
Alma Mater Studiorum – Università di Bologna 

 

DOTTORATO DI RICERCA IN 

 

Ingegneria Civile, Chimica, Ambientale e dei Materiali 

Ciclo XXX 

 

 

 

 

Settore Scientifico Disciplinare: ING-IND/25 

 

  

Experimental and analytical investigation 
of pressurized vessels exposed to fire 

 

 

 

Presentata da: Giordano Emrys Scarponi 

 

 

 

Coordinatore Dottorato       Supervisore 

Luca Vittuari         Valerio Cozzani 

          Co-Supervisore 

          Alessandro Tugnoli 

 

 

 

Esame finale anno 2018  



2 
 

 

 

 

 

 

 

 

 

Il tifoso interista è abituato a soffrire ma non molla mai, 

 non abbandona mai la barca nel momento del bisogno.  

Il tifoso interista è un innamorato cronico, un passionale, un sanguigno.  

Ha un carattere argentino…  

È fedele, appassionato, nel bene e nel male.  

Ma è anche esigente, così come brillante, intelligente e ironico. 

 

- Javier Zanetti 

 

Un po' come il dottorando. 

 

- Io 
 

 

 

 

 

 

 

 



1 
 

Summary 
Abstract .................................................................................................................................................................... 4 

Introduction ............................................................................................................................................................. 5 

Section 1 – State of the art .................................................................................................................................... 8 

Chapter 1 Fire tests of LPG tanks ............................................................................................................. 9 

1.1 US DOT FRA (1974) ...................................................................................................................... 12 

1.2 Moodie and co-workers tests ......................................................................................................... 15 

1.3 Heymes and co-workers tests......................................................................................................... 17 

1.4 FRA tests ........................................................................................................................................... 19 

Chapter 2 Modelling pressurized tanks exposed to fire ....................................................................... 21 

2.1 Zone models ..................................................................................................................................... 21 

2.2 Beyond zone models: CFD based approaches ............................................................................ 26 

2.3 Concluding remarks on currently available models .................................................................... 28 

Section 2 – Experimental tests............................................................................................................................ 29 

Chapter 3 Experimental campaign .......................................................................................................... 30 

3.1 The experimental apparatus ........................................................................................................... 31 

3.1.1 The test tank ............................................................................................................................. 31 

3.1.2 The fire setup ........................................................................................................................... 32 

3.1.3 Thermocouple positioning ..................................................................................................... 33 

3.1.4 The camera end ........................................................................................................................ 34 

3.1.5 PIV setup .................................................................................................................................. 35 

3.2 Test list .............................................................................................................................................. 36 

3.3 Test results ........................................................................................................................................ 38 

3.3.1 Pressure data............................................................................................................................. 38 

3.3.2 Temperature data ..................................................................................................................... 39 

3.3.3 PIV results ................................................................................................................................ 43 

3.3.4 Calculation of the net evaporation rate ................................................................................ 46 

3.4 Concluding remarks related to the experimental activity ........................................................... 55 

Section 3 – Modelling........................................................................................................................................... 56 

Chapter 4 Modelling LPG tanks exposed to fire .................................................................................. 57 

4.1 Theoretical background .................................................................................................................. 58 

4.2 Model setup and fundamental equations ...................................................................................... 60 

4.2.1 Multiphase model and continuity equation.......................................................................... 60 

4.2.2 Momentum equation ............................................................................................................... 60 

4.2.3 Turbulence model and near wall treatment ......................................................................... 61 



2 
 

4.2.4 Energy equation ....................................................................................................................... 64 

4.2.5 Evaporation and condensation model.................................................................................. 64 

4.2.6 Material properties ................................................................................................................... 65 

4.2.7 Floating operating pressure option ....................................................................................... 65 

4.2.8 Solution methods ..................................................................................................................... 66 

4.2.9 Mesh generation ....................................................................................................................... 67 

4.3 Case study definition for CFD model validation ........................................................................ 69 

4.4 LPG tanks exposed to full engulfing pool fire ............................................................................ 71 

4.4.1 Definition of the boundary and initial conditions .............................................................. 71 

4.4.2 CFD simulations of small scale tests: pressure predictions ............................................... 72 

4.4.3 CFD simulations of small scale tests: temperatures predictions ...................................... 74 

4.4.4 CFD simulations of full scale tests: comparison between model and experimental results

 80 

4.4.5 Velocity profiles ....................................................................................................................... 83 

4.4.6 Thermal stratification .............................................................................................................. 88 

4.4.7 Temperature fields ................................................................................................................... 91 

4.4.8 Time-step independence ......................................................................................................... 98 

4.4.9 Influence of coefficients CE and CC in the evaporation and condensation model ...... 101 

4.5 LPG tanks exposed to distant fire ............................................................................................... 102 

4.5.1 Definition of the boundary conditions............................................................................... 102 

4.5.2 CFD predictions VS experimental results.......................................................................... 104 

4.6 Concluding remarks on CFD modeling of LPG tanks exposed to fire ................................. 109 

Chapter 5 Modelling water tanks exposed to fire................................................................................ 110 

5.1 Theoretical background ................................................................................................................ 110 

5.2 VOF approach ................................................................................................................................ 112 

5.2.1 Model setup and fundamental equations ........................................................................... 112 

5.2.2 Material properties ................................................................................................................. 112 

5.2.3 Definition of simulation case study for model verification ............................................. 113 

5.2.4 Mesh, boundary condition and solver setup ...................................................................... 114 

5.2.5 Results: pressurization rate ................................................................................................... 115 

5.2.6 Results: boiling and temperature profiles ........................................................................... 121 

5.2.7 Results: velocity profiles ....................................................................................................... 126 

5.2.8 Comparison with experimental data from the FRA tests ................................................ 128 

5.2.9 Strengths and limitations of the modelling approach ...................................................... 131 

5.3 An alternative modelling approach ............................................................................................. 133 

5.3.1 Background............................................................................................................................. 133 



3 
 

5.3.2 Modelling approach ............................................................................................................... 134 

5.3.3 The Euler-Euler model ......................................................................................................... 136 

5.3.4 Continuity and momentum equations ................................................................................ 136 

5.3.5 Turbulence model .................................................................................................................. 138 

5.3.6 Energy ..................................................................................................................................... 138 

5.3.7 The RPI model ....................................................................................................................... 139 

5.3.8 Baseline case model setup and case studies definition ..................................................... 140 

5.3.9 Mesh generation ..................................................................................................................... 142 

5.3.10 Material properties ................................................................................................................. 143 

5.3.11 Boundary conditions ............................................................................................................. 144 

5.3.12 Solution methods ................................................................................................................... 144 

5.3.13 Results ..................................................................................................................................... 145 

5.3.14 Temperature ........................................................................................................................... 145 

5.3.15 Heat flux partitioning ............................................................................................................ 146 

5.3.16 Evaporation rate .................................................................................................................... 148 

5.3.17 Final considerations on the new modelling approach ...................................................... 150 

Conclusions ......................................................................................................................................................... 152 

Acknowledgments .............................................................................................................................................. 154 

References ............................................................................................................................................................ 155 

Nomenclature ...................................................................................................................................................... 160 

List of figures....................................................................................................................................................... 164 

List of tables ........................................................................................................................................................ 171 

Appendix .............................................................................................................................................................. 172 

Appendix A – Scaling of a forest fire scenario ...................................................................................... 173 

Appendix B – View factor calculation .................................................................................................... 175 

Appendix C - UDF for boundary condition in the forest fire scenario simulation ......................... 177 

Appendix D - Grid sensitivity analysis ................................................................................................... 179 

Mesh definition ...................................................................................................................................... 179 

Wall y+ values ......................................................................................................................................... 180 

Pressurization rate ................................................................................................................................. 182 

Velocity profiles ..................................................................................................................................... 184 

Temperature profiles ............................................................................................................................ 186 

Vapor volume fraction profiles ........................................................................................................... 188 

Final remarks on the grid sensitivity study ........................................................................................ 190 

Appendix E - Influence of the convergence criteria ............................................................................ 191 

Appendix F – UDF to couple the CFD and lumped model ............................................................... 196 



4 
 

 Abstract 
The possible occurrence of accidental fires impacting vessels for the transportation and storage of 

hazardous materials represents a key safety issue in the process industry. In these situations, the vessel 

heats up and pressurizes. This can lead to its catastrophic failure, generating devastating consequences. 

Such scenarios have been extensively investigated in the past decades, with the aim of increasing the 

understanding of their dynamic evolution and providing useful information to improve vessel design and 

emergency response planning. Numerous field studies and laboratory scale tests were carried out to 

reproduce fire impingement on pressurized tanks. At the same time, several models were developed in 

order to predict the thermal and mechanical response of vessels exposed to fire attack. However, previous 

modeling approaches suffer several limitations and need to be improved. On the other hand, data 

collected during previous experiments is not sufficient to effectively support the development and 

validation of advanced modelling tools such as computational fluid dynamic (CFD). 

With the aim of overcoming these limitations, a novel research program was proposed. This combines a 

fire tests campaign, carried out by means of an innovative experimental apparatus, and a modelling 

approach based on CFD. The tests were designed by Ian Bradley, a PhD student from the University of 

Edinburgh. A comprehensive description of the experimental apparatus and a detailed analysis of the 

tests results will be presented in his PhD thesis. 

Here, the experimental setup is briefly described in a dedicated section, where a preliminary analysis of 

the data from the fire tests carried out in the last two years is presented. The main findings, useful for the 

modelling activity, are discussed and recommendation for future tests are pointed out.  

The present work focuses mainly on the modelling part. Starting from previous approaches presented in 

literature by different authors, an improved CFD modelling setup was developed. Conditions of several 

fire tests involving LPG tanks were simulated and the results are compared with experimental 

measurements highlighting strengths and limitations of the modelling. Then, the same modelling 

approach (with minor modifications) was used to simulate the response of water tanks to fire exposure. 

Again, comparison with experimental data allowed an assessment of the model capabilities. In the last 

part of the work, an alternative approach is presented, based on models developed for the study of 

subcooled boiling flows that showed promising results in other fields of application. The aim was to 

explore the possibility of extending this approach to the case of vessels exposed to fire. The results 

reported in this part represent a preliminary assessment of this modelling setup. The work proves that 

CFD is a powerful tool for the development of advanced models able to accurately describe and predict 

the response of a pressure vessel exposed to fire. However, further work is needed especially regarding 

submodels for boiling. In this perspective, the aforementioned experimental set up has the potential to 

provide relevant data.  
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 Introduction 
In the last decades, the quantity of gases stored and transported as pressurized liquids experienced a fast 

and constant growth. In industrialized countries, chemicals handled in such conditions are widely 

exploited in several sectors. This is the case, for instance, of many raw materials for the process industry, 

such as ammonia or chlorine. Liquefied Petroleum Gas (LPG) and liquefied butane are extensively used 

as fuel for cars and tracks. Liquid Natural Gas (LNG) and liquid hydrogen are considered to be strategic 

in the transition towards a more sustainable society. 

At the same time, due to their inherent harmful properties, together with the large inventories often 

stored and transported, many liquefied gases are deemed to be potential major industrial hazards. Most 

of them, in fact, are either flammable or toxic (or have both characteristics). Unwanted releases of these 

substances can cause severe damage to human, environment and facilities. Examples of such events are 

the accidents that happened at Viareggio (Italy) and Lac-Megantic (Canada). The first of these, occurred 

29th of June 2006: a tank-car of a freight train containing liquefied petroleum gas (LPG) overturned and 

released its entire content. This vaporized and formed a cloud that extended over a residential zone near 

to the railway. The delayed cloud ignition, caused extended damages and 31 fatalities [1]. The second 

accident took place on the 6th of July 2013, when a 74-car freight train carrying crude oil derailed. About 

5.7 million liters of crude oil were released into the soil, water and air after the accident, generating a fire 

that burnt for two days [2]. 

Due to accidents such as those described above, the concerns about the risks related to liquefied gases is 

growing together with their use. In this framework, one of the most critical safety issues is the possible 

occurrence of accidental fires affecting vessels devoted to the transportation and storage of such 

materials. When this happens, the heat load due to the fire attack can lead to the thermally-induced 

rupture of the vessel. Consequently, the liquefied gas experiences a sudden depressurization from the 

storage pressure to ambient conditions. This phenomenon is associated with overpressure effects and is 

referred to as BLEVE (Boiling Liquid Expanding Vapor Explosion). As pointed out by many authors 

[3][4][5][6][7], BLEVEs can have devastating consequences. In addition to the shock wave generated by 

the fast phase transition, the shell fragments projected away due to vessel failure (missiles) represent a 

severe treat for people and equipment in the proximity of the vessel itself. If the released fluid is 

flammable, the BLEVE can be followed by a fireball. If it is toxic, the resulting gas cloud increases the 

damage potential of such scenario. In their review of accidents, Abbasi and Abbasi [6] highlighted how 

the 80-odd major BLEVEs occurred between 1940 and 2005, involving several kinds of substances, 

caused more than 1000 fatalities and over 10000 injuries. Therefore, preventing the occurrence of such 

events is of paramount importance.  

Since the 1960's, several researchers have devoted their work to improve safety in the field of 

transportation and storage of liquefied gases. Numerous field studies and laboratory scale tests were 

carried out on pressurized tanks in order to simulate fire impingement conditions, with the aim of 

increasing the understanding of such scenarios. In parallel, a series of models has been developed to 

predict the vessel response to fire exposure.  

Particular consideration was given to the fire exposure of storage and transportation vessels containing 

flammable pressurized liquefied gases, especially LPG. Over the years, experiments produced valuable 

knowledge in this field, in terms of identification of the physical phenomena occurring inside and outside 

a vessel under fire exposure. The main mechanisms characterizing such scenario are now better 

understood and models have been modified in order to be able to reproduce them and give more accurate 

predictions of the vessel response. However, to different extents, all of them rely on adjustable 
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parameters and simplifying assumptions tuned to specific experimental data sets. This limits their range 

of applicability and the possibility of using such models far from the experimental conditions used for 

their development. 

Several authors have pointed out that knowledge gaps still exist. Analysis of data collected during fire 

tests highlighted how the formation of a natural convection boundary layer and the thermal stratification 

of the liquid phase play a key role in the pressurization of a vessel under fire attack. However, none of 

the models in literature accurately describes such phenomena. On the other hand, specific experimental 

data supporting their empirical characterization is scarce, due to limitations in instrumentation design of 

the aforementioned fire tests. 

The specific assessment of the inner fluid behavior during fire exposure in terms of velocity, temperature 

and boundary layer determination was never the object of detailed investigation. This is critical for the 

development and validation of advanced modeling tools such as computational fluid dynamics (CFD). 

CFD is believed to be the best candidate to solve the problem of predicting the vessel response to fire 

attack in terms of pressurization rate, temperature distribution and time to failure, and to support detailed 

safety and external emergency studies. In fact, being able to predict how fast the pressure will rise under 

a given fire load and to quantify the energy content of the vessel at the moment of failure would represent 

a valuable advantage for those involved in the emergency response and management (e.g. fire fighters 

and authorities).  

With the aim of overcoming the above limitations, a novel research program was proposed. This 

combines a fire tests campaign, carried out by means of an innovative experimental apparatus, and a 

modelling approach based on CFD. The project involves several international institutions. The modelling 

activity is the main subject of the present PhD work (under the supervision of professor V. Cozzani) and 

will be extensively described in this thesis. On the other hand, the experimental campaign (tests were 

performed at the Federal Institute for Materials Research and Testing in Berlin, Germany) represents the 

core of the PhD work carried out by Ian Bradley, from the of University of Edinburgh (Scotland). The 

entire research project is supervised by professor A. M. Birk, from the Queen’s University (Kingston, 

Canada). 

The present work is divided in three sections as described in the following. 

Section 1  

This section presents the state of the art in the field of pressure vessels exposed to fire. The first Chapter 

gives an overview of the main experimental works carried out starting from the second half of the last 

century. Due to their particular significance and data completeness, some of them are described in detail. 

These represent the reference data sets for the assessment of the prediction capability of the CFD based 

models presented in the last section of this thesis.  

In Chapter 2, a review of the of the modelling approaches proposed over the years is presented, in order 

to show the improvements introduced in this field and highlight the critical issues requiring further 

investigation 

Section 2 

This section is devoted to the description of the experimental activity carried out at the Federal Institute 

for Materials Research and Testing (BAM) of Berlin (Germany). 

The experiments involve a 1/3 real scale transportation tank, instrumented with 105 thermocouples. 

These are positioned to accurately capture liquid stratification, boundary layer thickness, wall and lading 

temperatures. The tank is cut in two parts, hold together by two flanges. A glass window is put between 
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the flanges. One end of the tank is filled by the operating fluid and engulfed in fire. The other one hosts 

video recording instrumentation. Instrumentation for Particle Image Velocimetry (PIV) is also present in 

order to characterize the flow inside the vessel. Data collected in the experiments represents a rich set of 

information for the validation of the modelling work.  

A detailed description of the experimental apparatus and the analysis of the test results are extensively 

described in the PhD thesis of Ian Bradley, from the of University of Edinburg (Scotland). 

Section 3 

This section represents the core of the PhD research work: the CFD modelling of pressure vessels 

exposed to fire.  

Chapter 4 focuses on the LPG tanks. Starting from previous approaches presented in literature by 

different authors, an improved CFD modelling setup was developed. This was used to simulate the 

condition of several fire tests involving LPG tanks exposed to full engulfing hydrocarbon pool fires. In 

addition, a forest fire scenario was also considered. The calculated results were compared with 

experimental measurements in terms of temperature profiles and pressurization rate to assess the model 

capability. Strengths and limitations of the modelling setup are analyzed in detail. 

In Chapter 5, the same modelling approach (with minor modifications) was used to simulate the response 

of water tanks exposed to fire. Modelling results are compared with experimental measurements collected 

during the fire tests described in Chapter 3 and other data available in literature. Again, advantages and 

shortcomings of the CFD model are discussed. 

In the last part of Chapter 5, an alternative approach is presented, based on models developed for the 

study of subcooled boiling flows that showed promising results in the nuclear industry. The aim is to 

explore the possibility of extending this approach to the case of vessels exposed to fire. The results 

presented in this part represent a preliminary assessment of this modelling setup. 
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 Section 1 – State of the art 
The phenomena occurring when a tank experiences fire exposure are complex and interactive. From a 

qualitative point of view, they have been described by several authors [3][8][9]. Heat is transferred from 

the fire to the tank by means of a combination of thermal convection and radiation. The relative 

contribution of this two heat transfer mechanisms depends on the exposure modes (full/engulfment or 

distant fire) and the fire characteristics. In a hydrocarbon pool fire, for instance, the heat is mainly 

transferred by radiation (this represents about the 80 % of the total heat flux from the fire to the tank 

[10]). The opposite is true in case of jet-fire, where the high momentum of the flame promotes convective 

heat transfer. In cases where the flames are not in contact with the tank wall, it receives only thermal 

radiation from the fire, with the convective contribution being negative due to the cooling effect of the 

surrounding air. 

Regardless of the external mechanism, heat is transferred through the tank wall (and insulation if present) 

by means of conduction. Then, the inner surface temperature starts rising and the fluid content in the 

proximity of the wall begins to warm. This determines the formation of thermal gradients that are the 

driving force for free-convection flows. Therefore, the liquid (and the vapor in the ullage) near the wall 

starts moving upwards. This phenomenon affects a layer whose thickness depends on the thermal 

properties of the fluid. In this way, heat is continuously removed from the wall. Due to the low value of 

the heat transfer coefficient and the heat capacity, the wall portion in contact with the vapor space gets 

very hot. This results in a severe weakening of the steel that can lead to failure at pressures well below 

the design pressure of the tank. Below the liquid-vapor interface, the wall is kept cold by the liquid. In 

fact, depending on the saturation temperature of the liquid, the heat transfer mechanism can be either 

just single phase convection or a combination of convection and boiling. In both cases, the heat transfer 

coefficient is much higher than in the vapor space. The warm liquid leaving the wall reaches the liquid-

vapor interface and then falls back towards the liquid bulk. This determines the establishment of a vertical 

temperature gradient in the liquid: the temperature increases with the vertical coordinate. Such 

phenomenon is called thermal stratification. For substances stored at saturation condition, such as LPG, 

it is the temperature of the liquid surface (hotter than the liquid bulk) that drives the tank pressure. 

With the aim of characterizing the above-mentioned phenomena from a quantitative point of view, 

several large and laboratory scale fire tests were carried out over the years. In parallel, a series of models 

has been developed by different authors to predict the vessel response to fire exposure. 

The next paragraph presents an overview of the main experimental works carried out starting 1964. Due 

to their significance and data completeness, some of them are described in detail. Then, a review of the 

of the modelling approaches proposed over the years is presented, in order to show the improvements 

introduced in this field and highlight the critical issues requiring further investigation. 
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Chapter 1  Fire tests of LPG tanks 

The increasing interest in the field of fire safety of storage and transportation tanks is testified by the 

large number (considering their high costs) of fire tests on vessel of various scales carried out in the last 

decades. Table 1 provides a list of the main experimental works directly related to reproduce fire scenarios 

involving LPG tanks1 starting from 1964. It has been obtained considering the literature review carried 

out by Moodie and co-workers  in 1988 [11] and those published by Leslie and Birk in 1991 [3] and Birk 

in 2006 [12]. Studies carried out later than 2015 were also included. 

The tests carried out over the years have illustrated the behavior of the tank lading subjected to an intense 

heat load due to fire attack. In this way, the influence of the physical phenomena described in the 

introduction of this section was analyzed in detail. 

Due to the good quality and quantity of data collected during the experiments, some of the fire tests 

reported in Table 1 are described more in detail. They represent a valuable resource to assist the 

development of models aimed at predicting the vessel response to fire exposure. Data from these tests 

are will be used to assess the prediction capability of the CFD based models presented in Section 3. 

 

 

 

  

                                                 
 

1 Some of the works presented in Table 1 considered other substances (mainly water), but their aim was 

to acquire knowledge of fire scenarios involving vessels devoted to LPG transportation and storage. 
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Table 1: List of the main fire tests involving LPG tanks from 1964 to date 

ID Date author/institution/sponsor 
Tank 

size/scale 
Tank content Performed tests Reference 

1 1964 Bray and co-workers 5 ton Water Water spray protection test. Kerosene fire [13] 

2 1973 AAR-RPI 1:5 scale LPG/water 

7 tests:  
- 2 with water (to evaluate test procedures no useful 
data)  
- 2 tests with uninsulated tank - 3 tests with 3 
different types of insulation 

[14] 

3 1973 US DOT FRA 
64 ton  
(full scale) 

LPG 
2 tests:  
tank with and without insulation 

[15][16] 

4 1980 
Appleyard/Transport 
Canada 

1:5 scale LPG/water 

6 tests:  
- 2 with unprotected tanks  
- 4 with 3 different configurations of thermal 
insulation 

[17] 

5 1981-1982 HSE/Shell 0.25 -1 ton LPG 
5 tests:  
- 2 with 0.25 ton tanks 
- 3 with 1 ton tanks 

[4] 

6 1983 HSE - LPG 
3 tests (tanks not taken to rupture):  
- 1 without insulation  
- 2 with insulation  

[18] 

7 1984 BAM 2.5 ton LPG 
3 tests taken to tank destruction: 
- 1 without insulation  
- 2 with insulation  

[19] 

8 1985 Birk and co-workers 0.5 m3 Water 
Test conducted to study the thermal load induced by 
PRV flare 

[20] 

9 1985 HSE 0.25 ton LPG 
7 tests, total engulfment, water spry protection 
system 

[21] 

10 1983-1986 Venart and co-workers 40 l 
Freon 
11/Freon 12 

Extensive laboratory tests involving a 40 liters 
cylindrical vessel electrically heated. The vessel was 
fitted with was fitted with observation windows at 
both ends and contained Freon 11 or Freon 12 to 
simulate the. It was extensively instrumented  

[22] 

11 1985-1986 HSE/Shell/Cowley 5 ton LPG 5 tests with total engulfment in a kerosene pool fire [23] 
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ID Date author/institution/sponsor 
Tank 

size/scale 
Tank content Performed tests Reference 

12 1988 BAM 4.85 m3 LPG 
15 tests with 2 different water spray systems to test 
their effectiveness 

[24] 

13 1993 Faucher and co-workers 2.6 m3 LPG 
2 tests with tanks exposed to full engulfing pool fire. 
Mineral cement was applied as thermal protection 

[25] 

14 2001 Persaud and co-workers 4.0 m3 LPG 
4 tests consider different filling degrees. Tank 
exposed to partial engulfment 

[26] 

15 2006 Birk and co-workers 1.8 m3 LPG Test on 1.8 m3 LPG tanks to 25 % fire engulfment [27] 

16 2006 Birk and co-workers 1.9 m3 LPG 
Test on a 1.9 m3 LPG tank with defective insulation 
(partial engulfment) 

[28] 

17 2006 Birk and co-workers 1.8 m3 LPG 
Test on 1.8 m3 LPG tanks to study the transition 
from non-BLEVE to BLEVE 

[29] 

18 2009 Landucci and co-workers 3 m3 LPG 
2 tests with LPG tanks protected with intumescing 
materials exposed to full engulfing pool fire 

[30] 

19 2013 Heymes and co-workers 2.3 m3 LPG/Water Series of tests simulating a forest fire scenario [31][32] 

20 2015 FRA/BAM 2.4 m3 

Water and 
Water/Sodium 
Hydroxide 
mixture 

Series of fire tests on 1/3 linear scale US DOT 11 
tank car containing water and a mixture of water and 
Sodium Hydroxide. Different filling level were 
tested. Protected and unprotected tank were used 

[10] 

AAR: Association of American Railroads 
HSE: Health and Safety Executive (UK) 
BAM: Federal Institute for Materials Research and Testing (Germany) 
FRA: Federal Railroad Administration (US) 
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1.1 US DOT FRA (1974) 

The two tests2, carried out in 1974 by the U.S. Department of Transportation Federal Railroad 

Administration (FRA) [15][16] can be considered as a milestone in the research of fire response of LPG 

vessels. They involved two full scale railroad tank cars (18.3 m long and 3.05 m in diameter) positioned 

in a large excavation (45.7 x 30.5 m) filled with JP-4 jet fuel to simulate a total engulfing pool fire scenario 

(the test layout is depicted in Figure 1).  

 

Figure 1: Test layout (original picture from [16]). 

One of the vessels was insulated with a spray-on thermal protective coating. The tanks were filled with 

LPG, the composition of which is reported in Table 2  

Table 2: Composition of the LPG mixture used in the tests3 [16]. 

Component Propane Ethane Normal-Butane Iso-Butane 

Percentage 97.96 % 1.96 % 0.07 % 0.01 % 

 

Both tanks were instrumented with pressure transducers, liquid level monitors, devices to measure the 

lift of the PRV. The PRV opening pressure was set to 18.2 bar. Furthermore, numerous thermocouples 

(Chromel-Alumel) were installed in different positions in order to characterize in detail the thermal 

response of the tank. In particular, two stations were devoted to the measurement of the inner wall and 

lading temperature. Here, the thermocouples were positioned on a grid according to the scheme depicted 

in Figure 2, where the green dots indicate the thermocouples in contact with the wall. Additional 

thermocouples were positioned onto the external wall. Finally, ten fire thermocouples were installed to 

register fire temperatures. Four at each measurement station (at the top, the bottom and both sides of 

                                                 
 

2 These tests are usually also referred to as Townsend’s tests, after one of the authors of the experimental reports 
3 The composition reported in the table was obtained via chemical analysis of the LPG mixture using in the uninsulated tank 
test. No analysis was carried out for the LPG used in the insulated tank. 
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each station) and two at the center of the elliptical ends of the vessel. A 4-inch (10 for the end 

thermocouples) gap was left between the fire thermocouples and the wall. 

 

 

Figure 2: Lading thermocouples positions scheme. 

The test with the uninsulated tank had an approximate duration of 25 min, after which the tank failed 

catastrophically at a pressure of about 24 bar. The relief valve opened after 132 s at a pressure of and 

cycled (i.e. closed and opened again) a few times before remaining open until the end of the test (Figure 

3).  

 

Figure 3: Pressurization registered during the test involving the uninsulated tank. 
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Temperature data is shown in detail in Chapter 4, since they are adopted to validate the CFD model. 

The fire load on the tank was not uniform, with the rear part experiencing a more severe fire as shown 

in Figure 4. Before the PRV opening (this is the period of time considered in the CFD modelling work 

presented in Chapter 4) the fire temperature was around 2000 °F (1366 °C) for the rear section and 1700 

°F (927 °C) for the front one, with an average of 1850 °F (1010 °C). 

 

Figure 4: Fire temperatures for the uninsulated tank test (original picture from [16]). 
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1.2 Moodie and co-workers tests 

The data set generated during an experimental campaign carried out by the HSE [4][23] is one of the 

most complete among the experimental works listed in Table 1. The fire tests investigated the response 

of LPG tanks of different sizes and filling degrees in a fully engulfing pool fire scenario. In particular, 

three series of test were carried out involving 0.25 ton, 1 ton and 5 ton tanks (corresponding to a volume 

of about 0.5, 2.3 and 10.3 m3 respectively). For the first two cases, temperature was measured at the 

external wall by eight thermocouples positioned according to the scheme in Figure 5a.  

 

Figure 5: Thermocouple positioning scheme for the Moodie’s tests involving the 0.25 and 1 ton tanks (a) (original picture 
from  [4]) ant the 5 ton tank (b) (original picture from [23]) 

Three lading thermocouples (B, M and T in Figure 5a) were positioned vertically at the centerline of the 

tank at different heights. The biggest tank was more extensively instrumented with 55 thermocouples on 

the wall (both on the internal and external surface), in the vapor and in liquid space. A scheme indicating 

thermocouple positioning for this case is depicted in Figure 5b. Part of them was mounted at progressive 

distances from the wall (1, 5 and 10 mm in the radial direction from the inner wall) with the aim of 

capturing the thermal boundary layer. The tanks were equipped with PRVs with a set pressure of 14.3 

bar. For all of them, a pressure transducer measured internal pressure. 

a)

b)
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A firebrick made bund was built and filled with kerosene to reproduce the pool fire scenario. This was 

characterized by fire thermocouples installed around the tank and, for the 5 ton tank test series, by three 

water calorimeters. 

Table 3 presents the list of the fire tests carried out, the size of the tanks involved, the filling degree and 

the initial pressure. 

Table 3: List of the fire tests a carried out by the HSE and presented in [4][23]. 

Tank capacity Tank diameter Tank length Filling level 
Initial tank 

pressure (bar) 

¼ ton 0.51 m 2.26 m 40 % 6.6 

1 ton 1.00 m 2.9 m 

20 % 5.5 

40 % 5.3 

80 % 7.1 

5 ton 1.70 m 4.88 m 

22 % 5.5 

36 % 5.2 

38 %* 5.6 

58 % 5.5 

72 % 5.8 

*Test was aborted to instrumentation problems. Only limited data is available for this test. 

 

Figure 6 shows the pressure curves obtained in the different tests. It can be seen that the filling degree 

appears to have a negligible effect on tank pressurization. This aspect and other results related to this test 

will be analyzed in detail in Chapter 4. 

 

Figure 6: Pressure curves obtained in the fire tests involving the 0.25 and the 1 ton tank (a) and the 5 ton tank (b). 
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1.3 Heymes and co-workers tests 

In 2013, Heymes and coworkers [32] carried out an experimental campaign aimed at characterizing the 

thermal response of a 2.3 m3 cylindrical LPG tank to forest fire exposure.  

Setting as reference a 100 m wide by 40 m high fire front with an average emissive power of 90 kW/m2, 

they considered two different real scenarios as reported in Table 1. In the first one, the LPG tank is 

positioned at 50 m from the fire front. In the second one, this distance is 28 m.  

Due to difficulties (cost, safety and environmental concerns) in reproducing such scenarios in real scale, 

the authors performed a scale down of the problem. A simple homothetic transformation of the fire was 

not appropriate (i.e. scaling the problem geometry by maintaining the same ratio among all the 

dimensions: height/length of the fire front and tank-fire distance). In fact, since the tank was not scaled 

simultaneously, such transformation would have changed all angles of the rays exchanged between the 

fire and the tank. The authors demonstrated that, at a scale suitable for experiments, this change 

determines a strong mismatch between the real and the scaled scenario in terms of two key parameters: 

the maximum incident heat flux and the total incident thermal power reaching the tank. Therefore, they 

carried out a large set of calculations aimed at finding the values of fire front dimensions and tank distance 

(changing the ratio among these dimensions) that provided the best possible agreement between real and 

experimental scale scenarios with respect to the above-mentioned parameters. The results of these 

calculations led to the definition of the most appropriate experimental geometric configurations 

corresponding to the real scale scenarios. The features of the test scale fires are reported in Table 4. An 

overview of the scaling procedure can be found in Appendix A, whereas further details are presented in 

the original publication [31]. 

Table 4: Definition of forest fire scenarios considered in the present study. Real scale indicates a fire scenario of actual 
dimensions reproduced in the small scale apparatus throuhg the similarity analysis shown in [31]. 

Parameter 
Scenario 1 Scenario 2 

Real 
scale 

Experimental 
scale* 

Real 
scale 

Experimental 
scale 

Flame height (m) 40 3 40 3 

Fire front length (m) 100 8 100 8 

Tank distance (m) 50 3.8 28 2.8 

Average emissive power 
(kW/m2) 

90 90 68 68 

Maximum incident radiation 
(kW/m2) 

24 26 41 42 

Total incident thermal power 
(kW) 

84 80 133 130 

* Test adopted to obtain data for the validation of CFD model in Chapter 3 

The forest fire scenario was reproduced by means of a 3 x 8 m steel wall equipped with a burners system 

consisting of five 50 mm pipes. Holes were drilled along the pipes in order to allow the outflow of the 

natural gas used to feed the fire. Figure 7a shows the position of the fire wall and the tank.  
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Figure 7: Experimental apparatus configuration. a) The steel wall to reproduce the fire scenatio is visible on the right; the 
tank is on the left. b) sketch of the thermocouples positioning in the lading (filled dots) and on the tank wall (empty dots). 

The main test instrumentation consisted of: 

- 23 type K thermocouples welded on the external wall of the tank aimed at measuring the 

external wall temperature; 

- 8 type K thermocouples positioned inside the tank, along the vertical axis at the tank center 

aimed at measuring the lading temperature; 

- 1 pressure gauge aimed at measuring the internal pressure in the vapor space; 

- 2 radiative heat flux meters located at the points of maximum incident radiation, based on 

preliminary evaluations (see [32] for more details) 

Figure 7b shows a sketch of the thermocouple positioning on the external wall (empty circles) and along 

a vertical at the center of the vessel (dots). 

The LPG tank, with a nominal capacity of 2.30 m3, was made of carbon steel (A48P1) with a minimum 

wall thickness of 6.1mm, diameter of 1.0m and total length of 2.6m. The tank was equipped with a 

pressure release valve (PRV) with a set point pressure of 19.6 barg.  

θ θ = 0 

a)

b)
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1.4 FRA tests 

In the summer 2015, Birk and coworkers[10] carried out a series of fire tests on 1/3 linear scale US DOT 

11 tank cars (Figure 8a). The aim was to provide data for the validation of computer programs for the 

prediction of the response of vessels to fire exposure. The experiments took place at the Federal Institute 

for Materials Research and Testing (BAM), Berlin Germany.  

The tank was fully engulfed in a fire (Figure 8b) generated by liquid propane fueled burners. This 

arrangement was designed to reproduce a hydrocarbon pool-fire scenario with a total heat flux to a cool 

surface of approximately 100 kW/m2. 

 

Figure 8: Picture of one of the tanks ready for testing (a) and during fire engulfment (b) – original pictures from [10]. 

The tanks were made of carbon steel with a total volume of 2.4 m3 (outer diameter: 91.5 mm, total length: 

3600 mm; wall thickness: 3.1 mm). Water was used as test fluid. Table 5 reports a list of the five tests 

described in [10] . The first four tests in the list were carried out with a filling degree of 98 %, whereas in 

the last one, the tank was only 50 % filled with water. In the first test, the vessel was exposed to fire 

without any protection. In the second one, a 3 mm steel jacket surrounded the tank, with a 102 mm gap 

between the wall and the jacket. In the last four tests, this gap was filled with a fiberglass blanket. This 

insulation material was rated to a relatively low temperature (250 °C) and, during the fire exposure, it 

experienced strong degradation. This, according to the authors of the paper [10], led to a loss of insulating 

performance. 

Table 5: List of tests reported in [10]. 

Label 
Filling  
degree 

Insulation 

98%_Bare 98 % Absent 

98%_J 98 % Only steel jacket 

98%_Ins_a 98 % Insulant + steel jacket 

98%_Ins_b 98 % Insulant + steel jacket 

50%_Ins 50 % Insulant + steel jacket 

The tanks were instrumented with wall and lading thermocouples, pressure transducers and directional 

flame thermometers to measure fire conditions. 

a) b)
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Figure 9 shows the pressurization curves obtained in the five tests listed in Table 5. The pressure rise in 

the unprotected tank was fast and led to the vessel rupture in about 120 s. The presence of the steel jacket 

(test 98%_J) delayed the beginning of the pressurization, but did not significantly affect the slope of the 

pressure curve. The insulated tanks pressurized in a similar way, showing no influence of the filling 

degree. 

 

Figure 9: Pressurization curves obtained in the five tests listed in Table 5. 

Quite clearly, the highest peak wall temperature (Figure 10) was registered in the test involving the 

unprotected tank, followed by the test where only the steel jacket was surrounding the vessel. Looking at 

the results from the other tests, it can be noted how a higher peak temperature was registered for the 

case 50%_Ins case. This is most probably due to the cooling effect provided by the liquid in the cases 

with the higher filling degree. However, this becomes visible only after about 500 s. 

 

Figure 10: Wall peak temperature measured during the tests listed in Table 5. 

Results from the lading thermocouples (not showed here) suggest the formation of a very thin boundary 

layer in which subcooled boiling was occurring. In fact, thermocouples positioned in the liquid bulk 

indicated that this was much colder than the saturation temperature.  
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Chapter 2  Modelling pressurized tanks 

exposed to fire 

In parallel with the numerous experimental works described in Chapter 1, many authors dedicated their 

research to the development of models for the prediction of the response of a vessel to fire exposure. 

Over the years more and more complex models were proposed. Early approaches were based on the 

partition of the problem domain in control volumes (or zones) and the solution of integral mass and heat 

balance equations for each of these volumes. Attempts to improve such models were done by increasing 

the number of partitions and using more accurate correlations for the description of the physical 

phenomena taken into account. However, empirical correlations were usually considered. Therefore, the 

use of such kind of models is limited by the range of applicability of these correlations. Furthermore, 

most of them fail in reproducing aspects indicated as crucial by the analysis of experimental results.  

More recently, different authors started to consider the use of CFD codes as a promising tool to 

overcome the inherent limitations of zone models. However, work done using this approach is still 

limited. 

The next paragraphs present a review of the most important models developed over the last thirty years, 

highlighting strengths and limitations. 

2.1 Zone models 

Models based on the partition of a problem domain in control volumes (or zones) and the solution of 

integral mass and heat balance equations for each of these volumes are called zone models. 

To the author’s knowledge, the first zone model developed to predict the response of a vessel exposed 

to fire is CALSPAN [33], presented in 1973. The model considers a two-dimensional vertical section of 

a horizontal cylindrical tank. The domain is divided into several elements. The liquid and the vapor share 

the same temperature. The pressure of the tank is assumed to be the saturation pressure at this 

temperature (later versions of this model allowed the prediction of vapor superheating). The heat transfer 

coefficient at the liquid wetted wall varies with temperature and pressure. On the other hand, the heat 

transfer coefficient at the vapor wetted wall is constant. The model can take into account the presence 

of thermal insulation and of one or more pressure relief valves. As pointed out by Birk in his PhD thesis 

[34], CALSPAN predictions are not in good agreement with fire test results. He pointed out that this is 

mainly due to the fact that the model neglects important non–equilibrium effects in the liquid phase 

observed in the experiments. 

The same limitation is found in AFFTAC. This computer program was originally developed by Johnson 

in 1984, under funding from the United States Federal Railroad Administration [35][36]. AFFTAC is 

currently adopted by the North American Standard for modelling hazardous materials tanks exposed to 

fire. The model assumes that vapor and liquid are in equilibrium conditions, neglecting the influence of 

thermal stratification. 

Already in 1983, Birk (in his in his PhD thesis [34]) proposed a model aimed at improving the description 

of the thermos-fluid-dynamic behavior of the liquid phase. This is implemented in the computer code 

“TCTCM”, published in 1988 [37]. In this model, the liquid space is divided into two nodes as depicted 

in Figure 11: the liquid boundary (i.e. a warm liquid region close to the wall due to buoyancy effects) and 

the liquid core. 
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Figure 11: Domain discretization in the code “TCTCM” 

The vapor space is again represented by a single node and is considered to be in thermodynamic 

equilibrium. In the liquid boundary the temperature rise is fast whereas the liquid core remains in 

subcooled conditions. In fact, the vapor pressure in this region is lower than the tank pressure. However, 

after the venting starts, the liquid core gradually reaches equilibrium with the other two regions. Mass 

and energy transfer are allowed between the vapor space and the liquid boundary and between the liquid 

boundary and the liquid core. The model relies on two empirical constants, tuned on a set of fire tests. 

These are the liquid boundary thickness and the energy partition factor determining which portion of the 

heat from the fire enters the liquid boundary and the vapor space. Further details on this model can be 

found in [37]. Similar approaches have been followed by Yu and co-workers in 1992 [38] and Gong and 

co-workers in 2004 [39]. 

In the same decade, another model was proposed by Hunt and Ramskill in 1985 [40]. It was implemented 

in a computer code (written in Fortran 77) named “ENGULF”. According to the authors, the code can 

run considering any tank material and lading. The tank is represented as a cuboid as showed in Figure 12.  

 

Figure 12: Domain discretization in the code “ENGULF” - original picture from [40]. 

The problem domain is partitioned in subdomains, called nodes. The lading is divided in two nodes: the 

liquid space (node 1 in Figure 12) and the vapor space (node 2). The wall is considered to be formed by 

three concentric layers, each of which is further divided in two nodes, according the position of the 

vapor-liquid interface. Nodes 4, 6 and 8 refer to the portion of the wall layers above the liquid level; 

Liquid core

Liquid boundary

Vapor space
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nodes 3, 5 and 7 to the part below it. Furthermore, four surfaces are identified: the external surfaces of 

the tank above and below the liquid-vapor interface (letters D and C in Figure 12 respectively) and the 

wall portion in contact with the vapor and the liquid space. (letters B and A respectively). The code 

calculates the temperatures for each one of the eight nodes and the four surfaces. 

Heat is transferred from the fire to the external wall surface by radiation and throughout the wall by 

conduction in the lading. A conductive heat exchange term between the upper and the lower part of each 

wall layer is also included. From the tank shell, the heat is transferred to the lading. The wall portion in 

contact with the vapor (surface B) heats up the vapor space by convection and radiation. The convective 

heat transfer coefficient is obtained from empirical correlations for natural convection. The radiative heat 

flux is calculated according to the Stefan-Boltzmann law. Part of this is absorbed by the vapor and the 

other passes to the liquid. The liquid wetted wall (surface A) heats up the liquid space by single phase 

natural convection, nucleate boiling or film boiling according to the degree of wall superheating. In the 

first and second case, an empirical correlation for natural convection and the equation proposed by 

Rohsenow [41] are used respectively. If the critical heat flux is reached (calculated according to the 

equation proposed by Zuber, [42]), then a specific correlation for hydrocarbon film boiling [40] is used. 

Finally, the heat flux through the liquid-vapor interface is considered according to be given by an 

empirical correlation for natural convection on a flat surface.  

Given the initial temperature (at the beginning of the simulation, the tank is considered to be at the 

saturation pressure calculated at this temperature), the internal energy of the vapor space is calculated 

assuming the ideal gas hypothesis to be valid. When the simulation starts, the internal energy (and 

therefore the temperature) of the vapor is updated according to the net heat flux entering the vapor space. 

The pressure of the tank is then calculated using the ideal gas law and knowing the volume of the ullage. 

The obtained value is compared with the pressure release valve (PRV) set-point and, if this is lower than 

the tank pressure, a mass (only vapor) discharge is assumed to have occurred during the whole time-step. 

The mass flowrate is calculated according the equations for sonic or subsonic flow through a hole 

presented in [40]. If venting occurs, the internal energy of the vapor space is decreased considering an 

additional term in the heat balance and the temperature (of the vapor node) and pressure are recalculated 

assuming that the volume of the ullage has not changed during the time-step. 

When mass is vented from the PRV, the vapor expansion may cause the tank pressure to become lower 

than the saturation pressure calculated at the liquid temperature. If this happens, the code lets a fraction 

of the liquid space to evaporate. The amount of evaporated mass is calculated such that the liquid 

temperature decreases up to the boiling temperature evaluated at the pressure of the tank. If at the end 

of the time-step the criteria for evaporation is verified, evaporation is considered to have occurred during 

the whole time-step. The same is true for PRV venting. 

From the previous description, it appears that the model suffers several limitations. First of all, the 

phenomenon of thermal stratification is not considered. Furthermore, before the PRV opening, boiling 

is not considered, and the tank pressure is calculated using the ideal gas law, neglecting the influence of 

the liquid phase.  

In 1988 , one of the authors of “ENGULF” developed an updated version of the code named “ENGULF 

II” [43]. The main improvements implemented can be summarized in the following list: 

- The tank geometry was assumed to be cylindrical in order to avoid the problems related to the 

cuboid shape considered in the previous code 

- The equation describing the heat flux from the fire were modified so that jet-fire or radiation 

from a distant fire could be also simulated 
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- Furthermore, in order to be able to consider partial engulfment, the number of partition of the 

problem domain was increased 

- An option for including thermal protection systems was included 

- A tank failure prediction method based on the hoop stress calculation was implemented 

As can be noted, the improvements mainly aimed at widening the number of scenarios that can be 

simulated. However, none of the critical aspects highlighted above were addressed. 

An attempt to improve the physical bases of the model was done by Beynon and co-workers in 1988 

[44], with the development of HEATUP. As in the “ENGULF” code, the lading of the tank is divided 

in two nodes: one for the liquid space and the other for the vapor space. However, the way the pressure 

is calculated is completely different. In fact, the tank is considered to be at the saturation pressure 

evaluated at the temperature of the liquid (the same approach was used by Salzano and co-workers in 

2003 [45]). The density of the liquid phase is calculated as a function of the liquid temperature, while the 

ideal gas law is considered to be valid for the vapor. The evaporation rate is calculated so that the sum of 

the mass of each phase fulfils the mass balance and the sum of the volume of each phase equals the total 

volume of the tank. Other details on the model, such as the equations for heat transfer coefficient and 

PRV discharge rate calculation, can be found in Beynon [44]. 

The way the model was setup makes it unable to predict stratification. Furthermore, the formation of the 

free-convective layer developing near the wall is not taken into consideration. Such limitations in the 

physical description of the problem make this model unreliable in the prediction of tank response in 

situations falling out of its validation range. 

With the aim of improving the description of the behavior of the liquid phase, some authors proposed 

new and more complex ways of partitioning the problem domain. Aydemir and co-workers [8] developed 

a computer code, named “PLGS-1”, in which four different regions are identified in the liquid space (see 

Figure 13).  

 

Figure 13: Domain discretization in the code “PLGS-I” - original picture from [8]. 
 

These consist of a bulk liquid region at the bottom of the tank, a stratified layer below the liquid-vapor 

interface and two free-convective boiling boundary layer zones. Due to their limited size, these two zones 
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are considered to have no mass. The tank pressure is assumed equal to the saturation pressure calculated 

at the temperature of the stratified layer. This is heated by the warm liquid coming from the boundary 

layers. Their extension goes from the liquid surface up to the angle θ0 in Figure 13. This identifies the 

beginning of a region of instability at the bottom of the tank, from which the liquid bulk zone is heated. 

Other heat fluxes to this zone are the condensation occurring at the edges of the boiling boundaries and 

the conduction from the stratified layer. As in the case of the “ENGULF” code, different modes of heat 

transfer from the wall to the liquid are considered, depending on the degree of superheating. The vapor 

space is heated by free conduction and thermal radiation coming from the vapor-wetted wall. Part of the 

radiation is not absorbed by the vapor and hits the liquid surface. Further details on the model equations 

are reported in [8]. 

A few years later, in 1990, Dancer and Sallet [46] proposed a computer code named “TAC7”, based on 

an even more complex discretization of the tank domain (see Figure 14). A total of 40 elements are 

identified, equally divided between the liquid and the vapor space. The pressure of the tank is the 

saturation pressure evaluated at the temperature of the liquid element right below the liquid-vapor 

interface (labelled as CLm in Figure 14). Further details on this model can be found in [46]. 

 

Figure 14 Domain discretization in the code “TAC7” - original picture from [46]. 

Despite the efforts to improve zone models, such as the increase in the number of zones and the 

application of more and more sophisticated correlation, they still suffer several limitations. The 

assumptions at the base of these models appear to be quite simplistic compared to the complexity of the 

physical phenomena occurring outside and inside a vessel under fire exposure. Therefore, researchers 

abandoned the zone (or lumped) model approach, deciding to follow the idea of solving the equations 

for mass, momentum and energy conservation in their local form rather than the integral one. Of course, 

this allows a more accurate analysis. However, it increases the computational cost and, as it will be 

extensively discussed in this thesis, introduces the need for specific sub-models to describe the physical 

phenomena at local scale. In other words, this new approach moves the key points of modelling towards 

more fundamental aspects. 
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2.2 Beyond zone models: CFD based approaches 

In 1990, the authors of the “PLGS-1” code published a paper [47] in which they argue that, even though 

zone models are able to accurately describe some of the phenomena occurring when a tank is exposed 

to fire (such as the heat exchange between the fire and the tank wall), they fail in simulating other key 

aspects. In particular, they refer to the free convection flows and heat transfer mechanisms between the 

tank wall and the lading. Their criticism arises from the fact that the extension of the zones as well as the 

interactions among them cannot be accurately defined. For this reason, if the scenario simulated deviates 

from the experimental conditions used for the model set-up, the predictions would be incorrect. This is 

true for any of the models presented above.  

In order to overcome this limitation, they decided to follow a distributed approach (developing a new 

code named “PLGS-2”). Local conservation equations of mass, momentum and energy are solved 

throughout the vapor and the liquid regions. The computational domain is discretized using the finite 

volume method and the governing equations are solved following the SIMPLEC procedure. The pressure 

of the tank is calculated as the saturation pressure corresponding to the average liquid interface 

temperature. The following simplifying assumption, introduced to reduce the complexity of the problem: 

- two-dimensional problem  

- interface is assumed to be waveless and static 

- Boussinesq approximation for the free convection governing equations is assumed to be valid 

- effective viscosity is assumed constant throughout the solution domain and the turbulent Prandtl 

number is taken as unity.  

- boiling at the tank walls is not considered 

- fire size and fire properties are uniform 

From the first two assumptions, it follows that “PLGS-2” cannot be used to predict the tank behavior 

after the PRV starts venting. Therefore, only the initial part of a fire scenario can be simulated. 

The model capabilities were tested by simulating the experimental conditions of the 72 % filling level fire 

test reported in [23] and presented Chapter 1. The comparison between predictions and field 

measurement showed an excellent agreement with respect to the first PRV opening time. A good match 

was obtained for the liquid temperature in the first part the test (after 180s the liquid temperature 

predicted by model started deviating from the measurements, especially near the liquid-vapor interface). 

Temperatures in the vapor space as well as vapor-wetted wall temperatures were over-predicted with 

respect to those recorded during the tests. According to the authors, these discrepancies could be 

attributable to fire variations during the test. After validation, the model was used to study the effect of 

the tank size on pressurization rate and thermal stratification. Finally, the following recommendations 

for improvements were highlighted: 

- development of a 3D model to simulate localized fire impingement 

- consideration of alternative turbulence models 

- inclusion of mass transfer at the liquid interface and  

- inclusion of the effects of boiling. 
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The work presented in [47] can be considered as the first attempt to use a CFD based model to simulate 

the response of a LPG vessels to fire exposure. More recently, the increase of computational power and 

the development of commercial CFD software encouraged various authors to follow similar approaches. 

Among them, in 2004, Yoon and Birk [48] used ANSYS Fluent to perform a 3D simulation of a LPG 

tank under fire attack. The Volume Of Fluid (VOF) was chosen as the multiphase model. Trials were 

conducted considering both laminar and turbulent flow (using the standard k-ε model) for comparison. 

No boiling sub-model was considered. The aim of the work was to study the pressurization rate for a 

range of defect configurations in the thermal insulation. The filling level considered was always 97 %. 

They defined a parameter (ß, normalized according to a base case) related to the average temperature of 

the liquid surface and drew conclusions based on the assumption that the pressure of the tank is dictated 

by the saturation pressure corresponding to this temperature. They also compared the model predictions 

(only in terms of liquid temperatures and before the PRV opening) with the experimental measurements 

reported in [15][16], showing that they are in reasonable agreement and concluding that the turbulence 

model provides better results.  

In 2011, Bi and co-workers [49] carried out a similar work, again considering the VOF multiphase model 

with the RNG k-ε turbulence model. Again, no boiling sub-model is implemented. Apart from that, 

description of the model set up is poor. It is not clear how the pressure inside the tank is calculated. Most 

probably it comes from the integration of the equation of state (not specified) over the volume occupied 

by the vapor. If this interpretation was correct, the pressurization predicted by the model would be almost 

independent from the liquid behavior. This would be against any experimental evidence. If, on the 

contrary, the correct interpretation was that the tank is at the saturation pressure corresponding the 

liquid-vapor interface temperature, the model would not represent any improvement with respect to that 

presented in [48]. 

A similar model was used by Ren et al. to study thermal de-stratification [50], however this assumed 

laminar flow. 

Ten years later, D’Aulisa and co-workers [51] proposed a two dimensional model, again following the 

VOF approach combined with the k-ε turbulence model and scalable wall function for the near wall 

treatment. The laminar case and the use of the standard wall function were also investigated. A significant 

difference between theirs and the previously mentioned works, was the inclusion of the mass transfer 

between the liquid and vapor phase using a model based on the Hertz-Knudsen equation (see Chapter 4 

for details). Results were provided in terms of pressurization curve, temperature maps and velocity vector 

plots (see Figure 15). The USDOT-FRA test [15][16] on the uninsulated 64 ton tank was simulated to 

assess the capability of the model. Constant heat flux was imposed on the vessel wall in contact with the 

liquid, whereas radiative heat from a source at constant temperature was applied on the vessel wall in 

contact with the vapor. 

The first PRV opening time is accurately predicted. However, the dynamic of the pressure rise in the tank 

was not well reproduced. In their conclusions, the authors stressed the importance of the effect of liquid 

thermal stratification on the tank pressure. The same model was used by Landucci and co-workers in 

2016 [52] to extend the analysis to a wider range of tank sizes and shapes. 
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Figure 15: Example of temperature maps and velocity vector plots obtained in a LPG tank exposed to fire obtained by 
D’Aulisa and co-workers [51] (original picture from [51]). 

At the moment, according to the author’s knowledge, the model proposed by D’Aulisa [51] and co-

workers represents the most advanced approach to the simulations of LPG tank exposed to fire. 

However, it still suffers from some limitations. The definition of two different boundary conditions for 

the wall in contact with the liquid and the vapor is a model limitation in terms of stability and accuracy 

of the model. Furthermore, as will be showed later, the use of wall functions developed for conditions 

of forced convection is not appropriate in cases where the flow is driven by natural convection. 

2.3 Concluding remarks on currently available models 

In the previous paragraphs it has been emphasized how, despite the improvements proposed by several 

authors, currently available models for the prediction of vessel response to fire exposure still suffer 

important limitations. This is particularly true for the so called zone models, based on the partition of the 

problem domain in control volumes (or zones) and the solution of integral mass and heat balance 

equations for each of these volumes. In fact, such models are tuned on specific experimental data sets 

and are not reliable outside their validation range. More recently, some authors have indicated CFD as a 

promising tool to improve modelling capabilities. However, work done using this approach is still limited.  

In this thesis, a new CFD model was set up in order to overcome the above-mentioned limitations. Its 

prediction capabilities are tested comparing simulations results with experimental measurements form 

numerous fire tests. 
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 Section 2 – Experimental tests 
This section presents an overview of the experimental apparatus and the analysis of the more relevant 

results collected during the fire tests carried out in 2016 and 2017 at the Federal Institute for Materials 

Research and Testing (BAM) of Berlin (Germany). These formed an integral part of the PhD research 

program. 

The detailed description of the experimental apparatus and the analysis of the test results are extensively 

described in the PhD thesis of Ian Bradley, from the of University of Edinburgh (Scotland). 
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Chapter 3  Experimental campaign 

Since the early sixties, numerous field studies and laboratory scale tests were carried out on pressurized 

tanks (see Chapter 1) in order to simulate fire impingement conditions. This improved knowledge of the 

physical phenomena characterizing such scenario and provided important information for the safer 

design and management of vessels devoted to storage and transportation of hazardous materials.  

Although significant steps have been taken towards a better understanding of tanks response to fire 

exposure, some of the most important processes related to the inner fluid behavior are still not well 

characterized. In particular, velocity fields, temperature distribution and boundary layer formation were 

never the object of detailed investigation, as documented in the literature review shown in Chapter 1. 

These aspects are critical for the development and validation of advanced modelling tools, such as 

computational fluid dynamic (CFD), aimed at predicting vessel pressurization rate, time to failure and to 

support detailed safety and external emergency studies.  

Therefore, in order to overcome the limitations of previous experimental approaches, an innovative fire 

test set-up was built for characterization of the key aspects mentioned above. The experimental apparatus 

was designed by a PhD student (Ian Bradley) from the University of Edinburgh (Scotland) [53] and 

consists of a 1/3 real scale transportation tank, extensively instrumented with thermocouples, pressure 

transducers, and video recording devices. Moreover, instrumentation for Particle Image Velocimetry 

(PIV) measurements was also set up. The tests were performed at the BAM technical safety test site [54], 

in the state of Brandenburg, Germany. One of the main advantages of this facility is the large degree of 

flexibility, both in the size of objects it can test and the fire configurations that can be developed.  

The fire conditions, heated area, test fluid and filling degree can be varied among tests in order to 

investigate the influence of these parameters on the thermal and velocity profile in the tank lading. Initial 

tests were carried out using water and ethanol as test fluids. Minor modifications to the experimental 

apparatus will allow, in the near future, to adopt liquid butane as the test fluid. 

In this Chapter, the main characteristics of the experimental set up are described. Furthermore, the most 

relevant results obtained during fire tests using water and ethanol, in terms of pressurization curves and 

temperature profiles, are presented4 and discussed. These represent a rich set of information for the 

validation of the modelling work (see Chapter 5). Preliminary results of PIV are also shown. 

Finally, limitation and suggestion of improvements to take into account in the planning of future tests 

are pointed out.  

 

 

  

                                                 
 

4 The detailed description of the experimental apparatus and the analysis of the test results are extensively described in the 

PhD thesis of Ian Bradley, from the of University of Edinburgh (Scotland). 
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3.1 The experimental apparatus 

3.1.1 The test tank 

The apparatus consists of a 1.016 m outer diameter carbon steel vessel with a total volume of 2.6 m3 (see 

Figure 16a) [53]. The ends of the tank are 2:1 semi-elliptical heads and the vessel wall thickness 7.4 mm. 

The tank was designed so that it can be opened in two parts: the “test end”, with a volume of 1.9 m3, and 

the “camera end”, with a volume of 0.7 m3. The two ends are separated by a sheet of 19 mm toughened 

low-iron glass. This is held in place between two flanges (as shown in Figure 16b), using a solid-state 

gasket to allow pressurization of the vessel up to 5 bar (tests reaching higher pressures have not been 

performed yet). 

  

Figure 16: Picture of the tank used for the fire tests. Closed tank before glass window was put in place (a) and opened 
tank with the glass window in place (b). 

During the experiments, the test end is engulfed in fire generated through a low speed burner array, 

fueled by liquid propane to reproduce an engulfing pool fire scenario. This end is instrumented with wall 

and lading thermocouples and pressure transducers. A custom-built pressure compensation system is 

implemented to equalize the pressure in the two ends, in order to preserve the integrity of the glass 

window during pressurization and depressurization. The test end has manual and remotely operated vent 

valves. A schematic diagram of the equipment is shown in Figure 17. A differential pressure transducer 

“Test end”

“Camera end”

Glass window

a)

b)
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compares the pressure in the test and the camera ends. When the pressure in the test hand increases, the 

system opens a valve connected to a compressed air tank to compensate this increment. Likewise, when 

the test end is vented, the venting valve connected to the camera end is opened as well.  

 

Figure 17: A schematic representation of the experimental apparatus (original Picture from [53]). 

3.1.2 The fire setup 

The fire was generated through a low speed burners array, fueled by liquid propane (see Figure 18). Work 

was undertaken to characterize the fire throughout the commissioning tests using directional flame 

thermometers, a water-cooled calorimeter and infra-red thermography.  

 

Figure 18: Fire setup of the first (a) and the second (b) test series. 

In the first series of tests the burners, consisting of 56 nozzles, were positioned at the bottom of the tank 

as shown in (Figure 18a). The fuel flow rate was 133 g per nozzle per minute corresponding to a total 

flow rate of 450 kg/h. The fire setup was changed for the second series of tests. Here, two arrays with 5 

nozzles each were positioned parallel to the tank at a distance of around 2 m from the tank wall (Figure 

18b). More severe fire conditions were achieved using a flow rates varying between 1000 and 1200 kg/h 

(see Table 7). 

a) b)
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3.1.3 Thermocouple positioning 

The thermocouples inside the tank are positioned at various distances from the wall and distributed on 

several measurement lines as showed in Figure 19. Most of the thermocouples are hold in place by 

(yellow) steel strips departing from the tank center (Figure 19a and b). 

 

Figure 19: Thermocouple positions in the test end: pictures taken inside the test end: yellow stripes holding the 
thermocouples (a) and zoom in the near wall region (b); schematic representation of the thermocouple positioning (c).  

Station A Station B

BA

Symble Thickness Wall distance (mm)

1
in the wall

(only for test series 2)

1 in contact

1 3

1 6

1 11

1 20

1 2

1 4

1 7

1 11

1.5 30, 50, 100, 200, 300 

a) b)

c)
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Figure 19c reports a detailed representation of the thermocouple positions. There are two measurement 

stations, A and B, at 1 and 0.5 m from the glass respectively. Each of them consists of several steel stripes 

departing radially from the center of the tank. An angular distance of 22.5° is present between two 

adjacent stripes. Type K thermocouples were used. Those indicated by black circles in Figure 19c have a 

thickness of 1.5 mm, while the others are 1 mm thick. Most thermocouples are in the proximity of the 

wall (see Figure 19c), in order to characterize the thermal boundary layer and thermal stratification of the 

liquid phase. Thermocouples indicated with a red void circle are in contact with the wall (e.g. the first 

thermocouple on the right in Figure 19b). After the first series of tests, in order to obtain better 

measurements of the wall temperatures, small holes were drilled in the tank shell and 1 mm 

thermocouples were put directly inside these holes. These are indicated by red full circles in Figure 19c. 

Furthermore, measurements station B was removed in this test series. Directional flame thermometers 

are installed on the external wall to measure fire conditions.  

3.1.4 The camera end 

Cameras positioned in the camera end record the behavior of the fluid in the test end. They provide 

visual information about both the boiling occurring close to the wall and the flow field. An example of 

what can be observed by the cameras is the picture in Figure 20, showing the tank partially filled with 

water. The cameras can zoom in and out in. Adequate lighting was provided by a set of four LEDs 

pushed directly against the glass in order to limit reflection. 

 

Figure 20: Picture taken from the camera end looking through the glass. The liquid surface is clearly visible. 
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3.1.5 PIV setup 

In the second series of fire tests, a PIV apparatus was setup with the aim of capturing the flow field inside 

the tank. Figure 21 shows a schematic representation of the PIV setup.  

 

Figure 21: Overview of the PIV instrumentation setup. 

A 2 W class 4 green laser (Model MGL-F-532-2W) was hosted in the camera end. Two cylindrical lenses 

were positioned in front of it. In this way, the laser beam is transformed to a sheet that passes thorough 

the wall. The laser sheet is deviated parallel to the glass by a mirror fixed at the tank wall in the test end 

at about 80 cm from the glass and inclined by 45°. The water in the test end is seeded with silver coated 

hollow ceramic microspheres having an average size of 80 μm and a density close to that of water. 

Pictures are captured by two cameras: 

- FLIR Flea3 FL3-U3-20E4M-C, 2 MP, 59 fps, 1600 x 1200 resolution 

- FLIR Flea3 FL3-U3-32S2M-CS 3.2 MP, 60 fps, 2080 x 1552 resolution 

During each test, several sequences of images were generated, at different times after fire ignition. Within 

a sequence, images were captured with a frequency of 10 Hz.  The size of the interrogation area varied 

from test to test. 
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3.2 Test list 

The apparatus setup started in May 2016 and preliminary tests (not presented here) were performed in 

order get familiarity with the experimental environment. Apart from these, two series of tests were 

performed. Test series I and II, summarized in Table 6 and Table 7 respectively. The first one, consisting 

of the 12, was carried out between August and September 2016. The 10 tests relative to series II were 

performed during May 2017. 

Table 6: Summary of test series I. 

TEST DATE 
TEST 

FLUID 
FILL 

Radiation shield 

in place 

Test duration 

(min) 
NOTES 

1 31.8.16 Water 95% NO - New LEDs installed 

2 31.8.16 Water 95% NO -   

3 01.9.16 Water 92% YES -   

4 01.9.16 Water 92% YES - Repeat of Test 3 

5 20.9.16 Water 95% YES 8 

First test with both 

DAQ systems 

functional 

6 26.9.16 Water 75% YES 12  

7 26.9.16 Water 50% YES 12  

8 27.9.16 Water 50% YES 9 Small leak 

9 27.9.16 Ethanol 50% YES 6 Small leak 

10 28.9.16 Ethanol 50% NO 4   

11 29.9.16 Ethanol 50% NO 3 Repeat of Test 10 

12 30.9.16 Ethanol 50% YES 9 Repeat of Test 9 

 

The first five tests of series I were carried out in order to achieve the desired fire conditions, check the 

instrumentation and define test procedure. Measurements recorded during these tests were not analyzed 

in detail. On the other hand, tests from 5 and 12 represent the first source of valuable data. 

In all the 12 tests, only a fraction of the tank surface was exposed to fire as depicted in Figure 22. The 

test end was coated with insulation, except for a 1 m wide patch. With the only exception of tests 10 and 

11, the upper part of the tank (corresponding to the vapor space) was covered by ana steel sheet. This 

created a radiation shield with the aim of limiting the steel temperature and delay the thermal weakening 

of the wall region in contact with the vapor space. This allowed tests of longer duration and preserved 

the integrity of the apparatus. 

For the first eight tests, the tank was filled with water, with different filling percentage (50 %, 75 % and 

95 %). Commercial ethanol was used in the last four tests.  
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Figure 22: Picture of the experimental apparatus. The black patch corresponds to the bare tank wall. The aluminum 
sheet is visible on top of the tank. 

In test series II, the attention focused at collecting data for Particle Image Velocimetry (PIV) analysis. In 

all the tests the vent valve of the test end was left open so that the tank did not pressurize. This choice 

was made in order to preserve the laser. PIV measurements under pressure will be the object of future 

experiments.  

Table 7: Summary of test series II. 

TEST R DATE  
FUEL FLOW 

RATE (kg/h) 
FILL 

PIV DATA SUITABLE 

FOR ANALYSIS 
NOTES 

13 11.5.17 1000 72% No  

14 11.5.17 1000 72% No  

15 15.5.17  1200 72% Fly 1  

16 15.5.17  1000 72% Fly 1 & 2  

17 17.5.17  1000 60%  Poor fire engulfment 

18 17.5.17  1200 60% Fly 1 
Water re-used – poor 

clarity 

19 17.5.17  1200 96% Fly 1 & 2  

20 17.5.17  1000 96%  
Alternated LEDs and 

laser 

21 18.5.17  1200 62%   

22 19.5.17  1200 96% Fly 1 Water degassed 
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3.3 Test results 

In this section, the main results are presented and briefly discussed. The aim is to provide an overview 

the typology of data that the experimental apparatus can provide and highlight the main findings.  

Some of the data will be used for comparison with the results obtained in Chapter 5, where the modelling 

of water tanks exposed to fire is addressed. 

3.3.1 Pressure data 

Figure 23 shows the pressure curves from water (5 to 8) and ethanol (9 to 12) tests.  

 

Figure 23: Pressure curves for water (a) and ethanol (b) tests. 

Considering the water tests (Figure 23a), the pressure rise was faster in the case with the higher filling 

degree (95 %). On the other hand, results relative the other three tests are very similar to one another, 

showing no influence of the filling level on the pressurization. The large difference between Test 5 and 

the other water tests has two explanations: it takes very short time for the small amount of gas in this test 

to get hot and, therefore, start pressurizing the tank. At the same time, the amount of vapor moles added 

to the ullage due to bubble forming in the liquid has a stronger effect when the gas space volume is 

smaller. 

From the comparison between of Test 7 (and 8) and Test 9, it can be noted how the pressurization rate 

obtained in the case involving ethanol (Figure 23b) is higher. This due to the higher volatility of this 

alcohol with respect to water. The difference between Test 9 and Test 12 is due to the fact that, at the 

beginning of the latter test, the tank and its contents had not completely cooled down after a previous 

test. 

As expected, the pressure built up faster when the radiation shield was removed (Test 10 and 11). It is 

interesting to note how, in these two cases, the pressure curves are very close to each other, proving that 

the experimental apparatus ensure a good data repeatability. 
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3.3.2 Temperature data 

As highlighted in the analysis of previous fire tests found in literature (see Chapter 1), tank pressurization 

is strongly affected by the free convective layer that develops close to the wall. Therefore, the detailed 

characterization of the fluid behavior in the near wall region was among the key objectives of the entire 

experimental campaign. Figure 24 shows the wall temperature as a function of time measured during Test 

22 by the thermocouples positioned into the wall. It is interesting to note how, after a short time from 

the fire ignition, the temperature of most of the wall stabilized close to the saturation temperature of 

water at atmospheric pressure (100 °C). This clearly indicates that boiling was occurring at the wall.  

The lower temperature registered by thermocouples T 49, T 101 and T 102 was most probably due to 

not perfect engulfment in the bottom right side of the tank. 

 

Figure 24: Wall temperatures as a function of time for Test 22. 

In order to provide experimental evidence of the thermal boundary layer, Figure 25 shows the 

temperature profile on the section at 135° from the vertical line. The data is plotted as a function of the 

wall distance, at different intervals of times from fire ignition. The temperature drops quickly within the 

first 2-3 mm. The thermal gradient in the radial direction is steep and confined to very small region close 

to the wall. Moving further towards the center of the tank, the temperature variation (in space) becomes 

negligible. Figure 26 shows how the bulk temperature rise was very slow. On the contrary, in the near 

wall region, the temperature increased quickly (and almost linearly) for the first 50 s. Then, boiling started, 

keeping the wall at a temperature slightly above 100 °C. This behavior was captured by the thermocouple 

positioned into the wall, which registered a small degree of superheating (around 5 °C), and is typical of 

asubcooled boiling regime. On the other hand, the thermocouple just touching the wall registered a value 

which is a sort of average between the steel and the liquid bulk temperatures. This is due to the fact that 

the thermocouple diameter (1 mm) was comparable with the thickness of the thermal boundary layer (2-

3 mm).  
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It is interesting to note how the noise visible in the temperature curves decreases moving from the wall 

to the liquid bulk. This is explained by considering the instability in the flow field due to periodic creation 

and destruction of small eddies. Far from the wall, where the liquid is almost motionless, the temperature 

curve (green curve) is smooth. 

 

Figure 25: Temperature profile as a function of wall distance on the section at 135° from the vertical for Test 22 at 
different intervals of time.  

 

Figure 26: Temperature profile as a function of time on the section at 135° from the vertical for Test 22 at different wall 
distances. The red line represent thermocouple in the wall. The blue one refers to the thermocouple touching the wall. 
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The pressure increase determines an increase in the saturation temperature. Therefore, in those tests 

where tank was allowed to pressurize (all the tests in series I), the temperature at the wall did not remain 

constant, but followed the saturation temperature corresponding to the pressure of the tank. This is 

clearly visible in Figure 27a and b, relative to Test 5 (water, 95 % filling) and Test 12 (Ethanol, 55 % 

filling). The plots compare the saturation temperature (red curve) evaluated at the tank pressure, with 

measurements from thermocouples in contact with the wall5. Once the wall is hot enough to determine 

the onset of boiling, the temperature curve slope suddenly changes. From this point on, the temperature 

rise is dictated by the increase of the saturation temperature. The same behavior was observed in all the 

tests of series I. 

 

Figure 27: Temperature profiles as a function of time relative different thermocouples touching the wall for Test 5 (a) and 
Test 12 (b). The saturation temperature T*(P) corresponding to the pressure in the tank is indicated by the red line. 

 

 

  

                                                 
 

5 In series I there was no thermocouple positioned in holes drilled into the wall 
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Another important aspect captured during the experiment is the phenomenon of thermal stratification. 

The warm liquid rising parallel to the wall region accumulates close to the free-surface, determining a 

vertical thermal gradient. This is clearly visible in Figure 28 that considers data relative to the 

thermocouples positioned along the vertical centerline for Test 5 (95 % filling) and Test 8 (50 % filling). 

 

Figure 28: Temperature as a function of time on the vertical center-line for Test 5 (a) and Test 8 (b). Temperature 
profiles along the vertical center-line as a function of the vertical coordinate at different instants of time for Test 5 (a) and 

Test 8 (b).  

The temperature rise is almost linear for all the thermocouples. The thermal gradient is steeper near the 

liquid surface (Figure 28c) and increases with time. At the bottom of the tank, the flow is unstable 

generating the noisy temperature signal of thermocouples T 40 and T 41 in Figure 28b.  
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3.3.3 PIV results 

In this section, the results relative to the PIV analysis of the data collected during Test 22 are reported. 

This was carried out using a software developed by DANTEC DYNAMIC. The interrogation area was 

set at 16 x 16 pixels with a 50% overlap resulting in 7326 vectors for each image. Each image was 591 

mm wide and 440 mm high. 

Figure 29 shows the vector velocity plots for Test 22 at different instants of time after fire ignition. The 

plots were obtained from the average of the instantaneous velocity values over 1 s from the time indicated 

in each panel (e.g. panel (a) refers to the average velocity plot between 101 and 102 s after fire ignition). 

It shall be noted that it took several seconds for the fire to develop and fully engulf the tank.  

 

Figure 29: Vector velocity plots for Test 22 after 101 s (a), 67 s (b) and 139 s (c) from the fire ignition. 

In the early moments of the test, the water motion is very slow and chaotic, with a null average velocity. 

This is clearly visible in Figure 29b. As the liquid near the wall starts heating, a free convective layer forms 

(Figure 29a). Here, the vectors run parallel to the wall. However, the flow is unstable. Eddies form 

periodically and depart towards the tank center. The flow in the bulk remains chaotic. The thickness of 

a) 101 s

LINE 1

LINE 2

LINE 3

c) 139 sb) 67 s
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the free convective layer appears to increase with time, as can be seen comparing Figure 29a and Figure 

29c. 

Figure 30 reports the profiles of the vertical component of the velocity at different instants of time along 

the lines highlighted in Figure 29a.  

 

Figure 30: Vertical velocity as a function of the wall distance at different instants of time along the lines highlighted in 
Figure 29a. 

In all three panels it is possible to recognize the behavior described above. The vertical velocity after 67 

s is close to zero everywhere. The free convective layer visible after 101 and 139 s is confined within the 

first 10 cm from the wall, with maximum velocity close to 0.05 m/s. Going towards the center of the 

tank, the profiles flatten, oscillating in the range of ± 0.01 m/s.  
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Unfortunately, data are not available for the first 2-3 cm from the wall. In this region, the light scattering 

due to wall reflection compromises the quality of the images. This phenomenon is clearly visible in Figure 

31. 

 

Figure 31: Picture captured during Test 22 for PIV analysis. The light reflection at the wall is well visible and gets wider 
with time. 

As can be seen from the comparison of Figure 31a and b, the area affected by light scattering increases 

with the time. Furthermore, the image contrast decreases and the particles become less visible. This 

compromise the accuracy of the PIV analysis  

Due to the lack of data in the first few centimeters from the wall, a proper characterization of the velocity 

field in the free convective layer could not be achieved. In future tests, this problem could be avoided by 

using fluorescent particles to shift the light wavelength, combined with camera filters. 

  

b) 172 sa) 101 s
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3.3.4 Calculation of the net evaporation rate 

When a tank is exposed to fire, the pressure build-up can be thought of as the consequence of two 

synergic phenomena. On one hand, there is the temperature rise of the gas phase, which can be 

considered as confined in a (almost) constant volume. On the other, the evaporation of the liquid 

increases the number of moles of the gas phase itself. In order to better understand the vessel response 

to fire attack and to provide valuable data to support modelling, it is useful to find a way to measure the 

contribution of each of one of these phenomena.  

Figure 32 represents a schematization of the cylindrical tank used during the fire tests presented above. 

The shaded region refers to the volume occupied by water (in this case, this represent the 50 % of the 

total volume). 

 

Figure 32: Schematic representation of the tank used in the fire tests. 

Considering the ideal gas law and assuming that the pressure is the same everywhere in the volume under 

analysis (this is certainly a valid assumption in a tank exposed to fire before PRV opening), the pressure 

in the volume (V) can be expressed as according to Eq. 3.1. 

𝑝 =
𝑛𝑅

∫
1
𝑇𝑉
𝑑𝑉

 (Eq. 3.1) 

𝑝(𝑡) =
𝑛(𝑡)𝑅

∫
1

𝑇(𝑡, 𝑥, 𝑦, 𝑧)𝑉
𝑑𝑉

 (Eq. 3.2) 

 

For a transient problem, Eq. 3.1 can be re-written yielding Eq. 3.2. This expresses in a mathematical form 

what has been mentioned above: the pressure inside a vessel exposed to fire increases due to the 

temperature rise and the increase of the number of moles in the gas phase.  

δ(y)

L0

r

y

dy
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At this point, it is possible to define a “no-boiling” pressure pNB according to Eq. 3.3. This coincides with 

the pressure in the volume V when the number of moles remains constant. Therefore, pNB represents the 

contribution of the heat entering the vapor space. On the other hand, subtracting pNB to the pressure (p) 

measured during fire tests, it is possible to quantify the effect of boiling, represented by the pressure pB 

(Eq. 3.4).  

𝑝𝑁𝐵(𝑡) =
𝑛0𝑅

∫
1

𝑇(𝑡, 𝑥, 𝑦, 𝑧)𝑉
𝑑𝑉

=
𝑝0𝑉

𝑇0 ∫
1

𝑇(𝑡, 𝑥, 𝑦, 𝑧)𝑉
𝑑𝑉

 
(Eq. 3.3) 

𝑝𝐵(𝑡) =  𝑝(𝑡) − 𝑝𝑁𝐵(𝑡) (Eq. 3.4) 

The problem with this approach is that, in order to calculate pNB (and therefore pB), it is necessary to know 

the temperature distribution over the entire volume of the vapor space. Unfortunately, despite the 

numerous thermocouples installed inside the vessel, it is not possible to obtain a detailed temperature 

field that can be used to obtain the pressure pNB from Eq. 3.3. 

A solution to this problem can be found from the observation of the results obtained in CFD simulation 

of a 50 % full of water tank exposed to fire (details on this simulation will be given in Chapter 5). As an 

example, Figure 33 shows the temperature contour plot after 180 s of simulation.  

 

Figure 33: Temperature contour plot after 180 s of simulation for a tank 50 % full of water engulfed in fire (50%_100 
kW/m2 case defined in Chapter 5). 

It is possible to note how the vapor space (the upper half of the tank, above the white dotted line) is 

thermally stratified. The temperature variation in the vertical direction is well visible. On the other hand, 

the horizontal component of the temperature gradient is very low in most of the gas domain (excluding 

the near wall region). The same result has been found in other simulations that will be presented in 
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Section 3, regardless of the filling degree, the heat flux and the fluid contained in the tank (and even when 

the fire condition is not symmetric with respect to the vertical center-line of the tank). 

If the result obtained using the CFD model was correct, it would allow the temperature distribution to 

be expressed as a function of the time and the y-coordinate only. 

Data from thermocouples placed along the vertical center-line of the tank are available from tests. As an 

example, Figure 34 shows the temperature profiles in the gas space as a function of the distance from the 

tank center at different instants of time for Test 7 (water, 50 % filling). Note that the first thermocouple 

(Y = 0) is just above the liquid surface (i.e. it is not wetted by the water) and the last one (Y = 0.508 m) 

touches the steel wall. 

 

Figure 34: the temperature profiles in the gas space as a function of the distance from the tank center at different instants 
of time for Test 7 

The profiles in Figure 34 are regular, showing that the gas phase is strongly stratified. Regardless of the 

time considered, the temperature always increases with the y-coordinate. The same behavior was 

registered in for all the tests listed in Table 6. This qualitatively confirms what observed in the CFD 

temperature contour plot (Figure 33).  

At this point, data from thermocouples on other measurement sections have to be considered. 

Measurement sections with at an angle of 22.5° and 45° with respect to the horizontal center-line are 

taken into account and, for each of them, thermocouples positioned at 100, 200 and 300 mm from the 

tank wall are selected. Data from these thermocouples are compared with the vertical temperature 

profiles. As an example, Figure 35 shows the results of this comparison at 200, 400, 600 and 800 s for 

Test 7. Both the blue (section at 22.5°) and the black (section at 45°) circles fall close to the red dotted 

line, representing the linear interpolation between the temperature registered by two adjacent 

thermocouples on the vertical line. This result suggests that, at least in this case, the hypothesis that the 

temperature in the vapor space is uniform in the horizontal direction represents an acceptable 

approximation. In order to assess if this assumption is generally valid, the comparison showed in Figure 

35 has to be repeated for all the tests under analysis, considering not just four instants of time, but the 

entire duration of these tests. It is clear that a direct comparison would be unfeasible.  

y

y = 0.5

y= 0
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Figure 35: Comparison among the thermocouples in the vertical measurement section (red circles) and those positioned at 
an angle of 22.5° (blue circles) and 45° (black circles) with respect to the horizontal center-line at different instants of 

time, for Test 7 

In 1991 Hanna and coworkers [55] proposed a method able to provide information on the predictive 

performance of a model when the modelling results have to be compared with numerous experimental 

data. This method is based on the calculation of the geometric mean bias MG (Eq. .35) and the geometric 

variance VG (Eq. 3.6) of the measured and predicted values (the over-bars indicate that an average is 

performed over all the six thermocouples considered and over the entire duration of the fire test).  

𝑀𝐺 = 𝑒𝑥𝑝 [𝑙𝑛(𝑇𝑒𝑥𝑝)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑙𝑛(𝑇𝑚𝑜𝑑)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] = 𝑒𝑥𝑝 [𝑙𝑛 (

𝑇𝑒𝑥𝑝

𝑇𝑚𝑜𝑑
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
] (Eq. 3.5) 

𝑉𝐺 =  𝑒𝑥𝑝 [(𝑙𝑛(𝑇𝑒𝑥𝑝) − 𝑙𝑛(𝑇𝑚𝑜𝑑))
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
] = 𝑒𝑥𝑝 [(𝑙𝑛 (

𝑇𝑒𝑥𝑝

𝑇𝑚𝑜𝑑
))

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

] (Eq. 3.6) 

𝑙𝑛(𝑉𝐺) = (𝑙𝑛(𝑀𝐺))
2
 (Eq. 3.7) 

a) 200 s b) 400 s

c) 600 s d) 800 s
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Good model performance is achieved when both MG and VG are close to unity. For a systematic 

performance assessment, VG values may be plotted versus the corresponding MG values for each data 

set and may be compared to the reference parabola (in log-log coordinate) described by Eq. 3.7. As 

pointed out by Landucci and co-workers [56] Eq. 3.5 and 3.6 represents the correlation among VG and 

MG values in a model having only a mean bias with respect to experimental data (that is, a model in 

which the ratio Texp/Tmod is nearly constant), but showing no systematic deviations. Thus, models having 

a good performance and showing no systematic deviations are characterized by VG values that fall on or 

above the correlation curve given by Eq. 3.7 .  

In the case considered here, the analysis was carried out on the temperature registered by the 

thermocouples positioned on the sections at 22.5° and 45° (i.e. the blue and black circles in Figure 35). 

For each of these thermocouples, the estimated temperature (Tmod) is calculated by linear interpolation of 

the vertical temperature profile obtained from the thermocouples positioned in the vertical measurement 

section. On the other hand, the experimental values (Texp) refers to the temperatures actually measured. 

Figure 36 shows an example of measured and modelled temperature, indicated by circles and squares 

respectively. 

 

Figure 36: Comparison between values obtained for Tmod (squares) and experimental temperature Texp (cirles) for Test 7 
after 600 s. The vertical temperature profile is reported as reference. 

The analysis described above was carried out considering the tests from 7 to 12 in Table 6. These are all 

the tests of Series I in which the gas space occupied half of the tank volume. However, in the cases where 

the tank was filled with ethanol (tests from 9 to 12) the thermocouple at the center of the vessel was 

slightly below the liquid surface. As a consequence, it measured a lower temperature with respect to the 

water cases, providing data that could not be used in this analysis. Therefore, it was decided to replace it 

with values estimated by linear extrapolation from the temperatures measured by the two thermocouples 

positioned at 200 and 300 mm above the liquid-vapor interface. Looking at the thermal profiles showed 

in Figure 34, it can be concluded that this approach is reasonable. 
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The results of the analysis are reported in Figure 37. For all the cases, the value of MG and VG are close 

to unity. Furthermore, all the points fall above (and in the proximity of) the reference curve. Less accurate 

estimations were obtained for the water cases (Test 7 and Test 8). 

 

Figure 37: Results of the analysis proposed by Hanna and coauthors [55] on tests from 7 to 12. 

The analysis carried out provided convincing evidences supporting the hypothesis that the temperature 

in the vapor space is uniform in the horizontal direction. This allows the temperature dependence to be 

eliminated from the x and z coordinates. Therefore, considering also the geometry of the problem 

depicted in Figure 32 (i.e. recognizing that dV=δ(y) L dy), Eq. 3.3 can be rearranged yielding Eq. 3.8.  

 

𝑝𝑁𝐵(𝑡) =
𝑛0𝑅

𝐿
(∫

𝛿(𝑦)

𝑇(𝑡, 𝑦)

𝑟

0

𝑑𝑦)

−1

 (Eq. 3.8) 

𝑛𝐸𝑉 =  𝑛(𝑡) − 𝑛0 =
𝑝𝑒𝑥𝑝(𝑡)𝐿

𝑅
∫

𝛿(𝑦)

𝑇(𝑡, 𝑦)

𝑟

0

𝑑𝑦 −
𝑝0𝑉

𝑅𝑇0
= 𝑛0 (

𝑝𝑒𝑥𝑝(𝑡)

𝑝𝑁𝐵(𝑡)
− 1) (Eq. 3.9) 

 

At the same time, manipulating Eq. 3.4, it is possible to calculate the number of moles evaporated nEV as 

e function of time (Eq. 3.9). 

At this point it is possible to calculate the pressure pNB to analyze the contribution that the increase of 

the vapor temperature has on the tank pressurization. Figure 38 compares the measured pressure (red 

curves) with the pressure pNB (blue curves) for the tests from 7 to 12.  
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Figure 38: Comparison between the measured pressure P (red curves) with the pressure PNB (blue curves) for the tests from 
7 to 12.  
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Considering the cases in which the tank was filled with water (Figure 38a and b), the two curves are 

almost coincident for the first 600 s, indicating that the effect of boiling on the pressure build up is 

negligible. At this point, in Test 7, the slope of the blue curve starts decreasing (this is due to the fact that 

the heat flux to the vapor space becomes lower and lower as the temperature increase) and seems to start 

tending to a constant value. On the other hand, the pressure in the tank keeps rising at a rate which is 

almost constant. This means that the contribution of boiling becomes important and capable of 

compensating the decrease of the pressure pNB. Unfortunately, this behavior cannot be observed in Test 

8 because this was ended exactly after 600 s. It must be noted that the delay with which the boiling effect 

becomes visible was most probably increased by the fact that, in these tests (all the tests of Series I) 

almost half of the test end was protected by insulation. Therefore, in the first part of the tests, part of the 

vapor formed in the portion directly exposed to fire was condensing along the cold part of the wall. 

Analyzing the tests involving ethanol and, in particular, considering the cases where the upper part of the 

tank was covered by the radiation shield (Tests 9 and 12), it can be noted how the blue curve follow the 

same behavior observed in Test 7. After a short time after the fire ignition, it starts following an almost 

linear dynamic. Then, around 500 s, its slope decreases. In contrast with the water cases, the measured 

pressure and the pNB start diverging since the beginning of the tests. This can be explained considering 

the higher volatility of ethanol with respect to water. 

The results for the tests where the radiation shield was removed (Test 10 and 11) feature a different and 

unexpected behavior. This may be due to the fact that, in both cases, it took a while for the fire to proper 

develop and fully engulf the tank. For this reason, the results related to these tests are not further analyzed.  

At this point, using Eq. 3.9, the number of evaporated moles are calculated. It must be taken in mind 

that the aim of this analysis is to provide an estimation of the evaporation rate, useful to be compared 

with the results obtained with the CFD models presented in the next section (Section 3). 

Figure 39 shows the number of evaporated moles obtained for the water tests (Test 7 and 8). 

 

Figure 39: Number of evaporated moles as a function of time for Test 7 and 8, calculated using Eq. 3.9.  
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The red curve, relative to Test 7, shows that the number of moles in the gas space remains constant for 

the first 500 s. Then, due to evaporation, it starts increasing at constant rate of around 0.034 mol/s. The 

strange behavior showed by the blue curve (Test 8) is due to the fact that Eq. 3.9 is very sensitive to 

pressure changes. In practice, the number of moles in the gas space can be considered constant for this 

case. 

Figure 40 shows the results relative to the ethanol tests (only Test 9 and 12 are considered here). For the 

first 250 s, the two curves are almost coincident. Then, the curve relative to Test 12 (blue) starts rising 

slightly faster than the other one. In the last part of Test 12, the slope of the curve increases again. In 

both cases, the number of evaporated moles is higher with respect to the water tests analyzed above. 

Unfortunately, in contrast with Test 7, it is not possible to obtain a unique value for the evaporation 

flowrate. For what concerns Tests 12, this is around 0.015 mol/s for the first 500 s, increasing up to 

around 0.044 mol/s in the last part. Finally, a net evaporation rate of around 0.027 mol/s is observed in 

the last 300 s of Test 9. 

 

Figure 40: Number of evaporated moles as a function of time for Test 9 and 12, calculated using Eq. 3.9. 
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3.4 Concluding remarks related to the experimental activity 

The results presented in this chapter show that the experimental apparatus represents a source of valuable 

data both for an increased understanding of the vessel response to fire exposure and for the development 

of predictive models.  

Important information was gained about the thermal boundary layer thickness. The phenomenon of 

thermal stratification has been observed both in the liquid and the vapor space. The experimental results, 

in terms of pressurization rate and temperature profiles are repeatable. Furthermore, they are consistent 

throughout the test series. This is especially due to the preliminary fire characterization activity, that 

allowed to achieve very similar fire conditions from test to test. However, it must be pointed out that in 

some tests the fire had some difficulty in developing fully and that, due to the presence of wind, a good 

and symmetric engulfment was not achieved. In future tests, particular attention shall be given to these 

aspects, in order to always ensure stable and repeatable fire conditions. 

For what concerns the drawback of the experimental activity, it is important to point out how the short 

duration of the tests did not allow for a good characterization of the pressurization. The estimation of 

the evaporation rate, as well as the CFD study presented in Chapter 5, show that the pressure build-up 

is not driven by boiling in the first minutes of the test.  

Another important point is the fact that, in test series I, only a portion of the tank was directly engulfed 

in fire (as showed in Figure 18a). For this reason, while boiling was occurring in the region under fire 

attack, part of the vapor produced was condensing along the cold wall in the not engulfed part. This has 

a strong influence on the pressurization rate, reducing the contribution of evaporation on the pressure 

build up. Furthermore, from the point of view of modelling, this makes the experimental results hardly 

(if not impossible) to reproduce using the 2D assumption. Moreover, the presence of the radiation shield 

(with the only exception of Test 10 and 11) complicates the task of defining a boundary condition that 

properly describe the actual heat load to the tank wall. Unfortunately, in test series II, carried out using 

mode severe fire conditions and fully engulfing the tank (with no radiation shield), no test was performed 

in which the tank was allowed to pressurize (the PRV was left open). For this reason, pressurization data 

with more appropriate fire conditions was not collected. Therefore, in order to obtain pressurization 

curves representative of a real fire scenario, tests of longer duration (at least 15 min) than those of series 

I and with fire conditions and exposure modes considered for series II must be carried out. 

For what concerns the investigation of the velocity field, the results obtained through PIV analysis shall 

be considered suitable only for preliminary considerations. The lack of data in the first few centimeters 

from the wall did not allow for a proper characterization of the free convective layer. Therefore, the use 

fluorescent particles to shift light wavelength, combined with camera filters is recommended for future 

tests. This appears to be a suitable solution to avoid the strong light reflection at the wall.  

Finally, it shall be considered that the flexibility offered by the test facility and the apparatus itself, in 

terms of generating different fire scenario, exposure modes, testing different thermal protection systems 

(both presenting defects or not) as well as the possibility of performing tests using liquid butane have not 

been fully exploited yet and may constitute relevant elements of improvement.  
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 Section 3 – Modelling 
This section deals with the CFD modelling of the thermal and fluid-dynamic response of vessels exposed 

to fire. Provided the appropriate boundary and initial conditions, the CFD software solves the governing 

equations for mass, momentum and energy throughout the problem domain. As explained in the next 

paragraphs, two additional equations for the conservation of the turbulence kinetic energy and dissipation 

rate are also included. In the present work, all the simulations were carried out considering a 2D vertical 

(and perpendicular to the axial direction – see Figure 43a) section of cylindrical tank positioned 

horizontally. This choice saves computational time, however, it limits the analysis to those cases where 

the fire load can be considered approximately uniform along the axis of the tank. This assumption is valid 

for full engulfing pool fires. On the contrary, it is not applicable when only part of the tank is exposed 

to fire attack. This is the case, for instance, in jet-fire scenarios. Furthermore, the 2D assumption excludes 

the possibility of reproducing what happens in the vessel after the PRV opens. Therefore, in all the 

simulations, only the period going from the fire ignition to the first PRV opening was considered. 

In the first part of this section (Chapter 4), fire scenarios involving LPG tanks are considered. Together 

with other liquefied gases (such as propylene, butadiene, LNG etc.) LPG has a strategic importance in 

the process industry. At the same time, past accident analysis has showed how the transportation and 

storage of such materials represent a critical safety issue. Growing concerns in this field are testified by 

the numerous studies presented in Section 1. Therefore, it is clear that the characterization of accidental 

scenarios involving LPG (as well as similar compounds) tanks is of utmost importance. Besides, as 

discussed in Chapter 1, there are several experiments on different scales which may support validation of 

the CFD modelling approach. 

In Chapter 5, the analysis focuses on vessels containing water. The objective is to develop a CFD setup 

to study the response to fire of tanks containing substances other than LPG. The focus is on those liquids 

that, unlike LPG, are stored far from their saturation temperature at the storage pressure (i.e. in subcooled 

conditions). The main reasons for water being chosen for the analysis are twofold. First, this substance 

can be considered as representative of water solutions and, more generally, of those substances stored in 

subcooled conditions. These are present in large quantities in the process industry and being able to 

predict their behavior in case of fire attack is of primary importance. The second reason directly relates 

to the huge quantity of data made available by the experimental apparatus presented in Section 2 

In the first part of Chapter 5, the possibility to extend the setup used in the modelling of LPG tanks (with 

minor modifications) is analyzed. Results are presented, and compared with experimental data, 

highlighting strengths and limitations of this modelling setup. Then, an alternative approach is proposed, 

based on models developed for the study of subcooled boiling flows, that showed promising results in 

nuclear industry. The aim is to explore the possibility of extending this approach to the case of vessels 

exposed to fire. The results presented in this part represent a preliminary assessment of this modelling 

setup. 
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Chapter 4 Modelling LPG tanks exposed to fire 

The object of the present modeling activity is the characterization of LPG tanks under fire exposure. The 

aim is to provide a CFD based model able to predict the vessel response in such scenarios, in terms of 

pressurization rate and temperature distribution. These represents crucial information to support detailed 

safety and external emergency studies. 

Commercial LPG is a mixture, the main component of which is propane followed by butane, with a small 

percentage of lighter (e.g. ethane) compounds. The composition varies depending on the country and 

the period of the year. However, in the experimental reports relevant to all the fire tests described in 

detail in Chapter 1, the terms LPG and propane are used interchangeably. In fact, in the mixtures involved 

in the experiments the percentage of this compound was very close to 100 %. Therefore, pure propane 

was considered in the modelling activity presented in the following. 
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4.1 Theoretical background 

Figure 41 gives an overview of the physical phenomena characterizing the scenario under analysis. When 

a LPG tank is exposed to fire, heat is transferred from the flames to the tank wall by a combination of 

radiation and convection. The relative contribution of these two mechanisms depends on the fire 

characteristics. The heat received from the fire is transferred by conduction through the wall and heats 

up the tank lading. The inner surface temperature starts rising and the fluid in the proximity of the wall 

becomes warm and less dense. This determines the formation of free-convection flows in the upwards 

direction. In this way, heat is continuously removed from the wall by convection. Hot vapor rising along 

the wall accumulates at the top of the vessel. Similarly, the liquid forms a warm layer below the liquid-

vapor interface. Thus, both phases (gradually) becomes thermally stratified. This has a strong effect on 

the pressurization rate. In fact, according to several authors [8][9][3], it is temperature of the liquid-vapor 

interface (hotter than the liquid bulk due to thermal stratification) that, being at equilibrium conditions, 

drives the pressure in the vessel until the PRV opening. When this happens, both liquid and vapor 

experience strong mixing and the thermal stratification reduces to the point of being negligible. 

 

Figure 41: Schematic representation of the physical phenomena occurring outside and inside a vessel during fire exposure. 
Due to the low value of the heat transfer coefficient and the heat capacity, the wall portion in contact 

with the vapor space reaches very high temperatures. Thus, thermal radiation from the steel surface 

becomes important. Part of this is absorbed by the gas phase and the rest by the liquid-vapor interface.  

The situation in the liquid phase is different. As qualitatively depicted in Figure 42, the heat transfer 

mechanism is a function of the wall superheating (or the wall heat flux). Before the fire attack, the tank 

contents can be idealized as being at the equilibrium with the environment. The heat flux through the 

wall is zero and the wall temperature coincides with the saturation temperature at the tank pressure (point 

O in Figure 42). When the fire starts heating the tank, the heat flux at the inner wall becomes positive, 

resulting in wall superheating. A single phase free-convective heat transfer regime is established near the 

wall (curve OA). As the heating process proceeds, the heat flux increases. If the free-convective heat 

transfer coefficient is not high enough, the superheating can reach the point when isolated bubbles start 

forming at the wall. These bubbles grow until they detach from the steel surface and move away from 

the wall, where the temperature is lower. Thus, they start condensing. Depending on the bubble size, the 
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degree of subcooling and the travel distance between the point of detachment and the liquid surface, 

some of the bubbles will collapse and others will reach the ullage, contributing to the pressure rise.  

As the heat flux increases, more and bigger bubbles are formed. The regime passes from nucleate to slug 

boiling, until the critical point C is reached. Here, the heat flux is so high that a stable film of vapor forms 

at the wall. For propane, the value of the heat flux corresponding the point C (critical heat flux) is around 

600 kW/m2. This is several times higher with respect to the heat load determined by a hydrocarbon pool-

fire. Therefore, this situation can be excluded from the scenarios considered here. 

 

Figure 42: Typical pool boiling curve (adapted from [57]). 
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4.2 Model setup and fundamental equations 

In order to simulate the response of a LPG vessel exposed to fire, a 2D CFD based model was developed. 

The aim was to reproduce the physical phenomena described in the previous paragraph. In the following 

sections, the governing equations, the mesh generation and the mesh setup are presented in detail.  

4.2.1 Multiphase model and continuity equation 

Due to the multiphase nature of the problem under consideration, the first key step was the selection of 

a suitable multiphase model. Following the route traced by previous authors[49][51][52][58], the first part 

of the modelling work was carried out by using the Volume Of Fluid (VOF). This model, published for 

the first time in a journal paper by Hirt and Nichols in 1981 [59], is suitable when two or more immiscible 

phases are present. It tracks the interface between the phases by solving a continuity equation for the 

volume fraction of one (or more) of the phases. In the problem considered here, two phases are present: 

the liquid (L) and the vapor (V). The vapor phase was chosen as the primary one, as suggested in [60] to 

avoid convergence problems. In this case, the continuity equation for the liquid volume fraction (𝛼𝐿) has 

the following form: 

𝜕

𝜕𝑡
(𝛼𝐿𝜌𝐿) + 𝛻 ∙ (𝛼𝐿𝜌𝐿𝑢⃗ 𝐿) = 𝑚̇𝑉→𝐿 − 𝑚̇𝐿→𝑉 (Eq. 4.1) 

The terms 𝑚̇𝑉→𝐿 and 𝑚̇𝐿→𝑉 represent the mass transfer rate from the vapor phase to the liquid one 

(condensation) and vice-versa (evaporation) that will be defined later in this section. The volume fraction 

of the vapor phase is then obtained from the liquid volume fraction considering that, in each cell, they 

must sum to 1: 

𝛼𝑉 = 1 − 𝛼𝐿 (Eq. 4.2) 

All the material properties appearing in the transport equations are calculated by averaging the single 

phase property on the volume fractions. For instance, given the single phase properties 𝜑𝑉 and 𝜑𝐿, the 

property 𝜑 that will be used in the transport equations is calculated using the following formula: 

𝜑 = 𝜑𝑉𝛼𝑉 + 𝜑𝐿𝛼𝐿 (Eq. 4.3) 

4.2.2 Momentum equation 

In the VOF model all the phases share the same velocity and temperature field. Therefore, a single set of 

momentum equation is solved (Eq. 4.4). Note that in the VOF model there is no momentum source due 

to mass transfer. 

𝜕

𝜕𝑡
(𝜌𝑢⃗ ) + 𝛻 ∙ (𝜌𝑢⃗ 𝑢⃗ ) = −𝛻𝑝 + 𝛻 ∙ 𝜏 + 𝜌𝑔 + 𝐹  (Eq. 4.4) 

The term 𝜏 in the momentum equation represents the stress tensor and, for a Newtonian fluid can be 

expressed as: 

𝜏 = 𝜇 [(𝛻𝑢⃗ + 𝛻𝑢⃗ 𝑇) −
2

3
𝛻 ∙ 𝑢⃗ 𝐼] (Eq. 4.5) 
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Where 𝜇 is the viscosity and I is the unit tensor. Together, Eq. 4.1 and 4.4, are called the Navier-Stokes 

equations. 

4.2.3 Turbulence model and near wall treatment 

When a tank is exposed to fire, the liquid and the vapor in contact with the wall start heating up. This 

generates density gradients which represent the driving force for natural convection flows. As pointed 

out in by many authors[8][37][47], the behavior of the fluid in the near wall region plays a determinant 

role in the pressure build up. Understanding and being able to simulate this behavior is of paramount 

importance in the development of a model able to predict the response of a vessel under fire attack. In 

natural convection flows, the Rayleigh number (Ra = g β ΔT L3/λ) dictates whether the flow regime is 

laminar (Ra < 109) or turbulent (Ra > 109), being g the gravity constant (9.81 m/s2), β the thermal 

expansion coefficient, ΔT the temperature difference, λ the thermal diffusivity and L the characteristic 

length (assumed here as the internal diameter of the tank). Assuming a ΔT ≈ 1K ([23] shows that this 

difference is actually higher) and considering the properties of pure propane at saturated conditions at 

0.7 MPa (typical storage conditions for LPG), the Rayleigh number for both liquid and vapor phase is 

higher than 1013 for all the cases analyzed in this work. Therefore, being well beyond the threshold below 

which the flow is laminar, the application of a turbulence model was needed. This is in accordance with 

previous CFD analyses of pressure build-up in LPG tanks exposed to fire ([49][51][52][58]). 

The modelling of turbulence represents a key issue and, at the same time, a challenge. The chaotic nature 

of this phenomenon makes it difficult to reproduce. The most advanced way to address this problem is 

to directly solve the Navier-Stokes equations on a very fine grid using a very small time-step, resulting in 

an extremely high computational cost. The application of this technique to the problem under analysis 

would be unaffordable in terms of computational time.  

A simpler method, widely used in engineering problems involving turbulent flows, is the so-called RANS 

(Reynolds-Averaged Navier-Stokes) approach. Here the instantaneous variables in the Navier-Stokes 

equations are decomposed into mean and fluctuating components. For a given variable 𝜑, the following 

formula is valid: 

𝜑 = 𝜑̅ − 𝜑′ (Eq. 4.6) 

Where 𝜑̅ and 𝜑′ represent the mean and the fluctuation components. At this point, by substituting 

expressions of this form for the flow variables into the instantaneous continuity and momentum 

equations and taking a time (or ensemble) average (and removing the overbar on the mean velocity) the 

RANS equations can be obtained: 

𝜕

𝜕𝑡
(𝛼𝐿𝜌𝐿) + ∇ ∙ (𝛼𝐿𝜌𝐿𝑢⃗ 𝐿) = 𝑚̇𝑉→𝐿 − 𝑚̇𝐿→𝑉 (Eq. 4.7) 

𝜕

𝜕𝑡
(𝜌𝑢⃗ ) + 𝛻 ∙ (𝜌𝑢⃗ 𝑢⃗ ) = −𝛻𝑝 + 𝛻 ∙ 𝜏 + 𝜌𝑔 + 𝐹 − 𝛻 ∙ 𝜏′ (Eq. 4.8) 

They are formally equivalent to Eq. 4.1 and 4.4 except for the last term of the left hand of Eq. 4.8. This 

is the divergence of the so-called Reynolds stress tensor. Introducing the Boussinesq approximation, this 

can be expressed in terms of the mean velocity gradients: 

𝜏′ = 𝜇𝑇[(𝛻𝑢⃗ + 𝛻𝑢⃗ 
𝑇)]  −

2

3
(𝜌𝑘 + 𝜇𝑇𝛻 ∙ 𝑢⃗ 𝐼) 

(Eq. 4.9) 
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Where 𝜇𝑇 is the turbulent viscosity and k is the turbulence kinetic energy, usually calculated as the mean 

of the turbulence normal stresses: 

𝑘 =
1

2
((𝑢′)2̅̅ ̅̅ ̅̅ ̅ + (𝑣′)2̅̅ ̅̅ ̅̅ ̅ + (𝑤′)2̅̅ ̅̅ ̅̅ ̅) (Eq. 4.10) 

At this point, a closure model is needed to calculate the turbulent viscosity and the turbulent kinetic 

energy. Numerous authors used in their works ([49][51][52][[58]) the k-ε model. This is one of the most 

common turbulence model in the CFD solution of engineering problems due to its robustness. For what 

concerns the near wall region, the above-mentioned authors opted for a wall function approach. It is 

clear that, in the problem under analysis, a proper representation of what occurs close to the steel surface 

is paramount for the achievement of good model performance.  

The presence of the wall, where the no-slip condition holds (i.e. the velocity at the wall is zero), strongly 

affects the flow and the turbulence and, therefore, the heat transfer. In the near wall region, the flow can 

be characterized introducing two non-dimensional parameters: y+ (representing the non-dimensional wall 

distance) and u+ (representing the non-dimensional velocity) defined according to Eq. 4.11 and 4.12 

respectively. 

𝑦+ =
𝜌𝑢𝜏𝑦

𝜇
 (Eq. 4.11) 

𝑢+ =
𝑢

𝑢𝜏
 

(Eq. 4.12) 

𝑢𝜏 = √
𝜏𝑤
𝜌

 

(Eq. 4.13) 

Where y is the wall distance and 𝜏𝑤 is the wall shear stress. 𝑢𝜏 is called friction velocity. 

Experimental works have shown how, close to the wall, the flow is induced by viscous effects and is 

independent from the free stream parameters. In particular, the near wall region can be divided in three 

layers: 

- viscous sublayer (0 < y+ <5): here, the flow is dominated by the viscous forces. The shear stress 

equals the wall shear stress and, therefore, the following equation is valid: 

𝑦+ = 𝑢+ (Eq. 4.14) 

- buffer layer (5 < y+ <60): is region where transition between the viscous sublayer and the fully 

turbulent region occurs 

- fully turbulent or log law region (60 < y+ <500): here, turbulence effects are dominant and the 

following equation is valid: 

𝑦+ =
1

𝑘
ln 𝑦+ + 𝐶 (Eq. 4.15) 

Where k is the Von Karman constant (k ≈ 0.4) and C is a constant that depends on the surface roughness 

(C ≈ 5 for smooth walls).  
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Beyond the turbulent region, the flow is dominated by inertia and depends on the value of the Reynolds 

number. 

In CFD it is possible to address the problem of modelling the flow in the near wall region by following 

two different approaches: 

- wall function approach: the viscous sublayer and the blending region are not mathematically 

solved, but semi-empirical formulae called “wall functions” are used to bridge them to the log-

law layer. In this way, the turbulence morel does not need to be modified in the near wall region. 

- near-the wall approach: the turbulence model is modified in the near wall region to allow the 

integration of the governing equations throughout the entire boundary layer (the sum of the three 

layers listed above), including the viscous sublayer. 

All the previous work of CFD modelling of pressure vessels exposed to fire followed the wall function 

approach([49][51][52][58]). However, especially in natural convection driven flows, this way of 

proceeding does not provide accurate results as pointed out by Leuven in 2006 [62].  

Therefore, in order to obtain accurate results for the heat transfer at the wall, the use of a turbulence 

model able to solve the governing equation inside the boundary layer was preferred with respect to a wall 

function approach. The turbulence model selected was the k-ω SST [63]. Here, the turbulent viscosity is 

calculated according to Eq. 4.16:  

𝜇𝑇 =
𝜌𝑘

𝜔

1

𝐿
 (Eq. 4.16) 

This is proportional to the ratio between the turbulent kinetic energy k and 𝜔 the turbulent specific 

dissipation rate (L is a limiting function, the definition of which can be found elsewhere [60]). These are 

obtained from the following transport equations: 

𝜕

𝜕𝑡
(𝜌𝑘) + ∇ ∙ (𝜌𝑘𝑢⃗ ) = ∇ ∙ (𝛤𝑘𝛻𝑘) + 𝐺𝑘 − 𝑌𝑘 + 𝑆𝑘 (Eq. 4.17) 

𝜕

𝜕𝑡
(𝜌𝜔) + ∇ ∙ (𝜌𝜔𝑢⃗ ) = ∇ ∙ (𝛤𝜔𝛻𝜔) + 𝐺𝜔 − 𝑌𝜔 + 𝑆𝜔 (Eq. 4.18) 

In these equations, 𝐺𝑘 represents the generation of turbulence kinetic energy due to mean velocity 

gradients. 𝐺𝜔 represents the generation of 𝜔. 𝛤𝑘 and 𝛤𝜔 represent the effective diffusivity of k and 𝜔, 

respectively. 𝑌𝑘 and 𝑌𝜔 represent the dissipation of due to turbulence. 𝑆𝑘 and 𝑆𝜔 and are user-defined 

source terms. For the sake of brevity, the definition of all these terms are not reported here. They can be 

found elsewhere [60].  

The k-ω SST can be integrated though the boundary layer and is y+ insensitive [60]. This means that the 

model should provide a solution which is independent from the first cell wall distance. However, in the 

simulations carried out in the present work, some sensitivity to this parameter was found. This aspect 

will be discussed in detail later in this chapter. 

It is worth mentioning that, far from the wall region, the k-ω SST is equivalent to the k-ε model. 
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4.2.4 Energy equation 

In the VOF model, all the phases share the same temperature field. The transport of energy is governed 

by the following equation:  

𝜕

𝜕𝑡
(𝜌𝐸) + 𝛻 ∙ (𝑢⃗ (𝜌𝐸 + 𝑝)) = −𝛻𝑝 + 𝛻 ∙ [(𝑘 +

𝑐𝑝𝜇𝑇

𝑃𝑟𝑇
)𝛻𝑇] + ∆𝐻𝑣𝑎𝑝(𝑚̇𝑉→𝐿 − 𝑚̇𝐿→𝑉) 

(Eq. 4.19) 

𝐸 =
𝐸𝑉𝜌𝑉𝛼𝑉 + 𝐸𝐿𝜌𝐿𝛼𝐿
𝜌𝑉𝛼𝑉 + 𝜌𝐿𝛼𝐿

 

(Eq. 4.20) 

𝐸𝑖 = ℎ𝑖 −
𝑝

𝜌𝑖
+
𝑢2

2
 

(Eq. 4.21) 

Where PrT is the turbulent Prandtl number and, in the k-ω SST, is set to 0.85. It is important to note that, 

in the present setup, the effect of thermal radiation was not considered. This was done in order not to 

introduce further complexity in the analysis.  

4.2.5 Evaporation and condensation model 

The Lee model [64] was used to describe the mass transfer between the liquid and the vapor phase. This 

expresses the evaporation and condensation rate by means of Eq. 4.22 and Eq. 4.23 respectively. 

𝑚𝐿→𝑉 = 𝐶𝐸𝛼𝐿𝜌𝐿 (
𝑇 − 𝑇𝑠𝑎𝑡
𝑇𝑠𝑎𝑡

) (Eq. 4.22) 

𝑚𝑉→𝐿 = 𝐶𝐶𝛼𝑉𝜌𝑉 (
𝑇𝑠𝑎𝑡 − 𝑇

𝑇𝑠𝑎𝑡
) (Eq. 4.23) 

For a given cell, evaporation occurs when the temperature is above the saturation temperature (calculated 

at the cell pressure) according to Eq. 4.22 (where 𝑚𝐿→𝑉 = evaporation liquid phase source term; α = 

phase volumetric fraction, ρ = density, T = cell temperature, Tsat = cell saturation temperature, CE and 

CC = coefficients, the subscripts L and V indicate the liquid and the vapor phase, respectively). On the 

contrary, when the cell temperature is below the saturation temperature, part of the content of the cell 

will condense according to Eq. 4.23 (where 𝑚𝑉→𝐿 = condensation liquid phase source term). The Lee 

model can be considered as a simplified version of the model proposed by Hertz and Knudsen 

[65][66][67] to describes the evaporation and condensation mechanism for a flat interface starting from 

the kinetic theory of gases. According to the above-mentioned authors, the net evaporation flux through 

the interface can be described by Eq. 4.24: 

𝐽 = 𝛽𝑒√
𝑀

2𝜋𝑅𝑇𝑠𝑎𝑡
(𝑝 − 𝑝𝑠𝑎𝑡(𝑇𝐿)) (Eq. 4.24) 

Where βe is the evaporation accommodation coefficient. 

Considering the Clausius-Clapeyron relation (Eq. 25) and, in particular, its discretized form (Eq. 4.26, 

valid for near equilibrium conditions), Eq. 24 can be rearranged yielding Eq. 27. 

𝑑𝑝

𝑑𝑇
=

∆𝐻𝑣𝑎𝑝

𝑇(𝑉̂𝑉 − 𝑉̂𝐿)
 (Eq. 4.25) 



65 

(𝑝 − 𝑝𝑠𝑎𝑡) =
∆𝐻𝑣𝑎𝑝

𝑇𝑠𝑎𝑡(𝑉̂𝑉 − 𝑉̂𝐿)
(𝑇 − 𝑇𝑠𝑎𝑡) (Eq. 4.26) 

𝐽 = 𝛽𝑒√
𝑀

2𝜋𝑅𝑇𝑠𝑎𝑡
∆𝐻𝑣𝑎𝑝

𝜌𝑉𝜌𝐿
(𝜌𝐿 − 𝜌𝑉)

(𝑇 − 𝑇𝑠𝑎𝑡)

𝑇𝑠𝑎𝑡
 (Eq. 4.27) 

Eq. 4.27 expresses a mass flux and, to be used in a CFD code as a source term in the governing equations, 

must be multiplied by the interfacial surface area and divided by the volume of the cell. Defining the term 

AI (interfacial area concentration) as the ratio between the interfacial surface area of the liquid phase and 

the liquid phase volume, which in turn can be expressed as the product of the liquid volume fraction and 

the cell volume, the source term due to evaporation can be written according to Eq. 4.28: 

𝑚𝐿→𝑉 = [𝛽𝑒√
𝑀

2𝜋𝑅𝑇𝑠𝑎𝑡
∆𝐻𝑣𝑎𝑝

𝜌𝑉
(𝜌𝐿 − 𝜌𝑉)

𝐴𝐼] 𝛼𝐿𝜌𝐿
(𝑇 − 𝑇𝑠𝑎𝑡)

𝑇𝑠𝑎𝑡
 (Eq. 4.28) 

A similar expression can be derived for the condensation source term 𝑚𝑉→𝐿. It can be noted that the 

term within the square brackets in Eq. 4.28 corresponds to the coefficient CE in Eq. 4.17. In this way, 

the uncertainties relating to the evaporation and condensation accommodation coefficients and the term 

AI are limited to the choice of the value of the coefficients CE and CC. In the present work, they are both 

set to the default value of 0.1 s-1, according to D’Aulisa and co-workers [51][61], who adopted the same 

approach (a sensitivity study was also carried out considering values of 1, 0.5, 0.2 and 0.001 s-1 for both 

coefficients). It is worth noting that the presence of the liquid volume fraction in Eq. 4.22 ensures that 

evaporation cannot occur in a cell full of vapor (thus with 𝛼𝐿 = 0).  On the same time, the presence of 

the vapor volume fraction in Eq. 4.23 ensures that condensation is not possible in a cell full of liquid 

(thus with 𝛼𝑉 = 0). 

4.2.6 Material properties 

Pure propane was considered in all simulations. Fluid properties are expressed as a function of 

temperature according to thermodynamic data provided in [68]. The same dataset was adopted for the 

determination of the saturation pressure used in the evaporation/condensation model described in the 

previous paragraph. The Soave-Redlich-Kwong equation of state was used for the vapor phase density 

calculation. The thermal properties of carbon steel (heat capacity, thermal conductivity and density) were 

considered for the tank wall [69]. 

4.2.7 Floating operating pressure option 

In order to calculate the pressure rise from the integral mass balance (due to heating and vapor moles 

generation), separately from the solution of the pressure correction equation, the floating operating 

pressure option is activated [60]. In this way, the solver calculates the absolute pressure at each iteration 

according to Eq. 4.29. Here, prel is the pressure relative to the reference location, which in this case is the 

cell with the minimum pressure value. Therefore, the reference location itself is floating. 

𝑝 = 𝑝𝑜𝑝,𝑓𝑙𝑜𝑎𝑡 + 𝑝𝑟𝑒𝑙 (Eq. 4.29) 

𝑝𝑜𝑝,𝑓𝑙𝑜𝑎𝑡 = 𝑝𝑜𝑝
0 + ∆𝑝𝑜𝑝 (Eq. 4.30) 
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The floating operating pressure pop,float is defined as the sum of the pressure rise Δpop to the initial operating 

pressure 𝑝𝑜𝑝
0 . This helps to prevent roundoff errors. 

4.2.8 Solution methods 

For the transient formulation, a first order implicit scheme was adopted with a time step of 0.005 s. In 

order to check timestep independence, a simulation of one of the cases studies defined later (see Table 

10) was also carried out halving this value (i.e. using a timestep of 0.0025 s). A second order upwind 

scheme was chosen for the spatial discretization of density, momentum, energy and turbulent quantities 

(k and ω), whereas the PRESTO! and the Geo-Reconstruction schemes were used for the pressure and 

the volume fraction respectively [60]. Pressure and velocity coupling was obtained by means of the 

SIMPLEC (Semi-Implicit Method for Pressure Linked Equations-Consistent) algorithm. Gradients were 

evaluated using the Least Squares Cell Based method.  

At each time step, the solution of a given conservation equation was deemed to have converged if one 

of the following criteria was satisfied: 

- The sum of the scaled residuals was below 10-3 (10-6 for the energy equation) 

- For a given time step, the ratio between the residuals and the residuals at the beginning of the 

time step was below 0.05 

In order to check the validity of this choice, additional simulations were run considering more stringent 

convergence criteria. The results of these simulations are presented in Appendix E. The equations whose 

residuals were monitored are continuity, momentum, energy, turbulent kinetic energy and turbulent 

specific dissipation rate.  

The maximum number of iterations per time-step, in case none of the convergence criteria were fulfilled, 

was set to 100 (however, this number of iterations was never reached during simulations). 

Under relaxation factors were set according to the values reported in Table 8. All the simulations were 

carried out in double precision. 

Table 8: Values used for the under-relaxation factors. 

Under relaxation factor Value 

Pressure 0.3 

Density 1 

Body forces 0.8 

Momentum 0.7 

Vaporization mass 1 

Turbulent kinetic energy 0.8 

Turbulent dissipation rate 0.8 

Turbulent viscosity 1 

Energy 1 
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4.2.9 Mesh generation 

As mentioned before, the geometry considered for simulations was a vertical section of a tank commonly 

used for storing or transporting LPG (Figure 43a). This only allows for simulation of the vessel response 

from the beginning of the fire to the first PRV opening.  

 

Figure 43: Tank section considered for the 2D simulation (a). Mesh overview (a) and details of the mesh close to the wall 
(c) and (d). 

The mesh was built using the ANSYS meshing software and was obtained as combination of quadrilateral 

and triangular elements, resulting in an unstructured mesh. Figure 43b shows the mesh used to simulate 

the last case study reported in Table 10. The meshing parameters were defined after a try and error 

process that allowed numerical stability and grid independence of the solution to be achieved. For all the 

cases simulated, regardless of the tank diameter, the maximum cell size was 3.3 mm with a global growth 

rate of 1.2. The inner and the outer wall were divided in the same number of segments, so that each 

segment on the outer wall was approximately 1 mm long. 

a) b)

c)

Detail 1Detail 2

d)
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The most critical part in the meshing process was the definition of the grid characteristic in the near wall 

region and, in particular, the choice of the thickness of the first cell in contact with the steel surface. In 

order to ensure a good resolution in this important part of the computational domain, 50 inflation layers 

were built starting from the inner wall of the tank (these are visible in Figure 43c) with a growth rate of 

1.1. The first layer thickness was set to 70 µm. This choice is the result of a sensitivity study reported in 

Appendix D. As shown in the appendix, thinner cells in the first layer lead to values of the vapor volume 

fraction close to unity. This causes a drop in the heat transfer coefficient resulting in very high wall 

temperature and a scenario similar to a film boiling regime. Such behavior is far from what observed in 

the experiments and shall be considered as a limitation of the present modelling setup. On the other 

hand, increasing too much the first layer thickness leads to less accurate results and gives convergence 

problems. 

The above mentioned meshing parameters were used to build the mesh for the various tanks considered 

in the case studies listed in Table 10. In particular, four different tank diameters were analyzed. In those 

cases where the fire scenario could be considered symmetrical across a vertical plane cutting the tank in 

the axial direction, only half of the section was meshed. Table 9 reports the mesh sized for the different 

tanks considered in the case studies listed in Table 10. 

Table 9: Number of mesh cells for the different tank considered in the case studies listed in Table 10. 

 Number of mesh cells 

Tank diameter 
Half tank 

(symmetric cases) 
Full tank 

(non-symmetric cases) 

0.51 m 29565 - 

1.00 m 77492 155745 

1.70 m 172825 347780 

3.05 m 469186 - 

 

Finally, in order to check the grid independence of the results, four additional meshes were built for the 

1 m diameter tank case, varying the maximum cell size, the length of the cell faces lying on the inner and 

the outer wall, and the first layer thickness. Results of the grid independence study are reported in 

Appendix D. 
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4.3 Case study definition for CFD model validation  

The CFD setup described in the previous paragraphs was used to simulate a series of fire tests, with the 

aim of understanding to what extent the CFD predictions are in accordance with experimental 

measurements. Two different scenarios were analyzed: 

1)  a full engulfing hydrocarbon pool-fire  

2) a distant fire, where the flames are not in direct contact with the tank  

For the first (hydrocarbon pool-fire scenario), the tests considered are those carried out by Moodie in 

1988 [23][4] on LPG tanks of various sizes and filling degrees, and the USDOT-FRA test (also known 

as the Townsend test) [15][16]. All these tests are described in detail in Chapter 1. For the second scenario, 

one of the tests carried out Heymes and co-workers in 2013 [32] was taken as reference as example of 

distant fire. This test is part of an experimental campaign aimed at studying the response of a LPG storage 

vessel to a forest fire scenario, simulated by means of a fire wall. The details of the test setup are presented 

in Chapter 1. All the cases are summarized in Table 10.  

The cases are labelled in order to facilitate the reading of figures. The first word identifies the main 

author/institution that carried out the fire tests. The first number refers to the tank capacity in tons and 

the last number indicates the filling degree. 
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Table 10: List of case studies for CFD model validation. 

# Case ID 
Tank capacity 

(ton) 
Tank diameter 

(m) 

Boundary condition 
(radiating black body 

temperature, K) 
Filling level 

Initial 
pressure 
(bar)* 

Initial 
Temperature 

(°C)* 

Referen
ce 

1 Moody-1/4t-40% 0.25 0.51 1060 40 % 6.6 11.25 

[4] 
2 Moody-1t-20% 

1 1.00 

1060 20 % 5.3 3.85 

3 Moody-1t-40% 1060 40 % 5.3 3.85 

4 Moody-1t-80% 1060 80 % 7.1 13.87 

5 Moody-5t-22% 

5 1.70 

1060 22 % 5.5 4.85 

[23] 
6 Moody-5t-36% 1060 36 % 5.2 2.85 

7 Moody-5t-58% 1060 58 % 5.5 2.85 

8 Moody-5t-72% 1060 72 % 5.8 6.85 

9 USDOT-64t-96% 64 3.05 1065 – 1139 - 1213 96 % 9.7 25.5 [15][16] 

10 Heymes-1t-14% 1 1.00 Variable** 14 % 7.0 13.41 [32] 

* The starting pressure was defined according to the experimental measurements. The starting temperature is the saturation temperature of pure 
propane calculated at the initial pressure. This may differ by few degrees from the measured starting temperature due to the presence of lighter 
components (e.g. Ethane) in the LPG mixtures used in the tests or uncertainties in data acquisition form the experimental reports (most experimental 
data are reported only in graphical form and are not easy to read accurately). 
** Defined in paragraph 4.5.1 
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4.4 LPG tanks exposed to full engulfing pool fire 

4.4.1 Definition of the boundary and initial conditions 

The pool fire scenario was simulated by setting a constant radiating temperature as the boundary 

condition for the outer wall surface of the tank. The solver uses Eq. 4.31 to calculate the heat flux entering 

the faces of the cells lying on the external wall of the tank.  

𝑞 = 𝜎𝜀𝑤(𝑇𝐹,𝐵𝐵
4 − 𝑇𝑤

4) (Eq. 4.31) 

In this equation, σ represents the Stefan-Boltzmann constant and is equal to 5.67∙10-8 W/(m2K4). Tw and 

𝜀𝑤 are the temperature and the emissivity of the external wall. This latter parameter was considered to 

be 1. The value of the radiating temperature was defined according to the fire test reports [23][4][15][16]. 

For Moodie’s tests, the reports indicate that the fire temperature was around 900 – 950 °C with a fire 

emissivity of 0.56. Considering the upper value of the range, the resulting black body temperature (TF,BB 

in Eq. 4.31) of the fire is 1060 K. The same logic was followed for the simulation of the Townsend test. 

In this last case, however, the report indicates that the fire conditions were quite variable (see also Figure 

4 is Section 1). The fire temperature before the first PRV opening was around 1366 °C for the rear section 

and 927 °C for the front one, with an average of 1010 °C and an average fire emissivity of 0.62 [15][16]. 

Therefore, three different simulations were carried out considering these three fire conditions. Using the 

a fire emissivity of 0.62, the radiating black body temperature for this simulations resulted to be 1065 K, 

1139 K and 1213 K (corresponding to the front, the average and the rear fire black body temperatures 

respectively). 

In all the simulations, the convective contribution of the flames was not considered. This was done to 

avoid the introduction of further uncertainties in the analysis, related to the unknown value of the fire 

convective transfer coefficient. In a pool fire, the contribution of convection represents about the 10 to 

20 % of the total heat flux transferred from the fire to the tank. For the Moodie’s tests, this contribution 

can be considered as included in the radiation heat flux due to the choice of selecting the upper value of 

the measured flame temperature in the definition of the radiating black body temperature. 

At the beginning of the simulations, the tank lading was assumed to be motionless (i.e. the value of the 

horizontal and vertical velocities was set to 0) and at the saturation temperature relative to the pressure 

indicated in Table 10 (corresponding to the initial pressure measured at the beginning of each fire test). 

In the full-scale test case, this introduces a discrepancy of 4.4 °C between the measured and the simulated 

starting temperature. This is due to the presence of a small percentage of ethane (2 %) in the LPG mixture 

used for the experiment, decreasing the saturation temperature (or increasing the vapor pressure) with 

respect to pure propane. Turbulent kinetic energy and specific dissipation rate were initialized at 10-9 

m2/s2 and 10-3 s-1 respectively. The no-slip condition was set at the inner wall (i.e. the velocity at the wall 

is zero) whereas symmetry was assigned at the tank vertical centerline in those cases were only half of the 

domain was simulated. 

According to the experimental reports relative to the Moodie’s tests [23][4], it took several seconds for 

the fire to fully develop. For this reason the CFD results curves had to be shifted in time to allow 

comparison with the experimental measurements. This shifting operation was the same within each series 

of tests, in order to be as consistent as possible. The shifting interval was set to 50 s for the 0.25 ton test 

and 80 s for both the 1 ton and the 5 ton tests. No shifting was introduced in the analysis of the full-scale 

test data. 

As mentioned before, only the part of the tests from the fire start until the PRV opening was simulated. 

In the following, results obtained in the CFD simulations are compared with experimental measurements.  
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4.4.2 CFD simulations of small scale tests: pressure predictions 

Figure 44 shows a comparison between the pressurization curves calculated by the CFD and those 

measured during the fire tests carried out by Moodie and co-workers [23][4].  

 

Figure 44: Comparison of CFD (blue line) and Moodie’s tests (red line) pressurization before the first PRV opening.  

0

5

10

15

20

25

0 50 100 150 200

P
re

ss
u

re
 (

b
a
r)

Time (s)

Moodie-1/4t-40%

Test

CFD

0

5

10

15

20

25

0 100 200 300

P
re

ss
u

re
 (

b
a
r)

Time (s)

Moodie-1t-20%

Test

CFD

0

5

10

15

20

25

0 100 200 300

P
re

ss
u

re
 (

b
a
r)

Time (s)

Moodie-1t-40%

Test

CFD

0

5

10

15

20

0 100 200 300 400

P
re

ss
u

re
 (

b
a
r)

Time (s)

Moodie-5t-22%

Test

CFD

0

5

10

15

20

0 100 200 300 400

P
re

ss
u

re
 (

b
a
r)

Time (s)

Moodie-5t-36%

Test

CFD

0

5

10

15

20

0 100 200 300 400

P
re

ss
u

re
 (

b
a
r)

Time (s)

Moodie-5t-58%

Test

CFD

0

5

10

15

20

0 100 200 300 400

P
re

ss
u

re
 (

b
a
r)

Time (s)

Moodie-5t-72%

Test

CFD

a) b)

0

5

10

15

20

25

0 100 200 300

P
re

ss
u

re
 (

b
a
r)

Time (s)

Moodie-1t-80%

Test

CFD

c) d)

e) f)

g) h)



73 

The results are in general positive agreement. The pressure in the first six cases is well predicted while it 

is underestimated in for the last two (Figure 44g and Figure 44h). It is important to stress that, while in 

the CFD simulation the heat load is applied instantaneously from the beginning, a real fire develops 

gradually. This means that shifting the CFD curves as introduced above is not enough to ensure a perfect 

match between model and actual conditions at the beginning of the simulation. Therefore, the prediction 

capability of the CFD model should not be judged exclusively considering absolute values, but instead 

focusing on trends showed by the different variable of interest (e.g. pressure and temperature). 

 

Figure 45: (a) experimental and (b) CFD pressurization curves for different filling degrees. 

Comparing the experimental results in terms of pressurization curves (Figure 45) within the same test 

series (5 ton series) it appears that the filling degree has no evident effect. The same behavior can be 

observed looking at the CFD results. Here, however, the case with the lowest filling level (22 %) shows 

a slightly higher pressurization rate.  
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4.4.3 CFD simulations of small scale tests: temperatures predictions 

In the following, temperature predictions from the CFD simulations are compared with available 

experimental measurements considering the Moodie’s fire tests [4][23]. Most of the temperature data 

refer to the tests carried out using the 5 ton tank.  

 

Figure 46: Comparison of the lading (liquid and vapor) temperature measurements and CFD predictions for the M3_22 
case. 

Starting from the test with the lowest filling degree (22 %), Figure 46 shows the results obtained for the 

internal temperature. In particular, thermocouples positioned on the vertical center line of the vessel are 

considered. The liquid temperature is predicted with high accuracy. On the other hand, the vapor phase 

results appear to be hotter than the experimental measurements. A similar deviation was observed in all 

the cases analyzed (as will be showed in the following) and appears to be systematic. A possible 

explanation for this behavior could be an inhomogeneous fire load in the vertical coordinate, with the 

resulting heat flux lower at the top of the tank under experimental conditions. Both CFD and test results 

show that the vapor phase is stratified. However, this phenomenon is more evident in the simulation, 

where the various “thermocouples” on the vertical line read clearly different temperatures. On the other 

hand, in the real test, the vapor space appears as divided in two zones: a hotter zone (thermocouples T 

44, T 45 and T 59), quite well mixed, in the upper half of the tank, and a colder one, just above the liquid 

surface (thermocouples T 46 and T 47). This may be a consequence of three dimensional effects. Vapor 

flowing axially from the ends of the tank towards its center could have promoted mixing. It is important 

to note that, as pointed out by several authors, it is the temperature of the liquid that drives tank 

pressurization. Therefore, being able to closely reproduce the temperature field in the liquid phase is a 

fundamental requirement for a model that aims at predicting the pressure build up. On the other hand, 

high accuracy in the vapor temperature prediction does not seem so be so decisive. 
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Most of the available temperature data relevant to the 5 ton tank test series refers to the 72 % (Moodie-

5t-72%) filling degree case. Considering the liquid temperature close to the wall (Figure 47a), it can be 

seen how the CFD prediction is in good agreement with the experimental data for thermocouples T 55 

and T 56, positioned at 10 and 15 mm from the inner wall respectively. On the other hand, the 

temperature relative to the point T 54 (5 mm from the wall) appears to be under predicted. It is interesting 

to note that the temperature curves are not perfectly smooth. This is probably due to the unstable flow 

condition, caused by the cyclic formation and destruction of eddies in the near wall region. Furthermore, 

bubbles departing from the steel surface are replaced by colder liquid from the bulk, determining a 

periodic cooling effect. 

 

Figure 47: (a) Comparison between CFD predicted and measured liquid temperatures at different distance from the wall 
for the 3M_72 case. T 54 T 55 and T 56 are positioned at 5, 10 and 15 mm from the wall respectively; (b) Liquid 

temperatures at the bottom of the tank for the Moodie-5t-72% case simulated without considering the symmetry condition. 

The temperatures measured by the thermocouples T 24 (1 mm from the wall) and T 25 (5 mm from the 

wall) are both slightly over predicted (Figure 47a). This could be due the fact that these points lie on the 

vertical line, where the symmetry condition was imposed in the CFD calculation. Therefore, a further 

calculation considering the entire tank section was carried out. In this case, the results obtained for the 

thermocouple T 25 are in better accordance with the measurements, while the temperature of T 24 is 

slightly under predicted. It must be said that, from the report, it is not clear how this thermocouple (3 

mm, type K) was held in place at a distance of 1 mm from the wall. This may have affected the 

measurements. All the other results remained almost unchanged with respect to the case where the 

symmetry condition was considered. 

As observed in the 22 % filling case, the temperature prediction for liquid bulk (Figure 48) is in good 

agreement with the measurements registered by thermocouples T 46 and T 47. A small discrepancy is 

found between the CFD result and the experimental data for the thermocouple just below the liquid-

vapor interface. Here, the temperature is slightly underestimated. This explains the difference in the 

experimental end calculated pressure curves observed in Figure 44h and represents a further evidence 

supporting the hypothesis that the pressure inside the tank is dictated by the liquid temperature. Again, 

as already observed in the lowest filling level case (Moodie-5t-22%), the vapor phase temperature is 

overestimated.  
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Figure 48: Bulk temperatures from the Moodie-5t-72%filling degree test. 

Apart from pressure measurements, the only data available for each tests of the 5-ton tank series is the 

maximum wall temperature. These are reported in Figure 49. Clearly, they refer to the wall portion in 

contact with the vapor phase. The curves obtained from the CFD simulation are coincident among them, 

suggesting that the filling degree has no influence on the maximum wall temperature. 

 

Figure 49: Maximum wall temperature for the Moodie’s 5 ton tank tests. 

At the first glance, this seems to be in contrast with the measurements. However, the variation registered 

during the experiments is most probably caused by the variability of the fire conditions. This assumption 

is supported by the curves obtained for the 36 % and 38 % filling level tests (the 38 % test was aborted 
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this test). In fact, the results of the 38 % case are coincident with those obtained in the 22 % filling case. 

The same is true for both 36 % and 72 %. This seems to confirm the hypothesis that, for a tank of the 

size considered (1.7 m diameter), the maximum wall temperature does not depend on the liquid level, at 

least when this is not higher than 72 %. 

 

Figure 50: Comparison between predicted and measured lading temperatures for the Moodie’s tests involving the 1 ton 
tank. 

For the test series involving the 1 ton tank (Tests Moodie-1t-20%, Moodie-1t-40% and Moodie-1t-80%), 

the comparison between CFD and experimental results reflects what was seen for the 5 ton tank tests. 

Considering the lading temperature, measurements are available from three thermocouples (B, M and T), 

positioned on the vertical centerline at 50 (B), 374 (M) and 759 (T) mm from the bottom of the tank 

respectively (the tank diameter was 1 m). Plots in Figure 50 show that there is a general good agreement 

between calculated and measured temperature curves. For the tests with the lowest filling degree 

(Moodie-1t-20%, Figure 50a) the dynamic of the temperature increase is well reproduced in all the three 

points. The CFD curves appear to be translated by about 20 s in time with respect to the experimental 

ones. The calculated liquid temperature is slightly higher than the real one, explaining the pressure over-

prediction observed in Figure 44b. On the other hand, for the Moodie-1t-40% tests (Figure 50a), the data 

from thermocouple M is exactly reproduced, leading to a very good match between the predicted and 

measured pressure curves (Figure 44c). As already observed in the 5 ton tank tests, the absolute value of 
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the vapor temperature is over-predicted, but the dynamic is well captured. In the last test of the series 

(Moodie-1t-80%, Figure 50c), the agreement does not appear as good as for the other cases. There is an 

offset of about 10 °C between the CFD results and the experimental data relating to points M and B6. 

This is exactly the difference in the saturation temperatures of propane evaluated at the starting pressure 

of test Moodie-1t-20% (equal to Moodie-1t-40%) and test Moodie-1t-80%. However, the plots show the 

same starting temperature for all these three tests. If the measurements were correct, then the liquid in 

the tank for tests Moodie-1t-80%was at equilibrium conditions (it would have been subcooled). This 

hypothesis is quite unrealistic. Therefore, one of the pressure and temperature measurements must have 

been wrongly reported. Without arguing about the correctness of the experimental data, Figure 50d 

shows the comparison between the temperature curves obtained from the CFD model and the 

experimental measurements translated by 10 °C, so that the first point is at the saturation temperature 

corresponding to the initial pressure of the tank. In this way, temperatures of point B and M appear to 

be well predicted whereas the temperature at point T (in the vapor space) is slightly underpredicted. 

 

Figure 51: Comparison between predicted and measured vapor (a) and liquid (b) wetted wall (outer surface) temperatures 
for the Moodie’s tests involving the 1 ton tank. 

Figure 51 shows the test and CFD results for the vapor and the liquid outer wall temperatures. For the 

wall part in contact with the vapor phase (Figure 51a), the CFD predicts the same profile for all the cases, 

up to 200 s from the beginning of the test. From this point, the temperature relative to the 80 % case 

starts increasing at a lower rate with respect to the other two cases. This due to the cooling effect provided 

by the liquid. In fact, the vapor space is considerably colder in the Moodie-1t-80% test with respect to 

the other two cases. This is clearly visible in Figure 50 both looking at CFD and experimental 

measurements. After 200 s, thermocouple T indicates a temperature around 120 °C for the Moodie-1t-

20% test, 100 °C for the Moodie-1t-40% test and only 50 °C for the Moodie-1t-80% test.  

                                                 
 

6 In this test, point T is very close to the liquid-vapor interface. In this region, the temperature gradient is high and a small 
difference in the position of this point between the CFD simulation and the test can result in a poor agreement between the 
predicted and measured temperature. 
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All the predicted curves follow the measurements obtained in the 20 % test. The differences among the 

experimental curves are most probably a consequence of the variation in the fire conditions.  

Analysis of the results relating to the liquid wetted wall (Figure 51b), shows poor between the CFD 

prediction and the experimental results. As explained in detail in Appendix D, the prediction of the 

temperature in the wall portion wetted by the liquid represents the weakest point of this modelling setup. 

Wall superheating around 50 °C are found in the simulations. Experimental studies [70][71] of propane 

pool boiling show that, for heat fluxes around 100 KW/m2 (typical of hydrocarbon pool-fires), the wall 

superheating close to 10 °C shall be expected (this value can change by few degrees depending on the 

morphology of the heated surface.  

It should be noted that also the experimental measurements showed Figure 51b appear to be of 

questionable reliability. The behavior registered in the Moodie-1t-20% and the Moodie-1t-80% cases is 

quite strange, especially considering what happened in the test with the intermediate filling degree 

(Moodie-1t-40%). The sudden increase in the curves slope suggests that, at some point, the thermocouple 

lost its contact with the wall. Focusing exclusively on the data from test Moodie-1t-40%, it can be 

observed how, despite a disagreement in absolute terms, the temperature curve predicted by the CFD 

presents a slope very similar to the measured one in the Moodie-1t-40% case. 

 

Figure 52 Comparison between predicted and measured lading (a) and wall (b) temperatures for the Moodie-1/4t-40%. 

To conclude the comparison among predicted and measured temperatures from Moodie’s tests, Figure 

52 shows the results obtained for the case involving the smallest tank of the test series (Moodie-1t-40%). 

Again, the CFD model proves to be able to reproduce the liquid temperature (Figure 52a) and therefore 

(as previously explained) the pressurization curve (Figure 44a). The vapor temperature, similarly to what 

happened in the cases analyzed above, is greatly overestimated. Finally, the CFD prediction of both the 

vapor and liquid wetted wall temperature is not in agreement with the experimental results. 
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4.4.4 CFD simulations of full scale tests: comparison between model and experimental 

results 

Sections 4.4.2 and 4.4.3 show a good agreement between CFD results and experimental measurements 

obtained from the small scale tests carried out by Moodie and co-workers. This is true both for pressure 

and lading temperature data. On the other hand, liquid wetted wall temperature is overpredicted. 

In this section, the results related to the full-scale test carried out by the USDOT-FRA test (also known 

as Townsend test) [15][16] are analyzed. As mentioned before, three simulations were carried out using 

different values of the radiating black body temperature. Considering tank pressurization, Figure 53 

shows that the experimental data fall between the curves obtained using the rear (red line) and the average 

(green line) black body temperatures.  

 

Figure 53: Pressurization before the first PRV measured in the full scale test (red circles) and calculated by the CFD 
model setting the front (blue) the rear (red) and the average (green) fire black body temperature as boundary conditions. 

Analyzing these results, it shall be taken in mind that the presence of a small percentage of ethane in the 

LPG used for the experiment increased the pressurization rate. The red points would be lower (and closer 

to the green curve) if pure propane would have been used. 

Considering the high variability of the fire conditions described in the experimental report, it is possible 

to conclude that the model predictions are in acceptable agreement with the test measurements. 

Furthermore, it appears that the tank pressurization was driven by the fire conditions at the rear section. 

Considering the temperature results, Figure 54 reports the comparison between the predicted and the 

measured liquid temperatures both for the rear and the front measurements stations. CFD results refer 

to the simulation carried out using the average fire black body temperature. Due to the initial difference 

of 4.4 °C in the starting temperature caused by the presence of ethane (as discussed above), this amount 

was subtracted from the CFD data to allow comparison. Therefore, the following results shall be analyzed 

focusing on trends rather than absolute temperature values. 
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Figure 54: Comparison between CFD and measured temperature in the liquid phase on the different vertical measurement 
stations: centerline for the front (a) and rear (b) sections and lateral measurement stations for the front (c) and rear (d) 
sections. The scheme of the thermocouple positioning for the front (e) and rear (f) sections are also reported. CFD data 

refers to the simulation carried out using the average fire black body temperature. 
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CFD and experimental results are, in general, in good agreement. In both cases (CFD and fire test data), 

it is possible to observe that the liquid is thermally stratified. The vertical thermal gradient increases as 

time advances. As observed in the reduced scale tests, the temperature in the liquid rises almost linearly. 

Considering the case where the rear fire black body temperature was set as boundary conditions, Figure 

55 shows that the temperatures at the vertical center line (rear section) are overestimated by the CFD 

model. The same is true for all the other measurement stations (not shown).  

 

Figure 55: Comparison between CFD and measured temperature in the liquid phase along the vertical centerline for the 
rear section. CFD data refers to the simulation carried out using the lower black body temperature. 

Therefore, considering both temperature and pressure results, and taking into account that the presence 

of ethanol in the test accelerated the pressurization rate, it can be concluded that the simulation using the 

average black body temperature as the boundary condition gave the best prediction. 
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4.4.5 Velocity profiles 

Figure 56 shows the path-lines for the Moodie-5t-72% case at different instants of time. The first five 

panels refer to the case where the entire section was simulated (i.e. not considering the symmetry of the 

problem). 

 

Figure 56: Path-lines at different instants of time for the Moodie-5t-72% case. Full tank simulation (a) to (e) and half 
(with symmetry) tank simulation (f).  

b) 120 sa) 60 s

d) 240 sc) 180 s

f) 300 se) 300 s
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The flow near the wall looks quite steady (however, Figure 56a and b show that for the first two minutes 

the pick velocity in the near wall region is a bit higher with respect to the rest of the simulation). The 

thickness of the region affected by free convection is limited to few centimeters. It is clearly visible how 

the liquid rising at the tank sides reaches the liquid-vapor interface, runs parallel to it towards the tank 

vertical axis and then goes down to the bulk, where it mixes with the cold liquid and slows down. Here, 

irregular eddies are formed which dissipate the momentum of the stream coming from the tank wall. At 

the bottom, a region of instability can be observed. Even though the flow is not exactly symmetric with 

respect to the vertical center-line, the path-lines on the left half of the tank are similar to those on the 

right one. For comparison, the last panel (f) shows the path-lines plot at 300 s for the simulation 

considering symmetry. They are similar to those observed in panel (e). From the pressurization point of 

view, no difference was observed between the symmetric and non-symmetric simulation. 

In the vapor space, the behavior is similar to that observed in the liquid region. Close to the wall, a free-

convective layer forms. The vertical extension of this layer decreases with time. In fact, hot vapor 

accumulates at the top of the tank and a zone forms where the temperature reaches a plateau. This 

suppress the free-convective flows since its driving force, the temperature gradients, gets weaker and 

weaker. 

 

Figure 57: Vector velocity plot at different horizontal sections in the liquid region (in the proximity of the horizontal 
center-line) for the Moodie-5t_72% case, after 300 s of simulation) 

Figure 57 gives a focus on the free-convective layer near the wall in the liquid region. As mentioned 

before, the thickness of this layer is quite small with respect to the tank diameter (here, the Moodie-5t-

72% case is considered, where the tank diameter is 1.7 m). Within a bit more than 3 cm from the wall, 

the velocity decays and the liquid is almost motionless.  

This is even more evident in Figure 58, which reports the y-velocity profiles as a function of the distance 

from the wall at different instants of time for the Moodie-1t-80% (a) and the Moodie-5t-72% (b) cases. 

The plots refer to the horizontal center-line of the tank. The velocity gradient near the wall is very steep. 
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The maximum velocity (around 0.4 and 0.5 m/s for the Moodie-1t-80% and the Moodie-5t-72% case 

respectively) is found to be at approximately 1 mm from the wall for both cases. Going towards the 

center of the tank, the velocity decreases at reducing rate until it reaches a negative value. The distance 

from the wall at which the sign change occurs is higher in the larger tank. It is worth noting that, in both 

cases, this distance corresponds to about the 4 % of the tank diameter.  

 

Figure 58: y-velocity profiles in the liquid space at different instants of time for the Moodie-1t-80% (a) and Moodie-5t-
72% (b) cases at the horizontal center-line as a function of the wall distance. 
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Figure 58b are due to the transient formation of eddies in the liquid bulk as visible in Figure 56). A slightly 

higher peak velocity can be observed in the first part of the simulations.  

For the vapor space, things are a bit different. Analyzing the two cases with the lowest filling degree, 

Moodie-1t-20% and Moodie-5t-22% (Figure 59a and b respectively), it appears that the peak of the 

velocity profile is very close to the wall (about 1 mm). This is similar to what was observed in the liquid 

for the Moodie-1t-80% and Moodie-5t-72% cases. Here, however, the velocity profiles do not show the 

same pseudo steady state behavior. In fact, the point where the y-velocity becomes negative get closer to 

the wall as time advances. This is more evident in the case of the 1 m diameter tank (case Moodie-1t-

20%), but the same trend can be observed for the largest one. 

 

Figure 59: y-velocity profiles in the vapor space at differents instant of time for the Moodie-1t-20% (a) and Moodie-5t-
22% (b) cases at the horizontal center-line as a function of the wall distance.  
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The difference between what happens in the liquid and the vapor space is well represented in Figure 60. 

The three panels show the iso-lines corresponding to a velocity magnitude value of 0.05 m/s at different 

instants of time for the Moodie-5t-72% case. The first thing that can be noted is that, at the beginning 

of the simulations (Figure 60a), the line relative to the liquid space appears quite irregular. The opposite 

is true for the last panel of Figure 60 (c), where the profile is smooth. The thickness of the convective 

layer appears to increase going from the bottom of the tank towards the liquid surface. However, for a 

given vertical coordinate, this remains constant. On the other hand, in the vapor space, both the thickness 

and the extension of the free convective layer decrease with the time. 

Finally, it is worth noting that the position of the liquid-vapor interface moves a bit towards the top of 

the tank. This is due to the expansion of the liquid phase.  

 

Figure 60: Iso-velocity line corresponding to a velocity magnitude value of 0.05 m/s at 60 s (a), 180 s (b) and 300 s (c) 
for the Moodie-5t-72% case 
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4.4.6 Thermal stratification 

In Section 1 it has been pointed out that many authors have stressed how thermal stratification plays a 

key role in the determination of the pressurization rate. Consequently, most of the modifications made 

to improve simple models for the prediction of the response of vessel exposed to fire were aimed at 

reproducing this phenomenon. The capability of CFD in reproducing in detail the flow and temperature 

fields inside the vessel makes it a powerful tool to study the importance of thermal stratification. In the 

following, the temperature distributions obtained from the simulations of all the cases summarized in 

Table 10 will be analyzed in order to assess the importance of this phenomenon. 

 

Figure 61: Comparison between pressure (P-blue line) and saturation pressure (Psat – green dots) calculated at the 
average liquid temperature for the Moodie’s test carried out using the 5 ton tank. 

The simplest way to understand how the inhomogeneous distribution of the temperature affects the 

pressurization in the tank is to compare the pressure curves (obtained with the CFD model) with the 

saturation pressure calculated at the average (mass weighted average) temperature of the liquid phase. 

Figure 61 shows the results obtained for the tests involving the 5 ton tank. The plots show a clear trend, 

with the green dots representing the saturation pressure falling onto the pressure curve for the first two 

cases (Moodie-5t-22% and Moodie-5t-36%) and deviating from it in the other two (Moodie-5t-58% and 

Moodie-5t-72%). The deviation increases with the increase of the filling degree.  

This behavior becomes even more evident in the full scale case (UDDOT-64t-96%, Figure 62). Here the 

difference between the blue curve and the green dots reaches a value of about 8 bar after 100 s from the 
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beginning of the test. These results refer to the simulation carried out using the average fire black body 

temperature 

 

Figure 62: Comparison between pressure and saturation pressure calculated at the average liquid temperature for the full 
scale test. 

 

Figure 63: Parity plot comparing the pressure and saturation pressure calculated at the average liquid temperature for all 
the cases in Table 10 relating to the fully engulfing pool fire scenario.  
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Looking at the complete set of cases listed in Table 10, Figure 63 (reporting a parity plot comparing the 

pressure in the tank with the saturation pressure calculated at the average liquid temperature) confirms 

the trend observed in the 5 ton tank test series. For intermediate filling degrees, the points fall very close 

to the line y = x, indicating that stratification has almost no effect on the pressurization rate. On the 

contrary, when most of the tank volume is occupied by the liquid phase, the role of stratification becomes 

important. This phenomenon appears to be stronger for bigger tank diameters. A strange result is 

obtained for the Moodie-1t-20% case, where the saturation pressure calculated at the average temperature 

of the liquid phase is slightly higher than the tank pressure.  

In 1996, Birk and Cunningham [72] adopted the dimensionless parameter Π (Eq. 4.31) to quantify the 

effect of thermal stratification on the pressurization rate.  

Π =
𝑝

𝑝𝑠𝑎𝑡(𝑇𝐿,𝑎𝑣)
 

(Eq. 4.31) 

It is defined as the ratio between the pressure of the tank and the saturation pressure (p) calculated at the 

average temperature of the liquid phase (TL,av). Figure 64 shows the variation of this parameter as a 

function of time for the cases listed in Table 10 relative to the fully engulfing pool fire scenario. 

 

Figure 64: parameter Π calculated from the CFD simulation of the cases listed in Table 10 relative to the fully engulfing 
pool fire scenario. 
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4.4.7 Temperature fields 

Analyzing the temperature distribution, Figure 65a and b show the liquid temperature maps relative to 

the Moodie-5t-72% case after 60 and 300 s from the beginning of the simulation respectively.  

 

Figure 65: Temperature contour plots at 60 s (a) and 300 s (b) and vertical temperature profiles at different instants of 
time (c) for the Moodie-5t-72% case. 
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convective flow on an almost flat surface are also clearly visible. Figure 65c shows the temperature 

profiles on the vertical center-line of the tank (from the bottom to the liquid surface) at different instants 

of time. The curves confirm what already observed looking at the temperature contour plots. The thermal 

stratification is not negligible and becomes more evident in the last part of the simulation. 
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At this point, it is interesting to investigate to what extent this phenomenon affects the pressurization. 

This can be done by analyzing what happens at the interface that separates the liquid and the vapor 

domains and, in particular, to identify where evaporation (and condensation) occur. Considering again 

the Moodie-5t-72% case, Figure 66 shows the areas close to the liquid-vapor interface where evaporation 

is observed (highlighted in purple) and those where opposite phenomenon is observed (in blue). As 

expected, vaporization occurs in a thin layer at the wall. At the same time, the bubbles rising through 

towards the surface partially condense since they are surrounded by subcooled liquid. 

 

Figure 66 Evaporation and condensation “zones” after 60 (a), 180 s (b) and 300 s (c) close to the liquid surface for the 
Moodie-5t-72% case. 

Quite surprisingly, it appears that only a portion of liquid surface (identified as the iso-line where the 

liquid volume fraction has a value of 0.50) experiences evaporation. Closer to the vertical center line of 

the tank the vapor is condensing. It is interesting to note how the extension of both evaporation and 

condensation zones decreases with the time.  

a) 60 s

b) 180 s

c) 300 s

Evaporation Condensation
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Considering the Moodie-5t-58% case (Figure 67), it can be noted how the evaporation and condensation 

zones follow the same behavior observed in the Moodie-5t-72% case. Here, however, the extent of the 

portion of the liquid surface at which condensation occurs decreases faster, as can be observed in Figure 

67b (showing the situation after 240 s from the beginning of the simulation). The temperature profiles 

reported in Figure 67c show that the liquid domain is stratified, but the degree of stratification is lower 

with respect to the Moodie-5t-72% case. 

 

Figure 67: Evaporation and condensation “zones” after 60 (a) and 240 s (b) and temperature profiles along the vertical 
center-line at different instants of time (b) for the Moodie-5t-58% case.  
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In the Moodie-5t-22% case (Figure 68a and b), the evaporation zone is much more extended. It is not 

limited to a thin layer near the wall and close to the liquid surface, but affects most of the liquid bulk. 

After 60 s (Figure 68a), the portion of the liquid-vapor interface at which condensation can be observed 

is already quite limited. After 240 s (Figure 68b), evaporation occurs over all the liquid surface. The liquid 

temperature along the vertical center line is uniform (i.e. stratification is absent) with the exception of the 

region close to the bottom of the tank, which is warmer.  

 

Figure 68: Evaporation and condensation “zones” after 60 (a) and 240 s (b) and temperature profiles along the vertical 
center-line at different instants of time (b) for the Moodie-5t-22% case. 
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Summarizing what has been shown above, it can be concluded that CFD results are in contrast with the 

assumption at the base of most of the zone models presented in Chapter 2, that the temperature of the 

liquid-vapor interface determines the pressure of the tank. According to the simulations, this is rather 

driven by a changing balance between a positive a positive (evaporation) and negative (condensation) 

mass flow from the liquid to the vapor phase occurring in different zones. The absolute and relative 

extension of these zones depends on the filling degree.  

Therefore, it appears that rather than thermal stratification, which refers to a vertical temperature 

gradient, it is the two-dimensional temperature inhomogeneity that influences the pressurization rate. 

Furthermore, CFD shows the importance of evaporation in the thin layer close to the tank wall, especially 

when the filling degree and the tank diameter increase. This is in contrast with the hypothesis that nucleate 

boiling can be neglected before the PRV opens, as assumed by most of the zone models presented in 

Chapter 2. 

Evidence supporting some of the considerations presented above can be found by analyzing the 

experimental results relative to the simulated cases. Although it is not possible to obtain an average liquid 

temperature from thermocouple measurements, it is easy to compare the saturation temperature 

corresponding to the tank pressure (measured during the tests) with the lading temperatures in different 

points. 

 

Figure 69: Saturation temperature corresponding to the pressure of the tank compared with the lading thermocouple 

measurements for the Moodie’s tests carried out on the 1 ton LPG tank. 
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Figure 69 shows the results obtained for the tests involving the 0.25 and the 1 ton tanks. In the experiment 

carried out using the smallest tank (Moodie-1/4t-40% in Figure 69a), the saturation temperature 

calculated at the pressure of the tank and the temperatures measured at points B and M7 are coincident. 

For the 1 ton tank tests, the mutual position of the saturation curve and the points representing the liquid 

temperature change according to the filling degree. For the Moodie-1t-20% case, the red curve follows 

the temperature points relative to the only thermocouple wetted by the liquid (blue dots in Figure 69b). 

In the intermediate case (Moodie-1t-40%, Figure 69c), similarly to what happened in the Moodie-1/4t-

40% test, the saturation curve coincides with the temperature measured by thermocouple M. Here, 

however, the temperature at point B is lower, showing a slight degree of stratification. This phenomenon 

becomes more visible when the 80 % of the tank volume is occupied by the liquid phase (Moodie-1t-

80%, Figure 69b). Here the liquid bulk temperature is clearly lower than the saturation8. All of this is in 

accordance with the hypothesis, made observing CFD results, that the role of stratification increases with 

the increase of the filling degree.  

 

Figure 70: Saturation temperature corresponding to the pressure of the tank compared with various thermocouple 
measurements for test Moodie-5t-22% (s) and Moodie-5t-72% (b). 

Figure 70 shows the same analysis carried out on the measurements obtained for tests Moodie-5t-22% 

and Moodie-5t-72%. In the first case (Figure 70a), the saturation temperature curve (in red) passes almost 

exactly through the points indicating the temperature of thermocouple T 61. Closer to the bottom of the 

tank, where thermocouple T 60 was positioned, the liquid appears to be superheated. In the Moodie-5t-

72% case the situation changes. The bulk thermocouples (T46 and T 47 in Figure 70b) indicate a 

temperature much lower than the saturation. The distance from the red curve increases with time, 

reaching about 20 °C at the PRV opening time. At this point, the pressure of the tank is about 5.3 bar 

higher than the saturation pressure calculated at the temperature registered by thermocouples T 46 and 

T 47. This means that most of the liquid phase is subcooled. Data from thermocouple T 45 indicates that 

there is a layer, right below the liquid-vapor interface, close to saturation temperate. The same is true for 

                                                 
 

7 It was not possible to obtain two different curves from the experimental report 
8 As explained in the comment on the results of Figure 50, the temperature measurements for test Moodie-1t-80% are 
translated by 10 °C, so that the first point is at the saturation temperature corresponding to the initial pressure of the tank 
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the liquid in the near wall region. The thickness of this region appears to change over the wall. In fact, 

thermocouples T 54 and T 25, both positioned at 5 mm from the wall, read quite different temperatures. 

The first one is close to saturation, the second one indicates a temperature similar to that measured by 

thermocouples T 55 and T 56 (at 10 and 15 mm from the wall respectively). This suggests that the 

thickness of the near wall layer close to saturation increases going from the bottom to the top of the tank. 

Unfortunately, from this test series, there is no more data allowing to check the validity of this 

observation. 

Figure 71 compares saturation temperature relative to the tank pressure and the liquid, vapor and wall 

thermocouples for the full-scale test (USDOT-64t-96%).  

 

Figure 71 : Comparison between saturation temperature relative to the tank pressure and the liquid, vapor and wall 
thermocouples for the full-scale test. 
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It should be considered that, due to the presence of ethane, the actual saturation curve is a few degree 

lower than the one reported in Figure 71 (red full dots, connected by a dashed line). Therefore, to give 

an idea of where the actual curve should be, an additional line was reported translating the saturation 

curve by 4.4 °C (red dotted line).  

All along the wall (green crosses), the liquid is very close to the saturation temperature of pure propane 

both for the front (Figure 71a) and the rear section (Figure 71b). Most of the green crosses fall in the 

proximity of the translated saturation curve. However, this condition is reached after some time from the 

beginning of the test. In fact, looking at Figure 71b the points relative to the measurements between 40 

and 60 s are well below both red lines. This means that, in the first period, the pressurization was most 

probably driven by the expansion of the vapor space end not by vaporization.  

The liquid bulk appear to be subcooled and stratified. Rising towards the liquid surface, the temperature 

increases. Thermocouples closer to the liquid surface (blue circles) indicate a higher temperature with 

respect to the others. However, even these points are quite far from the saturation temperature. 

The vapor phase appears to be subcooled, indicating that, most probably, the actual saturation curve was 

even lower than the red dotted line. 

4.4.8 Time-step independence 

In order to verify the time-step independence of the solution (the grid independence study is reported in 

Appendix D), the simulation of the Moodie-1t-80% case was repeated using a smaller time-step (0.0025 

s). Figure 72 shows that the pressurization curves obtained using the two different time-steps are 

coincident. The maximum relative difference between the curves is 0.5 %, whereas the maximum 

absolute discrepancy is 6.0 kPa. Therefore, whit respect to the tank pressurization, the present solution 

can be considered time-step independent. 

 

Figure 72: Pressurization curve obtained using a time-step of 5 ms (blue curve) and 2.5 ms (red curve) for the simulation 
of the Moodie-1t-80% case. 
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In order to analyze the influence of the time steps on local variables Figure 73 shows the velocity and 

temperature profiles at in different parts of the computational domain. Figure 73a shows that the vertical 

velocity profiles on the horizontal center-line predicted using the two different time-steps are almost 

coincident. However, going closer to the wall (Figure 73b), differences appears. The disagreement is 

higher for the profile relative to 60 s. The same is true for the temperature profiles at the same location 

(Figure 73c). On the other hand, better agreement is found between the temperature and velocity profiles 

at 120 s and 180 s. Wall temperature predictions are almost coincident (Figure 73b). The maximum 

absolute discrepancy between the results obtained using 5 and 2.5 ms as time-step relative to the velocity 

and temperature profiles reported in Figure 73 are reported in Table 11. 

 

Figure 73: Comparison of the results obtained using a time-step of 5 ms (solid lines) and 2.5 ms (dashed lines) at 60 s, 
120 s and 180 s: (a) vertical velocity profiles on a horizontal section; (b) zoom of panel a in the near wall region; (c) 

temperature profile on a horizontal section; (d) inner wall temperature profile. 
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Table 11: Maximum absolute discrepancy between the results obtained using 5 and 2.5 ms as time-step relative to the 
velocity and temperature profiles reported in Figure 73. 

 Maximum absolute difference 

Variable and location 60 s 120 s 180 s 

Vertical velocity along the horizontal centerline (Figure 73a) 0.07 m/s 0.05 m/s 0.03 m/s 

Temperature along the horizontal centerline (Figure 73c) 8.1 °C 4.6 °C 2.2 °C 

Inner wall temperature (Figure 73d) 3.6 °C 4.4 °C 9.9 °C 

It should be noted that the time-steps considered here are around 4 orders of magnitude smaller than the 

total simulation time. Hence, small discrepancy in the results of the two simulations at each time-step can 

propagate in time and lead to big differences in the values of variables compared after thousands of time-

steps. This is particularly true in those regions were the flow is more unstable, like the bottom of the 

tank. Figure 74 shows how the difference between the temperature predicted by the two simulation is 

higher in this part of the domain (point B, with a maximum discrepancy of 3.4 °C), whereas it is negligible 

in the bulk of the liquid (point M) and in the vapor space (point T), with a maximum discrepancy of 0.5 

and 0.4 °C respectively.  

 

Figure 74: Comparison of the temperature at point T, M and B obtained using a time-step of 5 ms (solid lines with 
circles) and 2.5 ms (dashed lines with crosses). 

In the light of these consideration, it was decided to accept the discrepancies between the two simulations 

and to consider time-step independent the solution obtained using 5 ms time-step. Furthermore, the 

results showed in Figure 72 demonstrate that these differences have negligible effects on the 

pressurization curve.  

  

10

15

20

25

30

35

40

45

50

55

0 20 40 60 80 100 120 140 160 180

T
e
m

p
e
ra

tu
re

 (
°C

)

Time (s)

B - 5 ms B - 2.5 ms

M - 5 ms M - 2.5 ms

T - 5 ms T - 2.5 ms

T

B

M



101 

4.4.9 Influence of coefficients CE and CC in the evaporation and condensation model 

In the description of the modelling setup, it was pointed out that the Lee evaporation and condensation 

model [64] relays on the two coefficients CE and CC. In absence of specific experimental data, it was 

decided to use the default values in ANSYS Fluent (i.e. CE = CC = 0.1). However, in order to understand 

the influence of these two coefficients on the pressurization rate, a sensitivity analysis was carried out 

changing their values to 0.2, 0.5, 1 and 0.01 s-1. Figure 75 shows the results of this analysis in the 

simulation of the Moodie-1t-80% case. 

 

Figure 75: Pressure curves obtained using different values of the CE and CC coefficients for theMoodie-1t-80% case. 

An increase in the coefficients leads to higher pressure curves. However, considering that a factor of 100 

exist between the coefficient used to obtain the cyan curve (CE = CC = 0.01) and the yellow one (CE = 

CC = 1), it can be concluded that the model is not very sensitive to variation in the values of CE and CC. 

This is clearly visible, for instance, considering the time to reach a pressure of 18 bar. In the base case 

(blue line, CE = CC = 0.1) this is 165 s. Doubling the values of the coefficients (green line, CE = CC = 0.2) 

this time decreases by just 7 s (- 4 %).  

It is worth mentioning that higher values of the coefficients introduce numerical instabilities and slow 

down the convergence. Simulations considering values 0.5 and 1 diverged after about 173 s. Therefore, 

it was preferred to keep the default settings of CE and CC parameters. 
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4.5 LPG tanks exposed to distant fire 

In the previous paragraphs, it has been shown how the CFD simulations of full engulfing pool fire 

scenarios provides good results in comparison with experimental data. In particular, it is possible to 

predict the pressurization curve before PRV opening with a good degree of accuracy, especially for low 

and medium filling levels.  

An important test to assess the CFD setup presented above is to check its prediction capability when a 

more complex fire scenario is considered. This is the case of the Heymes and co-workers in 2013 [32], 

where the effects of a forest fire attack on a LPG tank were studied. 

4.5.1 Definition of the boundary conditions 

With respect to the previous simulations, the model setup remained unchanged with the sole exception 

of the boundary condition. In fact, the geometric configuration of the experiment required a more 

complex treatment.  

 

Figure 76: Boundary condition definition process: 3D geometry for view factors calculation (a), contour plot of the incident 

radiation (b), view factors on the section x0 as a function of the angle 𝜃 (c), measured and smoothed heat flux obtained by 
the flux meter (d). The boundary conditions are implemented in FLUENT through the UDF reported in Appendix C. 
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neglecting the radiation absorbed by the air, the incident radiation (IP) at point P on the tank surface can 

be expressed as follows: 

𝐼𝑃 = 𝜎 × 𝜁 (Eq. 4.32) 

𝜁 = 𝑓𝑃→𝐹𝑇𝐹,𝐵𝐵
4 + (1 − 𝑓𝑃→𝐹)𝑇∞

4 (Eq. 4.33) 

𝑓𝑃→𝐹 =
1

𝑑𝐴𝑃
∫

cos 𝜃𝑃 cos 𝜃𝑇
𝜋𝑆2𝐹𝑊

𝑑𝐴𝐹𝑊 (Eq. 4.34) 

where σ is the Stefan-Boltzmann constant, 𝑓𝑃→𝐹 is the view factor between point P and the fire and 𝑇∞ 

is the temperature of the surrounding. This is expressed according to Eq. 4.34 (the integral refers to the 

fire wall surface). The definition of the variables appearing in this equation can be found in Appendix B. 

Although the CFD simulation of the tank interior was carried out in 2D (i.e. considering the tank as a 

cylinder with an infinite dimension in the axial direction), the calculation of the view factors in Eq. 4.33 

required preliminary 3D modeling in ANSYS Fluent. This was carried out using the S2S (surface to 

surface) radiation model [60]. The fire scenario geometries where reproduced as showed in Figure 76a, 

taking advantage of the geometric similarity presented in Table 4 (Chapter 1). In particular, the values of 

the view factors (see Figure 76c) at the line indicated as x0 in Figure 76b were of interest for the present 

case. It was thus possible to define a black body temperature equivalent to the term 𝜁 defined in Eq. 4.33. 

This was passed to the solver by means of a dedicated User Defined Function (UDF), which is reported 

in Appendix C. The solver calculates the entering heat flux (q) for each point at the external tank wall as 

follows: 

𝑞(𝜃, 𝑡) = 𝜎𝜀𝑤 (𝑇𝐵𝐵,𝑒𝑞(𝜃)
4 − 𝑇𝑤(𝑡)

4) (Eq. 4.35) 

where 𝜀𝑤 is the wall emissivity (a value of 0.77, measured in the fire test, was used in all the simulations) 

and Tw is the temperature of a given point on the external tank wall. Clearly, this heat flux is a function 

of time (the wall temperature changes during the calculation) and the angle θ as defined in Figure 76c.  

Furthermore, since the temperature of the fire wall did not remain constant during the experiment, the 

measurement provided by the radiative flux meter (Figure 2d) was also taken into account in the 

definition of term 𝑇𝐵𝐵,𝑒𝑞 in Eq. 4.35 when the experimental case was simulated. In order to make 

experimental heat flux measurement suitable for UDF implementation, a specific data smoothing was 

carried out as shown in Figure 76d. 

An important point raised during the treatment of boundary conditions was related to the assessment of 

the convective heat flux contribution to the total heat transfer mechanism. In particular, detailed 

temperature and eventually velocity measurements of the air surrounding the tank are needed for the 

evaluation of the convective heat transfer coefficient, which is expected to change in time during fire 

exposure and according to the location, due to the relevant asymmetry featured by the present case (vessel 

exposed only on one side to distant source radiation). Therefore, in order to avoid the introduction of 

further uncertainties in the analysis due to data unavailability, the heat transferred to the surrounding air 

by natural convection was neglected. It should be noted, however, that this choice is on the safe side, 

since this contribution would subtract heat from the tank, thus lowering the heat-up process and the 

consequent pressurization rate.  

To verify the validity of the present assumption and to trace the effect of the natural convection on the 

simulation results, an additional simulation was performed, in which, beside the radiative input heat flux 

(q, see Eq. 4.35), a convective term (qc) was introduced, expressed as follows: 
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𝑞𝑐(𝜃, 𝑡) = ℎ𝑎𝑖𝑟(𝑇𝑤(𝜃, 𝑡) − 𝑇𝑎) 
(Eq. 4.36) 

where Ta is the ambient temperature assumed equal to the initial temperature of the simulation, and hair 

is the convective heat transfer coefficient between the external wall and the surrounding air (neglecting 

possible effects due to wind). This latter parameter was estimated through the empirical correlation 

reported by [73] for the calculation of the natural convection heat transfer coefficient around a horizontal 

cylinder: 

𝑁𝑢 = 0.13 𝑅𝑎
1
3 

(Eq. 4.37) 

where Ra is the Rayleigh number and Nu is the Nusselt number (𝑁𝑢 =
ℎ𝑎𝑖𝑟𝐿

𝑘𝑎𝑖𝑟
; where L is the characteristic 

length and kair is the thermal conductivity of the air). In particular, hair = 5 W/(m2K) was imposed in the 

simulations. This average value was estimated by considering a temperature difference between the wall 

and the air ranging between 0 and 200°C, and taking the tank diameter as the characteristic length L.  

Finally, the initial temperature condition for the simulation of the experimental test was set to 13°C. 

4.5.2 CFD predictions VS experimental results 

Figure 77 shows that the pressurization curve recorded during the test (red line) is well reproduced by 

the CFD simulation (blue line). The two curves match almost perfectly for the first 12 min. Then, the 

predicted pressure starts deviating from the measured one. However, the relative error remains always 

below 3% (see also Table 12).  

 

Figure 77: Comparison among the measured pressure and the pressure obtained by CFD simulations. CFD simulation 
was set up with the mesh adopted in the case studies and with a finer mesh (see Section 3.4) 
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Figure 78: Temperature profiles at different times: on the outer wall at 5 min (a), 10 min (b), and 20 min (c) function of 

the angular coordinate 𝜃; on the tank vertical axis y at 5 min (d), 10 min (e) and 20 min (f). The shaded area represents 

the shell portion in contact with the liquid (a, b and c; 216° < 𝜃 < 324°) and the liquid domain (d, e and f; -0.5 < y 

< -0.295 m). The fire wall is on the right side of the vessel (where 𝜃 = 0°).  

Figure 78 shows the comparison between the experimental measurements and CFD predictions in terms 

of temperature profile at the external wall (Figure 78 a, b and c) and fluid temperatures on the vertical 

center line of the tank (Figure 78 d, e and f), taken at different times. External wall temperatures are 

plotted in the corresponding charts as a function of the 𝜃 coordinate (see Figure 78a, b, c). Tank lading 

temperatures are plotted as a function of vertical coordinate y (see Figure 78d, e, f). The fire wall is on 

the right side of the vessel (in correspondence of 𝜃 = 0°). The liquid domain position is indicated by the 

shaded area. 
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Temperature values obtained from CFD predictions are generally in good agreement with the 

experimental data obtained from the thermocouples installed on the external wall (see Figure 78 a, b and 

c). Overpredictions are obtained in the portion of the tank surface exposed to higher heat flux values 

(e.g., on the side facing the fire wall, see the sketch in Figure 1 for the experimental set up layout). The 

difference with the experimental results increases with time, with maximum discrepancies in the portion 

of tank wall between θ =10° and θ = 50°. This is clearly visible in Table 12, where both the relative and 

absolute errors relating to thermocouples TB and TC appear to be the highest among the wall 

thermocouples. 

Table 12: Absolute (maximum, minimum and average) and the relative (maximum and minimum) errors for all the 
thermocouples and for the pressure. 

 

 
 
 

Absolute error (K) 
 
 

|𝑇𝐶𝐹𝐷 − 𝑇𝑒𝑥𝑝| 

 
 
 

Relative error (%) 
 
 

𝑇𝐶𝐹𝐷 − 𝑇𝑒𝑥𝑝

𝑇𝑒𝑥𝑝
× 100 

Thermocouple Max Min Average Max Min 

TA 29.9 0.1 17.7 5.7% -8.4% 

TB 70.3 0.2 30.3 12.6% -0.3% 

TC 86.1 1.4 48.4 15.8% 0.5% 

TD 36.0 0.5 26.9 8.0% -1.0% 

TE 9.0 0.0 5.4 0.8% -3.0% 

TF 11.5 0.0 3.6 3.4% -0.8% 

TG 40.7 0.0 13.8 10.5% -0.4% 

TH 26.2 0.3 9.3 6.4% -3.9% 

T1 3.5 0.3 1.5 1.2% 0.1% 

T2 37.1 0.1 20.9 0.9% -10.7% 

T3 6.0 0.1 3.1 1.8% -1.6% 

T4 39.5 2.0 19.7 9.4% 0.7% 

T5 54.0 1.9 26.4 12.3% 0.7% 

T6 58.6 2.0 29.2 12.9% 0.7% 

T7 65.5 1.9 31.9 14.1% 0.7% 

T8 71.0 1.8 33.4 14.9% 0.6% 

Pressure (bar) 0.3 0.0 0.1 1.3% -2.4% 

It should be considered that the variation of the flame shape, especially in the upper part of the fire wall, 

introduces a degree of uncertainty in the boundary condition. Therefore, despite the accurate definition 
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of the boundary condition, limited discrepancies between experimental and CFD results are to be 

expected.  

Figure 79 confirms that neglecting the convective contribution of the air surrounding the tank leads to 

overpredictions of temperatures. The green dashed lines were obtained considering a fixed heat transfer 

coefficient of 5 W/(m2K) between the external wall and the surrounding air, while the solid line is 

associated with the results obtained without natural convection. As expected, a temperature decrease is 

obtained either in the liquid and vapor phases when considering the natural convection, as shown in 

Figure 79b for 20 min simulation time. However, since the heat transfer coefficient used is uniform and 

constant during fire exposure, the decrease in the temperature estimated with natural convection affects 

all the portions of the tank, thus driving the lower pressurization rate shown in Figure 79a and leading to 

non-conservative estimations.  

 

Figure 79: Comparison of pressurization curve (a) and wall temperature profile after 20 min (b) neglecting external 
convection (blue solid line) or assuming a heat transfer coefficient of 5 W/(m2 K) (green dashed line). The shaded area 

represents the shell portion in contact with the liquid (216° < θ < 324°). 

In regard to the tank lading, it appears that the temperature in the liquid phase is well reproduced, with a 

maximum relative error and absolute error of 1.2 % and 3.5 K respectively. On the other hand, the 

thermal profile measured in the vapor space is generally overestimated by the CFD simulation. Table 12 

shows that, apart from thermocouples T1, T2 and T3, the absolute and relative errors increase with the 

vertical coordinate. A possible explanation for the overprediction of the temperature in the upper part 

of the tank is obtained considering the flow pattern represented in Figure 80a. A recirculation cell forms 

close to the top right part of the tank (the side exposed to the fire), while the bulk of the vapor is almost 

motionless, as shown Figure 80b. On the right side, the velocity field is directed upwards. By contrast, 

on the left side, where the vapor is cooled down by the cold wall, the flow is directed towards the bottom 

of the tank. Therefore, the overestimation of the temperature in the upper part could be a consequence 

of the fact that the model is over-predicting the temperature in the hottest region of the wall (as discussed 

above, see Figure 78 a, b and c). Thus, in the simulation, the upper part of the tank is fed by a vapor flow 

warmer than that actually present in the real vessel. 

Another critical result obtained from the simulations is the difference in the temperatures of the region 

immediately above the liquid surface, where complex interaction phenomena between the two phases are 

probably not captured by CFD. Here, the temperature is overestimated, with a maximum discrepancy of 

37 K between the model and the measurements (see thermocouple T2 in Table 12) and a relative error 

of -10.7 %. 
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From these results, it is possible to conclude that the pressure build-up mainly depends on the liquid 

temperature, confirming the outcomes of several previous studies [46][64][65]. 

 

Figure 80: Predicted pahtlines in the vapor (orange) and in the liquid (light blue) phases (a) and pathlines colored 
according to the velocity magnityte (b) for the validation case 10 minutes after fire start. 

  

a) b)

Liquid Vapor
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4.6 Concluding remarks on CFD modeling of LPG tanks exposed to 

fire 

The CFD model setup presented in this chapter has proved to be a suitable tool to predict the response 

of LPG vessel to fire exposure. The comparison with experimental results reported in literature showed 

a general good agreement in terms of pressurization rate and lading temperatures.  

Considering the high degree of uncertainty related to the definition of the boundary conditions, accurate 

predictions were obtained for the pressurization rate in the cases involving tanks with diameters going 

from 0.51 to 1.7 m, especially for low and medium filling degrees.  

In regard to the full-scale test, the high variability of the fire conditions did not allow the reproduction 

of the fire scenario with a single value of radiating black body temperature. Therefore, simulations using 

three different values of such temperature were carried out. Pressure data measured during the 

experiment fall inside the range delimited by the pressurization curves obtained from the simulations.  

The CFD model provided a very good pressure prediction also in the complex (but well defined) fire 

condition reproducing a forest fire scenario. This points out the importance of the fire characterization 

in fire tests aimed at providing data for CFD model development and/or validation. 

In general, good prediction for the liquid temperatures were obtained for all the cases analyzed. The 

agreement between simulations and experiments is lower for the temperatures in the vapor phase. 

The weakest point of the CFD model resulted to be the prediction of the liquid wetted wall temperature. 

Unrealistic wall superheating was obtained with respect to measurements collected during propane pool 

boiling experiments. The analysis of the results confirmed the key role of the thermal boundary layer 

forming in the near wall region as well as the presence of thermal stratification both in the liquid and the 

vapor space. In addition, the model pointed out the importance of boiling at the wall. 

Further investigation is required concerning all these aspects. Experimental data available in literature are 

valuable, but limited. New fire tests are needed in order to acquire detailed information useful to improve 

modelling. In this perspective, the apparatus described in Chapter 3 represents a powerful tool for the 

accurate assessment of the inner fluid behavior in terms of velocity, temperature and boundary layer 

determination. Hopefully, in a near future, fire tests involving butane9 will be performed, producing 

valuable data for model development.  

Finally, it is important to remark that the application of the present modelling setup is limited to those 

cases which can be described following a two-dimensional approach. This means that fire scenarios 

characterized by a variable fire load in the axial direction of the tank cannot be modelled. For the same 

reason, it is not possible to simulate the behavior after PRV opening. Here, in fact, the three-dimensional 

effects cannot be neglected. At the moment, a 3D simulation based on the present CFD setup would 

require a prohibitive computational cost due to the high number of cells needed to mesh an entire vessel 

and the small size of the time step compared to the total simulation time. 

  

                                                 
 

9 At the moment, using the experimental apparatus to carry out fire tests with propane is not considered safe for the integrity 
of the apparatus itself. 
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Chapter 5 Modelling water tanks exposed to fire 

5.1 Theoretical background 

The aim of the present activity was to extend the CFD modelling approach developed for LPG to the 

simulation of water tanks exposed to fire. Most of the physical processes characterizing the scenario 

under analysis are basically coincident with those involved in the LPG case and described at the beginning 

of Chapter 4 (see also Figure 41). Here, however, the difference in the storage conditions between LPG 

and water as well as the different chemical and physical properties (e.g., higher thermal inertia due to high 

heat capacity and density of water with respect to liquid propane or butane) entail relevant modifications. 

In fact, water (and a substance in solution in water in general) is usually stored as subcooled liquid, in 

conditions far from its boiling point (e.g. at ambient pressure and temperature). Consequently, in a 

partially filled tank, the space above the liquid surface is occupied by air (with a small fraction of water 

vapor) instead of pure water vapor. Therefore, a new component (air, which is actually a mixture) must 

be considered in the analysis. Furthermore, some additional considerations must be given to the boiling 

regime.  

 

Figure 81 Pool boiling diagram for saturated water at atmospheric pressure (adapted from [75]). The red dashed line 
shows qualitatively the effect of subcooling. 

Figure 81 shows the pool boiling diagram for pure water. The black solid line refers to the situation in 

which water is at saturation temperature. It can be observed how a heat flux of 100 kW/m2, typical of 

the fire scenario considered here, corresponds to a wall superheating of about 10 °C. The working point 

falls in the nucleate boiling region (it must be taken in mind that this curve can slightly change depending 

on the surface roughness and orientation). However, in the case under analysis, water is stored far from 
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its saturation temperature. In this condition, the curve is shifted upwards as qualitatively indicated by the 

red dashed line. This is in accordance with the results reported in Figure 24 (relative to fire test 22), where 

superheating lower than 10 °C was observed.  

Finally, it must be considered that while the pool boiling diagram refers to a steady state condition, the 

situation in a tank exposed to fire is inherently transient: the saturation temperature changes according 

to the pressure rise and the degree of subcooling decreases as the liquid bulk heats up. Furthermore, the 

curvature of the wall introduces an additional deviation with respect to the diagram reported in Figure 

81. This, in fact, refers to a flat surface. 

In the first part of this chapter, the modelling setup considered for the study of LPG tank exposed to 

fire will be applied to the case of water tanks, with some modifications. Its strengths and limitation will 

be highlighted. Then, a new approach will be presented, based on studies carried out in industrial 

applications involving subcooled boiling of water. A preliminary assessment of the applicability of such 

an approach to the case under analysis will be given. 
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5.2 VOF approach 

Due to the good results obtained considering LPG tanks, the modelling approach presented in Chapter 

4 was considered as the starting point for the simulation of fire scenarios involving water. In the 

following, the details of the model setup and the results of its application are reported. 

5.2.1 Model setup and fundamental equations 

As mentioned before, in partially filled tanks containing water the space above the liquid surface is 

occupied by air. This implies that the CFD setup described in the previous paragraphs cannot not be 

used as is to simulate the scenario under analysis. Therefore, the conservation equations presented in 

Chapter 4 need to be modified to consider the presence of air in the gas phase. In particular, the case 

considered here for analysis is a multispecies problem, in addition to a multiphase one. In order decrease 

the complexity of the problem, the following hypothesis where introduced. 

- The liquid phase is formed by water only (i.e. oxygen and nitrogen cannot dissolve in to it) 

- Air is treated as a pseudo component 

From these hypotheses, it follows that (only) one additional conservation equation must be considered, 

for the transport of water vapor10 (Eq. 5.1). The quantity of air in the vapor phase is then obtained 

considering that the vapor fractions of air and water vapor must sum to unity.  

𝜕

𝜕𝑡
(𝛼𝑉𝜌𝑉𝑌𝑊𝑉) + 𝛻 ∙ (𝛼𝑉𝜌𝑉𝑌𝑊𝑉𝑢⃗ 𝐿) = −𝛻 ∙ (𝛼𝑉𝐽 𝑊𝑉) + 𝑚̇𝑉→𝐿 − 𝑚̇𝐿→𝑉 (Eq. 5.1) 

𝐽 𝑊𝑉 = −(𝜌𝐷𝑊𝑉,𝐴 +
𝜇𝑇
𝑆𝑐𝑇

) 
(Eq. 5.2) 

𝑌𝐴 = 1 − 𝑌𝑊𝑉 (Eq. 5.3) 

In these equations, YWV and YA represent the mass fraction of water vapor and air (in the vapor phase) 

respectively. 𝐽 𝑊𝑉 is the diffusion mass flux of water vapor and DWV,A is the mass diffusion coefficient 

between air and water vapor. ScT is the turbulent Schmidt number and, by default, is to 0.7. 

5.2.2 Material properties 

With the exception of density and saturation pressure, constant values were used for all the material 

properties (they are reported in Table 13). Properties of pure water were used for the liquid phase. The 

vapor phase was considered as a mixture, the properties of which (with the exception of density) are 

independent from the composition. The use of mixing rules for the estimation of material properties was 

avoided in order to avoid introducing further complexity in to the simulation.  

The properties of carbon steel were assumed for the tank wall (density: 7750 kg/m3; specific heat: 470 

J/(kg K); thermal conductivity: 60.4 W/(m K)). 

                                                 
 

10 The conservation equation is written for the water vapor in order to minimize round-off errors due to the small mass 
fraction of this species with respect to the mass fraction of air, especially in the first part of the simulations when no water 
vapor is present. 
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Table 13: Material properties used for the simulations of the case studies reported in Table 14 

 Units Water liquid Vapor phase 

Density kg/m3 ρ = 934.56 + 0.7679 T - 0.0019 T2 Ideal gas law 

Specific heat J/(kg K) 4182 1006 

Thermal conductivity W/(m K) 0.600 0.045 

Viscosity Pa s 1.03 x 10-3 1.72 x 10-5 

Mass diffusivity m2/s - 2.88 x 10-5 

Saturation pressure Pa 
Defined as a function of temperature according to data from 

Liley and coauthors [68] 

Heat of vaporization J/mol 40766 

 

5.2.3 Definition of simulation case study for model verification 

In order to assess the capability of the modified CFD setup, a set of case studies was simulated. They 

were defined to cover the range of conditions (in terms of filling degree and average heat flux to the tank 

lading) of the fire tests carried out by the FRA in 2015 [10] (described in Chapter 1) and of those 

presented in Chapter 3.  

The geometry considered was again a 2D vertical section of a 1 m outer diameter cylindrical pressure 

vessel11. Six different filling degrees were analyzed: 50 %, 75 %, 80 %, 90 %, 95 % and 98 %. A full 

engulfing pool fire scenario was considered, with an average heat flux to a cold surface of 100 kW/m2. 

Furthermore, cases with less severe fire loads were also simulated (with a heat flux to a cold surface of 

50 kW/m2 and 30 kW/m2 respectively). The aim was to reproduce the presence of thermal insulation as 

in some of the tests described in [10]. The set of case studies with the relative characteristics are reported 

in Table 14.  

Table 14: List of case studies of water tanks engulfed in pool-fires. 

 
Heat flux 

(and fire black body temperature TF,BB) 

Filling degree 
100 kW/m2 

(TF,BB = 1153 K) 
50 kW/m2 

(TF,BB = 974 K) 
30 kW/m2 

(TF,BB = 861 K) 

50 % *50%_100 kW/m2 50%_50 kW/m2 *50%_H30 kW/m2 

75 % 75%_100 kW/m2   

80 % 80%_100 kW/m2   

90 % 90%_100 kW/m2   

95 % 95%_100 kW/m2   

98 % *98%_100 kW/m2 98%_50 kW/m2 *98%_F30 kW/m2 

*These cases were compared with the experimental results from the FRA tests [10]. 

                                                 
 

11 This corresponds to the diameter of the tank used during the experimental campaign presented in Section 2. 
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5.2.4 Mesh, boundary condition and solver setup 

The meshing parameters used to carry out the simulations of the case studies correspond to those 

presented in Chapter 4. For all the case studies, only half of the tank was considered, thereby taking 

advantage of the problem symmetry (only full engulfing pool-fire scenarios were considered here). Figure 

82 shows an overview of the mesh together with a zoomed view highlighting the mesh refinement close 

to the inner tank wall. The boundary condition at the outer wall was defined as a constant and uniform 

radiating black body temperature (reported in Table 14). No convective contribution was considered. 

The no-slip condition was set at the inner wall (i.e. the velocity at the wall is zero) whereas symmetry was 

considered for the right edge of the mesh depicted in Figure 82. 

Atmospheric pressure (101325 Pa) and a temperature of 20 °C were assigned as initial conditions. The 

simulations were run for 900 s, with a time-step of 0.005 s (however, the 98 % filling degree – 100 kW/m2 

case diverged after 360s). The solver setup, in terms of convergence criteria, discretization schemes and 

pressure velocity coupling were kept unchanged with respect to the cases involving LPG. 

 

Figure 82: Mesh overview (a) and a zoomed view showing the mesh refinement close to the wall (b). 

 

 

  

a) b)
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5.2.5 Results: pressurization rate 

In this paragraph, the pressurization curves for the cases summarized in Table 14 are presented and 

discussed. The aim is to understand how the fire load and the filling degree affect the pressure build up. 

The influence of the first parameter can be observed in Figure 83. This refers to the cases with the lowest 

(50 %) and the highest (98 %) filling degree among the simulations listed in Table 14, exposed to three 

different heat loads: 30, 50 and 100 kW/m2. As expected, more severe fire conditions result in faster tank 

pressurization. Furthermore, for a given heat flux, the curves obtained for the highest filling degree (solid 

lines) are higher than those relative to the 50 % filling case.  

 

Figure 83: Pressurization curves for the cases obtained combining two filling degrees (50 % and 98 %) with three heat 
loads (30, 50 and 100 kW/m2).  

It is interesting to note how, for the 30 and 50 kW/m2 cases, the curves relating to the two different 

filling degrees are coincident for about the first third of the simulation (from 0 to 300 s). Then, the slope 

of the solid lines (98 % filling degree) starts (and keeps) increasing, while the dashed curves reach a 

plateau (50 % filling degree). This is not true for the 50%_50 kW/m2 simulation. In this case, in fact, the 

pressurization rate decreases after the first 300 s as observed at lower heat fluxes, but then starts 

increasing again.  

To understand the reasons behind this behavior, it is useful to isolate the contribution of boiling to the 

pressure build-up. This can be done by following an approach similar to that presented in Section2. In 

particular, it is possible to define the pressure contribution associated only with vapor expansion and 

thus without accounting for the increment of vapor molecules due to boiling; this pressure contribution 

is labeled as “no-boiling”, namely pNB and is expressed as follows:  

𝑝𝑁𝐵 =
𝑛0𝑅

∫
𝛼𝑉
𝑇𝑉
𝑑𝑉

 (Eq. 5.4) 
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Where n0 is the number of gas moles at the beginning of the simulation, R is the universal gas constant 

(8.314 J mol-1 K-1), T is the temperature (expressed in Kelvin) and αV is the gas phase volume fraction. 

This is the pressure calculated using the ideal gas law (by integrating over the volume occupied by the 

vapor phase) and considering that no water-vapor has been produced, i.e. considering only the number 

of moles of air, which remain constant during the simulation (see Section 2 for details). 

The pressure pNB is plotted in Figure 84a for the six cases under analysis. When the tank is 50 % full of 

water, pNB reaches a constant value according to the magnitude of the heat load. It is important to notice 

that this happens because the boundary condition is assigned as a constant radiating temperature and not 

a constant heat flux (this would have led to an unlimited increase in the vessel pressure). At this point, 

subtracting pNB from the tank pressure (Figure 84b), it is possible to quantify the influence of boiling. 

This is clearly visible for the case with the highest heat load. In the first part of the simulation (the first 

300 s), the pressurization is dictated by the fact that a gas (air) is heated at (almost) constant volume. 

Then, the increase in the number of moles in the vapor space due to boiling becomes dominant. For less 

severe heat loads, the boiling contribution is negligible. The curves relative to the 50%_50 kW/m2 and 

50%_30 kW/m2 cases in Figure 84b indicate that the pressure in the tank coincides with pNB
12. 

 

Figure 84: Pressure pNB (a) and difference between the tank pressure and pNB (b) for the cases obtained combining two 
filling degrees (50 % and 98 %) with three heat loads (30, 50 and 100 kW/m2). 

In regard to the 98 % filling degree cases, the situation appears quite different. In fact, the pressure pNB 

never stops increasing. It is still possible, for the 98%_50 kW/m2 and 98%_30 kW/m2 simulations, to 

observe that the boiling contribution to pressurization becomes important after about 300 s. The reason 

of the different behavior of pNB between the 98 % and the 50 % filling degree cases can be found analyzing 

the influence of the liquid expansion. In fact, the density of the liquid decreases as the tank is heated up. 

This leads to a displacement of the liquid-vapor interface towards the top of the tank, determining a 

                                                 
 

12 During the CFD simulation, this number does not remain exactly constant due to numerical errors. This explain the slightly 

negative value of the curves relative to the 50%_50 kW/m2 and 50%_30 kW/m2 cases. The extent of this error can be 

reduced using more stringent convergence criteria. However, this as a strong (and negative) effect on the computational time. 

In fact, the solver must meet these criteria at each time-step. 
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reduction of the volume available for the gas phase, and therefore a pressurization. Of course, when most 

of the volume of the tank is occupied by the liquid water, even a small displacement of the liquid-vapor 

interface can result in a large reduction of the gas phase volume, having a strong effect on the 

pressurization rate. This behavior is clearly visible in Figure 85. The picture compares the position of the 

liquid-vapor interface after 900 s for the 98%_50 kW/m2 (a) and the 50%_50 kW/m2 (b) simulations.  

 

Figure 85: Position of the liquid-vapor interface after 900 s with respect to the initial condition 98%_50 kW/m2 (a) 
and the 50%_50 kW/m2 (b) cases. 

With respect to the initial condition, a displacement of about 2.1 cm and 0.5 cm is observed respectively. 

For the case where half of the tank is full of water at the beginning of the simulation, this means that the 

volume available for the gas space has been reduced by the 1 %. On the other hand, for an initial filling 

≈ 2.5 cm

Position of  the liquid-vapor interface at

the beginning of  the simulation

Liquid-vapor interface after 900 s

≈ 0.5 cm

Position of  the liquid-vapor interface at
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degree of 98 %, the volume reduction of the gas space is around the 62 % of the initial volume. From 

this result, it can be concluded that, at high degrees of filling, the influence of the liquid expansion on the 

pressurization rate becomes important.  

 

Figure 86: Pressure (a) and pNB (b) for the 98%_50 kW/m2 case modelled with and without use of the Boussinesq 
approximation (red dashed line and red solid line respectively) and for the 50%_50 kW/m2 case modelled without use of 

the Boussinesq approximation (blue line). 

This conclusion is confirmed by the result obtained repeating the L98_H50 simulation introducing the 

Boussineq approximation [76] (labelled as 98%_50 kW/m2_b in Figure 86). In this way, the effect of the 

density change with the temperature is considered only in the momentum equation (in the buoyancy 

term) and the volume occupied by the liquid remains constant (i.e. the liquid-vapor interface does not 

displace). Figure 86a shows that, when this approximation is used, the pressure curve obtained for the 98 

% filling degree case is much lower with respect to that predicted when considering the density variation 

in the continuity equation as well. Furthermore, the dynamic of the pressure pNB (Figure 86b) is very 

similar to the 50%_50 kW/m2 case, where the expansion of the liquid phase is negligible. In fact, in 

contrast with what happens in the 98%_100 kW/m2 case, the curve representing pNB reaches plateau.  

This result suggests that, for high filling degrees, the thermal expansion of the liquid plays a significant 

role in the pressurization rate and, therefore, it cannot be neglected. This finding should be kept in mind 

during the design of fire tests when the aim is to study of the influence of boiling on the tank pressure 

(for instance, to provide data for CFD validation). In this case, filling degrees not higher than 80 - 85 % 

shall be considered in order to avoid obtaining misleading results. 
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At this point, it becomes interesting to analyze what happens for intermediate filling conditions. Figure 

87 shows the pressurization curves for all the cases in the second column of Table 14.  

 

Figure 87: Pressurization curves for the cases listed in the second column of Table 14. 

Apart from the red curve (relative to the 98%_100 kW/m2 simulation and already described above), all 

the others are almost coincident for the first 200 s. At this point, the pressure in the 95%_100 kW/m2 

case starts increasing at a higher rate with respect to the rest. This is again the consequence of the liquid 

expansion, that reduces the volume available for the gas phase. The yellow curve, (relative to the 90%_100 

kW/m2 case) appears to follow a similar, but slower dynamic. An unexpected result is that the pressure 

in the 50%_100 kW/m2 simulation is higher with respect the 75%_100 kW/m2 and 80%_100 kW/m2 

cases (the pressure curves for these two lasts cases are almost coincident). In order to explain this 

behavior, it is useful to follow the approach introduced above, that allows for isolation of the contribution 

of boiling. In Figure 88a it is possible to see that boiling affects the pressurization to the same extent for 

all three cases shown. In fact, the green, purple and cyan curves are almost perfectly coincident. On the 

other hand, Figure 88b shows that the pressure pNB is higher in the 50%_100 kW/m2 case with respect 

to the other two. Furthermore, even though the purple and the cyan curves are very close, the latter one 

is always a bit lower. This seems to suggest that, when the contribution of the liquid expansion becomes 

negligible, the pressurization rate is lower for higher filling degrees13. 

                                                 
 

13 This result shall be considered valid only for the simulated time (900 s). It is possible that, for longer fire exposure, the 
relative weight of the contribution of boiling, gas compression and liquid expansion on the pressurization rate changes. 

0

2

4

6

8

10

12

0 150 300 450 600 750 900

P
re

ss
u

re
 (

b
a
r)

Time (s)

50%_100 kW/m^2 75%_100 kW/m^2

80%_100 kW/m^2 90%_100 kW/m^2

95%_100 kW/m^2 98%_100 kW/m^2



120 

 

Figure 88: Pressure pNB (a) and difference between the tank pressure and pNB (b) for the cases 50%_100 kW/m2, 
75%_100 kW/m2, 80%_100 kW/m2, 90%_100 kW/m2, 95%_100 kW/m2 and 98%_100 kW/m2. 

A possible explanation of this result can be related to the geometry of the problem. The vapor space is 

heated by the wall of the tank and, at the same time, it is cooled by the liquid surface. Figure 89 shows 

how the ratio between the surface area of the tank wall in contact with the gas space and that of the 

liquid-vapor interface decreases with an increase in the filling degree. In other words, the higher the 

volume of liquid, the lower its cooling effect on the gas space.  

 

Figure 89: Value of the ratio between the surface area of the tank wall in contact with the gas space and the area for the 
liquid-vapor interface for different filling degrees.  
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This explains why the pressure pNB is higher in the 50%_100 kW/m2 simulation with respect the 75%_100 

kW/m2 and 80%_100 kW/m2 cases. For the first part of simulation the 90%_100 kW/m2 and 95%_100 

kW/m2 follow the same trend. However, after about 200 s the contributions of liquid expansion and 

boiling become dominant, hiding the cooling effect of the liquid surface on the pressurization rate. Going 

back to consider the results obtained introducing the Boussinesq approximation (i.e. eliminating the 

contribution of the liquid expansion), the trend highlighted above is confirmed. Figure 86 show that the 

pressure pNB for this case stabilizes at around 2 bar, a lower value with respect to the 50%_100 kW/m2 

case. 

5.2.6 Results: boiling and temperature profiles  

The analysis of the pressurization curves in the previous paragraphs (and in particular the pNB evaluations 

shown in Figure 88a), allows us to recognize that the contribution of boiling to the pressure build up 

increases with time. Figure 90 (reporting the contour plots of the gas phase volume fraction (𝛼𝑉) at 

different instants of time for the 50%_100 kW/m2 case) shows how, at the beginning of the simulations, 

bubbles are present only within a quite small region near the wall (where they form). This means that, the 

bubble detaching from the steel surface collapse (due to condensation) in the liquid bulk. However, as 

time advances, they start becoming visible all over the liquid domain. This can be explained considering 

Figure 91. 

 

Figure 90: Contour plots of the gas phase volume fraction (αV) showing the evolution of boiling with time for the 
50%_100 kW/m2 case after 300 s (a), 600 s (b) and 900 s (c). 

 

a) 300 s b) 600 s c) 900 s
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Figure 91: Temperature history at various points on the vertical center-line compared with the saturation temperature 
corresponding to the tank pressure for the 50%_100 kW/m2 case. 

When the fire starts engulfing the tank and boiling begins, the temperature of the liquid in the bulk region 

is very low compared with that of the bubbles detaching from the wall (close to the saturation temperature 

calculated at the tank pressure, indicated by the red solid line, namely Tsat). Therefore, these condense 

rapidly. Then, as the liquid domain becomes warmer (leading to a decrease of the driving force for 

condensation) the bubbles leaving the wall become able to travel further distances without collapsing 

until, at some point, they start reaching the liquid surface. This behavior is also visible in the video 

recorded by the cameras during the fire tests presented in Section 2. 

Figure 92 shows that the thermal boundary layer at the wall is very thin: in all the cases considered, the 

temperature drops within the first 2-3 mm from the wall surface. Out of the boundary layer the 

temperature profile is almost flat. The increase in the bulk temperature does not affect the thickness of 

this layer, which remains constant with the time. These results are in accordance with the experimental 

observation. This is clearly visible in Figure 92d, reporting the data registered by the thermocouples 

positioned at different distances from the wall on the measurement station at 45° (downwards with 

respect to the horizontal centerline of the tank) during the Test 22.  
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Figure 92: Temperature profiles at different instants of time as a function of the wall distance for a line inclined by 45° 
from the horizontal centerline for the 50%_H100 kW/m2 (a), 75%_H100 kW/m2 (b) and 95%_100 kW/m2 (c) 

simulations. Data relative to Test 22 are also reported for comparison. 

The temperature profiles through the wall are almost linear, due to the small thermal resistance (high 

conductivity) of the steel with respect to the one offered by the tank lading. 

The analysis of the data registered by the thermocouples during the fire tests described in Section 2 (see 

Figure 24 and Figure 27) pointed out that the temperature at the wall stabilizes, after a short time from 

the fire ignition, around the saturation temperature corresponding to the pressure in the tank. Figure 93 

shows the same analysis carried out considering four of the cases listed in Table 14 (50%_100 kW/m2, 

75%_100 kW/m2, 90%_100 kW/m2 and 95%_100 kW/m2).  
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Figure 93: Temperature as a function of time at four points on the wall, for the 50%_100 kW/m2, 75%_100 
kW/m2, 90%_100 kW/m2 and 95%_100 kW/m2 cases. The saturation temperature of water corresponding to the 

tank pressure is indicated by the red curve. 

As observed during the fire tests, in less than 60 s, the temperature at the wall attains the saturation 

temperature for all the cases considered here. In the simulation with the highest filling degree (95%_100 

kW/m2, Figure 93a) the temperature for all the four “measurement” points is almost coincident with the 

saturation temperature indicated by the red solid line. For the two intermediate cases (90%_100 kW/m2 

and 75%_100 kW/m2), a similar behavior can be observed. However, after the first 450 s, the temperature 

at the wall becomes higher than the saturation, remaining uniform along the wall, regardless of the vertical 

coordinate. This deviation is in contrast with the experimental observations. The superheating registered 

for the 75%_100 kW/m2 case (around 15-20 °C in the last part of the simulation) is not physical. This 

highlights a limitation of the present modelling setup. 

Going to analyze the last case (50%_100 kW/m2, Figure 93b), another questionable result is found. Close 

to the liquid-vapor interface (point D) the temperature results are (much) higher than saturation from 
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the very beginning of the simulation. This is due to the contribution of the heat transferred by conduction 

through the steel from the wall portion in contact with the vapor. In Figure 94 it is clearly visible that the 

thermal gradient in the wall region close to the liquid surface (represented by the green strip) has a high 

circumferential component. In the CFD simulation, this has a strong influence in the temperature reading 

at point D.  

 

Figure 94: Detail of temperature contour plot (900 s) for the 50%_100 kW/m2 case. 

This, together with the unrealistic superheating registered in the 90%_100 kW/m2 and 75_100 kW/m2 

cases, is most probably a direct consequence of the assumption, at the base of the VOF model, that the 

two phases share the same temperature and velocity field. Furthermore, it must be reminded that the 

evaporation-condensation model implemented in these simulations is based on a theory developed for 

near equilibrium evaporation through flat interfaces. Here, the situation is completely different, with 

subcooled boiling occurring at the tank wall.  

A possible way to overcome the above limitations will be presented in the last part of this section 

(paragraph 5.3). 

It can be concluded that, far from the liquid-vapor interface, the model gives better results in terms of 

wall temperature. In fact, in contrast with the simulation of LPG tanks, these are in agreement with 

experimental evidence. 
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5.2.7 Results: velocity profiles 

The velocity fields are very similar to those obtained in the simulations of LPG tanks exposed to fire. As 

can be observed in Figure 95, relative to the 95%_100 kW/m2 case, a free convective layer forms near 

the wall, whereas the bulk remains almost motionless. The iso-velocity curve corresponding to a value of 

0.02 m/s (traced in gray) shows that the region interested by the free convective flow is limited to the 

first 2-3 cm from the wall. 

 

Figure 95: Vector plots along different horizontal section after 180 s and 300 s of simulation for the 95%_100 kW/m2 
case. 

 

Figure 96 vertical velocity profiles along the horizontal center-line at different instants of time for the 95%_100 kW/m2 
case.  

180 s 300 s

v = 0.02 m/sv = 0.02 m/s

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

V
er

ti
ca

l 
ve

lo
ci

ty
 (

m
/

s)

Wall distance (m)

60 s 240 s 420 s 600 s 780 s



127 

Velocity profiles all along the wall have similar shapes with a maximum value oscillating been 0.1 and 0.3 

m/s. The velocity gradient at the wall is steep. Then, when the maximum is reached, the velocity decreases 

more gently. This is visible, for instance in Figure 96, showing the velocity profiles along the horizontal 

center-line at different instants of time for the 95%_100 kW/m2 case. Similar results were obtained for 

all the cases simulated. 

Figure 97 shows a comparison between the velocity profiles calculated by the CFD model for the 

95%_100 kW/m2 case (solid lines) and the data available from the PIV analysis of Test 22 (dots) along 

the horizontal center-line. Due to the time taken by the fire to fully develop, it is not possible to find an 

exact temporal correspondence between experimental and simulated results. 

 

Figure 97: Comparison between the vertical velocity profiles calculated by the CFD model (95%_H100 kW/m2 case – 
solid lines) and the data available from the PIV analysis (Test 22 - points) along the horizontal center-line. 

The layer interested by free-convection appears to be thicker in the experiment than the CFD results. 

Unfortunately, no PIV data is available in in the first 2 cm from the wall. Therefore, the validity of the 

CFD results in this region cannot be assessed. However, it is interesting to note how the first experimental 

points to the left fall on the curves obtained from the simulations. Of course, this result cannot be 

considered as a proof of the correctness of the model predictions.  

It can be concluded that a more accurate PIV analysis is needed in order to carry out a comprehensive 

validation of the CFD model in terms of velocity profiles in the near wall region.  
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5.2.8 Comparison with experimental data from the FRA tests 

At this point, it is interesting to compare the pressurization obtained from the simulations with data 

collected in the FRA tests [10][77] and described in Section 1. However, before showing the results, the 

following must be taken into account.  

In Chapter 4, where LPG tanks were considered, each case study was defined with the aim of reproducing 

a specific test and, therefore, a case by case comparison was possible. This was due to the fact that the 

reports of the fire tests analyzed are rich in details about instrumentation and results. On the contrary, in 

the case of the FRA tests, the only publicly available information were presented in a conference paper 

by Birk and coworkers in 2016 [10]. Here, limited details about experimental instrumentation (e.g. 

thermocouple positioning) are given and only part of the collected data is presented. Therefore, the 

present comparison could only be done on a small set of data. In addition, considering the fire tests 

involving protected tanks, it must be kept in mind that the degradation of the insulation material at high 

temperature introduces relevant uncertainties in the definition of boundary conditions. This make hard 

to accurately reproduce in the simulations the actual heat load experienced by the tank during the fire 

tests. 

From the previous considerations, it follows that a direct comparison between simulation and 

experiments cannot be carried out. However, in the absence of better data on pressurization of water 

tanks exposed to fire (that hopefully will be available for future fire tests carried out using the 

experimental apparatus described in Chapter 3), the FRA test results are the only way to assess the 

capability of the present modelling approach. The following comparison has the aim of highlighting its 

limitations and, at the same time, understanding what is properly reproduced.  

The first case considered (Figure 99) here refers to the test carried out involving a bare (unprotected) 

tank 98 % full of water (test 98%_Bare simulation 98%_100 kW/m2).  

 

Figure 98: Comparison between the pressurization obtained in the simulation 98%_100 kW/m2 (blue curve) and the 
fire test 98%_Bare (red curve).  
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Figure 99 shows that the pressure rise predicted by the CFD model is about three times slower that the 

measured one. The first possible explanation for this strong disagreement can be, of course, that the 

present model setup is unable to reproduce the pressurization rate in a water tank exposed to fire. 

However, as it will be showed later, the deviation from the experimental results is lower for the other 

cases analyzed. Therefore, it is reasonable to assume that the scarce model performances are a 

consequence of the “extreme conditions” considered in test 98%_Bare. In fact, due to the high filling 

degree, the volume of the gas space is very small, making the pressure build up quite sensitive to 

disturbances.  

From a modelling standpoint, this has two main implications. On one hand, a small error in the vapor 

production prediction can lead to a high error in the pressurization rate. The same is true for deviations 

relative to the actual boundary condition. Going back to the results obtained in the simulations of LPG 

tanks, it is interesting to note how the worst agreement between CFD modelling and experimental results 

was obtained in the case with the highest filling degree 96 %. Therefore, it looks like the model 

performance degrades when the tank is almost full of liquid. This issue should be taken into account in 

the planning of fire tests aimed at providing results for model validation. 

Considering the cases where the tank was insulated, the results of the comparisons are different. As 

mentioned before, the presence of the thermal protection was simulated by assigning a lower black body 

temperature with respect to the bare tank case. However, this does not reproduce the delay in the wall 

heat up introduced by the insulation. For this reason, the curves obtained from the CFD simulations 

were translated by 200 s (this delay accounts also for the time taken by the fire to fully develop). 

Figure 99 shows the comparison between the pressure curves relative to tests F98_Ia, F98_In and F50_I 

with those obtained from the simulations 98%_30 kW/m2 and 50%_30 kW/m2 (data from case 50%_100 

kW/m2 are also showed for further considerations). 

 

Figure 99: comparison between the pressure curves relative to tests 98%_Ins_a, 98%_Ins_b and 50%_Ins with those 
obtained from the simulations 98%_30 kW/m2, 50%_30 kW/m2 and 50%_100 kW/m2.  
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Considering the case with the highest filling degree, the pressurization predicted in the simulation is very 

similar to the corresponding experimental data (98%_Ins_a) for the first 1000s. Then, it starts to follow 

a slight different dynamic. The pressure build up is first slower and then faster with respect to the 

98%_Ins_a case. It is interesting to note how the result from test 98%_ins_b (a repetition of test 

98%_Ins_a) shows a not negligible deviation from that registered in test 98%_Ins_a. This support the 

hypothesis that, at such high filling degree, small disturbances in the boundary conditions can lead to 

quite big differences in the pressurization. In fact, after 1500 s, the solid and the dotted red curves indicate 

a pressure difference higher than 2 bar.  

Regarding the case with the lower filling degree, the situation changes completely. The experimental 

results show very little effect of this parameter on the pressurization curve. In the simulations, this is true 

for the first 600 s. Then, the pressure relative to the 50%_30 kW/m2 case stops increasing and remains 

constant. Figure 100 shows that, much later, the pressure starts increasing again. However, this occurs 

only when all the liquid domain reaches a temperature close to saturation. It is not clear whether this is 

due to a model limitation. In fact, due to the gradual degradation of the insulation, the actual heat flux to 

the tank could have increased during the test. In the 98%_Ins_a and 98%_Ins_b tests, the cooling effect 

to water could have delayed this degradation. Therefore, the similarity between the pressure curves 

observed for the different filling degree could be a consequence of a difference in the actual heat flux 

entering the tank. A result supporting this hypothesis is the one registered during the tests presented in 

Section 2 (see Figure 9). There, in fact, the pressurization curves relative to the 95 % filling degree test 

was much higher than that concerning the 50 % one. 

The green dotted curve in Figure 99 refer to the simulation representing the limit case where no insulation 

is present. In the last part of this simulation, the slope of the pressure curve is comparable (although still 

lower) with that observed during the 50%_Ins test. This represents an additional result in support of the 

hypothesis relative to the insulant degradation. Unfortunately, the solution of this simulation diverged 

after 960 s (1160 s in Figure 99). 

 

Figure 100: Pressure curve for the 50%_30 kW/m2 case. 
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Finally, Figure 101 compares the simulated and measured peak wall temperatures. For the first 600 s all 

the curves are very similar. During this period, both experimental and CFD results appear to be 

independent from the filling degree. From this point, the curve relating to test 50%_Ins deviates from 

those relating to tests 98%_Ins_a and 98%_Ins_b, keeping rising. Again, this could be a consequence of 

a different insulant degradation. Considering the results of the simulations, they are almost coincident up 

to 900 s. Then the blue curve (98%_30 kW/m2 case) show a slight decrease. This is a consequence of the 

cooling effect of the liquid that, due to thermal expansion, get closer to the top of the tank. 

 

Figure 101: Comparison between the peak wall temperature for the 50%_Ins, 98%_Ins_a and 98%_Ins_b tests and 
the 98%_30 kW/m2 and 50%_30 kW/m2 simulations. 

5.2.9 Strengths and limitations of the modelling approach 

Summarizing the analysis carried out in the previous paragraphs, it can be concluded that the modelling 

setup based on the VOF approach and the Lee evaporation-condensation model provides results only 

partially confirmed by experimental observations.  

Good predictions were obtained for what concerns the thermal boundary layer thickness. In contrast 

with the results provided by the simulations of LPG tanks, wall temperatures are generally in good 

accordance with those measured during fire tests. However, close to the liquid-vapor interface, 

unrealistically high wall temperature values are obtained. 

Physics of liquid expansion seems to be well reproduced. As expected, thermal stratification is predicted 

both in the liquid and the vapor space. In the simulations, boiling occurs all over the wall as observed in 

the experiments and strongly affects the pressurization. 

Unfortunately, experimental results in terms of pressurization curves are of scarce quality (for the reasons 
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model was able to reproduce what observed in the experiments, such as the 98%_30 kW/m2 case. In 

others, predictions were not effective, especially for the 98%_Bare case. Before drawing any definitive 

conclusion, a comparison with data from other fire tests less affected by uncertainties is needed. 

In any case, it is clear that an improvement of the present modelling setup is required. Therefore, it is 

important to identify its weakest points. Two aspects in particular represent inherent limitations of this 

approach.  

The first one is related to the fact that, in the VOF model, the two phases share the same temperature 

and velocity field. This prevents the model from providing a good description of the bubbly flow close 

to the wall. In this case, speaking about bubbles is not appropriate. The model predicts that a given 

amount of vapor is produced at the wall, that moves towards the surface due to buoyancy. This, of course, 

is a strong simplification of the real physics of boiling.  

The second critical aspect concerns the evaporation and condensation model. As mentioned before, this 

is based on a theory developed to describe the evaporation and condensation mechanism for a flat 

interface in close to equilibrium conditions. This is clearly not the situation of subcooled boiling.  

Of course, the above two limitations apply also to the LPG case. However, it is possible that the different 

storage conditions (saturated for LPG, subcooled for water) of water with respect to the previous case 

amplify the effect of these limitations, causing worse results. 

Therefore, it appears that efforts to improve the present modelling approach have to focus on the 

following aspects: 

- The development of a more appropriate wall boiling model 

- The use of a more accurate multiphase model 
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5.3 An alternative modelling approach 

5.3.1 Background 

In order to overcome the limitations of the CFD setup presented in the first part of Chapter 4, the 

possibility of using a different and more sophisticated approach has been explored. 

Even though very limited attention has been given, to date, to the study of subcooled boiling in pressure 

and atmospheric vessels exposed to fire, this phenomenon was subject of extensive research in other 

areas. In fact, subcooled flow boiling is a typical regime in many industrial applications. In nuclear plants, 

for instance, it is widely diffused due to its effectiveness in heat removal. The first works that can be 

found in literature aimed at the characterization of this phenomenon based on empirical correlations. 

One of the most popular was developed by Rohsenow [41], based on the assumption that single phase 

convection and nucleate boiling are analogous physical processes. This means that the heat transfer 

coefficient for both cases can be expressed as a correlation of the Reynolds and Prandlt numbers. The 

influence of the fluid/surface combination was taken into account by Rohsenow introducing a coefficient 

based on experimental data fitting. Therefore, the validity range of such kind of correlations is quite 

limited.  

The fully empirical approach was gradually abandoned due to the advances in experimental techniques, 

that allowed increasingly accurate studies of the bubble nucleation-growth-detachment cycle. This pushed 

the research towards the development of more mechanistic models, such as heat flux partitioning model 

proposed by Kurul and Podowsky in 1991 [78], better known as the RPI model, after the Rensselaer 

Polytechnic Institute. It relies on a series of correlations for the estimation of nucleation site density, 

bubble departure diameter and bubble detachment frequency. The RPI model has been used, in 

combination with the Eulerian-Eulerian multiphase approach, in CFD studies aimed at simulating the 

two-phase flow in subcooled boiling conditions.  

In the last two decades, several authors have showed how this approach is capable of providing 

predictions of the main parameters characterizing boiling flows, such as void fraction and wall superheat, 

which are in good accordance with experimental evidences [79][80][81][82]. However, they also pointed 

out how the accuracy of this modelling setup is strongly dependent on the correlations used to determine 

the main parameters at the base of the model itself: the nucleation site density, the bubble departure 

frequency, the bubble departure diameter and the diameter of bulles the post-departure. At the same 

time, it is generally recognized that such correlations are limited in validity to the range of experimental 

data upon which they were developed. In particular, they are strongly depended on the fluid type, 

pressure, degree of subcooling, heat flux, problem geometry, and bulk flow velocity. 

Most of the studies based on this approach considered subcooled, high-pressure, steady state, forced 

convection flow conditions, designed for applications in cooling systems for the nuclear and other 

industries (i.e. flow in narrow and long channels). These conditions are quite distant from what happens 

inside a vessel exposed to fire, where the flow is transient, the pressure at the beginning is generally close 

to atmospheric and the geometry is completely different. Unfortunately, at the present, no experiments 

are reported in literature that analyzes boiling in such conditions. Therefore, even though it is reasonable 

to expect that an approach based on the RPI and Eulerian-Eulerian multiphase models can improve the 

present ability in the prediction of the response of vessels exposed to external fire, attention must be paid 

during the model setup. In particular, experiments are needed to define the most appropriate expressions 

for the key model parameters mentioned above.  

The aim of this part of the work was to carry out a preliminary study to assess the potentiality of this 

alternative model setup in the specific case of water vessel exposed to fire. In absence of specific 
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experimental studies for the conditions of interest, the model parameters were first defined considering 

the most widely used expressions for the key parameters. Then, they were varied (some of them in 

accordance with preliminary experimental evidences collected during the fire tests presented in Chapter 

3) to perform a sort of sensitivity analysis. 

5.3.2 Modelling approach 

In contrast with the VOF approach, specifically developed to treat multiphase problems where a sharp 

interface is present between two or more immiscible phases, the Eulerian-Eulerian model is more 

appropriate in flows where one phase can be identified as continuous and the other (or the others) as 

dispersed.  

In a tank partially filled with water, two continuous phases can be identified: the liquid water and the air. 

When boiling starts, the water vapor bubbles forming and departing from the wall can be considered as 

a dispersed phase. Even though, in principle, it is possible to force extended interface tracking also in the 

Eulerian-Eulerian model by modifying the interface spatial discretization, this introduces high 

computational instability. Therefore, at this early stage of model setup, it was decided to avoid this 

modification. This was done by considering only the part of the domain below the liquid surface. In 

particular, in the analysis presented in this thesis, only the 50 % filling degree is taken into account. 

However, this approach can potentially be generalized to different filling conditions. 

It must be noted that excluding ullage from the analysis does not allow to directly calculate the 

pressurization. In order to overcome this limitation, the CFD calculation must be somehow integrated. 

In particular, the solution obtained with the CFD simulation must be coupled with a model describing 

the behavior of the gas space. This can be achieved via UDF following the approach schematized in 

Figure 102. 

 

Figure 102: Schematic representation of the modelling approach. The domain below the liquid surface (including the liquid 
wetted wall) is object of CFD simulation (based on the RPI model and Eulerian-Eulerian approach). The ullage 

(including the wall portion in contact with the gas phase) is modelled following a lumped approach implemented via UDF.   
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The idea is to solve the global mass and energy balances for the gas space in the form indicated by Eq. 

5.5 and 5.6.  

The first one represents the mass balance to the gas phase, where mG is the mass of the gas phase (air and 

vapor) and 𝑚̇𝑒𝑣 is the vapor produced in the liquid phase due to boiling. This is calculated by the CFD 

simulation at each time-step. The second equation is the energy balance, where CvG and CpG are the heat 

capacity at constant volume and constant pressure of the gas phase respectively. 𝑄𝑆→𝑉 and 𝑄𝑉→𝐿 

represent the heat flus exchanged with the steel wall and the liquid respectively. 

In this way, knowing the temperature (Tsat) and the mass (mG) of the gas space, the pressure can be 

calculated using the ideal gas law at each time-step. This, in turn, is used to update the saturation 

temperature TG that is needed both in Eq. 5.6 and in the CFD boiling model (described below). 

The scheme of the coupling between the UDF and the CFD solver is reported in Figure 103. 

 

Figure 103: calculation scheme of the coupling between UDF and CFD solver. 

The previous methodology has been presented with the aim of explaining how a CFD analysis limited to 

the liquid domain can be used to calculate the tank pressurization. A UDF implementing the scheme 

depicted in Figure 103 has been written and is reported in Appendix F. However, in the analysis that 

follows, all the simulations were carried out without considering the UDF.  
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Energy and mass balance:

𝑝 =
𝑚 𝑅𝑇 
𝑀 𝑉

𝑇𝑠𝑎𝑡(𝑝)
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(Eq. 5.5) 

𝑚 𝐶𝑣 
𝑑𝑇 
𝑑𝑡
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𝑅𝑇 
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𝑑𝑡
 (Eq. 5.6) 
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5.3.3 The Euler-Euler model 

The Euler-Euler model is the most sophisticated of the multiphase mode in ANSYS Fluent. Unlike the 

VOF approach, it solves a set of momentum and energy equations for each phase. These are coupled 

through interphase exchange coefficients. All the phases in the domain share the same pressure field.  

Mass, momentum and energy transfers occur through the interface between the phases. To simulate such 

phenomena, the extension of this interface must be evaluated. Therefore, the concept of Interfacial Area 

Concentration, defined as the interfacial area (AI) between two phases per unit mixture volume is 

introduced. In bubbly flows, the simplest way to compute it is to use an algebraic relationship involving 

the bubble diameter14. Assuming that bubbles are spherical with a diameter db, the area to volume ratio 

Ap can be calculated by Eq. 5.7. At this point, the interfacial area concentration AI can be expressed in 

various ways. In the present work, the so-called symmetric model has been considered, which defines AI 

according to Eq. 5.8 (Where αV is the volume fraction of the vapor phase). 

𝐴𝑃 =
𝜋𝑑𝑏

2

1
6𝜋𝑑𝑝

3
=
6

𝑑𝑏
 

(Eq. 5.7) 

𝐴𝐼 =
6𝛼𝑉(1 − 𝛼𝑉)

𝑑𝑉
= 𝐴𝑃𝛼𝑝(1 − 𝛼𝑉) (Eq. 5.8) 

 

5.3.4 Continuity and momentum equations 

Considering a problem involving two phases with no reaction occurring, the transport equations for the 

volume fractions correspond to those used in the VOF approach (Eq. 4.1 and 4.2).  

The momentum equation for each phase i has the following form: 

𝜕

𝜕𝑡
(𝛼𝑖𝜌𝑖𝑢⃗ 𝑖) + 𝛻 ∙ (𝛼𝑖𝜌𝑖𝑢⃗ 𝑖𝑢⃗ 𝑖) = −𝛼𝑖𝛻𝑝 + 𝛻 ∙ 𝜏𝑖 + 𝛼𝑖𝜌𝑖𝑔 + 𝐹 𝐼𝑁𝑇 + 𝐹 𝑖 + 𝑆𝑚,𝑖 + 𝛻 ∙ 𝜏′𝑖 

(Eq. 5.9) 

𝐹 𝑖 = 𝐹 𝑞 + 𝐹 𝑙𝑖𝑓𝑡,𝑖 + 𝐹 𝑤𝑙,𝑖 + 𝐹 𝑣𝑚,𝑖 + 𝐹 𝑡𝑑,𝑖 
(Eq. 5.10) 

The terms 𝜏 and 𝜏′ in the momentum equation represents the stress tensor and the Reynolds stress tensor 

respectively. In the present analysis, they are expressed according to (Eq. 5.11 and 5.12). 

𝜏𝑖 = 𝜇𝑖 [(𝛻𝑢⃗ 𝑖 + 𝛻𝑢⃗ 𝑖
𝑇
) −

2

3
𝛻 ∙ 𝑢⃗ 𝑖𝐼] 

(Eq. 5.11) 

𝜏′𝑖 = 𝜇𝑇,𝑖[(𝛻𝑢⃗ 𝑖 + 𝛻𝑢⃗ 𝑖
𝑇
)]  −

2

3
(𝜌𝑘 + 𝜇𝑇,𝑖𝛻 ∙ 𝑢⃗ 𝑖𝐼) 

(Eq. 5.12) 

                                                 
 

14 An alternative and more complex approach would be to solve a transport equation for the interfacial area concentration 
[60]. However, this introduces the need for submodels describing bubbles collision, coalescence and break up. These rely on 
adjustable parameters that need to be determined experimentally. At the present stage, to avoid the introduction of further 
uncertainties in the analysis, it was decided to follow the simpler approach based on Eq. 5.8. The use of the more complex 
alternative shall be considered in future development. 
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Sm,i is the momentum source due to mass transfer and, for a two phase problem involving liquid (L) and 

vapor (V), can be expressed by the following equation: 

𝑆𝑚,𝐿 = 𝑚̇𝑉→𝐿𝑢⃗ 𝑉𝐿 − 𝑚̇𝐿→𝑉𝑢⃗ 𝐿𝑉 (Eq. 5.13) 

𝑆𝑚,𝑉 = 𝑚̇𝐿→𝑉𝑢⃗ 𝐿𝑉 − 𝑚̇𝑉→𝐿𝑢⃗ 𝑉𝐿 (Eq. 5.14) 

𝑢⃗ 𝐿𝑉 and 𝑢⃗ 𝐿𝑉 are the interphase velocities and are defined as follows: if 𝑚̇𝑉→𝐿>0 (i.e. mass is transferred 

from the vapor to the liquid), 𝑢⃗ 𝑉𝐿 = 𝑢⃗ 𝑉; if 𝑚̇𝑉→𝐿<0, 𝑢⃗ 𝑉𝐿 = 𝑢⃗ 𝐿. Likewise, if 𝑚̇𝐿→𝑉>0, 𝑢⃗ 𝐿𝑉 = 𝑢⃗ 𝐿; if 

𝑚̇𝐿→𝑉<0, 𝑢⃗ 𝐿𝑉 = 𝑢⃗ 𝑉 . 

The term 𝐹 𝐼𝑁𝑇 represents the interphase force. For a two phase problem involving liquid (L) and vapor 

(V) the interphase force acting on the liquid (𝐹 𝑉𝐿) and the vapor phase (𝐹 𝐿𝑉) can be expressed be the 

following equation: 

𝐹 𝐼𝑁𝑇 = 𝐹 𝑉𝐿 = 𝐾𝑉𝐿(𝑢⃗ 𝑉 − 𝑢⃗ 𝐿) = −𝐹 𝑉𝐿 (Eq. 5.15) 

𝐾𝑉𝐿 = 3𝜇𝐿
𝐴𝐼
𝑑𝑝2
𝑓 (Eq. 5.16) 

Where f is the so-called drag function. Here, the correlation proposed by Ishii [83] for boiling flows was 

adopted.  

𝑓 =
𝐶𝐷𝑅𝑒

24
 (Eq. 5.17) 

𝑅𝑒 =
𝜌𝐿|𝑢⃗ 𝑉 − 𝑢⃗ 𝐿|𝑑𝑏

𝜇𝐿
 (Eq. 5.18) 

𝐶𝐷 = min

(

 
24

𝑅𝑒
(1 + 0.51𝑅𝑒0.75),

2

3

𝑑𝑏

√
𝜎

𝑔|𝜌𝐿 − 𝜌𝑉|)

  (Eq. 5.19) 

The term 𝐹 𝑖 in Eq. 5.9 accounts for a series of forces characteristic of multiphase flows. These are: 

- The lift force (𝐹 𝑙𝑖𝑓𝑡,𝑖). This acts on a particle (a bubble in this case) due to velocity gradients in 

the primary phase flow field [112 fluent]. The model chosen to describe this force is the one 

proposed by definition Frank et al. in 2004 [84], which is a lightly modified model of the original 

Tomiyama lift model [85]. 

- The wall lubrication force 𝐹 𝑤𝑙,𝑖. In bubbly flows, this force pushes bubbles away from the wall. 

The Tomiyama model [85] was selected for this term. 

- The virtual mass force 𝐹 𝑣𝑚,𝑖 , that represents the effect inertia of the primary phase on accelerating 

bubbles. This term was not included at this stage of modelling setup. An analysis on its effect 

shall be carried out in future developments. 

- The turbulent dispersion force 𝐹 𝑡𝑑,𝑖 that accounts for the interphase turbulent momentum 

transfer. The formulation proposed by Lopez de Bertodano [86] was considered in this work. 
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5.3.5 Turbulence model  

The implementation of the RPI model requires a minimum grid size of the first cell at the heated wall. 

Kurul and Podowski [78] pointed out that too fine grids can lead to numerical instabilities, due to 

unrealistic values of the vapor volume fraction (tending to 1). Usually, the model works well in the range 

of Y+ typical of the standard wall functions (30 < Y+ < 300), as reported in the works of several authors 

[87][88]. It must be noted, however, that this requirement represents a limitation in the in the accuracy 

of the prediction of thermal and velocity boundary layer, which is particularly important in free-

convection flows. For this reason, the realizable k-ε turbulence model was chosen coupled with a scalable 

wall function approach, following what already done by other authors in the modelling of subcooled 

boiling flows [79][80][81][82][87][88]. In particular, the mixture formulation, proposed as default in 

ANSYS Fluent, was selected15. This uses the properties of the mixture and phase averaged velocities to 

capture the features of the turbulent flow. The equation at the base of this model are the following: 

𝜕

𝜕𝑡
(𝜌𝑚𝑘) + 𝛻 ∙ (𝜌𝑚𝑢⃗ 𝑚𝑘) = 𝛻 ∙ ((𝜇𝑚 +

𝜇𝑡,𝑚
𝜎𝑘

)  𝛻𝑘) + 𝐺𝑘,𝑚 − 𝜌𝑚𝜀 
(Eq. 5.20) 

𝜕

𝜕𝑡
(𝜌𝑚𝜀) + 𝛻 ∙ (𝜌𝑚𝑢⃗ 𝑚𝜀) = 𝛻 ∙ ((𝜇𝑚 +

𝜇𝑡,𝑚
𝜎𝜀

)  𝛻𝜀) +
𝜀

𝑘
(𝐶1𝜀𝐺𝑘,𝑚 − 𝐶2𝜀𝜌𝑚𝜀) 

(Eq. 5.21) 

𝜌𝑚 = 𝜌𝑉𝛼𝑉 + 𝜌𝐿𝛼𝐿 (Eq. 5.22) 

𝜇𝑚 = 𝜇𝑉𝛼𝑉 + 𝜇𝐿𝛼𝐿 (Eq. 5.23) 

𝑢⃗ 𝑚 =
𝜌𝑉𝛼𝑉𝑢⃗ 𝑉 + 𝜌𝐿𝛼𝐿𝑢⃗ 𝐿

𝜌𝑚
 (Eq. 5.24) 

𝜇𝑡,𝑚 = 𝜌𝑚𝐶𝜇
𝑘2

𝜀
 

(Eq. 5.25) 

𝐺𝑘,𝑚 = 𝜇𝑡,𝑚(𝛻𝑢⃗ 𝑚 + (𝛻𝑢⃗ 𝑚)
𝑇): 𝛻𝑢⃗ 𝑚 (Eq. 5.26) 

Where 𝐶1𝜀 = 1.44 , 𝐶2𝜀 = 1.92 , 𝐶𝜇 = 0.09 , 𝜎𝑘 = 1 and 𝜎𝜀 = 1.3. 

5.3.6 Energy 

The energy conservation equation is the following:  

𝜕

𝜕𝑡
(𝛼𝑖𝜌𝑖ℎ𝑖) + 𝛻 ∙ (𝛼𝑖𝜌𝛼𝑢⃗ 𝑖ℎ𝑖) = 𝛼𝑖

𝑑𝑝

𝑑𝑡
+ 𝛻 ∙ (𝛼𝑖𝑘𝑖,𝑒𝑓𝑓𝛻𝑇𝛼) + 𝛼𝑖𝜏𝑖: ∇𝑢⃗ 𝑖 + 𝑄𝐼 + 𝑄𝑚,𝑖𝑗 

(Eq. 5.27) 

Here, QI is the interphase heat flux, defined later in this Chapter (see Eq. 5.27). Qm,ij is the heat source 

due to the interphase mass transfer from phase i to phase j and, in this case is calculated using Eq. 5.28. 

𝑄𝑚,𝑖𝑗 = 𝑚̇𝑖→𝑗(ℎ𝒊 − ℎ𝑗) − 𝑚̇𝑗→𝑖(ℎ𝒊 − ℎ𝑗) (Eq. 5.28) 

                                                 
 

15 More complex and computationally expensive turbulence formulation are also available [60]. These shall be taken into 
account for future development of the present modelling setup. 
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5.3.7 The RPI model 

The RPI falls under the definition of partitioning wall boiling models. In fact, it considers that the heat 

flux (qw) at the wall in contact with a liquid in the nucleation boiling regime is the sum of three different 

contributions as expressed by Eq. 5.29: 

𝑞𝑤 = 𝑞𝑐 + 𝑞𝑒 + 𝑞𝑞 (Eq. 5.29) 

𝑞𝑐 = ℎ𝑐(𝑇𝑊 − 𝑇𝐿)(1 − 𝐴𝑞) (Eq. 5.30) 

𝑞𝑒 = 𝑉𝑑𝑁𝑤𝜌𝑉Δ𝐻𝑣𝑎𝑝𝑓 (Eq. 5.31) 

𝑞𝑞 =
2𝑘𝐿

√𝜋𝜆𝐿𝑇
(𝑇𝑊 − 𝑇𝐿) 

(Eq. 5.32) 

The first term on the right hand of Eq. 29 (qc) represents the amount of heat carried by the liquid via 

turbulent convection and the second one (qe) is the evaporation heat flux (see Figure 104a).  

The last term (qq) accounts for the transient conduction in the liquid replacing bubbles after departure 

(as showed in Figure 104b) and is usually referred to as the quenching heat flux. Considering a unitary 

wall area A, the quenching term, obtained by Eq. 32 (where the parameter f represents the frequency of 

bubble departure) affects only a fraction Aq of this area (as depicted in Figure 104a). The rest of the 

surface is affected by the convective heat flux, calculated (see Eq. 30) as the product of a single phase 

heat transfer coefficient hc (as given by the temperature wall function) and the difference between the 

wall and the first cell (at the wall) temperature (Tw and TL respectively). 

 

Figure 104: Schematic representation of the bubble nucleation cycle. The bubble forms in a nucleation site and grows (a) 
until it detaches from the wall (b). Part of the heat from the wall is absorbed by evaporation (qe), and the other is removed 

by the liquid via single phase convection (qc). When the bubble departs from the wall, transient conduction takes place 
between the solid surface and the liquid replacing the bubbles (qq). 

  

qc qe qq

A
Aq
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Aq
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site
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The fraction of the cell face area (Aq) affected by the quenching heat flux is calculated according to Eq. 

33. 

𝐴𝑞 = 𝑚𝑖𝑛 (1 , 4.8
𝑁𝑤𝜋𝑑𝑤
4

𝑒−
𝐽𝑎𝑠𝑢𝑏
80 ) (Eq. 33) 

𝐽𝑎𝑠𝑢𝑏 =
𝜌𝐿𝐶𝑝𝐿(𝑇𝑠𝑎𝑡 − 𝑇𝐿)

𝜌𝑉Δ𝐻𝑣𝑎𝑝
 (Eq. 34) 

Where dw bubble departure diameter defined in the following. 

The core of the RPI model is in the expression of the evaporation heat flux. According to Eq. 31, this is 

obtained by the combination of three parameters (apart from the vapor density and the latent heat): 

- The volume Vd of bubbles at the moment they depart from the wall (calculated considering 

spherical bubbles and defining a bubble departure diameter dw) 

- The nucleation site density Nw (i.e. the number of active sites of bubbles nucleation per unit area 

- The frequency of bubble departure f 

As mentioned before, the choice of the closure expressions for these parameters, together with the 

definition of the bubble diameter db introduced above, is crucial to achieve a good agreement between 

reality and model predictions.  

5.3.8 Baseline case model setup and case studies definition 

In order to carry out a preliminary assessment of the applicability of the approach described above to the 

specific case of water vessel exposed to fire, a baseline case was defined. Here, the default ANSYS Fluent 

settings were considered to set up the RPI model. In particular, the three key model parameters (i.e. 

nucleation site density, bubble departure frequency and bubble departure diameter) where defined 

according to the expression reported in Table 15. 

Table 15: Expressions used for the definition of the RPI model key parameters in the baseline test. 

Parameter Expression 
 

Nucleation site density 𝑁𝑤 = 15546(𝑇𝑤 − 𝑇𝑠𝑎𝑡)
1.805 (Eq. 35) 

Bubble departure frequency 𝑓 = √
4𝑔(𝜌𝐿 − 𝜌𝑉)

3𝜌𝐿𝑑𝑤
 (Eq. 36) 

Bubble departure diameter 𝑑𝑤 = min (0.0014, 0.0006𝑒−
(𝑇𝑠𝑎𝑡−𝑇𝐿)

45 ) (Eq. 37) 

The expression to estimate the nucleation site density (Nw) was proposed by Lemmert and Chawla in 

1977 [89] and is based on pool boiling of saturated water. The bubble departure frequency (f) was defined 

according to the results of Cole [90] that studied the inertia controlled bubble growth (not really 

applicable to subcooled boiling. Finally, the bubble departure diameter (dw) was calculated using the 
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equation reported in 1970 by Tolubinski and Kostanchuck [91]. This model depends only on liquid sub-

cooling degree and is based on experimental data on horizontal heater surfaces in contact with water, at 

high pressures.  

The vapor phase temperature was kept constant at 100 °C, that is the saturation temperature of water at 

atmospheric pressure. When the bubbles depart from the wall and move towards the subcooled liquid, a 

heat transfer establishes between the phases. This is defined by Eq. 38. The heat transfer coefficient is 

calculated according to the Ranz and Marshall correlation [92] (Eq. 39). 

𝑞𝐿𝑉 = ℎ𝐿(𝑇𝑠𝑎𝑡 − 𝑇𝐿) (Eq. 38) 

𝑑𝑏ℎ𝐿
𝑘𝐿

= 2 + 0.6𝑅𝑒𝐿

1
2𝑃𝑟𝐿

1
3 (Eq. 39) 

The interfacial mass transfer between the phases determines the condensation of the vapor. The 

interfacial mass transfer rate is described by Eq. 40. 

𝑚̇𝑐 =
𝑞𝐿𝑉
∆𝐻𝑣𝑎𝑝

 (Eq. 40) 

In regard to the bubble diameter after departure from the wall, the following model was considered (Eq. 

41, proposed as default in ANSYS Fluent when the RPI model is activated): 

𝑑𝑏 =

{
 
 

 
 𝑚𝑎𝑥 [1 × 10−5, 𝑑𝑚𝑖𝑛𝑒𝑥𝑝 (

−𝐾(∆𝑇𝑠𝑢𝑏 − ∆𝑇𝑚𝑎𝑥)

𝑑𝑚𝑖𝑛
)]

𝑑𝑚𝑖𝑛 − 𝐾(∆𝑇𝑠𝑢𝑏 − ∆𝑇𝑚𝑎𝑥)

 

∆𝑇𝑠𝑢𝑏 > 13.5 𝐾 

 

∆𝑇𝑠𝑢𝑏 ≤ 13.5 𝐾 

(Eq. 41) 

Where: 

𝑑𝑚𝑖𝑛 = 0.00015 𝑚 

𝑑𝑚𝑖𝑛 = 0.001 𝑚 

∆𝑇𝑚𝑖𝑛 = 0 𝐾 

∆𝑇𝑚𝑎𝑥 = 13.5 𝐾 

𝐾 =
∆𝑇𝑠𝑢𝑏 − ∆𝑇𝑚𝑎𝑥
∆𝑇𝑚𝑎𝑥 − ∆𝑇𝑚𝑖𝑛

 

∆𝑇𝑠𝑢𝑏 = 𝑇𝑠𝑎𝑡 − 𝑇𝐿 

It must be noted that the bubble diameters dw and db depend exclusively on the degree of subcooling. 

This means that, regardless the value of the departure diameter, the diameter of the bubbles after they 

detached from the wall is completely determined by the temperature distribution in the liquid domain. 

The interphase heat transfer and the consequent partial (or total) condensation of the vapor phase does 

not affect the bubble diameter, but only the vapor volume fraction. According to the author of this thesis, 

this represents a strong limitation of the Eulerian-Eulerian approach, especially in transient problems.  

Equations Eq. 5.35, 5.36, 5.37 and 5.41 represent the definition of the key model parameters as adopted 

in the baseline case. However, the condition for (and from) which these expressions were derived are 
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quite far from the ones that characterize the water response in a vessel exposed to fire (the same is true 

for most of the correlations that can be found in literature). Developing appropriate correlations for this 

specific scenario would require dedicated experimental work, which is out of the scope of the present 

thesis. Therefore, the attention in this work focused on the analysis of the model response to the 

modification of some its key parameters. This was done by defining the series of case studies reported in 

Table 16. In particular, variation in the bubble diameter, bubble departure diameter, height of the first 

cell adjacent to the wall and quenching temperature correction where considered. In this preliminary 

analysis, the correlations for nucleation site density and bubble departure frequency remained unchanged. 

The case labelled as C0, refers to the baseline test. As mentioned before, an expression correlating the 

bubble diameter after detachment to the degree of subcooling does not appear appropriate for the case 

under consideration. For this reason, with the exception of the baseline test, this was considered to be 

equal to the departure bubble diameter. Starting from C0, the case C1 was defined by assigning a bubble 

diameter of 1 mm. In the case C2 (and all the following cases) a quenching temperature correction was 

introduced. This consists in substituting the liquid temperature TL in the Eq. 5.32 (that calculates the 

quenching heat flux) with a fixed temperature. The chosen value was the saturation temperature at 

atmospheric pressure (373.15 K). This was done in order to minimize the heat removed by quenching 

and, at the same time, increase the evaporation rate at the wall. Case C3 has the same setting of C2, but 

the height (and the length) of the cells adjacent to the wall was doubled. In cases C4, C5 and C6, the 

bubble diameter and the first cell height were set to 2, 3 and 5 mm respectively (bubble diameters bigger 

than the first cell height lead to numerical instability). The same quenching temperature correction was 

applied for all the last four cases.  

Table 16: List of case studies defined for the preliminary assessment of the CFD setup based on the RPI model and the 
Eulerian-Eulerian approach. 

Case number 
Bubble departure 

diameter 
Bubble diameter First cell size 

Quenching 
temperature 
correction 

C0 Default (Eq. 5.37) Default (Eq. 5.41) 1 mm - 

C1 1 mm 1 mm 1 mm - 

C2 1 mm 1 mm 1 mm 373.15 K 

C3 1 mm 1 mm 2 mm 373.15 K 

C4 2 mm 2 mm 2 mm 373.15 K 

C5 3 mm 3 mm 3 mm 373.15 K 

C6 5 mm 5 mm 5 mm 373.15 K 

The values of bubble diameter considered in the case studies from C1 to C6 were defined according to 

visual observation of the videos recorded during the fire tests presented in Section 2. This is due to the 

fact that a systematic and more detailed analysis of the images collected has not been carried out yet. 

However, at least at this stage (the simulations were carried out with the aim of providing a first 

assessment of the modelling setup capabilities), assuming bubble sizes that are indeed representative of 

the real bubble diameter distribution can be considered as an acceptable approximation. 

5.3.9 Mesh generation 

Due to the previous considerations related to the dimension of the first cell near the wall, the meshing 

strategy had to be partially modified with respect the cases where the VOF approach was used. In 

particular, as showed in Figure 105, the mesh in the near wall region is much coarser. For what concerns 

the baseline tests, the height of the first cell near the wall was set to 1 mm (2 mm for the case C3 and C4, 
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3 mm for C5 and 5 mm for C6). The number of inflation layer is 10, with a growth rate of 1.2. The wall 

was divided in 750 elements (each cell face along the wall is about 1 mm long). The maximum size of the 

cells is 4 mm (5 mm for C6), with a growth rate (outside from the inflation layers) of 1.05. The steel wall 

was meshed with rectangular cell with a face length of about 1 mm. For all the cases listed in Table 16, 

the problem was considered to be symmetric with respect to the vertical center line of the tank. Therefore, 

only the right hand of the domain was meshed, as depicted in Figure 105. 

 

Figure 105: Mesh for the baseline case simulation. 

5.3.10 Material properties 

Since the aim of the simulation was a preliminary assessment of the modelling setup, constant fluid 

properties were considered. For what concerns the liquid density, the Boussinesq approximation was 

considered, in order to allow the development of free-convective flows. All the fluid properties are 

reported in Table 17. The properties of carbon steel were assumed for the tank wall (density: 7750 kg/m3; 

specific heat: 470 J/(kg K); thermal conductivity: 60.4 W/(m K)). 

Table 17: Fluid properties 

 Units Water liquid Water vapor 

Density kg/m3 974.5 0.554 

Specific heat J/(kg K) 4182 2014 

Thermal conductivity W/(m K) 0.600 0.026 

Viscosity Pa s 0.00103 0.000034 

Saturation pressure Pa 101325 

Heat of vaporization J/mol 40766 

Thermal expansion coefficient 1/K 0.000611 - 

Reference temperature 
(for Boussinesq approximation) 

K 373.15 - 

Surface tension N/m 0.072 - 

 

  

b)a)
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5.3.11 Boundary conditions 

The no slip condition was assigned to the inner wall, whereas symmetry was considered for the right edge 

of the mesh depicted in Figure 105 (representing the vertical center-line of the tank. A constant heat flux 

of 100 kW/m2 was assigned to the external wall. For what concerns the upper limit of the computational 

domain, representing the liquid surface, the so-called degassing boundary condition was prescribed. For 

the liquid phase, this represents a free-slip boundary (i.e. the shear stress in the direction parallel to the 

boundary is zero) that, like a wall, cannot be crossed. The gas phase, on the contrary, sees this boundary 

as an outlet. The mass of vapor leaving the domain through this surface is stored at each time-step and 

can be used in the during the post-processing phase. 

At the beginning, the domain was considered to be motionless and at uniform of 20°C. Initial values for 

the turbulent kinetic energy and turbulent dissipation rate were set to 10-12 m2/s2 and 10-6 m2/s3 

respectively. 

5.3.12 Solution methods 

For what concern the transient formulation, a first order implicit scheme was adopted with a time step 

of 0.01 s. A second order upwind scheme was chosen for the spatial discretization of density, momentum, 

energy and turbulent quantities (k and ε), whereas the PRESTO! and the QUICK schemes were used for 

the pressure and the volume fraction respectively [60]. Pressure and velocity coupling was obtained by 

means of the Phase Coupled SIMPLEC algorithm. Gradients are evaluated using the Least Squares Cell 

Based method. At each time step, the solution of a given conservation equation was deemed to have 

converged if one of the following criteria was satisfied: 

- The sum of the scaled residuals was below 10-3 

- For a given time step, the ration between the residuals and the residuals at the beginning of the 

time step was below 0.05 

The equations whose residuals were monitored are continuity, momentum (for both phases), energy (for 

both phases), volume fraction (for both phases) turbulent kinetic energy and turbulent specific dissipation 

rate.  

The maximum number iteration per time-step, in case none of the convergence criteria was fulfilled, was 

set to 50. Under-relaxation factors were set according to the values reported in Table 18. 

Table 18: Values used for the under-relaxation factors. 

Under relaxation factor Value 

Pressure 0.8 

Density 1 

Body forces 0.8 

momentum 0.5 

Vaporization mass 1 

Volume fraction 0.25 

Turbulent kinetic energy 0.5 

Turbulent dissipation rate 0.5 

Turbulent viscosity 0.8 

Energy 0.6 



145 

5.3.13 Results 

In this paragraph, the results obtained from the simulations of the cases listed in Table 16 are presented. 

The aim is to understand how the different key model parameters influence the response of the model 

itself. The simulation case labelled as C06, that considered a bubble diameter (as well as a height of the 

first cell adjacent to the wall) of 5 mm, gave high numerical instability and diverged after 135 s. Although 

not trustful, part of the results available from this simulation will be discussed to highlight some 

interesting aspects. 

5.3.14 Temperature 

First of all, the temperature at the inner wall is analyzed. Figure 106 compares the temperatures as a 

function of time at three different point on the inner wall for the baseline (a) and the C1 cases.  

 

Figure 106: Inner wall temperature as a function of time at three points along the inner wall temperatures for the C0 (s) 
and C1 (b) cases  

In both simulations, the temperature rises fast until the water at the wall starts boiling. This occurs after 

around 22 s of fire exposure. In the baseline case, the three curves reach a maximum whose value depends 

on the vertical coordinate of the point considered. This value is higher for the point closer to the bottom 

and lower for the one right below the liquid surface. (it is interesting to note that the unrealistic 

temperature values reported in Figure 93d - obtained with the previous CFD modelling setup - in the 

proximity of the liquid-vapor interface are not observed here). Once the maximum has been reached, the 

temperature gradually decreases and the three curves converge. On the contrary, in the case C1, the 

temperatures at the three points are almost coincident for all the simulation time. Furthermore, they do 

not show the slow decrease observed in the case C0, but remain constant. Furthermore, the instability 

visible between 20 and 200 s in the simulation relative to the baseline case is much more limited in the 

C1 case. For all the other cases listed in Table 16, a behavior similar to that observed in Figure 106b (case 

C1) was registered. 

Rather than the absolute temperature values, it is interesting to understand how the different case setup 

affect the superheating degree, which represent and important aspect of the boiling mechanism. For this 

reason, Figure 107 shows how the degree of superheating changes for the different case studies16. The 

                                                 
 

16 In this case, being the pressure constant during the simulation, the superheating degree obtained by simply subtracting 100 
°C (the saturation temperature of water at 1 atm) to the wall temperature. 
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blue curve (relative to the baseline test) shows by far the highest values of superheating. This is unrealistic 

both compared with literature data and with experimental measurements carried out during the fire tests 

presented in Chapter 3 (see also Figure 26). All the other cases show lower and more realistic values.  

 

Figure 107: Degree of superheating at a given point on the inner wall (y = - 0.35 m))as a function of time for the cases 
from C0 to C5.  

In general, it is interesting to note how the superheating degree decreases with the increase of the bubble 

departure diameter. The curves relative to the case C2 and C3 are coincident. This means that, at least of 

the for the C2 setup the wall temperature does not depend on the height of the cell adjacent to the wall.  

The gap between the green (case C1) and the yellow curve (C2 and C3) shows the effect of the quenching 

heat flux on the wall superheating. In particular, when this is minimized introducing the above mentioned 

quenching temperature correction, the wall temperature result is higher. The same is true (as will be 

showed in the following) for the evaporation rate.  

5.3.15 Heat flux partitioning 

At this point, it is interesting to analyze in more detail the heat transfer mechanisms occurring at the inner 

wall. In particular, it is important to understand what is the relative contribution of the different term in 

Eq. 29 and to study how they change depending on the main model parameters.  

With this purpose, Figure 108 reports the value of the single phase convection, quenching and 

evaporation heat fluxes as a function of time for the all the case studies listed in Table 16, with the 

exception of case C6. The curves represent the surface averaged integral values of each contribution 

calculated at the inner wall. A yellow curve showing their sum is also reported. 

Considering the baseline test (Figure 108), it is interesting to note how the share of the total heat flux 

determining bubble formation (red curve) is very low (less than the 3 % of the total heat flux). Almost 

all the heat is removed from the wall by single phase convection (blue curve) and quenching (green curve). 

For the first 150 s, their contribution very similar. As already observed analyzing wall temperature results, 

this period of time is characterized by a certain degree of instability, that decreases with the increase of 

the bubble diameter. It is not clear whether this instability is just numerical or represents also a realistic 
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behavior. After about 150 s, the amount of heat transferred by quenching becomes more and more 

dominant.  

 

Figure 108: Evolution with time of the contribution of the heat transfer mechanism described in Eq. 5.29 to the total 
heat flux for the case study listed in Table 16.  
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In all the cases analyzed, it can be observed how the contribution of single phase convection decreases 

with time, while the quenching heat flux follows the opposite behavior. The evaporation heat flux 

contribution (red curves) is higher for higher values of the bubble diameter. The opposite is true for the 

quenching term. Furthermore, comparing b and c, it can be noted how the introduction of the quenching 

temperature correction (case C3) determines a strong reduction of the quenching heat flux in favor of 

the evaporation one. 

5.3.16 Evaporation rate 

The relative contribution of the different heat transfer mechanisms and, in particular, the share relative 

the evaporation heat flux, affects the quantity of vapor produced at the wall. Figure 109 shows the vapor 

molar flowrate that leaves the liquid surface for the case C017. After a first period in which a strong 

instability is visible, the curve becomes smooth and keep increasing as time advances. However, the 

values observed, in the order of 10-10 to 10-9 are extremely low if comparted with the 0.034 mol/s18 

estimated from data collected in Test 7 of the fire test series presented in Section 2. This means that, the 

setup relative to the baseline case (C0) is very fare from being able to provide good predictions of the 

pressurization rate in a tank exposed to fire.  

 

Figure 109: Vapor molar flowrate through the liquid surface for the baseline case. 

It is worth noting how this flow rate is much lower with respect to the quantity of vapor produced by 

the boiling at the wall. This, for the baseline case, corresponds to a value in the order of 0.1 mol/s (as a 

first approximation this can be estimated dividing the evaporation heat flux by the heat of vaporization). 

The difference between the quantity of vapor produced at the wall and the one which is actually able to 

                                                 
 

17 The value reported in the figure refer to the entire tank section (i.e. it was obtained by doubling the vapor flowrate at the 
liquid surface obtained in the simulation) and can be considered as the net evaporation rate per unit of tank length.  
18 Since in the fire tests the length of the heated patch in the axial direction was 1 m, this value can be considered as the net 
evaporation rate per unit of tank length and, therefore, can be directly compared with the corresponding CFD result. 
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leave the liquid domain (and therefore contributing to tank pressurization) is a consequence of bubbles 

condensation in the subcooled liquid. The model predicts that most of the bubbles departing from the 

wall condense. This is well visible in Figure 110, that shows the vapor volume fraction contour map for 

the case C0. It can be noted how a small quantity of vapor is present only in the first two cells adjacent 

to the wall. This is because most of the vapor condenses in the in the first cell at the wall. 

 

Figure 110: Vapor volume fraction contour map after 600 s for the baseline case (C0). 

The condensation mechanism is described by Eq. 5.38 and 5.40 and, for a given heat transfer coefficient, 

depends on the interfacial area concentration. In particular, the condensation rate is higher for higher 

values of the interfacial area concentration. Eq. 5.7 shows how this latter parameter decreases with the 

increase of the bubble diameter. Therefore, bigger bubbles determine not only a higher vapor production 

at the wall, but also a lower condensation rate and, as a consequence, a vapor mole flow rate through the 

liquid surface. This can be observed in Figure 111.  



150 

 

Figure 111: Vapor molar flowrate through the liquid surface for the case studies C1 to C6. 

The molar flow rate leaving the liquid domain in the different case studies is several orders of magnitude 

higher with respect to what is obtained in the baseline case. Higher bubble diameters result in higher 

flowrate. However, the value of 0.034 mol/s estimated for Test 7 remains still far. In fact, even the results 

obtained in the C6 case (that diverged after about 2 min of simulation), in which the bubble diameter was 

set to 5 mm, is about 10 times lower than the experimental value. 

It can also be noted that decreasing the quenching term due to the introduction of the quenching 

temperature correction produces an increase in the evaporation rate. This means that understanding the 

role of quenching in the scenario under consideration represents an important point. 

5.3.17 Final considerations on the new modelling approach 

The modelling approach presented in the previous paragraphs represents a more sophisticated and 

potentially more accurate way to predict the response of fired vessels with respect to the setup based on 

the Lee Evaporation/Condensation model and the VOF approach. 

This is because the RPI model was specifically designed to mimic the nucleating boiling regime. 

Therefore, in the situation considered here, it results to be more appropriate than the Lee 

Evaporation/Condensation model. Furthermore, the Eulerian-Eulerian multiphase model overcomes 

the main limitation of the VOF approach solving a different set of momentum and energy conservation 

equations for each phase. It has been shown, for instance, that the problem relative to unrealistic values 

of the wall temperature close to the liquid surface encountered using the VOF approach has been solved.  

However, it has also been pointed out how the use of the most common correlations for the prediction 

of the main submodels parameters (such as the bubble diameter at and after departure, the bubble 

departure frequency and the nucleation site density) did not provide satisfying results in terms of 

evaporation rate. 

The sensitivity study carried out varying the bubble diameter, bubble departure diameter, height of the 

first cell adjacent to the wall and quenching temperature correction showed that evaporation rate closer 
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to those observed in the experiments can be predicted. However, the values obtained are still far from 

those needed to determine a realistic tank pressurization rate. Further work is needed, aimed at defining 

appropriate correlations for the above mentioned parameters in conditions relative to the case under 

analysis (e.g. low pressure, transient free-convective flow and lower heat fluxes with respect to those 

typically observed in the nuclear industry). The influence of the nucleation site density and bubble 

departure frequency, not investigated in this thesis, shall be also object of detailed study.  

In this perspective, the apparatus described in Chapter 3 has the potential to provide useful data. 

However, a systematic and more detailed analysis of the images collected during the fire tests has not 

been carried out yet. 
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 Conclusions 
The catastrophic failure of vessels containing hazardous materials induced by fires can cause devastating 

consequences. Hence, it is crucial to avoid the occurrence of this type of events and to mitigate their 

possible effects. For this reason, a detailed characterization of the response of vessels under fire exposure 

is of paramount importance. Several experimental and modelling research studies were undertaken over 

the last decades. The outcomes of these studies have increased the knowledge of the involved 

phenomena. However, the currently available models suffer strong limitations in their prediction 

capability and/or range of applicability. On the other hand, data from past experiments are limited and 

not sufficient to achieve a comprehensive validation of the modeling approaches. This is mainly due to 

bad design of instrumentation positioning, low number of measurement points, lack in the 

characterization of fire conditions, presence of insulation that degraded not uniformly and other aspects 

that complicates (or make impossible) the task of defining accurate boundary conditions for models.  

The present work is part of a wider research program aimed at overcoming such limitations, combining 

innovative experimental and modelling activities. 

Chapter 3 showed an overview of the experimental apparatus developed in the present research project 

and a preliminary analysis of the first two test series carried out during the past two years. These formed 

an integral part of the PhD activity. 

Relevant information on the vessel response to fire exposure was collected. These represent a valuable 

source of data for model development and validation. However, limitations of the current experimental 

procedures were highlighted together with suggestions for future improvement. In particular, it was 

pointed out the need for tests of longer duration (at least 15 min) than those of series I and with fire 

conditions and exposure mode considered for series II. Finally, the use of fluorescent particles to shift 

light wavelength, combined with camera filters was recommended in order to improve PIV analysis for 

future tests.  

The core of the present PhD work was devoted to the modeling of fired tanks. The analysis started 

considering previous approaches presented in literature by different authors, highlighting their main 

limitations. An improved CFD modelling setup was developed. This was used to simulate the condition 

of several fire tests involving LPG tanks exposed to full engulfing hydrocarbon pool fires. A forest fire 

scenario was also considered. The comparison with experimental results showed a general good 

agreement in terms of pressurization rate and lading temperatures. The CFD model provided good 

pressure predictions also in a complex (but well defined) fire condition representative of a forest fire 

scenario. This pointed out the importance of the fire characterization in tests aimed at providing data for 

models development and/or validation. In general, good prediction for the liquid temperatures were 

obtained for all the cases analyzed. The agreement between simulations and experiments is lower for 

what concerns the temperatures in the vapor phase.  

The major criticality in CFD model results is related to the prediction of the liquid wetted wall 

temperatures. Unrealistic wall superheating was obtained with respect to measurements collected during 

propane pool boiling experiments. The analysis of the results confirmed the key role of the thermal 

boundary layer forming in the near wall region as well as the presence of thermal stratification. In 

addition, the model pointed out the importance of boiling at the wall. 

The same modelling approach was extended for the simulation of water tanks exposed to fire. Data 

collected during the fire tests presented in Chapter 3 and from a previous experimental campaign carried 

out in the same facility were considered for the assessment of the model performance. 
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Comparison of modelling results with experimental measurements showed that good predictions were 

obtained regarding the thermal boundary layer thickness. Moreover, wall temperatures are generally in 

good accordance with those measured during fire tests. However, getting closer to the liquid-vapor 

interface, unrealistically high wall temperature values are obtained. Physics of liquid expansion seems to 

be well reproduced. As expected, thermal stratification is predicted both in the liquid and the vapor space. 

In the simulations, boiling occurs all over the wall as observed in the experiments and strongly affects 

the pressurization. In some cases, the CFD model was able to reproduce pressure curves registered during 

fire tests. In others, predictions were not effective. Two main aspects were identified that represent 

inherent limitations of the modelling approach. The first one is the assumption, at the base of the VOF 

model, that the two phases share the same temperature and velocity field. This prevents the model from 

providing an accurate description of the bubbly flow close to the wall. The second critical aspect concerns 

the evaporation and condensation model, which is based on a theory developed to describe the phase 

change mechanism for a flat interface in close to equilibrium conditions. This is clearly not the situation 

of subcooled boiling. 

In order to overcome the above-mentioned limitations, an alternative and more sophisticated approach 

was presented, based on models developed for the study of subcooled boiling flows that showed 

promising results in nuclear industry applications. The aim was to explore the possibility to extend this 

approach to the case of vessels exposed to fire. The new modelling setup provided a solution to the 

problem relative of unrealistic values of the wall temperature close to the liquid surface encountered using 

the VOF approach. However, it has also been pointed out how the use of the most common correlations 

for the prediction of the main submodels parameters (such as the bubble diameter at and after departure, 

the bubble departure frequency and the nucleation site density) did not provide satisfying results in terms 

of evaporation rate. The sensitivity study carried out varying the bubble diameter, bubble departure 

diameter, height of the first cell adjacent to the wall and quenching temperature correction showed that 

evaporation rates closer to those observed in the experiments can be predicted. However, the values 

obtained are still far from those needed to determine a realistic tank pressurization rate.  

It can be concluded that CFD represents a powerful tool for the development of advanced models able 

to accurately describe and predict the response of a pressure vessel exposed to fire. However, further 

work is needed, especially regarding submodels for boiling. In this perspective, the apparatus described 

in Chapter 3 has the potential to provide useful data. More generally, it is advisable to establish 

interactions between fire test planners and model developers, in order to optimize the design of 

experiments and improve the modelling activity. 

Finally, efforts should be directed towards the setup of CFD simulations in 3D. In fact, it is likely that 

the fast technological growth will soon make more affordable this kind of calculations in terms of 

computational time. Such a development would represent a breakthrough in fired vessel modelling, 

allowing the simulation of a wider range of fire scenarios, such as jet fires and partial engulfing pool fires. 

Furthermore, a 3D model would be very useful to validate the 2D assumption at the base of all the cases 

presented in this work. 
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 Nomenclature 
AFW Fire wall area (Eq. 4.34) 

AI Interfacial area concentration (Eq. 4.28 and 5.8) 

AP Area to volume ratio for a spherical bubble (Eq. 5.7 and Eq. 5.8) 

Aq Area fraction interested by quenching heat flux (Eq. 5.30 and 5.33) 

C Constant (Eq. 4.15) 

𝐶1𝜀 , 𝐶2𝜀 Coefficients  (Eq. 5.21) 

CC Condensation coefficient in the Lee model (Eq. 4.22 and 4.23) 

CD Drag coefficient (Eq. 5.17 and 5.19) 

CE Evaporation coefficient in the Lee model (Eq. 4.22 and 4.23) 

cp Heat capacity at constant pressure 

CvG Heat capacity at constant volume of the gas phase (Eq. 5.5) 

𝐶𝜇 Coefficient  (Eq. 5.25) 

db Bubble diameter 

dw Bubble departure diameter 

DWV Diffusion coefficient (Eq. 5.2) 

E Energy 

f Drag function (Eq. 5.17) 

f Bubble departure frequency (Eq. 36) 

𝑓𝑃→𝐹 View factor between point p on the tank surface and the fire wall (Eq. 4.33 and 4.34) 

𝐹  External body force (Eq. 4.6) 

𝐹 𝐼𝑁𝑇 , 𝐹 𝑉𝐿 Interphase force (Eq. 5.9 and 5.15) 

𝐹 𝑖  Series of forces (Eq. 5.9 and 5.10) 

𝐹 𝑙𝑖𝑓𝑡,𝑖 Lift force (Eq. 5.10) 

𝐹 𝑞 External body forces (Eq. 5.10) 

𝐹 𝑡𝑑,𝑖 Turbulent dispersion force (Eq. 5.10) 

𝐹 𝑣𝑚,𝑖 Virtual mass force (Eq. 5.10) 

𝐹 𝑤𝑙,𝑖  Wall lubrication force (Eq. 5.10) 

𝑔  Gravity acceleration 

Gk Generation of turbulent kinetic energy (Eq. 4.17) 

Gk,m Production of turbulent kinetic energy (Eq. 5.20 and 5.21) 

Gω Generation of specific turbulent dissipation rate (Eq. 4.18) 

h Enthalpy 

Hair Heat transfer coefficient with external air (Eq. 4.36) 

hL Interphase heat transfer coefficient (Eq. 38 and 5.39) 

I Identity matrix 

IP Incident radiation at point p on the tank surface (Eq. 4.32) 

𝐽𝑎𝑠𝑢𝑏 Subcooled Jacob number 

𝐽 𝑊𝑉 Diffusion mass flux of water vapor (Eq. 5.2) 

J Net evaporation flux through the liquid-vapor interface (Eq. 4.24) 

k Turbulent kinetic energy 

k Von Karman constant (Eq. 4.15) 

k Thermal conductivity 

𝑘𝑒𝑓𝑓 Effective thermal conductivity (Eq. 5.27) 

KVL Interphase exchange coefficient (Eq. 5.15 and 5.16) 

L Characteristic length 
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L Limiting function (Eq. 4.16) 

M Molecular weight 

mc Condensation rate (Eq. 40) 

MG Geometric mean bias (Eq. 3.5 and 3.6) 

mG Gas phase mas (Eq. 5.5 and Eq. 5.6) 

𝑚̇𝐿→𝑉  Mass transfer from the liquid to the vapor phase 

𝑚̇𝑉→𝐿  Mass transfer from the vapor to the liquid phase 

𝑚̇𝑒𝑣 Evaporation rate (Eq. 5.5 and Eq. 5.6) 

n Number of gas moles 

n0 Number of gas moles at the beginning of the test/simulation 

Nw Nucleation site density 

p Pressure 

pB Pressure determined by increment of moles due to evaporation 

𝑝𝑜𝑝,𝑓𝑙𝑜𝑎𝑡 Floating operating pressure (Eq. 4.29 and 4.30) 

𝑝𝑜𝑝
0  Initial operating pressure (Eq. 4.30) 

𝑝𝑟𝑒𝑙 Relative pressure (Eq. 4.29) 

pNB Pressure determined by gas expansion 

Pr Prandtl number 

PrT Turbulent Prandtl number (Eq. 4.19) 

qc Heat flux transferred by free-convection (Eq. 4.36) 

qc Heat flux due to single face convection (Eq. 5.29 and 5.30) 

qe Heat flux due to evaporation (Eq. 5.29 and 5.31) 

QI, qLV Interphase heat flux (Eq. 5.27 and 5.38) 

Qm,ij Heat source due to interphase mass transfer (Eq. 5.27 and 5.28) 

𝑄𝑆→𝑉  Heat flux at the steel wall (Eq. 5.6) 

𝑄𝑉→𝐿 Heat flux at the liquid surface (Eq. 5.6) 

qq Heat flux due quenching (Eq. 5.29 and 5.32) 

qw Heat flux at the wall (Eq. 5.29) 

R Universal gas constant 

Ra Rayleigh number 

Re Reynolds number 

S Distance (Eq. 4.34) 

ScT Turbulent Schmidt number (Eq. 5.2) 

Sk Source term for turbulent kinetic energy (Eq. 4.17) 

Sm Momentum source term due to interphase mass transfer 

Sω Source term of specific turbulent dissipation rate (Eq. 4.18) 

T Temperature 

t Time 

T0 Temperature at the beginning of the test/simulation 

T∞ Temperature of the environment (Eq. 4.33) 

Ta Air temperature (Eq. 4.36) 

TBB,eq Equivalent black body temperature (Eq. 4.35) 

Texp Measured temperature (Eq. 3.5 and 3.6) 

TF,BB Fire black body temperature 

TG Gas space temperature (Eq. 5.6) 

TL,av Average temperature of the liquid phase (Eq. 4.31) 

Tmod Calculated temperature (Eq. 3.5 and 3.6) 

Tw Wall temperature 

𝑢⃗  Velocity 

𝑢⃗ 𝑉𝐿 , 𝑢⃗ 𝐿𝑉 Interphase velocities (Eq. 5.13 and 5.14) 
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𝑢′, 𝑣′, 𝑤′
 Velocity components fluctuations  

𝑢+ Non dimensional velocity (Eq. 4.12) 

𝑢𝜏 Friction velocity (Eq. 4.12 and 4.13) 

V Volume 

𝑉̂ Specific volume 

VG Geometric variance (Eq. 3.6 and 3.7) 

Vw Bubble departure volume 

x, y , z Cartesian coordinates 

y Distance from the wall (Eq. 4.11) 

𝑦+ Non-dimensional wall distance (Eq. 4.11) 

YA Mass fraction of air (Eq. 5.3) 

Yk Dissipation of turbulent kinetic energy (Eq. 4.17) 

YWV Mass fraction of water (Eq. 5.1 and 5.3) 

Yω Dissipation of specific turbulent dissipation rate (Eq. 4.18) 

β Thermal expansion coefficient 

βe Evaporation accommodation coefficient (Eq. 4.24) 

ΔHvap Latent heat of vaporization 

ε Turbulent dissipation rate 

εw Wall emissivity 

θ Generic angle 

λ Thermal diffusivity 

Π Ratio between the pressure of the tank and the saturation pressure calculated at the 
average temperature of the liquid phase (Eq. 4.31) 

σ Stefan-Boltzmann constant 

σ Surface tension (Eq. 5.19) 

σk Turbulent Prandtl number for k (Eq. 5.20) 

σε Turbulent Prandtl number for ε (Eq. 5.21) 

ω Specific turbulent dissipation rate 

Гk Diffusivity of turbulent kinetic energy (Eq. 4.17) 

Гω Diffusivity of specific turbulent dissipation rate (Eq. 4.18 

𝛼 Phase volume fraction 

𝜇 Viscosity 

𝜇𝑇 Turbulent viscosity 

𝜌 Density 

𝜏 Stress tensor 

𝜏′ Reynolds stress tensor 

𝜏𝑤 Wall shear stress (Eq. 4.13) 

𝜑 Generic material property (Eq. 4.3) 

𝜑 Generic variable (Eq. 4.6) 

𝜑̅ Mean component of the generic variable (Eq. 4.6) 

𝜑′ Fluctuation of the generic variable (Eq. 4.6) 
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Subscripts 

i, j  Property relative to a generic phase 

L Property relative to the liquid phase 

m Volume fraction averaged property 

sat Property at saturation conditions 

V Property relative to the vapor phase 

Superscript 

T Transpose vector/matrix 
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Appendix A – Scaling of a forest fire scenario 

In the present section, an overview of the scaling procedure applied by Heymes and co-workers. [31] is 

presented. The commonly adopted approach for the analysis of scenarios involving targets exposed a 

distant fire is to idealize the visible flame as a solid body, having a rather simple geometrical shape and 

emitting a constant thermal radiation. Following this assumption, the heat flux reaching a remote target 

can be expressed as follows: 

𝑞 = 𝜏𝑓𝐸 (Eq. A.1) 

where τ is the transmissivity of the air (this was conservatively assumed to be 1), f is the view factor 

between the fire and the target and E is the surface emissive power of the fire. The view factor is a 

characteristic of the problem geometry. It depends on the fire and target dimensions and distance 

between them. A homothetic transformation of the problem geometry (i.e. a transformation in which the 

linear dimensions of the geometry are multiplied by a given factor, with the angles remaining unchanged) 

leaves the view factor unchanged.  

 

Figure A.1: Reference geometrical shceme adopted the calculation of the view factor.  

 

In their work, Heymes and co-workers. [31] studied the response of a LPG tank exposed to a fire front 

with an average emissive power of 90 kW/m2 featuring the following dimensions: L =100 m, H = 40 m 

(see Figure A.1 for geometrical parameters definition). They considered two scenarios, in which the tank 

was located at two different distances from the fire: d = 28 and d = 50 m (see Figure A.1 for geometrical 

parameters definition). 

In the experimental tests considered in the present work (see Section 2), a real scale tank was considered, 

while the fire dimensions were reduced due to the fact that, for practical reasons, the fire wall height in 

the experiments could not exceed 4 m. A simple scale down carried out keeping a constant ratio among 

the linear dimensions d, H and L (see Figure A1) would have resulted in wrong representation of the real 

fire scenario. As showed in Heymes and co-workers. [31], the view factor obtained with such scaling 

procedure increases when d is reduced, leading to considerable differences between the values of the 

maximum incident heat flux (MHF) and the total incident thermal power (TTP) reaching the tank with 

respect to the real scale scenario. MHF (Eq. A.2) is the flux registered in the point of the tank surface 

with the highest values of the local view factor. TTP (Eq. A.3) is the integral over the surface of the tank 

(St) of the product between the fire emissive power and the local view factor; in particular 

H

L

d
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𝑀𝐻𝐹 = 𝑓𝑚𝑎𝑥𝐸 (Eq. A.2) 

𝑇𝑇𝑃 = ∫ 𝑓
𝑆𝑡

𝐸 
(Eq. A.3) 

Due to the above-mentioned consideration, a different scaling criterion was needed. The aim was to 

define a test geometry so that the value of these two parameters were as close as possible to those 

characteristics of the real case, but, on the same time, keeping the limit of 4 m for the fire wall height. 

Heymes and co-workers. [31] calculated the view factor for a large set of cases varying d, L and H. This 

was done using a finite element analysis (i.e. discretizing the tank and the fire wall surface with small 

elements), following an approach similar to the one presented in Appendix B. The results of this analysis 

led to the definition of the experimental scale geometry parameters reported in Table 4 (in Chapter 1) 

and object of the present study. It can be noticed how values of both maximum incident heat flux and 

total incident thermal power for the real and the experimental scale scenarios are very similar. 
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Appendix B – View factor calculation 

The present section illustrates the procedure for the calculation of the view factors implemented in the 

CFD model. 

As explained in Chapter 4, the 3D problem geometry was firstly reproduced. The outer wall surface of 

the tank was meshed with elements of maximum edge length of 1 cm. Elements of maximum edge length 

of 4 cm were instead used to mesh the fire wall, as showed in Figure B.2 (a grid independence study was 

also carried out by using a maximum edge length of 0.5 and 2 cm for the tank and the fire wall 

respectively).  

 

Figure B.1: 3D mesh and paramters definition for the calculation of the view factors. The description of the parameters 
represented in the pictures are explained in the text. 

 

Considering an element Ti of area dAT on the surface of the tank and an element Fj of area dAF on the 

surface of the fire wall, the view factor fTF between them is defined as the fraction of the radiation leaving 

the surface Fj that is intercepted by a surface Ti. Oriented elementary areas dAF and dAT are connected 

by a line of length S which defines the polar angles θF and θT, respectively, with the surface normal vectors 

nF and nT. The values of S, θF and θT vary as function of the position of the elemental areas on F and T. 

Assuming that both surfaces emit and reflect diffusely, and that the radiosity is uniform, the view factor 

can be analytically defined as: 

dAT

dAF

θT

θF nT

nF

Ti

Fj

S
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𝑓𝑇𝑖𝐹𝑗 =
1

𝐴𝑇𝑖
∫ ∫

cos 𝜃𝑇 cos 𝜃𝐹
𝜋𝑆2𝐴𝑇𝑖

𝑑𝐴𝑇𝑑𝐴𝐹
𝐴𝐹𝑖

 (Eq. B.1) 

In ANSYS Fluent, the S2S (surface to surface) model discretizes Eq. B.1 according to the mesh. The 

view factor between each element on the tank surface and the entire fire wall is then calculated as: 

𝑓𝑇𝑖𝐹 =∑
cos𝜃𝑇 cos 𝜃𝐹

𝜋𝑆2
𝑑𝐴𝐹𝑗

𝑗

 (Eq. B.2) 

In this way, the view factor 𝑓𝑇𝑖𝐹 as been calculated for each element of the tank outer wall. In principle, 

it is possible to use them for a 3D simulation of the vessel response to fire exposure. However, in the 

present work, only a 2D simulation of a vertical section in the middle of the tank was carried out as 

explained is Chapter 3. For the sake of clarity, the section considered for the simulation is highlighted by 

the vertical green plane in Figure A.3. For this reason, only the values of the view factors associated with 

the elements lying on the red dashed line (labelled as X0 in Figure A.3) were considered for the definition 

of the boundary condition in the 2D simulation. These view factors are adopted in Eq. 4.33 (in Chapter 

4) as explained in Chapter 3 and indicated as 𝑓𝑃→𝐹, since P is the generic point on X0 and F is the fire. 

  

Figure A.3 Schematic representation of the section in which the view factors are calculated for the CFD simulation. 

  

X0
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Appendix C - UDF for boundary condition in the forest fire scenario 

simulation 

The User Defined Function for the set-up of boundary conditions is in the simulation of the LPG tank 

exposed to a forest fire scenario (see Figure 76 in Chapter 4) reported below. 

#include "udf.h"   
 
DEFINE_PROFILE(TBB,thread,position) 
 
{ 
 face_t f; 
 real t = CURRENT_TIME; /* Time */ 
 real h[ND_ND]; 
 real T_fire = 1000; /* Temperature of the fire */ 
 real T_air = 280.65; /* Aie temperature */ 
 
 real VF[95];  /* Vector of view factors */ 
 real TT[95];  /* Vector of angles */ 
 real TF[81];  /* Vector of fire temperature */ 
 real TIME[81];  /* Vector of time */ 
 real VF_j;  /* View factor for node j*/ 
 real Tetha_j;  /* Angle for node j*/  
 int i;   /* Variable for loop*/ 
 
VF[0]=0.26548;  
VF[1]=0.26939;  
VF[2]=0.27908;  
VF[3]=0.28086;  
… 
VF[92]=0.23886;  
VF[93]=0.25056;  
VF[94]=0.26146;  
 
TT[0]=0.033444;  
TT[1]=0.099573;  
TT[2]=0.16571;  
TT[3]=0.23188;  
… 
TT[92]=6.1182;  
TT[93]=6.1844;  
TT[94]=6.2505; 
 
TIME[0]=0;    
TIME[1]=15;   
TIME[2]=30;   
TIME[3]=45;   
… 
TIME[78]=1170;  
TIME[79]=1190;  
TIME[80]=1200;  
 
TF[0]=1253.8377;  
TF[1]=1224.5628;  
TF[2]=1204.2518;  
TF[3]=1186.7214;  
… 
TF[77]=1068.5382;  
TF[78]=1062.0635;  
TF[79]=1058.3357;  
TF[80]=1048.98;  
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 for (i = 0 ; i < 81 ; i++) 
 { 
 if (t <= TIME[i]) 
      { 
  T_fire=TF[i-1]+(t-TIME[i-1])*(TF[i]-TF[i-1])/(TIME[i]-TIME[i-1]); 
  i=100; 
  } 
 } 
   
 
 begin_f_loop(f, thread) 
 { 
F_CENTROID(h,f,thread); 
     
  
  if (h[1] > 0) 
  {  
  Tetha_j=acos(h[0]/0.5); 
  } 
  
  else  
  {     
  Tetha_j=2*3.14159-acos(h[0]/0.5); 
  }  
 
 for (i = 0 ; i < 95 ; i++) 
 {  
 
  if (Tetha_j < TT[0]) 
      { 
  VF_j=VF[94]+(Tetha_j+2*3.14159-TT[94])*(VF[0]-VF[94])/(TT[0]+2*3.14159-
TT[94]); 
  F_PROFILE(f, thread, position) = pow(pow(T_fire,4)*VF_j+(1-
VF_j)*pow(T_air,4),0.25); 
  i=100; 
  } 
 
         else if (Tetha_j > TT[94]) 
  { 
  VF_j=VF[94]+(Tetha_j-TT[94])*(VF[0]-VF[94])/(TT[0]+2*3.14159-TT[94]); 
 F_PROFILE(f, thread, position) = pow(pow(T_fire,4)*VF_j+(1-VF_j)*pow(T_air,4),0.25); 
  i=100; 
  } 
 
  else if (Tetha_j <= TT[i]) 
  { 
  VF_j=VF[i-1]+(Tetha_j-TT[i-1])*(VF[i]-VF[i-1])/(TT[i]-TT[i-1]); 
 F_PROFILE(f, thread, position) = pow(pow(T_fire,4)*VF_j+(1-VF_j)*pow(T_air,4),0.25); 
  i=100; 
  } 
 } 
 
 
 } 
 end_f_loop(f,thread) 
} 
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Appendix D - Grid sensitivity analysis 

Mesh definition 

This appendix presents the results of the study carried out for the definition of the grid. This mainly 

focused on case number 4 in Table 10 (in Chapter 4). This is the Moodie’s test that considered a 1 ton 

LPG tank with a filling degree of 80 %. The diameter of the tank was 1 m. A series of grid were defined 

as reported in Table D1. 

Table D1: Meshing parameters for the different grids used in the grid sensitivity study. 

 Mesh A Mesh B Mesh C Mesh D Mesh E 

Max cell size 3.3 mm 3.3 mm 3.3 mm 2.3 mm 2.3 mm 

Bulk growth rate 1.2 1.2 1.2 1.2 1.2 

First layer thickness 70 μm 10 μm 140 μm 50 μm 70 μm 

Number of inflation 
layer 

50 55 50 50 50 

Inflation layer 
growth rate 

1.1 1.1 1.1 1.1 1.1 

Length of cell faces 
lying on the inner 
wall (approx.) 

1 mm 1 mm 1 mm 0.7 mm 0.7 mm 

Number of cells 77492 83803 74223 130870 128510 

Labelling A (70 base) B (10 base) C (140 base) D (50 fine) E (70 fine) 

The parameters relative to Mesh A are those used for the definitions of all the grids prepared for the 

simulations of the cases presented in Table 10 (in Chapter 4). 

The maximum cell size is 3.3 mm with a global growth rate of 1.2. The inner and the outer wall were 

divided in the same number of segments, so that each segment on the outer wall was approximately 1 

mm long. 50 inflation layers were built starting from the inner wall of the tank  with a growth rate of 1.1. 

The first layer thickness was set to 70 µm. 

Mesh B was obtained using the same parameters with the exception of the first layer thickness (10 µm) 

and number of inflation layers (55). Mesh C is equivalent to Mesh A with the exception of the first layer 

thickness (140 µm). 

Mesh D was obtained by dividing the maximum cell size, length of cell faces lying on the inner wall and 

first layer thickness used for mesh a by the root square of 2.  

Mesh E is equivalent to mesh D except for the first layer thickness, which is the same used for Mesh A. 

In order help the reader in the interpretation of figures that follow, the mesh were labelled according the 

last row Table D1. The first number refers to the first layer thickness in µm. The term base refers to the 

cases were the maximum cell size and the length of the faces lying on the inner wall are 3.3 mm and 1 

mm respectively (Mesh A, B and C). The term base refers to the cases were the maximum cell size and 

the length of the faces lying on the inner wall are 2.3 mm and 0.7 mm respectively (Mesh D and E) 

Parameters relative to Mesh A and B where also used to build grids for all the Moodie’s tests analyzed in 

this work and showed in Table 10 (in Chapter 4).  
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Wall y+ values 

 

Figure D1: Wall y+ values obtained for the Mesh A, B and C (first layer thickness of 70 µm, 10 µm and 140 µm 

respectively) at 120 s and 180 s along the inner wall as a function of the vertical coordinate (Y) coordinate 

Figure D1 Reports the results of the wall y+ obtained for the Mesh A, B and C (first layer thickness of 70 

µm, 10 µm and 140 µm respectively) at 120 and 180 s along the inner wall as a function of the vertical 

coordinate (Y) coordinate. 

In all the cases, the y+ values remain quite constant with the time, confirming that the velocity profile 

reach a pseudo steady state condition. 

The y+ obtained with mesh B (first layer thickness of 10 µm) are close to one, indicating that the firs cell 

fall well inside in the viscous sublayer.  

The y+ obtained using mesh A (first layer thickness of 70 µm) are around 7, just outside from the viscous 

sublayer limit (y+= 5). Very similar results (not showed in figure) were obtained using Mesh E (finer 

mesh, with a first layer thickness of 70 µm). On the other hand, the first cell of Mesh C (first layer 

thickness of 140 µm) is well inside the buffer layer (5 < y+ < 60).  

For what concerns Mesh D (finer mesh, with a first layer thickness of 50 µm), y+ values are around 4 (i.e. 

just inside the viscous sublayer). 

From these results, it appears that Mesh B should be preferred with respect to the other grids. In fact, a 

y+ = 1 is recommended in problems where an accurate prediction of the wall heat transfer is needed. 

However, as it will be showed in the following paragraphs, Mesh B did not lead to satisfying results. 

It is possible to observe that all the curves referring to the liquid wetted wall show a noisy behavior. This 

is due to the presence of bubbles forming and detaching from the wall introducing local variations of the 

fluid properties in the first cell layer (density and viscosity). These determine changes in the wall shear 

stress and, therefore, in the values of y+. Figure D2 clearly show this behavior. Here, the results obtained 

using Mesh A are showed. The y+ values (normalized over the maximum y+ obtained along the wall) are 
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compared with the vapor volume fraction at the inner wall (for the sake of clarity, only part of the wall 

is reported in the plot). It is possible to note how the peaks in the blue curve (y+ values) correspond to 

the presence of vapor (red line). On the other hand, looking at the results relative to the vapor wetted 

wall, where only vapor is present, the y+ curve is smooth. This is also visible in for all the curves in Figure 

D1. 

 

Figure D2: y+ normalized over its maximum along the wall and vapor volume fraction at the inner wall after 180 s 

obtained using Mesh A. 
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Pressurization rate 

Figure D3 shows the pressure curves obtained with the different meshes in Table D1. All the simulations 

refer to the Moodie-1t-80% fire test. 

Considering Mesh A, B and C (first layer thickness of 70 µm, 10 µm and 140 µm respectively) Figure D3 

indicates that the pressure using the first and the third grid are exactly the same. On the contrary, Mesh 

B provides a lower pressurization rate. Considering the finer meshes, it appears that the grid refining 

affects the pressurization only if the first layer thickness is decreased (see results relative to Mesh D – 

finer mesh and first layer thickness of 50 µm - and Mesh E - finer mesh and first layer thickness of 70 

µm, same as Mesh A).  

From this results, it is possible to conclude that pressurization obtained from the CFD simulation is not 

independent from the first cell wall distance if this fall in the viscous sublayer. On the other hand, for y+ 

higher than 5, the pressurization appear to be unaffected by this parameter. Furthermore, the grid 

refinement (without changing the first layer thickness) provide no effect on the pressurization rate. 

 

Figure D3: Pressure curves obtained with the different meshes in Table D1. The reference case is Moodie-1t-80% fire 

test. 

Figure D4 compares the results obtained using meshing parameters of Mesh A and Mesh B and pressure 

measured for all the Moodie’s tests listed in Table 10 (in Capter 4).  

It can be noted that in all the simulation using Mesh B (green curves) the pressure is lower with respect 

to the cases where Mesh A (blue curves) was used. The distance between the blue and the green curves 

increases with the increase of the filling degree and the size of the tank.  

In general, results obtained using mesh A show a better agreement with the experimental data in terms 

of pressurization curves 
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Figure D4: Pressurization curves obtained using meshing parameters of Mesh A (blue lines) and Mesh B (green lines) 

and pressure measured (red lines) for all the Moodie’s tests listed in Table 10 (in Chapter 4). 
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Velocity profiles 

Figure D5 shows the vertical velocity profiles on a horizontal section obtained using the different meshes 

listed in Table D1 at 60 s, 120 s, 180 s for the Mooedie-1t-80% case. 

 

Figure D5: Vertical velocity profiles on a horizontal section obtained using the different meshes listed in Table D1 at 60 

s, 120 s, 180 s for the Mooedie-1t-80% case. 

The results are almost coincident for all the cases. All of them predict the same shape and thickness of 

the layer affected by free convection. Differences can be found only very close to the wall and decrease 

with time. It is interesting to note how the maximum velocity increases with the decrease of the first layer 

thickness.  
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Considering only Mesh A and B, similar results were found simulating the Moodie-5t-72% test (see Figure 

D6). As observed in the Moodie-1t-80% case, the shape of the velocity profile obtained with the two 

girds are very similar. Differences appear zooming close to the wall, where slightly higher velocity values 

were obtained using Mesh B. 

 

Figure D6: Vertical velocity profiles on a horizontal section obtained using the different Mesh A and B listed at 60 s, 

120 s, 180 s for the Mooedie-5t-72% case. 
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Temperature profiles 

Figure D7 shows the temperature profiles on a horizontal section obtained using the different meshes 

listed in Table D1 at 60 s, 120 s, 180 s for the Mooedie-1t-80% case.  

As already observed analyzing velocity profiles, the results obtained using Mesh A (70 base), C (140 base) 

and E (70 fine) are almost coincident. On the other hand, the wall temperature predicted using the Mesh 

with the thinner first layer (Mesh B - 10 µm) is much higher with respect to all the other cases. The red 

curves (relative to Mesh D, with a first layer thickness of 50 µm) are higher, but quite close to those 

obtained using Mesh A, C and E). After 5 mm from the wall, all the curves are almost coincident. 

 

Figure D7: Temperature profiles on a horizontal section obtained using the different meshes listed in Table D1 at 60 s, 

120 s, 180 s for the Mooedie-1t-80% case. 

Equivalent results were found using Mesh A and B for the simulation of the Moodie-5t-72% case (see 

Figure D8) 
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Figure D8: Temperature profiles on a horizontal section obtained using Mesh A and B at 60 s, 120 s, 180 s for the 

Mooedie-5t-72% case. 

Similar considerations can be done observing the inner wall temperature profiles obtained with the 

different meshes (see Figure D9). Values relative to Mesh B (fist with a first layer thickness of 10 µm) are 

much higher than those obtained with the other meshes. This difference disappear in the vapor wetted 

wall (Y coordinate > 0.3 m). 

 

Figure D9: Inner wall temperature profiles at 120 s and 180 s obtained simulating the Moodie-1t-80% case using Mesh 

A, B C and D. 
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Vapor volume fraction profiles 

The strong difference in the temperature results obtained using Mesh B (with a first layer thickness of 10 

µm) and all the other meshes can be explained analyzing values of the vapor volume fraction close to the 

wall. Figure D10a shows the profile of this variable on a horizontal section at different times. Results 

relative to Mesh A and B are compared. It clearly appears how, in the gird with the thinner first layer 

(Mesh B), the vapor volume fraction is close to one. On the other hand, for Mesh B lower values are 

registered in the first cell. As showed in Figure D10b, this behavior is the same all over the wall. 

 

Figure D10: Vapor volume fraction profiles on a horizontal section and along the inner wall obtained using Mesh A and 

B for the simulation of the Moodie-1t-80% test. 
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Vapor volume fraction close to unity lead to a condition similar to the film boiling regime. This behavior 

is far from what observed in the fire tests and, in this case, is unphysical. In fact, to reach such condition, 

the wall heat flux should first overcome the critical heat flux that, for propane at 8.4 bar, is around 600 

kW/m2. This is much higher than the heat load generated by a hydrocarbon poolfire, which is around 

100 kW/m2. 

Results of simulations relative to Mesh A, C, D and E do not show this behavior. However, although 

they give lower wall temperature results, these are still too high. This can be observed in Figure D11 that 

compares the temperatures at one point on the inner wall obtained using the different meshes with the 

saturation temperature calculated at the tank pressure. The degree of superheating at the wall is quite 

high in all the cases. This is against experimental evidences. It can be concluded that not accurate 

prediction can be expected for the liquid wetted wall temperature should be expected. However, as 

showed in Chapter 4, the experimental measurements registered by thermocouples in the proximity of 

the wall are well reproduced.  

Finally, as showed in Chapter 5, more realistic values of wall temperatures were obtained using Mesh A 

for the simulation of a water tank exposed to fire. 

 

 

Figure D11: Temperature at the point on the inner wall marked with the red circle (y=0) obtained using the different 

meshes. The black dashed line indicates the saturation temperature calculated at the tank pressure obtained in the 

simulation using Mesh A (saturation curves for the other cases are close this and are not showed for the sake of clarity). 
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Final remarks on the grid sensitivity study 

From the results showed above, it can be concluded that the grids in which the first cell layer adjacent to 

the inner wall fall outside from the viscous sublayer (Mesh A, C and D) give almost coincident predictions 

in terms of pressure, velocity and temperatures.  

Using a grid that allows to achieve a y+ of 1 lead to extremely high wall temperatures and to a condition 

of film boiling which, for the case of a LPG tank exposed to a hydrocarbon poolfire, is unrealistic. 

On the other hand, the velocity profiles predicted using this grid are very similar to those obtained using 

all the other grids, with the only exception of the first 1.5 mm from the wall. 

A global refinement of the grid leaving unchanged the first layer thickness (mesh D) did not bring to any 

different result. 

Considering all the above, it was decided to proceed using Mesh A. 
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Appendix E - Influence of the convergence criteria 

In this paragraph, the influence of the values set to judge convergence at each time step on the simulations 

results is analyzed. All the results presented in Chapter 4 and 5 (except for the modelling setup based on 

the Eulerian-Eulerian approach) were obtained setting the convergence criteria labelled as SOFT criteria 

in Table E1. This means that, at each timestep, the solution of a given conservation equation was deemed 

to have converged if one of the following criteria was satisfied: 

- The sum of the scaled residuals was below 10-3 (10-6 for the energy equation) 

- For a given time step, the ration between the residuals and the residuals at the beginning of the 

time step was below 0.05 

The equations whose residuals were monitored are continuity, momentum, energy, turbulent kinetic 

energy and turbulent specific dissipation rate.  

Table E1: SOFT and STRONG convergence criteria definition. 

 SOFT criteria STRONG criteria 

Absolute Relative Absolute Relative 

Continuity, momentum, turbulent 
kinetic energy and turbulent specific 
dissipation rate 

10-3 0.05 10-5 0.0005 

Energy 10-6 0.05 10-9 0.0005 

Additional simulations were run considering the more stringent convergence criteria labelled as 

STRONG criteria in Table E1. This was done in order to check if the results obtained using the SOFT 

criteria are acceptable or if the solver needs more iteration to achieve a convergence. In a transient 

problem, such the one considered here, the selection of convergence criteria has a strong influence on 

the computational time, especially when the time step is several orders of magnitude smaller with respect 

to the total simulation time. Saving iteration at each timestep leads to a considerable reduction of the 

total computational time. 
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Figure E1 shows the pressurization curves obtained using the SOFT (blue curve) and the STRONG (red 

curve) convergence criteria for the Moodie-1/4t-40% (a), Moodie-1t-20% (b), Moodie-1t-40% (c) and 

Moodie-1t-80% (d) cases. In the first 3 cases, the curves are coincident. A small difference between the 

blue and the red line can be observed in the last 20 s of the simulation in the Moodie-1t-80% case (Figure 

E1d), where a maximum absolute discrepancy of 0.3 bar (1.5 %) was registered. 

 

Figure E1: Pressurization curve obtained using the SOFT (blue curve) and the STRONG (red curve) convergence 

criteria for the Moodie-1/4t-40% (a), Moodie-1t-20% (b), Moodie-1t-40% (c) and Moodie-1t-80% (d) cases. 

It can be concluded that, for what concerns the tank pressurization, the SOFT and the STRONG 

convergence criteria are equivalent. 
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In order to analyze the influence of the convergence criteria on local variables Figure E2 reports the 

velocity and temperature profiles at in different parts of the computational domain for the Moodie-1t-

80% case. Figure E2a shows that the vertical velocity profiles on the horizontal center-line predicted 

using the SOFT and the STRONG criteria are almost coincident. However, going closer to the wall 

(Figure E2b), differences appears. The disagreement is higher for the profile relative to 60 s. The same is 

true for the temperature profiles at the same location (Figure E2c). It is clear that, in the first part of the 

simulation, the velocity and temperature fields are not reached complete convergence in all the domain. 

On the other hand, better agreement is found between the temperature and velocity profiles at 120 s and 

180 s. Wall temperature predictions are almost coincident (Figure E2d). This behavior is similar to what 

observed in the time-step independence study (see Figure 73 in Chapter 4). This is because, with a smaller 

time-step, the disturbance introduced in the solution at each time-step is lower, helping the convergence 

of the solution itself. 

 

Figure E2: Comparison of the results obtained for the Moodie-1t-80% case using the SOFT (solid lines) and 

STRONG (dashed lines) convergence criteria at 60 s, 120 s and 180 s: (a) vertical velocity profiles on a horizontal 

section; (b) zoom of panel a in the near wall region; (c) temperature profile on a horizontal section; (d) inner wall 

temperature profile. 
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The maximum absolute discrepancy between the results obtained using the SOFT and the STRONG 

criteria relative to the velocity and temperature profiles reported in Figure E2 are reported in Table E2. 

Table E2: Maximum absolute discrepancy between the results obtained using 5 and 2.5 ms as time-step 

relative to the velocity and temperature profiles reported in Figure E2. 

 Maximum absolute difference 

Variable and location 60 s 120 s 180 s 

Vertical velocity along the horizontal centerline (Figure E2 a) 0.1 m/s 0.02 m/s 0.01 m/s 

Temperature along the horizontal centerline (Figure E2 c) 8.2 °C 4.6 °C 0.5 °C 

Inner wall temperature (Figure E2 d) 2.1 °C 14.0 °C 40.9 °C 

Figure E3 shows that the high value of the maximum absolute difference relative to the inner wall 

temperature after 180 s refers to the region close to the liquid-vapor interface. In this region, the sudden 

change of the liquid phase volume fraction lead to a rapid variation in the material properties, generating 

steep gradients in the solution (see, for instance Figure E2d). Therefore, small variation in the prediction 

of the liquid-vapor interface position lead to high temperature difference between the results of the two 

simulations. As showed, in Figure E3, this difference to limited to few degrees. 

 

Figure E3: Absolute temperature difference along the inner wall between the results obtained considering the SOFT and 

the STRONG convergence criteria. 
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Figure E4 reports the temperature curves at three different points along the vertical-centerline. The 

difference between the two simulations is low in the bulk of the liquid (point M) and in the vapor space 

(point T), with a maximum discrepancy of 3.6 and 0.9 °C respectively. Higher discrepancy is found close 

to the bottom of the tank (point B, with a maximum difference of 16.0 °C). As discussed in the time-

step independence study, the flow in this region is particularly unstable. However, it can be noted how 

there is not a systematic deviation between the results obtained with the two convergence criteria. All the 

curves seem to oscillate around the same average value of temperature 

 

Figure E4: Comparison of the temperature at point T, M and B obtained using the SOFT (solid lines with circles) and 

STRONG (dashed lines with crosses) for the Moodie-1t-80% case. 

In the light of these considerations, it can be concluded that, when the SOFT criteria are applied, the 

solution does not reach complete convergence in all the domain. However, despite localized 

discrepancies, not the results obtained selecting the STRONG criteria are not substantially different. 

Furthermore, Figure E1 demonstrate that these discrepancies have negligible effects on the pressurization 

curve.  

Therefore, in order to save computational time, the other simulations presented in the thesis were carried 

out using the SOFT criteria. The results obtained in this way were considered as an acceptable 

approximation of the solution achievable selecting the more accurate, but also mode computationally 

expensive option represented by the selection of the STRONG convergence criteria. 
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Appendix F – UDF to couple the CFD and lumped model 

The User Defined Function needed to couple the CFD simulation of the domain below the liquid surface 

with the lumped model describing the pressurization of the tank and the heating of the ullage is reported 

below (see Figure 102 and Figure 103 in Chapter 5). 

/* This UDF needs 8 UDM: 
UDM0 = saturation temperature 
UDM1 = shell temperature 
UDM2 = vapor space temperature 
UDM3 = evaporated mass still under the liquid level 
UDM4 = pressure 
UDM5 = degassed mass ov vapor (kg/(m^3/s) 
UDM6 = total degassed mass ov vapor (kg)  
UDM7 = 0|1 for the the application of the degassing boundary condition 
*/ 
 
#include "udf.h" 
#include "sg.h" 
#include "sg_mphase.h" 
#include "flow.h" 
#include "mem.h" 
#include "metric.h" 
 
DEFINE_INIT(UDM_7_initilization, d) 
{ 
 Thread *ct, *ft, *t0; 
 face_t f; 
 cell_t c, c0; 
 
 thread_loop_f(ft, d) 
  if (THREAD_ID(ft) == 8) 
  { 
   begin_f_loop(f, ft) 
   { 
    c0 = F_C0(f, ft); 
    t0 = F_C0_THREAD(f, ft); 
    C_UDMI(c0, t0, 7) = 1; 
   } 
   end_f_loop(f, ft) 
  } 
} 
 
DEFINE_EXECUTE_AT_END(update_Tsat) 
{ 
 /* varialbles declaration and initialization */ 
 Domain *d; 
 Domain *subdomain; 
 Thread *ct, *ft, *t0; 
 face_t f; 
 cell_t c, c0; 
 int phase_domain_index; 
  
 d = Get_Domain(1); 
 int i; 
 real TS, Tmix, P, area, press; 
 real NV_VEC(farea); 
 real time_step = N_TIME; /* time-step (s) */ 
 real Dt = CURRENT_TIMESTEP; /* time-step (s) */ 
 real sig = 5.67e-8;   /* Stefan Boltzman constant*/ 
 real P0 = 101325;   /* starting pressure (Pa) */ 
 real Tmix0 = 298.15;  /* starting temperaure of vapor space (K) */ 
 real TS0 = 298.15;   /* starting temperaure of steel (K) */ 
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 real Tl = 298.15;   /* liquid surface temperature (K) */ 
 real Tsat0 = 373.15;  /* saturation tamperature at P0 (K) */ 
 real Tsat = Tsat0;  /* saturation tamperature (K) */ 
 real Tref = 273.15;  /* reference temperature (K) */ 
 
 real m_s = 90.85;  /* mass of steel (kg) */ 
 real Cp_s = 470;  /* heat capacity of steel (J/kgK) */ 
 real A_s = 1.595;  /* steel-vapor contact area (m^2) */ 
 real A_i = 0.868;  /* liquid-air contact area (m^2) */ 
 real V = 0.39;  /* vapor space volume (m^3) */ 
 
 real Tbb = 1153;  /* fire black body temperature (K) */ 
 real eps = 1;   /* steel emissivity */ 
 real hv = 9;   /* heat transfer coefficient between steel and vapor space 
(W/m^2K) */ 
 real hi = 7;   /* heat transfer coefficient between liquid and vapor 
space (W/m^2K) */ 
 
 real M_air = 0.029;  /* molecular weight of air (kg/mol) */ 
 real m_air = M_air*P0*V / 8.314 / Tmix0; /* mass of air (kg) */ 
 real n_air = m_air / M_air;  /* moles of air (mol) */ 
 real Cp_air = 1001;   /* heat capacity of airr (J/kgK) */ 
 real Cv_air = 718;  /* heat capacity at constant volume of air (J/kgK) */ 
 
 real m_vap = 0;  /* mass of water vapor (kg) */ 
 real m_vap_l = 0;  /* mass of water vapor under the liquid level(kg) */ 
 real m_vap_l_old = 0; /* mass of water vapor under the liquid level from the 
previous time step (kg) */ 
 real n_vap = 0;  /* moles of water vapor (mol) */ 
 real M_vap = 0.04607; /* molecular weight of ethanol (kg/mol) */ 
 real Cp_vap = 1880;  /* heat capacity of vapor (J/kgK) */ 
 real Cv_vap = 1435;  /* heat capacity at constant volume of air (J/kgK) */ 
 
 real m_mix = m_vap + m_air;  /* mass of mixture (kg) */ 
 real n_mix = n_vap + n_air;  /* moles of mixture (mol) */ 
 real Xv = m_vap / m_mix;  /* vapor mass fraction */ 
 real Cp_mix = Cp_vap*Xv + (1 - Xv)*Cp_air; /* heat capacity of the mixture 
(J/kgK) */ 
 real Cv_mix = Cv_vap*Xv + (1 - Xv)*Cv_air; /* heat capacity of the mixture at 
constant volume (J/kgK) */ 
 real M_mix = n_vap/n_mix*M_vap + n_air/n_mix*M_air; /* molecular weight of mixture 
(kg/mol) */ 
 real m_degass_t = 0;  /* mass flow rate at through degassing wall at time t 
(kg/s) */ 
 real m_degassed_tot = 0; /* degassed mass from the beginning (kg) */ 
 
 real PP[16]; /* saturation pressure vector */ 
 PP[0] = 610.1182161; 
 PP[1] = 12351.81468; 
 PP[2] = 101260.563; 
 PP[3] = 475088.9094; 
 PP[4] = 1551638.119; 
 PP[5] = 3971887.889; 
 PP[6] = 8595321.214; 
 PP[7] = 16536815.77; 
 PP[8] = 29283167.4; 
 PP[9] = 48912511.54; 
 PP[10] = 78449395.6; 
 PP[11] = 122419811.6; 
 PP[12] = 187724367; 
 PP[13] = 285035210.8; 
 PP[14] = 431069340.1; 
 PP[15] = 652346036.6; 
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 real TT[16]; /* saturation temperature vector */ 
 TT[0] = 273.15; 
 TT[1] = 323.15; 
 TT[2] = 373.15; 
 TT[3] = 423.15; 
 TT[4] = 473.15; 
 TT[5] = 523.15; 
 TT[6] = 573.15; 
 TT[7] = 623.15; 
 TT[8] = 673.15; 
 TT[9] = 723.15; 
 TT[10] = 773.15; 
 TT[11] = 823.15; 
 TT[12] = 873.15; 
 TT[13] = 923.15; 
 TT[14] = 973.15; 
 TT[15] = 1023.15; 
 /* end of variable declaration */ 
 
#if !RP_HOST 
 sub_domain_loop(subdomain, d, phase_domain_index) /* calculation of vapor mass in 
the liquid and degassed mass */ 
 { 
  if (DOMAIN_ID(subdomain) == 3) /* considers only vapor subdomain (i.e. 
subdomain 3) */ 
  { 
   thread_loop_c(ct, subdomain) 
   { 
     
    if (FLUID_THREAD_P(ct)) 
    { 
     begin_c_loop_int(c, ct) 
     { 
      m_vap_l += C_VOF(c, ct)*C_VOLUME(c, ct)*C_R(c, ct);
 /* integral of mass of vapor under the liquid surface (kg) */ 
      m_degass_t += C_UDMI(c, ct, 5)*C_VOLUME(c, ct); 
 /* total degassing flow rate at time t (kg/s) (calculated by the source UDF and 
stored in UDM5) */ 
      C_UDMI(c, ct, 6) = C_UDMI(c, ct, 6) + C_UDMI(c, ct, 
5)*C_VOLUME(c, ct)*Dt; /* total degassed mass from the beginning in each cell (kg) (this 
is not the integral) */ 
      m_degassed_tot += C_UDMI(c, ct, 6); /* total 
degassed mass from the beginning (kg) (this is the integral) */ 
      m_vap_l_old = C_UDMI(c, ct, 3);  /* 
integral mass of vapor under the liquid surface from the previous timestep (kg) */ 
     } 
     end_c_loop_int(c, ct) 
    } 
   } 
  } 
 } 
#endif 
 
#if RP_NODE  
 m_vap_l = PRF_GRSUM1(m_vap_l); /* integral of mass of vapor under the liquid 
surface (kg) */ 
 m_degass_t = PRF_GRSUM1(m_degass_t); /* total degassing flow rate at time t 
(kg/s) */ 
 m_degassed_tot = PRF_GRSUM1(m_degassed_tot); /* total degassed mass from the 
beginning (kg) */ 
#endif  
 
 m_mix = m_air + m_vap_l + m_degassed_tot; /* mass of mixture (kg) */ 
 Xv = (m_vap_l + m_degassed_tot) / m_mix;  /* vapor mass fraction */ 
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 n_vap = (m_vap_l + m_degassed_tot) / M_vap; /* mass of vapor (kg) */ 
 n_mix = n_vap / M_vap + n_air; /* moles of mixture (mol) */ 
 M_mix = n_vap / n_mix*M_vap + n_air / n_mix*M_air; /* molecular weight of mixture 
(kg/mol) */ 
 Cp_mix = Cp_vap*Xv + (1 - Xv)*Cp_air; /* heat capacity of the mixture (J/kgK) */ 
 Cv_mix = Cv_vap*Xv + (1 - Xv)*Cv_air; /* heat capacity of the mixture at constant 
volume (J/kgK) */ 
 
 Message0("Mass of Vapor under liquid surface %e\n", m_vap_l); 
 Message0("Total degassed mass %e\n", m_degassed_tot); 
 Message0("Degassing flow rate %e\n", m_degass_t); 
 
 thread_loop_c(ct, d) 
 {  
  if (FLUID_THREAD_P(ct)) 
  {   
   begin_c_loop_int(c, ct) 
   { 
    if (time_step != 1)  /* all the time steps but the first 
one */ 
    { 
     TS0 = C_UDMI(c, ct, 1); 
     Tmix0 = C_UDMI(c, ct, 2); 
    } 
    TS = TS0 + Dt / m_s / Cp_s*(A_s*sig*eps*(pow(Tbb, 4) - pow(TS0, 
4)) - hv*A_s*(TS0 - Tmix0)); 
    Tmix = Tmix0 + Dt / (m_mix*Cv_mix)*(m_degassed_tot*(Cp_vap*(Tsat 
- Tref) + Cp_mix*(Tmix0 - Tref)) + hv*A_s*(TS0 - Tmix0) - hi*A_i*(Tmix0 - Tl) + 8.314*Tmix0 
/ M_mix*((m_vap_l - m_vap_l_old) / Dt + m_degass_t)); 
    P = n_mix*8.314*Tmix / V; 
     for (i = 0; i < 16; i++) 
     { 
      if (P <= PP[i]) 
      { 
       Tsat = (TT[i - 1] + (P - PP[i - 1])*(TT[i] - 
TT[i - 1]) / (PP[i] - PP[i - 1])); 
       i = 100; 
      } 
     } 
    C_UDMI(c, ct, 0) = Tsat; 
    C_UDMI(c, ct, 1) = TS; 
    C_UDMI(c, ct, 2) = Tmix; 
    C_UDMI(c, ct, 3) = m_vap_l; 
    C_UDMI(c, ct, 4) = P; 
   } 
   end_c_loop_int(c, ct) 
  } 
 } 
} 
 
DEFINE_PROPERTY(T_sat, c, t) 
{ 
 real T_SAT0 = 373.15; 
 real time_step = N_TIME; 
 real T_SAT; 
 
 if (time_step > 1) 
 { 
  T_SAT = C_UDMI(c, t, 0); 
 } 
 else 
 { 
  T_SAT = T_SAT0; 
 } 
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 return T_SAT; 
} 
 
DEFINE_SOURCE(degassing_source, cell, thread, dS, eqn) 
{ 
 real source; 
 Thread *tm = THREAD_SUPER_THREAD(thread); 
 if (C_UDMI(cell, tm, 7)==1) 
 { 
  source = -C_R(cell, thread)*C_VOF(cell, thread) / CURRENT_TIMESTEP; 
  dS[eqn] = -C_R(cell, thread) / CURRENT_TIMESTEP; 
 } 
 else 
 { 
  source = 0; 
 } 
 C_UDMI(cell, tm, 5) = source; 
 return source; 
} 
 
DEFINE_SOURCE(x_prim_recoil, cell, tp, dS, eqn) 
{ 
 real source; 
 Thread *tm = THREAD_SUPER_THREAD(tp); 
 Thread *ts; 
 ts = THREAD_SUB_THREAD(tm, 1); 
 source = -C_R(cell, ts)*C_VOF(cell, ts) / CURRENT_TIMESTEP*C_U(cell, tp); 
 dS[eqn] = -C_R(cell, ts)*C_VOF(cell, ts) / CURRENT_TIMESTEP; 
 return source; 
} 
 
DEFINE_SOURCE(x_sec_recoil, cell, ts, dS, eqn) 
{ 
 real source; 
 Thread *tm = THREAD_SUPER_THREAD(ts); 
 source = -C_R(cell, ts)*C_VOF(cell, ts) / CURRENT_TIMESTEP*C_U(cell, ts); 
 dS[eqn] = -C_R(cell, ts)*C_VOF(cell, ts) / CURRENT_TIMESTEP; 
 return source; 
} 
 
DEFINE_SOURCE(y_prim_recoil, cell, tp, dS, eqn) 
{ 
 real source; 
 Thread *tm = THREAD_SUPER_THREAD(tp); 
 Thread *ts; 
 ts = THREAD_SUB_THREAD(tm, 1); 
 source = -C_R(cell, ts)*C_VOF(cell, ts) / CURRENT_TIMESTEP*C_V(cell, tp); 
 dS[eqn] = -C_R(cell, ts)*C_VOF(cell, ts) / CURRENT_TIMESTEP; 
 return source; 
} 
 
DEFINE_SOURCE(y_sec_recoil, cell, ts, dS, eqn) 
{ 
 real source;  Thread *tm = THREAD_SUPER_THREAD(ts); 
 source = -C_R(cell, ts)*C_VOF(cell, ts) / CURRENT_TIMESTEP*C_V(cell, ts); 
 dS[eqn] = -C_R(cell, ts)*C_VOF(cell, ts) / CURRENT_TIMESTEP; 
 return source; 

} 
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