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ABSTRACT 
 
The vaginal microbiota of healthy reproductive-age women is dominated by Lactobacillus 
spp., which protect against numerous uropathogens. This study aims to identify lactobacilli 
with antagonist activity toward Candida, Chlamydia, and HIV that mostly affect women’s 
health. 
From vaginas of healthy women, we isolated seventeen Lactobacillus strains, highly 
represented in the vaginal microbiota: L. crispatus (BC1-BC8), L. gasseri (BC9-BC14), 
and L. vaginalis (BC15-BC17). 
The broadest anti-Candida activity was observed for L. crispatus (BC1, BC4, BC5) and L. 
vaginalis BC15. Most of lactobacilli reduced Candida adhesion to HeLa cells by multiple 
mechanism including exclusion, competition, and displacement. Histone deacetylases 
inhibition was hypothesized to support the antifungal activity of Lactobacillus. 
Next, mainly L. crispatus strains inhibited Chlamydia by secreting metabolites in a 
concentration/pH dependent mode at short contact times. Lactate production, vaginal 
acidification, and glucose consumption seemed to be crucial for the anti-Chlamydia 
activity. The metabolic profiles of Lactobacillus-conditioned medium (CM) also correlated 
with the anti-Chlamydia/Candida activity. 
Finally, lactobacilli inhibited HIV-1 replication in human tissues ex vivo by multiple 
mechanisms: Acidification. The pH of Lactobacillus-CM was ≤ 4.6. Tissue culture 
acidification with HCl to this pH abrogated HIV-1 replication. However, Lactobacillus-
CM, diluted 5-fold (neutral pH), also suppressed HIV-1 infection, as opposed to HCl-
treated medium at the same pH, suggesting the existence of other anti-HIV factors. Lactate. 
Addition of lactate isomers D and L to tissue culture, at the average titers found in all 
Lactobacillus-CM, inhibited HIV-1 replication. Isomer L was produced in higher 
quantities and was mostly responsible for HIV-1 inhibition. Virucidal effect. Incubation of 
HIV-1 in Lactobacillus-CM suppressed virus infectivity. Lactobacilli cells adsorbed HIV-
1, decreasing the number of virions. 
This results support role of lactobacilli in protecting the female genital tract from 
uropathogens, and are prerequisites for the development of new probiotic agents as an 
effective strategy to enhance vaginal health. 
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RIASSUNTO 
 
Il microbiota vaginale delle donne sane in età riproduttiva è dominato da specie di Lactobacillus, 
che proteggono contro numerosi patogeni urogenitali. Il presente studio ha come scopo 
l’identificazione di ceppi di lattobacilli con attività antagonistica verso agenti patogeni che 
maggiormente incidono sulla salute delle donne, in particolare Candida, Chlamydia e HIV. Da 
tamponi vaginali di donne sane abbiamo isolato diciassette ceppi di Lactobacillus altamente 
rappresentate nel microbiota vaginale: L. crispatus (BC1-BC8), L. gasseri (BC9-BC14) e L. 
vaginalis (BC15-BC17).  
Lo spettro anti-Candida più ampio è stato osservato per L. crispatus (BC1, BC4, BC5) e L. 
vaginalis BC15. La maggior parte dei Lactobacillus si sono dimostrati efficaci nell'inibire 
l'adesione di C. albicans sulle cellule epiteliali attraverso meccanismi di esclusione, competizione 
e spiazzamento del patogeno. L'inibizione dell’enzima istone deacetilasi è stata anche ipotizzata 
come meccanismo alla base dell'attività antifungina osservata. 
Posteriormente, abbiamo osservato che la maggior parte dei ceppi di L. crispatus, inibiscono 
efficacemente anche l'infettività di C. trachomatis, principalmente attraverso i metaboliti secreti 
nei surnatanti dei lattobacilli in maniera concentrazione/pH dipendente e nei brevi periodi di 
contatto tra lattobacilli e patogeno. La produzione di lattato da parte dei lattobacilli e la conseguente 
acidificazione dell'ambiente vaginale sembrano essere cruciali per la loro attività anti-Chlamydia, 
insieme al consumo di glucosio. I profili metabolici dei surnatanti dei lattobacilli sono stati correlati 
con la loro attività anti-Chlamydia/Candida. 
Infine, abbiamo dimostrato che lattobacilli vaginali inibiscono la replicazione di HIV-1 in tessuti 
umani ex vivo: Riduzione del pH. L'acidificazione del terreno di coltura tissutale con HCl a valori 
di pH pari a quelli misurati nel surnatante delle culture di lattobacilli (≤ 4.6) si è dimostrato 
sufficiente per abrogare la replicazione di HIV-1. Tuttavia, il surnatante dei lattobacilli, diluito per 
neutralizzarne il pH, è risultato mantenere l’attività anti-HIV-1, a differenza del terreno di cultura 
tissutale acidificato con HCl allo stesso valore di pH. Ciò suggerisce l'esistenza di altri fattori 
responsabili dell'inibizione di HIV-1. Produzione di acido lattico. L'aggiunta degli isomeri 
dell'acido lattico, D e L, al terreno di coltura tissutale alla concentrazione corrispondente alla 
quantità rilasciata nei mezzi di coltura dei lattobacilli, è risultato nell'inibizione di HIV-1, in 
particolare si è sottolineato il ruolo dell'isomero L, che viene prodotto in quantità maggiori rispetto 
all'isomero D. Effetto virucida. L'incubazione di HIV-1 con il surnatante dei lactobacilli si è 
dimostrato inibire significativamente l'infettività del virus. In più i lattobacilli stessi sono in grado 
di assorbire le particelle di HIV-1 sulla loro superficie, diminuendo il numero di virioni liberi. 
I nostri risultati supportano l’idea di un ruolo attivo da parte dei lattobacilli nella protezione della 
mucosa genitale femminile contro patogeni urogenitali, e forniscono un razionale per lo sviluppo 
di nuovi agenti terapeutici basati sui probiotici come strategia efficace per migliorare la salute 
vaginale. 
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1. INTRODUCTION 

 

1.1 The mucosa of the female reproductive tract as physical barrier against pathogens 

 

The upper female reproductive tract, which consists of the cervix, uterus, and fallopian 

tubes, is characterized by the presence of type I mucosa, a simple columnar epithelium 

formed by a single layer of ciliated columnar cells connected by tight junctions, and is 

generally considered to be sterile [Heinonen et al., 1985]. The mucosal epithelium in this 

upper habitat should thus be extremely efficient in recognizing and subsequently 

responding to microorganisms, and at the same time avoiding chronic inflammation. 

Introduction of bacteria into these tissues is typically associated with identifiable disease 

(endometritis or pelvic inflammatory disease). However, the results of several culture-

based investigations, documenting recovery of organisms from the endometrium of healthy 

asymptomatic women, challenge the notion of sterility [Hemsell et al., 1989]. 

 

The lower female reproductive tract comprises the vaginal canal and the ectocervix. 

They are constituted by type II mucosa, characterized by multiple layers of non-

keratinized-stratified squamous epithelium [Quayle, 2002]. In contrast to the upper female 

genital tract, cells of the squamous epithelium are not connected with tight junctions. This 

permits the transport of small molecules between the cells within the epithelial space, 

including small viruses and toxic compounds from pathogens [Hickey et al., 2011]. The 

mucosa of the lower genital tract is a habitat where normally numerous endogenous 

microorganisms coexist in dynamic equilibrium with the host. 

 

The layer of epithelial cells of the female genital mucosa are not only a physical barrier 

against pathogens, they are also able to recognize conserved microbe-associated molecular 

patterns via the expression of pattern recognition receptors, such as toll-like receptors and 

NOD-like receptors, which mediate the secretion of cytokines, chemokines, and 

antimicrobial peptides [Schaefer et al., 2004]. 

The epithelial cells from type I and type II mucosa in the female genital tract are also 

covered by a layer of mucus, consisting of mucins, which are complex high molecular mass 
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O-glycoproteins [Andersch-Bjorkman et al., 2007]. The mucus in type I mucosa is 

produced by specialized goblet cells, similar to the ones in the gastrointestinal tract, while 

the mucus in type II mucosa is produced by local mucus-secreting epithelial cells 

[Andersch-Bjorkman et al., 2007]. An important characteristic of the cervico-vaginal 

mucus is the low pH, between 4 and 5, that protect the host from pathogenic bacteria, yeast, 

and viruses. 

 

1.2 Vaginal microbiota 

 

The mucosa of lower female reproductive tract is an ecological habitat where several 

aerobe and anaerobe microorganisms coexist in a dynamic equilibrium; these communities 

of microorganisms are denominated as “vaginal microbiota”. The vaginal microbiota plays 

an important role in women’s health, influencing their development, physiology, 

immunity, and nutrition. It constitutes the first line of defense for the host by excluding 

invasive nonindigenous organisms that may cause disease [Chen et al., 2015; Hickey et al., 

2012]. The homeostasis of the vaginal communities results from complex interactions and 

synergies between the host and different microorganisms that colonize the vaginal mucosa 

(Figure 1) [Larsen and Monif, 2001; Sobel, 1997]. 

 

 
Figure 1. Homeostasis of vaginal communities 
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1.2.1 Composition of the vaginal microbiota 

 

Numerous studies have been done to characterize the vaginal microbial communities of 

healthy, asymptomatic, reproductive age women. Although these studies were based on 

various analytical methodologies sampling different regions of the female genital tract, 

women from different ethnic groups and geographical area, all consistently demonstrated 

that the vaginal microbiota composition may vary within and among women. Factors 

influencing the normal vaginal microbiota may include age, hormone levels, menstrual 

cycle stage, pregnancy, genetic background, exposure to sexually transmitted agents, 

immune status, use of antibiotics, sexual intercourse, vaginal lubricants, douching, and 

possibly diet and nutritional status [Eschenbach et al., 2000; Larsen and Galask, 1982; 

Smith et al., 1982; Vasquez et al., 2002]. 

Despite marked differences in the species composition of the vaginal microbiota among 

women, it appears that all are probably dominated by homofermentative lactic acid 

bacteria. This suggests that in reproductive age women, despite differences in the vaginal 

microbiota, the ecological function of various bacterial communities in creating a low pH 

environment through the production of organic acids is conserved [Ravel et al., 2011; Zhou 

et al., 2007; Zhou et al., 2010]. 

 

The most detailed study published so far used deep sequencing of bacterial 16S ribosomal 

RNA PCR products to probe the vaginal microbiota in 396 women of childbearing age 

from different ethnic groups (white, black, hispanic, and asian in North America) [Ravel 

et al., 2011]. In this study, the microbial communities of reproductive-aged women were 

clustered into five groups (Figure 2): community groups I, II, III, and V were dominated 

by Lactobacillus species, L. crispatus, L. gasseri, L. iners, and L. jensenii, respectively, 

while community group IV contained a diverse assemblage of facultative and strictly 

anaerobic bacteria, sometimes associated with vaginal symptoms, including Gardnerella 

vaginalis, Atopobium vaginae, Mobiluncus spp., Prevotella spp. and other taxa in the order 

Clostridiales; this latter group was over represented in black and hispanic women [Ravel 

et al., 2011]. Comparable results were obtained in a study of healthy, reproductive age 

Caucasian, black, and Japanese women [Zhou et al., 2007; Zhou et al., 2010]. The findings 
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of these studies indicate there is a limited number of different kinds of vaginal microbial 

communities in asymptomatic, apparently healthy women. Moreover, from studies of 90 

menarcheal adolescent women (13–18 years), it appears that these bacterial communities 

are established in puberty and may reside in women until menopause [Yamamoto et al., 

2009]. 

An important finding from these studies is that the distribution of bacterial community 

types varies significantly among women from different ethnic backgrounds. 

 

 
Figure 2. Representation of vaginal bacterial community groups within 4 ethnic groups of 

women. The number of women from each ethnic group is in parentheses. The roman 

numerals indicate the 5 common vaginal bacterial community groups [Ravel et al., 2011]. 

 

In addition, diversity in the vaginal microbiota in different geographic area was also 

observed. For example, the vaginal microbiota of Nigerian, Belgian, and Brazilian women 

appear to be dominated mainly by L. iners [Anukam et al., 2006; Martinez et al., 2008; 

Vitali et al., 2007], whereas in Swedish, German, and Turkish women, L. crispatus was the 

most dominant species [Kilic et al., 2001; Thies et al., 2007; Vasquez et al., 2002]. 

Furthermore, the vaginal microbiota of Indian and Bulgarian women is dominated by L. 

reuteri, L. gasseri, and L. fermentum [Dimitonova et al., 2008; Garg et al., 2009]. 

 

Most of the studies to characterize the vaginal microbiota have employed cross sectional 

designs at a single time point. However, a longitudinal study to characterize daily 

fluctuations in the composition of the vaginal microbiota has been also reported by Gajer 

and colleagues [Gajer et al., 2012]; they analyzed the temporal dynamics of the 
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composition of vaginal bacterial communities in 32 reproductive age women over a 16-

week period. The study showed that some bacterial communities change markedly over 

short time periods transitioning between groups and most frequently to the group IV, 

whereas others are relatively stable. In some cases, group transitions were triggered by 

menstruation or sexual behaviors, but in other cases they seem to be driven by 

uncharacterized factors [Gajer et al., 2012]. Similar results were reported in normal and 

disturbed vaginal microbiota [Brotman et al., 2008; Brotman et al., 2010; Ravel et al., 2013; 

Srinivasan et al., 2008]. These longitudinal studies highlight the highly dynamic nature of 

vaginal microbial communities and emphasize the need to better understand the underlying 

biological factors modulating fluctuations in composition and functions that affect host 

physiology. 

 

1.2.2 Changes of vaginal microbiota during a women’s lifespan 

 

The vaginal microbial communities experiences significant structural changes at various 

stages in a women’s life and are directly linked to the level of estrogen in the body [Farage 

and Maibach, 2006]. Major changes in the vaginal physiology and microbiota over a 

women's lifetime are largely influenced by transitional periods such as puberty, menopause 

and pregnancy, while daily fluctuations in microbial composition are more likely to be the 

results of daily life activities and behaviors [Smith and Ravel, 2017]. 

The initial bacterial colonization occurs at birth, when the newborn is first exposed to her 

mother’s vaginal tract if delivered vaginally, or by the skin bacteria in the case of a 

caesarian-section delivery [Dominguez-Bello et al., 2010]. Nevertheless, the majority of 

the vaginal bacteria originate from the gastro intestinal microbiota through a natural 

ascension independent of hygienic practices or from the surrounding skin epithelium 

[Dominguez-Bello et al., 2010]. During perinatal development, residual maternal estrogen 

induces thickening of the vaginal epithelium and the deposition of glycogen in the 

epithelial cells. Through the exfoliation of epithelial cells, glycogen is released, thereby 

favoring the colonization of glucose-fermenting microorganisms resulting in a lowering of 

the vaginal pH. However, this effect is transitory, since the subsequent metabolism of 
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maternal estrogen is accompanied by thinning of the vaginal mucosa, a reduction of the 

level of glycogen, and a concomitant increase in vaginal pH [Farage and Maibach, 2006]. 

In prepuberal girls, the pH of the vagina is nearly neutral, and cultivation-dependent 

methods have shown vaginal colonization by diverse assemblages of aerobic, strictly 

anaerobic, and enteric species of bacteria (Figure 3) [Alvarez-Olmos et al., 2004; 

Hammerschlag et al., 1978]. 

Between the ages of 8 and 13 years, the production of estrogen increases and consequently 

the thickness of the vaginal epithelium and the production of glycogen are incremented as 

well [Farage and Maibach, 2006]. Glycogen is directly or indirectly nutritionally necessary 

for the maintenance of Lactobacillus spp. [Brotman et al., 2010; Galhardo et al., 2006]. 

These new environmental conditions permit the colonization of microorganisms capable 

of fermenting glycogen to lactic acid and the concomitant acidification of the vaginal 

environment that is characteristic of reproductive age women (Figure 3) [Farage and 

Maibach, 2006; Hammerschlag et al., 1978]. Interestingly, Lactobacillus spp. was 

originally thought to directly ferment glycogen in the vagina. However, recent evidence 

suggests that human α-amylase catabolizes glycogen into smaller polymers, namely 

maltose and maltotriose, which can then be used by Lactobacillus spp. for metabolism, 

even in newborns who have residual circulating maternal estrogen [Spear et al., 2014]. 

During the menopause, estrogen levels again decrease, and this is accompanied by atrophy 

of the vaginal epithelium and reduced cervico-vaginal secretions [Farage and Maibach, 

2006]. In postmenopausal women, the levels of estrogen once again decline, reducing the 

deposition of glycogen thereby selecting for a high diversity of bacterial species (Figure 3) 

[Larsen and Galask, 1982].	
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Figure 3. Vaginal microbiota during women’s life [Petrova et al., 2013]. 
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1.3 Vaginal Lactobacillus spp. 

 

Healthy vaginal microbiota is generally dominated by the Gram-positive bacteria, 

Lactobacillus spp. [Hyman et al., 2005; Ravel et al., 2011]. Lactobacilli form a critical line 

of defence maintaining the normal vaginal microbiota by preventing overgrowth of 

pathogenic and opportunistic organisms [Macklaim et al., 2011; O'Hanlon et al., 2013; 

Ronnqvist et al., 2006]. 

 

In general, the presence of high numbers of lactic acid producing bacteria in the vagina is 

often associated with “healthy” and low numbers or absence as being “abnormal”. The 

members of the genus Lactobacillus are considered as a keystone species because of their 

well-known ability to produce lactic acid through the fermentation of sugars. Albert 

Döderlein reported for the first time their existence by culturing these bacteria from vaginal 

secretions. He found that they produced lactic acid, which in turn inhibited growth of 

pathogens both in vitro and in vivo [Döderlein, 1892]. “Döderlein’s bacillus” was later 

classified in 1928 as Lactobacillus acidophilus [Thomas, 1928]. Subsequent advances in 

culture techniques and in biochemical characterization of microorganisms have led to 

important additional insights. In the 1980s, it was determined that L. acidophilus was not 

a single species, but rather a group of closely related, obligatory homofermentative species 

collectively known as the L. acidophilus complex [Lauer et al., 1980]. 

As a result, the group was divided into DNA-homologous groups, to form many separate 

species, which are L. acidophilus, L. amylolyticus, L. amylovorus, L. crispatus, L. 

gallinarium, L. gasseri, L. iners, L. jensenii, and L. johnsonii [Du Plessis and Dicks, 1995]. 

However, the culture-dependent methods did not permit to identify several Lactobacillus 

species in the vagina. For example, most culture-dependent methods fail to identify L. 

iners, that was only first described in 1999 because it is not able to grow in the media 

typically used to isolate Lactobacillus [Falsen et al., 1999]. 

 

Major advances in DNA sequencing technology over the last decade have fundamentally 

changed the way to assess microbial community structure and composition. For 

investigations of bacterial diversity, these methods commonly utilize 16S rRNA gene 
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sequences to compare and classify taxa. This approach investigates DNA sequences 

extracted directly from samples. Typically, partial 16S rRNA gene sequences are amplified 

using primers that anneal to highly conserved sequences, and the resulting amplicons are 

sequenced. Phylogenetic analyses of the sequences allow the classification of phylotypes 

and determination of the numerically dominant taxa in a community. Other methods that 

rely on other conserved genes (cpn60, rpoC, uvrB, or recA) have also been developed but 

are not as widely used [Schellenberg et al., 2009; Van der Lelic et al., 2006]. 

 

1.3.1 Lactobacillus-associated protective mechanisms 

 

Dominant vaginal Lactobacillus species exert important health-promoting effects to 

maintain the homeostasis of the host and their dominance in the vaginal habitat. This is 

accomplished by various direct and/or indirect mechanisms such as: the reduction of the 

vaginal pH by producing organic acids, especially lactic acid; the production of 

antimicrobial substances (bacteriocins, hydrogen peroxide, etc); the competition with other 

microorganisms for the nutrients and for adherence to the vaginal epithelium; maintenance 

of the vaginal epithelium integrity by stimulating mucus secretion and modulating the 

immune response. These principal mechanisms are described below. 

 

1.3.1.1 Lactic acid 

 

Lactic acid is the principal metabolite produced by vaginal microbiota, thanks to its ability 

to metabolize glycogen-derived products under anaerobic conditions. 

Numerous studies reported that lactic acid is able to maintain healthy host physiological 

functions since it has been shown to directly inhibit the vaginal colonization of numerous 

pathogenic microorganisms such as Chlamydia trachomatis [Gong et al., 2014; Nardini et 

al., 2016] and potentially both HSV-2 and HIV in vitro, ex vivo, and in vivo if there is 

sufficient lactic acid to acidify the vagina to pH < 4 [Aldunate et al., 2013; Conti et al., 

2009; Nahui Palomino et al., 2017]. Lactic acid also inhibits a broad range of bacterial 

vaginosis-associated microbes at pH < 4.5 [O'Hanlon et al., 2011, 2013]. Other studies 

showed that lactic acid can stimulate host immune responses, for example by inhibiting the 
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pro-inflammatory mediators IL-6, IL-8 and IL-1RA; by inducing a Th17 response via IL-

23; and by facilitating the release of mediators from vaginal epithelial cells and stimulating 

antiviral response by the release of antimicrobial effector molecules from epithelial cells 

[Hearps et al., 2017; Mossop et al., 2011; Witkin et al., 2011]. 

 

1.3.1.1.1 d- l-Lactic acid isomers 

 

Lactic acid isomers may also play a role in determining host response and the subsequent 

host microbiota relationship. Lactic acid exists in the vagina in both “d” and “l” isomers; 

lactic acid is also produced by vaginal epithelial cells under the control of estrogen only. 

However, vaginal microbiota, and not host epithelial cells, contributes to the production of 

most of the lactic acid present in the vagina [Boskey et al., 2001; Boskey et al., 1999]. 

Lactobacilli can produce both the d- and l-chiral isomers of lactic acid, while humans 

produce only the l-isomer, except for a small quantity of the d-isomer released via the 

methylglyoxal pathway [Ewaschuk et al., 2005]. Of importance, among the four most 

common lactobacilli species in the human vagina L. iners does not produce d-lactic acid 

and is not able to produce the l-lactic acid in abundance, in contrast to L. crispatus and L. 

gasseri, while L. jensenii produces only d-lactic acid [Witkin et al., 2013], suggesting 

potential Lactobacillus species-specific effects on the host. 

Nevertheless, few studies reported on the role of lactic acid isomers. According to the study 

conducted by Witkin et al., d-lactic acid down-regulated the production of matrix 

metalloproteinase (MMP)-8. MMP-8 in the vagina alters cervical integrity favoring the 

entrance of bacteria to the upper genital tract. Therefore, a high d-lactic acid level, present 

when L. crispatus, L. jensenii and/or L. gasseri are abundant in the vagina, may lower the 

bacterial transport to the uterus protecting the woman from upper genital tract infections 

and infection-related preterm birth [Witkin et al., 2013]. Nunn et al. showed that HIV-1 

virions were generally trapped in cervico-vaginal mucus with relatively high 

concentrations of d-lactic acid from a L. crispatus-dominant microbiota. In contrast, HIV-

1 virions diffused rapidly through cervico-vaginal mucus with low concentrations of d-

lactic acid from L. iners-dominant microbiota or significant amounts of G. vaginalis, 

suggesting that the vaginal microbiota, including different species of Lactobacillus, can 
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alter the diffusional barrier properties of cervico-vaginal mucus against sexually 

transmitted viruses through the production of d-lactic acid [Nunn et al., 2015]. 

On the other hand, Aldunate and colleagues, observed that l-lactic acid, and not d-lactic 

acid, at physiological concentrations, exerted potent HIV virucidal activity [Aldunate et 

al., 2013]. Moreover, by analyzing vaginal fluids from women with vaginal disorders, 

Beghini et al., observed that women with bacterial vaginosis were found to be deficient in 

both isomers, while those with vulvovaginal candidiasis had elevated l-lactic acid [Beghini 

et al., 2015]. 

 

1.3.1.2 Hydrogen peroxide 

 

Another property of most vaginal lactobacilli is their ability to release hydrogen peroxide 

(H2O2) in appreciable amounts in vitro [Eschenbach et al., 1989]. The H2O2 of microbial 

origin and halide (Cl−, Br−, I−) or pseudohalide (SCN−) ions is oxidized by peroxidase 

forming the corresponding hypohalous acid or halogen, which exerts potent toxic 

properties against bacteria, fungi, viruses or mammalian cells [Klebanoff and Coombs, 

1991; Klebanoff et al., 1991]. 

It has been determined that 96–98% of cultivable vaginal Lactobacillus isolates from 

healthy women are H2O2-producers in vitro [Eschenbach et al., 1989; Rabe and Hillier, 

2003], suggesting that H2O2 could be an important bacterial metabolite for protection 

against pathogenic microorganisms. In fact, Wilks and colleagues reported that the 

presence of H2O2-producing Lactobacillus strains such as, L. jensenii, L. crispatus, and L. 

gasseri is associated with a reduced risk of bacterial vaginosis, preterm birth, and 

chorioamnionitis [Wilks et al., 2004]. The presence of H2O2-producing lactobacilli also 

correlates with a reduced risk of acquiring sexually transmitted pathogens, such as 

Neisseria gonorrhoeae, C. trachomatis, and HIV [Baeten et al., 2009; Saigh et al., 1978; 

Wiesenfeld et al., 2003]. Moreover, Fitzsimmons and Berry reported the inhibition of 

Candida albicans by H2O2-producing L. acidophilus [Fitzsimmons and Berry, 1994], 

although this result was not confirmed by other studies [Hawes et al., 1996; Sobel and 

Chaim, 1996]. 
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However, the H2O2-production by lactobacilli has not been measured in vivo; therefore, the 

biological relevance of H2O2 in the prevention of urogenital diseases remains still 

unknown. Martin and Suarez work showed that H2O2 is only produced by lactobacilli when 

cultures are agitated, indicating that H2O2 is produced only in the presence of oxygen. 

Furthermore, H2O2 was degraded when the bacteria were grown in the presence of iron-

containing compounds such as hemin or hemoglobin, and Fe3+ ions also induced 

degradation of H2O2 [Martin and Suarez, 2010]. These two findings, in addition to the fact 

that the vagina is microaerophilic and an iron-rich mucosal site, raises the question of 

whether lactobacilli can produce enough H2O2 amounts to inhibit pathogens in vivo [Martin 

and Suarez, 2010]. 

 

1.3.1.3 Adhesion to host cells 

 

Another postulated mechanism, by which lactobacilli would prevent pathogen colonization 

of vaginal epithelium, is through the adhesion to host cells. Lactobacilli bind to the surface 

of vaginal epithelial cells and compete for the adhesion sites with other microorganisms to 

prevent them from attaching and infecting host cells. Several vaginal Lactobacillus strains 

have been shown to block adhesion of pathogens to the vaginal epithelial cells in vitro, 

such as Escherichia coli, G. vaginalis, Klebsiella pneumoniae, Pseudomonas aeruginosa, 

Staphylococcus aureus, and Trichomonas vaginalis [Mastromarino et al., 2002; Osset et 

al., 2001; Phukan et al., 2013; Zarate and Nader-Macias, 2006]. Additionally, it was 

observed that lactobacilli have a higher affinity for the host cell receptors than pathogens, 

displacing even already host-adhered pathogens, such as G. vaginalis, N. gonorrhoeae and 

C. albicans [Boris et al., 1998; Mastromarino et al., 2002; Parolin et al., 2015; Spurbeck 

and Arvidson, 2008]. However, little is known about molecular mechanisms underlying 

host-bacteria physical interactions. Multiple components of the bacterial cell surface are 

likely to participate in this process, such as glycoproteins, carbohydrates, and lipoteichoic 

acid, as previously shown for Lactobacillus adherence to the vaginal epithelium [Boris et 

al., 1998; Chan et al., 1985]. 
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1.3.1.4 Coaggregation 

 

Lactobacilli could also protect the vaginal tract from infection by coaggregating with the 

pathogen, thereby sequestering the pathogen and preventing it from adhering to the host 

epithelium, thus facilitating its discharge by vaginal fluids and/or killing by antimicrobial 

metabolites secreted by lactobacilli [Mastromarino et al., 2002]. Coaggregation, as a 

mechanism of defense was first studied by Reid et al., observing for example that L. 

rhamnosus strongly coaggregated with E. coli strains, inhibiting their growth [Reid et al., 

1988]. Some vaginal lactobacilli, including L. gasseri, L. jensenii, and L. crispatus, can 

coaggregate with E. coli, although with different efficiency [Kmet and Lucchini, 1999]. 

This phenomenon is not restricted to E. coli, for instance L. salivarius, L. brevis, and L. 

gasseri can coaggregate with G. vaginalis and C. albicans [Mastromarino et al., 2002]. 

Although coaggregation can be an effective defensive mechanism adopted by some strains, 

it seems that is not utilized by all vaginal lactobacilli. 

 

1.3.1.5 Bacteriocins 

 

Bacteriocins are defined as small bactericidal proteins with a narrow spectrum of activity, 

inhibiting strains of the same or closely related species [Cotter et al., 2013]. These proteins 

appear to be capable to inhibit the colonization of pathogenic and opportunistic 

microorganisms and perhaps provide an advantage to maintain the wellness of the female 

genital tract. Strains of the most dominant vaginal Lactobacillus species in healthy women 

(L. gasseri, L. crispatus, and L. jensenii), as well as the most well characterized vaginal 

probiotic strain, L. rhamnosus GR-1, were found to produce bacteriocin-like compounds, 

these bacterocin-like compounds have been showed to exert microbicidal activity against 

G. vaginalis, C. albicans and E. coli [Kaewsrichan et al., 2006; McGroarty and Reid, 

1988]. On the other hand, some extensive studies of human vaginal lactobacilli isolates, 

such as, L. crispatus, L. jensenii, L. gasseri, L. vaginalis, and L. plantarum showed that 

none of these strains produced bacteriocins [Martin et al., 2008; Siroli et al., 2017]. Thus, 

bacteriocins may not be universally produced by vaginal lactobacilli, and their association 

with protection against pathogens remains to be verified. 
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1.3.1.6 Biosurfactants 

 

Biosurfactants are amphipathic molecules, which contain both hydrophobic and 

hydrophilic domains. These compounds, which can be proteins, carbohydrates, or 

glycoproteins, are employed by microbes for a variety of purposes, such as emulsification 

of hydrocarbons, quorum-sensing, biofilm regulation, antimicrobial activity, and 

regulation of adhesion and detachment [Rodrigues et al., 2006]. 

Reid et al. reported that numerous lactobacilli strains from gastrointestinal and vaginal 

origin produce biosufactants. Some of these biosurfactants are secreted, whereas others are 

associated with the surface of the bacterium [Reid et al., 1999]. In another study, using the 

extract of surface-associated components from L. jensenii, it was shown that these bacteria 

have biosurfactant activity capable to inhibit the adherence of N. gonorrhoeae to epithelial 

cells in vitro [Spurbeck and Arvidson, 2010]. Therefore, biosurfactants produced by 

lactobacilli could play a significant role in reducing microbial infections, and also should 

be studied further to determine the involvement of these molecules in the inhibition of 

vaginally acquired pathogen colonization. 
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1.4 Common gynecological infections 

 

Pathogen invasion of the lower female reproductive tract may result in local infections, as 

well as widespread to the upper female reproductive tract, potentially leading to fertility 

and pregnancy disorders. A shift in the composition of the vaginal microbiota, which is 

dominated by lactobacilli in homeostatic conditions, is associated with several disorders 

such as bacterial vaginosis, aerobic vaginitis, vulvovaginal candidiasis, urogenital tract 

infections, or sexually transmitted infections, which can coexist and mutually support each 

other by fueling local inflammation in the female reproductive tract. C. albicans, C. 

trachomatis, and human immunodeficiency virus (HIV) are among the infectious agents 

that most significantly affect women’s health worldwide. 

 

1.4.1 Bacterial vaginosis and aerobic vaginitis 

 

Bacterial vaginosis (BV) is a condition characterized by replacement of the normally 

protective Lactobacillus spp. with a massive overgrowth of anaerobic and facultative 

organisms, including G. vaginalis, A. vaginae, Bacteroides spp., Molibincus spp., and 

genital mycoplasmas [Eschenbach et al., 1989; Fredricks and Marrazzo, 2005; Srinivasan 

and Fredricks, 2008]. BV is the most common vaginal disorder of reproductive age women 

and is associated with serious adverse sequelae including infertility, endometritis, and 

pelvic inflammatory disease, spontaneous abortion, as well as an increased risk of 

acquiring HIV, N. gonorrhoeae, C. trachomatis, and other sexually transmitted infections 

[Haggerty et al., 2004; Leitich et al., 2003; Sweet, 1995; Taha et al., 1998; Wiesenfeld et 

al., 2003]. 

 

Aerobic vaginitis (AV) is an alteration in the vaginal microbiota associated with aerobic 

microorganisms; mainly group B Streptococcus, S. aureus, E. coli, and Enterococcus 

[Donders, 2007; Donders et al., 2002]. AV is differentiated from BV mainly by the 

presence of inflammatory response associated with aerobe microorganisms [Cauci, 2004]. 

Interestingly, Donders et al. observed that 20% of women with AV also exhibited an 
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overgrowth of G. vaginalis, indicating that there may be a degree of overlap with BV or 

that the two entities may coexist [Donders et al., 2002]. 

 
1.4.2 Vulvovaginal candidiasis (VVC) 

 

VVC is a common infection compromising the quality of life of many women. Candida 

infection affects 70-75% of women at least once during their lives, whereas 40-50% of 

them experience at least one recurrence and about 5-8% of these women suffer from 

recurrent VVC [Peters et al., 2014]. C. albicans is the most frequent etiologic agent of 

VVC [Workowski et al., 2010] causing almost all acute uncomplicated cases and about 

70% of complicated cases of recurrent VVC. The remaining 30% are caused by C. 

glabrata, C. parapsilosis, C. kruzei, or C. tropicalis [Nyirjesy et al., 1995]. 

Candida has an extraordinary dual lifestyle capacity, which permits to adapt to different 

environmental and host habitats, allowing host-colonization either as a commensal or 

opportunistic pathogen. This duality is due to their morphological capacity to change from 

a round ovoid typical yeast cell (Y) to a hyphal mycelial-growing organism (H). This 

transition is crucial for its pathogenicity. There is sufficient evidence that the Y form is 

predominantly associated with commensalism, while the H form is associated with 

pathogenicity. In the Y form, Candida can be found in the intestine and vagina of more 

than 50% of healthy asymptomatic subjects, whereas the H form is invariably found in 

pathologic specimens obtained from invaded tissues. It remains to be determined whether 

the presence of commensal Candida confers a benefit to the host in terms of balanced 

microbiota composition and maintenance of local homeostasis. However, when tolerance 

mechanisms become defective, the Y form changes into the H form and expresses its 

virulence capacity [Harriott et al., 2010; Wang, 2009]. 

Factors associated with the transition from asymptomatic colonization to symptomatic 

infection may be intrinsic to the host, the environment, the host behavior, or related to the 

organism itself. For instance, diabetes-associated glycosuria and the use of antibiotic and 

estrogen-based drugs may contribute to Candida colonization and infection [Fischer and 

Bradford, 2011; Nyirjesy et al., 2012; Pirotta and Garland, 2006]. Behavioral factors such 

as orogenital sex can facilitate Candida infections [Geiger and Foxman, 1996]. The use of 
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hormonal and contraception methods has also been associated with an increase in incidence 

of VVC [Nyirjesy, 2008]. 

 

Symptomatic C. albicans infections are commonly treated with azole antifungal drugs. 

Since azoles are fungistatic for C. albicans, cells repetitively exposed to these drugs may 

become azole resistant [Coste et al., 2007]. Moreover, elevated healthcare costs due to the 

high incidence of VVC together with the growing problem of antibiotic resistance, urge 

the development of new effective probiotic agents for the prevention and therapy of this 

gynaecological infection [Falagas et al., 2006]. 

 

1.4.2.1 Role of vaginal Lactobacillus against VVC 

 

Although the pathogenesis of VVC remains a controversial issue, it seems that, upon the 

disruption of the balance existing between host and vaginal microbiota, the overgrowth of 

Candida is facilitated. In some studies, VVC was associated either with a reduced number 

of lactobacilli or with species of lactobacilli not producing H2O2 [Hawes et al., 1996; 

Hillier et al., 1992; Vitali et al., 2007]. For example, Vitali and colleagues showed that 

women with VVC hosted reduced numbers of H2O2 producer lactobacilli species (L. 

acidophilus, L. gasseri, and L. vaginalis) and increased numbers of non-H2O2 producer 

bacteria (L. iners) [Vitali et al., 2007]. On the contrary, several studies based on molecular 

methods have shown how vaginal colonization by Candida spp. is more common in women 

with a microbiota dominated by lactobacilli, than the microbial profile associated with 

bacterial vaginosis [Drell et al., 2013; van de Wijgert et al., 2014; van de Wijgert et al., 

2008]. In addition, it was demonstrated that Candida infection did not alter the bacterial 

composition of the microbiota itself, which remained homogeneous and stable over time, 

and possibly dominated by lactobacilli [Biagi et al., 2009; Zhou et al., 2009]. 

In vitro studies reported that lactobacilli exert antagonistic effects on Candida infection. 

Lactobacilli can compete with Candida for nutrients and/or adherence to host epithelial 

cells [Osset et al., 2001; Parolin et al., 2015]. L. acidophilus, L. gasseri, and L. jensenii, 

were shown to coaggregate with C. albicans [Boris et al., 1998]. The production of 

antimicrobial substances produced by specific lactobacilli strains can also prevent VVC, 
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in particular organic acids, H2O2, bacteriocins, and biosurfactants [Okkers et al., 1999; 

Parolin et al., 2015; Velraeds et al., 1998]. 

Some clinical studies supported the effectiveness of orally or locally administered probiotic 

lactobacilli as well. For example, Vujic group treated patients diagnosed with VVC with 

capsules containing probiotics L. reuteri RC-14, L. rhamnosus GR-1, and placebo, for 6 

weeks. Their result showed that the microbiota was restored by 61.5% in the probiotics 

group compared to 26.9% of the placebo group [Vujic et al., 2013]. Comparable results 

were obtained administering vaginal suppositories of Lactobacillus GG twice per day for 

7 days [Hilton et al., 1995]. Moreover, it was also studied the effect of probiotics associated 

with azole in treating recurrent VVC. Martinez et al. evaluated one-month therapy with 

probiotics that were added to a single dose of 150 mg fluconazole. Beneficial effect of 

lactobacilli was observed compared to the patients that received only fluconazole [Martinez 

et al., 2009]. Additionally, De Seta et al. observed that local L. plantarum administered 

intravaginally, together with local clotrimazole, offers potential benefits for resolution of 

vaginal discomfort [De Seta et al., 2014]. 

 

1.4.3 Chlamydia trachomatis infection 

 

The obligate intracellular Gram-negative bacterium, C. trachomatis, is a leading cause 

of sexually transmitted infections (STIs) with more than 100 million new cases per year 

according to global estimates [Senior, 2012]. Strains of C. trachomatis are divided into 

three biovars and are further subtyped by serovar. The trachoma biovar (serovars A–C) is 

the leading cause of non-congenital blindness, the genital tract biovar (serovars D–K) is 

the most prevalent sexually transmitted bacterium, and the lymphogranuloma venereum 

biovar (serovars L1–L3) causes invasive urogenital or anorectal infection [Elwell et al., 

2016]. 

In women, 70–80% of genital tract infections with C. trachomatis are asymptomatic, but 

15–40% ascend to the upper genital tract, which can lead to serious sequelae, including 

pelvic inflammatory disease, infertility, and ectopic pregnancy [Malhotra et al., 2013]. 

Moreover, infection with C. trachomatis has been shown to facilitate the transmission of 

HIV and is also associated with the incidence of cervical cancer [Malhotra et al., 2013]. 



Chapter 1: Introduction 

	 19	

Although chlamydial infection is treatable with antibiotics, no drug is sufficiently cost-

effective for the elimination of the bacterium, and an effective vaccine has been elusive so 

far [Howie et al., 2011]. 

Chlamydia has a unique cycle of development, alternating between two distinct bacterial 

forms (Figure 4). The elementary bodies (EBs) are infectious but non-dividing. In 

contrast, the reticulate bodies (RBs) are non-infectious but replicative [Moulder, 1991]. 

After attachment and penetration in cells, EBs remain internalized in vacuoles 

permitting the escape to phago-lysosomal fusion. Within these vacuoles, named 

inclusion-forming units, EBs differentiate into RBs after several transformations. Unlike 

EBs, RBs are larger, less compacted, metabolically active, and capable to divide by 

binary fission. Around 18 h post-chlamydial infection, RBs resulting by binary fission 

differentiate into EBs, then EBs are expelled from the cell, either by exocytosis or 

cellular lysis between 48–72 h post-infection [Wyrick, 2000]. 

 

 
Figure 4: The life cycle of Chlamydia trachomatis (from www.cytologystuff.com). 
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1.4.3.1 Lactobacilli and Chlamydia trachomatis infection 

 

Lactobacilli are the predominant microorganisms of the healthy women's vaginal 

microbiota and numerous evidences indicate that the presence of a lactobacilli lacking 

vaginal microbiota facilitates the acquisition of various sexually transmitted diseases, 

including C. trachomatis [Brotman et al., 2010; Hillier et al., 1992; Wiesenfeld et al., 

2003]. 

Despite the importance of a healthy vaginal microbiota in preventing genital infections, 

only a few studies have been focused on the protective effects of vaginal lactobacilli 

towards chlamydial infection. Antagonistic effects by lactobacilli on chlamydial EBs, 

chlamydial absorption to epithelial cells, and intracellular phases of chlamydial 

replication have been demonstrated. However, the molecular mechanisms underlying 

the interactions between Lactobacillus and C. trachomatis in the vaginal environment 

have not yet been elucidated. 

Mastromarino and colleagues investigated the effects of two vaginal strains of 

Lactobacillus (L. brevis and L. salivarius) against C. trachomatis infection on HeLa cells. 

They observed that both vaginal lactobacilli significantly inhibit the replication of C. 

trachomatis, independently of pH variations, inhibiting their adhesion to host epithelial 

cells and their intracellular replication as showed by the significant reduction of Chlamydia 

inclusion forming units in HeLa cells compared to the control. A strong inhibition was 

observed especially when lactobacilli were present during early stages of infection. In 

addition, the inhibitory effect of lactobacilli against Chlamydia infection was dose 

dependent, suggesting that the concentration of lactobacilli in the vagina contributes to 

Chlamydia inhibition. In the same study, the effects of L. brevis and L. salivarius were also 

evaluated against the persistent form of C. trachomatis induced by co-infection with HSV-

2, observing that L. brevis has the ability to inhibit Chlamydia even in the persistent form 

of Chalmydia infection [Mastromarino et al., 2014]. 

Gong et al. investigated the effect of two metabolites produced by lactobacilli (L. crispatus, 

L. gasseri, and L. jensenii) against C. trachomatis infection, lactic acid and H2O2. Their 

results indicate that the anti-Chlamydia activity of lactobacilli is primarily due to their 

ability to acidify the vaginal pH by producing lactic acid. Contrarily, H2O2 production 
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seems to not be relevant for Chlamydia inhibition. The authors suggested various 

mechanisms by which lactic acid may inhibit the development of Chlamydia: (i) lactic acid 

could be involved in the inactivation of Chlamydia EBs surface molecules which represent 

their virulence factors for adhesion and penetration to the host cell; (ii) lactic acid could 

compromise the integrity of the outer membrane by reducing the number of disulphide 

bonds between the protein complexes; (iii) and the entry of hydrogen ions into the 

Chlamydia EBs could alter cellular metabolism, essential for early development of C. 

trachomatis [Gong et al., 2014]. 

Another study investigated the immunomodulatory effect of L. crispatus on HeLa and J774 

cells subjected to C. trachomatis infection by studying the expression of the inflammatory 

cytokines IL-6, IL-8, TNF-α and IL-10. They observed that, L. crispatus specifically 

enhances the expression of the anti-inflammatory cytokine IL-10 and inhibits the 

expression of the pro-inflammatory IL-6, IL-8, and TNF-α cytokines in the host cells. 

These results suggest a potential mechanism by which L. crispatus may protect against 

pathological inflammatory conditions. Additionally, L. crispatus inhibited C. trachomatis 

adhesion and infectivity in human epithelial cells and macrophages [Rizzo et al., 2015]. 

 
1.4.4 Human immunodeficiency virus infection 

 

The human immunodeficiency virus (HIV) is a retrovirus belonging to the family of 

Retroviridae, genus lentivirus. HIV is the etiologic agent of the acquired 

immunodeficiency syndrome (AIDS) that results in extremely variable clinical outcomes, 

such as a severe immunodeficiency accompanied by the establishment of opportunistic 

infections and tumors, organ decay, and central nervous system degeneration. Two 

different HIV viruses exist: HIV-1, the pandemic type, and HIV-2, more represented in 

West Africa [Sharp and Hahn, 2011]. 

As shown in figure 5, the replication cycle of HIV-1 begins with a high affinity binding 

between the HIV gp120 and the receptor CD4 expressed on the target cell surface. CD4 is 

a protein mainly expressed by lymphocytes with ‘helper-inducer’ activity, but it is also 

present on monocytes, macrophages, dendritic cells, Langerhans cells, and some 

circulating and bone marrow-resident hematopoietic progenitors. The interaction CD4-
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gp120 induces a conformational change in the structure of gp120 that leads to the exposure 

of the binding site for another receptor, called co-receptor. There are two main co-receptors 

which HIV gp120 recognizes: CXC-chemokine receptor 4 (CXCR4) or CC-chemokine 

receptor 5 (CCR5) [Rizzuto et al., 1998]. Upon HIV-1 entry into the target cell, the core 

dissolves and a reverse-transcription complex assembles in the cytoplasm allowing the 

reverse transcription of the two identical molecules of ssRNA+ in double stranded DNA 

and then evolves in the pre-integration complex that crosses the nuclear membrane 

[Davenport et al., 2002]. Inside the nucleus, the HIV-1 integrase promotes the insertion of 

the viral DNA in the host cell genome, where it can remain transcriptionally silent for years. 

The establishment of a pool of long-lived latently infected CD4 T cells, called HIV 

reservoir, that is not visible to the immune system and continuously revive the infection 

despite antiretroviral treatment, represent the major obstacle to HIV eradication strategies 

[Chun and Fauci, 1999]. Antigenic stimulation through activation of the T-cell receptor 

signaling or stimulation of the host cell by pro-inflammatory cytokines can lead to 

activation and nuclear translocation of host transcription factors, such as NF-kB, that turn 

to activate or enhance HIV-1 provirus transcription by the host enzyme RNA polymerase 

II [Piret et al., 1995]. When a complete transcript is produced, it translocates to the 

cytoplasm where the synthesis of viral proteins with important regulatory functions takes 

place. The final step of the viral replication cycle occurs on the plasma membrane of the 

host cell. Viral components are transported and anchor to the plasma membrane along with 

the HIV-1 genomic ssRNA+ as the forming virion begins to bud from the host cell. Finally, 

the structural components of HIV assemble to produce a mature virion [Bukrinskaya, 

2004]. These include the molecule p24gag incorporated into the protein core that surrounds 

the viral RNA, also known as capsid. Immunoassays targeting this protein have been 

extensively used to measure HIV-1 replication in in vitro infection assays as well as to 

diagnose HIV-1 infection in vivo. 
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Figure 5. Replication cycle of HIV (from http://www.niaid.nih.gov). 

 

1.4.4.1 HIV infection in female genital tract 

 

The female genital tract mucosa is the portal of entry for several clinically relevant sexually 

transmitted viruses, including HIV. Women appear to be more easily infected with HIV 

than men. Differences in social rank, behavior, sex hormone regulation, and especially 

organization of the mucosal surface appear to be involved [Iwasaki, 2010]. 

Male to female sexual transmission of HIV is mediated by the exposure of genital mucosa 

to infectious virions and/or infected lymphocytes and monocytes present in the semen. The 

ratio of transmissibility of cell-free vs. cell-associated viruses is still uncertain, but it seems 

that both are sources of infections and should be targeted by intervention strategies. 

 

Under normal circumstances, the incidence of HIV transmission from males to females via 

vaginal intercourse is very low, within the range of one productive infection for every 200–
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2000 exposures [Schellenberg and Plummer, 2012]. This can probably be explained, in 

part, by the presence of the protective type II mucosa of the female vaginal epithelium cells 

(see section 1.1). Nevertheless, free HIV virions can infect the female reproductive tract in 

many different ways: (i) free HIV virions and/or infected cells can penetrate the epithelium 

through gaps between the epithelial cells or lesion on the vaginal mucosa layer and reach 

the basal layer where the majority of target cells reside (i.e. CD4 cells); (ii) HIV-infected 

donor cells trapped in the mucus layer can release new virions; (iii) virions can be captured 

by Langerhans cells or other antigen presenting cells, located in the epithelium layer and 

subsequently transferred to target cells in the deeper layers of the mucosa or in lymphoid 

organs (transinfection); (iv) virions can penetrate the epithelium through epithelial cells 

(transcytosis) and infect the underlying CD4 T cells or macrophages; (v) virions can also 

make contact with dendritic cells and subsequently get transported to CD4 T cells [Hladik 

and McElrath, 2008; Iwasaki, 2010; Lederman et al., 2006]. Regardless of the mechanism 

of transmission, the establishment of a founder pool of productively infected CD4 T cells 

in the female reproductive tract precedes for virus dissemination to secondary lymphoid 

organs, as demonstrated in pathogenic animal models of HIV-1 infection [Haase, 2001]. 

 

1.4.4.2 Role of vaginal Lactobacillus in protection against HIV 

 

Lactobacilli have been reported to protect against vaginal transmission of HIV [O'Hanlon 

et al., 2013; Ronnqvist et al., 2006]. Although many hypotheses have been formulated 

regarding the protective effects of lactobacilli, their exact mechanism of HIV inhibition 

remains to be fully elucidated in vivo. These mechanisms seem to involve: (i) direct HIV 

killing by lactic acid, H2O2, bacteriocins, and other inhibitory agents; (ii) maintenance of 

vaginal integrity and competition with pathogens for binding to vaginal epithelium; (iii) 

HIV neutralization by lectin molecules, which are present in lactobacilli surface, that bind 

virus glycoproteins and in this way preventing infection; (iv) and enhancement of the local 

host-immune defenses [Aldunate et al., 2013; Kaewsrichan et al., 2006; Klebanoff and 

Coombs, 1991; Olmsted et al., 2005; Petrova et al., 2013; Pretzer et al., 2005; Reid et al., 

2011]. 
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Generally, the low pH of the vaginal environment, caused mainly by lactic acid, is believed 

to be the main strategy to prevent bacterial and viral infections in the vaginal mucosa. For 

example, cell-free HIV-1is inactivated upon incubation in a solution with pH as low as 5.7 

for 2 h. However, incubation in the same condition did not affect cell-associated viral 

infectivity [Martin et al., 1985; Ongradi et al., 1990]. Other studies showed that the acidic 

environment of the vagina may inhibit the activation of HIV target cells, thus reducing 

their susceptibility to HIV-1 infection. Monocytes, macrophages, and lymphocytes, were 

also found to lose the motility at a pH below 6.0 [Hill and Anderson, 1992; Olmsted et al., 

2005]. Human cervico-vaginal mucus, obtained from donors with normal lactobacilli-

dominated vaginal microbiota efficiently traps HIV by decreasing viral diffusion at low pH 

[Nunn et al., 2015]. Of interest, at pH 4, lactic acid, but not HCl, abolished the negative 

surface charge on HIV without lysing the viral envelope, thus may alter HIV surface 

protein structures and/or possibly inactivate the virus by disrupting the envelope membrane 

and exposing the capsid [Lai et al., 2009]. Taken together, these results support the idea 

that maintaining a low pH in the vaginal lumen by production of lactic acid is important to 

reduce HIV transmission. 

 

The effect of H2O2 on the survival of different sexually transmitted viruses including HIV 

has not been extensively addressed. It was reported that the H2O2-producing strain L. 

acidophilus, was virucidal to HIV in cell line infection assay. The anti-HIV activity was 

not observed when L. acidophilus strain was treated for 15 min at 100 °C or when it was 

replaced by a strain unable to produce H2O2. Additionally, the virucidal effect was inhibited 

by catalase, but not by heat-inactivated catalase [Klebanoff and Coombs, 1991]. Besides 

these results, the effect of H2O2 in vivo has not been studied yet plus the vaginal tract is 

microaerophilic and iron-rich, which raises the question of whether lactobacilli produce 

enough H2O2 amounts to inhibit pathogens in vivo. 

 

Molecules on the cell surface of the vaginal microbiota that directly interact with pathogens 

or host cells are postulated to play a role in the exclusion of bacterial and/or viral pathogens. 

Such interactions could be established via carbohydrate-binding proteins known as lectins, 

which interact specifically with carbohydrates on the surface of pathogens and are highly 



Chapter 1: Introduction 

	 26	

specific for the ligand of interaction. Lectins on the cell surface of vaginal microorganisms 

could play a role in pathogen exclusion by competitively binding to the same glycans on 

the host surface, thereby blocking adhesion or by binding glycans on the pathogenic 

surfaces, thereby blocking virulence mechanisms such as adhesion and invasion. Some 

lectins, especially the ones highly specific for recognition of mannose (e.g. actinohivin and 

griffithsin) and N-acetylglucosamine residues, have been shown to possess activity against 

HIV by binding of the glycans on the viral envelope and thereby blocking the virus entry 

process. Some of these lectins can inhibit the infection of T cells by cell-free virions 

through binding to the HIV gp120 glycoprotein. They can also block the interaction 

between HIV and the macrophage mannose receptor, thereby preventing the infection of 

macrophages. Additionally, lectins can block the dendritic cell-directed transmission of the 

virus to uninfected T cells [Balzarini, 2007]. Nevertheless, the information on lectins 

encoded by Lactobacillus species and especially vaginal isolates is still limited. 

 

Little is known about the relationship between the vaginal microbiota and the immune 

system. HIV infections are characterized by an increase of pro-inflammatory cytokines and 

pro-inflammatory responses. This has been linked with a disruption of the integrity of the 

vaginal mucosa and consequently further activation of HIV in infected people. Therefore, 

vaginal microbiota that can reduce a pro-inflammatory response could contribute to a 

decreased activation of HIV. For example, in vaginal epithelial multilayers treated with 

TLR agonists, a significant reduction of IL-6 and IL-8 expression after treatment with L. 

crispatus was observed. Additionally, L. crispatus and L. jensenii could induce a 

significant reduction of TNF secretion as well as some pro-inflammatory chemokines 

(MIP-1β and RANTES) [Rose et al., 2012]. Further studies need to address the 

immunomodulatory effect of lactobacilli as well. 

 

1.4.4.3 Human ex vivo tissues to study HIV transmission and pathogenesis 

 

Understanding the mechanisms of HIV-1 transmission requires knowledge of the functions 

and interactions of all immune cells and of the extracellular matrix. Although conventional 

isolated cell lines cultures or peripheral blood mononuclear cells have been useful in many 
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areas of HIV research, interpretations of the results of experiments with these cultures are 

limited by the fact that they do not reproduce the spatial distribution of cells and their native 

communication within the tissue cytoarchitecture. 

 

The human ex vivo tissue system is important for the study of multiple aspects of HIV 

pathogenesis and consist in a raft culture, in which blocks of human tissue are cultured on 

collagen sponges at the air-liquid interface. This ex vivo model of tissue culture developed 

and optimized by Grivel and Margolis is based on the work of Joseph Leighton [Grivel and 

Margolis, 2009; Leighton, 1963] and includes cultures of tonsillar, cervico- vaginal, and 

rectosigmoid tissues. These tissues serve as the first gateway for HIV-1 sexual 

transmission, preserving the specific mucosal cell phenotypes therefore important for 

understanding HIV transmission and pathogenesis. 

 

This ex vivo model has many advantages (Table 1). Upon inoculation ex vivo, human 

tissues support productive HIV infection without exogenous activation and stimulation, 

and retain tissue cytoarchitecture as well as the pattern of expression of key cell surface 

molecules relevant to HIV infection for around 2–3 weeks. Some of the tissue functions 

are preserved in ex vivo, including the ability to release a spectrum of cytokines similar to 

those released in vivo, and the ability of tissue challenged with recall antigens (tetanus or 

diphtheria toxoids) to respond by producing specific antibodies. Ex vivo tissues support 

HIV replication without the artificial stimulation that is necessary for productive HIV 

infection in isolated lymphocytes [Grivel and Margolis, 2009; Lisco et al., 2007]. On the 

other hand, the system of ex vivo tissues have some limitations in the study of infection of 

human pathogens (Table 1), mainly the difficulty of applying many modern investigative 

tools developed for isolated cells to these tissues. For example, although microscopy gives 

subcellular resolution in imaging of single cells, the problem of deep tissue penetration 

beyond a few hundred microns is only partially solved with two-photon excitation 

microscopy [Rubart, 2004]. 
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Advantages Disadvantages 
• Preservation of tissue cytoarchitecture, 

including major lymphocyte subtypes and 
follicular- dendritic cell network. 

• In vivo-like spectrum of cytokine release. 
• Continuous expression of HIV 

coreceptors over 2 week in culture. 
• Support of HIV replication without 

exogenous stimulation or activation. 
• In vivo pattern of replication: HIV 

replicates in both activated and 
nonactivated cells. 

• Other tested human viruses, bacteria and 
parasites readily infect tissues, allowing 
the study of their pathogenesis and 
interactions. 

• Viral movement in the tissue can be 
followed in real time by confocal 
microscopy. 

• Tissues start to deteriorate 
after 3 weeks in culture. 

• Difficulty in monitoring cells 
beyond the depth of confocal 
microscopy (unless cells are 
isolated for analysis). 

• The system does not reflect 
the effects of in vivo 
systemic factors. 

• Labor: multiple blocks of 
tissue are required for every 
experimental condition to 
overcome tissue 
heterogeneity. 

• Donor-to-donor variability 

 

Table 1. Advantages and disadvantages of human tissue ex vivo model [Grivel and 

Margolis, 2009]. 

 

The ex vivo tissues have proved to be useful in studies of the effect of HIV-1 copathogens 

on HIV-1 replication [Grivel et al., 2001; Lisco et al., 2007; Vanpouille et al., 2007] as 

well as in pre-clinical drug testing [Andrei et al., 2011; Vanpouille et al., 2012]. These 

tissues ex vivo have been shown to support productive infection of the following viruses as 

well: herpes virus (HHV)-6, HHV-7, HCMV (HHV-5), HSV-2 (HHV-2), vaccinia virus 

and measles virus [Condack et al., 2007; Grivel et al., 2001; Lisco et al., 2007; Vanpouille 

et al., 2007].  Moreover, this ex vivo system have also been shown to support replication 

of the bacterium Borrelia burgdorferi [Duray et al., 2005] and of the parasite Toxoplasma 

gondii [Sassi et al., 2009]. Recently, these tissues ex vivo were also used to study the role 

of vaginal lactobacilli against HIV-1 [Nahui Palomino et al., 2017]. In summary, the 

explant system of cultured human tissues ex vivo permits the study of normal and 
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pathogenic processes, including the ones caused by human infectious agents, in the context 

of tissue cytoarchitecture under controlled laboratory conditions. 

The technique of culturing human tissue ex vivo to study the pathogenesis of HIV and other 

infectious agents consists of the following steps, briefly: the tonsillar and mucosa layers 

from ecto- and endo-cervix (Figure 6) tissues are cut in blocks of 2 mm3. Cervico-vaginal 

tissue blocks are infected with viral stock. After infection, tissue blocks are washed to 

eliminate the free virions then transferred at the liquid-air interface onto Gelfoam in a 12-

well plate containing RPMI 1640 medium at 1 mL/well supplemented with 15% FBS, 

sodium pyruvate at 1 mM, non-essential amino acids at 1 mM, and antibiotics (gentamicin 

sulfate at 50 µg/mL, amphotericin B at 2.5 µg/mL). Instead, tonsillar tissue blocks are 

placed on collagen sponge gels in 6-well plate, and then tissue blocks are infected with 

viral stock, on top of each block. Cervico-vaginal and tonsillar tissue are incubated at 37°C 

for 12 days, with replacement of culture medium every 3 days. 

 
Figure 6. Preparation of cervico-vaginal and tonsillar tissues for histoculture [Introini et 

al., 2014]. 
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2. AIM OF THE RESEARCH 

 

The vaginal microbiota of healthy reproductive-age women is generally dominated by 

Lactobacillus species [Ravel et al., 2011]. The lactobacilli are considered "health 

promoting" microorganisms since they play an active role in maintaining a proper balance 

of the vaginal microbiota by preventing overgrowth of pathogenic and opportunistic 

microorganisms [O'Hanlon et al., 2013; Ronnqvist et al., 2006]. Indeed, lactobacilli play a 

key role in the prevention of numerous urogenital diseases, such as bacterial vaginosis, 

yeast infections, as well as sexually transmitted infections (STIs) [Cherpes et al., 2003; 

Martin et al., 1999; Taha et al., 1998]. 

 

Vulvovaginal candidiasis (VVC) is a common fungal infection compromising the quality 

of life of numerous women. Candida infection affects 70-75% of women at least once 

during their lives [Peters et al., 2014]. Many lactobacilli are known to inhibit the growth 

of Candida spp. but the mechanisms underlying antifungal activity are still not clearly 

understood. The development of VVC has been associated with either a low number of 

lactobacilli in the vagina or with the presence of H2O2-non-producing Lactobacillus species 

[Goffeng et al., 1997; Vitali et al., 2007]. 

Chlamydia trachomatis is the most common causative agent of bacterial STIs in the world, 

with more than 100 million new cases per year according to global estimates [Senior, 

2012]. About 70% of infections caused by this pathogen remains asymptomatic and 

thereby left untreated, representing a relevant public health problem. If not adequately 

treated, C. trachomatis infection induces pelvic inflammation, cervicitis, endometritis, and 

salpingitis which could cause infertility and ectopic pregnancy [Malhotra et al., 2013]. 

Despite the importance of a healthy vaginal microbiota in preventing genital infections, 

only a few studies have focused on the protective effects of vaginal lactobacilli towards 

chlamydial infection [Gong et al., 2014; Mastromarino et al., 2014; Rizzo et al., 2015], and 

therefore the molecular mechanisms underlying the interactions between Lactobacillus and 

C. trachomatis in the vaginal environment have not yet been elucidated. 

Moreover, the female genital tract mucosa is a portal of entry for several STI viruses, such 

as HIV. Today, women constitute more than half of all people living with HIV [CDC report 
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2017]. A Lactobacillus-dominated microbiota appears to be a biomarker for healthy 

vaginal communities, as changes in the vaginal microbiota, especially shifting away from 

Lactobacillus dominance, are associated with bacterial vaginosis and increased risk of 

acquisition of sexually transmitted infections, in particular HIV [Atashili et al., 2008; 

Gosmann et al., 2017; Mirmonsef and Spear, 2014; Nardis et al., 2013; Petrova et al., 2015; 

Taha et al., 1998]. Nevertheless, the exact mechanisms of HIV inhibition by vaginal 

lactobacilli remain to be fully clarified. 

 

In this context, the aim of this study was to investigate the potential antagonistic effect of 

vaginal lactobacilli toward Candida spp., C. trachomatis, and HIV, which are among the 

infectious agents that most significantly affect women’s health worldwide.  

In particular, from vaginal swabs of healthy premenopausal women, we isolated seventeen 

Lactobacillus strains belonging to 3 species mainly represented in the human vaginal 

microbiota: L. crispatus (BC1-BC8), L. gasseri (BC9-BC14), and L. vaginalis (BC15 -

BC17) [Parolin et al., 2015]. It was evaluated their capacity to produce antimicrobial 

compounds to individuate a possible antimicrobial mechanism of action i.e, production of 

lactic acid, hydrogen peroxide, butyrate. It was studied their fungistatic/fungicidal activity 

against numerous clinical isolates of Candida spp., and their capacity to interfere with yeast 

adhesion to HeLa cells [Parolin et al., 2015]. It has been evaluated the capacity of 

lactobacilli to inhibit the infectivity of C. trachomatis on HeLa cells [Nardini et al., 2016]. 

Moreover, we studied the metabolic profiles of lactobacilli supernatants by 1H-NMR to 

identify active metabolites and to find correlations between metabolism of lactobacilli and 

anti-Candida or anti-Chlamydia effect [Nardini et al., 2016; Parolin et al., 2015]. The 

potential role of vaginal lactobacilli in the mechanisms of transmission and pathogenesis 

of HIV was studied in ex vivo human cervico-vaginal and tonsillar tissues [Nahui Palomino 

et al., 2017]. 

 

A major potential application of this research is the identification of active Lactobacillus 

strains to propose as probiotics for prophylaxis and/or adjuvant therapy for the different 

urogenital disturbances that strongly affect women's health. 
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3. MATERIALS AND METHODS 

 

3.1 Isolation of vaginal lactobacilli and characterization of anti-Candida activity 

 

3.1.1 Isolation and taxonomic characterization of vaginal lactobacilli 

 

Fifteen pre-menopausal Caucasian women, aged between 18–45 years old, were recruited 

for the present study. The women were non-menstruating, with no symptoms of 

reproductive tract infection, and not receiving oral/local antimicrobial therapy within the 

previous 2 weeks. All volunteers provided a written informed consent in accordance with 

the Ethics Committee of the University of Bologna and the institutional review board 

approved the study (52/2014/U/Tess). Mid-vaginal secretions were self-collected by 

women with E-swabs (Copan, Brescia, Italy) and immediately processed for lactobacilli 

isolation. The specimens were coded to assure full anonymousness. 

Lactobacillus clones were isolated onto de Man, Rogosa, and Sharpe (MRS) and Brain-

Heart Infusion (BHI) agar plates (Difco, Detroit, MI), both supplemented with 0.05% L-

cysteine. Plates were incubated anaerobically for 24 h at 37°C in anaerobic jars containing 

GasPak EZ (Becton Dickinson, Sparks, MD). Colonies with different morphologies 

yielding variable rods by microscope observation were selected for glycerol stock 

preparation. Thereafter, genomic DNA was extracted from lactobacilli using DNeasy 

Blood&Tissue Kit (Qiagen, Hilden, Germany) following the protocol “Pretreatment for 

Gram-positive bacteria”. The extracted DNA was amplified with Lactobacillus genus-

specific primers Lac1 (AGC AGT AGG GAA TCT TCC A) and Lac2 (ATT YCA CCG 

CTA CAC ATG) [Walter et al., 2001]. The positive isolates were taxonomically 

characterized to the species level by sequencing the 16S ribosomal RNA (rRNA) gene. 

Briefly, the complete 16S rRNA gene (1.5 kb) was amplified with the universal primers 

27F (AGA GTT TGA TCM TGG CTC AG) and 1492R (TAC GGY TAC CTT GTT ACG 

ACT T) and then sequenced [Lane, 1991]. The obtained sequences were compared with 

the sequences available in the Ribosomal Database Project (RDP, http://rdp.cme.msu.edu/) 

in order to identify the Lactobacillus species [Cole et al., 2009]. The nucleotide sequences 

of the 16S rRNA genes of the Lactobacillus strains BC1 to BC17 have been deposited in 
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the DDBJ nucleotide sequence database (http://www.ddbj.nig.ac.jp/) under accession 

numbers AB976542 to AB976558. 

 

3.1.2 Determination of lactobacilli hydrogen peroxide production 

 

Lactobacillus strains were tested for their ability to produce H2O2 as described by 

Pendharkar et al. [Pendharkar et al., 2013] with slight modifications. Isolates were cultured 

onto MRS agar plate containing 0.25 mg/mL of 3,3’, 5,5’-tetramethylbenzidine and 0.01 

mg/mL of horseradish peroxidase in anaerobic condition for 72 h. Plates were exposed to 

air and based on the time required for the appearance of the blue color, isolates were scored 

as low (>20 min; score 1), medium (10–20 min; score 2), and high (<10 min; score 3) H2O2 

producer strains. Isolates not producing blue coloration were scored as 0. 

 

3.1.3 Preparation of lactobacilli fractions 

 

Lactobacilli were cultured in MRS or BHI broth supplemented with 0.05% L-cysteine. 

Incubation was carried out in anaerobic jars supplemented with GasPak EZ overnight at 37 

°C. The turbidity of lactobacilli cultures was measured spectrophotometrically, considering 

that an optical density (OD600) of 0.4 corresponds to a cell concentration of 108 colony 

forming unit (CFU)/mL. Lactobacilli cultures, corresponding to 5 × 108  CFU/mL, were 

centrifuged at 5,000 × g for 10 min at 4 °C. Supernatants were filtered through a 0.2 µm 

membrane filter to obtain stock of Lactobacillus-conditioned medium (CM). 

Lactobacillus-cell pellet (CP) were washed and resuspended in sterile saline containing 

0.05% L-cysteine to obtain a stock bacterial suspensions of 5 × 108  CFU/mL. 

 

3.1.4 1H-NMR analysis 

 

One mL of Lactobacillus-CM was added to 160 µL of a D2O solution of 3-(trimethylsilyl)-

propionic-2,2,3,3-d4 acid sodium salt (TSP) 6.25 mM set to pH 7.0 by means of a 100 mM 

phosphate buffer. 1H-NMR spectra were recorded at 298 K with an AVANCE III 

spectrometer (Bruker, Milan, Italy) operating at a frequency of 600.13 MHz. To avoid the 
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presence of broad signals arising from slowly tumbling molecules, a T2 filter of 400 echoes, 

separated by an echo time of 400 µs, was applied. The signals were assigned by comparing 

their chemical shift and multiplicity with Chenomx software data bank (Chenomx Inc., 

Canada, ver 8.02). To understand the correlation between the taxonomy/anti-Candida 

activity and metaboloma of lactobacilli, a Principal Component Analysis (PCA) was 

performed. The PCA algorithm calculates and sorts linear combinations of the original 

variables, so to highlight the data structure by means of a low number of orthogonal 

projections (Principal Components). The score-plot is the representation of the samples in 

the generated space and highlights the similarities and differences between the samples. 

 

3.1.5 Evaluation of fungistatic/fungicidal activities of lactobacilli supernatants 

 

All Candida strains used in the present study were isolated from routine diagnostic 

procedures at the Microbiology Laboratory of Sant’Orsola-Malpighi University Hospital 

of Bologna. In particular we used 4 isolates of C. albicans, and 5 isolates of non-C. 

albicans: C. glabrata, C. krusei, C. tropicalis, C. parapsilosis, and C. lusitaniae. Candida 

strains were grown aerobically in Sabouraud dextrose (SD) medium (Oxoid, Basingstoke, 

Hampshire, UK) at 35°C. 

The fungistatic activity of Lactobacillus-CM was determined by broth microdilution test 

in accordance with the European Committee on Antimicrobial Susceptibility Testing 

guidelines (EUCAST, http://www.eucast.org/) with slight modifications. Briefly, from 24-

h Candida cultures were prepared Candida stock suspensions at OD530 of 0.5 MacFarland 

with sterile water. Candida stock suspensions were diluted 1:10 with RPMI 1640 medium 

(EuroClone, Pero, Italy), buffered to pH 7 with 0.165 M morpholinepropanesulfonic acid 

and 2% glucose, in order to obtain a yeast suspension of 1–5 × 105 CFU/mL. Thereafter, 

each well of a flat-bottom microdilution plate was inoculated with 100 µL of yeast 

suspension, subsequently filled with 100 µL of Lactobacillus-CM, and incubated at 35°C 

for 24/48 h. A control well contained 100 µL of sterile MRS medium and 100 µL Candida 

suspension was performed as well. The results were obtained by measuring the absorbance 

at 450 nm. Anti-Candida activity of Lactobacillus-CM was determined by considering at 

least 50% of reduction in growth in comparison to the control. To determine a fungicidal 
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effect, 20 µL of samples from wells exhibiting less than 50% of growth were spotted onto 

SD agar plates and incubated at 35°C for 24/48 h. Fungicidal activity was defined as a 

reduction of at least 3 log10 from the starting inoculum [Pendharkar et al., 2013]. The 

fungistatic/fungicidal activity of metabolites (butyrate, orotate, pyroglutamate, and 

isoleucine), whose concentrations were significantly greater in the supernatant of 

lactobacilli strains with anti-Candida activity, was tested as well. 

 

3.1.6 Adhesion assays 

 

Lactobacillus adherence capacity to HeLa cells was evaluated in tubes containing sterile 

coverslips as previously reported [Mastromarino et al., 2002; Verdenelli et al., 2014] with 

slight modifications. Briefly, one mL of HeLa cell suspension, at a concentration of 5 × 

104 cells/mL, was seeded onto each glass coverslip and incubated in Dulbecco’s minimal 

essential medium (DMEM, EuroClone, Pero, Italy), supplemented with 10% foetal bovine 

serum (FBS), 1% L-glutamine, 100 IU/mL penicillin G, and 100 µg/mL streptomycin at 

37°C in 5% CO2. After 48 h, the cells were washed twice with PBS, added 900 µL of 

DMEM free antibiotics, and treated with 100 µL of Lactobacillus-CP (stock 5 × 108 

bacteria/mL). The tubes were then incubated for 1 h at 37°C. Cell monolayers were washed 

several times in PBS, fixed with May-Grünwald, and stained with Giemsa. The results were 

obtained at light-microscopy (1000×) and HeLa cells were scored according to the number 

of lactobacilli attached, chosen 200 cells randomly. Each adherence assay was conducted 

in duplicate. 

Three types of assays were performed to study the mechanisms of interference of vaginal 

Lactobacillus (CM or CP) with the adherence of Candida on HeLa cells: exclusion, 

competition, and displacement [Osset et al., 2001]. C. albicans 1 was chosen as model 

strain. C. albicans was cultured in BHI broth at 30°C for 18 h under constant shaking. 

Yeast cells were centrifuged at 5,000 × g for 10 min, washed, and resuspended in PBS to 

obtain a stock of 5 × 108 yeasts/mL. In the exclusion assay, 100 µL of Lactobacillus-CM 

or CP (from stock 5 × 108 bacteria/mL) were incubated for 1 h at 37°C on HeLa cells. 

Afterwards, 100 µL of Candida cells (stock of 5 × 108 yeasts/mL) were added and 

incubated for 1 h. In the competition assay, lactobacilli fractions and Candida were 
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inoculated simultaneously onto HeLa cells and incubated for 1 h at 37°C. In the 

displacement assay, Candida cells were inoculated onto HeLa cells for 1 h at 37°C. 

Successively, lactobacilli fractions were added and further incubated for 1 h. Yeast 

adhesion to HeLa cells was assessed by microscopy (400×) after Giemsa staining by 

counting the number of Candida cells attached to 200 randomly chosen HeLa cells. The 

results were expressed as the percentage of C. albicans adhered to each HeLa cell 

compared to the control without lactobacilli fractions (control value 100%). All 

experiments were conducted three times and in triplicate for each experimental condition. 

 

3.1.7 Histone acetylation profile analysis 

 

To study the capacity of lactobacilli to induce histone acetylation on Candida, C. albicans 

1 was chosen as model strain. Log-phase yeast cells were inoculated at an OD600 of 0.5 in 

Lactobacillus-CM or MRS broth (negative control) and incubated at 30°C for 6 h. Sodium 

butyrate (20 mM) was used as positive control; and a culture of S. aureus in MRS was used 

as a representative Gram-positive organism. Histones were extracted from yeast cultures 

as described by Knapp et al. [Knapp et al., 2007] with slight modifications. A volume 

equivalent to 20–40 OD600 units of each culture was collected and subjected to nuclei 

isolation. Nuclei were washed for 15 min with wash buffer (10 mM Tris–HCl, pH 8, 75 

mM NaCl, 30 mM Na-Butyrate, 0.5% NP-40, 1.0 mM PMSF, and 10 µg/mL each of 

protease inhibitors) in ice. Washes were repeated four times. Histones were extracted by 

incubating nuclei in H2SO4 0.4N for 1 h in ice, then precipitated overnight in acetone at -

20°C. Equal amount of histones were loaded to a 15% acrylamide gel and separated by 

SDS-PAGE, then transferred to a nitrocellulose membrane and probed with anti-acetyl 

Lysine primary antibody (Merck Millipore, Darmstadt, Germany) and peroxidase-

conjugated anti-mouse IgG secondary antibody (GE Healthcare, Milan, Italy). Peroxidase 

activity was detected by Westar XT system (Cyanagen, Bologna, Italy). Digital images and 

densitometric analyses were performed by using the GS-800 calibrated densitometer (Bio-

Rad Laboratories, Milan, Italy). For each strain, histone acetylation profile was analyzed 

in triplicate. 
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3.1.8 Statistical analysis 

 

Differences in the metabolome composition were assessed by means of a two-tailed 

unpaired Wilcoxon test, through the homonym function implemented in R computational 

software. Linear correlations between fungistatic/fungicidal activities and metabolome 

were assessed by means of ANOVA test. For the adhesion and interference assays data 

analysis were performed by using ANOVA test (GraphPad Prism version 5.02 for 

Windows, San Diego, CA). Results were expressed as mean ± Standard Error of the Mean 

(SEM). Differences were deemed significant for P values < 0.05 or highly significant for 

P values < 0.01. 

 
 
3.2 Antagonistic effect of vaginal lactobacilli toward Chlamydia trachomatis infection 

 

3.2.1 Preparation of Chlamydia elementary bodies (EBs) 

 

C. trachomatis strain GO/86, serotype D, was used in this study [Finco et al., 2011; 

Marangoni et al., 2015]. This strain was isolated from urethral swab at the Microbiology 

Laboratory of Sant’Orsola-Malpighi University Hospital of Bologna. For the Chlamydia 

EBs preparation, confluent HeLa cells were infected with Chlamydia in DMEM medium 

supplemented with cycloheximide 1 µg/mL, which block cellular macromolecular 

synthesis and thus promote the intracytoplasmic development of Chlamydia, in constant 

agitation at 640 × g for 2 h to facilitate cell penetration, and then incubated at 37°C with 

5% CO2 for 48 h [Mastromarino et al., 2014]. HeLa cells were afterward detached and 

fragmented by sonication. Samples were centrifuged at 500 × g for 10 min at 4°C, and 

supernatants, which contain EBs, were further centrifuged at 40,000 × g at 4°C for 1 h. The 

resulting pellets, containing the purified EBs, were resuspended in sucrose-phosphate-

glutamate 0.2 M, divided into small aliquots, and stored at -70°C. 
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3.2.2 C. trachomatis inhibition test 

 

Chlamydia inhibition experiments were tested using three dilutions of Lactobacillus-CM 

(1:1, 1:10, and 1:100) and three different Lactobacillus-CP concentrations (2.5 × 108, 

2.5 × 107, and 2.5 × 106 CFU/mL). All lactobacilli were cultured in MRS medium and their 

fractions were obtained as described earlier (see Materials and Methods section 3.1.3). 

Lactobacillus-CM and CP (100 µL, 10 µL, 1 µL of stock suspension) were mixed with 

5 × 103 Chlamydia EBs and diluted to 200 µL with sterile PBS. pH values were measured 

in the final volume. The same amount of Chlamydia EBs was used as control after verifying 

the lack of effects exerted by MRS medium on EBs infectivity. Mixes were incubated for 

7, 15, and 60 min at 37°C in 5% CO2 atmosphere, afterward they were centrifuged at 

20,000 × g for 10 min at 4°C. Supernatants were used to infect HeLa cells, grown to 

confluence in individual tubes containing sterile coverslips, in constant agitation at 640 × g 

for 2 h, and then incubated at 37°C with 5% CO2 for 48 h. In order to evaluate the effect of 

both pH and organic/inorganic acids against C. trachomatis infectivity, inhibition 

experiments were also carried out with lactic acid and hydrochloric acid (HCl) solutions at 

different concentrations (10 mM and 50 mM) and pH values (pH 4 and 7). The anti-

Chlamydia effect of orotic acid alone (30 µM) or in combination with lactic acid 

(10/50 mM, pH 4/7) was tested as well. Moreover, in order to address the importance of 

glucose depletion in the inhibition of Chlamydia infectivity, supernatants of L. crispatus 

BC1 and L. gasseri BC13 (dilution 1:1) were added with glucose 30 mM and tested in the 

Chlamydia inhibition experiments. 

C. trachomatis infection was evaluated by direct immunofluorescence, using a monoclonal 

antibody against the chlamydial membrane lipopolysaccharide antigen conjugated with 

fluorescein (Meridian, Cincinnati, OH) [Marangoni et al., 2015]. The results were obtained 

by counting Chlamydia inclusion-forming units (IFU) under epi-fluorescence microscope 

(Eclipse E600, Nikon, Japan). The number of IFU was counted in 30 randomly chosen 

200× microscopic fields. 
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3.2.3 Correlation of metaboloma and anti-Chlamydia activity 

 

To investigate for correlations between anti-Chlamydia activity and metabolome of 

lactobacilli, a PCA model was built on the concentration changes of the identified 

molecules (see section 3.1.4), scaled to unit variance. For each molecule, the correlation 

between the concentration change and the loading value with the component of PCA 

describing a metabolome-activity link was calculated. When the correlation was higher 

than 0.6, a statistically significant difference between groups with high activity (H) and 

low activity (L) was searched by means of a Wilcoxon test, with an accepted Bonferroni-

adjusted P value of 0.05. 

 

3.2.4, Statistical analysis 

 

All statistical analysis was performed by using R computational software, applying the 

non-parametric signed- or matched paired- Wilcoxon rank tests. 1- or 2-tailed tests were 

used as well. Differences were deemed significant for P values < 0.05. Spearman 

correlation was calculated by using GraphPad software Prism version 5.02. 

 
 
3.3 Role of vaginal lactobacilli against HIV-1 replication in human tissues ex vivo 

 

3.3.1 Lactobacillus culture conditions 

 

Fifteen Lactobacillus strains (L. crispatus BC1, BC3–BC8; L. gasseri BC9–BC14; and L. 

vaginalis BC16, BC17) were cultured overnight in modified medium at 37°C in anaerobic 

conditions. This modified medium contained 75% RPMI 1640 medium (GibcoBRL, 

Carlsbad, CA), supplemented with 15% FBS, sodium pyruvate at 1 mM, non-essential 

amino acids at 1 mM, and 25% MRS broth supplemented with 0.05% L-cysteine. 

Lactobacillus fraction (CM or CP) were obtained as described in section 3.1.3. 
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3.3.2 Ex vivo tissue cultures and HIV-1 infection 

 

Human cervico-vaginal tissue explants obtained from routine hysterectomy (National 

Disease Research Interchange, Philadelphia, PA) and tonsillar tissue (Children’s National 

Medical Center, Washington, DC) were dissected and cultured as described in Grivel and 

Margolis [Grivel and Margolis, 2009] with slight modifications. Briefly, the tonsillar and 

mucosa layers from ecto- and endo- cervix tissues were cut in blocks of 2 mm3. Eighteen 

cervico-vaginal tissue blocks were infected with 0.4 mL of viral stock HIV-1BaL (120 

ng/mL p24gag obtained from the Virology Quality Assurance Laboratory at Rush 

University, Chicago, IL) for 2.5 h at 37°C in agitation. After infection, tissue blocks were 

washed three times with PBS and transferred at the liquid-air interface onto Gelfoam (9 

blocks/well) in a 12-well plate containing RPMI 1640 medium at 1 mL/well supplemented 

with 15% FBS, sodium pyruvate at 1 mM, non-essential amino acids at 1 mM, and 

antibiotics (gentamicin sulfate at 50 µg/mL, amphotericin B at 2.5 µg/mL). Twenty-seven 

tonsillar tissue blocks (nine blocks per well in 3 mL of RPMI 1640 medium supplemented 

as above) were placed on collagen sponge gels, and tissue blocks were infected with 7.5 

µL of viral stock, on top of each block. Cervico-vaginal and tonsillar tissue were incubated 

at 37°C for 12 days, with replacement of culture medium every 3 days. 3TC (lamivudine 

at 1 µM) was used as a positive control for HIV-1 inhibition. 

 

3.3.3 Lactobacillus colonization on tonsillar explants and evaluation of tissue cell 

depletion 

 

Tonsillar tissues were colonized with fifteen vaginal Lactobacillus strains (twenty-seven 

blocks per condition) at a starting inoculum of 104 CFU/mL. At day 3 after inoculation 

with bacteria, all tissue blocks were collected and digested with collagenase IV (5 mg/mL; 

GibcoBRL) for 30 min with agitation in a Thermomixer at 900 rpm at 37ºC. Following 

digestion, tissue cells were filtered with 100 µm cell strainers (Corning) and washed with 

50 mL of PBS. Cells were then resuspended in 1 mL of PBS and stained with 1 µL of 

live/dead Fixable Viability Dye eFluor 450 (EF 450, Invitrogen) for 15 min. After 

incubation, cells were washed and diluted in staining buffer (PBS, 1% normal mouse 
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serum, 1% normal goat serum, 1 mM EDTA) and stained with anti-CD3-APC for 20 min. 

After surface staining, cells were permeabilized with the Fix&Perm Cell Fixation and Cell 

Permeabilization Kit (Invitrogen) then stained for 20 min with anti-Bcl2-PE, a 

mitochondrial anti-apoptotic antigen. Data were acquired with a Novocyte flow cytometer 

(ACEA Biosciences, CA) equipped with 405, 488, and 640 nm laser lines using 

NovoExpress version 1.2.4 software (ACEA Biosciences) and analyzed using the same 

software. 

 

3.3.4 HIV-1 infection of human tissues ex vivo treated with Lactobacillus-CM 

 

Cervico-vaginal and tonsillar tissue blocks were cultured in Lactobacillus-CM from six 

Lactobacillus strains (L. crispatus BC3, BC5; L. gasseri BC12, BC13; and L. vaginalis 

BC16, BC17). Tissue blocks were pre-incubated with Lactobacillus-CM undiluted and 

diluted 1:5 with normal medium for 2 h before HIV-1 infection. After HIV-1 infection, 

tissue cultures were kept in the same medium (undiluted or diluted 1:5) for the next 3 days 

of culture, then the medium was replaced with complete RPMI medium every 3 days, and 

the culture was kept until day 12. 

 

3.3.5 Virucidal effect 

 

Virucidal experiments were carried out by treating HIV-1 with Lactobacillus-CP or 

Lactobacillus-CM. HIV-1 viral suspensions at 400 µL were mixed with 100 µL of 

Lactobacillus-CP (stock 5 × 108 CFU/mL), corresponding to a final concentration of 108 

CFU/mL, or 100 µl of undiluted Lactobacillus-CM (corresponding to a final 1:5 dilution) 

or with 100 µL of normal medium (experimental control condition). Cultures under these 

three experimental conditions were then incubated for 60 min at 37°C and centrifuged at 

4,000 × g for 10 min at 4°C. Supernatants were used to infect cervico-vaginal tissue, as 

described above (see section 3.3.2). 
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3.3.6 Lactic acid quantification, pH measurement of Lactobacillus-CM, and 

evaluation of their effect on HIV-1 replication 

 

We quantified titers of lactate isomers D and L from overnight-cultured Lactobacillus-CM 

using a lactate quantification assay kit according to the manufacturer’s instructions 

(BioAssay system, EFDLC-100 and EFLLC-100). Isomers D (3 mM), L (23 mM), and D 

+ L (3 mM + 23 mM), corresponding to the average titers found in all undiluted 

Lactobacillus-CM, were tested for HIV-1 inhibition in human cervico-vaginal and 

lymphoid tissues. Isomers D and L at concentrations corresponding to those found in 

dilution 1:5 were also tested in lymphoid tissues. pH values in all Lactobacillus-CM, 

undiluted or diluted 1:5, were measured as well. Furthermore, in order to evaluate the effect 

of low pH on HIV-1 replication in tissues ex vivo, as measured in Lactobacillus-CM 

(undiluted average around pH 4 and diluted 1:5 up to pH 6.9), we evaluated HIV-1 

infectivity in ex vivo tissue at pH 4 and pH 6.9, buffering the medium with HCl. 

 

3.3.7 Evaluation of HIV-1 replication 

 

HIV-1 replication on tissue was evaluated by measuring the levels of p24gag in tissue culture 

medium using a dynamic immunofluorescent cytometric bead assay as described by 

Biancotto et al., [Biancotto et al., 2009]. 

 

3.3.8 Statistical analysis 

 

All statistical analyses were performed using ANOVA test GraphPad Prism version 7 

(GraphPad Prism software Inc., San Diego, CA). Results were deemed significant for p 

values < 0.05. 
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4. RESULTS 

 

4.1 Isolation of vaginal lactobacilli and characterization of anti-Candida activity 

 

4.1.1 Taxonomy of vaginal lactobacilli and production of antimicrobial compounds 

 

Seventeen Lactobacillus strains belonging to 3 species mainly represented in the human 

vaginal microbiota were isolated from vaginal swabs of 15 healthy premenopausal women. 

The Lactobacillus isolates were taxonomically identified to species level by sequencing 

the 16S rRNA gene: 8 isolates belong to L. crispatus (BC1-BC8), 6 isolates to L. gasseri 

(BC9-BC14), and 3 isolates to L. vaginalis (BC15-BC17) (Table 2). 

 

 

 

Table 2. Characterization of the vaginal lactobacilli: taxonomy, pH of cultural 

supernatants, and production of antimicrobial compounds. H2O2 production was scored 

as low (>20 min; score 1), medium (10–20 min; score 2), and high (<10 min; score 3). 

Lactate and butyrate were measured in Lactobacillus-CM by 1H-NMR analysis. *nd: not 

determined. 

 

Species Strain pH H2O2 
(score) 

Lactate 
(mM) 

Butyrate 
(mM) 

L. crispatus BC1 3.93 3 2.91 3.48 x 10-1  
L. crispatus BC2 4.13 3 6.83 0.00 
L. crispatus BC3 4.21 1 9.45 0.00 
L. crispatus BC4 3.87 1 3.32 3.54 x 10-1 
L. crispatus BC5 3.70 2 5.10 1.25 x 10-1 
L. crispatus BC6 4.03 2 7.87 8.33 x 10-1 
L. crispatus BC7 3.91 1 1.42 1.35 x 10-2 
L. crispatus BC8 4.08 1 3.05 4.64 x 10-1 
L. gasseri BC9 3.90 2 4.75 0.00 
L. gasseri BC10 4.54 3 9.40 0.00 
L. gasseri BC11 4.20 3 1.46 0.00 
L. gasseri BC12 4.17 3 9.47 0.00 
L. gasseri BC13 3.87 1 1.62 1.84 x 10-2 
L. gasseri BC14 4.74 nd* 3.63 1.00 x 10-2 
L. vaginalis BC15 3.95 1 4.74 6.42 x 10-1 
L. vaginalis BC16 4.59 1 2.44 0.00 
L. vaginalis BC17 4.28 3 2.34 3.27 x 10-1 
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To characterize the antimicrobial properties of the vaginal lactobacilli isolated in this study, 

we measured the pH of Lactobacillus-CM, production of H2O2, lactate, and butyrate (Table 

2). The pH of the lactobacilli supernatants was in the range 3.7–4.7, showing the ability of 

all lactobacilli strains to maintain an acidic environment. H2O2 was produced by the totality 

of the strains. The levels of H2O2 production did not seem related to a particular species. 

The strongest H2O2-producers (score 3) were L. crispatus (BC1, BC2), L. gasseri (BC10-

BC12), and L. vaginalis BC17. Lactobacillus gasseri BC14 was not tested for H2O2 

production since its incapacity of growing on MRS agar plates and in BHI agar plates 

tetramethylbenzidine and horseradish peroxidase precipitated as crystals. Lactate was 

produced by all isolates at concentrations ranging from 1.42 to 47.4 mM. The highest 

capacity to produce lactate was showed by L. vaginalis species, in particular L. vaginalis 

BC15. Butyrate was produced by 9 out of 17 lactobacilli at concentrations ranging from 

1.00 x 10-2 to 8.33 x 10-1 mM. The highest levels of this metabolite were found in the 

supernatants of L. crispatus BC6 and L. vaginalis BC15. Production of butyrate appeared 

to be negligible in L. gasseri species and variable in the other two species. 

 

4.1.2 Fungistatic and fungicidal activities of vaginal lactobacilli 

 

The fungistatic and fungicidal activities of Lactobacillus-conditioned medium (CM) were 

evaluated against 4 clinical isolates of C. albicans and 5 species different than C. albicans 

(C. tropicalis, C. krusei, C. parapsilosis, C. glabrata, and C. lusitaniae) (Figure 7). In 

general, Lactobacillus strains were more active toward C. albicans isolates. On the other 

hand, none of the Lactobacillus strains showed activity against C. krusei and C. 

parapsilosis. The strains that showed the broadest spectrum of anti-Candida activity were 

L. crispatus (BC1, BC4, BC5) and L. vaginalis BC15, since they exerted fungicidal activity 

against all strains of C. albicans and C. lusitaniae. In addition, L. crispatus BC1 and L. 

vaginalis BC15 exhibited fungistatic activity towards C. tropicalis and C. glabrata, 

showing the broadest anti-Candida profile. Lactobacillus crispatus BC4 and BC5 were 

fungistatic towards eighter C. tropicalis or C. glabrata. A good spectrum of activity was 

also shown by L. crispatus BC7 that was fungicidal for all C. albicans isolates and 

fungistatic for C. tropicalis and C. glabrata. Among the remaining lactobacilli, exhibiting 
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an intermediate profile of antifungal activity, the most interesting were L. crispatus BC3 

and BC6 (fungicidal against 3 species of C. albicans and C. lusitaniae), and L. crispatus 

BC2 (fungicidal against 2 species of C. albicans and C. lusitaniae). The less active strains 

were L. gasseri (BC10, BC11, BC14) and L. vaginalis BC16. Lactobacillus vaginalis 

BC16 exerted a fungistatic activity only towards C. albicans 1 while L. gasseri BC14 was 

fungistatic for C. albicans 1 and C. glabrata. Lactobacillus gasseri BC10 and BC11 

showed no fungistatic/fungicidal activity towards any of Candida isolates. 

 

In summary, the anti-Candida activity of Lactobacillus-CM was strongly associated with 

L. crispatus spp. being highly or moderately active against Candida. Conversely, poor anti-

yeast activity was exhibited by L. gasseri spp. Notably, L. vaginalis spp. showed extremely 

variable profiles of antifungal activity, comprising one highly active strain, one with an 

intermediate spectrum, and one poorly active. 

 



Chapter 4: Results 

	 46	

 
Figure 7. Fungistatic/fungicidal activity of Lactobacillus strains against Candida 

isolates. The fungistatic activity of Lactobacillus-CM was determined by broth 

microdilution test (EUCAST, http://www.eucast.org/). Fungistatic activity of 

Lactobacillus-CM was determined by considering at least 50% of reduction in growth 

compared to the control. To determine a fungicidal effect, samples exhibiting less than 

50% of growth were spotted onto SD agar plates. Fungicidal activity was defined as a 

reduction of at least 3 log10 from the starting inoculum. Fungicidal (black cells), fungistatic 

(grey cells), and no anti-fungal activity (white cells). 
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4.1.3 Lactobacilli metabolome correlates with taxonomy and fungistatic/fungicidal 

activity 

 

Lactobacillus-CM of each lactobacilli strain was analyzed by 1H-NMR. We identified 40 

molecules mainly belonging to the families of aminoacids, organic acids monosaccharides, 

ketones, and alcohols (Table 3). 
 

Strain 

Molecule 

2-
Hydro
xybuty
rate 

Leuc
ine 

Isole
ucin
e 

Vali
ne 

Ethan
ol 

Propyl
ene 
glycol 

Alanin
e 

Valera
te 

Acetat
e 

Methi
onine 

Acetoi
n 

Aceto
ne 

Pyru
vate 

Sarc
osin
e 

Aspart
ate 

N.N-
dimet
hylgly
cine 

Creati
ne 

Creati
nine 

Cholin
e 

sn-
glycer
o-3-
phosp
hochol
ine 

BC1 -0.66 0.86 0.41 0.55 0.08 0.01 1.01 -0.09 -29.21 0.12 0.03 0.64 0.90 0.15 -0.02 0.00 -0.19 -0.30 0.01 -0.20 
BC2 -0.37 1.20 0.38 0.51 0.05 0.02 1.00 -0.07 -23.14 0.16 0.02 0.46 0.70 0.15 -0.01 0.00 -0.25 -0.29 0.02 -0.18 
BC3 1.53 3.44 1.10 0.89 0.47 -0.01 0.83 -0.20 -17.86 0.22 0.12 0.03 0.77 0.11 -0.01 0.09 -0.35 -0.48 -0.01 -0.20 
BC4 -0.72 0.57 0.23 0.35 0.15 0.00 0.61 0.10 -27.97 0.20 0.01 0.42 0.17 0.10 -0.03 0.00 -0.30 -0.33 0.04 -0.22 
BC5 -0.27 1.28 0.24 0.33 0.00 0.01 0.65 0.12 -23.89 0.20 0.02 0.33 0.33 0.10 -0.03 0.00 -0.34 -0.37 0.04 -0.15 
BC6 0.15 0.94 0.23 0.26 -0.02 0.03 0.03 0.42 -26.06 0.16 -0.01 0.01 0.31 0.12 -0.02 -0.01 -0.36 -0.42 -0.01 -0.18 
BC7 1.31 3.40 0.74 0.63 0.49 0.00 1.00 -0.20 -32.95 0.07 0.09 1.80 0.15 0.08 -0.03 0.00 -0.31 -0.46 0.04 -0.17 
BC8 2.10 3.35 0.91 0.84 0.21 0.03 0.40 0.48 -30.98 0.24 0.02 0.00 0.12 0.14 -0.03 0.00 -0.33 -0.40 -0.01 -0.22 
BC9 -0.92 0.66 0.34 0.55 0.51 0.01 1.30 -0.27 -36.67 0.20 1.98 2.95 0.17 0.16 -0.02 0.00 -0.16 -0.35 0.03 -0.23 
BC10 -0.78 0.74 0.52 0.57 0.13 0.02 0.90 0.04 -22.91 0.26 0.00 0.36 0.25 0.13 0.00 0.00 0.30 -0.08 0.00 -0.14 
BC11 -0.48 1.34 0.63 0.69 0.01 0.02 0.86 0.06 -24.80 0.27 0.02 0.41 0.40 0.14 0.01 0.00 -0.36 -0.36 0.01 -0.21 
BC12 -0.46 1.35 0.77 0.83 0.07 0.01 1.02 0.13 -32.12 0.28 0.06 0.84 0.42 0.14 -0.02 0.00 -0.34 -0.34 0.01 -0.24 
BC13 -0.47 1.48 0.58 0.89 0.16 0.01 1.56 0.18 -30.40 0.32 0.01 0.53 0.19 0.14 -0.03 0.12 -0.27 -0.31 0.05 -0.20 
BC15 0.96 0.50 0.43 0.07 10.10 0.14 -0.18 0.19 -5.22 -0.14 0.00 -0.06 0.29 0.02 0.02 0.04 -0.23 -0.37 -0.16 -0.18 
BC16 1.67 1.96 0.83 0.69 36.18 0.33 1.33 0.07 -11.55 -0.06 -0.01 0.01 0.25 0.03 0.03 0.08 0.13 -0.03 -0.07 -0.21 
BC17 2.00 2.93 0.95 0.76 43.74 0.22 0.31 0.46 -13.63 0.07 -0.01 -0.01 0.14 0.08 0.00 0.00 0.11 -0.12 -0.02 -0.15 

Strain 

Molecule 

Fructo
se 

Pyrogl
utama
te 

1,3-
dihy
drox
yace
tone 

Lactos
e4.45 

Glucos
e 
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se Uracil 

2-
deoxy
uridin
e 

Uridin
e 

Adeno
sine 

Inosin
e 

Orot
ate 

N-
Acetyl
tyrosi
ne 

Tyrosi
ne 
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ophan 

Phenyl
alanin
e 

Cytidi
ne 

Forma
te 

Lactat
e 

Buty
rate 

BC1 -0.13 -0.16 1.11 0.60 -28.54 0.14 -0.09 -0.07 -0.01 0.15 -0.11 0.03 -0.47 0.03 -0.15 -0.43 -0.06 -0.16 2.91 0.35 
BC2 -0.07 0.25 0.79 0.73 -20.89 0.12 -0.06 -0.06 -0.02 0.11 -0.09 0.03 -0.05 0.41 -0.17 -0.04 -0.06 -0.17 6.83 0.00 
BC3 -0.01 -0.49 0.96 0.34 -18.98 0.11 -0.05 -0.06 -0.01 0.07 -0.06 0.01 -0.68 0.40 -0.65 0.13 -0.06 -0.09 9.45 0.00 
BC4 -0.02 -0.20 0.79 0.79 -24.02 0.08 -0.06 -0.05 -0.01 0.08 -0.09 0.03 -0.11 0.47 -0.02 0.17 -0.07 -0.17 3.32 0.35 
BC5 -0.11 -0.43 0.76 0.76 -19.47 0.06 -0.05 -0.05 -0.01 0.05 -0.08 0.02 -0.54 0.11 -0.07 0.16 -0.06 -0.16 5.10 0.13 
BC6 0.11 -0.63 0.56 0.27 -19.16 0.05 -0.07 -0.04 0.01 0.05 -0.06 0.02 -0.07 0.13 -0.20 0.13 -0.05 -0.16 7.87 0.83 
BC7 0.13 -0.17 0.79 0.60 -23.64 0.09 -0.04 -0.06 -0.01 0.06 -0.09 0.02 -0.04 0.24 -0.12 -0.04 -0.07 -0.17 1.42 0.01 
BC8 -0.02 -0.71 0.91 -2.11 -19.66 0.06 -0.09 -0.05 -0.01 0.05 -0.06 0.02 -0.13 0.23 -0.30 0.03 -0.05 -0.17 3.05 0.46 
BC9 0.13 1.28 1.28 1.20 -26.73 0.00 -0.06 -0.03 -0.03 0.04 -0.04 0.01 -0.41 0.03 -0.18 -0.29 -0.06 -0.14 4.75 0.00 
BC10 -0.02 -0.27 0.92 0.44 -6.11 0.04 0.05 -0.04 -0.02 0.01 -0.05 0.01 -0.17 0.63 -0.21 0.75 -0.04 -0.19 9.40 0.00 
BC11 0.04 -0.23 1.39 0.52 -18.10 0.04 -0.01 -0.06 -0.03 0.03 -0.05 0.00 -0.21 0.62 -0.25 0.64 -0.06 -0.16 14.60 0.00 
BC12 -0.02 -0.71 1.19 0.50 -21.40 0.06 0.04 -0.08 -0.02 0.06 -0.02 0.00 -0.15 0.53 -0.24 0.52 -0.07 -0.16 9.47 0.00 
BC13 -0.03 -0.82 1.92 1.16 -28.83 0.01 -0.10 -0.04 -0.04 -0.01 -0.01 0.01 -0.59 0.70 -0.10 -0.18 -0.07 -0.13 1.62 0.02 
BC15 -0.07 -0.60 0.37 -1.09 -26.41 0.03 -0.09 0.03 -0.03 0.00 -0.09 0.03 0.08 -0.22 -0.09 -1.30 -0.05 -0.06 47.40 0.64 
BC16 -0.14 0.05 0.14 -0.30 -16.41 0.05 -0.08 -0.01 -0.01 -0.01 -0.04 0.00 -0.15 0.45 -0.60 -0.10 -0.03 0.15 24.40 0.00 
BC17 -0.12 0.11 0.39 -2.08 -20.81 0.03 -0.09 -0.02 -0.02 -0.02 -0.07 0.01 -0.57 0.10 -0.28 0.18 -0.03 -0.09 23.40 0.33 

 
Table 3. Metabolites identified by 1H-NMR in Lactobacillus-CM.	Values are expressed 

as mmol/l. L. gasseri BC14 was not included in the metabolomics analysis because the 

metabolic profile of BHI supernatant could not be compared with the metabolic profiles of 

MRS supernatants.	

 

On the entire set of metabolites a Principal Component Analysis (PCA) and the distribution 

of Lactobacillus strains in relation to the pool of metabolites was performed (Figure 8). 

This multivariate analysis showed two interesting correlations: (i) metabolome versus 
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taxonomy (PC1, expl. var 28%) and (ii) metabolome versus fungistatic/fungicidal activity 

(PC2, expl. var 17.4%). Figure 8A shows the distribution of the three different species of 

lactobacilli (L. crispatus, L. gasseri, and L. vaginalis) in relation to the metaboloma. These 

correlations were best visualized by means of box blots representing the distribution of 

Lactobacillus species (Figure 8B). Figure 8C shows the relation between 

fungistatic/fungicidal activity and metabolome. In general, metabolic profiles varied 

according to the Lactobacillus taxonomy. In particular, metabolome of L. vaginalis 

significantly differed from those of L. crispatus and L. gasseri (p < 0.05). The highest 

metabolic heterogeneity was observed within L. crispatus, as demonstrated by the width of 

the corresponding boxplot (Figure 8B). Moreover, the fungistatic/fungicidal activities of 

lactobacilli were related to their metabolome. Strains with different anti-Candida activity 

were clearly separated in the vertical direction: the most active strains occupied the lower 

positions while the less active strains were placed in the upper areas of the two-dimensional 

space represented by the biplot (Figure 8C). 

 

 
Figure 8. Lactobacilli metabolome correlation with taxonomy and fungistatic/fungicidal 

activity. (A) Biplot of a PCA performed on the total metabolites identified by 1H-NMR in 

Lactobacillus-CM. Expl. Var, explained variance. (B) Box plots representing the 

distribution of Lactobacillus species in relation to the metabolome. Lines within the boxes 
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indicate the median values of the samples groups corresponding to L. crispatus, L. gasseri 

and L. vaginalis species. (C) Box plots representing the distribution of 

fungistatic/fungicidal activity towards C. albicans and C. non-albicans in relation to the 

metabolome. Lines within the boxes indicate the median values of the samples groups 

corresponding to the different activity scores (0-4 for C. albicans; 0-5 for C. non-albicans). 

Each box represents the interquartile range (25–75th percentile). The bottom and top bars 

indicate the 10th and 90th percentiles, respectively. Outlier values are indicated (BC10 

and BC15). 

 

Next, we searched which metabolites varied in relation to antifungal activity through 

Wilcoxon univariate statistical test. We identified 4 metabolites (butyrate, orotate, 

pyroglutamate, and isoleucine) whose concentrations significantly increased (p < 0.05) in 

Lactobacillus-CM of active strains. Fungistatic/fungicidal activities of these compounds 

(alone or in combination) were evaluated, but no anti-Candida activity was observed. 

However, we cannot exclude a synergistic action of these metabolites in the more complex 

cultural medium where other bacterial molecules may act as enhancers. 

 

4.1.4 Vaginal lactobacilli interfere with C. albicans adhesion to HeLa cells 

 

The adhesion of vaginal lactobacilli to epithelial tissue represents the first defense barrier 

to prevent undesirable microbial colonization [Donnarumma et al., 2014; Rizzo et al., 

2013; Verdenelli et al., 2014]. Thus, all Lactobacillus strains were examined for their 

adherence ability to HeLa cells (Figure 9). Adherence capacity varied among the 

lactobacilli analyzed, in a range between 0.07 ± 0.03 and 17.68 ± 0.78 (mean ± SEM) 

bacteria/cell. In particular, L. crispatus (BC1, BC3) and L. gasseri BC8 were the most 

adhesive strains (> 10 bacteria/cell). Lactobacillus crispatus BC2 and L. vaginalis BC15 

showed an intermediate adhesiveness (2–10 bacteria/cell). The remaining strains showed 

low adherence capacity (< 2 bacteria/cell). These data demonstrate that the adhesive 

properties are strain-specific rather than species-specific, varying considerably between 

strains of the same species. 
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Figure 9. Vaginal lactobacilli adhesion capacity to HeLa cells. Confluent HeLa cells were 

treated with Lactobacillus-CP at a concentration 5 × 108 bacteria/mL for 1 h at 37°C. Cell 

monolayers were washed, fixed with May-Grünwald, and stained with Giemsa. The results 

were obtained at light-microscopy (1000×) and HeLa cells were scored according to the 

number of lactobacilli attached, chosen 200 cells randomly. The results were expressed as 

average number of adherent bacteria per cell. Error bars represent SEM. 

 

To verify the antagonist effect of lactobacilli toward C. albicans, the influence of 

Lactobacillus (CM or CP) on the adhesion capacity of the yeast to HeLa cells was 

investigated (Figure 10). Three mechanisms of adhesion interference were examined: 

exclusion (Figure 10A), competition (Figure 10B), and displacement (Figure 10C). Ten 

lactobacilli strains out of seventeen: L. crispatus (BC1, BC2, BC5, BC7, BC8), L. gasseri 

(BC9, BC10, BC11, BC12), and L. vaginalis BC16 significantly reduced the adhesion of 

C. albicans through all three mechanisms. The inhibitory effect was exerted in some cases 

by Lactobacillus-CP and in other cases by Lactobacillus-CM. Particularly, L. crispatus 

BC2, L. gasseri BC10, and L. gasseri BC11 interfered Candida adhesion by both 

Lactobacillus-CP and CM, being these strains the most effective in terms of interference 

on pathogen adhesion. Only three strains did not exercise any effect on C. albicans 

adhesion: L. gasseri BC13, L. gasseri BC14, and L. vaginalis BC17. The remaining strains 

showed an intermediate effect on yeast adhesion through one or two of these mechanisms. 
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Figure 10. Interference of C. albicans adhesion to HeLa cells by vaginal lactobacilli. 

Exclusion (A), competition (B), and displacement (C). The results were expressed as 

percentages of adherent yeasts per HeLa cell and compared to the control (free of 

lactobacilli). Yeast adhesion to HeLa cells was assessed by microscopy (400×) after 

Giemsa staining by counting the number of Candida cells attached to 200 randomly chosen 

HeLa cells. The control value was taken as 100% of adhesion (black bars). Green and grey 

bars show the adhesion of C. albicans in presence of Lactobacillus-CP and CM, 

respectively. Statistical significance was determined at p < 0.05*, p < 0.01**, and p < 

0.001***. Error bars represent SEM. 
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4.1.5 Lactobacilli effects on C. albicans histone acetylation 

 

Both the yeast histone deacetylase (HDAC) inhibition and the consequent histone hyper-

acetylation, represent a novel mechanism by which Candida growth and adhesion to the 

host epithelium can be reduced [Simonetti et al., 2007; Smith, 2002]. Thus, we evaluated 

whether the anti-Candida activity and Candida adhesion interference exerted by the 

lactobacilli could be associated to this mechanism. Acetylation profiles of H2/H3 and H4 

histones of C. albicans 1 were evaluated for all Lactobacillus-CM, except for L. gasseri 

BC14. We attributed hyper-acetylating ability of H2/H3 or H4 histones at least equal to 

those induced by sodium butyrate, used as positive control (Table 4). The majority of 

lactobacilli induced histone hyper-acetylation. Histones H2/H3 were hyper-acetylated by 

12 strains and histone H4 by 11 strains. Both L. gasseri BC13 and L. vaginalis BC17 were 

the only strains that did not induce histone acetylation. Interestingly, these lactobacilli 

showed no fungicidal activity towards C. albicans 1 and also any inhibitory effect on the 

adhesion of the pathogen. These data suggest that the complete lack of inhibition of 

HDACs could compromise antifungal activity of lactobacilli. 
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Stimulus 
Histone 

acetylation 
H2/H3 H4 

NaBu + + 
S. aureus - - 
L. crispatus BC1 - + 
L. crispatus BC2 + - 
L. crispatus BC3 + - 
L. crispatus BC4 + + 
L. crispatus BC5 + - 
L. crispatus BC6 + + 
L. crispatus BC7 + + 
L. crispatus BC8 + + 
L. gasseri BC9 + + 
L. gasseri BC10 + + 
L. gasseri BC11 - + 
L. gasseri BC12 + + 
L. gasseri BC13 - - 
L. vaginalis BC15 + + 
L. vaginalis BC16 + + 
L. vaginalis BC17 - - 

 

Table 4. Acetylation of C. albicans histones H2/H3 and H4 by Lactobacillus-CM. Yeast 

cells were inoculated in Lactobacillus-CM and incubated at 30°C for 6 h. Histones were 

extracted from yeast cultures and histone acetylation profile was analyzed by western blot. 

Sodium butyrate (NaBu, 20 mM) was used as a positive control. (+) Acetylation ³ NaBu. 

(-) Acetylation < NaBu. 
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4.2 Antagonistic effect of vaginal lactobacilli toward C. trachomatis infection 
 

4.2.1 Effects of Lactobacillus-CM on C. trachomatis infectivity 

 

To investigate the potential antagonist role of vaginal lactobacilli against C. trachomatis, 

we evaluated the ability of seventeen Lactobacillus strains to abolish infectivity of 

Chlamydia EBs, before they interact with cellular host receptors. 

Three different dilutions (1:1, 1:10, 1:100) of Lactobacillus-CM were tested at three 

different time points (7, 15, 60 min) (Figure 11). After the challenge with Lactobacillus-

CM, the capacity of C. trachomatis EBs to infect HeLa cells was assessed by 

immunofluorescence. 

At the highest supernatant concentration (dilution 1:1), the majority of Lactobacillus 

strains significantly reduced C. trachomatis EB infectivity on HeLa cells. Ten 

Lactobacillus strains: L. crispatus (BC1-BC8), L. gasseri BC9, and L. vaginalis BC15 

completely abolished the infectivity of Chlamydia EBs at any time point. The supernatants 

of five Lactobacillus strains: L. gasseri (BC11-BC14) and L. vaginalis BC16 decreased C. 

trachomatis infectivity at any contact time, inhibiting completely after a long-term 

exposure (60 min). Lactobacillus vaginalis BC17 showed a moderate anti-Chlamydia 

activity at short contact time (7 min) and L. gasseri BC10 did not exert any inhibitory 

activity (Figure 11A). Supernatants of L. crispatus (BC2, BC6, BC7) diluted 1:10 were 

still capable to reduce significantly C. trachomatis infectivity at all three time points. 

Lactobacillus crispatus (BC1, BC3-BC5, BC8), L. gasseri (BC9, BC11-BC13), and L. 

vaginalis (BC16, BC17) retained the anti-Chlamydia activity at short time points (7 and/or 

15 min). Lactobacillus gasseri (BC10, BC14) and L. vaginalis BC15 did not alter 

Chlamydia EBs infectivity (Figure 11B). At the lowest concentration (dilution 1:100), 

eleven Lactobacillus strains: L. crispatus (BC2-BC6, BC8), L. gasseri (BC9, BC11, 

BC13), and L. vaginalis (BC16, BC17) decreased C. trachomatis infectivity when applied 

for short contact times, while none of the Lactobacillus strains were effective after 60 

minutes of exposure. L. crispatus (BC1, BC7) and L. gasseri BC12 supernatants did not 

exert any inhibitory activity against C. trachomatis EBs (Figure 11C). 
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In general, L. crispatus supernatants were the most active strains in counteracting C. 

trachomatis infectivity, as all of them abrogated Chlamydia inclusions at the highest 

concentration (1:1), and retained their effect at the intermediate (1:10) and lowest (1:100) 

concentrations, especially L. crispatus BC6 and BC8 strains. Six strains (BC2-BC6, BC8) 

out of eight belonging to L. crispatus species maintained a good activity even at 1:100 

concentrations; indeed, they caused a significant reduction of Chlamydia infectivity for at 

least one time point. Among L. gasseri and L. vaginalis strains, heterogeneous activity 

profiles have been found, especially at the highest concentration: L. gasseri BC9 and L. 

vaginalis (BC15, BC16) supernatants were very effective in C. trachomatis inhibition, in 

contrast to L. gasseri BC10 and L. vaginalis BC17 which showed no Chlamydia inhibition. 

 

The inhibitory activity of lactobacilli supernatants towards C. trachomatis was strictly 

concentration-dependent, being fifteen Lactobacillus-CM (out of seventeen) effective in 

reducing EBs infectivity at the highest concentration, whereas only eleven retained a 

certain efficacy after 1:100 dilution. Notably, at the highest concentration, lactobacilli 

culture supernatants were found to have pH values comprised in the range 3.71-5.28 (pH 

mean value 4.19±0.42). On the contrary, diluted lactobacilli supernatants showed pH 

values, in the range 4.3-7.15 (pH mean value 5.84±0.86) for the dilution 1:10, and in the 

range 6.76-7.31 (pH mean value 7.08±0.15) for the dilution 1:100. This finding indicated 

a strict link between acidity and the ability to inactivate Chlamydia EBs. Indeed, pH values 

of culture supernatants were positively correlated with Chlamydia IFU/field median 

values, showing a Spearman coefficient of 0.7486 (two-tailed p = 9.7357×10-29). Moreover, 

both at the intermediate and lower concentration Lactobacillus-CM exhibited higher 

efficacy when applied for short contact times (7 and/or 15 min). 
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Figure 11. Effect of Lactobacillus-CM on C. trachomatis infectivity. Experiments were 

performed with different dilutions of Lactobacillus-CM: 1:1 (A), 1:10 (B) and 1:100 (C), 

and different time points: 7 minutes (white bars), 15 minutes (grey bars), and 60 minutes 

(black bars). Chlamydia trachomatis infectivity was expressed in terms of percentage of 

inclusions forming units (IFU)/field compared to control. The results were expressed in 

percentage compared with control, taken as 100% (dotted bars). Bars represent median 

values and error bars represent median absolute deviations. Statistical significance was 

calculated vs control. * p < 0.05. 
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4.2.2 Effects of Lactobacillus-CP on C. trachomatis infectivity 

 

Similarly to supernatants, Lactobacillus-cell pellets (CP) were tested at three different 

concentrations (2.5×108, 2.5×107, and 2.5×106 CFU/mL) and time points (7, 15, 60 min) 

(Figure 12). 

At the concentration of 2.5×108 CFU/mL, five Lactobacillus strains: L. crispatus (BC1, 

BC3-BC5) and L. gasseri BC13 strongly reduced C. trachomatis infectivity at any time 

point. At short contact times (7 and/or 15 min) a significant inhibitory activity was 

observed for ten lactobacilli: L. crispatus (BC6-BC8), L. gasseri (BC9-BC12), and L. 

vaginalis (BC15-BC17). Lactobacillus crispatus BC2 and L. gasseri BC14 cells did not 

affect C. trachomatis EBs infectivity (Figure 12A). At the intermediate concentration of 

Lactobacillus-CP (2.5×107 CFU/mL), only L. crispatus BC3 retained a strong inhibitory 

activity at any time point. Lactobacillus crispatus (BC1, BC2, BC4, BC6, BC8), L. gasseri 

(BC9, BC11, BC13), and L. vaginalis BC15 significantly reduced C. trachomatis 

infectivity at short exposure times, while L. crispatus BC7 showed activity after 60 minutes 

of contact. No inhibitory effect was exerted by L. crispatus BC5, L. gasseri (BC10, BC12, 

BC14), and L. vaginalis (BC16, BC17) (Figure 12B). At the concentration of 2.5×106 

CFU/mL, L. crispatus BC3 cells were still able to inhibit C. trachomatis infectivity at all 

contact times, and L. crispatus (BC1, BC2, BC4-BC8) and L. gasseri (BC9, BC13) were 

effective at short time points. Cells from L. gasseri (BC10-BC12, BC14) and L. vaginalis 

(BC15-BC17) did not show any inhibitory effect (Figure 12C). 

 

In analogy with the results obtained using the lactobacilli supernatants, L. crispatus cells 

were the most effective in reducing C. trachomatis infectivity, exhibiting good inhibitory 

skills at the concentration of 2.5×108 CFU/mL, and being almost all active after dilution 

for at least one time point. L. gasseri and L. vaginalis cell pellets showed a more 

concentration-dependent activity, since their dilution caused the loss of Chlamydia 

inhibition for four L. gasseri strains (out of six) and for all L. vaginalis strains. Moreover, 

the challenge experiments with lactobacilli cells confirmed the major efficacy for short 

contact times (7 and/or 15 min), independently of the cell concentration. 
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Figure 12. Effect of Lactobacillus-CP on C. trachomatis infectivity. Experiments were 

performed at different concentrations of cell pellets: 2.5×108 CFU/mL (A), 2.5×107 

CFU/mL (B), and 2.5×106 CFU/mL (C), and different time points: 7 minutes (white 

bars), 15 minutes (grey bars) and 60 minutes (black bars). Chlamydia infectivity was 

evaluated as number of IFU/microscopic field. The results were expressed in percentage 

compared with control, taken as 100% (dotted bars). Bars represent median values, error 

bars represent median absolute deviations. Statistical significance was calculated vs 

control. * p < 0.05 
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4.2.3 C. trachomatis inhibition by lactic acid and hydrochloric acid 

 

The effect of lactic acid on C. trachomatis infectivity was evaluated after challenge of 

Chlamydia EBs for 7, 15, and 60 min. Two concentrations of lactic acid (10 mM, 50 mM), 

corresponding to the mean and higher titer registered by 1H-NMR in Lactobacillus-CM 

(Table 3), were tested. Lactic acid solutions were buffered at two pH values (pH 4, pH 7), 

corresponding to the pH range measured in Lactobacillus-CM. The effect of HCl on C. 

trachomatis infectivity was evaluated in the same experimental conditions to compare the 

effects of lactic acid with an inorganic acid (Figure 13). 

At pH 4, lactic acid was able to strongly inhibit EBs infectivity, both at 10 and 50 mM, and 

for all exposure times. In contrast, lactic acid lost its chlamydiacidal activity when buffered 

at pH 7, independently of contact time (Figure 13A). HCl did not interfere with Chlamydia 

infectivity, both at 10 mM or 50 mM, and at any pH value (Figure 13B). These results 

indicate that the presence of a high concentration of H+ ions is essential but not sufficient 

for the inhibition of Chlamydia EBs. 

 

  
Figure 13. Effect of Lactic/HCl acid on Chlamydia infectivity. Chlamydia infectivity was 

evaluated after challenging with lactic (A) or HCl (B) acid at different concentrations (10 
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mM, 50 mM), pH values (4, 7), and time points: 7 min (white bars), 15 min (grey bars), 

and 60 min (black bars). Infectivity was evaluated as number of Chlamydia 

IFU/microscopic field. The results were expressed in percentage compared with control 

(100%, dotted bars). Bars represent median values, error bars represent median absolute 

deviations. Statistical significance was calculated vs control. * p < 0.05. 

 

4.2.4 Ranking of lactobacilli in relation to anti-Chlamydia activity 

 

With the aim to delineate a ranking of Lactobacillus strains on the basis of their capability 

to counteract Chlamydia infectivity, we approached a statistical analysis on the entire set 

of median values, considering any concentration and time point. As a first step, we 

wondered if Lactobacillus-CP and CM fractions were equally effective in reducing 

Chlamydia infectivity. We firstly compared all median data collected from Chlamydia EBs 

pre-incubated with CP fractions with the data of untreated EBs, by means of a non-

parametric statistical test: the infectivity of Chlamydia EBs pre-incubated with 

Lactobacillus-CP was not significantly different from the infectivity of untreated EBs (p = 

0.4245, 1-tailed Wilcoxon signed rank test). Similarly, we compared median data obtained 

with Chlamydia EBs pre-incubated with Lactobacillus-CM fractions to data of untreated 

EBs, and we ascertained that pre-incubation of EBs with CM significantly reduced 

Chlamydia infectivity (p = 0.0384). Indeed, comparing data obtained with CP-treated EBs 

to those obtained with CM-treated EBs we confirmed that anti-Chlamydia effect of 

Lactobacillus-CM were significantly different from that of the respective CP (p = 0.0043). 

Being Lactobacillus-CM the fraction capable of reducing Chlamydia infectivity, we 

classified lactobacilli only on the basis of the anti-Chlamydia activity. For each 

Lactobacillus strain, CM efficacy has been expressed as the odds between data collected 

with CM-treated EBs and untreated EBs (control, taken as 100%), by means of the 1-tailed 

Wilcoxon signed rank p-values. A low p-value indicates that medians obtained with 

Chlamydia EBs pre-incubated with Lactobacillus-CM are different from the control. 

Conversely, a high p-value denotes that medians obtained with Chlamydia EBs pre-treated 

with Lactobacillus-CM are similar to the control. Thus, we classified Lactobacillus strains 

into 3 groups in relation to the inhibitory activity (Figure 14). The first group (H, high 
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activity) consists of lactobacilli with p-values below 0.2; the second group (I, intermediate 

activity) consists of lactobacilli with p-values ranging between 0.2 and 0.6; the last group 

(L, low activity) comprises lactobacilli with p-values over 0.6. Group H counts 7 strains 

(BC1, BC2, BC4, BC6, BC7, BC8, BC13), group I comprises 5 strains (BC5, BC9, BC11, 

BC15, BC16), group L included 5 strains (BC3, BC10, BC12, BC14, BC17). 

 

 
Figure 14. Ranking of lactobacilli in relation to anti-Chlamydia activity. Lactobacillus 

strains were classified on the basis of the inhibitory activity of their conditioned medium 

(CM), expressed as the difference between CM-treated EBs and untreated EBs, by means 

of the 1-tailed Wilcoxon signed rank P-values. Group H comprises lactobacilli strains with 

p-values below 0.2, group I comprises of lactobacilli with p-values ranging between 0.2 

and 0.6; group L comprises lactobacilli with p-values over 0.6. 

 

4.2.5 Identification of Lactobacillus metabolic profiles associated with anti-Chlamydia 

activity 

 

All Lactobacillus-CM were analyzed by 1H-NMR. We identified 40 metabolites mainly 

belonging to the families of aminoacids, organic acids monosaccharides, ketones, and 

alcohols (Table 3). A Principal Component Analysis (PCA) model was built on the 

concentrations of the identified molecules in order to search for correlations between anti-

Chlamydia activity and metabolome of lactobacilli (Figure 15). In the biplot describing the 

distribution of Lactobacillus strains in relation to the pool of metabolites, Principal 

Component (PC) 1 and PC2 accounted for the 44.3% of the whole variance of the 
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investigated samples (Figure 15A). The first component PC1, accounting for the 25.8% of 

the total variance, was mainly influenced by the taxonomy of lactobacilli. The second 

component PC2, accounting for the 18.5% of the total variance, was mainly influenced by 

the activity of lactobacilli against Chlamydia. The correlation between metabolome and 

anti-Chlamydia activity was best visualized by means of box plots representing the 

distribution of the groups of lactobacilli (H, I, L) (Figure 15B). Strains with different anti-

Chlamydia activity were clearly separated in the vertical direction: the most active strains 

occupied the lower positions while the less active strains were placed in the higher areas 

of the two-dimensional space. The highest metabolic homology was observed within the 

group of lactobacilli exerting high activity, as demonstrated by the lower height of the 

corresponding boxplot. 

 

  
Figure 15. Correlation between Lactobacillus metabolome and inhibitory activity 

towards C. trachomatis. (A) Score plot of Lactobacillus strains on PC1 and PC2 of a PCA 

model built on the total metabolites identified by 1H-NMR in Lactobacillus-CM. High 

activity (H), intermediate activity (I), and low activity (L) indicate the median values of 

lactobacilli grouped according to anti-Chlamydia activity. Strains without marks belong 
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to group H; underlined strains belong to group I; strains within rectangles belong to group 

L. Expl. Var, explained variance. (B) Box plots representing the distribution of activity 

against Chlamydia in relation to the metabolome. Lines within the boxes indicate the 

median values of the samples groups corresponding to the different activity scores. Each 

box represents the interquartile range (25–75th percentile). The bottom and top bars 

indicate the 10th and 90th percentiles, respectively. 

 

We searched which metabolites varied in relation to anti-Chlamydia activity, according to 

the approach of De Filippis et al. [De Filippis et al., 2014]. Orotate was produced in greater 

concentrations by lactobacilli highly active (group H) while phenylalanine, isoleucine, 

valine, and tyrosine were produced in greater concentrations by lactobacilli less effective 

against Chlamydia (group L). Orotate and phenylalanine production was found to be 

statistically different between lactobacilli in groups H and L (Orotate, p = 0.005; 

Phenylalanine, p = 0.005; 2-tailed Wilcoxon signed rank test). Inhibitory activity of orotate, 

at the highest concentration found in Lactobacillus-CM (30 mM), was tested, but no 

significant reduction of C. trachomatis infectivity was observed. Orotic acid was also 

tested in association with lactic acid (10/50 mM; pH: 4/7), but this combination did not 

enhance the lactic acid effect. 

Moreover, we observed that glucose was consumed at higher levels by lactobacilli 

belonging to group H while tryptophan was consumed more by lactobacilli of group L. 

Thus, to understand whether the competition for the carbonate source could be an 

additional mechanism of action towards Chlamydia, we added glucose (30 mM) to the 

supernatants of L. crispatus BC1 and L. gasseri BC13 (they consumed the highest amount 

of glucose within the H group). The addition of glucose to L. crispatus BC1 supernatant 

led to a significant increase (51 fold) of C. trachomatis infectivity at the shortest contact 

time (7 min), while no increase of infectivity was found at the time points 15 and 60 min. 

Similarly, L. gasseri BC13 supernatant enriched with glucose showed a reduction in anti-

Chlamydia activity both after 7 minutes (infectivity increase: 8.7 fold) and 15 minutes 

(infectivity increase: 6.1 fold) of contact (Table 5). These data confirm the importance of 

the depletion of glucose as an additional mechanism for the inhibition of C. trachomatis 

EBs by vaginal lactobacilli, in particular for short contact times. 
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Strain 
Contact time 

7 min 15 min 60 min 
L. crispatus BC1 51.2* - - 
L. gasseri BC13 8.7* 6.1* - 

 

Table 5. Increase of C. trachomatis infectivity following the addition of glucose to 

supernatants of L. crispatus BC1 and L. gasseri BC13. Dilutions 1:1 of Lactobacillus-

CM were tested. Increase was calculated as ratio between the infectivity of the supernatant 

added with glucose 30 mM and the infectivity of the corresponding not enriched 

supernatant. Significant increases were indicated with an asterisk (p < 0.05, 1-tailed 

Wilcoxon matched paired rank test). (-) No variation. 
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4.3 Role of vaginal lactobacilli against HIV-1 replication in human tissues ex vivo 

 

4.3.1 Lactobacillus colonization of tissue explants 

 

Fifteen Lactobacillus strains belonging to L. vaginalis, L. gasseri, and L. crispatus were 

evaluated for their capacity to colonize ex vivo tissue blocks. All lactobacilli colonized 

tissue explants with similar kinetics, reaching maximum colonization (approximately 1× 

108.5 CFU/mL) after three days of culture, and then plateaued for the entire 12 days of 

culture duration (Figure 16A). Cell depletion in tissue explants by lactobacilli was 

evaluated 3 days after bacterial inoculation (Figure 16B). Colonization of explants with six 

out of fifteen Lactobacillus strains, L. crispatus (BC3, BC5), L. gasseri (BC12, BC13), and 

L. vaginalis (BC16, BC17), did not result in cell depletion, as compared with control 

(Figure 16B lower panel, BC5 representative of this group). In contrast, the colonization 

of tissue blocks by the remaining nine Lactobacillus strains, L. crispatus (BC1, BC4, BC6, 

BC7, BC8) and L. gasseri (BC9, BC10, BC11, BC14), resulted in a loss of T cells (CD3+) 

as well as an increase in the expression of the apoptotic marker Bcl 2 (data not shown). 

The losses of CD3+ cells were not characteristics of particular species of Lactobacillus, as 

some strains of L. crispatus, L. gasseri, and L. vaginalis induced cell depletion while others 

did not. Lactobacillus strains that induced CD3+ cell depletion were not used in further 

experiments. 
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Figure 16. Lactobacillus colonization of ex vivo tissue. (A) Tonsillar tissues were 

colonized with fifteen vaginal Lactobacillus strains: L. crispatus (BC1, BC3–BC8), L. 

gasseri (BC9-BC14), and L. vaginalis (BC16, BC17), at a starting inoculum of 1 ×104 

CFU/mL and cultured for 12 days. Lactobacillus colonization was evaluated every 3 days 

spectrofometrically by measuring OD600. Bars represent mean ± SD from tissues of three 

donors. (B) We evaluated tissue cell depletion induced by Lactobacillus colonization of ex 

vivo tissues 3 days after bacterial inoculation using flow cytometry. Panels (from left to 

right) represent live/dead staining, CD3+ expression in live cells, and Bcl-2 expression in 

CD3+ cells in control (upper row) and L. crispatus BC5–colonized tissue (lower row). 
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4.3.2 Lactobacillus-CM inhibits HIV-1 replication 

 

To investigate the effects of metabolites secreted by lactobacilli on HIV-1 replication in ex 

vivo tissues, tissue blocks were pre-incubated with Lactobacillus-CM of L. crispatus (BC3, 

BC5), L. gasseri (BC12, BC13), and L. vaginalis (BC16, BC17), infected with HIV-1, and 

cultured as described in Materials and Methods. In both cervico-vaginal and lymphoid 

tissue blocks all undiluted Lactobacillus-CM suppressed replication of HIV-1 compared 

with the control by 91.9±4.3% and 98.3±1.4%  (L. crispatus BC3, p < 0.0001, n = 5), 

95.9±4.8% and 97.7±1.8% (L. crispatus BC5, p < 0.0001, n = 5), 93.5±3.6% and 

98.2±1.9% (L. gasseri BC12, p < 0.0001, n = 5), 91.9±1.5% and 98.3±2.3% (L. gasseri 

BC13, p < 0.0001, n = 5), 95.9±5.0% and 98.1±2.9% (L. vaginalis BC16, p < 0.0001, n = 

5), 85.8±11.7% and 95.0±6.5% (L. vaginalis BC17, p < 0.0001, n = 5), respectively (Figure 

17). All Lactobacillus-CM had an inhibitory effect on HIV-1 replication even when diluted 

5-fold. Depending on the Lactobacillus strain, inhibition of HIV-1 replication by such 

diluted medium was ranging from 44.3±31.7% (L. crispatus BC3, p = 0.0038, n = 5) to 

77.3±7.3% (L. vaginalis BC16, p < 0.0001, n = 5) in cervico-vaginal tissue (Figure 17B) 

and from 55.5±13.2% (L. vaginalis BC17, p < 0.0001, n = 5) to 93.1±5.2% (L. crispatus 

BC5, p = 0.0001, n = 5) in tonsillar tissue (Figure 17D). 
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Figure 17. HIV-1 infection of human tissue ex vivo treated with Lactobacillus-CM. 

Cervico-vaginal (A, B) and tonsillar (C, D) tissue blocks were pre-incubated with 

undiluted or diluted 1:5 Lactobacillus-CM from six strains: L. crispatus (BC3, BC5), L. 

gasseri (BC12, BC13), and L. vaginalis (BC16, BC17). Tissue cultures were infected with 

HIV-1 and kept in the Lactobacillus-CM for 3 days. At day 3, the Lactobacillus-CM was 

removed and cultures were kept in regular medium until day 12 post-infection. (A, C) 

Kinetics of HIV-1 replication in tissues was obtained by measuring the levels of p24gag in 

tissue culture medium. (B, D) Replication of HIV-1 in Lactobacillus-treated tissues 

expressed as percentages of HIV-1 replication compared to the control (black bars). Bars 

represent mean±SD from five tissue donors. Asterisks indicate statistical significance vs. 

control, obtained by one-way ANOVA multiple comparisons (*p < 0.05, **p < 0.01, ***p 

< 0.001, ****p < 0.0001). 3TC (lamivudine, 10 µM), a powerful HIV-1 inhibitor, used as 

a positive control. 
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4.3.3 Effects of lactic acid and pH on HIV-1 replication 

 

To investigate whether lactic acid produced by lactobacilli is responsible for HIV-1 

inhibition, we measured the concentrations of lactic acid isomers D and L in Lactobacillus-

CM (Table 6). 

 

Lactobacillus 
strains 

[D-Lactate] [L-Lactate] pH 

mM 
 

mM/ 
108 

bacteria 

mM 
 

mM/  
108 

bacteria 

Lactobacillus-CM 
 

Lactobacillus-
CM  
1:5 

L. crispatus BC3 3.1 0.4 15.1 2.2 4.0 6.6 
L. crispatus BC5 3.1 0.3 24.0 2.4 3.8 6.4 
L. gasseri BC12 3.6 0.4 24.7 2.8 3.8 6.3 
L. gasseri BC13 3.2 0.3 22.2 2.0 3.8 6.4 
L. vaginalis BC16 2.7 0.3 22.4 2.2 3.8 6.4 
L. vaginalis BC17 1.8 0.4 9.0 1.9 4.6 6.9 

 

Table 6. Lactic acid isomers D and L and pH in Lactobacillus-CM. Titers of lactate 

isomers D and L from overnight-cultured Lactobacillus-CM using a lactate quantification 

assay kit. pH values in all Lactobacillus-CM, undiluted or diluted 1:5, were measured as 

well. 

 

Depending on the strain, the concentrations of lactic acid isomers D and L ranged from 1.8 

to 3.6 mM and from 9.0 to 24.7 mM, respectively. L. gasseri BC12 was the strain that 

produced the highest concentrations of both isomers, while L. crispatus BC17 was the 

strain that produced the lowest concentrations. Next, we tested the effects of lactic acid 

isomers at the concentration found in undiluted Lactobacillus-CM or CM diluted 1:5 on 

HIV-1 replication in tissues ex vivo (Figure 18). As shown in Figures 18A and C, lactic 

acid isomers D (3 mM), L (23 mM), and D + L (3; 23 mM) significantly reduced HIV-1 

replication in both cervico-vaginal and tonsillar tissues. We found that D lactate (3 mM) 

inhibited HIV-1 replication by 48.2±6.2% in cervico-vaginal (p = 0.0004, n = 3) and by 

57.6±33.2% in tonsillar (p = 0.0125, n = 3) tissue cultures, while L lactacte (23 mM) 

suppressed HIV-1 replication by 94.3±5.5% (p < 0.0001, n = 3) and by 99.3±21.9% (p < 

0.0001, n = 3) in cervico-vaginal and tonsillar tissues, respectively. The mixture of D + L 
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lactate suppressed HIV-1 replication by 92.1±7.7% in cervico-vaginal and by 94.4±30.4% 

in tonsillar tissue (p < 0.0001, n = 3) (Figures 18B and D). Afterward, we evaluated the 

effect of lactic acid isomers at the concentrations found in 5-fold-diluted Lactobacillus-

CM on HIV-1 replication in lymphoid tissue (Figures 18C and D). We found that isomer 

D did not inhibit HIV-1 replication while isomer L and the mixture of isomers D + L 

significantly reduced HIV-1 replication in tonsillar tissues by 67.8±0.8% (isomer L, p = 

0.0033, n = 3) and by 56.5±9.5% (isomers D + L, p = 0.0142, n = 3) (Figure 18D). 

 

Furthermore, we evaluated whether the effect of lactobacilli on HIV-1 replication is due to 

the acidic pH of the Lactobacillus-CM. As shown in Table 5, pH values of undiluted 

Lactobacillus-CM ranged from 3.8 to 4.6 and of 5-fold-diluted Lactobacillus-CM from 6.3 

to 6.9. To mimic the effect of pH on HIV-1 replication, we acidified the culture medium 

of human cervico-vaginal and tonsillar tissues with HCl. In the culture medium buffered 

to pH 4, HIV-1 replication was reduced in both cervico-vaginal (90.1±0.1%, p < 0.0001, n 

= 3) and tonsillar tissue (88.0±17.5%, p = 0.0003, n = 3) compared with control tissue 

blocks cultured in regular medium (Figures 18B and D). No statistically significant 

inhibition of HIV-1 replication in cervico-vaginal or tonsillar tissues was observed when 

the culture medium was buffered to pH 6.9 (21.6±18.8%, p = 0.1492, n = 2 and 

14.28±10.19%, p = 0.9, n = 3, respectively). 
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Figure 18. Effect of lactic acid isomers and of pH on HIV-1 replication. The effects of 

lactate isomers D and L on HIV-1 replication were tested in cervico-vaginal (A, B) and 

tonsillar (C, D) tissues. Isomers D (3 mM), L (23 mM), and D + L (3 mM + 23 mM), 

corresponding to the average titers found in all undiluted Lactobacillus-CM were tested. 

We evaluated the effect of acidic pH on HIV-1 infectivity in ex vivo tissues by buffering the 

culture medium at pH 4 and pH 6.9 using HCl. (A, C) We evaluated the kinetics of HIV-1 

replication in tissues by measuring the levels of p24gag in culture medium. (B, D) 

Replication of HIV-1 in Lactobacillus-treated tissues was expressed as percentage of HIV-

1 replication in untreated control (black bars). Statistical significance vs. control is 

presented. Bars represent mean ± SD from tissues of three to five donors. Asterisks indicate 

statistical significance by one-way ANOVA multiple comparison (*p < 0.05, **p < 0.01, 

***p < 0.001, ****p < 0.0001). 
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4.3.4 Virucidal capacity of Lactobacillus-CM against HIV-1 

 

In order to understand whether Lactobacillus-CM can suppress HIV-1 infectivity before 

interaction with tissues, we pre-incubated HIV-1 for 1 h with Lactobacillus-CM (diluted 

1:5) and tested HIV-1 infectivity in cervico-vaginal tissues ex vivo. We studied the 

virucidal capacities of Lactobacillus-CM of six strains: L. crispatus (BC3, BC5), L. gasseri 

(BC12, BC13), and L. vaginalis (BC16, BC17). As shown in Figure 19A, HIV-1 replication 

was reduced when cervico-vaginal tissues were infected with HIV-1 pre-treated with 

Lactobacillus-CM from L. crispatus BC3 (47.7±7.0%, p = 0.005, n = 5), L. crispatus BC5 

(60.9±13.8%, p = 0.0005, n = 5), L. gasseri BC12 (64.0±11.4%, p < 0.0001, n = 5), and L. 

vaginalis BC16 (57.4±8.1%, p = 0.003, n = 5) (Figure 19B). No statistically significant 

inhibition was observed due to Lactobacillus-CM from L. gasseri BC13 (28.6±6.6%, p = 

0.13, n = 5) and L. vaginalis BC17 (31.1±24.8%, p = 0.06, n = 5). 

 

 
Figure 19. Virucidal effect of Lactobacillus-CM against HIV-1. Virucidal capacities of 

six strains: L. crispatus (BC3, BC5), L. gasseri (BC12, BC13), and L. vaginalis (BC16, 

BC17) are presented. HIV-1 preparation was pretreated with Lactobacillus-CM diluted 

1:5 for 1 h, and HIV-1 infectivity was tested in cervico-vaginal tissues ex vivo. (A) Kinetics 
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of HIV-1 replication by measuring the levels of p24gag in tissue culture medium. (B) 

Replication of HIV-1 in Lactobacillus-treated tissues expressed as percentages of HIV-1 

replication in untreated control (black bars). Bars represent mean ± SD from tissues of 

five patients. Asterisks indicate statistical significance by one-way ANOVA multiple 

comparison (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). 3TC used as a positive 

control. 

 

4.3.5 Virucidal capacity of Lactobacillus cells against HIV-1 

 

Similar to Lactobacillus-CM, the virucidal capacities of Lactobacillus-CP were studied. 

HIV-1 was first incubated with Lactobacillus-CP, and after bacteria have been washed off, 

the infectivity of HIV-1 was tested in cervico-vaginal tissues ex vivo. As shown in Figure 

20A, tissue infection with HIV-1 pre-incubated with Lactobacillus-CP for 1 h resulted in 

inhibition of HIV-1 replication by 64.7±14.9% for L. crispatus BC5 (p < 0.0001, n = 5), 

by 39.3±18.4% for L. gasseri BC12 (p = 0.0124, n = 5), and by 59.8±13.2% for L. vaginalis 

BC17 (p = 0.0002, n = 5). No statistically significant inhibition was observed with L. 

crispatus BC3 (19.4±18.5%, p = 0.46, n = 5), L. gasseri BC13 (16.1±27.9%, p = 0.64, n = 

5), and L. vaginalis BC16 (9.0±15.6%, p = 0.96, n = 5) (Figure 20B). 

Thereafter, to investigate whether this suppression of HIV-1 replication of cervico-vaginal 

tissue by L. crispatus BC5, L. gasseri BC12, and L. vaginalis BC17 in the above-described 

experiments was due to viral binding to Lactobacillus cells, we measured the concentration 

of p24gag on Lactobacillus-CP after bacteria were separated by centrifugation. We found 

that these three strains adsorbed 36.2±21.5%, 29.6±25.6%, and 39.2±9.6% of HIV-1, 

respectively, as evaluated from measurements of p24gag (Figure 20C). In the CP of the 

remaining strains (L. crispatus BC3, L. gasseri BC13, and L. vaginalis BC16) the p24gag 

was less than 10% of the original HIV-1 preparation (data not shown). 
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Figure 20. Virucidal effect of Lactobacillus-CPs against HIV-1. Virucidal capacity of six 

strains, L. crispatus (BC3, BC5), L. gasseri (BC12, BC13), and L. vaginalis (BC16, BC17) 

is presented. HIV-1 was pre-treated with Lactobacillus-CP at 1 ×108 CFU/mL, and HIV-

1 infectivity was then tested in cervico-vaginal tissues ex vivo. (A) We evaluated HIV-1 

replication kinetics in tissues by measuring p24gag in culture medium. (B) Replication of 

HIV-1 in Lactobacillus-treated tissues was expressed as percentage of HIV-1 replication 

in untreated control (black bars). (C) Fractions of p24gag associated with CP after 

incubation with HIV-1 are presented. Statistical significance vs. control was calculated. 

Bars represent mean ± SD from five patients. Asterisks indicate statistical significance by 

one-way ANOVA multiple comparison (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 

0.0001). 3TC (lamivudine) at 10 µM we used in our study as a positive control. 
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5. DISCUSSION AND CONCLUSIONS 

 

The vaginal mucosa is normally colonized by a vast number of microorganisms 

collectively referred to as the vaginal microbiota, which normally coexist with the host in 

a tightly regulated manner [Petrova et al., 2015]. Healthy women of reproductive age are 

generally dominated by Lactobacillus species [Hyman et al., 2005; Pavlova et al., 2002; 

Ravel et al., 2011]. A Lactobacillus-dominated microbiota appears to be a biomarker for a 

healthy vaginal communities, as changes in the vaginal microbiota, especially shifting 

away from Lactobacillus dominance, are associated with bacterial vaginosis [Allsworth 

and Peipert, 2011; Cherpes et al., 2003], vulvo-vaginal candidiasis (VVC) [Goffeng et al., 

1997; Vitali et al., 2007], and increased risks of acquisition of sexually transmitted 

infections, including Chlamydia trachomatis [Brotman et al., 2010; Martius et al., 1988; 

Wiesenfeld et al., 2003] and human immunodeficiency virus (HIV) [Atashili et al., 2008; 

Gosmann et al., 2017; Mirmonsef and Spear; Nardis et al., 2013; Petrova et al., 2015; Taha 

et al., 1998]. 

 

The aim of the present study was to isolate vaginal lactobacilli from healthy women, to 

characterize them at a molecular level and to evaluate their antagonistic effect toward 

Candida spp., C. trachomatis, and HIV, which are among the infectious agents that most 

significantly affect women’s health worldwide. 

 

In this context, from vaginal swabs of healthy premenopausal woman we isolated 

seventeen Lactobacillus strains belonging to the 3 species highly represented in the human 

vaginal microbiota: L. crispatus (BC1-BC8), L. gasseri (BC9-BC14), and L. vaginalis 

(BC15 -BC17) [Parolin et al., 2015]. The isolation of L. crispatus has been strongly 

associated with a normal vaginal microbiota and absence of vaginal dysbiosis [Antonio et 

al., 1999]. Longitudinal studies have also shown that L. crispatus promotes stability of the 

vaginal microbiota [Petrova et al., 2015; Verstraelen et al., 2009], and seems to have a role 

in the restoration of the vaginal communities, and in the maintenance of remission from 

bacterial vaginosis, following antibiotic treatment [Cruciani et al., 2015]. Despite the high 

incidence of L. iners in the human vaginal microbiota, as detected by culture-independent 
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molecular studies [Ravel et al., 2011; van de Wijgert et al., 2014], we did not obtain isolates 

belonging to this species probably due to its stringent nutritional requirements and very 

low oxygen tolerance [Falsen et al., 1999]. On the other hand, as our goal was to identify 

health-promoting lactobacilli, L. iners was of little interest given its close correlation with 

vaginal dysbiosis [Macklaim et al., 2013]. 

In view of potential application of the isolated Lactobacillus strains as vaginal probiotics, 

we sought to characterize their capacities to produce antimicrobial compounds to 

individuate a possible antimicrobial mechanism of action. H2O2 and lactate are classically 

associated with the antimicrobial properties of Lactobacillus genus [Aroutcheva et al., 

2001]. All strains produced H2O2 in agreement with the assumption that the vaginal 

microbiota of healthy women is dominated by H2O2-producing lactobacilli [Pendharkar et 

al., 2013]. Also, lactate was produced by all lactobacilli, while butyrate was produced only 

by certain strains. 

 

The fungistatic and fungicidal activities of the vaginal lactobacilli were evaluated against 

of C. albicans and C. non-albicans strains, in the perspective to develop successful vaginal 

probiotics for VVC management [De Seta et al., 2014], considering that the high incidence 

and associated healthcare costs of VVC together with the growing problem of antibiotic 

resistance highlight the necessity for the development of new effective agents for the 

prevention and therapy of this gynaecological infection [Coste et al., 2007; Falagas et al., 

2006]. Compared to previous studies focused on the antifungal activity of lactobacilli 

[Abramov et al., 2014; Kohler et al., 2012], our work has the additional value examining 

Lactobacillus isolates from vaginal source against numerous clinical isolates of Candida 

species. Therefore, the results obtained in this work provide important information about 

the real applicability of vaginal lactobacilli in the prevention and treatment of VVC. The 

broadest spectrum of activity was observed for L. crispatus (BC1, BC4, BC5) and L. 

vaginalis BC15, exhibiting fungicidal activity against all isolates of C. albicans and C. 

lusitaniae. Among these strains, L. crispatus BC1 and L. vaginalis BC15 exhibited the best 

anti-Candida profile covering also C. tropicalis and C. glabrata. 

Next, we evaluated the interference of lactobacilli with pathogens adherence to human 

cells, considering this aspect of a major importance for the in vitro evaluation of probiotic 
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properties [FAO/WHO, 2006]. We observed that most of Lactobacillus strains 

significantly reduced C. albicans adhesion to HeLa cells through multiple mechanism 

including exclusion, competition, and displacement. Lactobacillus crispatus BC2 and L. 

gasseri (BC10, BC11) appeared to be the most active strains in reducing pathogen 

adhesion, as their effects were mediated by both Lactobacillus-cell pellet (CP) and 

Lactobacillus-conditioned medium (CM). Interestingly, the same bacteria were not the 

most adhesive strains suggesting that the inhibitory effects are not merely due to steric 

encumbrance and/or saturation of the adhesion sites, but rather to a reduction of the 

adherence of the pathogen itself and/or to modifications of the epithelial cells surface. 

Additionally, the same lactobacilli were not the best performing strains in terms of 

fungistatic/fungicidal activity. These findings suggest that lactobacilli isolated from 

healthy vagina can exert their protective role against Candida infection utilizing one 

strategy (either inhibition of growth or adhesion) rather than through the combination of 

two complementary mechanisms. 

To interpret the differences in fungistatic/fungicidal capacities of the vaginal lactobacilli, 

through a metabolic key, we studied by 1H-NMR the metabolome of Lactobacillus-CM 

and we looked for correlations with taxonomy and activity score. The strong correlation 

between metabolic profile and taxonomy highlighted the inter-specific variability of 

bacterial metabolism. Metabolic variance was also related to antifungal activity, 

confirming the excellent antifungal profile of most L. crispatus strains and L. vaginalis 

BC15. These data highlight the potential of metabolomics to measure the taxonomic 

distance between different Lactobacillus strains and predict their anti-Candida activity. 

Although metabolomics has been applied to evaluate the impact of probiotics on the host 

organism [Bisanz et al., 2014], to our knowledge this is the first study employing a 

metabolomic approach to investigate the antimicrobial activity of health-promoting 

bacteria, representing a new idea for future researches. 

Since butyrate is a known histone deacetylase (HDAC) inhibitor [Nguyen et al., 2011], we 

hypothesize that it may enhance the anti-Candida activity of lactobacilli through histone 

hyper-acetylation. Inhibition of HDACs can influence fungal growth and adherence to host 

cells [Nguyen et al., 2011; Simonetti et al., 2007]. We observed that histone hyper-

acetylation was a predominant capacity of most vaginal lactobacilli. Interestingly, the 
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strains that did not trigger histone acetylation (L. gasseri BC13 and L. vaginalis BC17) 

were the same ones that did not exercise any fungicidal activity or interference on Candida 

adhesion, suggesting that inhibition of HDACs could support antifungal activity of vaginal 

lactobacilli. 

 

This study also provides experimental evidence for inhibition of C. trachomatis infection 

by vaginal lactobacilli. Chlamydia trachomatis is the most common cause of bacterial 

sexually transmitted infections in the world [Miller et al., 2004; Senior, 2012]. It has been 

hypothesized that Lactobacillus species play a critical protective role in the vaginal habitat 

by producing lactic acid, which maintain an acidic environment inhibiting sexually 

transmitted pathogens. Gong et al. suggested that acidic pH is fully responsible for 

chlamydiacidal activity of lactobacilli [Gong et al., 2014]. 

Our study showed that Lactobacillus strains exert a strong inhibitory effect on Chlamydia 

infectivity mainly through metabolites secreted out of the cell, in a concentration-

dependent manner. We observed that the factor “concentration” is inversely correlated to 

the pH of the culture medium. Indeed, all Lactobacillus-CM were characterized by low pH, 

while diluted Lactobacillus-CM showed higher pH. 

The factor “contact time” also seems to play a role in the inhibitory activity against 

Chlamydia. Lactobacilli, especially Lactobacillus cells, were more effective in inhibiting 

Chlamydia EBs infectivity at short contact times. This inhibition may be generated by a 

rapid and dynamic modification of Chlamydia EBs membrane; we assume that this 

modification could revert for longer exposure times. These findings suggest that 

lactobacilli could exert their protective role against Chlamydia in the early steps of the 

infection, probably due to inactivation of EBs before they can colonize and infect the 

epithelial host cells; these results are in accord to results previously described 

[Mastromarino et al., 2014]. 

Using a statistical approach, we classify Lactobacillus strains according to their anti-

Chlamydia activity into three groups: high, intermediate, and low activity. The best anti-

Chlamydia profile was shown by strains belonging to L. crispatus species. Conversely, L. 

gasseri and L. vaginalis showed a heterogeneous spectrum of activity. It has been reported 

that L. crispatus inhibit in vitro the growth of uropathogens and block their adhesion to 
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vaginal epithelial cells [Osset et al., 2001]. Lactobacillus crispatus was also shown to 

reduce the adhesion of Neisseria gonorrhoeae [Vielfort et al., 2008] and C. trachomatis 

[Mastromarino et al., 2014] to HeLa cells by competitive exclusion. Moreover, it was 

demonstrated the efficacy of L. crispatus to limit the inflammatory reaction in C. 

trachomatis-infected HeLa cells and macrophages [Rizzo et al., 2015]. 

Directly linked to the presence of lactobacilli, the production of lactic acid is accepted as a 

hallmark beneficial activity of the vaginal microbiota. Lactic acid has been associated with 

pathogen exclusion and its concentration could also be an important biomarker of vaginal 

health, although the current evidence is still mainly based on in vitro studies. Lactic acid is 

able to inactivate a wide range of reproductive tract pathogens, including C. trachomatis 

[Gong et al., 2014] and HIV-1 [Aldunate et al., 2013]. We investigated whether the anti-

Chlamydia activity of lactic acid is merely associated with the pH, or other mechanisms 

may be involved. Lactic acid, at the concentrations found in the Lactobacillus-CM, 

strongly inhibit EBs infectivity only at acid pH for all exposure times, differently from HCl 

that did not show any activity in the same experimental conditions. These results indicate 

that a high concentration of H+ ions is necessary but not sufficient to inhibit Chlamydia 

EBs. Therefore, the presence of lactic acid in an acidic environment seems to be crucial for 

this activity. It remains to elucidate the specific mechanisms by which lactate moiety 

inactivates chlamydial EBs. Notably, the inhibitory activity exerted by most of 

Lactobacillus-CM, characterized by similar lactate concentrations and pH values, was 

higher than that exerted by lactic acid solution, suggesting that other metabolites present 

in lactobacilli supernatants could determine a synergistic effect. Because L. crispatus 

strains were found to be the most active in counteracting Chlamydia infection, we assume 

that the effect of lactic acid may be enhanced by the pool of metabolites especially 

produced by this species. 

Given the importance of the metabolic component in determining the inhibition of 

Chlamydia, we studied the metabolic profiles of lactobacilli supernatants by 1H-NMR to 

identify active metabolites and to find correlations between metabolism of lactobacilli and 

anti-Chlamydia effect. Metabolic variance was strictly correlated with the Chlamydia 

inhibitory activity, confirming the excellent anti-chlamydial profile of the majority of L. 

crispatus strains. Interestingly, the metabolomic analysis highlighted the increased 
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consumption of glucose by the strains highly active against Chlamydia. We demonstrated 

that glucose depletion represents an additional mechanism of action for lactobacilli 

antagonism toward Chlamydia. It has been recently reported that C. trachomatis EBs have 

considerable metabolic and biosynthetic activity and utilize glucose as an energy source 

[Omsland et al., 2012] to fuel the developmental transition of EB to RB [Saka et al., 2011]. 

Consumption of glucose and production of organic acids are metabolically interrelated and 

represent defensive strategies implemented by vaginal lactobacilli against the attack of 

pathogens, such as Chlamydia. Notably, an increase of glucose concentration in the vaginal 

fluids collected from women affected by bacterial vaginosis was reported [Vitali et al., 

2015]. These findings can be interpreted by assuming that the lack of lactobacilli, mainly 

those strains with high efficiencies of glucose fermentation, is associated with a greater 

availability of glucose in the vaginal environment. We hypothesize that the availability of 

glucose, in turn, could promote growth of undesirable microorganisms, including bacteria 

responsible for bacterial vaginosis and chlamydiae. 

 

We also studied the role of vaginal lactobacilli in HIV pathogeneses and transmission. The 

vaginal microbiota seems to protect against HIV directly, by production of antiviral 

compounds (lactic acid, hydrogen peroxide, bacteriocins, and lectin molecules), or 

indirectly, stimulating immune responses or inhibiting colonization of microorganisms that 

cause bacterial vaginosis [Petrova et al., 2015; Petrova et al., 2013]. 

Here, we investigated some of these mechanisms by studying the effects of vaginal 

lactobacilli on HIV-1 in the context of human cervico-vaginal and tonsillar tissues ex vivo 

[Introini et al., 2014; Merbah et al., 2011; Saba et al., 2010]. These human tissue cultures 

offer major advantages over single-cell cultures, as they retain general tissue 

cytoarchitecture and important functional aspects of cell–cell interactions [Grivel and 

Margolis]. Therefore, they remain a model of choice to study host–pathogen interactions 

(reviewed in Grivel and Margolis, 2009). These ex vivo tissues have proved to be useful in 

studies of the effect of HIV-1 copathogens on HIV-1 replication [Grivel et al., 2001; Lisco 

et al., 2007; Vanpouille et al., 2007] as well as in pre-clinical drug testing [Andrei et al., 

2011; Vanpouille et al., 2012]. 
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To address the effects of lactobacilli on HIV-1 infection in the context of human tissues, 

we first colonized them ex vivo with different strains of Lactobacillus. We found that all 

lactobacilli colonized and grew in human tissues ex vivo to densities comparable with those 

observed in vaginal specimens [Aleshkin et al., 2011; Antonio et al., 2009]. Tissue 

colonization with some of the tested bacterial strains resulted in the depletion of T cells. 

Although this phenomenon maybe relevant to the protection against HIV-1 in vivo, we 

focused our study on six strains of Lactobacillus (L. crispatus BC3, BC5; L. gasseri BC12, 

BC13; and L. vaginalis BC16, BC17) that did not deplete cells in tissue. We found that all 

these lactobacilli efficiently suppressed HIV-1 replication in human tissues ex vivo, and we 

investigated the mechanisms of this phenomenon. 

First, we investigated whether lactobacilli release suppressive factors that inhibit HIV-1 

replication in human tissues ex vivo. We found that they do indeed release factors that 

suppress HIV-1 replication, since the CM inhibited HIV-1 replication in human cervico-

vaginal and tonsillar tissues. 

Although such a medium may contain multiple inhibitory factors, we first focused on two 

of them, pH and lactic acid, whose roles in suppressing HIV infection were suggested 

earlier [Aldunate et al., 2013; Martin et al., 1985; O'Connor et al., 1995; Ongradi et al., 

1990]. Depending on the bacterial strain, the pH of Lactobacillus-CM varied from 3.8 to 

4.6. We adjusted the pH of the tissue culture to these pH values, and in agreement with 

earlier studies [Martin et al., 1985; Ongradi et al., 1990; Ravel et al., 2011] we found that 

this acidification may be directly responsible for HIV-1 inhibition. Low pH (<4.5) is typical 

for the vaginal communities in vivo that are dominated by Lactobacillus species in healthy 

women [Boskey et al., 1999; Fox et al., 1973; O'Hanlon et al., 2013]. However, during 

vaginal intercourse, vaginal fluid is diluted by HIV-containing semen, resulting in neutral 

pH [Tevi-Benissan et al., 1997]. Also, in the presence of vaginal dysbiosis (i.e., bacterial 

vaginosis), vaginal pH increases [Onderdonk et al., 2016]. Therefore, in our experiments 

we diluted CM with normal media, resulting in a pH between 6.3 and 6.9; this diluted CM 

was still inhibitory for HIV-1 replication in human tissue ex vivo. Control experiments with 

pH 6.9 demonstrated no HIV-1 suppression, suggesting that other factors beyond lowered 

pH may also be important for HIV-1 inhibition, at least for some of the lactobacilli. 



Chapter 5: Discussion and conclusions 

	 82	

One such factor considered in the literature is the major Lactobacillus metabolite lactic 

acid [O'Hanlon et al., 2011, 2013]. The importance of this metabolite is evidenced by the 

fact that in our experiments we observed a correlation between the capacity of supernatant 

of lactobacilli to inhibit HIV-1 replication and the capacity of lactobacilli to produce lactic 

acid. Therefore, we investigated the effect of lactic acid isomers D and L on HIV-1 

infection. We found that the addition of these isomers to tissue culture medium at 

concentrations that corresponded to their amounts released by lactobacilli resulted in HIV-

1 inhibition. In our work, the racemic lactic acid in Lactobacillus-CM ranged from 10.8 to 

28.3 mM and thus was not higher than the physiological level, reported to be around 110 

mM [O'Hanlon et al., 2013]. The protective effect of lactic acid in our ex vivo tissue system 

is in agreement with the work of Nunn et al., who reported that a high concentration of 

lactic acid in cervico-vaginal mucus plays an important role in protection against HIV-1 

and other sexually transmitted infections [Nunn et al., 2015]. We found that the L isomer 

rather than the D isomer was predominantly responsible for HIV-1 inhibition. These results 

indicated that lactic acid, in particular its L isomer, inhibited HIV-1 replication, 

independently from lowering the pH.  

Next, we investigated whether Lactobacillus could have a direct virucidal effect on HIV-

1. To answer this question, we incubated an HIV-1 preparation in Lactobacillus-CM and 

then tested HIV-1 infectivity in human tissue culture. We found that HIV-1 infectivity in 

cervico-vaginal tissue was significantly reduced. We previously reported similar findings 

when testing the effect of Lactobacillus-CM on C. trachomatis [Nardini et al., 2016]. 

Finally, we investigated whether direct interactions with lactobacilli themselves may affect 

HIV-1. We found that a significant fraction of virions are adsorbed on bacteria. These 

virucidal effects of lactobacilli may be relevant to the inhibition of HIV-1 transmission in 

vivo. 

In general, the level of HIV-1 suppression may depend on the superimposition of multiple 

mechanisms, different for each Lactobacillus strain. These mechanisms include change of 

pH, production of lactic acid, HIV adsorption on the surface of lactobacilli, etc. However, 

lactic acid produced by lactobacilli in the context of human tissues ex vivo seems to be a 

major cause of HIV-1 inhibition. 
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Several molecular mechanisms by which this metabolite may affect HIV-1 have been 

suggested. It was reported that lactic acid could disrupt cellular membranes [Alakomi et 

al., 2000], acidify cytosol [Russell and Diez-Gonzalez, 1998], unfold proteins [Tang et al., 

2003], and inhibit enzymatic activity [McWilliam Leitch and Stewart, 2002]. Any of these 

reported effects of lactic acid might be sufficient to suppress HIV infection, e.g., by 

destroying the viral envelope, unfolding gp120, and/or inhibiting HIV enzymes involved 

in the HIV cycle [Aldunate et al., 2013]. 

 

In conclusion, we identify vaginal lactobacilli active against Candida, C. trachomatis, and 

HIV-1 [Nahui Palomino et al., 2017; Nardini et al., 2016; Parolin et al., 2015]. We 

characterize the mechanisms of action underlying antagonism toward these pathogens. We 

have identified strains with a good spectrum of fungistatic/fungicidal activity (L. crispatus 

BC1 and L. vaginalis BC15) that may be associated with strains particularly active in 

reducing the adhesion of Candida (L. crispatus BC2, L. gasseri BC10, L. gasseri BC11). 

We demonstrate the ability of different Lactobacillus strains of vaginal origin to inactivate 

C. trachomatis through the production of extracellular metabolites in an acidic 

environment. We found that mostly species of L. crispatus inhibit C. trachomatis 

infectivity, stressing once again the importance of this species for the vaginal health. 

Finally, we found that lactobacilli inhibit HIV-1 replication in human tissue ex vivo by 

multiple mechanisms. 

 

Extrapolated to in vivo, our results may explain why the presence of normal vaginal 

microbiota, which include multiple species of Lactobacillus, is associated with a decreased 

risk of bacterial vaginosis, vulvo-vaginal candidiasis, and decreased risks of acquisition of 

sexually transmitted infections, including C. trachomatis and HIV. 

 

The positive effects of vaginal lactobacilli on the health of the female genital tract are 

generating increasing interest in the perspective of their use in probiotic formulations for 

the prophylaxis and therapy of several vaginal disturbances [Burton et al., 2003; Donders 

et al., 2010; Reid et al., 2001]. The application that follows is the combination of strains 

exerting different modes of action to obtain a probiotic blend with enhanced therapeutic 



Chapter 5: Discussion and conclusions 

	 84	

properties. The choice of different species is also an added advantage as it ensures a wider 

expression of metabolic functions. 

 

Further studies are necessary for a thorough understanding of the antagonistic mechanisms 

of vaginal lactobacilli against pathogens, i.e. study if lactobacilli release extracellular 

vesicles/exosomes (EVs) rather than just soluble bioactive molecules (organic acids, 

bacteriocins, H2O2, etc.). Nowadays, EVs are becoming more and more studied in various 

aspects of the biomedicine. EVs are produced by all domains of life. These EVs contain 

varied cargo, including nucleic acids, toxins, lipoproteins and enzymes, and have important 

roles in microbial physiology and pathogenesis. 
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