weakness. This also means, however, that use of a clustering without a through under-
standing of its workings, the meaning of inputs, and their relationship to the biological
questions of interest is likely to yield misleading results.

Third, clustering results are generally sensitive, sometimes extremely so, to small
variations in the samples and the genes chosen and to outlying observations. This means
that a number of the data-analytic decisions made during normalization, �ltering, data
transformations, and so forth will have an e�ect on clustering. In this context, it is
challenging, but all more important, to provide accurate assessments of the uncertainty
that should be associated with clusters found. Uncertainty from sampling and outliers
can be addressed using resampling techniques [49].
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2.4.0.1 Hierarchical Clustering

Hierarchical clustering has almost become the de facto standard for gene expression
data analysis, probably because of its intuitive presentation of the clustering results.
The whole clustering process is presented as a tree called a dendrogram; the original
data are often reorganized in a heat map demonstrating the relationships between genes
or conditions.

In hierarchical (agglomerative) clustering [31], each expression pro�le is initially as-
signed to one cluster; at each step, the distance (through Euclidean distance or Pearson's
correlation, and others) between every pair of clusters is calculated and the pair of clus-
ters with the minimum distance is merged; the procedure is carried on iteratively until
a single cluster is assembled.

After the full tree is obtained, the determination of the �nal clusters is achieved by
cutting the tree at a certain level or height, which is equivalent to putting a threshold
on the pairwise distance between clusters. Note that the �nal cluster positions is thus
rather arbitrary.

As we mentioned, in every step of agglomerative clustering, the two clusters that
are closest to each other will be merged. Here comes the problem of how we de�ne the
distance between two clusters. There are four common options:

1. Single linkage. The distance between two clusters is the distance between the two
closest data points in these clusters (each point taken from a di�erent cluster).

2. Complete linkage. The distance between two clusters is the distance between the
two furthest data points in these clusters.

3. Average linkage. Both single linkage and complete linkage are sensitive to outliers
[32]. Average linkage provides an improvement by de�ning the distance between
two clusters as the average of the distances between all pairs of points in the two
clusters.

4. Ward's method. At each step of agglomerative clustering, instead of merging the
two clusters that minimize the pairwise distance between clusters, Ward's method
merges the two clusters that minimize the `information loss' for the step. The
`information loss' is measured by the change in the sum of squared error of the
clusters before and after the merge. In this way, Ward's method assesses the
quality of the merged cluster at each step of the agglomerative procedure.

These methods yield similar results if the data consist of compact and well separated
clusters. However, if some of the clusters are close to each other or if the data have a
dispersed nature, the results can be quite di�erent [32].Ward's method, although less
well known, often produces the most satisfactory results.
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Figure 2.3: Example of a heatmap reordered on the basis of a hierarchical clustering
algorithm.

A heatmap presenting the gene expression data, with a dendrogram to its side indi-
cating the relationship between genes (or experimental conditions), is the standard way
to visualize the result of hierarchical cluster analysis on microrray data. The length of a
branch in the dendrogram is proportional to the pairwise distance between the clusters.
Usuallly this method in most of publication in microarray scienti�c community is used in
supervised approach. In �gure 2.3 an example of hierarchical clustering-guide heatmap.

2.5 Class Prediction

Class prediction or prognostic prediction tries to predict the class membership (or sur-
vival or protein expression or any prognostic variable) of a set of subjects given their gene
expression data. Although related to the selection of di�erentially expressed genes (see
section 2.3), these are di�erent objectives that answer di�erent biological questions and
require di�erent methods (unfortunately, this di�erence is not always recognized in em-
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pirical work) [30]. Ranking genes often precedes trying to use genes for class prediction,
but genes that show large expression di�erences are not necessarily good predictors.

The goal is to predict the clinically relevant characteristic of a subject (be it class
membership, survival, prognosis or any other variable of interest) given the genetic pro�le
of this subject. This is also an area of extremely active research, where the disciplines
of statistics and machine learning have contributed much.

The complexity of gene expression array analysis is stimulating the development of
novel speci�c statistical modeling tools for this purpose. However, the existing body
of pattern recognition and prediction algorithms developed in computer science and
statistics can provide an excellent starting point for prediction in molecular problems
for the immediate future. Dudoit et al. [33] o�er a practical comparison of discriminant
methods for the classi�cation of tumors using gene expression. Relevant methods from
the traditional modeling tradition include: linear discriminant analysis [40], tree-based
algorithms [90, 16], Support Vector Machine (SVM) [86, 45], Relevance Vector Machine
(evolution of SVM) [82, 59], Nearest-Neighbor classi�er[26] are just some examples of
the available methods successfully applied in the gene expression class prediction.

Available reviews[33, 71, 68] show that relatively simple and well known methods
such as k-nearest neighbor (KNN) and diagonal linear discriminant analysis (DLDA),
together with support vector machines (SVMs), perform very well in most classi�cation
tasks in microarray data. Because of their performance and DLDA, KNN and SVM
should probably be used routinely as benchmarks when proposing new methods.

It is hard to say which could be the best algorithm, because until now the benchmark
data sets used to evaluate the performance are regarded as �easy data sets�. Despite of
which algorithm is used, is important to stress some issues that probably deserve more
attention. First, for the user it quickly becomes evident that many methods yield non-
unique solutions or, in other words, can return di�erent solutions of very similar quality
(e.g., prediction error rate), which itself leads to the question of how to choose among
solutions. A direct way of approaching this problem is via model combination and model
averaging.

Regardless of which model(s) are used, two general problems can a�ect all mod-
els/algorithms. First, most of the available methods assume additive e�ects of genes.
Non-additive relationships or interactions, also called synergistic (or antagonistic) e�ects,
are present when the outcome (e.g., being of class A) depends not just on the sum of
the independent contributions of X and Y, but on their combined e�ects. Non-additive
relationships are likely both between genes and between genes and other factors. Second,
the predictive capacity of many models can be hampered by unrecognized heterogeneity
within classes that are regarded as homogeneous. Little work has been done in this area.

A �nal set of problems involves the biological interpretation of class prediction models
(together with making sense of information for potentially tens of thousands of coe�-
cients). Most methods for building predictors tend not to return models that allow for
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easy biological interpretation of why and how those predictors are used, and how the
genes in the predictors a�ect and relate to the class prediction.

To evaluate the performance of a predictor, it is common to provide the error rate
of the predictions. However, many papers, including `high-pro�le' ones, report error
rates that are severely biased, leading to overoptimistic claims about the performance
of di�erent methods. This is a most unfortunate situation because lack of appropriate
rigor in the application and adherence to appropriate rules of evidence undermines trust
in the promises of these technologies. These severe problems were addressed in the
bioinformatics literature by Simon et al. [71]. In spite of the seriousness of the problem,
the practice of reporting severely biased error rates is still common.

One possible problem is reporting the `resubstitution rate', the error rate computed
from the very same observations as were used to build the classi�er, because the resub-
stitution error rate is severely biased down due to over�tting: if we �t a classi�er to a
data set, we can expect it to `adapt to' some peculiarities of the data, which will make
it work well with those data, but might lead it to work poorly with data not yet seen by
the classi�er or learner. This problem is even more serious with microarray data, where
there are thousands of genes that can be part of a predictor. With so many variables,
and so few samples, it is very easy to �nd a predictor that works perfectly in a completely
random data set [71]. To solve this problem either cross-validation or bootstrap have
been used; both methods build the predictor using a subset of the data, and then predict
the values for the remaining data, thus insuring that the predictions are from data not
used for the training.

A second common problem is to carry out the cross-validation after the gene selection:
all samples are used for gene selection, and the cross-validation process does not include
gene selection. This leads to very optimistic estimates of the error rate [71].

As �nal note about class prediction regards the stability of the results[30].Suppose
a predictor has been built that includes 20 genes. How far can we take biological in-
terpretation on the relevance of these genes? A paper by Somorjai et al. [75] suggests
that often not very far; the problem is the instability or non-uniqueness of results, a
phenomenon called the `Rashomon e�ect' by L. Breiman [15]. It is very common that, if
we re-run a given procedure with only minor changes or using bootstrap samples, we end
up with very di�erent sets of models, suggesting that there are many di�erent `optimal'
subsets of genes (because there are many di�erent descriptions that give approximately
the same minimum error rate; Somorjai et al. show how this can arise because of small
sample sizes and an extremely small sample per feature ratio (i.e., very small number
of arrays relative to the number of genes). They suggest using a variety of classi�ers or
predictors and �nding whether the same features are selected; if the same set of genes
is repeatedly selected, we would be more con�dent that the set is reasonably robust. Of
course, this way of examining robustness to selection methods cannot be used if feature
selection is carried out using the same �lter method for di�erent classi�ers (e.g., �nd-



CHAPTER 2. STANDARD SAMPLE-BASED ANALYSIS APPROACHES 58

ing the 200 genes with smallest adjusted p-value, and then using those 200 genes with
DLDA, KNN and SVM). Additionally, the bootstrap can be used to examine variation
in solutions achieved. The multiplicity problem deserves much more careful attention
and prompts for cautious interpretation of results.

2.6 Philosophical Issues in Microarray Data

This brief review focus on general trends in microarray data analysis and stress some of
the problems that concern each speci�c approach. However, below is reported some con-
siderations that are more general but that has to attract the attention of gene expression
microarray researcher community. Sometimes, in fact, the �bioinformatics�1 community
are concentrated on �reinventing the wheel� [30]. Many publications2, in fact, focus on
reinventing solutions for problems (sometimes too much speci�c) that has already been
successfully solved by others. The interest, instead have to concentrate to general issues
hided in these kind of data, but often neglected.

2.6.1 Microarray: �experiments� or observational studies?

Although microarray studies are often referred to as `experiments', they are frequently
observational studies [4]. The di�erences between observational and experimental studies
are well known in statistics and epidemiology, and a�ect both analyses and interpretation
of results. Observational studies present several potential problems, particularly the
following.

• Background di�erences between groups and presence of potential confounding vari-
ables; confounding is a pervasive problem. Potter (2003) illustrates it with exam-
ples of the relation between vegetable consumption and cancer being confounded by
di�erences in smoking associated with vegetable consumption (smokers also tend
to eat fewer vegetables) and di�erences in expression pro�les between cancer types
being related to the unmeasured confounding of age and sex. A related problem
is interaction, such as when the degree of association between an exposure factor
(e.g., expression of gene A) and the disease is di�erent for di�erent levels of the
confounding variable, such as sex; there is evidence that this might be the case
in lung cancer (Patel, Bach and Kris, 2004). The problems of confounding and
interaction are discussed in more detail below.

1This is the keyword that, today, identi�es people working on handling, analyzing bio-data with
computers

2This comment refer above all to those publications that grows in a pure bioinformatics context,
without any connection with biologist's (or clinician's) interest
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• Biases arising from handling of units (e.g., case samples are frozen several hours
after collection whereas control samples are frozen immediately; ) or from biases
during the selection of subjects for the study or from informative patterns of miss-
ingness.

• Samples too small to allow for generalizations to the populations of interest, and
problems of reproducibility.

These issues are well known in epidemiology, which studies patterns of disease and pos-
sible factors that a�ect these patterns of disease by using mainly observational data.
However concerns related to microarrays being often observational studies are mostly
absent from standard papers and textbooks on microarray design and analysis[31, 88].

2.6.2 Rule of Thumb: Round-table of di�erent expertises

Successful use of microarrays to answer biologically relevant questions will require close
collaboration between biologists and statisticians during the complete process of the
study[30]. The need for statisticians' advice during the experimental design has been
discussed before (see section 1.3.3.1). However, it should be remembered that full details
of the experimental set-up are necessary for the use of appropriate statistical methods.

Statisticians need to realize that there are often many subtleties in the interpreta-
tion of microarray results that preclude simple mappings from RNA expression data to
phenotypes . At the same time, statistical help is needed to insure that the statistical
model and test being used is addressing the biological questions of interest. What in any
case is unrealistic is to expect that if the biologist sends a �le with 15 000 rows by 200
columns (genes by subject) to the statistician, the statistician will return to the biologist
the list of, say, 30 genes that are the answer to the biological question. But that is, in
fact, what some users often expect from software tools or statistical consulting, and what
some statisticians might believe is possible/desirable. This also means that the questions
asked are sometimes reformulated to accommodate the available software.

The problem of these expectations and procedures is that they lack key ingredients
often needed to provide an answer to the underlying biological question. Diàz-Uriarte
[30] lists some typical questions that a statistician might ask that are reported below

• Are genes grouped in families, and are we interested in the overall responses of
groups of genes, or should we look at individual genes?

• Are certain genes or spots in the array more relevant biologically, maybe because
they are easier to measure reliably with other assays?

• Is there additional information on which genes are likely to be di�erentially ex-
pressed?
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• Do you really need the best possible predictor that statistical computing will get
you, or do you want a small list of genes very likely to be di�erentially expressed?

• In what stage of the scienti�c discovery process is this study, and how tight control
do you require over the type I error rate?

• What other information and variables about the patients, besides the microarray
data, do you have available?

• What population do you expect the results of these studies to be relevant for?

• Are these the original, complete data, and are these the original biological ques-
tions, or have the data and questions gone through an already long run of analyses
which has already �ltered data and reoriented hypotheses?

• What is the next stage of this study, or what do you want to do with these results?

• What additional studies could be done to con�rm the results from these analyses?

Only after these (and other) questions have been answered is it time to search for the
appropriate strategy. This research project starts exactly in this way. Each of the
approaches explained in the next chapters are the attempts to give answers to questions
emerged after long �round tables� with the clinicians and the biologists of CRO3.

2.6.3 Availability of source code

Many new method papers are published every month, and biologists and applied statis-
ticians do not have the time to implement each and every idea that is published, nor to
deal with the complications associated with patented algorithms. Sometimes, however,
when researchers ask for software from authors of method papers they face with a great
deal of practical or not explained di�culties.

Some of the reasons for making source code available in bio informatics and micro
array research (summarized by Dugout, Gentleman and Quackish) are reported here:

• full access to the algorithms and their implementation, which allows users to un-
derstand what they are doing when they run a particular analysis

• the ability to �x bugs and extend and improve the supplied software

• encouraging good scienti�c computing and statistical practice by providing appro-
priate tools,instruction and documentation

3National Oncology Research Center in Aviano (Italy)
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• providing a workbench of tools that allow researchers to explore and expand the
methods used to analyze biological data

• ensuring that the international scienti�c community is the owner of the software
tools needed to carry out research

• promoting reproducible research by providing open and accessible tools with which
to carry out that research (reproducible research as distinct from independent
veri�cation)

The approaches explained in chapter 4 relies in part on the lack of source code that could
have given an answer to open question posed by the biologists at CRO.



Chapter 3

MultiSAM: Facing with Unbalanced

Design

3.1 The Open Problem: Uneven Sample Size

As seen in section 1.3.3.1, in microarray experiments for gene expression pro�le, the ex-
perimental design is often a crucial start-point to obtain reasonable results. In particular,
in a two-class problem (to compare two di�erent conditions), it should be quite obvious
to collect an equal, or at least similar, number of samples between the two classes.

In fact, this should be a basic rule of thumb in order to can use standard methods
both in hypothesis testing and in class prediction framework.

In hypothesis testing , choosing to use robust modi�ed t-statics (see 2.3.3 on page 49)
that have resulted to be more e�ective in the problem posed by micrarray data, we have
to consider that they make stringent assumptions (the same requests by classical t-test),
i.e. a) data are normally distributed and 2) homoscedasticity (i.e. equal variance). Above
all for the second condition, collect an equal number of samples in both class is a way to
control the homogeneity of variance and the applicability of Central Limit Theorem, as
well explained by Devore in [29].

In class prediction, as well, some is well known the problems of uneven-sample-size
bias. As reported by Wood et al. [87] for a classi�cation algorithm when the training
data sets with uneven class sizes were used, the model was undesirably biased towards
the class with the large training size. That is to say, the larger the training sample size
for one class is, the smaller its corresponding classi�cation error rate is, while the smaller
the sample size, the larger the classi�cation error rate.

So the best solution would be to design a balanced experiment. However, this is not
always possible. A complete and balanced design is an ideal that is not always achieved
in practice. The cost of conducting a microarray experiment, in terms of labor, time
and money, sometimes makes it impractical to use a balanced design. Also, some studies

62
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set out with a balanced design but become unbalanced during implementation because
of technical and administrative problems. Another important issue rises when clinicians
decide to investigate disease subset with rare and peculiar clinical and biological features,
that come to the attention for their severe prognosis. During the last three years of our
collaboration, the research team at CRO1 runs into the latter situation and pose to us
the necessity to handle a challenging unbalanced microarray data set.

Looking at the literature, most of the publications about gene expression pro�les do
not face this kind of problem, for two di�erent reasons:

• often the experimental design is balanced in it self (see just for example [38, 10])

• sometimes, despite of an unbalanced experimental design (that as we have seen
a�ect variances and error rates), standard method are used2 (see for example [52, 9].

Just some papers approach this problem in di�erent ways. Concerning hypothesis testing
Lee et al.[56] tackle the issue using ANOVA; but in there the unbalancing of the design
regards a time course3 experiment so the situation cannot exactly resemble the standard
two-class gene pro�ling problem. Moreover a up-to-date study [85] shows that ANOVA
fails in case of unbalanced design. Even if in CRO's data set the application of class
prediction algorithm was prohibitive for the size of the smaller class, there is some papers
that face (without a de�nitive solutions) the problem of uneven samples size[20, 87].
Considering such a state of the art, the choice is to �nd an alternative solution.

3.2 The IGHV3-21 B-cell Chronic Lymphocytic Leukemia

data set

To clear up the circumstances that have lead to an unbalanced design regarding the
gene expression pro�ling of a particular sub set of B-Cell chronic Lymphocytic Leukemia
(B-CLL) is important to contextualize this disease and its speci�cally spread and feature
in Italy[13].

The clinical course of B-cell chronic lymphocytic leukemia (CLL) can be in part
foreseen by the presence of mutated (M) or unmutated (UM) immunoglobulin variable
(IGV) genes[70]. Analysis of IGV heavy chain (IGHV) gene usage has revealed expression
of a biased IGHV repertoire in CLL compared with normal B cells [83].Such molecular
peculiarities occur both in poor-prognosis UM CLL and in highly stable/indolent M
CLLs [83].

1National Oncology Research Center (Aviano-Italy)
2Standard methods can have however a margin of success on those two-class problems that are �easy�

to separate (normal vs. tumor for example) and with a low level analysis.
3Monitoring of gene expression at di�erent time point
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Figure 3.1: Kaplan-Meier survival curve analysis in IGHV3-21 CLL patients.
(A) Comparison of survival probabilities in IGHV3-21 patients (22 patients), patients
with M IGHV gene con�guration (at least 2%, 176 patients), and patients with UM
IGHV gene con�guration (less than 2%, 103 patients).

Usage of the IGHV3-21 gene by CLL has been initially reported in about 10% of
Scandinavian patients12,13 and subsequently con�rmed in small CLL series from other
Northern European countries[62]. Although IGHV3-21 CLL usually displays M IGHV
genes, patients experience overall survivals similar to those of UM CLL[42]. Recent
studies reported a low incidence of IGHV3-21 CLL in mediterranean countries, thus
suggesting that the frequency of IGHV3-21 CLL may be related to geographic, ethnic,
or environmental background[42, 78]. Italy may provide a valuable model to analyze
IGHV3-21 distribution among CLL because the country includes both continental and
mediterranean areas. To conclusively dissect the issue of a

In [13], survival data4 were analyzed in 301 patients, 279 with a non�IGHV3-21
CLL (176 with M and 103 with UM IGHV genes) and 22 with IGHV3-21 CLL (14 M
and 8 UM). In the context of non�IGHV3-21 CLL, a signi�cantly longer survival was
documented for M cases compared with UM CLLs. The survival curve of IGHV3-21
CLL was similar to that of UM non�IGHV3-21 cases (p-value 0.312) and signi�cantly
di�erent from M CLLs (p-value 0.030; see �gure 3.1).

4For detailed introduction to survival data analysis please refer to [25]. For the survival analysis
performed at CRO on IGVH3-21 please refer to [13].
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From the above discussion is possble to summarise as follows the principal character-
istic of this rare and peculiar subset of CLL that are of interest for the planning of the
experimental design:

• IGHV3-21 CLL is a rare subset of CLL that has low incidence in general (and in
particular in mediterranean countries);

• Eventhough IGHV3-21 CLL usually displays M IGHV genes, patients experience
overall survivals similar to those of UM CLL;

• IGHV3-21 CLLs are known to have a clinical and features charactersitic that are
not macroscopically far from non-IGHV3-21 CLLs; in this context, identify a gene
expression pro�le of IGHV3-21 CLLs with respect to non-IGHV3-21 CLLs will be
a challenging experience.

Collecting patients from di�erent Italian oncological centers the study end up with only
13 IGVH3-21 CLL (11 M and 2 UM) patients and with 52 non-IGVH3-21 (35 M and
17 UM) patients with a su�cient high quality mRNA material to land on a microar-
ray. Details on platform, experimental design, pre-processesing and �ltering choices are
extensively described in Appendix A.

Conscious that the main characteristic of this microarray experiment is to be a chal-
lenging unbalanced data set next section will focus on the construction and validation
of resample-based methods to �nd a signi�cant gene expression pro�le.

To give an idea of how the entire data set behave in term of class membership in �gure
3.2is reported a dendrogram realized with the entire data matrix (65 samples x 28513
genes) with a hierarchical clustering algorithm (euclidean distance joined with ward algo-
rithm). The procedure was repeated (data not shown) with di�erent hierarchical methods
and di�erent distances. The generated hierarchic clustering clearly demonstrated that
all 13 IGHV3-21 CLLs were intermingled among non�IGHV3-21 cases, thus indicating
that the 2 subgroups shared the large part of the features investigated.

3.3 From SAM to MultiSAM

The �rst way to approach an open problem like unbalanced data sets is to look a what
was already successful in the state of the art, trying to improve or correct the pitfalls that
rise with this kind of problem. Also Lee et al.[56] looked at linear models and ANOVA
as a possible choice. In the case of IGHV3-21 data set this is not an optimal solution
because as stressed in [85], linear models and ANOVA do not perform well on really
noisy data (when the sources of noise are not identi�able as factors in the models). So
in our quite long experience with Operon microarray data sets, we notice an high level
of noise not ever controlled by pre-processing and normalization steps.
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Figure 3.2: Global hierarchical clustering dendrogram based on the entire data matrix
(65 samples x 28513 genes) of IGHV3-21 data set. Red arrows represent the 13 cases of
IGHV3-21 CLL.
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The idea is to use the popular and thriving SAM[84] algorithm as starting point (in
particular the modi�ed SAM version of Broberg [17]. In the next subsection a brief
introduction to the algorithm will be given before to illustrate the approach to correct
possible pitfalls rising from uneven samples size.

3.3.1 Signi�cance Analysis of Microarray Data (SAM statistic)

With small samples size the t test statistic tends to be highly correlated with the standard
error term that appears in its denominator. As a result the test has a propensity for
picking up signi�cant �ndings at a higher rate from among those genes with low sample
variance than from among those genes with high sample variance. This property of the
t statistic is especially troubling because it is di�cult to estimate standard errors well
when the sample is low and small standard errors can occur purely by chance. Since the
sample sizes used in microarray experiments are typically very small, the small sample
e�ect of the t test tends to manifest itself in such experiments as false negative rates for
genes whose variability is high.

One solution to the problem was suggested by Tusher et al. [84]. They add a carefully
chosen constant, a so-called fudge factor, to the denominator of the t statistic.

Lets suppose that we are comparing the expression levels of a gene in two groups of
microarrays, which we will refer as Group 1 and Group 2. There are n1 arrays in Group
1 and n2 arrays in group 2. Let xij denotes the intensity measurements of the gene in the
i−th microarray in the j−th group, where i = 1, ..., nj and j=1,2. It is assumed that the
data has already been transformed and normalized. In addition let xij and sj denotes
respectively the mean and the standard deviation. Recall that the tgtest statistic, for

the gth gene, has the form tg = rg
sg
, where rg = |x1g − x2g| and sg = spg

√
1
n1

+ 1
n2
. The

adjusted t statistic is:

tg (c) =
rg

sg + c
(3.1)

where c is the fudge factor. This test statistic is often called the SAM t statistic,
where SAM stands for �signi�cance analysis of microarrays�. tg(0) is, of course, the
ordinary t statistic. with a very large value of c is equivalent to the t statistic without
its denominator, namely to rg. The plan is to choose an intermediate positive value of
c while, given c, the dependence of tg (c) from ss is as small as possible. The simplest
way to do this, in practice, is to study the relationship of tg (c) versus sg for a number
of di�erent values of c, with the intention of retaining as the fudge factor, c, the one for
which the dependence tg (c) of on sg is least.

Tusher et. al. implement this as follows:

Let sα be the αth percentile of the {sg} values, and let tg (sα) =
(

rg
(sg+sα)

)
. Compute

the percentiles, q1 < q2 < ...q100 of the sg values. For αε {0, 5, 10, ..100}, coimpute the
MAD (median absolute deviation from the median), vj (α), of the tg (sα) values within
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the interval [qj, qj+1] for j = 1, 2, ..., n. Then compute cv (α), the coe�cient of variation
of the vj (α) values. Choose as α̂ the value of α that minimises cv (α). Fix as ĉ the value
sα̂.

3.3.1.1 Assessing Signi�cance with the SAM t Statistic

Once the SAM t statistics, tg (ĉ), are calculated, the critical value of tg (ĉ) that separates
signi�cance from non-signi�cance must be set. For the ordinary t statistic this is done
by looking up the quantiles of the Student's distribution. However, the null distribution
of the SAM t statistic, tg (ĉ), is not a t-distribution, so this is no longer correct. In fact
the null distribution is intractable. Therefore Tusher et al. assessed the signi�cance of
the observed values via a permutation procedure.

Suppose that a suitable ĉhas been identi�es and that the values have been calculated
and sorted into increasing order: t(1) (ĉ) ≤ t(2) (ĉ) ≤ ... ≤ tG (ĉ). The permutation
procedure proceeds by permuting the columns of the data matrix, X, and assigning the
�rst columns to Group 1 and the remaining columns to Group 2. A total of B such
permutation will be done. For the bth permutation, compute the statistics t∗bg (ĉ), and
the corresponding order statistics: t∗b(1) (ĉ) ≤ t∗b(2) (ĉ) ≤ ... ≤ t∗bG (ĉ). From the set of

B permutations, the expected order statistics of tg (ĉ) can be estimated by t(g) (ĉ) =∑B
b=1

t∗b
g (ĉ)

B
. Any gene g that is such that its tg (ĉ) substantially exceeds its tg (ĉ)value is

possibly di�erentially expressed.
This can be examined further by plotting the tg (ĉ) values versus tg (ĉ) values. The

central part of this plot lies along the identity line, where tg (ĉ) = tg (ĉ), indicating genes
that are not di�erentially expressed; the ends tail away from this line. The further a
gene is located from the identity line, the more likely it is that the gene is signi�cantly
di�erentially expressed.

The procedure to declare signi�cance is as follows:
for a �xed threshold, ∆, starting at the origin and moving up to the right, �nd the

�rst i1 genes such that tg (ĉ)− tg (ĉ) > ∆ and call all genes past i1 �signi�cant positive�.
Similarly, starting at origin and moving down to the left, �nd the �rst i2 genes such that
tg (ĉ) − tg (ĉ) > −∆ and call all genes past i2 �signi�cant negative�. For a given value
of ∆, call the smallest value of tg (ĉ) among the signi�cant positive genes the �upper cut
point�, cutup (∆), and the largest value of tg (ĉ) among the signi�cant negative genes the
�lower cut point�, cutlow (∆). This process can be carried out for a series of ∆ values.

To determine the number of falsely signi�cant genes generated by SAM, for a chosen
value of ∆, count how many genes are reported as di�erentially expressed in each permu-
tation, that is t∗bg (ĉ) > cutup (∆) or t∗bg (ĉ) < cutlow (∆) (false positives). Then, calculate
the median number of false positives across all the B permutations. Finally calculate the
FDR as the number of false positives divided by the number of genes declared signi�cant
di�erentially expressed, having compared tg (ĉ)with cutlow (∆) and cutup (∆). By evalu-
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ating FDR for several values of ∆, a suitable strategy can be devised to decide which
genes are signi�cantly di�erentially expressed (see [84]).

3.3.2 Broberg's modi�cation of SAM method (SAMroc)

Broberg [17] propose to modify SAM methods to optimize with respect to false-positive
and false-negative rates. The idea is to jointly minimize the number of genes that are
falsely declared positive and the number of genes falsely declared negative (FP, FN)
by optimizing over a range of values of the signi�cance level a and the fudge factor c.
How well this is achieved can be judged by a receiver operating characteristics (ROC)
curve, which displays the number of false positives against the number of false negatives
expressed as proportions of the total number of genes.

Assume that we can, for every combination of values of the signi�cance level α and
the fudge constant c, calculate (FP, FN). The goodness criterion is then formulated in
terms of the distance of the points (FP, FN) to the origin (which point cor- responds to
no false positives and no false negatives, see �gure 3.3), which in mathematical symbols
may be put as

C =
√
FP 2 + FN2 (3.2)

The optimal value of (α, c) will be the one that minimizes equation 3.2. It is for
practical reasons not possible to do this minimization over every combination, so the
suggestion is to estimate the criterion over a lattice of (α, c) values and pick the best
combination.

This method (SAMroc) implements, also, the possibility to calculate a uncorrected
p-values for each gene. The data matrix X has genes in rows and arrays in columns.
Consider the vector of group labels �xed. The permutation method consists of repeat-
edly permuting the columns (equivalent to rearranging group labels), thus obtaining the
matrix X∗, and calculating the test statistic for each gene and each permutation. Let
d (j)∗k be the value of the statistic of the jth gene in the kth permutation of columns.
Then the p-value for gene i equals

Pi =
#
{
d (j)∗k :

∣∣∣d (j)∗k
∣∣∣ ≥ d (j)

}
B ×M

(3.3)

whereM is the number of genes, d(i) the observed statistic for gene i, B the number of
permutations and # denotes the cardinality of the set. These are obviously not corrected
for multiple comparisons.

Broberg [17]concludes that the proposed method comes out better than or as good
as the original SAM statistic in most tests performed. The samroc statistic is robust
and �exible in that it can address all sorts of problems that suit a linear model. The
methodology adjusts the fudge constant �exibly and achieves an improved performance.
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Figure 3.3: ROC curve. This graph displays the number of false negatives (di�erentially
expressed genes (DEGs) not included) versus the number of false positives (non-DEGs
included) found on top lists of increasing sizes, expressed as proportions of the total
number of genes. The distance C gives an optimal value of equation 3.2. A method
whose ROC curve lies below that of another method is preferable, as it will give more
DEGs and fewer non- DEGs on any top list of any size, as explained in Additional data.
Hence method 1 is preferable to method 2.
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The algorithm gives fewer false positives and fewer false negatives in many situations,
and was never much worse than the best test statistic in any circumstance. However, a
typical run with real-life data will take several hours on a desktop computer. To make
this methodology better suited for production it would be a good investment to translate
part of the R code, or the whole of it, into C.

Moreover, in the framework to arrange a resampling procedure to have as output a p-
value would be an advantage. Also the availability of the R source code (Bioconductor R
package called SAGx), permits an easy implementation of this methods in our work�ow.

3.3.3 MultiSAM

As stressed in section 3.1 the principal problem of SAM (and in general of modi�ed t
statistics) concerned the treatment of uneven sample size data set is that the assumption
over the equal variance are likely to be not veri�ed anymore. To correct this pitfall the
idea is to reiterate the application of SAMroc[17] analysis made by comparing the less
populated class (LPC) of size k with a series of random sampling[24] combination from
the more populated class (MPC) of size n, each of the same size of the LPC.

Recalling topics of combinatorial mathematics, k − combination (or k − subset) is a
subset with k elements. The number of k-combinations (each of size k) from a set S with
n elements (size n) is the binomial coe�cient (also known as the "choose function"):

Cn
k =

(n
k

)
=

n!

k! (n− k)!
. (3.4)

Being exhaustive, applying SAMroc analysis with all the sampled combinations, is
prohibitive because of its extremely time consuming implications. Moreover there are no
guarantees of improving the gained information. To have an idea, the number of possible
combinations, in the case of IGHV3-21 data set (13 LPC samples and 52 MPC samples)
C52

13 is greater the 1011, so to explore all the combinations means to perform more than
1011 SAMroc analysis . Empirical solutions in the �eld of random sampling [24] suggest
us the possibility to stop the random sampling at a certain level(�xed at the moment to
103) and to accompany the gained information with some quality scores.

In the following more details will be given about these scores.

3.3.3.1 List Score

This quality score aims to �lter the inter-combination reproducibility, in the following
we explained how it is build.

One of the output of each SAMroc analysis (performed between the LPC and a
random sampled subset of MPC) is a list of genes and their related p-values. To obtain
the List Score (LS) proceed as follows:
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1. For each list of 1000, Correct the p-values with False Discovery Rate (FDR) method
(see subsection 2.3.4 on page 49).

2. Order each list accordingly to their adjusted p-values.

3. Fix a quite conservative level of con�dence for the adjusted p-values (a value of
10−3 seems to be a reasonable choice).

4. With the �xed cut-o� we obtain for each of the 1000 SAMroc analyses, a list of
di�erentially regulated genes

5. Check for each genes (that was part of the input data matrix) its presence in the
lists o di�erentially regulated genes.

6. At the end of the check each genes will be labeled with a value ranging from 0
to 1000. based on the times that this probe was present in the 1,000 lists as
di�erentially regulated. The higher the list Score the higher the the probability of
this gene to be really di�erentially expressed between LPC vs. MPC.

To asses the signi�cance of these LSs is important to perform a resample based mock
experiment. I.e., considering the original data matrix, assign randomly the class labels
and perform all the previous steps (from 1 to 6) for this new mock data set. This allow
to obtain list of genes that are di�erentially expressed by chance accordingly with the
previous method. The Maximum Mock List Score (MMLS) will be ten times the greater
List Score obtained from the mock experiment and will be a LS cut-o� for to select
di�erentially regulated genes.

3.3.3.2 Median Log Fold Change

This �lter resemble the strategy adopted Fold Change(see 2.3.2 on page 45) analysis
The Median Log Fold Change (MLFC) is calculated as the median(log2 (FCg). In our
experience, as the Operon platform with a reference design have very low level of Signal to
Noise ratio, the popular cut-o� of fold change greater than 2 (i.e. log fold change greater
than 1) is too optimistic. Thus a clustering-guided choice will be made, evaluating the
ability of the �ltered genes to separate the two classes.

3.3.3.3 Gene Stability Score

Once the genes with a List Score greater than MMLS are identi�ed an important point
is to evaluate the stability of the identi�ed lists. For each To this aim a measure similar
to relative errore is kept, de�ned as:

GSS =
MAD (rg)√
median (rg)

(3.5)
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where MAD (rg) is the median absolute deviation of ranks of the gene, calculated
over all the 1000 lists. The GSS of a gene is considered valid if is greater than the 20th

percentile of GSS's distribution.

3.4 Benchmarking MultiSAM with simulated data

In order to asses the e�cacy of this algorithm, the �rst point is to use simulated data
sets to compare the performance of this new method comparing it with other standard
algorithms. For the comparison we choose to compare the MultiSAM performance with:

• one linear model based approach, LIMMA[74]

• one standard modi�ed t statistics, implemented in SAMroc [84].

3.4.1 Simulation of microarray data

It is impossible to model gene expression data precisely since the true nature of such data
is not well understood. It is possible however to capture enough of the nature of the data
to perform meaningful tests of the algorithms described above. Public data sets elucidate
many of the properties of expression data, for example that one-channel data intensities
are exponentially distributed, or that gene intensities are not normally distributed as is
often assumed (see [44]). The model is intended to have enough �exibility to elucidate
how the results depend on many di�erent parameters.

In this dissertation the model described by Grant et al.[44] was used as our purpose
is to test high level analysis. In this model, a run will mean the generation of K data
sets. Each data set will consists of n replicates in group 0 and m replicates in group 1,
each replicate being the intensity levels of N �genes�.

For each run, M genes are picked to be di�erentially expressed. For each of the
N −M other genes, a mean intensity level µ (g) is chosen from a �xed distribution. The
distribution type and its parameters are speci�ed in a con�guration �le. In this model
they implemented the exponential (as is typical of one channel data), or a beta (to model
intensities for ratios in two-channel data), however any distribution could be used.

Once a mean intensity is chosen, the distribution of intensities for each gene is mod-
eled with a beta distribution. Beta distributions were used because unlike Gaussian
distributions, they have �nite range, and their shape can be varied widely by adjusting
the two parameters, α (g) and β (g).

The parameters α (g) and β (g) are chosen uniformly in a range [a; b], where a and b
are set in the con�guration �le and are �xed for each run. Any desired percentage of the
α (g)'s and β (g)'s can be chosen so that the distribution is symmetric. The left endpoint
L(g) of the range of the distribution is chosen uniformly in [0, µ (g)]. The right endpoint
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is then set to be 2µ (g) − L (g). This allows for a heterogeneous set of gene intensity
distributions.

The parameters are �xed throughout the run, so that the intensities for a given gene
in a given group are generated by the same distribution for each replicate of each of the
K data sets. For the non-di�erentially expressed genes the same distribution is used
for all replicates, regardless of which group it is in. Most of the parameters for the
M di�erentially expressed genes are chosen by hand, and are not randomly generated
(however the intensities are randomly generated in each replicate, according to the chosen
distributions).

This gives a mechanism for generating as many replicates as desired of a given �ex-
periment,� with the di�erentially expressed genes known a priori. This data can then
be used to test the performance of algorithms. Any algorithm that claims to determine
di�erentially expressed genes from array data should be expected to work on this sim-
ulated data. If they cannot, then they should not be expected to work well on real
data. Of course if they do work on this data, that is no guarantee they will work on real
data exactly as well, given that real data will inevitably have more complexities that we
will manage to model. The model described above generates gene intensities in a gene-
independent fashion. In reality, gene intensities will contain many dependencies between
them, and algorithms for predicting di�erential expression might take these dependen-
cies into account. The step-down method described above, for example, is designed to
exploit gene dependencies. As a simple test of such claims, the model has been extended
to generate intensities with dependence in the following extreme way: if there are G
non-di�erentially expressed genes, and A is chosen to be less than G then A genes are
generated independently, and each of the remaining G−A genes intensities are taken to
be equal to some one of the A independent genes. For example gene 100 might be linked
to gene 350, so that they always have the same expression level for every replicate. This
is a very strong kind of dependence, so that if dependencies are a�ecting the performance
of an algorithm, it should become apparent when varying the parameter A from 0 to
G.An example of two genes generated with the software of Grant et al. [44] are reported
in �gure3.4 ù

With this model simulate 20 two-color microarray data sets and 20 di�erent one-
color microarray data sets was simulated, each data sets was forced to be unbalanced:
15 samples of group 1 vs. 65 samples of group 2 (with 10000 features/genes), is the
chosen size in order to resemble the dimensionality of the IGHV3-21 data set.

We apply to all these forty data sets the three di�erent algorithms: LIMMA, SAM-
roc, MultiSAM in order to investigate the ability to identify the di�erentially expressed
genes. In table 3.1 summary of performance in terms of average sensitivity and average
speci�city (over the 40 sample) is reported.

As showed in the table, the performance of this three methods, even if the data sets
are unbalanced, are quite satisfactory and comparable. Is important to stress however
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Figure 3.4: Example of gene plot generated with the software of Grant et al.[44]. A)
An example of distribution of probably signi�cant di�erential expression (in an unbal-
anced simulation). B) An example of a simulated gene with no probably no signi�cant
di�erential expression.

MultiSAM LIMMA SAMroc

Sensitivity 0.7± 0.1 0.67± 0.2 0.7± 0.3
Speci�city 1.0± 0.1 1.0± 0.2 0.97± 0.1

Table 3.1: Summary of performance of LIMMA, SAMroc, MultiSAM over 40 simulated
data sets in terms of average sensitivity and average speci�city.
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that this kind of simulation usually cannot reveal the robustness of the method against
the noise.

3.5 Results on real IGHV data set

In an analogous fashion LIMMA, SAMroc and MultiSAM was applied to the IGHV3-21
pre-processed data matrix (28513 genes × 65 samples). For pre-processing details see
Appendix.

Figure 3.5: Supervised clustering (euclidean distance and average linkage method) of the
319 probes with a List Score >300. The class separation is not satisfactory.

LIMMA Applying LIMMA with a cut-o� of 10−3 for FDR-adjusted p-values, no gene
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result signi�cantly changed. This is a well known problem of linear models with
high-noisy data sets [85].

SAMroc Applying SAMroc with a cut-o� of 10−3 for FDR-adjusted p-values, only 23
genes (over 28513 features) resulted as di�erentially expressed. Trying to visualize
the 23 genes by means of supervised hierarchical clustering[36] methods no one of
the di�erent methods explored could separate the two classes (�gures not shown).

MultiSAM Applying MultiSAM as described in previous section. From the mock ex-
periment, a value for the Maximum Mock List Score, MMLS, of 30 is obtained so
the cut-o� for the LS is 300. Multi-SAM �nd 319 probes with List Score > 300.
Application of supervised hierarchical clustering algorithms to those 319 probes
results in a not satisfactory separation of the two classes, as shown in �gure. So
the next step is to �lter over use the median log fold change. Setting a cut o�
for the absolute value of the median log fold change equal to 0.7, the analysis
end up with 122 probes which are able to separate the to classes with di�erent
algorithm, in �gure the heatmap generated with Ward's hierarchical cluster (see 4
on page 54) algorithm with euclidean distance is represented. All the 122 probes
selected with this method showed a Gene Stability Score (GSS) less than 1.2, i.e.
the 20th percentile of the GSS' s distribution.
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Figure 3.6: A)Ward's Hierarchical clustering of the 122probes selected by MultiSAM
(with LS>300 and MLFC<0.7).
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3.6 Discussion and Validations

MultiSAM (with LS>300 an MLFC>0.7) select 122 probes (115 genes) correlated with
IGHV3-21 usage by CLL: 60 probes were up-regulated and 62 down-regulated in IGHV3-
21 CLL. A hierarchic clustering generated by using these 122 best correlated probes
clearly split the 13 IGHV3-21 CLLs from all but 1 of the other non�IGHV3-21 cases
(�gure 3.6). Not surprisingly, IGLV3-21(V2- 14) was the gene up-regulated in IGHV3-
21 CLLs with the highest score. In this regard, by checking the portion of heat maps
corresponding to both copies of IGLV3-21(V2-14) genes (�gure 3.6, bottom), an almost
complete consistency between molecular and hybridization data could be detected.

To elucidate the biologic functions of genes representing the di�erential expression
signature of IGHV3-21 CLL, the gene identi�ers for the 122 best-correlated probes were
linked to 2 web-based bioinformatic tools for global analysis of gene function: �Onto-
Express� and �Gene-Ontology Tree Machine.� [89, 51, 3] Biologic process and molecular
functions showing a signi�cant enrichment for the genes found to be di�erentially ex-
pressed between IGHV3-21 and non�IGHV3-21 CLLs are summarized in 3.7.

As an example, a group of 4 genes (RERG, ABI1, PMP22, TGFB2), all identi�ed
as negative regulators of cell proliferation, was selected among genes down-regulated
in IGHV3-21 CLL cells along with a regulator of transcription (RUNX1). Conversely,
genes upregulated in IGHV3-21 CLLs were involved in positive regulation of cell prolif-
eration (VIPR1), negative regulation of cell adhesion (RND1), as well as regulation of
transcriptional (BRCA1) and oxidoreductase activities (HSD17B3, CYP3A5).

The di�erential expression of 2 of these genes, 1 up-regulated (VIPR1) and 1 down-
regulated (TGFB2) in IGHV3-21 CLLs, was investigated by real-time quantitative PCR
(QRT-PCR) in representative CLL samples from both CLL subsets. As shown in Figure
5C, these experiments con�rmed a higher expression of VIPR1, along with lower levels of
TGFB2 transcripts, in IGHV3-21 CLL. Of note, both VIPR1- and TGFB2-speci�c mR-
NAs were detected in other human cell lines of di�erent hematopoietic origin, although
expression of VIPR1 seemed to be more restricted than that of TGFB2 (Figure 3.6).

Taken together, present data and data reported by Falt et al. [39] collectively demon-
strate that the TGF growth inhibition pathway is signi�cantly hampered in IGHV3-21
CLL.

By reviewing the list of the 122 probes di�erentially expressed by IGHV3-21 CLL,1 we
found SEPT10 among the 62 probes (59 genes) signi�cantly downregulated [7]. Down-
regulation of SEPT10 in IGHV3-21 CLL was an unexpected �nding, because SEPT10
expression is considered a poor prognostic marker and IGHV3-21 CLL typically has poor
clinical outcome. To investigate this issue in detail, a quantitative real-time PCR (QRT-
PCR) procedure was speci�cally devoted to investigate the expression levels of SEPT10
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Figure 3.7: Summary of GeneOntolgy analysis as in supplemental material of [13]
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Figure 3.8: SEPT10 transcript levels in CLL expressing or not expressing the IGHV3-21
gene segment. For more details see [7]

in highly puri�ed CLL cells from a series of IGHV3-21 (10 cases) and non-IGHV3-21 (19
cases) CLL, with either UM (14 cases) or M (15 cases) IGHV gene con�guration (Figure
1a).

Therefore, overall, QRT-PCR experiments were consistent with GEP results, indicat-
ing the lack of SEPT10-speci�c transcripts in the poor prognosis CLL subset expressing
the IGHV3-21 gene.

The above extra-assay validation procedures demonstrate that MultiSAM approach
seems to be the only one able to reveal subtle di�erences in GEP on real unbalanced
data set, that have been overlooked by standard algorithms like SAM and LIMMA.



Chapter 4

Assessing Gene Expression Similarities

4.1 The Open Problem: Similarities and Three Class

Comparison

In two-class gene expression pro�le experiments the attention is always focused at exploit
the di�erential expression between the two conditions. Facing problems with more than
two classes request a di�erent kind of approach. As seen in subsection 2.3.5 problems
with more than two classes can be faced with the ANOVA or model-based approach, but
in this case we can just obtain the bulk of genes that are a�ected at least by one of the
factors (or conditions) involved in the experiments, but we cannot discover how they are
related to each others.

During the discussion with clinicians at Clinical and Experimental Hematology Re-
search Unit (CRO) it appears quite clear that today in oncological research the attention
is focusing on hybrid of poor-characterized classes with severe prognosis, and many ef-
forts has to be invested in characterize this kind of pathologies, that sometimes stand in
the middle between two well clinical characterized class.

The question posed by clinicians sounds like: suppose that there are three classes A,
B, and C. Class A is really far from class B from a clinical or a molecular point of view.
On the contrary patients of class C result as �something in the middle� between A and B
patients. Typically class C presents several aspects that make it di�cult to characterize
it:

• From a clinical point of view, often clinicians and biologists could encounter objec-
tive di�culties in doing the classi�cation. Tumor grade is an example of this kind
of problems.

• From a molecular point of view sometimes this classes are not yet well known or
characterized; markers gene are yet known and mechanisms of development are not

82
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known too. Pathologies with a particular type of mutational status could be an
example of this kind of classes.

So the clinician's question is: The gene expression pro�ling of class C is more similar to
GEP of class A or to GEP of class B? With which level of con�dence?

At the moment, even if the scienti�c comunity demands to solve this issue with a
statistical answer there are few publications that face this problem with a systematic
approach that can give to the clinician also a statistical level of con�dence about the
answer.

The approaches applied since today are essentially clustering oriented. However, as
seen in section 2.4, clustering algorithms are too sensitive with respect to many di�erent
variables (for example normalization, gene selection methods ecc.) and even if bootstrap-
ping validation can give a statistical signi�cance, this methods remain too empirical.

Starting from this considerations, supervised machine learning approach could have
been a better solution for the robustness; but most of them, having a binary classi�cation
output, are not able to associate a statistical level of con�dence in case of a test set with
samples taken from classes not explicitly related to the classes used for the training.
Another essential problem remains the dimensionality of the training samples, with a
small number of training samples .

The only reliable approach was presented in Klein et al. [53, 19, 18]. They tried to
overcome the intrinsic limitation of supervised classi�cation methods, developing a new
classi�cation algorithm that is partially described in [19, 18]. This algorithm claims to
able to associate a p-value (to express the level of con�dence) to each sample of the test
set. In �gure you can see the �gure reported in [53] that show the signi�cance level for
each sample in the test set.

The algorithm is implemented in a software called Gene@Work. This software is
available as a stand alone package at the web address indicated in [57]. However, the
feature that allow to calculate the p-value for the samples in the test set is not imple-
mented in last version of Gene@Work (neither in older ones). Contacting the authors
they told that is impossible to obtain this feature at the moment, more over the source
code of Gene@Work is not available. For us is then impossible to use the software for our
purposes. Re-implement the software from the beginning is di�cult because the papers
are not su�ciently detailed. In this case considerations about the availability of source
code (see 2.6.3) appears quite obvious.

In the next sections a clustering and machine learning approach will be used to show
their potentiality to solve the open question respectively with a small data sets and with
a bigger one.
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Figure 4.1: Gene@Work output as presented in the Klein et al. gene expression pro�le
of B-CLL

4.2 Supervised Clustering Approach in a Three-Class

Problem

At Clinical and Experimental Hematology Research Unit in Aviano they started to collect
samples of Chronic Lymphocitic Leukemia of B cells (CLL) characterized by a peculiar
deletion of chromosome 17 (17p minus). The interest for this particular kind of CLL
derive from its extremely severe prognosis and the lack of knowledge about its molecular
portrait, inrespectively of the mutational status (M CLL and UM CLL) as described in
section 3.2. The study will aim at investigate if the gene expression pro�ling GEP) of
17p minus CLLs (that usually are characterized by an UM mutational status) is di�erent
from the GEP of non-17p-minus UM CLLs, and in this case compare the identi�ed GEP
with the one of non-17p-minus M CLLs. At the moment the data sets consists of :

• 9 17p-minus UM CLLs

• 9 non-17p-minus UM CLLs

• 7 non-17p-minus M CLLs

The collection of samples is still in progress from di�erent centers in Italy, however at
the moment it seems too small (details about the data sets in Appendix) to be handled
with machine learning approach [86].
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For an exploratory study we apply a supervised clustering technique
First, to identify the di�erentially regulated genes between 17p-minus UM vs non-

17p-minus UM we apply SAMroc analysis[17] as described in section 3.3.2. A cut o�
for the FDR adjusted p-values was set at 10−3, with this cut o� 300 probes resulted as
di�erentially expressed.

As in the Agilent platform only some genes have more then one probes (see for
discussion sub section 1.3.2.4), to avoid any functional or literature bias, we decide
to maintain only one probe for each gene selecting the probe (for genes with multiple
replicates) with the best adjusted p-values. This selection end up with 286 genes that are
used to perform a bootstrapped supervised hierarchical clustering over the entire data
set to evaluate the behavior of 7 non-17p-minus patients. In �gure 4.2observe one of the
obtained clustering (Ward's method with Pearson's Correlation).

Figure 4.2: Di�erential gene expression pro�ling of 9 17p-minus UM CLLs with respect 9
non-17p-minus UM CLLS, clustered to evaluate the relative behavior of non-17p-minus
M CLLs.



CHAPTER 4. ASSESSING GENE EXPRESSION SIMILARITIES 86

4.2.1 Discussion

The clustering suggest that 17p-minus CLLs seems to have, despite their mutational
status (UM), a gene expression pro�le that stands apart from other type of CLLs (UM
and M). Is important to stress that a clustering technique (for the mentioned intrinsic
characteristics), when try to evaluate the grade of similarities give only some hypothesis
of work that biologists and clinicians must validate with intensive wet-laboratory work.

Moreover using Onto-Express [51] tools, chromosomal position of the 286 genes are
identi�ed. In �gure is shown the position of the genes identi�ed: as an internal control
some of the genes are located on chromosome 17.

Further validations and collection of more samples are actually in progress at Clinical
and Experimental Hematology Research Unit in Aviano.

Figure 4.3: Chromosomal mapping of the 286 genes of gene expression pro�ling of 17p-
minus CLLs

4.3 Looking at similarities through Relevance Vector

Machine

Relevance vector machines (RVM) have recently attracted much interest in the research
community because they provide a number of advantages. They are based on a Bayesian
formulation of a linear model with an appropriate prior that results in a sparse rep-



CHAPTER 4. ASSESSING GENE EXPRESSION SIMILARITIES 87

resentation. As a consequence, they can generalize well and provide inferences at low
computational cost. In this section a brief introduction of the Relevance Vector Ma-
chine (RVM) [82] will show its potentiality to solve some of the limitation sof standard
supervised classi�cation methods in order to investigate the similarities in a three class
problem.

4.3.1 Introduction

Linear models are commonly used in a variety of regression problems, where the value
t∗ = y (x∗) of a function y(x) needs to be predicted at some arbitrary point x∗, given
a set of (typically noisy) measurements of the function t = {t1, ..., tN} at some training
points X = {x1, ..., xN} :

ti = yi (x) + εi (4.1)

where εi is the noise component of the measurement.
Under a linear model assumption, the unknown function y(x) is a linear combination

of some known basis functions φi (x), i.e.,

y (x) =
M∑
i=1

wiφi (x) , (4.2)

where w = (w1, .., wM) is a vector consisting of the linear combination weights. Equa-
tion 4.1 can then be written in vector form as :

t = Φw + ε, (4.3)

where φ is an N ×Mdesign matrix,whose i− th column is formed with the values of
basis function φi (x) at all the training points, ε = (ε1, ..., εN) is the noise vector.

Assuming independent, zero-mean, Gaussian distribution for the noise term, i.e. εi ∼
N (0, σ2), the maximum likelihood estimate for w = (w1, ..., wM) is given by:

wOLS = argwmin
(
‖t− Φw‖2

)
=
(
ΦTΦ

)−1
ΦT t, (4.4)

which is also known as the ordinary least square (OLS) estimate. In many appli-
cations, the matrix ΦTΦ is often ill-conditioned, and the OLS estimate su�ers from
over-�tting, which is typical with maximum likelihood estimates. In order to overcome
this problem, constraints are commonly introduced on the parameters w = (w1, ..., wM),
which are used to imply speci�c desired properties of the estimated function. The
Bayesian methodology provides an elegant approach to de�ne such constraints by treating
the parameters as random variables, to which suitable prior distributions are introduced.
For example, preference for smaller weight values, which can lead to desirable smooth



CHAPTER 4. ASSESSING GENE EXPRESSION SIMILARITIES 88

function estimates, can be speci�ed by assigning a zero-mean, Gaussian distribution to
the weights:

p (w) = N (w | 0, λI) . (4.5)

Here, the variance parameter λ is adjusted according to the learning problem in order
to achieve good results.

Another desirable property of the unknown function, developed more recently, is
sparseness, in which the least number of basis functions are desired in the function rep-
resentation, while all the other basis functions are pruned by setting their corresponding
weight parameters to zero. Sparseness property is useful for several reasons. First, sparse
models can generalize well and are fast to compute. Second, they also provide a feature
selection mechanism which can be useful in some applications.

There exist di�erent methodologies for sparse linear regression, including least ab-
solute shrinkage and selection operator (LASSO) [1],[2] and support vector machines
(SVM) [3]. In a Bayesian approach such as RVM, sparseness is achieved by assuming
a sparse distribution on the weights in a regression model. Speci�cally, RVM is based
on a hierarchical prior, where an independent Gaussian prior is de�ned on the weight
parameters in the �rst level, and an independent Gamma hyperprior is used for the vari-
ance parameters in the second level. This results in an overall student t prior on the
weight parameters, which leads to model sparseness. A similar Bayesian methodology
to achieve sparseness is to use a Laplacian prior [5], which can also be considered as a
two-level hierarchical prior, consisting of an independent Gaussian prior on the weights
and an independent exponential hyperprior on their variances.

4.3.2 RVM Theory

4.3.2.1 Multi-kernel Relevance Vector Machine

Relevance vector machine (RVM) is a special case of a sparse linear model, where the
basis functions are formed by a kernel function φ centered at the di�erent training points:

y (x) =
N∑
i=1

wiφ (x− xi) (4.6)

While this model is similar in form to the support vector machines (SVM), the kernel
function here does not need to satisfy the Mercer's condition, which requires φ to be a
continuous symmetric kernel of a positive integral operator.

4.3.2.2 Sparse Bayesian Prior

A sparse weight prior distribution can be obtained by modifying the commonly used
Gaussian prior in 4.5, such that a di�erent variance parameter is assigned for each weight:
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p (w | α) =
M∏
i=1

N
(
wi | 0, α−1

i

)
(4.7)

where α = (α1, ..., αM) is a vector consisting ofM hyperparameters, which are treated
as independent random variables. A Gamma prior distribution is assigned on these
hyperparameters:

p (αi) = Gamma (a, b) (4.8)

where a and b are constants and are usually set to zero, which results in a �at Gamma
distribution. By integrating over the hyperparameters, we can obtain the �true� weight
prior weight prior p (w) =

∫
p (w | a) p (a) da. The above integral gives a student-t prior,

which is known to enforce sparse representations, owing to the fact that its mass is mostly
concentrated near the origin and the axes of de�nition.

4.3.2.3 Bayesian inference

Assuming independent, zero-mean, Gaussian noise with variance β−1, i.e.,

ε ∼ N
(
0, β−1I

)
(4.9)

we have the likelihood of the observed data as

p (t | w, α, β) = N
(
t | Φw, β−1I

)
, (4.10)

where Φ is either a N × N or an N × (N ∗M) �design� matrix for the single and
multikernel cases respectively. This matrix is formed by all the basis functions evaluated
at all the training points, i.e., Φ = [φ (x1) , ..., φ (xn)]T .

In order to make predictions using the Bayesian model, the parameter posterior
distribution p (w, α | t) needs to be computed. Unfortunately, it cannot be computed
analytically owing to its complexity, and approximations have to be made. Following
the procedure described in [82], we decompose the parameter posterior as:

p (w, α, β | t) = p (w | t, α, β) p (α, β | t) (4.11)

Then, the posterior distribution of the weights can be computed as

p (w, α, β | t) =
p (t | w, β) p (w | α)

p (t | α, β)
∼ N (w | µ,Σ) , (4.12)

where Σ =
(
βΦTΦ + A

)−1
, µ = βΣΦT t and A = diag (α1, ..., αM).

The posterior of the hyperparameters p (α, β | t) cannot be computed analytically
and approximates by the delta function and its mode:
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p (α, β | t) ≈ δ (αMP , βMP ) . (4.13)

We can �nd αMP and βMP by maximizing p (α, β | t) ∝ p (t | α, β) p (α) p (β) as:

αMP = arg max
α

(p (t | α, β) p (α)) (4.14)

and

βMP = arg max
β

(p (t | α, β) p (β)) (4.15)

The term p (t | α, β) is known as the marginal likelihood or type-II likelihood[32] and
is computed by marginalizing the weights:

p (t | α, β) =

∫ ∫ ∫
p (t | w) p (w | α) dw (4.16)

which yields

p (t | α, β) = N
(
0, βI + ΦA−1ΦT

)
. (4.17)

An alternative approach is to follow the variational Bayesian methodology to obtain
an approximation to the posterior parameter distribution p(w, α | t). This is demon-
strated in [32], but it is concluded that the method achieves only slightly improved
results at signi�cant additional computations.

4.3.2.4 Marginal Likelihood Optimization

The optimization problem in 4.14 cannot be solved analytically and an iterative method
has to be used. Instead of maximizing the hyperparameter posterior, it is equivalent, and
more convenient, to minimize its negative log likelihood [82] which for the multikernel
case is:

L (α) = −1

2

[
log |C|+ tTC−1t

]
+

M∑
m=1

N∑
i=1

(a logαmi − bαmi) + c log β − dβ, (4.18)

where C = βI + ΦA−1ΦT . This equation when M = 1 gives the single kernel case.
Setting the derivative of L(α) to zero gives the following iterative formula:

αnewmi =
1 + 2a

µ2
mi + Σ(mi)(mi) + 2b

, (4.19)

where mi µmi is the mi− th element of the posterior mean weight and Σ(mi(mi))is the
mi− th diagonal element of the posterior weight covariance. At each iteration, both are
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evaluated from Σ =
(
βΦTΦ + A

)−1
and µ = βΣΦT t using the current estimate of αMP

. Similarly, the following formula can be obtained for the variance parameter:

β =
N −

∑M
m=1

∑N
i=1

(
1− αmiΣ(mi)(mi)

)
+ 2c

‖t− Φµ‖2 + 2d
(4.20)

Computation of Σ requires O
(
(NM)3) computations, which can be very demanding

for models with many basis functions. During the training process, basis functions whose
corresponding weights are estimated to be zero may be pruned. This will make matrix
Σ smaller after a few iterations, and its inversion will be easier. However, there are M
basis functions initially at each point, and computation of Σ is time consuming. It is
interesting to note that the iterative updates for the hyperparameters in equation 4.19and
4.20 can also be derived using an expectation-maximization (EM) algorithm by treating
the weights w as hidden variables and the observations t and the hyperparameters α and
β as observed variables.

4.3.3 RVM for Classi�cation

Similar to regression, RVM has also been used for classi�cation. Consider a two-class
problem with training pointX = {x1, ..., xN} and corresponding class labels t = {t1, ..., tN}
with tiε {0, 1}. Based on the Bernoulli distribution, the likelihood (the target conditional
distribution) is expressed as:

p (t | w) =
N∏
i=1

σ {(y (xi))}ti [1− σ {(y (xi))}]1−ti , (4.21)

where σ (y) is the logistic sigmoid function:

σ (y (x)) =
1

1 + exp (−y (x))
. (4.22)

Unlike the regression case, however, the marginal likelihood p (t | α) can no longer
be obtained analytically by integrating the weights from equation 4.21, and an iterative
procedure has to be used.

Let α∗i denotes the maximum a posteriori (MAP) estimate of the hyperparameter αi
. The MAP estimate for the weights, denoted by wMAP , can be obtained by maximizing
the posterior distribution of the class labels given the input vectors. This is equivalent
to maximizing the following objective function:

J (w1, ..., wN) =
N∑
i=1

log p (ti | wi) +
N∑
i=1

log p (wi | αi) , (4.23)
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where the �rst summation term corresponds to the likelihood of the class labels, and
the second term corresponds to the prior on the parameters wi . In the resulting solution,
only those samples associated with nonzero coe�cients wi (called relevance vectors) will
contribute to the decision function.

The gradient of the objective function J with respect to w is:

∇J = −A∗w − ΦT (f − t) (4.24)

where f = [σ (y (x1)) ...σ (y (xN))]T , matrix Φ has elements φi,j = K (xi, xj). The
Hessina of J is

H = ∇2 (J) = −
(
ΦTBΦ + A∗

)
(4.25)

where B = dig (β1, ..., βn) is a diagonal matrix with βi = σ (y (xi)) [1− σ (y (xi))] .
The posterior is approximated around wMAPby a Gaussian approximation with co-

variance

Σ = − (H |wMAP
)−1 (4.26)

and mean

µ = ΣΦTBt. (4.27)

These results are identical to the regression case (14) and the hyperparameters αi are
updated iteratively in the same manner as for the regression case.

4.3.3.1 Comparison to SVM Learning

SVM is another methodology for regression and classi�cation that has attracted consid-
erable interest [32]. It is a constructive learning procedure rooted in statistical learning
theory [86], which is based on the principle of structural risk minimization. It aims to
minimizing the bound on the generalization error (i.e., the error made by the learning
machine on data unseen during training) rather than minimizing the empirical error
such as the mean square error over the data set [3]. This results in good generalization
capability and an SVM tends to perform well when applied to data outside the training
set.

In the context of classi�cation, an SVM classi�er in concept �rst maps an input
data vector x into a higher dimensional space H through an underlying nonlinear map-
ping Φ (x), then applies linear classi�cation in this mapped space. Introducing a kernel
function K(x, y) ≡ Φ (x)T Φ (y), we can write an SVM classi�er fSVM (x) as follows:

fSVM (x) =
Ns∑
i=1

αiK (x, si) + b (4.28)
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where si ,i = 1, ...Ns are a subset of the training samples xi, i = 1, ..., N (called
support vectors). The SVM classi�er in 4.28 resembles in form the RVM classi�er in
equation 4.6, yet the two classi�ers are derived from di�erent principles. For SVM
the support vectors are typically formed by �borderline�, di�cult-to-classify samples in
the training set [32], which are located near the decision boundary of the classi�er; in
contrast, for RVM the relevance vectors are formed by samples appearing to be more
representative of the two classes, which are located away from the decision boundary of
the classi�er.

Compared to SVM, RVM is found to be advantageous on several aspects including:

1. The RVM decision function can be much sparser than the SVM classi�er, i.e., the
number of relevance vectors can be much smaller than that of support vectors;

2. RVM does not need the tuning of a regularization parameter (C ) as in SVM during
the training phase.

3. RVM classi�cation incorporate a posterior probability estimation (more details
in subsection 4.3.3.2) Essentially similarities classi�cation in gene expression, as
addressed in this dissertation, take advantage of this feature.

As a drawback, however, the training phase of RVM typically involves a highly nonlinear
optimization process.

4.3.3.2 Posterior Probabilities in Classi�cation with RVM

When performing `classi�cation' of some test example x , we would prefer the model to
give an estimate of p (t∗εC | x∗), the posterior probability of the example's membership
of the class C given the features x∗. This quantity expresses the uncertainty in the
prediction in a principled manner while facilitating the separation of �inference� and
�decision� [32]. In practical terms, these posterior probability estimates are necessary to
correctly adapt to asymmetric misclassi�cation costs (which nearly always apply in real
applications) and varying class proportions, as well as allowing the rejection of `uncertain'
test examples if desired.

Importantly, the presented Bayesian classi�cation formulation incorporates the Bernoulli
output distribution (equivalent in the log-domain to the `cross-entropy' error function),
which in conjunction with the logistic sigmoid squashing function, enables σ {y (x)} to
be interpreted as a consistent estimate of the posterior probability of class membership.
Provided y (x) is su�ciently �eexible, in the in in�nite data limit this estimate becomes
exact[11].

By contrast, for a test point x∗ the SVM outputs a real number which is thresh-
olded to give a `hard' binary decision as to the class of the target t∗ . The absence of
posterior probabilities from the SVM is an acknowledged de de�ciency, and a recently
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proposed technique for tackling this involves the a posteriori �tting of a sigmoid func-
tion to the �xed SVM output y (x) [66] to give an approximate probability of the form
σ {A · y (x) +B}. While this approach does at least produce predictive outputs in the
range [0; 1], it is important to realize that this does not imply that the output of the
sigmoid is necessarily a good approximation of the posterior probability. The success of
this post-processing strategy is predicated on the original output y (x) of the SVM, with
appropriate shifting and rescaling, being a good approximation to the �inverse-sigmoid�
of the desired posterior probability. This is the quantity log {p (tεC+1 | x)}, referred to
as the �log-odds�. As a result of the nature of the SVM objective function, y(x) cannot
be expected to be a reliable model of this. On the basis of the last points in this disser-
tation RVM was used to estimate posterior probability of the third class in a three.class
problem

4.3.4 RVM applied to Tumor Grade Breast Cancer Data Set

The three-class problem was posed to address the speci�c question of three-class problem
posed in the context 17p-minus data sets, however the data collection is not yet �nished,
and there are not enough samples to engage a training phase with only nine samples
per class. So the decision was to investigate the reliability of the RVM approach for
class similarities through one bigger data set recovered in microarray repositories. To
decide the problem to treat we focus on a popular problem addressed in breast cancer
microarray research: investigation of histological tumor grade[77, 61, 76] to improve the
prognosis.

The histological grade of breast carcinomas has long provided clinically important
prognostic information [37]. However, despite recommendations by the College of Amer-
ican Pathologists that tumor grade be used as a prognostic factor in breast cancer [41],
the latest Breast Task Force of the American Joint Committee on Cancer did not include
histological tumor grade in its staging criteria, because of insurmountable inconsistencies
in histological grading between institutions [72]. Concordance between two pathologists
has been investigated and found to range from 50% to 85% (6�9). Although about half
of all breast cancers are assigned histological grade 1 or 3 status (with a low or high risk
of recurrence, respectively), a substantial percentage of tumors (30%�60%) are classi�ed
as histological grade 2, which is not informative for clinical decision making because of
intermediate risk of recurrence. This high percentage of histological grade 2 tumors is
still observed when grading is performed by a single pathologist. Thus, to increase the
prognostic value of tumor grading, re�nement of histological grade 2 status, perhaps into
low- and high-risk categories, and improvement of the reproducibility of the technique
are necessary.

The query �breast tumor� in GEO [6](GEO;http://ncbi.nlm.nih.gov/geo) results
in 330 di�erent items of which 68 are data sets. Exploring MIAME of each single data
set, only 4 of them contains enough patients who are classi�ed for �tumor grade� clinical
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variable. At the end we select the data set with the GEO Accession GSE3494 (for more
details see the Appendix). The tumor grade label divides the patients in 67 samples of
grade I (G1), 54 samples of grade 3 (G3) and 100 samples of grade 2 (G2).

The goal is use RVM to separate G1 from G3, then evaluate the third class G2 as test-
set to obtain the probability for samples of G2 to be member of class G1 or class G3.We
preprocessed the data using rma algorithm [47]. After we �ltered the data through SAM
regularized t-test with a signi�cance level for fdr adjusted p-value of 0.01. Then we
standardize the data with a Z-score normalization, before applying RVM with a distance
kernel.

After the trainig phase with the training G1-G3 training set (67 G1 samples and the
54 G3 samples), using 100 G2 samples as test

For this dataset we obtain a double output for each sample of class G2: the binary
classi�cation (classmembership) and the probability for the class-membership. To visu-
alize the output, in �gure is reported a probability classi�cation plot : the color scheme
reveals the strength of class membership whereas the y axis report the level of signi�-
cance (in term of posterior probability evaluated in RVM through sigmoid function). In
x axis there are reported the patients. The yellow lines identify a posterior probability
of 50% to be member of the classes , i.e. to say if a sample lies in the area between the
two yellow lines the conclusion about class mambership in not trustworthy.

The interesting results from a clinical and biological point of view is that the 90% of
G2 samples are classi�ed as G1 with a probability greater then 50%. The 66% of the 100
G2 samples have a probability greater then 90% to be classi�ed as G1. The 10% that
are classi�ed as G3 have a probability lower then 40%.

The guessed hypothesis is that breast cancer samples of grade II have a molecular
pro�ling more similar to breast cancer samples of grade I, rather then to breast cancer
samples of grade III. Moreover looking at other clinical variables, such as survival out-
comes, the patients of grade II classi�ed.as more similar to grade III, are those that show
the worst survivals outcomes.
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Figure 4.4: Probability Classi�cation plot for samples G2, classi�ed on the basis of G1-
G3 training samples. Color scheme reveals the strength of class membership whereas the
y axis report the level of signi�cance (in term of posterior probability evalueated in RVM
through sigmoid function). If a sample lies in the area between the two yellow lines the
conclusion about class membership in not trustworthy

4.3.5 Discussion

The RVM seems to address the tumor grade three-class problem in an original way that
can disclose some feature of tumor grade II captured in others gene expression pro�ling
approaches but without scoring the information with a posterior probability estimation.
Ma et al. [61]applied a supervised hierarchical clustering approach (similar to the one
described in section 4.2), using discriminant analysis, instead of SAM statistics) over a
similar structured independent data set. They selects 200 genes as di�erentially expressed
correlating with tumor grade I and tumor grade III. As result they assert:

�This analysis indicates that these 200 genes are all signi�cant at the level of P < 0.01.
Gene expression values were expressed as ratios and two-dimensional clustering analysis
was performed revealing three major gene clusters (�gure 4.5 ). One cluster of genes
demonstrates decreased expression in all samples with subtle quantitative di�erences



CHAPTER 4. ASSESSING GENE EXPRESSION SIMILARITIES 97

between grade I and grade III (green bar). A second cluster of genes (denoted as the
grade III signature) shows markedly increased expression in grade III samples (red bar),
whereas a third cluster (grade I signature) demonstrates increased expression primarily
in grade I samples (blue bar). Most striking is the existence of reciprocal gradients in
the intensities of the grade I and grade III signatures (�gure . Notably, most grade II
lesions exhibit a hybrid of grade I and grade III signatures (e.g., cases 130, 169, and
198). Some grade II lesions, however, show an expression pattern that is most similar
to either grade I or grade III lesions (cases 41 and 43, respectively), and a few grade III
samples demonstrate coexpression of some genes that are characteristic of the grade I
signature (cases 65, 88, and 112)�

But it is reasonable to give another key of interpretation to �gure 4.5, above concern-
ing clusters of samples.

Looking at the the dendrogram of samples we notice that two major clustering are
observable if we stop to high level branching: the �rst on the left contains more tumor
grade III samples, the other one contain more tumor grade I samples. Tumor grade
II fall for the 75% of sample in tumor grade I. This resamble the hypothesis obtained
via RVM: tumor grade II is more similar to tumor grade I, but unfortunately clustering
in spite of RVM is not to able to provide any statistical signi�cance associated to each
samples.

As the data set is part of a repository is impossible to perform any extra assay
validation as in Chapter 2, we have done for IGHV3-21 data set. However pushed by
this promising performance of RVM, we are looking forward to approach originally data
set created by our collaborators at CRO in Aviano to analyze new challenging three-class
problems data sets.
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Figure 4.5: Two-dimensional clustering of 61 samples and the top 200 genes correlating
with tumor grade. Genes (rows) and samples (columns) were clustered independently
by hierarchical clustering. Three main clusters are highlighted by color bars.



OUTLOOK

�The sciences do not try to explain, they
hardly even try to interpret, they mainly

make models. By a model is meant a
mathematical construct which, with the

addition of certain verbal interpretations
describes observed phenomena. The
justi�cation of such a mathematical

construct is solely and precisely that it is
expected to work.

[John von Neumann (1903�1957)]

Modeling and data analysis approaches has showed in the last years their potentiality
in high-throughput gene expression investigation. One example is cancer diagnosis and
prognosis, where a wealth of work has been published. This dissertation has tried to
answer some speci�c questions posed by clinician that do not have yet a compelling
methodology able to answer it. The immediate result is a further biological insight
into pathologies like chronic lymphocytic leukemia and breast cancer. Most of the re-
sults prove to be biological or clinically veri�able, above in case of chronic lymphocitic
leukemia.

In the long run the result is to propose and made available to the scienti�c community
these new approaches to face those speci�c and unresolved issues. To this aim, as member
of recently founded (2007) Italian Network for Oncology Bioinformatics (http://acc.
cineca.it/ACC/), in the next future the source code or a self standing implementation
of the methods, will be made available.

Nevertheless challenging questions remain today open and should be addressed in
the next future. To give some examples, the integration of a priori functional genomics
information into the gene expression modeling and analysis, the establishment of well
de�ned gene regulatory networks related to disease, and �nally the integration of clinical
and di�erent high-throughput data , are nowadays some of the hottest topics in gene
expression that will be addressed in the next future.

99



Appendix

According to MIAME standarsd, below MIAME details are reported for all the data sets
used in this dissertation. Respecting the six point �xed :

• Experimental design

• Array design o array speci�cation for commercial arrays

• Samples: samples used, extract preparation and labeling

• Hybridization procedure and parameters

• Measuremnts :image quanti�cation and speci�cation

• Normalization controls: types, values and speci�cations.

The IGHV3-21 Data Set

Only the 65 array that passed quality control check performed with ArrayQuality package
are included in thios data set. Local Background subtraction was performed. Print-
tip Lowess within array normalization and Quantile between array normalization was
applied to the median row ntensities. The array contains 21239 gene expression probes
in duplicate, pre�ltering was applied eliminating 1)all genes whose �uorescence signals
were below a given threshold (700 arbitrary units) in at least 80% of the spots at both
CY3 and Cy5 channels (bad signal to noise ratio) and 2) all the genes whose interquartile
range was below the 20th percentile of distribution (genes whose expression was overall
not di�erentially modulated). Following this �lterin 28513 features was left.

All the 65 samples is part of a reference experimental design (labelling and sampling
procedure described at point 4). All the 13 IGHV3-21 samples are biological replicates.
All the 52 non-IGHV3-21 are bilogical replicates.
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The Operon Human Genome Oligo Set Version 2.0 platforms (21,329 70mer, Operon
Biotechnologies, Huntsville, AL, USA) were spotted in duplicate onto MicroMax Super-
Chip I glass slides (Perkin Elmer Life Sciences Inc., Boston, MA) by the MicroCRIBI
(University of Padua).

Neoplastic and normal B cells (more than 95% pure), puri�ed by Ficoll-Hypaque
gradient (Pharmacia, Uppsala, Sweden) and positive immunoselection with anti-CD19-
conjugated immunomagnetic beads (Miltenyi Biotec, Bologna, Italy), were employed as
total RNA source. cDNA synthesis, cDNA puri�cation, in vitro transcription of amino-
allyl RNA (aRNA), aRNA dye coupling, and puri�cation of dye-labeled aRNA were
performed using the Amino Allyl MessageAmp II aRNA Ampli�cation Kit (Ambion,
Austin, TX) following manufacturer's guidelines. Cy3/Cy5 was from Amersham Bio-
sciences (Amersham, United Kingdom). Cy3/Cy5 dye incorporation into aRNA yielded
incorporation rates of 30 to 60 dye molecules per 1000 nucleotides by spectrophotomet-
ric analysis, as requested by the manufacturer. GEP was performed by a dual labeling
strategy using Cy3-labeled aRNA from pooled normal PB B cells of healthy donors as
common reference and Cy5-labeled aRNA from puri�ed CLL cells as tester. A mixture
of 4 µg Cy3-labeled reference aRNA and 4 µg Cy5-labeled aRNA from each CLL was hy-
bridized to Operon Human Genome Oligo Set Version 2.0 platforms (21 329 oligomers of
70 nucleotides; Operon Biotechnologies, Huntsville, AL) and spotted in duplicates onto
MicroMax SuperChip I glass slides (Perkin Elmer Life Sciences, Boston, MA). Hybridiza-
tion was performed for 18 hours at 48C in a bu�er containing 5x standard sodium cytrate
(SSC), 0.1% sodium dodecyl sulfate (SDS), 25% formamide, and 100 µg/mL salmon
sperm DNA using an automated HybArray 12 hybridization system (Perkin Elmer Life
Sciences). Following washings, glass slides were analyzed by a Scan Array Lite scanner
(Packard BioChip Technologies, Billerica, MA); images and data were analyzed using
the GenePix Pro software (Axon Instruments, Foster City, CA).

The 17p-minus Data Set

Only the 25 patients that pass the quality control check made by means of FeatureEx-
traction QC report are part of the data set. No background subtraction was made on
the slides (because the Signal to Noise ratio was extremely low). Lowess Normalization
within-array Normalization and Quantile betweeen-array normalization was performed.
Agilent's Whole Human Genome Oligo microarray is comprised of approximately 41,000
(60-mer) oligonucleotide probes, some of them has e 10 replicates. All the probes whose
interquartile range was below the 20th percentile of distribution (genes whose expression
was overall not di�erentially modulated). After the �ltering procedure appriximately
31.000 probes are used in further analysis.

All the 25 samples is part of a reference experimental design (labelling and sam-
pling procedure described at point 4). All the 9 17p-minus UM samples are biological
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replicates. All the 9 non-17p-minus UM samples are bilogical replicates. All the 7 non-
17p-minus M samples are biological replicates.

Agilent Whole Human Genome Oligo Microarray Kit 4×44K was used in the ex-
periment. For annotation reference refer to http://www.chem.agilent.com/. Agilent
provides a complete line of RNA isolation, labeling and hybridization reagents as well
as Agilent SureHyb-enabled hybridization chambers and accessories that, when used
together, enhance the ease-of-use and performance of Agilent's microarrays.

Neoplastic and normal B cells (more than 95% pure), puri�ed by Ficoll-Hypaque gra-
dient (Pharmacia, Uppsala, Sweden) and positive immunoselection with anti-CD19�conjugated
immunomagnetic beads (Miltenyi Biotec, Bologna, Italy), were employed as total RNA
source. cDNA synthesis, cDNA puri�cation, in vitro transcription of amino-allyl RNA
(aRNA), aRNA dye coupling, and puri�cation of dye-labeled aRNA were performed us-
ing the Amino Allyl MessageAmp II aRNA Ampli�cation Kit (Ambion, Austin, TX)
following manufacturer's guidelines. Cy3/Cy5 was from Amersham Biosciences (Amer-
sham, United Kingdom). Cy3/Cy5 dye incorporation into aRNA yielded incorporation
rates of 30 to 60 dye molecules per 1000 nucleotides by spectrophotometric analysis, as
requested by the manufacturer. GEP was performed by a dual labeling strategy us-
ing Cy3-labeled aRNA from pooled normal PB B cells of healthy donors as common
reference and Cy5-labeled aRNA from puri�ed CLL cells as tester. A mixture of µ4g
Cy3-labeled reference aRNA and 4 µg Cy5-labeled aRNA from each CLL was hybridized
of the Agilent Whole Human Genome Oligo Microarray Kit 4×44K

The Tumor Grade Data Set

The biological tumor samples (ie, breast tumor specimens) consisted of freshly frozen
breast tumors from a population-based cohort of 315 women representing 65% of all
breast cancers resected in Uppsala County, Sweden, from January 1, 1987 to Decem-
ber 31, 1989. Estrogen receptor status was determined by biochemical assay as part
of the routine clinical procedure. An experienced pathologist determined the Elston-
Ellis grades of the tumors, classifying the tumors into low, medium and high-grade
tumors. The clinico-pathological characteristics accompanying each tumor include p53
status, ER status, tumor grade, lymph node status and patient age. All other MIAME
details are available at web site http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE3494&targ=self&form=html&view=quick
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