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Abstract (English) 

The cell is a complex system. In this system, the different layers of biological information establish complex 

links converging in the space of functions; processes and pathways talk each other defining cell types and 

organs. In the space of biological functions, this lead to a higher order of “emergence”, greater than the sum of 

the single parts, defining a biological entity a complex system. The introduction of omic techniques has made 

possible to investigate – in a single shot – the complexity of each biological layer. With the different 

technologies we can have a near complete readout of the different biomolecules. However, it is only through data 

integration that we can let emerge and understand biological complexity. Given the complexity of the problem, 

we are far from having fully understood and developed exhaustive computational methods. Thus, this make 

urgent the exploration of biological complexity through the implementation of more powerful tools relying on 

new data and hypotheses. To this aim, Bioinformatics and Computational Biology play determinant roles. The 

present thesis describes computational methods aimed at deciphering biological complexity starting from 

genomic, interactomic, metabolomic and functional data.  

The first part (chapters 1 – 5) describes NET-GE, a network-based gene enrichment tool aimed at extracting 

biological functions and processes of a set of gene/proteins related to a phenotype. NET-GE exploits the 

information stored in biological networks, to better define the biological events occurring at gene/protein level. 

When tested against set of genes related to OMIM diseases (#244 gene set), NET-GE retrieves enriched terms 

not detectable by standard method, in a number of diseases ranging from 19% to 40% of the whole OMIM set.  

The first part (chapters 6 – 7) describes also eDGAR, a database collecting and organizing gene-disease 

associations data as retrieved from OMIM, Humsavar and ClinVar. The database is aimed at providing a 

comprehensive knowledge of the molecular signatures at the basis of 2,672 diseases (621 are polygenic, i.e. 

associated to multiple genes). Thanks to its ability in detect new functional terms, NET-GE is used in eDGAR to 

enhance the understanding of the biological function involved in the development of diseases. 

The second part (chapter 8 – 9) deals with metabolomics. I describe a new way to perform metabolite 

enrichment analysis. Given the strict relationship among genes, proteins and metabolites, I explore the 

metabolome by exploiting the features of an interactome. To do that, I developed NET-GEM, a version of NET-

GE rewritten to enrich functions and pathways starting from a list of metabolites. The NET-GEM analysis of a set 

of 41 metabolites related to Parkinson’s disease (PD) detected pathways not highlighted by a canonical 

metabolite enrichment tool. A fraction of these pathways is retrievable also when performing a NET-GE analysis 

with a gene set of genes related to PD. This highlights the notion that complementary information is stored in the 

gene and metabolite layers of biological complexity. 

The third part (chapter 10 – 11) describes the methods and results obtained in the CAGI experiment, a 

community experiment aimed at assessing computational methods used to predict the impact of genomic 

variation on a phenotype. Different challenges were proposed in the CAGI4 edition, and here I describe the 

methods related to three of them: two challenges involving the prediction of the healthy status based on exome 

data, and one challenge related to the prediction of the effects of mutation on the activity and allosteric 

regulation of the human pyruvate kinase. 

Overall, the developed methods aim at efficiently integrate different data and boost the way to decipher and 

understand biological complexity.  
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Abstract (Italian) 

La cellula è un sistema complesso. In questo sistema, i differenti layer biologici stabiliscono relazioni che 

danno origine a funzioni e pathway molecolari. Un sistema è solitamente caratterizzato da proprietà emergenti, 

dove il risultato finale e maggiore rispetto alla somma delle singole pasrti. Nel contesto biologico, le interazioni 

tra layer fanno emergere informazioni come la specificità cellulare e di organo.  

L’introduzione delle diverse tecnologie omiche ha reso possibile investigare la complessità di ogni layer. 

Con una singola analisi, le diverse tecnologie riescono a restituire un profilo biomolecolare quasi completo. 

Tuttavia, per avere una chiara comprensione del problema biologico, i diversi profili devono essere integrati. 

Attualmente siamo distanti dall’avere sviluppato metodi per l’analisi della complessità in modo esauriente; 

questo rende urgente l’implementazione di metodi sempre potenti, bastati su nuovi dati e nuovi approcci. A tale 

scopo, la Bioinformatica e la Biologia computazionale giocano un ruolo fondamentale.  

Questa tesi descrive nuovi metodi computazioni atti alla comprensione della complessità biologica a partire 

da dati genomici, di interazione, di metaboliti e di funzione biologica. 

Nella prima parte (capitoli 1 – 5) introduco NET-GE, un tool che si propone di estrarre funzioni biologiche 

condivise tra geni, tramite l’utilizzo di reti di interazioni proteica (STRING). Quest’ultime permettono infatti di 

meglio definire le funzioni stesse. Testato con set di geni coinvolti in malattie (#244 malattie ricavate da 

OMIM), in un numero di malattie che varia dal 19% al 40% (a seconda del metodo e delle funzioni analizzate), 

NET-GE ha arricchito per nuove funzioni. Nella prima parte (capitoli 6 – 7) descrivo anche eDGAR, un 

database che raccoglie associazioni gene-malattia da diverse risorse (OMIM, ClinVar, Humsavar). Per un totale 

di 2,672 malattie (621 poligeniche; legate a più geni), eDGAR si propone di dare una completa caratterizzazione 

molecolare del fenotipo finale. Grazie all’abilità di arricchire per nuove funzioni, NET-GE è usato in eDGAR 

per migliorare la caratterizzazione funzionale delle diverse malattie. 

La seconda parte (capitoli 8 – 9) tratta di metabolomica. Descrivo un nuovo metodo per l’analisi funzionale 

di dati metabolomici basato sullo stretto rapporto tra geni, proteine e metaboliti. Ho sviluppato NET-GEM, una 

versione di NET-GE riscritta per lavorare con dati metabolomici. In un caso di studio relativo alla malattia di 

Parkinson (PD), l’analisi di 41 metaboliti ha portato ad ottenere risultati interessanti: NET-GEM arricchisce per 

pathway non individuabili con metodi standard (ma riscontrati in letteratura). Inoltre, parte di questi risultati si è 

ottenuta tramite l’analisi – basata su NET-GE – di un set di geni relativo al PD. Questo ci permette di rimarcare 

quanto genomica e metabolomica siano tecniche complementari, con parte dell’informazione condivisa dai 

diversi layer biologici.  

La terza ed ultima parte (capitoli 10 – 11) tratta del CAGI, un esperimento internazionale atto a valutare 

metodi computazionali utilizzati nella predizione dell’impatto di varianti genomiche a livello fenotipico. Diverse 

“sfide” sono state rilasciate nella quarta edizione. Qui descrivo i metodi sviluppati per affrontare tre di loro. Due 

sfide riguardavano la predizione dello stato di salute (sano/malato) partendo da dati di esomica. La terza sfida ha 

riguardato la predizione dell’effetto di mutazioni sull’attività e regolazione allosterica della piruvato kinasi 

umana. 

Complessivamente, questi metodi si propongono di integrare in modo efficiente diversi dati biologici, 

migliorando il modo di comprendere e di analizzare la complessità biologica.  



v 

 

Acknowledgments 

It goes without saying that many people have contributed in a scientific way to this thesis. 

I thank them all for the continuous support, guidance, insights and discussions given to me 

during the last three years.  

Personally speaking, I would like to thank: 

• my advisor, Prof. Rita Casadio, for teaching me what determination is and how to put 

it in every day of my life; 

• all the members of the Bologna Biocomputing Group: Prof. Pier Luigi Martelli, Dr. 

Giuseppe Profiti, Dr. Giulia Babbi, Dr. Castrense Savojardo, Dr. Francesco Aggazio, 

Dr. Pietro Di Lena and Prof. Piero Fariselli (names randomly ordered); 

• Prof. Luca Fontanesi, for providing me the opportunity to learn and participate in 

many different projects since the first time I met him; 

• all the members of the Fontanesi’s Lab: Dr. Giuseppina Schiavo, Dr. Anisa Ribani, 

Dr. Valerio Joe Utzeri and Dr. Claudia Geraci;   

• Dr. Gianluca Mazzoni, a special person always there for me; there are no words to 

express my gratitude to him;  

• the Ph.D. program coordinator, Prof. Santi Mario Spampinato, for its passion and 

availability; 

• the people I met in Bologna and around the world, that made the Ph.D. experience the 

best one I ever had. 

A special thanks to my family, for having trusted me and encouraged any my decisions. 

  



vi 

 

(This page has been left blank intentionally) 

 



1 

 

Contents 

 

 

 

ABSTRACT (ENGLISH) III 

ABSTRACT (ITALIAN) IV 

ACKNOWLEDGMENTS V 

Part I - Network-based 

gene enrichment analysis with NET-GE 

1 INTRODUCTION 5 

1.1 DECIPHERING BIOLOGICAL COMPLEXITY 5 
1.2 PROTEIN-PROTEIN INTERACTION: WHY IS IT SO IMPORTANT? 7 
1.3 STRING AS COMPREHENSIVE PPI NETWORK 8 
1.4 PROTEIN-PROTEIN INTERACTIONS NETWORKS AS GRAPHS 9 
1.5 GENE/PROTEIN ANNOTATION AND RELATED DATABASES 11 
1.5.1 KEGG 12 
1.5.2 REACTOME 12 
1.5.3 GENE ONTOLOGY 13 
1.5.4 HIERARCHICAL REPRESENTATION OF FUNCTIONAL ANNOTATIONS 13 
1.6 QUANTIFYING THE FUNCTION SPECIFICITY AND SIMILARITY. 14 
1.7 GENE ENRICHMENT ANALYSIS 15 
1.7.1 GENE ENRICHMENT ANALYSIS: HOW DOES IT WORKS? 15 
1.7.2 CLASSIFICATION OF GENE ENRICHMENT METHODS 16 
1.7.3 FROM STANDARD TO NETWORK-BASED GENE ENRICHMENT 17 

2 NET-GE 19 

2.1 DATABASES 19 
2.2 MODULE EXTRACTION 20 
2.3 ENRICHMENT PROCEDURE 23 

3 NET-GE WEB SERVER 24 

3.1 NET-GE WEB SERVER: INPUT 25 
3.2 NET-GE WEB SERVER: OUTPUT 25 
3.3 GRAPHICAL REPRESENTATION OF THE ENRICHED TERMS 27 



2 

 

4 BENCHMARKING THE METHOD: A QUANTITATIVE APPROACH. 27 

5 STUDY CASES: A QUALITATIVE EVALUATION OF NET-GE. 29 

5.1 THE ADHD STUDY CASE 30 
5.2 THE OCD STUDY CASE 32 

6 NET-GE AND EDGAR: MOLECULAR SIGNATURES OF DISEASES 34 

6.1 FUNCTIONAL RELATIONSHIPS OF DISEASE-RELATED GENES 34 
6.2 HYPOPARATHYROIDISM AS CASE STUDY 37 

7 CONCLUSIONS 37 

Rethinking metabolite 

enrichment analysis: NET-GEM 

8 INTRODUCTION: WHY METABOLOMICS? 41 

8.1 HOW TO FUNCTIONALLY INTERPRET METABOLOMIC DATA 42 
8.1.1 METABOLITE-RELATED DATABASES: A BRIEF OVERVIEW. 42 
8.2 NET-GEM: RETHINKING METABOLITE FUNCTIONAL ASSOCIATION. 43 
8.2.1 NET-GEM: HOW DOES IT WORK? 43 
8.2.2 IMPLEMENTING NET-GEM: DEFINING A METABOLITE-GENE MAPPING TABLE 44 
8.2.3 WHY GENES INSTEAD OF METABOLITES? A CRITICAL VIEW 44 
8.2.4 THE STATISTICS AT THE BASIS OF NET-GEM AND MBROLE2.0 46 
8.2.5 TESTING THE METHOD: THE PARKINSON'S DISEASE CASE STUDY 46 

9 CONCLUSIONS 50 

Part III 

The Critical Assessment of Genome 

Interpretation (CAGI) experiment 

10 INTRODUCTION 52 

10.1 THE PYRUVATE KINASE CHALLENGE 53 
10.2 DATASETS 55 
10.3 METHOD 56 
10.4 PERFORMANCE ASSESSMENT 57 
10.5 RESULTS 59 
10.5.1 PREDICTION OF THE L-PYK ENZYME ACTIVITY 59 
10.5.2 PREDICTION OF QAX-ALA 61 



3 

 

10.5.3 PREDICTION OF QAX- F-1,6-BP 63 
10.6 CONCLUSION 63 

11 CAGI4 EXOME CHALLENGES 64 

11.1 CROHN’S DISEASE 64 
11.2 BIPOLAR DISORDER 65 
11.3 DATASETS 65 
11.3.1 CROHN'S DISEASE 65 
11.3.2 BIPOLAR DISORDER 66 
11.4 METHODS 66 
11.4.1 DATA QUALITY ASSESSMENT 66 
11.4.2 VARIANT/GENE ANNOTATION 67 
11.4.3 GENE SELECTION 67 
11.4.4 ASSESSORS EVALUATION 68 
11.5 RESULTS 69 
11.5.1 CROHN’S DISEASE EXOME CHALLENGE. 69 
11.5.2 BIPOLAR DISORDER EXOME CHALLENGE. 71 
11.6 CONCLUSION 73 

12 GENERAL CONCLUSIONS 73 

13 REFERENCES 75 

14 SUPPLEMENTARY MATERIAL 87 

15 LIST OF PUBLICATIONS 90 

15.1 PEER-REVIEWED PUBLICATIONS RELATED TO THIS THESIS 90 
15.2 OTHER PEER-REVIEWED PUBLICATIONS 90 
15.3 ABSTRACTS AND POSTERS 91 

16 APPENDIX 95 

 

 

  



4 

 

 

 

 

 

Part I 
 

Network-based  

gene enrichment analysis with NET-GE 

  



5 

 

1 Introduction 

1.1 Deciphering biological complexity  

Omics techniques have changed the way to investigate the complexity of a biological 

system (Gullapalli et al., 2012; Robinson, 2014). But, what is a biological system? And why 

is it defined as complex?  

A system can be defined as an integration of parts or elements, connected in some form of 

interaction or interdependence to form a (complex) unitary whole (Misra, 2008). Usually, 

systems share common characteristics such as: (i) structure, defined by components and their 

parts, (ii) behaviour, which involves input, processing and output of mass, energy, 

information and data, (iii) interconnectivity, meaning that the different parts of the system 

have functional and structural relationships to each other (Schreuder, 2014). In the biological 

context, proteins are systems, so are cells and organs. Moreover, all these entities linked 

together define an organism as a system too.  

Although there is no clear definition of “complex system”, there is an understanding that 

when the single parts of a systems interact, the resulting global system displays emergent 

collective properties, culminating in a higher order of organization and functions, whose 

behaviour cannot be reduced to the sum of its parts (Casti et al., 2003). The interactions 

among the single parts are organized in non-random and non-completely ordered way. 

Moreover, the system units establish non-linear interactions (meaning that a small 

perturbation may cause a large effect, a proportional effect, or no effect at all) making the 

systems chaotic. When dealing with biological systems, we have also to consider that they 

cannot be treated as isolated entities: noise and stochastic behaviour have to be taken into 

account.  

Omics techniques allow to explore the different single levels of biological complexity. 

However, it is only through multi-omic data integration that the understanding of each single 

biological layer can be boosted. Genomics can reveal the involvement of some genes or 

variations in the development of a disease or phenotype. However, how do these genes lead to 

the final phenotype? Beyond the investigation at the genome layer, genes/proteins must be 

analysed in the context of their interactions and in relation to biological processes/pathways, 

shedding light on the properties of the systems that cannot be derived from the analysis of the 

isolated elements. Thus, alongside the development/use of experimental techniques, we need 

to develop computational methods for data interpretation and integration in order to achieve a 

higher-level biological knowledge. 
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In the last twenty years of genomic research, a massively amount of data has been 

produced to decipher, understand and characterize phenotypes. As consequence, NGS based 

experiments and big data analysis have provided lists of “interesting” variants/genes/proteins 

that, in the context of functional genomics (Pevsner, 2015), need annotations for been 

reconciled with known and putatively common biological processes/pathways describing the 

phenotype. To highlight this “genes/proteins – biological processes/pathways – phenotype” 

relation, functional interpretation of gene/protein sets is usually done by applying gene 

enrichment analysis, i.e. a statistical procedure that consist of testing whether a gene/protein 

set is enriched with certain biological functions (Huang et al., 2009a). Gene enrichment 

procedures can be classified in two macro-classes: standard and network-based. The latter 

class take advantage from biological networks, by modelling the complexity of processes 

occurring in the cell through algorithms exploiting graph features (Junker et al., 2008). 

The work I describe in this first part is a novel network-based method for gene enrichment 

analysis. The method, called NET-GE (network-based gene enrichment analysis; Di Lena et 

al., 2015; Bovo et al., 2016; Bovo et al., 2017), uses graph- and information- theoretic 

measures to mine the STRING interactome and build functional modules starting from genes 

annotated with a shared functional term. The resulting modules are then used to address the 

problem of the functional association. The web server implementation (Bovo et al., 2016) 

provides annotations based on the Gene Ontology resource (Gene Ontology Consortium, 

2015), the KEGG (Kanehisa et al., 2016) and Reactome (Fabregat et al., 2016) pathways. 

Moreover, it implements both a standard and a network-based gene enrichment analysis. One 

peculiarity of NET-GE is the possibility to enrich terms that are not present in the annotations 

of the starting gene set (and thus not detectable through a standard gene enrichment method). 

When tested on a OMIM-derived benchmark sets (disease related gene sets), NET-GE was 

able to enrich for biologically meaningful terms neglected by other methods (Di Lena et al., 

2015, Bovo et al., 2017). To prove the ability of NET-GE in dissecting biological complexity, 

two study cases were investigated (Bovo et al., 2017). Moreover, NET-GE have been recently 

used in the development of eDGAR, a database collecting and organizing gene/disease 

associations (Babbi et al., 2017). 

Given this brief introduction about NET-GE, in the first chapter I introduce some notions 

necessary to understand how NET-GE has been built and how it works, such as the concept of 

protein-protein interactions, their representation as network/graph and some concepts of graph 

theory. Then, I introduce the concept of gene annotation by reviewing some of the main 
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databases used in the field. Lastly, the concept of gene enrichment analysis and the main 

methodologies at the basis of it are presented. In the second chapter I introduce the methods at 

the basis of NET-GE, the third chapter describes the implementation of NET-GE as web-

service, the fourth chapter discusses the benchmarking procedure and the obtained results, the 

fifth chapter presents some study cases and applications exploiting NET-GE, while in the 

sixth chapter I introduce eDGAR. 

 

1.2 Protein-Protein Interaction: why is it so important? 

Proteins are biological objects that rarely act alone. In fact, a protein is often modulated – 

in terms of its function and activity – by other proteins it interacts with (Phizicky et al., 1995). 

Commonly, protein-protein interactions (PPIs) are described as physical contacts among two 

(or more) proteins: intermolecular forces and steric complementarity among surface patches 

determine precise patterns of relationships. However, in some cases the term “protein 

interaction” encompasses also functional and logical interaction events, such as the ones 

resulting from genetic interactions (De Las et al., 2010). Examples of functional interaction 

are the presence of proteins in the same pathway (not necessarily involving the physical 

contact) and the transcriptional relationship, by which a protein (transcription factor) 

influences the expression of other genes. Different techniques have been devised to catch this 

type of interaction. Among them: (i) neighbourhood relationships, i.e. functionally related 

proteins organized very closely in the genomes and likely inherited together during evolution 

process), (ii) gene fusion events, i.e. single-domain containing proteins in a given genome are 

joined together in a multidomain protein in another genome), (iii) gene co-expression, i.e. 

similar pattern of expression between genes and (iv) phylogenetic profiles, i.e. the analysis of 

the patterns of co-occurrence of different groups of genes in different genomes. 

To understand the role of each protein in the cell, PPI studies have become of fundamental 

importance (Safari-Alighiarloo et al., 2014) and the huge amount of interaction data collected 

over the years has made it possible to construct several “interactomes”, also named protein-

protein interaction networks (PPINs). Moreover, thanks to the advent of HTS techniques 

(such as purification-mass spectrometry, cross-linking MS analysis, MS-based protein 

correlation profiling and yeast two-hybrid screens; a review of these techniques is presented 

in Mehta et al., 2016) interactomes are more and more complete and complex. In fact, HTS 

techniques can determine in a single shot a huge number of interaction events (both at the 

gene and at the protein level) leading to an increment of the amount of detectable physical and 
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functional links. However, not all the interactions events discovered by HTS techniques are 

truly physiological interactions, and their incorporation in an interactome often add a certain 

degree of noise to the PPIN (von Mering et al., 2002). 

Despite the problem of having or not a complete and noiseless PPIN, interactomes proved 

a discrete success in solving biological problems. PPINs have been used to solve different 

tasks such as the prediction of protein function and the identification of functional modules 

(Nabieva et al., 2005, Sharan et al., 2007; Chen et al., 2009, Tripathi et al., 2016). Moreover, 

PPINs are playing a more and more fundamental role in systems biology and systems 

medicine in order to elucidate the biological events at the basis of the different 

phenotypes/diseases. 

 

1.3 STRING as comprehensive PPI network 

The Search Tool for the Retrieval of Interacting Genes, formerly named STRING, is a 

biological database of known and predicted PPIs (Szklarczyk et al., 2010). Established in the 

year 2000 (Snel et al., 2000), STRING aims at providing a critical assessment and integration 

of PPIs from different resources by including physical and functional associations.  

STRING sources of PPI data can be subdivided in seven channels (type of evidence) 

(Szklarczyk et al., 2017):  

1) the experiments channel, collecting interactions experimentally observed in 

laboratories (bio-chemical/physical and genetic experiments). Sources of PPI are 

primary databases organized in the IMEx consortium (Orchad et al., 2012) plus 

BioGRID (Breitkreutz et al., 2008); 

2) the database channel, where PPI evidences are imported from manually curated 

pathways databases; 

3) the text-mining channel, where an association score is given to each pair of proteins 

frequently mentioned together in the same paper, abstract or even sentence; 

4) the co-expression channel, where an association score is given to each pair of proteins 

consistently similar in their expression patterns. Co-expression data are retrieved from 

gene expression experiments carried out by using microarray and/or RNAseq 

approaches; 

5) the neighbourhood channel, where an association score is given to each pair of 

proteins when they are consistently observed in each other's genome neighbourhood;  
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6) the fusion channel, where an association score is given to each pair of proteins when 

there is at least one organism in which their respective orthologs have fused into a 

single, protein-coding gene; 

7) the co-occurrence channel: where an association score is given to each pair of proteins 

when their orthologs tend to be observed as “present” or “absent” in the same subsets 

of phylogenetically related organisms. 

The last version of STRING (v.10.5; May 14, 2017) counts 9,643,763 proteins and 

1,380,838,440 different interactions, for a total of 2,031 organisms. For each interaction, by 

integrating the probabilities of the seven channels, STRING provides a combined confidence 

score (scaled between 0 and 1) representing the estimated likelihood that a given interaction is 

biologically meaningful, specific and reproducible, given the supporting evidences 

(Szklarczyk et al., 2017). Confidence limits are given by STRING as following: low 

confidence, 0.15; medium confidence, 0.4; high confidence, 0.7; highest confidence, 0.9. 

Usually, the combined score is used to (i) draw PPINs at different confidence levels and (ii) to 

implement a weighted graph where scores are used to operate on the network. This second 

usage of the combined score will be briefly discussed in the next sub-chapter. 

 

1.4 Protein-Protein Interactions networks as graphs  

A PPIN is usually represented by means of a graph, a mathematical structure used to 

model different problems. In this structure, nodes represent genes/proteins and edges their 

interactions.  

A graph is usually defined as G = (V, E), where V is the set of vertices representing the 

nodes {V1, V2, V3, …, Vn} and E is a set of edges representing the links among the nodes. An 

edge is defined as E = {(u, v) | u, v ∈ V}, where u and v are the connected vertices.  

Graphs can be directed or undirected depending on whether an edge direction is provided 

or not, respectively. In a directed graph, an edge E = (u, v) is directed from u to v and it 

indicates that it is possible traverse the graph only from u to v and not vice versa (unless also 

the edge E = (v, u) is present).  

Moreover, when edges (or nodes) are labelled with a score, the originated graph is defined 

“weighted”. Generally, a PPIN is an undirected and unweighted graph.  

When considering all the different information stored in it, STRING can be treated as a 

weighted and directed graph. In fact, by incorporating functional events (e.g. activation, 
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repression) the graph acquires directionality, while the assignment of a confidence score to 

edges makes it weighted. 

To better understand the next paragraphs, I introduce some definitions and proprieties of a 

graph. A path from a source u ∈ V to a target v ∈ V, or (u,v)-path for short, is an alternating 

sequence of vertices and edges u,(u, V1),V1,( V1,V2),V1,…,(Vk, v),v starting with u and ending 

with v, such that the vertices before and after an edge are its tail and head, respectively 

(Brandes, 2008). A path never passes two times over the same edge or node. A graph is 

connected if it is possible to find a path between the all pairs of vertices. The path length of an 

(u, v)-path is the number of edges it contains, and the distance (Ulrik 2008). If the graph is 

connected, two vertices could be connected by different paths of different lengths.  

The shortest path between two vertices (Figure 1) is defined as the path which minimize 

the sum of the weights of its constituent edge (in an unweighted graph, the shortest path is the 

one with the lowest number of edges).  

 

 

Figure 1. Shortest path between vertices A and F. Considering the proposed weighted directed graph, the 

shortest path minimizing the sum on the weights w is the ACEDF, with w = 22.  

 

 

Figure 2. Betweenness centrality (BC) scores. Considering the proposed graph, the vertex F has the highest 

BC since it lies on all the shortest paths among the pairs of vertices.  
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To estimate the importance of a node for the connectivity (or the information flow) of a 

graph, different measures of node centrality have been developed. Among them, the 

betweenness centrality index measures the centrality of a node by considering the shortest 

paths (Figure 2). Given a node v of a graph G, its betweenness centrality is defined as: 

 

𝐵𝐶(𝑣) = ∑
𝜎𝑖𝑗(𝑣)

𝜎𝑖𝑗
(𝑖,𝑗)∊𝑉    (1) 

 

where, for nodes i, j, v ∈ V, with i ≠ j ≠ v, σij is the number of shortest paths from node i to 

node j, and σij(v) is the number of shortest paths that pass through v. The measure is usually 

interpreted as the degree to which a vertex has control over pairwise connections between 

other vertices, based on the assumption that the importance of connections is equally divided 

among all shortest paths for each pair (Ulrik, 2008). 

Many other graph-theoretic measures can be computed/extracted when studying a PPIN. 

Even though we discussed only those that are used in the development of NET-GE, it is clear 

that the study of a PPIN from a graph-theoretic point of view is necessary to elucidate the 

biological complexity at the basis of the phenomena under investigation.  

 

1.5 Gene/protein annotation and related databases 

Gene annotation databases are commonly used to evaluate the functional properties of 

genes. Annotating genes/proteins means endow sequences with specific biological features 

(i.e. the different protein domains, the different functions, biological processes and pathways 

in which the genes/proteins are involved). However, because experimental investigation is 

costly and time-consuming, only a small part of protein functions has been experimentally 

determined. To overcome this problem, many computational methods aimed at predicting 

protein function have been developed. These methods rely essentially on the expansion of 

the relatively small number of experimentally determined functions to large collections of 

proteins (Valencia, 2005) by means of some measure of similarity. 

Several databases have been developed to classify genes according their roles in the cell. 

Among them, KEGG (Kanehisa et al., 2016) and Reactome (Fabregat et al., 2016) collect 

genes/proteins as well as metabolites, in maps representing the different biochemical 

pathways. The Gene Ontology (Gene Ontology Consortium, 2015) is a database mainly used 

to annotate genes with biological processes, functions and the cellular locations. However, 

differently from the KEGG and the Reactome databases – in which annotation is manually 



12 

 

curated – GO terms can be electronically assigned to a gene/protein. Moreover, alongside the 

difference in content, these databases vary in size. 

In the following subchapter, I briefly introduce the KEGG, REACTOME and GO 

resources. 

 

1.5.1 KEGG 

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a database for the systematic 

analysis of gene functions. The database consists of 15 main manually curated databases 

which are categorized into systems, genomic, chemical and health information (Kanehisa et 

al., 2015, Kanehisa et al., 2016). Due to its comprehensiveness, it makes one of the most 

attractive databases used in the annotation of gene/protein functions as well as small 

molecules. Among them, KEGG PATHWAY collects manually drawn pathway maps 

representing the links among genomic information and higher order functional information. 

Pathway maps are drawn to represent the dual aspect of the metabolism: the genomic network 

of how genome-encoded enzymes are connected to catalyse biochemical reactions and the 

chemical network of how compounds are transformed by means of those enzymes (Kanehisa, 

2013). Alongside the canonical biochemical pathways representing the metabolism, KEGG 

provides maps depicting the processing of genetic and environmental information, cellular 

processes, and the molecular pathways involved in human diseases. Moreover, KEGG BRITE 

provides then a functional hierarchy of the KEGG objects.  

The last release of KEGG (v.84.0, Dec. 2017) annotate a total of 7,314 human genes in 

323 pathways (considering only the lowest level of the hierarchy). It is evident that about the 

2/3 of the human genome lacks a KEGG functional annotation. 

 

1.5.2 Reactome 

Reactome (Fabregat et al., 2016) is a manually curated database of pathways and 

processes. It describes biological pathways as chemical reactions that closely mirror the 

physical interactions occurring in the cell. Reactome provides information about proteins and 

small molecules and how they participate in pathways to coordinate cellular events. Reactions 

are grouped into pathways, which in turn are assembled into a hierarchy of biological events. 

(Croft et al., 2011; Milacic et al., 2012). Like KEGG maps, the REACTOME ones describe 

canonical biochemical pathways, cellular processes, and the molecular pathways involved in 

diseases. However, REACTOME differs in the number of maps and in hierarchical structure: 
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REACTOME confines genes in specific “modules” of more general biochemical pathways. 

The last version of REACTOME (v.62, Sept. 2017) annotate a total of 10,712 genes in 2,176 

pathways. By using REACTOME, it is possible to annotate about half of the human genome.  

 

1.5.3 Gene Ontology 

The Gene Ontology (GO; Gene Ontology Consortium 2015) is a controlled vocabulary of 

functional terms subdivided into three main categories: i) molecular function (MF); ii) cellular 

component (CC) and biological process (BP). Biological process terms describe biological 

events (e.g. negative regulation of apoptotic process) accomplished by one or more organized 

assemblies of molecular functions. Molecular function terms describe activities that occur at 

the molecular level (e.g. protein kinase binding) and the cellular component terms describe a 

component of a cell such as an anatomical structure (e.g. cytoplasm) or a gene product group 

(e.g. ribosome).  The last version of the GO resource (Amigo 1.8) annotates more than 90% of 

human genes with 54,440 biological functions (17,788 GO:BP, 17,734 GO:MF and 18,918 

GO:CC). It is evident that this resource functionally annotates the greatest part of the human 

genome. However, it is worth to note that out of the 442,065 associations, only about the 40% 

of associations has been experimentally derived. 

 

1.5.4 Hierarchical representation of functional annotations 

The three databases (GO, KEGG, Reactome) are structured in a hierarchic way, where 

parent–child relationships are defined. A parent terms represents a more general concept than 

its children terms. In the case of KEGG, term-term relationships are represented as a simple 

tree, while the Reactome and GO databases originate a directed acyclic graph (DAG).  

In a DAG, a term can have multiple parents and it is not possible to have a path in graph 

that starting from a term points back to the same term. An example of a simple tree and DAG 

is given in Figure 3. 
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Figure 3. Simple trees and directed acyclic graphs. Both structures are directed graphs in which boxes 

represent nodes (functional terms) and arrows represent edges. A) An example of a simple tree, in which each 

child has only one parent. Based on the BRITE hierarchy, KEGG pathways are structured as a simple tree. B) A 

directed acyclic graph (DAG) in which each child can have one or more parents. The node with multiple parents 

is highlighted in yellow. Like a simple tree, a DAG has directed edges and does not have cycles (a path cannot 

start and end at the same node). Reactome and GO terms are structured as a DAG. C) An example of a functional 

term of the GO:BP branch and its parent-child relationships. 

 

 

 

1.6 Quantifying the function specificity and similarity.  

How is it possible to understand if a protein function is quite specific or general? When a 

gene is annotated with a functional term, the associations between the gene and the terms’ 

parents are implicitly inferred (Rhee et al., 2008). Based on these term-term relationships, a 

way to describe the function specificity of a given term as function of the annotation 

hierarchy, is to use the number of nodes in the shortest path connecting the term to its root. 

However, even if the level in the hierarchy is often assumed to be indicative of the terms 

specificity, this is not completely true. To overcome this problem other measures have been 

introduced. Among them, the Information Content (IC) score provides an alternate measure of 

functional specificity (Louie et al., 2010). The IC of a given term v is computed as follows: 

 

𝐼𝐶(𝑣) =  −𝑙𝑜𝑔2(𝑝(𝑣))  (2) 

 

where p(v) is the relative frequency of occurrence of the term v in the gene/protein dataset 

under consideration. Terms that occur less frequently have higher IC and are assumed to be re 

specific.  

Alongside the function specificity concept, there is the functional similarity one. A gene 

function can be annotated with different terms, but are these terms similar or different? An 
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accurate measure of semantic similarity of terms is critical for an accurate measurement of 

gene functional similarities (Song et al., 2014). Several approaches have been proposed in the 

last decades for measuring functional similarity. The most common measures used are the 

Resnik's (Resnik, 1995) and Lin's (Lin, 1998), which are measures relying on the IC score. 

Resnik’s measures similarity between two terms as simply the IC of their most informative 

common ancestor (MICA), while Lin’s considers how distant the terms are from their 

common ancestor. In this way, the Lin’s relate the IC of the MICA to the IC of the terms 

being compared as following: 

 

𝑠𝑖𝑚𝐿𝑖𝑛(𝑣𝑖, 𝑣𝑗) =  
2×𝐼𝐶 (𝑣𝑀𝐼𝐶𝐴)

𝐼𝐶(𝑣𝑖)+𝐼𝐶(𝑣𝑗)
   (3) 

 

where IC(vi), IC(vj) and IC(vMICA) are the information contents of the two terms and their 

common ancestor, respectively. 

 

 

1.7 Gene Enrichment Analysis 

Omics techniques identify lists of “interesting” genes/proteins characterizing the 

investigated phenotype. However, given this data, how can we understand the biology at the 

basis of the phenotype?  How is it possible to reconcile genes/proteins with known and 

putatively shared functional information? Dealing with the interpretation of these gene/protein 

sets, gene enrichment analysis (also called pathway analysis) has become the most widely 

used approaches for functional associations, thanks to its ability to provide valuable insights 

into the biological events underlying a gene/protein set (Tipney et al., 2010).  

 

1.7.1 Gene enrichment analysis: how does it works? 

The principal foundation of enrichment analysis is that if a biological event is abnormal in 

a given study, the co-functioning genes/protein should have a higher (enriched) potential of 

being selected as a relevant group by the omic technologies (Huang et al., 2009a).  

Enrichment analysis is generally performed by mapping genes/proteins to their associated 

biological annotations (e.g. processes, functions, pathways), comparing the distribution of the 

target gene set (investigated gen set) against the background distribution of these terms (i.e. 

the annotated genes) (Tipney et al., 2010). In doing this, enrichment is quantitatively 

measured by applying different statistical methods, such as the hypergeometric distribution or 
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its analogous one-sided Fisher's exact test (Huang et al., 2009a). Given a number of genes N, 

with F of these genes associated with a particular functional term and T of these genes in the 

target set, then the probability that b or more genes from the target set are associated with the 

functional term is given by the hypergeometric tail: 

 

𝑃𝑟𝑜𝑏(𝑋 ≥ 𝑏) = ∑
(

𝑇
𝑖

)(
𝑁−𝑇
𝐹−𝑖

)

(
𝑁
𝐹

)

min (𝑇,𝐹)
𝑖=𝑏   (4) 

 

To each term, the Bonferroni or Benjamini-Hotchberg (FDR) procedure is then used to 

counteract the problem of multiple comparisons (Noble, 2009). 

 

1.7.2 Classification of gene enrichment methods  

Given a list of genes, which tool for functional association should be used? Are all the 

methods comparable? Dealing with the problem of functional association, several gene 

enrichment analysis tools have been developed over the years. Based on the algorithms on 

which they rely, they can be divided into three main classes (Huang et al., 2009a): (i) singular 

enrichment analysis (SEA), (ii) gene set enrichment analysis (GSEA) and (iii) modular 

enrichment analysis (MEA).  

 

Singular enrichment analysis – Commonly referred as “gene enrichment analisys” or as 

“Over-Representation Analysis” (ORA), SEA is the most traditional strategy for gene 

enrichment analysis. Examples of tools implementing the ORA strategy are DAVID (Huang 

et al., 2009a; Huang et al., 2009b) and GoRILLA (Eden et al., 2009). They are based on 

statistics like the hypergeometric distribution or its analogous one-sided Fisher's exact test. 

SEA methods simply assess the over-representation of biological annotations in a pre-selected 

“candidate” gene list, resulting very efficient in extracting meaningful biological features. 

However, as drawback SEA methods tend to generate a very large list of enriched terms. 

Moreover, results are highly impacted by the procedures/methods used to extract the 

candidate gene (Huang et al., 2009a; Irizarry et al., 2011).  

 

Gene set enrichment analysis - GSEA methods were introduced having in mind the following: 

is it possible to overcome the limits of using pre-selected “candidate” genes? This powerful 

approach allows to weight the importance of genes ranking them by some statistics (e.g. the 
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fold change of differentially expressed genes), by extending the analysis also to those genes 

not included in the “candidate” set, but marginally contributing to the biology of the 

phenotype. Thus, GSEA methods result very suitable in the analysis of microarray or RNAseq 

data, by allowing gene that cannot pass a hypothetical selection threshold (e.g. differential 

expressed genes with p-value > 0.05) to contribute to the enrichment analysis (Huang et al., 

2009a). Differently from ORA methods, GSEA approaches rely on different statistics.  

Among the GSEA strategies, GSEA (Subramanian et al., 2005) was the first method to be 

developed. It is based on a Kolmogorov–Smirnov-like statistic. GSEA computes an 

enrichment score (ES) that reflects the degree to which a set of genes sharing an annotation 

term is overrepresented at the extremes (top or bottom) of the whole ranked list of genes. 

Subsequently, to estimate the statistical significance of the ES, a permutation test is applied. 

The underlying assumption is that the genes ranked in higher positions, and driving the 

enrichment procedure, are likely the most contributors to the biology of the phenomena. 

However, this is not always true since in real biology a small change of some signal 

transduction genes can result in a larger downstream biological impact.  

 

Modular enrichment analysis - MEA is the only class that takes advantage from the 

relationships existing between annotation terms when performing enrichment calculations, i.e. 

using composite annotation terms (join terms). The use of composite annotation terms may 

therefore be able to provide biological insight lacking in analyses that treat single terms as 

independent objects (Huang et al., 2009a). In this class we have tool like Ontologizer 

(Grossmann et al., 2007) and topGO (Alexa et al., 2006).  

 

1.7.3  From standard to network-based gene enrichment 

Is it possible to improve methods for functional association? If yes, how? One of the 

major improvements made in the field of functional association has been the exploiting of 

information contained in biological networks. Standard methods treat genes/proteins as 

isolated objects, completely neglecting the functional/physical links among them. However, 

the analysis of gene sets in the context of their interactions could provide new valuable 

biological insights (Di Lena et al., 2015). Taking the advantage from this kind of information, 

a new class of tools, denoted as network-based enrichment analysis tools, has emerged. Based 

on the strategies and algorithms used to perform enrichment, this new class can be broadly 

classified into two sub-classes (Di Lena et al., 2015):  
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A) methods that use the topology of a PPIN to infer how much similar distinct sets of 

gene/proteins are (e.g. SPIA (Tarca et al., 2009), SEPEA (Thomas et al., 2009), 

PWEA (Hung et al., 2010), TopoGSA (Glaab et sl., 2010), EnrichNET (Glaab et al., 

2012), SANTA (Cornish et al., 2014), JEPETTO (Winterhalter et al., 2014) and TPEA 

(Yang et al., 2017)); 

B) methods that identify functionally-related modules in a PPIN and then infer 

protein/gene biological roles from such modules (e.g. PINA (Wu et al., 2009; Cowley 

et al., 2012), FunMod (Natale et al., 2014), MetaCORE (Bessarabova et al., 2012)).  

In both classes, graph-theoretic measures and graph properties (such as shortest paths, degree, 

etc.) are used to extract meaningful information from an interactome. Among the publicly 

available tools, EnrichNet and PINA are the two most cited methods, representative of the A 

and B classes above, respectively. To give an idea of this new category, we briefly discuss the 

strategies at the basis of PINA and EnrichNet. 

PINA (Protein Interaction Network Analysis) is a web resource developed by the 

integration of PPIs data from six different databases (IntAct (Kerrien et al., 2006), MINT 

(Chatr-aryamontri et al., 2007), BioGRID (Breitkreutz et al., 2008), DIP (Salwinski et al., 

2004), HPRD (Peri et al., 2003) and MIPS MPact (Güldener et al., 2006)). The core of PINA 

consists in the identification of functional modules (clusters of densely interconnected nodes) 

which are likely to represent sets of functionally related proteins. After the module 

construction, modules are annotated by looking for enriched term coming from four databases 

(KEGG (Kanehisa et al., 2016), GO (Gene Ontology Consortium, 2015), PFAM (Finn et al., 

2016a) and MSigDB (Liberzon et al., 2011)). Given an input set of genes/proteins, it is 

mapped on the pre-computed modules and the over-represented modules are identified by 

means of a hypergeometric test. As result, the input gene set is characterized by the 

significantly enriched annotations of the over-represented modules (Wu et al., 2009; Cowley 

et al., 2012).  

EnrichNet is a web application based on PPIN integrating different information: molecular 

interactions (STRING, Szklarczyk et al., 2017), cellular pathways (KEGG (Kanehisa et al., 

2016), BioCarta (http://www.biocarta.com), WikiPathways (Kutmon et al., 2016), 

REACTOME (Fabregat et al., 2016), PID (Schaefer et al., 2009)), biological annotations (GO 

(Gene Ontology Consortium, 2015), InterPro (Finn et al., 2016b)) and tissue-specific gene 

expression data. The enrichment procedure at the basis of EnrichNET consists of two steps 

(Glaab et al., 2012): 1) the target genes are mapped on reference datasets in the network 

meanwhile scoring their distance using a random walk with restart procedure, and 2) the 



19 

 

significance of the distance scores is assessed by using a background model. Significantly 

annotations are then retained.   

 

2 NET-GE 

NET-GE is a novel method for network-based gene enrichment analysis (Di Lena et al., 

2015; Bovo et al., 2016; Bovo et al., 2017). Considering the different methods described in 

the previous chapter, like the methods of the class B (e.g. PINA), NET-GE is based on a pre-

processing phase aimed at extracting modules from a PPIN. However, differently from all the 

other methods, the modules built by NET-GE are function-specific by construction, since 

each one is construct starting with genes/proteins sharing a specific biological annotation 

(seed set).  

By using graph- and information- theoretic measures, NET-GE builds functional modules 

by expanding each seed set into a compact and connected subgraph of a PPIN (Di Lena et al., 

2015; Bovo et al., 2017). The resulting modules are then used to address the problem of the 

functional association. 

Over-representation analysis is performed by mapping the input gene/protein set on each 

module, determining through a Fisher’s exact test whether there are significant overlaps 

among the input gene/protein set and the modules. To facilitate the use of NET-GE, a web-

application have been released at http://net-ge.biocomp.unibo.it/enrich (Bovo et al., 2017).  

The following chapters will introduce the databases, the algorithm and the datasets used to 

build and test NET-GE. The full articles Bovo et al., 2016; Bovo et al., 2017; and Babbi et 

al., 2017 are reported in the appendix of the thesis. 

 

2.1 Databases 

NET-GE relies on the STRING Human Interactome (release 10; http://version10.string-

db.org/). After its download, STRING was processed by retaining all the links (with the 

exclusion of self-loops) with a documented action, irrespectively of the STRING combined 

score and of the supporting evidence. The resulting network comprised 15,632 nodes and 

307,413 links. Modules were also built by using a filtered version of STRING, here named 

STRING0.9, in which only the links with a STRING combined score ≥ 0.9 were retained. The 

filtered version comprised 9,422 nodes and 80,112 links. Annotation sets were retrieved from 

http://net-ge.biocomp.unibo.it/enrich
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the Gene Ontology resource (UniProt-GOA human 145 web resource; 

https://www.ebi.ac.uk/GOA), the KEGG (release 77; http://www.kegg.jp/) and Reactome 

(release 53; https://reactome.org/) databases. 

Genes were associated to each annotation term by means of the UniProtKB accession 

numbers. Given the hierarchical structure of the annotation features, associations were 

propagated till the root. The resulting seed sets were then expanded as will be described in the 

next paragraphs. Statistics about annotation sets are reported in Table 1.  

 

Table 1. NET-GE statistics. Number of annotations and genes are presented.  

  GO:BP GO:MF GO:CC KEGG Reactome 

Standard Enrichment       

 Terms 12,783 4,076 1,461 340 1,731 

 Genes 18,626 18,254 19,150 6,972 8,093 

Network-based 

(STRING)       

 Genes 17,390 17,499 16,523 9,769 10,103 

Network-based  

(STRING0.9)       

 Genes 17,958 17,282 18,854 7,833 8,708 

 

2.2 Module extraction 

The module extraction procedure, aimed at extracting connected and compact subgraphs 

of the STRING interactome, consisted of four major steps (Figure 4). Briefly: 

1) all the proteins of the network sharing a specific annotation term were collected into a 

seed set;  

2) each seed set was expanded into a function-specific module by computing the shortest 

paths among each pair of seed nodes;  

3) nodes connecting the seed set were collected and ranked by using graph-theoretic and 

information-theoretic measures; 

4) the module was minimized by filtering out the less informative connecting nodes 

while preserving the shortest paths.  
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5)  

6)  

Figure 4. Outline of the network module generation of NET-GE. The four different steps are highlighted. Adapted from Di Lena et al., 2015. 
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The ranking step, and the subsequent minimization, are steps aimed at simplifying the 

sub-network topology by highlighting its main structure. In fact, through the generation of the 

complete set of shortest paths (step 2), a very large module can be produced, leading to the 

risk of including nodes that are not representative of the annotation term under expansion.  

To overcome this problem, a graph filtering procedure was applied to generate a minimal 

connecting network (MCN). The graph filtering procedure here applied (step 4) relied on 

some metrics (step 3) ensuring that the minimized network, when compared against the 

original one, preserves the number of shortest paths connecting the seed pairs. Details of the 

steps 2-4 are given as following.  

Shortest-path extraction – Given a seed set and the STRING interactome, the all-pairs 

shortest path algorithm was applied by treating STRING as an undirected and unweighted 

graph. Self-loops were discarded from the graph and seed proteins not appearing into 

STRING were kept as isolated nodes in the minimal network. 

Ranking procedure – Nodes connecting the seed proteins were ranked on the basis of 

three measures: 1) seed centrality, 2) semantic similarity with the reference annotation term 

and 3) betweenness centrality.  

These measures were used as primary, secondary and tertiary sort key, respectively. The seed 

centrality score was adopted as measure of importance of a node. For each node it was 

computed by counting the number of distinct seed pairs connected by it. In this way, a higher 

score reflects the probability that such node appears in a subgraph. The semantic similarity 

score, here defined as the Lin’s measure, was used to measure the degree of relationship 

between the annotation terms and the reference annotation term of each connecting node. We 

defined the maximum semantic similarity of a connecting node with respect to the reference 

GO term as the highest Lin's score between the GO terms associated to the connecting node 

and the reference GO term. The betweenness centrality score measured the importance 

(centrality) of a node in the networks. Here, this measure was computed by considering the 

sub-network under analysis. Betweenness centrality was here used to assess the ranking of 

those connecting nodes presenting the same ranking with respect to the other two scores.  
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Figure 5. Minimal connecting network for GO:0036018. A) Minimal connecting network extracted from 

STRING 9.2 (http://www.string-db.org) build for the Biological Process term GO:003601 (cellular response to 

erythropoietin). The seed genes, directly annotated with GO:0036018, are HGNC:MT2A, HGNC:KIT, 

HGNC:EPOR and HGNC:MT1X. The connecting genes HGNC:JAK2 and HGNC:IL6, recovered by the 

minimization procedure, are associated to GO:0019221 (cytokine-mediated signalling pathway). B) 

Relationships between the reference GO term (GO:0036018) and the GO associated to the connecting genes 

(GO:0019221). Figure extracted from Di Lena et al., 2015.  

 

Module minimization – Modules were minimized by using the measures above reported. 

For each module, connecting nodes were ranked from the most to the less informative, and, 

starting from the last one, they were iteratively removed while preserving the shortest path. 

One example of minimal connecting network is provided in Figure 5. 

 

2.3 Enrichment procedure 

NET-GE implements both a standard and a network-based gene enrichment procedure. 

Entering with a gene/protein set, each gene/protein is mapped into the modules of a selected 

annotation database. Over-representation is tested through the Fisher's exact test. However, 

while the standard gene enrichment includes only annotations of the seed nodes, the network-

based one includes, for each module, the seeds and their connecting nodes. Multiple testing 

correction is then applied by using either the Bonferroni or the Benjamini-Hochberg (FDR) 

procedure (Noble, 2009).  
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3 NET-GE web server 

NET-GE have been released as web-application. The front-end of the web server follows 

the Model-View-Controller (MVC) paradigm thanks to the web2py framework 

(http://www.web2py.com/). After submitting the query, the server displays a book-markable 

page reporting the status of the job. This page is periodically updated and, at the end of the 

gene enrichment procedure, a link to the results is provided. 

The final visualization of the results exploits the Graphviz library 

(http://www.graphviz.org/) for laying out the acyclic directed graphs for both Gene Ontology, 

KEGG and REACTOME. Enriched terms are then highlighted. In addition, the web server 

shows dynamic network renderings, based on the JavaScript library d3.js (http://d3js.org/), for 

the visualization of the underlying interaction networks involving a specific term. The user 

can also provide an e-mail address used to e-mail he/she as soon as results are ready. 

For multiple submissions, each request is queued and runs as soon as there is available 

computing power. Running time depends on size of the input set and on the number of 

functionally related terms. 

 

Figure 6. NET-GE web interface. To use the NET-GE web interface, the user is required to perform the 

following steps: i) choose an identifier format; ii) copy and paste a list of gene/protein identifiers; iii) choose a 

STRING network; iv) chose the annotation database and v) choose the multiple testing correction procedure and 

a cut-off. Optionally, the user can enter the e-mail address in order to be notified as soon as results are ready. 

 

 

http://www.web2py.com/
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3.1 NET-GE web server: input 

NET-GE web interface (Figure 6) accepts UniProtKB Accession Numbers, Ensembl 

genes and HGNC gene names. The end user can select: 1) annotation modules based on 

STRING or STRING0.9; 2) the annotation database (GO terms, KEGG, Reactome); 3) the 

multiple testing correction method (either the Bonferroni or the FDR based correction) and 4) 

the significance threshold.  

 

3.2 NET-GE web server: output 

The output page reports two tables, one for the standard procedure and another for the 

network-based one. Both tables list the significantly enriched terms ranked by their adjusted 

p-value. Each table comprises seven fields: i) the procedure used to enrich the term i.e. 

standard or network-based enrichment (S and N, respectively), ii) the identifier of the term, 

linked to the corresponding database, iii) the number and the list of input genes associated to 

the term, iv) the number and the list of the genes (seeds and/or connecting) annotated with the 

term, v) the p-value of the association (Bonferroni- or Benjamini-Hochberg- corrected), vi) 

the name of the term and vii) the term-specific network (only for the network-based 

enrichment). In the network-based enrichment mode, new terms are highlighted with the 

symbol N** (Figure 7).  

By default, the two tables display five significant enriched terms; it is however possible to 

expand the list of results and visualize all the enriched terms by clicking on the ‘Show/Hide 

all results’ button. Results can be downloaded as tab delimited plain text by clicking on the 

“Download results in tab-delimited format” button.  

Moreover, the result page reports a graphical representation of the enriched terms in the 

context of their relationships (DAG; Figure 7). 
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Figure 7. Example of NET-GE output. Results of the ADHD study case (see chapter 5) are here presented as 

example of the NET-GE analysis over the KEGG database. Results of the standard gene enrichment and of the 

network-based one are reported in two separated tables. Enriched terms are graphically presented using the DAG 

structure. The colour code of the box reflects both the degree of enrichment and the information content of the 

term. Figure extracted from Bovo et al., 2017. 
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3.3 Graphical representation of the enriched terms 

The nodes in the DAG are color-coded according to the significance of the enrichment 

and to the information content. The graph can be downloaded as image by clicking the “Save 

image (*.svg)” button. Whenever a term is enriched by the network-based procedure, the 

term-specific network can be explored by clicking on the “graph visualization” button. Nodes 

(proteins) in the network are color-coded highlighting seed, connecting and input proteins 

(Figure 8). The term-specific network can be also downloaded as plain text files, where nodes 

and arcs information are provided.  

 

 

Figure 8. NET-GE module exploration. The graph of the two input proteins (ADHD study case; see chapter 5) 

and their first neighbours for the new enriched module GO:0014052 (regulation of secretion). Seed and 

connecting genes are highlighted in orange and blue, respectively. Nodes with a purple border identify the 

submitted IDs. Being a new enriched term, the two genes enter the module as connecting nodes. 

 

4 Benchmarking the method: a quantitative approach. 

NET-GE was benchmarked by using sets of genes involved in mendelian diseases as 

retrieved from the Online Mendelian Inheritance in Man (OMIM; Hamosh et al., 2005) 

resource. The dataset comprised 244 OMIM-related gene sets, with a number of protein 

associated to each disease ranging from 2 to 29, and an average number equal to 4. This 

dataset was analysed by using both the standard (S) and the network-based (N) methods. 

Annotation terms with a p-value < 0.05, Bonferroni corrected, were considered over-

represented. Both the STRING and STRING0.9 implementations were tested for each 
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annotation database (GO terms, KEGG and REACTOME pathways), separately. For each 

OMIM disease we counted:  

a) the number of terms enriched by the standard method;  

b) the number of terms enriched by the network (new terms excluded); 

c) the number of new terms (terms enriched only by the network -based approach and not 

present in the annotation sets of the input genes/proteins).  

While evaluating the network-based approach, we focused only on terms that were not 

enriched by the standard method, filtering out also all the terms that were ancestors of terms 

enriched by the standard method.  

Considering the three categories above reported, out of the 244 OMIM sets we computed:  

a) the number if diseases for which neither the network-based nor the standard method 

retrieved significantly overrepresented terms (set “n.a.”); 

b) the number of diseases for which the standard method retrieved more terms compared 

to the network-based method (set “S>N”); 

c) the number of diseases for which both the methods retrieved an equal number of terms 

(S=N);  

d) the number of diseases for which the network-based procedure enriched more terms 

compared to the standard method (set “N>S”); 

e) the number of diseases for which the network-based procedure added term not 

included in the annotations of the input set (set “New Terms”).  

For each annotation database, results are presented in Figure 9, panels A and B for STRING 

and STRING0.9, respectively. STRING based analyses were characterized by more than 50% 

of OMIM diseases presenting over-represented terms, considering also the new terms and the 

terms present equally or in a greater number than the one enriched only by the standard 

method. By using STRING0.9 similar results were retrieved.  
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Figure 9. NET-GE benchmark results: A) STRING based and B) STRING0.9 based. The bar plot presents, 

for each annotation database, the percentage of diseases (out of the 244 tested) for which: neither the network-

based nor the standard method retrieved significantly overrepresented terms (“n.a.”, blue), the standard method 

retrieved more terms compared to the network-based one (“S>N”; orange), both the methods retrieved the same 

number of terms (“S=N”; grey), the network-based approach enriched more terms compared to the standard 

method (“N>S”; yellow) and finally, the network-based approach added term not included in the annotations of 

the input set (“New Terms”; light blue). 

 

5 Study cases: a qualitative evaluation of NET-GE. 

NET-GE was evaluated by testing two gene sets related to 1) the Attention Deficit 

Hyperactivity Disorder (ADHD) and 2) the Obsessive-Compulsive Disorder (OCD). While 

the ADHD represented a hypothetical study case – because genes were retrieved from the 

OMIM database – the OCD study case represented a real study case because the investigated 

gene set resulted from the analyses of sequencing data.  
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5.1 The ADHD study case 

ADHD is the most common neuro-behavioural problems afflicting children between 6 and 

17 years of age (Sharma et al., 2014). ADHD is considered a chronic neurobehavioral 

disorder characterized by developmentally inappropriate levels of hyperactivity, impulsivity 

and inattention (Sharma et al., 2014; Tarver et al., 2014). In the last decade, several studies 

have supported a strong genetic contribution for ADHD. A review about the genetic of 

ADHD have been recently published by Bonvicini et al., 2016.  

We tested NET-GE considering the ADHD-related genes reported in OMIM (OMIM 

#143465): the dopamine receptors DRD4 (UniProtKB AC: P21917) and DRD5 (UniProtKB 

AC: P21918). Enrichment analyses were carried out setting the significance threshold at 0.05 

on the Bonferroni corrected p-values. For sake of clarity, we report only the most informative 

terms, neglecting all the parent terms of the hierarchy. Analyses ran over the GO:BP and 

KEGG databases.  

Focusing on the GO:BP branch, terms enriched by NET-GE are listed in Table 2. The 

standard enrichment statistically over-represented processes strictly related to the disease, 

such us the involvement of psychiatric functions (cognition, learning), the response to some 

chemical compounds (amphetamine, cocaine, alkaloids, ammonium ion) and the involvement 

of the dopaminergic pathway (including the intracellular signal transduction/second 

messenger pathways of cAMP). As reported in Table 2, the network-based approach added 

terms related to behavioural characters (such as the response to fear) or to the response to 

other chemical compounds (histamine). Interestingly, the network-based procedure added new 

terms (not associated to the input protein), unexpectedly involved in ADHD, such as the 

GABAergic pathway, process experimentally involved in the development of the disorder 

(Edden et al., 2012).  

The standard enrichment over the KEGG database highlighted the involvement of the 

dopaminergic synapses and the neuroactive ligand-receptor interactions (Table 3). The 

network-based procedure added new terms related to the response to morphine (addiction), 

the involvement of the glutamatergic synapses, the pathway of retrograde endocannabinoid, 

and the circadian rhythm system (Table 3). 

All these processes, although non-characterizing the input proteins, have been previously 

described in literature as being ADHD-related (Maltezos et al., 2014; Centonze et al., 2009; 

Gamble et al., 2013; Zhu et al., 2008).  
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When compared with NET-GE, PINA and EnrichNET did not retrieve any significantly 

over-represented term/module. However, for reasons of statistical reliability, it is worth to 

note the EnrichNET authors recommend the analysis of gene sets with at least 10 

genes/proteins. 

 

Table 2. ADHD study case: over-represented biological processes. 

Enrichment1 Term2 N13 N24 p-value5 Description6 

S GO:0001963 2 12 1.38E-04 synaptic transmission, dopaminergic 

S GO:0007212 2 26 6.80E-04 dopamine receptor signaling pathway 

S GO:0001975 2 28 7.91E-04 response to amphetamine 

S GO:0042220 2 34 1.17E-03 response to cocaine 

S GO:0045761 2 61 3.83E-03 regulation of adenylate cyclase activity 

S GO:0007188 2 122 1.54E-02 
adenylate cyclase-modulating G-protein 

coupled receptor signaling pathway 

N** GO:0014052 2 13 2.64E-04 
regulation of gamma-aminobutyric acid 

secretion 

N GO:0034776 2 19 5.79E-04 response to histamine 

N GO:0051954 2 52 4.49E-03 positive regulation of amine transport 

N GO:0001662 2 62 6.40E-03 behavioral fear response 

N** GO:0032228 2 85 1.21E-02 
regulation of synaptic transmission, 

GABAergic 

N GO:0050805 2 96 1.54E-02 
negative regulation of synaptic 

transmission 

1Enrichment: Standard (S) and Network-based (N). N** indicates new enriched terms not associated to the input 

proteins; 2Term: identifier: 3N1: Input proteins belonging to the term; 4N2: proteins characterizing the term; 5p-

value: Bonferroni corrected p-value; 5Description: brief description of the term. 

 

Table 3. ADHD study case: over-represented KEGG pathways. 

Enrichment Term N1 N2 p-value  Description 

S hsa04728 2 135 3.72E-03 Dopaminergic synapse 

S hsa04080 2 291 1.74E-02 Neuroactive ligand-receptor interaction 

N** hsa04713 2 192 1.23E-02 Circadian entrainment 

N** hsa05032 2 202 1.36E-02 Morphine addiction 

N** hsa04723 2 220 1.62E-02 Retrograde endocannabinoid signaling 

N** hsa04724 2 239 1.91E-02 Glutamatergic synapse 

N hsa04728 2 296 2.93E-02 Dopaminergic synapse 

Columns descriptors are given as in Table 2. 
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5.2 The OCD study case 

Obsessive-compulsive disorder (OCD) is a severe neuropsychiatric disorder that can have 

disabling effects on both adults and children. This disease is characterized by obsessions 

(intrusive unwanted thoughts and/or images) and/or compulsions (ritualized repetitive 

behaviours) (Pauls 2010). Several twin-based and family-based studies have provided 

evidences about the involvement of genetic factors for the expression of OCD. A review 

about the genetics of OCD have been recently published by Browne et al., 2014.  

A more recent study has investigated OCD by using whole-exome sequencing (WES) 

(Cappi et al., 2016). The authors sequenced twenty OCD cases and their unaffected parents 

(parent–child trios) looking for de novo mutations (i.e. mutation present only in the affected 

individual). At the end of their analyses, the authors identified 27 genes carry mutations 

(Table S1), that they analysed in the context of their interactions by using the IPA 

(www.qiagen.com/ingenuity) and DADA (Erten et al., 2011) toolboxes: the former 

performing gene enrichment analyses, the latter gene prioritization. Among the 27 OCD-

related genes, network topology analyses identified WWP1 and SMAD4 as brokers’ genes, 

while the gene enrichment analysis highlighted three over-represented pathways (TGF-β 

signalling, p-value = 1.3E-25; BMP signalling pathway, p-value = 2.5E-15; glucocorticoid 

receptor signalling, p-value = 7.1E-12) and the DADA analysis prioritized SMAD4 and 

WWP1 genes. However, focusing our attention on the results of the IPA pathway enrichment, 

among the 27 OCD-related genes, only SMAD4 (related to one patient) was present in the 

three enriched pathways. Thus, we investigated the provided gene set comparing their results 

with the ones obtained by NET-GE. 

Over-representation analysis was initially carried out by NET-GE over the GO:BP branch. 

The significance threshold was set equal to 0.05, considering Bonferroni corrected results.  

Also in this case, we report only the most informative terms, neglecting all the ancestors 

in the hierarchy. The standard procedure did not find any shared biological process in the 

input set. The network-based procedure enriched for processes involving the purinergic 

nucleotides/nucleosides (Table 4). Interestingly, the metabolism of purine has been linked to 

several neurological disorders (Micheli et al., 2011; Moretti et al., 2003; Hines et al., 2014). 

Moreover, these processes characterized 10 of the 27 initial genes, reconciling common 

biological features to 9 out of the 14 screened individuals. 
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Table 4. OCD study case: over-represented biological processes. 

Enrichment Term N1 N2 p-value  Description 

N GO:0009207 10 1506 1.51E-02 
purine ribonucleoside triphosphate 

catabolic process 

N GO:0046130 10 1559 2.05E-02 purine ribonucleoside catabolic process 

N GO:0042454 10 1585 2.37E-02 ribonucleoside catabolic process 

Columns descriptors are given as in Table 2. 

Table 5. OCD study case: over-represented molecular functions. 

Enrichment Term N1 N2 p-value Description 

S GO:0016887 5 392 1.36E-02 ATPase activity 

N** GO:0004800 2 8 8.50E-03 thyroxine 5'-deiodinase activity 

N GO:0019904 9 1988 2.69E-02 protein domain specific binding 

Columns descriptors are given as in Table 2. 

 

To broadly understand the molecular functions representing the gene set, we moved over 

the GO:MF branch. The standard procedure statistically over-represented the “ATPase 

activity” while the network-based procedure enriched for the term “thyroxine 5'-deiodinase 

activity” (Table 5). Proteins annotated with this activity (i.e. deiodinases, also named as 

DIOs) are involved in the regulation of the thyroid hormone activity. As reviewed by Mermi 

et al., 2016, several studies investigated the role of thyroid glands in OCD, even though 

contradictory results have been pointed out due to the investigation of patients affected by 

other psychiatric symptoms (comorbidity). However, the authors investigated a group of 

patients who had not any comorbid condition, pointing out that thyroid hormone alterations 

may be associated with occurrence or maintenance of OCD. By using NET-GE, the SMAD4 

and WWP1 genes mapped on the “thyroxine 5'-deiodinase activity”. Among their first 

neighbours we had the DIO1, DIO3 and UBC genes (all seed nodes, except UBC). 

Interestingly, via SMADs, DIO3 is transcribed upon TGF-β stimulation (Huang et al., 2005). 

Moreover, the first step of thyroid hormone action is the activation of thyroxine by the outer 

ring deiodination, mechanism promoted by ubiquitin (UBC) (Egri P et al., 2014). More 

interestingly, WWP1 is involved in the direct transfer of the ubiquitin to targeted substrates. 

Thus, the identification of this pathway by NET-GE seems to complement the finding about 

the TGF-β signalling pathway reported in Cappi et al., 2016. 

Overall, by considering the GO:BP and GO:MF over-represented terms, our results 

seem elucidate a more global vision of the disorder. 



34 

 

6 NET-GE and eDGAR: molecular signatures of diseases 

The complex nature of the association between genes and diseases is one of the major 

challenges of Precision Medicine programs. The molecular mechanisms at the basis of the 

pathogenesis are often uncharacterized. Thus, the investigation of functional relationships 

among genes involved in the same disease may give fundamental indications about the 

disease development. eDGAR (Babbi et al., 2017) is a database collecting and organizing 

gene-disease associations data as retrieved from OMIM (Hamosh et al., 2005), Humsavar 

(UniProt Consortium) and ClinVar (Landrum et al., 2016).  

The database is aimed at providing a comprehensive knowledge of the molecular 

signatures at the basis of diseases. eDGAR lists 2,672 diseases related to 3,658 different 

genes, for a total of 5,729 gene-disease associations. A total of 2,051 diseases are monogenic 

(associated to just one gene) while 621 are polygenic (associated to multiple genes). For each 

gene set, eDGAR provides information about: (i) interactions as retrieved from PDB (Berman 

et al., 2000), BIOGRID and STRING; (ii) co-occurrence in stable and functional structural 

complexes; (iii) shared GO terms, KEGG and REACTOME pathways; (iv) enriched 

functional annotations, (v) regulatory interactions as derived from TRRUST (Han et al., 

2017) and vi) localization on chromosomes and/or co-localisation in neighbouring loci. 

NET-GE functional enrichment was used to enhance the understanding of the biological 

processes and pathways playing a role in the development of the different pathologies, by 

exploiting its ability in detecting functional terms not present in the list of annotations of a 

target gene/protein set.  

 

6.1 Functional relationships of disease-related genes 

Given a set of disease-related genes, do they share some biological feature explaining the 

finial phenotype? In eDGAR, the large majority of diseases (from 94.4% to 97.3%, depending 

on the sub-ontology) is associated with at least one pair of genes sharing GO terms. More 

than 90% of all the possible gene pairs involved in the same disease have common GO:BP 

and GO:CC terms; the percentage is somehow smaller (76%) for the GO:MF branch. The 

total number of GO annotations shared by pairs of genes for GO:BP, GO:MF and GO:CC is 

72,787 (unique terms: 4,582), 13,113 (unique terms: 915) and 16,298 (unique terms: 656), 
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respectively. These data confirm the notion that genes associated with the same disease share 

some level of functional similarity (Oti et al., 2007).  

However, being GO terms organized in a DAG, the information conveyed by the shared 

annotations (measured by means of IC) can be very different (going from very general to very 

specific terms). Our dataset is characterized by a IC value ranging from 0 (the root terms) to 

10 (the most specific term). The average IC values for MF, BP and CC shared terms are 5.8 ± 

1.7, 5.9 ± 1.7, and 5.8 ± 1.9, respectively. For each disease, the specificity of the annotation is 

evaluated by extracting the best IC values among the GO terms shared by pairs of co-

associated genes (Figure 10, panel A). For all the sub-ontologies, the best IC values are very 

spread, and it is evident that on average the most specific terms (highest IC values) belong to 

the BP sub-ontology: genes pairs sharing GO:BP, GO:MF and GO:CC terms with IC ≥ 5 are 

present in 72%, 49% and 46% of the diseases, respectively (Figure 10, panel A). 

By using NET-GE, for the majority of diseases it is possible to statistically enrich GO 

terms and pathways. The total number of GO annotations enriched for polygenic diseases is 

17,029, 4,851 and 3,910 with average IC values 6.1 ± 1.8, 7.1 ± 2, and 6.4 ± 2 for GO:BP, 

GO:MF and GO:CC respectively (Figure 10, panel B). What emerge is that the statistically 

validated terms further support the notion that genes shard by a disease have some level of 

functional similarity. Moreover, what NET-GE highlight is the involvement of informative 

functional terms (higher IC). 
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Figure 10. Distribution of best IC values of GO terms for genes involved in multigenic diseases. a) GO 

terms shared by genes; b) GO terms after enrichment with NET-GE. For each multigenic disease, IC values of 

gene-associated GO terms (of the three different roots) are evaluated (Eq. 2). In the figure, the highest IC for 

each disease is shown. The frequency is computed with respect to the total number of multigenic diseases (621). 

When IC = 0, genes associated with multigenic disease do not share or enrich GO terms (panel a and b 

respectively). Figure taken from Babbi et al., 2017. 
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6.2 Hypoparathyroidism as case study 

The comprehensiveness of eDGAR can be highlighted by examining the following 

disease: Hypoparathyroidism. This disease is an endocrine deficiency characterized by low 

serum calcium levels, elevated serum phosphorus levels, and absent/low levels of parathyroid 

hormone (PTH) in blood (Bilezikian et al., 2011). In eDGAR, the familial isolated 

hypoparathyroidism (OMIM #146200) is associated with three different genes: GCM2 and 

PTH (a probable transcriptional regulator and the parathyroid hormone, respectively; both 

reported in OMIM, ClinVar and Humsavar) and CASR (an extracellular calcium-sensing 

receptor; reported only in ClinVar).  

Gene enrichment analysis over the GO:BP branch highlights two new terms: “regulation 

of amino acid transport” and “negative regulation of muscle contraction”. Interestingly, these 

new annotations are related to the severe symptoms of hypothyroidisms, namely tetany and 

seizure (Shoback 2008).  

The enrichment analysis over the KEGG database highlights unexpected terms such as 

“Circadian entrainment”, “Inflammatory mediator regulation of TRP channels”, “Gap 

junction” and “Insulin secretion”. Impairments of both the circadian rhythms and the insulin 

secretion process have been reported in patients affected by hypoparathyroidism (Bauer et al., 

1992; Yang et al., 2015). 

Taken together, these results highlight: (i) the usefulness of a database integrating data 

from different sources and (ii) the superiority of the network-based gene enrichment analysis, 

that coupled together enhance the understanding of biological complexity. 

 

7 Conclusions 

Here, I presented NET-GE (Figure 11), a tool developed for tackling the problem of the 

human biological complexity. Specifically, NET-GE is a tool for associating biological 

processes, functions and pathways to sets human genes/proteins of interest. NET-GE allows 

both standard and network-based gene enrichment analysis, considering genes as isolated 

object in the standard mode, and exploiting the STRING interactome to better provide 

valuable biological insights in the network-based mode 

In the last years, several different network-based tools have been implemented. However, 

differently from other methods, NET-GE explores the STRING interactome by building 
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modules, function-specific by construction, derived from genes annotated with a specific 

biological feature.  

The method has been benchmarked by performing qualitative and quantitative analyses, 

considering 244 disease-related gene sets coming from OMIM. NET-GE was able to enrich 

for terms neglected by the standard methods and not originally present in the annotation of the 

starting gene/protein set.  

Given the possibility to work with small input sets and the ability to over-represent new 

terms with a valuable biological insight, NET-GE results suitable for deciphering the 

biological complexity and helping the formulation of new hypotheses on the biological events 

underlying a phenotype. Given this ability, it has been used in the development of eDGAR, a 

database collecting and organizing gene-disease associations data as retrieved from OMIM, 

Humsavar and ClinVar. The use of NET-GE in the analysis of multigenic diseases extended 

the comprehension of diseases from a biological (functional) point of view. 
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 Figure 11. Schematic representation of the NET-GE analysis procedure. After the submission of a gene set and the selection of the analysis parameters, both a 

 standard and a network-based analysis is performed (the network-based is based on the precomputed expanded functional modules). As results NET-GE returns two 

 lists of enrichment terms (one for each enrichment mode), their representation as DAG and the possibility to explore the functional modules. Figure adapted from 

 Bovo et al., 2016. 
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41 

 

8 Introduction: why metabolomics? 

The last years have seen the development of Metabolomics, thanks to different ‘omic 

technologies aimed at investigating the repertory of metabolites (the chemical compounds that 

are transformed during metabolism) of a biological sample (Hollywood et al., 2006). By 

exploring cell complexity at the metabolite level, Metabolomics aims at providing a 

functional readout of the changes determined by genetic blueprint, regulation, protein 

abundance/modification and environmental modification (Altmaier et al., 2008). 

In the series of the ‘omics techniques, genomics, proteomics and transcriptomics result 

highly valuable, but merely indicate the potential cause for phenotypical response. Instead, 

metabolomics provides details on potentially effected pathways, because metabolite 

concentrations differences provide a closest link to the phenotypical response (Wishart et al., 

2009). Being the metabolites the downstream products of genomic, transcriptomic and 

proteomic processes, they represent an “intermediate phenotype” more closely related the 

final phenotype (i.e. clinical endpoint/disease) than genes and proteins (Gieger et al., 2011). 

As a consequence, metabolomics is getting more and more adopted as potential source of 

biomarkers (Vinayavekhin et al., 2010).  

Typically, a metabolomics experiment (case/control experiment) ends up with a list of 

differentially abundant metabolites. Over the years, different experimental approaches and 

technologies have been adopted in metabolomics (e.g. targeted or non-targeted, Mass 

Spectrometry (MS) based or Nuclear Magnetic Resonance (NMR) based; for a recent review 

about metabolomics procedures and technique see Jacob et al., 2017). However, like the other 

omics-based experiments, a post-processing of data is necessary: metabolites need annotations 

for reconciling them with known and putatively shared biological pathways describing the 

phenotype. Routinely, the metabolite complexity is investigated by exploring the link to the 

functional space. However, as discussed in the first part of this thesis, to gain a global 

overview of the different processes shaping the final phenotype/endpoint, biological data 

should be combined. In this perspective, we developed NET-GEM, a version of NET-GE 

rewritten to work with metabolites.  

In this second part of the thesis, I briefly discuss the implementation and results of NET-

GEM. The work has not been published yet and it is still under development. Only 

preliminary results are available. Here I give only a brief overview of the findings when 

considering over-representation of the KEGG pathways. 
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8.1 How to functionally interpret metabolomic data 

Given a list of small molecules, how is it possible to reconcile them with shared biological 

features? Several tools for the functional interpretation of metabolomics experiments have 

been developed. They can be broadly divided in two classes: (A) tools that allow only a 

mapping and representation of metabolites over metabolic pathways (without apply any 

statistics) and (B) tools performing metabolite enrichment analysis. The principle at the basis 

of metabolite enrichment analysis is the same of the gene enrichment analysis. Class B tools 

are generally preferred since a statistical validation is provided.  

Moreover, methods for metabolite enrichment can be subdivided in two groups: (i) 

methods that perform a classic Over-Representation Analysis (ORA) (e.g. MetPa (Xia et al., 

2010a), MBROLE2.0 (López-Ibáñez et al., 2016)) and (ii) methods that incorporate also a 

numeric value associated to each metabolite, known as Metabolite Set Enrichment Analysis 

(MSEA) or Quantitative Enrichment Analysis (QEA) methods (e.g. MSEA (Xia et al., 

2010b), MPEA (Kankainen et al., 2011), MetPa (Xia et al., 2010), IMPaLa (Kamburov et al., 

2011)). In particular, tools like MetPa and IMPaLa carry additional features. MetPA provides 

a “pathway impact score” for each pathway, by performing a pathway topological analysis 

based on centrality measures (betweenness centrality and out degree centrality) of a 

metabolite in a given metabolic network (Xia et al., 2010). IMPaLA integrates pathway 

analysis of metabolomics data alongside with gene expression or protein abundance data 

(Kamburov et al., 2011).  

 

8.1.1 Metabolite-related databases: a brief overview.  

Tools for the functional interpretation of metabolites sets rely on databases broadly 

classified into two main classes: (A) databases providing a chemical classification of 

molecules, such as the Human Metabolome Database (HMDB; Wishart et al., 2013), CheEBI 

(Hastings et al., 2013) and PubChem (Kim et al., 2016), and (B) databases providing a 

functional annotation such as KEGG, Reactome or BioCyc (Caspi et al., 2016).   

Among them, the HMDB resource is the most comprehensive database of human 

metabolites. Aside chemical information, HMDB provides also clinical and molecular 

biology/biochemistry data. HMDB users can easily retrieve information about the link 

between a metabolite and the associated diseases (e.g. via an external link to OMIM), the 

related biological pathways/processes (e.g. via an external link to KEGG) and the 
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enzymes/proteins controlling/linked to the metabolite (e.g. via an external link to UniProtKB). 

HMDB provides also links to other metabolites databases, such as KEGG COMPOUND. This 

branch of the KEGG resource collects and catalogues small molecules, biopolymers, and 

other chemical compounds relevant to biological systems. 

 

8.2 NET-GEM: rethinking metabolite functional association. 

Databases like KEGG PATHWAYS usually treat metabolites as objects confined in some 

specific pathways. However, since metabolites are strictly connected to proteins, they can 

influence other biological pathways due to the interactions occurring between proteins. This 

means that relations among metabolites can be derived from genes/proteins interactomes and 

this procedure establishes new links among pathways. Given the strict relation among genes, 

proteins and metabolites, we explored the metabolome by exploiting the features of an 

interactome. In order to do that, we developed NET-GEM, a version of NET-GE rewritten to 

work with metabolites.  

 

8.2.1 NET-GEM: how does it work? 

Instead of performing a standard metabolite enrichment analysis, NET-GEM performs a 

gene-based metabolite enrichment analysis. From the HMDB resource we retrieved the 

mapping table “metabolite-gene” (HMDB ID to UniProtKB; the mapping table is further 

discussed).  

 

 

Figure 12. Schematic representation of the NET-GEM enrichment procedure. By using the mapping table 

provided by the HMDB resource, metabolites are linked to genes. Then, enrichment analysis is performed using 

the metabolite-related genes. Over-represented term characterized by at least 2 different genes linked to at least 

two different input metabolites (HMDB IDs) are retained. 
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Entering NET-GEM with a set of metabolites, compounds are mapped on the genes acting 

on them (via the mapping table) and ORA is successively performed considering genes 

instead metabolites (Figure 12).  

 

8.2.2 Implementing NET-GEM: defining a metabolite-gene mapping table 

NET-GEM relies on a metabolite-protein and the gene-process associations as derived 

from HMDB and NET-GE, respectively. To make the results of NET-GEM comparable with 

the results of a standard metabolite enrichment tools, like MBROLE2.0, the metabolite-

protein mapping table was pruned by removing the metabolites not available in MBROLE2.0. 

The metabolite-protein mapping table initially accounted for a total of 22,133 HMDB IDs 

(primary IDs) linked to 5,631 UniProtKB accession numbers (ACs). Out of the 5,631 

UniProtKB ACs, 5,568 (99,9%) are annotated with NET-GE functional sets. The final 

mapping table links 22,130 metabolites (HMDB IDs) to 5,358 genes.  

 

8.2.3 Why genes instead of metabolites? A critical view 

Given the metabolite-gene mapping table, we analysed both the number of HMDB IDs 

related to each gene and the number of genes associated to each HMDB ID. Distributions are 

shown in Figure 13 panel A and B, respectively. The distribution of the number of genes 

associated to each HMDB ID highlights a pick characterized by 16,852 HMDB. This pick is 

composed of a set of 13,631 HMDB IDs (over 22,133 HMDBs IDs; ~ 62% of the dataset) 

associated to the same group comprising 34 genes.  

An over-representation analysis (by using NET-GE) of these 34 genes over the KEGG 

pathways database highlighted the involvement of different lipid metabolisms (data not 

shown). The 13,631 HMDB IDs are mainly lipids of different classes sharing a common 

backbone and characterized by a different rearrangement of the C=C double bonds. When 

mapped over the KEGG compounds database, these molecules were grouped under shared 

identifiers.  

An example is the “phosphatidic acid”, identified in KEGG as the compound C00416, 

which is linked in HMDB to 17 compounds. By considering this simple example, we have to 

think at the impact that different “nomenclatures” can have on the development of a tool for 

metabolite enrichment analysis.  
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Figure 13. Distribution of A) number of HMDB IDs per gene, and B) number of genes per HMDB ID. The 

second graph (B) highlights a pick mainly characterized by a set of 34 genes associated with 13,631 HMDB IDs. 

 

For example, the KEGG pathway hsa00561 (Glycerolipid metabolism) counts 29 KEGG 

linked to 154 HMDB IDS. The proportion of compounds included in this pathway with 

respect to the total number of compound used as background (3586 KEGG compounds or the 

22,133 HMDB IDS), lead to different p-values when performing the Fisher’s exact test and 

determine different sets of statistically enriched functional annotations. This example 

illustrates the problem of the best metabolite representation to be used to build a tool for ORA 

in metabolomics. In other words, representing metabolites with compound ontologies or 

chemical classes, as in standard tools, can be problematic on the statistical analysis point of 

view. NET-GEM tries to overcome this issue by referring to a more stable underlying layer, 

that is by representing each compound in terms of the genes involved in its metabolisms and 

their interactions. Another reason for that choice is the fact that the metabolome is still under 

discovery and a stable tool based on compound ontologies cannot be easily developed, as 

discovery of new metabolites can lead to an additional expansion and imbalance of 

annotations. With NET-GEM we counteract the problem of stability by using genes instead 

metabolites, since the last 20 years of genetics and genomics have provided a stable number 

of genes having a curated annotation. Moreover, since gene annotations seem stable enough, a 

tool relying only on metabolite-gene annotations can be “easily” updated 
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8.2.4 The statistics at the basis of NET-GEM and MBROLE2.0 

The Fisher's exact test was used to carry out enrichment analysis over the KEGG 

pathways database, both in MBROLE2.0 and in NET-GEM. Analyses were carried out 

entering a list of HMDB IDs in both the systems. The no. of metabolites in MBROLE2.0 and 

the no. of genes in NET-GE, were used as background. The Benjamini-Hochberg procedure 

was adopted to counteract the problem of multiple testing. Results of the standard and 

network-based procedures were merged together. Only KEGG pathways with a FDR < 0.001 

are considered significantly over-represented. When performing ORA with NET-GEM, only 

over-represented terms characterized by at least 2 different genes linked to at least two 

different input metabolites are retained. 

 

8.2.5 Testing the method: the Parkinson's disease case study 

To evaluate NET-GEM we used a dataset of 54 metabolites related to Parkinson's disease 

(PD), a neurodegenerative disorder characterised mainly by tremors and other motor 

symptoms caused by the formation of Lewy bodies and a loss of dopaminergic neurons in the 

substantia nigra (Kalia et al., 2015). The 54 metabolites were collected as KEGG compounds 

by looking for metabolite-disease associations published in PubMed in the 2006-2016 decade 

as described in Kori et al., 2016 (Table S2).  

A total of 41 KEGG compounds (corresponding to 41 HMDB IDs) are available and 

linked to 475 genes in our mapping table. As we highlighted above, some compounds are 

missing since we did not use the updated version of the database, while other have not a link 

to a gene for biological reasons (like the compound “creatinine” which results from a 

spontaneous dehydration of “creatine”, not involving any enzyme).  

The 41 HMDB IDs were used as input elements both in NET-GEM and in MBROLE2.0. 

The results of NET-GEM were compared against the results of MBROLE2.0. Moreover, to 

further validate the over-represented terms not retrievable by MBROLE2.0, we looked in 

PubMed for experimental evidences.  

To understand how metabolomics is complementary to genomics, we also analysed via 

NET-GE a gene set of 98 PD-related genes (genes supported by at least 5 publications) as 

retrieved from Phenopedia (Yu et al., 2010).  

Over the KEGG PATHWAYS database, MBROLE2.0 detects only 3 over-represented 

pathways. NET-GEM enriches for a total of 67 pathways, while NET-GE detects 33 pathways. 

Figure 14 presents the Venn diagram produced by the three different methods.  
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Figure 14. Venn diagram of the pathways over-represented by the three different methods.  

 

The 3 pathways detected by MBROLE2.0 (the “Alanine, aspartate and glutamate 

metabolism”, the “Citrate cycle” and the “Glyoxylate and dicarboxylate metabolism”) are 

comprised in the set of enriched terms detected by NET-GEM.  

Compared to MBROLE2.0, NET-GEM adds 64 pathways: 6 enriched only by the standard 

method (S), 56 enriched both by the standard and network-based method (N/S), and 2 added 

only by using the network -based (N).  

The terms exclusively enriched by NET-GEM (47 leaf terms, Table 6) point to pathways 

of great interest. A first pathway involves the GABAergic and Glutamatergic synapses. In 

fact, dopamine can modulate glutamatergic transmission by the convergence effect onto 

medium spiny neurons, by acting on D2-R located pre-synaptically on glutamatergic inputs or 

by modulating excitatory inputs onto GABAergic and cholinergic interneurons (Gardoni et 

al., 2015). Another interesting metabolism is the “Taurine and hypotaurine” one. In animal 

models of PD, protective properties of cystamine have been evidenced. Interestingly, the 

metabolism of cystamine generates several intermediates including hypotaurine and taurine 

(Bousquet et al., 2010). Different lipids metabolism have been over-represented. Interestingly, 

in a lipidomics study of PD substantial changes in sphingolipid and glycerophospholipid 

biosynthetic pathways have been reported (Cheng et al., 2011). 
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Table 6. Parkinson’s disease: KEGG pathways over-represented only by NET-GEM. 

 Standard  Network-based   

ID G M p-value G M p-value Description 

hsa01200 48 16 1.09E-30 57 18 3.93E-29 Carbon metabolism 

hsa00053 25 5 2.47E-29 25 5 1.05E-28 Ascorbate and aldarate metabolism 

hsa00330 35 13 3.19E-27 41 14 6.68E-27 Arginine and proline metabolism 

hsa00040 25 8 1.45E-23 26 8 1.04E-23 Pentose and glucuronate interconversions 

hsa00260 30 12 1.87E-28 31 12 4.99E-23 Glycine, serine, threonine metabolism 

hsa05033 29 3 5.47E-26 32 5 9.00E-23 Nicotine addiction 

hsa04727 42 7 2.36E-27 46 9 5.34E-22 GABAergic synapse 

hsa00860 25 5 1.48E-20 28 7 6.90E-21 Porphyrin and chlorophyll metabolism 

hsa00620 26 7 2.16E-22 27 10 1.78E-19 Pyruvate metabolism 

hsa00010 31 7 6.56E-20 34 11 1.84E-17 Glycolysis / Gluconeogenesis 

hsa04723 36 6 2.29E-18 44 8 2.82E-17 Retrograde endocannabinoid signaling 

hsa01210 16 6 1.19E-18 16 6 6.13E-17 2-Oxocarboxylic acid metabolism 

hsa01230 29 10 3.76E-17 33 11 1.43E-16 Biosynthesis of amino acids 

hsa00340 18 11 5.29E-18 20 13 1.61E-15 Histidine metabolism 

hsa00350 25 13 4.35E-23 26 13 2.47E-15 Tyrosine metabolism 

hsa05032 32 4 5.87E-16 39 7 7.05E-15 Morphine addiction 

hsa04724 37 9 3.54E-17 42 11 1.67E-14 Glutamatergic synapse 

hsa00500 24 3 9.18E-15 26 4 2.77E-14 Starch and sucrose metabolism 

hsa00983 21 4 8.59E-14 24 7 5.01E-14 Drug metabolism - other enzymes 

hsa00410 17 10 1.42E-12 22 12 1.47E-13 beta-Alanine metabolism 

hsa00360 15 11 7.78E-16 15 11 8.45E-12 Phenylalanine metabolism 

hsa00380 20 11 1.39E-13 24 12 3.03E-11 Tryptophan metabolism 

hsa00270 18 7 1.02E-12 19 7 4.74E-10 Cysteine and methionine metabolism 

hsa00430 7 4 9.24E-07 9 6 9.49E-08 Taurine and hypotaurine metabolism 

hsa00280 16 10 5.13E-08 19 11 2.76E-07 Valine, leucine and isoleucine degradation 

hsa00071 16 5 2.72E-08 17 5 3.93E-07 Fatty acid degradation 

hsa04976 16 7 1.30E-05 23 9 2.15E-06 Bile secretion 

hsa05031 15 6 3.42E-05 22 9 4.30E-06 Amphetamine addiction 

hsa00290 4 4 4.54E-05 5 6 4.63E-06 Valine, leucine and isoleucine biosynthesis 

hsa00564 21 5 4.52E-07 25 7 1.13E-05 Glycerophospholipid metabolism 

hsa04713 17 4 1.85E-04 23 6 3.56E-05 Circadian entrainment 

hsa00460 6 3 1.14E-05 6 3 7.09E-05 Cyanoamino acid metabolism 

hsa05230 14 7 7.33E-05 16 8 7.16E-05 Central carbon metabolism in cancer 

hsa00640 10 6 2.18E-05 10 6 1.40E-04 Propanoate metabolism 

hsa00970 - - - 12 8 1.75E-04 Aminoacyl-tRNA biosynthesis 

hsa00650 - - - 9 8 3.32E-04 Butanoate metabolism 

hsa00471 4 3 4.46E-05 4 3 5.20E-04 D-Glutamine and D-glutamate metabolism 

hsa00310 13 7 3.11E-05 14 7 8.15E-04 Lysine degradation 

hsa00400 4 4 1.99E-04 4 4 9.71E-04 Phenylalanine, tyrosine and tryptophan 

biosynthesis 

hsa04964 7 6 7.58E-04 - - - Proximal tubule bicarbonate reclamation  

hsa00561 13 8 6.70E-05 - - - Glycerolipid metabolism 

hsa04024 26 8 5.47E-04 - - - cAMP signaling pathway 

hsa05231 16 4 6.98E-04 - - - Choline metabolism in cancer 

hsa01220 3 3 7.05E-04 - - - Degradation of aromatic compounds 

^Functional terms enriched only by NET-GEM and MBROLE2.0. All the other terms are enriched by NET-GEM  

and NET-GE; #Number of input metabolite-related genes associated to the term; *Number of input metabolites 

associated to the term via genes; §FDR corrected p-value. 
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Lastly, NET-GEM highlights the involvement of circadian rhythms. This is plausible since 

dopamine plays a pivotal role in the regulation of sleep and circadian homeostasis (Videnovic 

et al., 2013).  

Moreover, only via the network-based approach we could highlight the link between PD 

and the aminoacyl-tRNA metabolism. This metabolism is very interesting since the 

aminoacyl-tRNA synthetase-interacting factor AIMP2 as shown to be the substrate of Parkin, 

a protein promoting ubiquitination and proteasome degradation. The control of expression of 

Parkin substrates through ubiquitination and degradation is critical for dopaminergic cell 

survival. (Park et al., 2008).  

Other pathways, although more generic, are highlighted by NET-GEM: the different 

metabolisms of amino-acids, the “Pyruvate metabolism” and the 

“Glycolysis/Gluconeogenesis” (Liu et al., 2016).  

 

 

Table 7. Parkinson’s disease: KEGG pathways over-represented by NET-GEM and 

confirmed by either NET-GE or MBROLE 2.0. NET-GEM enrichments are presented both 

for the standard and the network-based method.  

 Standard  Network-based   

ID G# M* p-value§ G# M* p-value§ Description 

hsa01100 232 32 1.49E-77 251 32 4.80E-44 Metabolic pathways 

hsa00982 44 11 9.85E-36 46 13 5.71E-30 Drug metabolism - cytochrome P450 

^hsa00250 27 10 2.50E-26 31 10 3.25E-25 Alanine, aspartate and glutamate 

metabolism 

^hsa00020 25 6 5.49E-26 25 6 1.79E-24 Citrate cycle (TCA cycle) 

hsa00980 35 8 1.22E-22 38 11 1.07E-20 Metabolism of xenobiotics by 

cytochrome P450 

hsa05204 37 13 2.55E-23 39 15 2.51E-20 Chemical carcinogenesis 

hsa00830 29 7 3.13E-19 32 10 1.39E-15 Retinol metabolism 

hsa00140 22 5 7.58E-13 27 8 8.31E-12 Steroid hormone biosynthesis 

^hsa00630 15 11 4.01E-12 15 11 3.83E-11 Glyoxylate and dicarboxylate 

metabolism 

hsa00480 18 8 4.00E-09 19 10 4.24E-09 Glutathione metabolism 

hsa04080 47 5 1.77E-10 54 11 1.83E-08 Neuroactive ligand-receptor 

interaction 

hsa05030 15 6 5.08E-07 21 7 1.27E-07 Cocaine addiction 

Columns descriptors are given as in Table 6. 
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At the functional level, our comparison of genomics and metabolomics data shows a 

reasonable level of concordance. NET-GE and NET-GEM have 17 shared pathways (Figure 

14). Considering only the leaf terms (no. 9), enriched terms highlights pathways related to PD 

(Table 7). Among them, we have the “retinol metabolism” (Maden 2007), the “glutathione 

metabolism” (Smeyne et al., 2013), the involvement of xenobiotics and the of P450 system 

(Steventon et al., 2001; Miksys et al., 2002) and the “neuroactive ligand-receptor interaction”. 

However, we had to admit that in the fraction of terms enriched by NET-GEM we had 

terms detected also by MBROLE, but with a p-valueFDR < 0.001. This suggests that the use of 

genes instead of metabolites, with the addition of an interactome at the basis of the analysis, 

can counteract problems due to statistics, letting emerge the pathways describing (correctly) 

the cell complexity at the metabolite level.  

 

9 Conclusions 

NET-GEM provides a new alternative way to analyse metabolomic data. By exploiting the 

functional modules at the basis of NET-GE to perform a gene-based metabolite enrichment 

analysis, with NET-GEM we analyse metabolomics data in the context of the different layers 

of biological complexity. We qualitatively tested NET-GEM with a metabolite set linked to 

Parkinson’s disease. The preliminary results obtained over the KEGG pathways database are 

satisfactory. NET-GEM enriches more terms than MBROLE2.0, a canonical tool used in the 

functional analysis of metabolite set. While MBROLE2.0 detects only 3 pathways, NET-GEM 

detects other 64 pathways. These pathways were qualitatively evaluated looking in PubMed 

for experiments supporting these evidences and many of them can be reconducted to the PD. 

Moreover, to understand the level of complementarity between genomics and metabolomics – 

in terms of retrievable functional features – we analysed via NET-GE a gene set of 98 PD-

related genes. We observed a partial overlap (50% of terms enriched by NET-GE were 

retrieved also by NET-GEM; 27% of the terms enriched by NET-GEM were retrieved also by 

NET-GE) highlighting that shared biological information is stored in the different layers of 

biological complexity.  

Although preliminary, the results obtained from this “hybrid” method seem promising. 

However, a lot of work is still necessary to test the performance of NET-GEM. 
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The Critical Assessment of Genome 

Interpretation (CAGI) experiment 
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10 Introduction 

The Critical Assessment of Genome Interpretation (CAGI, \ˈkā-jē\, 

https://www.genomeinterpretation.org/) is a community experiment aimed at evaluating 

computational methods for determining the phenotypic impacts of genomic variants. The 

CAGI goals are: (i) to evaluate the capability of state-of-the-art methods to make useful 

predictions of molecular, cellular, or organismal phenotypes from genomic data, (ii) to 

identify bottlenecks in genome interpretation that suggest critical areas of the future research; 

(iii) to standardize the field by suggesting appropriate assessment methods and defining what 

is required for an accurate prediction, (iv) to engage and connect researchers from the diverse 

disciplines whose expertise is essential to methods for genome interpretation and (v) to 

highlight innovation. 

Participants taking part in CAGI experiments (challenges) are provided genetic variants 

for which blind predictions of the resulting phenotypes are made. Usually, a CAGI 

experiment is conducted over a period of one year, that starts with the 

identification/development of suitable challenges (release of unpublish data and formulation 

of related questions) followed by a period during which participants are invited to analyse 

data and submit predictions. After the closure of challenges, independent assessors evaluate 

predictions against gold-standard experimental or clinical data. CAGI experiments ends with 

a meeting to discuss the outcomes. Started in 2010, four CAGI experiments have been 

conducted to date. Moreover, participants (data providers, predictors and evaluators) are 

encouraged to publish their finding. This year, a special issue of Human Mutation has bene 

completely dedicated to the CAGI experiments (see Hoskins et al., 2017).  

During the four editions of CAGI, the same challenge (with new blind datasets) and new 

challenges have been proposed. These challenges spanned a wide range of relationships 

between genetic variants and phenotypes such us challenges about the effect of single-base 

variants on RNA expression levels and protein activity or the interpretation of exome and 

genome sequencing data for assigning complex traits phenotypes. Other challenges regarded 

the ability to predict the effect of mutations in cancer driver genes on cell growth and 

challenges in which participants were asked to identify causative variants for rare diseases in 

a given gene panel. 

In the following chapter, I will introduce the methods proposed in facing three CAGI 

challenges: the prediction of the effect of variants on the Liver Pyruvate kinase activity and 
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allosteric regulation, and the interpretation of Crohn’s and Bipolar exomes for discriminating 

healthy and sick individuals. The full version of the journal articles describing the 

methods, Daneshjou et al., 2017; and Xu et al., 2017 are reported in the appendix. 

 

10.1 The Pyruvate Kinase challenge 

Pyruvate kinase (PYK) is an enzyme (EC 2.7.1.40) which regulates the last step of the 

glycolytic pathway (Gupta et al., 2010). PYK catalyses the transfer of phosphate from 

phosphoenolpyruvate (PEP) to ADP, to generate ATP as following: 

Phosphoenolpyruvate (PEP) + ADP ⇄ Pyruvate + ATP 

Depending on the different tissue requirements, mammals express four isozymic forms: 1) 

R-PYK, restricted to erythrocytes, 2) L-PYK, found predominantly in liver and kidney, 3) 

M1-PYK, expressed in muscle and brain, and 4) M2-PYK, found in fetal tissues and in 

proliferating cells (Morgan et al., 2013).  

 

 

Figure 15. Structure of tetrameric human pyruvate kinase.  The structure was assembled by superimposing 

monomers from several structures of homologues of L-PYK with PEP, ADP, and alanine bound onto a 

tetrameric structure of human L-PYK with fructose-1,6-bisphosphate (FBP) bound (PDB: 4IP7).  PEP, ADP, 

ALA, and FBP are shown in spheres, coloured in magenta, pink, orange, and red, respectively. Figure adapted 

from Xu et al., 2017. 
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As reviewed by Dombrauckas et al., 2005, PYK is a tetrameric protein of identical 

subunits which are arranged in a dimer-of-dimers configuration (Figure 15) with approximate 

D2 symmetry. Each subunit contains one active site and is composed of four domains: the A-, 

B-, C- and N-terminal domains. The A-domain, is the core of the monomer and has an α8/β8 

barrel tertiary structure motif. The active site is localized at one end of the barrel, in a cleft 

between the A-and B-domains. The B domain is mobile domain that moves toward the A-

domain closing on the active site upon binding of the Mg2+-ADP substrate complex.  The C-

domain, found on the opposite side of the A domain, consists of both α and β structural 

elements. The allosteric FBP-binding pocket is located entirely within the C-domain. The 

tetramer is held together by reciprocal hydrogen bonds across the C-C (small) interface, 

between the neighbouring C-domains, and the A-A (large) interface, between the 

neighbouring A-domains. 

Regulation of the M2, L, and R isoforms is accomplished by (i) the phosphorylation of the 

N-terminus at S12 and (ii) allosteric regulation by fructose-1,6-bisphosphate (Fru-1,6-BP), 

alanine, and ATP (Prasannan et al., 2012). Fructose 1,6 bisphosphate acts as allosteric 

activator while alanine as allosteric inhibitor (Fenton et al., 2009a).   

Regulation of L-PYK plays a pivotal role in the maintenance of glucose homeostasis, 

preventing hyperglycaemia and hypoglycaemia. Several non-synonymous variants of R/L-

PYK in the PYK deficiency patients have been observed falling in or near the allosteric 

effector binding sites, and modifications in allostery seem sufficient to cause disease (Xu et 

al., 2017). 

Given the complex regulation of L-PYK, the understanding of the allosteric regulation is 

of fundamental importance in order to develop allosteric drugs acting on the L-PYK. In the 

case of L-PYK, allosteric regulation can be defined as how one ligand A binds to a protein E 

in the presence vs. absence of a second ligand X (Prasannan et al., 2012). This definition 

describes allostery by a thermodynamic energy cycle composed by four enzymatic states 

(Figure 16). Moreover, it also defines an allosteric coupling constant (Qax) as following: 

𝑄𝑎𝑥 =
𝐾𝑖𝑎

𝐾𝑖𝑎/𝑥
  (5) 

where Kia and Kia/x are the dissociation constants for binding the substrate A in the absence or 

presence, respectively, of the allosteric effector X, as defined in Figure 16. A value of Qax = 1 

indicates that the system is not allosteric, while a Qax ≠1 indicates allosteric coupling between 

http://onlinelibrary.wiley.com/doi/10.1002/humu.23222/full
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the binding of A to a protein and the binding of X to the same protein. In particular a Qax >1 

indicates a positive allosteric coupling, while Qax<1 denotes a negative or inhibitory coupling 

between X and A sites. 

Given two sets of mutations in the L-PYK, retrieved from two different experiments, 

participants were asked to submit predictions on the effect of the mutations on L-PYK 

enzyme activity and allosteric regulation. Experimental results on enzyme activity are 

categorize into two classes: we were asked to enter the probability that the mutant enzyme 

retains activity (0 = no activity detected, 1 = activity detected). Allosteric coupling is 

measured as a continuous assay result; we were asked to enter the predicted numeric value for 

Qax. For experiment #1, we had to predict the results of the assay to measure coupling of the 

allosteric inhibitor alanine. For experiment #2, we had to predict the results of the assay to 

measure coupling of the allosteric inhibitor alanine plus the allosteric activator F-1,6-BP.  

 

 

Figure 16. Allosteric energy cycle. In the reaction scheme, the enzyme E can bind one substrate A 

and one allosteric effector X. Kia is the binding of the substrate A to the enzyme E in the absence of 

effector X. Kia/x is the binding of the substrate A to the enzyme E in the presence of saturating 

concentrations of effector X. Kix is the binding of effector X to the enzyme E when substrate A is 

absent. Kix/a is the binding of effector X to the enzyme E in the presence of saturating concentrations of 

substrate A. Figure from Prasannan et al., 2012. 

 

10.2 Datasets 

Predictors were provided with two datasets representing the results of two site directed 

mutation studies of the human L-PYK protein (expressed in E. coli). Briefly, for each mutant 

the Qax value was determined by measuring the affinity of the enzyme for PEP (via titration of 
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activity over a concentration of PEP) over a concentration range of effector. Details of the 

assays and data evaluations are reported in several papers (Fenton et al., 2009a; Fenton et al., 

2009b, Ishwar et al., 2015).  

The first experiment generated a dataset of 113 mutations at 9 residues that contact bound 

alanine or are very near the bound alanine: Arg55, Ser56, Asn82, Arg118, His476, Val481, 

Pro483, and Phe514. Only one mutation per mutant protein was introduced by using 

degenerate codons/random substitutions. The resulting proteins were evaluated for 

presence/absence of enzyme activity. A total of 23 mutant proteins were completely inactive, 

while the remaining 90 conserved activity and have therefore been used to evaluate the 

coupling constant Qax-Ala. 

In the second experiment, the alanine scanning mutagenesis approach was used to 

evaluate which non-alanine/non-glycine residues in the L-PYK contribute to allosteric 

functions. A total of 430 residues were mutated into alanine. Coupling constants Qax-Ala and 

Qax-F-1,6-BP were separately evaluated. Allosteric coupling of alanine and F-1,6-BP could not 

be measured for 37 and 19 mutant proteins, respectively. 

For sake of clarity, when the challenge opened, only information about the residue 

position and the substitution type were available and participants were asked to submit 

prediction for all the mutants. Details about the number of mutants where it has been possible 

to measure enzymatic activity and allosteric coupling were released only during the 

assessment phase. 

 

10.3 Method 

To predict the effect of the different residue substitutions on the enzyme activity (task 1), 

we initially remapped the alanine binding site on the crystal structure of human L-PYK 

(PDBs: 4IP7, 4IMA, Holoyak et al., 2013) considering the human M2 pyruvate kinase 

(PDB:4FXJ, Morgan et al., 2013) locked into the T state by phenylalanine. Then, we 

measured the distance of each mutated residues from: 1) the Citrate/Mn/ATP/Fru-1,6-BP 

molecules in the respective binding sites and 2) the residues at the C-C (small) and A-A 

(large) interfaces of the tetramer. To determine the residues at the interfaces we made use of 

the DSSP program (Kabsch and Sander, 1983) to compute the solvent-accessible surface area 

(SASA) of each residue. By denoting with SASAT and SASAM the solvent-accessible surface 
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area of the residues in the T and M forms, respectively, we considered a residue at the 

interface when the parameter ΔSASA = SASAT - SASAM was ≥ 10 Å2.  

We predicted a mutation as neutral for the protein activity when it is located in region far 

apart (>0.5 nm) from the active site, the effector sites and the interface domains. As results, 

we provided a binary classification of enzyme activity: 1 for active mutant and 0 for inactive 

mutant. 

In the prediction of the allosteric coupling constant Qax-Ala (task 2), we considered: 1) the 

distance (DR) between the effector binding site and the mutated residue, and 2) the 

substitution weight (w) of the mutation as derived from the BLOSUM62 scoring matrix. In 

our prediction we did not provide a continuous value as requested. Instead, we adopted a 

binary classification, assigning a value of 0.1 to a wild type coupling (DR > 0.5nm or w ≥ 0), 

and a value of 1 to mutations abolishing the allosteric coupling (DR ≤ 0.5 nm and w < 0). Our 

hypothesis was that the higher the conservation, the lower the effect. 

The prediction of the allosteric coupling constant Qax-F-1,6-BP was analogous to the Qax-Ala, 

except for considering the distance from the F-1,6-BP, instead of the alanine. 

 

10.4 Performance assessment 

The performance of the method was evaluated by an external evaluator. To score the 

prediction performance of the first task, the evaluator made use of the following scoring 

indexes: 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (6) 

𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
      (7) 

𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (8) 

𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁+𝐹𝑁
     (9) 

 

To assess the overall accuracy, the evaluator calculated also the total accuracy (ACC), the 

balanced accuracy (BACC), the Matthews correlation coefficient (MCC) and the F1 score. 
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𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
     (10) 

𝐵𝐴𝐶𝐶 =  
1

2
(𝑇𝑃𝑅 + 𝑇𝑁𝑅)    (11) 

𝑀𝐶𝐶 =  
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)
  (12) 

𝐹1 =  2
𝑇𝑃𝑅 ×𝑃𝑃𝑉  

𝑇𝑃𝑅+𝑃𝑃𝑉
     (13) 

 

In the evaluation of the Qax-Ala and Qax-F-1,6-BP, the Spearman's rho (ρ) and Kendall's tau (τ) 

correlation indexes were used. The Spearman's rho (ρ) index, also defined as Spearman's rank 

correlation coefficient, measures the monotonic correlation between prediction and 

experimental data. Give the dataset (p, e), where pi and ei are ith predicted and experimental 

data points, respectively, prediction data points are converted into ranks Rpi and experimental 

data points are converted into ranks Rei. Then, ρ is calculated as following: 

 

ρ =  
𝑐𝑜𝑣(𝑅𝑝,𝑅𝑒)

𝜎𝑅𝑝𝜎𝑅𝑒
, −1 ≤ ρ ≤ 1    (14) 

 

where cov(Rp,Re) is the covariance and σRp , σRe are the standard deviations of the ranked 

variables.  

The Kendall's tau (τ) index, also define Kendall rank correlation coefficient, is another 

measure the ranks correlation between two variables. Given a dataset (p, e), any pair of (pi, ei) 

and (pj, ej), where i ≠ j, are said to be concordant if both pi > pj and ei > ej, or if both pi < pj 

and ei < ej. They are discordant, if both pi < pj and ei < ej, or if pi > pj and ei > ej. If pi = pj and 

ei = ej, the pair is neither concordant nor discordant. Then, τ is calculated as following: 

 

τ =  
(𝑛.𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠)−(𝑛.𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠)

𝑛(𝑛−1)/2
, −1 ≤ τ ≤ 1  15) 

 

Considering the two indexes, a value equal to 1 indicates that the predicted and the 

experimental data points have identical rankings, a value equal to -1 indicates that one ranking 

is the reverse of the other and a value equal to 0 indicates that the sets of data are independent. 
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10.5 Results 

The L-PYK challenge was accessed by more than 30 researchers. However, only four 

groups accepted the challenge. Researchers approached the challenge considering different 

features, such as evolutionary information, the location of mutations and molecular docking. 

Details about the groups and the different approaches are reported in Xu et al., 2017.  

In the following subchapters I will discuss the methods and results obtained by our 

approach. 

  

10.5.1 Prediction of the L-PYK enzyme activity  

The first task of the L-PYK challenge regarded the prediction of the effect of single 

mutations on the enzyme activity, in terms of retained activity or not (and not the level of 

activity). Given a set of 113 mutations, predictors were invited to submit a prediction in a 

binary form: 0 means inactive, 1 active. 

We hypothesized that a mutation is neutral to the protein activity provided that it is 

located in region far apart (>0.5 nm) from the active site, the effector sites and the interface 

domains. Based on this hypothesis, in the first dataset we predicted all the mutations as 

neutral to the protein activity since they were located outside the main functional sites. The 

performance indexes of our method are reported in Table 8, while performance indexes of all 

the different participants groups are presented in Figure 17. 

Overall the method performed well with an ACC = 0.796. The hypothesis we made was 

quite reasonable since all the mutations were in or near the alanine binding site which is 

distant from the active site. However, a group performed better than us, reaching an ACC = 

0.867. Given the imbalance of the dataset, a measure like the F1 score was suited for the 

performance evaluation since it only includes positive predictions and experimental 

phenotypes, and omits the negative ones. Since this dataset consisted of majority of active 

enzymes (80%), having predicted a larger fraction of the enzymes to be active, we achieved 

good results (F1 = 0.887). We tried to figure out what did we miss. Among the 23 

misprediction, we missed the correct prediction of the V481 (6/13 mutations) and P483 (10/11 

mutation). Based on our definition of interface, they were classified as residues not at the 

interface. However, they are part of the Cβ1 that is integrated into the β-sheet whose Cβ5 is 

part of the C-C interface.  
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Table 8. L-PYK enzyme activity task: binary prediction results. 

 TPR TNR PPV NPV ACC BACC MCC F1 

EXP1* 1 0 0.796 0 0.796 0.5 0 0.887 

EXP2# 0.838 0.205 0.901 0.127 0.772 0.521 0.034 0.868 

*EXP1: 113 mutations at 9 residues that contacts bound alanine; #EXP2: alanine scanning. 

 

 

 

Figure 17. L-PYK enzyme activity task: binary prediction results of the four participant groups. Our 

group the G55 one (gravy colour). Data are taken from (Xu et al., 2017) A) Datasets of 113 mutations at 9 

residues that contacts bound alanine or is very near the bound alanine. B) Alanine scanning datasets.  
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The same hypothesis was tested in the analysis of the alanine scanning derived dataset 

(mutations across the entire enzyme). Also in this case, we reached an ACC = 0.772, and a F1 

equal to 0.868. 

However, in the assessment of binary phenotype predictions with imbalanced dataset a 

measure like the BACC index is recommended (see eq. 11) (Wei et al., 2013). BACC is the 

average of the rate of correctly predicting the experimentally active mutants (TPR) and the 

rate of correctly predicting the experimentally inactive mutants (TNR). A value of BACC = 

0.50 correspond to a random prediction, since if one predicts all of the phenotypes in one 

class – like in our case – the BACC is automatically equal to 0.50. By using this index, given 

the score around 0.5 for both the dataset, it emerges that the hypothesis we made probably is 

too naïve for the task. 

 

10.5.2 Prediction of Qax-Ala  

The second task regarded the prediction of the effect of a mutation on the allosteric 

regulation. Predictors were asked to estimate the inhibitory allosteric effect of alanine on 

binding of the substrate PEP, by submitting a value in the range of 0 < Qax-Ala  ≤ 1.  

We hypothesized that the Qax-Ala predicted values could depend on the distance of the 

mutated residue from: 1) the active site, 2) the allosteric inhibitor alanine or 3) the residues at 

the interfaces. Moreover, we scored the mutations based on the weight derived from 

BLOSUM 62, assuming that the higher the conservation, the lower the effect. We adopted a 

binary classification, where Qax-Ala = 0.1 indicates wild type coupling while Qax-Ala = 1 

indicates abolition of the allosteric coupling. 

In the first experiment, 23 mutants out of 90 did not have a measurable allosteric coupling 

(Qax-Ala = 1) index, since mutants were inactive, while the remaining ones had a Qax-Ala 

ranging from 0.014 to 0.590. Our group was the best performing one, achieving favourable 

correlations with ρ = 0.351 and τ = 0.299 (p-values = 0.002 for both), while the other 

predictors had p-values in the range of 0.17 – 0.88 (no correlation). The challenge was 

assessed using also the TPR, TNR, etc. scores while considering the experimental Qax-Ala 

values as binary data. We obtained: TPR = 17/23 = 0.739, TNR = 39/55 = 0.709, BACC = 

0.724. This was better than random and explained the positive correlation coefficients.  
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Figure 18. Prediction of the effect of the mutations near alanine on the L-PYK allosteric regulation 

(Experiment #1) The two bar plots report the experimental measures of Qax-Ala. Mutants abolishing allosteric 

coupling have Qax-Ala= 1, while mutants preserving the allosteric coupling to some extent have Qax-Ala ranging 

between 0.014 to 0.590 (Qax-Ala of the wild type protein is 0.08). The two panels highlight on the experimental 

distribution the fraction of residues predicted as A) abolishing (predicted Qax-Ala = 1) and B) preserving the 

allosteric coupling to some extent (predicted Qax-Ala = 0.1). Misclassified residues are reported.  

 

Figure 18 reports the distribution of the Qax-Ala values, with highlighted the fraction of 

residues misclassified. Considering our predictions, we had a perfect prediction for three 

mutated residues: R118 (15 mutations), H476 (5 mutations), P483 (1 mutation).  

For the other 6 mutated residues we had a percentage of wrong prediction in the range 8-

50%: R55 (10 mutations, 50% misclassified), S56 (8 mutations, 38% misclassified), N82 (8 

mutations, 50% misclassified), V481 (7 mutations, 43% misclassified), F482 (13 mutations, 

38% misclassified), F514 (12 mutations, 8% misclassified). Considering these results, the 

method used to address this task seems to work quite well. Given these results, it emerges that 

the use of the residues position in the predictions seems quite reasonable. However, what we 

have to better define seems the way to score the residue substitution. Here, we used the 

BLOSUM62 matrix. However, we should try other BLOSUM (or PAM) matrices, or 

completely different matrices such as the McLachlan chemical similarity matrix (McLachlan, 

1972). 

In the second experiment (the alanine scanning) we tested the same hypothesis. With the 

exclusion of 37 mutants for which Qax-Ala could not be measured, the remaining ones had a 
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Qax-Ala ranging from 0.01 to 0.49. We achieved a very weak positive correlations (all the other 

groups had negative correlation), with p-values ranging from 0.38 to 0.88. However, we have 

to admit that we erroneously classified some mutations as abolishing the allosteric coupling, 

and with the exclusion of our accidental mistake, the hypothesis partially works. 

 

10.5.3 Prediction of Qax- F-1,6-BP  

In the second experiment predictors were asked to predict the allosteric effect of Fru-1,6-

BP binding to L-PYK. Qax- F-1,6-BP values ranged from 0.5 to 320, with the vast majority of 

mutants having a Qax- F-1,6-BP values between 0 and 60. In this task, only our group achieved a 

positive correlation, even if it was very marginal (both ρ and τ ∼ 0.05, with p-value = 0.2). 

All other predictors had negative correlations. 

 

10.6 Conclusion 

In the context of cellular complexity, biological regulation by means of allostery plays a 

role in the definition and control of cellular pathways. Allostery take place when the binding 

of an effector molecule induces an effect on the main functional site of a protein. Whole 

protein site-directed mutagenesis experiments are often used to probe allosteric mechanisms 

(Carlson et al., 2016). Moreover, the development of computational methods for the 

prediction of allosteric sites and the effect of mutations on the allosteric mechanisms is of 

great interest, especially in allosteric drug design. 

The L-PYK experiment aimed at evaluating different strategies used to predict the effect 

of mutations on allosteric regulation while understanding their bottlenecks. For the prediction 

of allosteric effects of alanine and fructose, we had positive correlations for the Qax-Ala 

challenge in first experiment. Moreover, only our predictions were statistically significant. In 

the alanine scanning experiment, no one group had a statistically significant positive 

correlation for their predictions of the Qax-Ala and Qax-Fru-1,6-BP values. Our predictions of the 

allosteric effect of alanine and fructose considered the distance of the mutated residues from 

functionally important sites, while the severity of the mutation from wild type considered the 

scores of a substitution matrix. It is likely that we predicted many of the mutations that 

abrogated Ala binding altogether (Qax-Ala = 1), rather than quantitatively predicting the effect 

of the mutations on the diverse values of Qax-Ala of the remaining mutations (Qax-Ala < 1). 
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Given the performance of the same procedure over the alanine scanning dataset (mutations to 

alanine at 430 sites throughout the protein), it is not likely that our distance-based method 

would extend readily to the general problem of predicting allosteric effects, especially for 

residues not in or near the binding site (Xu et al., 2017). 

However, considering the results of our methods and the ones of the other predictors, it 

emerges that additional approaches are needed to decipher the biological complexity of 

allosteric regulation. 

 

11 CAGI4 exome challenges 

With the advent of Next Generation Sequencing technologies, the way to understand the 

human genome in health and disease drastically changed, moving toward the concept of 

genomic/personalized medicine: the use of an individual patient's genotypic information in his 

or her clinical care (Manolio et al., 2013). Whole genome or whole exome sequencing 

approaches have now become routine in the identification of causative variants (Iglesias et al., 

2014). However, the interpretation of genetic data is still one of the major difficulties in the 

implementation of precision medicine (Fernald et al., 2011).  

To evaluate the methods aimed at interpreting genomic variants, three challenges involved 

making predictions using exome sequence data at CAGI4: the Crohn's disease challenge, the 

bipolar disorder challenge and the warfarin dosing challenge (Daneshjou et al., 2017).  

In the next paragraphs I introduce the methods and the results we obtained when 

addressed the Crohn's disease and bipolar disorder challenges. 

 

11.1 Crohn’s disease 

Crohn’s disease (CD; OMIM #266600) is a chronic idiopathic inflammatory bowel 

disease (IBD) condition characterized by skip lesions and transmural inflammation that can 

affect the entire gastrointestinal tract, from the mouth to the anus (Feuerstain et al., 2017). 

Several twin-based, family-based, candidate gene and genome wide association studies have 

provided evidences about the involvement of genetic factors for the expression CD (Liu et al., 

2014).  Moreover, accumulating evidences suggest that the immune tolerance to the normal 

intestinal bacteria is disturbed in the genetically susceptible individuals (Cho et al., 2008). 
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Even if the exact causes of CD are unknown, what emerged till now is a complex interplay 

between environmental factors, including the intestinal microbiota, and the host immune 

mechanisms in genetically susceptible individuals (Franke et al., 2010). 

 

11.2 Bipolar disorder 

Bipolar disorder (BD) is a severe brain disorder that causes unusual shifts in mood 

characterized by episodes of mood elevation (mania) and depression, interspersed with 

periods of euthymia. Moreover, the disease is associated with a significant mortality, with 

high rates of suicides and medical comorbidities (Sagar et al., 2007). Despite a complex 

etiology, family-based and twin based genetic studies have provided evidences about the role 

of genetic factors for the expression of BD (Smoller et al., 2003). Moreover, genomic-based 

and genome wide association studies have identified several genes robustly associated with 

BD (Goes et al., 2016). 

 

11.3 Datasets 

11.3.1 Crohn's disease  

Predictors were provided a dataset of 111 unrelated German ancestry exomes (64 cases, 

47 controls) sequenced by using an Illumina HiSeq2000 instrument. Data providers processed 

the data as following: i) sequenced reads were mapped to the human genome build hg19 and 

2) variants were called for all the 111 exomes together using the Genome Analysis Toolkit 

(GATK v. 3.3-0, McKenna et al., 2010) Haplotype Caller. Variant calls were restricted to the 

TruSeq exome target. GATK was also used in the variant quality score recalibration steps. 

Only high-quality variants passing the filters were retained, for a total of 247,537 variants.  

In addressing this challenge, predictors were invited to use the CD datasets released in 

previous CAGI editions for calibrating their methods (CAGI2 and CAGI3). In training our 

method, we made use of the CAGI3 dataset. It comprised 66 German ancestry exomes: 51 

cases and 15 controls. The TruSeq exome bed file was used for combined variant calling for 

all the 66 exomes using the GATK program. GATK was also used in the variant quality score 

recalibration steps. A total 202,691 of genomic variants were called. In this dataset part of the 

samples were related. In fact, some cases were selected from pedigrees of families with 

multiple occurrences of CD. Controls samples were mostly unrelated healthy individuals, 
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except for the unaffected parents of three cases and the unaffected twin of one case 

(Daneshjou et al., 2017).  

 

11.3.2 Bipolar disorder 

Predictors were provided a processed dataset of 1,000 exomes of unrelated bipolar 

disorder cases and age/ancestry-matched controls of Northern European ancestry. Samples 

were sequenced using an Illumina HiSeq2000 machine. The NimbleGen SeqCap EZ v2.0 

Exome arrays with ~3.4 Mb additional custom target for promoter, UTR, and intronic 

information of 1,422 synaptic genes and 60 genes previously associated with BD were used 

for target capture (Daneshjou et al., 2017). Data provider processed the data as following: 1) 

sequenced reads were mapped to the human genome build hg19 and 2) variants were called 

for all the 1,000 samples together using the GATK Unified Genotyper. Only high-quality pass 

variants were retained. The data providers discarded variants with more than 10% of un-called 

genotypes or in Hardy-Weinberg disequilibrium at p-value < 1×10-6, as well as specific 

genotype calls with read depth < 10 or genotype quality < 20. A total of 501,253 genomic 

variants were provided. The organizers divided the dataset into halves: 500 exomes for 

training, and 500 exomes for the prediction challenge. 

 

11.4 Methods 

The method we implemented for both challenges is based on the assumption that 

individuals affected by a disease carry harmful variants in specific candidate genes. We 

performed an ab-initio search for candidate genes associated to Crohn (CD) and Bipolar 

disorders (BD), separately, by using the two provided training dataset. The candidate gene 

extraction procedure, consisted of three major steps: 1) data processing, 2) variant annotation 

and 3) gene selection. Details are given in the next subsections. 

 

11.4.1 Data quality assessment 

In each dataset, genomic variants were retained provided that the corresponding genomic 

position was covered at least in the 90% of the samples and with a genotype quality ≥ 20. In 

the case of CD, we retained only genomic variations fulfilling the same requirements in the 

CAGI4 dataset comprising the genomes to be classified. 
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11.4.2 Variant/gene annotation 

The effect of genomic variants on gene products were annotated with the Variant Effect 

Predictor (VEP; McLaren et al., 2016). We retained only variants promoting frameshifts, 

stop-gains or losses and residue changes (missense variants).  

For each sample, we marked a gene as disease-related if it carried at least one variant in 

homozygous form (recessive variants) for the alternative genotype. We built a matrix in 

which, for each individual, genes were labelled either as 0 (indicating a wild type gene) or 1 

(presence of a potentially harmful mutation). 

In order to better score the potential harmfulness of missense variants we adopted SNPs&GO 

(Calabrese et al., 2009). Briefly, SNPs&GO is a support vector machine based method that 

uses different pieces of information, derived from protein sequence, protein sequence profile, 

and protein function (GO annotations) to predict if a given mutation can be classified as 

disease-related or not. For each prediction, the probability of being disease-related is used to 

compute the reliability score. In our analyses we retained all the missense variations predicted 

as disease-related, independently of the reliability score.  

We built a second binary matrix not considering missense variations predicted as neutral. 

 

11.4.3 Gene selection 

Candidate genes were identified on the basis of the percentage of healthy and sick persons 

carrying potentially harmful variants, considering the two different matrices defined in the 

previous section. In both cases, two thresholds have been set: the minimum percentage of sick 

(%S) and the maximum percentage of healthy (%H) variant-carriers. 

 In order to fix the thresholds, we carried out a k-fold (k=3 for CD and k=5 for BD) cross-

validation (k-CV) procedure. Briefly, the training dataset was divided in k equal size subsets: 

a single subset was used as testing set, while the remaining k-1 subsets were used as training 

data. This process was repeated k times: each one of the k subset was used exactly once as 

testing set. 

In each cross-validation round, a grid search on the parameters %S and %H was performed. A 

total of 80 points were sampled with %S ranging from 1 to 80 and %H ranging between 0 and 

80. Each pair of values allowed to select a set of genes fulfilling the requirements in the 
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training set. Genomes in the training set were then sorted according to the number of selected 

genes carrying mutations. The discrimination power of each selected set of genes was 

assessed with a Receiver Operating Characteristic (ROC) Curve Analysis and the best pair of 

thresholds (%S and %H) was accordingly retained. Testing sets were adopted only to evaluate 

the discriminative performance (as reported in Table 9 and Table 10, row 4)  

Briefly, the ROC curve analysis shows the trade-off between the true positive rate (TPR) and 

false positive rate (FPR) as one changes the criterion for positivity, in this case the number of 

selected genes carrying mutations in the genome (Hajian-Tilaki et al., 2013). The Area Under 

the Curve (AUC) was used as evaluation. A perfect predictor gives an AUC score equal to 1 

while a random predictor is characterized by an AUC of 0.5.  

Each cross-validation fold retrieves different threshold pairs and, consequently, different 

gene sets. When building the final classificatory, two different merging criteria were adopted: 

1) using as candidate genes the union of the k sets (herein called “union set”) or 2) using as 

candidate genes only the genes shared among the k sets (herein called “intersection set”). 

Predictions on the challenge set, for both the disorders, were computed by counting the 

number of mutated interesting genes. A total of four different submissions were done since 

two training datasets (SNPs&GO based or not) and two ways to select genes (union or 

intersection sets) were adopted. For each individual and for each prediction method, a 

probability value for the disease was predicted by evaluating the ratio of mutated genes 

among the candidate set. 

 

11.4.4 Assessors evaluation 

Assessors evaluated the predictions by using the ROC analysis, by testing the robustness 

of the prediction accuracy when making predictions on different subsamples of exomes and 

by assessing the confidence intervals reported by the participants. To capture confidence 

intervals on the predictions, Monte Carlo sampling was adopted: each prediction was then 

modified by adding a random value drawn from a normal distribution with a mean of zero and 

a standard deviation equivalent to that reported by the predictors. If no confidence interval 

was reported for the original prediction, the standard deviation was taken to be zero. If a 

prediction for a particular exome was missing, the prediction score for that sample was set to 

the mean reported prediction value in that submission. In order to compare submissions by a 

single figure of merit, the average area under the ROC curves from the bootstrap sampling 
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was used, accompanied by the bootstrapped confidence interval around that area under the 

curve, to estimate the robustness of differences between prediction performances (Daneshjou 

et al., 2017).  

 

11.5 Results 

14 and 9 groups submitted predictions for the CD and BD exomes challenges, 

respectively. In addressing these challenges, participants made use of many different methods, 

and in general the same method was applied in solving both the challenges. Groups used 

specific disease related variant/gene sets (as retrieved from genome-wide association studies 

or from genomic catalogues) or predicted variant/gene sets. A range of machine learning 

approaches were used to build the classifiers: naïve Bayes, logistic regression, neural nets, 

and random forests. The detailed explanation of the different approaches is reported in 

Daneshjou et al., 2017.  

The method we developed was aimed at identifying a disease related gene set able to 

discriminate between sick and healthy individuals. One of the two procedures we devised 

relied on SNPs&GO, a pathogenicity prediction tool based on different information derived 

from protein sequence, protein sequence profile, and protein function. In the following sub-

chapters, I will discuss the results obtained by our methods. 

 

11.5.1 Crohn’s disease exome challenge.  

Given a set of 111 exomes (247,537 genomic variants), predictors were asked to identify 

which individuals had Crohn's disease and which ones were healthy. 

To address this challenge, we developed a method that used the CAGI3 datasets as 

training dataset. In this dataset, case samples (n. 51) were collected from German families 

with a particularly high burden of Crohn's disease (two or more affected family members), 

including a pair of twins discordant for the disease, and another pair of concordant twins. 

Additional healthy controls were drawn from the unaffected German general population 

(Daneshjou et al., 2017). During the evaluation of the CAGI3 Crohn's disease challenge, 

assessors evidenced a substantial difference in clustering between cases and controls, thus we 

decided to operate with an unbiased dataset by excluding the 8 control samples clearly 

clustered together apart. In fact, when implementing our prediction procedure with the whole 
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set of 66 exomes (data not shown) we were always able to clearly discriminate that 8 controls, 

while the remaining 7 controls were more challenging (data not shown). The samples we used 

in training were 58: 51 cases and 7 controls. Moreover, before implementing the 

discrimination procedure we restricted our analyses to only those genomic variants shared 

between the CAGI3 and CAGI4 datasets. The two datasets had in common a total of 22,985 

genomic variants 

The VEP based annotation procedure ended up with a dataset of 58 samples and 22,587 

harmful variants (0 frameshift, 219 stop-gain, 41 stop-loss and 22,327 missense variants). 

SNPs&GO annotations were available for 16,733 variants, of which a small fraction of 824 

variants were predicted as disease related.  

In each sample, we labelled a gene as disease related if it carried at least one harmful 

variants in the homozygous form. By indicating with 0 a non-mutated gene, and with 1 a gene 

carrying the homozygous alternative form of harmful variations, we ended up with a 58 

samples × 9,029 genes binary matrix. In one of the two methods we developed, missense 

variants were considered harmful only if predicted as disease related by SNPs&GO A second 

binary matrix was built by considering the information of SNPs&GO. In this case we had a 

binary matrix of size 58 × 7,077 genes. 

The two matrices were used separately in the gene selection procedure. In this step, we 

adopted a 3-CV procedure. The three subsets were composed each one by 17 case and 2-3 

control individuals, randomly selected.  

 

Table 9. Crohn’s disease. Parameters and performance of the methods. 

  With SNPs&GO Without SNPs&GO 

 Union Intersection Union Intersection 

% of the healthy samples  <25% <25% <25% <25% 

% of the sick samples >25% >25% >25% >25% 

n. of selected genes 122 21 667 201 

AUC testing 0.95 0.98 0.99 0.99 

AUC 111 exomes 0.41 0.44 0.45 0.44 

AUC* 111 exomes 

(LCL, UCL)  

0.47  

(0.46, 0.48)  

0.46  

(0.45, 0.47) 

0.50  

(0.49, 0.51) 

0.46 

(0.45, 0.47) 

*The average area under the ROC curves from the bootstrap sampling is presented (LCL: lower confidence limit, 

UCL: upper confidence limit). Confidence level was set at 0.95. 
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The selection procedure aimed at identifying a gene set maximizing the AUC score while 

considering the percentage of the sick and healthy sub-populations carrying the mutated gene 

under evaluation. By adopting a 3-CV procedure, 3 gene sets were returned. We tested the 

ability to discriminate of both the union and the intersection of the gene sets (the combination 

and the intersection of the 3 gene lists, respectively). For each implementation, Table 9 lists 

the parameters and the performance obtained during the training phase. 

The four interesting gene sets were then used to predict the health status of the 111 

samples. Evaluations are presented in Table 9. Despite the good AUC score obtained in 

training (AUC 0.95 – 0.99), on the CAGI4 dataset all the four models did not performed as 

expected (AUC 0.41 – 0.44). Possible causes of a near random prediction could be attributed 

to the low number of controls used during the training phase (and the imbalance of the 

training dataset itself). 

Among the 14 participating groups, the top performing group reached an average area 

under the ROC curve of 0.65 by using a Naïve Bayes model incorporating information from a 

set of GWAS loci.  

 

11.5.2 Bipolar disorder exome challenge.  

Given a set of 500 exomes (501,203 genomic variants), predictors were asked to identify 

Bipolar and healthy persons. A dataset of 500 exomes with known healthy status (249 cases 

and 251 controls) was provided as training dataset. 

The quality check of all the 1,000 exomes did not discard any sample. The VEP based 

annotation procedure ended up with a dataset of 1,000 samples and 182,166 harmful variants 

(0 frameshift, 3,975 stop-gain, 168 stop-loss and 178,023 missense variants). SNPs&GO 

annotations were available for 19,019 missense variants, of which a small fraction of 14,955 

were predicted as disease related.  

In each sample, we labelled a gene as disease related if it carried at least one harmful 

variants in the homozygous form. By indicating with 0 a non-mutated gene, and with 1 a gene 

carrying the homozygous alternative form of harmful variations, we ended up with a 500 

samples × 17,940 genes binary matrix. In one of the two methods we developed, missense 

variants were considered harmful only if predicted as disease related by SNPs&GO A second 
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binary matrix was built by considering the information of SNPs&GO. In this case we had a 

binary matrix of size 500 samples × 7,746 genes. 

The two matrices were used separately in the gene selection procedure. In this step, we 

adopted a 5-CV procedure. It is worth to note that a substantial difference between the CD 

challenge and the BD challenge relied on the amount of training data provided: for the bipolar 

disorder challenge 500 of the 1,000 exomes were randomly selected and provided as training 

data. Thus, in this challenge we built five more informative and well-balanced subsets each 

one composed by 49-50 cases and 50-51 controls individuals, randomly selected.  

By adopting a 5-CV procedure, 5 gene sets were returned. We tested the ability to 

discriminate of both the union and the intersection of the gene sets (the combination and the 

intersection of the 5 gene lists, respectively). For each implementation, Table 10 lists the 

parameters and the performance obtained during the training phase. 

All the models reached a quite good AUC score (0.71 – 0.82) in training. However, on the 

blind CAGI4 dataset, all them did not performed as expected (AUC 0.56 – 0.58). The best 

performance, with an AUC ~ 0.6, was reached by the models incorporating the genomic 

variants predicted as disease-related by SNPs&GO. However, when evaluated with average 

area under the ROC curve, a random predictor emerged.  

 

Table 10. Bipolar disorder. Parameters and performance of the methods. 

  With SNPs&GO Without SNPs&GO 

 Union Intersection Union Intersection 

% of the healthy samples  <1% <1% <1% <1% 

% of the sick samples >1% >1% >1% >1% 

n. of selected genes 1,047 393 1,006 506 

AUC testing 0.79 0.82 0.71 0.74 

AUC 500 exomes 0.58 0.58 0.56 0.56 

AUC* 500 exomes 

(LCL, UCL)  

0.51  

(0.50, 0.52)  

0.51  

(0.50, 0.52) 

0.52  

(0.51, 0.52) 

0.52  

(0.51, 0.52) 

*The average area under the ROC curves from the bootstrap sampling is presented (lower confidence limit, 

upper confidence limit). Confidence level was set at 0.95. 
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Among the nine participating groups, the top performing one reached an average area 

under the ROC curve of 0.60by implementing DeepBipolar, a Deep Convolutional Neural 

Network (DCNN) based tool (Laksshman et al., 2017). 

 

11.6 Conclusion 

The use of patient's genotypic information is rapidly changing the way in which molecular 

knowledge is translated into health care, allowing the practice of genomic/personalized 

medicine. In this context, the exome challenges proposed in the CAGI4 experiment were 

aimed at identifying sick and healthy individuals based on exome sequencing data.  

Several predictors joined the challenges, taking advantage from different data and 

computational methods. In addressing the Crohn’s and Bipolar challenges, we build a very 

simple method that exploited the frequency of harmful mutations in the populations under 

investigation. Moreover, our method took advanced of SNPs&GO to classify a gene as 

disease-related (or not). However, despite the different variations of the method, the 

classifiers we built had a very poor performance. 

Generally speaking, the methods that predictors applied in the CAGI4 edition were far 

apart from of being perfect classifiers. Even if some of those reached an AUC > 0.7 

(Daneshjou et al., 2017), the obtained results highlighted the fact that a lot of work is still 

necessary in the field of genomic/personalized medicine. 

 

12 General conclusions 

The functional interpretation of biological datasets (genes, proteins, metabolites, …)  is 

not a trivial task. The cell is a complex entity: the different layers of information (the gene 

space, the protein space, the metabolite space, …) constantly “interact” and determine each 

other, in a non-unidirectional way. Thus, only by taking in consideration these interactions we 

can understand what is going on at the functional level. Practically speaking, we have to 

integrate data.  

In this thesis, I described different methods for dissecting cell complexity: NET-GE, 

NET-GEM and eDGAR. All the tools integrate data to better disclose functional processes at 

the basis of a phenotype. NET-GE relies on the STRING interactome to enhance the 
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understanding of the functional features of a set of genes as derived from the GO, KEGG and 

REACTOME resources; NET-GEM aims at interpreting metabolomics data by using the strict 

relationships among metabolites, genes and proteins as derived from the HMDB and STRING 

resources; eDGAR collects human gene-disease associations as derived from different 

sources: OMIM, ClinVar, and Humsavar. To functionally characterize the diseases, eDGAR 

relies on interaction data (as derived from BIOGRID, STRING and TRRUST) and on NET-

GE. Because of the unavailability of appropriate benchmark datasets, a rigorous evaluation of 

enrichment methods is not possible. However, the functional enrichments recovered with 

NET-GE have disclosed in different case studies relevant and non-trivial associations between 

phenotypes and molecular functions/pathways. In some case we were also able to mine 

PubMed for experimental evidences described in the available scientific literature. The 

functional terms retrieved by NET-GE and NET-GEM resulted coherent with the investigated 

phenotypes, highlighting the efficacy of the methods in dissecting biological complexity by 

means of integrated data.  

This thesis also describes my activities in the context of the CAGI experiment: a 

community experiment aimed at assessing computational methods for predicting the 

phenotypic impacts of genomic variants. Different challenges were proposed in the CAGI4 

edition. I joined three of them: two challenges regarded the prediction of the health status of 

individuals form their exome variants (the Crohn’s and Bipolar challenges), and one challenge 

related to the evaluation of the functional effect of mutations on the activity and allosteric 

regulation of the human pyruvate kinase. In addressing the challenges, ad hoc computational 

methods were built. The exome challenges took advantage of SNPs&GO to identify genes 

potentially discriminating sick from healthy persons. The L-PYK challenge relied on the 

BLOSUM62 matrix to score the effect of mutations on the L-PYK allosteric regulation. We 

did not make use of other data except the provided ones. We obtained remarkable results in 

the L-PYK challenge. In the case of exome challenges the results of the community 

experiment are generally poor (in particular for Bipolar disease) suggesting that the analysis 

of the genotype is still not sufficient to achieve a complete understanding of complex traits. 

This consideration strengthens the hypothesis that an effective analysis of complex 

phenotypes requires the integration of data describing the different components of the 

biological hierarchies. To this aim, Bioinformatics and Computational Biology play 

determinant roles, for the development of tools able to connect different levels of information, 

as NET-GE, NET-GEM and eDGAR. 
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14  Supplementary Material 

 

Table S1. de novo mutation identified as characterizing the OCD cohort.  

Sample Gene Variant effect Substitution Detection* 

OCD016301 SNUPN Missense D255E Both 

OCD018901 ATP2B2 Missense I1084T Both 

OCD018901 DNAJC19 Silent R83R SAMtools 

OCD032201 CYP27A1 Silent P61P SAMtools 

OCD032201 WWP1 Missense I310M Both 

OCD032201 ERCC6 Nonsense K1210X Both 

OCD032201 GANAB Silent L311L SAMtools 

OCD129101 CCDC108 Missense E484K Both 

OCD129101 BANK1 Missense K633M Both 

OCD129101 MYO10 Missense E199K Both 

OCD139801 GBP4 Silent T363T SAMtools 

OCD139801 FAM5B Missense NA Both 

OCD139801 CR1 Missense S1748R Both 

OCD139801 SGPP2 Silent P303P SAMtools 

OCD144601 ACCN4 Silent X667X SAMtools 

OCD144601 VCX2 Missense A70G Both 

OCD175901 CIITA Silent D1058D SAMtools 

OCD175901 AP1G1 Missense K155E Both 

OCD181401 BAMBI Missense V260I Both 

OCD176501 NDE1 Missense A986C GATK 

OCD018901 SMAD4 Missense W302R GATK 

OCD020001 MUC5B Missense A4261E GATK 

OCD003301 ARHGAP6 Missense S134F GATK 

OCD043301 CHD8 Missense E1327K GATK 

OCD048501 ABCE1 Missense P243A GATK 

OCD048501 SLC35G5 Missense S114N GATK 

OCD048501 SAA2 Missense K102E GATK 

*To ensure the discovery of the maximum number of SNPs, authors used two different bioinformatic pipelines to 

call SNPs. In the first pipeline, BWA v.0.7.10 (option “aln”) was used to align the reads against the human 

reference genome built 37. Aligned reads were trimmed to the exome target, PCR duplicates were removed 

using SAMtools and SNPs were called by using the SAMtool option “pileup” (default parameters). In the second 

pipeline, alignment and variant calling followed the GATK v3 guidelines. Reads were aligned using BWA 

(option “MEM”) and PCR duplicates were marked using Picard v.1.118. GATK v.3.2.3 was used to realign 

INDELS, recalibrate the quality scores and for SNP calling. To be called, at least 8 unique reads supporting each 

SNP were required. Data are taken from Cappi et al., 2016. 
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Table S2. Metabolic set involved in Parkinson’s disease. Data are from Kori et al., 2016. 

Metabolite KEGG ID Status Tissue Technique 

Acetate C00033 Decreased Plasma 1H-NMR 

N-acetyl-L-aspartate C01042 - S. Nigra MRS 

Alanine C01401 Decreased CSF 1H-NMR 

γ-aminobutyric acid C00334 Increased S. Nigra 3D-MRI 

Arginine C02385 Decreased Serum 1H-NMR 

Ascorbate C00072 Decreased Plasma 1H-NMR 

Asparagine C16438 Decreased 

increased 

Serum/CSF/blood CE-MS/UPLC-ToF-MS 

Aspartate C16433 Increased CSF 1H-NMR 

Choline C00114 Decreased S. Nigra DIES-MS 

Citrate C00158 Decreased Plasma 1H-NMR 

Creatine C00300 Decreased S. Nigra 3D-MRI 

Creatinine C00791 Decreased CSF GC-ToFMS 

Cystine C01420 Decreased Plasma LC-QToF-MS 

Dopamine C03758 Decreased S. Nigra 3D-MRI 

Ethanolamine C00189 Decreased Plasma 1H-NMR 

Fatty acids C00162 Increased Serum DIES-MS 

Galacticol C01697 Decreased Plasma 1H-NMR 

Gluconate  C00257 Decreased Plasma 1H-NMR 

Glutamic acid C00302 Decreased Plasma LC-QToF-MS 

Glutamate C00025 Decreased 

Increased 

CSF/plasma 1H-NMR 

L-glutamine C00064 Decreased CSF 1H-NMR 

Glutarate C00489 Decreased Plasma 1H-NMR 

Glutathione C00051 Decreased S. Nigra 3D-MRI 

Glycine C00037 Increased CSF 1H-NMR 

Glycolate C00160 Decreased Plasma 1H-NMR 

Glycerol C00116 Decreased Plasma 1H-NMR 

24S-hydroxycholesterol 

(24S-OH) 

C13550 Decreased Plasma GC-MS/GC-ToFMS 

3-hydroxyisovaleric 

acid 

C01013 Decreased CSF GC-ToFMS 

Homovanillic acid C05582 Increased S. Nigra 3D-MRI 

Isoleucıne C16434 Increased Serum 1H-NMR 

Isocitrate C00311 Decreased Plasma 1H-NMR 

Lipid hydroperoxides C01025 Increased Plasma Chemiluminescence 

Lysine C16440 Decreased CSF 1H-NMR 

Malate C00149 

C00711 

Decreased Plasma 1H-NMR 

Malondialdehyde 

(malonaldehyde) 

C19440 Increased Plasma HPLC 

Methionine C01733 Decreased Serum/PMV-CSF 1H-NMR/LCECA 

Methylamine C00218 Decreased Plasma 1H-NMR 

Methylmalonate C02170 Decreased Plasma 1H-NMR 

Myoinositol C00137 Decreased 

Increased 

S. Nigra/plasma 3D-MRI/1H-NMR 

2-oxoisocaproate 

(ketoleucine) (4-methyl-

2-oxopentanoat) 

C00233 Increased Plasma GC-ToFMS 

Proline C16435 Increased Plasma LC-QToF-MS 

Propylene glycol C00583 Increased Plasma 1H-NMR 

Pyroglutamate C01879 - Plasma GC-ToFMS 
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Pyruvate C00022 Increased Plasma 1H-NMR/ UHPLC-MS-

MS 

Sorbitol (glucitol) C00794 Increased Plasma 1H-NMR 

Suberate C08278 Decreased Plasma 1H-NMR 

Succinate 

(unmedicated) 

C00042 Decreased Plasma 1H-NMR 

Superoxide dismutase K04564 Increased Plasma HPLC 

Threonate C01620 Decreased Plasma 1H-NMR 

Trimethylamine C00565 Decreased Plasma 1H-NMR 

Tryptophan C00078 Decreased CSF GC-ToFMS 

Uric acid C00366 Decreased Plasma Uricase 

Urinary biopyrrin C00486 Increased Urine ELISA 

Valine C16436 Increased Serum 1H-NMR 
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Abstract

Motivation: Gene enrichment is a requisite for the interpretation of biological complexity related to

specific molecular pathways and biological processes. Furthermore, when interpreting NGS data

and human variations, including those related to pathologies, gene enrichment allows the inclu-

sion of other genes that in the human interactome space may also play important key roles in the

emergency of the phenotype. Here, we describe NET-GE, a web server for associating biological

processes and pathways to sets of human proteins involved in the same phenotype

Results: NET-GE is based on protein–protein interaction networks, following the notion that for a

set of proteins, the context of their specific interactions can better define their function and the

processes they can be related to in the biological complexity of the cell. Our method is suited to ex-

tract statistically validated enriched terms from Gene Ontology, KEGG and REACTOME annotation

databases. Furthermore, NET-GE is effective even when the number of input proteins is small.

Availability and Implementation: NET-GE web server is publicly available and accessible at http://

net-ge.biocomp.unibo.it/enrich.

Contact: gigi@biocomp.unibo.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Big Data production in biomedicine is rapidly changing the way in

which molecular knowledge is translated into health care (Bender,

2015). The spread and establishment of High Throughput Sequencing

(HTS) technologies allows retrieving lists of interesting variations

characterizing the investigated phenotype. In the context of functional

genomics, each phenotype needs annotations for reconciling vari-

ations with known and putatively common biological processes and

pathways, such as Gene Ontology (GO Consortium, 2015), KEGG

(Kanehisa et al., 2016), REACTOME (Fabregat et al., 2016). At this

level of biological complexity, a set of genes and their variations can

acquire biological meaning and feature annotation only with an

enrichment procedure (Laukens et al., 2015). Enrichment helps in

identifying within a set of genes some statistically significant and

over-represented annotation features. Standard enrichment methods

rely on the statistical over representation of the annotations that

characterize the genes in the input set. Alternatively, network-based

approaches extract graph properties from different interaction net-

works and pathways for modelling the complexity of the processes

occurring in the cell and exploit this information for accomplishing

the annotation enrichment in the context of protein functional inter-

action. Lists of web sites are available (Huang et al., 2009; Laukens

et al., 2015; Mooney and Wilmot, 2015). Here, we introduce NET-

GE, a web server that implements our method (Di Lena et al.,

VC The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 3489

Bioinformatics, 32(22), 2016, 3489–3491

doi: 10.1093/bioinformatics/btw508

Advance Access Publication Date: 2 August 2016

Applications Note

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/32/22/3489/2525624
by guest
on 14 December 2017

http://www.oxfordjournals.org/
Deleted Text: ; Huang <italic>et<?A3B2 show $146#?>al.</italic>, 2009


2015), based on the extraction of subnetworks connecting proteins

that share the same functional terms from a protein–protein inter-

action (PPI) network (Szklarczyk et al., 2015). Differently from

other methods also based on networks, our approach extracts mod-

ules that are function-specific by constructions and include all the

seeds (proteins annotated with the same term) that in the PPI net-

work are related to a specific functional annotation. One peculiarity

of NET-GE is the possibility to enrich terms that are not present in

the annotation of the starting protein set (and thus not detectable

through a standard enrichment). When tested on the OMIM-derived

benchmark sets, NET-GE is able to enrich sets of genes related to

the same disease with biologically meaningful terms neglected by

other methods (Di Lena et al., 2015). The server, in addition, allows

annotation based on KEGG and REACTOME pathways and a com-

parison between standard and network based enrichment.

2 NET-GE

NET-GE includes precomputed subsets of proteins associated to

each functional terms of interest (Di Lena et al., 2015). Subnetwork

construction is based on the human interactome map downloaded

from STRING (release 10.0, http://string-db.org/), or from a filtered

version that retains only links with a score�0.9. Presently STRING

includes 15,632 nodes (mapping 18 721 HGNC gene names, http://

www.genenames.org/ and 89 085 UniProtKB identifiers) and

307 413 links (in the high quality STRING 0.9 version nodes and

links are 9422 and 80 112, respectively).

In the present implementation of NET-GE, annotations are how-

ever available for all the 104 569 UniProtKB identifiers (release

2016_01), corresponding to 22 390 genes. The databases for anno-

tating features are GENE ONTOLOGY (from UniProt-GOA human

145 resource, http://www.ebi.ac.uk/GOA); KEGG PATHWAY

(release 77.0, http://www.genome.jp/kegg/pathway.html); REACTOME

PATHWAY (release 53, http://www.reactome.org/). Redundancy

among terms is not taken into consideration.

When generating the annotating subnetworks, for each annota-

tion term we collect the seeds and evaluate the quality of the con-

necting nodes among seeds (for more details, see Supplementary Fig.

1S). After constraining seed distance, we determine the subset asso-

ciated to a specific annotation term by retaining the minimal con-

necting subnetwork (Di Lena et al., 2015). Considering STRING,

NET-GE presently includes 20 391 annotation subsets (see http://

net-ge.biocomp.unibo.it/enrich/statistics), 14 845 of which contain

from two to 10 700 genes. The number of genes per subset is inversely

proportional to the information content and the most informative

terms correspond to small networks (Fig. 1).

The server implements both a standard and a network-based gene

enrichment. Given a gene/protein list, each gene/protein is located in

the different subsets of the annotation database. With a Fisher’s exact

test, the method estimates the overrepresentation significance of input

genes/proteins in each precomputed subset for the corresponding an-

notation term. Standard enrichment includes only annotations of seed

nodes; network-based enrichment includes seeds and their connecting

nodes. For multiple testing correction, we use both the Bonferroni and

the Benjamini-Hochberg (False Discovery Rate, FDR) procedures and

evaluate a corrected p-value (Noble, 2009). Updating of the system,

including human interactome and annotation databases is planned

once a year, following the major releases.

2.1 Web server
NET-GE Web interface accepts UniProtKB Accession Numbers,

Ensembl and HGNC gene names. The end user can select: (i)

annotation modules based on STRING or STRING 0.9; (ii) the an-

notation (GO terms, KEGG, REACTOME); (iii) the multiple testing

correction methods (Bonferroni or the Benjamini-Hochberg correc-

tion); (iv) the significance threshold.

The output lists two enrichment tables: one for the standard and

one for the network-based method (see the online tutorial for more

details). Each table contains the annotation term identifier, linked to

the corresponding database; the number and the list of input genes/

proteins associated to the term; the P-value of the association; the

description of the term and for the network based enrichment a visu-

alization of the subnetwork. Enriched terms not included in the an-

notations of the input gene/protein are highlighted with a double

star (see on line tutorial). It is also possible to access the complete

set of annotations (for both the enrichment modes) of the submitted

genes/proteins through the link provided at the bottom of the page.

The front-end for the Web server follows the Model-View-

Controller (MVC) paradigm, thanks to the web2py framework

(http://www.web2py.com/), and it is optimized to work with all

common web browsers. The analysis runs asynchronously: after

submitting the query, the server displays a bookmarkable page re-

porting the status of the job. This page is periodically updated. A

link to the results, accessible as soon as the job is completed, is given

to the user. The final visualization of the results exploits the

Graphviz library (http://www.graphviz.org/) and the JavaScript

Fig.1. Dimension of subsets (number of genes) as a function of the informa-

tion content for the Gene Ontology terms of the three main roots. The infor-

mation content (in bits) is computed adopting standard methods (Shannon,

1948)
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library d3.js (http://d3js.org/). The user can also provide an e-mail

address used to alert her/him as soon as results are ready. Running

time depends on size of the input set (from two up to 200 genes) and

ranges about 1–5 min.
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ABSTRACT

Gene enrichment analysis is a common technique
for highlighting molecular pathways and biological
processes of a phenotype. Such technique has
recently evolved exploiting the information contained in
biological networks. We developed NET-GE, a web
server for network-based gene enrichment analyses.
NET-GE defines functional associations between a list
of genes/proteins and biological processes or pathways
by identifying function-specific modules in a molecular
interaction network. The peculiarity of NET-GE is the
possibility to enrich terms not detectable by standard
enrichment procedure. Here, we highlight with two
specific applications the performances of NET-GE
by computing which functional phenotypes can be
associated with two different sets of genes related
to Attention Deficit Hyperactivity Disorder and to an
Obsessive-compulsive disorder, respectively.

KEYWORDS

Gene enrichment analysis; network-based gene
enrichment analysis; functional association

INTRODUCTION

Technologies capable of investigating the organism
complexity at different levels of resolution have been
revolutionizing healthcare practice [1]. Genomic data
are generated more and more to better define, at
molecular levels, the origin of the different phenotypes.
From a precision/genomic medicine prospective, such
phenotypes need annotations in order to reconcile
specific variations with common biological processes
and pathways, such as GENE ONTOLOGY [2],
KEGG [3] and REACTOME [4] pathways. For this
purpose, functional association is routinely performed
by applying gene enrichment analysis, a technique that
assesses the statistically over-represented biological
processes and pathways of a given gene/protein set [5].

Presently, enrichment analysis methods mainly
group into two classes, standard and network-based.
While standard methods rely only on the annotations
characterizing the genes/proteins included in the input

set, network-based methods consider them in the
context of their interaction network. Thus, such methods
exploit information derived from functional biological
networks, modelling the complexity of the processes
occurring in the cell, and implement algorithms that
exploit graph properties (such as shortest paths and
node degrees).

In the last year, several approaches exploiting the
interaction networks for functional association analysis
have emerged (see [6–8] for a comprehensive list
of available tools). They may be classified into
two main categories: A) methods that exploit the
topology of the network to infer how similar are sets of
genes/proteins, and B) methods that identify functionally
related modules, inferring biological features from them.
Among the available tools that perform network-based
enrichment analysis, EnrichNet [9] and PINA v2.0 [10]
are two of the most cited methods, representative of the
A and B categories, respectively.

We recently developed NET-GE, a network-based
gene enrichment analysis tool [11, 12]. NET-GE falls
within the class B and it is based on a pre-processing
phase aimed at identifying interconnected and compact
modules in a molecular interaction network. However,
differently from all the other approaches in class B, the
modules found by our method are function-specific by
construction, since they are built starting from seed sets
collecting all the proteins related to a specific biological
annotation

One of the main features of NET-GE is the possibility
to enrich terms that are not originally present in the
annotation of the starting gene/protein set (and thus
not detectable through a standard enrichment). When
tested on benchmark sets retrieved from the Online
Mendelian Inheritance in Man (OMIM) resource (https:
//www.omim.org), NET-GE was able to enrich sets of
genes related to the same disease, also highlighting new
terms (i.e. terms not included in the annotations of the
input set) [11].

Here, we present two study cases, demonstrating how
NET-GE can help the interpretation and prioritization of
variations in sets of genes associated with two complex
disorders: the Attention Deficit Hyperactivity Disorder
(ADHD) and the Obsessive-compulsive disorder (OCD).
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METHODS

NET-GE background

The network-based enrichment makes use of
precomputed annotation terms, as previously
described [11]. Briefly, the human molecular-interaction
network was downloaded from STRING v.10
(http://string-db.org). A second version of
STRING, named STRING0.9, was obtained by retaining
only the links with the STRING combined score ≥ 0.9.
The database for annotating features were: GENE
ONTOLOGY (as retrieved from the UniProt-GOA human
145 web resource: http://www.ebi.ac.uk/GOA);
KEGG PATHWAY v77 and REACTOME PATHWAY v53.
For each annotating feature, proteins sharing the same
annotation term were collected in a seed set and then
extended into a compact and connected module of
the molecular-interaction network. Thus, the module
was determined by computing all the shortest paths
among the seeds genes/proteins and then by reducing
the resulting sub-network into the minimal connecting
network that preserves the distances among seeds.
The minimal connecting network adds to the seeds a
set of connecting nodes that are more reliably related
to the reference annotation. Details about annotations
and module extraction can be found in [11] and [12],
respectively.

Over-representation analysis is performed by mapping
the input set on each module and determining, through
a Fisher’s exact test, whether there are significant
overlaps between the input set and the modules (seed
sets in the case of standard enrichment). Multiple
testing correction is then applied using the Bonferroni
or the Benjamini-Hochberg (False Discovery Rate, FDR)
procedure [13].

When we consider the standard enrichment, the
background set is totally disconnected. On the contrary,
with the network-based procedure we rely on the human
interactome to precompute the annotation modules.
Enrichment is computed over a changed reference set
that includes also all the nodes connecting seeds with
the same annotation. This may change the p-value.

NET-GE web server

A web server, implementing both a standard and a
network-based gene enrichment was implemented as
described in [12]. Briefly, NET-GE Web interface takes
as input a list of genes/proteins (allowed identifiers
are: UniProtKB AC, Ensembl and HGNC gene names).
The enrichment can be performed considering the
annotation modules based on STRING or STRING0.9.
The enriched terms can derive from the GENE
ONOLOGY (all the sub-ontologies), or from the KEGG
or the REACTOME PATHWAYS. The user can select
between two kinds of multiple testing correction methods
(Bonferroni or the Benjamini-Hochberg correction), and
the significance threshold. As output NET-GE reports: 1)
two enrichment tables (one for the standard enrichment
and one for network-based one), 2) a graph visualizing
how the enriched terms are linked, and 3) the complete

set of annotations (for both the enrichment modes).
Terms not included in the annotations of the input
proteins are highlighted with a double star.

RESULTS

To test the performance of NET-GE we used sets of
proteins involved in Mendelian diseases [11]. We tested
244 different genetic disorders, each one associated to
two or more proteins. Our method was able to detect
functional associations not detectable by the standard
enrichment. Moreover, the newly enriched terms that
were absent in the original annotations of the input
genes are likely to provide new knowledge on the
phenotype under examination [11].

Here, we present two cases of study demonstrating
how NET-GE can help the interpretation and
prioritization of variations in sets of genes associated
with two complex disorders: the Attention Deficit
Hyperactivity Disorder and the Obsessive-compulsive
disorder.

Attention Deficit Hyperactivity Disorder

In the following, we deal with a specific test set (http:
//net-ge.biocomp.unibo.it/enrich/tutorial) that
includes two input proteins related to Attention Deficit
Hyperactivity Disorder (ADHD; OMIM #143465), a
neurodevelopmental disease of childhood affecting the
cognitive and behavioral functions. The genetic disease
is associated to variations in the dopamine receptors
DRD4 (UniProtKB AC: P21917) and DRD5 (UniProtKB
AC: P21918). Using as input the DRD4 and DRD5
genes, we carried out enrichment analyses by setting
the significance threshold at 0.05 on the Bonferroni
corrected p-values. Standard and network-based
enrichments ran over the KEGG database. Terms
enriched by NET-GE are shown in Figure 1. The
standard enrichment on KEGG highlights neuroactive
ligand-receptor interaction and dopaminergic synapse
as the most significant pathways. The network-based
procedure adds new terms, not associated to the
input proteins, and involved in ADHD, considering the
statistically significant subnetworks. The pathways
sorted by significance are: circadian entrainment,
morphine addiction, retrograde endocannabinoid
signaling and glutamatergic synapse.

Interestingly enough, the enriched pathways had
been previously described in literature as being
diseases-related. Different experiments have described
different pathways [14–17] and the network-based
enrichment method retrieved them all from the inclusion
of the connecting nodes in the annotation modules.

In Figure 1 the difference in annotation between the
standard enrichment procedure and the network-based
is shown. As explained in the Methods section, standard
enrichment is computed over a totally disconnected
reference set. The network-based procedure relies on
the precomputed annotation modules and the reference
set includes all the nodes that connect seeds with the
same annotation. This may increase the p-value as in
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Figure 1: Output of NET-GE for the enrichment of KEGG pathways in the ADHD study case. Enrichment analysis was
carried out using as input the DRD4 and DRD5 genes. The upper panel shows the graph of the enriched terms and their relations.
Box filling color represents the corrected p-value associated to the enriched term, while contour color represents its information
content (see [11] and [12] for details). The lower panel presents the enriched terms in a tabular format. Terms highlighted with a
double star are new annotations, not associated to the input proteins and enriched with the network-based procedure. p-values
are corrected with the Bonferroni procedure.
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Figure 2: Graph of the first protein neighbours in the
ADHD study case. The graph of the KEGG term hsa04723
(Retrograde endocannabinoid signaling) shows the two input
proteins (in purple) and the first protein neighbours highlighted
as seeds (in yellow) and new connecting genes (in blue).
The connecting genes are added to the graph with the
network-based enrichment procedure.

the case of the neuroactive ligand receptor interaction
that is no longer listed among the terms obtained with
the network-based procedure.

For comparison, we also tried PINA and
EnrichNET. Considering as significant p-values<0.05
Benjamini-Hochberg corrected, PINA (tool "Identify
enriched Interactome modules”) did not retrieve any
significantly over-represented module. EnrichNET
authors recommend to analyse sets with at least 10
genes/proteins for reasons of statistical reliability. As a
consequence, EnrichNET did not retrieve any significant
term.

As evaluate the robustness of the method for small
input sets composed of two to ten proteins, we computed
the effect on the final stability of the enrichment when
doubling (with random additions) the sizes of the input
sets. We obtain that under these extreme conditions of
noise, the stability of the enrichment ranges from 37 to
52%, depending on the annotation term and the network
type (see Figure S1).

In Figure 2, the two input proteins are shown in the
graph (purple circles) of the first protein neighbors, after
network-based enrichment, detailing protein seeds of
the Retrograde endocannabinoid signaling KEGG path
(hsa04723, Homo sapiens) in yellow and the connecting
nodes in blues (proteins that are retained after NET-GE
based enrichment). The whole annotation network is
downloadable (all seeds, nodes and arcs) and it is
available for display.

Obsessive-compulsive Disorder

Obsessive-compulsive disorder (OCD) is a severe
neuropsychiatric disorder characterized by the presence
of obsessions and compulsions [18]. This disorder has
been recently investigated in [18] by using whole-exome

sequencing (WES).

Twenty OCD cases and their unaffected parents
(parent–child trios) were screened for de novo
missense mutations (i.e. mutation present
only in the affected individual), identifying 27
OCD-related genes. Based on Ingenuity software
(https://www.qiagenbioinformatics.com/products/
ingenuity-pathway-analysis), three signaling
pathways were identified as disease-related [18]
sharing only one patient/one gene. In fact, among
the 27 genes, only SMAD4 (gene mutated in only one
patient) was present in the three enriched pathways.

With NET-GE we highlight four biological processes as
the most significant ones (Figure 3, panel A), all related
to the purine metabolism that has been proven to be
associated with several neurological disorders [19–21].
However, and interestingly enough, 10 of the 27 initial
genes have common annotations. Testing Molecular
Functions, the standard enrichment procedure
highlighted ATPase activity and the network-based
procedure enriched thyroxine 5’-deiodinase activity
(Figure 3, panel B), a new term not associated to the
input proteins and involved in OCD [22].

Our results highlight the involvement of processes
common to the gene panel and corroborates the notion
that network-based enrichment consistently derives
information from the connected annotation modules,
including genes corresponding to 9 of the 14 patients
analyzed in [18].

CONCLUSION

In this article, we presented the NET-GE web
server [12], developed for tackling the problem of the
human biological complexity. Specifically, NET-GE
is a tool for associating biological processes and
pathways with sets of human genes/proteins involved
in the same phenotype. It performs standard and
network-based enrichment analysis. The network-based
procedure extracts from the STRING human interactome
sub-networks of connecting proteins that share the same
annotation [11]. We benchmarked NET-GE on two
specific test cases, with a phenotype and its biological
functions already described in literature. On this
benchmark, the network-based procedure, considering
genes/proteins in the context of their functional
interaction network, enriched functional annotations that
are experimentally validated. This version of NET-GE is
preliminary to the inclusion of some additional features
that can eventually add to the relevance of detecting
emerging functional characteristics from a set of genes,
such as the inclusion of ranking scores (e.g. fold
of differentially expressed genes) or the usage of
tissue-specific interactomes.
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Figure 3: Output of NET-GE for Obsessive Compulsive Disorder for Biological Processes (panel A) and Molecular
Function (panel B). Genes are derived from [18]. Terms highlighted with a double star are new annotations, not associated
to the input proteins and enriched with the network-based procedure. p-values are corrected with the Bonferroni procedure.
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SUPPLEMENTARY DATA

High resolution figure files, together with
supplementary items listed below, are available at
Genomics and Computational Biology online.

Supplementary Figure S1. Testing the robustness
of the network-based enrichment methods. For
small input sets comprising from two to ten proteins
(derived from OMIM), we computed the effect of doubling
(with random additions) the size on the final stability of
the enrichment. This was done for all the annotation
terms and the two different version of STRING (see
Methods). Errors bars indicated standard deviations
over a reference of 123 gene sets.
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Abstract

Background: Genetic investigations, boosted by modern sequencing techniques, allow dissecting the genetic
component of different phenotypic traits. These efforts result in the compilation of lists of genes related to diseases
and show that an increasing number of diseases is associated with multiple genes. Investigating functional relations
among genes associated with the same disease contributes to highlighting molecular mechanisms of the
pathogenesis.

Results: We present eDGAR, a database collecting and organizing the data on gene/disease associations as derived
from OMIM, Humsavar and ClinVar. For each disease-associated gene, eDGAR collects information on its annotation.
Specifically, for lists of genes, eDGAR provides information on: i) interactions retrieved from PDB, BIOGRID and
STRING; ii) co-occurrence in stable and functional structural complexes; iii) shared Gene Ontology annotations; iv)
shared KEGG and REACTOME pathways; v) enriched functional annotations computed with NET-GE; vi) regulatory
interactions derived from TRRUST; vii) localization on chromosomes and/or co-localisation in neighboring loci. The
present release of eDGAR includes 2672 diseases, related to 3658 different genes, for a total number of 5729
gene-disease associations. 71% of the genes are linked to 621 multigenic diseases and eDGAR highlights their
common GO terms, KEGG/REACTOME pathways, physical and regulatory interactions. eDGAR includes a network
based enrichment method for detecting statistically significant functional terms associated to groups of genes.

Conclusions: eDGAR offers a resource to analyze disease-gene associations. In multigenic diseases genes can share
physical interactions and/or co-occurrence in the same functional processes. eDGAR is freely available at: edgar.
biocomp.unibo.it

Keywords: Gene/disease relationship, Protein-protein interaction, Protein functional annotation, Functional enrichment

Background
The advent of fast and relatively costless techniques for
genome screening boosts the research of genetic deter-
minants of human phenotypes, with a specific focus on
diseases [1]. By this, lists of genes involved in several
diseases/phenotypes are available. One of the most
comprehensive database of curated associations between
human Mendelian disorders and genes is OMIM [2],
collecting 4510 phenotypes with known molecular basis

(release of May 2016). Updated resources of associations
between variations and diseases are stored in the NCBI-
curated ClinVar [3], the UniProt curated Humsavar list
[4], and the commercial version of HGMD [5]. Integra-
tive datasets, such as DisGeNet [6] and MalaCards [7]
collect lists of gene-disease associations from different
sources. MalaCards includes text mining of the
scientific literature, gene annotations in terms of shared
GO terms and associated pathways. DisGeNet integrates
data of disease-associated genes and their variants.
Furthermore, a database collecting data on digenic dis-
eases (related to concomitant defects in pairs of genes)
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is available (DIDA, [8]) and reports the relationships
between pairs of genes involved in 44 diseases.
As data accumulate, it emerges that an increasing

number of diseases is associated with several genes.
Independent or concomitant alterations in sequence or
in expression of sets of genes are associated with the
insurgence of genetically heterogeneous and polygenic
diseases, respectively [9, 10]. The scenario is even more
complicated when different environmental and life-style
related factors have strong influence on the insurgence
and severity of the pathology [11]. The complex nature of
the association between genes and diseases is one of the
major challenges of Precision Medicine programs [12].
Dissecting the molecular mechanisms at the basis of the

association between genotype and phenotype requires a
deep investigation of the features shared among genes (or
proteins) co-involved in the same disease. Indeed, by
analyzing molecular features and functional interactions,
important biological processes and pathways implicated in
the disease can emerge and other genes possibly involved
in interaction networks can be discovered [13, 14].
This work describes eDGAR, a database of gene-disease

associations, supplemented with the annotations of inter-
genic relationships in heterogeneous and polygenic dis-
eases. We merged, without redundancy, data from OMIM
[2], ClinVar [3], and Humsavar [4]. Disease nomenclature
derives from OMIM. OMIM phenotype entries are classi-
fied according to the OMIM Phenotypic Series, which
cluster different entries related to identical or highly simi-
lar diseases associated with different genes. As compared
to the above mentioned databases, our focus is on specific
structural and functional annotations of the genes. For
each gene, the database reports the cytogenetic location,
links to the Ensembl [15], SwissProt [4] and PDB entries
[16], Gene Ontology (GO) [17] annotations and to the
KEGG and REACTOME pathways, when available. For
sets of genes involved in the same disease, the database
collects from publicly available databases different types of
relationships: physical interactions, co-occurrence in pro-
tein complexes, regulatory interactions, shared functions
and pathways, and co-localization in neighboring cytogen-
etic loci. A network - based approach (NET-GE [18, 19])
provides statistical enrichment to functional terms.
Information is organized in a relational database and an
interface allows customized data search and retrieval.
The database is freely available at edgar.biocomp.unibo.it.

Construction and content
Data sources of associations between genes and diseases
In order to collect a comprehensive resource of associa-
tions among genes and diseases we integrated data from
OMIM (May 2016 release) [2], ClinVar (May 2016 re-
lease) [3] and Humsavar (June 2016 release) [4]. The pri-
mary accessions for genes are HGNC codes [20], while

OMIM identifiers are adopted to identify phenotypes.
2839 OMIM phenotype codes corresponding to identical
or similar diseases, characterized by genetic heterogen-
eity, have been clustered into 357 phenotypic series, as
defined by OMIM. Synonymic or alternative gene names
were reduced to the HGNC gene primary codes, as
reported in HGNC (June 2016 release).
On the overall, 5337, 4358 and 3365 gene-disease

associations were collected from OMIM, ClinVar and
Humsavar, respectively, by retaining only associations
with unambiguous identification codes for both genes
and diseases. After removing redundancy, the final data-
set contains 5729 gene-disease associations, involving
3658 genes associated with 2672 diseases. These 2672
disease IDs correspond to 2315 OMIM IDs for pheno-
types and 357 phenotypic series, or to 5154 when the
357 phenotypic series are brought back in 2839 OMIM
IDs for phenotypes.

Gene annotation
All genes have been associated with the corresponding
Ensembl codes (June 2016 version) [15] with BioMart
[21]. Cytogenetic locations on the GrCh38 version of the
human genome were therefrom derived. Out of 3658, 30
genes encode for microRNAs and tRNAs. For the 3628
protein coding genes, links to the SwissProt and PDB
databases were also retrieved: all genes are linked to at
least one SwissProt entry (for a total of 3718 entries)
and 1682 genes are linked to at least one PDB entry (for
a total of 14,578 PDB entries).
Functional annotation based on Gene Ontology (GO)

terms was retrieved from GOOSE, the Online SQL En-
vironment for GO terms implemented in the AmiGO2
portal [22]. All three GO sub-ontologies (Molecular
Function: MF; Biological Process: BP; Cellular Compo-
nent: CC) were considered. Given a GO term, the ances-
tor terms in the directed acyclic graph of GO (version
2.4) were retrieved by considering the relations “is a
subtype of” and “part of”. The information content (IC)
was computed for each GO term, adopting standard
methods [23], with the following equation:

IC ¼ −log2
NGO

Nroot

� �
ð1Þ

where NGO is the number of human genes endowed with
the particular GO term and Nroot is the number of
human genes annotated with all the terms of the consid-
ered subontology, as derived from GOOSE [22]. IC
lower limit is zero; high IC values indicate that a small
number of genes is annotated with a particular GO term
in the human genome and therefore the annotation is
highly informative.
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Associations with KEGG (version 77.0) [24] and
REACTOME (version 53) [25] pathways were extracted
from SwissProt.

Relationships among genes involved in the same disease
eDGAR integrates several information in order to
annotate the possible relationships among protein coding
genes related to the same polygenic or heterogeneous
disease. The following features are considered:

� Protein-protein interactions, as derived from the
multimeric structures deposited at the PDB (February
2016 release) [16], from STRING (version 10.0) [26]
and from the experimental data available in BIOGRID
(version 3.4) [27]. From the human STRING network,
we retained only high confidence links (score ≥ 0.7)
with annotated “action”. Physical and genetic
interactions of BIOGRID are reported separately. For
all the considered human interactomes, eDGAR
reports both direct and indirect interactions involving
one intermediate gene. In addition, we supplemented
data on interactions with selected annotations from
manually curated features from SwissProt, including
links to the PDB and the literature.

� Interactions in stable and functional complexes
reported in the following resources: CORUM, listing
2837 mammalian complexes involving 3198 protein
chains (16% of the human protein-coding genes) [28],
the soluble complex census, listing 622 complexes
involving 3006 protein chains [29]. This last resource
is referred in the following as CENSUS.

� Functional GO terms and KEGG/REACTOME
pathways shared by at least two genes.

� Functional GO terms and KEGG/REACTOME
pathways retrieved with NET-GE [18, 19], a network
based tool that performs the statistically-validated
enrichment analysis of sets of human genes by exploit-
ing the human STRING interactome; a significance of
5% was considered when retrieving statistically
enriched terms on the basis of the Bonferroni-
corrected p-values computed with NET-GE;

� Regulatory interactions derived fromTRRUST [30], a
curated database of interactions among 748 human
transcription factors (TF) and 1975 non-TF targets.
Given a set of genes associated with the same disease,
eDGAR reports the presence of TF/target pairs and of
groups of genes co-regulated by the same TF (belong-
ing or not to the set);

� Co-localization in neighboring loci on the same
chromosome: we highlighted genes located in the
same cytogenetic band or in the tandem repeat
regions listed in the DGD database [31]. DGD
collects 945 groups consisting of 3543 genes in

humans, likely deriving from duplications of
ancestor genes.

Database structure and visualization
The database is implemented with PostgreSQL [32], an
open source relational database system. Data stored in
the database are retrieved using custom Python
programs, while the output of the analysis is visualized
in HTML pages using modern technologies like
JavaScript. In particular, networks are encoded in JSON
format and visualized using the JavaScript library D3.js
[33]. We adopted a well known plug-in for jQuery called
DataTables [34] for table visualizations, allowing the user
to sort tables by columns and text-search inside each table.

Results and discussion
Statistics of the database content
The present release of eDGAR collects 5729 associations
between 2672 diseases and 3658 different genes. Figure 1a
plots the distribution of the number of genes associated
with the same disease, which ranges from one (in 2051
monogenic diseases) to 69 (in the case of the “Retinitis
pigmentosa” phenotypic series, OMIM: PS268000). The
621 diseases associated with multiple genes comprise both
heterogeneous and polygenic diseases. On the overall, they
account for 3678 associations with 2600 genes, 2576 of
which code for proteins.
The database also shows a high level of pleiotropy (asso-

ciation of a single gene to several diseases) as shown in
Fig. 1b. The most pleiotropic gene is FGFR3 that codes for
the fibroblast growth factor receptor 3 and is associated
with 16 different diseases.

Statistics of gene annotation
Table 1 lists major annotations of the 3658 genes related
to diseases. All but 30 genes are coding for proteins re-
ported in SwissProt; for 46.4% of them, structural infor-
mation is available in PDB. Membrane proteins,
transcription factors and enzymes account for 52%, 7%
and 31%, respectively. Almost all the protein-coding genes
are functionally annotated: the fraction of genes endowed
with GO terms ranges from 94.2% to 98.6%, depending on
the sub-ontology (Molecular Function (MF), Biological
Process (BP) and Cellular Component (CC)). A smaller
percentage of genes are associated with KEGG and
REACTOME pathways (56.7% and 62.8%, respectively).
When considering human interactomes, 91.3% and

9.7% of the genes are present in BIOGRID with physical
and genetic interactions, respectively; for 82.5% of the
genes, STRING reports high confidence interactions
(score ≥ 0.7). Some 20% of the genes encode for protein
chains involved in functional complexes, as described in
the CORUM and CENSUS collections. TRRUST lists
some 1036 genes as part of the human regulatory
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network, of which 253 code for TFs and 783 are non-TF
targets.
The level of annotation of the 2576 protein coding

genes involved in heterogeneous or polygenic diseases is
similar to that of all the genes collected in eDGAR.

Relations among genes associated with the same disease
eDGAR lists the relations among different genes associ-
ated with the same multigenic disease (statistics is in
Table 2). 21.9% of diseases involve at least one pair of
genes located in the same cytogenetic band and in 8.2%
of the cases, genes are tandem repeats originated by
duplications. These genes are likely to undergo the same
regulation mechanisms and to be coexpressed [33].
Many diseases involve at least one pair of genes

directly linked in interactomes: 40.3% and 46.9%, consid-
ering BIOGRID or STRING networks, respectively. The
rates increase to 66.1% and 65.4% when considering also
indirect interactions involving one intermediate gene not
associated with the disease. 6.3% of diseases involve pairs
of genes in a Transcription Factor (TF)/target relation-
ship and 44% involve genes co-regulated by the same TF
(considering also TFs not directly associated with the
disease). The large majority of diseases (from 94.4% to
97.3%, depending on the sub-ontology) is associated with

at least one pair of genes sharing GO terms. More than
90% of all the possible pairs of genes involved in the
same disease have common BP and CC terms; the per-
centage is somehow smaller (76%) for MF sub-ontology.
The total number of GO annotations shared by pairs of
genes for BP, MF and CC is 72,787 (unique terms: 4582),
13,113 (unique terms: 915) and 16,298 (unique terms:
656), respectively. Overall, these data confirm the notion
that genes associated with the same disease share some
level of functional similarity, a view previously suggested
for a small number of multigenic diseases [14]. However,
being GO terms organized in a directed acyclic graph
for each root, the information conveyed by the shared
annotations can be very different, going from very
general to very specific terms. The information content
(IC, see Eq. 1) is routinely associated with GO terms in
order to evaluate their specificity with respect of the
available annotation of all human genes. The IC values
of our dataset range from 0 (corresponding to the root
GO term) to 10 (corresponding to the most specific
terms). The average IC values for MF, BP and CC shared
terms are 5.8 ± 1.7, 5.9 ± 1.7, and 5.8 ± 1.9, respectively.
For each disease, the specificity of the annotation is eval-
uated by extracting the best IC values among the GO
terms shared by pairs of co-associated genes (Fig. 2a).

Fig. 1 Distribution of gene-disease associations. The Y-axis scale is logarithmic. a Number (#) of genes associated with diseases. 2672 diseases are
distributed with respect to the number of associated genes. 2051 diseases are monogenic; 621 diseases are associated with multiple genes (from
2 to 69). b Number (#) of diseases associated to genes. 3658 genes are distributed with respect to the number of associated diseases. 2544 genes
are associated with a single disease; 1114 genes are associated with multiple diseases (from 2 to 16)
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Table 2 Features shared by genes involved in the same heterogeneous or polygenic diseases

# diseases # pairwise relations # protein coding genes

Total number 621 25,100 2576

With pairs of genes:

In same cytogenetic band 136 (21.9%) 326 (1.3%) 335 (13.0%)

In tandem repeat 51 (8.2%) 58 (0.2%) 92 (3.6%)

In TF/target pairs 39 (6.3%) 81 (0.3%) 94 (3.6%)

Co-regulated by the same TF (not involved in the disease) 273 (44.0%) 2308 (9.2%) 626 (24.3%)

Sharing MF GO 586 (94.4%) 19,075 (76.0%) 2369 (92.0%)

Sharing BP GO 597 (96.1%) 22,948 (91.4%) 2502 (97.1%)

Sharing CC GO 604 (97.3%) 23,645 (94.2%) 2519 (97.8%)

Sharing KEGG pathway 349 (56.2%) 3129 (12.5%) 1074 (41.7%)

Sharing REACTOME pathway 474 (76.3%) 9806 (39.1%) 1554 (60.3%)

Interacting in PDB 96 (15.5%) 207 (0.8%) 199 (7.7%)

In the same CORUM complex 86 (13.8%) 469 (1.9%) 225 (8.7%)

In the same CENSUS complex 45 (7.2%) 166 (0.7%) 119 (4.6%)

Directly linked in STRING 291 (46.9%) 1535 (6.1%) 932 (36.2%)

Indirectly linked in STRING 115 (18.5%) 4355 (17.4%) 1346 (52.3%)

Directly linked in BIOGRID (physical interaction) 250 (40.3%) 944 (3.8%) 799 (31.0%)

Indirectly linked in BIOGRID (physical interaction) 160 (25.8%) 5228 (20.8%) 1607 (62.4%)

Directly linked in BIOGRID (genetic interaction) 9 (1.4%) 13 (0.1%) 19 (0.7%)

Indirectly linked in BIOGRID (genetic interaction) 25 (4.0%) 45 (0.2%) 62 (2.4%)

Table 1 Gene annotation in eDGAR

All diseases Diseases associated with multiple genes

# genesa # associated diseasesb # genesa # associated diseasesb

Total number 3658 2672 2600 621

Protein coding genes 3628 (100%) 2655 (100%) 2576 (100%) 619 (100%)

with PDB entry 1682 (46.4%) 1625 (61.2%) 1176 (45.7%) 512 (82.7%)

Membrane proteins 1891 (52.1%) 1644 (61.9%) 1364 (53.0%) 517 (83.5%)

Enzymes (with E.C number) 1112 (30.7%) 1045 (39.4%) 688 (26.7%) 363 (58.6%)

Reported in TRRUST (as TF) 253 (7.0%) 358 (13.5%) 179 (6.9%) 157 (25.4%)

Reported in TRRUST (as target) 783 (21.6%) 969 (36.5%) 570 (22.1%) 405 (65.4%)

Annotated with GO MF 3419 (94.2%) 2575 (97.0%) 2419 (93.9%) 617 (99.7%)

Annotated with GO BP 3538 (97.5%) 2619 (98.6%) 2514 (97.6%) 618 (99.8%)

Annotated with GO CC 3576 (98.6%) 2644 (99.6%) 2533 (98.3%) 618 (99.8%)

Associated with KEGG pathways 2057 (56.7%) 1868 (70.4%) 1430 (55.5%) 549 (88.7%)

Associated with REACTOME 2278 (62.8%) 2007 (75.6%) 1595 (61.9%) 563 (91.0%)

With physical BIOGRID interactions 3307 (91.3%) 2502 (94.2%) 2346 (91.2%) 609 (98.4%)

With genetic BIOGRID interactions 351 (9.7%) 472 (17.8%) 259 (10.1%) 247 (39.9%)

With STRING interactions 2992 (82.5%) 2341 (88.2%) 2146 (83.3%) 609 (98.4%)

Part of CORUM complexes 714 (19.7%) 706 (26.6%) 558 (21.7%) 340 (54.9%)

Part of CENSUS complexes 696 (19.2%) 689 (26.0%) 501 (19.4%) 296 (47.8%)

In tandem repeats 381 (10.5%) 448 (16.9%) 280 (10.9%) 234 (37.8%)
aPercentages are computed with respect to the number of protein coding genes
bPercentages are computed with respect to the number of diseases associated with protein coding genes
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For all the sub-ontologies, the best IC values are very
spread, and it is evident that on average the most spe-
cific terms (highest IC values) belong to the BP sub-
ontology: genes pairs sharing BP, MF and CC terms with
IC ≥ 5 are present in 72%, 49% and 46% of the diseases,
respectively (see Fig. 2a). When a different distribution
based on a median is adopted, the pattern is very similar
(Additional file 1: Fig. S1A). Genes involved in the same
disease share also KEGG and REACTOME pathways
(56.2% and 76.3%, respectively (Table 2)).

NET-GE enrichment
In order to better highlight functions shared by groups
of genes associated with the same disease, we adopt
NET-GE [18, 19], our recently developed network based
tool for functional enrichment. For each functional sets
of GO terms and/or KEGG or REACTOME pathways,
NET-GE builds a network containing all the human
genes annotated with the terms (seeds) and including all
the connecting genes (the reference human interactome
is derived from STRING). Input genes are mapped into
the pre-computed NET-GE networks and enrichment
analysis is performed. Outputs are Bonferroni-corrected

p-values, measuring the overrepresentation of each term
in the input set. Due to its network-based nature, NET-
GE can enrich terms not present in the list of annota-
tions of the input set. Table 3 lists the results of NET-
GE on the groups of genes associated with the same dis-
ease, considering a 5% significance. For the majority of
diseases, NET-GE enriches GO terms of the three sub-
ontologies and pathways of KEGG and REACTOME. BP
is the sub-ontology type most frequently enriched. The
total number of GO annotations enriched for heteroge-
neous and polygenic diseases is 17,029, 4851 and 3910
(Table 3, rightmost column), with average IC values
6.1 ± 1.8, 7.1 ± 2, and 6.4 ± 2 for BP, MF and CC

Fig. 2 Distribution of best IC values of GO terms for genes involved in multigenic diseases. a GO terms shared by genes; b GO terms after
enrichment with NET-GE. For each multigenic disease, IC values of gene-associated GO terms (of the three different roots) are evaluated (Eq. 1). In
the figure, the highest IC for each disease is shown. The frequency is computed with respect to the total number of multigenic diseases (621).
When IC = 0, genes associated with multigenic disease do not share or enrich GO terms (panel a and b respectively)

Table 3 NET-GE functional enrichment of groups of genes
involved in the same disease

# diseases # annotations

KEGG pathways 412 (66.3%) 2753

REACTOME pathways 488 (78.6%) 4130

GO MF terms 530 (85.3%) 4851

GO BP terms 551 (88.7%) 17,029

GO CC terms 477 (76.8%) 3910
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respectively (Fig. 2b, reporting the distribution of the
best IC values among the terms enriched for each dis-
ease; for a different distribution based on IC median
values, see Additional file 1: Figure S1B).

The user interface
eDGAR is publicly available as a web server at edgar.-
biocomp.unibo.it with browsing and search options.
Browsing is performed with the “Main Table” page
that contains all the collected associations between
genes and diseases, along with the indication of
source databases.
The Search engine allows to access the database with

different identifiers: HGNC symbols and Ensembl identi-
fiers for genes, UniProt accession for proteins, OMIM
identifiers or disease names for phenotypes and pheno-
typic series. The user may also search with a set of genes
and retrieve shared annotation features.
Two types of pages can be visualized: i) gene specific

pages, reporting the associations to diseases and the
available gene annotations; ii) disease specific pages,
reporting the associations with genes and, in case of het-
erogeneous and polygenic diseases, the list of relation-
ships linking the different genes, organized into different
tables. Interactions from STRING, PDB, BIOGRID,
CORUM, CENSUS can also be visualized by means of
graphs, reporting direct and indirect interactions. The
graphs show the gene associated with the disease as blue
nodes and other genes in interactions as pale blue
nodes; the direct interactions are visualized as green
edges and the indirect interactions as thin black edges
(see Fig. 3). Clicking on a node, the user is redirected
to the correspondent gene page.

A case study: Hypoparathyroidism
Hypoparathyroidism (OMIM 146200) is an endocrine
deficiency disease characterized by low serum calcium
levels, elevated serum phosphorus levels and absent or
low levels of parathyroid hormone (PTH) in blood [35].
The metabolism of the patient may be altered: the
vitamin D supply is inadequate and the magnesium
metabolism is irregular. In some clinical panel, hypocal-
cemia can lead to dramatic effects such as tetany,
seizures, altered mental status, refractory congestive
heart failure, or stridor.
In eDGAR the familial isolated hypoparathyroidism

(OMIM 146200) is associated with three different genes:
GCM2 and PTH (both reported in OMIM, ClinVar and
Humsavar) and CASR (reported only in ClinVar). CASR
is an extracellular calcium-sensing receptor whose activ-
ity is mediated by G-proteins, PTH is the parathyroid
hormone, whose function is to increase calcium level
both by promoting the solution of bone salts and by
preventing their renal excretion, and GCM2 (Glial cell

missing homolog 2) is a probable transcriptional
regulator, considering the SwissProt annotation. The
“Transcription Factor (TF) annotation from TRRUST”
table in eDGAR reports that GMC2 is a TF that regu-
lates the expression of both PTH and CASR. Moreover,
when considering “Interactions from STRING” table,
PTH and CASR are in direct interaction, labelled as
“binding” and “expression”. The shared BP GO terms
with the highest IC values are “response to vitamin
D” and “response to fibroblast growth factor”, both
involving CASR and PTH. The response to vitamin
D, whose metabolism is often altered in hypoparathyr-
oidism, and a strict interplay between fibroblast
growth factors and parathyroid hormone have been
previously reported [36–38]. PTH and CASR are also
involved in the same REACTOME pathways related
to GPCR ligand binding and signaling. No shared
KEGG term is found.
NET-GE enrichment for BP for the three genes

include new terms endowed with high IC values, like
“regulation of amino acid transport”, “negative regulation
of muscle contraction”. Some of these new annotations
are related to the severe symptoms of hypothyroidisms,
namely tetany and seizure. NET-GE allows retrieving
enriched KEGG pathways, such as “Circadian entrainment
(hsa04713)”, “Inflammatory mediator regulation of TRP
channels (hsa04750)”, “Gap junction (hsa04540)” and
“Insulin secretion (hsa04911)”. None of the three
genes is directly involved in the four pathways; PTH
and CASR are part of the networks defined by NET-
GE exploiting the STRING network. Interestingly,
these new annotations highlight previously reported
impairments of both circadian rhythms impairment
and insulin secretion associated with hypoparathyroid-
ism [39, 40].
Figure 3 reports a summary of the information pro-

vided by eDGAR for hypothyroidism (OMIM 146200),
showing how it allows to collect the different types of
relations among the involved genes in a unique page
integrating data from many resources.

Conclusions
eDGAR is a resource for the study of the associations
between genes and diseases. It collects 2672 diseases,
associated with 3658 different genes, for a total num-
ber of 5729 gene-disease associations. The novelty of
eDGAR is the integration of different sources of gene
annotation and in particular, for the 621 heteroge-
neous/polygenic diseases, eDGAR offers the possibility
of analyzing functional and structural relations among
co-involved genes. We provide direct interactions
between pairs of genes (reported in STRING or BIO-
GRID) for 291 diseases and indirect interactions for
some other 250 diseases. For 273 diseases, at least
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one pair of genes is under regulatory interaction of
the same TF, while 39 disease are associated with
genes being a TF/target couple. For 612 diseases, at
least one pair of genes share GO terms and/or

KEGG/REACTOME pathways. In particular, genes in-
volved in the same disease most frequently share
terms of the BP sub-ontology. This is confirmed also
when analyzing the statistically significant functional

Fig. 3 eDGAR page for hypoparathyroidism (OMIM 146200). In the figure, each gene is highlighted with a different color; the Transcription Factor
annotation and the known interactions are reported, together with the simple graph describing them. A summary of the KEGG pathways
enriched with NET-GE and the shared GO terms for BP is also provided

The Author(s) BMC Genomics 2017, 18(Suppl 5):554 Page 32 of 64



terms enriched with NET-GE for 606 diseases. The
relations among genes involved in the same disease
are often complex and different pairs of genes are
linked in different ways. eDGAR is a resource for
better tackling the complexity of gene interactions at
the basis of multigenic diseases. The database will be
updated following the major releases of the different
underlying data resources at least once a year.

Additional file

Additional file 1: Figure S1. Distribution of median IC values of GO
terms for genes involved in multigenic diseases. A: GO terms shared by
genes; B: GO terms enriched with NET-GE. For each multigenic disease,
IC value of gene-associated GO terms (of the three different roots) are
evaluated (Eq. 1). In the figure the median IC for each disease is shown.
The frequency is computed with respect to the total number of
multigenic diseases (621). When IC = 0, genes associated with multigenic
disease do not share or enrich GO terms (panel A and B respectively).
(PNG 393 kb)

Acknowledgements
Not applicable.

Funding
Publication costs for this article were provided by PRIN 2010-2011 project
20108XYHJS (to P.L.M.) (Italian MIUR); COST BMBS Action TD1101 and Action
BM1405 (European Union RTD Framework Program, to R.C); PON projects
PON01_02249 and PAN Lab PONa3_00166 (Italian Miur to R.C. and P.L.M.);
FARB UNIBO 2012 (to R.C.).

Availability of data and materials
The dataset generated during the current study is available and downloadable
at edgar.biocomp.unibo.it.

Authors’ contributions
RC, PLM, and GB conceived and designed the work and wrote the paper. GB
collected and curated data. SB ran the NET-GE predictions. GB, GP, and CS
implemented the web server. PLM, GB and RC analysed and interpreted data
on disease related variations. All authors critically revised and approved the
manuscript.

Ethics approval and consent to participate
The authors declare that they used only public data.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Biocomputing Group, BiGeA, University of Bologna, Bologna, Italy.
2Interdepartmental Center «Giorgio Prodi» for Cancer Research, University of
Bologna, Bologna, Italy.

Published: 10 August 2017

References
1. Kann MG. Advances in translational bioinformatics: computational

approaches for the hunting of disease genes. Brief Bioinform.
2010;11(1):96–110.

2. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.Org:
online Mendelian inheritance in man (OMIM®), an online catalog of human
genes and genetic disorders. Nucleic Acids Res. 2015;43(Database issue):
D789–98.

3. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Gu B, Hart
J, Hoffman D, Hoover J, Jang W, Katz K, Ovetsky M, Riley G, Sethi A, Tully R,
Villamarin-Salomon R, Rubinstein W, Maglott DR. ClinVar: public archive
of interpretations of clinically relevant variants. Nucleic Acids Res.
2016;44(D1):D862–8.

4. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids
Res. 2015;43(Database issue):D204–12.

5. Stenson PD, Ball EV, Mort M, Phillips AD, Shaw K, Cooper DN. The Human
Gene Mutation Database (HGMD) and its exploitation in the fields of
personalized genomics and molecular evolution. Curr Protoc Bioinformatics.
2012;39:1.13:1.13.1–1.13.20.

6. Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J,
Centeno E, García-García J, Sanz F, Furlong LI. DisGeNET: a comprehensive
platform integrating information on human disease-associated genes and
variants. Nucl Acids Res. 2016;45(D1):D833–9.

7. Rappaport N, Twik M, Plaschkes I, Nudel R, Stein TI, Levitt J, Gershoni M,
Morrey CP, Safran M. Lancet D; MalaCards: an amalgamated human disease
compendium with diverse clinical and genetic annotation and structured
search. Nucl Acids Res. 2016;45(D1):D877–87.

8. Gazzo AM, Daneels D, Cilia E, Bonduelle M, Abramowicz M, Van Dooren S,
Smits G, Lenaerts T. DIDA: a curated and annotated digenic diseases
database. Nucleic Acids Res. 2016;44(D1):D900–7.

9. McClellan J, King MC. Genetic heterogeneity in human disease. Cell.
2010;141(2):210–7.

10. Weeks DE, Lathrop GM. Polygenic disease: methods for mapping complex
disease traits. Trends Genet. 1995;11(12):513–9.

11. Fu W, O'Connor TD, Akey JM. Genetic architecture of quantitative traits and
complex diseases. Curr Opin Genet Dev. 2013;23(6):678–83.

12. Cardon LR, Harris T. Precision medicine, genomics and drug discovery.
Hum Mol Genet. 2016;25(R2):R166–72.

13. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL. The human
disease network. Proc Natl Acad Sci U S A. 2007;104(21):8685–90.

14. Oti M, Brunner H. The modular nature of genetic diseases. Clin Genet.
2007;71:1–11.

15. Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, Fernandez Banet J,
Billis K, García Girón C, Hourlier T, Howe K, Kähäri A, Kokocinski F, Martin FJ,
Murphy DN, Nag R, Ruffier M, Schuster M, Tang YA, Vogel JH, White S,
Zadissa A, Flicek P, Searle SM. The Ensembl gene annotation system.
Database (Oxford). 2016; pii: baw093.

16. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,
Shindyalov IN. Bourne PE the protein data bank. Nucleic Acids Res.
2000;28:235–42.

17. The Gene Ontology Consortium.. Expansion of the Gene Ontology
knowledgebase and resources. Nucleic Acids Res. 2016. pii: gkw1108.

18. Di Lena P, Martelli PL, Fariselli P, Casadio R. NET-GE: a novel NETwork-based
Gene Enrichment for detecting biological processes associated to
Mendelian diseases. BMC Genomics. 2015;16(Suppl 8):S6.

19. Bovo S, Di Lena P, Martelli PL, Fariselli P, Casadio R. NET-GE: a web-
server for NETwork-based human gene enrichment. Bioinformatics.
2016;32(22):3489–91.

20. Yates B, Braschi B, Gray KA, Seal RL, Tweedie S, Bruford EA. Genenames.org:
the HGNC and VGNC resources in 2017. Nucleic Acids Res. 2016.
pii: gkw1033.

21. Kasprzyk A. BioMart: driving a paradigm change in biological data
management. Database (Oxford). 2011:bar049.

22. Munoz-Torres M, Carbon S. Get GO! Retrieving GO data using AmiGO,
QuickGO, API, files, and tools. Methods Mol Biol. 2017;1446:149–60.

23. Shannon CE. A mathematical theory of communication. Bell Syst Techn J.
1948;27:379–423.

24. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a
reference resource for gene and protein annotation. Nucleic Acids Res.
2016;44(D1):D457–62.

25. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R,
Jassal B, Jupe S, Korninger F, McKay S, Matthews L, May B, Milacic M,
Rothfels K, Shamovsky V, Webber M, Weiser J, Williams M, Wu G, Stein L,
Hermjakob H, D'Eustachio P. The Reactome pathway knowledgebase.
Nucleic Acids Res. 2016;44(D1):D481–7.

26. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J,
Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von
Mering C. STRING v10: protein-protein interaction networks, integrated over
the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–52.

The Author(s) BMC Genomics 2017, 18(Suppl 5):554 Page 33 of 64

http://genenames.org
dx.doi.org/10.1186/s12864-017-3911-3
http://edgar.biocomp.unibo.it


27. Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen
D, Stark C, Breitkreutz A, Kolas N, O'Donnell L, Reguly T, Nixon J, Ramage L,
Winter A, Sellam A, Chang C, Hirschman J, Theesfeld C, Rust J, Livstone MS,
Dolinski K, Tyers M. The BioGRID interaction database: 2015 update. Nucleic
Acids Res. 2015;43(Database issue):D470–8.

28. Ruepp A, Waegele B, Lechner M, Brauner B, Dunger-Kaltenbach I, Fobo G,
Frishman G, Montrone C, Mewes HW. CORUM: the comprehensive resource
of mammalian protein complexes—2009. Nucleic Acids Res.
2010;38(Database issue):D497–501.

29. Havugimana PC, Hart GT, Nepusz T, Yang H, Turinsky AL, Li Z, Wang PI,
Boutz DR, Fong V, Phanse S, Babu M, Craig SA, Hu P, Wan C, Vlasblom J, Dar
VU, Bezginov A, Clark GW, Wu GC, Wodak SJ, Tillier ER, Paccanaro A,
Marcotte EM, Emili A. A census of human soluble protein complexes.
Cell. 2012;150(5):1068–81.

30. Han H, Shim H, Shin D, Shim JE, Ko Y, Shin J, Kim H, Cho A, Kim E, Lee T,
Kim H, Kim K, Yang S, Bae D, Yun A, Kim S, Kim CY, Cho HJ, Kang B, Shin S,
Lee I. TRRUST: a reference database of human transcriptional regulatory
interactions. Sci Rep. 2015;5:11432.

31. Ouedraogo M, Bettembourg C, Bretaudeau A, Sallou O, Diot C, Demeure O,
Lecerf F. The duplicated genes database: identification and functional
annotation of co-localised duplicated genes across genomes. PLoS One.
2012;7(11):e50653.

32. PostgreSQL. https://www.postgresql.org/. Accessed 1 December 2016.
33. Data-Driven. Documents. https://d3js.org/. Accessed 1 December 2016.
34. DataTables. https://datatables.net/. Accessed 1 December 2016.
35. Bilezikian J, Khan A, Potts J, et al. Hypoparathyroidism in the adult:

epidemiology, diagnosis, pathophysiology, target organ involvement,
treatment, and challenges for future research. J Bone Miner Res.
2011;26(10):2317–37.

36. Lai Y, Wang H, Xia X, Wang Z, Fan C, Wang H, Zhang H, Ding S, Teng W,
Shan Z. Serum fibroblast growth factor 19 is decreased in patients with
overt hypothyroidism and subclinical hypothyroidism. Medicine (Baltimore).
2016;95(39):e5001.

37. Domouzoglou EM, Fisher FM, Astapova I, Fox EC, Kharitonenkov A, Flier JS,
Hollenberg AN, Maratos-Flier E. Fibroblast growth factor 21 and thyroid
hormone show mutual regulatory dependency but have independent
actions in vivo. Endocrinology. 2014;155(5):2031–40.

38. Lee Y, Park YJ, Ahn HY, Lim JA, Park KU, Choi SH, Park DJ, Oh BC, Jang HC,
Yi KH. Plasma FGF21 levels are increased in patients with hypothyroidism
independently of lipid profile. Endocr J. 2013;60(8):977–83.

39. Bauer MS, Soloway A, Dratman MB, Kreider M. Effects of hypothyroidism on
rat circadian activity and temperature rhythms and their response to light.
Biol Psychiatry. 1992;32(5):411–25.

40. Yang N, Yao Z, Miao L, Liu J, Gao X, Fan H, Hu Y, Zhang H, Xu Y, Qu A,
Wang G. Novel clinical evidence of an association between Homocysteine
and insulin resistance in patients with hypothyroidism or subclinical
hypothyroidism. PLoS One. 2015;10(5):e0125922.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

The Author(s) BMC Genomics 2017, 18(Suppl 5):554 Page 34 of 64

https://datatables.net
https://d3js.org/
https://www.postgresql.org/


Received: 17 January 2017 Revised: 16March 2017 Accepted: 24March 2017

DOI: 10.1002/humu.23222

S P E C I A L A RT I C L E

Benchmarking predictions of allostery in liver pyruvate kinase

in CAGI4

Qifang Xu1 Qingling Tang2 Panagiotis Katsonis3 Olivier Lichtarge3

David Jones4 Samuele Bovo5 Giulia Babbi5 Pier L.Martelli5 Rita Casadio5

Gyu Rie Lee6 Chaok Seok6 AronW. Fenton2 Roland L. Dunbrack Jr1

1Institute for Cancer Research, FoxChase

CancerCenter, Philadelphia, Pennsylvania

2Department of Biochemistry

andMolecular Biology, The

University of KansasMedical Center, Kansas

City, Kansas

3Department ofHuman andMolecularGenetics,

Baylor College ofMedicine, Houston, Texas

4Department of Computer Science, University

College London, London, UnitedKingdom

5BiocomputingGroup, CIG/Interdepartmental

Center «Luigi Galvani» for Integrated Studies of

Bioinformatics, Biophysics andBiocomplexity,

University of Bologna, Bologna, Italy

6Department of Chemistry, SeoulNational

University, Seoul, Republic of Korea

Correspondence

AronW.Fenton, TheUniversity ofKansas

MedicalCenter, Biochemistry andMolecular

Biology,MS3030, 3901RainbowBoulevard,

KansasCity,Kansas66160.

Email: afenton@kumc.edu

RolandL.Dunbrack, Jr. Institute for

CancerResearch, FoxChaseCancerCenter,

333CottmanAve., Philadelphia, PA19111.

Email: roland.dunbrack@fccc.edu

Contract grant sponsors:NIH (R01GM084453,

R13HG006650,U41HG007346,R13

HG006650).

For theCAGISpecial Issue

Abstract

The Critical Assessment of Genome Interpretation (CAGI) is a global community experiment to

objectively assess computational methods for predicting phenotypic impacts of genomic varia-

tion. One of the 2015–2016 competitions focused on predicting the influence ofmutations on the

allosteric regulation of human liver pyruvate kinase.More than 30 different researchers accessed

the challenge data. However, only four groups accepted the challenge. Features used for pre-

dictions ranged from evolutionary constraints, mutant site locations relative to active and effec-

tor binding sites, and computational docking outputs. Despite the range of expertise and strate-

gies used by predictors, the best predictions were marginally greater than random for modified

allostery resulting frommutations. In contrast, several groups successfully predictedwhichmuta-

tions severely reduced enzymatic activity. Nonetheless, poor predictions of allostery stands in

stark contrast to the impression left by more than 700 PubMed entries identified using the iden-

tifiers “computational + allosteric.” This contrast highlights a specialized need for new computa-

tional tools and utilization of benchmarks that focus on allosteric regulation.

K EYWORD S

allosteric effect, CAGI experiment, liver pyruvate kinase, missensemutation

1 INTRODUCTION

Blind challenge experiments, such as CASP (Moult et al., 2016) and

CAPRI (Lensink et al., 2017), have provided independent assessment

of computational prediction methods in structural biology. They have

spurred the development of new methods and the integration of

multiple methods in prediction pipelines. The Critical Assessment of

Genome Interpretation (CAGI) experiment seeks to achieve the same

goals by providing prediction challenges in a number of different areas.

In this report, we describe a challenge involving the effect of muta-

tions on the allosteric coupling of effectors and substrate binding to

human liver pyruvate kinase (L-PYK). The focus of this competitionwas

to predict the influence of mutations on the allosteric regulation of L-

PYK by a negative regulator, alanine, and a positive effector, fructose-

1,6-bisphosphate (Fru-1,6-BP). Numerous methods for predicting the

effect of mutations on allosteric effector binding have been published

in recent years (Collier &Ortiz, 2013; Feher et al., 2014).

The definition of allostery applicable to studies of L-PYK is the

affinity of the enzyme for its substrate, phosphoenolpyruvate (PEP),

in the absence versus presence of an allosteric effector, recognizing

that the effector binds to a site distinct from the active site (Carlson &

Fenton, 2016; Fenton, 2008, 2012; Fenton&Alontaga, 2009; Fenton&

HumanMutation. 2017;38:1123–1131. c© 2017Wiley Periodicals, Inc. 1123wileyonlinelibrary.com/journal/humu
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F IGURE 1 Reaction scheme for an allosteric energy cycle in which

an enzyme (E) can bind one substrate (A) andone allosteric effector (X).

Kia is the equilibrium dissociation constant of the substrate binding to

the enzyme in the absence of effector. Kia/x is the equilibrium dissoci-

ation constant of the substrate binding to the enzyme in the presence

of saturating concentrations of effector. Kix is the equilibrium dissoci-

ation constant of the effector when substrate is absent, whereas Kix/a
is the equilibrium dissociation constant of effector in the presence of

saturating concentrations of substrate

Hutchinson, 2009; Fenton et al., 2010; Ishwar et al., 2015). This def-

inition describes allostery by four enzyme forms that constitute the

corners of a thermodynamic energy cycle (Fig. 1), and it provides a

mechanism to quantify allosteric function in the form of the allosteric

coupling constant (Qax) (Fenton, 2012; Reinhart, 1983, 1988, 2004;

Weber, 1972):

Qax =
Kia

Kia∕x
=
Kix

Kix∕a

Kia and Kia/x are equilibrium dissociation constants for binding the

substrate (A) in the absence or presence, respectively, of an allosteric

effector, X, as defined in Figure 1. Qax = 1 indicates that the system

is not allosteric. When Qax >1, there is positive allosteric coupling

between the binding of X to a protein and the binding of A to the same

protein at distinct sites. WhenQax <1, there is a negative or inhibitory

coupling between the X and A sites.

The predictors were provided two sets of mutations for predictions

of enzyme activity and allosteric effects in L-PYK.Qax was determined

for each active mutant protein by determining PEP affinity (via titra-

tions of activity over a concentration range of PEP) over a concentra-

tion range of effector. Experiment 1 consisted of 113mutations at nine

sites in or near to the binding of the negative allosteric regulator, ala-

nine. Participantswere asked to provide a probability that eachmutant

enzyme was active (i.e., not the level of activity) and the value of Qax

for alanine for each mutant. Experiment 2 consisted of mutations to

alanine at 430 sites throughout the protein. Participants were then

asked to predict the enzyme activity and Qax values for the effectors

alanine and Fru-1,6-BP. Since alanine is a negative regulator, all values

of Qax-Ala are between 0 and 1, whereas the value of Qax for Fru-1,6-

BP is unbounded. Predictors were provided with the maximum value

(Qax-Fru-1,6-BP = 320) found in the alanine-scanning experiment.

2 METHODS AND MATERIALS

2.1 Experimental data generation

Wild-type andmutant human L-PYKwere expressed in the E. coli FF50

strain, which lacks endogenous pyk genes, and partially purified using

ammonium sulfate fractionation followed by dialysis, as previously

described (Fenton & Alontaga, 2009; Ishwar et al., 2015). L-PYK cat-

alyzes the following reaction:

Phosphoenolpyruvate+ADP → Pyruvate+ATP

Activity measurements were performed at 30°C using a lactate

dehydrogenase assay to detect the production of pyruvate by L-PYK.

Lactate dehydrogenase catalyzes the following reversible reaction:

Pyruvate +NADH ⇌ NAD∗ + Lactate

As the L-PYK reaction proceeds, producing pyruvate, the concen-

tration of NADH decreases, which can be detected by monitoring

absorbance at 340 nm (A340). Reaction conditions contained 50 mM

HEPES or bicine, 10mMMgCl2, 2mM (K)ADP, 0.1mMEDTA, 0.18mM

NADH, and 19.6 U/ml lactate dehydrogenase. PEP and effector con-

centrationswere varied. The rate of the decrease in A340 due toNADH

utilization was recorded at each concentration of PEP and these initial

velocity rates as a function of PEP concentrationwere used to evaluate

the apparent affinity for PEP (Kapp-PEP) at any one effector concentra-

tion. Kix and Qax for each mutant and the wild type were obtained by

fitting the observed Kapp-PEP to the equation:

Kapp−PEP = Ka

(
Kix +

[
X
]

Kix + Qax
[
X
]

)

where Ka = Kapp-PEP when the concentration of effector [X]= 0.

The dataset represents two experiments, which are characteriza-

tions of mutant human L-PYK proteins expressed in E. coli, named

experiment 1 and experiment 2. Experiment 1 consisted of site-

directed mutations at residue positions with a side chain contacting

with alanine or very near the bound alanine. A total of 113 substitu-

tions were introduced at nine different sites, of which 23 mutant pro-

teinswere completely inactive (nomeasurable enzymeactivity).Qax-Ala

wasdetermined for the90mutant proteinswith activity. In experiment

2, 430 residues weremutated into alanine across the entire protein, of

which 44 did not have detectable enzyme activity. Allosteric coupling

Qax for inhibition by alanine and activation by Fru-1,6-BP were sepa-

rately determined.

2.2 Performance assessment of L-PYK enzyme

activity

From the binary experimental enzyme activity data (1 = positive =

active; 0 = negative = inactive), we calculated the number of true

positives (TPs), false positives (FPs), true negatives (TNs), and false

negatives (FNs) for all participating groups in experiment 1 and

experiment 2. From these, we calculated the true-positive rate (TPR),
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TABLE 1 Groups participating in L-PYK enzyme activity and allostery prediction challenges

Group number Affiliation Authors

53 Department of Human andMolecular Genetics, Baylor College ofMedicine,

Houston, TX

Panagiotis Katsonis, Olivier Lichtarge

54 Department of Computer Science, University College London, Gower

Street, LondonWC1E 6BT, United Kingdom

David Jones

55 Biocomputing Group, CIG/Interdepartmental Center «Luigi Galvani» for

Integrated Studies of Bioinformatics, Biophysics and Biocomplexity,

University of Bologna, Bologna, Italy

Samuele Bovo, Giulia Babbi, Pier Luigi

Martelli, Rita Casadio

56 Department of Chemistry, Seoul National University, Gwanak-ro,

Gwanak-gu, Seoul 08826, Republic of Korea

Gyu Rie Lee, Chaok Seok

true-negative rate (TNR), positive predictive value (PPV), and negative

predictive value (NPV):

TPR =
TP

TP+FN

TNR =
TN

TN+FP

PPV =
TP

TP+FP

NPV =
TN

TN+FN

We also calculated four measures that assess overall accuracy:

total accuracy (ACC), balanced accuracy (BACC), Matthews correla-

tion coefficient (MCC) (Matthews, 1975), and F1 score. F1 score is the

harmonic mean of precision (PPV) and sensitivity (TPR).

ACC =
TP+TN

TP+TN+FP+FN

BACC=
1

2
(TPR+TNR)

MCC =
TP × TN − FP × FN

√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

F1 = 2
TPR × PPV

TPR + PPV

Since some predictors provided real values (between 0 and 1),

thesewere converted into binary predictions as described below in the

Results section.

2.3 Evaluation of predictions ofQax-Ala and

Qax-Fru-1,6-BP

Spearman’s rho (�), or Spearman’s rank correlation coefficient, mea-

sures themonotonic correlation between prediction and experimental

data. � = 1 means the predictions and experimental data points have

identical rankings. For data set (pi, ei), prediction data points are con-

verted into ranks Rpi, and experimental data points are converted into

ranks Rei. Then, � is calculated from the formula:

� =
cov (Rp,Re)

�Rp�Re

, −1 ≤ � ≤ 1

Kendall’s tau (�), or Kendall rank correlation coefficient, like Spear-

man’s rho, measures the rank correlation between two variables. For

data set (p, e), any pair of (pi, ei) and (pj, ej), where i ≠ j, are said to be

concordant if both pi > pj and ei > ej, or if both pi < pj and ei < ej. They

are discordant, if both pi > pj and ei < ej, or if pi < pj and ei > ej. If pi

= pj or ei = ej, the pair is neither concordant nor discordant. We use C

for the set of concordant pairs, andD for the set of discordant pairs. � is

definedas thedifferencebetween thenumber of concordant pairs (|C|)

and thenumber of discordant pairs (|D|), dividedby the total number of

pair combinations (n × (n−1) / 2). The formula is given as following:

� =
|C| − |D|
n (n − 1)∕2

All statistical calculations and kernel density estimates of the data

were performed in R (R Core Team, 2015).

F IGURE 2 Structure of human pyruvate kinase, as well as the bind-

ing sites of inhibitor alanine and activator fructose-1,6-bisphosphate.

A: A modeled structure of L-PYK tetramer with substrates PEP and

ADP, allosteric inhibitor alanine, and allosteric activator. PEP, ADP, ala-

nine (labeled ALA), and fructose-1,6-bisphosphate (labeled FBP) are

shown in spheres, colored in magenta, pink, orange, and red, respec-

tively. The structure was assembled by superposing monomers from

several structures of homologues of L-PYK with PEP, ADP, and alanine

bound onto a tetrameric structure of human L-PYK with fructose-1,6-

bisphosphate bound (PDB: 4IP7). B: The allosteric binding site of ala-

nine. Alanine is shown in sticks and colored in orange. Residues that

weremutated in experiment 1 are shown in sticks, and colored in pink.

C: The binding site of fructose-1,6-bisphosphate (FBP). FBP is shown in

sticks and colored in red. Interacting residues are shown in sticks and

colored in blue
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3 RESULTS

In this assessment, four groups (53, 54, 55, and 56; Table 1) submitted

a total of five prediction sets, ofwhich twowere fromgroup56, labeled

56_1 and 56_2. The methods utilized by each group are provided in

the Supp. Materials as are the instructions and information provided

to predictors at the time of the experiment.

Human L-PYK is a tetrameric enzyme with distinct binding sites

for its reactants, pyruvate, and ADP, and its allosteric effectors, ala-

nine, and Fru-1,6-BP. The structure of the tetramer is shown in

Figure 2A, where molecules at the three sites are represented

as spheres in each monomer. This composite structure was cre-

ated by superposing monomers from structures containing ala-

nine (PDB: 2G50, a structure of rabbit L-PYK) (Williams et al.,

2006), PEP (PDB: 4HYV, Trypanosoma brucei pyruvate kinase) (Zhong

et al., 2013), and ADP (PDB: 3GR4, human pyruvate kinase M2)

(Hong et al., unpublished, DOI: 10.2210/pdb3gr4/pdb) onto each

member of the tetrameric biological assembly of human L-PYK

(PDB: 4IP7) (Holyoak et al., 2013). Experiment 1 consisted of

113 mutations spread across nine amino acid positions in or near

the alanine-binding site (Fig. 2B): Arg55, Ser56, Asn82, Arg118,

His476, Val481, Pro483, and Phe514. Experiment 2 consisted of

alanine-scanning mutations across the entire protein, except wild-

type positions that are Gly or Ala. The Fru-1,6-BP site is shown in

Figure 2C.

3.2 Prediction of L-PYK enzyme activity

The first challenge was to provide a probability that each enzyme

was active. This was a binary outcome, not the level of activity. Even

weakly active enzymes were considered active in the experiment. In

both experiments, somemutants had no detectable activity, and these

were labeled 0; the rest were labeled 1. The active mutants included

some enzymes with very low but detectable activity. In experiment 1,

79.6% of mutants were active and 20.4% were inactive. In experiment

2, 88.8% of the mutants were active and 10.2% were inactive. Two of

the groups (53 and 54) submitted real values between 0 and 1, instead

of binary indicators. For these groups, we labeled all predictions with

values ≥0.5 as active and the rest as inactive. Figure 3 shows the den-

sity functions of predicted enzyme activities. For experiment 1, two

groups (55 and 56_2) predicted all mutants to be active (a value of 1)

(Fig. 3, top row). This is not unreasonable since all of the mutations

were in or near the alanine effector-binding site, which is distant from

the active site.

Table 2 provides an assessment of the predictions of enzyme activ-

ity for each group for both experiments. We also included values

obtained from the PolyPhen-2 server, which is commonly used to pre-

dict phenotypes of missense mutations (Adzhubei et al., 2010). Group

56 achieved the highest ACC in both experiments (ACC of 0.867 for

group 56_1 in experiment 1; ACC of 0.894 for group 56_2 in experi-

ment 2). Since the goal was to predict whether enzymes were active or

inactive, rather than the level of activity, this is a successful result. In

the case of experiment 1, predicting all mutants as active would result

in an accuracy of 0.796, whereas in experiment 2, a value of 0.888

would be obtained. At least for experiment 1, group 56 achieved bet-

ter predictions than the simple prediction that all mutants were active.

Inmost binaryphenotypeprediction assessments (Wei&Dunbrack,

2013), it is important to balance the success of positive predictions

and/or experimental outcomes with negative predictions and/or

experimental outcomes. One such measure is the BACC, which is the

average of the rate of correctly predicting the experimentally active

mutants (TPR) and the rate of correctly predicting the experimentally

inactive mutants (TNR). For experiment 1, only groups 53 and 56_1

achieved BACC values above 0.5, with BACC = 0.768 and 0.755,

respectively. A BACC of 0.50 is trivial to achieve, since if one predicts

all of the phenotypes in one class, the BACC is automatically 0.50 (e.g.,

groups 55 and 56_2 for experiment 1). Groups 53 and 56_1 achieved

their results in contrasting manners: group 53 has low TPR and high

TNR, and group 56_1 has high TPR and low TNR. For experiment 2,

which contained mutations across the entire protein and is therefore

a more real-world prediction task, only group 53 has TPR and TNR >

0.5, resulting in a BACC of 0.745.

Similarly, theMCC and F1 values also balance positive and negative

predictions and experimental values but in different ways than BACC

(seeMaterials andMethods). F1, in particular, only includes positive pre-

dictions and experimental phenotypes and omits negative predictions

and phenotypes. Since both data sets consisted of majority of active

enzymes (80% and 88% for experiments 1 and 2, respectively), groups

that predicted a larger fraction of the enzymes to be active did better

in F1 (groups 55, 56_1, and 56_2) than the other groups. Group 54 pre-

dicted amajority of themutants to be inactive in both experiments and

thus achievedmuch lower values for F1 than the other groups.

We compared the results of CAGI groups with that of PolyPhen-2,

a server that is commonly used to predict the phenotypes of missense

mutations in proteins. PolyPhen-2, like other servers, predicts pheno-

types to be deleterious or neutral, or “damaging” versus “benign.” This

is not necessarily directly associatedwith enzymeactivity, since a dele-

terious mutation might affect protein expression or the ability to reg-

ulate the protein by allosteric mechanisms. Also, the inactive enzymes

were only those with no activity, and not those with significant reduc-

tion in activity. In experiment 1, PolyPhen-2 predicted most mutants

to be inactive, probably because the alanine-binding site is very highly

conserved in L-PYK enzymes in order to retain the negative effector

capability of alanine. This resulted in a BACC of 0.539. In experiment

2, mutations were spread across the protein and PolyPhen-2 does bet-

ter, with a BACC of 0.674. Nevertheless, group 53 was able to achieve

better results on all four measures of overall success in experiment 2.

As mentioned above, groups 53 and 54 provide real values (not

binary values) for the enzyme activity. We speculated that a cutoff

of 0.5 might not be ideal to turn their real values into binary pre-

dictions. We calculated BACC as function of the cutoff and found

that for group 53, a value of 0.5 was still the best for both experi-

ments. But for group 54, values of 0.3 for experiment 1 and 0.35 for

experiment 2 provide better results. The values of BACC are 0.724

and 0.696, respectively, which are much better than the 0.5 cutoff

(0.534 and 0.627, respectively). But this is only possible with refer-

ence to the experimental data, which would not be available in real-

world situations. Since the density for predictions for group 54 were

https://DOI:10.2210/pdb3gr4/pdb
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F IGURE 3 Kernel density estimates of five sets of predicted L-PYK enzyme activities

TABLE 2 Binary prediction results of L-PYK enzyme activity

Experiment 1 Experiment 2

Method Group 53 Group 54 Group 55 Group 56_1 Group 56_2 PPH2 Group 53 Group 54 Group 55 Group 56_1 Group 56_2 PPH2

TPR 0.622 0.156 1 0.944 1 0.122 0.626 0.322 0.838 0.898 0.976 0.392

TNR 0.913 0.913 0 0.565 0 0.957 0.864 0.932 0.205 0.318 0.182 0.953

PPV 0.966 0.875 0.796 0.895 0.796 0.917 0.976 0.976 0.901 0.920 0.912 0.987

NPV 0.382 0.216 0 0.722 0 0.218 0.210 0.137 0.127 0.264 0.471 0.150

ACC 0.681 0.310 0.796 0.867 0.796 0.292 0.650 0.385 0.772 0.838 0.894 0.449

BACC 0.768 0.534 0.5 0.755 0.5 0.539 0.745 0.627 0.521 0.608 0.579 0.673

MCC 0.431 0.079 0 0.561 0 0.103 0.301 0.169 0.034 0.199 0.246 0.218

F1 0.757 0.264 0.887 0.919 0.887 0.217 0.762 0.484 0.868 0.907 0.943 0.562

Notes:

The highest score in each row for the four global measures is in bold and underlined.

0, inactive; 1, active.

TPR, true-positive rate; FPR, false-positive rate; TNR, true-negative rate; PPV, positive predictive value; NPV, negative predictive value; ACC, accuracy;

BACC, balanced accuracy;MCC,Matthews correlation coefficient; F1, F1 score.

unimodal (Fig. 3), it was not possible to define a cutoff based on amini-

mum of density between a low-activity and a high-activity mode in the

data.

3.3 Prediction of allosteric inhibition of alanine

(Qax-Ala)

The second challenge was to estimate the inhibitory allosteric effect

of binding alanine, Qax-Ala on binding of the substrate PEP. The den-

sity estimates of experimental Qax-Ala values of two experiments are

shown in Figure 4. The wild-type enzyme had a Qax-Ala value of ∼0.08

inbothexperiments. In experiment1, 23outof90mutantsdidnothave

measurable allosteric coupling, shown in a peak atQax = 1 (Fig. 4, left).

One possiblity is that alanine continues to bind to these mutant pro-

teins, but that binding does not alter PEP affinity. In other cases, the

Qax = 1 outcome is likely because the mutation eliminated binding of

Ala to L-PYK altogether (at least to themaximum concentration tested

in the experiments). In experiment 2, after excluding 37 mutants for

which the allosteric coupling effect could not be measured, the Qax-Ala

values of 325 (83%)mutantswere between 0 and 0.2, relatively similar

to the wild-type enzyme.

A comparison by scatter plot of the experimental and the predicted

Qax-Ala values is shown in Figure 5. Group 55 provided only binary

prediction for Qax-Ala. Group 56_1 and 56_2 provided identical values

for both experiments. The scatter plots do not showany obvious corre-

lations between the predicted and experimentalQax-Ala.
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F IGURE 4 Kernel density estimates of experimentalQax-Ala values of experiments 1 and 2

F IGURE 5 Scatter plot of the experimentalQax-Ala versus the predictedQax-Ala values

F IGURE 6 Correlations represented by Spearman’s � andKendall’s � between the predicted and experimentalQax-Ala values of two experiments
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F IGURE 7 Kernel density estimate of experimental Qax-Fru-1,6-BP
from experiment 2

Wecalculated Spearman’s � andKendall’s � coefficients as nonpara-

metric tests of the correlation of the predictionswith the experiments,

since the data and predicted values are not unimodal or normally dis-

tributed. Only group 55 in experiment 1 achieves a favorable corre-

lation, with � = 0.351 and � = 0.299 with P values of 0.002 for both

(Fig. 6). All of the other P values are in the range of 0.17–0.88, which

implies there is no correlation between the predicted and experimen-

tal Qax-Ala values. If we treat the experimental Qax-Ala values as binary

for experiment 1 (Fig. 4, left), we can calculate binary assessment

measures such as TPR, TNR, and so on. We did this for group 55,

which provided binary prediction values (0.1 and 1.0) with the follow-

ing results (where positive indicatesQax-Ala = 1): TPR= 17/23= 0.739;

TNR = 39/55 = 0.709; BACC = 0.724. This is better than random and

explains the positive correlation coefficients.

The results for experiment 2 are negatively correlated for three of

the groups, and only very weak positive correlations were achieved by

groups 54 and 55 (Fig. 6, right). The P values are in the range of 0.38–

0.88.

3.4 Prediction of allosteric activation of Fru-1,6-BP

(Qax-Fru-1,6-BP)

Participants were asked to predict the allosteric effect of Fru-1,6-BP

binding to L-PYK for the mutants created in experiment 2 and were

told that the maximum value in the experiments was 320. The wild-

type protein has a Qax-Fru-1,6-BP value of 14.2. The density estimate of

experimental Qax-Fru-1,6-BP values is shown in Figure 7, showing that

the vast majority of mutants had values between 0 and 60. The scatter

plots of the predicted Qax-Fru-1,6-BP versus experimental Qax-Fru-1,6-BP

show that groups 53 and 54 provided real values over the full range of

the experimental values and group 55 provided discrete values (1, 50,

250, and 320), whereas group 56 provided an approximate wild-type

value of 15.3 for most of the mutants and other values for 18 mutants

in the range from 1 to 28.3 (Fig. 8).

We calculated Spearman’s � and Kendall’s � to evaluate the cor-

relations between predicted and experimental Qax-Fru-1,6-BP values

(Fig. 9). Only group 55 has positive correlations, both very marginal

(both � and � ∼ 0.05, with P value of 0.2). All others have negative

correlations, especially for group 53 and 54. The P values of group 53

are 7.5E-05 for � and 8.98E-05 for � , and the P values of group 54 are

0.0003 for both � and � .

4 DISCUSSION

We may summarize the results of the CAGI experiment on L-PYK as

follows. Groups 53 and 56 had good predictions of the L-PYK enzyme

activity in experiments 1 and 2 as measured by BACC (group 53) and

ACC (group 56). In these cases, the results were better than that

achieved by PolyPhen-2. Group 54 had good predictions only if we set

a new cutoff for binary enzyme activity from their real-valued results

in both experiments 1 and 2.

For the prediction of allosteric effects of alanine and fructose,

groups 55 and 53 had positive correlations for the Qax-Ala challenge in

experiment 1, but only group 55 had a statistically significant positive

correlation. No group had statistically significant, positive correlations

for their predictions ofQax-Ala orQax-Fru-1,6-BP in experiment 2.

At the conclusionof this experiment,weare left to contemplatewhy

the overall success of predicting allosteric effects was underwhelming.

This consideration is particularly valuable given the indications of suc-

cess of computational approaches reported in the literature. As noted,

the only statistically significant result for predicting allosteric datawas

for group55on theQax-Ala challenge in experiment 1. This group used a

very simplemodel that considered the distance eachwild-type residue

was from bound Ala (as modeled from the structure of human pyru-

vate kinase M2) and the severity of the mutation from wild type (as

determined by scores from a substitution matrix). It is likely that they

correctly predicted many of the mutations that abrogated Ala bind-

ing altogether (Qax-Ala = 1), rather than quantitatively predicting the

effect of themutations on the diverse values ofQax-Ala of the remaining

mutations (Qax-Ala < 1). It is not likely that their distance-basedmethod

would extend readily to the general problem of predicting allosteric

effects, especially for residues not in or near the binding site. The

results for experiment 2, where mutations were made throughout the

protein, confirm this.

It is also clear from the experiment that methods that predomi-

nantly used evolutionary considerations (groups 53 and 54) were not

able to predict the effects ofmutation on allosteric behavior. Group 53

used the evolutionary action of each mutation, a number that can be

calculated from phylogenetic sequence analysis (Katsonis & Lichtarge,

2014). Group 54 used covariation of amino acids in pairs of positions

within a multiple sequence alignment of homologues of L-PYK (Jones

et al., 2015).

Group 56 calculated the binding affinity of each effector to each

mutant with docking calculations (Shin et al., 2013), and made the

assumption that Qax was directly proportional to these values. In fact,

Qax =Kix/Kix/a where Kix is the equilibrium dissociation constant of the

effectorXandKix/a is theequilibriumdissociation constant of theeffec-

tor X when the substrate A is bound. The approximation is not unrea-

sonable given the experimental data from experiment 2: the Pearson

and Kendall correlation coefficients between the experimental values

of Qax and Kix for alanine are 0.73 and 0.59, respectively, and for Fru-

1,6-BP they are 0.80 and 0.64, respectively (all P values< 1.0× 10−15).
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F IGURE 8 Scatter plot of the predicted versus experimentalQax-Fru-1,6-BP values from experiment 2

F IGURE 9 Correlations representedbySpearman’s � andKendall’s �

between the predicted and experimentalQax-Fru-1,6-BP values in exper-

iment 2

Group 56 only performed docking calculations to mutations in the

binding sites of alanine and Fru-1,6-BP, and submitted values for all

other positions of 1.0 for Qax-Ala (no inhibition of PEP-binding by Ala)

and15.3 forQax-Fru-1,6-BP (the experimental value). This resulted in only

eight mutations with Qax-Ala not equal to 1.0, only five of which had

experimental values available. If we restrict the calculation of correla-

tion coefficients to these five values, the P values for the Spearman and

Kendall correlation coefficients are greater than 0.8, and the values of

rho and tau are 0.1 and 0, respectively. ForQax-Fru-1,6-BP , group 56 pro-

duced values for 17mutations adjacent to the Fru-1,6-BP site, only 11

ofwhichhadenoughenzymeactivity tomeasureQax-Fru-1,6-BP . The cor-

relation coefficients withQax-Fru-1,6-BP were both∼0.2 with P values of

∼0.5.Unless docking calculations are able todiscern changes inbinding

affinity of the effector (in the presence or absence of the substrate) for

sites far from their binding sites, it is not possible todeterminewhether

such calculations provide valuable information on allosteric behavior.

It is clear from the quality of predictions in this study that addi-

tional approaches are needed. Many of the methods reported in the

literature involve molecular dynamics simulations that are very com-

putationally intensive (Blacklock & Verkhivker, 2014; Hertig et al.,

2016; Weinkam et al., 2012). Several simulations of other forms of

pyruvate kinase (Naithani et al., 2015) and mutants thereof have been

performed (Kalaiarasan et al., 2015). However, whether such methods

could be used in a predictive fashion has yet to be determined. The cur-

rent data set could be used to benchmark such methods, if a sufficient

number of mutants can be simulated.

Allosteric regulation is sometimes presented as a Rube Goldberg-

type mechanism initiated by the effector associating with the

enzyme/protein (binding causes change A; change A causes change B;

change B causes change C, etc.). However, the definition for allostery

based on an energy cycle (Fig. 1) implies that allostery is an equi-

librium mechanism (Carlson & Fenton, 2016). As such, the allosteric

mechanism would be a comparison of changes in the fully equilibrated

enzyme forms represented inFigure1andnot aRubeGoldbergmecha-

nism that would be associatedwith a kinetics mechanism. Calculations

of this sort remain a challenge for computational approaches to pre-

dicting the effects of mutations on allosteric regulation.
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Abstract

Precision medicine aims to predict a patient’s disease risk and best therapeutic options by using

that individual’s genetic sequencing data. The Critical Assessment of Genome Interpretation

(CAGI) is a community experiment consisting of genotype–phenotype prediction challenges; par-

ticipants build models, undergo assessment, and share key findings. For CAGI 4, three challenges

involved using exome-sequencing data: Crohn’s disease, bipolar disorder, and warfarin dosing.

Previous CAGI challenges included prior versions of the Crohn’s disease challenge. Here, we dis-

cuss the rangeof techniquesused for phenotypeprediction aswell as themethodsused for assess-

ing predictivemodels. Additionally, we outline someof the difficulties associatedwithmaking pre-

dictions and evaluating them. The lessons learned from the exome challenges can be applied to

both research and clinical efforts to improve phenotype prediction from genotype. In addition,

these challenges serve as a vehicle for sharing clinical and research exome data in a secure man-

ner with scientists who have a broad range of expertise, contributing to a collaborative effort to

advance our understanding of genotype–phenotype relationships.

K EYWORD S

bipolar disorder, Crohn’s disease, exomes, machine learning, phenotype prediction, warfarin

1 INTRODUCTION

Precision medicine aims to use a patient’s genomic and clinical data to

make predictions aboutmedically relevant phenotypes such as disease

risk or drug efficacy (Ashley, 2015; Ashley et al., 2010).

The Critical Assessment of Genome Interpretation (CAGI) is a com-

munity experiment, which aims to advance methods for phenotype

prediction from genotypes through a series of “challenges” with real

data (CAGI, 2011). Exome-sequencing data, which captures exons and

nearby flanking regulatory regions, is already being used clinically

to solve medical mysteries with well-defined symptoms (Brown &

Meloche, 2016). However, in order to advance precisionmedicine, clin-

icians and scientists will need to be able to make inferences about dis-

ease risk or drug efficacy from genetic data. Interpretation of genetic

data is one of the major difficulties in the implementation of preci-

sion medicine (Fernald, Capriotti, Daneshjou, Karczewski, & Altman,

2011).

CAGI is an example of the Common Task Framework, a phrase

coined by Mark Liberman to describe the approach of using shared

training and testing datasets and evaluation metrics to advance

machine learning (Committee on Applied and Theoretical Statistics;

Board on Mathematical Sciences and Their Applications; Division on

Engineering and Physical Sciences; National Academies of Sciences,

Engineering, and Medicine, & Schwalbe, 2016; Donoho, 2015). The

Common Task Framework has been called the “secret sauce” behind

the recent successes inmachine learning (Donoho, 2015). Startingwith

common task challenges in the 1980s for machine translation, this

approach has led to significant gains in speech recognition and dia-

log systems, protein structure prediction, biomedical natural language

processing, autonomous vehicles, and collaborative filtering for con-

sumer preferences (Bell & Koren, 2007; Morgan et al., 2008; Moult,

Fidelis, Kryshtafovych, Schwede, & Tramontano, 2014; Thrun et al.,

2006; Walker et al., 2001). Through this same approach, CAGI aims to

push forward the field of precisionmedicine.

At CAGI 4 held in 2016, three challenges involved making predic-

tions using exome sequencedata: aCrohn’s disease challenge, a bipolar

disorder challenge, and a warfarin dosing challenge. These challenges

represent the spectrum of phenotypes seen in clinical practice. Bipolar

disorder and Crohn’s disease are discrete phenotypes, with the former

being a clinical diagnosis (basedonmeeting clinical criteria) and the lat-

ter a pathological diagnosis (based on biopsies). Therapeutic warfarin

dose, on the other hand, is a continuous phenotype.

TheCrohn’s disease challengehasbeenapart of previousCAGI iter-

ations, whereas the bipolar disorder and warfarin dosing challenges

debuted during CAGI 4. We will describe the nature of each challenge

in greater detail. The number of groups participating in each challenge

can be found in Table 1.
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TABLE 1 The number of predictors and predictions for each CAGI

challenge

Challenge Number of predictors
Number of
predictions

Crohn’s disease

exomes challenge

CAGI 2 – 10 groups CAGI 2 – 33

predictions

CAGI 3 – 14 groups CAGI 3 – 58 (+3 late)

predictions

CAGI 4 – 14 groups CAGI 4 – 46

predictions

Bipolar exomes

challenge

CAGI 4 – 9 groups CAGI 4 – 29

predictions

Warfarin exomes

challenge

CAGI 4 – 3 groups CAGI 4– 9 predictions

1.1 Crohn’s disease challenge

Crohn’s disease is a chronic inflammatory bowel disease marked by

transmural inflammation of the gastrointestinal tract that can occur

anywhere from the mouth to the rectum (Cho, 2008). Symptoms

include pain and debilitating diarrhea, which can lead to malnutri-

tion (Cho, 2008). Monozygotic twin studies have shown a concor-

dance of 40%–50%, and genome-wide association studies have iden-

tified genetic risk loci (Cho, 2008; Halfvarson, Bodin, Tysk, Lindberg,

& Jarnerot, 2003). Age of onset is typically between 20 and 40 years

old, but early age of onset, such as in early childhood, is associatedwith

more severe disease features (Uhlig et al., 2014).

The2011 (CAGI 2) dataset has 56 exomes (42 cases, 14 controls), all

ofGermanancestry (Ellinghauset al., 2013). The2013 (CAGI3) dataset

has 66 exomes (51 cases, 15 controls). Though these sampleswere also

of German ancestry, cases were selected from pedigrees of German

families with multiple occurrences of Crohn’s disease. As such, some

of these cases were related. For the most part, the samples sequenced

as controls were unrelated healthy individuals; the exceptions to this

were the unaffected parents of three cases and the unaffected twin

of one case. The most recent challenge, CAGI 4 in 2016, was to iden-

tify cases from controls in 111 unrelated German ancestry exomes (64

cases, 47 controls). For CAGI 4, submitting groups were allowed to

use the data from the Crohn’s disease CAGI challenges of 2011 and

2013. In all iterations of the challenge, groups were asked to report

a probability of Crohn’s disease (between 0 and 1) for each individual

and a standard deviation representing their confidence in that predic-

tion. For the most recent Crohn’s disease evaluation, teams were also

asked to predictwhether age of onsetwas greater or less than10 years

of age; an age cutoff selected by CAGI based on the literature (Uhlig

et al., 2014). Additional details of the challenges can be found in Supp.

Exhibit 1.

1.2 Bipolar disorder challenge

Bipolar disorder is a mood disorder marked by elevated mood (mania

or hypomania) and depressed mood that disrupts an individual’s abil-

ity to function (Craddock & Sklar, 2013). In the general population,

the lifetime risk of bipolar disorder is 0.5%–1% (Craddock & Jones,

1999). However, bipolar disorder has a high component of heritabil-

ity, with studies demonstrating a 40%–70% monozygotic twin con-

cordance (Craddock & Jones, 1999). In this CAGI 4 challenge, 1,000

exomes of unrelated bipolar disorder cases and age/ancestry-matched

controls of Northern European ancestry were provided. Five-hundred

exomes were used as the training set and 500 exomes were used for

the prediction set (Monson et al., 2017). Groups were asked to report

a probability of bipolar disorder (between 0 and 1) for each individ-

ual and a standard deviation representing their confidence in that pre-

diction. Additional information on the challenge can be found in Supp.

Exhibit 2.

1.3 Warfarin dosing challenge

Warfarin is an anticoagulant with over 30 million prescriptions writ-

ten in 2011 (IMS Institute of Healthcare Informatics, 2012). Warfarin

remains a clinical stapledespite the introductionof novel oral anticoag-

ulants because of multiple factors—warfarin’s lower cost, longer half-

life, and clinical indications for which novel oral anticoagulants have

not yet been approved (Bauer, 2011). However, warfarin is responsible

for one-third of hospitalizations due to adverse drug events because

of its narrow therapeutic index and high interindividual dose variabil-

ity (Budnitz, Lovegrove, Shehab, & Richards, 2011). Both clinical and

genetic factors affect the therapeutic dose of warfarin (Klein et al.,

2009). For this challenge, participants were provided with exomes

of African Americans on tail ends of the warfarin dose distribution

(≤35 mg or ≥49 mg) (Daneshjou et al., 2014). Clinical covariates were

provided for all exomes. The training set consisted of 50 exomes, and

participants submitted dose predictions with standard deviations on

53 test set exomes. Additional details of the challenge can be found in

Supp. Exhibit 3.

2 METHODS

2.1 Data distribution

Data were distributed to the participants who consented to the CAGI

data use agreement. Data providers worked with their home institu-

tion to ensure adherence with local privacy regulations and predicting

groups agreed not to share the anonymized data. Data were provided

as described above, with genetic variant data shared in the VCF file

format.

2.2 Predicting phenotypes

Participants required to return a simple text file with appropriate pre-

dicted values (such as disease status and confidence in prediction) for

each sample. They were also provided with a validation script to check

their output formatting. Participants were asked to submit a methods

description for each submission. The prediction results from selected

groups that submitted predictions andmethods descriptionswere pre-

sented at the CAGI meeting. Additionally, the ground truth data and

scoring scripts used to perform the evaluation were shared with par-

ticipants.
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2.3 Data quality

For the Crohn’s disease and bipolar disorder exome challenges, biases

in the data were assessed using principal component analysis and clus-

tering after pruning for linkage disequilibriumusing plink (Purcell et al.,

2007).

For thewarfarin challenge, datahadpreviously undergoneQCusing

ancestry informative markers to confirm self-reported ancestry and

identity by state (IBS) analysis in order to ensure that sampleswere not

related, as previously described (Daneshjou et al., 2014).

2.4 Assessing discrete phenotypes (Crohn’s disease

and bipolar disorder)

A simple accuracy of prediction per sample score, such as derivable

from setting a threshold for prediction (such as 0.5), although tanta-

lizing in its simplicity neither supports the goals of CAGI nor is it repre-

sentative of a likely clinically relevant scenario for prediction. Because

the genetic datasets from CAGI are drawn from case-control studies,

as well as pedigree studies in families with a strong burden of disease,

it does not represent a random sampling of the population. Requiring a

fixed threshold for evaluation and reporting a basic accuracy score of

prediction in such a dataset would obscure interpretation. Also, using

this as a figure of merit for ranking encourages participants to opti-

mize their system predictions for the anticipated case/control distri-

bution instead of focusing on features that selectively prioritize and

rank disease likelihood in the absence of that calibration. The use of

receiver operator characteristics (ROC) curves for genomic test eval-

uation has been previously investigated by Wray, Yang, Goddard, and

Visscher (2010).

The ROC offers many advantages for evaluating a test, and is often

used to characterize clinical tests. The shape of a ROC curve can help

differentiate between highly sensitive tests, which could rule in a pos-

sible diagnosis, and highly specific tests that could rule out a diagnosis.

The prediction of Crohn’s disease status from sequencing data might

beused in either of those situations depending on clinical presentation,

risk factors, or stage of patient evaluation. Additionally, ROC curves

allow easy selection of a classification threshold (based on select-

ing a position on the curve). Based on the selected threshold, a pos-

itive or negative likelihood ratio can be derived and applied in stan-

dard evidence-based techniques of patient diagnosis, which rely on a

Bayesian framework that takes into account the pretest probabilities

and the characteristics of a given test depending on the threshold cho-

sen for prediction (Fagan, 1975).

We evaluated the robustness of the prediction accuracywhenmak-

ing predictions on different subsamples of exomes and assessed the

confidence intervals reported by the participants.

To capture confidence intervals on the predictions, multiple

samples with replacement were drawn. Each prediction was then

modified by adding a random amount drawn from a normal distribu-

tion with a mean of zero and a standard deviation equivalent to the

standard deviation reported for the original prediction. If no confi-

dence interval was reported for the original prediction, the standard

deviation was taken to be zero. If a prediction for a particular exome

was missing, the prediction score for that sample was set to the mean

reported prediction value in that submission. In order to compare sub-

missions by a single figure of merit, the average area under the ROC

curves from the bootstrap sampling was used, accompanied by the

bootstrapped confidence interval around that area under the curve,

to estimate the robustness of differences between prediction perfor-

mances. The evaluation scripts were provided to all participants.

A cross-validated logistic regression-based metaclassifier using

lasso regularizationwas also trained on the submissions as features for

CAGI 4 Crohn’s disease and CAGI 4 bipolar disorder. This step allowed

us to assesswhether combining the features selected across the differ-

ent groups would improve prediction over a single method. If a meta-

classifier could perform better than any single method, then a combi-

nation of methodsmight lead tomeaningfully better performance.

2.5 Assessing continuous phenotypes (therapeutic

warfarin dose)

For the warfarin exomes challenge, several metrics of assessment

were used. Each participant provided a predicted therapeutic dose of

warfarin for each individual as well as a standard deviation for that

prediction.

To look at the amount of variation in dose explained by the pre-

dicted doses, we used linear regression with the linear model function

(lm) in the R statistical package (v 2.15.3). We evaluated each method

using the R2 and the sum of squared errors. Additionally, we compared

each prediction against one of the best performingwarfarin-predictive

algorithms, the International Warfarin Pharmacogenetic Consortium

(IWPC) algorithm (Klein et al., 2009).

To assess, on average, how many participant-provided standard

deviations the predicted dose was from the actual dose, we used a

mean of the absolute value of the z score for each prediction, as seen in

Equation (1). Here, dose_actual is the known therapeutic dose of war-

farin for each individual i, whereas dose_predicted is the therapeutic

dose predicted by that group for that individual. SD_predicted is the

standard deviation for each individual’s predicted dose, as provided by

the participant’s predictionmethod. The number of individuals is n.

∑n
i=1

||||

dose_actuali − dose_predictedi
SD_predictedi

||||
n

(1)

To assess the range of the each prediction’s standard deviation com-

pared with the predicted dose, we calculated the mean of the coeffi-

cient of variation, which was the mean of the standard deviation for

each prediction divided by the predicted dose, as seen in Equation (2).

∑n
i=1

SD_predictedi
dose_predictedi
n

(2)

We also evaluated the mean absolute value of the z score multi-

plied by the mean coefficient of variation for each method. This value

allowed us to assess the mean z scores with a penalization for mean

z scores whose values were closer to 0 because of larger standard

deviations.
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F IGURE 1 Clustering of patients from the CAGI 2 Crohn’s disease challenge. The black and gray bars at the bottom represent the controls; the

red represents the cases. Many of the controls cluster together, likely due to batch effects. For instance, the controls represented in black were

sequenced separately from the gray controls and the cases

We calculated rho andP values using the spearman rank correlation

between (1) each group’s predictedwarfarin doses and the actual ther-

apeutic doses across individuals and (2) each group’s predicted war-

farin doses and the IWPC-predicted doses across individuals. These

calculations were made with the spearmanr command from the stat

package in scipy (python v 2.7.5).

3 RESULTS

With each year, CAGI has expanded the number of challenges and par-

ticipants. Table 1 displays the number of participants and predictions

for each CAGI challenge.

3.1 Crohn’s disease exomes challenge (CAGI 2–4)

For the 2011 Crohn’s disease (CAGI 2) challenge, during the assess-

ment phase, a substantial batch effect was discovered in the data as

a side effect of sample preparation and sequencing (Fig. 1). Overall,

the control samples that clustered separately due to this batch effect

had fewer variants reported that did not match the reference genome.

The participants were not aware of this batch effect; their methods

were not designed to exploit it. However, this raises the possibility

that techniques that used a very large list of genes were more likely

to correctly identify case samples as coming from individuals with

Crohn’s disease. Indeed, many different methods did better than

random based on AUC, with a maximum AUC of 0.94, and in general

approaches that favored a large list of potentially Crohn’s disease-

related genes and gave more weight to rarer variants did the best. A

full description of all methods used by the participants can be found in

Supp. Exhibit 1:CAGI 2. Supp. File 1 shows comparative results of the

CAGI 2 Crohn’s disease challenge predictive methods. It is certainly

biologically plausible that increased burden of variation in a large

number of Crohn’s disease-related genes leads to increased likelihood

of disease; however, it is also possible that there was systematic over-

reporting of variation as a batch effect. Therefore, it was important to

re-evaluate withmore data.

In the 2013 CAGI 3, a much greater effort was made to carefully

collect and prepare samples in a completely consistent way. In this

instance, case samples were collected from German families with a

particularly high burden of Crohn’s disease (two ormore affected fam-

ily members), including a pair of twins discordant for the disease, and

another pair of twins concordant with the disease. Additional healthy

controls were drawn from the unaffected German general popula-

tion. During the 2013 CAGI 3, there was once again a substantial dif-

ference in clustering between cases and controls, but in this dataset

there was substantially more homogeneity in the cases. Individuals

from different case families clustered much more closely with each

other than with unrelated controls (Fig. 2). This prompted two possi-

ble hypotheses. The first is that theremight be a hidden founder effect,

and these families with a high burden of disease may all actually be

closely related. The second is that reduced heterogeneity and perhaps



DANESHJOU ET AL. 1187

F IGURE 2 Clustering of samples for CAGI 3 Crohn’s disease challenge. Black represents controls, whereas red represents cases. This dataset

included healthy family members of cases as well as random controls. Samples with a “ped” designation in the sample name came from a pedigree;

samples that share the same “ped” number came from the same pedigree

increased ancestor consanguinity may contribute to increased risk of

Crohn’s disease in these families with a high burden. Either one alone

or amixture of both possibilities is biologically plausible. In this instan-

tiation of CAGI, groups that simply did some version of partitioning the

test datasets based on hierarchical clustering did quite well, and the

top performing methods had an AUC of 0.87. Once again, all of these

methods were implemented without awareness of the bias in the data.

A full description of all methods used by the participants can be found

in Supp. Exhibit 1:CAGI 3. Supp. File 2 shows comparative results of the

CAGI 3 Crohn’s disease challenge.

In CAGI 4, 111 exomes were derived from a mix of 64 Crohn’s

disease patients, with a skew toward early onset of disease, and 47

healthy controls, all taken from individuals of German descent. With

this data, the simple separation of cases and controls based on genetic

variants was not present (Fig. 3), suggesting the problems with batch

effects and sampling bias were no longer present; the only noticeable

structure indicated the possibility of a few related samples, as seen

in the PCA and IBD plots shown in Supp. Figures S1 and S2. Corre-

spondingly, the peak performance dropped from previous CAGI iter-

ations down to an AUC of 0.72. However, given the elimination of

biases in the data, this incarnation of the Crohn’s disease challenge is

likely the best reflection of how the prediction methods perform. A

metaclassifier created by the assessment team using all submitted

methods for this challenge, as shown in Supp. Figure S3, had an AUC

of 0.78, a small improvement over the top method. The distribution

of AUCs across methods is shown in Figure 4. A full description of all

methods used by the participants can be found in Supp. Exhibit 1:CAGI

4. Supp. File 3 shows comparative results of theCAGI4Crohn’s disease

challenge.

The top approach in CAGI 4 used a compiled list of genes and

genomic regions associated with Crohn’s disease from prior studies,

used imputation to evaluate risk contribution from known regions

associated with Crohn’s disease but not covered by exome sequenc-

ing, and used the Welcome Trust Case Control Consortium (WTCCC)

Crohn’s disease genotyping array data to train a disease classifier to

score relative risk for each sample.

Across participants, numerousmethodswere used for selecting the

covariates, highlighting the many different approaches to building a

Crohn’s disease classifier. Similar to the top approach, many groups

used variants previously found to be associated in genome-wide asso-

ciation studies; the NHGRI catalog was a popular choice to iden-

tify these associated variants (Welter et al., 2014). Other approaches

relied on gene lists of associated and “predicted”Crohn’s disease genes

to select variants of interest. To create the “predicted” list of Crohn’s

disease genes, groups used a variety of methods. Examples include

using (1) existing tools such as Phenolyzer, which associates disease

terms with genes based on prior research, expands the gene list by

using gene–gene relationships, and then creates a ranked list of can-

didate genes; (2) creating gene lists based on GO pathways enriched

with Crohn’s disease-associated variants; and (3) using natural lan-

guage processing to identify genes of interest from PubMed abstracts

(Ashburner et al., 2000; Yang, Robinson, & Wang, 2015). From a gene

level, different groups would then devise different strategies to select

variants of interest. For some approaches, population level frequency
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F IGURE 3 Clustering of samples for CAGI 4 Crohn’s disease challenge. Black represents controls, and red represents cases

datawas used to help distinguish variantsmore likely to be pathogenic.

Other methods relied on pathogenicity prediction tools such as SNAP,

PON-P2, SNPs&GO, and Variant Effect Predictor to inform variant

selection andweighting (Bromberg & Rost, 2007; Calabrese, Capriotti,

Fariselli, Martelli, & Casadio, 2009;McLaren et al., 2010; Niroula, Uro-

lagin, & Vihinen, 2015).

A range ofmachine learning approacheswere used to actually build

the classifiers: naïveBayes, logistic regression, neural nets, and random

forests. Additionally, some groups improved on prior iterations by cre-

atingmetaclassifiers based on combinations of prior methods.

3.2 Bipolar disorder exomes challenge (CAGI 4)

As noted, a substantial difference between the Crohn’s disease phe-

notypic prediction challenge and the bipolar disorder challenge was

that a substantial amount of training data was provided for the bipolar

disorder challenge, with 500 of the 1,000 exomes randomly selected

and provided as training data for the challenge. These samples were

unrelated, and analysis steps assessing the relationships between sam-

ples can be found in Supp. Figs. S4–S6. The top performing group

had a method with an AUC of 0.64. The distribution of AUCs across

methods is shown in Figure 5. Althoughmany groups used approaches

similar to those used for the Crohn’s disease challenge, the top per-

forming group (which did not apply this method to Crohn’s disease

data) treated the genotype data as linear features and trained a neu-

ral network with three hidden layers, with the middle layers look-

ing at local features in the linear space of the ordered SNPs of the

F IGURE 4 CAGI 4 Crohn’s disease challenge distribution of AUCs

across all methods

VCF file, tuning for performance using cross-validation on the test

data. Importantly, this approach used essentially no prior knowledge of

genetics or the results of prior studies on disease–gene relationships.

Supp. File 4 shows comparative results of the CAGI 4 bipolar disor-

der challenge. Overall descriptions of predictionmethods are available

under Supp. Exhibit 2: CAGI 4. A metaclassifier created by the assess-

ment team using all submitted methods for this challenge, as shown in
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F IGURE 5 CAGI 4 bipolar disorder challenge distribution of AUCs

across all methods

Supp. Figure S7, had an AUC of 0.64, which was not notably different

from the topmethod.

3.3 Warfarin exomes challenge (CAGI 4)

With the warfarin exomes challenge, similar to the Crohn’s disease

challenge, many groups utilized a priori data to create a list of covari-

ates to use for their models. This included known pharmacokinetic and

pharmacodynamic warfarin genes, genes mentioned in the literature,

and also using tools to find functional neighbors of the known gene set.

One prediction method (Group 50, Prediction 1) was ahead of the

others when looking acrossmultiple performancemetrics described in

the methods section—R2, mean absolute value of z score, and mean

absolute value of z score multiplied by the coefficient of variation

(Fig. 6A–D; Supp. Table S1). The R2 of the top prediction method was

0.25, compared with 0.35 for the IWPC prediction method, one of the

best performing published predictive algorithms. A visualization of the

predictions compared with the actual dose can be seen in Supp. Fig-

ures S8 and S9. Details of all methods can be found in Supp. Exhibit

3:CAGI 4.

The methods submitted for this challenge had several similar fea-

tures. Every method submitted took advantage of the fact that the

range of the actual doses were published in the paper from which the

data came. Thus, thesemethods either fit rankings to the dose range or

set predicted doses above or below the known range to the lower or

upper limits. Additionally, most methods used prior information from

the literature to help set the initial clinical and genetic covariates to

consider in their models.

4 DISCUSSION

The CAGI exomes challenges revealed lessons specific to each partic-

ular challenge as well as generalizable principles for future genotype–

phenotype prediction challenges.

4.1 Crohn’s disease

Overall, there were substantial challenges with bias and population

stratification in the datasets that made the evaluation and comparison

of techniques for identifying Crohn’s disease status from exome data

difficult. In the latest crop of prediction systems, it may be that tech-

niques such as using imputation to infer variants in regions not cov-

eredby the exome sequencing andusing large externalmicroarray SNP

chip datasets for classifier trainingwere key factors in superior perfor-

mance. The top AUC varied across the three evaluations, demonstrat-

ing the substantial differences in the data sets. Groups who created

metaclassifiers based on combining previous methods from previous

CAGI challenges demonstrated the value of applying theCommonTask

Framework to genetic problems—through iteratively improving their

methods based on prior learning. Importantly, across the three CAGI

evaluations, the average system performance performed better than

random, including in the most recent, CAGI 4, implying that there is

some level of useful information in predicting the likelihood of Crohn’s

disease from exome data in the population, something previously not

demonstrated.

4.2 Bipolar disorder

Surprisingly, the group that created the best performing prediction in

the bipolar disorder challenge acknowledged having little background

in biomedicine or genetics. This group approached the problem as

purely a data classification challenge. On the one hand, this may be

hailed as another example of the unreasonable effectiveness of data

and the success of machine learning over human expertise; the quota-

tion “Every time I fire a linguist, the performance of our speech recog-

nition system goes up,” has been attributed to Fred Jelinek in the

1980s, and something similar may be afoot in genomics, promising an

exciting future as datasets expand and machine learning techniques

improve. However, one of themajor challenges is that prediction accu-

racywith case-control datadoesnot really reflectmost applicationswe

can envision for a phenotypic prediction system. Moreover, while not

detected by any of our quality control methods, it is still possible that

the top performing method picked up on hidden population stratifica-

tion/biases in the data. Although we were unable to find evidence of

this, a sophisticated machine learning system may be identifying fea-

tures that partition the cases and controls but that are not related to

biological drivers of disease risk. Unfortunately, the tools to dissect the

deep neural net architecture in the context of genomic features are

currently too primitive to help us deepen our biological understanding

using these results. There has been recent work into advanced tech-

niques to understand the decisions made by previous black box sys-

tems in areas like image processing and natural language processing;

however, similar tools for understanding genomic prediction systems

are less developed (Ribeiro, Singh, & Guestrin, 2016)).

4.3 Warfarin

Predictingwarfarin doseusing clinical information andgenetics is a dif-

ficult problem; one of the best performing algorithms (IWPC) has anR2

of 0.35 on this data set. Existing algorithms have poorer performance
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on diverse populations since most algorithms are trained on European

descent populations (Daneshjou et al., 2014; Klein et al., 2009). For this

challenge, the winningmethod had an R2 of 0.25.

The warfarin exomes challenge had several limitations. The sam-

ple size was limited, with only 50 samples for training and 53 for test-

ing. Data were generated at a time when exome sequencing was more

expensive; falling costs may allow an expansion of available exome

data. Additionally, all groups used the known dose range of the cohort

when assigning their predicted doses. Because of the use of this known

range, some of thesemethods may be tailored particularly to this chal-

lenge and not be generalizable to the wider population.

4.4 Overall lessons fromCAGI exomes challenges

An advantage of the common task structure is the ability to iterate

quickly and learn from the setbacks of the groups analyzing the data.

The exomes challenges allowed us to glean several important lessons

that will inform future iterations of CAGI.

The importance of population stratification, batch effects, and hid-

den biases became evident early on with the CAGI 2 Crohn’s dis-

ease challenge (Fig. 1). In that particular instance, either popula-

tion stratification or batch effects created a discernable difference

between cases and controls that was unlikely related to actual dis-

ease status. Based on that finding in CAGI 2, every subsequent

CAGI challenge included a preanalysis of the whole-exome data try-

ing to identify whether there were samples that clustered together

inappropriately based on case-control status. Population stratification

has long been an issue in genetic studies. Themost obvious issue arises

when cases and controls come from distinctly different ancestral pop-

ulations, such as comparing Northern European cases against Chinese

controls. However, less obvious stratification can also be an issue, such

asdifferences in admixture/population substructureor cryptic related-

ness (Price, Zaitlen, Reich, & Patterson, 2010). Batch effects can occur

at many different steps in the pipeline, for example, if samples from

the cases and controls have differences in sample preparation, DNA

quality, sequencing coverage, or genotype calling. Any of the above can

result in prediction methods that perform well due to systemic biases

between cases and controls rather than true features that define case-

control status.

How these challenge datasets emulate the real world was another

important consideration andwas a topic of discussion among theCAGI

4 community.

A majority of the challenges used samples of Northern European

ancestry, only the warfarin dose prediction challenge used samples

of African American ancestry. In order for the methods to be gen-

eralizable to real-world populations, representation of human diver-

sity is necessary, particularly since disease risk and pharmacogenetic

variants can be population-specific (Rosenberg et al., 2010). More-

over, the CAGI exome datasets all came from research studies, which

are often designed to maximize the possibility of picking up a signifi-

cant signal. One way to achieve this is through selecting for extreme

phenotypes—a strategy employed by both the Crohn’s disease exome

F IGURE 6 A: R2 between predicted doses and actual doses for each group’s predictionmethod aswell as the IWPCalgorithm.B: Sumof squared

errors for each group’s prediction method and the IWPC algorithm.C: Mean z scores calculated from each group’s predicted doses with predicted

standard deviations and actual doses. D: Mean coefficient of variation (CV) and mean CV multiplied by mean z score for each group’s prediction

method
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dataset (which selected a subset of cases who had early-onset Crohn’s

disease) and the warfarin prediction exome dataset (selected from

individuals requiring “low” and “high” doses to achieve the therapeutic

effect) (Manolio et al., 2009). However, while this strategy works well

for increasing signal strength in research, using such data for building a

classifier may lead to a biased predictor that has difficulty differentiat-

ing between the more subtle variations seen in the real world. Having

larger datasets and using data generated for clinical usemay help rem-

edy some of these issues in the future.

Finally, one of the most promising lessons from CAGI was on the

effectivenessof data.Asmentionedbefore, for complex tasks, the com-

mon task framework has provided a way to havemany people work on

a problem and iterate quickly. After each challenge ended, the evalua-

tion scripts and the challenge answerswere shared so that participants

could analyze when their predictionmethods succeeded or failed. This

process allowed groups to have information for future improvement.

Additionally, large datasets, even if imperfect, have also been shown

to be a critical part of developing algorithms to tackle a complicated

task (Pereira, Norvig, & Halevy, 2009). Critical to accumulating large

enough datasets is data sharing, and the open data movement aims

to encourage increased biomedical data sharing (McNutt, 2016). How-

ever, one of the difficulties with genetic data that includes protected

health information is sharing data in a secure manner. CAGI, which

includes data encryption and verifies the groups participating, can pro-

vide a platform to facilitate sharing such data. As a result of the data

accumulated thus far, CAGI has demonstrated how data can, in cer-

tain cases, surmount prior biological knowledge. For CAGI 4, the bipo-

lar disease challenge was the best example; individuals with no biolog-

ical background, but a strong background in data science, had the best

performance. In particular, this should inspire a more multidisciplinary

approach to genotype–phenotype prediction and a greater effort to

engage those whose backgrounds are more data driven rather than

biologically driven.

Overall, the CAGI exomes challenges provided an opportunity

to begin building the classifiers required to implement precision

medicine. While there is still a long road ahead for genotype–

phenotype prediction, the accumulation of larger datasets and the par-

ticipation of more groups with every subsequent CAGI holds promise

for continued improvement.
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