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Abstract 

Termitoidae is an epifamily of the order Blattodea comprising hemimetabolous eusocial insects 

commonly known as termites. Native European termite species belong to two genera: Reticulitermes 

and Kalotermes. The former genus includes six subterranean-termite species. Among these, R. urbis 

is commonly found in the wild of the Balkans while it can be observed in urban habitats in Italy and 

France where it causes damages to structures and wooden artifacts. Therefore, it was suggested 

that this species is native from the Balkan Peninsula and introduced in Italy and France. On the other 

hand, a recent survey questioned about the invasive status of R. urbis in Italy and France, 

hypothesing a native origin of R. urbis in Italy and France on the basis of some similarities in the 

distribution areas of this species with those of the native R. lucifugus. On the whole, a deeper genetic 

and phylogeographic investigation is required to clarify the R. urbis distribution status. Considering 

the same genus, previous studies described the occurrence of the Asexual Queen Succession 

(AQS) reproductive strategy in the Italian R. lucifugus while no genetic investigations were performed 

so far on the French native R. grassei and the invasive R. flavipes in order to verify the 

presence\absence of this particular reproductive mode. Moreover, it has been suggested that AQS 

system could be the force shaping the inclusive fitness in social diploids organisms like termites but 

no genetic investigations supporting such theoretical prediction, to date, were described in the AQS 

species R. lucifugus. As far as Kalotermes is concerned, recent molecular studies showed that two 

dry-wood termite species are present in Europe: K. flavicollis and K. italicus. The first one comprises 

at least three main mitochondrial lineages: the lineage A (also termed K. flavicollis sensu stricto) 

includes all samples collected from the Aegean islands to the Italian Peninsula; the lineage SC 

comprises colonies found in Sardinia and Corsica; the lineage SF limited to Southern France. No 

data are available for the taxonomic and phylogenetic status of Kalotermes populations from the 

Iberia Peninsula. The other species, K. italicus, easily recognizable as adult alates, show a black or 

dark brown pronotum (as opposed to the yellow-necked K. flavicollis), was found only in Southern 

Tuscany and in a small area on the Italian mid-Adriatic coast. The taxonomy and the distribution 

pattern of Kalotermes taxa, thus, is far from being complete and many issues remain unresolved. 

Referring to same genus, a particular strategy influencing the breeding system was described in 



Italian populations of K. flavicollis, i.e. the occurrence of extreme colony fusion events explained in 

the light of the ‘Accelerated nest inheritance’ theory. These colonies were found to fuse in the field, 

with instances of extreme fusion given by up to nine mitochondrial haplotypes even belonging to 

highly divergent genetic lineages. Taking into account that the recently described K. italicus shows 

a sympatric distribution area with K. flavicollis, it is not to be excluded, therefore, a possible 

occurrence of this phenomenon even at an interspecific level. Obviously, this hypothesis requires 

further investigation. Finally, it is poorly known if Wolbachia, a genus of parasitic endosymbiotic 

bacteria living in the termite germinal line cells, could affect the reproductive biology of these hosts 

and, thus, if this microbe could be involved in the onset of the AQS strategy and in the interspecific 

hybridization events between divergent Kalotermes taxa.  

My PhD research project focused on the analysis of the genetic diversity and breeding systems in 

European Reticulitermes and Kalotermes taxa. Investigations were performed at the intrageneric 

level with comparisons also at the intergeneric one in order to highlight new insights on the evolution 

of eusociality. My surveys, performed through genetic and morphological approaches, had the 

following main goals: i) a deep phylogeographic investigation of Balkan, Italian, and French colonies 

of R. urbis in order to clarify the invasive status of this species and to identify the native source 

population(s); ii) a more detailed picture of Kalotermes biogeography and evolution in Europe, 

quantifying, in addition, the real extent of colony mixing in these termites; iii) a microsatellite survey 

of the French R. grassei, R. flavipes and Italian R. lucifugus populations in order to verify, providing 

genetic evidences, the reproductive strategies of the former two species and to describe new insights 

of the AQS strategy in Italian colonies of R. lucifugus; iiii) a preliminary molecular investigation, using 

the bacterial FtsZ marker, on Reticulitermes and Kalotermes termite species in order to identify 

Wolbachia infection and to characterize the relevant strains, paying particular attention to the AQS 

species R. lucifugus and to mixed colonies of the Kalotermes genus to verify whether Wolbachia 

presence can be related to particular breeding systems. 
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CHAPTER 1 

*** 

THE EPIFAMILY TERMITOIDAE (INSECTA, BLATTODEA) 

 

 

1.1 SYSTEMATICS, DISTRIBUTION AND PHYLOGENY 

Termitoidae is an epifamily of the order Blattodea comprising hemimetabolous eusocial insects 

commonly known as termites. These insects are believed to be the earliest-evolving social insects: 

their origin dates back either to the Cretaceous period, around 130 million years ago, or even more 

ancient, the upper Jurassic, as highlighted by recent fossil records (Korb, 2007). Around 3.000 

termite species are described so far (Krishna et al., 2013) and they are allocated in 282 genera from 

seven different families: Mastotermitidae, Stolotermitidae, Hodotermitidae, Archotermopsidae, 

Kalotermitidae, Rhinotermitidae, Termitidae (Cameron et al., 2012; Figure 1.1). Species distribution 

among the above-mentioned families is biased: Kalotermitidae and Rhinotermitidae, for example, 

embody around 456 and 315 species respectively, while Stolotermitidae and Mastotermitidae 

families comprise only two and one species, respectively. Termitidae is the largest family 

encompassing around 2.107 species (the 70% of the described taxa), mainly residing in tropical and 

sub-tropical habitats. As for other animals distribution, the highest termite biodiversity is in the 

tropical and subtropical regions and decreases in the temperate regions, but it is possible to find 

them even at extreme latitudes and altitudes (Scheffrahn et al., 2015). 

From a phylogenetic point of view, Mastotermitidae, Stolotermitidae, Hodotermitidae, 

Archotermopsidae and Kalotermitidae families are considered the most ancient taxa, with 

Mastotermitidae resulting as sister group of all other termites (Cameron et al., 2012; Figure 1.1). 

Termite species belonging to these families are usually referred to as “lower termites”. 
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Rhinotermitidae and Termitidae families, on the other hand, include the most recently derived 

species (Cameron et al., 2012; Figure 1.1); Termitidae are commonly called “higher termites”, while 

Rhinotermitidae retain characters intermediate between lower and higher termites (Vargo & 

Husseneder, 2009) but usually included with the lower termites. 

For a long time, termite families have been classified in a single order called Isoptera (Brullé, 1832). 

This order, together with mantis and cockroaches (Mantodea and Blattodea orders, respectively) 

formed the so-called Dictyoptera superorder (Inward et al., 2007a; Legendre et al., 2008; Ware et 

al., 2008). However, subsequent phylogenetic investigations demonstrated that termite species are 

phylogenetically related to cockroaches of the family Blattidae, with the Cryptocercus genus as sister 

group; therefore, termites have been eventually placed within the order Blattodea (Inward et al., 

2007b; Beccaloni & Eggleton, 2011; Wang et al., 2017; Zongqing et al., 2017). For this reason, the 

order level of classification was deemed to be unwarranted and termite taxa were classified as the 

Figure 1.1 Phylogenetic tree of termites based on mitochondrial genomic data.  
[Source: Cameron et al., 2012] 
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Termitoidae epifamily. Despite these findings, some Authors reject this idea for reasons of 

nomenclatural stability (Lo et al., 2007).  

 

 

1.2 BIOLOGY 

Termites are social insects: their colonies are composed by several hundred to many thousands of 

individuals constituting different morpho-functional castes. In general terms, termites are very small 

insects with a worker body length ranging from 2.5 to 20 mm. The head is dorso-ventrally depressed 

with a chewing mouthpart apparatus and two moniliform antennae having a variable number of 

segments. The thorax shows a pronotum narrower than head, with sclerites joined together by large 

membranes, and three pairs of equally developed legs. The abdomen, consisting of ten segments, 

is cylindrical and ends with a couple of cerci. The seventh sternite (the ventral portion of a segment) 

is useful for sexes recognition because in females it forms a large plate under the genital chamber 

(Zimet & Stuart, 1982). The integument is thin, transparent and, therefore, it does not efficiently 

protect individuals from dehydration. For this reason, termites usually live in humid environments. 

In fact, these insects spend most of their time in the nest which provides the best microclimatic 

conditions for their survival as well as protection from predators. The nest consists of numerous 

tunnels and chambers and it can be built inside a piece of dead wood (as in the case of the “dry-

wood” Kalotermes termite species), underground (as in “subterranean” termites of the 

Reticulitermes genus) or realized through epigean structures (as, for example, in several Termitidae 

species). Nest shape and size are therefore highly variable and the environmental conditions often 

can affect them (Pearce, 1997). The colony lives inside the nest with individuals performing different 

tasks depending on the caste to which they belong. Given the social organization, there is a highly 

sophisticated system of communication among individuals (Borderau & Pasteels, 2011). This 
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communication occurs through tactile and chemical signals. Tactile signals are generally played 

banging the head or the abdomen in order to communicate an alarm situation. These vibratory 

stimuli are detected by mechanoreceptors usually present in the second antennal segment 

Eggleton, 2014). Chemical communication, instead, is performed through pheromones. Several 

compounds and molecules are used for the transmission of different signals which induce response 

behaviours such as alert and defence, mate attraction, inter-individuals recognition, caste 

differentiation and information about the availability of new food resources (Borderau & Pasteels, 

2011). 

As far as food resources are concerned, termites feed on cellulose, which is obtained from the 

digestion of dead wood, leaf litter, dry grass and soil. For this reason, these organisms are 

considered the most important invertebrate decomposers (Eggleton & Tayasu, 2001). Cellulose is a 

polysaccharide consisting of a linear chain of several hundred to many thousands of β-1-4 

linked glucose units. Termites can digest this organic compound thanks to the symbiosis with 

prokaryotes (bacteria and archaea) in higher termites and unicellular eukaryotes (flagellated 

protists) in lower termites, present in their gut, which are able to broke the β-1-4 glycosidic bond 

(Bignell, 2011). In some termite species, as in the case of those belonging to the subfamily 

Macrotermitinae, the basidiomycetes Termitomices is reared inside the nest and supplied with 

plant-derived materials (Nobre et al., 2011). The fungi, therefore, degrade these materials allowing 

termites to eat them. In some instances, termites use a particular feeding modality, called 

trophallaxis. It consists in the transfer of organic material, from one individual to another, through 

regurgitation (stomodeal trophallaxis) or anal secretion (proctodeal trophallaxis). Trophallaxis plays 

a key role in the transfer of gut endosymbionts, and it is important for juveniles or individuals that 

lost symbionts after the moult (Nalepa, 2015).  
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1.3 SOCIAL ORGANIZATION 

Termites show a society in which individuals are grouped in castes, performing different roles. These 

castes are characterized by specific biological traits in anatomy, physiology and behaviour. In very 

general terms, a colony is composed by three 

main castes: reproductives, workers and 

soldiers. The last two castes forego their own 

reproduction to help the reproductive caste to 

raise their offspring. Caste development 

change between higher termites (Figure 1.2) 

and lower termites (Figure 1.3). In the first 

ones, the developmental pathway is strictly 

determined and early splits in two divergent 

lines, leading to the differentiation of sterile and reproductive castes (Figure 1.2). Lower termites, 

on the contrary, have a linear developmental pathway and castes, accordingly, exhibit a greater 

plasticity, allowing caste 

changing for the 

individuals (Figure 1.3). 

Gene networks and 

genetic pathways but 

also nutritional and 

pheromonal signals are 

involved in the caste determination (Grassé 1949; Lo et al., 2009; Osamu et al., 2011; Cornette et 

al., 2013). 

  

Figure 1.2 Caste differentiation in higher termites. 
[source: Wenseleers & Van Oystaeyen, 2011] 

 

Figure 1.3 Caste differentation lower termites. 
[source: Hartke & Baer, 2011] 
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1.3.1 Reproductives 

The reproductive caste, as previously mentioned, includes 

individuals able to perform reproduction, being the only ones 

in the colony with functional gonads. Two types of 

reproductives are recognized: primary and secondary 

reproductives. Primary reproductives (Figure 1.4), also called 

“imagoes” or “alates” (and commonly referred as “swarming 

individuals”), are dark brown or black coloured, and have two 

pairs of fully developed wings and compound eyes: these features allow them to swarm outside the 

natal nest, looking for a partner to run the nuptial flight and 

found a new colony, through sexual reproduction. Secondary 

reproductives (Figure 1.5) are neotenics, as they reach sexual 

maturity without moulting into the adult stage (i.e., the 

imagoe). They are whitish, wingless or with wing buds. These 

individuals may derive from workers (and they are called 

“ergatoids”) or from nymphs (the so called “nymphoids”). 

Neotenics are unable to leave the natal nest and, for this reason, they usually contribute to the 

offspring output or replace primary reproductives in the production task.   

 

 

1.3.2 Workers 

In most termite species, workers are small, whitish, wingless and eyeless (Figure 1.6). They 

represent the 90% or more of the individuals in a colony and they perform all the logistic tasks for 

Figure 1.4 Primary reproductives of 
Reticulitermes lucifugus.  

[source: www.alexanderwild.com]. 

Figure 1.5 Secondary reproductive of 
Cryptotermes cynocephalus.  

[source: www.termiteweb.com]. 
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the maintenance of the nest. Workers, in fact, 

build and repair galleries, look for food and, 

through trophallaxis, they feed reproductives, 

soldier and juveniles. When necessary, they can 

also help soldier in colony defense. In fungus-

growing termites, workers are even able to 

practice agriculture collecting plant matter to produce fungal gardens. Despite being usually a 

neuter caste in most of the higher termites, in some species, workers can moult into ergatoids and 

start reproducing (Vargo & Husseneder, 2009; see also previous paragraph). Furthermore, in many 

lower termites (for examples in the Archotermopsidae and Kalotermitidae families) workers are 

referred to as “false workers” or “pseudergates”: these individuals are in fact immatures, being 

under a developmental stationary state, but they are able to become reproductive whenever the 

conditions are favorable (Korb, 2007; Korb et al., 2012). 

 

 

1.3.3 Soldiers 

The soldier caste comprises from 1% to 10% of the 

individuals belonging to the colony. The main task 

of these individuals is the colony defence. Soldiers 

show a brown pigmented body, a large and robust 

head (Eggleton, 2014). Here they may show a pair 

of modified jaws used as real weapons (Figure 1.7), 

or anatomical structures to spray defensive chemical compound or they may have a phragmotic 

Figure 1.6 Workers of Reticulitermes lucifugus. 
(source: www.bugguide.net) 

Figure 1.7 Soldier of Kalotermes flavicollis.  
(source: www.biodiversidadvirtual.org) 
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head for closing accesses to nest tunnels. Large-jawed soldiers are unable to feed themselves, thus 

they are fed by workers through trophallaxis (Eggleton & Tayasu, 2001).  

 

 

1.4 THE COLONY: ESTABLISHMENT AND STRUCTURE 

The colony is the basal unit of termite’s social life. Considering castes and task subdivision, a colony 

can be referred to as a “superorganism” (Emerson, 1939) where castes represent specific organs, 

each unable to survive without the others. Colony performances are therefore strictly linked to the 

cooperation between individuals of the different castes. For this reason, natural selection does not 

act on the individual but on the group, that is the colony (Eggleton, 2011). 

 

 

1.4.1 Colony establishment  

Three main mechanisms have been described to explain foundation modalities. These are: dispersal 

flights, budding and sociotomy. 

 

1.4.1.1 Dispersal flights  

This is the most common modality to found a colony. It takes place when the winged individuals (i.e. 

primary reproductives, future kings and queens) fly out of their natal nest, looking for a partner to 

perform the nuptial flight and forming, eventually, heterosexual tandems. Depending on the 

species, swarming takes place one or more times in a year and in different seasons. Synchronized 

swarming within the same population increase the probability of encounter among non-nestmate 

reproductives. Moreover, this probability is, possibly, further limited by male and female alates 

covering different distances during the swarm (Vargo & Husseneder, 2011).  
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After the nuptial flight, individuals lose their wings at the basal suture line and start to search for a 

colonization site. After the new nest is built, the royal pair starts to produce the offspring sexually, 

taking care of the first brood of eggs and juveniles inside a cavity placed in the deep of the nest, 

called the “royal chamber” in Rhinotermitidae and higher termites.  

 

1.4.1.2 Budding 

In this alternative modality of colony foundation, a group of individuals, including neotenics, 

separate from the natal colony (Husseneder et al., 1998). Generally, this occurs at the periphery of 

large and expanded colonies, where the transmission of pheromones and other suppressor stimuli 

secerned by royals is less strong. It can be also the result of accidental events such as dramatic 

weather impact, floods or soil disruption (Husseneder et al., 1998). In any case, neotenics become 

active reproductives and found a new colony. 

 

1.4.1.3 Sociotomy 

Colony establishment through sociotomy occurs when the royal couple, together with some 

individuals from the other castes, leave the original nest and establish a new colony. In the old nest, 

the reproduction and, thus, the maintenance of the colony is continued by neotenics. Sociotomy is 

rare in termites: in fact, it was observed only in Anoplotermes and Trinervitermes species (Grassé, 

1949).  
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1.4.2 Colony structure  

During its lifetime, a colony grows and changes its family structure, also possibly influenced by the 

breeding system expressed. Three family types are recognized (Vargo & Husseneder, 2009): simple 

family, extended family and mixed family.  

 

1.4.2.1 Simple family 

A simple family represents the simplest colony structure where all the individuals are the offspring 

of a single pair of reproductives, that is the founding couple. This condition is usually observed 

during the early stages of the colony establishment.  

 

1.4.2.2 Extended family 

When secondary reproductives develop and start contributing to the offspring production, the 

family structure of the colony becomes extended. These neotenics are the offspring of the reigning 

queen and king and they reproduce among themselves or, in some instances, together with one or 

both of the primary reproductives. The extended family structure is typically found in mature/late 

stages of colony life, and allows colony persistence, growth and expansion after the death of the 

royal couple. 

 

1.4.2.3 Mixed family 

A mixed family structure emerges when in a colony three or more unrelated primary reproductives 

occur. Mixed family can be produced through several mechanisms such as fusion events between 

two or more colonies, colony founding by three or more primary queens and kings (also known as 

pleometrosis) or, in more rare instances, when an established colony adopts unrelated 

reproductives.  
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1.5 EVOLUTIONARY THEORIES AND EUSOCIALITY 

As it can be deduced from what it has been described so far, eusociality is defined by cooperative 

behaviours (altruism) and subdivision of labour. This system is the most advanced form of social 

organization in animals and represents one of the major transition from simplicity to complexity, in 

the evolution of life (Szathmary & Maynard-Smith, 1995). The existence of altruism, in which 

individuals forego their own reproduction to increase the fitness of others, constitutes, 

nevertheless, an evolutionary paradox being in conflict with Darwin’s concept of reproductive self-

interest (Darwin, 1859). “Kin-selection” theory (Maynard-Smith, 1964), arose from Hamilton’s 

theory of inclusive fitness (Hamilton, 1964), provides one of the best explanation resolving such a 

conflict. This theory, through the inequality R > c/b, explains how natural selection favours 

cooperation when the relatedness (R) between altruists and beneficiaries is higher than the ratio of 

costs (c; fitness lost by altruists) to benefits (b; fitness gained by beneficiaries). Individuals, thus, 

forego their reproduction and address their resource investment towards close relatives so as to 

maximize the transmission rate of their own genes to the next generation (Hamilton, 1964). 

Relatedness, therefore, seems to be a driving force for the emergence of eusociality. Among 

eusocial animals, social Hymenoptera (all ants, some bees and wasps) are the most successful 

demonstration of this theory because of their haplo-diploid genetic system for sex determination 

resulting in a high relatedness asymmetry between individuals. It was observed, in fact, that diploid 

workers invest more resources in their diploid sisters (queens) being more related to the latter than 

to their haploid brothers (drone bees; Trivers & Hare, 1976; Boomsma & Grafen, 1991; Sundström, 

1994; Queller & Strassmann, 1998). Although kin selection appears as the best model for altruism 

in haplodiploid Hymenoptera, there are other instances in which this theory fails to explain the 

evolution of eusociality. Social behaviour, indeed, is also present in several diplo-diploid animals 

apparently lacking relatedness asymmetries between sexes and\or generations such as termites, 
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some shrimp species and naked mole rats (Korb & Heinze 2008). For these groups, the evolutionary 

game theory (Maynard-Smith & Price, 1973) seems to better explain the existence of altruistic 

behaviours, together with the Darwinian competition. Using the “Prisoner’s dilemma” example 

game, which tests the payoffs of cooperating or in defecting from cooperation (Nowak et al., 1995), 

the theory demonstrates that altruism among individuals, who interact repeatedly, can be equal or 

even more advantageous than competition. Mutual cooperation, thus, allows individuals to gain a 

benefit that will be greater than the cost paid by each of them for adopting altruistic behaviour. 

Moreover, each individual, after having implemented an altruistic behaviour at first, is able to adopt 

the most advantageous behaviour imitating, at each interaction, those adopted by the other (“tit 

for tat” game strategy; Maynard-Smith, 1982). Game theory, therefore, provides an alternative 

interpretation, independent from inclusive fitness, to understand the evolution of social behaviour 

also in diplo-diploid eusocial animals, like termites, and even between unrelated individuals, like in 

the case of several animals living in groups (e.g. herds, flocks etc.).  

 

 

1.5.1 Accelerated nest inheritance  

 
Termite life-history provides a good example for understanding the game theory and its dynamics 

influencing social behaviour. Damp-wood (Archotermopsidae) and dry-wood (Kalotermitidae) 

termites, often referred together as ‘wood- dwelling termites’, include species that forms small 

colonies in a single piece of wood. These termites spend their entire life inside the nest using it both 

as shelter and food (Abe 1987, 1990). Workers of these species are totipotent and show a very 

flexible development (pseudoergates; see Chapter 1.3). They are, in fact, kept under a 

developmental stationary state by the pheromones secreted by the reigning queen; once released 

from this chemical bound, they are able to develop into soldiers or in winged (alates) or secondary 
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reproductives (Roisin 2000; Roisin & Korb 2011). The chance to become reproductives gives these 

workers, beside the indirect fitness derived from assisting relatives, also a direct fitness deriving 

from the possibility to inherit the nest after the death of primary reproductives. According to this, 

experimental studies on laboratory colonies of the archotermopsid Zootermopsis nevadensis and 

the kalotermitid Cryptotermes secundus have described that interactions and eventual fusion 

between colonies lead to the death of reigning reproductives allowing workers to become 

reproductives themselves and to inherit the nest (Thorne et al., 2003; Korb & Schneider 2007). These 

studies have also suggested that the opportunity for workers to inherit the nest could be frequent 

in natural populations where colonies interact and merge in mixed-family colonies. This 

phenomenon, called Accelerated Nest Inheritance (ANI; Thorne et al., 2003), may have promoted 

the evolution of eusociality in lower termites by favouring cooperation between unrelated colonies 

(Thorne et al. 2003; Johns et al. 2009; Howard & Thorne 2011).  

 

 

1.6 REPRODUCTION IN TERMITES  

Being diplo-diploid organisms, the common reproductive system in termites is gonochorism, with 

males and females equally contributing to the progeny for the nuclear genome. Through sexual 

reproduction, reigning queen and king produce workers, soldiers, winged dispersing reproductives 

and neotenics. However, in addition to sexual reproduction, there are some instances in which 

female termites are able to reproduce through parthenogenesis (Matsuura, 2011; Kobayashi & 

Miyaguni, 2016). For example, this happens in Reticulitermes speratus when female alates fail to 

mate with males, during the swarming season. In these circumstances, some species form 

homosexual tandem in which two females cooperate and found together the colony, helping each 

other in the brood care (Matsuura & Nishida, 2001; Matsuura et al., 2002).  
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1.6.1 Asexual Queen Succession (AQS) 

 

Parthenogenetic (often referred to as “asexual”) reproduction can be a reproductive step 

characterizing the life cycle of a colony. In some termite species, in fact, the primary queen, after 

founding the colony through sexual reproduction with the primary king, produces female secondary 

reproductives (secondary queen) through thelytokous parthenogenesis (Figure 1.8, A). These 

secondary queens, upon primary queen’s death, will mate with the primary king and contribute to 

the growth of the colony (Figure 1.8, B) extending the founder queen genetic input over the time 

(Asexual Queen Succession, AQS; Matsuura et al., 2009; Matsuura 2011, 2017).  

The AQS strategy seems to be an ideal compromise between sexual and asexual reproduction 

outcomes, allowing to maintain the original genetic variability of the colony that otherwise would 

be progressively reduced by parent-offspring mating or by sib-mating between secondary 

reproductives (Matsuura, 2011). 

Figure 1.8 Schematic diagram of Asexual queen succession (AQS) strategy in long lived species of the Reticuliterms 
genus. 

(source: Kobayashi et al., 2013) 
 

A B C 
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It has been suggested that under the AQS the diplo-diploid system of termites could fit into the 

Hamilton’s inclusive fitness model (Kobayashi et al., 2013). At later stage of colony life, the primary 

king die and is replaced by a sexually-produced male neotenic. This secondary king carry, therefore, 

genes from the primary king and from the primary queen through its clones, secondary queens. 

When this secondary king mates with the parthenogenetically produced secondary queens (Figure 

1.8, C), a mother-son inbreeding occurs generating a sex-asymmetric genetic inheritance which 

would increase, as a consequence, a female-biased allocation of dispersers (Kobayashi et al., 2013). 

This theoretical prediction was put forward on the basis of a female-biased sex-ratio of dispersing 

reproductives in the AQS species, but no genetic evidence supporting such hypothesis has been 

reported to date (Kobayashi et al., 2013). 

Notwithstanding the envisaged advantage of this mating system, this strategy does not appear 

widespread among termite taxa. To date, in fact, AQS strategy has been described only in three 

Reticulitermes species (Rhinotermitidae) and in three neotropical termites belonging to the 

Termitidae family (Matsuura et al., 2009; Vargo et al., 2012; Luchetti et al., 2013b; Fougeyrollas et 

al., 2015; Fournier et al., 2016; Fougeyrollas et al., 2017). Given that the occurrence of this 

reproductive mode appears patchy within the phylogeny of these taxa, a multiple independent 

origin of AQS has been suggested (Dedeine et al., 2016).  

This can be somehow confirmed by the finding of some differences in the AQS expression among 

Reticulitermes and Termitidae species. First, the cytological mechanism of ploidy restoration is 

different: it involves a terminal fusion in Reticulitermes species and a gamete duplication or a central 

fusion in Termitidae taxa (Matsuura, 2017). Second, while it is generally acknowledged that AQS 

may bring advantage to the colony on the long timespan, as in the case of the long-lived 

Reticulitermes species, in the termitid species Silvestritermes minutus the AQS seems to mediate a 
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faster colony growth and production of swarming alates within a very short colony lifespan 

(Fougeyrollas et al., 2017).  

 

 

1.6.2 Reproduction driven by Wolbachia microbe 

As introduced in Chapter 1.2, microbial symbionts play a crucial role in termite biology providing 

benefits through mutualism (Dedeine et al., 2003). Termite gut microbiota is composed by both 

prokaryotes (bacteria and archaea) and unicellular eukaryotes (flagellated protists) which degrade 

lignin, cellulose, and hemicelluloses to fermentable carbohydrates, enabling termites to feed 

(Berlanga et al., 2011; He et al., 2013). However, termites may also harbour symbionts which, in 

contrast, may carry disadvantages. These are endosymbiotic parasitic bacteria that live within the 

cytoplasm of their host gonads and can induce several effects on reproduction. The most renown of 

these intracellular symbionts are, undoubtedly, -proteobacteria of the genus Wolbachia. It 

includes obligate intracellular bacteria that are cytoplasmically inherited in arthropods and filarial 

nematodes (Lo & Evans, 2007). Four out the sixteen molecularly-identified supergroups of 

Wolbachia (Glowska et al., 2015) infect termites: supergroups A, B, and F infects the majority of 

termite species, including both derived (i.e., Reticulitermes) and more primitive taxa (i.e., 

Kalotermes), while supergroup H is only found in Zootermopsis species (Lo et al., 2002; Salunke et. 

al, 2010).  

The different phenotypes of Wolbachia infection are feminization, parthenogenesis, male killing, 

and cytoplasmic incompatibility (CI; Figure 1.9). CI is the most frequent Wolbachia-induced 

phenotype and it consists in an incompatibility between sperm from infected males and eggs of 

uninfected females or between individuals harbouring different Wolbachia strains (Lo & Evans, 
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2007). The incompatibility generated by this microbe is due to the disruption of the hosts cell cycle, 

which results in an asynchronous development of male and female pronuclei (Werren et al., 2008). 

 CI induced by this microbe can results as a post-copulatory reproductive isolation and, for this 

reason, it was suggested that Wolbachia could be involved in speciation events (Brucker & 

Bordenstein, 2012). At the moment, however, the phenotype of Wolbachia infection in termites is 

currently unknown. 

 

Figure 1.9 Wolbachia-induced phenotypes. 
(source: Werren et al., 2008) 
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CHAPTER 2 

*** 

MOLECULAR MARKERS 

 

 

Molecular markers are, at present, highly used tools for taxonomic, phylogenetic, phylogeographic 

and population genetics purposes. Their success is due to the fact that diagnostic morphological 

characters are often limited and difficult to identify, and because of a high intraspecific variability 

or peculiar adaptations. For termites, the existence of morphologically differentiated castes, often 

not available at the same time, adds to the difficulties in species identification. Molecular data, on 

the contrary, are available in large number and do not depend on intraspecific morphological 

variation or developmental stage. Another advantage of molecular data is that all known life forms 

are based on nucleic acids and, theoretically, each nucleotide position can be considered as a 

character and assumed to be independent.  

Basically, a molecular marker is a particular segment of DNA that is representative of the variation 

at the genome level (Khan, 2015). An ideal molecular marker should be universal (present in all 

taxa), vertically inherited (inheritance can be monitored), ubiquitous and polymorphic. Moreover, 

it should be non-recombinant (but see below) and undergoing into neutral evolution. In fact, 

recombinant DNA sequences tend to be disregarded for phylogenetic purposes because their 

presence may hinder the correct signal, introducing instances of reticulate evolution. 

Furthermore, a marker under selective pressures will not vary or it will vary under constraints, 

therefore not providing useful information about taxa divergence time or returning genetic 

relationships biased by adaptation and/or convergent evolution (Ho, 2008).  
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In animals, a large number of different markers are available and each of them differs in their 

informational content, also depending on their origin (nuclear or mitochondrial DNA). Nuclear and 

mitochondrial genomes show, in fact, several differences. The former, usually, is bi-parentally 

inherited: it means that the genome, when bisexual reproduction takes place, undergoes meiosis 

and, therefore, may be subject to recombination events (e.g. crossing-over) and random 

homologues segregation followed by amphymixis. Overall, nuclear genes show lower levels of 

variability with respect to mitochondrial ones and, therefore, they are considered excellent 

markers for the phylogenetic analysis of distantly related species (Hirt & Horner, 2005). The 

nuclear genome embodies, though, also variable and hypervariable tracts. These can be so highly 

polymorphic to allow to differentiate among populations or even between individuals of the same 

population. For this reason, these hypervariable regions are the best option for population 

genetics and DNA fingerprinting analyses (Allendorf & Luikart, 2009). Examples of these markers 

are SNP, microsatellites, RFLP, AFLP and RADP. The first three markers are called codominant as 

they give the possibility to identify both alleles of any given locus, allowing to identify the 

heterozygote and homozygote profiles. AFLP and RADP, on the contrary, are defined as dominant 

markers: they only detect the presence\absence of a given allele, and cannot allow to discriminate 

heterozygote and homozygote profiles. 

Mitochondrial DNA (mtDNA) is, in most of animals, uniparentally inherited from the parent 

female, exception being so far evidenced only in mollusks (Breton et al., 2014; Gusman et al., 

2016). The mtDNA genome is haploid and do not experience crossing over. Animal mitochondrial 

genome is a relatively small circular molecule, typically comprising 37 genes, for a total of 15-20 

Kb. Generally speaking, there are 13 genes encoding for protein subunits of the enzymes for the 

oxidative phosphorylation pathway (COI, COI, COIII, cyt-b, ND1-6, ND4L, ATP6, ATP8), two rRNA 

genes (12S and 16S), and 22 tRNA genes. It also includes a non-coding, hypervariable region 
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known as control region (CR). Notwithstanding its highly-conserved content, the gene order may 

vary in metazoan. mtDNA genes are usually more variable than the nuclear ones: in fact, the 

mutational rate of the mitochondrial genome is 5 - 10 times higher than in the nuclear genome 

(Lynch, 2007). This high mutation rate of the mitochondrial genome is caused by a low efficiency 

of DNA repair pathways and\or by a more mutagenic organellar environment. Yet, the mutational 

rate varies among its genes: protein coding genes, for example, show a low mutational rate while 

the control region is much more variable. The use of mtDNA as a marker is very popular in 

phylogenetic and population genetic studies since, being haploid, no allelic discrimination is 

required; hence, DNA sequences can be directly isolated and amplified (Hurst & Jiggins, 2005). 

Moreover, mtDNA can be easily amplified through PCR methodology thanks to the availability of 

universal primers, i.e. primers that allow to amplify the same DNA fragment in several different 

taxa (see, for example, Cheng et al., 2012). Given all these features, mtDNA markers can be very 

powerful in resolving species-level phylogenies (Grechko, 2002). However, attention must be paid 

to the use of mitochondrial markers in specific instances. For example, being uniparentally 

inherited and, thus, haploid, mitochondrial markers do not allow to identify hybrid species. In this 

case, the use of codominant markers, such as microsatellites, is more appropriate. 

During my PhD research, molecular analysis on termites have been performed using both nuclear 

(MS loci) and mitochondrial (COI/tRNALeu/COII portion, cytochrome oxydase II (COII) and 16S 

genes) markers, in order to achieve different goals. Moreover, the bacterial FtsZ gene has been 

used for the analyses dealing with Wolbachia microbe detection. In the following chapters, some 

general aspects of these markers are given. 
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2.1 MICROSATELLITES 

Short Tandem Repeats (STRs), commonly called 

MicroSatellites (MS), are small portions of DNA 

composed by two up to six nucleotides (i.e. the 

motif) tandemly repeated for a variable number of 

times. Alleles are, thus, identified by the length of 

the tandem repeats array. Located in the nuclear 

genome of eukaryotes, microsatellites consist of 

non-coding DNA and, for this, they are considered 

neutral or, in some instances, experiencing only 

weak selective pressures. Microsatellites can 

mutate very quickly, with an estimated mutation rate of 10-3 each generation (Li et al., 2002). The 

most important mechanism generating mutation process is the “polymerase slippage” during DNA 

replication (Figure 2.1). This happens when one of the two DNA strands, after the separation and 

the following re-union, overlaps in a different position due to the repeated motif, forming a loop. 

When this loop is formed in the newly synthesized strand, the MS units will increase in number; on 

the contrary, the motif number will be reduced if the loop is formed in the template strand.  

MS genotyping at multiple loci allows to carry out population genetics studies, comparing the 

genetic variability and relationship among different populations. It is further useful to identify the 

parent-offspring relationship and the genetic relatedness among family members. In termites, 

therefore, in addition to population genetics studies, MS resulted particularly useful in the study 

of colony structure and reproductive strategies (Vargo & Husseneder, 2011). 

  

Figure 2.1 The polymerase splippage phenomenon 
[source: www. virtuallaboratory.colorado.edu] 
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2.2 CYTOCHROME OXIDASE I & II (COI & COII) 

COI and COII genes encode for two of the seven polypeptide subunits in the cytochrome c oxidase 

complex, which is present in both bacteria and mitochondria. In Reticulitermes termites, the COI 

gene consists of approximately 1545 bp while COII is about 684 bp (Cameron & Whiting, 2007). 

COI and/or COII sequences have been applied to phylogenetic problems at a wide range of 

hierarchical levels in insects, from closely related species to genera and subfamilies, families, and 

even orders (Hebert et al., 2003; Park et al., 2012). The COI gene is slowly evolving if compared to 

other protein coding mitochondrial genes and it is the marker used for DNA barcoding in animals 

(Hebert et al., 2003). The COII gene, although more variable than COI and not canonically used in 

DNA barcoding analyses, provides a good phylogenetic signal and its use in clarifying interspecific 

relationships is increasingly widespread (Roe & Sperling, 2007).  

 

 

2.3 MICROBIAL FTSZ GENE 

The bacteria-specific “filamenting temperature sensitive mutant Z” (FtsZ) is a nucleoid bacterial 

gene. It is about 750bp in length and belongs to the Fts gene complex encoding for cell division 

proteins.  FtsZ protein plays a central role during bacterial cytokinesis. In fact, it assembles into the 

contractile Z-ring and coordinates more than a dozen other cell division proteins at the mid-cell 

site of the closing septum (Vollumer, 2008) 

Considering its function, FtsZ protein is a prokaryotic homologue of the eukaryotic protein tubulin. 

FtsZ gene is one of the most used markers for detecting Wolbachia infection and for strains 

characterization, as demonstrated in several studies (e.g. Schulenburg et al., 2000; Lo et al., 2002; 

Bordenstein & Rosengaus, 2005; Casiraghi et al., 2005; Simões et al., 2011; Lefoulon et al., 2016). 
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CHAPTER 3 

*** 

STATE OF THE ART AND RESEARCH AIMS 

 

 

3.1 STATE OF THE ART 

 

 

3.1.1 Genetic diversity and phylogeography of European termites 

Native European termite species belong to two genera: Reticulitermes and Kalotermes. The former 

genus includes six subterranean-termite species (Austin et al., 2002; Marini & Mantovani, 2002; 

Velona`et al., 2010; Dedeine et al., 2016), with very different distribution ranges. R. grassei and R. 

banyulensis are distributed in the Iberian Peninsula (Kutnik et al. 2004), while R. lucifugus, the R. 

grassei sister species (Dedeine et al., 2016), occurs across Italy and in southern France. Two 

subspecies, R.l.lucifugus and R.l.corsicus are known from Penisular Italy-South France and from 

Corsica and Sardinia islands, with some population in Tuscany, respectively. A divergent 

mitochondrial lineage, probably a third subspecies, has been found in Sicily (Luchetti et al., 2005, 

2013c). In northern Italy, France and Germany is also present the invasive R. flavipes, native of 

North America (Ghesini et al. 2010; Perdereau et al. 2013).  In the Balkans (from Croatian coasts 

down to Peloponnese and to Eastern Greece) two species are recognized: R. urbis (Croatia to 

Peloponnese) and R. balkanensis in Eastern Greece (Austin et al., 2002; Uva et al., 2004; Luchetti 

et al., 2007; Dedeine et al., 2016). R. urbis, recently described as new species by Bagnères et al. 
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(2003) shows a disjunct distribution in the Balkans, South and North-East Italy and South France, 

with two main mitochondrial lineages: these are geographically partitioned North and South to 

the Corinth strait, but were found mixed in Italian and French populations (Luchetti et al., 2007; 

Leniaud et al., 2009a). In addition, this species is mainly observed in urban habitats in Italy and 

France, where it causes damages to structures and wooden artefacts (Leniaud et al., 2009b; 

Ferrari et al., 2011), while it can be commonly found in the wild within the Balkans range (Marini & 

Mantovani, 2002; Bagnères et al., 2003; Uva et al., 2004; Luchetti et al., 2007; Perdereau et al., 

2013). Therefore, it was suggested that R. urbis is native from the Balkan Peninsula and was 

successively introduced in Italy and France (Luchetti et al., 2007; Leniaud et al., 2009a, b). On the 

other hand, a recent survey of Italian Reticulitermes species distribution questioned about the 

invasive status of R. urbis in Italy and France (Ghesini & Marini, 2012). Considering some 

similarities in the distribution areas of this species with those of the native R. lucifugus, basically 

consisting of the presence of both species only in urban habitats in the Italian northern regions, 

this study hypothesised a relict distribution of R. urbis in Italy and France rather than a secondary 

introduction (Ghesini & Marini, 2012). However, other studies suggested that also some R. 

lucifugus colonies could have been introduced in northern towns by human-mediated transports 

(Luchetti et al., 2004; Luchetti et al., 2013c), while its distribution follows a clear phylogeographic 

structure in agreement with a pattern of recent natural dispersion (Luchetti et al., 2013c). On the 

whole, a deeper genetic and phylogeographic investigation is required to clarify the R. urbis 

distribution status. Very recently, Reticulitermes populations from the Aegean range and Cyprus 

have been described as a new species, R. aegeus (Ghesini & Marini, 2015). 

As far as Kalotermes is concerned, recent molecular studies showed that two dry-wood termite 

species are present in Europe: K. flavicollis and K. italicus (Velonà et al., 2011; Ghesini & Marini, 

2013; Luchetti et al., 2013a). The first one comprises at least three main mitochondrial lineages 
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(Luchetti et al., 2004, 2013a; Velonà et al., 2011): the lineage A (also termed K. flavicollis sensu 

stricto; Velonà et al., 2011; Luchetti et al., 2013a) includes all samples collected from the Aegean 

islands (Crete and the Cyclades) to the Italian Peninsula; the lineage SC comprises colonies found 

in Sardinia and Corsica; the lineage SF is, actually, limited to Southern France. No data are 

available for the taxonomic and phylogenetic status of Kalotermes populations from the Iberia 

Peninsula (Maistrello et al., 2010). Furthermore, a fourth, highly divergent lineage, in sympatry 

with lineage A, was discovered in an Italian population and named lineage B. Interestingly, several 

colonies were found harboring mitochondrial DNA haplotypes of both lineages A and B and data 

on nuclear DNA markers suggested the possibility of interbreeding (Luchetti et al., 2013a). The 

other species, K. italicus, easily recognizable as adult alates show a black or dark brown pronotum 

(as opposed to the yellow-necked K. flavicollis), was found only in Southern Tuscany and in a small 

area on the Italian mid-Adriatic coast (Ghesini & Marini, 2013). The taxonomy and the distribution 

pattern of Kalotermes taxa, thus, is far from being complete and many issues remain unresolved 

such as possible relationships among lineage B and K. italicus, and Kalotermes samples genetic 

characterization in the Iberian Peninsula.  

 

 

3.1.2 Breeding systems and social organization in European termites 

Luchetti et al. (2013b) described the occurrence of the AQS strategy (see Chapter 1.6.1) in Italian 

colonies of R. lucifugus. As explained in Chapter 1.6.1, the main diagnostic feature of this strategy 

is the facultative use of thelytokous parthenogenesis (Matsuura et al., 2009; Vargo et al., 2012; 

Luchetti et al., 2013b; Fougeyrollas et al., 2015; Fournier et al., 2016; Fougeyrollas et al., 2017). In 

AQS termites, in fact, the primary queen, after founding the colony with the primary king, is 

replaced by multiple secondary queens, produced by thelytoky (Matsuura, 2017). In addition to 
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the main adaptive significance of the AQS strategy, e.g. the conservation of the founder queen 

genes even after her death and, thus, the maintenance of the initial level of genetic diversity in the 

colony over the time (Matsuura, 2017), it has been suggested that AQS system could provide the 

basis for a better understanding of the inclusive fitness theory (Hamilton, 1964) in social diploids 

organisms like termites (Kobayashi et al., 2013). Through a clear theoretical model, Kobayashi and 

co-workers (2013) showed, in fact, that the replacement of founders with parthenogenetic 

secondary queens and sexually produced secondary kings leads to a sex-asymmetric genetic 

inheritance increasing a female-biased allocation in the following offspring. However, this 

theoretical prediction was supposed only on the basis of a female-biased sex-ratio of dispersing 

reproductives in the other two congeneric AQS species, the Japanese R. speratus and American R. 

virginicus (Kobayashi et al., 2013), but no genetic investigations supporting such theoretical 

prediction, to date, were described. In R. lucifugus, further, data about sex-ratio of dispersers have 

not so far reported. It is therefore unclear whether the sex-biased resources allocation in 

swarming individuals could occur even at a morphological level, considering that a direct 

correlation between the expression of the AQS system and an increase in body size, as a 

consequence of a greater fertility, was described in secondary queens of R. speratus (Yamamoto & 

Matsuura, 2012). On the whole, deeper investigations for a better definition of the R. lucifugus 

AQS system, even at the morphological level, is required. As far as the other European 

Reticulitermes species are concerned, R. urbis does not display AQS strategy, as resulted from a 

genetic investigation performed in the Italian range (Luchetti et al., 2013b). Even R. grassei and R. 

flavipes, on the basis of preliminary data (Matsuura, 2011; Dedeine et al., 2016), do not seem to 

exhibit AQS strategy but no genetic investigations have been performed so far.  In addition, the 

above mentioned preliminary investigations on R. flavipes were performed on native American 

populations but nothing is known about colonies in the invasive range. For this reason, 
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investigations about AQS occurrence in European R. grassei and R. flavipes (invasive range) 

samples appear to be needed. 

Another particular strategy influencing the breeding system was described in the Kalotermes 

genus. In Italian populations of K. flavicollis, Luchetti et al. (2013a) demonstrated the occurrence 

of extreme colony fusion events explained in the light of the ‘Accelerated Nest Inheritance’ theory 

(Thorne et al., 2003; see Chapter 1.5.1.). These colonies were found to fuse in the field, with 

instances of extreme fusion given by up to nine mitochondrial haplotypes even belonging to highly 

divergent genetic lineages (lineage A and Lineage B; see Chapter 3.1.1). Moreover, it was also 

observed that, after fusion, hybrid individuals emerged (Luchetti et al., 2013a). Taking into 

account that the recently described K. italicus shows a sympatric distribution area with K. 

flavicollis (Ghesini & Marini, 2013) it is not to be excluded, therefore, a possible occurrence of this 

phenomenon even at an interspecific level. Obviously, this hypothesis requires further 

investigation.  

 

 

3.1.3 Wolbachia and reproductive biology  

As explained in Chapter 1.6.2, Wolbachia is an -proteobacteria genus including parasitic 

endosymbiotic microbes which infect several termite species (Lo et al., 2002; Salunke et. al, 2010). 

Although the systematics and phylogeny of this termite symbionts as well as the Wolbachia 

lineages distribution among the hosts have been widely studied, it is poorly investigated if 

Wolbachia infection can affect the reproductive biology of termites (Matsuura et al., 2004; Lo & 

Evans, 2007; Werren et al., 2008). This microbe, in fact, can induce several effects on the host 

reproductive biology such as feminization, male killing, parthenogenesis and cytoplasmic 

incompatibility (Lo & Evans, 2007). 
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For native European Reticulitermes species, evidences about Wolbachia infection were described 

only in the soldier cast of R. grassei (Berlanga et al., 2011), the only taxon analyzed so far. Previous 

analyses revealed Wolbachia occurrence also in the American R. flavipes and the Japanese R. 

speratus, the latter being the first AQS species identified (Matsuura et al., 2004; Matsuura et al., 

2009). The presence of Wolbachia infection in both a non-AQS and an AQS species does not 

suggest an involvement of Wolbachia in the conditional use of parthenogenesis during AQS. 

Notwithstanding these previous results, the analysis of Wolbachia occurrence in the Italian AQS R. 

lucifugus (Luchetti et al., 2013b) could be of interest.  

As far as the Kalotermes genus is concerned, Wolbachia infection was detected only in K. 

flavicollis, at that time the only known species of this genus in Europe, infected by F strain (Lo et 

al., 2002; Casiraghi et al., 2005). No investigations, thus, were performed so far on the newly 

described K. italicus. Moreover, as previously reported, hybridization and colony fusion events 

occur in K. flavicollis (Luchetti et al., 2013a). It was supposed that the possibility of hybridization 

between different genetic lineages could facilitate the fusion of more than two colonies 

overcoming mechanisms of nest-mate recognition (Thorne et al., 2003), but no investigations have 

been so far performed in order to clarify if Wolbachia may be involved in such hybridization and, 

therefore, colony fusion events occurring in this taxon. 

On the whole, at least as a preliminary investigation, the analysis to detect Wolbachia occurrence 

in European termites appears of interest. 

 

 

3.2 AIMS  

Taking into account the above reported data, my PhD research project focused on the analysis of 

the genetic diversity and breeding systems in European Reticulitermes and Kalotermes taxa. 
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Investigations were performed at the intrageneric level with comparisons also at the intergeneric 

one in order to highlight new insights on the evolution of eusociality.  

My surveys, performed through genetic and morphological approaches, had the following main 

goals:  

- A deep phylogeographic investigation of Balkan, Italian, and French colonies of R. urbis in 

order to clarify the invasive status of this species and to identify the native source 

population(s). Analysis were conducted using mitochondrial DNA sequences of cytochrome 

oxidase II (COII) and 6 microsatellite loci.  

- A more detailed picture of Kalotermes biogeography and evolution in Europe, using the 

highly informative cox1/trnL/cox2 mitochondrial DNA marker i) to analyze samples also 

from previously unsampled areas, ii) to define the relationships between lineage B and K. 

Italicus, iii) to quantify the real extent of colony mixing in these termites. 

- A microsatellite survey of the French R. grassei, R. flavipes and Italian R. lucifugus 

populations in order to verify, providing genetic evidences, the reproductive strategies of 

the former two species and to describe, more in detail, the occurrence of the AQS strategy 

in Italian colonies of R. lucifugus. 

- To test sex-biased resources allocation through sex ratio evaluation and morphometric 

analyses on swarming individuals belonging to R. lucifugus colonies, trying to understand 

the evolutionary and ecological forces behind the onset of this phenomenon. 

- A preliminary molecular investigation, using the bacterial FtsZ marker, on Reticulitermes 

and Kalotermes termite species in order to identify Wolbachia infection and to characterize 

the relevant strains, paying particular attention to the AQS species R. lucifugus and to 

mixed colonies of the Kalotermes genus to verify whether Wolbachia presence can be 

related to parthenogenesis or hybridization events. 
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The above reported topics will be presented in Chapters 4-8. In Chapter 9, results obtained will be 

discussed in a comparative view. 

While Chapters 4 and 5 correspond to either printed or DOI available papers, Chapters 6, 7 and 8 

are attached as papers to be submitted.  
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Abstract Biological invasions are among key fac-

tors of ecological changes, and social insects appear as

highly successful invasive animals. Subterranean

termites of the holarctic genus Reticulitermes are

present in Europe with six native and one invasive (the

nearctic R. flavipes) species. The species R. urbis

shows a disjunct distribution in the Western Balkans,

Eastern Italy and Southern France. Previous molecular

and population genetics data suggested that the taxon

originated from the Balkans, and that Italian and

French populations are invasive, but it is still unknown

how many introduction events occurred and from

which Balkan source populations. To address these

questions, a population genetics analysis was per-

formed on a larger sampling than previous studies,

using mitochondrial cytochrome oxidase II and 6

microsatellite markers on 47 colonies collected across

the whole distribution area. Mitochondrial analysis

confirmed the presence of two major lineages where

colonies from Balkans, Italy, and France intermingle.

Similarly, microsatellite loci analysis indicated the

presence of two genetic clusters, though not corre-

sponding to the two mitochondrial clades, each

including colonies from the three sampled areas and

with individuals showing mixed cluster membership.

Overall, French and Italian populations showed indi-

cations of bottleneck (reduced genetic diversity and

change of allele frequencies) and do not appear

genetically differentiated from the Balkan population.

Results presented here support a history of multiple

introductions in Italy and France, in a scenario

consistent with continuous exchanges between native

and invasive areas, as expected along human trades

routes.

Keywords Invasive species � Population genetics �
mtDNA � Microsatellites � Social insects � Termite

Introduction

A species that spreads outside its native range, settling

and expanding into a new introduced range, and

impacting upon local biodiversity and resources is

defined as invasive (EU Regulation No. 1143/2014;

Kolar and Lodge 2001). Biological invasions often

cause environmental changes such as ecosystem

degradation and reduced biodiversity, as well as
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problems to agriculture and public health (Evans et al.

2013). In some instances, invasive species can cause

extensive economic damage as pests in urban areas

and anthropic settlements (Pejchar andMooney 2009).

Understanding the success of biological invasions is

essential to develop effective prevention and manage-

ment strategies against invasive species. A crucial

piece of information to understand the invasion

success is the determination of the geographical origin

of these species (Caldera et al. 2008; Muirhead et al.

2008). Phylogenetic and population genetics studies

can help to obtain information about the source

population(s), invasion routes, and the pattern of

colonization (Perdereau et al. 2011, 2013a). Social

insects are among the most successful animal species

at invading new environments, and their invasiveness

can be favored by life-history traits such as social

structure, breeding system, and mode of dispersal as

well as the ability to resist to biotic aggression thanks

to both individual- and colony-level responses (Moller

1996).

Most studies on invasive social insects are con-

cerned with Hymenoptera (Buttermore 1997; Holway

et al. 2002; Tsutsui and Suarez 2003; Ascunce et al.

2011; Lander et al. 2014; Sarnat et al. 2015), while

much less is known about the invasive biology of

termites, despite the evidence that they can provide an

interesting framework for understanding processes of

biological invasions (Vargo and Husseneder 2009;

Evans et al. 2013; Perdereau et al. 2015; Buczkowski

and Bertelsmeier 2016) and their impact on local

ecosystems (Holt and Lepage 2000; Sugimoto et al.

2000). Termites can be also destructive pests causing

extensive damage to cellulose-containing materials

and wooden structures; therefore, they are among the

most destructive global pest species with an estimated

global economic impact higher than $40 billion (US)

per year, with subterranean termites alone causing

about 80% of damages (Su and Scheffrahn 2000; Su

2002; Rust and Su 2012).

ReticulitermesHolmgren, 1913 is a Holarctic genus

of subterranean termites belonging to the Rhinotermi-

tidae family (Blattodea, Termitoidae). Reticulitermes

species are widespread in temperate regions where

they play important ecological roles, especially in the

recycling of organic matter (Bignell and Eggleton

2000). Furthermore, Reticulitermes termites fre-

quently attack wooden structures and, consequently,

cause significant economic damage in urban settings

(Su 2002). According to recent time-scaled phyloge-

netic studies, this genus shows four main lineages

distributed among four major geographical regions:

north America, western Europe, eastern

Europe ? western Asia, and eastern Asia (Dedeine

et al. 2016). Eight Reticulitermes species are found in

the Mediterranean Basin (Austin et al. 2002; Marini

and Mantovani 2002; Luchetti et al.

2004, 2007, 2013a; Uva et al. 2004; Velonà et al.

2010; Ghesini and Marini 2012). R. grassei and R.

banyulensis are distributed in the Iberian Peninsula

and in southern France (Kutnik et al. 2004). R.

lucifugus occurs across Italy and in southern France

with two known subspecies and, based on mitochon-

drial phylogeny, probably a new subspecies in Sicily

(Luchetti et al. 2004, 2013a). In the eastern Mediter-

ranean basin, three species are found: R. balkanensis

in Greece, R. clypeatus in Israel, and the newly

described species, R. aegeus, in the Aegean islands

(Austin et al. 2002; Luchetti et al. 2007; Ghesini and

Marini 2015). In addition, two invasive Reticulitermes

species are found in the Mediterranean basin. The first

one, the north American species, R. flavipes, was

introduced to France from Louisiana (USA), and now

can be found in France, Germany and Italy (Ghesini

et al. 2010; Perdereau et al. 2013a, b). The second

species, R. urbis (Bagnères et al. 2003), shows a

disjunct distribution in the Balkans (Greece and

Croatian coasts), Italy, and France, with two mito-

chondrial lineages distributed along the northern and

the southern area of the Corinth strait, respectively, but

mixed in Italian and French populations (Luchetti

et al. 2007; Leniaud et al. 2009a). These phylogenetics

and population genetics studies, then, suggested that

R. urbis is native from the Balkan Peninsula and was

successively introduced in Italy and France (Luchetti

et al. 2007; Leniaud et al. 2009a). This is consistent

with the fact that it is mainly observed in urban

habitats in Italy and France whereas it can be found in

the wild in the Balkans range (Marini and Mantovani

2002; Bagnères et al. 2003; Luchetti et al. 2007;

Perdereau et al. 2013b). In its introduced ranges, large

colonies colonized the oldest part of towns damaging

structures and wooden artifacts. In the northeastern

Italian town of Bagnacavallo, the management of

termite infestation control took almost 15 years (Fer-

rari et al. 2011), and the eradication plan took six years

with an economic impact of about € 1 million

(Municipality of Bagnacavallo, press release of 12th

V. Scicchitano et al.
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August 2006; http://www.comune.bagnacavallo.ra.it/

). A similar situation occurred in the entire town of

Domène in France, which was entirely infested by a

single genetic colonial entity (Leniaud et al. 2009b).

On the other hand, a recent survey of Italian

Reticulitermes species distribution questioned about

the invasive status of Italian and French R. urbis

populations based on some similarities in their distri-

bution areas with those of the native R. lucifugus

(Ghesini andMarini 2012). Basically, these similarities

are that they are both present only in urban habitats in

the Italian northern regions and this has been explained

with possible microclimatic oscillations that may have

allowed termite to thrive in the wild and then forced

their retreat within towns as temperatures cooled

(Ghesini andMarini 2012). This interpretation, though,

cannot be conclusive because also R. lucifugus can be

introduced in northern town by human-mediated

transport (Luchetti et al. 2004; Luchetti et al. 2013a).

Moreover, for R. lucifugus a clear phylogeographic

structure is evident along its distribution, in agreement

with a pattern of recent natural dispersion (Luchetti

et al. 2013a). On the contrary, the pattern of natural

dispersion does not hold for ItalianR. urbis populations

(Luchetti et al. 2007). As subterranean termites are

particularly subject to human-mediated transport

(Jenkins et al. 2001; Perdereau et al. 2013a, b), a

correct phylogeographic signal may be drawn only

from a wide sampling. Here, we present a genetic and

phylogeographic analysis conducted on mitochondrial

DNA sequences of cytochrome oxidase II (COII) and 6

microsatellite loci in Greek, Italian, and French R.

urbis colonies. The sampling presented in this study,

wider than previous ones, confirmed the invasive status

of R. urbis in Italy and France. Moreover, this study

also adds knowledge about possible routes of invasion

and theminimum number of introduction events of this

pest termite.

Materials and methods

Sample collection

A total of 47 sites were sampled from 29 European

localities (Fig. 1; Table 1). Five sites were sampled

within pine-woods across western Greece (from

Peloponnesus to the Epirus coast), and three along

the Croatian coast. Thirty-nine sites were further

sampled: 15 in southern France, two in the northeast

and 22 in the southeast of Italy. Overall, 94 workers,

two for each site, have been analyzed. Specimens were

preserved in 95% ethanol until DNA extraction.

Molecular techniques

Total DNA was isolated from termite heads, to avoid

contamination with gut endosymbionts, using the

CTAB method (Doyle and Doyle 1987). The mito-

chondrial cytochrome oxidase II (COII) gene was

amplified with the primers: B-tLys (50-GTT TAA

GAG ACC ATT ACT TA-30, Simon et al. 1994) and a

modified A-tLeu (50-CAGATAAGT GCA TTG GAT

TT-30, Miura et al. 2000). PCR amplification was

performed on 20 ng of template DNA in a 50 ll
mixture with the GoTaq G2 Flexi DNA Polymerase kit

(Promega, Madison, WI, USA), following the manu-

facturer protocol. Thermal cycling was as follows: an

initial denaturation step at 95 �C for 5 min; 35 cycles

of denaturation at 95 �C for 30 s, followed by

annealing at 54 �C for 30 s, and extension at 72 �C
for 30 s; and a final elongation step at 72 �C for 7 min.

PCR products were purified using the Wizard SV PCR

and Gel cleaning kit (Promega) and sequenced with

the Sanger method at Macrogen Inc., European

Laboratory. Obtained sequences have been checked

with MEGA v. 6 (Tamura et al. 2013) and haplotypes

have been submitted to GenBank, under accession

numbers MF374825–MF374832.

All 94 individuals were also genotyped at six

microsatellite loci (Rf6-1, Rf21-1, Rf5-10, Rs10,

Rs15, Rs33) previously described by Vargo (2000)

and Dronnet et al. (2004). PCR amplification was

performed as for the COII gene but using modified

thermal cycling conditions, with an annealing tem-

perature of 58 �C. Forward primers were WellRED

5’dye-labeled oligo (Sigma), with dye-labeling as

follow: D2-PA for Rf6-1 and Rf5-10; D3-PA for Rf21-

1 and Rs10; D4-PA for Rs15 and Rs33. PCR products

were then read on a Beckmann Coulter CEQTM 8000

Genetic Analysis System to determine alleles size.

Genetic diversity

Haplotype and nucleotide diversity (hd and p) were

estimated frommitochondrial data usingDnaSP v5.10.1

(Librado and Rozas 2009). Allelic richness (Ar), the

mean number of effective alleles (Ne), observed (HO)

Genetic diversity and invasion history
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and expected heterozygosity (HE) were calculated for

microsatellite data using GenAIEx v. 6.502 (Peakall

and Smouse 2012), GENEPOP v. 1.2 (Raymond and

Rousset 1995) and FSTAT v. 2.9.3.2 (Goudet 1995).

BOTTLENECK v. 1.2.02 software (Piry et al. 1999)

with Infinite Allele Model (IAM), the Stepwise Muta-

tion Model (SMM), and the Two-Phase Model (TPM),

was used to check whether there was any evidence of

recent bottlenecks in the introduced populations.

Phylogenetic and population structure analyses

The Maximum Likelihood phylogenetic tree, with 100

bootstrap replicates, and the estimate of the best

substitution model (HKY) were determined using

MEGA v. 6. The haplotype parsimony network was

calculated using TCS v. 1.13 (Clement et al. 2000).

The analysis of molecular variance (AMOVA) and

pairwise Fst, which measure the amount of genetic

differentiation between populations, among the three

geographic areas were performed with GenAIEx

software, with 999 permutations. Bonferroni correc-

tion has been used for multiple comparisons. Genetic

clusters were calculated by means of Bayesian anal-

yses performed with STRUCTURE 2.3.4 (Pritchard

et al. 2000), combining nuclear and mitochondrial

data. The genetic membership q was inferred by

considering probabilities through 1 million Markov

Chain Monte Carlo simulations, after a burn-in period

of 500,000 runs. The best value of K (=genetic groups)

was then calculated using log likelihood (Pritchard

et al. 2000) and delta K (Evanno et al. 2005), running

all simulations with the admixture model of 100,000

repetitions after a burn-in of 50,000 repetitions, for

each value of K between 1 and 20. The ‘‘admixture

model’’ was enabled during the running and individ-

uals were considered as having mixed genotype if

membership proportion resulted[0.2. Finally, Nei’s

Fig. 1 Map of sampling localities. Numbers refer to Table 1
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D pairwise genetic distances (Nei 1972) were used to

compute a Principal Coordinates Analysis (PCoA),

through GenAIEx, to further examine the genetic

relationships among samples.

Results

Genetic diversity

Mitochondrial DNA (COII)

Ninety-four sequences were obtained from the ana-

lyzed samples and all individuals from the same

colony showed identical nucleotide sequence. The

sequences obtained across the collection sites

(n = 47) showed 16 variable alignment positions.

They allowed the characterization of eight haplotypes

(Table 1) that differed each other by 1–11 nucleotide

substitutions (Supplementary Table S1). In the

Balkans five haplotypes were identified (H1, H2, H3,

H4, and H5), while in Eastern Italy and Southern

France five (H3, H5, H6, H7 and H8) and two (H3 and

H5) haplotypes were detected, respectively (Table 1).

Three out of the five haplotypes recorded in Italy (H6,

H7, H8) were only present in this area. By contrast, the

two Southern France haplotypes also occurred in the

Balkans and in Italy (Table 1). Both COII haplotype

and nucleotide diversities computed in the Balkans

were slightly higher than those scored in French and

Italian areas (Table 2).

Microsatellites

The six loci were all polymorphic within the sampled

areas. Overall, the number of alleles per locus ranged

Table 1 Sampling localities of analyzed colonies and COII

haplotypes

Localities Acronyms COII haplotypes

Balkans

1 Areopolis ARE H1

2 Kato Achaia KAC H2

3 Katoki KAT H3

4 Lefkada LEF H4

5 Sivota SIV H5

6 Klek KLE H3

7 Gradac GRA H5

8 Zivogosce ZIV H3

Italy

9 Bagnacavallo BGN H6

10 Salsomaggiore SAM H3

11 Torre Calalunga TCL H3

12 Bitonto BIT1 H7

BIT2 H3

BIT3 H5

BIT4 H3

13 Bari BAR H3

14 Selva di Fasano SEF H6

15 Copertino COP H6

16 Bosco delle Pianelle BOP H5

17 Turi TUR H5

18 Cassano delle Murge CMU H5

19 Mercadante MER1 H5

MER2 H5

MER3 H5

MER4 H5

MER5 H5

20 Castellaneta Marina CAS1 H3

CAS2 H5

CAS3 H8

CAS4 H5

CAS5 H3

CAS6 H3

France

21 Domène DOM1 H5

DOM2 H5

DOM3 H5

22 Allauch ALL H3

23 Ceyreste CEY H3

24 La Ciotat LAC1 H3

LAC2 H3

25 St Cyr Les Lecques SCL H3

Table 1 continued

Localities Acronyms COII haplotypes

26 St Cyr Sur Mer SCM1 H3

SCM2 H3

27 Cannes CAN1 H3

CAN2 H3

28 Nice NIC H3

29 Sofia Antipolis SOA1 H3

SOA2 H3

Numbers refer to Fig. 1

Genetic diversity and invasion history

123



from 3 (Rf21-1) to 10 (Rf6-1). Allele frequencies vary

widely between Balkans and French/Italian populations

at all loci (Table 3). The mean value of the effective

alleles (±S.E.) ranges from 1.977 ± 0.212 (South

France) to 3.279 ± 0.683 (Balkans), and the allelic

richness (±S.E.) spans from 3.303 ± 0.375 (South

France) to 5.166 ± 0.872 (Balkans) (Table 2).

Observed heterozygosity (HO) values were similar

between the Balkans and the Italian populations, but

lower in Southern France (Table 3). On the other hand,

expected heterozygosity (HE) resulted higher in the

Balkan colonies than in French and Italian ones

(Table 2). Overall, the Balkans populations appeared

to be more variable than the others, although the

difference is not statistically significant. Results from

BOTTLENECK analysis indicated the evidence of

bottleneck effect only in the Italian populations (SMM

and TPM p\ 0.01).

Phylogeny and population structure

The Maximum Likelihood tree constructed with mito-

chondrial COII sequences showed two well-supported

clades where R. urbis sequences are partitioned.

Sequences from the sites collected in the Balkans

distribute in the two clades: LEF, KAT, ZIV and KLE,

on one side, and SIV, GRA, KAC and ARE, on the

other side (Fig. 2a). Consistently with previous

Table 2 Genetic diversity values (Mean ± S.E.) within

Balkans, Italian and French ranges for mitochondrial COII

(number of haplotypes, Nh; haplotype diversity, hd; nucleotide

diversity, p) and nuclear microsatellite (number of effective

alleles, Ne; allelic richness, Ar; observed (HO) and expected

(HE) heterozygosity) markers

COII Microsatellite

Nh hd p Ne Ar Ho HE

Balkans 5 0.857 ± 0.108 0.010 ± 0.009 3.279 ± 0.683 5.166 ± 0.872 0.240 ± 0.057 0.614 ± 0.082

Italy 5 0.688 ± 0.063 0.007 ± 0.001 2.017 ± 0.320 3.719 ± 0.602 0.233 ± 0.050 0.445 ± 0.080

France 2 0.448 ± 0.134 0.005 ± 0.019 1.977 ± 0.212 3.303 ± 0.375 0.194 ± 0.042 0.454 ± 0.077

Table 3 Allele frequency at six analyzed microsatellite loci in

native and introduced ranges

Locus Allele size Balkans Italy France

Rf6-1 125 0.063

131 0.125 0.033

134 0.017

137 0.010

140 0.313 0.010 0.033

143 0.125 0.594 0.500

149 0.063 0.135

152 0.188 0.021

158 0.063

161 0.063 0.229 0.417

Rf21-1 178 0.656 0.229 0.367

181 0.313 0.750 0.600

184 0.031 0.021 0.033

Rs15 214 0.021

256 0.063 0.042 0.150

259 0.125 0.010

262 0.250 0.302 0.033

265 0.094 0.125 0.583

268 0.156 0.052

271 0.313 0.427 0.167

274 0.021 0.067

Rf5-10 136 0.063 0.033

139 0.250 0.094 0.017

142 0.094 0.010

145 0.125

148 0.031 0.125

151 0.406 0.771 0.950

154 0.031

Rs10 150 0.813 0.927 0.750

153 0.031 0.067

156 0.031

159 0.125 0.073 0.183

Table 3 continued

Locus Allele size Balkans Italy France

Rs33 252 0.375 0.052 0.050

256 0.563 0.688 0.483

260 0.063 0.073

272 0.010

276 0.177 0.467
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analyses, this pattern allowed us to identify the first

clade as the North clade, and the second one as the

South clade (Luchetti et al. 2007). On the other hand,

sequences obtained from France and Italy were

scattered across the two clades: eight out of 24 East

Italian samples grouped in the North clade, while the

remaining 16 samples were grouped in the South clade.

The absence of any relationship between geographic

distribution and clustering was particularly evident for

Italian colonies collected in the same locality (for

example, BIT and CAS) or in the same region (e.g.,

SAM and BGN). In both cases, haplotypes were

scattered across the two clades (Fig. 2a). On the other

hand, southern France samples were clustered in the

North clade, with only the samples from Domène

(DOM1-3) falling into the South clade (Fig. 2a).

The statistical parsimony network connected all the

COII haplotypes, the two haplotype groups observed

Fig. 2 Mitochondrial COII analyses. a Maximum Likelihood

tree (-lnL = 1120.52). Numbers at nodes are bootstrap support

[50%. Open circles indicate samples from Balkans; filled

squares and triangles represent samples from Italy and France,

respectively. b Parsimony network haplotype analysis. Circles

widths are proportional to haplotype frequency; white areas

represent proportion of Balkans samples; grey areas are Italian

range colonies and dark grey areas indicate the French

populations. Small, black dots indicate missing/ideal haplo-

types; the number between subnetworks indicates the number of

missing/ideal haplotypes needed to connect them
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in the phylogenetic analysis being connected by five

mutational steps (Fig. 2b). The AMOVA analysis

performed on microsatellite data revealed that the

variation among colonies and within individuals

explain the higher amount of the observed variation

(35 and 40%, respectively). On the other hand,

divergences between Balkans samples as well as

French and Italian ones only accounted for 11% of the

variation. Pairwise Fst values showed significant

divergences between the three regions examined,

although higher Fst values were observed between

the native and introduced ranges (Table 4).

The Bayesian clustering analysis performed with

STRUCTURE suggested that samples can be grouped

in 2 genetically distinct clusters supported by high

values of LnP(K) and Delta K when K = 2 (Mean

LnP(K) = -1277.6; Delta K = 31.4) (Fig. 3a). Bal-

kans colonies appeared to belong to both clusters:

although well-defined, the two clusters do not group

colonies according to mitochondrial DNA-defined

South and North clades. Colonies collected from Italian

and French ranges showed either total membership to

one of the two genetic clusters or, in seven instances, a

mixed membership to both clusters (Fig. 3a). In

agreement with AMOVA and STRUCTURE results,

the PCoA analysis revealed that samples from the three

areas cannot be distinguished (Fig. 3b).

Discussion

In the present study we analyzed the genetic diversity

for both mitochondrial and nuclear markers of an

Table 4 Pairwise Fst and related probability

Fst p

Balkans vs Italy 0.141 \0.001

Balkans vs France 0.181 \0.001

Italy vs France 0.098 \0.001

Fig. 3 Microsatellite loci

analyses. a STRUCTURE

plot. Each vertical bar

represents a single

individual that is attributed

to one of the two genetic

clusters (K) or that shows

mixed membership.

b Principal Coordinate

Analysis (PCoA) performed

on Nei’s D distance. Open

circles indicate samples

from Balkans; grey squares

and dark grey triangles

represent colonies from Italy

and France, respectively
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European termite species, R. urbis. This work aimed to

verify the invasive status of the French and Italian

populations, as well as to identify the route of invasion

and estimate the number of introduction events that led

to the present-day distribution. All data presented here

indicate the absence of a clear phylogeographic

structure in the studied populations; this general

pattern supports the hypothesis that this species was

introduced in Italy and France from the Balkan

Peninsula (Luchetti et al. 2007; Leniaud et al. 2009a).

Notwithstanding the overall low genetic diversity

scored at both mitochondrial and nuclear markers, our

data point out a lower diversity in the Italian and

French populations with respect to the Balkans area.

Although not statistically significant, the low genetic

diversity of introduced populations is consistent with a

previous analysis (Leniaud et al. 2009a). It is well-

known that, after invasion, colonizers may show a

reduction in genetic diversity due to the founder effect

(Puillandre et al. 2008). Reduction in allelic diversity

is a strong predictor of genetic bottleneck, although it

may not appreciably affect observed heterozygosity.

For example, the loss of rare alleles has little influence

on the heterozygosity level (Allendorf 1986; Spencer

et al. 2000; Dlugosh and Parker 2008). Although the

allelic richness is lower among Italian and French

colonies, the observed heterozygosity is comparable to

that observed within the Balkans range. On the other

hand, expected heterozygosity in Italian and French

populations resulted lower than in the Balkan popu-

lation. It has been shown the expected heterozygosity

predicts possible bottlenecks better than the observed

one (Spencer et al. 2000): this is in line with traces of a

bottleneck effect found in the Italian sample.

Overall, mitochondrial DNA analyses clearly pro-

vided evidences for the distinction of two clusters,

which regroup the North and the South samples. These

two clades were already identified in the native area of

R. urbis (Luchetti et al. 2007). Microsatellite data also

identified two distinct genetic clusters in Balkans

colonies, although these lineages do not coincide with

the two mitochondrial clades. Contrasting patterns

between mitochondrial and nuclear markers are often

observed and may result from different factors such as

different evolutionary histories of the two genomes,

sex-biased dispersal, allele/haplotype introgression

and/or secondary contacts between divergent popula-

tions (Toews and Brelsford 2012). One likely explana-

tion in our case is that the introgression of alleles and/or

haplotypes that followed secondary contacts has shaped

the present pattern. North and South clades originally

referred to the fact that they included colonies collected

north or south of the Corinth Canal, respectively.

However, one haplotype from the South clade was

found in two samples collected north of Corinth Canal,

Sivota and Gradac (included in the present analysis),

suggesting that migration took place after clade diver-

gence (Luchetti et al. 2007). According to divergence

time estimates, the split between the two mitochondrial

lineages dates back to 2–4 million years ago (Velonà

et al. 2010; Dedeine et al. 2016), suggesting that Italian

and French populations originated later. In fact,

colonies collected in the invasive range exhibited

scattered representation in the twomitochondrial clades

and nuclear clusters. Two out of five haplotypes found

in the Balkans were found in 79% of Italian colonies

and 100% of French ones. Furthermore, 33% of Italian

colonies and 80% of French ones fall in the North clade.

As far as microsatellite data is concerned, 79% of

Italian colonies and 80% of French ones showed full

membership to one of the two genetic clusters identified

by STRUCTURE. Therefore, as also supported by

AMOVA and PCoA analyses, there is no substantial

divergence between Balkans, Italian, and French pop-

ulations. On the other hand, Fst analysis between the

three areas gave significant values, indicating that

populations became substantially isolated from each

other after the invasion. This is likely the effect of a

genetic bottleneck after the introduction, as it may

cause changes in allele frequencies among invading

individuals (Spencer et al. 2000; Dlugosh and Parker

2008; Kinziger et al. 2011). Such a hypothesis is

consistent with the wide variation of allele frequencies

observed among populations analyzed in the present

study.

The data presented here confirm the invasive status

of Italian and French R. urbis populations, and also

suggest that multiple introduction events occurred from

different populations of the native range.Mitochondrial

DNA clearly indicates that northeastern and southeast-

ern Italian colonies originated from native populations

belonging to both North and South clades. On the other

hand, in the southern French range, only the colony

from the city of Domène appears to have originated

from a South-clade population. R. urbis from Domène

are known to live in a super-colony, a unique social

organization so far documented in termites. Genetic

data obtained in this colony are consistent with a

Genetic diversity and invasion history
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possible origin from a few, closely related individuals

or even from a single pair of reproductives (Leniaud

et al. 2009b). Present microsatellite data indicate a

mixed membership of Domène samples, which would

suggest the introduction from (at least) two genetically

distinct colonies that crossed after coming into contact.

The fact that all three Domène samples share the same

haplotype is consistent with the already discussed

discordance between mitochondrial DNA clades and

the two nuclear genetic clusters.

While in the French area individuals with geno-

types derived from the crossbreeding of the two

genetic clusters are limited to Domène, mixed mem-

bership genotypes are well represented across the

Italian range. Multiple invasions are generally thought

to help the invasion phase, because the introduction of

diverse gene pools may limit the reduction of genetic

diversity and have a significant impact on the survival

chance of invaders. Multiple invasions usually lead to

higher genetic diversity, although exceptions have

been reported (Dlugosh and Parker 2008; Hagenblad

et al. 2015). Under these considerations, presently

observed mixed-membership genotypes reflects post-

invasion crosses: individuals introduced in multiple,

independent events and from different source popula-

tions would have successively crossed leading to the

presently-observed mixed genotypes. It is also worth

noting that repeated introductions from multiple

source populations could explain why the reduction

of genetic diversity in introduced populations is not

statistically significant. Based on scored allele fre-

quencies, it appears that in many cases some alleles

reached high frequency among invaders, while they

were at low or intermediate frequency in the native

genetic pool. This may be explained by post-invasion

genetic drift or by selective pressures promoting some

alleles over other ones.

It is interesting to speculate about the historical

conditions that may have triggered R. urbis invasions

in Italy and France. For example, between the 8th and

5th century B.C., Greek peoples colonized southern

Italy and southern France: Taraes (now Taranto,

Apulia) and Massalia (now Marseille) were among

the first founded Greek colonies (Astour 1985).

Notably, citizens from Taraes lately founded further

colonies in southern Apulia, such as Hydruntum (now

Otranto) and Callipolis (now Gallipoli) (Astour 1985).

It is thus possible that human repeated migrations from

Greece to overseas colonies would have mediated the

introductions of R. urbis. Interestingly, R. lucifugus

colonies in Southern France are also suspected of

being secondarily introduced during this same time

frame (Lefebvre et al. 2008). Moreover, later, the

Byzantine Empire extended from the Balkans to

Eastern Italy, with Ravenna (in northeastern Italy) as

the main outpost (Jeffreys et al. 2008): this is

consistent with the presence of R. urbis in Ravenna

and surrounding towns (Luchetti et al. 2007).

This investigation provides further evidence about

the origin and dispersion of R. urbis in the Mediter-

ranean, and demonstrates multiple introductions.

Other animal species having a trans-Adriatic distribu-

tion similar to the R. urbis range show an exclusive

genetic composition consistent with their biogeogra-

phy (Schmitt and Seitz 2001; Mattucci et al. 2016).

The absence of such a phylogeographic pattern of

distribution in this study suggests that R. urbis is an

introduced species in Western Europe. Italian and

French invasive populations came from the Eastern

Balkans, the native range of this species, as a result of

multiple introduction events. Our findings allow us to

reconstruct the history of R. urbis in Western Europe,

and provide a more detailed knowledge for future

studies about reproductive strategies adopted during

the invasions, such as the capacity of colonies to

produce numerous functional secondary reproductives

(neotenics) of both sexes (Luchetti et al. 2013b;

Perdereau et al. 2013a, b). Reproductive strategies of

R. urbis revealed that introduced colonies do not

reproduce through parthenogenesis and have a bal-

anced sex ratio of winged adults (Luchetti et al.

2013b). It will be interesting to studymore in detail the

reproductive biology and dispersal mode of R. urbis in

its native range in order to verify if these character-

istics could be among post-invasion adaptations

facilitating the setting of a stable population (Luchetti

et al. 2013b), as also suggested in other subterranean

species (Perdereau et al. 2015).
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Table S1. Number of substitutions observed between scored COII haplotypes

Haplotype 1 2 3 4 5 6 7
1 H1
2 H2 4
3 H3 7 9
4 H4 9 11 4
5 H5 2 6 9 11
6 H6 1 3 8 10 3
7 H7 3 5 8 10 1 4
8 H8 1 5 8 10 1 2 2
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Abstract

European dry-wood termites belong to the genus Kalotermes (Kalotermitidae), one
of the two termite genera in Europe. Until the recent description of two new species,
Kalotermes italicus in Italy and Kalotermes phoenicae in the eastern Mediterranean area,
Kalotermes flavicollis was the only taxon known in this region. The presence of add-
itional entities, suggested by morphological and physiological variation observed
in K. flavicollis, was supported by molecular studies revealing four distinct genetic
lineages: lineage A, K. flavicollis sensu strictu, from the Aegean area to Italy; lineage
B, in Tuscany; lineage SC, in Sardinia and Corsica; lineage SF, in southern France.
Lineages A and B may form mixed colonies, suggesting hybridization. To draw a
more detailed picture of Kalotermes evolution and biogeography in Europe, we ana-
lyzed samples from previously unsampled areas, such as Spain and southern Italy,
by means of the highly informative cox1/trnL/cox2 mitochondrial DNA marker.
Overall, phylogenetic analyses confirmed previously identified lineages and taxa,
but widened the distribution of the lineage SC to the mainland and of the lineage
SF to Spain and Portugal. Results further provided evidence for the synonymy be-
tween lineage B and K. italicus. Species delimitation analysis suggested that the
threeK. flavicollis lineages, aswell asK. italicus, can be separate taxa. Data also suggest
a possible interspecific hybridization between K. italicus and both K. flavicollis
lineages A and SC.

Keywords: hybridization, molecular diversity, social insects, European species
distribution, termites, colony structure
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Introduction

Termites are wood-feeding eusocial insects related to cock-
roaches; they are ecologically important due to their role in the

decomposition of organic matter (Bignell & Eggleton, 2000).
Two termite genera, Reticulitermes and Kalotermes, are distrib-
uted inWestern Europe. The former is a genus of subterranean
termites (Rhinotermitidae) occurring along theMediterranean
and Atlantic coasts, as well as in urban areas, with colonies
often composed by diffuse nests and multiple feeding
sites connected by underground tunnels (Vargo & Husseneder,
2009). Dry-wood termites of the genus Kalotermes (Kalotermiti-
dae) are more restricted to Mediterranean coasts where they
form small colonies in deadwood of various tree species.
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Until recently, only one species of Kalotermes was thought
to be distributed across Europe, the yellow-necked K. flavicol-
lis. Early studies, though, had already noticed morphometric
and physiological variations between Italian, Sardinian and
French populations (Luscher, 1956; Springhetti, 1967). More
recently, molecular studies showed that the taxon K. flavicollis
is, in fact, composed by at least three main lineages that could
represent distinct taxa (Luchetti et al., 2004, 2013a; Velonà et al.,
2011). Lineage A includes all samples collected from the
Aegean islands (Crete and the Cyclades) to the Italian penin-
sula. This genetically homogenous lineage was previously
termed K. flavicollis sensu stricto (Velonà et al., 2011; Luchetti
et al., 2013a). Lineage SC includes colonies collected in
Sardinia and Corsica, while lineage SF comprises those col-
lected in southern France; this third lineage appeared signifi-
cantly diverging from both lineages A and SC (Velonà et al.,
2011). Furthermore, a fourth, highly divergent lineage was
found in sympatry with lineage A in an Italian population
and termed lineage B. Interestingly, several colonies were
found harbouring mitochondrial DNA haplotypes of both
lineages A and B and data on nuclear DNAmarkers suggested
the possibility of interbreeding (Luchetti et al., 2013a).

BesideK. flavicollis, two newKalotermes specieswere recent-
ly described (Ghesini & Marini, 2013, 2015). The first new spe-
cies, Kalotermes italicus, is recognizable by a black (or dark
brown) pronotum; it is found in central Italy on both sides of
the peninsula (Ghesini & Marini, 2013). Interestingly, Becker
(1955) described a K. flavicollis form with black pronotum,
designated as ‘var. fuscicollis’, and demonstrated that the two
color variants can interbreed giving offspring with dark or
dark-yellow pronotum. The second new species, Kalotermes
phoenicae, was found in Cyprus and along Lebanon and
Israel coasts (Ghesini&Marini, 2015). Altogether, these studies
shed new light on the biodiversity of European Kalotermes
termites.

The taxonomy and the distribution pattern of Kalotermes
taxa are far from being complete and many issues remain un-
resolved. For instance,K. italicuswas found only in three local-
ities in Central Italy (Ghesini & Marini, 2013), although its
geographical distribution is probably more extensive. The
same is true for the French lineage and nothing is known on
the taxonomic and phylogenetic status of Kalotermes from
the Iberia peninsula (Maistrello et al., 2010). To increase the
knowledge about Kalotermes diversity, taxonomy, and distri-
bution in Europe, we sequenced 911 bp of the highly inform-
ative cox1/trnL/cox2mitochondrial DNA region for 43 colonies
collected from 28 locations from Spain to southern Italy, in-
cluding previously unsampled areas of Sicily and Sardinia.
Data were then integrated with those provided from previous
studies to get a more global picture.

Materials and methods

New collection points were chosen to cover previously un-
sampled or poorly sampled areas. Termites were collected in
the field from logs or other pieces of dead wood; most of the
specimens were pseudergates (i.e., false workers), which con-
stitute the majority of the colony. For each collection point,
pseudergates were carefully taken from the same tunnel and
were considered to belong to the same colony. The only excep-
tion was the sample of Renzetto (REZ), where we caught
swarming alates instead of pseudergates from tunnels.
Therefore, we cannot exclude that REZ individuals belong to
distinct colonies. All samples were conserved in 100% ethanol

until molecular analyses. In total, 43 colonies from 28 localities
were analyzed (table 1 and fig. 1a).

Total DNAwas isolated using the CTAB method (Doyle &
Doyle, 1987) from two pseudergates per colony, with the ex-
ception of five colonies in which a single individual was ana-
lyzed (table 1). A 911 bp mitochondrial fragment
encompassing a part of the cox1, the entire length of trnL,
and a part of the cox2 regions was PCR amplified and se-
quenced using the primers C1-J-2797 (5′-CCT CGA CGT
TAT TCA GAT TAC C-3′) and TK-N-3785 (5′-GTT TAA
GAG ACC AGT ACT TG-3′). Amplification reactions were
performed in 50 µl mixtures, using 20 ng of template DNA,
with GoTaq DNA polymerase kit (Promega, Madison, WI,
USA) following the manufacturer’s protocol. The PCR
amplification program includes: initial denaturation for
5 min at 95°C; 30 cycles of 30 s at 95°C, 30 s at 50°C, 30 s at
72°C; final extension for 7 min at 72°C. Sanger sequencing of
both strands was performed at Macrogen Europe (The
Netherlands). Sequences were submitted to Genbank, under
accession numbers MF589135–MF589164.

The 81 sequences obtained in this study were analyzed to-
gether with sequences taken from previous studies (Luchetti
et al., 2004, 2013a; Velonà et al., 2011; Ghesini & Marini,
2013), the cox2 sequence from a Portuguese sample of K. flavi-
collis (GenBank accession number DQ442147; Inward et al.,
2007) and two cox1/trnL/cox2 haplotypes of K. italicus from
Grosseto and Portonovo samples (Ghesini & Marini, 2013).
Moreover, two cox2 sequences belonging to the two divergent
lineages of K. phoenicae were added (samples Benouaiti
and Kaplica, accession numbers KC914299 and KC914300;
Ghesini & Marini, 2015). Finally, the cox2 of the New Zealand
species Kalotermes brouni (accession number AF189104;
Thompson et al., 2000) was used as outgroup.

Sequence alignment (with Clustal W algorithm), molecu-
lar divergence (uncorrected p-distance), and the best substi-
tution model were calculated using MEGA v. 7 (Kumar et al.,
2016). The best substitution model was obtained for each
gene individually (cox1: T92; trnL: JC; cox2: HKY + G) and
for the entire region (HKY + G + I). Maximum Likelihood
phylogenetic tree was calculated using MEGA v. 7, with
nodal support based on 100 bootstrap replicates. As
MEGA v. 7 does not allow to treat partitions separately,
the substitution model HKY + G + I was used for the entire
sequence. Bayesian Inference was calculated with MrBayes
v. 3.2 (Ronquist et al., 2012) on a gene-partitioned data set,
running for 106 generations and sampling trees every 500
generations. Convergence was reached when the average di-
vergence of split frequencies fell below 0.01. Maximum
Likelihood and Bayesian Inference methods yielded a sub-
stantially identical topology and similar confidence levels;
the Maximum Likelihood tree was therefore used for further
analysis.

Haplotype (hD) and nucleotide diversity (π), and Tajima’s
D analyses were computed with DnaSP v. 5.1 (Librado &
Rozas, 2009). Species delimitation was estimated by
using three different methods: single threshold GMYC
(Generalized Mixed Yule Coalescent; Fujisawa &
Barraclough, 2013), PTP (Poisson Tree Processes; Zhang
et al., 2013), and statistical parsimony network (Hart &
Sunday, 2007). As GMYC results appeared to be strictly de-
pendent on the method used for ultrametric tree calculation,
we followed Tang et al.’s (2014) advice and used BEAST
v. 1.8 (Drummond & Rambaut, 2007). Moreover, possible
biases due to the molecular clock algorithm used
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(Monaghan et al., 2009) were overcome with the use of four
ultrametric trees obtained with different settings: we built
trees using both strict and lognormal relaxed clocks, each
implementing either the Yule or the coalescent (with
constant population size) tree priors. Calibration was arbi-
trarily set, imposing the age of the ingroup node to 1.0 and
modelling a normal prior distribution with 0.1 of standard
deviation; this was done to facilitate the convergence of
runs. Each tree was, then, calculated after two runs set at
20 × 106 generations each, sampling every 1000, and the
convergence was assessed by estimated sample size >200.
The PTP analysis was performed on the web server http://
species.h-its.org/, using 5 × 105 Markov chain Monte Carlo
generations, burnin = 0.25 and removing the outgroup.
Finally, the parsimony network was obtained through TCS
v. 1.21 (Clement et al., 2000), calculating the 95% connection

limit between possible sub-networks: putative specific entities
are discriminated based on the number of sub-networks.

Results

Thirty haplotypes, differing from 1 to 65 nucleotide substi-
tutions, were identified (H1-H30; table 1) in the 81 sequences
obtained in this study. The most common haplotype (H3) is
distributed from Sicily (AGR) up to the Feniglia Reserve
(FENc) (table 1).

Maximum Likelihood and Bayesian Inference trees were
built on haplotypes from all data available (present data;
Luchetti et al., 2004, 2013a; Velonà et al., 2011; Ghesini &
Marini, 2015). Obtained trees gave overlapping topologies
and split haplotypes in two main clusters, each further struc-
tured into well-supported sub-clusters. These clusters mirror
known K. flavicollis lineages and K. italicus species (fig. 2).

The first main cluster is subdivided into two sub-clusters
(fig. 2). The first one embodies haplotypes H3, H5, H13-15,
H20-24, H27 and the samples known to belong to K. flavicol-
lis lineage A. It also includes a further small cluster grouping
haplotypes H6 and H7 together with the sequences of lin-
eage SC. The second sub-cluster shows a sister relationship
with the other one, and groups haplotypes H28-30 together
with those of K. flavicollis lineage SF. The cox2 of the
Portuguese sample of K. flavicollis is also included in this
sub-cluster, being identical to haplotype H30. Given the ab-
sence of sub-structures in this lineage, it will be henceforth
referred to as the Ibero-French lineage (lineage IF). The se-
cond main cluster is also structured in two sub-clusters
(fig. 2). The first one (I) includes haplotypes H16, H18, and
H19, K. flavicollis lineage B from Feniglia, and K. italicus from
Grosseto. The second sub-cluster (II) groups the remaining
10 haplotypes and the other two sequences of K. flavicollis
lineage B (Rimigliano) and K. italicus (Portonovo). The two
K. phoenicae samples form a single clade that has a sister
relationship with the two main clusters (fig. 2).

The sequence divergence between clusters and sub-clusters
varies widely, ranging from 1.2 to 6.1–6.7% (table S1). K. flavi-
collis lineage B +K. italicus cluster appeared the most variable
based on both haplotype and nucleotide diversity (table 2).
The K. flavicollis lineage IF showed a slightly higher haplotype
diversity thanK. flavicollis lineages A and SC, the latter appear-
ing as the less variable one (table 2). Tajima’sD values resulted
negative for the four lineages, with only K. flavicollis lineages
A and SC showing significant departures from 0 (table 2).

Overall, the three species delimitationmethods are congru-
ent in defining some entities and discordant in other instances
(fig. 3). The GMYC method gave the higher number of puta-
tive entities, ranging from 6 to 9 depending on the ultrametric
tree used. When using the relaxed clock with Yule prior,
GMYC splits lineage A into four distinct taxa, while it indi-
cated only two possible species when using the strict clock
tree with coalescent prior. In comparison, PTP recognized a
single entity. Although the parsimony network groups
lineages A and SC in a single taxon, the latter lineage is always
defined as a single, separate entity in the other analyses (fig. 3).
Lineage IF is indicated as a distinct taxon by allmethods, while
variation in species delimitation can be observed across meth-
ods for the K. flavicollis lineage B + K. italicus clade (fig. 3).
GMYC defined three or two taxa and, again, the use of relaxed
clock with Yule prior gave more estimated species. On the
other hand, PTP and parsimony analyses indicated this
clade as a single entity.

Table 1. List of colony sampling, with scored haplotypes per
colony.

Sampling locations Colony ID
Haplotypes
per colony

1 Portonovo PTNa H1
PTNb H1

2 Sirolo SIRa H2/H3
SIRb H1

3 Renzetto REZ1 H3
4 Tremiti Islands TRE H4
5 Bari BAR H3
6 Davoli Marina DVM H3/H5
7 San Sostene SST H3
8 Sant’Andrea Apostolo dello Ionio STA H3
9 Agrigento AGR H3
10 Cinnisi CNS H3/H6
11 Firenze FIRa H7

FIRb H8
FIRc H1
FIRd H9

12 San Rossore Natural Reserve ROSa H1/H10
ROSb H7/H11
ROSc H7/H12

13 Feniglia Natural Reserve FENa H13/H14
FENb H15/H16
FENc H3/H17

14 Capalbio CAPa H18
CAPb H19

15 Pescia Marina PEMa H20
PEMb H21

16 Montalto di Castro MOC H3
17 Riva dei Tarquini RTAa H22

RTAb H3/H23
18 Fregene FRE H24
19 Ostia OST H3
20 Sabaudia SAB H3
21 Monterosso MTR H25
22 Nozarego NOZa H7

NOZb H26
NOZc H27

23 Siniscola SIN H7
24 Marseilles MAR2 H1
25 Banyuls-sur-Mer BAMa2 H28

BAMb2 H29
26 Santa Cristina d’Aro SCA2 H30
27 Logrono LOG2 H30
28 Siviglia SIV H30

1Only swarming individuals.
2A single individual sequenced.
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Of the 38 colonies forwhich two individualswere sequenced,
different haplotypes were found in ten (26.3%; table 1). In six in-
stances, the two distinct haplotypes even belong to different
clusters (table 1; fig. 2; summarized in table 3). The Sicilian sam-
ple from Cinnisi (CNS) exhibited haplotypes from K. flavicollis
lineages A and SC, while two San Rossore colonies (ROSb and
ROSc) carried haplotypes fromK. flavicollis lineage SC andK. fla-
vicollis lineage B +K. italicus clade. Finally, colonies FENb and
FENc, from the Feniglia Natural Reserve, and SIRa, from
Sirolo, contained haplotypes of both K. flavicollis lineage A and
K. flavicollis lineage B +K. italicus clade.

Discussion

The evolutionary diversification pattern of the genus
Kalotermes is poorly known in Europe, compared with the
European Reticulitermes. In particular, the taxonomic level of
divergence among lineages and the geographical range of
taxa distribution still remain to be defined. The present survey
provides additional knowledge on the systematics, evolution-
ary history, and biogeography of Kalotermes taxa across the
Mediterranean area.

Fig. 1. (a) Kalotermes sampling locations and lineages distribution known so far. Numbers refer to table 1. (b) Summary of European
Kalotermes taxa distribution as derived from the present analysis. Light gray area: Kalotermes flavicollis lineage IF; dark gray area: K.
flavicollis sensu strictu; dotted area: K. flavicollis lineage SC; hatched area: K.italicus. The question mark indicates the lack of information
about the distribution boundaries of Kalotermes taxa in that range.
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Phylogenetic relationships among Kalotermes lineages

The present analysis is based on a single mitochondrial
fragment that proved to be informative, especially to identify
new phylogenetic lineages (Velonà et al., 2011; Ghesini &
Marini, 2013, 2015; Luchetti et al., 2013a,b). The nucleotide
variability scored reveals that the Kalotermes genus in

Western Europe is structured in two well-supported clusters.
The first one, including lineages A, SC, and IF, clearly shows a
monophyletic origin, with lineage IF branching first. The rela-
tionship between lineages A and SC appears less clear, mostly
due to Lussino and Portoscuso haplotypes, which clearly di-
verged from lineage A. The colony of Portoscuso was already

Fig. 2. Maximum Likelihood tree (−lnL = 2953.453) obtained from cox1/trnL/cox2 haplotypes. Bayesian Inference analysis (−lnL = 2973.756)
resulted in an overlapping topology. Haplotype codes as in table 1; previously identified haplotypes are reported with the name of the
sampling location (consistently with Velonà et al., 2011). Lineages are indicated with vertical bars. In the B +K. italicus cluster, samples
previously ascribed to lineage B are indicated with ‘B’ in brackets, while those described as Kalotermes italicus are indicated with ‘Ki’.
Numbers at nodes are bootstrap values >60%/Bayesian posterior probabilities >0.8. Abbreviations: A, lineage A; B, lineage B; SC,
Sardo-Corsican lineage; IF, Ibero-French lineage.
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interpreted as a divergent haplotype within lineage A (Velonà
et al., 2011). The second cluster includes sequences of K. flavi-
collis lineage B (Luchetti et al., 2013a) and the recently de-
scribed species K. italicus (Ghesini & Marini, 2013). This
cluster is partitioned in two sub-clusters, with a nucleotide di-
vergence similar to the one scored between K. flavicollis
lineages A and SC (1.2 vs. 1.5%; table S1). However, haplotype
pairs belonging to lineage B and K. italicus samples cluster to-
gether, supporting the hypothesis that K. flavicollis lineage B
and K. italicus are the same taxon. Therefore, all samples
included into this cluster will be considered as K. italicus.

Species delimitation and taxonomic considerations

The three methods used to delimitate Kalotermes species
gave slightly different results. The GMYC method, which is
widely used for species delimitation on a single marker, is
known to be strictly dependent on the algorithm used for ul-
trametric tree calculation (Monaghan et al., 2009; Tang et al.,
2014). The analysis conducted with Kalotermes sequences con-
firmed this observation, with different results depending on
the clock model and/or the tree prior used. The use of a strict
clock with a coalescent prior gave the most conservative result
and it is more consistent with PTP and parsimony analyses.
Irrespective of the clock model and prior used, GMYC ana-
lyses always indicated that Portoscuso and Lussino haplo-
types constitute a taxonomic entity that is separated from all
other haplotypes grouped within lineage A. This is consistent
with previous results (Velonà et al., 2011). On the other hand,
the PTP and parsimony analyses did not differentiate these
two haplotypes from other clades within lineage A. It has
been observed that the GMYC method may not perform
well when dealing with poly- or paraphyletic lineages
(Hendrich et al., 2010): this could be the case of K. flavicollis
lineage A, as the divergence of Portoscuso and Lussino haplo-
types place them in an unresolved position (fig. 2).

On the whole, lineages A and SCmost likely represent two
distinct taxonomic entities within K. flavicollis, even if the par-
simony analysis group them together. These results are in line
with Springhetti’s preliminary studies, which found differ-
ences of morphometric parameters and reproductive traits be-
tween Sardinian and Italian peninsular colonies (Springhetti,
1967). The K. flavicollis lineage IF is consistently recognized
as a single, separate taxon; as previously found (Velonà
et al., 2011), molecular data mirror the physiological diver-
gence observed by Luscher (1956) between Italian and
French Kalotermes populations. This suggests that K. flavicollis
lineage IF might represent a new Kalotermes species. Except

for GMYC analysis, the two other analyses indicated that
K. italicus most likely constitute a single taxon, even if it is
structured into two sub-clusters which might reflect some
degree of intraspecific differentiation.

Biogeography and evolution of European Kalotermes termites

Data presented in this study revealed a significant phylo-
geographic structure of western EuropeanKalotermes termites.
The phylogenetic relationships amongK. flavicollis lineages are
indeed consistent with their geographic location (summarized
in fig. 1b). Present study supports awider distribution ofK. fla-
vicollis sensu stricto (lineage A), its range spanning from the
Aegean coasts to the whole Italian Peninsula and Sicily. Our
results also revealed that K. flavicollis lineage SC is not re-
stricted to Sardinia and Corsica islands, as previously thought
(Velonà et al., 2011), but it is also present on the mainland,
along Ligurian and Tuscanian coasts.

The phylogeographic pattern found in Kalotermes lineage
SC nicely mirrors that observed in Reticulitermes lucifugus sub-
species, with the Sardo-Corsican R. lucifugus corsicus observed
also on the mainland (Luchetti et al., 2013b). R. lucifugus
diverged from the Iberian lineage and migrated to
the Sardo-Corsican microplate after its detachment from the

Table 2. Genetic diversity and Tajima’sD test for scoredKalotermes
lineages.

Lineage N hN hD S π D

K. flavicollis A 64 19 0.647 41 0.0027 −2.413**
K. flavicollis SC 15 5 0.476 13 0.0019 −2.227**
K. flavicollis IF 17 8 0.728 7 0.0011 −1.737ns

K. flavicollis
B +K. italicus

34 17 0.877 28 0.0055 −1.080ns

N, number of sequences; hN, number of haplotypes; hD, haplotype
diversity; S, number of segregating sites; π, nucleotide diversity;
ns, not significant; *P < 0.05; **P < 0.01.

Fig. 3. Species delimitation analyses. Main clades are indicated by
circles at their respective ancestral nodes. Outgroups have been
omitted in the figure. Abbreviations: A, lineage A; SC, Sardo-
Corsican lineage; IF, Ibero-French lineage; B + I: lineage B and
Kalotermes italicus.
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Iberian Peninsula (*10million years ago; Dedeine et al., 2016).
Although our analyses do not provide time estimates, K. flavi-
collis sensu stricto and lineage SC could have followed a similar
path. In fact, its close relationship with the lineage IF cluster is
reminiscent of the relationship between Iberian Reticulitermes
grassei-Reticulitermes banyulensis and the R. lucifugus corsicus
subspecies (Luchetti et al., 2013b; Dedeine et al., 2016).
Although the dataset might be limited, it is interesting that
K. flavicollis sensu stricto and lineage SC show signatures of a
recent and rapid population growth (Tajima’s Ds −2.227 and
−2.413, P < 0.01), while lineage IF does not. This pattern pos-
sibly results from Pleistocenic glaciations, which could have
imposed a southward contraction of the Italian population,
followed by a recolonization after climate warming (Hewitt,
1996). On the contrary, lineage IF appears to have remained
in equilibrium, suggesting the possibility that it was not af-
fected by Quaternary climatic oscillations. Still, the Tajima’s
D value obtainedwith Ibero-French lineagewas negative, sug-
gesting that this lineage may have experienced a more limited
population expansion.

The distribution of K. italicus is limited to certain areas
along the northern Tyrrhenian coast, overlapping the northern
edge of K. flavicollis sensu stricto distribution, and in two areas
on theAdriatic side. This can be explained either by a naturally
limited distribution or by a more recent colonization from an
unknown area. Our analyses showed that K. italicus is
genetically structured and does not exhibit any signature of
population size changes. In fact, the Tajima’s D value is not
significantly different from 0, suggesting that K. italicus is at
mutation-drift equilibrium. The high genetic diversity of this
species might suggest that K. italicus geographical range is
rather stable, although such an hypothesis remains to be
tested. However, recent colonizations by this species seem ra-
ther unlikely since such events usually result in population
bottlenecks. An alternative explanation is that K. italicus was
introduced several times in the same places. Termites are in-
deed easily transported by means of human activities, for in-
stance through lumber industry and/or wooden artifacts
trade (Evans et al., 2013; Scicchitano et al., 2017), sometimes
confounding the study of natural distributions. In order to pre-
cisely determine the natural distribution of these organisms, a
large and detailed sampling is often required (Luchetti et al.,
2013b).

Interspecific colony fusion and implications for hybridization

Three types of colony breeding structure are known in ter-
mites: (i) simple families are composed of offspring from a pri-
mary couple; (ii) extended families possess offspring of

primary and/or secondary reproductives; (iii) mixed families
include offspring of more than two unrelated reproductives
(Vargo &Husseneder, 2011). Nearly one-third of the presently
analyzed colonies are mixed families exhibiting two distinct
haplotypes, indicating that at least two females are involved
in the reproduction (table 3). Mixed-family colonies are not
rare in termites, especially in termopsid and kalotermitid spe-
cies: in these taxa, several studies showed that independent
colonies of the same taxon can fuse into a single social entity
(Thorne et al., 2003; Johns et al., 2009; Velonà et al., 2011; Korb&
Roux, 2012; Howard et al., 2013; Luchetti et al., 2013a). We re-
cently reported an extreme case of colony fusion in an Italian
population of K. flavicollis (Feniglia Natural Reserve; Luchetti
et al., 2013a) with an exceptionally high frequency of mixed-
family colonies, containing up to nine mitochondrial haplo-
types. That study found also that some mixed-family colonies
contained haplotypes belonging to the two divergent lineages
A and B, which are here assigned to K. flavicollis sensu stricto
(lineage A) and K. italicus (lineage B), respectively. In the pre-
sent analysis, we found three further mixed-family colonies
showing K. flavicollis sensu stricto and K. italicus haplotypes.
For the first time, we also found two mixed-family colonies
with K. flavicollis lineage SC and K. italicus haploypes and an-
other onewithK. flavicollis sensu stricto andK. flavicollis lineage
SC haplotypes. These new results suggest that also interspecif-
ic colony fusion could be a widespread phenomenon in
Kalotermes taxa.

It is interesting to consider possible outcomes of interspe-
cific colony fusion. In the previous study, mixed-family col-
onies of K. flavicollis sensu stricto/K. italicus (at that time only
indicated as lineages A and B, respectively; Luchetti et al.,
2013a), the analysis of nuclearmicrosatellite markers indicated
that individuals with K. flavicollis sensu stricto mitochondrial
haplotype showed nuclear genetic membership to K. italicus
and vice-versa. This indicated that the two taxa are able to inter-
breed (Luchetti et al., 2013a), thus suggesting that K. flavicollis
sensu stricto and K. italicus may naturally hybridize. When
Ghesini & Marini (2013) described K. italicus species they pro-
posed that, based on morphological evaluations, the taxon K.
flavicollis var. fuscicollis observed by Becker (1955) might be the
result of K. flavicollis sensu stricto and K. italicus hybridization.
Interestingly, Becker (1955) himself showed that Kalotermes in-
dividuals with black pronotum and K. flavicollis sensu stricto
may interbreed, also giving viable offspring.

Species hybridization in social insects is not expected to
occur at a high rate, but it was, nevertheless, evidenced in
ants and termites (Feldhaar et al., 2008). In termites, instances
of natural hybridization and/or introgression were observed
in lower termites, such as Zootermopsis and Kalotermes

Table 3. Colonies with mixed haplotype composition.

Sampling locations Colony ID Haplotypes Lineages

Cinnisi CNS H3/H6 K. flavicollis A/K. flavicollis SC
Davoli Marina DVM H3/H5 K. flavicollis A
Feniglia Natural Reserve FENa H13/H14 K. flavicollis A

FENb H15/H16 K. flavicollis A/K. italicus
FENc H3/H17 K. flavicollis A/K. italicus

Riva dei Tarquini RTAb H3/H23 K. flavicollis A
San Rossore Natural Reserve ROSa H1/H10 K. italicus

ROSb H7/H11 K. flavicollis SC/K. italicus
ROSc H7/H12 K. flavicollis SC/K. italicus

Sirolo SIRa H2/H3 K. flavicollis A/K. italicus
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(Aldrich & Kambhampati, 2007; Luchetti et al., 2013a), and
Rhinotermitidae (Coptotermes spp. and Reticulitermes spp.;
Lefebvre et al., 2008; Chouvenc et al., 2015; Lefebvre et al.,
2016).Moreover, laboratory colonies established by heterospe-
cific mates in Nasutitermes corniger ×Nasutitermes ephratae and
Coptotermes formosanus × Coptotermes gestroi pairs were found
to be more productive in term of offspring output (Hartke &
Rosengaus, 2011; Chouvenc et al., 2015). It is still not clear if
the high frequency of colony fusion observed in Kalotermes
might have facilitated the hybridization or if it is the reverse
situation. Further studies along the sympatry area between
K. flavicollis and K. italicuswould likely provide interesting in-
sight into reproductive boundaries and colony mate recogni-
tion in these social insects.

Supplementary material

The supplementary material for this article can be found at
https://doi.org/10.1017/S0007485317001080
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Table S1. Intra- and inter-clade divergence (uncorrected p-distances). 

  1 2 3 4 5 

1 K.flavicollis A 0.003     
2 K.flavicollis SC 0.015 0.002    
3 K.flavicollis IF 0.020 0.031 0.001   
4 K.flavicollis B+K.italicus (I) 0.054 0.061 0.057 0.003  
5 K.flavicollis B+K.italicus (II) 0.059 0.067 0.061 0.012 0.002 
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Abstract 

Sexual reproduction is the most prevalent reproductive strategy in animals but it is not the only 

mode of reproduction. In fact, conditional or obligatory use of asexual reproduction also occurs, as 

in the case of in social insects where the life cycle of several species of bees, wasps, ants, and 

termites is characterized by the co-occurrence of amphigony with different types of 

parthenogenesis. In some termite species, for example, founders are replaced by secondary kings 

and queens sexually and parthenogenetically produced, respectively. This particular reproductive 

mode is known as Asexual Queen Succession (AQS) and occurs in several species of the 

Rhinotermitidae and Termitidae families. From an evolutionary point of view, AQS strategy appears 

to be an ideal compromise between sexual and asexual reproductions, allowing to maintain the 

desirable genetic diversity in the offspring while extending the genetic contribution of the primary 

queen over the time and, thus, overcoming one of the major drawbacks of termite reproductive 

strategy, i.e. the dilution of genetic material in each sexually produced generation. Moreover, it has 

been theorized by Kobayashi and co-workers (2013) that the AQS system could promote the onset 

of kin selection in social diploids organisms like termites by generating a sex-biased investment.  



 

Here, a microsatellite survey on three Rhinotermitidae species, i.e. the French Reticulitermes 

grassei, R. flavipes (invasive range), and the Italian AQS species R. lucifugus, was carried out. Main 

aims are to verify the reproductive strategies of R. grassei and R. flavipes and to perform a deep 

investigation on the AQS strategy in R. lucifugus termites.  

For the first time, the occurrence of secondary kings in Italian AQS colonies of R. lucifugus is 

reported. Genetic and colony structure data indicated the presence of thelytokous secondary 

queens and sexually produced secondary kings in R. lucifugus while, in R. grassei and R. flavipes, 

secondary reproductives of both sexes were produced through gonochorism. Moreover, workers 

and winged reproductives resulted all produced by amphigony, as predicted by the AQS model, 

although the possibility of thelytokous parthenogesis for the production of some alates could be 

taken into account. Overall, these results confirmed the presence of AQS in R. lucifugus and 

highlighted its absence in the other two species. Moreover, data confirmed that R. lucifugus 

thelytokous parthenogenesis is carried out through a mechanism of terminal fusion. Finally, the 

analysis of genetic relatedness among actual and potential reproductives gives indication about the 

colony life-stage, also accordingly to the sex-asymmetry model of Kobayashi et al. (2013).  

 

 

Keywords: AQS, kin selection, sex allocation, termites 

  



 

Introduction 

Sexual reproduction is the most prevalent reproductive strategy in animals. However, it is not the 

only mode of reproduction: in fact, among the others, conditional or obligatory use of asexual 

reproduction occurs (Bell, 1982; Schon et al., 2009). A clear example is given in social insects: the 

life cycle of several species of bees, wasps, ants and termites is characterized by the co-occurrence 

of amphigony with different types of parthenogenesis (Heimpel & de Boer, 2008; Sumner & Keller, 

2008; Wenseleers & Van Oystaeyen, 2011). Among ants, for example, queens produce workers from 

fertilized eggs by amphigonic reproduction, while new queens develop from unfertilized eggs 

through thelytokous parthenogenesis (Wenseleers & Van Oystaeyen 2011; Rabeling & Kronauer, 

2013). This unusual reproductive system occurs, similarly, in termites and it is known as Asexual 

Queen Succession (AQS; Matsuura et al., 2009). In AQS termites, primary queens are replaced by 

numerous female secondary reproductives (neotenic individuals, also called nymphoid) produced 

through thelytoky; on the other hand, workers, soldiers and adult alates (swarming individuals, 

future colony founders and primary reproductive) are produced through the mating of the primary 

king with the primary queen or with her parthenogenetic daughters, secondary queens (reviewed 

in Matsuura, 2017).  

From an evolutionary point of view, the main adaptive significance of the AQS strategy appears to 

be an ideal compromise between amphigonic and parthenogenetic reproductions, allowing to 

maintain the desirable genetic diversity in the offspring while extending the genetic contribution of 

the primary queen over the time and, thus, overcoming one of the major drawbacks of termite sex, 

i.e. the dilution of genetic material in each sexually produced generation (Pearcy et al., 2004; 

Matsuura, 2011). Queen replacement by thelytokous daughters leads, in fact, to the conservation 

of the founder queen genes even after her death (Matsuura, 2017). Moreover, it has been suggested 

that AQS system could provide the basis for a better understanding of the inclusive fitness theory 



 

(Hamilton, 1964) in social diploids organisms like termites (Kobayashi et al., 2013). In a clear 

theoretical model, Kobayashi and co-workers (2013) showed that, in AQS species, after the 

replacement of the primary king with a secondary king, produced through the mating of the primary 

king with secondary queens, the genetic contribution of the primary queen rise to the 75%: in fact, 

the secondary king will carry half genome of the primary queen and secondary queens are all half-

clone of the primary queen. Therefore, the mating between the secondary king and secondary 

queens will be, de facto, a mother-son inbreeding: this sex-asymmetric genetic contribution will 

lead to a higher relatedness between the queen and the offspring. Moreover, this sex-asymmetric 

genetic inheritance could increase a female-biased allocation in the following offspring (Kobayashi 

et al., 2013; Matsuura, 2017).  

AQS strategy was first described in three Reticulitermes termite species belonging to the 

Rhinotermitidae family: R. speratus, R. virginicus and R. lucifugus (Matsuura et al., 2009; Vargo et 

al., 2012; Luchetti et al., 2013a). During the diversification of the Reticulitermes genus, AQS seems 

to have appeared independently multiple times (Dedeine et al., 2016). In fact, although R. speratus 

exhibits the AQS strategy, this reproductive mode in absent in its congeneric R. chinensis (Huang et 

al., 2013); the same occurs between R. virginicus and the congeneric species R. flavipes (Vargo et 

al., 2012; Matsuura, 2011). In this latter species, native in north America and invasive in France 

(Perdereau et al., 2013), the absence of AQS was suggested based only on the winged adult sex ratio 

(Matsuura, 2011), but no genetic investigations have been performed so far. The AQS strategy was 

also found in three neotropical termite species belonging to the Termitidae family, suggesting that 

such a breeding system is more widespread than previously thought (Fougeyrollas et al., 2015; 

Fournier et al., 2016; Fougeyrollas et al., 2017; Matsuura, 2017). Though, there are differences 

between Reticulitermes AQS and Termitidae AQS. First, the cytological mechanism of ploidy 

restoration is different: terminal fusion in Reticulitermes and gamete duplication or central fusion 



 

in Termitidae (reviewed in Matsuura, 2017). Second, while it is generally considered that AQS bring 

advantage to the colony on the long timespan, in the termitid species Silvestritermes minutus it 

seems that AQS mediates a faster colony growth and alates production within a very short colony 

lifespan (Fougeyrollas et al., 2017). 

In this work, we present a microsatellite survey of four French R. grassei and R. flavipes populations, 

and of two additional populations of the Italian R. lucifugus. The main aims are to verify the 

reproductive strategies of R. grassei and R. flavipes, providing genetic evidence and further describe 

more in detail the occurrence of AQS in Italian colonies of R. lucifugus. 

 

 

Materials and Methods 

Sample collection 

Tweny one termite colonies from six French and Italian localities were collected and preserved in 

100% ethanol until DNA extraction; all sampling pertinent information are given in Table 1 and 

Suppl. Figure S1. Each sample was first screened to discriminate castes (workers, soldiers and 

reproductives) and to search for neotenics and adult alates (swarming reproductives and fifth instar 

nymphs). Sex in the reproductives’ cast was determined based on the morphology of the last two 

abdominal sternites (Zimet & Stuart, 1982).  

 

Molecular techniques  

Total DNA was extracted from termites’ head following the CTAB method (Doyle and Doyle, 1987) 

for Italian samples while from whole termites’ body, using the Wizard® Genomic Purification Kit 

(Promega), for the French ones. Species were confirmed through the mitochondrial cytochrome 

oxidase 2 (COII) haplotype characterization following Luchetti et al. (2013b) and Dedeine et al. 



 

(2016), using two workers per colony. Sequences obtained were compared with a set of reference 

sequences drawn from Genbank: R. grassei (AN: KM245780), R. flavipes (AN: KM245765-67) R. 

lucifugus lucifugus (AN: AF291738 - KC576871) and R. lucifugus corsicus (AN: AY267858 - 

KM245781). The analyses led to sample characterization as follows: colonies RG1 – 5 = R. grassei; 

colonies RF1 – 4 = R. flavipes; colonies RLS1-12 = R. lucifugus (subsp. lucifugus).  

Overall, 802 individuals were genotyped, including workers and, when available, adult alates and 

neotenics of both sexes. To analyse the best-performing microsatellite loci, three different sets of 

loci were used for the three Reticulitermes species (Baudouin et al., 2017; Luchetti et al., 2013a); 

standard PCR cycling conditions were used, following reagents’ manufacturer information (Suppl. 

Table S1).  

 

Genetic analysis 

Genetic variability parameters (effective number of alleles, Ne; expected, He, and observed, Ho, 

heterozygosity; allelic richness, Ar) per species were calculated on workers only, using GenAlex v. 

6.502 (Peakall & Smouse, 2012), GENEPOP v. 1.2 (Raymond & Rousset 1995) and FSTAT v. 2.9.3.2 

(Goudet 1995). The breeding structure was estimated by determining the family type from genetic 

data, as explained in Vargo & Husseneder (2011): 

• Simple family: A colony headed by single royal pair and, accordingly, the genotypes of their 

offspring are expected to be consistent with Mendelian ratios.  

• Extended family: simple families become extended when secondary reproductives develop,  

and more than four genotypes or three classes of homozygotes may occur in the offspring. 

Further, genotypes distribution and frequencies are not consistent with those of simple 

families: significance of deviations was assessed by a goodness-of-fit G test on observed vs. 

expected genotypic frequencies.  



 

• Mixed families: headed by more than two unrelated reproductives, recognizable by the 

presence of five or more alleles at least at one locus. 

The goodness-of-fit G test on observed vs. expected genotypic frequencies was also used for 

determining genotype frequency distortion due to AQS in neotenics and in adult alates. 

For simple families showing secondary reproductives, as in the case of R. lucifugus colonies, 

genotypes of royal pairs were also reconstructed using GERUD v. 2.0 (Jones, 2005) considering the 

genotypes of parthenogenetic secondary queens and their nest-mate workers. In the same colonies, 

relatedness (r) among nest mates and between inferred royals was also calculated with Konovalov 

and Heg (2007) maximum likelihood estimator as implemented in Kingroup v. 2 (Konovalov et al., 

2004). Statistical significance of relatedness (r) deviation from expectations - 0.75 mother-son 

inbreeding offspring; 0.5 for parent-offspring or full-sibling; 0.25 for half-sibling -  was assessed by 

Wilcoxon one-sample test. 

To determine the mode of thelytoky responsible for the origin of neotenic parthenogens in 

Reticulitermes colonies, the generational rate of transition to homozygosity for the loci 

heterozygous in the inferred mother was calculated and compared with those expected under 

different modes of thelytoky (Pearcy et al., 2006). 

 

 

Results 

Workers genetic diversity and colonies family type 

A total of 802 individuals belonging to R. grassei, R. flavipes and R. lucifugus were genotyped at 10, 

8 and 6 microsatellite loci, respectively (Suppl. Table S2-S4). The percentage of polymorphic loci 

varied across the three species. In R. grassei, the 80% of the loci examined were polymorphic apart 

from loci Rg32 and Rg46. In R. flavipes and R. lucifugus, all loci resulted in polymorphism. Genetic 



 

diversity indices have been calculated on workers only as, at best of our knowledge, they are 

produced by amphigonic reproduction only. The mean values of allelic richness (Ar) and number of 

effective alleles (Ne) ranged from 2.5 to 4.5 and from 1.85 to 2.97 in the three taxa analysed, with 

the lowest values observed in R. lucifugus and the highest one in R. flavipes. All the three taxa 

showed an observed heterozygosity lower than expected (Table 2).  

Based on workers genotypes, the colony breeding structure was determined. All R. grassei colonies 

resulted extended families, the observed genotypes being inconsistent with those expected based 

on a simple Mendelian family (Figure 1; Suppl. Table S2). Two out four R. flavipes colonies resulted 

as extended families (RF3, RF4), one as simple family (RF2) and one as mixed family (RF1), the latter 

having more than 4 alleles at a single locus (Figure 1; Suppl. Table S3). On the other hand, all R. 

lucifugus colonies, but one, showed the structure of simple families. The colony RL6, in fact, showed 

a frequency of genotypes different from the expectation of a simple family (PG<0.05; Figure 1; Suppl. 

Table S4). 

 

Neotenics and adult alates genotyping   

Neotenics of both sexes were found in different colonies of analyzed species; their distribution, 

though, does not appears equal. In R. grassei and R. flavipes all colonies showed both secondary 

queens and kings, although in one R. grassei colony, RG4, a higher proportion of females was 

observed (P
2<0.001; Table 1). In R. lucifugus, on the other hand, five out of eight colonies hosted 

only secondary queens; in the remaining three, two had significantly more females (P
2<0.05) and 

one showed 1:1 sex ratio (Table 1). Moreover, in two colonies (RL1, RL3), all females neotenics were 

physogastric indicating they were functional secondary queens (Suppl. Figure S1). 

Heterozygosity of workers and neotenics was similar in both R. grassei and R. flavipes, even when 

different sexes are considered (Figure 2). On the contrary, in R. lucifugus, female neotenics 



 

(secondary queens) were fully homozygous in five out eight colonies and in one colony (RL12) the 

proportion of homozygote females was 80%, where two females were heterozygote at one and two 

loci, respectively (Figure 2; Suppl. Table S3). In the colonies RL3 and RL11, five secondary queens 

were heterozygote at one or two loci (Figure 2; Suppl. Table S3). Interestingly, in the colony RL3, 

five secondary queens were heterozygote at the same locus, carrying the same genotype, and one 

of them resulted heterozygous at a second locus. In the colony RL11, though, three out five female 

neotenics were heterozygous at two loci; surprisingly, RL11 workers were heterozygous at a single 

locus (Figure 2; Suppl. Table S3). 

Heterozygote R. lucifugus secondary kings, though, reached the 100% in two out three colonies; in 

the third one (RL12), only one male resulted heterozygote at two loci, while the others were 

heterozygote at a single locus (Figure 2; Suppl. Table S3). 

Alate genotypes mostly followed what has been observed for neotenics in both R. grassei and R. 

flavipes, heterozygosity being significantly similar to the one observed in workers (P
2 = 0.911 and 

P
2 = 0.988, respectively; Figure 2). In R. lucifugus, alates heterozygosity is significantly lower than 

that expected based on worker heterozygosity (P
2 < 0.01). Male and female adult alates of R. 

grassei and R. flavipes showed the same level of heterozygosity (PWilcoxon-paired = 0.357 and PWilcoxon-

paired = 1, respectively). On the other hand, heterozygous female alates appeared to be significantly 

less than male alates from the same nest (PWilcoxon-paired < 0.05); notably, in the colony, RL5, all female 

alates were homozygote compared to the 30% of heterozygote males (Figure 2; Suppl. Table S3). 

To highlight genotype distortion in female neotenics, we only analyzed those individuals that were 

fully homozygous and, therefore, produced by parthenogenesis (Matsuura et al., 2009). Considering 

the inferred primary queen genotypes at sequenced loci, we estimated that in all R. lucifugus 

colonies neotenics showed a significant distortion of genotype frequency (PG < 0.05). R. lucifugus 

alates showed deviation from expected genotype frequencies in five out six analyzed colonies (PG < 



 

0.01). As a comparison, all R. grassei and R. flavipes adult alates showed genotype frequencies do 

not deviating from expectations (PG  0.759), apart from the R. flavipes colony RF1 (PG < 0.05). 

 

Parthenogenesis and restoration of ploidy in R. lucifugus 

In both two populations, the parthenogenetic female neotenics were not all fully homozygous at all 

loci considered but some individuals were heterozygous for the loci that were heterozygous in the 

inferred maternal genotypes. This scenario was significantly different from that expected under 

apomixis or under automixis with gamete duplication (Pearcy et al., 2006). The rate of transition to 

homozygosity (R) ranged from 0.6 to 0.97 per locus: these rates were consistent with the values 

expected under automixis with terminal fusion as supported by 2-test results (Table 3). 

 

Relatedness distribution among R. lucifugus colonies  

In R. lucifugus colonies, based on the female neotenics and workers’ genotypes, it is possible to infer 

the primary queen and primary king genotype. For the eight colonies where this is possible we 

always scored a single possible primary queen and primary king, apart of colony RL3 where two 

possible primary kings have been inferred (named PK1 and PK2; Suppl. Table S4). In average, primary 

queens and kings were related to each other, showing an average r = 0.437  0.101 (± standard 

error; P0.5 = 0.445). Female neotenics showed an average relatedness of 0.507 ± 0.018 with inferred 

primary queens (P0.5 =0.182), while having an average r = 0.279 ± 0.028 with primary kings (P0.5 < 

0.001). On the other hand, male neotenics showed a relatedness of 0.478 ± 0.036 (P0.5 = 0.654) with 

the primary queen and of 0.654 ± 0.070 with the primary king (P0.5 < 0.05), but an average r = 0.255 

± 0.025 with female neotenics (P0.5 < 0.001; P0.25 = 0.662). Workers showed an average relatedness 

of 0.515 ± 0.019 (P0.5 = 0.180) and 0.556 ± 0.023 (P0.5 < 0.01) with primary queen and king, 

respectively; moreover, they showed r = 0.154 ± 0.010 (P0.5 < 0.001; P0.25 = < 0.001) and r = 0.349 ± 



 

0.031 (P0.5 < 0.001; P0.25 < 0.01) with female and male neotenics, respectively. In the colonies RL1 

and RL3, adult alates showed r = 0.623 ± 0.028 (P0.5 < 0.001) and r = 0.4237 ± 0.032 (P0.5 = 0.071) 

with primary queen and king, respectively, without differences between sexes. The same can be 

observed about the relatedness with female neotenics which resulted, in average, r = 0.296 ± 0.020 

(P0.5 < 0.001; P0.25 = 0.506). 

Colony RL3 represent an interesting case as two primary kings have been inferred (Suppl. Table S4). 

The relatedness between the inferred primary kings, PK1 and PK2, and the primary queen was 0.250 

and 0.670, respectively. Workers relatedness with inferred primary kings was r = 0.508 ± 0.061 and 

r = 0.602 ± 0.035, respectively; in the first case, PK1, values do not deviate significantly from parent-

offspring expectation (P0.5 = 0.686), while in the second one, PK2, workers showed higher 

relatedness (P0.5 < 0.05). Adult alates of the RL3 colony showed relatedness value significantly 

deviating from the parent-offspring expectation with both PK1 and PK2: r = 0.264 ± 0.052 (P0.5 < 

0.01) and r = 0.599 ± 0.048 (P0.5 < 0.05), respectively. This deviation held also when calculating the 

relatedness with the primary queen, r = 0.677 ± 0.055 (P0.5 < 0.01). Interestingly, adult alates 

relatedness with the primary queen and the inferred PK1 king do not deviated from 0.75 (P0.75 = 

0.297) and 0.25 (P0.25 = 0.879), respectively.  

 

 

Discussion 

The AQS reproductive strategy was first found in the Japanese R. speratus, and then described also 

in the North American R. virginicus and the Italian R. lucifugus (Matsuura et al., 2009; Vargo et al., 

2012; Luchetti et al., 2013). Interestingly, although the envisaged advantage of this mating system 

(Matsuura et al., 2009, 2011) and the close phylogenetic relationship among Reticulitermes species 

(Dedeine et al., 2016), AQS does not occur in all taxa. We here analyzed the European populations 



 

of three species, R. lucifugus, R. grassei and R. flavipes, to confirm the presence/absence of AQS and 

to detail possible AQS-related feature in colony castes.  

 

AQS and non-AQS species 

In those colonies where neotenics have been found, sex distribution quite different resulted. In R. 

grassei and R. flavipes male and female neotenics occurred equally, apart from one R. grassei colony 

showing a females-biased ratio. In R. lucifugus, female neotenics were in the majority but, for the 

first time, some male neotenics occurred; interestingly, in one colony (RL12) a 1:1 sex ratio was 

observed. Moreover, R. grassei and R. flavipes neotenics (both females and males) showed a level 

of heterozygosity fully comparable to that of workers and adult alates, that are known to be 

produced by amphigony. On the contrary, R. lucifugus female neotenics were fully homozygotes, 

except for three colonies. Heterozygous secondary queens in an AQS system may occur because of 

recombination during the oogenesis or because of occasional bisexual production of females 

neotenics (Matsuura et al., 2009; Vargo et al., 2012). In our data, two colonies showed up to the 

50% of genotyped female neotenics as heterozygotes at the same locus: it is difficult to discern 

whether observed heterozygosity was due to recombination to amphigonic reproduction, because 

genotypes of inferred primary reproducers mostly carry same alleles. The only difference was in the 

colony RL11, where the primary king carry an allele not found in heterozygous female neotenics. 

Though, the frequency of heterozygotes does not appear compatible with the rare event of 

recombination, we therefore consider that a proportion of female neotenics were produced by 

amphigony. Overall, R. lucifugus female neotenics showed genotypes consistent with thelytokous 

parthenogenesis; moreover, the test for ploidy restoration confirms the cytological mechanisms of 

automixis with terminal fusion. In line with this finding, R. lucifugus female neotenics showed an r 

value consistent with a parent-offspring relationship when compared to inferred primary queens, 



 

while the same relatedness can be rejected with inferred primary kings. Genotyped R. lucifugus 

male neotenics resulted as heterozygous as workers and adult alates, in line with the prediction that 

they are produced by amphigony. Moreover, they all showed r values with both primary 

reproducers significantly consistent with a parent-offspring relationship. Full sibling relationship 

between males and females neotenics can be rejected, and the estimated value of r (0.233 ± 0.028) 

suggest a half-sibling relationship: this is expected in the AQS system between secondary queens 

and their offspring (Matsuura et al., 2009; Matsuura, 2011). In the AQS system, all-females 

neotenics are expected except for colonies that are in the terminal phase of development, when 

the primary king is replaced by (a) secondary king(s) (Matsuura, 2017). On the other hand, the 

presence of many males neotenics, even up to a 1:1 sex ratio, is quite surprising as, in previous 

analyses, only one neotenic male per colony was found (Matsuura et al., 2009). Male neotenics we 

collected in R. lucifugus colonies were not taken from the royal chamber, therefore we have not 

information about their possible functionality. However, female neotenics were found outside the 

royal chamber, and in two colonies we found functional secondary queens. This seems to suggest 

that primary reproducers replacement may occur elsewhere within the nest tunnels or even that 

new reproductive centres can be established. Overall, we confirm the presence of AQS in R. 

lucifugus and evidence its absence in R. grassei and R. flavipes. As for the latter species is concerned, 

the absence of AQS was already suggested in North American colonies (Matsuura, 2011); here we 

showed that also colonies in the invasive range lack of this peculiar reproductive strategy. 

 

Colonies family type, breeding structure and life stage 

It is interesting to note that, as already noted (Vargo et al., 2012; Luchetti et al., 2013a), the 

prediction of the family type within colonies can be affected by the presence/absence of AQS. By 

definition, in fact, colonies where secondary reproducers occur are extended families: this type of 



 

mating structure can be inferred by the presence of genotypes that are not compatible with two 

parents mating (as in simple families) or whose frequency deviate significantly from the expected 

Mendelian segregation (Vargo & Husseneder, 2011). In R. grassei, all colonies have neotenics and, 

accordingly, genotypes distribution inspection indicated all are extended families. In R. flavipes, two 

out four colonies resulted extended families, one a mixed family and one a simple family. Mixed 

families are rare in Reticulitermes, but where found quite frequent in the R. flavipes invasive ranges 

(Perdereau et al., 2010; 2015): they come out when two nests eventually fuse and lead to a mixed 

colony or when the colony is founded by multiple reproducers ( 3; Vargo & Husseneder, 2011). 

Analyzed R. flavipes family types are mostly compatible with the presence of neotenics. R. lucifugus 

colonies with neotenics all resulted as simple families, apart from colony RL6 which appeared as an 

extended family. Since neotenics that are derived only from the primary queen and mate with the 

primary king, the effect on colony genotype is still that of a simple pair mating; therefore, this may 

hinder the genetic signal to infer the family type. An alternative explanation for our data is that 

female neotenics were not yet functional, although this can be excluded for colonies RL1 and RL3 

where we collected physogastric secondary queens. 

Another point we can draw from relatedness analysis concerned the life stage of R. lucifugus 

colonies. In line to the known life-cycle and the AQS model (Vargo & Husseneder 2009; Matsuura, 

2017), a colony is founded by a bisexual pair of dispersing alates; then, during the colony 

development, the primary queen is replaced by multiple secondary queens, produced by 

parthenogenesis, that will mate with the primary king. During the terminal stage of the colony life, 

the primary king is replaced by a secondary king, produced through the mating of the primary king 

and secondary queens: from this moment onward, secondary king will mate with secondary queens. 

Following the model of sex-asymmetric inbreeding in AQS (Kobayashi et al., 2013), the offspring at 

this late stage will be related by 0.75 to the primary queen and 0.25 to the primary king: this is 



 

because the secondary king will bear half the genome of the primary queen and the mating with 

secondary queens (half-clones of the primary queen) will result in a mother-son inbreeding. Our 

data indicated, though, that workers, secondary kings, and alates have a relatedness with the 

primary pair of about 0.5, as expected from parent-offspring relationship; moreover, they showed 

a relatedness similar or lower than the half-sibling value (0.25) with female neotenics, as expected 

from the AQS model (Matsuura et al., 2009; Matsuura, 2011). Notably, workers showed a 

relatedness with female neotenics significantly lower than the expected 0.25, while secondary kings 

and alates did not. This discrepancy is likely because while collected workers may belong to different 

generations, thus allelic frequency can be different, secondary kings and alates were collected from 

the same generation. For instance, alates have been all collected during the same swarming phase. 

As they showed parent-offspring relationship with primary pairs and half-sibling with secondary 

queens, we can conclude they were offspring of the primary king and secondary queens. We can, 

therefore, infer that assayed colonies were at a mature stage, but not yet in the terminal phase, 

that is when headed by a primary king and secondary queens. In this regard, however, the colony 

RL3 could represent a noticeable exception. Here two primary kings have been inferred, PK1 and 

PK2, the first being much less related with the primary queen: this raise the question whether the 

second inferred king PK2 could represent a secondary king. Following the expectation of the sex-

asymmetry inbreeding model, alates (representing a single generation born at the field collection 

moment) showed relatedness significantly similar to 0.75 with the primary queen and significantly 

similar to 0.25 with the PK1 king (thus, being the true primary king). Therefore, we could suggest 

that RL3 colony is, actually, at the terminal stage of development. 

The relatedness observed between inferred primary king and primary queen resulted quite high 

(0.437  0.101), not significantly different from the parent-offspring relationship, suggesting 

colonies could be headed by a secondary king (Vargo et al., 2012). On the other hand, based on the 



 

sex-asymmetry inbreeding model expectations, we ruled out this possibility; the same relatedness 

value, in fact, can be that of full-sibling, suggesting that colony founders are related because they 

share parents. It is worth nothing that a genetic investigation indicated that the San Rossore R. 

lucifugus population is constituted of mostly interconnected nests originated by budding 

(Scicchitano et al., unpublished): this might suggest that primaries may have had a close genetic 

relationship. 

 

Genetics of alates 

One of the evolutionary advantage of AQS is the possibility to perpetuate in the time the mating 

between primary reproducers, the genetic contribution of the queen being carried by thelytokous 

secondary queens: this would keep the heterozygosity of the new offspring at higher level, avoiding 

the king-daughter inbreeding and the possible sib-mating between male and female neotenics 

(Matsuura, 2017). It is important for workers, soldiers, and alates to have a high heterozygosity as 

they are more subject to environmental variables: for example, swarming adult alates are those that 

will leave the nest to found a new one. In R. virginicus, an AQS species living in North America, it 

was observed that female alates were significantly more inbred than male (DeHeer & Vargo, 2006); 

though, the discovery of AQS in this species led to the explanation that a part of these swarming 

females was produced by parthenogenesis. Our data on adult alates strongly confirm this 

suggestion, alate females being significantly less heterozygous than male alates. Moreover, in the 

colony RL5 the 100% of female alates were homozygous, compared to the 30% of male alates. 

Therefore, it is possible to hypothesize that AQS species may also produce female alates though 

parthenogenesis. In line with this, the two non-AQS species here analyzed, R. grassei and R. flavipes, 

did not show any heterozygosity decrease in female alates with respect to males alates. 



 

It was observed that, during parthenogenesis, conflicts by selfish genetic elements (SGE) may occur 

causing a distortion in the genotypic frequencies. These SGE, thus, could influence the first meiotic 

division enhancing the transmission of one of the two possible maternal emi-genomes in the next 

thelytokous generation (Matsuura, 2011; 2017). In line with this, analyzed R. lucifugus neotenics 

showed significant distortion of genotype frequencies, indicating SGE had a role also in this species. 

We presently demonstrated that analyzed alates were the offspring of the primary king and 

secondary queens: as such, they showed a significant distortion in genotype frequencies as 

expected based on the SGE model (Matsuura, 2011) and observed in another AQS-species, R. 

speratus (Matsuura et al., 2009). Notably, alates of the non-AQS species R. grassei and R. flavipes 

do not showed genotype frequencies distortions. 

Several studies described sexual genetic conflicts among insects and mechanisms by which one gene 

can counteract a rival during meiosis (Cazemajor et al., 2000; Pennisi, 2003). In the case of AQS, due 

to SGE, genetic conflicts are triggered at intra-sexual level between maternal emi-genomes 

(Matsuura, 2011). It is possible to hypothesize, alternatively to the parthenogenetic origin of adult 

female alates, that the loss of heterozygosity observed in swarmings alates could results from such 

maternal genetic conflicts.  
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Tables & Figures 

  

Table 1. Species, sampling locality, colony ID, and the number of genotyped individuals per colony. 

Species/Locality Colony ID Workers Adult alates Neotenics 

 
  

♀ ♂ ♀ ♂ 

R. grassei       

La Tremblade RG1 20 10 10 - - 
 

RG2 20 10 10 - - 

Pissos RG3 29 5 5 20 20 
 

RG4 18 1 4 21 1 
 

RG5 20 10 8 9 3 
       

R. flavipes  
      

Paris RF1 9 10 10 - - 

La Tremblade RF2 19 10 10 9 10 
 

RF3 17 10 10 10 10 

Saint-Georges-d'Oléron RF4 18 10 10 10 10 
       

R. lucifugus 
      

San Rossore Natural Reserve RL1 10 10 10 8 - 
 

RL2 10 - - 10 - 
 

RL3 10 10 10 10 - 
 

RL4 10 10 10 - - 
 

RL5 10 10 10 - - 
 

RL6 10 10 10 - - 
 

RL7 10 10 10 - - 
 

RL8 10 - - 10 3 

Roccelletta di Borgia RL9 10 - - 10 2 
 

RL10 9 - - 5 - 
 

RL11 10 - - 10 - 
 

RL12 9 - - 10 10 

 
  



 

Table 2. Workers genetic diversity, per locus (with mean and standard error), in analyzed species. 

[Ar: allelic richness; Ne: number of effective alleles; Ho: observed heterozygosity; He: expected 

heterozygosity] 

Species Locus Ar Ne Ho He 

R. grassei Rg3 2.00 1.20 0.11 0.17 

  Rg9 2.00 1.47 0.35 0.32 

  Rg15 3.00 1.35 0.18 0.26 

  Rg23 3.00 2.34 0.26 0.57 

  Rg32 1.00 1.00 0.00 0.00 

  Rg35 2.00 2.00 0.37 0.50 

  Rg39 2.00 1.53 0.39 0.35 

  Rg44 8.00 5.39 0.56 0.81 

  Rg46 1.00 1.00 0.00 0.00 

  Rg48 2.00 1.72 0.26 0.42 

  Rf21-1 6.00 4.15 0.33 0.76 

  Mean 2.91 2.10 0.26 0.38 

  SE 0.65 0.42 0.05 0.08 

       

R. flavipes Rf11-1 4.00 2.01 0.51 0.50 

  Rf6-1 8.00 3.50 0.49 0.71 

  Rs1 5.00 4.34 0.24 0.77 

  Rf21-1 5.00 3.10 0.30 0.68 

  Rs43 2.00 1.49 0.32 0.33 

  Rs15 4.00 3.45 0.51 0.71 

  Rf15-2 4.00 3.10 0.19 0.68 

  Rf1-3 4.00 2.80 0.43 0.64 

  Mean 4.50 2.97 0.37 0.63 

  SE 0.60 0.31 0.04 0.05 

       

R. lucifugus Rf24-2 7.00 2.80 0.35 0.64 

  Rf21-1 5.00 3.40 0.26 0.71 

  Rs02 2.00 1.14 0.08 0.13 

  Rf5-10 3.00 1.43 0.30 0.30 

  Rs10 4.00 1.29 0.18 0.22 

  Rf1-3 2.00 1.04 0.04 0.04 

  Mean 3.83 1.85 0.20 0.34 

  SE 0.79 0.41 0.05 0.11 

 
  



 

Table 3. Test of ploidy restoration for R. lucifugus secondary queens (* P< 0.05; ** P<0.01; *** 

P<0.001; n.s., not significant) 

 
 

 

Figure 1. Respective proportion of simple families (white), extended families (grey) and mixed 

families (black) among colonies of the three Reticulitermes species.  

 

 

 

 

 

 

 

 

 

 

 

  

Locus PQhet SQtot SQhomo R Apomixis  Automixis     

            central fusion random 
fusion 

terminal 
fusion 

gamete 
duplication 

          (r = 0) ( r = 0 - 0.33) (r = 0.33) (r = 0.33 - 1) (r = 1) 

Rf24-2 7 63 58 0.92 *** *** *** n.s. *** 

Rf21-1 6 58 56 0.97 *** *** *** n.s. *** 

Rs02 2 15 14 0.93 *** *** *** n.s. *** 

Rf5-10 4 38 33 0.87 *** *** *** n.s. *** 

Rs10 1 10 6 0.60 *** n.s. n.s. n.s. *** 
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Figure 2. Respective proportion of homozygous (black) and heterozygous (white) individuals among 

castes, in each colony of the three Reticulitermes species. 
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Suppl. Table S1. Information on microsatellite loci chosen for genotyping. 

Species Microsatellite loci  References 
Annealing 
Temp. 

R. grassei 

Rg3; Rg9; Rg15; 
Rg23; Rg32; Rg35; 
Rg39; Rg44; Rg46; 
Rg48; Rf21-1 

this study; Dronnet et al., 2004; Vargo, 2000;  55°C 

R. flavipes 

Rf11-1; Rf6-1; 
Rf21-1; Rf15-2; 
Rf1-3; Rs1; Rs43; 
Rs15 

DeHeer et al., 2005; Dronnet et al., 2004; 
Vargo, 2000; Baudouin et al., 2016 

55°C 

R. lucifugus 
Rf24-2; Rf21-1; 
Rf5-10; Rf1-3; 
Rs02; Rs10 

Dronnet et al., 2004; Vargo, 2000;  56°C 

 



Suppl. Table S2. Genotypes of R. grassei colonies (A_f/m: alate female/male; N_f/m: neotenic 

female/male; w: worker) 

Colony ID/individuals Microsatellite loci 

  Rg15 Rg32 Rg35 Rg39 Rg46 Rg3 Rg9 Rg23 Rg44 Rg48 Rf21-1 

RG1 
                      

A_f1 118 118 139 139 105 105 216 216 63 63 172 172 307 307 168 168 102 102 162 162 190 211 

A_f2 118 118 139 139 105 105 216 216 63 63 172 172 307 307 168 168 102 102 162 162 190 190 

A_f3 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 102 162 162 211 211 

A_f4 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 102 162 162 190 226 

A_f5 118 118 139 139 105 105 216 216 63 63 172 172 307 307 168 168 102 102 162 162 226 226 

A_f6 118 118 139 139 105 105 216 216 63 63 172 172 307 307 168 168 121 121 162 162 190 190 

A_f7 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 121 162 162 211 226 

A_f8 118 118 139 139 105 105 216 216 63 63 172 172 307 307 168 168 102 102 162 162 190 211 

A_f9 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 121 162 162 190 190 

A_f10 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 156 102 102 162 162 211 211 

A_m1 118 118 139 139 105 105 216 216 63 63 172 172 307 307 168 168 102 102 162 162 226 226 

A_m2 118 118 139 139 105 105 216 216 63 63 172 172 307 307 168 168 102 102 162 162 0 0 

A_m3 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 121 162 162 211 211 

A_m4 118 118 139 139 105 105 216 216 63 63 172 172 307 307 168 168 102 102 162 162 190 211 

A_m5 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 102 162 162 211 211 

A_m6 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 102 162 162 211 211 

A_m7 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 156 102 121 162 162 190 211 

A_m8 118 118 139 139 105 105 216 216 63 63 172 172 307 307 168 168 102 102 162 162 211 226 

A_m9 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 121 162 162 211 211 

A_m10 118 118 139 139 105 105 216 216 63 63 172 172 307 307 168 168 102 102 162 162 190 211 

w1 118 118 139 139 105 105 216 216 63 63 172 172 307 307 168 168 102 102 162 162 211 211 

w2 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 121 162 162 211 226 

w3 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 102 162 162 211 211 

w4 118 118 139 139 105 105 216 216 63 63 172 172 307 307 168 168 102 102 162 162 211 226 

w5 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 102 162 162 190 211 

w6 118 118 139 139 105 105 216 216 63 63 172 172 307 307 168 168 102 121 162 162 211 211 

w7 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 102 162 162 190 211 

w8 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 102 162 162 190 211 

w9 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 121 162 162 190 211 

w10 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 102 162 162 190 211 

w11 118 118 139 139 105 105 216 216 63 63 172 172 307 307 168 168 102 121 162 162 211 226 

w12 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 156 121 121 162 162 190 190 

w13 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 121 162 162 211 226 

w14 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 102 162 162 190 211 

w15 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 102 162 162 211 226 

w16 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 121 162 162 211 226 

w17 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 121 162 162 211 211 

w18 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 102 162 162 211 226 

w19 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 102 162 162 190 211 

w20 118 118 139 139 105 105 216 216 63 63 172 172 307 307 156 168 102 102 162 162 190 211 

                       

RG2                       

A_f1 118 118 139 139 105 112 216 216 63 63 170 172 307 307 159 159 127 127 162 162 190 226 

A_f2 118 118 139 139 112 112 216 218 63 63 170 172 307 307 159 159 106 106 162 162 190 226 

A_f3 118 118 139 139 112 112 216 216 63 63 172 172 307 307 159 168 102 102 162 162 226 226 

A_f4 118 118 139 139 105 112 216 216 63 63 172 172 307 307 159 159 106 127 162 162 226 226 

A_f5 118 118 139 139 105 112 216 218 63 63 170 170 307 307 159 159 102 106 162 162 226 226 

A_f6 118 118 139 139 105 105 216 216 63 63 170 170 307 307 159 159 102 102 162 162 226 226 

A_f7 118 118 139 139 105 112 216 216 63 63 170 170 307 307 159 168 102 106 162 162 226 226 

A_f8 118 118 139 139 105 112 218 218 63 63 172 172 307 307 159 159 102 127 162 162 226 226 

A_f9 118 118 139 139 105 112 216 218 63 63 170 172 307 307 159 159 106 127 162 162 190 226 

A_f10 118 118 139 139 105 105 216 216 63 63 170 172 307 307 159 159 106 127 162 162 226 226 

A_m1 118 118 139 139 105 112 216 216 63 63 170 170 307 307 159 159 102 127 162 162 226 226 

A_m2 118 118 139 139 105 112 216 218 63 63 170 172 307 307 159 159 106 106 162 162 226 226 



Colony ID/individuals Microsatellite loci 

  Rg15 Rg32 Rg35 Rg39 Rg46 Rg3 Rg9 Rg23 Rg44 Rg48 Rf21-1 

RG2 
                      

A_m3 118 118 139 139 105 105 216 216 63 63 170 172 307 307 159 159 106 106 162 162 226 226 

A_m4 118 118 139 139 105 112 218 218 63 63 170 170 307 307 159 159 102 102 162 162 226 226 

A_m5 118 118 139 139 105 112 216 218 63 63 170 170 307 307 159 159 106 127 162 162 226 226 

A_m6 118 118 139 139 105 112 216 218 63 63 170 172 307 307 159 159 102 102 162 162 226 226 

A_m7 118 118 139 139 112 112 216 218 63 63 170 172 307 307 159 159 106 127 162 162 226 226 

A_m8 118 118 139 139 105 112 216 218 63 63 170 172 307 307 159 159 102 106 162 162 226 226 

A_m9 118 118 139 139 105 112 218 218 63 63 170 172 307 307 159 159 102 127 162 162 226 226 

A_m10 118 118 139 139 105 112 216 218 63 63 170 170 307 307 159 159 106 127 162 162 226 226 

w1 118 118 139 139 105 112 216 216 63 63 170 172 307 307 159 159 106 127 162 162 190 226 

w2 118 118 139 139 112 112 216 216 63 63 172 172 307 307 159 159 102 106 162 162 226 226 

w3 118 118 139 139 105 112 216 218 63 63 170 172 307 307 159 159 102 127 162 162 226 226 

w4 118 118 139 139 105 112 218 218 63 63 170 170 307 307 159 159 102 127 162 162 226 226 

w5 118 118 139 139 105 105 216 216 63 63 172 172 307 307 159 159 106 106 162 162 226 226 

w6 118 118 139 139 112 112 216 216 63 63 172 172 307 307 159 159 106 106 162 162 226 226 

w7 118 118 139 139 105 112 216 218 63 63 170 172 307 307 159 159 102 106 162 162 226 226 

w8 118 118 139 139 105 105 216 218 63 63 170 172 307 307 159 159 102 106 162 162 226 226 

w9 118 118 139 139 105 105 216 216 63 63 170 172 307 307 159 159 127 127 162 162 226 226 

w10 118 118 139 139 105 112 216 218 63 63 170 172 307 307 159 159 106 106 162 162 226 226 

w11 118 118 139 139 105 105 216 218 63 63 170 172 307 307 159 159 102 106 162 162 226 226 

w12 118 118 139 139 105 112 216 216 63 63 170 170 307 307 159 159 102 106 162 162 226 226 

w13 118 118 139 139 105 105 216 218 63 63 170 172 307 307 159 159 102 127 162 162 190 226 

w14 118 118 139 139 105 105 216 216 63 63 170 172 307 307 159 159 102 106 162 162 226 226 

w15 118 118 139 139 105 112 216 216 63 63 170 172 307 307 159 168 106 127 162 162 226 226 

w16 118 118 139 139 105 112 216 218 63 63 170 170 307 307 159 168 102 106 162 162 226 226 

w17 118 118 139 139 112 112 216 216 63 63 170 172 307 307 159 159 106 127 162 162 226 226 

w18 118 118 139 139 105 105 216 218 63 63 172 172 307 307 159 159 106 127 162 162 226 226 

w19 118 118 139 139 105 105 216 216 63 63 170 170 307 307 159 159 106 127 162 162 226 226 

w20 118 118 139 139 105 112 216 218 63 63 170 172 307 307 159 159 102 127 162 162 226 226 

                       

RG3                       

A_f1 115 118 139 139 112 112 216 218 63 63 172 172 307 307 168 168 102 123 162 168 229 229 

A_f2 118 118 139 139 105 112 216 216 63 63 172 172 307 307 168 168 123 125 168 168 229 229 

A_f3 115 118 139 139 112 112 216 218 63 63 172 172 278 307 168 168 123 123 162 168 229 229 

A_f4 118 118 139 139 105 105 216 218 63 63 172 172 278 307 168 168 123 123 168 168 229 229 

A_f5 118 118 139 139 105 112 216 216 63 63 172 172 278 307 168 168 102 123 168 168 229 229 

A_m1 115 115 139 139 112 112 216 218 63 63 172 172 307 307 168 168 125 125 168 168 229 229 

A_m2 115 115 139 139 105 105 216 218 63 63 172 172 278 278 168 168 102 125 162 168 229 229 

A_m3 118 118 139 139 105 112 216 216 63 63 172 172 307 307 168 168 102 123 168 168 229 229 

A_m4 118 118 139 139 112 112 216 216 63 63 172 172 307 307 168 168 102 125 168 168 229 229 

A_m5 118 118 139 139 112 112 216 218 63 63 172 172 307 307 168 168 123 123 168 168 229 229 

N_f1 115 115 139 139 105 112 216 216 63 63 172 172 307 307 168 168 102 123 168 168 229 229 

N_f2 118 118 139 139 105 112 216 216 63 63 172 172 278 307 168 168 102 123 168 168 229 229 

N_f3 118 118 139 139 105 112 218 218 63 63 172 172 307 307 168 168 102 123 162 162 229 229 

N_f4 115 118 139 139 112 112 216 218 63 63 172 172 307 307 168 168 102 123 162 168 229 229 

N_f5 115 115 139 139 105 105 216 216 63 63 172 172 278 307 168 168 123 123 168 168 229 229 

N_f6 115 115 139 139 105 112 216 216 63 63 172 172 278 278 168 168 102 123 168 168 229 229 

N_f7 115 118 139 139 105 112 216 218 63 63 172 172 307 307 168 168 102 123 168 168 229 229 

N_f8 115 115 139 139 105 112 218 218 63 63 172 172 278 278 168 168 102 125 162 162 229 229 

N_f9 115 118 139 139 105 112 216 218 63 63 172 172 307 307 168 168 102 123 162 168 229 229 

N_f10 118 118 139 139 105 112 216 218 63 63 172 172 278 307 168 168 102 102 168 168 229 229 

N_f11 118 118 139 139 105 112 216 216 63 63 172 172 307 307 168 168 102 125 168 168 229 229 

N_f12 118 118 139 139 105 112 218 218 63 63 172 172 307 307 168 168 125 125 162 168 229 229 

N_f13 118 118 139 139 105 105 216 216 63 63 172 172 307 307 168 168 123 123 168 168 229 229 

N_f14 115 118 139 139 105 112 216 216 63 63 172 172 307 307 168 168 102 125 168 168 229 229 

N_f15 115 115 139 139 112 112 216 218 63 63 172 172 278 307 168 168 123 125 162 168 229 229 

N_f16 115 115 139 139 105 105 216 218 63 63 172 172 278 278 168 168 125 125 162 168 229 229 

N_f17 115 115 139 139 112 112 216 216 63 63 172 172 278 307 168 168 102 125 162 168 229 229 

N_f18 115 118 139 139 105 105 216 216 63 63 172 172 307 307 168 168 123 125 168 168 229 229 

N_f19 115 115 139 139 105 112 216 216 63 63 172 172 307 307 168 168 123 125 162 168 229 229 



Colony ID/individuals Microsatellite loci 

  Rg15 Rg32 Rg35 Rg39 Rg46 Rg3 Rg9 Rg23 Rg44 Rg48 Rf21-1 

RG3 
                      

N_f20 118 118 139 139 112 112 216 218 63 63 172 172 278 278 168 168 102 102 162 168 229 229 

N_m1 115 115 139 139 112 112 216 218 63 63 172 172 307 307 168 168 123 123 168 168 229 229 

N_m2 115 115 139 139 112 112 216 216 63 63 172 172 307 307 168 168 102 125 162 168 229 229 

N_m3 118 118 139 139 105 112 216 216 63 63 172 172 278 307 168 168 123 123 162 168 229 229 

N_m4 115 118 139 139 105 112 216 216 63 63 172 172 307 307 168 168 123 125 168 168 229 229 

N_m5 118 118 139 139 105 112 216 218 63 63 172 172 278 307 168 168 102 123 168 168 229 229 

N_m6 115 118 139 139 105 112 216 216 63 63 172 172 278 278 168 168 123 125 168 168 229 229 

N_m7 115 118 139 139 105 112 216 216 63 63 172 172 278 307 168 168 102 125 168 168 229 229 

N_m8 115 115 139 139 105 112 216 218 63 63 172 172 278 278 168 168 102 102 162 162 229 229 

N_m9 115 115 139 139 105 112 216 216 63 63 172 172 307 307 168 168 123 125 162 168 229 229 

N_m10 118 118 139 139 105 112 216 218 63 63 172 172 307 307 168 168 102 102 162 168 229 229 

N_m11 115 118 139 139 112 112 216 216 63 63 172 172 278 307 168 168 102 123 162 168 229 229 

N_m12 115 118 139 139 105 105 216 216 63 63 172 172 307 307 168 168 123 125 168 168 229 229 

N_m13 115 115 139 139 105 112 216 218 63 63 172 172 307 307 168 168 102 123 162 168 229 229 

N_m14 118 118 139 139 105 112 216 218 63 63 172 172 278 307 168 168 102 125 162 168 229 229 

N_m15 118 118 139 139 105 112 216 216 63 63 172 172 278 307 168 168 123 125 168 168 229 229 

N_m16 115 115 139 139 112 112 216 216 63 63 172 172 278 307 168 168 102 102 162 168 229 229 

N_m17 115 118 139 139 112 112 216 218 63 63 172 172 307 307 168 168 102 123 168 168 229 229 

N_m18 115 118 139 139 105 105 216 218 63 63 172 172 278 307 168 168 123 123 168 168 229 229 

N_m19 118 118 139 139 105 112 216 218 63 63 172 172 278 307 168 168 123 125 168 168 229 229 

N_m20 118 118 139 139 105 112 216 216 63 63 172 172 278 307 168 168 102 123 168 168 229 229 

w1 115 115 139 139 105 112 216 218 63 63 172 172 307 307 168 168 123 123 162 168 229 229 

w2 118 118 139 139 112 112 216 216 63 63 172 172 307 307 168 168 102 123 162 168 229 229 

w3 118 118 139 139 112 112 216 218 63 63 172 172 307 307 168 168 125 125 162 168 229 229 

w4 115 118 139 139 105 112 216 218 63 63 172 172 278 307 168 168 102 123 168 168 229 229 

w5 118 118 139 139 112 112 216 218 63 63 172 172 307 307 168 168 123 123 162 168 229 229 

w6 115 115 139 139 105 112 216 218 63 63 172 172 307 307 168 168 123 125 162 168 229 229 

w7 115 118 139 139 112 112 216 216 63 63 172 172 307 307 168 168 123 125 162 168 229 229 

w8 115 118 139 139 112 112 216 216 63 63 172 172 307 307 168 168 123 125 168 168 229 229 

w9 118 118 139 139 112 112 216 218 63 63 172 172 307 307 168 168 102 102 162 168 229 229 

w10 118 118 139 139 112 112 216 218 63 63 172 172 307 307 168 168 102 123 168 168 229 229 

w11 115 115 139 139 112 112 216 216 63 63 172 172 278 307 168 168 123 123 168 168 229 229 

w12 115 118 139 139 105 105 216 218 63 63 172 172 278 307 168 168 102 102 162 168 229 229 

w13 115 118 139 139 105 112 216 216 63 63 172 172 307 307 168 168 102 123 162 168 229 229 

w14 115 115 139 139 112 112 216 218 63 63 172 172 278 307 168 168 102 123 162 168 229 229 

w15 118 118 139 139 112 112 216 218 63 63 172 172 307 307 168 168 123 125 168 168 229 229 

w16 115 118 139 139 112 112 216 218 63 63 172 172 278 307 168 168 102 102 162 168 229 229 

w17 118 118 139 139 105 112 216 218 63 63 172 172 307 307 168 168 102 125 162 168 229 229 

w18 115 118 139 139 105 112 216 218 63 63 172 172 307 307 168 168 123 123 168 168 229 229 

w19 118 118 139 139 105 112 216 218 63 63 172 172 307 307 168 168 102 102 168 168 229 229 

w20 115 118 139 139 105 112 216 218 63 63 172 172 307 307 168 168 123 123 168 168 229 229 

w21 115 115 139 139 112 112 216 218 63 63 172 172 307 307 168 168 123 123 162 162 229 229 

w22 118 118 139 139 112 112 218 218 63 63 172 172 278 307 168 168 123 123 162 168 229 229 

w23 118 118 139 139 112 112 216 218 63 63 172 172 307 307 168 168 123 123 162 168 229 229 

w24 118 118 139 139 105 112 218 218 63 63 172 172 278 307 168 168 102 125 162 168 229 229 

w25 118 118 139 139 105 105 216 216 63 63 172 172 278 307 168 168 125 125 162 168 229 229 

w26 115 118 139 139 105 112 216 216 63 63 172 172 307 307 168 168 123 125 168 168 229 229 

w27 118 118 139 139 105 112 216 216 63 63 172 172 278 307 168 168 102 125 168 168 229 229 

w28 118 118 139 139 105 112 216 218 63 63 172 172 307 307 168 168 125 125 162 168 229 229 

w29 115 115 139 139 105 112 216 216 63 63 172 172 307 307 168 168 125 125 162 168 229 229 

                       

RG4                       

A_f1 118 118 139 139 112 112 216 218 63 63 172 172 278 307 156 168 102 121 162 168 214 214 

A_m1 118 118 139 139 105 112 218 218 63 63 172 172 278 278 156 168 123 123 168 168 214 229 

A_m2 118 118 139 139 112 112 216 218 63 63 172 172 278 307 168 168 102 123 162 168 214 229 

A_m3 118 118 139 139 105 112 216 218 63 63 172 172 278 278 168 168 123 123 168 168 214 229 

A_m4 118 118 139 139 105 112 216 216 63 63 172 172 278 278 168 168 123 123 162 168 229 229 

N_f1 118 118 139 139 112 112 216 216 63 63 172 172 278 307 168 168 102 121 168 168 229 229 

N_f2 118 118 139 139 112 112 216 218 63 63 172 172 278 307 156 168 121 123 168 168 214 229 



Colony ID/individuals Microsatellite loci 

  Rg15 Rg32 Rg35 Rg39 Rg46 Rg3 Rg9 Rg23 Rg44 Rg48 Rf21-1 

RG4 
                      

N_f3 118 118 139 139 112 112 216 218 63 63 172 172 278 278 156 168 102 123 162 168 214 214 

N_f4 118 118 139 139 105 112 216 216 63 63 172 172 278 307 168 168 102 123 168 168 214 229 

N_f5 118 118 139 139 112 112 216 216 63 63 172 172 278 307 156 168 123 123 162 168 214 229 

N_f6 118 118 139 139 105 112 216 216 63 63 172 172 278 307 168 168 121 123 168 168 229 229 

N_f7 118 118 139 139 105 112 216 218 63 63 172 172 278 307 156 168 102 121 168 168 214 229 

N_f8 118 118 139 139 112 112 216 216 63 63 172 172 278 307 156 168 102 123 168 168 214 229 

N_f9 118 118 139 139 112 112 218 218 63 63 172 172 278 278 168 168 123 123 162 162 229 229 

N_f10 118 118 139 139 112 112 216 218 63 63 172 172 278 307 168 168 102 121 168 168 214 229 

N_f11 118 118 139 139 112 112 218 218 63 63 172 172 278 307 156 168 102 102 168 168 214 214 

N_f12 118 118 139 139 112 112 216 216 63 63 172 172 278 307 156 168 102 123 168 168 214 229 

N_f13 118 118 139 139 105 112 216 216 63 63 172 172 278 307 168 168 102 121 162 168 229 229 

N_f14 118 118 139 139 105 112 216 216 63 63 172 172 278 307 156 168 121 123 162 168 214 229 

N_f15 118 118 139 139 105 112 216 218 63 63 172 172 278 307 156 168 102 123 168 168 229 229 

N_f16 118 118 139 139 112 112 216 218 63 63 172 172 278 307 168 168 102 121 168 168 214 214 

N_f17 118 118 139 139 112 112 216 218 63 63 172 172 278 307 156 168 102 121 168 168 214 214 

N_f18 118 118 139 139 112 112 216 216 63 63 172 172 278 307 156 168 121 123 162 168 214 229 

N_f19 118 118 139 139 112 112 216 216 63 63 172 172 278 307 168 168 102 121 162 168 214 214 

N_f20 118 118 139 139 105 112 216 216 63 63 172 172 278 307 168 168 121 123 162 168 229 229 

N_f21 118 118 139 139 112 112 216 216 63 63 172 172 278 307 156 168 123 123 168 168 229 229 

N_m1 118 118 139 139 112 112 216 218 63 63 172 172 278 307 168 168 121 123 162 168 214 214 

w1 118 118 139 139 105 112 216 216 63 63 172 172 278 307 168 168 123 123 168 168 214 229 

w2 118 118 139 139 112 112 216 218 63 63 172 172 278 307 156 168 102 121 168 168 229 229 

w3 118 118 139 139 112 112 216 218 63 63 172 172 278 307 168 168 102 123 162 168 214 229 

w4 118 118 139 139 112 112 216 218 63 63 172 172 278 307 168 168 102 123 162 168 214 229 

w5 118 118 139 139 112 112 216 218 63 63 172 172 278 307 168 168 102 121 168 168 229 229 

w6 118 118 139 139 112 112 216 218 63 63 172 172 278 307 156 168 121 123 162 168 214 229 

w7 118 118 139 139 112 112 216 216 63 63 172 172 278 307 168 168 121 123 168 168 214 214 

w8 118 118 139 139 112 112 216 216 63 63 172 172 307 307 168 168 121 121 162 168 214 229 

w9 118 118 139 139 112 112 216 216 63 63 172 172 278 307 168 168 121 123 162 168 229 229 

w10 118 118 139 139 105 105 216 218 63 63 172 172 278 307 168 168 102 123 168 168 214 229 

w11 118 118 139 139 112 112 216 216 63 63 172 172 278 307 156 168 102 123 162 168 214 229 

w12 118 118 139 139 112 112 216 216 63 63 172 172 278 278 156 156 121 123 162 168 214 229 

w13 118 118 139 139 105 112 216 216 63 63 172 172 278 307 168 168 102 123 162 168 214 229 

w14 118 118 139 139 105 112 216 218 63 63 172 172 278 307 156 168 123 123 162 168 214 214 

w15 118 118 139 139 112 112 216 218 63 63 172 172 278 307 168 168 102 121 162 168 214 229 

w16 118 118 139 139 105 112 216 218 63 63 172 172 278 307 168 168 123 123 168 168 214 229 

w17 118 118 139 139 112 112 216 216 63 63 172 172 278 307 156 168 121 123 168 168 214 214 

w18 118 118 139 139 105 112 216 216 63 63 172 172 278 307 156 168 123 123 168 168 214 229 

                       

RG5                       

A_f1 118 118 139 139 105 112 216 218 63 63 172 172 278 307 159 159 104 125 162 162 205 214 

A_f2 118 130 139 139 112 112 216 216 63 63 172 172 278 307 159 159 104 104 162 162 205 214 

A_f3 118 130 139 139 105 112 216 218 63 63 172 172 278 307 159 168 104 104 162 162 214 214 

A_f4 118 130 139 139 105 112 216 216 63 63 172 172 278 307 159 159 104 104 162 162 205 214 

A_f5 118 130 139 139 105 112 216 216 63 63 172 172 278 307 159 159 104 104 162 162 205 214 

A_f6 118 130 139 139 105 112 216 218 63 63 172 172 278 307 159 168 104 121 162 162 214 214 

A_f7 118 118 139 139 112 112 218 218 63 63 172 172 307 307 159 159 104 121 162 162 214 214 

A_f8 118 118 139 139 112 112 216 218 63 63 172 172 278 307 159 159 119 121 162 162 214 214 

A_f9 118 130 139 139 105 112 216 216 63 63 172 172 278 278 168 168 104 104 162 162 214 214 

A_f10 130 130 139 139 112 112 216 216 63 63 172 172 307 307 159 159 104 121 162 162 205 214 

A_m1 118 130 139 139 112 112 216 216 63 63 172 172 278 307 159 168 121 125 162 162 214 214 

A_m2 118 118 139 139 105 112 216 216 63 63 172 172 307 307 159 159 119 121 162 162 214 214 

A_m3 118 118 139 139 105 112 216 216 63 63 172 172 278 278 159 168 104 125 162 162 214 214 

A_m4 118 130 139 139 105 112 218 218 63 63 172 172 307 307 159 159 104 121 162 162 214 214 

A_m5 118 118 139 139 105 112 216 218 63 63 172 172 278 307 159 168 104 121 162 162 214 214 

A_m6 130 130 139 139 105 112 216 218 63 63 172 172 307 307 159 159 104 121 162 162 214 214 

A_m7 118 130 139 139 105 112 216 218 63 63 172 172 307 307 159 168 104 104 162 162 205 214 

A_m8 118 118 139 139 112 112 216 218 63 63 172 172 307 307 159 159 121 125 162 162 214 214 

N_f1 118 118 139 139 112 112 216 218 63 63 172 172 307 307 159 159 104 125 162 162 214 214 



Colony ID/individuals Microsatellite loci 

  Rg15 Rg32 Rg35 Rg39 Rg46 Rg3 Rg9 Rg23 Rg44 Rg48 Rf21-1 

RG5 
                      

N_f2 118 118 139 139 105 105 216 218 63 63 172 172 307 307 159 159 104 104 162 162 205 214 

N_f3 118 118 139 139 105 112 216 218 63 63 172 172 278 307 159 159 104 125 162 162 214 214 

N_f4 118 118 139 139 112 112 216 216 63 63 172 172 307 307 159 159 104 121 162 162 205 214 

N_f5 118 118 139 139 105 112 216 218 63 63 172 172 278 278 168 168 104 121 162 162 214 214 

N_f6 130 130 139 139 105 112 216 216 63 63 172 172 278 307 159 168 104 121 162 162 214 214 

N_f7 118 130 139 139 105 105 216 216 63 63 172 172 278 307 159 168 104 104 162 162 214 214 

N_f8 130 130 139 139 105 105 216 216 63 63 172 172 278 278 168 168 104 104 162 162 214 214 

N_f9 130 130 139 139 105 112 216 218 63 63 172 172 278 307 159 168 104 121 162 162 214 214 

N_m1 118 130 139 139 105 112 218 218 63 63 172 172 278 307 159 168 104 121 162 162 214 214 

N_m2 118 130 139 139 105 105 216 216 63 63 172 172 278 278 159 168 104 121 162 162 205 214 

N_m3 118 130 139 139 105 112 216 218 63 63 172 172 307 307 159 159 104 121 162 162 214 214 

w1 118 118 139 139 112 112 216 216 63 63 172 172 307 307 159 159 104 104 162 162 214 214 

w2 118 130 139 139 105 112 216 216 63 63 172 172 307 307 159 159 104 125 162 162 214 214 

w3 118 118 139 139 105 112 216 216 63 63 172 172 278 307 159 159 104 119 162 162 214 214 

w4 118 130 139 139 105 112 216 216 63 63 172 172 307 307 159 159 104 104 162 162 214 214 

w5 118 118 139 139 105 112 216 216 63 63 172 172 278 278 159 168 104 125 162 162 214 214 

w6 118 118 139 139 112 112 216 216 63 63 172 172 278 307 159 159 121 125 162 162 214 214 

w7 118 118 139 139 105 112 216 216 63 63 172 172 278 307 159 168 104 125 162 162 214 214 

w8 118 118 139 139 105 112 216 216 63 63 172 172 278 307 159 159 104 119 162 162 214 214 

w9 118 130 139 139 105 112 216 216 63 63 172 172 278 307 159 159 104 121 162 162 205 214 

w10 118 118 139 139 105 112 216 216 63 63 172 172 307 307 159 159 121 121 162 162 205 214 

w11 118 118 139 139 112 112 216 218 63 63 172 172 307 307 159 159 104 121 162 162 214 214 

w12 118 130 139 139 105 112 216 218 63 63 172 172 278 307 159 168 104 104 162 162 214 214 

w13 118 130 139 139 105 105 216 218 63 63 172 172 278 307 159 168 104 104 162 162 214 214 

w14 118 118 139 139 112 112 216 216 63 63 172 172 278 307 159 159 104 119 162 162 205 214 

w15 118 130 139 139 105 112 216 216 63 63 172 172 278 307 159 159 104 121 162 162 205 214 

w16 118 130 139 139 105 105 216 218 63 63 172 172 278 278 168 168 104 104 162 162 214 214 

w17 118 118 139 139 105 112 216 216 63 63 172 172 278 307 159 159 104 104 162 162 205 205 

w18 118 130 139 139 105 112 216 216 63 63 172 172 307 307 159 159 104 104 162 162 205 214 

w19 118 130 139 139 112 112 216 218 63 63 172 172 278 307 159 168 104 104 162 162 205 214 

w20 118 130 139 139 105 112 216 218 63 63 172 172 278 307 159 159 104 121 162 162 214 214 

 



Suppl. Table S3. Genotypes of R. flavipes colonies (A_f/m: alate female/male; N_f/m: neotenic 

female/male; w: worker) 

Colony ID/individuals Microsatellite loci 

  Rf11-1 Rf6-1 Rs1 Rf21-1 Rs43 Rs15 Rf15-2 Rf1-3 

RF1                 

A_f1 225 231 173 197 273 282 223 223 220 220 262 262 208 217 200 203 

A_f2 225 231 197 197 273 273 223 223 220 224 253 253 217 217 200 203 

A_f3 231 231 194 197 279 279 223 223 224 224 262 262 208 208 200 203 

A_f4 225 225 194 200 273 282 223 223 220 224 262 262 217 217 200 203 

A_f5 225 231 197 197 273 273 223 265 220 220 253 253 208 217 200 203 

A_f6 225 225 185 200 273 282 223 223 220 220 253 262 208 217 200 203 

A_f7 225 231 185 185 273 273 265 265 220 220 253 253 208 217 200 203 

A_f8 231 231 185 185 273 282 223 265 220 224 253 253 217 217 200 203 

A_f9 225 231 194 194 273 273 223 265 220 224 253 262 208 217 200 203 

A_f10 231 231 185 194 282 282 223 223 220 220 253 262 208 208 200 203 

A_m1 231 231 194 194 273 282 223 223 220 224 262 262 208 217 200 203 

A_m2 225 231 185 185 273 273 223 223 224 224 253 262 208 217 200 203 

A_m3 231 231 185 197 279 282 223 223 220 220 262 262 208 208 200 203 

A_m4 231 231 185 185 273 282 223 265 220 220 253 262 217 217 200 203 

A_m5 225 231 185 194 273 279 265 265 220 220 262 262 208 217 200 203 

A_m6 225 231 185 194 282 282 223 223 220 220 262 262 217 217 200 203 

A_m7 231 231 185 185 273 273 223 265 220 224 253 262 208 208 200 203 

A_m8 225 231 185 185 273 273 265 265 220 220 253 253 217 217 200 203 

A_m9 225 231 194 197 273 273 223 265 220 224 262 262 208 217 200 203 

A_m10 225 231 185 185 273 273 265 265 220 220 253 262 217 217 200 203 

w1 225 231 185 185 273 282 223 223 220 224 262 262 208 208 203 206 

w2 231 231 185 191 273 273 223 223 220 224 262 262 217 217 203 206 

w3 225 225 185 194 273 279 223 265 220 224 253 262 208 208 200 206 

w4 231 231 194 194 273 273 223 223 220 224 253 262 217 217 200 200 

w5 231 231 185 185 273 279 223 223 220 220 253 253 217 217 200 203 

w6 231 231 194 197 273 273 265 265 220 224 253 262 217 217 203 203 

w7 225 225 185 200 273 273 223 265 220 224 253 262 208 217 200 203 

w8 225 231 185 185 273 279 223 265 220 220 253 253 208 217 203 203 

w9 225 231 194 197 273 273 223 223 220 220 253 262 217 217 203 203 

                 

RF2                 

A_f1 231 231 182 182 270 270 238 268 220 220 256 259 211 211 206 209 

A_f2 231 231 176 176 270 270 211 238 220 220 256 256 211 211 206 206 

A_f3 231 231 176 182 300 300 238 238 220 220 256 259 211 211 206 206 

A_f4 231 231 176 182 270 300 238 238 220 220 256 256 211 211 206 206 

A_f5 231 231 182 182 270 300 211 211 220 220 259 259 211 211 200 200 

A_f6 231 231 182 182 270 270 211 238 220 220 256 256 211 211 200 206 

A_f7 231 231 176 182 270 300 238 238 220 220 256 259 211 211 206 206 

A_f8 231 231 182 182 270 300 238 238 220 220 256 259 211 211 206 209 

A_f9 223 231 182 182 300 300 238 238 220 220 256 256 211 211 206 206 

A_f10 231 231 176 182 270 300 238 238 220 220 256 259 211 211 206 206 

A_m1 223 223 182 182 270 300 238 238 220 220 256 259 211 211 206 206 

A_m2 223 231 176 182 270 270 238 238 220 220 256 259 211 211 206 209 

A_m3 231 231 176 182 270 270 211 211 220 220 256 259 211 211 206 206 

A_m4 231 231 182 182 270 270 211 238 220 220 256 256 211 211 206 206 

A_m5 231 231 182 182 270 300 238 238 220 220 256 259 211 211 206 209 

A_m6 231 231 176 176 270 270 238 238 220 220 256 259 211 220 200 206 

A_m7 231 231 176 182 300 300 238 238 220 220 256 256 211 211 206 206 

A_m8 223 231 182 182 270 300 238 238 220 220 259 259 211 211 206 209 

A_m9 231 231 176 182 270 270 238 238 220 220 256 259 211 211 206 206 

A_m10 231 231 176 182 270 300 238 238 220 220 256 259 211 211 206 209 

N_f1 223 231 176 182 270 300 238 238 220 220 259 259 211 220 206 209 

N_f2 231 231 182 182 270 300 238 238 220 220 259 259 211 211 200 200 

N_f3 231 231 176 182 270 270 238 238 220 220 256 256 211 211 206 206 



Colony ID/individuals Microsatellite loci 

  Rf11-1 Rf6-1 Rs1 Rf21-1 Rs43 Rs15 Rf15-2 Rf1-3 

RF2                 

N_f4 231 231 176 182 300 300 238 238 220 220 256 259 211 211 206 209 

N_f5 231 231 176 182 270 270 238 238 220 220 256 259 211 211 206 206 

N_f6 223 231 176 182 300 300 211 238 220 220 256 259 211 211 206 206 

N_f7 231 231 182 182 270 300 238 238 220 220 256 259 211 220 206 209 

N_f8 231 231 182 182 300 300 238 238 220 220 259 259 211 211 200 206 

N_f9 223 231 176 176 270 270 238 238 220 220 259 259 211 211 206 206 

N_m1 231 231 176 176 270 300 238 238 220 220 259 259 211 211 206 206 

N_m2 223 231 176 182 270 300 238 238 220 220 256 259 211 211 206 206 

N_m3 223 231 182 182 270 300 211 238 220 220 256 259 211 211 206 206 

N_m4 231 231 182 182 300 300 238 238 220 220 256 259 211 211 206 209 

N_m5 231 231 176 182 270 300 238 238 220 220 256 259 211 211 200 200 

N_m6 231 231 182 182 300 300 238 238 220 220 256 259 211 220 206 206 

N_m7 231 231 176 182 270 300 238 238 220 220 259 259 211 211 206 209 

N_m8 231 231 176 182 300 300 238 238 220 220 256 259 211 211 206 209 

N_m9 223 223 182 182 300 300 238 238 220 220 259 259 211 211 206 209 

N_m10 231 231 182 182 300 300 211 238 220 220 256 256 211 211 206 206 

w1 231 231 176 182 300 300 238 238 220 220 256 256 211 211 206 206 

w2 231 231 176 182 270 270 238 238 220 220 256 259 211 211 206 206 

w3 223 231 182 182 270 300 211 238 220 220 256 259 211 211 206 206 

w4 223 231 182 182 270 270 238 238 220 220 259 259 211 211 206 206 

w5 223 231 182 182 270 300 211 238 220 220 256 259 211 211 206 209 

w6 231 231 182 182 300 300 238 238 220 220 259 259 211 211 200 206 

w7 223 231 182 182 270 270 238 238 220 220 256 259 211 211 206 209 

w8 223 223 176 182 270 300 238 238 220 220 256 259 211 211 200 206 

w9 223 223 176 182 270 270 238 238 220 220 259 259 211 211 206 206 

w10 223 231 182 182 270 270 238 238 220 220 259 259 211 211 200 206 

w11 223 231 182 182 270 300 238 238 220 220 256 259 211 211 206 206 

w12 231 231 176 182 270 270 238 238 220 220 256 259 211 211 206 206 

w13 223 231 182 182 270 270 238 238 220 220 259 259 211 211 206 206 

w14 231 231 182 182 300 300 238 238 220 220 259 259 211 211 206 206 

w15 223 231 182 182 270 300 238 238 220 220 259 259 211 211 206 206 

w16 231 231 176 182 270 270 238 238 220 220 256 259 211 211 206 206 

w17 223 231 182 182 270 270 238 238 220 220 256 259 211 211 206 206 

w18 231 231 176 182 270 300 211 238 220 220 256 259 211 211 206 206 

w19 223 231 182 182 270 300 238 238 220 220 259 259 211 211 200 206 

                 

RF3                 

A_f1 231 231 170 182 279 282 223 232 220 224 253 262 208 208 200 203 

A_f2 231 231 182 182 279 282 223 223 220 220 253 262 208 208 200 203 

A_f3 227 231 182 182 279 279 223 223 224 224 253 262 208 208 203 203 

A_f4 225 225 170 182 279 279 223 223 224 224 253 253 208 208 200 203 

A_f5 225 225 170 191 279 279 223 223 224 224 253 262 208 208 200 203 

A_f6 225 231 170 191 279 279 223 259 220 224 253 253 208 208 203 203 

A_f7 231 231 170 170 279 282 259 259 220 220 259 262 208 217 203 203 

A_f8 231 231 170 191 279 279 223 259 220 224 253 262 208 217 200 200 

A_f9 231 231 170 182 279 279 223 259 224 224 262 262 208 217 203 203 

A_f10 231 231 182 182 279 279 223 223 220 224 253 262 208 217 203 203 

A_m1 225 231 170 182 279 279 223 223 220 224 253 253 208 217 203 203 

A_m2 231 231 182 182 279 279 223 223 220 224 253 262 217 217 200 203 

A_m3 225 231 182 182 279 279 223 223 224 224 262 262 208 208 200 203 

A_m4 231 231 170 182 279 279 223 223 224 224 262 262 208 208 200 203 

A_m5 225 231 182 182 279 282 223 223 220 224 262 262 208 217 200 203 

A_m6 231 231 182 182 279 279 223 259 220 224 262 262 208 217 203 203 

A_m7 225 231 170 182 279 282 223 223 220 224 253 253 208 208 203 203 

A_m8 231 231 170 182 279 279 223 223 220 220 253 262 208 208 200 203 

A_m9 225 231 182 188 279 279 223 223 220 220 253 262 208 208 200 200 

A_m10 225 231 170 182 279 279 223 223 220 220 253 262 208 217 200 203 

N_f1 231 231 170 191 279 279 223 259 220 224 253 262 208 217 200 203 

N_f2 225 231 170 182 279 279 223 223 220 224 253 253 208 217 200 203 



Colony ID/individuals Microsatellite loci 

  Rf11-1 Rf6-1 Rs1 Rf21-1 Rs43 Rs15 Rf15-2 Rf1-3 

RF3                 

N_f3 231 231 170 182 279 279 223 259 220 224 253 262 208 208 203 203 

N_f4 231 231 182 182 279 282 223 223 220 224 259 262 208 208 200 203 

N_f5 225 227 170 182 279 279 223 223 224 224 253 253 208 217 200 203 

N_f6 225 231 182 182 279 279 223 223 224 224 253 262 208 208 200 203 

N_f7 227 231 182 182 282 282 223 223 224 224 262 262 208 208 200 203 

N_f8 225 231 170 182 279 279 223 223 224 224 253 262 208 208 200 203 

N_f9 231 231 170 182 279 279 223 223 224 224 253 253 208 217 203 203 

N_f10 231 231 170 182 279 279 223 223 220 220 262 262 208 208 200 203 

N_m1 225 231 170 182 279 279 223 223 220 224 253 262 208 208 203 203 

N_m2 225 225 176 182 279 279 223 223 220 224 253 253 208 208 200 203 

N_m3 231 231 182 194 279 282 223 223 220 224 253 262 208 208 203 203 

N_m4 231 231 182 182 279 282 223 223 220 224 253 253 208 208 203 203 

N_m5 227 231 170 191 279 279 223 223 220 224 262 262 208 208 200 200 

N_m6 225 231 170 182 279 282 223 223 224 224 259 262 208 208 200 203 

N_m7 231 231 179 182 279 279 223 223 220 224 253 262 208 217 203 203 

N_m8 231 231 182 191 279 279 223 223 224 224 262 262 208 227 203 203 

N_m9 225 231 182 191 279 282 223 223 220 220 253 262 208 217 200 203 

N_m10 225 231 170 182 279 279 223 223 220 220 253 262 208 217 200 200 

w1 225 231 170 170 279 279 223 223 220 224 253 262 208 217 200 200 

w2 225 231 182 182 279 279 223 259 220 224 253 262 217 217 200 203 

w3 231 231 170 170 279 279 223 223 220 224 262 262 208 208 200 203 

w4 227 231 182 182 279 279 223 223 220 224 253 253 208 217 200 203 

w5 231 231 170 170 279 282 223 223 224 224 253 262 217 217 203 203 

w6 231 231 170 182 282 282 223 223 220 224 262 262 208 208 200 203 

w7 225 231 182 191 279 279 223 259 220 224 259 262 208 208 203 203 

w8 225 231 182 182 279 279 223 223 220 224 253 262 208 217 203 203 

w9 227 231 170 182 279 279 223 223 220 224 253 253 217 217 200 203 

w10 225 231 170 182 279 279 223 223 220 224 253 262 208 208 203 203 

w11 231 231 170 182 279 279 223 223 224 224 262 262 208 208 200 203 

w12 227 231 182 182 279 279 223 259 224 224 262 262 208 208 203 203 

w13 225 231 182 182 279 279 223 259 220 224 262 262 208 217 200 203 

w14 231 231 170 170 279 282 223 223 220 224 253 262 217 217 200 203 

w15 225 231 170 182 279 279 223 223 220 224 259 262 208 217 203 203 

w16 231 231 170 191 279 279 223 259 220 224 253 259 208 208 200 203 

w17 231 231 170 191 279 279 223 223 220 224 253 262 208 208 200 203 

                 

RF4                 

A_f1 225 231 182 194 282 282 223 259 220 220 253 262 217 220 200 203 

A_f2 225 231 194 194 282 282 259 259 220 220 253 262 208 220 203 203 

A_f3 231 231 182 182 282 282 259 259 220 220 253 262 220 220 200 200 

A_f4 231 231 170 182 282 282 223 259 220 220 253 262 220 220 203 203 

A_f5 231 231 182 182 282 282 223 223 220 220 253 253 217 217 200 203 

A_f6 231 231 170 182 282 282 223 259 220 220 253 262 208 220 200 203 

A_f7 231 231 182 194 282 282 223 223 220 220 253 262 217 217 203 203 

A_f8 231 231 182 194 273 282 259 259 220 220 253 259 217 220 200 203 

A_f9 231 231 170 182 282 300 223 259 220 220 262 262 208 217 203 203 

A_f10 231 231 182 194 273 282 223 259 220 220 253 253 217 217 200 203 

A_m1 231 231 182 194 282 282 259 259 220 220 253 253 217 220 203 203 

A_m2 231 231 182 194 282 282 223 259 220 220 253 262 208 217 203 203 

A_m3 225 225 170 182 273 282 223 259 220 220 253 253 217 220 203 203 

A_m4 225 231 194 194 282 282 223 223 220 220 253 262 208 217 203 203 

A_m5 231 231 170 194 282 282 223 259 220 220 253 262 220 220 203 203 

A_m6 231 231 182 194 282 282 259 259 220 220 253 253 217 220 200 203 

A_m7 225 231 170 182 282 282 223 223 220 220 253 262 217 217 203 203 

A_m8 231 231 182 182 282 282 223 256 220 220 253 253 217 217 203 203 

A_m9 225 231 170 170 282 282 259 259 220 220 253 262 220 220 203 203 

A_m10 225 231 170 182 282 282 259 259 220 220 253 253 217 217 203 203 

N_f1 225 231 182 194 273 282 259 259 220 220 253 262 208 217 200 200 

N_f2 231 231 170 182 282 282 259 259 220 220 259 262 208 208 200 200 



Colony ID/individuals Microsatellite loci 

  Rf11-1 Rf6-1 Rs1 Rf21-1 Rs43 Rs15 Rf15-2 Rf1-3 

RF4                 

N_f3 231 231 182 182 282 282 223 259 220 220 253 262 208 217 203 203 

N_f4 231 231 182 194 282 282 259 259 220 220 262 262 208 208 203 203 

N_f5 231 231 194 194 282 282 223 259 220 220 253 262 208 217 203 203 

N_f6 231 231 170 194 282 282 223 259 220 220 253 262 220 220 203 203 

N_f7 231 231 182 194 282 282 259 259 220 220 259 262 208 217 200 203 

N_f8 231 231 194 194 282 282 223 223 220 220 253 253 217 217 203 203 

N_f9 231 231 182 182 282 282 259 259 220 220 253 253 208 217 203 203 

N_f10 225 231 182 182 282 282 223 259 220 220 253 262 208 220 203 203 

N_m1 231 231 182 194 282 282 223 259 220 220 253 253 208 220 200 203 

N_m2 225 231 182 182 282 282 223 223 220 220 253 253 208 220 200 203 

N_m3 231 231 182 194 282 282 223 259 220 220 253 253 217 220 200 203 

N_m4 231 231 182 182 282 282 223 259 220 220 253 253 208 220 200 203 

N_m5 231 231 182 194 282 282 223 259 220 220 253 253 217 220 203 203 

N_m6 231 231 170 170 282 282 223 259 220 220 253 262 208 220 200 203 

N_m7 231 231 182 194 273 282 259 259 220 220 253 262 208 217 200 200 

N_m8 225 231 182 194 273 282 223 259 220 220 262 262 208 217 203 203 

N_m9 231 231 182 182 282 282 259 259 220 220 253 253 217 217 203 203 

N_m10 231 231 182 194 282 282 259 259 220 220 262 262 208 220 200 203 

w1 225 231 182 194 273 282 223 223 220 220 253 262 217 217 200 200 

w2 225 231 170 194 282 282 223 259 220 220 253 253 208 217 200 203 

w3 231 231 182 182 282 282 259 259 220 220 253 253 217 217 203 203 

w4 231 231 170 182 282 282 223 259 220 220 253 262 217 217 200 203 

w5 225 231 170 194 282 282 223 259 220 220 253 253 217 217 203 203 

w6 225 225 170 194 282 282 259 259 220 220 253 253 217 217 203 203 

w7 225 231 182 182 282 282 223 259 220 220 253 253 217 220 203 203 

w8 231 231 170 194 282 282 259 259 220 220 253 253 217 217 200 203 

w9 231 231 182 194 282 282 223 259 220 220 253 262 217 220 200 203 

w10 225 231 194 194 282 282 259 259 220 220 253 262 217 217 203 203 

w11 225 231 170 170 282 282 223 259 220 220 253 259 217 217 203 203 

w12 231 231 170 194 282 282 223 259 220 220 253 253 217 220 203 203 

w13 225 231 182 182 273 282 259 259 220 220 262 262 217 217 203 203 

w14 225 231 194 194 282 282 223 223 220 220 262 262 217 217 200 203 

w15 225 231 194 194 282 282 223 223 220 220 253 262 217 217 203 203 

w16 231 231 170 194 282 282 223 259 220 220 253 262 217 217 200 203 

w17 231 231 182 194 282 282 259 259 220 220 253 253 208 220 203 203 

w18 231 231 170 182 282 282 259 259 220 220 253 253 220 220 203 203 

 



Suppl. Table S4. Genotypes of R. lucifgus colonies and inferred primary queens and kings (PQ: 

primary queen; PK: primary king; A_f/m: alate female/male; N_f/m: neotenic female/male; w: 

worker) 

Colony ID/individuals Microsatellite loci 

  Rf24-2 Rf21-1 Rs02 Rf5-10 Rs10 Rf1-3 

RL1             

PQ 91 94 210 216 239 239 137 140 158 158 211 211 

PK 91 94 213 216 239 239 137 137 158 209 211 211 

A_f1 94 94 216 216 239 239 137 137 158 158 211 211 

A_f2 94 94 216 216 239 239 137 137 158 158 211 211 

A_f3 94 94 210 210 239 239 137 137 158 158 211 211 

A_f4 94 94 216 216 239 239 137 137 158 158 211 211 

A_f5 94 94 216 216 239 239 137 137 158 158 211 211 

A_f6 94 94 216 216 239 239 137 137 158 158 211 211 

A_f7 94 94 216 216 239 239 137 137 158 158 211 211 

A_f8 94 94 216 216 239 239 137 137 158 158 211 211 

A_f9 94 94 216 216 239 239 137 137 158 158 211 211 

A_f10 91 94 216 216 239 239 137 137 158 158 211 211 

A_m1 94 94 216 216 239 239 137 137 158 158 211 211 

A_m2 94 94 210 216 239 239 137 137 158 158 211 211 

A_m3 94 94 216 216 239 239 137 140 158 158 211 211 

A_m4 94 94 210 216 239 239 137 140 158 158 211 211 

A_m5 94 94 216 216 239 239 137 137 158 158 211 211 

A_m6 94 94 210 216 239 239 140 140 158 158 211 211 

A_m7 94 94 216 216 239 239 137 137 158 158 211 211 

A_m8 94 94 216 216 239 239 137 137 158 158 211 211 

A_m9 94 94 216 216 239 239 137 137 158 158 211 211 

A_m10 94 94 216 216 239 239 137 137 158 158 211 211 

N_f1 94 94 216 216 239 239 137 137 158 158 211 211 

N_f2 94 94 216 216 239 239 137 137 158 158 211 211 

N_f3 94 94 210 210 239 239 137 137 158 158 211 211 

N_f4 94 94 216 216 239 239 137 137 158 158 211 211 

N_f5 91 91 216 216 239 239 140 140 158 158 211 211 

N_f6 94 94 216 216 239 239 140 140 158 158 211 211 

N_f7 94 94 216 216 239 239 140 140 158 158 211 211 

N_f8 94 94 216 216 239 239 140 140 158 158 211 211 

w1 94 94 213 216 239 239 137 140 158 158 211 211 

w2 94 94 210 216 239 239 137 140 158 209 211 211 

w3 91 94 210 216 239 239 137 140 158 158 211 211 

w4 91 94 213 216 239 239 137 137 158 158 211 211 

w5 91 94 216 216 239 239 137 137 158 158 211 211 

w6 94 94 213 216 239 239 137 137 158 158 211 211 

w7 91 94 216 216 239 239 137 137 158 158 211 211 

w8 91 91 216 216 239 239 137 140 158 158 211 211 

w9 91 94 216 216 239 239 137 137 158 158 211 211 

w10 91 94 216 216 239 239 137 137 158 158 211 211 

             

RL2             

PQ 91 94 210 216 239 239 137 137 158 158 211 211 

PK 91 91 210 210 239 239 137 140 158 158 205 211 

N_f1 94 94 210 210 239 239 137 137 158 158 211 211 

N_f2 94 94 210 210 239 239 137 137 158 158 211 211 

N_f3 94 94 210 210 239 239 137 137 158 158 211 211 

N_f4 94 94 216 216 239 239 137 137 158 158 211 211 

N_f5 94 94 210 210 239 239 137 137 158 158 211 211 

N_f6 94 94 210 210 239 239 137 137 158 158 211 211 

N_f7 91 91 210 210 239 239 137 137 158 158 211 211 

N_f8 91 91 210 210 239 239 137 137 158 158 211 211 



Colony ID/individuals Microsatellite loci 

  Rf24-2 Rf21-1 Rs02 Rf5-10 Rs10 Rf1-3 

RL2             

N_f9 91 91 210 210 239 239 137 137 158 158 211 211 

N_f10 94 94 210 210 239 239 137 137 158 158 211 211 

w1 91 91 210 210 239 239 137 137 158 158 211 211 

w2 91 94 210 210 239 239 137 137 158 158 211 211 

w3 91 94 210 210 239 239 137 137 158 158 205 211 

w4 91 94 210 210 239 239 137 137 158 158 205 211 

w5 91 94 210 210 239 239 137 137 158 158 211 211 

w6 91 94 210 210 239 239 137 140 158 158 211 211 

w7 91 91 210 210 239 239 137 137 158 158 205 211 

w8 91 91 210 210 239 239 137 137 158 158 211 211 

w9 91 91 210 210 239 239 137 137 158 158 205 211 

w10 91 94 210 210 239 239 137 137 158 158 205 211 

             

RL3             

PQ 94 94 210 216 239 239 137 140 158 158 211 211 

PK1 91 94 207 216 239 239 137 137 158 158 211 211 

PK2 94 94 210 216 239 239 137 137 158 158 211 211 

A_f1 94 94 216 216 239 239 137 137 158 158 211 211 

A_f2 94 94 210 216 239 239 140 140 158 158 211 211 

A_f3 94 94 210 210 239 239 137 140 158 158 211 211 

A_f4 94 94 216 216 239 239 137 140 158 158 211 211 

A_f5 94 94 216 216 239 239 137 140 158 158 211 211 

A_f6 94 94 210 216 239 239 137 140 158 158 211 211 

A_f7 94 94 210 216 239 239 137 140 158 158 211 211 

A_f8 94 94 210 210 239 239 140 140 158 158 211 211 

A_f9 94 94 210 216 239 239 137 137 158 158 211 211 

A_f10 94 94 216 216 239 239 137 140 158 158 211 211 

A_m1 94 94 216 216 239 239 137 137 158 158 211 211 

A_m2 94 94 210 216 239 239 137 137 158 158 211 211 

A_m3 94 94 210 216 239 239 137 140 158 158 211 211 

A_m4 94 94 210 210 239 239 137 140 158 158 211 211 

A_m5 94 94 210 210 239 239 137 140 158 158 211 211 

A_m6 94 94 210 216 239 239 137 140 158 158 211 211 

A_m7 94 94 210 216 239 239 137 140 158 158 211 211 

A_m8 94 94 210 216 239 239 137 140 158 158 211 211 

A_m9 94 94 210 210 239 239 137 140 158 158 211 211 

A_m10 94 94 210 210 239 239 137 140 158 158 211 211 

N_f1 94 94 210 216 239 239 137 140 158 158 211 211 

N_f2 94 94 216 216 239 239 137 140 158 158 211 211 

N_f3 94 94 216 216 239 239 140 140 158 158 211 211 

N_f4 94 94 210 210 239 239 140 140 158 158 211 211 

N_f5 94 94 216 216 239 239 140 140 158 158 211 211 

N_f6 94 94 216 216 239 239 137 140 158 158 211 211 

N_f7 94 94 216 216 239 239 140 140 158 158 211 211 

N_f8 94 94 216 216 239 239 137 140 158 158 211 211 

N_f9 94 94 210 210 239 239 137 140 158 158 211 211 

N_f10 94 94 210 210 239 239 140 140 158 158 211 211 

w1 94 94 216 216 239 239 137 140 158 158 211 211 

w2 94 94 210 210 239 239 137 140 158 158 211 211 

w3 94 94 210 216 239 239 137 140 158 158 211 211 

w4 94 94 216 216 239 239 137 137 158 158 211 211 

w5 91 94 210 216 239 239 137 140 158 158 211 211 

w6 91 94 210 216 239 239 137 137 158 158 211 211 

w7 91 94 210 216 239 239 137 137 158 158 211 211 

w8 91 94 207 210 239 239 137 137 158 158 211 211 

w9 94 94 216 216 239 239 137 140 158 158 211 211 

w10 91 94 216 216 239 239 137 137 158 158 211 211 

             

             



Colony ID/individuals Microsatellite loci 

  Rf24-2 Rf21-1 Rs02 Rf5-10 Rs10 Rf1-3 

RL4             

A_f1 94 94 210 210 239 239 137 140 158 158 211 211 

A_f2 94 94 210 210 239 239 137 140 158 158 211 211 

A_f3 94 94 210 210 239 239 137 140 158 158 211 211 

A_f4 94 94 210 210 239 239 140 140 158 158 211 211 

A_f5 94 94 210 210 235 239 137 140 158 158 211 211 

A_f6 94 94 210 210 239 239 140 140 158 158 211 211 

A_f7 94 94 210 210 239 239 140 140 158 158 211 211 

A_f8 94 94 210 210 239 239 137 140 158 158 211 211 

A_f9 94 94 210 210 239 239 137 137 158 158 211 211 

A_f10 94 94 210 210 239 239 137 137 158 158 211 211 

A_m1 94 94 210 210 239 239 137 140 158 158 211 211 

A_m2 94 94 210 210 239 239 140 140 164 164 211 211 

A_m3 94 94 210 210 235 239 140 140 158 158 211 211 

A_m4 94 94 210 210 235 239 137 140 158 158 211 211 

A_m5 94 94 210 210 235 239 140 140 158 158 211 211 

A_m6 94 94 210 210 235 239 137 137 158 158 211 211 

A_m7 94 94 210 210 235 239 137 140 158 158 211 211 

A_m8 94 94 210 210 235 239 140 140 158 158 211 211 

A_m9 94 94 210 210 239 239 137 140 158 158 211 211 

A_m10 94 94 210 210 239 239 137 140 158 158 211 211 

w1 94 94 210 210 239 239 140 140 158 158 211 211 

w2 94 94 210 210 239 239 140 140 158 158 211 211 

w3 94 94 210 210 239 239 137 137 158 158 211 211 

w4 94 94 210 210 239 239 137 137 158 158 211 211 

w5 94 94 210 210 239 239 137 137 158 158 211 211 

w6 94 94 210 210 239 239 137 140 158 158 211 211 

w7 94 94 210 210 239 239 137 140 158 158 211 211 

w8 94 94 210 210 239 239 137 140 158 158 211 211 

w9 94 94 210 210 239 239 137 137 158 158 211 211 

w10 94 94 210 210 239 239 137 140 158 158 211 211 

             

RL5             

A_f1 94 94 216 216 239 239 137 137 158 158 211 211 

A_f2 94 94 216 216 239 239 137 137 158 158 211 211 

A_f3 94 94 216 216 239 239 140 140 158 158 211 211 

A_f4 94 94 216 216 239 239 137 137 158 158 211 211 

A_f5 91 91 210 210 239 239 140 140 158 158 211 211 

A_f6 94 94 216 216 239 239 137 137 158 158 211 211 

A_f7 94 94 210 210 239 239 137 137 158 158 211 211 

A_f8 94 94 216 216 239 239 140 140 158 158 211 211 

A_f9 91 91 210 210 239 239 140 140 158 158 211 211 

A_f10 91 91 216 216 239 239 137 137 158 158 211 211 

A_m1 94 94 210 210 239 239 137 137 158 158 211 211 

A_m2 94 94 216 216 239 239 137 137 158 158 211 211 

A_m3 91 94 210 216 239 239 140 140 158 158 211 211 

A_m4 94 94 216 216 239 239 137 140 158 158 211 211 

A_m5 91 94 210 216 239 239 137 140 158 158 211 211 

A_m6 94 94 210 216 239 239 137 140 158 158 211 211 

A_m7 94 94 216 216 239 239 137 140 158 158 211 211 

A_m8 91 94 210 216 239 239 137 137 158 158 211 211 

A_m9 94 94 216 216 239 239 137 140 158 158 211 211 

A_m10 94 94 216 216 239 239 137 137 158 158 211 211 

w1 94 94 216 216 239 239 137 137 158 158 211 211 

w2 94 94 216 216 239 239 137 137 158 158 211 211 

w3 94 94 216 216 239 239 137 140 158 158 211 211 

w4 91 94 210 216 239 239 137 140 158 158 211 211 

w5 94 94 216 216 239 239 137 137 158 158 211 211 

w6 94 94 216 216 239 239 137 140 158 158 211 211 

w7 94 94 216 216 239 239 137 137 158 158 211 211 



Colony ID/individuals Microsatellite loci 

  Rf24-2 Rf21-1 Rs02 Rf5-10 Rs10 Rf1-3 

RL5             

w8 94 94 216 216 239 239 137 137 158 158 211 211 

w9 94 94 216 216 239 239 137 140 158 158 211 211 

w10 94 94 216 216 239 239 137 140 158 158 211 211 

             

RL6             

A_f1 94 94 210 210 239 239 137 137 158 158 211 211 

A_f2 94 94 216 216 239 239 137 137 158 158 211 211 

A_f3 94 94 216 216 239 239 137 137 158 158 211 211 

A_f4 94 94 210 216 239 239 137 137 158 158 211 211 

A_f5 94 94 210 216 239 239 137 137 158 158 211 211 

A_f6 94 94 210 210 239 239 137 137 158 158 211 211 

A_f7 94 94 216 216 239 239 137 137 158 158 211 211 

A_f8 94 94 210 216 239 239 137 137 158 158 211 211 

A_f9 94 94 210 216 239 239 137 137 158 158 211 211 

A_f10 94 94 210 210 239 239 137 137 158 158 211 211 

A_m1 94 94 210 216 239 239 137 137 158 158 211 211 

A_m2 94 94 210 216 239 239 137 137 158 158 211 211 

A_m3 94 94 210 216 239 239 137 137 158 158 211 211 

A_m4 94 94 210 216 239 239 137 137 158 158 211 211 

A_m5 94 94 210 216 239 239 137 137 158 158 211 211 

A_m6 94 94 210 216 239 239 137 137 158 158 211 211 

A_m7 94 94 210 210 239 239 137 137 158 158 211 211 

A_m8 94 94 210 216 239 239 137 137 158 158 211 211 

A_m9 94 94 216 216 239 239 137 137 158 158 211 211 

A_m10 94 94 210 216 239 239 137 137 158 158 211 211 

w1 94 94 210 210 239 239 134 137 158 161 211 211 

w2 94 94 216 216 239 239 137 137 158 161 211 211 

w3 94 94 210 216 239 239 137 137 158 161 211 211 

w4 94 94 210 216 239 239 134 137 158 161 211 211 

w5 94 94 210 216 239 239 137 137 158 161 211 211 

w6 94 94 216 216 239 239 134 137 158 161 211 211 

w7 94 94 210 210 239 239 134 137 158 161 211 211 

w8 94 94 216 216 239 239 137 137 158 161 211 211 

w9 94 94 210 216 239 239 134 137 158 161 211 211 

w10 94 94 210 210 239 239 134 137 158 161 211 211 

             

RL7             

A_f1 94 94 210 216 239 239 137 137 158 158 211 211 

A_f2 94 94 210 210 239 239 137 137 158 158 211 211 

A_f3 94 94 216 216 239 239 137 137 158 158 211 211 

A_f4 94 94 210 210 239 239 137 137 158 158 211 211 

A_f5 94 94 210 216 239 239 137 137 158 158 211 211 

A_f6 94 94 210 210 239 239 137 137 158 158 211 211 

A_f7 94 94 210 216 239 239 137 137 158 158 211 211 

A_f8 94 94 210 210 239 239 137 137 158 158 211 211 

A_f9 94 94 216 216 239 239 137 137 158 158 211 211 

A_f10 94 94 210 210 239 239 137 137 158 158 211 211 

A_m1 94 94 210 216 239 239 137 137 158 158 211 211 

A_m2 94 94 210 210 239 239 137 137 158 158 211 211 

A_m3 94 94 210 216 239 239 137 137 158 158 211 211 

A_m4 94 94 210 216 239 239 137 137 158 158 211 211 

A_m5 94 94 210 216 239 239 137 137 158 158 211 211 

A_m6 94 94 210 210 239 239 137 137 158 158 211 211 

A_m7 94 94 210 216 239 239 137 137 158 158 211 211 

A_m8 94 94 210 216 239 239 137 137 158 158 211 211 

A_m9 94 94 210 216 239 239 137 137 158 158 211 211 

A_m10 94 94 210 210 239 239 137 137 158 158 211 211 

w1 94 94 210 216 239 239 137 137 158 158 211 211 

w2 91 91 210 210 239 239 137 137 158 158 211 211 



Colony ID/individuals Microsatellite loci 

  Rf24-2 Rf21-1 Rs02 Rf5-10 Rs10 Rf1-3 

RL7             

w3 94 94 216 216 239 239 137 137 158 158 211 211 

w4 94 94 210 216 239 239 137 137 158 158 211 211 

w5 94 94 210 216 239 239 137 137 158 158 211 211 

w6 94 94 210 216 239 239 137 137 158 158 211 211 

w7 94 94 210 210 239 239 137 137 158 158 211 211 

w8 91 94 210 210 239 239 137 137 158 158 211 211 

w9 91 94 210 216 239 239 137 137 158 158 211 211 

w10 94 94 210 210 239 239 137 137 158 158 211 211 

             

RL8             

PQ 91 94 210 216 239 239 137 140 158 158 211 211 

PK 91 94 210 216 239 239 137 140 158 158 211 211 

N_f1 91 91 210 210 239 239 137 137 158 158 211 211 

N_f2 91 91 210 210 239 239 137 137 158 158 211 211 

N_f3 91 91 216 216 239 239 137 137 158 158 211 211 

N_f4 94 94 216 216 239 239 137 137 158 158 211 211 

N_f5 91 91 216 216 239 239 137 137 158 158 211 211 

N_f6 94 94 210 210 239 239 137 137 158 158 211 211 

N_f7 94 94 210 210 239 239 137 137 158 158 211 211 

N_f8 91 91 210 210 239 239 137 137 158 158 211 211 

N_f9 91 91 216 216 239 239 137 137 158 158 211 211 

N_f10 91 91 210 210 239 239 137 137 158 158 211 211 

N_m1 91 94 216 216 239 239 140 140 158 158 211 211 

N_m2 91 91 210 216 239 239 137 137 158 158 211 211 

N_m3 91 94 210 216 239 239 137 137 158 158 211 211 

W1 91 91 210 216 239 239 137 140 158 158 211 211 

W2 94 94 210 210 239 239 137 140 158 158 211 211 

W3 91 94 210 216 239 239 137 137 158 158 211 211 

W4 91 94 216 216 239 239 137 140 158 158 211 211 

W5 91 91 216 216 239 239 137 137 158 158 211 211 

W6 94 94 216 216 239 239 137 137 158 158 211 211 

W7 91 91 210 210 239 239 137 137 158 158 211 211 

W8 91 91 210 216 239 239 140 140 158 158 211 211 

W9 94 94 216 216 239 239 137 137 158 158 211 211 

W10 91 91 210 216 239 239 137 137 158 158 211 211 

             

RL9             

PQ 82 106 195 219 239 239 137 137 158 158 211 211 

PK 82 82 213 219 239 241 134 137 158 161 211 211 

N_f1 82 82 219 219 239 239 137 137 158 158 211 211 

N_f2 82 82 219 219 239 239 137 137 158 158 211 211 

N_f3 82 82 219 219 239 239 137 137 158 158 211 211 

N_f4 106 106 195 195 239 239 137 137 158 158 211 211 

N_f5 82 82 219 219 239 239 137 137 158 158 211 211 

N_f6 82 82 195 195 239 239 137 137 158 158 211 211 

N_f7 82 82 195 195 239 239 137 137 158 158 211 211 

N_f8 82 82 219 219 239 239 137 137 158 158 211 211 

N_f9 106 106 195 195 239 239 137 137 158 158 211 211 

N_f10 106 106 195 195 239 239 137 137 158 158 211 211 

N_m1 82 82 219 219 239 239 134 137 158 158 211 211 

N_m2 82 106 213 219 239 241 137 137 158 161 211 211 

w1 82 82 195 219 239 241 134 137 158 158 211 211 

w2 82 82 219 219 239 241 134 137 158 161 211 211 

w3 82 106 195 219 239 241 137 137 158 161 211 211 

w4 82 82 195 213 239 239 137 137 158 158 211 211 

w5 82 82 213 219 239 241 134 137 158 161 211 211 

w6 82 106 213 219 239 239 134 137 158 158 211 211 

w7 82 106 219 219 239 239 134 137 158 161 211 211 

w8 82 106 219 219 239 239 134 137 158 158 211 211 



Colony ID/individuals Microsatellite loci 

  Rf24-2 Rf21-1 Rs02 Rf5-10 Rs10 Rf1-3 

RL9             

w9 82 106 195 219 239 241 137 137 158 158 211 211 

w10 82 82 213 219 239 239 134 137 158 161 211 211 

             

RL10             

PQ 82 94 213 213 239 241 137 137 152 152 211 211 

PK 82 88 213 213 239 241 137 137 152 158 211 211 

N_f1 82 82 213 213 239 239 137 137 152 152 211 211 

N_f2 82 82 213 213 239 239 137 137 152 152 211 211 

N_f3 82 82 213 213 239 239 137 137 152 152 211 211 

N_f4 82 82 213 213 239 239 137 137 152 152 211 211 

N_f5 82 82 213 213 239 239 137 137 152 152 211 211 

w1 82 94 213 213 239 239 137 137 152 152 211 211 

w2 82 82 213 213 239 239 137 137 152 158 211 211 

w3 82 82 213 213 239 239 137 137 152 158 211 211 

w4 82 94 213 213 239 239 137 137 152 152 211 211 

w5 82 82 213 213 239 239 137 137 152 158 211 211 

w6 82 82 213 213 239 239 137 137 152 152 211 211 

w7 82 88 213 213 241 241 137 137 152 158 211 211 

w8 82 82 213 213 239 239 137 137 152 158 211 211 

w9 82 94 213 213 239 239 137 137 152 152 211 211 

             

RL11             

PQ 82 94 213 213 239 239 137 140 152 158 211 211 

PK 82 88 213 213 239 239 137 137 158 158 211 211 

N_f1 82 82 213 213 239 239 140 140 152 158 211 211 

N_f2 82 82 213 213 239 239 137 137 152 152 211 211 

N_f3 82 82 213 213 239 239 137 137 152 152 211 211 

N_f4 82 82 213 213 239 239 137 137 152 152 211 211 

N_f5 82 94 213 213 239 239 137 137 152 152 211 211 

N_f6 82 94 213 213 239 239 137 137 152 158 211 211 

N_f7 82 82 213 213 239 239 137 137 152 152 211 211 

N_f8 82 94 213 213 239 239 137 137 152 158 211 211 

N_f9 82 82 213 213 239 239 137 137 152 152 211 211 

N_f10 82 94 213 213 239 239 137 137 152 158 211 211 

w1 82 94 213 213 239 239 137 137 158 158 211 211 

w2 82 82 213 213 239 239 137 137 158 158 211 211 

w3 82 94 213 213 239 239 137 137 158 158 211 211 

w4 82 88 213 213 239 239 137 137 158 158 211 211 

w5 82 94 213 213 239 239 137 137 158 158 211 211 

w6 82 82 213 213 239 239 137 137 158 158 211 211 

w7 82 82 213 213 239 239 137 137 158 158 211 211 

w8 82 94 213 213 239 239 137 137 158 158 211 211 

w9 82 94 213 213 239 239 137 137 158 158 211 211 

w10 82 82 213 213 239 239 137 137 158 158 211 211 

             

RL12             

PQ 82 103 213 219 239 241 137 137 158 158 211 211 

PK 103 103 213 213 239 241 137 137 158 158 211 211 

N_f1 103 103 213 213 241 241 137 137 158 158 211 211 

N_f2 82 103 213 213 239 241 137 137 158 158 211 211 

N_f3 103 103 213 213 239 239 137 137 158 158 211 211 

N_f4 103 103 213 213 241 241 137 137 158 158 211 211 

N_f5 82 82 213 213 239 239 137 137 158 158 211 211 

N_f6 82 82 213 213 239 239 137 137 158 158 211 211 

N_f7 103 103 213 213 239 239 137 137 158 158 211 211 

N_f8 103 103 213 213 241 241 137 137 158 158 211 211 

N_f9 103 103 213 213 239 239 137 137 158 158 211 211 

N_f10 82 82 213 219 241 241 137 137 158 158 211 211 

N_m1 103 103 213 213 239 239 137 137 158 158 211 211 



Colony ID/individuals Microsatellite loci 

  Rf24-2 Rf21-1 Rs02 Rf5-10 Rs10 Rf1-3 

RL12             

N_m2 82 103 213 213 241 241 137 137 158 158 211 211 

N_m3 103 103 213 213 241 241 137 137 158 158 211 211 

N_m4 82 103 213 213 241 241 137 137 158 158 211 211 

N_m5 103 103 213 213 239 239 137 137 158 158 211 211 

N_m6 82 82 213 219 239 241 137 137 158 158 211 211 

N_m7 103 103 213 213 239 241 137 137 158 158 211 211 

N_m8 103 103 213 213 239 241 137 137 158 158 211 211 

N_m9 103 103 213 213 239 241 137 137 158 158 211 211 

N_m10 103 103 213 213 239 241 137 137 158 158 211 211 

w1 103 103 213 213 239 241 137 137 158 158 211 211 

w2 103 103 213 213 239 241 137 137 158 158 211 211 

w3 103 103 213 213 239 239 137 137 158 158 211 211 

w4 82 103 213 219 241 241 137 137 158 158 211 211 

w5 82 103 213 213 239 239 137 137 158 158 211 211 

w6 103 103 213 213 239 241 137 137 158 158 211 211 

w7 82 103 213 213 239 241 137 137 158 158 211 211 

w8 103 103 213 213 239 241 137 137 158 158 211 211 

w9 82 103 213 213 241 241 137 137 158 158 211 211 

 



Suppl. Figure S1. Map showing the Reticulitermes sampling sites: 1, La Tremblade; 2: Pissos; 3, Paris; 

4, Saint-Georges-d'Oléron; 5: San Rossore Natural Reserve; 6: Roccelletta di Borgia 
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Abstract 

Sex-biased investment is the allocation of reproductive resources toward a certain sex. One of the 

best examples explaining this phenomenon is social haplodiploid Hymenoptera in which kin selection, 

promoted by sex-biased genetic relatedness, is the force shaping the investment toward the female 

sex. In social diploid termites, sex allocation was thought to be unbiased because of the absence of 

relatedness asymmetries. However, a recent analysis described how the Asexual Queen Succession 

(AQS) reproductive strategy leads to a female-biased investment causing a significant deviation in the 

sex-ratio of swarming reproductives of two AQS termite species belonging to Reticulitermes genus, 

the Japanese R. speratus and the American R. virginicus. 

To test sex-biased resource allocation in the Italian AQS species R. lucifugus, we quantified the sex-

ratio of alates from 24 colonies collected in the San Rossore Natural Reserve. Morphometric analyses 

were also performed to understand whether the AQS strategy could affect sex-biased investment 

from a morphological standpoint. Results confirmed the presence of a female-biased allocation also 

in R. lucifugus since 18 out 24 colonies examined showed a sex-ratio significantly biased toward the 

female sex. On the contrary, the remaining six colonies showed a male-biased sex ratio, due to an 

intra-colonial seasonality in sex allocation, probably as a consequence of bivoltinism or protrandry. 

Finally, morphometric analyses revealed an intra-sexual size dimorphism (iSSD) among female alates 



belonging to colonies with the opposite sex investment ratio. A possible explanation of such 

phenomenon could be linked to a side effect of protrandry and different developmental time 

between sexes.  

 

 

Keywords: sex allocation, kin selection, AQS, iSSD, protrandry, bivoltinism, termites  



Introduction 

Sex allocation is the allocation of reproductive resources between sexes (Charnov, 1982). Despite 

Fisher (1929) predicted a greater evolutionary advantage in a balanced sex investment, several cases 

occur where resources are biased toward one sex (Hamilton, 1964). One of the best examples is social 

haplodiploid insects: in line with the Inclusive Fitness Theory (Hamilton, 1964), workers preferentially 

allocate resources towards female relatives to maximize the transmission rate of their own genes to 

the next generation (Bourke, 2015). This relatedness asymmetry is thought to be the force shaping 

the bias in the reproductive values in Hymenoptera (Wilson & Hölldobler, 2005), causing a significant 

deviation in their sex ratio. In social diploids insects, such as termites, sex allocation should be 

unbiased, since relatedness asymmetries are generally thought to be absent. However, a recent 

analysis demonstrated the presence relatedness asymmetries also in diploid termites, suggesting a 

new mechanism causing sex-biased investment (Kobayashi et al., 2013). It has been recently 

discovered a peculiar reproductive strategy, called Asexual Queen Succession (AQS), occurring in 

several species of the Rhinotermitidae and Termitidae families (Matsuura et al., 2009; Vargo et al., 

2012; Luchetti et al., 2013a; Fougeyrollas et al., 2015; Fournier et al., 2016; Fougeyrollas et al., 2017). 

In AQS termites, the primary queen, the colony founders together with the primary king, is soon 

replaced by parthenogenetically-produced secondary queens that start mating with the primary king. 

During the terminal phase of colony development, a sexually produced secondary king emerges and 

replaces the primary king (Kobayashi et al., 2013; Matsuura et al., 2017). When secondary queens 

and king mate, a mother-son inbreeding occurs: this generates a sex-asymmetric genetic contribution 

to the next offspring, leading to a female-biased sex-ratio of swarming individuals (alates; Kobayashi 

et al., 2013). In agreement with this mathematical prediction, sex-biased investment was observed 

in Reticulitermes speratus and R. virginicus, two AQS species of the Rhinotermitidae family (Matsuura 

et al., 2009; Vargo et al., 2012) showing a female-biased alates sex ratio (Kobayashi et al., 2013). 



Moreover, the AQS strategy could affect sex-biased investment also from a morphological point of 

view: in R. speratus, the loss of heterozygosity following the parthenogenesis producing secondary 

queens correlated with an increased body size, because of a greater fertility (Yamamoto and 

Matsuura, 2012). 

Also natural selection may favour sex-biased investment: sex-biased investment resulting in a sexual 

size dimorphism (SSD) is common among insects (Stillwell et al., 2010; Tammaru et al., 2010). 

Selection on fecundity, in fact, favours larger females that usually produce more and larger offspring 

(Darwin 1871, Charnov 1982, Honék 1993; Stillwell et al., 2010).  

In Italy, two Reticulitermes species are known, R. lucifugus and R. urbis (Luchetti et al., 2013b; 

Scicchitano et al., 2017): while the latter is an invasive species, only distributed in Apulia, the former 

can be found along the peninsula, Sardinia and Sicily. R. lucifugus comprises two subspecies: R. 

lucifgus lucifugus, distributed along the continental Italy, and R. lucifugus corsicus, that can be found 

in Sardinia and southern Tuscanian coasts (Luchetti et al., 2013b). In this study, we tested sex-biased 

resources allocation in swarming individuals belonging to R. lucifugus colonies, collected in the San 

Rossore Natural Reserve where the only R. lucifgus lucifugus subspecies occur (Luchetti et al., 2013b). 

We, therefore, checked sex ratio and morphometric analysis in order to investigate on the presence 

of a sex-biased investment trying to understand the evolutionary and ecological forces behind the 

onset of this phenomenon. 

 

 

Materials and Methods 

Sampling and sex ratio estimation 

Alates of both sexes were collected from 24 R. lucifugus colonies in the San Rossore Natural Reserve 

(Figure 1), right before the flight, during the late swarming season, between the end of May and the 



begin of June 2013. Collection has been performed in three days: the 21st May (N=9), the 28th May 

(N=10) and the 4th June (N=5) (Table 1). Individuals were stored under absolute ethanol (100%) to 

preserve tissues. Sex was determined from the configuration of the caudal sternites (Zimet & Stuart, 

1982) and then, for each colony, alates were separated by sex to calculate the sex-ratio, as the 

number of females / tot. number of alates. Deviation from expected 1:1 sex ratio was checked by 2 

test; the distribution of sex ratio over the collection period was checked with a one-way ANOVA, 

followed by the Tukey HSD post-hoc test with P adjusted for multiple comparisons, using R v.3.3.2 

software (R Core Team, 2013). 

 

Morphometric analyses 

Among the 24 colonies, 12 R. lucifugus colonies were chosen for morphometric analysis, also 

considering sex ratio results. Samples in good conditions (not damaged) and with wings still attached 

were dried out in oven for 12 hours at 60°C. Using stereoscopic microscope and millimetre paper, 16-

20 alates for each of the 12 selected colonies were measured for total body length, abdomen length 

(B) and width (C), wings length as described in Figure 2. All comparisons between sexes and between 

sexes based on biased sex ratio of the pertaining colony were statistically assessed by non-parametric 

Mann-Whitney test, using R v.3.3.2 software (R Core Team, 2013). 

 

 

Results  

Eighteen out 24 colonies showed a significantly higher number of female individuals with sex ratio 

ranging from 0.587 to 0.981; the other six colonies showed a sex ratio significantly biased toward the 

male sex, showing a sex ratio of 0.046-0.374 (Table 1). Sex ratio biases do not distribute evenly during 



the collection (PANOVA F < 0.05), male-biased sex ratio colonies significantly concentrated during the 

last day of collection (PTukey HSD, adjusted < 0.05). 

Mean total body length ranged from 4.15 ± 0.21 to 4.60 ± 0.32 mm in females and from 4.15 ± 0.38 

to 4.50 ± 0.25 in males; mean abdomen length varied from 1.65 ± 0.13 to 2.10 ± 0.17 mm in females 

and from 1.63 ± 0.18 to 2.07 ± 0.19 mm in males (Table 2). Female and male abdomen width ranged 

from 0.93 ± 0.17 to 1.10 ± 0.13 mm and from 0.93 ± 0.12 to 1.03 ± 0.08 mm, respectively (Table 2).  

Forewing length means spanned from 7.83 ± 0.17 to 7.28 ± 0.22 in female alates and from 7.88 ± 0.19 

to 6.95 ± 0.20 in males; rear wings were shorter, ranging from 7.55 ± 0.16 to 6.83 ± 0.29 in females 

and from 7.63 ± 0.19 to 5.74 ± 1.80 (Table 2).  

Overall, females showed longer body and abdomen length (PMann-Whitney < 0.01), while males have 

wider abdomens (PMann-Whitney < 0.01). Moreover, females’ wings (both front and rear wings) were 

longer than those of males (PMann-Whitney < 0.01). We then compared the two sexes considering the sex 

ration bias observed in their respective colony (Table 3). Females belonging to colonies with female-

biased sex ratio always resulted having larger measure (PMann-Whitney < 0.01), apart from abdomen 

width which resulted larger in female from colonies with male biased sex ratio (PMann-Whitney < 0.01). 

Males do not show significant differences between colonies with different sex ratio regarding the 

body, although wings of male from female-biased sex ratio were longer (PMann-Whitney < 0.05). 

 

 

Discussion 

In the present analysis, for the first time, we analyzed the sex ratio and sex dimorphism in the 

subterranean termite R. lucifugus.  

Over two weeks sampling, alates have been collected from 24 colonies and they always showed 

biased sex ratios. Most colonies showed a female-biased sex ratio, in agreement with previous 



surveys (Jones et al., 1988; Luchetti et al., 2013), while six of them showed a male biased sex ratio. 

As modeled by Kobayashi et al. (2013), in AQS species such as R. lucifugus, female-biased sex ratio is 

a consequence of this reproductive system because of a female-biased genetic contribution due to 

mother-son inbreeding. This, however, is expected to occur during the terminal phase of colony 

development, when the secondary king replaces the primary one and mates with secondary queens 

(Kobayashi et al. 2013). Taking this model into account, we can explain our data as the male-biased 

colonies being still the early-mature phase of colony development (Matsuura, 2017). On the other 

hand, it is interesting that non-female biased colonies are all male-biased. Matsuura (2006) reported 

incidental protandry in the Japanese congeneric species R. speratus, i.e. the early eclosion of males, 

suggesting that sex ratio count may be biased if collection occur at the early phase of swarming alates 

eclosion. Incidental protandry may be a side effect of a sexual size dimorphism in which female alates 

require a longer developmental time than males to achieve a larger body size (Matsuura, 2006). This 

is, thus, the same observation we made in R. lucifugus, where females are larger than males. 

Alternating sex ratio biases, e.g. due to bivoltinism or protrandry, are common in insects (Werren & 

Charnov, 1978; Fischer & Fiedler 2001; del Castillo & Nunêz-Farfan, 2002; Zijlstra et al., 2002; Mitton 

& Ferrenberg, 2014). The presence of seasonal variations in sex ratio is an adaptive reproductive 

strategy favored by natural selection that allows to maximize the number of encounters between 

unrelated individuals, avoiding\reducing those among nest-mates with the consequent loss of genetic 

variability due to inbreeding (Fagerström & Wiklund 1982; Wiklund & Solbreck 1982; Iwasa et al., 

1983; Nylin et al., 1993). This phenomenon has been reported also in social insects (Evans & West-

Eberhard 1970; Hunt & Amdam, 2005), like in termites (Vargo & Husseneder, 2009), where partial 

bivoltinism was suggested to favor eusociality (Seger, 1983; Hunt & Amdam, 2005). Accordingly, 

male-biased sex ratio observed in our colonies could be the result of an intra-colonial seasonality in 

sex allocation, probably because of protrandry (Matsuura, 2006): colonies showing a male biased sex 



ratio may have been collected in an early-stage in which more mature male alates were available 

than females. 

In addition to this, our data highlight also the presence of an intra-sexual size dimorphism (iSSD) 

occurring among female alates belonging to colonies with opposite sex ratio. On the contrary, this 

iSSD is not observed in males. Therefore, the observed female iSSD could be due to their long 

developmental time and it is possible that individuals from female-biased colonies were collected 

upon completion of their development process while those belonging to male-biased colonies had 

not yet finished it. In support of this hypothesis there is the absence of male ISSD: because of 

protrandry, such individuals did not show significant different sizes since they all had achieved the 

body size development. The only exception are wings, which resulted longer in males from female-

biased sex ratio colonies: it can be suggested that wings, at variance of the body, continue to develop. 

It remains unanswered why male-biased sex ratio colonies have been mainly found later in the 

swarming season: although being only six out 24 colonies, it appears significant that four of them 

have been collected the last day of the field survey, especially considering that no further swarming 

individuals have been found after that date, and only one was found having a female-biased sex ratio. 

We can speculate about the presence of some trait that may affect the early/late development of 

alates in some colonies, independently from protandry. For example, at the present, we cannot 

completely exclude that some AQS-related trait, possibly linked to the early/mature/late colony life 

stage, may also determine iSSD. In this view, female-biased sex ratio colonies may grow larger 

because of more sex-biased allocation of resources when the genetic contribution of the founder 

queen become prevalent in the terminal stage of colony life, concomitantly to distortion of sex ratio 

in favor of females (Kobayashi et al., 2013). Therefore, AQS species, such as R. lucifugus, appear an 

interesting framework where to address specific studies on sex allocation of resources; future studies 

may help to shed light on this peculiar reproductive strategy and on variation of sex ratio over time. 
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Tables and figures 

 

Table 1. Sex ratio observed in collected colonies (1 colony used for morphometric analyses; * P< 

0.05; ** P<0.01; *** P<0.001). 

 

Colony Collection 
date 

Alates ♀ Alates ♂ Sex ratio P2 

C11 28 May 33 113 0.226 *** 

C2 28 May 100 2 0.980 *** 

C3 28 May 105 74 0.587 * 

C4 28 May 103 72 0.589 * 

C51 28 May 107 19 0.849 *** 

C61 28 May 97 44 0.688 *** 

C7 21 May 40 11 0.784 *** 

C81 21 May 102 50 0.671 *** 

C91 21 May 120 61 0.663 *** 

C10 21 May 100 37 0.730 *** 

C11 21 May 125 9 0.933 *** 

C121 04 June 13 103 0.112 *** 

C131 04 June 5 104 0.046 *** 

C141 04 June 20 110 0.154 *** 

C15 21 May 90 34 0.726 *** 

C16 04 June 89 4 0.957 *** 

C17 21 May 105 27 0.795 *** 

C18 21 May 99 42 0.702 *** 

C19 21 May 100 41 0.709 *** 

C201 28 May 110 23 0.827 *** 

C21 28 May 101 2 0.981 *** 

C221 28 May 46 77 0.374 *** 

C231 28 May 126 11 0.920 *** 

C241 04 June 39 68 0.364 ** 

 
 



Table 2. Average values of morphometric measures (mm ± standard deviation) per sex and per colony (1 F: female-biased; M: male-biased; see 

Table 1). 

 

Colony Sex ratio1 Body length  Abdomen length  Abdomen width  Forewing length Rear wing length 

    ♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ 

C1 M 4.30 ± 0.20 4.25 ± 0.17 1.73 ± 0.14 1.75 ± 0.17 1.08 ± 0.12 0.88 ± 0.13 7.53 ± 0.22 7.48 ± 0.18 7.05 ± 0.23 7.25 ± 0.17 

C5 F 4.40 ± 0.21 4.25 ± 0.25 1.85 ± 0.17 1.75 ± 0.25 0.93 ± 0.17 0.79 ± 0.09 7.65 ± 0.13 7.57 ± 0.12 7.33 ± 0.17 7.18 ± 0.12 

C6 F 4.38 ± 0.13 4.28 ± 0.08 1.98 ± 0.14 1.93 ± 0.12 0.98 ± 0.08 0.93 ± 0.12 7.72 ± 0.18 7.48 ± 0.18 7.43 ± 0.12 7.20 ± 0.16 

C8 F 4.35 ± 0.18 4.23 ± 0.08 2.03 ± 0.18 1.78 ± 0.08 0.93 ± 0.17 0.98 ± 0.08 7.70 ± 0.20 7.55 ± 0.20 7.43 ± 0.17 7.30 ± 0.20 

C9 F 4.60 ± 0.32 4.50 ± 0.25 2.10 ± 0.17 2.07 ± 0.19 0.93 ± 0.17 0.82 ± 0.12 7.58 ± 0.12 7.54 ± 0.22 7.28 ± 0.18 7.04 ± 0.22 

C12 M 4.18 ± 0.21 4.28 ± 0.18 1.65 ± 0.13 1.63 ± 0.18 0.95 ± 0.16 0.85 ± 0.13 7.28 ± 0.22 7.25 ± 0.20 6.90 ± 0.24 6.73 ± 0.25 

C13 M 4.25 ± 0.14 4.22 ± 0.20 2.00 ± 0.00 1.97 ± 0.20 1.00 ± 0.00 0.94 ± 0.11 7.64 ± 0.13 7.28 ± 0.20 7.14 ± 0.13 7.03 ± 0.20 

C14 M 4.25 ± 0.25 4.15 ± 0.38 2.08 ± 0.14 2.03 ± 0.30 1.00 ± 0.00 0.90 ± 0.13 7.33 ± 0.29 6.95 ± 0.20 6.83 ± 0.29 5.74 ± 1.80 

C20 F 4.28 ± 0.22 4.25 ± 0.33 1.85 ± 0.27 1.78 ± 0.31 0.93 ± 0.17 1.00 ± 0.23 7.75 ± 0.17 7.56 ± 0.22 7.30 ± 0.20 7.19 ± 0.12 

C23 F 4.43 ± 0.12 4.38 ± 0.13 2.05 ± 0.11 2.03 ± 0.09 0.98 ± 0.08 0.97 ± 0.09 7.83 ± 0.17 7.88 ± 0.19 7.35 ± 0.21 7.63 ± 0.19 

C22 M 4.15 ± 0.21 4.23 ± 0.18 1.93 ± 0.12 1.98 ± 0.18 0.93 ± 0.12 0.95 ± 0.11 7.83 ± 0.17 7.63 ± 0.13 7.55 ± 0.16 7.38 ± 0.13 

C24 M 4.38 ± 0.18 4.33 ± 0.21 2.08 ± 0.24 2.05 ± 0.20 1.10 ± 0.13 1.03 ± 0.08 7.80 ± 0.20 7.75 ± 0.24 7.45 ± 0.11 7.50 ± 0.24 

 
 
 



Table 3. Average values of morphometric measures (mm ± standard deviation) considering the 

colony sex ratio bias (* P< 0.05; ** P<0.01; *** P<0.001). 

 

Measure Sex Female bias Male bias PMann-Whitney 

Body length ♀ 4.40 ± 0.22 4.26 ± 0.21 ** 
 

♂ 4.31 ± 0.21 4.24 ± 0.22 n.s. 

Abdomen length ♀ 1.97 ± 0.20 1.87 ± 0.22 ** 
 

♂ 1.89 ± 0.21 1.90 ± 0.25 n.s. 

Abdomen width ♀ 0.94 ± 0.14 1.01 ± 0.13 ** 
 

♂ 0.92 ± 0.15  0.92 ± 0.12 n.s. 

Forewing length ♀ 7.70 ± 0.17 7.57 ± 0.28 ** 
 

♂ 7.59 ± 0.22 7.39 ± 0.32 *** 

Rear wing length ♀ 7.35 ± 0.18 7.18 ± 0.31 ** 

  ♂ 7.26 ± 0.24 6.94 ± 0.94 * 

 
  



Figure 1. Map of sampling sites in San Rossore Natural Reserve. Underlined colony IDs indicate 

samples used for morphometric analyses. 
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Figure 2. Schematic drawing of measures used for morphometric analyses. A: body length; B: 

abdomen length; C: abdomen width; E: forewing length; F: rear wing length. 
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CHAPTER 8 

*** 

DETECTING WOLBACHIA INFECTION STATUS IN EUROPEAN TERMITES OF 

RETICULITERMES AND KALOTERMES GENERA (INSECTA, BLATTODEA, 

TERMITOIDAE): RELATIONSHIP WITH THE HOST PHYLOGENY AND ITS 

INVOLMENT IN THE REPRODUCTIVE STRATEGIES. 
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Detecting	Wolbachia	 infection	 status	 in	 European	 termites	 of	 Reticulitermes	 and	 Kalotermes	

genera	 (Insecta,	 Blattodea,	 Termitoidae):	 relationship	 with	 the	 host	 phylogeny	 and	 its	

involvement	in	the	reproductive	strategies	
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Abstract	

Microbial	symbionts	play	a	crucial	role	in	the	lifestyle	of	termites	providing	either	benefits,	through	

mutualism,	 or	 disadvantages,	 with	 parasitism.	 This	 is	 the	 case	 of	 the	 cellular	 endosymbiotic	a-

proteobacteria	of	the	genus	Wolbachia	affecting	host	reproduction.	To	verify	 if	this	bacterium	is	

involved	 in	 termite	 parthenogenesis	 or	 hybridization	 events,	 European	 species	 belonging	 to	

Reticulitermes	 and	 Kalotermes	 genera	 were	 analyzed	 for	 Wolbachia	 infection.	 In	 particular,	

Wolbachia	occurrence	was	checked	in	R.	lucifugus	colonies	to	understand	a	possible	involvement	

of	this	microbe	in	the	Asexual	Queen	Succession	strategy,	which	include	the	use	of	parthenogenesis,	

and	 in	 mixed	 Kalotermes	 colonies	 to	 verify	 if	Wolbachia	 could	 be	 involved	 in	 the	 interspecific	

hybridization	 events	 through	 some	 kind	 of	 cytoplasmic	 incompatibility	 leading	 to	 preferential	

mating	between	divergent	taxa.	Preliminary	data	obtained	point	to	a	complex	situation,	and	no	clear	

link	between	Wolbachia	occurrence	and	termite	reproductive	biology	emerged	yet.	

	

	

Keywords:	Accelerated	Nest	Inheritance,	Asexual	Queen	Succession,	Wolbachia,	termites,	Isoptera	

	 	



Introduction	

Microbial	 symbiosis	 plays	 a	 relevant	 role	 in	 the	 lifestyle	 of	 termites	 providing	 benefits,	 through	

mutualism,	 or	 disadvantages,	 as	 in	 the	 case	 of	 parasitism	 (Dedeine	 et	 al.,	 2003).	 For	 example,	

termite	gut	microbiota	is	composed	by	bacteria,	archeae	and	unicellular	flagellated	protists	which	

enable	 termites	 to	 feed	 degrading	 lignin,	 cellulose,	 and	 hemicelluloses	 to	 fermentable	

carbohydrates	 (Berlanga	 et	 al.,	 2011).	 Termites,	 however,	 harbor	 also	 parasitic	 endosymbiotic	

bacteria	living	within	their	germinal	line	cells.	The	most	common	of	these	intracellular	parasites	are,	

undoubtedly,	 the	a-proteobacteria	of	 the	genus	Wolbachia	 (Rickettsiales,	Rickettsiaceae),	which	

includes	obligate	intracellular	bacteria	that	are	cytoplasmically	inherited	in	arthropods	and	filarial	

nematodes	 (Lo	&	 Evans,	 2007).	Wolbachia	 can	 induce	 several	 effects	 on	 the	 host	 reproductive	

biology	 (phenotypes),	 such	 as	 feminization,	 parthenogenesis,	 male	 killing,	 and	 cytoplasmic	

incompatibility	(Brucker	&	Bordenstein,	2012).	The	latter	is	the	most	frequent	Wolbachia-induced	

phenotype	observed	and	it	consists	in	the	incompatibility	between	sperms	from	infected	males	and	

eggs	 of	 uninfected	 females	 or	 between	 individuals	 harboring	 different	Wolbachia	 strains	 (Lo	 &	

Evans,	2007).	This	so-called	cytoplasmatic	incompatibility	(CI)	is	due	to	the	disruption	of	the	hosts	

cell	cycle,	which	results	in	asynchronous	development	of	male	and	female	pronuclei	(Werren	et	al.,	

2008).	Therefore,	CI	results	in	a	post-copulatory	reproductive	isolation	and,	for	this	reason,	it	was	

suggested	that	Wolbachia	could	be	involved	in	speciation	events	(Brucker	&	Bordenstein,	2012).		

Sixteen	supergroups	of	Wolbachia	are	recognized	(A–Q;	Glowska	et	al.,	2015),	and	four	of	these	

infect	 termites:	 supergroups	 A,	 B	 and	 F	 infects	 the	majority	 of	 termite	 species,	 including	 both	

derived	 (i.e.,	 Reticulitermes	 genus)	 and	 more	 primitive	 taxa	 (i.e.,	 Kalotermes	 genus),	

whilesupergroup	H	 is	 found	only	 in	Zootermopsis	 species	 (Lo	et	 al.,	 2002;	 Salunke	et.	 al,	 2010).	

However,	even	if	the	systematics,	phylogeny	and	taxonomic	distribution	of	Wolbachia	strains	have	



been	 quite	 widely	 studied,	 it	 is	 poorly	 known	 if	 and	 how	Wolbachia	 infection	 can	 affect	 the	

reproductive	biology	of	termites	(Matsuura	et	al.,	2004;	Lo	&	Evans,	2007;	Werren	et	al.,	2008).	

European	termite	species	belong	to	two	genera:	Reticulitermes	and	Kalotermes.	The	former	genus	

includes	six	subterranean	termite	species:	the	European	R.	grassei,	R.	banyulensis,	R.	lucifugus,	R.	

urbis,	R.	 balkanensis	and	 the	Aegean	 R.	 aegeus	 (Austin	et	al.,	 2002;	Marini	&	Mantovani,	 2002;	

Bagnères	et	al.,	2003;	Kutnik	et	al.,	2004;	Luchetti	et	al.,	2004,	2007,	2013a;	Uva	et	al.,	2004;	Velonà	

et	 al.,	 2010;	 Ghesini	 &	 Marini,	 2015a).	 Moreover,	 the	 North	 American	 species	 R.	 flavipes	 is	

distributed	 in	 Europe	with	 some	 invasive	populations	 in	 France	 and	Germany	 (Perdereau	et	al.,	

2013).	Of	these	taxa,	only	R.	grassei	has	been	analyzed	for	Wolbachia	infection	and	its	presence	was	

evidenced	only	in	the	soldier	caste	(Berlanga	et	al.,	2011).	On	the	other	hand,	previous	analyses	in	

the	Reticulitermes	genus	revealed	Wolbachia	occurrence	in	the	North	American	R.	flavipes	and	in	

the	Japanese	R.	speratus,	the	latter	being	the	first	AQS	species	identified	(Matsuura	et	al.,	2004).	

Asexual	Queen	Succession	(AQS)	is	a	peculiar	reproductive	strategy	which	includes	the	conditional	

use	 of	 parthenogenesis	 (Matsuura	 et	 al.,	 2009,	 Luchetti	 et	 al.,	 2013b).	 In	 AQS	 species,	 in	 fact,	

reigning	queens	produce	homozygous	secondary	queens	by	parthenogenesis,	while	individuals	of	

all	other	castes	derive	from	mating	with	the	king	(Matsuura	et	al.,	2009).	AQS	is	now	known	to	occur	

in	other	species	such	as	the	Italian	R.	lucifugus	(Luchetti	et	al.,	2013b).	In	this	species,	no	evidences	

about	Wolbachia	occurrence	has	been	so	far	described.		

As	far	as	the	Kalotermes	genus	is	concerned,	three	dry-wood	dwelling	species	are	present	in	the	

area.	The	most	widespread	is	K.	flavicollis,	showing	three	distinct	genetic	lineages	(Scicchitano	et	

al.,	2017):	lineage	A	occurs	from	Italy	to	Aegean	Islands;	lineage	SC	can	be	found	in	Sardinia,	Corsica	

and	along	the	Tuscany	coast	and	lineage	IF	 in	the	Iberian	Peninsula.	The	sister	species	K.	 italicus	

(Ghesini	&	Marini,	2013)	occurs	in	North-central	Italy	and	South	France	(Scicchitano	et	al.,	2017),	its	

distribution	overlapping	with	K.	flavicollis	one.	Finally,	K.	phoenicae	was	found	on	Cyprus	island,	and	



along	 Israeli	and	Lebanese	coasts	 (Ghesini	&	Marini,	2015b).	Within	this	genus,	 the	Wolbachia	F	

strain	was	found,	so	far,	in	one	sample	of	the	species	K.	flavicollis,	at	that	time	the	only	known	taxon	

of	this	genus	in	Europe	(Lo	et	al.,	2002;	Casiraghi	et	al.,	2005).	European	Kalotermes	colonies	are	

known	to	frequently	produce	mixed	colonies,	by	fusion	of	two	or	more	pre-existing	ones	(Luchetti	

et	al.,	2013c;	Scicchitano	et	al.,	2017,	see	Chapter	5).	Very	interestingly,	also	colonies	belonging	to	

different	taxa	were	found	to	fuse	in	the	field,	with	instances	of	very	high	rate	of	colony	fusion	given	

by	 up	 to	 nine	 colonies	 (Luchetti	 et	 al.,	 2013c;	 Schicchitano	 et	 al.,	 2017).	 In	 accordance	 to	 the	

‘Accelerated	Nest	Inheritance’	theory	(Thorne	et	al.,	2003),	these	colony	fusions	should	lead	to	the	

death	of	royal	founders	allowing	false	workers	(pseudoergates)	to	moult	into	reproducers	and	to	

inherit	the	colony.	The	emergence	of	hybrid	individuals	observed	after	fusion	events	(Luchetti	et	al.,	

2013c)	led	to	the	hypothesis	that	hybridization	between	different	genetic	lineages	or	species	could	

further	 promote	 the	 fusion	 of	 more	 than	 two	 colonies	 overcoming	 mechanisms	 of	 nest-mate	

recognition	(Thorne	et	al.,	2003).	Though,	the	underlying	genetic	causes	allowing	such	hybridization	

events	are	still	unknown.	It	is,	therefore,	worth	investigating	if	Wolbachia	may	be	involved	in	the	

process	of	interspecific	hybridization	and,	therefore,	of	colony	fusion	in	Kalotermes.	

Here,	a	preliminary	molecular	 investigation	was	performed	on	termite	samples	belonging	to	the	

European	Reticulitermes	 and	Kalotermes	 species	 in	order	 to	 identify	Wolbachia	 infection	and	 to	

characterize	 the	 relevant	 strains.	 Attention	 has	 been	 given,	 in	 particular,	 to	 the	 AQS	 species	R.	

lucifugus	 and	 to	mixed	colonies	of	 the	Kalotermes	 genus	 to	verify	whether	Wolbachia	 presence	

could	be	related	to	parthenogenesis	or	hybridization.	

	

	 	



Materials	and	Methods		

For	the	genus	Reticulitermes,	samples	of	R.	banyulensis,	R.	grassei,	R.	flavipes,	R.	lucifugus	and	R.	

urbis	(two	colonies	each)	were	analyzed	(Table	1).	For	the	genus	Kalotermes,	one	colony	of	K.	italicus	

and	one	sample	 for	each	mitochondrial	 lineage	of	K.	 flavicollis	 (lineage	A,	 lineage	SC,	 lineage	 IF;	

Scicchitano	et	al.,	2017)	have	been	surveyed	(Table	1).	Species	identification	was	performed	through	

mitochondrial	 characterization	 following	 Dedeine	 et	 al.	 (2016)	 for	 Reticulitermes	 samples	 and	

Scicchitano	et	al.	(2017)	for	the	Kalotermes	ones.		

	DNA	was	extracted	using	Macherey-Nagel	NucleoSpin®	Tissue	Kit.	The	termite	head	and	thorax	was	

used	 to	confirm	taxonomic	species	 identification	and	colony	composition	 through	mitochondrial	

characterization.	The	abdomen,	on	the	other	hand,	was	utilized	for	microbial	DNA	isolation,	using	

the	same	extraction	kit.	To	test	for	Wolbachia	infection,	PCRs	were	performed	following	Lo	&	Evans	

(2007),	amplifying	the	FtsZ	gene	(encoding	a	cell	division	protein;	>750bp	region)	as	marker	and	the	

HotStart	Master	Mix	(Quiagen®)	kit.	The	same	PCR	settings	were	used	to	amplify	the	bacterial	16S	

rRNA	gene,	chosen	as	a	positive	control	to	test	the	success	of	the	microbial	DNA	isolation.	

Wolbachia	FtsZ	sequences	were	produced	for	a	subset	of	the	positive	amplicons;	sequences	were	

aligned	 together	with	 others	 isolated	 from	 termites,	 retrieved	 from	GenBank	 (A.N.	 are	 given	 in	

Figure	1).	Portion	of	the	Ehrlichia	ruminantium	strain	Welgevonden	(A.C.:	NC_005295)	FtsZ	gene	

was	 used	 as	 outgroup.	 The	 best	 substitution	model,	 GTR+G,	 was	 tested	 by	 jModelTest	 v2.1.10	

(Guindon	&	Gascuel,	2003;	Darriba	et	al.,	2012).	Bayesian	phylogenetic	inference	was	performed	

using	MrBayes	v3.2.5	(Ronquist	et	al.,	2012)	running	four	Metropolis	coupled	Markov	chains	for	1	

million	 generations	 after	 which	 convergence	 was	 reached	 (average	 standard	 deviation	 of	 split	

frequencies	<	0.01).	Trees	were	sampled	every	250	generations	and	the	first	25	%	were	discarded	

as	burn-in	trees	before	constructing	a	50	%	majority	rule	consensus	tree.	

	 	



Results	and	Discussion	

Reticulitermes.	As	resulted	from	the	FtsZ	PCR	analyses,	all	individuals	from	the	considered	species	

did	not	show	positive	amplification	for	any	Wolbachia	strain.	Our	preliminary	results,	thus,	indicate	

the	absence	of	Wolbachia	infection	in	R.	banyulensis,	R.	grassei,	R.	flavipes,	R.	lucifugus	and	R.	urbis	

for	 the	 castes	 analyzed.	 It	 is	 to	 be	 noted	 that	 evidences	 about	Wolbachia	 presence	 have	 been	

reported	for	R.	grassei	soldiers	(Berlanga	et	al.,	2011).	It	is	to	be	explained	therefore	why	we	failed	

to	amplify	the	FtsZ	gene	in	the	single	R.	grassei	individual	of	the	soldier	caste	analyzed.	This	could	

obviously	be	due	to	some	technical	failure,	but	it	could	be	argued	that	Wolbachia	infection	may	be	

unequally	distributed	in	the	species,	therefore	calling	for	a	population-based	analysis	of	Wolbachia	

distribution	in	this	taxon.			

The	 absence	 of	 infection	 (besides	 workers	 and	 soldiers)	 also	 in	 female	 parthenogenetically	

produced	 nymphoids	 of	 the	AQS	 species	R.	 lucifugus	 suggests	 to	 definitively	 exclude	 a	 possible	

involvement	of	Wolbachia	 in	the	establishment	of	this	reproductive	strategy.	Available	results	 in	

fact	shows	that	Wolbachia	can	be	either	present	or	absent	in	an	AQS	species	(R.	speratus	and	R.	

lucifugus,	respectively;	Matsuura	et	al.,	2004;	present	data).	The	molecular	mechanisms	at	the	basis	

of	the	switch	between	parthenogenesis	and	bisexual	reproduction	in	AQS	queen	still	needs	to	be	

clarified.	

Kalotermes.	Mitochondrial	 identification	 evidenced	 the	 presence	 of	 two	 colonies	with	 different	

haplotype	contribution,	i.e.	colony	Km1	with	K.	italicus	/ K.	flavicollis	–	lineage	SC	haplotypes	and	

Km2	with	K.	italicus	/ K.	flavicollis	–	lineage	A	haplotypes	(Table	2).		

Regarding	 the	 detection	 of	Wolbachia,	 positive	 PCR	 amplifications	 for	 the	 FtsZ	 marker	 were	

obtained	 in	 samples	belonging	 to	K.	 flavicollis	 lineage	 SC	 and	K.	 italicus,	 all	 analyzed	 specimens	

showing	a	well	evident	band	on	agarose	gel	(data	not	shown).	On	the	contrary,	no	amplification	

product	 was	 observed	 from	 individuals	 belonging	 to	 K.	 flavicollis	 A	 and	 IF	 lineages.	Wolbachia	



infection	was	also	detected	in	all	individuals	of	the	colony	Km1,	while	individuals	belonging	to	the	

colony	Km2	did	not	show	evidence	of	infection.		

All	 the	 FtsZ	 sequences	 obtained	 showed	 99%	 identity	 (720/723	 bp)	 with	 the	 FtsZ	 sequence	 of	

Wolbachia	endosymbiont	from	Italian	K.	flavicollis	(Genbank	accession	number:	AJ292345;	Lo	et	al.,	

2002).	All	these	sequences	are	included	in	the	F	supergroup,	as	evidenced	by	Bayesian	phylogenetic	

analyses	(Figure	1).	Overall,	results	highlight	new	more	detailed	information	about	the	distribution	

of	Wolbachia	parasite	within	the	Kalotermes	 taxa	analyzed,	reporting	 its	presence	also	 in	the	SC	

lineage	 and	 in	 the	 newly	 described	K.	 italicus	 species.	 Previous	 investigations,	 on	 the	 contrary,	

reported	Wolbachia	occurrence	only	in	K.	flavicollis	(Lo	et	al.,	2002;	Casiraghi	et	al.,	2005);	this	paper	

though	did	not	give	any	information	about	the	sample	geographic	origin	so	it	is	difficult	to	make	any	

comparisons	with	our	analysis.	In	addition,	data	obtained	highlighted	a	phylogenetic	signal	in	the	

history	 of	Wolbachia	 infection.	 In	 fact,	 considering	 host	 phylogeny	 (Scicchitano	 et	 al.,	 2017),	

Wolbachia	is	present	in	K.	italicus	and	absent	in	the	K.	flavicollis	clade,	with	the	only	exception	of	

the	 Sardo-Corsican	 lineage.	 A	 possible	 explanation	 could	 be	 linked	 to	 i)	 an	 ancestral	 infection	

maintained	in	the	K.	italicus	lineage	and,	subsequently,	lost	in	most	of	the	K.	flavicollis	taxa	or	ii)	to	

more	recent	and	independent	infections	that	occurred	in	the	K.	flavicollis	SC	and	K.	italicus	taxa.		

As	far	as	mixed	colonies	are	concerned	(Table	2),	due	to	the	limited	sample	size	and	the	preliminary	

nature	of	these	data,	it	is	difficult	to	ascertain	whether	Wolbachia	could	be	involved	in	hybridization	

and	 colony	 fusion	 events.	 It	 is	 interesting,	 though,	 that	 it	 has	 been	 found	 in	 the	 K.	 italicus/K.	

flavicollis	SC	colony	but	it	was	absent	in	the	K.	italicus/K.	flavicollis	A	one,	also	considering	that	K.	

italicus	resulted	infected.		

On	 the	 whole,	 present	 results	 point	 to	 the	 absence	 of	Wolbachia	 from	 assayed	 Reticulitermes	

species,	 while	 revealing	 a	 patchy	 distribution	 among	 Kalotermes	 taxa	 and	 mixed	 colonies.	 Yet	

further	analyses	are	needed	at	the	population	level,	with	the	involvement	of	a	higher	number	of	



samples,	to	understand	the	apparent	random	occurrence	of	this	a-proteobacterium	in	termites	and	

the	phenotype	induced	in	these	insects.		
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Tables	and	figures	

	

Table	1.	Sample	information	and	number	of	individuals	analyzed.	Sex	and	caste	of	each	individual	

are	reported	in	parenthesis	(w:	workers;	s:	soldier;	nd:	nymphoid;	n:	nymph;	a:	alate);	

	

Table	2.	Mithocondrial	characterization	of	Kalotermes	mixed	colonies,	following	Scicchitano	et	al.	

(2017).	Kalotermes	COII	haplotypes	retrieved	from	GenBank	show	accession	number	in	parenthesis;	

individuals	are	named	as	in	Table	1.	

	

	 	

Locality Genus Species Colony	ID
France Reticulitermes R.	grassei RG1 3 (1w;	1nd♀;	1n♀)

RG2 4 (1w;	1s;	1nd♀;	1n♀)
R.	banuylensis RBN1 3 (1w;	1s;	1nd♀)

RBN2 2 (1w;	1nd♀)
R.	flavipes RF1 3 (1w;	1s;	1nd♀)

RF2 4 (1w;	1s;	1nd♀;	1n♀)
R.	urbis RU1 2 (1w;	1s)

RU2 2 (1w;	1n♀)
Italy R.	lucifugus RL1 3 (1w;	1s;	1nd♀)

RL2 5 (1w;	1s;	3nd♀)
Kalotermes K.	flavicollis	-	Lineage	A KfA 4 (2w;	2s)

K.	flavicollis	-	Lineage	SC KfSC 4 (2w;	2s)
K.	Flavicollis	-	Lineage	IB	 KfIB 4 (2w;	1s;	1a)
K.	italicus Ki 2 (1s;	1a)
K.	italicus;	K.	Flavicollis	-	Lineage	SC Km1 6 (2w;	2s;	2a)
K.	italicus;	K.	flavicollis	-	Lineage	A Km2 3 (3w)

N°	individuals

K.	flavicollis	-	Lineage	A	(FJ750513) K.	flavicollis	-	Lineage	SC	(FJ750509) K.	italicus	(JQ434267)
w1

w2
s1

s2
a1
a2

w1
w2

w3

Kalotermes	COII	haplotypes

Km2 3

Colony	ID N°	individuals

6Km1



Figure	1.	Bayesian	tree	inferred	on	Wolbachia	FtsZ	sequences	isolated	from	termites.	Each	sequence	

is	 labeled	 on	 the	 basis	 of	 the	 relative	 host.	 Red	 bar	 indicates	 new	 sequences	 obtained	 from	

Kalotermes	 samples.	 FtsZ	 sequences	 retrieved	 from	 GenBank	 shows	 accession	 number	 in	

parenthesis;	 supergroups	 are	 defined	 as	 in	 Salunke	 et	 al.,	 2010.	 Number	 at	 nodes	 represent	

posterior	probabilites.	Genbank	accession	number	of	reference	sequences	are	given	in	parentheses.		

	

Ehrlichia ruminantium Welgevonden (NC005295)

Coptotermes acinaformis (DQ837186-8)

Coptotermes lacteus (DQ837189-90)
Coptotermes heimi (GQ422855)

Odontotermes horni (GQ422849)
Nasutitermes nigriceps (FJ390318)

Cryptotermes secundus (DQ837192)
Apilitermes longiceps (DQ127284)
Microtermes sp. (AJ292346)

Heterotermes sp. (DQ837185)

Odontotermes horni (GQ422851-4)

Odontotermes sp. (GQ422853-6)

KfSC_w1
KfSC_w2
KfSC_s1
KfSC_s2
Ki_s1
Ki_a1
Km1_w1
Km1_w2
Km1_s1
Km1_s2
Km1_a1
Km1_a2
Kalotermes flavicollis (AJ292345)

Nasutitermes sp. (DQ838664)
Labiotermes labrialis sp. (EU513376)

Incisitermes snyderii (DQ842328)

Cubitermes sp. (DQ127294-8)

Serritermes serrifer (DQ837196)

Zootermopsis nevadensis (AY764284)
Zootermopsis angusticollis (AY764283)

Coptotermes heimi (GQ422857)

Cubitermes sp. (DQ127285-8)

Cubitermes sp. (DQ127289-93)

Supergroup F

Supergroup A

Supergroup H

Supergroup B

0.605

0.921
0.951

0.909
0.596

0.994
0.782

0.584

1

0.841

1

0.976

0.938

1

0.524

0.969
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CHAPTER 9 

*** 

CONCLUSIONS 

 

 

9.1 PHYLOGEOGRAPHIC CONSIDERATIONS 

Through a deep genetic investigation, my survey allowed to clarify the genetic diversity of the 

European Reticulitermes urbis and its status as invasive species in Italy and France, by describing 

the invasion history occurred. Results obtained, in fact, support a history of multiple introductions 

in the Italian and French regions, in a scenario consistent with continuous exchanges between 

native and invasive areas, as expected along human trades routes. Similar circumstances were 

described also in the other invasive congeneric species, the American R. flavipes (Perdereau et al., 

2013). Phylogeographic analyses, in fact, allowed to reconstruct the invasion routes of this species 

in France, identifying the native source population in Louisiana (USA; Perdereau et al., 2013). On 

the light of these findings, thus, it is evident how molecular phylogenetics and population genetics 

studies are excellent tools to obtain information about the source population(s), invasion routes, 

and the pattern of colonization, essential to develop effective prevention and management 

strategies against invasive species (Evans et al., 2013).  

Furthermore, my analyses allowed to draw a more detailed picture of Kalotermes biogeography in 

Europe confirming previously identified lineages and taxa, but widening the distribution of the 

three K. flavicollis lineages and of K. italicus. For the latter, I provided, in addition, evidence for a 

synonymy with K. flavicollis lineage B.  
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On the whole, the phylogeographic pattern found in Kalotermes lineages, even if without time 

estimations, nicely mirrors that observed in Italian Reticulitermes lucifugus subspecies in which, 

paleogeographic events, during the Pleistocene, have affected the biogeographic history of this 

species (Luchetti et al., 2013c). Comparable patterns were described in other terrestrial plant and 

animal organisms, including arthropods (Mansion et al., 2008; Bidegaray-Batista & Arnedo, 2011). 

My data further provide a new evolutionary scenario for the origin of Kalotermes genus.  

 

 

9.2 BREEDING SYSTEMS CONSIDERATIONS AND EUSOCIALITY EVOLUTION  

My PhD research allowed to confirm the presence of the AQS strategy in R. lucifugus, and to 

demonstrate its absence in R. grassei and in the invasive populations of R. flavipes. These results 

add to the knowledge about the evolution of the AQS system providing new support to the 

hypothesis of multiple and independent origins of this particular reproductive strategy in the 

Reticulitermes genus (Dedeine et al., 2016). Moreover, results obtained demonstrated the 

occurrence of king replacements in the AQS-performing R. lucifugus and how such phenomenon 

generates, from a genetic point of view, the onset of sex allocation in the swarming reproductives 

caste, theoretically predicted by Kobayashi et al. (2013). My research also provided further 

evidences of this phenomenon through sex ratio and morphometric data, describing, in addition 

the occurrence of proterandry in R. lucifugus dispersers as a side effect/strategy of an intra-sexual 

size dimorphism, previously described only in the other AQS species R. speratus (Matsuura, 2006). 

Results, thus, highlight how R. lucifugus appears an interesting framework where to address 

specific studies on AQS-related sex allocation of resources.  

As far as the Kalotermes genus is concerned, I reported the occurrence of colony mixing between 

K. italicus and K. flavicollis A and SC lineages. These results suggest that this phenomenon, 
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previously observed only at an intraspecific level (Luchetti et al., 2013a), occurs even at an 

interspecific level, providing interesting insights about the reproductive boundaries in these 

species.  

Taking into account the two particular breeding systems occurring in Reticulitermes and 

Kalotermes (AQS strategy and intra-/inter- colony fusions, respectively), it is possible to speculate 

on the evolution of the eusociality in termites. Considering results explained in Chapter 6 and 7, 

AQS strategy seems to lead to the establishment of high levels of relatedness among individuals of 

the colony. On the other hand, colony fusions allow Kalotermes pseudoergates (false workers) to 

become reproductives and to inherit the colony, as predicted by the accelerated nest inheritance 

theory (see Chapter 1.5.1). It is possible, thus, to hypothesize that cooperation between unrelated 

individuals should be the basal force promoting this phenomenon. A comparison with the 

phylogeny of these taxa (Beccaloni & Eggleton, 2011; Cameron et al., 2012) seems to indicate that 

primitive termite genera, such as Kalotermes, exhibit instances of cooperative behavior following 

dynamics explainable through the evolutionary game theory (Maynard-Smith & Price, 1973). On 

the contrary, eusociality observed in the most recently derived Reticulitermes genus reflects the 

rules described by the kin-selection theory (Maynard-Smith, 1964). However, further 

investigations concerning the reproductive biology of termites will better clarify these 

speculations.  

 

 

9.3 WOLBACHIA INFECTION CONSIDERATIONS 

The preliminary results obtained suggest the absence of Wolbachia infection in the European 

Reticulitermes species analyzed, including the AQS species R. lucifugus. Although evidences on 

Wolbachia infection were detected in another AQS species, R. speratus (Matsuura et al., 2004), my 
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preliminary analyses showed that Wolbachia can be either present or absent in an AQS species. 

This appears to suggest that this microbe could not be directly involved in the establishment of 

this particular reproductive strategy.  

The detection and taxonomic distribution of this endosymbiotic parasite in Kalotermes taxa, 

though, do not led to conclusive results. In fact, data point out to a patchy distribution of 

Wolbachia in Kalotermes species and colonies, which deserve more detailed analysis to be fully 

understood. However, considering the only data available in literature on Wolbachia infection in 

Kalotermes (Lo et al., 2002; Casiraghi et al., 2005), my research has provided a more detailed 

picture about the distribution of this parasite in Kalotermes species, thanks also to new 

phylogeographic evidences that I reported for this termite genus (Scicchitano et al., 2017).  

 

 

9.4 PERSPECTIVES 

Results obtained during my PhD course allow to design future projects such as: 

- a genetic investigation about the presence\absence of the AQS strategy in R. urbis also in native 

populations since, to date, it has been performed only in the invasive range (Luchetti et al., 

2013b). 

- a deep genomic investigation on R. lucifugus in order to identify putative genetic elements 

involved in the onset of the AQS strategy. 

-  more accurate studies about the Accelerated Nest Inheritance hypothesis and the occurrence of 

colony mixing in the Kalotermes genus to provide deeper insights about the reproductive 

boundaries and colony mate recognition of these social insects. 

- more detailed analyses, by expanding the number of termite samples and using more specific 

markers, to better understand the role of Wolbachia in termites.  
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