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Abstract 

Down syndrome (DS) is a genetic condition caused by the triplication of chromosome 21 (HSA21). 

DS has a worldwide incidence of 1:700-1000 live births. The most invalidating feature of DS is 

intellectual disability (ID). ID, that lifelong affects DS individual, is mainly due to neurodevelopment 

alterations, characterized by reduced neurogenesis and defects in neuron maturation. These defects 

are already present during early fetal life stages. The molecular mechanisms that are at the basis of 

these phenotypic alterations of DS have not been fully understood so far, due to the extremely 

complicated genetic imbalance of trisomy 21. In the last decade, scientists have exploited DS mouse 

models in order to clarify the molecular mechanisms whereby gene triplication leads to the trisomy-

linked brain phenotype and design possible interventions. The most studied DS model is the Ts65Dn 

mouse whose phenotype largely mimics the human condition. However, despite intense efforts of 

scientific community, there are currently no therapies for DS. Considering the time course of brain 

development, pharmacotherapies should be carried as early as possible during the lifespan. But is it 

possible to pharmacologically rescue the neurodevelopmental defects of DS? Our group has recently 

found that neonatal treatment with fluoxetine, an antidepressant belonging to the selective serotonin 

reuptake inhibitor class, resulted in the restoration of neurogenesis and behavioral deficits in Ts65Dn 

mice. These results showed for the first time that the trisomy-linked brain defects are reversible, 

provided that therapy is administered very early during the lifespan. Clinical trials are necessary in 

order to establish whether fluoxetine has the same positive impact in children with DS as in neonate 

Ts65Dn mice. Since we cannot take for granted that a molecule that is effective in mouse models is 

similarly effective in humans, it is important to establish whether there are other molecules that are 

as effective as fluoxetine. Such an extensive approach would increase the probability to discover 

therapies that are effective in humans too. Based on these premises, the overall goal of this project 

was to establish whether neonatal treatment with “unexplored” molecules restores the major 

neurodevelopmental defects and cognitive performance in the Ts65Dn mouse model and 

whether their effect is retained after treatment cessation. In this study, I have explored the effects 

of three different molecules administered to Ts65Dn mice during the neonatal period. 1) ELND006, 

a selective inhibitor of APP γ-secratase. ELND006 blocks the formation of a small APP-derived 

peptide, AICD, which inhibits the activity of the mitogenic SHH pathway, thereby reducing 

neurogenesis. 2) Epigallocatechin-3-gallate (EGCG), a natural inhibitor of the kinase DYRK1A, 

whose overactivity in the DS brain negatively affects neurogenesis. 3) 7,8-dihydroxyflavone (7,8-

DHF), a natural mimetic of BDNF that by activating the TRKB receptor may compensate for the 

reduced levels of BDNF in the DS brain and, thus, the lack of the pro-neurogenic actions of BDNF. 

Neonatal treatment with ELND006 restored neurogenesis and neuron number in the dentate gyrus 

(DG) and synaptic development in the hippocampal formation of Ts65Dn mice. Most of these effects 

were retained at one month after treatment cessation and were accompanied by restoration of the 

synaptic function at the synapse between DG granule cells and field CA3 pyramidal neurons. 

However, ELND006 treatment caused some adverse effects. In Ts65Dn mice neonatally treated with 

EGCG, we found full restoration of hippocampal neurogenesis, neuron number and synapse 

development. At one month after treatment cessation, however, these effects had disappeared and 

there were no signs of behavioral improvement. 7,8-DHF, administered in neonate Ts65Dn mice, 

caused restoration of neurogenesis, DG granule cell number, and dendritic spine density. Mice that 

were treated with 7,8-DHF from postnatal day 3 to adolescence exhibited restoration of learning and 

memory, indicating that the recovery of the hippocampal anatomy translated into a functional rescue. 
No adverse effects were observed on the general health and growth of mice. A comparison of the 

three therapies used in this study indicates that although all are able to rescue neurogenesis, targeting 

the BDNF/TRKB pathway with 7,8-DHF may represent the treatment with the highest translational 



impact for children with DS because it is effective and appears to have a high safety profile. 

Demonstration that it is possible to pharmacologically prevent brain developmental alterations in a 

mouse model of DS with a variety of agents may stimulate the design of clinical trials with the 

molecule/s with the highest efficacy and the safest profile. This is the challenge that faces the 

community of preclinical researchers interested in DS: to transform a dream into reality. 



 

Abstract (italiano) 

La sindrome di Down (SD) è una condizione genetica dovuta alla triplicazione del cromosoma 21. 

La SD ha una incidenza a livello mondiale di 1:700-1000 nati vivi. L’aspetto più invalidante della SD 

è la disabilità intellettiva (DI). La DI, che colpisce gli individui con la SD durante tutta la vita, è 

principalmente dovuta ad alterazioni del neurosviluppo, caratterizzate a loro volta da riduzioni dei 

processi di neurogenesi e maturazione neuronale. Questi difetti sono già presenti durante le prime fasi 

dello sviluppo fetale. Ad oggi, i meccanismi molecolari che sono alla base delle alterazioni 

fenotipiche della SD non sono stati compresi completamente, a causa dello sbilanciamento genico 

estremamente complesso della trisomia 21. Negli ultimi 10 anni, la comunità scientifica si è avvalsa 

di modelli murini di SD per comprendere più approfonditamente i meccanismi molecolari che portano 

al fenotipo cerebrale legato alla trisomia e, di conseguenza, sviluppare possibili strategie terapeutiche. 

Il modello murino di SD più studiato è il topo Ts65Dn, che mima in modo dettagliato la condizione 

umana. Nonostante gli intensi sforzi profusi dalla comunità scientifica, al momento non esistono 

terapie per la SD. Tenendo in considerazione l’andamento dello sviluppo cerebrale, un approccio 

farmacologico dovrebbe essere effettuato il prima possibile durante la vita degli individui. Ma è 

possibile ripristinare farmacologicamente i difetti del neurosviluppo tipici della SD? Il nostro gruppo 

ha recentemente effettuato un trattamento neonatale nel topo Ts65Dn con fluoxetina, un 

antidepressivo appartenente alla classe degli inibitori selettivi della ricaptazione della serotonina. Il 

trattamento è stato in grado di ripristinare la neurogenesi e le funzioni cognitive nei topi Ts65Dn. 

Questi risultati hanno mostrato, per la prima volta, che i difetti cerebrali legati alla trisomia sono 

reversibili, a patto che la terapia sia somministrata nelle fasi precoci della vita. Trials clinici saranno 

necessari per stabilire se la fluoxetina abbia nei bambini con SD lo stesso impatto positivo che ha 

avuto nei topi neonati. Non si può dare per scontato cha gli effetti positivi di una molecola osservati 

in un modello di topo siano riscontrabili anche nell’uomo; pertanto, è di estrema importanza stabilire 

se ci siano altre molecole efficaci quanto la fluoxetina. Sulla base di queste premesse, l’obiettivo 

generale di questo progetto è stato quello di stabilire se un trattamento neonatale con molecole 

“inesplorate” fosse in grado di ripristinare i principali difetti del neurosviluppo e cognitivi nel 

topo Ts65Dn, e se gli effetti fossero mantenuti dopo la cessazione del trattamento. In questo 

studio, ho valutato gli effetti di tre molecole differenti somministrate al topo Ts65Dn durante il 

periodo neonatale. 1) ELND006, un inibitore selettivo della γ-secratasi. ELND006 blocca la 

formazione di un piccolo peptide derivante da APP, AICD, che inibisce a sua volta l’attività 

mitogenica della via di segnalazione SHH, provocando quindi una riduzione del processo di 

neurogenesi. 2) Epigallocatechina-3-gallato (EGCG), un inibitore naturale della chinasi DYRK1A, 

la cui iper-attivazione nel cervello SD influenza negativamente il processo di neurogenesi. 3) 7,8-

diidrossiflavone (7,8-DHF), una molecola naturale che mima l’attività del BDNF tramite 

l’attivazione del recettore TRKB. 7,8-DHF potrebbe compensare la scarsa produzione di BDNF (e 

quindi riduzione del processo di neurogenesis) nel cervello SD. Il trattamento neonatale con 

ELND006 ha ripristinato la neurogenesi nel giro dentato (DG) e lo sviluppo sinaptico nella 

formazione ippocampica del topo Ts65Dn. Molti di questi effetti si sono mantenuti un mese dopo 

cessazione del trattamento e sono stati accompagnati dal ripristino delle funzioni sinaptiche nel 

circuito “granuli del DG e neuroni piramidali del campo CA3”. Il trattamento con ELND006 ha però 

causato qualche effetto collaterale. Nei topi Ts65Dn trattati neonatalmente con EGCG abbiamo 

osservato un completo ripristino della neurogenesi ippocampale e dello sviluppo sinaptico. Un mese 

dopo la cessazione del trattamento, però, questi effetti scomparivano e non vi erano segni di 

miglioramento comportamentale. 7,8-DHF, somministrato in topi Ts65Dn neonati, ha portato ad un 

ripristino della neurogenesi e della densità di spine dendritiche. I topi Ts65Dn trattati dal giorno post-

natale 3 fino all’adolescenza hanno esibito un ripristino della memoria e dell’apprendimento, 



 

suggerendo che il recupero dell’anatomia ippocampale si traduceva in un recupero funzionale. Non 

sono stati osservati affetti collaterali sulla salute generale e sulla crescita dei topi. Un confronto delle 

tre molecole utilizzate in questo studio indica che, sebbene tutte siano in grado di ripristinare il 

processo di neurogenesi, il 7,8-DHF potrebbe avere il più alto impatto traslazionale nei bambini con 

SD. Questo perché non solo è efficace, ma non causa alcun effetto collaterale. La dimostrazione che 

sia possibile prevenire farmcologicamente le alterazioni dello sviluppo cerebrale in un modello di 

topo di SD con diverse molecole potrebbe stimolare l’ideazione di trials clinici con la/le molecola/e 

con la più alta efficacia e sicurezza. Questa è la sfida con cui si confronta la comunità di ricercatori 

preclinici coinvolti nello studio della SD: trasformare il sogno in realtà. 
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1. RATIONALE AND GOAL OF THE STUDY 

 

Down syndrome (DS) is a relatively high-incidence (1:700-1000) genetic condition due to triplication 

of chromosome 21. Individuals with DS may have various medical problems but intellectual disability 

is the common hallmark of this pathology. Furthermore, individuals with DS are bound to develop 

Alzheimer’s-like pathology after 40 years of age, with consequent development of dementia (Hartley 

et al., 2015). The intellectual disability that characterizes DS is mainly due to alteration of brain 

development that can be traced back to fetal life statges. In particular, the DS brain is characterized 

by a widespread impairment in the processes of neurogenesis that involves the ventricular and 

subventricular zones (the germinal niches of most of the brain neurons), the hippocampal dentate 

gyrus and the cerebellum (Contestabile et al., 2007, Guidi et al., 2008, Guidi et al., 2011a). The 

dendritic tree of the DS neurons exhibits a reduction both in total length and density of dendritic 

spines (Takashima et al., 1981, Becker et al., 1986, Vuksic et al., 2002), implying that the reduction 

of neurogenesis is worsend by impairment in dendritic development. The outcome of all these 

defects is a reduction in the complexity of brain wiring, which explains the impairment in several 

cognitive domains that characterizes DS. 

Mouse models that accurately mirror human pathologies are essential tools in order to comprehend 

deeply the mechanisms that underlie a given pathology and to evaluate the outcome of targeted 

therapies. The most used and best-characterized model of DS is the Ts65Dn mouse, that recapitulates 

many aspects of the human condition, including reduced neurogenesis, defects in neuronal 

maturation, impaired long-term learning and memory, and the tendency to develop Alzheimer’s-like 

pathology (Choong et al., 2015). Many molecular mechanisms have been proposed to underlie 

neurodevelopmental defects of DS. Indeed, numerous studies report that abnormal activity of the 

products of some triplicated genes, such as APP, DYRK1A, and RCAN1, may be implicated, directly 

or indirectly, in the alterations of neurogenesis, neuronal maturation, imbalance of 

excitation/inhibition, and the early onset of Alzheimer’s-like pathology in DS. Due to the complexity 
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of the outcome of gene imbalance, the mechanisms whereby gene triplication impairs brain 

development in DS have not been fully clarified. Yet, knowledge gained during the past few years 

regarding perturbed pathways may provide a rational basis to attempt targeted therapies in DS mouse 

models. A variety of pharmacological approaches has been used so far in the Ts65Dn mouse model 

and some of them translated into an improvement in hippocampus-dependent learning (see (Stagni et 

al., 2015a)). However, when some of them (for instance, memantine, a drug prescribed for treatment 

of Alzheimer’s disease, or folinic acid) were used for clinical trials in individuals with DS, they failed 

to replicate the good results obtained in mice. It must be enphasized that most of the brain neurons 

are born prenatally and their maturation takes place in the perinatal period. Therefore, it is not 

unexpected that clinical trials in individuals with DS at adult life stages may not translate into a 

behavioral benefit because the optimum time windows for the rescue of neurogenesis and 

dendritogenesis are are well over. Thus, there are currently no therapies for DS.  

Since neurodevelopmental defects are present from early fetal life stages in DS, the better strategy to 

“heal” individuals with DS should be based on pharmacologycal interventions carried out as early as 

possible. This idea can be summarized in four words:”The sooner, the better”. Indeed, recent work 

has shown that prenatal therapy with fluoxetine restores overall brain development and cognitive 

performance in the Ts65Dn mouse model (Guidi et al., 2014) and that neonatal therapy restores 

hippocampal development and hippocampus-dependent behavior (Bianchi et al., 2010b, Guidi et al., 

2013, Stagni et al., 2013, Stagni et al., 2015b). These promising results show for the first time that 

the trisomy-linked brain defects are reversible, provided that therapy is administered very early during 

the life span. Clinical trials are necessary in order to establish whether fluoxetine has the same positive 

impact in children with DS as in neonate Ts65Dn mice. If so, this may prompt clinical trials during 

pregnancy. It must be noted that an unavoidable problem with clinical trials concerns the time that 

intervenes between proposal and acceptance of the protocol and, given that the protocol is approved, 

the actual execution of the clinical trial. It has been estimated that eight years represent the mean time 

neecessary for the whole process. This means that a very long time will elapse before knowing 
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whether a drug that is effective in the mouse model is equally effective in individuals with DS. This 

time will be wasted if the attempted therapy will prove to be ineffective. For this reason, it is important 

to “gain time” and expedite the discovery of several different treatments in mouse models. This will 

offer to the community of clinicians a panel of drugs that may be worthwhile testing in different 

clinical trials, which, of course, may increase the probability to discover treatments that are effective 

in humans too. Such an approach will meet the needs of the families of children with DS and open a 

breakthough for the “cure” of intellectual disability.  

The overall goal of this project was to establish whether neonatal treatment with new “unexplored” 

molecules restores the major neurodevelopmental defects and cognitive performnce in the Ts65Dn 

mouse model and whether their effect is retained after treatment cessation. In this study, I have 

explored the effects of three different molecules in the Ts65Dn mouse model of DS, based on the 

rational basis described below. 

ELND006, a selective inhibitor of the γ-secratase. ELND006 blocks the formation of AICD, a small 

peptide derived from the processing of APP, that triggers the transcription of PTCH1, the inhibitor of 

the SHH mitogenic pathway. Since APP is triplicated in DS and in Ts65Dn mice, we hypothesized 

that accumulation of AICD may cause overexpression of PTCH1, thereby reducing neurogenesis. If 

so, inhibition of AICD production in the early neonatal period may revert the trisomy-linked 

neurogenesis defects.  

Epigallocatechin-3-gallate (EGCG), a flavonoid present in green tea extracts, is an inhibitor of 

DYRK1A. DYRK1A is a kinase that derives from a triplicated gene in individuals with DS and 

Ts65Dn mice. It has been proposed that DYRK1A is a candidate gene closely implicated in various 

DS phenotypes, including neurogenesis impairment. Thus, inhibition of DYRK1A with EGCG in the 

early neonatal phases may have a positive effect on neurogenesis.  

7,8-dihydroxiflavone (7,8-DHF), a natural flavone present in several plants, is a mimetic of BDNF 

and activates the TRKB receptor. The BDNF/TRKB signaling pathway plays a key role in 

neurodevelopment by stimulating neuronal maturation and neurogenesis. There is evidence that the 
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BDNF/TRKB system is deregulated in DS, suggesting that this deregulation may contribute to 

neurogenesis impairment. Thus, restoration of BDNF/TRKB signaling through 7,8-DHF may have a 

positive impact on neurogenesis. 

The results of this study are described in Section 3.1 (ELND006), Section 3.2 (EGCG) and Section 

3.3 (7,8-DHF). The outcome of individual treatments is discussed in the corresponding section. A 

comparison of the advantages and disadvantages of these selected molecules is reported in the section 

“General Discussion”. 
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2. INTRODUCTION 

 

2.1 Down syndrome 

Down syndrome (DS, OMIM 190685), also known as trisomy 21, is the most frequently survivable 

occurring chromosomal disorder due to aneuploidy in humans and is the most commonly known 

disorder of intellectual disability (Kazemi et al., 2016, Antonarakis, 2017). About 95% of affected 

individuals have the full/free trisomy of human chromosome 21 (HSA21) i.e. an extra copy of 

HSA21, and their chromosome count is 47. The leading cause of trisomy is attributed to meiotic non-

disjunction, which occurs mainly in the ovum, although the reason for this phenomenon is not 

completely clear. Indeed, the maternal origin for trisomy of HSA21 is prevailing, the cases of paternal 

origin being less than 10%, and the maternal age is a major risk factor for the onset of DS [see (Vacca 

et al., 2016)]. The incidence of DS in the United States is ~1 per 700 live births, and the worldwide 

incidence is ~1 per 1000 live births. Disease prevalence varies among countries because of 

sociocultural and economic variables, including average maternal age at conception as well as 

prenatal screening and abortion opportunities (Coppede, 2016, Hefti and Blanco, 2017). Individuals 

with DS now live longer than they used to, thanks to improvements in health care and in care for 

people with disabilities. DS subjects have many physical and neurological problems such as 

congenital heart disease, Alzheimer’s disease (AD), low IQ average (range 30–70) leukemia, 

hypotonia and motor disorders [see (Bartesaghi et al., 2011)]. 

 

2.2 History 

In 1959, Jerome Lejeune, working with Gautier and Turpin at Necker Hospital in Paris, France, 

described DS, as we currently know it (Fig. 2.1A). Although they discovered the trisomy of HSA21, 

the path that brought to this finding started more than a century before. In a very interesting report 

for the 50th anniversary of the Lejeune’s discovery, Giovanni Neri and John Opitz retraced all the 
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events that allowed Lejeune and colleagues to discover trisomy 21. Almost 100 years elapsed before 

the real cause of DS was correctly identified. The first description of what is now called DS was by 

Edouard Onesimus Seguin (1812–1880), a student of Jean Marc Gaspard Itard (the founding father 

of the special pedagogy), and founder, in France and the United States, of methods and systems for 

educating those with mental retardation. John H. Langdon Down in 1866 gave the next description 

of DS. In his paper, “Observations on an Ethnic Classification of Idiots”, Down made a classification 

of patients with mental retardation based on ethnic characteristics (Fig. 2.1B). Down mixed visionary 

concepts, and old prejudice, such as that of parental degeneracy, and his language is all but politically 

correct in describing the different types of idiocy according to ethnic varieties. In 1923 T. Halbertsma 

of Haarlem, had a great intuition. He argued that DS was of germinal origin. He did so on the basis 

of twin data, 15 cases of dizygotic twins always being discordantly affected, and the two pairs of 

presumed monozygotic twins being concordantly affected. Then, in 1932, long before the discovery 

of the human karyotype, Waardenburg predicted that DS was probably caused by a chromosomal 

aberration. This thesis was sustained by two pediatricians, Adrien Bleyer of St. Louis, and Guido 

Fanconi of Zurich. A large and important work on DS was made by Penrose in 1939, who 

demonstrated that maternal age correlates with the occurrence of DS. Then came 1959, when Lejeune 

et al. discovered that a triplication of HSA21 is the cause of DS (Neri and Opitz, 2009).  

 

2.3 Etiology 

All the defective features that characterize DS are due to the triplication of HSA21. In Genetics, the 

presence of a normal set of chromosomes is called euploidy, while aneuploidy indicates the presence 

of an abnormal number of chromosomes. Among chromosomal aberration, DS is the most widespread 

aneuploid condition (Driscoll et al., 2009). It occurs during cell division when chromosomes do not 
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Figure 2.1. A bit of history. A: a picture of Jerome Lejeune (1926-1994) [top, image taken from (Neri and 

Opitz, 2009)] and the first page of the historic paper by Lejeune, Gautier, and Turpin [bottom, image taken 

from (Neri and Opitz, 2009)] published at the Rendering of the Academy of Sciences January 26 of 1959. B: 

a portrait of John Langdon Haydon Down, (1828-1896) (top, image taken from 

http://en.wikipedia.org/wiki/Image:JLHdown.jpg) and the first page (bottom, image taken from 

http://www.neonatology.org/classics/down.html) of the original paper “Observations on an Ethnic 

Classification of Idiots” by J. Langdon H. Down, M.D., London, London Hospital Reports, 3:259-262, 1866. 
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separate well between the two cells. In more than 90% of cases, DS occurs when maternal meiotic 

nondisjunction results in trisomy 21. Other chromosomal abnormalities that may result in DS include 

Robertsonian translocations (2–4 % of the cases), a structural chromosomal abnormality resulting 

from a trisomic dose of the long arm of HSA21 attached to chromosomes 14, 21, or 22 (also called 

isochromosomes); partial trisomy of HSA21 (mosaicism, 2–4 %), a condition in which individuals 

have both trisomic and euploid cell lines; and ring chromosomes (chromosomes whose arms have 

fused together to form a ring) (Papavassiliou et al., 2009). 

 

2.4 Human Chromosome 21 

HSA21 is the smallest human chromosome and represents about 1.5% of the total DNA of cells (Fig. 

2.2A). Owing to its role in DS and its small size (̴ 46 Mb), HSA21 is the most-studied human 

chromosome [see (Antonarakis, 2017)]. Sequencing of HSA21 was completed in 2000 within the 

Human Genome Project (Hattori et al., 2000). HSA21 was the second human chromosome to be fully 

sequenced after HSA22. So far, prediction of the number of genes set on HAS21 was estimated 

between 738-756 (data updated to January 2017; NCBI Map Viewer; Vega Genome Browser 54) and 

it has an average of 15 genes per Mb. Among these, 233 are protein coding genes (226 known 

proteins; 5 novel proteins, 2 putative proteins), 306 processed transcripts genes, i.e. long non-coding 

RNA (299 lncRNAs; 7 unclassified processed transcripts), 182 pseudogenes (141 processed 

pseudogenes; 32 unprocessed pseudogenes; 6 transcribed processed pseudogenes; 1 transcribed 

unprocessed pseudogenes), 1 IG (immunoglobulin) gene and 16 TEC (to be experimentally 

confirmed) genes (Fig 2.2B). All this genomic elements are spread on the entire length of the long 

arm of HSA21; the exact sequences of the short arm of HSA21 have not yet been completely 

elucidated. Looking at numbers reported above, it appears that HSA21 is among the poorest 

chromosomes in terms of functional DNA elements per Mb [see (Antonarakis, 2017)]; this could be 

the reason why triplication of this chromosome deals with life after birth. However, there are two rich 

regions of G-negative bands (thus, rich of structural genes) on the distal half of the HSA21q (21q22) 

https://en.wikipedia.org/wiki/Chromosome_22_%28human%29
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(Shapiro, 1997). Among the proteins known to be encoded by HSA21, 23 proteins are involved in 

signal transduction and 31 proteins are transcription factors that may influence the expression of other 

genes in the genome. Although proteins have a pivotal role in regulating gene activity, other central 

characters of the puzzle are ncRNA (non-coding RNA), which are likely to disturb several cellular 

functions and developmental processes. This further leads to a high phenotypic variability and 

heterogeneity in the DS population, highlighting the importance for understanding how over-

expression of HSA21 proteins and RNA may influence the transcriptome of the entire genome. 

Summarizing, the phenotypic heterogeneity and variability in DS is primarily due to: i) the three 

copies of functional genomic elements on HSA21; ii) the genetic variation of HSA21; iii) the genetic 

variation on non-HSA21 loci. 

Important advances have been made in understanding the phenotypic impact of the over-expression 

of some HSA21 genes. In particular, the molecular basis of the early onset AD, that is seen in DS, 

the molecular basis of the leukaemias that frequently occur in DS and the identification of genomic 

regions of HSA21 that harbor functional elements or causative genetic variation for certain 

phenotypes, such as congenital heart defects [see (Antonarakis, 2017)].  

 

2.4.1 Most studied genes involved in DS phenotype 

As deepened in the previous paragraph, many actors interact and bring to DS phenotype. Among 

them, in the last years some genes (and their products) were deeply studied because of either their 

overall influence on the genome or the role they hold in development of other pathologies (also 

present in DS), such as AD or leukaemia. As reported in EXaC database 

(http://exac.broadinstitute.org/), HSA21 genes may be divided based on haploinsufficiency 

(intolerability of loss-of-function variants). It has been argued that haploinsufficient genes are also 
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Figure 2.2. Chromosomic overview of Down syndrome. A: chromosomic pattern of an individual with 

trisomy 21 (image modified from https://www.huffingtonpost.com/lisa-pullen-kent/rockin-the-socks-for-

worl_b_9513440.html). B: the pie chart indicates the gene content of HSA21 [see (Antonarakis, 2017)]. C: 

human chromosome 21 (HSA21). In the image are highlighted some genes that, when triplicated, play a key 

role in the phenotypic feature of DS [modified from (Rachidi and Lopes, 2008)]. D: some of heatlh problem 

due to the triplication of HSA21 that may affect individuals with Down syndrome (image taken from 

https://commons.wikimedia.org/wiki/File:Human_chromosome_21_from_Gene_Gateway_with_label.png). 
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sensitive to three copies and are thus good candidates for contributing to some of the phenotypes in 

full or partial trisomies. Genes with the highest haploinsufficiency index are most likely to contribute 

to a DS phenotype, whereas those with the lowest haploinsufficiency index are least likely to 

contribute to a DS phenotype [see (Antonarakis, 2017)]. Accordingly, some of the principal genes 

involved in DS phenotype that deserve a citation [see also (Rozier et al., 2003)] are SIM2, DYRK1A, 

DSCAM, GRIK1, APP, S100β, SOD1, RCAN1, KCNJ6, OLIG1, SYNJ1 (Fig. 2.2C). Some 

characteristics of these gene products are briefly highlighted below. 

SIM2. Single-minded homolog 2. SIM2 is a transcription factor that is a master regulator of 

neurogenesis. It binds aryl hydrocarbon receptor nuclear translocator (ARNT) and together 

translocate into the nucleus stimulating gene expression (Chatterjee et al., 2013). It regulates many 

genes, thus resulting in some of the DS phenotypes [see (Antonarakis, 2017)]. 

DYRK1A. Dual-specific tyrosine-(Y)-phosphorylation Regulated Kinase 1A. DYRK1A is a kinase 

that plays a significant role in a signalling pathway regulating cell proliferation and may be involved 

in brain development. DYRK1A was proposed to be one of the potent candidate genes closely 

implicated in various DS phenotypes. Down syndrome patient-derived fibroblasts exhibit impaired 

proliferation due to elongation of the G1 phase of the cell cycle and the extended G1 duration is 

restored by knocking down DYRK1A [see (Stagni et al., 2017)]. This evidence strongly suggests a 

key role of DYRK1A in the regulation of proliferation and differentiation of trisomic neural 

progenitor cells (Stagni et al., 2017).  

DSCAM. Down Syndrome Cell Adhesion Molecule. DSCAM, which acts as an adhesion molecule, 

is expressed in the developing nervous system, where it intervenes in various stages of neuronal 

development. For instance, it has important functions in early development (neuronal proliferation, 

maturation, and synaptogenesis) and in formation of neuronal networks (Perez-Nunez et al., 2016). 

Therefore, the over-expression of this protein in DS patients may be related to cellular dysfunctions 

that affect the development of the Central Nervous System (CNS), and/or favour AD-related dementia 

in adulthood (Perez-Nunez et al., 2016). 
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GRIK1. Glutamate Ionotropic Receptor Kainate type subunit 1. GRIK1 is a subunit of the kainate 

family of glutamate receptors, which are composed of four subunits and function as ligand-activated 

ion channels. GRIK1 forms heteromeric ligand-activated ion channels with other kainate receptor 

subunits (GRIKs 2,3 and KA 1,2). Altering proportions of the subunits may alter overall channel 

composition and biochemical properties [see (Gardiner and Costa, 2006)]. This receptor is involved 

in pain sensitivity which may explain evidence that individuals with DS express pain or discomfort 

more slowly and less precisely than the general population [see (Gardiner and Costa, 2006)].   

APP. Amyloid beta (A4) Precursor Protein. APP is a transmembrane protein involved in the 

regulation of synapse formation, neural plasticity and iron export (Turner et al., 2003, Priller et al., 

2006). APP is the precursor of the β-amyloid peptide, created by two successive proteolytic cut made 

by β- and γ-secretases. Accumulation of β-amyloid leads to the formation of amyloid plaques, one of 

the main actor involved in AD onset in the general population. Furthermore, it is one of the triplicated 

gene that is thought to play a key role in neurodevelopmental alterations in DS and to underlie 

development of Alzheimer’s-like pathology in adults with DS [see (Stagni et al., 2017)].  

S100β. S100 calcium Binding protein beta. S100β is a cytoplasmic glial-specific protein and is 

expressed preferentially by astrocytes. It is involved in a number of cellular processes (cell cycle 

progression; differentiation) acting as a neurotropic and protective factor. Otherwise, it can contribute 

to neuroinflammation and cellular loss when its production and release increase in aging. So far, it 

seems to be involved in development of AD and it could be used as a prediction factor for the onset 

of the pathology [see (Lott, 2012)]. 

SOD1. Superoxide Dismutase 1. SOD1 is one of the three copper-zinc superoxide dismutases 

expressed in humans and localizes on the outer mitochondrial membrane. SOD1 is a main element of 

the respiratory chain and its role is to convert superoxide anions into molecular oxygen and hydrogen 

peroxide (H2O2), having an antioxidant function. Dysfunctions of this enzyme provokes oxidative 

stress, in turn leading to inflammation and favouring some pathologies like amyotrophic lateral 

sclerosis or ischemic heart diseases. In DS, triplication of SOD1 causes an accumulation of H2O2 
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(until 50% higher than normal in a variety of DS cells and tissues). This could imply a risk factor for 

subsequent neurodegeneration in aged DS patients [see (Perluigi and Butterfield, 2011)]. 

RCAN1. Regulator of Calcineurin 1. RCAN1 is a protein involved in numerous processes, included 

the regulation of neural proliferation and maturation. The protein encoded by this gene interacts with 

Calcineurin A and inhibits Calcineurin-dependent signalling pathways. Calcineurin is a calcium and 

calmodulin-dependent serine/threonine protein phosphatase. Calcineurin activates the nuclear factor 

of activated T cell cytoplasmic (NFATc; a transcription factor) by dephosphorylating it. The activated 

NFATc is then translocated into the nucleus, where it up-regulates the expression of interleukin 2 

(IL-2), which, in turn, stimulates the growth and differentiation of T cell response [see (Stagni et al., 

2017)]. RCAN1 was seen to be over-expressed in the DS fetal brain and in DS mouse models and 

this deregulation may contribute to neurodevelopmental alteration typical of DS. 

KCNJ6. Potassium voltage-gated Channel subfamily J member 6. KCNJ6, which encodes GIRK 

subunit 2 (GIRK2) of the G-protein coupled inward rectifying K+ channel (GIRK), is located on 

human HSA21 (Hattori et al., 2000) and within triplicated segments of mouse chromosome 16 in 

mouse models of DS (Best et al., 2007). GABAB receptors are metabotropic G-protein coupled 

receptors that are thought to release Gβγ subunits that activate K+ channels, causing neuron 

hyperpolarization (Chalifoux and Carter, 2011). This hyperpolarization decreases neuron excitability 

and enhances Mg2+ blockade of NMDA receptors to reduce their overall current and thus Ca2+ influx. 

This influx is fundamental for initiating the physiological changes that occur during synaptic 

plasticity. It has been shown that up-regulation of GIRK2 protein in the Ts65Dn mouse model of DS 

results in a larger slow inhibitory postsynaptic current (IPSC) mediated by GABAB receptors (Siarey 

et al., 1999). Moreover, evidence in Ts65Dn mice shows that GIRK2 is over-expressed in various 

brain regions, and that this leads to an exaggerated GABAB receptor-mediated inhibitory response in 

neurons from the hippocampus (Harashima et al., 2006). 

OLIG1/2. Oligodendrocyte transcription factor 1 and 2. OLIG1/2 are transcription factors that 

promote formation and maturation of oligodendrocytes, especially within the brain and that cooperate 

https://en.wikipedia.org/wiki/Calcium
https://en.wikipedia.org/wiki/Calmodulin
https://en.wikipedia.org/wiki/Protein_phosphatase
https://en.wikipedia.org/wiki/NFATC1
https://en.wikipedia.org/wiki/Transcription_factor
https://en.wikipedia.org/wiki/Dephosphorylation
https://en.wikipedia.org/wiki/Protein_targeting#Post-translational_translocation
https://en.wikipedia.org/wiki/Interleukin_2
https://en.wikipedia.org/wiki/Cell_immunity
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during neural tube formation. OLIG2 mis-expression impairs cortical progenitor proliferation, causes 

precocious cell cycle exit, massive neuronal cell death, downregulation of neuronal specification 

factors including NGN1, NGN2 and PAX6, and a defect in cortical neurogenesis [see (Stagni et al., 

2017)]. It must be observed that during embryonic development neural precursors in the medial 

ganglionic eminence (MGE) of the Ts65Dn mouse exhibit a faster proliferation rate. This feature is 

abrogated by deletion of an allele of Olig1 and Olig2 (Chakrabarti et al., 2010). This suggests that 

OLIG1 and OLIG2 may play a differential role in the modulation of neurogenesis according to brain 

region and developmental time. 

SYNJ1. Synoptojanin 1. This gene encodes a phosphoinositide phosphatase that regulates levels of 

membrane phosphatidylinositol-4,5-bisphosphate. The synaptojanin family comprises proteins that 

are key players in synaptic vesicle recovery at the synapse. As such, expression of this enzyme may 

affect synaptic transmission and membrane trafficking. There is evidence that over-expression of 

SYNJ1 in DS is functionally linked to the enlargement of early endosomes, that in turn provokes 

disruption of synaptic vesicle transportation (Cossec et al., 2012). 

 

2.5 Typical features of individuals with DS 

DS patients are characterized by numerous phenotypic defects and medical problems caused by the 

triplication of HSA21 (Fig. 2.2D). The most invalidating aspect of the DS condition is intellectual 

disability that is the unavoidable hallmark of DS and has a heavy impact on public health. In addition, 

DS is coupled with congenital heart defects, gastrointestinal anomalies, hypotonia, craniofacial 

abnormalities, audiovestibular and visual impairment and hematopoietic disorders. Furthermore, 

people with DS tend to develop leukemia, thyroid disorders, and AD like pathology with age [see 

(Kazemi et al., 2016)]. 

Congenital heart defects (CHD). The incidence of CHD in newborn babies with DS is up to 50% 

[see (Asim et al., 2015)]. The most common form of CHD in the DS population are atrioventricular 

canal/septal defects (AVSDs), which affects up to ~40% of the patients. Of all the heart defects, 
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AVSDs is the most serious and has an adverse impact on survival. Ventricular septal defects (VSD) 

are also present in DS and affect up to 35% of patients [see (Noble, 2008, Asim et al., 2015)]. AVSDs 

are characterized by the presence of a common atrioventricular junction with an ovoid shape, and 

defects of the muscular and membranous atrioventricular septum. There is disproportion of outlet and 

inlet dimensions of the left ventricle. These features possibly lead to a blood travelling from the left 

side (venous blood) of the heart to the right side of the heart (arteriosus blood), or the other way 

around. In case of VSD, the defect lies in ventricular septum of the heart due to which some of the 

blood from the left ventricle leaks into the right ventricle leading to pulmonary hypertension.  

Although with minor incidence, abnormalities such as isolated secundum atrial septal defects (8%), 

isolated tetralogy of Fallot (4%) and isolated patent ductus arteriosus are present in DS patients 

(Freeman et al., 1998). Importantly, most of the anomalies in infants with DS are suitable for complete 

surgical correction, with single ventricle palliation recommended for children with complex cardiac 

anomalies [see (Arumugam et al., 2016)]. 

Gastrointestinal anomalies. DS patients present a large number of gastrointestinal defects. These 

defects, which could affect up to 7-12% of children with DS (Freeman et al., 2009, Bull and 

Committee on, 2011), are duodenal stenosis/atresia (3.9%), anal stenosis/atresia (1.0%), esophageal 

atresia with or without tracheoesophageal fistula (0.4%), pyloric stenosis (0.3%) and Hirschsprung 

disease (0.8%) [see (Arumugam et al., 2016)]. DS patients constitute ~12% of all cases of 

Hirschsprung disease (HD). HD is a form of low intestinal obstruction caused by the absence of 

normal myenteric ganglion cells in a segment of the colon (Amiel et al., 2008). In HD children, the 

absence of ganglion cells results in the failure of the distal intestine to relax normally, encouraging 

chronic constipation, poor weight gain, vomiting and swollen abdomen. 

Hypotonia. Almost all children with DS suffer from muscle hypotonia (MH), a state of reduced 

muscle tone, usually related to the skeletal muscles. MH usually leads to numerous problems, as a 

delay in developmental milestones, mastication problems (due to poor neuromuscular control), 

muscular weakness and dental anomalies (Dey et al., 2013). MH in people with DS has been related 
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to a dysregulation of the expression of the α1 and α2 chains of type VI collagen (COL6A1 and 

COL6A2 respectively), that are located on the long arm of HSA21. Type VI collagen has a crucial 

role in the function and stability of skeletal and cardiac muscle (Dey et al., 2013). 

 

2.5.1 Other medical problems associated with DS 

Leukemia. Children with DS tend to develop leukemia, even though they develop solid tumors in 

lower rate in comparison with general population. The risk of developing acute megakaryoblastic 

leukemia (AMKL), a rare subtype of acute myeloid leukemia (AML), is increased 500-times in 

children with DS, and risk of acute lymphoblastic leukemia (ALL) is 20-fold greater in children with 

DS (Xavier and Taub, 2010). Although in childhood ALL is significantly more common than AML, 

for children with DS under 15 years of age the ratio of ALL to AML is 1.7. For the general population 

of non-DS children, the equivalent ratio is 6.5 (Xavier and Taub, 2010). 

Thyroid disorders. Individuals with DS are at an increased risk of developing thyroid disease, with a 

lifetime prevalence ranging from 13% to 63% [see (Hardy et al., 2004)]. Furthermore, congenital 

hypothyroidism is about 28 times more common in infants with DS than in the general population 

with an incidence of 1%, detected by newborn screening (Forth 1984). Hypothyroidism in DS could 

contributes to intellectual disability. After the newborn period, TSH values in DS increase and they 

have been reported to be as high as 85% of euploid infants under the age of 12 months [see (Hardy et 

al., 2004)]. Thyroid dysfunction, expressed as a high TSH concentration, is associated with growth 

retardation in children with DS who are younger than 4 years. Unfortunately, there are very few 

studies systematically examining the frequency of thyroid disease in infants with DS.  

Epilepsy. 5–13% of children with DS display seizures [see (Arya et al., 2011)]. The occurrence is 

bimodal with 40% having seizures before 1 year of age and with 40% developing seizures after thirty 

years, with generally tonic–clonic or myoclonic in manifestation [see (Lott, 2012)]. Infantile spasms 

are associated with electroencephalographic (EEG) characteristics. It appears that children with DS 

have better seizure control compared to other patients with symptomatic infantile spasms, and early 
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initiation of appropriate treatment may contribute to the prevention of late seizure development and 

better developmental outcome [see (Arya et al., 2011)]. 

 

2.6 Neurological defects in DS 

The most common feature of DS is intellectual disability that affects almost 100% of people with this 

pathology. DS individuals typically display an average Intelligence Quotient (IQ) of 50 (30-70) and 

mental age is rarely over 8 years. Children with DS show a delay in cognitive development [see (Lott 

and Dierssen, 2010, Bartesaghi et al., 2011, Rueda et al., 2012)]. There is, however, a great inter-

individual variability in the intensity of DS phenotype. Indeed, a few individuals with DS have been 

reported to have a normal IQ value. The IQ in DS is not constant over a lifetime, but it progressively 

decreases with age. The first deceleration occurs early, between the age of 6 months and 2 years, with 

a further decline in adolescents (Rachidi and Lopes, 2008). DS cognitive defects emerge in infancy 

and accumulates in early childhood, with impairment of speech, language, motor skills, cognition, 

adaptive behavior and a higher risk of psychopathology. Infants with DS are unable to roll until the 

sixth month and are unable to sit independently until between 8.5 and 11.7 months. The delay is 

greater for later developing motor skills: DS infants crawl on their hands and knees between 12.2 and 

17.3 months of age and walk between 15 and 74 months (Vicari, 2006). During infancy, children with 

DS exhibit a slower transition from babbling to speech and a delay in expressive lexicon and syntax, 

although no difference in vocalization types are present. Adolescents and young adults with DS 

usually have very poor linguistic capacities and a longer period of phonological errors and poorer 

intelligibility, although language comprehension is relatively more advanced than syntax (Dykens et 

al., 1994, Chapman and Hesketh, 2000, Vicari, 2006). Individuals with DS perform visual-perceptual 

and imagery material processing in a significantly poorer way than mental age-matched individuals 

do. However, when the task involves the processing of spatial data, performance of DS individuals is 

similar to that of controls. Many individuals with DS exhibit impairment in verbal short-term and 

working memory [see (Vicari, 2006)]. Children with DS have normal learning ability for tasks 
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requiring implicit memory but exhibit selective impairment of explicit memory, with poor 

information encoding, impaired retrieval abilities and attention deficits (Carlesimo et al., 1997, Vicari 

et al., 2000). When tested for learning tasks that specifically assess the state of function of the 

hippocampal and prefrontal systems infants and adults with DS show severe impairment [see (Nadel, 

2003)].  

 

2.6.1 Alzheimer’s-like pathology in DS 

DS is characterized by a high incidence of early onset Alzheimer’s disease (AD). Indeed, signs of 

AD-like pathology are found in the brains of virtually all people with DS by 35-40 years of age (Fig. 

2.3A). The prevalence of dementia increases with age above 45 years, with the majority of people 

with DS developing dementia by the age of 65 [see (Lott, 2012, Ruparelia et al., 2013)]. Since AD 

develops only in some individuals of the general population but it is almost an invariable hallmark of 

DS (although not all individuals develop dementia, even by 70 years of age), this implies that trisomic 

genes play a paramount role in the development of the disease [see (Ruparelia et al., 2013, Choong 

et al., 2015)]. This condition makes DS an excellent natural genetic model for the study of AD-like 

biological mechanisms and identification of potential biomarkers. The progressive accumulation of 

AD pathology suggests that there is a preclinical phase in DS-AD with a delay of at least 10 years 

between the onset of AD pathology and dementia diagnosis, similar to what is described for AD in 

the general population, which provides a window for intervention [see (Hamlett et al., 2016)]. 

Biological mechanisms involved in DS-AD include extracellular amyloid β protein (Aβ) 

accumulation (Fig. 2.3B), intraneuronal neurofibrillary tangles (NFTs) deposition (Fig. 2.3B), BFCN 

(basal forebrain cholinergic neurons) loss, neuron loss in the locus coeruleus, hippocampal 

abnormalities, imbalance of neurotrophic factors, alterations in long-term potentiation, abnormal 

endosomal signaling, presence of neuroinflammation, and oxidative stress [see (Hartley et al., 2015, 

Hamlett et al., 2016)]. In DS there is an over-expression of the gene for APP from which the amyloid-

β-protein is derived [see (Lott, 2012, Hartley et al., 2015)]. It has been suggested that an abnormal 
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APP metabolism initiates AD pathogenesis by triggering a set of events that result in Aβ aggregation, 

particularly of the Aβ42 peptide, in the extracellular plaques [see (Choong et al., 2015, Hartley et al., 

2015)]. Evidence in favor of this hypothesis comes from rare families with early onset AD who have 

small internal duplications of HSA21 that include APP, and tends to be present with cerebral amyloid 

angiopathy [see (Ruparelia et al., 2013, Hamlett et al., 2016)]. Conversely, although very rare, partial 

trisomy 21 excluding APP (i.e., with two “doses” of APP) does not appear to lead to AD [see (Choong 

et al., 2015)]. According to recent evidence, in addition to over-expression of APP, other triplicated 

genes may be involved in the development of AD and contribute to excessive tau phosphorylation in 

DS. They are DYRK1A, RCAN1, SOD1, ETS-2, BACE2, and S100β [see (Lott, 2012, Hartley et al., 

2015)]. The prevalence and time-course of AD in DS suggests that interventions may be attempted 

in young adults with DS in order to prevent the onset of AD. However, due to the difficulty in 

obtaining clinically and pathologically well-characterized human DS brain tissue, the need to develop 

and investigate animal models of this disorder is critical. 

 

2.6.2 Cognitive reserve paradigm 

The concept of “reserve” tries to explain how individual differences in susceptibility to age-related 

brain changes or Alzheimer's disease-related pathology originate. Cognitive reserve (CR) refers to 

individual differences in how tasks are performed that may allow some people to be more resilient 

than others. This theory considers two types of reserve: brain reserve, which refers to actual 

differences in the brain itself (for example more neurons or synapses to lose) that may increase 

tolerance for a given pathology, and CR. The idea of brain reserve is supported by studies that suggest 
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Figure 2.3. Alzheimer’s disease in Down syndrome. A: A chemical marker that binds to plaques and tangles 

allows their detection in the brains of individuals with Down syndrome or Alzheimer’s disease. The blue color 

corresponds to lower amounts of plaques and tangles, while yellow and green represent higher amounts (Lott, 

2012). B: Aβ deposition in the brain of an infant with Down syndrome (Lott, 2012). C: Immunolabelling with 

anti-amyloid-β of the midfrontal cortex of a 46-year-old person with Down syndrome (Lott and Dierssen, 

2010). Abbreviations: Aβ, β-amyloid; DS, Down syndrome; y, years. 

.
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that prevalence or incidence of dementia is lower in individuals with larger brains. In contrast, the 

concept of CR suggests that the brain actively attempts to cope with brain damage by using pre-

existing cognitive processing approaches or by enlisting compensatory approaches. This would allow 

individuals with high CR to better counteract the brain damage than individuals with lower CR. Thus, 

the CR concept is an active form of reserve in that, the same amount of pathology will have different 

effects on different people, even when the brain size is held constant. There are recent suggestions 

that life experience may act to prevent or minimize pathology. For example stimulating environments 

upregulate BDNF expression that in turn fosters the growth of new neurons and stimulates neural 

plasticity. There are other suggestions that cognitively stimulating activities may slow the rate of 

hippocampal atrophy in normal aging, and perhaps even prevent accumulation of amyloid plaques. 

Although individuals with a higher CR can tolerate more pathology than those with a lower CR, it 

must be noted that there is common point in all people where the pathology is so severe that function 

cannot be maintained. Given these assumptions, individuals with higher CR will begin their cognitive 

decline when pathology is more advanced and thus have less time until they reach the point where 

pathology overwhelms function. This results in a more rapid rate of decline once it begins. Thus, it 

becomes extremely important to find a way to prevent this rapid decline, possibly by acting 

pharmacologically or by environmental stimuli very early (before the first symptoms of the pathology 

begin) in the life of an individual [all the information about cognitive reserve are based on the review 

by (Stern, 2012)].  

Individuals with DS are bound to develop AD. Thus, the theory of cognitive reserve may also be valid 

for DS. In the last decade, many attempts have been made by the scientific community in order to 

find pharmacotherapies effective on brain development in DS. The discovery of pharmacological 

treatments that are able to foster neurogenesis and, thus, increase the cognitive reserve could be a 

useful tool for the “cure” of DS as well as prevention of AD in DS. 
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2.7 DS mouse models: tools for the understanding of DS pathology and therapy 

design 

Mouse models that accurately mirror human pathologies are essential tools in order to comprehend 

deeply the mechanisms that underlie a given pathology and to evaluate the outcome of targeted 

therapies. So far, a number of DS mouse models carrying trisomy for different sets of HSA21 

orthologous genes have been created with different methods [see (Bartesaghi et al., 2011)]. These 

models are briefly described hereafter. The difficulty for making a “perfect” model for DS lies in the 

fact that the ~160 HSA21 protein-coding genes are scattered among three mouse chromosomes: ~100 

map to the telomeric segment of mouse chromosome 16 (MMU16); ~20 map of MMU17; ~40 to 

internal segments of MMU10 [see (Gardiner, 2015, Antonarakis, 2017)].  

Model with triplication of the whole MMU16. The first mouse model of trisomy 21, generated by 

spontaneous Robertsonian translocations of MMU16, was labelled Ts16 (Fig.2.4A) (Gropp et al., 

1975). Ts16 and DS share a common genetic defect because the distal portion of mouse chromosome 

16 is syntenic with most of the distal portion of human chromosome 21 (Holtzman et al., 1992). The 

value of this model, however, is limited because the Ts16 embryos die in utero.  

Segmental trisomic mice. The most used and best-characterized model of DS is the Ts65Dn mouse 

that was created approximately 25 years ago (Davisson et al., 1993). The Ts65Dn mouse is trisomic 

for at least 55 % of HSA21 orthologous protein-coding genes, but it lacks the remaining ~45% (Fig. 

2.4A). Moreover, it bears 50 protein-coding genes that are not orthologs for HSA21 genes, a segment 

that is an artefact of the method used in its construction (Duchon et al., 2011). These features may 

confound phenotypic consequences seen in this model. Although the Ts65Dn mouse shows genetic 

limitations, it is still the most popular choice among DS models because it recapitulates many aspects 

of the human condition, including, cytoarchitectural abnormalities in many brain regions and deficits 

in learning and memory [see (Bartesaghi et al., 2011, Rueda et al., 2012, Gardiner, 2015, Stagni et 

al., 2017)]. Ts65Dn mice have reduced dimension in comparison with euploid mice (Fig.2.4B). 
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Another characteristic of the Ts65Dn is to develop, like humans with DS, Alzheimer’s-like pathology 

with age. 

The Ts1Cje is trisomic for 81 genes located in the region of MMU16 that extend from Sod1 to Znf295 

(Fig. 2.4A) (Sago et al., 1998). Ts1Cje mice show reduced cerebellar volume and abnormalities in 

craniofacial development similarly to Ts65Dn mice, but generally less severe. Ts2Cje model carries 

the same segment of MMU16 triplicated in the Ts65Dn mouse (Fig. 2.4A) but is translocated to 

chromosome 12 (Villar et al., 2005). 

The Ms1Ts65 mouse model has a partial trisomy that starts from App to Sod1 and includes about 33 

genes (Fig. 2.4A). The chromosomal region between App-Sod1 is present in the Ts65Dn model and 

it lacks in the Ts1Cje model. This allows comparisons among the trisomies and permits to assess the 

contributions of the phenotype of Ts65Dn mice of genes proximal to App up to Sod1 regarding the 

learning and behavioural phenotype (Sago et al., 2000). 

The Ts1Rhr mouse model, which is trisomic for the Cbr1-Orf9 genetic interval (DSCR) that includes 

33 genes (Fig. 2.4A) (Olson et al., 2004), shows a reduction in the volume of the brain but not of the 

cerebellum and hippocampus (Aldridge et al., 2007). Moreover, the Ts1Rhr model displays 

derangement in the spatial organization of subcortical structures (Aldridge et al., 2007). This mouse 

became of particular interest because it demonstrated that trisomy of this region (the DSCR) was not 

sufficient to replicate all structural and functional abnormalities of DS. 

The Ms1Rhr mouse model combines the deletion of the Cbr1-Orf9 region with the Ts65Dn trisomy 

region (Fig. 2.4A). Ms1Rhr model shows a reduced volume, height, width, and length of the brain, 

reduced volume of the hippocampus at two and three months of age, but an increase in the volume of 

the cerebellum (Aldridge et al., 2007, Olson et al., 2007).  

Models with triplication of MMU16, MMU17 and/or MMU10. Two models, which are trisomic for 

a segmental region of MMU17, have been recently created. The Ts1Yah mouse, which is trisomic 

for 12 genes in the MMU17 region, syntenic to the sub-telomeric region of HSA21, displays deficits 

in novel object recognition, similarly to other DS models, but no impairments in hippocampus-
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dependent spatial memory. The Ts(1617)43H(Ts43H) mouse, which is trisomic for 30 Mb of 

proximal MMU17, exhibits spatial learning deficits analogous to those observed in Ts65Dn mice 

(Vacik et al., 2005). Differences between these models reveals the complexity of the genetic code 

that modulates different aspects of behaviour in DS patients. 

The Dp(16)Yey mouse is a more recently created DS model (Li et al., 2007). It is trisomic for all 

MMU16 region orthologous to HSA21 and not for the non-HSA21 orthologs (Fig. 2.4A). Although 

the Dp(16) mouse still needs to be fully characterized, the few available studies indicate that it 

exhibits various brain dysmorphologies (Starbuck et al., 2014), is impaired in several tests of learning 

and memory (Goodliffe et al., 2016), and shows defects in long-term potentiation (Yu et al., 2010b). 

Other two models with a partial triplication of MMUs for the entire regions that are orthologous with 

HSA21 were developed. They are: the Dp(10)Yey mouse, with a partial triplication of MMU10 (Fig. 

2.4A), that does not show cognitive impairment; the Dp(17)Yey, with a partial triplication of MMU17 

(Fig. 2.4A), that shows abnormal hippocampal long-term potentiation (Yu et al., 2010b). 

An attempt to create a “full-trisomic” mouse was made successfully by Yu et al (Yu et al., 2010a). 

They produced a triple transgenic mouse that carries triplications spanning the entire HSA21 syntenic 

regions on all MMU10, MMU16 and MMU17 mouse chromosomes 

(Dp(10)1Yey/+;Dp(16)1Yey/+;Dp(17)1Yey/+) (deriving from a consecutive breeding of models 

Dp(16)1Yey, Dp(17)1Yey and Dp(10)1Yey) (Fig. 2.4A). This model showed learning and memory 

deficits and LTP impairment. However, because of viability issues, time, and expense, this mouse 

has not been extensively studied yet [see (Gardiner, 2015)]. 

Models with insertion of HSA21. An alternative model is provided by “transchromosomic” (trans-

species aneuploidy) mouse strains in which mice carry an extra human chromosome and are thus 

trisomic only for the genes on this chromosome. The Tc1 mouse is unique in that it is a 

transchromosomic line that carries a freely segregating and almost complete copy of HSA21 (Fig. 

2.4A) (Wiseman et al., 2009). Consistent with the impact of HSA21 trisomy in humans, Tc1 mice 

show reduced long-term potentiation (LTP) in the hippocampal dentate gyrus (DG) region (O'Doherty 
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et al., 2005) and impaired performance in tasks such as object recognition memory. However, the 

random loss of this human chromosomal fragment during mouse development resulted in variable 

levels of mosaicism of the extra chromosome in different tissues, confounding the analysis of the 

phenotypic consequences. 

Transgenic mouse models. In order to evaluate the involvement of single triplicated genes in DS 

features, several transgenic mouse models with one orthologous HSA21 gene were created (TgSod1, 

TgApp, TgEts2, TgS100β, TgDyrk1a, TgDscr1, TgSim2, TgBace2, TgSynj1 and TgPfk1). The 

transgenic mouse for Sod1 gene for example, showed decreased cell number in several brain areas 

and decreased LTP in the hippocampal field Cornu Ammonis 1 (CA1) (Rachidi and Lopes, 2008). 

The transgenic mouse TgS100β showed dendritic abnormalities similar to those in the fetal DS brain 

and astrocytosis, while transgenic mice TgApp exhibited over-expression of APP protein in the 

neocortex and hippocampus region and mimicked features of DS (Rachidi and Lopes, 2008). Recent 

work focused on the role of Dyrk1a triplication in the cognitive deficit of DS, showing that transgenic 

mice (TgDyrk1a) exhibit various but not all learning defects of Ts65Dn mice (Altafaj et al., 2001, 

Ortiz-Abalia et al., 2008).  

 

2.8 Neurodevelopmental alterations in DS 

Intellectual disability (ID) is the most invalidating feature of DS. ID, that lifelong affects DS 

individuals, is mainly due to brain hypotrophy. Several lines of evidence show that neurogenesis 

reduction and dendritic hypotrophy are the two major determinants of brain hypotrophy in DS. These 

defects starts at early fetal life stages and continues in the postnatal life.  

This section provides comparative information on neuroanatomical defects and neurogenesis 

alterations in the fetal/neonatal DS brain and in mouse models of DS during early developmental 

stages and adulthood. In particular, evidence will be summarized regarding brain gross anatomy, 

cytoarchitecture, proliferation potency, phenotype acquisition, neuron maturation, and some 

molecular mechanism that could underlie neurodevelopmental defects in DS. 
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Figure 2.4. Mouse models of Down syndrome. A: Schematic representation of HSA21 and syntenic regions 

of MMU16, MMU17, and MMU10 and different mouse models trisomic for different sets of genes orthologous 

to those of HSA21. B: Ts65Dn mouse model of Down syndrome. The Ts65Dn mouse is the most popular 

choice among DS models because it recapitulates many aspects of the human condition, including, 

cytoarchitectural abnormalities in many brain regions and deficits in learning and memory. Image on the left 

is taken from (Kuehn, 2016); image on the right was modified from 

https://www.slideshare.net/plus15campaign/dsrtf-webinar-dr-h-craig-heller-stanford-university. 

Abbreviations: HSA21, human chromosome 21; Mmu, mus musculus chromosome.
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2.8.1 Anatomy of the DS brain: humans with DS 

Individuals with DS have an overall reduced brain volume and numerous brain regions appear to be 

smaller in comparison with controls (Weis et al., 1991, Kesslak et al., 1994, Raz et al., 1995, Pinter 

et al., 2001b, Teipel and Hampel, 2006). Volume reduction is particularly prominent for the 

cerebellum and brainstem (Jernigan et al., 1993, Raz et al., 1995, Aylward et al., 1997), and for the 

hippocampus (Aylward et al., 1999). The brain hypotrophy that characterizes DS is already present 

in neonates and can be traced back to prenatal life stages (Fig. 2.5). 

GROSS ANATOMY 

Fetuses. A pioneering study in fetuses aged 15-22 weeks (Schmidt-Sidor et al., 1990) found no gross 

differences in brain shape, weight or fronto-occipital length. Neither were any differences in the 

cerebellum or hippocampus. This is in contrast with the hypotrophy found by other studies regarding 

the DS fetal brain. The absence of differences in Schmidt-Sidor’s study may be attributable to the 

fact that fetuses were not stratified by age, which, may obscure differences between DS and non-DS 

fetuses. However, the evaluation of the brain of fetuses with DS during relatively restricted time 

windows of gestation shows that fetuses with DS exhibit reduced brain weight (Guihard-Costa et al., 

2006) and volume reduction in various hippocampal structures (Guidi et al., 2008) and in the 

cerebellum (Guidi et al., 2011b). In addition to weight and volume differences, the fetal DS brain 

exhibits distinctive shape alterations. It is markedly brachycephalic due to a reduction in the length 

of the frontal lobe, with an increase in the transparietal length (Guihard-Costa et al., 2006). A 

pioneering study showed that the hippocampus of fetuses with DS is less well-formed in comparison 

with control fetuses (Sylvester, 1983). This evidence has been substantiated by a following study 

showing numerous neuroanatomical defects in the DG and hippocampus of DS fetuses (Fig. 2.5) 

(Guidi et al., 2008). A typical feature of DS fetuses is a notable reduction in the transcerebellar 

diameter (Rotmensch et al., 1997, Winter et al., 2000, Guihard-Costa et al., 2006). Moreover, the 

cerebellum has an abnormal shape, due to shorter lobes and shallower fissures (Fig. 2.5) (Guidi et al., 

2011b).  
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Figure 2.5. Brain hypotrophy in Down syndrome fetuses. Examples of the brain (scale bar 1 cm), 

hippocampus (scale bar 1 mm) and cerebellum (scale bar 2 mm) of a diploid (left) and a DS fetus (17–21 GW) 

(right). Images were taken from (Guidi et al., 2008, Guidi et al., 2011b, Stagni et al., 2017). Abbreviation: DS, 

Down syndrome. 
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Infants and children. The brains of infants and children with DS have a reduced volume in 

comparison with normal children due to a reduction in the volume of both the grey and white matter 

(Pinter et al., 2001b, Kates et al., 2002, Smigielska-Kuzia et al., 2011). In addition, save for the 

occipital lobes, all brain lobes have a reduced size (Pinter et al., 2001b, Kates et al., 2002, Smigielska-

Kuzia et al., 2011). Volume reduction is also present in the hippocampus (Pinter et al., 2001b, 

Smigielska-Kuzia et al., 2011), cerebellum (Pinter et al., 2001b) and amygdala (Smigielska-Kuzia et 

al., 2011). Pinter et al. found no difference in the volume of the superior temporal gyrus (Pinter et al., 

2001a) nor, at variance with the study by Smigielska-Kuzia et al., in the volume of the amygdala 

(Pinter et al., 2001a). The absence of differences in the volume of the amygdala may be related to the 

older age of children in Pinter’s study (11.3 vs. 6.7 years). DS children exhibit a significant reduction 

in the volume of the gray matter in the posterior lobe of the cerebellum, cingulate gyri, 

parahippocampal gyri and hippocampi, and in the volume of the white matter in the left 

posterior/anterior lobes of the cerebellum, left brainstem and frontal and parietal lobes, and sub-lobar 

region (Carducci et al., 2013). In contrast, significant preservation in the volume of gray matter is 

present in the left middle temporal lobe, the right sub-lobar region (lentiform nucleus) and in the 

parietal lobes (Carducci et al., 2013). The shape alterations present at fetal life stages are retained in 

the brain of infants and children with DS. At 3-5 months, the fronto-occipital length is shortened 

(secondary to reduction of frontal lobe growth), the occipital poles are flattened, the superior temporal 

gyri are narrower and the brain stem and cerebellum are smaller (Schmidt-Sidor et al., 1990). A study 

in children with DS from birth to five years of age reports a reduction in the fronto-occipital 

circumferences (Wisniewski, 1990).  

CYTOARCHITECTURE 

Fetuses. By 40 weeks of gestation, the cellular distribution of the layers of the visual cortex appear 

to be scarcely defined in DS fetuses in comparison with control fetuses (Becker, 1991). Lamination 

of the temporal neocortex of fetuses with DS is both delayed and disorganized (Golden and Hyman, 

1994). In the brain of fetuses with DS [Gestational Week (GW) 19.8±2.2] brain neuron density 
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appears normal (Weitzdoerfer et al., 2001), although stereological quantification of total cell number 

in the neocortex showed that fetuses with DS at GW 19 have notably fewer cells than control fetuses 

(Larsen et al., 2008). Moreover, fetuses with DS (GW 17-21) have fewer cells than controls in the 

hippocampus and parahippocampal gyrus (Guidi et al., 2008). In addition, the cellular layers of the 

cerebellum have a reduced thickness and a prominent hypocellularity (Guidi et al., 2011b). 

Infants and children. DS neonates have fewer cells in the primary visual cortex and this difference 

persists during infancy (Wisniewski, 1990). In the brain of children with DS, areas 3, 4, 17 and 41 

are characterized by architectonic abnormalities and a significant poverty of granular cells. Likewise, 

extracortical structures, such as the ventral cochlear nucleus, exhibit a greatly reduced number of 

neurons and a low cell packing density (Gandolfi et al., 1981). The reduced granule cell density 

(Baxter et al., 2000) observed in the cerebellum of fetuses with DS is retained in children. In addition 

to brain hypocellularity, children with DS exhibit remarkable abnormalities in the size of cortical 

minicolums in the superior temporal gyrus (Buxhoeveden et al., 2002), indicating gross defects in the 

architecture of the functional units of the neocortex.  

 

2.8.2 Anatomy of the DS brain: DS mouse models 

GROSS ANATOMY 

Embryonic period. There are relatively scarce data regarding brain development of DS mouse models 

at embryonic life stages. At embryonic day (E) 13.5, E14.5 and E16.5 the Ts65Dn mouse shows a 

smaller medial-lateral length of the telencephalon and a reduction in the wet brain weight at E13.5 

and E18.5 in comparison with euploid mice. Surprisingly, at E18.5 the Ts65Dn mouse recovers both 

the brain weight and the telencephalon gross size, indicating a probable early delay during brain 

growth (Chakrabarti et al., 2007). In the embryonic period E13.5-18.5, the Dp(16) model does not 

show any defect in forebrain growth. Its brain hemispheres are comparable to the euploid littermates 

along both the medial–lateral and rostro-caudal axes (Goodliffe et al., 2016). Brain development has 
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also been shown to be disrupted in Ts1Cje and Ts2Cje mice and at E14.5 their brain are smaller 

when compared with their euploid counterparts (Ishihara et al., 2010). 

Early postnatal period. Data about differences between euploid and Ts65Dn mice in brain weight in 

the early post-natal period are inconsistent. According to some studies the Ts65Dn mouse has a 

reduced brain weight at P2 (Guidi et al., 2014) and P15 (Stagni et al., 2016), but other studies do not 

reports differences at P8, P15 and P22 (Belichenko et al., 2004, Chakrabarti et al., 2007, Bianchi et 

al., 2010b). While some studies show that the Ts65Dn mouse has no volume defects in the DG of the 

hippocampus, cortex, striatum and cerebellum at P2, P6, P10 and P22 (Holtzman et al., 1996, 

Belichenko et al., 2004, Lorenzi and Reeves, 2006), other studies report differences in the volume of 

the DG at P2 and P15 (Contestabile et al., 2009) and in the size of cerebellum at P2, P6 and P14 

(Roper and Reeves, 2006, Contestabile et al., 2007). Ts1Cje mice at P12 show no reduction in brain 

weight and no modifications of overall brain volume compared with euploid mice (Ishihara et al., 

2010). 

Adolescence/adulthood. At P45 Ts65Dn mice have a reduced brain weight when compared with 

controls (Bianchi et al., 2010b). Accordingly, also the volume of the neocortex, cerebellum and 

hippocampus (DG, CA1 and CA3) is compromised at this age (Bianchi et al., 2010b, Guidi et al., 

2014). Three month-old Ts65Dn mice exhibit a reduction of the DG volume (Lorenzi and Reeves, 

2006, Stagni et al., 2015b), of cerebellar volume (Aldridge et al., 2007, Necchi et al., 2008), but a 

normal brain weight (Holtzman et al., 1996, Belichenko and Kleschevnikov, 2011, Stagni et al., 

2015b) and normal volume of the brain and of the hippocampus (Aldridge et al., 2007, Olson et al., 

2007). Ts65Dn mice aged 20-28 weeks showed a volume reduction in the CA2 field, but a normal 

volume in the other regions of the hippocampus (Insausti et al., 1998). In Ts1Rhr mice aged 3 months 

the volume of the brain but not of the cerebellum and hippocampus is reduced in comparison with 

euploid mice (Aldridge et al., 2007). Moreover, the Ts1Rhr model displays derangement in the spatial 

organization of subcortical structures (Aldridge et al., 2007). While at three months of age Ts1Rhr 

mice have a reduced volume of the cerebrum and cerebellum, at 7.5 months they have a brain weight 
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and volume of the posterior hippocampus that are larger than euploid mice (Belichenko et al., 2009). 

The Ms1Rhr mouse has a reduced volume, height, width, and length of the brain, reduced volume of 

the hippocampus at two and three months of age, but an increase in the volume of the cerebellum 

when compared to their euploid counterparts (Aldridge et al., 2007, Olson et al., 2007). At 10-16 

weeks, the Ts1Cje mouse exhibits a reduction in the cerebellar volume (Olson et al., 2004). Similarly 

to earlier life stages, at 3 month the Ts1Cje mouse has no difference in brain weight and volume 

(Hewitt et al., 2010, Ishihara et al., 2010). No differences in brain weight have been also found in 

Ts1Cje mice aged 6-6.5, 7-7.5 and 9-10 months (Belichenko et al., 2007). Likewise, the area of the 

hippocampus shows no difference between Ts1Cje mice aged 18 months and their euploid 

counterparts (Belichenko et al., 2007). Dp(16) mice aged 3 months show a reduction of cerebellum 

cross-sectional area in comparison with euploid mice (Starbuck et al., 2014). The 

Dp(16)/Dp(17)/Dp(10) mouse model at 3 months has hydrocephalus, with lateral ventricles of the 

brains abnormally dilated (Yu et al., 2010a). 

CYTOARCHITECTURE  

Embryonic period. In the period E13.5-E18.5, the Ts65Dn mouse shows a thickness reduction in the 

inner zone (IZ) and sub-plate/cortical plate (SP/CP), with no differences in the thicknesses of the 

ventricular zone (VZ) and subventricular zone (SVZ). By E18.5 to birth, all layers of the neocortical 

wall have the same dimension in Ts65Dn mice as in euploid mice (Chakrabarti et al., 2007). The 

Ts65Dn model during the embryonic period displays a reduction in the size of the pyramidal cell 

layer of the CA1 region (Chakrabarti et al., 2007). Both Ts1Cje and Ts2Cje mice exhibit a reduction 

in cortical thickness at E14.5 when compared with their euploid counterparts (Ishihara et al., 2010). 

The Dp(16) mouse, in contrast with the Ts65Dn and the Ts1Cje/Ts2Cje models, does not exhibit 

prenatal forebrain growth alterations. At E13.5–E18.5, Dp16 mice do not show differences in the 

thicknesses of the VZ/SVZ, IZ, CP, and overall thickness of neocortical and hippocampal layers 

(Goodliffe et al., 2016).  
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Early postnatal period. At P2, Ts65Dn mice exhibit a reduced cellularity in the neocortex, DG, 

hippocampus, striatum, thalamus, hypothalamus mesencephalon, and cerebellum (Contestabile et al., 

2007, Guidi et al., 2014). Hypocellularity in the DG has also been documented at P6 (Lorenzi and 

Reeves, 2006) and P15 (Bianchi et al., 2010b). At P8 and P15, Ts65Dn mice exhibit a reduction in 

the number of glutamatergic neurons in the neocortex and a concomitant increase in the number of 

inhibitory interneurons both in the neocortex and field CA1 (Chakrabarti et al., 2010). While at P0 

Ts65Dn mice exhibit a similar number of cerebellar granule cell precursors as euploid mice in the 

external granular layer of the cerebellum (Roper and Reeves, 2006), at P2 there is a reduction in cell 

density in the external granular layer, internal granular layer, and Purkinje cell layer (Roper et al., 

2006, Roper and Reeves, 2006, Contestabile et al., 2008, Guidi et al., 2014). The reduced thickness 

of the internal granular layer lasts until adulthood (Roper and Reeves, 2006). At variance with other 

brain regions, no differences were reported in either the number or size of basal forebrain cholinergic 

neurons in P2, P10 and P22 Ts65Dn and age-matched euploid mice (Holtzman et al., 1996). Dp(16) 

mice, at P15, show a reduced number of both excitatory and inhibitory neurons in the somatosensory 

cortex (Goodliffe et al., 2016). Tc1 and Ts1Rhr mice show neither abnormal distribution of neurons 

nor differences in neuron polarity and orientation over the cortex at P21 (Haas et al., 2013). 

Adolescence/adulthood. The defects in cytoarchitecture displayed by Ts65Dn pups are retained in 

adolescent mice. At P45 the Ts65Dn mouse shows reduced cell density, fewer granule neurons in the 

DG and a reduced thickness of the terminal field of the mossy fibers in the CA3 field in comparison 

with euploid mice (Bianchi et al., 2010b, Stagni et al., 2013). Accordingly, at 3 months of age, there 

is a reduction in cell density and total granule cell number in the DG of Ts65Dn mice, but no 

significant differences in cell number in the CA1 and CA3 fields were detected (Lorenzi and Reeves, 

2006, Stagni et al., 2015b). A reduction in total granule cell number has been also detected in Ts65Dn 

mice aged 20-28 weeks (Insausti et al., 1998). Recent evidence shows that that perhirinal cortex of 

P15 Ts65Dn mice exhibits a reduced cellularity. in comparison with age-matched euploid mice. The 

same defect was present in 1.5-4.5 months old Ts65Dn mice, that display a significant cellularity 
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reduction in layers V (-25%) and VI (-23%) (Roncace et al., 2017). The cerebellum exhibits a normal 

cortical layering, but a reduction in the thickness of the molecular layer and granule cell layer of the 

vermis and in the density of the granule cells and Purkinje cells (Olson et al., 2007, Necchi et al., 

2008). At 8-10 weeks, the Ts1Rhr mouse does not have a cell density reduction in both the internal 

granule cell layer and Purkinje cell layer. Ts1Rhr mice aged 7.5 months shows a greater thickness of 

the motor cortex in comparison with euploid mice (Belichenko et al., 2009). The Ms1Rhr mouse 

exhibits a higher density and number of both granule cells and Purkinje cells in comparison with 

euploid mice (Olson et al., 2007). A reduction in granule cell and Purkinje cell density was observed 

at three months of age in the Dp(16) mouse (Starbuck et al., 2014). Finally, the Ts1Cje mouse differs 

from its euploid counterpart in granule cell density, but not in Purkinje cell density (Olson et al., 

2004) and at 18 months it has a thickness of the granule cell layer and molecular layer of the DG that 

is similar to that of controls (Belichenko et al., 2007). Data focusing on subcortical structures are also 

available for adult Ts65Dn mice. It has been shown that Ts65Dn mice aged 3 months exhibit no 

differences in i) the number of cholinergic cells in the medial septum-diagonal band of Broca and 

distribution of AchE fibers in the hippocampus; ii) the shape and distribution of tyrosine hydroxylase 

positive neurons in the substantia nigra and locus coeruleus; iii) the distribution of serotonin-positive 

neurons along the midline of Raphe nuclei (Megias et al., 1997). In 5-8 month-old Ts65Dn mice there 

is a reduction in the number of BFCN in the medial septum, consistently with evidence at earlier life 

stages (Cooper et al., 2001, Contestabile et al., 2006, Ash et al., 2014, Kelley et al., 2014). Ts65Dn 

mice aged 6-8 months and 14-18 months exhibit a reduction in acetylcholine transferase 

immunoreactivity in the hippocampus in comparison with euploid mice, suggesting a reduction in the 

cholinergic innervation originated in the medial septum (Kelley et al., 2016). 
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2.8.3 Proliferation potency in DS 

2.8.3.1 Humans with DS 

Differentiation of the neural tube into an outer mantle layer and an inner proliferative zone has 

occurred by gestational week six and some neurons have already been born. At week 7 of gestation, 

the germinal matrix can be divided into a VZ and an overlying SVZ. Neurons migrate out of these 

germinal zones giving origin to the cortical plate (Chan et al., 2002). In the human forebrain, 

neocortical neurons are generated during a restricted period that begins at approximately GW 6 and 

is largely completed by GW 18 (Stiles and Jernigan, 2010). By week 24 of gestation, the size of the 

VZ and SVZ is considerably reduced and there is a marked decrease in proliferative activity (Chan et 

al., 2002). There is a more prolonged period of neurogenesis in the human DG and cerebellum in 

comparison with the other brain regions. In the DG, neurogenesis begins at approximately GW 12 

and is almost accomplished within the first postnatal year (Seress et al., 2001, Rice and Barone, 2010). 

Production of cerebellar granule cells starts at GW 12 (Abraham et al., 2011) and continues in the 

first few postnatal months (ten Donkelaar et al., 2003). The reduced cellularity in the brain of fetuses 

with DS suggests a reduction in proliferation potency starting from the earliest periods of 

neurogenesis. Due to the obvious difficulties in obtaining fetal material, very little information is 

available concerning neurogenesis in the fetal DS brain. By exploiting immunostaining for Ki-67 (a 

protein expressed during all phases of the cell cycle) evidence was obtained that in fetuses with DS 

(GW 17-23) the number of proliferating cells was notably reduced in the hippocampal DG, germinal 

zones of the hippocampus proper and parahippocampal gyrus, and in the germinal matrix of the 

inferior horn of the lateral ventricle (Contestabile et al., 2007, Guidi et al., 2008). In addition, the 

number of proliferating cells was notably reduced in the external granular layer of the cerebellum, 

and in a region of the fifth cerebellar lobe that is the remnant of the cerebellar VZ (Guidi et al., 2011b). 

A notable reduction in cell proliferation, as assessed by the cell cycle marker Ki-67 and the M-phase 

marker phospho-histone H3 (PH3) immunostaining, was also found along the VZ and SVZ of the 

frontal cortex of DS fetuses (GW 18) (Lu et al., 2012). A corresponding decline in proliferation was 



36 

also discovered in vitro in neurospheres generated from the frontal cortex of DS fetuses (Lu et al., 

2012). This evidence shows a widespread reduction in the number of actively dividing cells in 

numerous brain regions of fetuses with DS, clearly indicating that alterations in proliferation rate are 

present at the very beginning of the process of neurogenesis.  

 

2.8.3.2 DS Mouse models 

By exploiting DS mouse models it has been possible to better elucidate the spatio-temporal 

distribution of the proliferation defects in the trisomic brain. In mice, similarly to humans, the bulk 

of brain neurons derive from the VZ and SVZ and are generated before birth. In contrast, in the 

subgranular zone (SGZ) of the hippocampal DG, a neurogenic niche that produces neurons destined 

to the DG, the bulk of neurogenesis takes place during the first two postnatal weeks, continues in a 

relatively substantial manner until young adulthood, and thereafter decreases with age (Altman and 

Bayer, 1975, Altman and Bayer, 1990a, c). A second important postnatal neurogenic niche is the SVZ 

of the lateral ventricle that gives rise to cells (most likely astrocytes and oligodendrocites) destined 

for the neocortex in the first few postnatal days (Brazel et al., 2003) and, subsequently, gives origin 

to granule neurons destined for the olfactory bulb. In the mouse cerebellum, granule cell production 

begins at approximately E15 but continues up to the second postnatal week (Sillitoe and Joyner, 2007, 

Sudarov and Joyner, 2007). Table 4 summarizes data obtained from the literature regarding 

proliferation rate in DS mouse models at different life stages. Regarding the magnitude of the 

differences in comparison with their euploid counterparts, they are in the range from -4 to -64% 

(average 33.7) in the Ts65Dn model, -25 to -60% (average 31.8) in the Ts1Cje model, and -30 to -

51% (average 41.8) in the Ts2Cje model. 

Embryonic period. There might be different causes regarding brain development alteration during 

fetal stages, such as (i) a smaller progenitor cell population at the beginning of neuronogenesis, (ii) 

altered kinetics of neuroblast proliferation, or (iii) increased death of either progenitors or postmitotic 

neurons (discussed below). The Ts65Dn model shows an overall reduction of BrdU-positive cells in 
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the pallium during embryonic developmental stages due to delayed exit from the cell cycle 

(Chakrabarti et al., 2007). Another deficit regards a poor generation of neurons by the germinal zone 

and abnormal migration of newly generated neurons into the SP/CP (Chakrabarti et al., 2007). In 

agreement with no detectable differences in prenatal brain development, the Dp(16) model does not 

show any variations in the size of actively dividing cell population across genotypes from E13.5 to 

E18.5 in either the neocortex or the MGE (Goodliffe et al., 2016). Both Ts1Cje and Ts2Cje mice 

show an overall reduction in the number of BrdU-positive cells in the period E13.5-E14.5 throughout 

the dorsal pallium. In particular, there are fewer BrdU-positive cells in VZ, SVZ, IZ, SP and CP in 

comparison with their euploid counterparts (Ishihara et al., 2010). Furthermore, they exhibit a 

reduction in the number of Ki67-positive cells. Taken together, these findings indicate that the pool 

of neural progenitor cells is highly compromised in these models (Ishihara et al., 2010). 

Early postnatal period. In mice, the SGZ of the DG and the SVZ continue to proliferate during the 

entire lifespan (as in human beings), while in the cerebellum the production of granule neurons lasts 

from birth to the second postnatal week (Altman, 1982). At P0, the Ts65Dn mouse shows a strong 

decrease in the mitotic potency of the cerebellar granule neuron precursors (CGP) of the cerebellum 

and, at P2, it has fewer BrdU-positive cells in the EGL in comparison with euploid mice (Roper and 

Reeves, 2006, Contestabile et al., 2009, Guidi et al., 2014). This defect does not ameliorate at P6 and 

it translates into a reduction of CGP population at P30 (Roper and Reeves, 2006, Contestabile et al., 

2009). An explanation of these defects could be the elongation of the cell cycle, with the G1 and G2 

phases being those mainly impaired (Contestabile et al., 2009). At P2, the Ts65Dn mouse also shows 

fewer BrdU-positive cells in the SVZ, DG, neocortex, striatum, thalamus, hypothalamus, 

mesencephalon and pons (Contestabile et al., 2009, Guidi et al., 2014). Proliferation deficits have 

been observed at P15 in the striatum, neocortex, SVZ and DG and at P6, P15 and P30 in the DG 

(Lorenzi and Reeves, 2006, Contestabile et al., 2007, Bianchi et al., 2010a).  

Adolescence/adulthood. During pre- and early-postnatal developmental stages, the number of 

proliferating cells in the Ts65Dn model is strongly affected. This defect is retained at further life 
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stages. In particular, at P30 and P45 the Ts65Dn mouse has a reduced number of BrdU- and Ki-67-

positive cells in both SGZ of the DG and SVZ (Bianchi et al., 2010b, Chakrabarti et al., 2011, Guidi 

et al., 2014). Defects in the number of granule cells of the DG are still present when Ts65Dn mice 

reach adulthood (Insausti et al., 1998). A region that does not have proliferation defects at P45 is the 

olfactory epithelium, were PCNA-positive cells are equal between genotypes (Bianchi et al., 2014). 

In Ts65Dn mice aged 2-3 months there is a significant decrease in the density of BrdU-positive cells 

and Ki-67-positive cells in the motor cortex, in the DG and in the SVZ, but not in the corpus callosum 

(Belichenko and Kleschevnikov, 2011, Stagni et al., 2015b). The proliferation potency and cellularity 

defects in the hippocampus and SVZ of Ts65Dn mice persist when they reach 5 months of age or 

later ages (Corrales et al., 2013, Martinez-Cue et al., 2013, Lopez-Hidalgo et al., 2016). Ts65Dn mice 

aged 14 months show a reduction in the number of BrdU-positive cells in the SVZ and rostral 

migratory stream, indicating that defects present in earlier life stages in these zones persist during the 

life span (Guidi et al., 2016). At 3 months both Ts1Cje and Ts2Cje mice show a reduction in the 

number of proliferating cells in the DG and SVZ (Ishihara et al., 2010). 

 

2.8.4 Mechanisms underlying proliferation potency impairment  

The reduced proliferation potency that characterizes DS is due to a complex interaction between 

different molecular mechanisms, in which both triplicated and non-triplicated genes are involved.  

Progression through the cell cycle is regulated by cyclin-dependent kinases (CDKs), and their 

interactions with cyclins and CDK inhibitors (CKIs). CDKs bound to their cognate cyclins drive 

transition phases of the cell cycle. Regulation of G1 is crucial for the balance between maintenance 

of the progenitor pool and generation of differentiated neurons, and inhibition of positive regulators 

of cell cycle progression enhances differentiation and reduces the size of the pool of neural 

stem/progenitor cells (Hindley and Philpott, 2012). The activity of D-type cyclins is necessary for 

progression through the G1 phase of the cell cycle. In the Ts65Dn mouse model of DS neural 

progenitor cells of the embryonic VZ of the lateral ventricle and hippocampus exhibit an elongation 
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of the S-phase as well as total length of the cell cycle (Chakrabarti et al., 2007). In the cerebellum of 

neonate Ts65Dn mice, granule cell precursors exhibit cell cycle elongation due to an increase in the 

length of the G1 and G2 phases of the cell cycle (Contestabile et al., 2009). This evidence in a DS 

model suggests that a reduction in the proliferation rate may be one of the determinants of the reduced 

proliferation potency in DS. Data obtained in the hippocampal DG and ventricular germinal matrix 

of fetuses with DS, suggests that neural progenitors exhibit an elongation of the G2 phase of the cell 

cycle cell and, possibly, an overall cell cycle elongation (Contestabile et al., 2007). Altered 

proliferation dynamics has been shown in fibroblast from DS patients (Kimura et al., 2005). More 

recently, it has been shown that DS patient-derived fibroblasts have an extended G1 duration (Chen 

et al., 2013). Elongation of the G1 obviously implies an overall increase in the duration of the cell 

cycle and, thus, a reduction in proliferation rate. It is important to observe that the G1 phase of the 

cell cycle is considered to be the critical window during which cells decide to proliferate, assume a 

reversible arrest (G0), or begin a path towards terminal differentiation or senescence. The available 

evidence suggests that the reduction in the number of cycling cells in the trisomic brain may be 

accounted for by reduction in proliferation rate (increase in the cell cycle length) as well as by a 

precocious exit from the cell cycle. Although various triplicated genes are likely to be involved in 

cell cycle alteration, the evidence reported below strongly suggests that Dual specificity tyrosine-

phosphorylation-regulated kinase 1A (DYRK1A) (Fig. 2.6A) and Amyloid precursor protein (APP) 

may play a particularly prominent role (Fig. 2.6B). 

DYRK1A. DYRK1A was proposed to be one of key candidate genes closely implicated in various DS 

phenotypes. There is evidence that triplication of DYRK1A leads to over-expression of DYRK1A in 

the brain of fetuses and adults with DS (Lockstone et al., 2007, El Hajj et al., 2016) and in DS-human 

pluripotent stem cells (iPSC)-derived NPCs (Hibaoui et al., 2014). Knocking down DYRK1A in Down 

syndrome patient-derived fibroblasts restored the impaired proliferation (Chen et al., 2013). This 

effect has been attributed to restoration of the G1 phase. This evidence strongly suggests a key role 

of DYRK1A in the regulation of proliferation and differentiation of trisomic neural progenitor cells. 
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One of the targets of DYRK1A is cyclin D1, an important cell cycle protein that promotes G1-to-S 

phase transition and is required for cell proliferation (Hindley and Philpott, 2012, Chen et al., 2013). 

DYRK1A phosphorylates cyclin D1 at Thr286 (Chen et al., 2013), causing its nuclear export, 

followed by degradation by an ubiquitin-dependent mechanism (Soppa et al., 2014). There is 

evidence that DYRK1A increases G1 duration in a dose-dependent manner reducing cyclin D1 levels 

(Chen et al., 2013). Consistently with DYRK1A over-expression in DS, cyclin D1 levels are reduced 

in the frontal lobe of fetuses with DS (Bernert et al., 1996) and in fibroblasts of DS patients (Chen et 

al., 2013). This evidence suggests that DYRK1A/Cyclin D1 may be one of the mechanism underlying 

the reduced proliferation potency of the DS. Alteration of DYRK1A and cyclin D1 expression similar 

to those found in humans have also been observed in the Ts65Dn mouse. Embryonic cortical stem 

cells in the dorsal VZ of Ts65Dn embryos contains 1.5-fold more DYRK1A protein than euploid 

embryos and have reduced cyclin D1 levels with a consequent lengthening of the G1 cell cycle phase 

and a reduction in the number of divisions producing neurons (Najas et al., 2015). The resulting deficit 

in cortical neurons persists at postnatal life stages. Genetic normalization of Dyrk1a dosage in the 

Ts65Dn embryos restores cyclin D1 to normal levels and this effect is accompanied by a restoration 

of the number of cortical neurons at postnatal life stages (Najas et al., 2015). This evidence suggests 

that DYRK1A-mediated degradation of cyclin D1 may underlie the reduction of progenitor 

neurogenic potential. It has been shown that NPCs from Ts65Dn mice exhibit a premature neuronal 

differentiation that is prevented by normalization of DYRK1A activity with harmine (Mazur-Kolecka 

et al., 2012), suggesting that DYRK1A over-expression in DS leads to premature neuronal 

differentiation. In addition to reduce nuclear levels of Cyclin D1, over-expression of DYRK1A has 

been shown to increase the transcriptional levels of the antiproliferative cyclin-dependent kinase 

inhibitor p27KIP1 (CDKN1B) (Hammerle et al., 2011) and also its stability by phosphorylating it on 

Ser10 (Soppa et al., 2014). It is well-established that DYRK1A phosphorylates p53 and that 

DYRK1A-induced p53 phosphorylation leads to induction of p53 target genes and impaired G1/G0-

S phase transition, resulting in attenuated proliferation. p21CIP1, also known as cyclin-dependent 



41 

kinase inhibitor 1, represents a major target of p53 that promotes its transcription (Park et al., 2010). 

Accordingly, brains from embryonic Dyrk1a transgenic mice exhibit elevated levels of DYRK1A, 

phosphorylated p53, and p21CIP1 as well as impaired neuronal proliferation (Park et al., 2010). 

Increased levels of DYRK1A, p53 and p21CIP1 have been observed in the frontal cortex of fetuses and 

adults with DS (Park et al., 2010). Excessive p21CIP1 levels have also been found in the hippocampus 

of young Ts65Dn mice (Stagni et al., 2015b). This evidence strongly suggests that DYRK1A may 

also hamper proliferation by increasing p21CIP1 levels. 

APP. APP is one of the triplicated gene that is thought to play a key role in neurodevelopmental 

alterations in DS and to underlie development of Alzheimer’s-like pathology in adults with DS. 

Although in whole brain homogenates of fetuses with DS no significant differences in APP levels 

have been detected (Ferrando-Miguel et al., 2003), we found increased levels of APP protein in 

homogenates from the basal ganglia of fetuses with DS (Guidi et al., 2017). Moreover, increased APP 

levels have been detected in brains of fetuses with DS at the protein level (Tanzi et al., 1987). 

Consistently with increased APP expression, increased levels of APP carboxy-terminal fragments 

have been found in the brain of fetuses with DS (Russo et al., 2001). In addition, increased APP levels 

have been detected in cultures of cortical neurons from fetuses with DS (Busciglio et al., 2002). 

Consistently with evidence in DS brain tissue, increased levels of APP and of its derivatives were 

found in NPCs from SVZ of P2 Ts65Dn mice and cerebellar samples form P2 mice (Contestabile and 

Ciani, 2008, Trazzi et al., 2011, Trazzi et al., 2013). Over-expression of APP in HEK293 cells has 

been shown to inhibit cell proliferation. Consistently with this observation, gene expression profiling 

of HEK 293 cells overexpressing APP reveals an alteration of a set of genes involved in G1/S 

checkpoint regulation, cell proliferation and p53 signaling. This evidence, in conjunction with the 

higher expression levels of APP starting from the earliest phases of brain development, suggests that 

this gene may play a prominent role in neurogenesis alterations in DS. Processing of APP gives origin 

to various derivatives including AICD (amyloid precursor protein intracellular domain). Excessive 
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AICD levels appear to affect cell proliferation by interacting with glycogen synthase kinase 3-β 

(GSK3β) signaling and the Sonic Hedgehog (SHH) signaling pathway. 

GSK3β is a constitutively active kinase that is inhibited by an increase in its phosphorylation (on 

ser9). Increased activity of its dephosphorylated form causes adverse effects, such as a reduction in 

neurogenesis and impairment of synapse development (Eldar-Finkelman and Martinez, 2011, Kim 

and Snider, 2011), and altered GSK3β activity appears to be involved in neurodegenerative and 

neurological disturbances (Eldar-Finkelman and Martinez, 2011). Reduced phosphorylation levels 

(on ser9) of GSK3β has been found in NPCs from Ts65Dn mice (Trazzi et al., 2014) and in the 

hippocampal DG and VZ of the hippocampus of fetuses with DS (Trazzi et al., 2014). More recently, 

a reduction in pSer9 of GSK3β have been observed in hippocampal homogenates of Ts65Dn mice 

aged 3 and 7 months (Kazim et al., 2017). The latter evidence suggests that early alterations in GSK3β 

activity may significantly contribute to impair proliferation of NPCs during brain development. 

Compelling evidence suggests that excessive levels of AICD prevent GSK3β phosphorylation (on 

ser9) thereby increasing its activity (Trazzi et al., 2014). Recent evidence shows that GSK3β 

phosphorylates cyclin D1 at Thr286 (Takahashi-Yanaga and Sasaguri, 2008). Therefore, the 

increased activity of GSK3β in trisomic cells may increase the phosphorylation of cyclin D1 and its 

nuclear export and degradation. GSK3β regulates the WNT/beta-catenin signaling pathway. 

Increased GSK3β activity increases beta-catenin phosphorylation and retains it in the cytoplasmic 

compartment, favoring ubiquitin-proteasome system beta-catenin degradation. On the contrary, non-

phosphorylated beta-catenin escapes degradation, and translocates into the nucleus where it induces 

the expression of downstream target genes including cyclin Dl. In trisomic cells, increased activity 

of GSK3β reduces beta-catenin nuclear translocation and, consequently, the expression of cyclin D1 

(Takahashi-Yanaga and Sasaguri, 2008). The fact that GSK3β regulates the levels of cyclin D1 in 

two different manners suggests that this kinase may play a prominent role in deregulation of cell 

proliferation in DS. AICD, in addition to interacting with GSK3β, increases the transcription of the 

Patched 1 (PTCH1) protein in trisomic NPCs (Trazzi et al., 2011). PTCH1 is an SHH receptor that 
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keeps the mitogenic SHH pathway repressed by inhibiting the 7-pass transmembrane protein 

Smoothened (SMO), thereby hampering proliferation. Consistently with the increased APP/AICD 

levels, PTCH1 is overexpressed in fetuses with DS and in the Ts65Dn mouse model (Trazzi et al., 

2011), indicating that this deregulation is likely to play an important role in neurogenesis alterations 

in DS. Consistently with this idea, restoration of PTCH1 levels restores the proliferation defects of 

trisomic NPCs (Trazzi et al., 2011). There is evidence that activation of the SHH pathway induces 

sustained activity of the G1 cyclin-Rb axis by enhancing the expression of cyclin D1, cyclin D2, and 

cyclin E (Kenney and Rowitch, 2000). This suggests that increased PTCH1 levels in trisomic cells 

may hamper cell cycle progression by reducing the expression of cyclin D1 (and cyclin D2, cyclin 

E). Thus, increased AICD levels hamper the activity of the SHH pathway at two different levels: 1) 

because they increase PTCH1 expression and 2) because they increase GSK3 activity which, in turn, 

contributes to hamper translocation of the effectors of the SHH pathway to the nucleus.  

GSK3β signaling activates the β-site APP cleaving enzyme 1 (BACE1) gene expression, resulting in 

enhanced β-secretase processing of APP and Aβ production (Ly et al., 2013). Since Aβ derives from 

the cleavage of the APP beta-carboxyterminal fragment that is composed by Aβ plus AICD, the 

observed increase in Aβ should be paralleled by an increase in AICD levels. This evidence suggests 

that overactivity of GSK3β in DS may potentiate the production of AICD and the detrimental effects 

described above. It is of interest to observe that DYRK1A-mediated APP phosphorylation at the 

Thr668 residue enhances the formation of Aβ (Park et al., 2007) suggesting enhanced formation of 

AICD may also be mediated by DYRK1A over-expression.  

Evidence in Ts65Dn mice showed reduction in cyclin B1 and SKP2 levels and a larger number of 

dividing cells in the G2 phase and a prolonged G2 phase (Contestabile et al., 2009). Cyclin B1 is the 

regulatory subunit of CDK1, the key controller of mitosis entry (Takizawa and Morgan, 2000). 

Hence, downregulation of cyclin B1 is expected to induce a lengthening of the G2 phase. In addition, 

the cytoplasmic/nuclear subcellular localization of cyclin B1 has been shown to be regulated by the 

SHH pathway. Indeed, PTCH1 interacts with cyclin B1 and hampers its nuclear transfer 
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Figure 2.6. Mechanisms underlying impairment of proliferation potency in DS. The mechanisms whereby 

overexpression of the triplicated genes DYRK1A (A), APP (B) impair proliferation of NPCs in DS are 

schematically illustrated [modified from (Stagni et al., 2017)]. Abbreviation: nuc, nuclear. 
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(Barnes et al., 2001), indicating that PTCH1 also participates in the regulation of G2/M checkpoint 

(Adolphe et al., 2006). 

 

2.8.5 Phenotype acquisition 

2.8.5.1 Humans with DS 

Various studies show that the reduced proliferation potency of the trisomic brain is worsened by 

reduction in the acquisition of a neuronal phenotype accompanied by an increase in the acquisition 

of an astrocytic phenotype. This defect is already present during the earliest phases of neurogenesis 

because quantification of the number of mature neurons (NeuN-positive cells) and astrocytes (GFAP-

positive cells) in the hippocampal and parahippocampal region showed that in all these regions fetuses 

with DS have proportionally fewer neurons and a larger number of astrocytes compared with normal 

fetuses (Guidi et al., 2008). Consistently with this evidence, in neonates with DS the interlaminar 

glial palisade, composed by astroglial cells, appears to be altered by the first year of age (Colombo et 

al., 2005). Astrocytic hypertrophy and an increase in astrocyte number are present in the fetal DS 

brain and this defect is retained in adulthood (Mito and Becker, 1993, Griffin et al., 1998). Likewise, 

quantification of cells immunopositive for the astrocytic markers S100β and GFAP showed that 

children with DS have a notably larger number of astrocytes then controls in the hippocampus and 

frontal and occipital lobes (Becker, 1991). Results obtained in fetal tissue were confirmed in cortical 

neuronal cultures derived from fetuses with DS or from fibroblast-derived iPSCs from patients with 

DS. Human DS iPSC lines generated from second trimester amniotic fluid exhibit a reduction in the 

acquisition of a neuronal phenotype (Lu et al., 2013). Cell cultures derived from the cortex of fetuses 

with DS exhibit a reduced number of cells that differentiate into neurons (β III-Tubulin-positive cells; 

7%) in comparison with control cultures (56%). Moreover, DS neurons exhibit a notable reduction in 

neurite length (Bahn et al., 2002). This study, however, did not show a difference between euploid 

and DS cultures in the number of cells differentiated into astrocytes (GFAP-positive cells) (Bahn et 

al., 2002). iPSC-derived NPCs from DS patients maintained under spontaneous differentiation 
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condition were shown to give rise to fewer neurons (β III-Tubulin-positive cells) and more astrocytes 

(S100β-positive cells) (19.7±0.9% and 78.2±0.7%, respectively) in comparison with control cultures 

(33.4±2.0% and 60.9±2.0%, respectively) (Chen et al., 2014). In addition, DS neurons generated 

under spontaneous differentiation conditions exhibited decreased neurite length compared with 

control neurons. iPSCs derived from monozygotic twins discordant for trisomy 21 show that DS 

iPSCs exhibit an abnormal neural differentiation. In particular, DS-cells exhibit decreased expression 

of neuronal markers (β III-Tubulin and MAP2) and an increase in astrocytic markers (GFAP, 

VIMENTIN, S100β, OLIG1 and OLIG2) consistent with a shift from neuronal to astroglial and 

oligodendroglial phenotypes (Hibaoui et al., 2014). Moreover, neurons derived from Twin-DS-iPSCs 

exhibited a reduced number and length of neuritis. 

 

2.8.5.2 DS mouse models 

DS mouse models show abnormalities in phenotype acquisition similar to those found in individuals 

with DS. A reduction in the number of cells differentiated into neurons and an increase in number of 

cells with an astrocytic phenotype has been found in cultures of NPCs from the SVZ of neonate 

Ts65Dn mice (Trazzi et al., 2011, Trazzi et al., 2013). Likewise, in the DG and cerebellum of young 

adult Ts65Dn mice the total number of new cells with a neuronal phenotype is significantly reduced 

and the number of new cells with an astrocytic phenotype is larger than in euploid mice (Contestabile 

et al., 2007, Contestabile et al., 2009, Bianchi et al., 2010b, Ishihara et al., 2010, Chakrabarti et al., 

2011, Guidi et al., 2014). Although in absolute terms Ts65Dn mice may have a similar number of 

astrocytes as euploid mice, they have a higher ratio of astrocytes over total cell number due to their 

reduced number of new neurons (Guidi et al., 2014). Consistently with the enhancement in astrocytic 

phenotype acquisition, a higher number of astrocytes has been found in the hippocampus of Ts65Dn 

mice in comparison with euploid mice, although the difference did not reach significance (Holtzman 

et al., 1996, Guidi et al., 2014). In contrast to this evidence, a recent study shows that 4 month-old 

Ts65Dn mice have a lower percentage of BrdU/GFAP-positive cell in the DG in comparison with 
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euploid nice (Lopez-Hidalgo et al., 2016). Four- to five month-old Ts65Dn mice display higher 

density of total inhibitory neurons in the somatosensory cortex than in their euploid littermates, and, 

in particular of Calretinin-positive cells (Perez-Cremades et al., 2010). Cultures of NPCs from the 

SVZ of Ts1Cje mice exhibit a reduction in the number of cells differentiated into neurons and an 

increase in new astrocytes with no differences in the number of new oligodendrocytes (Moldrich et 

al., 2009, Hewitt et al., 2010, Kurabayashi et al., 2015). Impairment of neuronogenesis has been also 

found in the SVZ and DG of Ts1Cje mice aged 3 months (Ishihara et al., 2010). Much less information 

is available regarding the olygodendrocytic lineage in DS. Regarding the acquisition of an 

oligodendrocytic phenotype, the available evidence suggests no patent alterations in this process. 

Unlike NPCs, which are reduced in number in Ts65Dn mice, the number of oligodendrocyte 

precursor cells (OLIG2+NG2-positive cells) in P7-P60 Ts65Dn mice is similar to that of euploid mice 

(Olmos-Serrano et al., 2016). Moreover, an analysis of oligodendrocyte precursor cells isolated from 

the cortex of P7 mice showed no differences between euploid and trisomic cultures. However, cell 

culture experiments show that Ts65Dn oligodendrocytes exhibit cell-autonomous impairment in 

oligodendrocyte maturation and viability (Olmos-Serrano et al., 2016). This difference is consistent 

with the reduced myelination observed in fetuses and children with DS (Wisniewski and Schmidt-

Sidor, 1989, Becker, 1991, Abraham et al., 2011) and in the Ts65Dn mouse model (Meraviglia et al., 

2016, Olmos-Serrano et al., 2016).  

 

2.8.6 Mechanisms underlying impairment of phenotype acquisition 

As described above, acquisition of a neuronal phenotype is impaired in DS, and trisomic NPCs exhibit 

a shift towards the acquisition of an astrocytic phenotype. The Janus kinase-signal transducer and 

activator of transcription JAK-STAT pathway is one of the most crucial pathway for the 

astrogliogenic differentiation machinery in neural progenitor cells (Bonni et al., 1997). Ligands as 

interleukins and interferons (IFNs) family bind to their corresponding receptors. Binding to these 

receptors activates JAKs, which can activate the transcription factors STATs. STATs migrate from 
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the cytoplasm to the nucleus to bind the promoters of target genes and initiate transcription. Among 

STATs transcription factors, STAT3 specifies glial cell fate by transcriptional activation of astrocytic 

genes, such as GFAP and S100β. The increase in the acquisition of an astrocytic phenotype in the DS 

brain may be attributable to over-expression of ligands and receptors that activate the JAK-STAT 

signaling pathway. In this connection, it is important to note that on HSA21 there are several genes 

encoding receptors both for interferons (IFNAR1, IFNAR2, IFNGR2) and IL10RB and therefore 

responsible for activating JAK-STAT signaling cascades (Fig. 2.7). Consistently with triplication of 

these genes, a significant increase of IFNAR2 proteins has been found in the cerebral cortex of DS 

fetuses at 19–21 weeks of gestational age (Ferrando-Miguel et al., 2003). In addition, over-expression 

of the triplicated genes Ifnar1, Ifnar2, and Il10rb has been found at the RNA level in the brain of 

neonate Ts1Cje mice (Amano et al., 2004). The fact that IFNR genes are triplicated and upregulated 

in DS individuals and DS mouse models may predispose the DS brain to greater IFNs sensitivity. 

Interestingly, serum levels of IL-6 are increased in DS children (Corsi et al., 2006), which is consistent 

with the hypothesis of overactivation of the JAK-STAT signaling cascade in DS. Taken together, 

these data suggest that overstimulation of the JAK-STAT signaling pathway due to over-expression 

of IFNRs starting from early phases of brain development may promote neural progenitor cell fate 

toward astrogliogenic pathways in the DS brain. Overstimulation of JAK-STAT signaling pathway 

can also be linked to over-expression of two other triplicated genes, APP and DYRK1A. There is 

evidence that soluble secreted APP (sAPP) enhances the activity of the JAK-STAT signaling cascade, 

suggesting that increased levels of sAPP may enhance the process of astrogliognesis in DS (Trazzi et 

al., 2013). Indeed, NPCs from Ts65Dn mice exhibit enhanced expression of JAK1 and GFAP that is 

restored by treatment with an antibody that recognizes the N-terminal region of APP (sAPP). In line 

with data obtained in trisomic NPC cultures, upregulation of JAK1 and STAT3 has been detected in 

the hippocampus of neonate Ts65Dn mice. Taken together these results strongly suggest that in 

trisomic NPCs high levels of sAPP may activate the JAK/STAT signaling pathway, thus promoting 

the expression of GFAP (Fig. 2.7).   
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As mentioned above, increased levels of the APP-derived peptide AICD enhances Ptch1 expression, 

which keeps the SHH pathway repressed. Consequently, in trisomic NPCs the levels of Gli1 and Gli2 

transcription factors, the mediators of SHH signaling, are down regulated. Gli2 induces 

neuronogenesis in neuronal stem cells by positively regulating the expression of neurogenic basic 

helix-loop-helix genes, such as Mash1. Mash1 was found to be downregulated in trisomic NPCs and 

restoration of the activity of the SHH pathway restored its levels (Trazzi et al., 2013). Thus, the 

triplicated APP may account for enhancement of astrogliogenesis, through the JAK-STAT signaling 

cascade, and reduction of neurogenesis, through the APP/AICD system (Fig. 2.7).  

Over-expression of DYRK1A in wild-type cortical progenitors increases STAT3 phosphorylation at 

Ser(727) (Fig. 2.7), a regulatory site that enhances the transcriptional activity of STAT3 (Kurabayashi 

et al., 2015), suggesting that the increased propensity of Ts1Cje neocortical progenitors to 

differentiate into astrocytes may be due to increased dosage of DYRK1A. Indeed, in Ts1Cje cortical 

progenitors STAT3 Ser(727) phosphorylation and STAT activity are elevated in a DYRK1A-

dependent manner and reducing DYRK1A level attenuates deregulation of STAT (Kurabayashi et 

al., 2015). These findings strongly suggest that DYRK1A-dependent potentiation of STAT signaling 

pathway may contribute to the aberrant astrogliogenesis in DS. Consistently with this idea, targeting 

DYRK1A pharmacologically or by shRNA in iPSCs derived from monozygotic twins discordant for 

trisomy 21 resulted in a considerable correction in the acquisition of a neuronal phenotype in Twin-

DS-iPSCs (Hibaoui et al., 2014).   

 

2.8.7 Dendritic hypotrophy  

Dendritic pathology is a typical feature of the DS brain and appears to correlate to some extent with 

the cognitive profile. 
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Figure 2.7. Mechanisms underlying impairment of phenotype acquisition in DS. Overexpression of the 

indicated triplicated genes enhances the activity of the JAK-STAT pathway which leads to increased 

expression of GFAP and S100β and, consequently, to the enhancement of astrogliogenesis [image modified 

from (Stagni et al., 2017)]. 
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2.8.7.1 Humans with DS 

Dendrites. It has been argued that DS persons start their lives with an apparently normal neuronal 

architecture that progressively degenerates. Thus, normal or even increased branching in the DS fetus 

and newborn contrasts with dendritic hypotrophy in older children with DS. Becker et al. showed that 

dendritic branching and length in both apical and basilar dendrites were greater in infants with DS 

younger than 6 months than in normal infants (Becker et al., 1986). During the peak period of 

dendritic growth and differentiation, quantitative analysis of dendrites showed no significant 

differences in dendritic differentiation of pyramidal neurons of prefrontal cortex of the brains of 2.5-

month-old DS infants (Vuksic et al., 2002). In contrast, the pyramidal neurons of the visual cortex of 

newborns older than 4 months have shorter basilar dendrites (Takashima et al., 1981). Subsequent to 

2.5-month of age, children with DS exhibit a steady decrease in dendritic length, especially in apical 

dendrites. Dendritic hypotrophy is also present in pyramidal neurons of the parietal cortex of children 

with DS (Schulz and Scholz, 1992). The dendritic hypotrophy seen in childhood continues into 

adulthood, with a marked decrease in dendritic branching and dendritic length in elderly adults with 

DS (Takashima et al., 1989). This evidence shows that in DS brains the dendritic tree begins to be 

atrophic in early infancy without a recovery at subsequent life stages. In agreement with the 

deteriorated dendritic development, down-regulation of various proteins forming neuron 

cytoscheleton or associated with the endoplasmic reticulum takes place in the DS brain. All these 

changes may be involved in the deteriorated neuritic outgrowth and arborization of DS neurons.  

Spines. Spine counts (basilar dendrites) in the visual cortex of fetuses with DS are similar to those of 

control fetuses. After birth, infants with DS have a reduced number of spines, that show also an altered 

morphology (Takashima et al., 1981). While in normal subjects, spine density on the basal dendrites 

of cortical pyramidal neurons increases until 15 years of age and gradually decrease after 20 years, in 

subjects with DS spine density poorly increases in children and rapidly decreases in adults (Suetsugu 

and Mehraein, 1980, Takashima et al., 1989). A reduced spine density has been found in the apical 

dendrites of pyramidal neurons of the hippocampus and cingulate cortex and in both the apical and 
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basilar dendritic arbors of CA1 and CA2-3 pyramidal neurons in patients with DS when compared to 

age-matched controls (Suetsugu and Mehraein, 1980, Takashima et al., 1989). The dendritic spines 

of the DS brain exhibit also aberrant morphology. Indeed, starting from infancy, spines are small, 

have short stalks and are intermingled with unusually long spines (Marin-Padilla, 1976). Drebrin A, 

a neuron-specific F-actin binding proteins, regulates dendritic spine morphology, size and density, 

and is manifold decreased in brains of fetuses and adults with DS (Shim and Lubec, 2002). Over-

expression of drebrin A favors excitation in mature hippocampal neurons (Ivanov et al., 2009). Since 

drebrin expression is reduced in DS individuals (Shim and Lubec, 2002), a reduced excitatory-

inhibitory ratio is expected in DS individuals.  

 

2.8.7.2 Mouse models of DS 

Dendrites. Similarly to humans, mouse models of DS exhibit defects in their dendritic arborisation. 

In Ts65Dn mice aged 45 days, the granule cells of the DG show a reduction in total dendritic length, 

branch number and mean length of each branch (Guidi et al., 2013, Guidi et al., 2014). These defects 

are still present when mice become young adults (3 months of age) or aged adults (13-17 months of 

age) (Velazquez et al., 2013, Dang et al., 2014, Stagni et al., 2015b). Defects in the dendritic pattern 

were also found in neocortical pyramidal cells of Ts65Dn mice aged 10 weeks (Benavides-Piccione 

et al., 2004). In the brain of neonate Ts65Dn mice the levels of MAP2, an early marker of the 

dendrites, are significantly increased compared to littermate controls (Pollonini et al., 2008). The 

levels of MAP2 in hippocampal extracts of adult (4 months) Ts65Dn mice are similar to those of 

littermate controls, while in middle-aged (9-15 months old) Ts65Dn mice hippocampal MAP2 levels 

undergo a decrease vs. controls (Granholm et al., 2003), suggesting an age-related dendritic 

deterioration.  

Spines. In Ts65Dn mice the basal dendrites of neocortical pyramidal cells exhibit a reduced spine 

density (Dierssen et al., 2003). A spine density reduction is also present in the granule cells of the 

DG, accompanied by a reorganization of inhibitory inputs, with a relative decrease in inputs to the 
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dendritic shafts and an increase in inputs to the necks of spines (Belichenko et al., 2004, Popov et al., 

2011, Stagni et al., 2013). The thorny excrescences of CA3 pyramidal neurons (the site of termination 

of the axons of the granule cells) also exhibit a large decrease in the number of thorns (Popov et al., 

2011, Stagni et al., 2013). The spines of Ts65Dn mice not only exhibit a density reduction, but also 

show an aberrant morphology. Indeed, the spines of young (21 days) and adult Ts65Dn mice have a 

larger volume in comparison with euploid mice in the DG, field CA1, motor, somatosensory and 

entorhinal cortices, and medial septum (Belichenko et al., 2004). Defects in spine density and spine 

shape, with a reorganization of inhibitory inputs were also detected in the granule cells of Ts1Cje 

and Ts2Cje mice, although these changes are less severe than in Ts65Dn mice (Villar et al., 2005, 

Belichenko et al., 2007). Similarly to other mouse models, the granule cells of Ts1Rhr mice exhibit 

a reduced spine density and a significant increase in the size of spine heads. In contrast, spine density 

is not reduced in pyramidal neurons of the motor cortex (Belichenko et al., 2009).  

 

2.8.8 Synaptic density, excitatory vs. inhibitory synapses, and synaptic proteins  

2.8.8.1 Humans with DS 

The synapses of the DS brain exhibit various alterations in the expression of synaptic proteins. 

Synapsin I (a pre-synaptic protein which binds synaptic vesicles to the cytoskeleton and regulates 

synaptic vesicle release) is expressed at lower levels in neurospheres from human embryonic tissue 

(Bahn et al., 2002). Since this protein plays a role in the regulation of transmitter release, its down 

regulation may compromise synaptic function. Synaptojanin, a synaptic protein thought to be 

involved in clathrin mediated synaptic vesicle endocytosis, is mapped on HSA21q22.2. Consistent 

with HSA21 triplication, excessive expression of synaptojanin has been demonstrated in the cerebrum 

of individuals with DS from fetal life stages to adulthood (Arai et al., 2002). In addition to changes 

in the expression of synaptic proteins, synapses of individuals with DS show abnormalities in synaptic 

length and contact zones (Wisniewski, 1990).  
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2.8.8.2 Mouse models of DS 

The synaptic density and the synapse-to-neuron ratio are reduced in the DG and hippocampal fields 

CA3 and CA1 of adult Ts65Dn mice (Kurt et al., 2004), with a reduced ratio that is specific for 

asymmetric synapses (presumably excitatory), while symmetric synapses (presumably inhibitory) are 

unchanged. In aged Ts65Dn mice, the temporal cortex has a lower number (30%) of asymmetric 

synapses while the number of symmetric synapses is not different vs. controls ((Kurt et al., 2000). 

The reduced number of excitatory synapses in Ts65Dn mice seems in agreement with the reduced 

levels of excitatory aminoacids found in the parahippocampal gyrus of patients with DS (Risser et 

al., 1997). The increase in the number of GABAergic interneurons found in the primary 

somatosensory cortex of 4-5 month old Ts65Dn mice (Perez-Cremades et al., 2010) suggests that in 

some brain regions excessive inhibition may be due to an absolute increase in the number of inhibitory 

synapses. In the brains of neonate Ts65Dn mice, the levels of synaptophysin, synapsin, spinophilin 

(a scaffold protein that is involved in spine morphology and density regulation) are similar to those 

of littermate controls (Pollonini et al., 2008). In the neocortex and hippocampal field CA1 of Ts65Dn 

mice a reduction in synaptic density has been detected as early as P8 (Chakrabarti et al., 2007). 

Ts65Dn mice aged 45 days or 3 months had fewer SYN and PSD-95 immunoreactive puncta in the 

DG, field CA3 and neocortex, suggesting a reduced number of presynaptic and postsynaptic terminals 

(Fernandez et al., 2009). Moreover, no differences were detected in the levels of other presynaptic 

proteins, such as synapsin, synaptotagmin (a putative calcium sensor in the presynaptic terminal) and 

synaptophysin (Fernandez et al., 2009). In the somatosensory cortex of 4-5 month-old Ts65Dn mice, 

there is an increment of synaptophysin vs. euploid littermates (Perez-Cremades et al., 2010). In the 

hippocampus of adult (4 months) Ts65Dn mice, whereas synapsin, spinophilin and gephyrin are 

expressed at levels similar to those of controls, the expression levels of synaptophysin are 

significantly decreased (Pollonini et al., 2008).  

  



55 

2.8.9 Trisomic genes and dendritic/synaptic alterations  

The study of the mechanisms implicated in the regulation of neuronal morphology during 

development and maintenance of the adult CNS is object of intense research. 

It has been reported that DYRK1A not only influences neurogenesis but also dendritic development 

(Yang et al., 2001, Hammerle et al., 2003). DYRK1A regulates development of the dendritic trees of 

neurons and modulates the activity of the c-AMP response element-binding protein (CREB), which 

participates in signal transduction pathways involved in synaptic plasticity and neuronal 

differentiation. Moreover, DYRK1A may modulate dendritic development by regulating vesicle 

trafficking that is dependent on dynamin1 (Hammerle et al., 2003), a GTPase putative substrate of 

DYRK1A that plays a fundamental role in neurite outgrowth (Chan et al., 2002). Interestingly, mice 

with one functional copy of Dyrk1a (Dyrk1a+/- mutants) display a brain size 30% smaller than that of 

wild-type mice, considerably smaller and less branched cortical pyramidal cells and behavioral 

defects (Benavides-Piccione et al., 2004). In humans, DYRK1A has been proposed to be associated 

with microcephaly and mental retardation, given its localization to the minimal overlapping region 

observed in patients with partial monosomy 21 (Moller et al., 2008). Transgenic mice over-expressing 

Dyrk1a exhibit altered synaptic plasticity associated to learning and memory defects (Ahn et al., 

2006). The studies in humans and animal models that are monoallelic or triallelic for 

DYRK1A/Dyrk1a, indicate that this gene is important in neural plasticity and necessary for the normal 

size and development of the brain in a dosage-sensitive way. 

Neurotrophins are a small family of soluble factors that include nerve growth factor (NGF), brain-

derived neurotrophic factor (BDNF) and neurotrophin 3 and 4 (NT3 and NT4). There are two types 

of neurotrophin receptors, the tropomyosin-related kinase receptors (TRKs) and the p75 neurotrophin 

receptor (p75) [see (Gonzalez et al., 2016)]. By specifically binding to tropomyosin-related kinase 

receptor B (TRKB), BDNF plays a key role in brain plasticity (Haniu et al., 1997), such as axonal 

and dendritic growth, membrane trafficking and fusion, and synapse formation, function, and 

plasticity. BDNF and its receptor TRKB represent the most widely expressed and studied 
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neurotrophin signaling pathway in the brain, and their participation in learning and memory is well-

established (Minichiello, 2009). Upon BDNF binding, the TRKB receptor dimerizes and undergoes 

autophosphorylation in specific tyrosines of the intracellular domain. Activation of TRKs leads to the 

activation of different molecular pathways, such as mitogen-activated protein kinases (MAPKs), 

phosphatidylinositol-3-kinase (PI3K)-AKT, phospholipase-C (PLC)-g-Ca2+, cyclic AMP 

(cAMP)/PKA, and the small GTPases of the Rho family Cdc42/Rac/RhoA [see (Gonzalez et al., 

2016)]. In the plasma membrane, activated TRKB can be translocated into lipid rafts after BDNF 

stimulation, a step that may be required to induce dendritic branching and spine formation in cortical 

neurons (Suzuki et al., 2004). These lipid domains are the sites where the Ca2+/calmodulin-dependent 

protein kinase CLICK-III plays a critical role in BDNF-induced dendritogenesis [see (Gonzalez et 

al., 2016)]. As mentioned above, the signaling pathways that regulate dendritic branching and spine 

formation via BDNF/TRKB include the activation of the PI3K/AKT and ERK1/2 signaling pathways 

as well as the activation of local protein translation by the mTOR kinase and activation of the Rho 

GTPase family protein to regulate the actin cytoskeleton [see (Gonzalez et al., 2016)]. Several lines 

of evidence suggest that BDNF increases the local translation of a subset of mRNAs in dendrites, 

including proteins related to CNS plasticity. In addition, CREB is required for BDNF-induced 

dendritic branching and dendritic spines plasticity of hippocampal neurons (Kwon et al., 2011). 

Finsterwald and colleagues demonstrated that the BDNF-induced increase in dendritic length and 

branching of cultured cortical neurons depends on the activation of the ERK pathway and 

phosphorylation of CREB at serine-133 (Finsterwald et al., 2010). In the DS brain, BDNF levels are 

already reduced at fetal life stages (Guedj et al., 2009, Toiber et al., 2010) and reduced BDNF levels 

have been shown in various brain regions of the Ts65Dn mouse (Bimonte-Nelson et al., 2003, Bianchi 

et al., 2010a, Fukuda et al., 2010, Begenisic et al., 2015, Stagni et al., 2015b, Kazim et al., 2017, 

Villarroya et al., 2017). In view of the prominent role of the BDNF-TRKB system in dendritic 

morphogenesis, deregulation of this pathway is probably a key determinant of the alterations of 

dendritic development and spine formation in DS. 
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2.9 Behavior impairment in DS 

2.9.1 Humans with DS 

As summarized in the preceding sections, the DS brain is characterized by a constellation of 

neurodevelopmental defects. The functional consequence of these morphogenetic changes results in 

abnormal neuronal connectivity and limited processing of information. Although the precise effect of 

cyto-architectonic abnormalities on cognitive development in DS is not clear, it seems plausible that 

neuropsychological abnormalities in DS, such as impairment of attention, executive control, language 

learning, working memory, and emotional responses, may reflect dysfunction in the cerebellar–

cortical–limbic circuitry (Lott, 2012, Karmiloff-Smith et al., 2016). Although most individuals with 

DS have mild-moderate cognitive impairment [see (Hart et al., 2017)], certain cognitive domains such 

as language and memory appear to be affected disproportionately in comparison to other types of 

intellectual disability, resulting in a characteristic neurocognitive phenotype. People with DS have 

relative strengths in visuospatial processing and implicit long-term memory but more difficulty in 

working memory, episodic long-term memory, expressive language, and executive function (Liogier 

d'Ardhuy et al., 2015). Children with DS have relative strengths in social motivation and engagement, 

but they may struggle with social problem solving or decision making and higher order social 

cognition tasks [see (Hart et al., 2017)]. 

 

2.9.2 Mouse models of DS 

Behavioral analysis of different DS models may help to elucidate the contribution of different groups 

of triplicated genes to behavioral impairment. The Ts65Dn mouse, the best-characterized model for 

DS, shows significant hyperactivity in the dark and in other settings that provoke caution and lack of 

movement in normal animals, such as in open-field and plus-maze tests. In addition, the Ts65Dn 

model exhibits no deficits in sensory capabilities and coordinated behaviors such as olfactory 

sensitivity, visual abilities, orienting reactions, forelimb strength, postural skills, coordination, 

climbing, locomotion, and motor coordination and balance deficits (rotarod test). In contrast, Ts65Dn 
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mice display notably reduced levels of performance in tasks that require the integrity of the 

hippocampal system, such as spontaneous alternation (T-maze task), contextual memory (fear-

conditioning test), spatial learning, long-term memory and cognitive flexibility (Morris water maze 

test; radial arm maze test), non-spatial short- and long-term declarative memory (novel object 

recognition). Ts65Dn mice also show deficits in learning an operant conditioning paradigm [see 

(Bartesaghi et al., 2011, Rueda et al., 2012)]. This evidence indicates that in Ts65Dn mice declarative 

memory which, in rodents is delineated along spatial and recognition memory domains, is impaired, 

similarly to individuals with DS. It is important to note that, similarly to humans with DS, the Ts65Dn 

mouse show a cognitive decline with age, indicating a strong correlation with the onset of AD-like 

pathology.  

Ts1Cje mice do not show differences in spontaneous motility compared to controls. Similarly to 

Ts65Dn mice, they display poorer performance in the T-maze task and Morris water maze test 

(MWM). Ms1Ts65 mice do not show differences in spontaneous motility compared to controls. 

However, in the MWM test they exhibit impairment in learning but not memory, as assessed in the 

probe phase of the test. In a novel open field activity test, Ts1Rhr mice show no difference in 

comparison with controls. Ts1Rhr mice are significantly impaired in the T-maze task (TM) and in the 

long-term (but not short-term) memory in the NOR test but show no impairment in the MWM test 

[see (Bartesaghi et al., 2011, Rueda et al., 2012)]. Dp(16) mice show impaired performance in the 

Morris water maze and the contextual fear conditioning tests. Ts1Yah mice are impaired in the novel 

object recognition and Y-Maze (YM) test, but their performance in the MWM is enhanced. Dp(17) 

do not show alterations in the Morris water maze and in the contextual fear conditioning tests. The 

Dp(10)1Yey/+; Dp(16)1Yey/+; Dp(17)1Yey/+ mouse is impaired in the Morris water maze and in 

the contextual fear conditioning test. Finally, Tc1 mice show altered performance in the novel object 

recognition test but not in the TM [see (Bartesaghi et al., 2011, Rueda et al., 2012)].  

Taken together, these data show that impairment of memory functions is a feature shared by various 

mouse models for DS. Different models may exhibit a different degree of impairment. In this regard, 
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it is noteworthy that the Ts65Dn mouse model is presently the one that best recapitulates the human 

condition. 

 

2.10 Therapeutic approaches in DS 

The HSA21 is the smallest human chromosome. Despite the reduced dimension, its triplication means 

that over 500 genes (protein coding genes plus non-coding RNAs) are expressed in an abnormal way. 

In addition to problems deriving from triplicated genes on HSA21 themselves, it should be taken into 

account that every gene can interact with a number of other genes scattered along the genome. This 

implies that the genetic imbalance in trisomy 21 is extremely complicated, and attempts to design a 

therapeutic strategy to counteract this genetic condition may represent a real challenge. However, in 

the 16 years since HSA21 genome was sequences (Hattori et al., 2000), there has been considerable 

progress in understanding the phenotypic impact of the over-expression of some HSA21 genes. In 

addition, the development of several different mouse models of DS and the improvement in 

techniques that use iPSCs have facilitated our understanding of DS. Important advances have been 

also made in understanding the molecular basis of the early onset AD in DS, the molecular basis of 

the leukaemias that frequently occur in DS and the identification of genomic regions of HSA21 that 

harbour functional elements or causative genetic variation for certain phenotypes, such as congenital 

heart defects. Importantly, the past decade of research in the field of DS has generated a cautious 

enthusiasm for attempting to treat individuals with DS using drugs that appeared to be effective in 

DS mouse models (Antonarakis, 2017). 

 

2.10.1 Clinical trials in DS 

Clinical trials in individuals with DS were based on condition-specific aspects of neurobiology, 

neurochemistry, and neuroplasticity or connectivity within the brain (Lott, 2012, Esbensen et al., 

2017). Given the variability in the behavioral and cognitive phenotype associated with DS and the 

consequent difficulty to design a correct pharmacological approach, the National Institutes of Health 
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(NIH) has supported the development of clinical trials for DS through the Down Syndrome Research 

Plan (NICHD, 2014) and DS-Connect, a national registry to connect families with researchers 

conducting clinical trials and improve understanding of health in DS (DHHS, 2016). Between 1990 

and 2000, pre-clinical research exploiting the Ts65Dn mouse model and other translational research 

made it possible to target molecular mechanisms in the brain to address the cognitive and functional 

deficits associated with DS (Hart et al., 2017).  

 

2.10.1.1 Cholinergic system  

Acethylcoline (Ach) is a key neurotransmitter in the peripheral and central nervous system. Ach is 

synthesized in cholinergic neurons by the enzyme choline acetyl-transferase and is converted in the 

inactive form by Acethylcoline esterase (AchE). DS has been associated with abnormalities in 

peripheral and central cholinergic functions [see (Hart et al., 2017)] and with reduction in the number 

of cholinergic neurons, which may affect cortical neuronal connectivity and maturation during early 

development (Becker, 1991). Cholinesterase inhibitors have been used to investigate potential effects 

of enhancing cholinergic function on cognition. 

Donepezil, a reversible inhibitor of AchE approved for use in people with AD in the general 

population, was used in the earliest clinical trial of pharmaceutical interventions in DS (Kishnani et 

al., 1999). Several recently completed randomized double-blind, placebo-controlled trials showed 

that donepezil was generally safe and well-tolerated in children and adults with DS but gave no 

significant benefit as a cognitive enhancer (Kishnani et al., 2009, Kishnani et al., 2010). A recent 

review by the Cochrane Collaboration network (Livingstone et al., 2015) concluded that there was 

no difference in cognitive functioning or behavior between individuals with DS treated with donepezil 

and placebo, although the probability to undergo an adverse event was higher for individuals with DS 

on donepezil [see (Hart et al., 2017)].  

Rivastigmine, an inhibitor of AchE and butyrylcholinesterase (BChE), is approved for the treatment 

of mild to moderate AD and has been shown to have benefit on the cognitive, functional and 
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behavioral problems commonly associated with dementia in AD (Finkel, 2004). A randomized 

double-blind, placebo-controlled trial in children and adolescents with DS suggested an improvement 

in a subset of participants for expressive language, but overall there were no with significant effects 

on adaptive function, executive function, language or memory measures (Spiridigliozzi et al., 2016).  

Piracetam is a member of the class of drugs known as nootropics, which are generally thought to 

enhance cognitive function by influencing vascular and neuronal functions in instances of brain 

dysfunction (Winblad, 2005). A Phase II placebo-controlled, 2-period crossover study was performed 

by Lobaugh et al. (2001) on children with DS (ages 6–13) in order to evaluate the effect of piracetam 

on cognitive functions, such a as attention, learning and memory. The trial showed that therapy with 

piracetam did not significantly improve cognitive functions and, in 7 of the 18 children who 

completed the study, was associated with side effects of the central nervous system (Lobaugh et al., 

2001).  

 

2.10.1.2 Glutamatergic system 

Memantine, a low-affinity uncompetitive antagonist for glutamatergic NMDA receptors, is a drug 

approved for treatment of moderate-to-severe AD, and was tested in different clinical trials in 

individuals with DS (Boada et al., 2012, Hanney et al., 2012). Memantine has been shown to act 

indirectly on the cholinergic system (Aracava et al., 2005). In individuals aged 18-32 years, no 

differences were detected in the two primary measures, but a significant improvement was seen in 

hippocampus-dependent function (Boada et al., 2012). After 1-year treatment with memantine (at a 

dose of 10 mg/d) in adults with DS over age 40, no improvements were observed in primary or 

secondary measures of cognition or adaptive function (Hanney et al., 2012). An ongoing Phase II trial 

in young adults with DS aged 15–32 is trying to assess whether a 16-week treatment with memantine 

will have an effect on learning and memory (clinicaltrials.gov NCT02304302). 
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2.10.1.3 GABAergic system modulators 

Excessive GABA-mediated neurotransmission has been proposed as one of the underlying causes of 

the cognitive deficits in Ts65Dn mice (Belichenko et al., 2004, Fernandez et al., 2007). Thanks to 

pre-clinical studies showing improvements in learning and memory with a GABAA antagonist 

(Fernandez et al., 2007) and selective GABAA α5 negative allosteric modulator (Martinez-Cue et al., 

2013), recent clinical trials in DS have targeted the GABA system. 

Pentylenetetrazole (PTZ) is a GABAA antagonist that was previously approved by the FDA for 

treatment of various cognitive impairments. PTZ is currently under investigation for cognitive 

enhancement in individuals with DS. A placebo-controlled study with PTZ up to 12 weeks in 

adolescents and young adults (ages 13–35) with DS has investigated the pro-cognitive effects in the 

domains of language, executive function, and adaptive behavior (Australian New Zealand Clinical 

Trials Registry ID ACTRN12612000652875). Although the study has completed enrollment and 

follow-up assessments, results have not been published yet. 

Basmisanil (Hoffmann-La Roche Pharmaceuticals), a selective GABAA α5 negative allosteric 

modulator, has been used in two multi-centre, Phase II, randomized, double-blind, placebo-controlled 

studies in order to improve cognition in adolescents/adults (12–30 years old; CLEMATIS study, 

ClinicalTrials.gov identifier NCT02024789) and children (6-11 years old; ClinicalTrials.gov 

identifier NCT02484703) with DS in a 26-week treatment study. Unpublished results from the 

CLEMATIS study showed that Basmisanil was not associated with significant impacts on cognition 

or adaptive behavior in young adults and adolescents with DS, leading to early discontinuation of the 

study in the pediatric population [see (Hart et al., 2017)].  

 

2.10.1.4 Natural compounds 

Folinic acid is a vitamer of vitamin B9 (or folate). Several genes involved in folate metabolism are 

located on HSA21 and folate deficiency has been linked to intellectual disability. Thus, folinic acid 

has been investigated as a potential pharmacotherapy in DS in a randomized controlled trial of 
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antioxidants and folinic acid (0.1 mg/day). No effects of treatment on development or long-term 

communication abilities were found in infants with DS (Ellis et al., 2008). More recently, a double-

blind, placebo-controlled, single-center study in DS infants (3–30 month-old) revealed an 

improvement in global developmental age for toddlers taking 1.0 mg/kg/day of folinic acid (Blehaut 

et al., 2010). The differences in the outcome of these two clinical trials may be due to the different 

dose used in DS infants. An ongoing 4-arm, placebo-controlled trial with folinic acid and thyroid 

hormone in combination is aimed at evaluating improvement of psychomotor development in 6–18 

month-old DS toddlers (ClinicalTrials.gov identifier NCT01576705).  

Epigallo-catechin-3-gallate (EGCG) is a flavonoid derived from green tea leaves and a well-known 

DYRK1A inhibitor. A randomized, placebo-controlled pilot study tested the effects of EGCG in 

combination with other green tea extracts on cognition in adolescents with DS (De la Torre et al., 

2014). Three months of treatment with green tea extracts improved recognition and working memory. 

Another study by the same group (a Phase II clinical trial) revealed that in adolescents with DS, a 

combination of green tea extracts plus cognitive training for 12 months had positive effects on visual 

recognition memory, inhibitory control, and adaptive behavior (de la Torre et al., 2016). Phase III 

trials with a larger DS population will be needed to assess the long-term efficacy of green tea extracts 

and cognitive training. The specific contribution of EGCG and of the other constituents of green tea 

extracts on behavioural improvement remains to be established.  

 

2.10.1.5 Molecules targeting AD 

Interventions targeting AD pathogenesis are currently being explored in clinical trials for DS.  

ACI-24, a recent developed vaccine targeting Aβ protein, has been designed to stimulate the immune 

system in order to prevent accumulation of amyloid plaques and trigger their clearance. It has been 

validated in a Phase I/II double-blind, randomised, placebo-controlled, adaptive design study of the 

safety, tolerability, immunogenicity and efficacy in patients with mild to moderate AD (WHO.int, 
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ICRT portal identifier EUCTR2008-006257-40-FI). A Phase I study in people with DS is currently 

investigating the effects of ACI-24 (ClinialTrials.gov identifier NCT02738450).  

Intranasal glulisine, is a rapid-acting insulin. Due to the role of insulin signaling in Alzheimer’s 

pathogenesis, the effects of glulisine have been investigated in AD (see (Hart et al., 2017)). The 

effects of intranasal glulisine are currently investigated in adults with DS to determine safety, 

feasibility, and cognitive effect on memory measures (ClinicalTrials.gov identifier NCT02432716).  

The effects of transdermal nicotine are currently investigated as a treatment for cognitive decline in 

adults with DS with the aim to establish safety, tolerability and efficacy for cognitive performance 

(ClinicalTrials.gov identifier NCT01778946).  

ELND005, an amyloid anti-aggregation agent, has been proposed to be used in individuals with DS 

because it may prevent the accumulation of plaques that might contribute to AD like dementia and 

may improve working memory by regulating brain myo-inositol levels. A clinical trial with 

ELND005 in the general population with AD did not show any effect on cognition or adaptive 

function [see (Hart et al., 2017)]. A recent phase II study, conducted in non-demented young adults 

with DS, showed that ELND005 was safe and well-tolerated, and that there were no side effects (Rafii 

et al., 2017). Results revealed improvements in the Neuropsychiatric Inventory score (examination 

of 10 behavioral sub-domains: delusions, hallucinations, agitation/aggression, dysphoria, anxiety, 

euphoria, apathy, disinhibition, irritability/lability, and aberrant motor activity, (Cummings et al., 

1994) in 7 of 8 subjects receiving 250 mg twice daily of ELND005. There were, however, no 

significant overall treatment group-related trends on cognitive or behavioral measures.  

 

2.10.2 Preclinical studies in DS mouse models 

The idea of therapy for DS was unimaginable until few years ago. However, the initial knowledge of 

the HSA21 transcriptome, the continuous efforts to understand the signaling and other metabolic and 

developmental pathways that are dysregulated in DS, the availability of mouse models, the generation 

of T21 iPSCs and their differentiation to various cell types and tissues, and the understanding of the 
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numerous neurodevelopmental alterations, now provide some enthusiasm for potential therapeutic 

modalities. In the last 10 years, there has been an increase in research efforts focused on therapeutic 

interventions to rescue the brain phenotype and improve learning and memory in mouse models of 

DS. These therapies, which have been selected according to different rationales, have been mainly 

used in the Ts65Dn model. Most of the pharmacotherapies were conducted in adult Ts65Dn mice, 

while fewer therapies were explored at earlier life stages (neonatally or prenatally). This section 

summarizes what we know about the effects of pharmacotherapies during different life stages in DS 

mouse models. The attempted therapies may be grouped into five major classes. A) Therapies targeted 

to transmitter systems: (i) Therapies enhancing cholinergic transmission; (ii) Therapies 

antagonizing GABAergic transmission; (iii) Therapies enhancing noradrenergic transmission; (iv) 

Therapies targeted to the glutamate NMDA receptor; (v) Therapies targeted to the serotonergic 

system; (vi) Therapies targeted to the endocannabinoid system. B) Therapies employing 

neuroprotective agents, antioxidants, and free radical scavengers. C) Therapies targeted to 

perturbed signaling pathways. D) Therapies to normalize the expression of proteins coded by 

triplicated genes. E) Therapies that are known to have a proneurogenic effect [see (Stagni et al., 

2015a)]. Table 2.10.1 and Table 2.10.2 summarize the outcomes of attempted therapies (divided by 

their classifications) in DS mouse models [see also (Stagni et al., 2015a)].  

 

2.10.2.1 Therapies targeted to transmitter systems (Class A) 

(i) Therapies enhancing cholinergic transmission  

The rational basis for the use of AchE inhibitors in DS has been reported in the 2.10.1.1 section 

(Cholinergic system inhibitors). In the Ts65Dn models, AchE inhibitors were used mainly for the 

potential prevention or reversion of the loss of functional markers in the BFCN. Results obtained in 

Ts65Dn mice with AchE inhibitors or with choline supplementation are summarized below. 

Donepezil, physostigmine and galantamine. These molecules are AchE inhibitors. Donepezil was 

administered for 8 weeks in 4 month-old Ts65Dn mice. Treatment did not improve sensorimotor 
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abilities, locomotor activity in the home cage and L/M, evaluated with the MWM test (Rueda et al., 

2008a). Physostigmine, administered acutely to male Ts65Dn mice aged 4 months, rescued 

impairment in the four-arm spontaneous alternation task, but failed when administered to older mice 

(10 and 16 months) [see (Gardiner, 2015)]. Galantamine has been shown to be effective in 3-6 month-

old Ts65Dn mice in an impaired olfactory test of learning and memory (L/M) when administered for 

10 consecutively days [see (Gardiner, 2015)]. 

Choline supplementation. Choline, a vitamin-like nutrient, is a precursor of Ach. In a series of 

studies started in 2010, Strupp and colleagues analyzed the effects of choline supplementation in the 

diet of pregnant Ts65Dn dams (from E1 and continuing during lactation until the pups were weaned 

at P21). Their hypothesis was that treatment could improve BFCNs may thereby preventing the 

defects related to their degeneration (Moon et al., 2010, Velazquez et al., 2013, Ash et al., 2014, 

Kelley et al., 2014, Kelley et al., 2016). Ts65Dn progeny (6 months of age) of supplemented mothers 

showed improvement in the five-choice visual discrimination task (Moon et al., 2010). Choline 

supplementation plus environmental enrichment, restored hippocampal neurogenesis, reduced loss of 

BFCNs in the medial septum and restored hippocampus-dependent spatial cognition, tested with the 

Radial Arm Water Maze, in 13-17 month-old Ts65Dn mice (Velazquez et al., 2013, Ash et al., 2014, 

Kelley et al., 2014). These findings indicate that embryonic/early post-natal choline supplementation 

has effects that extend to very advanced life stages. 

 

(ii) Therapies antagonizing GABAergic transmission  

A number of studies have shown electrophysiological abnormalities in the hippocampal function of 

Ts65Dn mice, with repressed LTP and enhanced LTD. An imbalance between excitatory and 

inhibitory neurotransmission, probably due to increased generation of forebrain GABAergic 

interneurons, has been proposed to contribute to impair synaptic function and, consequently, L/M in 

the Ts65Dn model. Based on these premises, various GABAA receptor (GABAAR) and some GABAB 
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receptor (GABABR) antagonists were tested in the Ts65Dn mouse in order to equilibrate the 

excitation/inhibition ratio.  

Pentylenetetrazole (PTZ). PTZ is a circulatory and respiratory stimulant and a GABAAR antagonist. 

Two weeks of treatment with PTZ in 3-4 month-old Ts65Dn mice rescued spontaneous alternation in 

the T-maze and performance in the NOR test. Importantly, at two months after treatment cessation 

treated Ts65Dn mice exhibited restoration of LTP in the DG and normalization of the NOR test and 

spontaneous alternation in the TM test (Fernandez et al., 2007). Seven weeks of treatment in 4 month-

old Ts65Dn mice rescued performance in the MWM test, but caused some side effects (Rueda et al., 

2008a). Recently, another study demonstrated that 2 weeks of PTZ treatment was effective in rescuing 

deficits in NOR in both younger (2–3 month-old) and older (12–15 month-old) male Ts65Dn mice 

(Colas et al., 2013). 

Bilobalide and picrotoxin. They are two non-competitive GABAA receptor antagonists. Ts65Dn 

mice aged 3-4 months that had received bilobalide for four weeks underwent rescue of memory 

assessed with the NOR test. 2 weeks of treatment with picrotoxin in 3-4 month-old Ts65Dn mice was 

also able to rescue performance in the NOR test. Treated Ts65Dn with either bilobalide or picrotoxin 

retained their improved performance when evaluated 2 weeks later (Fernandez et al., 2007). 

α5 inverse agonist (α5IA). GABAAR exhibit considerable heterogeneity in terms of their 

composition and functional properties because 19 different subunits are assembled as 

heteropentamers [see (Gardiner, 2015)]. The α5 subunit is mainly expressed in the DG of the 

hippocampus and is linked to long-term memory functions. In 3-month-old male Ts65Dn, a single 

injection of the α5 inverse agonist α5IA rescued performance in the NOR and in the learning phase 

of the MWM test, but not in the probe trial (Braudeau et al., 2011). 

RO4938581. It is an α5 inverse agonist. RO4938581 was administered for 6 weeks to 3-4 month-old 

male Ts65Dn mice. This treatment restored LTP, hippocampal neurogenesis, and L/M in the MWM 

test (Martinez-Cue et al., 2013). 
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Bumetanide. In a recent study, Deidda et al. showed that GABAAR signaling was excitatory rather 

than inhibitory in Ts65Dn mice (Deidda et al., 2015). This excitatory activity was accompanied by 

(i) a shift in the reversal potential for GABAAR-driven Cl− currents (ECl) toward more positive 

potentials and (ii) increased hippocampal expression of the cation Cl− cotransporter NKCC1 in both 

Ts65Dn mice and individuals with DS. Based on the evidence, Ts65Dn aged 10-16 weeks were 

treated with Bumetanide (a diuretic drug that inhibits NKCC1 cotransporter) for either one week or 

four weeks. Both treatment schedules rescued long-term hippocampus-dependent explicit memory, 

as assessed with CFC and NOR tests, in Ts65Dn mice. In contrast, one month of treatment with 

Bumetanide did not restore LTP in slices from Ts65Dn, indicating that effects of bumetanide on 

memory are independent of neuronal-circuit rearrangement. Finally, positive effects of Bumetanide 

on behavior disappeared after one week of drug withdrawal (Deidda et al., 2015). 

Flumazenil. Flumazenil (FLUM) is a GABAAR antagonist that is in current clinical use as an antidote 

in the treatment of benzodiazepine overdoses. FLUM is of interest because, unlike PTZ that is a 

noncompetitive GABAAR antagonist, FLUM is a competitive antagonist acting at the benzodiazepine 

binding site. 2-3 month-old and 8-10 month-old Ts65Dn mice were treated with FLUM for two weeks 

and then tested with the NOR test one week after treatment cessation. FLUM restored NOR test 

performance in Ts65Dn mice (Colas et al., 2017). The positive effects of FLUM in the NOR test 

persisted one month after treatment cessation (Colas et al., 2017).  

CGP55845. KCNJ6, encodes an inwardly-rectifying K+ channel, G protein-coupled inwardly-

rectifying potassium channel (GIRK) 2, that couples to GABAB receptors. Levels of GIRK2 are 

elevated in the hippocampus, frontal cortex, substantia nigra, and perhirinal cortex (Harashima et al., 

2006, Roncace et al., 2017) of Ts65Dn mice and there is evidence that GABAB-induced potassium 

currents are elevated in these brain regions, suggesting that they may contribute to the imbalance 

between excitatory and inhibitory neurotransmission (Best et al., 2007, Best et al., 2012). CGP55845, 

a GABAB receptor antagonist, was administered to 2-3 month-old Ts65Dn mice for 3 weeks or 

acutely (2-3 h before testing). CGP55845 rescued memory deficits assessed with the TM, NOR and 
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CFC behavioral tests and restored LTP in hippocampal slices from Ts65Dn mice (Kleschevnikov et 

al., 2012). 

 

(iii) Therapies enhancing noradrenergic transmission  

The noradrenergic input from the Locus Coeruleus (LC) exerts a modulatory role on hippocampal 

neurons via β-adrenergic receptors and is essential for contextual learning [see (Bartesaghi et al., 

2011)]. Neurons of LC are affected in several neuropathologies, such as AD, Parkinson disease and 

Huntington disease. Middle-aged DS individuals show significant loss of cells from LC (Mann et al., 

1985) and the same defect is present in the Ts65Dn mouse model starting from 6 months of age 

(Salehi et al., 2009). Ts65Dn mice also displays a reduction of the amount of noradrenaline (NA) in 

the hippocampus. 

L-DOPS. It is a synthetic precursor of NA, metabolized into NA by cells. 6 month-old Ts65Dn male 

mice that were injected with L-DOPS during the CFC test underwent full restoration of performance 

(Salehi et al., 2009). 

Xamoterol. It is a β1-adrenergic receptor partial agonist. 6 month-old Ts65Dn male mice that were 

injected with xamoterol with the same schedule used for L-DOPS underwent full restoration of 

freezing in the CFC test (Salehi et al., 2009). In a subsequent study, xamoterol was acutely 

administered to 9-12 month-old Ts65Dn male mice. Treatment rescued behavioral defects in NOR, 

CFC, and TM tests (Faizi et al., 2011). 

Formoterol. Formoterol is a long-acting β2-adrenergic agonist that has been proposed as protective 

agent against cholinergic system degeneration (Antonarakis, 2017). In a recent study, formoterol was 

administered acutely (4 hours before behavior analyses) to 5-6 month-old Ts65Dn mice. Results 

showed that formoterol caused significant improvement in the cognitive function (CFC test) and was 

associated with a significant improvement in the density of synaptic terminals in the DG and increased 

the dendritic complexity of newly born granule neurons of the DG (Dang et al., 2014). 
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DREADDs. Designer receptors exclusively activated by designer drugs (DREADDs) are novel and 

powerful tools that can be used to enhance neuronal activity and investigate discrete neuronal 

populations in the brain (Vazey and Aston-Jones, 2014). 14 month-old Ts65Dn mice were treated 

acutely with a DREADD, hM3Dq, administered via adeno-associated virus into the LC under a 

synthetic promoter, PRSx8, to selectively stimulate LC neurons by exogenous administration of the 

inert DREADD ligand clozapine-N-oxide. This treatment enhanced performance in the NOR test and 

reduced hyperactivity in Ts65Dn mice (Fortress et al., 2015). 

 

(iv) Therapies targeted to the glutamate NMDA receptor  

Memantine. This molecule is an uncompetitive antagonist of the N-methyld-aspartate (NMDA) 

receptor that indirectly acts on the cholinergic system (see 2.10.1.1 paragraph). In a first study, Costa 

et al. showed that an acute treatment with memantine in both 4-6 and 10-14 month-old male Ts65Dn 

mice was able to rescue L/M deficits in the CFC test (Costa et al., 2008). In 9 month-old Ts65Dn 

mice, 9 weeks of memantine administration rescued impairments in the MWM test (Rueda et al., 

2010). When administered from 4 to 9.5 months of age, memantine improved performance of Ts65Dn 

mice on the WRAM and NOR tests (although memantine had negative effects in euploid mice). 

Importantly, one week after treatment cessation, the positive effects seen on cognition disappeared. 

Finally, hippocampal slices from Ts65Dn mice preincubated with memantine exhibited normal levels 

of LTD after exposure to NMDA (Scott-McKean and Costa, 2011). 

 

(v) Therapies targeted to the serotonergic system  

Serotonin (5-HT), one of the major neurotransmitters of the CNS, is essential for neurodevelopment 

starting from the earliest fetal stages. The serotonergic system, which is altered in DS, has been linked 

to neurogenesis defect and reduced dendritic spine size in individuals with DS and Ts65Dn mice. 

Both individuals with DS and Ts65Dn mice displays a reduced expression of the serotonin 5-HT1A 
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receptor in the hippocampus, suggesting that a pharmacotherapy targeted to the serotonergic system 

may be a good strategy to ameliorate neurodevelopmental defects in DS.  

Fluoxetine. Fluoxetine, also known by trade name Prozac, is an antidepressant belonging to the 

selective serotonin reuptake inhibitor (SSRI) class. Fluoxetine works by delaying the reuptake of 5-

HT through the inhibition of serotonin transporter. This mechanism allows 5-HT to persist longer in 

the inter-synaptic cleft and, thus, to enhance its action on postsynaptic neurons. Based on evidence 

that antidepressants increase neurogenesis in the DG and SVZ of rodents, Clark et al tested the 

efficacy of fluoxetine administered for two weeks in Ts65Dn mice aged 2-5 months. The results of 

this study showed that treatment with fluoxetine rescued neurogenesis in the hippocampus of Ts65Dn 

mice (Clark et al., 2006). Based on these premises, our group investigated the effects of early 

treatment with fluoxetine on brain development and behavior in Ts65Dn mice (Bianchi et al., 2010b, 

Guidi et al., 2013, Stagni et al., 2013, Guidi et al., 2014, Stagni et al., 2015b). We administered 

fluoxetine neonatally (from P3 to P15) and we found that treatment restored hippocampal 

neurogenesis and total granule cell number (Bianchi et al., 2010b). Importantly, at one month after 

treatment cessation, treated Ts65Dn mice exhibited full restoration of granule cell number, granule 

cell dendritic pattern, hippocampal connectivity, signal transfer from the granule cells to CA3, and 

hippocampus-dependent memory (Bianchi et al., 2010b, Guidi et al., 2013, Stagni et al., 2013). In a 

subsequent study we examined the effects of neonatal treatment with fluoxetine when mice reached 

adulthood (3 months of age) and found that in neonatally-treated Ts65Dn mice hippocampal 

cellularity, dendritic architecture, spine density, and L/M functions were still fully rescued (Stagni et 

al., 2015b). Since serotonin is essential for neurogenesis and dendritic development from the earliest 

fetal life stages in humans (Faber and Haring, 1999, Whitaker-Azmitia, 2001), we hypothesized that 

treatment with fluoxetine during pregnancy could rescue most of the neurodevelopmental alterations 

that characterize the trisomic brain. Thus, we administered fluoxetine to pregnant Ts65Dn dams from 

E10 to birth, with the aim of restoring the bulk of neurogenesis in pups, and we analyzed the outcome 

of treatment when mice was P2. We found that fluoxetine restored neurogenesis and cell density 
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throughout the forebrain (SVZ, SGZ, neocortex, striatum, thalamus, hypothalamus), midbrain 

(mesencephalon) and hindbrain (cerebellum and pons). In addition, prenatal-treatment with 

fluoxetine had enduring effects on Ts65Dn mice aged 45 days. Indeed, neural precursor proliferation 

was still restored in SVZ and the DG of the hippocampus, the dendritic development of postnatally 

born granule neurons and pre- and post-synaptic terminals were normalized and there was restoration 

of cognitive performance (NOR and CFC tests). These results demonstrate, for the first time, that the 

neurodevelopmental defects that characterize DS are reversible. Heinen and colleagues treated 

Ts65Dn mice aged 5–7 months with fluoxetine for a total of 6 weeks and found no improvement in 

the MWM test and no change in the BFCN levels of ChAT (Heinen et al., 2012). In addition, they 

reported a very high rate of seizures and death in treated Ts65Dn mice. It must be noted that these 

adverse effects are very likely due to the dose used in this study (8-fold higher than that used by our 

group) and treatment duration (6 weeks vs 13 days) (Heinen et al., 2012). A study by Begenesic et al. 

(Begenisic et al., 2014) 2 month-old male and female Ts65Dn mice were treated for two weeks with 

fluoxetine. Treatment restored performances in olfactory learning and spontaneous alternation in a 

four arm maze and normalized levels of LTP and GABA release from synaptosomes (Begenisic et 

al., 2014). 

The promising results obtained with fluoxetine in the Ts65Dn model have prompted the design of 

clinical trials for the DS population. In 2016 the University of Texas Southwestern Medical Center, 

proposed a pilot study to investigate the effects of prenatal treatment with fluoxetine in pregnant 

mothers with a fetal diagnosis of DS. Unfortunately, no official information about this clinical trial is 

reported in ClinicalTrials.gov. In the framework of a project entitled “Novel avenues for the rescue 

of intellectual disability in Down syndrome” and coordinated by our research group, the protocol for 

a Phase I clinical trial has been submitted to the Italian Authority regulating clinical trials (AIFA) by 

our collaborators at Federico II University (Naples, Italy). This is a prospective, single-center, not 

controlled, one-arm, open study aimed at evaluating the safety and tolerability of fluoxetine in a 

paediatric population with DS. We hope that this pilot study will start as soon as possible. 
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(vi) Therapies targeted to the endocannabinoid system 

JZL184. The most abundant endocannabinoid in the brain is 2-arachidonoylglycerol (2-AG). The 

principal hydrolytic enzyme responsible for the degradation of 2-AG is monoacylglycerol lipase (MAGL). 

JZL184 is a selective inhibitor of monoacylglycerol lipase (MAGL). Ts65Dn mice aged 9.5-11.4 

month were treated with JZL184 for 4 weeks, in order to evaluate its effects on behavior and synaptic 

function (Lysenko et al., 2014). Treatment with JZL184 appears to improve long-term memory (NOR 

test) and hippocampal LTP (in the CA1 field), but has no effects on short-term (NOR test) and 

working memory (YM test) (Lysenko et al., 2014). 

 

2.10.2.2 Therapies employing neuroprotective agents, antioxidants, and free radical scavengers 

(Class B) 

Neuroprotective agents 

Neuropeptides are small proteinaceous substances produced and released by neurons through the 

regulated secretory route and acting on neural substrates. Neuropeptides are the most diverse class of 

signaling molecules in the brain and are engaged in many physiological functions (Burbach, 2011). 

NAPVSIPQ (NAP) and SALLRSIPA (SAL). Glial cells release several survival-promoting factors, 

including the activity-dependent neuroprotective protein (ADNP) and the activity-dependent 

neurotrophic factor (ADNF) (Incerti et al., 2011). The active peptide fragments of these proteins, 

NAPVSIPQ (NAP) and SALLRSIPA (SAL), mimic the activity of their parent proteins, exerting a 

protective effect against oxidative stress, the severity of traumatic head injury, stroke, and toxicity 

associated with the Aβ peptide [see (Bartesaghi et al., 2011, Gardiner, 2015, Stagni et al., 2015a)]. 

Busciglio et al demonstrated that treatment of DS cultured cortical neurons with either NAP or SAL 

increased neuronal survival and reduced degenerative morphological changes (Busciglio et al., 2007). 

In a first study, Incerti et al. treated 10 month-old Ts65Dn mice with NAP/SAL for 9 days. During 

days 4-9 mice were subjected to the MWM test and showed rescued L/M functions (Incerti et al., 

2011). However, after a further 10 days with no additional treatment, treated Ts65Dn mice no longer 
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remembered the platform location (Incerti et al., 2011). In another study, conducted by the same 

group, pregnant Ts65Dn dams were injected with NAP/SAL from E8 to E12. At 8-10 months of age 

the treated offspring were evaluated in the MWM test. Treated Ts65Dn offspring exhibited improved 

learning abilities. Unfortunately, data regarding probe test that assesses memory are lacking (Incerti 

et al., 2012). 

Peptide 6. It is a derivative of the ciliary neurotrophic factor, which has been shown to enhance 

neurogenesis, dendritic and synaptic plasticity, and memory in rodents (Chohan et al., 2011). In a 

study by Blanchard et al. 11–15-month-old female Ts65Dn mice were treated for 1 month with 

peptide 6 (Blanchard et al., 2011). According to the authors, the performance in the MWM test was 

improved, although the reporetd data do not appear to completely support this conclusion [see 

(Gardiner, 2015)]. 

Peptide 021. Peptide 021 (P021) is a ciliary neurotrophic factor (CNTF) small-molecule mimetic. 2–

3-month-old pregnant Ts65Dn dams were treated with compound P021 in the feed from E8 until 

weaning of the pups on P21 (Kazim et al., 2017). Evaluation of developmental milestones from P1 

to P21 showed that treatment prevented the delay in neurobehavioral development in Ts65Dn pups. 

In addition, prenatally-neonatally treated 3 weeks-old Ts65Dn offspring displayed amelioration of a 

pre-synaptic protein (SYN) deficit, decrement of GSK3β activity, and an increment in the expression 

of synaptic plasticity markers (Kazim et al., 2017). Morever, authors demonstrated that this treatment 

schedule with P021 caused restoration of cognitive functions, assessed by MWM test, open field and 

one-trial object recognition/discrimination task when mice had 7 months of age (Kazim et al., 2017). 

Estrogen. The fact that women with DS have premature menopause and early onset cognitive decline 

prompted some studies with estrogen. In a study by Granholm et al., 11-14 month-old female Ts65Dn 

mice were treated with estrogen for two months. Estrogen significantly improved initial learning in 

the discriminating water T-maze. Estrogen also reversed the age-related loss of ChAT and NGF, two 

BFCN functional markers (Granholm et al., 2002). Another study in male Ts65Dn mice aged 6 
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months showed that estrogen treatment for 3 weeks failed to rescue the learning deficit in the WRAM 

(Hunter et al., 2004b). These results suggest sex differences in estrogen responses. 

Minocycline. Minocycline is an antibiotic (derivative of the tetracycline) that is of interest because 

it is considered to have neuroprotective effects. 3 months of treatment with minocycline in 10 month-

old male Ts65Dn mice improved performance in the WRAM (not to euploid levels) and rescued age-

related loss of ChAT in the BFCN (Hunter et al., 2004a). 

Nerve Growth Factor (NGF). With aging, Ts65Dn mice exhibitd reductions in BFCN size and 

number and regressive changes in the hippocampal terminal fields of these neurons. These changes 

are associated with significantly impaired retrograde transport of NGF from the hippocampus to the 

basal forebrain [see (Bartesaghi et al., 2011)]. In a study by Cooper et al., Ts65Dn mice aged 18 

months received NGF via a microosmotic pump implanted into the lateral ventricle for 12 weeks. 

Intracerebroventricular NGF infusion reversed abnormalities in BFCN size and number and restored 

the deficit in cholinergic innervation (Cooper et al., 2001). 

 

Antioxidants and free radical scavengers 

Oxidative stress and mitochondrial dysfunction are both considered hallmarks of DS tissues and 

contributors to neurological phenotypes across the DS lifespan. This oxidative stress, which damages 

mitochondrial membrane and lipids, occurs in DS during pre- and post-natal development and can 

modify critical processes of neurogenesis, differentiation, migration, and survival. Several HSA21 

genes, among them SOD1, BACH1, ETS2, and S100B, are known to contribute to the regulation of 

oxidative stress when overexpressed [see (Gardiner, 2015, Stagni et al., 2015a)]. Consistent with these 

observations, it was shown that levels of oxidative stress are elevated in the brains of adult Ts65Dn 

(Lockrow et al., 2009). 

α-tochopherol. This molecule is the most biologically active form of vitamin E. 4 month-old male 

Ts65Dn mice was fed with an α-tochopherol enriched diet for either 4 or 6 months. Treatment was 

found to reduce the levels of oxidative stress in Ts65Dn brains, to improve performance in the 
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WRAM at 8 and 10 months and prevent the loss of the TRKA receptor in the BFCN (Lockrow et al., 

2009). 

Vitamin E enriched diet was administered to pregnant Ts65Dn females from the day of conception 

throughout pregnancy and to their pups until 10 weeks of age. Supplementation of vitamin E was 

found to reduce lipid peroxidation products in the DG of adult Ts65Dn mice, to increase granule cell 

density, to ameliorate abnormal anxiety in the elevated plus maze test, and to improve spatial L/M in 

the MWM test (Shichiri et al., 2011).  

SGS-111. SOD1 over-expression in DS individuals causes a three- to four-fold increase in 

intracellular reactive oxygen species (ROS) [see (Stagni et al., 2015a)]. SGS-111 is an analog of 

piracetam with neuroprotective and nootropic properties. It was administered to pregnant Ts65Dn 

dams from the day of conception, throughout pregnancy, and to their pups during the following 5 

months. Treatment failed to improve L/M in the MWM test, although there was a reduced 

hyperactivity in Ts65Dn mice (Rueda et al., 2008b). 

Melatonin. Melatonin is an indole amine mainly synthesized and secreted by the pineal gland. Its 

exogenous administration has been demonstrated to induce neuroprotective effects by regulating anti- 

and pro-oxidant enzymes, acting as a potent ROS scavenger, and repairing molecules damaged by 

ROS overgeneration. Due to these effects, melatonin has been proposed as a powerful tool in the 

treatment of neuropathologies in which oxidative stress is enhanced, such as DS (Parisotto et al., 

2016). Melatonin, administered to 5 month-old male Ts65Dn mice in drinking water for 4 months 

plus another one-month (5 months in total) during behavioral testing was shown to rescue learning 

abilities tested with MWM test. In addition, melatonin increased the levels of ChAT in BFCNs 

(Corrales et al., 2013). In a subsequent study, administration of melatonin to 6 month-old Ts65Dn for 

5-6 months was found to rescue neurogenesis and LTP (Corrales et al., 2014). In a recent work, the 

same group showed that melatonin also reduces oxidative stress and decreases hippocampal 

senescence in the Ts65Dn model (Parisotto et al., 2016). 
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2.10.2.3 Therapies targeted to perturbed signaling pathways (Class C) 

Lithium. Lithium is largely used for the treatment of bipolar depression and was seen to have 

neuroprotective properties and to stimulate neurogenesis in the DG of rodents [see (Bartesaghi et al., 

2011)]. Although the molecular mechanisms underlying responses to lithium are not known yet, it 

has been shown that it can inhibit GSK3β and inositol phosphatases, compete with Mg2+ in protein 

binding and modulate the Wnt/β-catenin pathway [see (Gardiner, 2015)]. 12 month-old Ts65Dn mice 

treated for one month with lithium exhibited restoration of cell proliferation in the SVZ, rostral 

migratory stream and olfactory bulb, restoration of the size of the proliferating pool of precursor cells 

in the SVZ, and olfactory functions. However, no neurogenesis enhancement was seen in the SGZ of 

the DG (Bianchi et al., 2010a, Guidi et al., 2016). In contrast, 5 month-old Ts65Dn mice treated for 

one month with lithium showed a complete rescue of DG neurogenesis, hippocampal LTP and 

performance in the CFC, NOR, and OL tests (Contestabile et al., 2013). 

SAG 1.1. SHH signaling is extremely important for neuronal precursor proliferation. Roper et al. 

demonstrated that the reduced proliferation of cerebellar granule cell precursors from Ts65Dn mice 

is related to an attenuated response to SHH protein. SAG 1.1, a smoothened (SMO, the receptor of 

SHH) agonist, relieves the inhibitory effect of PTCH1 (the inhibitor of SHH pathway) on SMO. A 

single injection of SAG 1.1 in P0 Ts65Dn rescued at P6 the decreased cell number in the granule cell 

layer of the cerebellum (Roper and Reeves, 2006). Importantly, the positive effects of SAG1.1 on 

cerebellar cellularity lasted until 4 months of age. In addition, this treatment restored the MWM test 

performance and hippocampal LTP, but failed to improve cerebellar LTD and performance in the 

YM test (Das et al., 2013). 

 

2.10.2.4 Therapies to normalize the expression of proteins coded by triplicated genes (Class D) 

The role of DYRK1A in the neurodevelopmental alteration of DS has been highlighted in sections 

2.8.4; 2.8.6; 2.8.9. Due to the involvement of DYRK1A in the DS neurological phenotype, in the last 

few years various therapies has been attempted in DS mouse models aimed at normalizing its activity. 
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Epigallo-catechin 3 gallate (EGCG). EGCG is a flavonoid present in green tea extracts. In addition 

to its antioxidant activity, it is a non-selective but highly specific inhibitor of DYRK1A. The first 

study on the effects of EGCG in DS demonstrated that incubation with EGCG of hippocampal slices 

from Ts65Dn mice restored LTP at the Schaffer collateral-CA1 synapse (Xie et al., 2008). A 

subsequent study on transgenic YACtg152F7 mice (that over-express Dyrk1A) showed that chronic 

administration with a polyphenol based diet (that includes EGCG) from gestation to adulthood was 

able to correct brain morphogenesis alterations, and long-term memory assessed using the NOR test 

(Guedj et al., 2009). In addition, Dyrk1A transgenic mice treated with EGCG for one month starting 

from P21 undergo restoration of hippocampal neurogenesis (Pons-Espinal et al., 2013). In adult 

Dyrk1A transgenic mice, a 4–6 week administration of green tea extracts rescues defective long-term 

potentiation in the prefrontal cortex (Thomazeau et al., 2014). Finally, treatment with extracts 

containing EGCG in adult mBACtgDyrk1a mice restores components of GABAergic and 

glutamatergic pathways in the cortex and hippocampus, and improves behavioral deficits (Souchet et 

al., 2015). Recently, it has been reported that one month of treatment with EGCG in 3 month-old 

Ts65Dn male mice rescued their performance in the MWM test to the level of the euploid mice (De 

la Torre et al., 2014). In contrast, Stringer et al. demonstrated that pure EGCG administered to 

Ts65Dn mice from weaning for either three or 7 weeks (at a dose of 20.0 mg/kg/d), and 51 days (at a 

dose 100.0 mg/kg/d) did not improve performance in a battery of behavioral tasks (Stringer et al., 

2015a, Stringer et al., 2015b). Green tea extracts containing EGCG (45%) were also administered in 

combination with environmental enrichment for 30 days in 1-2 month-old Ts65Dn female mice. Co-

treatment restored cortico-hippocampal-dependent L/M (MWM, NOR tests), rescued dendritic spine 

density in field CA1 and normalized the proportion of excitatory and inhibitory synaptic markers in 

field CA1 and DG (Catuara-Solarz et al., 2016). There is evidence that incubation of NPCs isolated 

from the hippocampus of Ts65Dn mice with EGCG restores mitochondrial biogenesis and improves 

proliferation rate (Valenti et al., 2016). 
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ALGERNON (Altered generation of neurons). ALGERNON is a recenttly identified compound 

that inhibits DYRK1A and has been shown to rescue proliferative deficits in Ts65Dn-derived 

neurospheres and human neural stem cells derived from individuals with DS (Nakano-Kobayashi et 

al., 2017). ALGERNON was orally administered to pregnant Ts1Cje dams from E10 up to E15. Adult 

Ts1Cje mice that had been prenatally-treated with ALGERNON showed complete restoration of brain 

morphology, neurogenesis in the DG, and L/M functions (YM, Barnes Maze, CFC tests) (Nakano-

Kobayashi et al., 2017). 

DAPT (Class D). N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenyl glycine t-butyl ester is a γ-

secretase inhibitor developed in order to reduce Aβ deposition. Administration of DAPT to 4 month-

old Ts65Dn mice for 4 days was found to normalize Aβ levels and to improve L/M (Netzer et al., 

2010).  

 

2.10.2.5 Therapies that are known to have a proneurogenic effect (Class E) 

P7C3 (Class E). The aminopropyl carbazole P7C3 was discovered for its ability to enhance cell 

survival and decrease apoptosis, thereby preventing the neurogenic and cognitive decline seen in aged 

rats (Pieper et al., 2010) and rodent models of neurodegeneration (Tesla et al., 2012). In a recent 

study, 4-10 weeks-old Ts65Dn were chronically administered with P7C3 for 3 months. Evaluation of 

the brains at the end of treatment showed a complete restoration of neurogenesis (evaluated with 

immunohistochemistry for Ki-67, BrdU, DCX, and the apoptotic marker AC-3) in the DG (Latchney 

et al., 2015). 
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Table 2.10.1. Therapies administered at adult life stages in the Ts65Dn (and Ts1Cje) mouse 

model of DS. 
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The classes reported in the column “Treatment” correspond to those summarized in the section 2.10.2. The outcome “Rescued” 

means that in treated DS mouse models the examined phenotype became similar to that of untreated euploid mice. The outcome 

“Improved” means that in DS mouse models treatment ameliorated but did not rescue the examined phenotype. Abbreviations: 

ADNF, Activity Dependent Neurotrophic Factor; ADNP, Activity Dependent Neuroprotective Protein; BM, Barnes Maze; CFC, 

Contextual Fear Conditioning; CNTF, Ciliary Neurotrophic Factor; d, day; DG, dentate gyrus; m, month; MWM, Morris Water 

Maze; NA, not available; NOR, Novel Object Recognition; NPR, Novel Place Recognition; PM, Plus Maze; SA, Spontaneous 

Alternation Task; SVZ, subventricular zone; TM, T-Maze; w, week; WRAM, Water Radial Arm Maze; YM, Y-Maze. 
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Table 2.10.2. Therapies administered at neonatal and embryonic life stages in the Ts65Dn 

mouse model of DS. 
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The classes reported in the column “Treatment” correspond to those summarized in the section 2.10.2. The outcome “Rescued” means 

that in treated Ts65Dn mice the examined phenotype became similar to that of untreated euploid mice. The outcome “Improved” means 

that in Ts65Dn mice treatment ameliorated but did not rescue the examined phenotype. Abbreviations: CFC, Contextual Fear 

Conditioning; d, day; DG, dentate gyrus; E, embryonic; m, month; MWM, Morris Water Maze; NA, Not Available; NOR, Novel Object 

Recognition; PM, Plus Maze; TM, T-Maze; RAWM, Radial Arm Water Maze; SVZ, subventricular zone; w, week; YM, Y-Maze. 
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3.1 Section 1 
 

”Short- and long-term effects of the -secretase inhibitor 

ELND006 in the Ts65Dn mouse model of Down 

syndrome” 

 

Information reported in this section refers to:  

1) “Inhibition of APP γ-secretase restores Sonic Hedgehog signaling and neurogenesis in the 

Ts65Dn mouse model of Down syndrome”. Giacomini A, Stagni F, Trazzi S, Guidi S, Emili 

M, Brigham E, Ciani E, Bartesaghi R. Neurobiology of Disease 82 (2015) 385–396. 

2) “Long-term effect of neonatal inhibition of APP γ-secretase on hippocampal development in 

the Ts65Dn mouse model of Down syndrome”. Stagni F, Raspanti R, Giacomini A, Guidi S, 

Emili M, Ciani E, Giuliani A, Bighinati A, Calzà L, Magistretti J, Bartesaghi R. Stagni, 

Raspanti and Giacomini contributed equally to the article. Neurobiology of Disease 103 

(2017) 11–23. 
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3.1.1 Abstract 

 

Neurogenesis impairment is considered a major determinant of the intellectual disability that 

characterizes Down syndrome (DS). Excessive levels of AICD, a cleavage product of the trisomic 

gene APP, increase the transcription of PTCH1, a Sonic Hedgehog (SHH) receptor that keeps the 

mitogenic SHH pathway repressed. This suggests that excessive inhibition of the SHH pathway may 

concur to impair neurogenesis in DS. Since AICD results from APP cleavage by -secretase, the goal 

of the current study was to establish whether treatment with a -secretase inhibitor normalizes AICD 

levels and restores neurogenesis by restoring the functionality of the SHH pathway. To this purpose 

we exploited the Ts65Dn mouse, a widely used model of DS. We found that treatment with a selective 

-secretase inhibitor (ELND006) in Ts65Dn pups (postnatal period P3-P15) restored neurogenesis in 

the subventricular zone and hippocampus, hippocampal granule cell number and synapse 

development, indicating a positive impact of treatment on brain development. In the hippocampus of 

treated Ts65Dn mice there was a reduction in the expression levels of PTCH1, which is consistent 

with reduction of AICD formation due to ELND006-mediated inhibition of -secretase. In the 

framework of potential therapies for DS, it is extremely important to establish whether the positive 

effects of early intervention are retained after treatment cessation. A second goal of the study was to 

establish whether early treatment with ELND006 leaves an enduring trace in the brain of Ts65Dn 

mice. We found that in neonatally treated (postnatal period P3-P15) Ts65Dn mice the pool of 

proliferating cells in the hippocampal dentate gyrus and total number of granule neurons were still 

restored as was the number of pre- and postsynaptic terminals in the stratum lucidum of CA3 when 

mice reached 45-days of age. Accordingly, patch-clamp recording from field CA3 showed functional 

normalization of the input to CA3. Unlike in field CA3, the number of pre-and postsynaptic terminals 

in the dentate gyrus of treated Ts65Dn mice was no longer fully restored. The finding that many of 

the positive effects of neonatal treatment were retained after treatment cessation provides proof of 

principle demonstration of the efficacy of early inhibition of -secretase for the improvement of brain 

development in DS. 
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3.1.2 Introduction 

 

Generalized neurogenesis impairment during critical developmental stages and impaired dendritic 

maturation are the major determinants of intellectual disability in individuals with DS. Alterations of 

various signaling pathways due to gene triplication are likely to be involved in these 

neurodevelopmental alterations. Accumulating evidence in the Ts65Dn mouse model of DS suggests 

that alteration of the Sonic Hedgehog (SHH) pathway may be one important factor involved in 

neurogenesis impairment in DS (Roper and Reeves, 2006, Trazzi et al., 2011, Trazzi et al., 2013). In 

particular, defective functioning of the SHH pathway appears to cause reduced proliferation of neural 

precursor cells (NPCs) of the cerebellum, the subventricular zone (SVZ) of the lateral ventricle and 

the subgranular zone (SGZ) of the hippocampal dentate gyrus. Regarding the causes of SHH signaling 

impairment in DS, recent data suggest that the triplicated gene APP (amyloid precursor protein), a 

gene that is important for cell cycle progression and neuron migration (Nalivaeva and Turner, 2013), 

may be a key candidate underlying trisomy-linked alteration of SHH signaling (Trazzi et al., 2013). 

APP undergoes complex proteolytic processing, giving rise to several fragments. Cleavage of APP 

by α- and β-secretases gives origin to the carboxy-terminal fragments (CTFs) αCTF and βCTF, 

respectively. Cleavage of βCTF by the enzyme -secretase gives origin to the amyloid precursor 

protein intracellular domain (AICD) and p3, and cleavage of βCTF gives origin to β-amyloid (Aβ) 

and AICD. Previous evidence showed that excessive AICD levels in trisomic NPCs caused over-

expression of Patched 1 (PTCH1), the inhibitor of the SHH pathway (Trazzi et al., 2011, Trazzi et 

al., 2013). The outcome of this over-inhibition was impairment of neurogenesis and neurite 

development. Treatments that restored SHH signaling reverted both these defects. In agreement with 

a key role played by AICD in neurogenesis alterations in the Ts65Dn model, it has been shown that 

AICD transgenic mice exhibit impaired neurogenesis, similarly to trisomic mice (Ghosal et al., 2010). 

The evidence reported above suggests that impairment of the SHH pathway due to AICD-dependent 

PTCH1 over-expression may be a key mechanism that underlies reduced proliferation and impaired 
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maturation of neuronal precursors in the trisomic brain. Since PTCH1 over-expression keeps the 

pathway under repression, therapies have been attempted with SAG, a drug that activates the SHH 

pathway by acting downstream of PTCH1 (Roper et al., 2009, Das et al., 2013). Although this strategy 

is effective, the use of activators of the SHH pathway may pose some caveats because the SHH 

pathway is implicated in the development of cancers (Katoh and Katoh, 2009). Since PTCH1 over-

expression in the DS brain is due to excessive AICD levels, an ideal approach to restore PTCH1 levels 

and, hence, SHH signaling, would be to reduce AICD formation through inhibitors of γ-secretase. 

During the last few years, various selective APP γ-secretase inhibitors have been developed by ELAN 

Inc (Fleisher et al., 2008, Basi et al., 2010) as strategic tools to reduce Aβ levels in Alzheimer's 

disease. So far, no study has explored the possibility to exploit γ-secretase inhibitors as a 

pharmacological tool to reduce the excessive levels of AICD that characterize the DS brain. Based 

on this rationale, the goal of the current study was to establish whether early treatment with a selective 

γ-secretase inhibitor, ELND006, positively impacts neurogenesis in the Ts65Dn model, and, if so, 

whether this effect is followed by a long-lasting improvement in the organization of the hippocampal 

circuits.  

 

3.1.3 Materials and methods 
 

Colony 

Female Ts65Dn mice carrying a partial trisomy of chromosome 16 (Reeves, 1995) were obtained 

from Jackson Laboratories (Bar Harbour, ME, USA) and the original genetic background was 

maintained by mating them with C57BL/6JEi x C3SnHeSnJ (B6EiC3) F1 males. Animals were 

genotyped as previously described (Reinholdt et al., 2011). The day of birth was designated postnatal 

day zero (P0). A total of 98 mice were used. The animals’ health and comfort were controlled by the 

veterinary service. The animals had access to water and food ad libitum and lived in a room with a 

12:12 h dark/light cycle. Experiments were performed in accordance with the Italian and European 
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Community law for the use of experimental animals and were approved by Bologna University 

Bioethical Committee. In this study, all efforts were made to minimize animal suffering and to keep 

the number of animals used to a minimum. 

 

Experimental protocol. 

During the last few years, various selective APP γ-secretase inhibitors have been developed by ELAN 

Inc (Basi et al., 2010), as strategic tools to reduce Aβ levels in Alzheimer's disease. Among these, 

ELND006 is a γ-secretase inhibitor which retains selectivity and incorporates improved drug-like 

properties (Basi et al., 2010). In order to test the efficacy of ELND006 in DS, euploid and Ts65Dn 

mice received a daily subcutaneous injection of ELND006 (ELN; gift by ELAN Inc, USA) dissolved 

in 25% PEG300, 25% ethylen glycol, 25% cremophor, 15% ethanol, 10% propanol from postnatal 

day 3 (P3) to postnatal day 15 (P15). We evaluated the outcome of the treatment immediately after 

its cessation (Experiment 1, P15 mice) and one month later (Experiment 2, P45 mice). 

Experiment 1. Based on previous evidence, Euploid (n=11) and Ts65Dn (n=11) mice were daily 

treated with ELN at a dose of 30.0 mg/kg (Fig. 3.1.1A) (Basi et al., 2010). Age-matched euploid 

(n=8) and Ts65Dn (n=8) mice were injected with the vehicle. These mice will be called here untreated 

mice. Each treatment group had approximately the same composition of males and females. Animals 

(4-7 animals for each condition) received a subcutaneous injection (150 g/g body weight) of BrdU 

(5-bromo-2-deoxyuridine; Sigma), a marker of proliferating cells (Nowakowski et al., 1989) in Tris 

HCl 50 mM (at 11-12am) 2 h before being killed. The brain of the other animals (4 animals for each 

condition) was quickly removed, the hippocampal formation was dissected, kept at –80°C and used 

for western blot experiments.  

Experiment 2. We found that the dose (30.0 mg/kg) of ELN used in the first part of the study 

(Experiment 1) had no acute effect on mice viability. However, euploid and Ts65Dn mice treated 

with this dose exhibited a higher mortality rate (death rate=30-40%) after weaning. For this reason, 

we decided to reduce the dose of ELN. In a pilot experiment we found that a 20.0 mg/kg dose did not 
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increase the mortality rate and was able to reinstate cell proliferation in the DG of Ts65Dn mice (n=4-

5 mice for each experimental group; data not shown), similarly to the dose of 30.0 mg/kg. Therefore, 

in this part of the study (Experiment 2) we treated mice with a dose of 20.0 mg/kg. Euploid (n=20) 

and Ts65Dn (n=11) mice received a daily subcutaneous injection of ELN (dose 20.0 mg/kg) dissolved 

in the vehicle from P3 to P15 (Fig.3.1.1B). Age-matched euploid (n=19) and Ts65Dn (n=10) mice 

were injected with the vehicle. Each treatment group had approximately the same composition of 

males and females. On P45-P50 mice were weighed, sacrificed, the brain was quickly removed and 

weighed. These mice will be called here P45 mice (Fig. 3.1.1B). The left hemisphere was fixed by 

immersion in PFA 4%, frozen and used for immunohistochemistry. The right hemisphere was kept at 

–80°C and used for western blotting. The number of animals used for each of the experimental 

procedures described below is specified in the figure legends. Other groups of mice were treated from 

P3 to P15 with either ELN (20.0 mg/kg) (euploid: n=8; Ts65Dn: n=4) or vehicle (euploid: n=9; 

Ts65Dn: n=7) and at 30-45 days of age were used for electrophysiological recordings from field CA3. 

 

Histological procedures 

P15 mice. Mice that had received BrdU were deeply anesthetized, the brain was removed cut along 

the midline. The left hemisphere was fixed by immersion in Glyo-Fixx as previously described 

(Bianchi et al., 2010b) and the right hemisphere was fixed in 4% PFA and frozen. The left hemisphere 

was embedded in paraffin and cut in series of 8-µm-thick coronal sections that were attached to poly-

lysine coated slides and used for BrdU, Ki-67, and cleaved caspase-3 immunohistochemistry and for 

hematoxylin staning. The right hemisphere was cut with a freezing microtome in 30-m-thick coronal 

sections that were serially collected in PBS and used for synaptophysin (SYN) and postsynaptic 

density protein-95 (PSD-95) immunohistochemistry.  

P45 mice. The left hemisphere was cut with a freezing microtome in 30-m-thick coronal sections 

that were serially collected in anti-freezing solution (30% glycerol; 30% ethylen-glycol; 10% 

PBS10X; 0.02% sodium azide; MilliQ to volume) and used for immunohistochemistry for Ki-67, 
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Figure 3.1.1. Experimental protocols. A: Euploid and Ts65Dn mice received a daily injection of either 

vehicle (Euploid + Vehicle; Ts65Dn + Vehicle) or ELND006 (30.0 mg/kg; Euploid + ELN; Ts65Dn + ELN) 

from postnatal (P) day 3 to P15. At P15, mice received one injection of BrdU, and were killed after 2 h in order 

to evaluate the number of cells in the S-phase of the cell cycle. The brains of these mice were used for 

immunohistochemistry and western blotting. B: Euploid and Ts65Dn mice received a daily injection of either 

vehicle (Euploid + Vehicle; Ts65Dn + Vehicle) or ELND006 (20.0 mg/kg; Euploid + ELN; Ts65Dn + ELN) 

from P3 to P15. Mice were killed on P45-P50. The brains of these mice were used for immunohistochemistry 

and western blotting. Abbreviations: BrdU, bromodeoxyuridine; ELN, ELND006; P, postnatal.



98 

SYN and PSD-95. 

BrdU immunohistochemistry in P15 mice. One out of 20 sections was taken from the beginning of 

the lateral ventricle to the end of the hippocampal formation (n=16-20 sections). After inactivation of 

endogenous peroxidases, sections were blocked for 1 h in PBS containing 1% bovine serum albumin 

and 0.1% Triton X-100. Sections were treated prior to blocking with 2 N HCl for 45 min at 37°C, 

washed in borate buffer 0.1 M pH 8.5 and then incubated overnight at 4°C in blocking buffer 

containing the primary antibody anti-BrdU (mouse monoclonal 1:100, Roche Applied Science, 

Mannheim, Germany). Detection was performed with an HRP-conjugated anti-mouse secondary 

antibody (dilution 1:200; Jackson Immunoresearch, West Grove, PE, USA) and DAB kit (Vector 

Laboratories, Burlingame, CA, USA). 

Ki-67 immunohistochemistry in P15 mice. One out of 20 sections were taken starting from the 

beginning of the lateral ventricle up to the end of the hippocampal formation. Sections were incubated 

overnight at 4°C with a rabbit monoclonal anti-Ki67 antibody (1:100; Thermo Scientific). Detection 

was performed with a HRP-conjugated anti-rabbit secondary antibody (1:200; Jackson 

Immunoresearch) and DAB kit (Vector Laboratories).  

Ki-67 immunohistochemistry in P45 mice. One out of 6 sections were taken starting from the 

beginning to the end of the hippocampal formation (n=16-20 sections). Sections were incubated 

overnight at 4°C with rabbit monoclonal anti-Ki67 antibody (1:100; Thermo Scientific). Section were 

then incubated for 2 h with a Cy3 conjugated anti-rabbit IgG (1:200; Jackson Immunoresearch). 

Sections were counterstained with Hoechst 33342 in order to label cell nuclei.  

Cleaved caspase–3 immunohistochemistry in P15 mice. One out of 20 sections from the beginning of 

the lateral ventricle to the end of the hippocampal formation (n=16-20 sections) were processed for 

cleaved caspase-3 immunohistochemistry, as previously described. Deparaffinized sections were 

permeabilized with 0.1% Triton X-100 in PBS for 30 min, blocked for 1 h in 3% BSA in 0.1% Triton 

X-100 and PBS, incubated overnight at 4°C with a primary antibody [rabbit cleaved caspase-3 (Asp 

175) antibody (Cell Signaling Technology)], and diluted 1:200 in 3% BSA in 0.1% Triton X-100 and 
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PBS. Sections were washed in 0.1% Triton X-100 in PBS for 40 min and incubated for 2 h with a 

secondary antibody, Cy3-conjugated anti-rabbit IgG (1:200; Jackson Immunoresearch) diluted in 

0.1% Triton X-100 in PBS and 3% BSA, and rinsed in 0.1% Triton X-100 in PBS for 30 min. 

Fluorescent images were taken with an Eclipse TE 2000-S microscope. 

SYN and PSD-95 immunohistochemistry in P15 and P45 mice. Free-floating sections (n=4-6 per 

animal) taken at the level of the hippocampal formation were submitted to fluorescence 

immunohistochemistry for SYN and PSD-95. Sections were counterstained with Hoechst dye in order 

to label cell nuclei. Sections were incubated for 48 h at 4°C with a mouse monoclonal anti-SYN 

(SY38) antibody (Millipore-Biomanufacturing and Life Science Research, Billerica, MA, USA) and 

rabbit polyclonal anti-PSD-95 antibody (Abcam) both diluted 1:1000. Sections were then incubated 

overnight at 4°C with a FITC-conjugated goat anti-mouse antibody or with a CY3-conjugated anti-

rabbit (Jackson Laboratory) antibody both diluted 1: 200.  

Hematoxylin-staining in P15 mice. One out of 20 sections, taken from the beginning to the end of the 

hippocampal formation (n=9-12) were stained with hematoxylin. 

 

Measurements 

Image acquisition. A light microscope (Leitz) equipped with a motorized stage and focus control 

system and a color digital camera (Coolsnap-Pro; Media Cybernetics, Silver Spring, MD, USA) were 

used to take bright field images of section processed for BrdU (P15) and Ki67 (P15) 

immunohistochemisty. Immunofluorescence images of sections processed for cleaved caspase-3 

(P15) and Ki-67 (P45) were taken with a Nikon Eclipse TE 2000-S inverted microscope (Nikon Corp., 

Kawasaki, Japan), equipped with a Nikon digital camera DS 2MBWc. Immunofluorescence images 

of sections processed for SYN and PSD-95 immunohistochemistry were taken with a LEICA TCS 

SL confocal microscope. Measurements were carried out using Image Pro Plus software (Media 

Cybernetics, Silver Spring, MD 20910, USA). 

Number of BrdU-positive cells. Cells were sampled from the dentate gyrus (DG) and the rostral 
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subventricular zone (SVZ). BrdU-positive cells in the DG and SVZ of P15 mice were detected using 

a light microscope (Eclipse; objective: x 40, 0.75 NA; final magnification: x 400). Quantification of 

BrdU-labeled nuclei was conducted in every 20th section using a modified unbiased stereology 

protocol that has previously been reported as successfully quantifying BrdU labeling (Malberg et al., 

2000, Kempermann and Gage, 2002, Tozuka et al., 2005). All BrdU labeled cells located in the 

granule cell and subgranular layers were counted in their entire z axis (1 µm steps) in each section. 

To avoid oversampling errors, nuclei intersecting the uppermost focal plane were excluded. The total 

number of BrdU labeled cells per animal was determined and multiplied by 20 to obtain the total 

estimated number of cells per DG. 

Number of Ki-67-positive cells. In P15 mice, cells were sampled from the rostral SVZ. The total 

number of positive cells in the DG and SVZ was estimated by multiplying the total number counted 

in the series of sampled sections by the inverse of the section sampling fraction (ssf = 1/20). 

Quantification of Ki-67-labeled nuclei in the DG of P45 mice was conducted in every 6th section 

throughout the whole extent of the DG using a Nikon Eclipse TE 2000-S microscope (objective x 40, 

NA 0.75; final magnification x 400). A modified unbiased stereology protocol for quantification of 

proliferating cells (Malberg et al., 2000, Kempermann and Gage, 2002, Tozuka et al., 2005) was used. 

All Ki-67-labeled cells located in the granule cell and subgranular layers were counted along the 

entire z axis (1 µm steps) of each section. To avoid oversampling errors, the nuclei intersecting the 

uppermost focal plane were excluded. The total number of Ki-67-labeled cells per animal was 

determined and multiplied by six to obtain the total estimated number of cells per DG. We 

additionally evaluated, in P45 mice, the mean number of Ki-67-positive cells per section by dividing 

the number of counted cells by the number of sampled sections. 

Number of cleaved caspase-3 positive cells. In the series of sections processed for cleaved caspase-3 

IHC, cleaved caspase-3-positive cells were counted in the SVZ and DG of P15 mice. Images were 

taken using a fluorescence microscope (Eclipse; objective x 40, 0.75 NA; final magnification: x 400). 
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Total cell count was obtained from the sum of counts across all sections counted. 

Synaptic terminals. The intensity of SYN and PSD-95 immunoreactivity in the molecular layer of the 

DG and in the stratum lucidum of field CA3 of P15 mice was determined by the optical densitometry 

of immunohistochemically-stained sections. Fluorescence images were captured using a Nikon 

Eclipse E600 microscope equipped with a Nikon Digital Camera DXM1200 (ATI system). 

Densitometric analysis of SYN and PSD95 was carried out using the Nis-Elements Software 3.21.03 

(Nikon, Melville, NY, USA). A box of 490 µm2 was placed in the inner, middle and outer third of 

the molecular layer of the upper blade of the DG. Six measurements were taken for each region. For 

each image, the intensity threshold was estimated by analyzing the distribution of pixel intensities in 

the image areas that did not contain IR. This value was then subtracted to calculate IR of each sampled 

area. 

Images of sections immunoprocessed for SYN or PSD-95 of P15 and P45 mice were acquired with a 

confocal microscope (Nikon Ti-E fluorescence microscope coupled with an A1R confocal system, 

Nikon). In each section three images from the molecular layer of the DG and the stratum lucidum of 

field CA3 were captured and the density of individual puncta exhibiting SYN or PSD-95 

immunoreactivity was evaluated as previously described (Guidi et al., 2013). 

Stereology of the DG. Unbiased stereology was performed on Hoechst-stained sections. The optical 

disector method was used to obtain cell density, and the Cavalieri principle was used to estimate 

volume of the granule cell layer of the DG (West and Gundersen, 1990). In P45 mice, one DG is 

represented in 90-110 30-m-thick sections. To include 16-18 sections, every 6th section was 

selected, beginning at a random position within the first 6 sections. For determination of the granule 

cell number, granule cell nuclei were counted with an x 63 oil objective (NA 1.32). In order to obtain 

granule cell numerical density, cells were counted in 30 x 30 counting frames spaced in a 100 m 

square grid superimposed over each section. Cells that intersected the uppermost focal (exclusion) 

plane and those that intersected the exclusion boundaries of the unbiased sampling frame were 

excluded from counting. Cells that met the counting criteria through a 30 µm axial distance were 
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counted according to the optical disector principle. 

The neuron density (Nv) is given by 

NV = (Q/dis)/Vdis 

where Q is the number of particles counted in the disectors, dis is the number of disectors and Vdis 

is the volume of the disector. For volume (Vref) estimation with the Cavalieri principle, in each 

sampled section, the area of the granule cell layer was measured by tracing its contours. The volume 

of the granule cell layer (Vref) was estimated (West and Gundersen, 1990) by multiplying the sum of 

the cross sectional areas by the spacing T between sampled sections (180 m). The total number (N) 

of granule cells was estimated as the product of Vref  and the numerical density (Nv). 

N= NV x Vref 

 

Western blotting  

Total proteins were obtained from hippocampi of P15 and P45 mice. Briefly, hippocampi were 

homogenized in ice-cold RIPA buffer (1% Triton-X100, 150 mM NaCl, 1 mM EDTA and 20 mM 

Tris pH 8) supplemented with 1mM phenyl-methanesulphonylfluoride (PMSF) and 1% proteases and 

phosphatases inhibitors cocktail (Sigma). Samples were then incubated in ice for 30 minutes, 

sonicated for 15 minutes and clarified by centrifugation at 14 000 ¥ g for 20 minutes at 4°C. Protein 

concentration was determined by the Lowry method. Proteins (50 μg) extracted from P15 mice were 

subjected to electrophoresis on a 4-12% Mini-PROTEAN® TGX™Gel (Bio-Rad) and transferred to 

a Hybond ECL nitrocellulose membrane (Amersham Life Science). The following primary antibodies 

were used: anti-Amyloid Precursor Protein, C-Terminal (anti-APP; 1:5000; Sigma-Aldrich); anti-

PTCH1 (1:50; R&D systems), anti-GSK3β (anti-GSK3β; 1:1000; Cell Signaling Technology); anti-

Phospho-GSK3β (Ser9) XP® (anti-pGSK3β Cell Signaling Technology); anti-GAPDH (anti-

GAPDH; 1:10000; Sigma-Aldrich). Proteins (50-80 μg) extracted from P45 mice were subjected to 

electrophoresis on a 4-12% NuPAGE Bis-Tris Precast Gel (Novex, Life Technologies, Ltd, Paisley, 

UK) and transferred to a Hybond ECL nitrocellulose membrane (Amersham Life Science). The 
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following primary antibodies were used: anti-PTCH1 (1:1000; Abcam), anti-p21 (1:500; Santa Cruz 

Biotechnology), anti-APP C-Terminal (1:2000; Sigma-Aldrich) and anti-GAPDH (1:5000; Sigma-

Aldrich). Densitometric analysis of images digitized with ChemiDoc XRS+ was performed with 

Image Lab software (Bio-Rad Laboratories, Hercules, CA, USA) and intensity for each band was 

normalized to the intensity of the corresponding GAPDH band. 

 

Patch-clamp experiments 

Preparation of slices. Mice (P30-P45) were anesthetised by inhalation of isoflurane (Merial Italia, 

Milan, Italy) and transcardially perfused with a cutting solution. The brain was quickly extracted 

under hypothermic conditions and submerged in ice-cold cutting solution. For the preparation of 

slices for the voltage-clamp recordings. Two coronal cuts were made, in order to remove the anterior 

half and the occipital pole of the brain, and the piece thus obtained was laid on the posterior section 

plane. The tissue was blocked on the stage of a Microslicer DTK-1000 vibratome (Dosaka, Kyoto, 

Japan) using cyanoacrilate glue. Coronal slices of the hippocampus, 350-μm thick, were cut 

maintaining the tissue submerged in an ice-cold solution composed of (in mmol/l): 130 K gluconate, 

15 KCl, 20 HEPES, 0.2 EGTA, 11 glucose. The use of this high-K+ solution was found to improve 

neuron viability (Stephane Dieudonné, unpublished results). The slices were then transferred to a 

recovery chamber filled with a maintaining solution continuously bubbled with 95% O2, 5% CO2, at 

room temperature (21-22°C) for at least one hour before starting the recording.  

Voltage-clamp recordings, drugs, and data analysis. Whole-cell, patch-clamp recordings from CA3 

pyramidal neurons were carried out on acute slices of the dorsal hippocampus obtained as described 

above. The experimental set-up employed and the basic procedures followed were the same as 

described elsewhere. Briefly, cells were visualized by means of an upright microscope (Axioskop 2 

FS; Zeiss, Oberkochen, FRG) equipped with a x 60 water-immersion objective lens, differential-

contrast optics, and a near-infrared charge-coupled device (CCD) camera. Slices were perfused with 

ACSF (continuously bubbled with 95% O2, 5% CO2) at a rate of about 1.5 ml/min. Patch pipettes 
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were fabricated from thick-wall borosilicate glass capillaries (CEI GC 150-7.5; Harvard Apparatus, 

Edenbridge, UK) by means of a Sutter P-87 horizontal puller (Sutter Instruments, Novato, CA, USA). 

The pipette solution contained (in mmol/l): 150 CsF, 4 CsCl, 2 MgCl2, 10 N-2-hydroxyethyl 

piperazine-N-2-ethanesulphonic acid (HEPES), 10 ethylene glycol-bis (-aminoethyl ether) 

N,N,N´,N´-tetraacetic acid (EGTA), 2 adenosine 5-triphosphate (ATP)-Na2, 0.2 guanosine 5-

triphosphate (GTP)-Na, 2.5 lidocaine N-ethyl bromide (QX-314) (pH adjusted to 7.2 with CsOH). 

The patch pipettes had a resistance of 3-5 M when filled with the above solution. Tight seals (> 5 

G) and the whole-cell configuration were obtained by suction according to the standard technique 

(Hamill et al., 1981). Excitatory postsynaptic currents (EPSCs) were recorded at room temperature 

(21-22 °C) by means of an Axopatch 200B patch-clamp amplifier (Axon Instruments, Foster City, 

CA, USA). Series resistance (Rs) was evaluated on line by canceling the whole-cell capacitive 

transients evoked by –5-mV voltage square pulses with the amplifier built-in compensation section, 

and reading out the corresponding values. Rs was normally 5-12 M and always < 20 M, and was 

compensated by ~90%. Current signals were acquired in gap-free modality with a personal computer 

interfaced to a Digidata 1322A interface (Axon Instr.) using the Clampex program of the pClamp 8.2 

software package (Axon Instr.). Current signals were low-pass filtered at 5 kHz and digitized at 20 

kHz. Miniature synaptic currents were recorded in the presence of tetrodotoxin (used to block voltage-

gated Na+ channels, and therefore the discharge of Na+-dependent action potentials) in the perfusing 

solution, so as to prevent spontaneous synaptic events due to presynaptic action potential firing. 

Tetrodotoxin (TTx) was purchased from Alomone Labs (Jerusalem, Israel). D-(-)-2-amino-5-

phosphonopentanoic acid (APV; NMDA-receptor antagonist) and (2,3-dihydroxy-6-nitro-7-

sulfamoyl-benzo[f]quinoxaline-2,3-dione) (NBQX; AMPA receptor antagonist) were purchased 

from Tocris (Bristol, UK). Drugs were preliminarily dissolved in H2O and stored in concentrated 

aliquots at -20 °C. At the time of recording, the small aliquots were dissolved to the final 

concentrations (TTx: 1μM; APV 50 μM; NBQX: 10 μM). 

Data analysis. Results were off-line detected using an automated threshold routine in the LabView 
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environment. All detected events were also visually inspected one-by-one for confirmation or 

rejection. To be considered a synaptic event the amplitude of the EPSC was required to be at least 

twice the noise amplitude: the events that showed a lower amplitude were ignored. Accepted events 

were then used to construct frequency distribution diagrams of mEPSC amplitude. The EPSCs 

amplitude from whole-cell recordings were analyzed by means of the program Clampfit of pClamp 

8.2 (Axon Instr.). Peak amplitude values of postsynaptic currents were analyzed with Origin 6.0 

(MicroCal Software, Northampton, MA, USA) in order to build up frequency-distribution diagrams 

of the current recorded. 

 

Statistical analysis 

Data from single animals represented the unity of analysis. Results are presented as mean ± standard 

error of the mean (SE). Distribution of data and the homogeneity of variances were evaluated with 

Shapiro-Wilk test and Levene’s test respectively. Statistical analysis of all examined variables was 

carried out using a two-way ANOVA with genotype (euploid and Ts65Dn) and treatment (vehicle 

and ELN) as factors. Post hoc multiple comparisons were carried out using the Fisher least significant 

difference (LSD) test. Data were analyzed with IBM SPSS 22.0 software. For the overall mEPSC 

frequency, a linear mixed model was used. The model has been fit using the Restricted or Residual 

Maximum Likelihood (REML). It calculated the average frequency keeping memory of the number 

of cells recorded in each animal of the same experimental group (95% confidence interval). Data 

were analysed with the software R (The R Project for Statistical Computing; version 3.2.3). For the 

analysis of the decay time constant (dec) of mEPSC as a function of mEPSCs amplitude a linear 

regression analysis was used (y=A+B*X). The relative weight of each data point in the fitting 

procedure was made proportional to the number of events from which the corresponding average 

current had been obtained. Data were analysed with the software Origin 6.0 using the Fit Linear 

function. For all analyses, a probability level of p < 0.05 was considered to be statistically significant.  

 



106 

3.1.4 Results 
 

Short-term effect of neonatal treatment with ELN on neurogenesis in the SVZ and SGZ of Ts65Dn 

mice 

We treated euploid and Ts65Dn mice with ELN from P3 to P15, in order to establish whether 

treatment was able to restore neurogenesis in this model. At P15 mice were injected with BrdU and 

were killed after 2h. Evaluation of the number of proliferating cells in SGZ of the dentate gyrus (DG) 

and in the subventricular zone (SVZ) of the lateral ventricle showed that Ts65Dn mice had fewer 

BrdU-positive cells in comparison with euploid mice (Fig. 3.1.2A-D). Treatment with ELN increased 

the number of BrdU-positive cells in Ts65Dn mice, so that treated mice had a similar number of 

BrdU-positive cells as untreated euploid mice both in the DG (Fig. 3.1.2C) and SVZ (Fig. 3.1.2D). 

Treatment had no effects in euploid mice when compared with their untreated counterparts (Fig. 

3.1.2C,D). To establish whether treatment with ELN restores the overall size of the population of 

neural precursors in the DG and SVZ of Ts65Dn mice, we evaluated the number of cells 

immunopositive for Ki-67, an endogenous marker expressed during all the phases of the cell cycle 

(Scholzen and Gerdes, 2000). We found that in the DG of untreated Ts65Dn mice there were fewer 

Ki-67-positive cells in comparison with euploid mice (Fig. 3.1.2E). In treated Ts65Dn mice the 

number of cycling cells underwent a large increase and became similar to that of euploid mice (Fig. 

3.1.2E). Similar findings were obtained in the SVZ (Fig. 3.1.2F). The protein cleaved caspase-3 is 

one of the hallmarks of apoptotic death (Blomgren et al., 2007). The number of apoptotic cells was 

not different between untreated euploid and Ts65Dn mice in both DG and SVZ and treatment did not 

alter cleaved caspase-3- positive cells (Fig. 3.1.2G,H). Taken together, these results indicate that 

treatment with ELN during the first two postnatal weeks restores the number of neural precursor cells 

in the DG and SVZ of Ts65Dn mice and suggest that this effect is due to an increase in 
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Figure 3.1.2. Effect of APP γ-secretase inhibition on proliferation potency in the dentate gyrus and 

subventricular zone of Ts65Dn and euploid mice aged 15 days. Animals received a daily injection of 

ELND006 or vehicle in the period P3-P15. On P15 they received one injection of BrdU and were sacrificed 

after 2 h. A-B: Sections immunostained for BrdU from the DG (A) and SVZ (B) of untreated and treated 

euploid and Ts65Dn mice. Scale bar: 100 µm (A); 50 µm (B). C, D: Total number of BrdU-positive cells in 

the DG (C) and SVZ (D) of untreated euploid (n= 5) and Ts65Dn (n=4) mice and euploid (n=4) and Ts65Dn 

(n=5) mice treated with ELN. E, F: Number of Ki-67-positive cells in the dentate gyrus (E) and SVZ (F) of 

untreated euploid (n= 5) and Ts65Dn (n=4) mice and euploid (n=4) and Ts65Dn (n=5) mice treated with ELN. 

G,H: Number of cleaved caspase-3-positive cells in the DG (G) and SVZ (H) of untreated euploid (n= 5) and 

Ts65Dn (n=4) mice and euploid (n=4) and Ts65Dn (n=5) mice treated with ELN. Values (mean  SE) in (C-

H) represent totals for one hemisphere. * p < 0.05; ** p < 0.01; *** p < 0.001. Abbreviations: DG, dentate 

gyrus; ELN, ELND006; Eu, euploid; LV, lateral ventricle; SVZ, subventricular zone.
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proliferation potency and not to a decrease in cell death. 

In mice, the SGZ produces most of the granule cells that populate the granule cell layer of the DG in 

the first two postnatal weeks (Altman and Bayer, 1975). In order to establish whether the increase in 

the number of neural cell precursors in the DG of treated Ts65Dn mice translated into restoration of 

total granule cell number we evaluated the number of granule cells. In euploid mice, treatment did 

not change the volume of the granule cell layer, granule cell density and total granule cell number 

(Fig. 3.1.3). In contrast, in Ts65Dn mice, treatment significantly increased the volume of the granule 

cell layer, granule cell density and total granule cell number (Fig. 3.1.3). Treated Ts65Dn and 

untreated euploid mice had the same volume of the granule cell layer, granule cell density and total 

granule cell number (Fig. 3.1.3), indicating a treatment-induced rescue in the morphogenesis of the 

granule cell layer. 

 

Short-term effect of neonatal treatment with ELN on hippocampal synapse development 

Since treatment with ELN restored total granule cell number in Ts65Dn mice we wondered whether 

there  were also positive effects on synapse development, a process that is impaired in the trisomic 

brain (Kurt et al., 2004, Belichenko et al., 2007, Chakrabarti et al., 2007, Guidi et al., 2013). To 

answer this question, we evaluated the immunoreactivity for synaptophysin (SYN), a marker of 

presynaptic terminals, and the postsynaptic density protein-95 (PSD-95), a marker of postsynaptic 

terminals, in hippocampal sections from treated and untreated euploid and Ts65Dn mice. We focused 

on two regions of the hippocampal formation, the molecular layer of the DG because this layer 

receives inputs from the perforant pathway (the major input to the hippocampus), and the stratum 

lucidum of field CA3, the site of termination of the axons of the granule cells (Amaral and Witter, 

1995).  

Results showed that the levels of SYN immunoreactivity in untreated Ts65Dn mice was significantly 

lower than in untreated euploid mice in the inner (-21%), middle (-16%) and outer (-15%) molecular 

layer of the DG (Fig. 3.1.4B) and in the stratum lucidum (-13%) of CA3 (Fig. 3.1.4C). In parallel 
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Figure 3.1.3. Effect of APP γ-secretase inhibition on total granule cell number in the dentate gyrus of 

P15 mice. A: Hoechst-stained coronal section across the dentate gyrus of an animal of each experimental 

group. The higher magnification images in the lower row correspond to the region enclosed in the dotted box 

in the upper row. Scale bar = 50 µm (upper row); 10 µm (lower row). B: Volume of the granule cell layer, 

density of granule cells (number per mm3) and total number of granule cells of the DG. Values are mean  SE. 

Volume and granule cell number refer to one hemisphere. * p < 0.05; ** p < 0.01; *** p < 0.001. Abbreviations: 

ELN, ELND006; Eu, euploid; GR, granule cell layer; MOL, molecular layer. 
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with the low levels of SYN immunoreactivity, in Ts65Dn mice there was fewer immunoreactivity for 

PSD-95 in the inner (-10%), middle (-15%) and outer (-8%) molecular layer of the DG (Fig. 3.1.4E) 

and in the stratum lucidum (-10%) of CA3 (Fig. 3.1.4F). Treatment with ELN increased the 

immunoreactivity for SYN (Fig. 3.1.4B,C) and PSD-95 (Fig. 3.1.4E,F) in all zones of the molecular 

layer and in the stratum lucidum of CA3 in Ts65Dn mice, that became similar to that of untreated 

euploid mice. In euploid mice, treatment did not affect the immunoreactivity for SYN (Fig. 3.1.4B,C) 

and PSD-95 (Fig. 3.1.4E,F) both in the DG and CA3. In order to establish whether the effects of 

genotype and treatment on protein levels were attributable to different levels of synaptic proteins per 

synapse or to differences in the number of synapses, we evaluated the density of individual puncta 

exhibiting either SYN or PSD-95 immunoreactivity. While untreated Ts65Dn mice had fewer SYN- 

(Fig. 3.1.5B,C) and PSD-95- (Fig. 3.1.5E,F) positive puncta both in the DG and CA3, neonatal 

treatment with ELN increased the number of SYN (Fig. 3.1.5B,C) and PSD-95- positive puncta (Fig. 

3.1.5E,F) in Ts65Dn mice, that became similar to that of euploid mice in both regions. Together, 

these evidence suggests that treatment had restored hippocampal synapse development.  

 

Short-term effect of treatment with ELN on AICD levels 

An important issue regards the effects of ELN on the activity of γ-secretase and hence, AICD levels 

after treatment cessation. Unfortunately, unlike in cultures of NPCs, it was extremely difficult to 

detect AICD in brain samples processed for western blotting (we detected AICD band in 3% of all 

examined cases only). This small peptide has a very short half-life (about 5 min) (Cupers et al., 2001). 

Thus, its degradation in the phase of brain excision may render it undetectable. Since AICD derives 

from the cleavage of the CTFs, inhibition of the activity of γ-secretase should reduce the levels of 

AICD and, consequently, increase the levels of CTFs. This suggests that an estimate of AICD levels 

can be obtained indirectly by quantifying the levels of the CTFs. Thus, in order to obtain information 

regarding the short-term effect of treatment on AICD levels we evaluated the levels of the CTFs in 
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Figure 3.1.4. Effect of APP γ-secretase inhibition on synapse development in the hippocampal formation. 

A, D: Sections processed for SYN (A) and PSD-95 (D) immunofluorescence from the DG (upper row) and 

CA3 (lower row) of an animal from each experimental group. Scale bar = 100 m. B, C, E, F: Optical density 

of SYN (B, C) and PSD-95 (E, F) immunoreactivity in the inner, middle and outer third of the molecular layer 

of the DG (B, E) and the stratum lucidum of CA3 (C, F) of untreated euploid (n= 6) and Ts65Dn (n=5) mice 

and euploid (n=6) and Ts65Dn (n=5) mice treated with ELN. For each region, data of SYN and PSD-95 

immunoreactivity are given as fold difference vs. untreated euploid mice. Values in B, C, E, F represent mean 

 SE. * p < 0.05; ** p < 0.01; *** p < 0.001. Abbreviations: ELN, ELND006; Eu, euploid; GR, granule cell 

layer; i, inner; LUC, stratum lucidum; m, middle; MOL, molecular layer; o, outer; PYR, pyramidal layer. 
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Figure 3.1.5. Effect of APP γ-secretase inhibition on the number of puncta in the hippocampal 

formation. A,D: Images, taken with the confocal microscope, of sections processed for SYN (A) and PSD-95 

(D) immunofluorescence from the DG of an animal of each experimental group. Scale bar = 3 m. B, C, E, F: 

Number of puncta per m2 exhibiting SYN (B, C) and PSD-95 (E, F) immunoreactivity in the inner, middle 

and outer third of the molecular layer of the DG (B, E) and the stratum lucidum of CA3 (C, F) of untreated 

euploid (n=6), untreated Ts65Dn (n=5), and euploid (n=6) and Ts65Dn (n=5) mice treated with ELND006. 

Values in B, C, E, F represent mean  SE. * p < 0.05; ** p < 0.01; *** p < 0.001. Abbreviations: ELN, 

ELND006; Eu, euploid; LUC, stratum lucidum.
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P15 euploid and Ts65Dn mice.Results showed that in the hippocampus of untreated Ts65Dn mice 

there were higher levels of CTFs in comparison to euploid mice (Fig. 3.1.6A,B). Treatment with ELN 

in Ts65Dn mice provoked an increase in the levels of CTFs in comparison with their untreated 

counterparts (Fig. 3.1.6A,B), which is consistent with the inhibitory action exerted by ELN on the 

activity of γ-secretase. This indicates that probably levels of AICD underwent a reduction after 

treatment with ELN. 

 

Short-term effect of treatment with ELN on AICD targets 

AICD is a transcription factor that up-regulates various genes, including PTCH1, BACE1, APP and 

GSK3 (Cao and Sudhof, 2001, von Rotz et al., 2004, Nalivaeva and Turner, 2013). In light of this, 

we decided to examine the expression levels of these genes in the hippocampus of treated and 

untreated euploid and Ts65Dn mice. Untreated Ts65Dn mice had higher Ptch1 levels in comparison 

with euploid mice, and treatment with ELN decreased the levels of this protein. As in Ts65Dn mice, 

a reduction in PTCH1 levels also took place in treated euploid mice (Fig. 3.1.7A). BACE1 is an 

enzyme of the beta amyloidogenic pathway that cleaves APP, producing CTF. Ts65Dn mice had 

higher BACE1 levels in comparison with euploid mice. Treatment with ELN reduced treated BACE1 

levels in Ts65Dn mice, that became similar to those of untreated euploid mice, and in euploid mice 

(Fig. 3.1.7B). Untreated Ts65Dn mice had notably higher levels of APP in comparison with euploid 

mice (Fig. 3.1.7C). In Ts65Dn mice APP levels largely decreased after neonatal treatment with ELN 

in comparison with their untreated counterparts, though they remained larger in comparison with 

untreated euploid mice (Fig. 3.1.7C). In euploid mice treatment had no effect on APP levels (Fig. 

3.1.7C). Another protein presents at high levels in Ts65Dn mice in comparison with euploid mice is 

GSK3 a kinase involved in neurogenesis and neuron maturation (Kim and Snider, 2011). Treated 

Ts65Dn mice showed a large reduction in GSK3levels (Fig. 3.1.7D). A reduction in GSK3 levels 

also took place in treated in comparison with untreated euploid mice (Fig. 3.1.7D). In addition to 

regulate GSK3 transcription, AICD has been shown to reduce GSK3 phosphorylation at ser9 
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Figure 3.1.6. Short-term effect of treatment with ELN on CTFs levels. Western blot analysis of CTFs in 

the hippocampus of treated and untreated Ts65Dn and euploid mice (n=8 for each experimental group). Mice 

were treated with ELN in the period P3-P15 and sacrificed at P15. A: Examples of western blot images. B: 

Quantification of CTFs levels in untreated euploid (n = 4) and Ts65Dn (n = 4) and treated euploid (n = 4) and 

Ts65Dn (n = 5) mice normalized to GAPDH. Values (mean  SE) are expressed as fold difference in 

comparison with untreated euploid mice. ** p < 0.01; *** p < 0.001 (Fisher LSD test after two-way ANOVA). 

Abbreviations: ELN, ELND006; Eu, Euploid.
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(Zhou et al., 2012).This kinase becomes active when dephosphorylated at ser9, thereby negatively 

influencing proliferation and differentiation of neural precursor cells. Evaluation of the hippocampal 

levels of the phosphorylated form of GSK3 showed that in untreated Ts65Dn mice the levels of the 

phosphorylated form were reduced in comparison with euploid mice (Fig. 3.1.7E), while after 

treatment there was an increase in the levels of p-GSK3in Ts65Dn mice, becoming higher than 

those of untreated euploid mice. An increase in p-GSK3 levels also took place in treated in 

comparison with untreated euploid mice (Fig. 3.1.7E).  

 

Long-term effect of treatment with ELN on body and brain weight 

We examined the effects of treatment on the body and brain weight in order to obtain information on 

the general effect of neonatal treatment with ELN when mice reached 45 days of age. A two-way 

ANOVA on body weight showed no genotype x treatment interaction; an effect of genotype [F(1,56) 

= 25.704, p ≤ 0.001] was shown, but no effect of treatment emerged. A post hoc Fisher LSD test 

showed that, as previously described, untreated Ts65Dn mice had a reduced body weight in 

comparison with their euploid counterparts (Fig. 3.1.8A). Treatment with ELN did not affect the body 

weight of either Ts65Dn or euploid mice (Fig. 3.1.8A).  

A two-way ANOVA on brain weight revealed no genotype x treatment interaction; a significant effect 

of genotype [F(1,56) = 33.463, p ≤ 0.001] but no effect of treatment. A post hoc Fisher LSD test 

showed that the brain of untreated Ts65Dn mice had a reduced weight in comparison with their 

euploid counterparts (Fig. 3.1.8B). As for the body weight, treatment did not influence the brain 

weight on either Ts65Dn or euploid mice (Fig. 3.1.8B). These results suggest that neonatal treatment 

with ELN has no patent long-term adverse effects on animals’ general conditions.  

 

Long-term effect of treatment with ELN on cell proliferation and cellularity in the dentate gyrus 

We had demonstrated that immediately after neonatal treatment with ELN there was a restoration of 



116 

 

Figure 3.1.7. Effect of APP γ-secretase inhibition on AICD targets in P15 mice. A: Western blot analysis 

of PTCH1, APP, phosphorylated GSK3β and total GSK3β in the hippocampus of untreated Ts65Dn (n = 4) 

and euploid (n = 4) mice and treated Ts65Dn (n = 5) and euploid (n = 4) mice. B-E: PTCH1 (B), APP (C), p-

GSK3β (D) and total GSK3β (E) levels. Data in (B, C and E) were normalized to GAPDH and data in (D) 

were normalized to total GSK3β. Values in (B-E) (mean  SE) are expressed as fold difference in comparison 

with untreated euploid mice. All western blot images are explicative reconstructions. * p < 0.05; ** p < 0.01; 

*** p < 0.001. Abbreviations: ELN, ELND006; Eu, euploid.



117 

 

 

 

 

 

 

 

 

Figure 3.1.8. Body and brain weight of P45 euploid and Ts65Dn mice treated with either vehicle or 

ELND006. Untreated euploid mice: n=19; untreated Ts65Dn mice: n=10; treated euploid mice: n=20; treated 

Ts65Dn mice: n=11. ** p < 0,01; *** p < 0.001 (Fisher LSD test after two-way ANOVA). Black asterisks in 

the gray bar indicate a difference between untreated Ts65Dn mice and treated euploid mice; white asterisks in 

the black bar indicate a difference between treated Ts65Dn mice and treated euploid mice. Abbreviations: 

ELN, ELND006; Eu, Euploid.
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the pool size of actively dividing granule cell precursors. Thus, we wondered whether this positive 

effect was retained after treatment cessation. To this purpose, we evaluated the number of Ki-67-

positive cells in the DG of P45 mice. A two-way ANOVA showed a genotype x treatment interaction 

[F(1,20) =23.164, p ≤ 0.001] on total Ki-67-positive cells counted and a genotype x treatment 

interaction [F(1,20) =16.652, p = 0.001] on Ki-67-positive cells per section. Fisher LSD test showed 

that untreated Ts65Dn mice had fewer number of Ki-67-positive cells per section (Fig. 3.1.9B) and 

fewer total number of Ki-67-positive cells (Fig. 3.1.9C) than untreated euploid mice. In contrast, 

Ts65Dn mice that had been neonatally-treated with ELN had a similar number of Ki-67-positive cells 

per section (Fig. 3.1.9B) and a similar total cell number (Fig. 3.1.9C) as untreated euploid mice, 

indicating that the positive effect of treatment on precursor proliferation was retained with time. In 

euploid mice treated with ELN there was a reduction in the number of Ki-67-positive cells per section 

(Fig. 3.1.9B) and total number of Ki-67-positive cells (Fig. 3.1.9C) in comparison with untreated 

euploid mice.  

Then we asked whether the positive impact of treatment on the cellularity of the DG observed in 

neonates in Ts65Dn mice was retained after treatment cessation. To investigate this, we 

stereologically examined the granule cell layer of the DG. 

A two-way ANOVA on total number of granule cells showed a genotype x treatment interaction 

[F(1.20) = 16.070, p ≤ 0.001] but not significant effect of genotype or treatment. As in P15 mice, a 

post hoc Fisher LSD test showed that untreated Ts65Dn mice had fewer granule cells than untreated 

euploid mice (Fig. 3.1.10B), while ELN neonatally-treated Ts65Dn mice had a similar number of 

granule cells as untreated euploid mice (Fig. 3.1.10B), indicating that the positive effect of treatment 

on total granule cell number was retained with time. Unlike in Ts65Dn mice, in euploid mice 

neonatally-treated with ELN there was a reduction in the total number of granule cells in comparison 

with untreated euploid mice (Fig. 3.1.10B).  
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Figure 3.1.9. Long-term effect of treatment with ELN on the size of the population of neural precursor 

cells in the dentate gyrus. A: Examples of sections processed for fluorescence immunostaining for Ki-67 

from the dentate gyrus of untreated euploid and Ts65Dn mice and euploid and Ts65Dn mice treated with ELN. 

Examples of Ki-67-positive cells are indicated in the enlarged boxed area. Calibrations = 200 m (lower 

magnification) and 40 m (higher magnification). B, C: Mean number of Ki-67-positive cells per section (B) 

and total number of Ki-67-positive cells (C) in the DG of treated and untreated Ts65Dn and euploid mice (n=6 

for each experimental group). Values represent mean  SE. * p < 0.05; *** p < 0.001 (Fisher LSD test after 

two-way ANOVA). White asterisks in the black bar indicate a difference between treated Ts65Dn mice and 

treated euploid mice. Abbreviations: ELN, ELND006; Eu, Euploid; Gr, granule cell layer; SGZ, subgranular 

zone. 
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Figure 3.1.10. Long-term effect of treatment with ELN on the number of granule neurons of the dentate 

gyrus. A: Representative images of Hoechst-stained sections of the granule cell layer of an animal from each 

experimental group. The sides of the superimposed optical disector are 30 m in length. The stars indicate 

individual nuclei. Note that nuclei intersecting the exclusion sides (thick lines) were not counted. B: Total 

number of granule cells in untreated and treated euploid and Ts65Dn mice (n=6 for each experimental group). 

Values (mean  SE) refer to one hemisphere. * p < 0.05; ** p < 0.01 (Fisher LSD test after two-way ANOVA). 

Abbreviations: ELN, ELND006; Eu, Euploid. 
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Long-term effects of neonatal treatment with ELN on CTFs levels 

The increased levels of CTFs in P15 mice provided indirect evidence that treatment with ELN had 

caused a reduction in AICD levels. In order to establish whether this effect was retained after 

treatment cessation, we evaluated hippocampal CTFs levels in P45 mice. A two-way ANOVA did 

not reveal a genotype x treatment interaction, no significant effect of treatment but a main effect of 

genotype [F(1,28) = 30.081, p ≤ 0.001]. A post hoc Fisher LSD test showed that CTFs levels in the 

hippocampus of untreated Ts65Dn mice were higher in comparison with euploid mice (Fig. 3.1.11B). 

P45 Ts65Dn mice treated with ELN, however, had similar levels of CTFs as their untreated 

counterparts (Fig. 3.1.11B), indicating that the inhibition exerted by ELN on the activity of γ-

secretase did not outlast treatment cessation. 

 

Long-term effects of neonatal treatment with ELN on PTCH1 levels 

As reported above, P15 Ts65Dn mice show high levels of PTCH1 in the hippocampus, supporting 

our idea that neurogenesis impairment may be attributable to over-inhibition of the Shh pathway. In 

order to establish whether neonatal treatment with ELN caused an enduring effect on PTCH1 levels 

in Ts65Dn mice, we evaluated the expression of this protein in hippocampal homogenates of P45 

mice, i.e. one month after treatment cessation. A two-way ANOVA on hippocampal PTCH1 levels 

did not highlight a genotype x treatment interaction and no significant effects of both genotype and 

treatment were emerged. A post hoc Fisher LSD test showed no statistical differences among the four 

experimental groups (Fig. 3.1.12A,B). These results indicate an age-related normalization of PTCH1 

expression and suggest that the neurogenesis impairment still present in P45 Ts65Dn mice (Fig. 3.1.9) 

cannot be attributed to over-inhibition of the Shh pathway. Unlike in P15 mice, in P45 mice ELN did 

not cause a reduction in PTCH1 hippocampal levels neither in euploid nor in Ts65Dn (Fig. 3.1.12A). 

These findings suggest that neurogenesis defects in P45 Ts65Dn cannot be attributable the alterations 

of the SHH pathway. p21 is a cyclin-dependent kinase inhibitor that inhibits cell cycle progression 

and is expressed at high levels in embryos and infants with Down syndrome and in Ts65Dn mice.  
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Figure 3.1.11. Long-term effect of treatment with ELN on CTFs levels. Western blot analysis of CTFs in 

the hippocampus of treated and untreated Ts65Dn and euploid mice (n=8 for each experimental group). Mice 

were treated with ELN in the period P3-P15 and were sacrificed at P45. A: Examples of western blot images 

of CTFs. B: Quantification of CTFs levels normalized to GAPDH. Values (mean  SE) are expressed as fold 

difference in comparison with untreated euploid mice. *** p < 0.001 (Fisher LSD test after two-way ANOVA). 

Black asterisks in the gray bar indicate a difference between untreated Ts65Dn mice and treated euploid mice. 

White asterisks in the black bar indicate a difference between treated Ts65Dn mice and treated euploid mice. 

Abbreviations: ELN, ELND006; Eu, Euploid. 
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Figure 3.1.12. Long-term effect of treatment with ELN on protein levels. Western blot analysis of PTCH1 

and p21 in the hippocampus of treated and untreated Ts65Dn and euploid mice (n=8 for each experimental 

group). Mice were treated with ELN in the period P3-P15 and were sacrificed at P45. A-D: Examples of 

western blot images of PTCH1 (B) and p21 (D) and quantification of PTCH1 (A) and p21 (C) levels 

normalized to GAPDH. Values (mean  SE) are expressed as fold difference in comparison with untreated 

euploid mice. (*) p < 0.06; * p < 0.05; ** p < 0.01 (Fisher LSD test after two-way ANOVA). Abbreviations: 

ELN, ELND006; Eu, Euploid. 
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Thus, p21 may be one of the factors that contribute to neurogenesis impairment in DS. For this reason, 

we examined p21 protein levels in the hippocampus of P45 euploid and Ts65Dn mice. A two-way 

ANOVA on p21 levels showed a genotype x treatment interaction [F(1, 28) = 8.354, p = 0.007], but 

no effects of genotype or treatment were revealed. A post hoc Fisher LSD showed that untreated 

Ts65Dn mice had higher levels of p21 than euploid mice. Treatment caused a reduction in p21 levels 

in Ts65Dn mice although this effect was only marginally significant (Fig. 3.1.12C). In contrast, in 

treated euploid mice p21 levels underwent an increase in comparison with untreated euploid mice 

(Fig. 3.1.12C). This evidence provides a mechanistic link between the long-term restoration of 

precursor proliferation found in P45 treated Ts65Dn mice and the reduction in the number of neural 

precursors in treated euploid mice (Fig. 3.1.9).  

 

Long-term effects of neonatal treatment with ELN on hippocampal synapses 

We counted the number of SYN and PSD-95 immunoreactive puncta in the middle molecular layer 

of the DG and the stratum lucidum of field CA3, in order to establish whether neonatal treatment with 

ELN has a long-term effect on hippocampal synapses. 

A two-way ANOVA on the number of SYN puncta in the molecular layer of the DG showed no 

genotype x treatment interaction; a main effect of genotype [F(1,20) = 14.330 p ≤ 0.001] emerged, 

but there was no effect of treatment. A two-way ANOVA on the number of PSD-95 puncta in the 

molecular layer of the DG showed no genotype x treatment interaction; there was an effect of 

genotype [F(1,20) = 46.893, p ≤ 0.001], but no effect of treatment. A post hoc Fisher LSD test showed 

that in the molecular layer of the DG, untreated Ts65Dn mice had fewer SYN (Fig. 3.1.13A) and 

PSD-95 (Fig. 3.1.13B) immunoreactive puncta in comparison with untreated euploid mice. Even 

though in treated Ts65Dn mice the number of puncta was slightly larger in comparison with their 

untreated counterparts, this difference was not statistically significant. In the DG of treated Ts65Dn 

mice SYN and PSD-95 immunoreactive puncta were lower in comparison with untreated euploid 
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mice. 

A two-way ANOVA on the number of SYN puncta in the stratum lucidum of field CA3 showed no 

genotype x treatment interaction but did show a significant effect of both genotype [F(1,20) = 13.046, 

p ≤ 0.002] and treatment [F(1,20) = 60.003, p ≤ 0.001]. A two-way ANOVA on the number of PSD-

95 puncta in field CA3 showed a genotype x treatment interaction [F(1,20) = 8.181, p ≤0.010] and a 

main effect of both genotype [F(1,20) = 22.792, p ≤ 0.001] and treatment [F(1,20) =9.432, p ≤ 0.006]. 

A post hoc Fisher LSD test showed that in the field CA3 untreated Ts65Dn mice had fewer SYN 

(Fig. 3.1.13C) and PSD-95 (Fig. 3.1.13D) immunoractive puncta in comparison with untreated 

euploid mice. However, treated Ts65Dn mice showed a larger number of SYN and PSD-95 

immunoreactive puncta in comparison with their untreated counterparts and their number of puncta 

became than that of untreated euploid mice (Fig. 3.1.13C,D), indicating a long-term positive effect 

on the DG-CA3 connections.  

 

Long-term effect of ELN on basal synaptic input to CA3 neurons 

“Miniature” synaptic events reflect the spontaneous release of neurotransmitters from all presynaptic 

terminals converging on the recorded neuron. The frequency of these events is related to the total 

number of presynaptic terminals and the probability of release at each terminal. In order to 

functionally evaluate the basal excitatory synaptic input to CA3 pyramidal neurons, we recorded 

spontaneous miniature excitatory postsynaptic currents (mEPSCs) from individual CA3 pyramidal 

neurons by performing whole-cell, patch-clamp experiments in the voltage-clamp mode. Miniature 

events were recorded in the presence of tetrodotoxin (TTx, 1 M) in the perfusing solution, in order 

to prevent spontaneous synaptic events due to presynaptic action-potential firing.  

Fig. 3.1.14C shows examples of mEPSCs recorded, under the above conditions, in representative 

cells from untreated and ELN-treated euploid and Ts65Dn mice. No spontaneous synaptic events 

were observable any longer after application of the glutamatergic inhibitors NBQX (10 M) + APV 

(50 M) (n=4 cells; not shown). Due to baseline noise levels normally observed at –70 mV, events 
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Figure 3.1.13. Long-term effect of treatment with ELN on hippocampal synapses in Ts65Dn and euploid 

mice. A-D: Images in the panels at the top represent confocal microscope images of sections processed for 

SYN (A, C) and PSD-95 (B,D) immunofluorescence from the molecular layer of the DG (A, B) and the stratum 

lucidum of field CA3 (C, D) of an animal from each experimental group. Calibration=5 m. The histograms 

represent the number of puncta per m2 exhibiting SYN (A, C) and PSD-95 (B, D) immunoreactivity in the 

molecular layer of the DG (A, B) and the stratum lucidum of CA3 (C, D) of treated and untreated Ts65Dn and 

euploid mice (n=6 for each experimental group). Values represent mean  SE. * p < 0.05; ** p < 0.01; *** p 

< 0.001 (Fisher LSD test after two-way ANOVA). Black asterisks in the gray bar indicate a difference between 

untreated Ts65Dn mice and treated euploid mice; white asterisks in the black bar indicate a difference between 

treated Ts65Dn mice and treated euploid mice. Abbreviations: ELN, ELND006; Eu, Euploid. 
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Figure 3.1.14. Long-term effect of treatment with ELN on mEPSC frequency in CA3 pyramidal neurons. 

A: Schematic drawing of a section across the hippocampal formation showing the major intrinsic connections. 

Patch clamp recording (rec) of miniature synaptic potentials were carried out from pyramidal neurons of field 

CA3. The area occupied by the mossy fiber terminals in the stratum lucidum of field CA3 is indicated in gray. 

B: Mossy fiber circuitry in CA3. Mossy fibers establish excitatory synapses (+) with pyramidal neurons in the 

stratum lucidum of CA3. C: Exemplary current tracings recorded in the gap-free mode in four representative 

cells from untreated euploid and Ts65Dn mice and euploid and Ts65Dn mice treated with ELN, showing 

mEPSC activity. Holding potential was –70 mV. Recordings were made in the presence of 1-μM TTx in the 

superfusing solution. D: Average frequency-distribution diagrams of mEPSC amplitude for untreated euploid 

and Ts65Dn mice and euploid and Ts65Dn mice treated with ELN. E: Average, overall mEPSC frequency in 

the four animal groups. Data derive from 9 untreated euploid mice (13 cells), 7 untreated Ts65Dn mice (18 

cells), 8 ELN-treated euploid, mice (15 cells), and 4 ELN-treated Ts65Dn mice (12 cells). Values in D-E 

represent mean  SE. ** p < 0.01 (Linear mixed model analysis). Abbreviations: CA1-3, hippocampal fields; 

DG, dentate gyrus; ELN, ELND006; Eu, Euploid; GR, granule cell layer; MF, mossy fivers; PN, pyramidal 

neuron; PP, perforant pathway; PYR, pyramidal layer; SCH, Shaffer collaterals; SL, stratum lucidum. 
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of less than 10 pA in peak amplitude were ignored. Accepted events were then used to construct 

frequency-distribution diagrams of mEPSC amplitude. Data were averaged among the cells (n=2 to 

4), from each animal and then among the animals pertaining to the same experimental group. The 

plots obtained are reported in Fig. 3.1.14D. As previously shown (Stagni et al., 2013), in untreated 

Ts65Dn mice there was a reduction in mEPSC frequency for all amplitude classes, with a prominent 

reduction for amplitudes higher than 35 pA (Fig. 3.1.14D). An evaluation of the overall mEPSC 

frequency showed that in untreated Ts65Dn mice it was reduced by ~53% in comparison with 

untreated euploid mice (DF=29; WALD t=-2.670283; p = 0.0123) (Fig. 3.1.14E). In Ts65Dn mice 

treated with ELN there was a global increase in mEPSC frequency. This increase was particularly 

prominent for synaptic events of amplitude greater than 35 pA (Fig. 3.1.14E). The overall mEPSC 

frequency in treated Ts65Dn mice it was increased by ~156% in comparison with untreated Ts65Dn 

mice (DF=28; WALD t=-3.186090; p = 0.0035) and became similar to that of untreated euploid mice 

(Fig. 3.1.14E). In treated euploid mice there was little reduction in the mEPSC frequency in 

comparison with untreated euploid mice (Fig. 3.1.14E).  

Results reported in Fig. 3.1.14D show that genotype and treatment had differential effects on the 

frequency of mEPSCs of different magnitude. According to the theory of electrotonic decay of locally 

generated electric signals, it can be predicted that postsynaptic currents of low magnitude recorded 

from the soma correspond to the activation of synapses with a distal dendritic location, while mEPSCs 

with larger magnitude should mainly correspond to synaptic activation of synapses with a location 

proximal to the soma. Thus, assuming that mEPSCs kinetics are similar among different synaptic 

contacts, the mEPSCs of smaller magnitude should display a slower onset and decay kinetics in 

comparison with mEPSCs of larger amplitude. In order to clarify this issue, we carried out a 

systematic analysis aimed at correlating mEPSC amplitude and decay kinetics. To this purpose, 

mEPSCs recorded in each cell and belonging to the same class of amplitude were used to create a 

single average mEPSC. The decay phase of this average mEPSC was fitted with a single exponential 

function of the first order, which allowed us to obtain a single value for the decay time constant 
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(dec). The dec values obtained for each mEPSCs amplitude class were plotted as a function of the 

corresponding average amplitude. In all experimental groups, save for the group of untreated Ts65Dn 

mice, there was a significant inverse relationship between amplitude of the mEPSCs and their dec 

(untreated euploid mice: R=-0.54975, SD=1.6319, n=24, p = 0.00539; treated euploid mice: R=-

0.40739, SD=0.50525, n=65, p = 7.56715x10-4; treated Ts65Dn mice: R=-0.25085, SD=0.77471, 

n=148, p = 0.0021). The finding that this was not the case for untreated Ts65Dn mice (R=0.03051, 

SD=3.3066, n=51, p=0.83168) suggests that the amplitude heterogeneity of their mEPSCs may be 

due to additional factors, independent from the distance from the soma. For instance, the shape and 

size of the dendritic spines may affect the number of postsynaptic receptors and, thus, the magnitude 

of the mEPSCs. 

 

3.1.5 Discussion 
 

Neonatal treatment with a γ-secretase inhibitor restores neurogenesis in the major postnatal 

neurogenic niches 

Since the hippocampal DG mainly develops in the first two postnatal weeks in mice, we decided to 

treat neonate mice with ELN in this period in order to impact on hippocampal development. We found 

that the reduced number of NPCs in the DG of Ts65Dn mice was fully normalized after 13 days of 

treatment. Similar results were observed in the SVZ, indicating that ELN has a positive impact on 

neurogenic niches throughout the brain. Treatment had no effect on cell death, suggesting that there 

was no effect on cell survival. In agreement with the treatment-induced restoration of neurogenesis 

in Ts65Dn mice, the volume of the granule cell layer and total granule cell number became similar to 

those of euploid mice. In euploid mice, although treatment reduced the levels of PTCH1, there was 

no increase in the proliferation rate either in the SVZ or the SGZ (see Fig. 3.1.8A,B). This suggests 

that in the euploid brain the SHH pathway is normally regulated and that a strong disinhibition does 
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not influence its efficacy. 

 

Neonatal treatment with a -secretase inhibitor has long-term positive effects on neurogenesis in 

Ts65Dn mice 

We found here that inhibition of the activity of the APP γ-secretase by ELN in the neonatal period 

restores PTCH1 levels, the number of hippocampal granule cell precursors and total number of 

granule neurons in P15 mice(Giacomini et al., 2015)(Giacomini et al., 2015)(Giacomini et al., 2015). 

Since it seemed of relevance to establish the duration of these effects, we examined the long-term 

effects of treatment on the pool of neural precursor cells in the DG. We found that at one month after 

treatment cessation the pool of neural precursor cells was still normalized. Consistently with the long-

term restoration of neurogenesis, in treated Ts65Dn mice total number of granule cells was also 

normalized.  

In contrast with P15 Ts65Dn mice, P45 untreated Ts65Dn mice had normal levels of PTCH1. Since 

Ptch1 transcription in addition of being enhanced by AICD is positively and negatively modulated 

by other factors (He et al., 2011, Huang et al., 2012, Memmi et al., 2015), the normalization of its 

expression in P45 Ts65Dn mice suggests age-related changes in the mechanisms that regulate its 

transcription. The finding that untreated P45 Ts65Dn mice still had a reduced pool of neural precursor 

cells in the DG in spite of normal PTCH1 levels suggests that other perturbed mechanisms, such as 

enhanced levels of p21 (Fig. 3.1.12D) may contribute to neurogenesis impairment. This idea is 

strengthened by the observation that in treated P45 Ts65Dn mice there was a reduction in p21 levels 

and a parallel increase of neurogenesis and that in treated euploid mice there was an increase in p21 

levels with a reduction of neurogenesis. These findings suggest that inhibition of γ-secretase in the 

neonatal period leads to changes in p21 levels that outlast the period of treatment. Further studies are 

needed to elucidate the mechanism of p21 regulation mediated by ELN. Taken together, results in 

P15 and P45 mice suggest that the proliferation impairment of trisomic NPCs is due to alteration of 

various pathways and that deregulation of the SHH pathway plays a prominent role during early life 
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stages. The finding that in treated euploid mice there was a reduction in the number of NPCs in the 

DG and in total granule cell number indicates that inhibition of γ-secretase activity in the normal 

brain negatively affects the process of neurogenesis.  

 

Neonatal treatment with a -secretase inhibitor reduces the production of AICD, disinhibits the 

SHH pathway and reduces the levels of AICD targets. 

Among the triplicated genes, some located inside and outside the Down syndrome critical region have 

been reported as likely candidates involved in the neurogenesis impairment that characterizes this 

genetic condition (Dierssen, 2012, Costa and Scott-McKean, 2013). Previous (Trazzi et al., 2011, 

Trazzi et al., 2013) and current results highlight the contribution of the triplicated gene APP in 

neurogenesis impairment in DS. App triplication causes excessive formation of AICD which, in turn, 

causes excessive transcription of various genes, including Ptch1, the SHH receptor that inhibits the 

SHH pathway. This pathway is strongly involved in neural precursor cell proliferation, migration and 

differentiation (Machold et al., 2003, Angot et al., 2008). We found that treatment with ELN largely 

increase CTFs levels both in euploid and Ts65Dn mice when compared with their untreated 

counterparts, suggesting a reduction of the AICD levels. Accordingly, we observed a reduction of the 

levels of some AICD target as PTCH1. PTCH1 downregulation and, consequently, SHH pathway 

disinhibition, explains the effects of treatment with ELN on hippocampal proliferation rate restoration 

in the Ts65Dn hippocampus.  

Reduction of AICD levels is probably the cause of the reduction of APP and GSK3two AICD 

targets levels in mice treated with ELN and inhibition of GSK3 activity. Since these proteins may 

affect proliferation potency, their reduction/inhibition could concur to the positive effects of treatment 

in Ts65Dn mice. 

The reduction of PTCH1 levels seen in P15 mice was no longer present in P45 mice, indicating that 

treatment with ELN had no long-term effects on the SHH pathway. This evidence is consistent with 

the observation that CTFs levels in P45 treated Ts65Dn mice were similar to those of untreated 
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Ts65Dn mice, indicating that the inhibitory effect on γ-secretase mediated by ELN disappears with 

time. This implies that ELN should be administered continuously in order to maintain the inhibition 

of γ-secretase. 

 

Neonatal treatment with a -secretase inhibitor restores connectivity the molecular layer of the DG 

and in the CA3 field of the hippocampus. 

A reduced number of synaptic terminals in the Ts65Dn mice has been evidenced in various brain 

regions, including the molecular layer of the DG (Kurt et al., 2004, Belichenko et al., 2007, 

Chakrabarti et al., 2007, Guidi et al., 2013). Therefore, the trisomy-dependent defective functioning 

of hippocampal circuits appears to be also due to input-output alterations. The major hippocampal 

input derives from the entorhinal cortex; then, these signals progress to the DG and are transferred by 

the latter to fields CA3 and then CA1. These signals are essential for hippocampus-dependent long-

term memory functions. We observed that ELN restored the number of pre- and postsynaptic 

terminals in the molecular layer of the DG, suggesting restoration of the major input to the DG. In 

view of the increase in total granule cell number and the number of pre- and postsynaptic terminals 

in the molecular layer of the DG, we wondered whether the counterpart of this effect was an increase 

in the number of terminals in the stratum lucidum of CA3, where the axons of the granule cells end. 

Treated Ts65Dn mice exhibited full restoration of pre- and postsynaptic terminals, suggesting 

restoration of signal transfer to CA3. Neuron maturation is finely regulated by various molecular 

mechanisms, among which the kinase GSK3 appears to play a key role. Activation (de-

phosphorylation) of GSK3 leads to marked shrinkage of dendrites, whereas its inhibition 

(phosphorylation) enhances dendritic growth. Furthermore, there are evidence that GSK3 inhibition 

is required for proper synapse development (Kim and Snider, 2011, Jin et al., 2012, Rui et al., 2013). 

Treatment with ELN increased GSK3 phosphorylation at ser9 in Ts65Dn mice and this could 

explain the observed restoration of synapse development. 
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Neonatal treatment with a -secretase inhibitor has long-term positive effects on connectivity in 

field CA3 of Ts65Dn mice 

As we have discussed above, immediately after treatment cessation Ts65Dn mice had a significantly 

larger number of both SYN and PSD-95 immunoreactive puncta in the hippocampus. Evaluation of 

the pre- and postsynaptic terminals in the molecular layer of the DG in P45 mice showed that one 

month after treatment cessation Ts65Dn mice had still a slight larger number of SYN and PSD-95 

immunoreactive puncta in comparison with their untreated counterparts but this difference was not 

statistically significant. These results show that the restoration of connectivity observed in the DG of 

P15 mice at the end of treatment is not maintained one month after treatment cessation, suggesting 

that continuous treatment may be necessary in order to maintain this effect. Unlike in the molecular 

layer of the DG, in the stratum lucidum of field CA3 of treated Ts65Dn mice there was still a larger 

number of pre- and postsynaptic terminals in comparison with their untreated counterparts. The 

persistence of the effects of treatment on the connectivity in field CA3 can be accounted for by the 

fact that treatment induces long-term restoration of total granule cell number and, hence, of the axons 

sent by the granule neurons to CA3. The number of puncta in CA3 field in the different experimental 

groups is in agreement with patch-clamp recordings from the pyramidal neurons of CA3. In untreated 

Ts65Dn mice there was an overall reduction in the mEPSCs, indicating impairment in the functional 

connectivity of field CA3. The prominent reduction in the frequency of mEPSCs of large amplitude 

in untreated Ts65Dn mice (Fig. 3.1.14D) is thus consistent with loss of synapses proximal to the 

soma. These synapses derive from the mossy fibers, the axons of the granule cells. This conclusion 

is in agreement with the reduction of PSD-95 immunoreactive puncta observed here. The finding that 

in Ts65Dn mice treated with ELN there was a global increase in mEPSC frequency and that this 

increase was particularly prominent for synaptic events of large amplitude (Fig. 3.1.14D) suggests 

that treatment had a positive impact on the mossy fiber input to the proximal dendrites of CA3 

pyramidal neurons. This is fully in agreement with the restoration of the number of SYN and PSD-
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95 immunoreactive puncta in the stratum lucidum of field CA3 and indicates that the restored 

connections are functionally effective.  

 

Side effects of ELND006 

ELND006 is a drug that was created in order to reduce Aβ formation in AD (Basi et al., 2010). Our 

results suggest that inhibitors of APP γ-secretase may be exploited in order to improve neurogenesis 

defects in DS through a reduction in AICD formation. Indeed, we found that early treatment with 

ELN in Ts65Dn mice restored neurogenesis in the two major neurogenic niches of the postnatal brain 

and development of the hippocampal dentate gyrus. Furthermore, we observed that ELN had positive 

long-lasting effects on hippocampal circuitry. Studies have shown that ELN has no toxic effects on 

wild-type mice and primates (Basi et al., 2010), but a clinical trial with ELN for the cure of AD was 

interrupted due to adverse side effects (Hopkins, 2011). In this short article, Hopkins reported that 

ELN, although it is more selective than other γ-secretase inhibitors [such as Semagacestat, Eli Lilly, 

(Hopkins, 2010)], had liver side effects that are thought to be unrelated to ELN mechanism of action. 

In our studies, we observed that a dose of 30.0 mg/kg of ELN from postnatal day 3 (P3) to postnatal 

day 15 (P15) had no acute effect on mice viability, but mice treated with this dose exhibited a higher 

mortality rate (death rate=30-40%) after weaning. For this reason, we decided to reduce the dose of 

ELN to 20.0 mg/kg and we observed that this those was safe for our mice. Yet, though ELN by itself 

may not be a suitable drug for DS (or AD), our studies provides novel demonstration that inhibitors 

of γ-secretase can completely reinstate neurogenesis in the trisomic brain, and that some of the 

positive effects observed in pups were retained with time. Intense research is being carried out in 

order to devise safe inhibitors of γ-secretase for the cure of AD. Moreover, a direct inhibitor of AICD 

activity has recently been developed (Branca et al., 2014). All this evidence prospects that there will 

soon be the possibility to exploit safe drugs in order to reduce AICD levels/activity and correct the 
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neurogenesis defects of DS.  
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3.2 Section 2 
 

”Short- and long-term effects of the green tea extract 

epigallo-catechin-3-gallate in the Ts65Dn mouse model 

of Down syndrome” 

 

Information reported in this section refers to:  

“Short- and long-term effects of neonatal pharmacotherapy with epigallocatechin-3-gallate on 

hippocampal development in the Ts65Dn mouse model of Down syndrome”. Stagni F, Giacomini 

A, Emili M, Trazzi S, Guidi S, Sassi M, Ciani E, Rimondini R, Bartesaghi R. Stagni, Giacomini and 

Emili contributed equally to the article. Neuroscience 333 (2016) 277–301. 
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3.2.1 Abstract 

 

Down syndrome (DS) is associated with alterations of neurogenesis, neuron maturation and 

connectivity that are already present at prenatal life stages. Many triplicated genes may be involved 

in the neurodevelopmental alterations that characterize DS. Recent evidence suggests that DYRK1A, 

a kinase that is over-expressed in the DS brain starting from early developmental stages, may play a 

prominent role in the brain phenotype of DS. Epigallocatechin-3-gallate (EGCG), the major 

polyphenol of green tea, performs many actions in the brain, including inhibition of DYRK1A 

activity. A pilot study in young adults with DS has shown that treatment with green tea extracts exerts 

some behavioral benefit, although these effects disappear after treatment cessation. Considering that 

the bulk of neurogenesis takes place very early during development, we deemed it extremely 

important to establish whether treatment with EGCG at the initial stages of brain development leads 

to plastic changes that outlast treatment cessation. In the current study, we treated the Ts65Dn mouse 

model of DS with EGCG from postnatal day 3 (P3) to P15, i.e. during the peak of neurogenesis in the 

hippocampal dentate gyrus and examined the short- and long-term term effects of treatment in P15 

and P45 mice, respectively. We found that at P15, treated Ts65Dn pups exhibited restoration of 

neurogenesis, total hippocampal granule cell number and levels of pre- and postsynaptic proteins in 

the dentate gyrus, hippocampus and neocortex. However, at P45 none of these effects were still 

present, nor did treated Ts65Dn mice exhibit any improvement in hippocampus-dependent tasks. 

These findings show that treatment with EGCG carried out in the neonatal period rescues numerous 

trisomy-linked brain alterations. However, even during this, the most critical time window for 

hippocampal development, EGCG does not elicit enduring effects on the hippocampal physiology. 
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3.2.2 Introduction 

 

DYRK1A is located on HSA 21 and its ortholog, Dyrk1A, is ttriplicated in the Ts65Dn model of DS 

(Gardiner, 2015). DYRK1A over-expression has been linked to neurogenesis deficits (Garcia-Cerro 

et al., 2014, Najas et al., 2015) and connectivity alterations (Benavides-Piccione et al., 2005, 

Murakami et al., 2009). In mice that over-express DYRK1A there are brain and behavioral alterations 

resembling those seen in DS (Dierssen, 2012). 

Epigallocatechin-3-Gallate (EGCG) is a phytochemical found in green tea. Green tea consumption 

appears to be inversely correlated with dementia, Alzheimer’s disease and Parkinson’s disease (Hu 

et al., 2007, Mandel et al., 2008). EGCG appears to have many actions on the brain, including 

inhibition of DYRK1A (Schroeter et al., 2007, Spencer, 2009, Kelsey et al., 2010, Wang et al., 2012, 

Kim et al., 2014), and treatment with green tea extracts has been demonstrated to correct brain 

developmental alterations in transgenic mice that over-express DYRK1A (Guedj et al., 2009, De la 

Torre et al., 2014). There is evidence that after one month of treatment with green tea extracts there 

is an improvement in learning deficits in adult Ts65Dn mice (Guedj et al., 2009, De la Torre et al., 

2014). A pilot study in young adult with DS showed that treatment with green tea extractcs exerts 

some behavioral benefits but that the effects decline after treatment cessation (De la Torre et al., 

2014). It must be observed that neurogenesis, and the overall organization of the brain circuits, is 

determined at early life stages (Stiles and Jernigan, 2010), with the exception of the hippocampal 

dentate gyrus (DG), where neurogenesis continues during the whole life span (Seress et al., 2001, 

Rice and Barone, 2010, Stiles and Jernigan, 2010). In mice, most of the granule cells of the 

hippocampal DG are generated during the first two postnatal weeks (Altman and Bayer, 1975, Altman 

and Bayer, 1990a, b, Workman et al., 2013). Therefore, it is conceivable that treatment with EGCG 

during the most important neurodevelopmental period of the hippocampus may restore  neurogenesis 

and neuron maturation and, possibly, engender permanent effects on behavior. Based on these 

premises, the current study was aimed at establishing whether neonatal therapy with EGCG restores 
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development of the hippocampal DG in the Ts65Dn mouse model and, if so, whether this effect is 

followed by an improvement in cognitive performance. 

 

3.2.3 Materials and Methods 

 

Colony 

In order to obtain Ts65Dn mice, B6EiC3Sn a/ATs(17<16>)65Dn females were mated with 

C57BL/6JEiJ x C3H/HeSnJ (B6EiC3Sn) F1 hybrid males provided by Jackson Laboratories (Bar 

Harbor, ME, USA). We used the first generation of this breeding. The genotyping of the animals was 

carried out as previously described (Reinholdt et al., 2011). The day of birth was designated postnatal 

day zero (P0). A total of 143 mice were used. The mice were kept in a room with a 12:12 h light/dark 

cycle and had free access to water and food. Experiments were performed in accordance with the 

European Communities Council Directive of 24 November 1986 (86/609/EEC) for the use of 

experimental animals and were approved by Bologna University Bioethical Committee (Prot. N.28-

IX/9). All efforts were made to minimize animal suffering and to keep the number of animals used to 

a minimum. 

 

Experimental protocol 

Euploid (n=40) and Ts65Dn (n=25) mice received a daily subcutaneous injection (at 9-10 am) of 

EGCG (Sigma-Aldrich) in 0.9% NaCl solution from postnatal day 3 (P3) to P15 (25.0 mg/kg) (Fig. 

3.2.1A,B). Age-matched euploid (n=53) and Ts65Dn (n=25) mice were injected with the vehicle 

(hereafter referred to as “untreated mice”). Each group was composed of approximately the same 

number of males and females.  

Experiment 1. A group of mice (euploid mice: n=15 untreated; n=15 treated; Ts65Dn mice: n=15 

untreated; and n=15 treated) was killed at the age of 15 days (P15 mice). Before being killed, six mice 

from each of these groups were i.p. injected with BrdU (5-bromo-2-deoxyuridine; Sigma; 150 g/g 
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body weight) in TrisHCl 50 mM 2h, in order to label proliferating cells (Fig. 3.2.1A) (Nowakowski 

et al., 1989). The brains of some P15 mice were fixed by immersion in Glyo-Fixx (as previously 

described (Bianchi et al., 2010b) and embedded in paraffin and the brains of the other P15 mice were 

fixed by immersion in PFA 4% and frozen (left hemisphere) or kept at –80°C for western blotting 

(right hemisphere). Mice were weighed before being sacrificed. After sacrifice, the brain was excised 

and weighed. The body and brain weights of the mice used are reported in Table 3.2.2. The number 

of animals used for each experimental procedure is specified in the figure legends. 

Experiment 2. A second group of mice (euploid mice: n=38 untreated; n= 25 treated; Ts65Dn mice: 

n=10 untreated; and n=10 treated), was treated with EGCG from P3 to P15 h. On P15, mice received 

an i.p. injection (150 g/g body weight) of BrdU in TrisHCl 50 mM and were killed after 30-35 days, 

i.e. at the age of 45-50 days (Fig. 3.2.1B). These mice will be called hereafter P45 mice. Because 

C3H/HeSnJ mice carry a recessive mutation that leads to retinal degeneration, animals were 

genotyped by standard PCR to screen out mice carrying this gene. Mice that did not carry a recessive 

mutation that leads to retinal degeneration entered the behavioral study. Behavioral testing started 9 

days before mice reached 45-50 days of age. The brains of P45 mice were fixed by immersion in PFA 

4% and frozen (left hemisphere) or kept at –80°C for western blotting (right hemisphere). Mice were 

weighed before being sacrificed. After sacrifice, the brain was excised and weighed. The body and 

brain weights of the mice used are reported in Table 3.2.2. The number of animals used for each 

experimental procedure is specified in the figure legends. 

 

Histological procedures 

P15 mice. The brains of P15 mice embedded in paraffin were cut into 8-m-thick coronal sections. 

Slices were processed for Ki-67 and cleaved caspase-3 immunohistochemistry. The frozen brains of 

P15 mice were cut with a freezing microtome into 30-m-thick coronal sections that were serially 

collected in anti-freezing solution (30% glycerol; 30% ethylen-glycol; 10% PBS10X; sodium azide 

0.02%; MilliQ to volume) (free-floating sections). Slices were used for BrdU and SYN/PSD95 double 



141 

 

 

Figure 3.2.1. Experimental protocols. A: Euploid and Ts65Dn mice received a daily injection of 

either vehicle (Euploid + Vehicle; Ts65Dn + Vehicle) or EGCG (25.0 mg/kg; Euploid + EGCG; 

Ts65Dn + EGCG) from postnatal (P) day 3 to P15. At P15, mice received one injection of BrdU, and 

were killed after 2 h in order to evaluate the number of cells in the S-phase of the cell cycle. The brains 

of these mice were used for immunohistochemistry and western blotting. B: Euploid and Ts65Dn mice 

received a daily injection of either vehicle (Euploid + Vehicle; Ts65Dn + Vehicle) or EGCG (25.0 

mg/kg; Euploid + EGCG; Ts65Dn + EGCG) from P3 to P15. Mice were killed on P45-P50 after 9 

days of behavioral tests. The brains of these mice were used for immunohistochemistry and western 

blotting. Abbreviations: BrdU, bromodeoxyuridine; P, postannatal.
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immunofluorescence. 

P45 mice. The frozen brains of P45 mice were cut with a freezing microtome into 30-m-thick 

coronal sections that were serially collected in anti-freezing solution (free-floating sections).  Slices 

were used for BrdU/NeuN, BrdU/GFAP, and SYN/PSD-95 double immunofluorescence. 

 

Immunohistochemistry 

The antibodies for immunohistochemistry, with their dilution and purpose are summarized in Table 

3.2.1. 

Ki-67 immunohistochemistry in P15 and P45 mice. One out of 20 sections (n=14-18 sections) of 

paraffin-embedded brains taken from the rostral pole of the lateral ventricle to the end of the 

hippocampal formation of P15 mice, and one out of six free-floating sections (n=14-17 sections) from 

the hippocampal formation of P45 mice, was processed for Ki-67 immunohistochemistry. The 

secondary antibodies used for detection are reported in Table 3.2.1. 

Cleaved caspase-3 immunohistochemistry in P15 and P45 mice. One out of 20 sections (n=14-18 

sections) of paraffin-embedded brains taken from the rostral pole of the lateral ventricle to the end of 

the hippocampal formation of P15 mice, and one out of six free-floating sections (n=14-17 sections) 

from the hippocampal formation of P45 mice, was processed for cleaved caspase-3 

immunohistochemistry. The secondary antibodies used for detection are reported in Table 3.2.1.  

BrdU immunohistochemistry in P15. One out of six free-floating sections (n=13-16 sections) from 

the hippocampal formation of P15 mice was processed for BrdU immunohistochemistry as described 

in Section 3.1. Slices were incubated with a rat anti-BrdU antibody (mouse monoclonal 1:100, Roche 

Applied Science, Mannheim, Germany). Detection was performed with a CY3-conjugated anti rat-

secondary antibody as indicated in Table 3.2.1.  

Double-fluorescence IHC for BrdU/NeuN and BrdU/GFAP in P45 mice. One out of six free-floating 

sections (n=14-17 sections) from the hippocampal formation of P45 mice was incubated with a 

primary anti-BrdU antibody and either a NeuN or GFAP primary antibody as indicated in 
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Table 3.2.1 Antibodies used for immunohistochemistry and western blotting. 

 

IHC, immunohistochemistry; DFIHC, Double-fluorescence immunohistochemistry; FIH, fluorescence 

immunohistochemistry; WB, Western blotting.

Antigen Application Antibody – Dilution- Manufactures  Purpose 

5-bromo-2-

deoxyuridine 

(BrdU) 

FIH 

DFIHC 

Primary: rat monoclonal 1:200 (Roche 

Applied Science) 

Secondary: Cy3-conjugated anti-rat IgG 

1:200 (Jackson Immunoresearch) 

To detect BrdU positive cells 

(surviving cells)  

Cleaved 

caspase-3 

IHC Primary: rabbit monoclonal 1:100 (Cell 

Signaling Technology 

Secondary: Cy3-conjugated anti-rabbit 

IgG 1:200 (Jackson Immunoresearch) 

To label apoptotic cells  

GAPDH 

WB Primary: rabbit polyclonal 1:5000 

(Sigma-Aldrich) 

Secondary: HRP-conjugated anti-rabbit 

1:10000 (Jackson Immunoresearch) 

To examine the levels of the 

housekeeping protein GAPDH 

Glial fibrillary 

acidic protein 

(GFAP) 

DFIHC Primary: rabbit polyclonal 1:400 

(Abcam) 

Secondary: FITC-conjugated anti-rabbit 

IgG 1:200 (Jackson Immunoresearch) 

To detect surviving cells 

differentiated into astrocytes  

GSK3 

WB Primary: mouse monoclonal 1:1000 

(Cell Signaling Technology) 

Secondary: HRP-conjugated anti-mouse 

1:10000 (Jackson Immunoresearch) 

To examine the expression of 

the dephosphorylated form  

(active) of the kinase GSK3 

Phospho-

GSK3(Ser9) 

WB Primary: rabbit monoclonal 1:1000 

(Cell Signaling Technology) 

Secondary: HRP-conjugated anti-rabbit 

1:10000 (Jackson Immunoresearch) 

To examine the expression of 

the phosphorylated form 

(inactive) of the kinase GSK3 

Ki-67 

IHC Primary: rabbit monoclonal 1:100 

(Thermo Scientific) 

Secondary: HRP-conjugated anti-rabbit 

dilution 1:200 (Jackson 

Immunoresearch) and DAB kit (Vector 

Laboratories) 

To label cycling cells (Ki-67 is 

expressed in all phases of the 

cell cycle except early G1) 

Neuronal-

specific 

nuclear protein 

(NeuN) 

DFIHC Primary: mouse monoclonal 1:400 

(Millipore) 

Secondary: FITC-conjugated anti-

mouse IgG 1:200 (Jackson 

Immunoresearch) 

To detect surviving cells that 

have differentiated into neurons 

p21 

WB Primary: mouse monoclonal 1:500 

(Santa Cruz Biotechnology) 

Secondary: HRP-conjugated anti-mouse 

1:10000 (Jackson Immunoresearch) 

To examine the expression p21, 

an inhibitor of cell cycle 

progression  

Postsynaptic 

density 

protein-95 

(PSD-95) 

IHC Primary: rabbit polyclonal 1:1000 

(Abcam) 

Secondary: CY3-conjugated anti-rabbit 

1:200 (Jackson Immunoresearch) 

To label postsynaptic regions 

Synaptophysin 

(SYN) 

IHC Primary: mouse monoclonal 1:1000 

(Millipore-Biomanufacturing and Life 

Science Research) 

Secondary: FITC-conjugated anti-

mouse 1:200 (Jackson Immunoresearch) 

To label presynaptic terminals 
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Table 3.2.1. The secondary antibodies used for detection are reported in Table 3.2.1.  

Double-fluorescence IHC for SYN and PSD-95 in P15 and P45 mice. One out of six free-floating 

sections from the rostral two-thirds of the hippocampal formation of P15 and P45 mice (n=4-6 

sections) was incubated with the antibodies indicated in Table 3.2.1.  

 

Nissl-staining 

One out of six free-floating sections taken from the beginning to the end of the hippocampal formation 

of P15 (n=13-16 sections) and P45 (n=14-17 sections) mice was stained with toluidine blue according 

to the Nissl method. 

 

Measurements 

Image acquisition. A light microscope (Leitz) equipped with a motorized stage and focus control 

system and a color digital camera (Coolsnap-Pro; Media Cybernetics, Silver Spring, MD, USA) were  

used to take bright field images. Immunofluorescence images were taken with a Nikon Eclipse TE 

2000-S inverted microscope (Nikon Corp., Kawasaki, Japan), equipped with a Nikon digital camera 

DS 2MBWc. Immunofluorescence images of sections processed for i) SYN and PSD-95 

immunohistochemistry of P15 and P45 animals, and ii) BrdU/NeuN or BrdU/GFAP of P45 animals 

were taken with a LEICA TCS SL confocal microscope. Measurements were carried out using Image 

Pro Plus software (Media Cybernetics, Silver Spring, MD 20910, USA) or ImageJ v1.51a. 

Ki-67 positive cells in P15 and P45 mice. Images of the series of sections processed for Ki-67 IHC 

from the subventricular zone (SVZ) and dentate gyrus (DG) of P15 mice and from the DG of P45 

mice were taken using a light microscope (Leitz; objective: x 40, 0.70 NA; final magnification: x 

500). Images were taken at the focal plane at which the largest number of cells was recognizable. In 

this study, the SVZ corresponds to the region comprised between the beginning of the lateral ventricle 

and the beginning of the hippocampal formation. In the SVZ, an area enclosing the dorso-lateral and 

medial wall of the lateral ventricle was manually traced and all Ki-67-positive cells within this area 
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were counted. In the DG, an area enclosing the granule cell layer + subgranular zone + hilus was 

manually traced and all Ki-67-positive cells within this area were counted. Cells were counted in the 

series of sections processed for Ki-67 immunohistochemistry from the SVZ and DG. The counted 

cells are expressed here as “total cell count”, obtained from the sum of counts across all sections 

counted, and as “cells per unit area”, obtained by dividing the number of counted cells by the traced 

area and expressed as cells/mm2. The number of cells per unit area in individual sections was averaged 

in order to obtain the mean number of cells per unit area in each mouse.  

Cleaved caspase-3 positive cells in P15 and P45 mice. In the series of sections processed for cleaved 

caspase-3 immunohistochemistry, cleaved caspase-3-positive cells were counted in the SVZ and DG 

of P15 mice and in the DG of P45 mice. Images were taken using a fluorescence microscope (Eclipse; 

objective x 40, 0.75 NA; final magnification: x 400). Total cell count was obtained from the sum of 

counts across all sections counted. 

BrdU-positive cells in P15 mice. Images of the series of sections processed for BrdU 

immunohistochemistry from the DG were taken using a fluorescence microscope (Eclipse; objective: 

x 40, 0.75 NA; final magnification: x 400). Images were taken at the focal plane at which the largest 

number of cells was recognizable. Cells were counted in the series of sections processed for BrdU 

immunohistochemistry from the DG, within a manually-traced area enclosing the granule cell layer 

+ subgranular zone + hilus. Total cell count and the number of cells per unit area were obtained as 

indicated above for Ki-67-positive cells.  

Number of BrdU-positive cells and cell phenotypes in the DG of P45 mice. Quantification of BrdU-

labeled nuclei in the DG was conducted in every 6th section using a confocal microscope (objective 

x 40, NA 0.75; final magnification x 400). In order to quantify BrdU labeling, we used a modified 

unbiased stereology protocol (Malberg et al., 2000, Kempermann and Gage, 2002, Tozuka et al., 

2005). All BrdU-labeled cells located in the granule cell and subgranular layers were counted along 

the entire z axis (1 µm steps) of each section. To avoid oversampling errors, the nuclei intersecting 

the uppermost focal plane were excluded. The total number of BrdU-labeled cells per animal was 



146 

determined and multiplied by six to obtain the total estimated number of cells per DG. For double-

labeling, we randomly selected 100 BrdU-labeled nuclei across the DG and counted the number of 

BrdU-positive nuclei that co-expressed either NeuN or GFAP. BrdU-positive nuclei were analyzed 

(oil objective x 63, NA 1.32) along the entire z-axis (0.5 µm steps) and were rotated onto orthogonal 

planes (x–y) to verify double-labeling and to exclude false double-labeling caused by the overlay of 

signals from different cells. The percentage of BrdU-labeled nuclei that co-expressed either NeuN or 

GFAP, or neither of these two markers, was calculated. The total number of cells with a neuronal 

(BrdU+/NeuN+ cells) phenotype, an astrocytic (BrdU+/GFAP+ cells) phenotype, or an undetermined 

phenotype (i.e. BrdU+ cells that did not express either of the two markers) was estimated by 

multiplying the absolute numbers of BrdU-positive cells by the percentage of co-localisation for each 

of those two markers, or by no co-localization for either marker.  

Synaptic terminals in P15 and P45 mice. Optical densitometry was used to evaluate the intensity of 

SYN and PSD-95 immunoreactivity in the DG, hippocampal fields CA3 and CA1, and neocortex 

overlying the hippocampus in fluorescence images captured with an Eclipse microscope (objective x 

20, 0.50 NA; final magnification x 200). Densitometric analysis was carried out using Image Pro Plus 

software, as described in Section 3.1. For evaluation of puncta exhibiting SYN or PSD-95 

immunoreactivity in the DG, hippocampal fields CA3 and CA1, and neocortex overlying the 

hippocampus, images were acquired using a confocal microscope (objective x 63, NA 1.32; zoom 

factor=8). Three images from the regions of interest were captured in each section and the density of 

SYN or PSD-95 immunoreactive puncta was evaluated as previously described (Guidi et al., 2013).  

Stereology of the DG. Unbiased stereology was performed on Nissl-stained sections of the brain of 

P15 and P45 mice, as previously described (Severi et al., 2005, Bianchi et al., 2010b). The protocol 

used for the stereology of the DG is the same as the one used in Section 3.1. 

 

Western blotting 

Total proteins were obtained from hippocampal homogenates of P15 and P45 as described in Section 
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3.1. Equivalent amount of proteins (50 μg) were subjected to electrophoresis on a 4-12% NuPAGE 

Bis-Tris Precast Gel (Novex, Life Technologies, Ltd, Paisley, UK) and transferred to a Hybond ECL 

nitrocellulose membrane (Amersham Life Science). The levels of p21, ser9 phosphorylated GSK3β, 

and total GSK3β were examined using the antibodies reported in Table 3.2.2. Images were digitized 

with ChemiDoc XRS+ and densitometric analysis was carried out with Image Lab software (Bio-Rad 

Laboratories, Hercules, CA, USA). Intensity of each band was normalized to the intensity of the 

corresponding GAPDH band. 

 

Behavioral testing 

Ts65Dn (untreated n=10, treated n=10) and euploid (untreated n=38, treated n=25) mice were 

behaviorally tested using the Y-maze (YM) tests and the Morris Water Maze (MWM). All 

behavioural tests were conducted on P45 mice, i.e. 30-35 days after treatment cessation. 

YM. YM testing was performed using an apparatus with three equal arms (35 cm long, 5 cm wide, 10 

cm high) made of gray solid plastic and set at angles of 120°. Each mouse was placed at the center of 

the maze and allowed to move freely for a 10-min session. Data were collected during the first 6-min 

period of each session. Mice with fewer than 10 arm entries during the 6-min observation period were 

not included in the analysis. All four limbs were required to enter an arm for the entry to be considered 

valid. A series of three entries into three different arms is defined as a triad. The percentage of 

alternations was calculated as 100 x (number of correct alternations)/(total number of arm entries - 

2).  

MWM. Mice were trained in the MWM task to locate a hidden escape platform in a circular pool, 

using a previously a protocol based on a published protocol (Vorhees and Williams, 2006). The 

apparatus consisted of a large circular water tank (1.00 m diameter, 50 cm height) with a transparent 

round escape platform (10 cm2). The pool was virtually divided into four equal quadrants identified 

as northeast, northwest, southeast, and southwest. The tank was filled with tap water at a temperature 

of 22±1.0ºC. The tank was filled with water up to 0.5 cm above the top of the platform and the water 
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was made opaque with milk. The platform was placed in the tank in a fixed position (in the middle 

of the south-west quadrant). The pool was placed in a large room with various intra- (squares, 

triangles, circles and stars) and extra-maze visual cues. Each mouse was tested in one session of 4 

trial on the first day and in two sessions of 4 trials in the following 4 days with an inter-session interval 

of 45 min. A video camera was placed above the center of the pool and connected to a videotracking 

system (Ethovision 3.1; Noldus Information Technology B.V., Wageningen, Netherlands). Mice were 

randomely released facing the wall of the pool from one of the following starting points: North, East, 

South, or West and allowed to search for up to 60 s for the platform. If a mouse did not find the 

platform, it was gently guided to it and allowed to remain there for 15 s. During the inter-trail time 

(10 s) mice were placed in an empty cage. For the learning phase, we evaluated the latency to find 

the hidden platform. Retention of memory was assessed with one trial (probe trial), on the sixth day, 

24 h after the last acquisition trial, using the same starting point for all mice. The platform was 

removed from the tank and mice were allowed to search for up to 60 s for the platform. For the probe 

trial, the latency of the first entrance in the trained platform zone, the frequency of entrances in the 

platform quadrant, and the percentage of time spent in the trained platform quadrant were employed 

as measures of retention of acquired spatial preference. All experimental sessions were carried out 

between 9.00am and 5.00pm.  

 

Statistical analysis 

Data from single animals represented the unity of analysis. Results are presented as mean ± standard 

error of the mean (SE). Data were analyzed with IBM SPSS 22.0 software. Distribution of data and 

the homogeneity of variances were evaluated with Shapiro-Wilk test and Levene’s test respectively. 

Statistical analysis was carried out using a two-way ANOVA with genotype (euploid and Ts65Dn) 

and treatment (vehicle, EGCG) as factors. Post hoc multiple comparisons were carried out using the 

Fisher least significant difference (LSD) test. For the learning phase of MWM, statistical analyses 

was performed using a three-way mixed ANOVA, with genotype and treatment as grouping factors 
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and days as a repeated measure. For the probe test of MWM and for the YM, we used a two-way 

ANOVA with genotype and treatment as factors followed by the Fisher LSD post hoc test. A 

probability level of p ≤ 0.05 was considered to be statistically significant.  

 

3.2.4 Results 

 

General results of P15 mice 

The Ts65Dn strain is characterized by a high mortality rate during gestation and before weaning 

(Roper and Reeves, 2006). In the current study, treatment with either EGCG or vehicle began on 

postnatal day 3 (P3). All mice of the litters used in this study that survived in the P0 to P3 period 

entered the study, with no specific selection criteria. Six vehicle-treated (7%) and five EGCG-treated 

(7%) mice died before weaning, in the P6-P22 period. The similarity in the mortality rate across 

groups suggests that treatment has no adverse effects on the health of mice. We evaluated the body 

and brain weight of P15 mice in order to establish the short-term effect of treatment. A two-way 

ANOVA on the body weight of P15 mice showed no genotype x treatment interaction, a main effect 

of genotype in males [F(1,26) = 12.81, p ≤ 0.001] and females [F(1,26) = 6.29, p ≤ 0.05] and no 

effects of treatment. Two-way ANOVA on brain weight did not show genotype x treatment 

interaction and no significant effects of both genotype and treatment. Post hoc Fisher LSD test 

showed no statistical differences among the four experimental groups. The finding that the body and 

brain weight were not reduced by treatment (Table 3.2.2) suggests that treatment has no adverse 

effects. 

 

Short-term effects of neonatal treatment with EGCG on the proliferation potency of neural 

precursor cells 

The subventricular zone (SVZ) and the hippocampal dentate gyrus (DG) represent the major 

neurogenic regions of the postnatal brain. We made Ki-67 immunohistohemistry in P15 mice in order 
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Table 3.2.2. Body and brain weights of treated and untreated mice. 

 

Body and brain weight (mean  SE) in grams of P15 and P45 euploid and Ts65Dn mice that received either 

vehicle or EGCG in the period P3-P15, measured on postnatal days 15 (P15) or P45. The number of mice of 

each group is reported in the n column. The p values in the row below the body and brain weight refer to the 

comparison between euploid and Ts65Dn mice. The p values in the column on the right refer to the comparison 

between untreated and treated mice of the same genotype. n.s. not significant (Fisher LSD test after two-way 

ANOVA with genotype and treatment as factors).  

  Vehicle   EGCG    

  Mean  SE n  Mean  SE n p  

P15             

Body              

Males Euploid 7.67  0.60 (7)  7.53  0.36 (8) n.s.  

 Ts65Dn  5.68  0.41 (8)  6.60  0.44 (7) n.s.  

 p 0.01     n.s.      

Females Euploid 6.40  0.57 (8)  7.71  0.48 (7) n.s  

 Ts65Dn  5.77  0.45 (7)  5.64  0.58 (8) n.s  

 p n.s.     0.01      

Brain             

Males Euploid 0.396  0.003 (7)  0.399  0.008 (8) n.s.  

 Ts65Dn  0.389  0.009 (8)  0.386  0.010 (7) n.s.  

 p n.s     n.s      

Females Euploid 0.390  0.007 (8)  0.405  0.007 (7) n.s  

 Ts65Dn  0.397  0.008 (7)  0.396  0.011 (8) n.s  

 p n.s     n.s.      

             

P45             

Body              

Males Euploid 21.62  0.60 (17)  21.10  0.72 (12) n.s.  

 Ts65Dn  17.86  1.16 (5)  17.74  1.46 (5) n.s.  

 p 0.05     n.s.      

Females Euploid 17.58  0.40 (21)  20.61  1.69 (13) 0.05  

 Ts65Dn  16.23  1.43 (5)  15.34  1.08 (5) n.s.  

 p n.s     n.s.      

Brain             

Males Euploid 0.474  0.006 (17)  0.460  0.006 (12) n.s.  

 Ts65Dn  0.437  0.017 (5)  0.443  0.010 (5) n.s.  

 p 0.01     n.s.      

Females Euploid 0.456  0.009 (21)  0.452  0.004 (13) n.s.  

 Ts65Dn  0.428  0.015 (5)  0.442  0.013 (5) n.s.  

 p 0.05     n.s.      
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to evaluate the number of NPCs in both these regions.  

We evaluated the total number of Ki-67-positive cells counted in the series of sampled sections and 

their number per unit area.  

A two-way ANOVA on total Ki-67-positive cells counted in the SVZ showed a genotype x treatment 

interaction [F(1,20) = 5.93, p ≤ 0.05] and a significant effect of treatment [F(1,20) = 24.49, p ≤ 0.001], 

but no effect of genotype. A post hoc Fisher LSD test showed that the number of Ki-67-positive cells 

in untreated Ts65Dn mice was reduced in comparison with untreated euploid mice. This difference 

disappeared in neonatally-treated Ts65Dn mice (Fig. 3.2.2B). A two-way ANOVA on the density of 

Ki-67-positive cells in the SVZ showed no genotype x treatment interaction, but there was a 

significant effect of both genotype [F(1,20) = 6.35, p ≤ 0.05] and treatment [F(1,20) = 29.67, p ≤ 

0.001]. A post hoc Fisher LSD test showed that in untreated Ts65Dn mice the density of Ki-67-

positive cells was reduced in comparison with untreated euploid mice. This difference disappeared in 

neonatally-treated Ts65Dn mice (Fig. 3.2.2C).  

A two-way ANOVA on total Ki-67-positive cells counted in the DG showed a genotype x treatment 

interaction [F(1,20) = 25.42, p ≤ 0.001] and a significant effect of both genotype [F(1,20) = 21.11, p 

≤ 0.001] and treatment [F(1,20) = 26.68, p ≤ 0.001]. A post hoc Fisher LSD test showed that the total 

number of Ki-67-positive cells in untreated Ts65Dn mice was lower than that found in untreated 

euploid mice. Ts65Dn mice neonatally-treated with EGCG showed a similar number of Ki-67-

positive cells in comparison with untreated euploid mice (Fig. 3.2.3B). A two-way ANOVA on the 

density of Ki-67-positive cells in the DG showed a genotype x treatment interaction [F(1,20) = 5.51, 

p ≤ 0.05], with no effect of genotype, but a significant effect of treatment [F(1,20) = 38.62, p ≤ 0.001]. 

A post hoc Fisher LSD test showed that in untreated Ts65Dn mice the density of Ki-67-positive cells 

was reduced in comparison with untreated euploid mice and that treatment with EGCG restored this 

defect (Fig. 3.2.3C). 

In order to establish whether treatment affects apoptotic cell death, brain sections comprising the SVZ 

and the DG were subjected to immunohistochemistry for cleaved caspase-3. No genotype x treatment 
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Figure 3.2.2. Effects of neonatal treatment with EGCG on neural precursor number in the 

subventricular zone of P15 mice. A: Examples of sections immunostained for Ki-67 from the 

subventricular zone of an animal from each experimental group. Calibration bar=200 m. The insets 

show zoomed images with examples of individual Ki-67-positive cells. Calibration bar=10 m. B-E: 

Ki-67 positive cells expressed as total cell count (B), as cells/mm3 (C), as cells per section (D) and 

number of cleaved caspase-3-positive cells expressed as total cell count (E) in the SVZ of untreated 

and treated euploid and Ts65Dn mice (n=6: 3 males and 3 females for each of the four experimental 

groups). Values (mean  SE) refer to one hemisphere. * p < 0.05; ** p < 0.01; *** p < 0.001 (Fisher 

LSD test after two-way ANOVA). Asterisks over the brackets indicate a difference between the two 

indicated groups. Abbreviations: Casp, Caspase-3; d, dorsal; l, lateral; LV, lateral ventricle; m, medial; 

SVZ, subventricular zone; v, ventral. 
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interaction was found; nor there were any main effects of genotype or treatment for the total number 

of cleaved caspase-3-positive cells counted in the SVZ and DG. A post hoc Fisher LSD test showed 

no differences between untreated euploid and Ts65Dn mice in the number of cleaved caspase-3-

positive cells and that treatment did not affect this parameter in both the SVZ (Fig. 3.2.2E) and DG 

(Fig. 3.2.3D). 

In view of its role on cell cycle progression, we analyzed the levels p21 (cip1/WAF1), a cyclin-

dependent kinase that inhibits cell cycle progression and is overexpressed in brains of DS people. A 

two-way ANOVA on p21 protein levels in hippocampal homogenates of mice aged 15 days showed 

a genotype x treatment interaction [F(1,20) = 6.86, p ≤ 0.05], no main effect of genotype, but a main 

effect of treatment [F(1,20) = 17.07, p ≤ 0.001]. A post hoc Fisher LSD test showed that untreated 

mice had higher levels of p21 in comparison with untreated euploid mice (Fig. 3.2.3E) and that 

treatment with EGCG normalized p21 levels (Fig. 3.2.3E). No effect of treatment on p21 levels was 

found in euploid mice (Fig. 3.2.3E).  

We then evaluated the effect of treatment on the population of cells in the S-phase of the cell cycle. 

To this purpose, we administered to Ts65Dn and euploid mice BrdU on P15 and the number of BrdU-

positive cells in the DG was evaluated 2h after the injection. A two-way ANOVA on the total number 

of BrdU-positive cells showed no genotype x treatment interaction, but a main effects of both 

genotype [F(1,20) = 16.74, p ≤ 0.001] and treatment [F(1,20) = 5.00, p ≤ 0.05] emerged. A post hoc 

analysis with Fisher LSD test showed that in untreated Ts65Dn mice there were fewer BrdU-positive 

cells than that of untreated euploid mice; this difference disappeared in treated Ts65Dn mice (Fig. 

3.2.4B). A two-way ANOVA on the density of BrdU-positive cells showed a genotype x treatment 

interaction [F(1,20) = 6.19, p ≤ 0.05], no effect of genotype, but a main effect of treatment [F(1,20) 

= 4.48, p ≤ 0.05]. A post hoc Fisher LSD test showed that untreated Ts65Dn mice had a number of 

BrdU positive cells/mm2 lower than that of untreated euploid mice and that treatment restored this 

defect (Fig. 3.2.4C). 

Taken together these results show that neonatal treatment with EGCG restores the population of the 
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Figure 3.2.3. Effects of neonatal treatment with EGCG on neural precursor number in the dentate gyrus 

of P15 mice. A: Examples of sections immunostained for Ki-67 from the dentate gyrus of an animal from each 

experimental group. Calibration bar=100 m. Calibration bar=10 m. B-E: Ki-67-positive cells expressed as 

total cell count (B), as cells/mm3 (C), as cells per section (D) and number of cleaved caspase-3-positive cells 

expressed as total cell count (E) in the dentate gyrus of untreated and treated euploid and Ts65Dn mice (n=6: 

3 males and 3 females for each of the four experimental groups). Values (mean  SE) refer to one hemisphere. 

F: Western blot analysis of p21 levels in the hippocampal formation of untreated and treated euploid and 

Ts65Dn mice. Western immunoblots (left panel) are examples from animals of each experimental group. The 

histograms on the right show p21 levels normalized to GAPDH and expressed as a fold difference in 

comparison with untreated euploid mice (n=6: 3 males and 3 females for each experimental group). Values in 

(B-E) are mean  SE. * p < 0.05; ** p < 0.01; *** p < 0.001 (Fisher LSD test after two-way ANOVA). Black 

asterisks in the gray bar indicate a difference between untreated Ts65Dn mice and treated euploid mice. 

Abbreviations: Casp, caspase-3; Eu, euploid; GR, granule cell layer; H, hilum; MOL, molecular layer.
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Figure 3.2.4. Effects of neonatal treatment with EGCG on the size of the population of cells in 

the S-phase of the cell cycle of P15 mice. A: Representative images of sections immunostained for 

BrdU from the dentate gyrus of an animal for each experimental group. Calibration bar=100 m. The 

insets show zoomed images of the boxed area with examples of individual BrdU-positive cells. 

Calibration bar=20 m. B, C: BrdU-positive cells, expressed as total cell count (B) and cells/mm2 (C), 

in the dentate gyrus of untreated and treated euploid and Ts65Dn mice (n=6: 3 males and 3 females 

for each of the four experimental groups). Values (mean  SE) refer to one hemisphere. ** p < 0.01; 

*** p < 0.001 (Fisher LSD test after two-way ANOVA). Black asterisks in the gray bar indicate a 

difference between untreated Ts65Dn mice and treated euploid mice. Abbreviations: BrdU, 

bromodeoxyuridine; Eu, euploid. 
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actively dividing cells in both the DG and SVZ and suggest that this effect is linked to a restoration 

of the proliferation potency and not to a decrease in apoptotic cell death.  

 

Short-term effects of neonatal treatment with EGCG on total number of hippocampal granule cells 

Neurogenesis in the hippocampal DG starts embryonically in both humans and mice, but in mice 

most of the granule cells are born in the first two postnatal weeks (Altman and Bayer, 1975, Altman 

and Bayer, 1990a, c, Seress et al., 2001, Rice and Barone, 2010, Stiles and Jernigan, 2010). In order 

to establish whether treatment restores the defective cellularity that characterizes the DG of Ts65Dn 

mice, we stereologically analyzed the volume of the granule cell layer, the density of the granule cells 

and the total number of granule cells. A two-way ANOVA on the volume of the granule cell layer 

showed a genotype x treatment interaction [F(1,20) = 8.37, p ≤ 0.01], a main effect of genotype 

[F(1,20) = 17.88, p ≤ 0.001], but no effect of treatment. A post hoc Fisher LSD test showed that the 

volume of the granule cell layer was reduced in untreated Ts65Dn mice in comparison with untreated 

euploid mice (Fig. 3.2.5B), which is in agreement with previous evidence (Bianchi et al., 2010b) and 

that its size was normalized by treatment. A two-way ANOVA on granule cell density showed a 

genotype x treatment interaction [F(1,20) = 9.05, p ≤ 0.01] and a main effect of both genotype [F(1,20) 

= 10.32, p ≤ 0.001] and treatment [F(1,20) = 18.69, p ≤ 0.001]. A post hoc Fisher LSD test revealed 

that untreated Ts65Dn mice had a reduced granule cell density in comparison with untreated euploid. 

Treated Ts65Dn mice underwent a restoration of this defect (Fig. 3.2.5B). A two-way ANOVA on 

total number of granule cells showed a genotype x treatment interaction [F(1,20) = 11.10, p ≤ 0.005] 

and a main effect of both genotype [F(1,20) = 17.02, p ≤ 0.001] and treatment [F(1,20) = 6.99, p ≤ 

0.05]. A post hoc Fisher LSD test showed that untreated Ts65Dn mice had fewer granule neurons in 

comparison with euploid mice and that this defect was restored by treatment (Fig. 3.2.4B).  

 

Short-term effects of neonatal treatment with EGCG on cortical and hippocampal synapses 

The altered functionality of  the trisomic brain is mainly due to neurogenesis defects (Chakrabarti et 
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al., 2007, Contestabile et al., 2007, Guidi et al., 2008, Bianchi et al., 2010a, Bianchi et al., 2010b, 

Guidi et al., 2011a, Trazzi et al., 2011) and to altered synaptic connectivity (Takashima et al., 1989, 

Becker, 1991, Belichenko et al., 2004, Benavides-Piccione et al., 2004, Guidi et al., 2013). Circuit 

formation critically takes place in the early postnatal period when the newborn neurons establish 

synaptic contacts with other neurons. To establish whether treatment with EGCG had an effect on 

brain circuitry, in P15 mice we examined the levels of immunoractivity for (optical density; OD) 

SYN (synaptophysin) PSD-95 (postsynaptic density protein-95). We took into account the superficial 

(II-III) and deep (IV-VI) layers of the somatosensory cortex, the molecular layer of the DG, the 

stratum lucidum of field CA3, and the stratum radiatum of field CA1. Additionally, we also evaluated 

the number of SYN and PSD-95 immunoreactive puncta using confocal microscopy, in order to 

establish whether possible differences in SYN and PSD-95 OD reflected differences in the number 

of pre- and post-synaptic terminals.  

A two-way ANOVA on the OD of SYN and PSD-95 and on the number of SYN- and PSD-95-

immunoreactive puncta revealed numerous interactive effects and main effects of genotype and 

treatment (summarized in Table 3.2.3). A post hoc Fisher LSD test showed that in untreated Ts65Dn 

mice the OD of SYN and PSD-95 was significantly lower than in untreated euploid mice in all regions 

analyzed (Fig. 3.2.6C-F). Furthermore, an evaluation of the number of puncta revealed that untreated 

Ts65Dn mice had fewer SYN- and PSD-95 immunoreactive puncta in all the examined regions. This 

suggests that Ts65Dn mice have a reduced number of pre- and postsynaptic terminals. Importantly, 

in Ts65Dn mice that had been neonatally-treated with EGCG there was a total restoration of the OD 

of SYN and PSD-95 and the number of SYN- and PSD-95-immunoreactive puncta (Fig. 3.2.7C-F) 

in comparison with untreated euploid mice. Treatment also had an effect on SYN and PSD-95 OD 

and number of puncta in some of the examined regions of euploid mice (Fig. 3.2.7C-F). 

 

General results of P45 mice 

We evaluated the body and brain weight of P45 mice in order to establish the long-term effect of 
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Figure 3.2.5. Effects of neonatal treatment with EGCG on granule cell number in the dentate 

gyrus of P15 mice. A: Representative images of Nissl-stained sections in the granule cell layer of an 

animal from each experimental group. The sides of the superimposed optical disector are 30 m in 

length. The stars indicate individual nuclei. Note that nuclei intersecting the exclusion sides (thick 

lines) were not counted. B: Volume of the granule cell layer, density of granule cells (cells/mm3) and 

total number of granule cells of untreated and treated euploid and Ts65Dn mice (n=6: 3 males and 3 

females for each of the four experimental groups). Values (mean  SE) refer to one dentate gyrus. ** 

p < 0.01; *** p < 0.001 (Fisher LSD test after two-way ANOVA). Black asterisks in the gray bar 

indicate a difference between untreated Ts65Dn mice and treated euploid mice. Abbreviation: Eu, 

euploid.
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Figure 3.2.6. Effects of neonatal treatment with EGCG on synapse development in P15 mice. A, B: Sections 

processed for SYN (A) and PSD-95 (B) immunofluorescence from the neocortex overlying the hippocampus, 

hippocampal field CA1 and DG of an animal from each experimental group. Calibration bar=200 m. C-F: Optical 

density of SYN and PSD-95 immunoreactivity in layers II-III and IV-VI of the neocortex (C: SYN; D: PSD-95), 

molecular layer of the dentate gyrus, stratum radiatum of field CA1 and stratum lucidum of field CA3 (E: SYN; F: 

PSD-95) of untreated and treated euploid and Ts65Dn mice (n=6: 3 males and 3 females for each of the four 

experimental groups). For each region, data of SYN and PSD-95 optical density are given as fold difference in 

comparison with untreated euploid mice. Values in (C-F) represent mean  SE. * p < 0.05; ** p < 0.01; *** p < 

0.001 (Fisher LSD after two-way ANOVA). Black asterisks in the gray bar indicate a difference between untreated 

Ts65Dn mice and treated euploid mice; white asterisks in the black bar indicate a difference between treated 

Ts65Dn mice and treated euploid mice. Abbreviations: CA1 and CA3, hippocampal fields; DG, dentate gyrus; GR, 

granule cell layer; LM, stratum lacunosum-moleculare; LUC, stratum lucidum; MOL, molecular layer; OR, stratum 

oriens; PYR, pyramidal layer; RAD, stratum radiatum.  
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Figure 3.2.7. Effects of neonatal treatment with EGCG on number of synaptic puncta in P15 

mice. A, B: Representative confocal microscope images of sections processed for SYN (A) and PSD95 

(B) immunofluorescence from the neocortex of an animal of each experimental group. Calibration 

bar=3 m. C-F: Number of puncta per m2 exhibiting SYN and PSD-95 immunoreactivity in layers 

II-III and IV-VI of the neocortex (C: SYN; D: PSD-95), molecular layer of the dentate gyrus, stratum 

lucidum of field CA3, and stratum radiatum of field CA1 (E: SYN; F: PSD-95) of untreated and treated 

euploid and Ts65Dn mice (n=6: 3 males and 3 females for each of the four experimental groups). 

Values in C-F represent mean  SE. * p < 0.05; ** p < 0.01; *** p < 0.001 (Fisher LSD after two-way 

ANOVA). Black asterisks in the gray bar indicate a difference between untreated Ts65Dn mice and 

treated euploid mice; white asterisks in the black bar indicate a difference between treated Ts65Dn 

mice and treated euploid mice. Abbreviations: Eu, euploid; DG, dentate gyrus; CA1 and CA3, 

hippocampal fields.
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treatment. A two-way ANOVA (genotype x treatment) showed a main effect of genotype on body 

weight [F(1,35) = 8.67, p ≤ 0.01] and brain weight [F(1,35) = 4.98, p ≤ 0.05] in males with 

nointeraction between genotype x treatment. A main effect of treatment on body weight [F(1,40) = 

4.09, p ≤ 0.05] was found in females with no interaction between genotype x treatment (and no effect 

of treatment). These results suggest that neonatal treatment has no long-term adverse effects on body 

and brain weight in P45 mice (Table 3.2.1).  

 

Long-term effects of neonatal treatment with EGCG on cell survival, cell phenotype and 

proliferation potency 

We evaluated the number and phenotype of BrdU-positive cells present in the DG of P45 mice that 

had been injected with BrdU at P15 (i.e. at the end of treatment). A two-way ANOVA on the total 

number of BrdU-positive cells showed no genotype x treatment interaction, a main effect of genotype 

[F(1,20) = 24.88, p ≤ 0.001], but no effect of treatment. A post hoc Fisher LSD test showed that the 

total number of BrdU-positive cells in untreated Ts65Dn mice was reduced in comparison with 

euploid mice (Fig. 3.2.8C). Unexpectedly, even though neonatal treatment with EGCG had restored 

the number of BrdU-positive cells in Ts65Dn mice at P15 (Fig. 3.2.4B), one month after treatment 

cessation these positive effects disappeared and the number of their BrdU-positive cells was 

againreduced in comparison with that of euploid mice (Fig. 3.2.8C).  

One peculiar characteristic of a trisomic brain is the higher astrocyte/neuron ratio (Guidi et al., 2008, 

Lu et al., 2012). In order to establish whether neonatal treatment with EGCG had an effect on 

phenotype acquisition, we evaluated the percentage and number of BrdU/NeuN (a marker of mature 

neurons), BrdU/GFAP (a marker of astrocytes) double-labeled cells. Additionally, we evaluated the 

percentage and number of not double-labeled cells (i.e. only marked with BrdU).  

A two-way ANOVA on the percentage of BrdU/NeuN cells showed no genotype x treatment 

interaction, a main effect of genotype [F(1,20) = 21.62, p ≤ 0.001], and no effect of treatment. A post 

hoc Fisher LSD test showed that untreated Ts65Dn mice had a reduced percentage of new neurons in 

comparison with untreated euploid mice and that treatment did not affect this condition (Fig. 3.2.8D: 
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upper panel). A two-way ANOVA on the number of BrdU/NeuN-positive cells showed no genotype 

x treatment interaction, a main effect of genotype [F(1,20) = 37.13, p ≤ 0.001], but no effect of 

treatment. A post hoc Fisher LSD test showed that untreated Ts65Dn mice had a reduced number of 

new neurons in comparison with untreated euploid mice and that this defect was not rescued by 

treatment (Fig. 3.2.8D: lower panel). In euploid mice, no effect of treatment was found on both the 

percentage and total number of BrdU/NeuN positive cells (Fig. 3.2.8D). 

A two-way ANOVA on the percentage of BrdU/GFAP-positive cells revealed no genotype x 

treatment interaction, a main effect of genotype [F(1,20) = 21.63, p ≤ 0.001] and no effect of 

treatment. A post hoc Fisher LSD test showed that untreated Ts65Dn mice had an increased 

percentage of new astrocytes in comparison with untreated euploid mice and that this defect was not 

corrected after neonatal treatment with EGCG (Fig. 3.2.8E: upper panel). In agreement with results 

obtained for the percentage of BrdU/GFAP-positive cells, two-way ANOVA analysis on the number 

of cells with an astrocytic phenotype showed no genotype x treatment interaction and no significant 

effect of either genotype or treatment. A post hoc Fisher LSD test showed no differences between 

groups (Fig. 3.2.8E: lower panel). In euploid mice, no effect of treatment was found either in the 

percentage or number of new astrocytes (Fig. 3.2.8E). 

From these results it emerges that early treatment with EGCG has no long-term effect on the abnormal 

phenotype acquisition that characterizes the trisomic brain.  

 

Long-term effects of neonatal treatment with EGCG on hippocampal proliferation potency and 

total number of granule cells 

We evaluated the number of Ki67-positive cells in the DG of P45 mice in order to evaluate the long-

term effects of neonatal treatment with EGCG on the size of the population of NPCs one month after 

treatment cessation. A two-way ANOVA on the total number of Ki-67-positive cells counted showed 

no genotype x treatment interaction, a main effect of genotype [F(1,20) = 26.13, p ≤ 0.001], but there 

was no effect of treatment. A post hoc Fisher LSD test showed that treatment was ineffective in P45 
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Figure 3.2.8. Long-term effects of neonatal treatment with EGCG on the fate of neural precursor cells 

of P45 euploid and Ts65Dn mice. A: Representative confocal images of sections processed for fluorescence 

immunostaining for BrdU/NeuN from the dentate gyrus of an animal from each experimental group. 

Calibration bar=100 mm. The inset shows a zoomed image of the boxed area with examples of individual 

BrdU/NeuN-positive cells. Calibration bar=10 mm. B: Confocal laser scanning microscope stack image at 

higher magnification showing a cell double-labeled for BrdU (red) and NeuN (green) in the dentate gyrus. The 

BrdU/NeuN-double-labeled cell is shown in x–y orthogonal planes and z-sectioning at 0.5 mm intervals to 

confirm overlap of the two immunoreactions. Calibration bar=5 µm. C: Total number of BrdU-positive cells 

in the dentate gyrus of untreated and treated euploid and Ts65Dn mice (n=6: 3 males and 3 females for each 

of the four experimental groups). Values refer to one hemisphere. These animals were injected with BrdU at 

P15 and killed at P45. D: Percentage (upper panel) and number (lower panel) of surviving cells with a neuronal 

phenotype (BrdU/NeuN). E: Percentage (upper panel) and number (lower panel) of surviving cells with an 

astrocytic phenotype (BrdU/GFAP). F: percentage (upper panel) and number (lower panel) of surviving cells 

with an undetermined phenotype (Neither) in the DG of untreated and treated euploid and Ts65Dn mice. Same 

animals as in (C). Values in (C-F) are mean  SE. * p < 0.05; ** p < 0.01; *** p < 0.001 (Fisher LSD test after 

two-way ANOVA). Black asterisks in the gray bar indicate a difference between untreated Ts65Dn mice and 

treated euploid mice; white asterisks in the black bar indicate a difference between treated Ts65Dn mice and 

treated euploid mice. Abbreviations: BrdU, bromodeoxyuridine; Eu, euploid.
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Ts65Dn mice since the number of Ki-67-positive cells was not increased (Fig. 3.2.9A). Neither was 

there any effect of treatment in euploid mice (Fig. 3.2.9A). A two-way ANOVA on the density of Ki-

67-positive cells showed no genotype x treatment interaction, a main effect of genotype [F(1,20) = 

21.33, p ≤ 0.001], but no effect of treatment. A post hoc Fisher LSD test showed that in P45 Ts65Dn 

and euploid mice the density of Ki-67-positive was not increased by treatment (Fig. 3.2.9B). In P45 

mice, similarly to P15 mice, a two-way ANOVA analysis on the number of caspase-3-positive cells 

in the DG showed that there were no genotype x treatment interactions and no effects of either 

genotype or treatment (Fig. 3.2.9C). A two-way ANOVA on p21 protein levels in in the hippocampus 

of P45 mice showed no genotype x treatment interaction; a main effect of genotype [F(1,20) = 7.00, 

p ≤ 0.05], but no effect of treatment. A post hoc Fisher LSD test showed that in P45 treated Ts65Dn 

mice p21 levels did not undergo a reduction and were still higher in comparison with euploid mice 

(Fig. 3.2.9D). In treated P45 euploid mice, p21 levels were unaffected by treatment (Fig 3.2.9D).  

We then stereologically examined the DG of P45 mice in order to establish whether the restoration 

of cellularity observed in P15 mice was retained with time. A two-way ANOVA on the volume of 

the granule cell layer showed no genotype x treatment interaction; a main effect of genotype [F(1,20) 

= 17.80, p ≤ 0.001], but no effect of treatment. A post hoc Fisher LSD test showed that in Ts65Dn 

mice the volume of the granule cell layer was not increased by treatment and remained reduced in 

comparison with that of euploid mice (Fig. 3.2.9E), indicating no retention of short-term effects. A 

two-way ANOVA on granule cell density showed a genotype x treatment interaction [F(1,20) = 4.39, 

p ≤ 0.05] and a main effect of both genotype [F(1,20) = 26.76, p ≤ 0.001] and treatment [F(1,20) = 

5.85, p ≤ 0.05]. A post hoc Fisher LSD test showed that treated Ts65Dn mice had no improvement 

when compared with untreated euploid mice. Surprisingly, in euploid mice treatment caused a small 

but significant reduction in granule cell density (Fig. 3.2.9F). A two-way ANOVA on total granule 

cell number showed no genotype x treatment interaction, a main effect of genotype [F(1,20) = 32.15, 

p ≤ 0.001], but no effect of treatment. A post hoc Fisher LSD test showed that untreated Ts65Dn mice 

had a reduced number of granule neurons in comparison with euploid mice and that this defect was 
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Figure 3.2.9. Long-term effects of neonatal treatment with EGCG on neural precursor cell 

number and granule cell number in the dentate gyrus of P45 Ts65Dn and euploid mice. A-C: Ki-

67 positive cells, expressed as total cell count (A) and cells/mm2 (B), and cleaved caspase-3 positive 

cells, expressed as total cell count (C), in the dentate gyrus of untreated and treated euploid and Ts65Dn 

mice (n=6: 3 males and 3 females for each of the four experimental groups). D: Western blot analysis 

of p21 levels in the hippocampal formation of untreated and treated euploid and Ts65Dn mice (n=6: 3 

males and 3 females for each of the four experimental groups). Western blots (left) are examples taken 

from one animal from each experimental group. Histograms (right) show p21 levels normalized to 

GAPDH and expressed as a fold difference in comparison with untreated euploid mice. E-G: Volume 

of the granule cell layer (E), density of granule cells (F) and total number of granule cells (G) in 

untreated and treated euploid and Ts65Dn mice (n=6: 3 males and 3 females for each of the four 

experimental groups). Values (mean  SE) in (A-G) refer to one hemisphere. * p < 0.05; ** p < 0.01; 

*** p < 0.001 (Fisher LSD test after two-way ANOVA). Black asterisks in the gray bar indicate a 

difference between untreated Ts65Dn mice and treated euploid mice; white asterisks in the black bar 

indicate a difference between treated Ts65Dn mice and treated euploid mice. Abbreviations: Casp, 

caspase-3; Eu, euploid.
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not rescued by treatment (Fig. 3.2.9G).  

 

Long-term effects of neonatal treatment with EGCG on cortical and hippocampal synapses 

In P45 mice, we evaluated the long-term effects of neonatal EGCG treatment on the expression of 

SYN and PSD-95 in the same regions examined in P15 mice, in order to compare the outcomes. A 

two-way ANOVA on the OD of SYN and PSD-95 and revealed no genotype x treatment interactions, 

a main effect of genotype in most of the examined regions and a main effect of treatment in a few 

regions (summarized in Table 3.2.3). Similar results were obtained after two-way ANOVA on the 

number of SYN and PSD-95 immunoreactive puncta (Table 3.2.3). A post hoc Fisher LSD test 

showed that untreated Ts65Dn mice had OD levels of SYN and PSD-95 and a number of puncta 

smaller than in untreated euploid mice in the neocortex, DG, field CA3 and field CA1 (Fig. 

3.2.10C,D; Fig. 3.2.11C,D). This evidence indicates that trisomy-linked defects in synapse 

development do not ameliorate in mice aged P45. In addition, similarly to the other morphological 

parameters analyzed in this study, the positive effects of neonatal treatment with EGCG on synaptic 

proteins seen in Ts65Dn mice did not outlast treatment cessation. Rather, in the DG and field CA1 

the immunoreactivity for SYN was reduced in comparison with untreated Ts65Dn mice (Fig. 

3.2.10E). Some negative effects of treatment took place in the hippocampal region of treated euploid 

mice, in which a reduction in the OD of both SYN and PSD-95 was observed (Fig. 3.2.10D,F). 

 

Effects of treatment with EGCG on GSK3β protein levels and phosphorylation 

The main activity of EGCG is to inhibit DYRK1A, but there is evidence that this catechin has also 

antioxidant properties (Kim et al., 2014), acts on the Shh pathway (Wang et al., 2012), activates a 

pro-survival PKC pathway (Kelsey et al., 2010), activates the MEK-ERK pathway (Spencer, 2009), 

and stimulates the activity of ERK-dependent cyclic AMP response element (Schroeter et al., 2007). 

Thus, various mechanisms may take part in the positive effects induced by treatment with EGCG. 

Recent evidence shows that EGCG is able to increase the phosphorylation levels of GSK3β at ser9 
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Table 3.2.3. Two-way ANOVA of SYN and PSD-95 measurements in P15 and P45 mice.  

 

The F and p values of two-way ANOVA with genotype (euploid, Ts65Dn) and treatment (vehicle, EGCG) as 

factors are reported for the optical density of SYN and PSD-95, and number of SYN and PSD-95 

immunoreactive puncta. The p values are reported as: p < 0.05, 0.01, 0.005, 0.001, 0.0005. n.s.: not significant. 

Abbreviations: Cx, cortex; DG, dentate gyrus; GEN, genotype; Luc, stratum lucidum; Mol stratum moleculare; 

OD, optical density, PSD-95, postsynaptic density protein-95; Rad, stratum radiatum; SYN, synaptophysin; 

TREAT, treatment. 

Measurement Region Variable  Main effect  

Two-way 

interaction 

   GEN  TREAT  GEN x TREAT 

   F(1,20) p F(1,20) p F(1,20) p 

P15 mice         

SYN Cx (II-III) OD 1.09 n.s. 24.40 0.0005 9.02 0.01 

  Puncta 4.93 0.05 10.45 0.005 4.27 0.05 

 Cx (IV-VI) OD 2.48 n.s. 31.22 0.0005 6.27 0.05 

  Puncta 14.14 0.001 47.44 0.0005 7.58 0.01 

 DG (Mol) OD 24.35 0.0005 7.84 0.01 2.29 n.s. 

  Puncta 12.26 0.01 12.09 0.005 6.47 0.05 

 CA3 (Luc) OD 0.39 n.s. 31.16 0.0005 12.48 0.005 

  Puncta 8.37 0.01 24.64 0.0005 0.07 n.s. 

 CA1 (Rad) OD 3.28 n.s. 28.87 0.0005 1.68 n.s. 

  Puncta 8.09 0.01 20.57 0.0005 2.71 n.s. 

PSD-95  Cx (II-III) OD 0.71 n.s. 31.43 0.0005 2.28 n.s. 

  Puncta 5.68 0.05 13.87 0.001 14.19 0.001 

 Cx (IV-VI) OD 0.00 n.s. 26.22 0.0005 5.77 0.05 

  Puncta 0.43 n.s. 28.79 0.0005 1.17 n.s. 

 DG (Mol) OD 0.31 n.s. 28.74 0.0005 3.38 n.s. 

  Puncta 1.35 n.s. 7.65 0.05 3.25 n.s. 

 CA3 (Luc) OD 0.70 n.s. 29.07 0.0005 11.71 0.005 

  Puncta 10.02 0.005 5.14 0.05 9.41 0.01 

 CA1 (Rad) OD 0.08 n.s. 30.14 0.0005 4.83 0.05 

  Puncta 6.90 0.05 32.17 0.0005 0.23 n.s. 

P45 mice         

SYN Cx (II-III) OD 14.50 0.001 1.21 n.s. 0.79 n.s. 

  Puncta 10.60 0.01 0.02 n.s. 0.07 n.s. 

 Cx (IV-VI) OD 21.83 0.0005 0.30 n.s. 3.23 n.s. 

  Puncta 8.20 0.01 0.00 n.s. 0.14 n.s. 

 DG (Mol) OD 20.07 0.0005 7.72 0.05 0.38 n.s. 

  Puncta 11.19 0.005 0.61 n.s. 0.05 n.s. 

 CA3 (Luc) OD 3.37 n.s. 15.58 0.001 3.93 n.s. 

  Puncta 21.01 0.0005 2.06 n.s. 0.87 n.s. 

 CA1 (Rad) OD 17.08 0.001 11.86 0.005 0.78 n.s. 

  Puncta 20.64 0.0005 0.55 n.s. 0.01 n.s. 

PSD-95  Cx (II-III) OD 26.11 0.0005 0.01 n.s. 2.18 n.s. 

  Puncta 12.96 0.005 2.99 n.s. 0.11 n.s. 

 Cx (IV-VI) OD 17.23 0.0005 1.84 n.s. 0.90 n.s. 

  Puncta 14.98 0.001 0.04 n.s. 0.03 n.s. 

 DG (Mol) OD 25.27 0.0005 2.90 n.s. 0.42 n.s. 

  Puncta 22.70 0.0005 0.36 n.s. 0.00 n.s. 

 CA3 (Luc) OD 6.15 0.01 1.60 n.s. 4.26 0.05 

  Puncta 18.18 0.0005 0.01 n.s. 0.43 n.s. 

 CA1 (Rad) OD 13.92 0.001 7.18 0.05 4.01 n.s. 

  Puncta 14.63 0.001 1.99 n.s 0.01 n.s. 
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Figure 3.2.10. Long-term effects of neonatal treatment with EGCG on synapse development in P45 Ts65Dn 

and euploid mice. A, B: Sections processed for SYN (A) and PSD-95 (B) immunofluorescence from the neocortex 

overlying the hippocampus, hippocampal field CA1, and DG of an animal from each experimental group. 

Calibration bar=200 m. C-F: Optical density of SYN and PSD-95 immunoreactivity in layers II-III and IV-VI of 

the neocortex (C: SYN; D: PSD-95), molecular layer of the dentate gyrus, stratum lucidum of field CA3, and 

stratum radiatum of field CA1 (E: SYN; F: PSD-95) of untreated and treated euploid and Ts65Dn mice (n=6: 3 

males and 3 females for each of the four experimental groups). For each region, data of SYN and PSD-95 optical 

density are given as a fold difference compared to untreated euploid mice. Values in C-F represent mean  SE. * p 

< 0.05; ** p < 0.01; *** p < 0.001 (Fisher LSD test after two-way ANOVA). Black asterisks in the gray bar indicate 

a difference between untreated Ts65Dn mice and treated euploid mice; white asterisks in the black bar indicate a 

difference between treated Ts65Dn mice and treated euploid mice. Abbreviations: CA1 and CA3, hippocampal 

fields; DG, dentate gyrus; Eu, euploid; GR, granule cell layer; LM, stratum lacunosum-moleculare; LUC, stratum 

lucidum; MOL, molecular layer; OR, stratum oriens; PYR, pyramidal layer; RAD, stratum radiatum. 
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Figure 3.2.11. Effects of neonatal treatment with EGCG on number of synaptic puncta in P45 

mice. A, B: Representative confocal microscope images of sections processed for SYN (A) and PSD-

95 (B) immunofluorescence from the neocortex of an animal of each experimental group. Calibration 

bar=3 m. C-F: Number of puncta per m2 exhibiting SYN and PSD-95 immunoreactivity in layers 

II-III and IV-VI of the neocortex (C: SYN; D: PSD-95), molecular layer of the dentate gyrus, stratum 

lucidum of field CA3, and stratum radiatum of field CA1 (E: SYN; F: PSD-95) of untreated and treated 

euploid and Ts65Dn mice (n=6: 3 males and 3 females for each of the four experimental groups). 

Values in C-F represent mean  SE. * p < 0.05; ** p < 0.01; *** p < 0.001 (Fisher LSD after two-way 

ANOVA). Black asterisks in the gray bar indicate a difference between untreated Ts65Dn mice and 

treated euploid mice; white asterisks in the black bar indicate a difference between treated Ts65Dn 

mice and treated euploid mice. Abbreviations: Eu, euploid; DG, dentate gyrus; CA1 and CA3, 

hippocampal fields.
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in neurons (Lin et al., 2009, Ruan et al., 2009), thereby inhibiting its activity. GSK3β is a 

serine/threonine kinase that plays a fundamental role in various biological processes (Jope and 

Johnson, 2004) at physiological levels. Altered GSK3β activity appears to be involved in 

neurodegenerative and neurological disturbances (Eldar-Finkelman and Martinez, 2011). In fact, 

when GSK3β is over-activated, it causes reduction in neurogenesis and impairment of synapse 

development (Eldar-Finkelman and Martinez, 2011, Kim and Snider, 2011). As previously shown in 

this thesis (see Section 3.1), in the hippocampus of P15 Ts65Dn mice GSK3β is dephosphorylated at 

ser9.  

Based on these premises, we wondered whether treatment with EGCG affects the GSK3β 

phosphorylation state. Thus, we examined the levels of ser9 phosphorylated GSK3β (pGSK3β) and 

total GSK3β levels in hippocampal homogenates of P15 and P45 mice. In P15 mice, a two-way 

ANOVA on pGSK3β levels showed no genotype x treatment interaction, no significant effect of 

genotype, but a main effect of treatment [F(1,20) = 33.75, p ≤ 0.001]. A post hoc Fisher LSD test 

confirmed (see Section 3.1 of the thesis) that in the hippocampus of untreated Ts65Dn mice there 

were reduced levels of pGSK3β in comparison with euploid mice. Treatment with EGCG increased 

pGSK3β levels, that reached those of untreated euploid mice (Fig. 3.2.12A,B). A similar effect of 

EGCG treatment was also seen in euploid mice (Fig. 3.2.12A,B). A two-way ANOVA on total levels 

of GSK3β showed no genotype x treatment interaction, but did show a main effect of both genotype 

[F(1,20) = 5.04, p ≤ 0.05] and treatment [F(1,20) = 18.83, p ≤ 0.001]. A post hoc Fisher LSD test 

showed that while in untreated Ts65Dn mice there were higher total levels of GSK3β, in treated 

Ts65Dn mice levels of GSK3β underwent a large reduction (Fig. 3.2.12A,C). In P45 mice, a two-

way ANOVA on pGSK3β levels showed no genotype x treatment interaction, a main effect of 

genotype [F(1,20) = 12.90, p ≤ 0.001], but no effect of treatment. A post hoc Fisher LSD test showed 

that Ts65Dn mice exhibited reduced hippocampal levels of pGSK3β (Fig. 3.2.12D,E) in comparison 

with euploid mice also at P45. However, treated Ts65Dn mice aged 45 days did not exhibit any 

change in pGSK3β (Fig. 3.2.12D,E). A two-way ANOVA on total levels of GSK3β showed no 
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Figure 3.2.12. Short- and long-term effects of neonatal treatment with EGCG on GSK3β protein 

expression in P15 and P45 Ts65Dn and euploid mice. Western blot analysis of p-GSK3β, total 

GSK3β and GAPDH in the hippocampus of untreated and treated euploid and Ts65Dn mice at P15 

(A-C) and P45 (D-F). At each age: n=6 (3 males and 3 females) for each experimental group. Western 

blots in (A, D) are examples from P15 (A) and P45 (D) animals from each experimental group. 

Histograms in (B, E) show p-GSK3β levels normalized to total GSK3β in P15 (B) and P45 (E) mice. 

Histograms in (C, F) show total GSK3β normalized to GAPDH in P15 (C) and P45 (F) mice. Values 

in (B, C, E, F) are expressed as fold difference in comparison with untreated euploid mice. Values in 

(B, C, E, F) are mean  SE. * p < 0.05; ** p < 0.01; *** p < 0.001 (Fisher LSD test after two-way 

ANOVA). Black asterisks in the gray bar indicate a difference between untreated Ts65Dn mice and 

treated euploid mice; white asterisks in the black bar indicate a difference between treated Ts65Dn 

mice and treated euploid mice. Abbreviation: Eu, euploid.
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genotype x treatment interaction, a main effect of genotype [F(1,20) = 9.10, p ≤ 0.01], but no effect 

of treatment. A post hoc Fisher LSD test showed that Ts65Dn mice aged 45 days exhibited increased 

levels of total GSK3β (Fig. 3.2.12D,F) in comparison with euploid mice and that treatment had no 

effects in total levels of GSK3β in both euploid and Ts65Dn mice (Fig. 3.2.12D,F). 

 

Effects of neonatal treatment with EGCG on hippocampus-dependent learning and memory  

In order to explore the effects of a neonatal treatment with EGCG on hippocampus-dependent spatial 

learning and memory (Crawley, 2007), animals were subjected to behavioral tasks starting at P45, 

i.e. 25-30 days after treatment cessation. We used the Y-maze (YM) test and the Morris Water Maze 

(MWM) test.  

Regarding the YM test, we compared the rate of spontaneous alternations and the number of arm 

entries for Ts65Dn and euploid mice. A two-way ANOVA revealed no genotype x treatment 

interaction, a main effect of genotype [F(1,77) = 18.60, p ≤ 0.0001], but there was no significant 

effect of treatment. A post hoc Fisher LSD test showed that untreated Ts65Dn mice had a lower 

alternation rate in comparison with euploid mice (Fig. 3.2.13A). This defect was not improved by 

neonatal treatment with EGCG (Fig. 3.2.13A). The YM also provides estimation of spontaneous 

locomotor activity. A two-way ANOVA revealed no genotype x treatment interaction; a main effect 

of genotype [F(1,77) = 5.50, p ≤ 0.05], but no effect of treatment. A post hoc Fisher LSD test showed 

that untreated and treated Ts65Dn had a larger number of entries in comparison with untreated euploid 

mice, although the difference was statistically significant only for treated mice (Fig. 3.2.13B). This 

evidence indicates that treatment did not improve either impaired working memory or enhanced 

spontaneous locomotor activity in Ts65Dn mice (Faizi et al., 2011).  

A three-way mixed ANOVA, with genotype and treatment as grouping factors and day as a repeated 

measure revealed a genotype x day interaction [F(4,316) = 5.73, p ≤ 0.001], a main effect of genotype 

[F(1,79) = 104.99, p ≤ 0.0001] and day [F(4,316) = 22.22, p ≤ 0.0001]. We found no genotype x 

treatment x day, genotype x treatment, treatment x day interactions or a main effect of treatment. A 
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post hoc Fisher LSD analysis showed that, on all of the examined days, untreated and treated Ts65Dn 

mice exhibited a poorer performance compared to untreated euploid mice (Fig. 3.2.13C). Similarly 

to Ts65Dn mice, in euploid mice treatment had no effect on the learning curve. A comparison of 

treated and untreated Ts65Dn mice showed no latency difference on days 1-4 but on day 5 treated 

Ts65Dn exhibited a latency reduction compared to untreated Ts65Dn mice (p ≤ 0.05). Considering 

the absence of any genotype x treatment x day interaction (see above), it is possible that this difference 

is related to an "experiment-wise" error due to multiple comparisons across days rather than a learning 

improvement. Regarding the probe test, a two-way ANOVA revealed i) no genotype x treatment 

interaction, a main effect of genotype [F(1,79) = 14.38, p ≤ 0.001], but no effect of treatment on 

latency; ii) no genotype x treatment interaction, a main effect of genotype [F(1,79) = 15.78, p ≤ 

0.001], but no effect of treatment on the percentage of time; and iii) no genotype x treatment 

interaction, a main effect of genotype  [F(1,79) = 17.00 p ≤ 0.0001] but no effect of treatment on the 

frequency. A post hoc Fisher LSD test revealed that untreated Ts65Dn mice performed worse than 

untreated euploid mice in all parameters analyzed in the probe test. In fact, they showed an increase 

in latency to enter the trained platform quadrant (Fig. 3.2.13D), a reduction in the time spent there 

(Fig. 3.2.13E), and a decrease in the frequency of entrances (Fig. 3.2.13F). In neonatally-treated 

euploid and Ts65Dn mice none of these parameters underwent an improvement in comparison with 

their untreated counterparts (Fig. 3.2.13D-F).  

 

3.2.5 Discussion 

 

In this study, we examined the effects of neonatal treatment with EGCG on hippocampal development 

in the Ts65Dn model of DS. The results show that pharmacotherapy with EGCG in the first two 

postnatal weeks fully rescues neural precursor cell proliferation and cellularity, as well as synapse 

development in Ts65Dn pups. However, these effects vanish with time and do not lead to an 

improvement in hippocampus-dependent long-term memory in young adult mice. Thus, therapy with 
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Figure 3.2.13. Long-term effects of neonatal treatment with EGCG on spatial learning in Ts65Dn 

and euploid mice. These mice received either saline or EGCG in the period P3-P15 and were 

behaviorally tested starting from 9 days before reaching 45-50 days of age (i.e. from 36-41 days old, 

for 9 days). A, B: Working memory performance in the Y-maze. Percentage of spontaneous 

alternations (A) and number of arm entries (B) in the Y-maze test in untreated euploid mice (n=37: 17 

males and 20 females), untreated Ts65Dn mice (n=9: 5 males and 4 females), treated euploid mice 

(n=25: 12 males and 13 females), and treated Ts65Dn mice (n=10: 5 males and 5 females). C-F: Spatial 

learning and memory assessed with the Morris Water Maze in untreated euploid mice (n=38: 17 males 

and 21 females), untreated Ts65Dn mice (n=10: 5 males and 5 females), treated euploid mice (n=25: 

12 males and 13 females), and treated Ts65Dn mice (n=10: 5 males and 5 females). The learning 

curves (C) reports data of euploid mice that received either saline (empty circle) or EGCG (filled 

circle) and Ts65Dn mice that received either saline (empty square) or EGCG (filled square). The 

symbols * and # indicate a difference between untreated euploid and untreated Ts65Dn mice, and 

between untreated euploid and treated Ts65Dn mice, respectively. Values represent mean  SE. * p < 

0.05; ** p< 0.01; *** p < 0.001; ## p < 0.01; ### p < 0.001 (Fisher LSD test after ANOVA). Black 

asterisks in the gray bar indicate a difference between untreated Ts65Dn mice and treated euploid 

mice; white asterisks in the black bar indicate a difference between treated Ts65Dn mice and treated 

euploid mice. Abbreviation: Eu, euploid; sec, seconds.
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EGCG even during a particularly critical period for development of the hippocampus has no enduring 

effects on trisomic brain physiology. 

 

Early treatment with EGCG restores hippocampal development in Ts65Dn pups 

Neurogenesis failure and neuronal maturation are the major neurodevelopmental defects of the 

trisomic brain (reviewed by (Bartesaghi et al., 2011, Dierssen, 2012)). Among the triplicated genes, 

Dyrk1A is likely to play a key role in disrupting neurodevelopment. Some studies have already shown 

that treatment with EGCG, an inhibitor of DYRK1A and other kinases (see (Aranda et al., 2011)), 

restores hippocampus-dependent learning in adult Ts65Dn mice (De la Torre et al., 2014), even 

though there is no evidence regarding the neuroanatomical substrate of the positive effects of EGCG 

in the Ts65Dn mouse. Moreover, no study has investigated the effect of early treatment with EGCG 

in the Ts65Dn mouse. We found that neonatal treatment with EGCG restores i) the pool of 

proliferating NPCs (Ki-67-positive cells) in the SVZ and SGZ, with no effect on cell death (caspase-

3-positive cells); ii) the number of cells in the S-phase of the cell cycle (BrdU-positive cells) in the 

DG; iii) the number of granule neurons in the hippocampal DG; iv) development of hippocampal as 

well as of neocortical synapses in trisomic pups.  

In Ts65Dn mice aged 15 and 45 days p21 hippocampal levels were higher in comparison with euploid 

mice. In P15 Ts65Dn mice, treatment largely reduced p21 levels, suggesting that this effect may play 

a role in the restoration of neurogenesis. In contrast, in treated P45 Ts65Dn mice p21 protein levels 

returned to be high. This may explain the disappearance of the improvement in proliferation potency 

seen in P15 Ts65Dn mice. Since expression of p21 is regulated in a p53-dependent and independent 

manner (Macleod et al., 1995, Jung et al., 2010), EGCG may modulate p21 levels by inhibiting the 

DYRK1A-p53 pathway (Park et al., 2010). Importantly, restoration of NPCs proliferation in P15 mice 

translated into an increase in total granule cell number, indicating that an early treatment with EGCG 

may is able to restore the typical hypotrophy of the DG of the trisomic brain.  

There is a number of evidence that green tea catechins up-regulates synaptic plasticity-related proteins 
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(Li et al., 2007, Rodrigues et al., 2013). Consistently with these effects of catechins, EGCG treatment 

in Ts65Dn pups increased the number of SYN and PSD-95 immunoreactive puncta, indicating an 

effect on maturation of pre- and post-synaptic terminals. Importantly, we observed these effects not 

only in the hippocampus but also in the neocortex, indicating that EGCG has a widespread effect on 

synapse development. As reported in Section 3.1, altered GSK3 signaling may underlie connectivity 

alterations in DS. We found that in trisomic pups EGCG restored the levels of GSK3 as well as its 

phosphorylation status, suggesting that this effect may contribute to the positive effect of EGCG on 

synapse plasticity. GSK3 can be phosphorylated (inactivated) at ser9 by several kinases, including 

Akt, protein kinase A, and protein kinase C (Jope and Johnson, 2004), that are in turn activated by 

EGCG (Levites et al., 2003, Mandel et al., 2004, Schroeter et al., 2007, Kelsey et al., 2010). This may 

explain the increased phosphorylation of GSK3 following EGCG treatment. 

 

EGCG only transiently restores the developmental alterations of the trisomic brain 

The reduced neurogenesis of the trisomic brain has been shown to be due to both cell cycle elongation 

and precocious exit from the cell cycle (Chakrabarti et al., 2007, Contestabile et al., 2007, 

Contestabile et al., 2009, Dierssen, 2012). We found here that neonatal treatment with EGCG restores 

the number of cells in the S-phase of the cell cycle (BrdU-positive cells) and the total pool of 

proliferating NPCs (Ki-67-positive cells). It remains to be established whether treatment with EGCG 

impacts on both cell cycle kinetics and cell cycle exit. Whatever the mechanisms, it may be expected 

that treatments that are able to expand the reduced pool of NPCs during the critical windows of 

maximum neurogenesis, could lead to an enduring neurogenesis rescue. For this reason, we envisaged 

that the positive impact of EGCG on neurogenesis could outlast treatment cessation. Unfortunately, 

in Ts65Dn mice, the proliferation potency of granule cell precursors was reverted to untreated 

trisomic mice levels. The lack of enduring effects was also observed for phenotype acquisition, 

number of granule neurons and density of synaptic terminals in the hippocampal region and 

neocortex. Consistently with the lack of long-term effects of EGCG on brain neuroanatomy, treated 
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Ts65Dn mice exhibited poorer memory in comparison with untreated euploid mice one month after 

treatment cessation. This finding is consistent with the observation that EGCG improves cognitive 

performance in adolescents with DS but that this effect decreases with time (De la Torre et al., 2014). 

The disappearance with time of the beneficial effects on neurogenesis and connectivity following 

treatment with EGCG suggests that continuous administration of EGCG may be necessary in order 

to prevent the disappearance of its effects.  

In both euploid and Ts65Dn mice, following treatment discontinuation there was a reduction in the 

levels of synaptic proteins in some of the examined brain regions when mice were 45 days old (Fig. 

3.2.10-11). In addition, in treated Ts65Dn mice there was a reduction in the number of Ki-67-positive 

cells per unit area in comparison with their untreated counterparts (Fig. 3.2.9B), and in treated euploid 

mice there was a reduction in granule cell numerical density (Fig. 3.2.9F). Taken together, these 

findings suggest that treatment may leave a negative trace in the brain after its discontinuation.  
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3.3 Section 3 
 

“Pharmacotherapy with 7,8-dihydroxiflavone, a BDNF 

mimetic, in the Ts65Dn mouse model of Down 

syndrome” 

 

Information reported in this section refers to:  

“A flavonoid agonist of the TrkB receptor for BDNF improves hippocampal neurogenesis and 

hippocampus-dependent memory in the Ts65Dn mouse model of DS”. Stagni F, Giacomini A, Guidi 

S, Emili M, Uguagliati B, Salvalai ME, Bortolotto V, Grilli M, Rimondini R, Bartesaghi R. (Stagni 

and Giacomini contributed equally to the article). Experimental Neurology (2017) 298 (Pt A):79-96. 
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3.3.1 Abstract 

 

Reduced neurogenesis and impaired neuron maturation are considered major determinants of altered 

brain function in DS. Since the DS brain is impaired starting from the earliest fetal life stages, attempts 

to rescue neurogenesis and neuron maturation should take place as soon as possible. The brain-

derived neurotrophic factor (BDNF) is a neurotrophin that plays a key role in brain development by 

specifically binding to the TRKB receptor. Systemic BDNF administration is impracticable because 

BDNF has a poor blood-brain barrier penetration. 7,8-dihydroxyflavone (7,8-DHF), a flavone present 

in plants, is a recently found small-molecule that crosses the blood-brain barrier and mimics the 

BDNF activity by binding the TRKB receptor. The goal of this study was to establish whether it is 

possible to restore brain development in the Ts65Dn mouse model of DS by targeting the TRKB 

receptor with 7,8-DHF. Ts65Dn mice, treated with 7,8-DHF in the neonatal period P3-P15, exhibited 

a large increase in the number of neural precursor cells in the dentate gyrus, restoration of granule 

cell number, and restoration of spine density. In order to establish the functional outcome of 

treatment, mice were treated with 7,8-DHF from P3 to adolescence (P45-50) and were tested with the 

Morris Water Maze test, in order to examine hippocampus-dependent learning and memory. Treated 

Ts65Dn mice exhibited restoration of learning and memory, indicating that the recovery of the 

hippocampal anatomy translated into a functional rescue. Ts65Dn mice aged 4 months, treated with 

7,8-DHF for one month, exhibited no restoration of neurogenesis, but they showed an improvement 

in hippocampus-dependent learning and memory, indicating that treatment at advanced life stages, 

unlike at early life stages, is unable to completely rescue the trisomy-linked brain defects. Our study 

provides novel evidence that treatment with 7,8-DHF during the early postnatal period restores 

trisomy-linked neurodevelopmental defects, suggesting that targeting BDNF/TRKB pathway may 

represent a possible breakthrough for DS.  
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3.3.2 Introduction 

 

Most of the brain neurons are produced in the prenatal period, with the notable exception of those 

involved in the formation of the hippocampus, where neurogenesis continues postnatally and 

throughout life (Seress et al., 2001, Rice and Barone, 2010, Stiles and Jernigan, 2010). After the 

critical periods of neurogenesis and synaptogenesis the brain can undergo relatively limited plastic 

changes. Thus, the perinatal period represents a window of opportunity for therapies aimed at 

improving the neurodevelopmental alterations of DS. Since the DS brain starts at a disadvantage, 

attempts to rescue neurogenesis and neuron maturation should take place as soon as possible.  

The brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a key role in brain 

plasticity by specifically binding to the tropomyosin-related kinase receptor B (TRKB) (Haniu et al., 

1997). This binding causes dimerization and autophosphorylation of the TRKB receptor, which 

triggers the activity of several intracellular pathways, thereby favoring neurogenesis, neuritogenesis 

and spine growth (see (Vilar and Mira, 2016)). In the DS brain, BDNF levels are already reduced at 

fetal life stages (Guedj et al., 2009, Toiber et al., 2010) and reduced BDNF levels have been shown 

in various brain regions of the Ts65Dn mouse (Bimonte-Nelson et al., 2003, Bianchi et al., 2010b, 

Fukuda et al., 2010, Begenisic et al., 2015).  

In view of the role of the BDNF-TRKB system in neurogenesis and dendritic morphogenesis, it is 

conceivable that interventions targeted to the BDNF-TRKB system may be exploited in order to 

improve the trisomy-linked neurodevelopmental defects. Systemic administration of BDNF is 

impracticable because BDNF has a poor blood-brain barrier penetration. This obstacle could be 

circumvented by using TRKB agonists that can enter the brain. Recent screening of a chemical library 

has identified a flavone derivative, 7,8-dihydroxyflavone (7,8-DHF), as the first small-molecule 

compound that binds with high affinity and specificity to the TRKB receptor, activates its downstream 

signaling cascade (Liu et al., 2010), and penetrates the blood brain barrier (Liu et al., 2013). 

Administration of  7,8-DHF enhances the activation of phosphorylated TRKB and increases spine 
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density in several brain regions (Zeng et al., 2012), promotes neurogenesis in the dentate gyrus (Liu 

et al., 2010), fosters neurite outgrowth (Tsai et al., 2013) and exerts therapeutic efficacy in various 

animal disease models that are related to deficient BDNF signaling (Liu et al., 2016). 

Various pharmacotherapies have been attempted in DS mouse models (Bartesaghi et al., 2011, Costa 

and Scott-McKean, 2013, Gardiner, 2015). A comparison of the effects of different therapies in 

mouse models shows that many of them were effective (Stagni et al., 2015a). It should be noted, 

however, that some of the used drugs may be not devoid of side effects, and/or have ephemeral effects, 

which diminishes their translational impact. The therapeutic potential of TRKB agonists for 

neurogenesis improvement in DS has never been examined. Considering the important role of the 

BDNF-TRKB receptor system on neurogenesis, we expect that by acting upon this system by 

exploiting the flavonoid 7,8-DHF it may be possible to positively impact the DS brain. Moreover, 

considering that flavonoids are natural substances, it seems likely that their administration at 

appropriate doses may be devoid of side effects. Based on these premises, we deemed it important to 

investigate whether treatment with 7,8-DHF is able to restore hippocampal development and 

hippocampus-dependent memory in the Ts65Dn mouse model of DS. 

 

3.3.3 Materials and Methods 

 

Colony 

Ts65Dn mice were generated by mating B6EiC3Sn a/A-Ts(17^16)65Dn females with C57BL/6JEiJ 

x C3H/HeSnJ (B6EiC3Sn) F1 hybrid males. This parental generation was provided by Jackson 

Laboratories (Bar Harbor, ME, USA). To maintain the original genetic background, the mice used 

were of the first generation of this breeding. Animals were genotyped as previously described 

(Reinholdt et al., 2011). The day of birth was designated postnatal day zero (P0). The animals’ health 

and comfort were controlled by the veterinary service. The animals had access to water and food ad 

libitum and lived in a room with a 12:12 h light/dark cycle. Experiments were performed in 



182 

 

accordance with the European Communities Council Directive of 24 November 1986 (86/609/EEC) 

for the use of experimental animals and were approved by Italian Ministry of Public Health 

(813/2016-PR). In this study, all efforts were made to minimize animal suffering and to keep the 

number of animals used to a minimum. 

In the current study, treatment with either 7,8-DHF or vehicle began on postnatal day 3 (P3). All mice 

that survived in the P0 to P3 period entered this study, with no specific selection criteria. A total of 

185 mice entered the study (96 males and 89 females). The number of vehicle-treated and 7,8-DHF 

treated mice was 96 and 89, respectively. Seven vehicle-treated (7.3%) and five 7,8-DHF-treated 

(5.6%) mice died before weaning, in the P6-P22 period. The similarity in the mortality rate across 

groups suggests that treatment has no adverse effects on the health of mice.  

 

Experimental protocol 

Pilot experiment. In a pilot study we tested the effects of different doses of 7,8-DHF on the 

proliferation rate in the subgranular zone (SGZ) of the dentate gyrus (DG) of Ts65Dn mice. Mice 

received a daily subcutaneous injection of 7,8-DHF (2.5, 5.0, or 10.0 mg/kg in PBS with 1% DMSO) 

from postnatal day 3 (P3) to P15. On P15, mice received an intraperitoneal injection (150 g/g body 

weight) of BrdU (5-bromo-2-deoxyuridine; Sigma) in TrisHCl 50 mM 2h before being killed and the 

number of BrdU-positive cells in the SGZ was evaluated. We found that the optimum dose was 5.0 

mg/kg (see Fig. 3.3.4A). Therefore, this study (Experiment 1, Experiment 2, and Experiment 3) was 

carried out using a 5.0 mg/kg dose.  

Experiment 1. Euploid and Ts65Dn mice received a daily subcutaneous injection (at 9-10am) of 7,8-

DHF (5.0 mg/kg in vehicle: PBS with 1% DMSO) or vehicle from postnatal day 3 (P3) to postnatal 

day 15 (Fig. 3.3.1A). Mice that received 7,8-DHF will be called “treated mice” (treated euploid mice: 

n=25; treated Ts65Dn mice: n=15). Mice that received the vehicle will be called “untreated mice” 

(untreated euploid mice: n=35; untreated Ts65Dn mice: n=21). On P15, mice received an 

intraperitoneal injection (150 g/g body weight) of BrdU in TrisHCl 50 mM 2h before being killed 
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(Fig. 3.3.1A). The brains were excised and cut along the midline. The left hemisphere of a group of 

mice was fixed by immersion in PFA 4% and frozen, and the left hemisphere of another group of 

mice was used for Golgi staining. The right hemispheres of all mice was kept at –80°C and used for 

western blotting.  

Experiment 2. Euploid and Ts65Dn mice received a daily subcutaneous injection (at 9-10am) of 7,8-

DHF (5.0 mg/kg in vehicle) or vehicle from postnatal day 3 (P3) to postnatal day P45-P50 (Fig. 

3.3.2A). At the end of treatment, mice were subjected to behavioural experiments (MWM), using the 

same protocol as that used in Section 3.2. Because C3H/HeSnJ mice carry a recessive mutation that 

leads to retinal degeneration, animals used for the behavioral study were genotyped by standard PCR 

to screen out all mice carrying this gene. Mice that did not carry a recessive mutation that leads to 

retinal degeneration entered the behavioral study (untreated euploid mice: n=19; untreated Ts65Dn 

mice: n=14; treated euploid mice: n=17; treated Ts65Dn mice: n=16). These mice will be called here 

P45 mice. Mice were behaviorally tested in the 6 days that preceded the day of sacrifice (Fig. 3.3.2A). 

The body weight of mice of all groups was recorded prior to sacrifice and the brain weight was 

recorded immediately after its removal. The number of animals used for each experimental procedure 

is specified in the figure legends and in Table 3.3.1. 

Experiment 3. A total of 38 adult male mice were used. Mice aged 4 months received a daily i.p. 

injection of i) vehicle (0.9% NaCl; n=13 euploid and n=11 Ts65Dn mice) or ii) 7,8-DHF (5.0 mg/kg) 

dissolved in the vehicle (n=7 euploid and n=7 Ts65Dn mice) for 41 days (Fig. 3.3.3A). During the 

last 11 days of treatment mice were behaviorally tested with the Morris Water Maze (MWM) test. 

Adult mice underwent a longer MWM in order to detect, if present, age-dependent cognitive decline. 

These mice will be called here 5 month-old mice. At the end of behavioral testing mice were killed, 

the brain was removed, fixed by immersion in PFA 4% and frozen.  

 

Histological procedures 

The frozen brains of P15 and 5 month-old mice were cut with a freezing microtome into 30-m-thick 
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Figure 3.3.1. Experimental protocols. A: Euploid and Ts65Dn pups received one daily injection of either 

vehicle or 7,8-DHF (5.0 mg/kg) from postnatal day 3 (P3) to P15. At P15, mice received one injection of BrdU, 

and were killed after 2 h in order to evaluate the number of cells in the S-phase of the cell cycle. B: Euploid 

and Ts65Dn mice received one daily injection of either vehicle or 7,8-DHF (5.0 mg/kg) from postnatal day P3 

to P45-50. These mice were tested with the Morris Water Maze test 6 days before being killed. C: Euploid and 

Ts65Dn mice received one daily injection of either vehicle or 7,8-DHF (5.0 mg/kg) from 4 months to 5 months 

+ 9 days of age. These mice were tested with the Morris Water Maze test 9 days before being killed. 

Abbreviations: 7,8-DHF, 7,8-dihydroxyflavone; BrdU, bromodeoxyuridine; d, days; Eu, euploid; MWM, 

Morris Water Maze, P, postnatal.
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Table 3.3.1 Number of mice included and excluded from the analyses. 

 
 

 
 

Abbreviations: 7,8-DHF, 7,8-dihydroxyflavone; DG, dentate gyrus; ML, molecular layer of the dentate gyrus; 

N., number; P, post-natal day



186 

 

coronal sections that were serially collected in anti-freezing solution (30% glycerol; 30% ethylen-

glycol; 10% PBS10X; sodium azide 0.02%; MilliQ to volume). Slices from P15 brains were used for 

BrdU immunofluorescence; slices from 5 month-old brains were used for doublecortin (DCX) 

immunofluorescence. 

 

Immunohistochemistry 

The antibodies for immunohistochemistry, with their dilution and purpose are summarized in Table 

3.3.2. 

BrdU immunohistochemistry in P15 mice. One out of six free-floating sections (n=15-18 sections) 

from the hippocampal formation of P15 mice was processed for BrdU immunohistochemistry as 

described in Section 3.1. Slices were incubated with a rat anti-BrdU antibody (mouse monoclonal 

1:100, Roche Applied Science, Mannheim, Germany). Detection was performed with a Cy3-

conjugated anti rat-secondary antibody as indicated in Table 3.3.2.  

DCX Immunohistochemistry in 5 month-old mice. One out of six free-floating sections from the 

hippocampal formation (n=10 sections) of 5 months old mice were processed for DCX 

immunohistochemistry, using the methods described in (Guidi et al., 2013). Quantification of DCX-

positive cells in the DG was conducted in every 6th section using a fluorescence microscope (Nikon 

Eclipse TE 2000-S inverted microscope; Nikon Corp., Kawasaki, Japan; objective: x 20, 0.50 NA; 

final magnification: x 200), equipped with a Nikon digital camera DS 2MBWc. DCX positive-cells 

were counted along the whole length of the granule cell layer and their number was expressed as 

number of cells for 100 µm of linear length. 

 

Golgi staining  

Brains of P15 mice were Golgi stained using the FD Rapid Golgi Stain TM Kit (FD 

NeuroTechnologies, Inc.). Brains were immersed in the impregnation solution containing mercuric 

chloride, potassium dichromate and potassium chromate and stored at room temperature in darkness 
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Table 3.3.2. Antibodies used for immunohistochemistry and western blot. 

Antigen Application Antibody Dilution- Manufactures  

α-Tubulin 

WB Primary: mouse monoclonal 1:1000 (Clone B-5-1-2) (Sigma-

Aldrich, T5168) 

Secondary: HRP-conjugated anti-mouse 1:20000 (Jackson 

Immunoresearch, 115-035-003) 

BDNF 

WB Primary: rabbit polyclonal 1:500 (N-20) (Santa Cruz 

Biotechnology, cs-546) 

Secondary: HRP-conjugated anti-rabbit 1:10000 (Jackson 

Immunoresearch, 111-035-003) 

5-bromo-2-

deoxyuridine (BrdU) 

IHC 

 

Primary: rat monoclonal 1:200 (BioRad, OBT0030) 

Secondary: Cy3-conjugated anti-rat IgG 1:200 (Jackson 

Immunoresearch, 112-165-143) 

Extracellular signal-

regulated kinase 

(ERK1/2)  

WB Primary: mouse monoclonal 1:1000 (3A7) (Cell Signaling, 9107) 

Technology 

Secondary: HRP-conjugated anti-mouse 1:10000(Jackson 

Immunoresearch, 115-035-003) 

phosphorylated ERK 

(p-ERK1/2) 

WB Primary: rabbit polyclonal 1:1000 (Cell Signaling Technology, 

9101) 

Secondary: HRP-conjugated anti-rabbit 1:10000 (Jackson 

Immunoresearch, 111-035-003) 

GAPDH 
WB Primary: rabbit polyclonal 1:5000 (Sigma-Aldrich, G9545) 

Secondary: HRP-conjugated anti-rabbit 1:10000 (Jackson 

Immunoresearch, 111-035-003) 

Synaptophysin (SYN) 
WB Primary: rabbit polyclonal 1:1000(Abcam, ab 14692) 

Secondary: HRP-conjugated anti-rabbit 1:10000 (Jackson 

Immunoresearch, 111-035-003) 

Tropomyosin receptor 

kinase (Trk) B Full 

Length (FL) and TrkB 

truncated (T1) 

WB Primary: rabbit monoclonal 1:1000 (Cell Signaling Technology, 

80E3) 

Secondary: HRP-conjugated anti-rabbit 1:10000 (Jackson 

Immunoresearch, 111-035-003) 

phosphorylated TrkB-

FL (p-TrkB-FL) 

WB Primary: rabbit polyclonal 1:1000 (Millipore, ABN1381) 

Secondary: HRP-conjugated anti-rabbit 1:10000 (Jackson 

Immunoresearch, 111-035-003) 

Abbreviations: IHC, immunohistochemistry; WB, Western blotting.  
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for 3 weeks. Hemispheres were cut with a microtome in 90-μm-thick coronal sections that were 

mounted on gelatin-coated slides and were air dried at room temperature in the dark for one day. 

After drying, sections were rinsed with distilled water and subsequently stained in a developing 

solution (FD Rapid Golgi Stain Kit).  

 

Measurements  

Image acquisition. Immunofluorescence images were taken with a Nikon Eclipse TE 2000-S inverted 

microscope (Nikon Corp., Kawasaki, Japan), equipped with a Nikon digital camera DS 2MBWc. 

Measurements were carried out using the software Image Pro Plus (Media Cybernetics, Silver Spring, 

MD 20910, USA). Bright field images were taken on a light microscope (Leitz) equipped with a 

motorized stage and focus control system and a Coolsnap-Pro color digital camera (Media 

Cybernetics, Silver Spring, MD, USA).  

BrdU-positive cells in P15 mice. BrdU-positive cells in the DG of P15 mice were detected using a 

fluorescence microscope (Eclipse; objective: x 40, 0.75 NA; final magnification: x 400). 

Quantification of BrdU-labeled nuclei was conducted in every 6th section using a modified unbiased 

stereology protocol that has previously been reported as successfully quantifying BrdU labeling 

(Malberg et al., 2000, Kempermann and Gage, 2002, Tozuka et al., 2005). All BrdU-labeled cells 

located in the granule cell and subgranular layers were counted in their entire z axis (1 µm steps) in 

each section. To avoid oversampling errors, nuclei intersecting the uppermost focal plane were 

excluded. The total number of BrdU-labeled cells per animal was determined and multiplied by six 

to obtain the total estimated number of cells per DG. 

Spine density in P15 mice. In Golgi-stained sections from the DG of P15 mice, spines of granule cells 

were counted using a 100x oil immersion objective lens (1.4 NA). Spines were counted in dendritic 

segments in the inner and outer half of the molecular layer. For each neuron, 2-3 segments were 

analyzed in the outer and inner half of the molecular layer, respectively. For each animal, spines were 

counted in at least 8 neurons. The length of each sampled dendritic segment was determined by 
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tracing its profile and the number of spines was counted manually. The linear spine density was 

calculated by dividing the total number of spines by the length of the dendritic segment. Spine density 

was expressed as number of spines per 100 m dendrite. 

Stereology of the DG in P15 mice. Unbiased stereology was performed on Hoechst-stained sections 

from P15 mice. The protocol used for stereology of the DG is the same as that used in Section 3.1. 

Number of DCX positive cells in 5 month-old mice. Quantification of DCX positive cells in the DG 

was conducted in every 6th section using a fluorescence microscope (Nikon Eclipse TE 2000-S 

inverted microscope; Nikon Corp., Kawasaki, Japan; objective: x 20, 0.50 NA; final magnification: 

x 200), equipped with a Nikon digital camera DS 2MBWc. DCX positive cells were counted along 

the whole length of the granule cell layer and their number was expressed as number of cells for 100 

µm of linear length. 

 

Western blotting 

In homogenates of the hippocampal formation of P15 mice, total proteins were obtained as described 

in Section 3.1 of this thesis. Equivalent amount of proteins (50 μg) were subjected to electrophoresis 

on a Bolt 4-12% NuPAGE Bis-Tris Precast Gel (Novex, Life Technologies, Ltd, Paisley, UK) and 

transferred to a Hybond ECL nitrocellulose membrane (Amersham Life Science). The levels of the 

following proteins were evaluated: BDNF, TrkB full length (TrkB-FL), phosphorylated TRKB (p-

TRKB), the truncated form 1 of the TRKB receptor (TRKB-T1), phosphorylated ERK1 (p-ERK1), 

phosphorylated ERK2 (p-ERK2), ERK1, ERK2, SYN, GAPDH and α-Tubulin using the antibodies 

reported in Table 3.3.2. Densitometric analysis of digitized images with ChemiDoc XRS+ was 

performed with Image Lab software (Bio-Rad Laboratories, Hercules, CA, USA) and intensity for 

each band was normalized to the intensity of the corresponding GAPDH or α-Tubulin band.  

 

Behaviorioral testing 

Morris Water Maze (MWM). The MWM protocol and apparatus used for P45 mice were the same as 
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those used in Section 3.2. Since we have not made YM in this study, we evaluated more parameters 

for MWM because in comparison with those analysed in Section 3.2. For the learning phase, we 

evaluated the latency to find the hidden platform, time in periphery, percentage of time in periphery, 

path length, proximity to the platform, and swimming speed. Retention was assessed with one trial 

(probe trial), on the sixth day, 24 h after the last acquisition trial, using the same starting point for all 

mice. For the probe trial, the latency of the first entrance in the trained platform zone, the frequency 

of entrances in the trained quadrant, the proximity to the trained platform position (Gallagher’s test), 

the percentage of time spent at the periphery (thigmotaxis), the swimming speed and the percentage 

of time spent in each quadrant were employed as measures of retention of acquired spatial preference. 

The following number of mice were tested. Untreated euploid mice: n=19; untreated Ts65Dn mice: 

n=14; 7,8-DHF-treated euploid mice: n=17; 7,8-DHF-treated Ts65Dn mice: n=16. Three untreated 

euploid mice (yielding n=16), one 7,8-DHF-treated euploid mouse (yielding n=16) and one 7,8-DHF-

treated Ts65Dn mouse (yielding n=15) were excluded from MWM analysis due to thigmotaxis for a 

whole recording session.  

For adult (5-month-old) mice, the apparatus and the experimental condition of the MWM test was the 

same as those for P45 mice, with the exception of the learning phase duration. Learning phase was 

organized as follows. Days 1-8: learning sessions; day 9: probe test. During the learning phase mice 

were subjected to 4 trials on day one and to two blocks of 4 trials separated by an interval of 45 

minutes on days 2-8. Mice were tested longer than in the other MWM protocols reported in the 

dissertation because we sought to establish whether Ts65Dn mice have cognitive decline at five 

months of age and whether treatment could prevent this condition. 

 

Statistical analysis 

Results are presented as mean ± standard error of the mean (SE). Data were analyzed with the IBM 

SPSS 22.0 software. Distribution of data and the homogeneity of variances were evaluated with 

Shapiro-Wilk test and Levene’s test respectively. Statistical analysis was carried out using either a 
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one-way ANOVA or a two-way ANOVA with genotype (euploid, Ts65Dn) and treatment (vehicle, 

7,8-DHF), as factors. Post hoc multiple comparisons were carried out using the Fisher least significant 

difference (LSD) test. For the learning phase of the MWM test, statistical analysis was performed 

using a three-way mixed ANOVA, with genotype and treatment as grouping factors and days as a 

repeated measure. For the probe test of MWM, we used a two-way ANOVA with genotype and 

treatment as factors followed by the Fisher LSD post hoc test for the latency of the first entrance in 

the trained platform zone, the frequency of entrances in the trained quadrant, the proximity to the 

trained platform position, the percentage of time spent in the periphery, and the swimming speed. For 

the percentage of time spent in quadrants, the percentage of time spent in the NW, NE and SE 

quadrants was compared to the percentage of time spent in the trained platform quadrant (SW), 

respectively, with a paired-samples t-test. Based on the “Box plot” tool available in SPSS Descriptive 

Statistics we excluded from each analysis the extremes, i.e. values that were larger than 3 times the 

IQ range [x ≥ Q3 + 3 * (IQ); x ≤ Q1 – 3 * (IQ)]. Figure legends report the number of mice used for 

statistical analysis. A probability level of p ≤ 0.05 was considered to be statistically significant.  

 

3.3.4 Results 

 

Effect of treatment with 7,8-DHF in P15 mice: general results 

The Ts65Dn strain is characterized by a high mortality rate during gestation and before weaning 

(Roper and Reeves, 2006). In view of the fragility of this strain, we sought to establish whether 

treatment with 7,8-DHF has adverse effects on the outliving of Ts65Dn mice. In the current study, 

treatment with either 7,8-DHF or vehicle began on postnatal day 3 (P3). All mice that survived in the 

P0 to P3 period entered this study. A total of 185 mice entered the study (96 males and 89 females). 

The number of vehicle- and 7,8-DHF-treated mice was 96 and 89, respectively. Seven vehicle-treated 

(7.3%) and five 7,8-DHF-treated (5.6%) mice died before weaning, in the first two postnatal weeks. 

The mortality rate is similar between groups treated with either vehicle or 7,8-DHF, suggesting that 
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the treatment has no adverse effects on the health of mice.  

We evaluated the body and brain weight of P15 mice in order to establish the effect of treatment on 

gross growth parameters. A two-way ANOVA on the body weight of P15 mice showed no genotype 

x treatment interaction [F(1,92) = 0.63, p = 0.431], no main effect of treatment but a main effect of 

genotype [F(1,92) = 14.78, p < 0.001]. A post hoc Fisher LSD test confirmed well-established 

evidence that Ts65Dn mice have a reduced body weight in comparison with euploid mice. Multiple 

comparisons revealed that treatment did not negatively affect the body weight of Ts65Dn mice (Fig. 

3.3.2A). A two-way ANOVA on the brain weight of P15 mice showed no genotype x treatment 

interaction [F(1,92) = 1.09, p = 0.300], a main effect of genotype [F(1,92) = 7.73, p = 0.007] and a 

main effect of treatment [F(1,92) = 6.18,  p = 0.015]. A post hoc Fisher LSD test showed that Ts65Dn 

mice had a reduced brain weight in comparison with euploid mice and that treatment did not cause a 

further brain weight reduction (Fig. 3.3.2B). Surprisingly, treated euploid mice showed a little but 

significant brain weight reduction in comparison with their untreated counterparts (Fig. 3.3.2B).  

 

Effect of neonatal treatment with 7,8-DHF on neural precursor proliferation in the hippocampal 

dentate gyrus of Ts65Dn mice 

Recent work has evaluated the effect of 7,8-DHF in mouse models of Alzheimer disease. A dose of 

5.0 mg/kg has been shown to have no toxic effects, to restore cognitive performance, and to increase 

the proliferation rate of neural precursor cells of the DG (Liu et al., 2010). In order to establish 

whether this is the optimal dose for proliferation enhancement in our model, we treated pups with 

vehicle, 2.5 mg/kg, 5.0 mg/kg or 10.0 mg/kg of 7,8-DHF in the period P3-P15. Two hours after the 

last treatment, mice received one injection of BrdU (150 mg/Kg) and were killed after 2 h in order to 

examine the outcome of a thirteen days treatment on proliferation rate. A one-way ANOVA on the 

number of BrdU-positive cells in the dentate gyrus (DG) of Ts65Dn pups showed a significant effect 

of treatment [F(3,20) = 4.15, p = 0.019]. A post hoc Fisher LSD test showed that the 2.5 mg/kg was 

not effective on proliferation rate in comparison with vehicle-treated mice, while both the 5.0 mg/kg 
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Figure 3.3.2. Body and brain weight of euploid and Ts65Dn mice treated with either vehicle or 7,8-DHF. 

A,B: Body (A) and brain (B) weight (mean  SE) in grams of P15 euploid (n=35) and Ts65Dn (n=21) mice 

that received vehicle and euploid (n=25) and Ts65Dn (n=15) mice that received 7,8-DHF (5.0 mg/kg) in the 

period P3-P15. C,D: Body (C) and brain (D) weight (mean  SE) in grams of P45 euploid (n=19) and Ts65Dn 

(n=14) mice that received vehicle and euploid (n=17) and Ts65Dn (n=16) mice that received 7,8-DHF (5.0 

mg/kg) in the period P3-P45. E,F: Body (E) and brain (F) weight (mean  SE) in grams of 5 month-old euploid 

(n=13) and Ts65Dn (n=11) mice that received vehicle and euploid (n=7) and Ts65Dn (n=7) mice that received 

7,8-DHF (5.0 mg/kg) in the period 4M-5M+9d. * p < 0.05; ** p < 0.01; *** p < 0.001 (Fisher LSD test after 

two-way ANOVA). Black asterisk in the gray bar indicate a difference between untreated Ts65Dn mice and 

treated euploid mice. Abbreviations: 7,8-DHF, 7,8-dihydroxyflavone; BrdU, bromodeoxyuridine; Eu, euploid; 

MWM, Morris Water Maze, P, postnatal.
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and the 10.0 mg/kg doses increased the number of BrdU-positive cells in Ts65Dn mice. In absolute 

terms, the 5.0 mg/kg dose had a higher pro-proliferative effect than the 10.0 mg/kg dose (Fig. 3.3.3A).  

Based on the preliminary experiments reported above, we chose a dose of 5.0 mg/kg dose for the 

experiments of this study. In order to establish the effects of 7,8-DHF on proliferation rate of neural 

progenitor cells (NPCs) of the DG, Ts65Dn mice and their euploid littermates were daily injected 

with 5.0 mg/kg of 7,8-DHF in the period P3-P15. At the end of treatment, mice were injected with 

BrdU and the number of BrdU-positive cells in the subgranular zone (SGZ) of the DG was evaluated. 

A two-way ANOVA on the total number of BrdU-positive cells showed a genotype x treatment 

interaction [F(1,19) = 8.53, p = 0.009], a main effect of genotype [F(1,19) = 21.25, p < 0.001], but no 

effect of treatment. A post hoc Fisher LSD test showed that untreated Ts65Dn mice had fewer 

proliferating cells in comparison with untreated euploid mice (total number per DG in Ts65Dn mice: 

n=7166±337, in euploid mice: n=10281±111). The number of proliferating cells after treatment in 

Ts65Dn mice underwent an increase (n=8963±449), becoming greater than that of their untreated 

counterparts, but already slightly lower in comparison with untreated euploid mice (Fig. 3.3.3B,C). 

BrdU-positive cells did not change in treated euploid mice (Fig. 3.3.3B,C). These results show that 

treatment greatly enhances cell proliferation in trisomic mice, although the number of proliferating 

cells does not reach the levels of euploid mice.  

 

Effect of 7,8-DHF on the number of granule neurons in the dentate gyrus of Ts65Dn mice 

Since treatment induced an increase in the proliferation potency of neural precursor cells in the DG 

of Ts65Dn mice, we expected this effect to lead to improvement of the defective cellularity proper of 

the DG of trisomic mice (Bianchi et al., 2010b). In order to answer this question, we stereologically 

counted the total number of granule cells in treated and untreated mice. A two-way ANOVA on total 

number of granule cells showed a genotype x treatment interaction [F(1,13) = 6.71, p = 0.022], but 

no main effect of either genotype or treatment. A post hoc Fisher LSD test showed that untreated 

Ts65Dn mice had fewer granule neurons in comparison with euploid mice. In treated Ts65Dn mice 
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Figure 3.3.3. Effects of neonatal treatment with 7,8-DHF on the size of the population of cells in the S-

phase of the cell cycle in the dentate gyrus of P15 Ts65Dn and euploid mice. A: In pilot experiments 

Ts65Dn mice received a daily injection of vehicle (n=8) or 7,8-DHF (2.5 mg/kg, n=4; 5.0 mg/kg, n=5; 10.0 

mg/kg, n=7) in the period P3-P15. At P15, they were injected with BrdU and killed after 2 h. The histograms 

show the number of BrdU-positive cells in the DG of Ts65Dn mice treated with either vehicle or the indicated 

doses of 7,8-DHF. The number of BrdU-positive cells in euploid mice reported in (C) that received the vehicle 

is shown for comparison. B: Representative images of sections immunostained for BrdU from the DG of 

untreated euploid and Ts65Dn mice and euploid and Ts65Dn mice that were daily treated with 5.0 mg/kg of 

7,8-DHF in the period P3-P15. Calibration bar=200 m. The insets show zoomed images of the boxed area 

with examples of individual BrdU-positive cells. Calibration bar=20 m. C: Total number of BrdU-positive 

cells in the DG of untreated euploid (n=7) and Ts65Dn (n=8) mice and euploid (n=3) and Ts65Dn (n=5) mice 

treated with 5.0 mg/kg of 7,8-DHF. Values (mean  SE) in (A) and (C) refer to one hemisphere. * p < 0.05; 

** p < 0.01; *** p < 0.001 (Fisher LSD test after two-way ANOVA). Black asterisks in the gray bar indicate 

a difference between untreated Ts65Dn mice and treated euploid mice. Abbreviation: 7,8-DHF, 7,8-

dihydroxyflavone; Eu, euploid.
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Figure 3.3.4. Effects of neonatal treatment with 7,8-DHF on granule cell number in the dentate gyrus of 

P15 Ts65Dn and euploid mice. A: Representative images of Hoechst-stained sections showing the granule 

cell layer of an animal from each experimental group. Calibration bar=100 m. B: Total number of granule 

cells of untreated euploid (n=4) and Ts65Dn (n=4) mice and euploid (n=4) and Ts65Dn mice (n=5) treated 

with 5.0 mg/kg 7,8-DHF. Values (mean  SE) refer to one DG. * p < 0.05 (Fisher LSD test after two-way 

ANOVA). Abbreviations: 7,8-DHF, 7,8-dihydroxyflavone; Eu, euploid; GR, granule cell layer; SGZ, 

subgranular zone; Veh, vehicle.
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the number of granule cells became similar to that of untreated euploid mice (Fig. 3.3.4A,B). In 

euploid mice treatment had no effect on total number of granule cells (Fig. 3.3.4A,B). 

 

Effect of 7,8-DHF on dendritic spine density in the dentate gyrus of Ts65Dn mice 

Spine density reduction is a typical feature of the trisomic brain (Benavides-Piccione et al., 2004, 

Guidi et al., 2013) that, in conjunction with hypocellularity, is probably a critical determinant of 

intellectual disability. In order to establish whether 7,8-DHF improves this defects, in Golgi-stained 

brains we evaluated dendritic spine density of DG granule neurons. A two-way ANOVA on spine 

density showed a genotype x treatment interaction [F(1,12) = 13.23, p = 0.003], a main effect of 

genotype [F(1,12) = 19.93, p = 0.001] and a main effect of treatment [F(1,12) = 42.30, p < 0.001]. A 

post hoc Fisher LSD test showed that untreated Ts65Dn had a considerably reduced spine density in 

comparison with untreated euploid mice (Fig. 3.3.5C). Treatment with 7,8-DHF restored the number 

of spines of Ts65Dn mice (Fig. 3.3.5C), indicating that treatment fully rescues spine development. 

No effect of treatment were observed on spine density in euploid mice (Fig. 3.3.5C). 

 

Effect of 7,8-DHF on synaptophysin levels in the hippocampal formation of Ts65Dn mice 

The trisomic brain is characterized by altered synaptic circuitry that, in conjunction with reduced 

neurogenesis and dendritic pathology, largely contributes to impairment of signal processing 

(Bartesaghi et al., 2011). Since circuit formation is critically shaped in the early postnatal period 

throughout the brain we tried to establish whether neonatal treatment with 7,8-DHF had an effect on 

synapse development, examining the expression levels of SYN in the hippocampus of P15 mice.  

A two-way ANOVA on the levels of SYN showed no genotype x treatment interaction [F(1,27) = 

0.82, p = 0.372], no main effect of genotype, but a main effect of treatment [F(1,27) = 6.62, p = 

0.016]. Confirming previous evidence (Stagni et al., 2013), a post hoc Fisher LSD test showed that 

untreated Ts65Dn mice had reduced SYN levels in comparison with untreated euploid mice, although 

the difference was marginally significant. Treatment with 7,8-DHF increased SYN levels in Ts65Dn 
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Figure 3.3.5. Effects of neonatal treatment with 7,8-DHF on dendritic spine density and synaptophysin 

levels in the dentate gyrus of P15 Ts65Dn and euploid mice. A: The photomicrograph shows a Golgi-stained 

granule cell. Dendritic spines were counted in the inner and outer half of the dendritic arbor of the granule 

cells. Calibration bar=10 m. B: Photomicrograph of Golgi-stained granule cell dendrites showing spines on 

distal dendritic branches in an animal from each experimental groups. Calibration bar=5 m. C: Spine density 

on the dendritic arbor of the granule cells of untreated euploid (n=4) and Ts65Dn mice (n=4) and euploid (n=4) 

and Ts65Dn (n=4) mice treated with 7,8-DHF. D: Western blot analysis of the expression levels of 

synaptophysin (SYN) in hippocampal homogenates of untreated euploid (n=10) and Ts65Dn (n=10) mice and 

treated euploid (n=5) and Ts65Dn (n=6) mice. SYN levels were normalized to α-Tubulin and expressed as fold 

difference in comparison with untreated euploid mice. Representative western blots are shown on the right. 

Values in (C,D) are mean  SE. (*) p < 0.06; * p < 0.05; *** p < 0.001 (Fisher LSD test after two-way 

ANOVA). Black asterisks in the gray bar indicate a difference between untreated Ts65Dn mice and treated 

euploid mice. Abbreviations: 7,8-DHF, 7,8-dihydroxyflavone; Eu, euploid; SYN, synaptophysin; Veh, 

Vehicle.
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 (similar levels to those of untreated euploid mice) and in euploid mice (Fig. 3.3.5D). These findings 

suggest that treatment with 7,8-DHF restores development of hippocampal synapses in Ts65Dn mice 

and enhances synaptic development in euploid mice. 

 

Effect of 7,8-DHF on the BDNF-TrkB receptor system in the hippocampal formation of Ts65Dn 

mice 

BDNF signaling is elicited when it binds to TRKB, resulting in the receptor dimerization and 

autophosphorylation. The BDNF/TRKB signaling pathway is essential for normal brain function 

(Bibel et al., 1999). The TRKB full-length receptor (TRKB-FL) possesses an intracellular tyrosine 

kinase domain that mediates the crucial effects of BDNF. By contrast, the truncated form 1 of the 

TRKB receptor (TRKB-T1) lacks tyrosine kinase domain and, hence, the normal BDNF-mediated 

activity. However, TRKB-T1 appears to mediate inositol-1,4,5-trisphosphate-dependent calcium 

release (Rose et al., 2003). In order to establish the effect of genotype and treatment on the 

BDNF/TRKB system, we examined the protein levels of BDNF and TRKB receptors in the 

hippocampus of P15 euploid and Ts65Dn mice. 

A two-way ANOVA on the BDNF levels showed no genotype x treatment interaction [F(1,48) = 

0.86, p = 0.359], no main effect of genotype, but a main effect of treatment [F(1,48) = 8.76, p = 

0.005]. A post hoc Fisher LSD test showed that Ts65Dn mice had similar BDNF protein levels as 

euploid mice (Fig. 3.3.6B). Treatment with 7,8-DHF caused a reduction in BDNF levels both in 

euploid and Ts65Dn mice although the difference was statistically significant for the latter only (Fig. 

3.3.6B). A two-way ANOVA on the levels of TRKB-FL receptor showed no genotype x treatment 

interaction [F(1,45) = 2.17, p = 0.148] , a main effect of genotype [F(1,45) = 5.71, p = 0.021], and no 

effect of treatment. A post hoc Fisher LSD test showed no difference between untreated euploid and 

Ts65Dn mice in the levels of TRKB-FL (Fig. 3.3.6A,C). In Ts65Dn, but not in euploid mice, 

treatment with 7,8-DHF caused a reduction in the levels of TRKB-FL (Fig. 3.3.6A,C). A two-way 

ANOVA on the levels of the phosphorylated (active) form of the TRKB receptor (p-TRKB-FL) 
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showed no genotype x treatment interaction [F(1,39) = 0.03, p = 0.865], no main effect of genotype, 

but a main effect of treatment [F(1,39) = 10.88, p = 0.002]. A post hoc Fisher LSD test showed that 

in untreated Ts65Dn mice the levels of p-TRKB-FL were similar to those of euploid mice. In both 

genotypes, treatment with 7,8-DHF caused an increase in the levels of p-TRKB-FL (Fig. 3.3.6A,D). 

A two-way ANOVA on the levels of the TRKB-T1 receptor showed a genotype x treatment 

interaction [F(1,47) = 6.04, p = 0.018], but no main effect of either genotype or treatment. A post hoc 

Fisher LSD test showed that untreated Ts65Dn mice has similar levels of TRKB-T1 as untreated 

euploid mice. Treated Ts65Dn mice underwent a reduction in the levels of TRKB-T1 in comparison 

with their untreated counterparts and untreated euploid mice (Fig. 3.3.6A,E). These data suggest that 

treatment with 7,8-DHF stimulates the BDNF-signaling pathway. When the TRKB-FL receptor is 

activated, it interacts and activates a number of proteins that, in turn, trigger a signaling cascade to 

gene transcription. One of the main target of the BDNF/TRKB system is the RAS/ERK signaling 

pathway. Since RAS/ERK signaling is involved in cell proliferation and differentiation, we examined 

the effects of treatment on the activation of ERK1/2 in the hippocampus of Ts65Dn and euploid mice. 

A two-way ANOVA on p-ERK1 levels showed no genotype x treatment interaction [F(1,29) = 0.78, 

p = 0.385], but a main effect of both genotype [F(1,29) = 7.21, p = 0.012] and treatment [F(1,29) = 

4.64, p = 0.040]. A post hoc Fisher LSD test showed no differences between untreated Ts65Dn and 

euploid mice and that treatment increased p-ERK1 levels of Ts65Dn mice in comparison with 

untreated Ts65Dn mice as well as untreated euploid mice (Fig. 3.3.7A,C). A two-way ANOVA on 

p-ERK2 levels showed no genotype x treatment interaction [F(1,29) = 1.73, p = 0.199], a main effect 

of genotype [F(1,29) = 8.92, p = 0.006] but no main effect of treatment. A post hoc Fisher LSD test 

showed that treated Ts65Dn mice underwent an increase in p-ERK2 levels in comparison with 

untreated euploid mice (Fig. 3.3.87A,C), but not with Ts65Dn mice. A two-way ANOVA on the 

levels of total ERK1 showed no genotype x treatment interaction [F(1,28) = 0.815, p = 0.374] and no 

main effect of either genotype or treatment. A post hoc Fisher LSD test showed that treated Ts65Dn 

mice underwent an increase in total ERK1 levels in comparison with untreated Ts65Dn mice (Fig. 
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3.3.7B,C). A two-way ANOVA on the levels of total ERK2 showed no genotype x treatment 

interaction [F(1,30) = 0.065, p = 0.801], no main effect of genotype, but a main effect of treatment 

[F(1,30) = 13.76, p = 0.001]. A post hoc Fisher LSD test showed that Ts65Dn mice treated with 7,8-

DHF underwent an increase in total ERK2 levels in comparison with untreated euploid and Ts65Dn 

mice (Fig. 3.3.7B,C). An increase in total ERK2 levels also took place in treated euploid mice in 

comparison with their untreated counterparts (Fig. 3.3.7B,C). There is evidence that ERK2 is 

approximately four time more abundant than ERK1 in various brain regions and that alteration of the 

stoichiometry of the two isoform of ERK may have adverse effects (Lefloch et al., 2008). Therefore, 

we examined the relative abundance of ERK2/ERK1 and p-ERK2/p-ERK1 in treated and untreated 

mice. We found that in the hippocampal region of untreated euploid and Ts65Dn mice the ratio 

between ERK2 and ERK1 was approximately 3:1 and the ratio between p-ERK2 and p-ERK1 was 

approximately 2:1. Although in absolute terms treatment increased the levels of ERK1/2 and p-

ERK1/2 in Ts65Dn mice (Fig. 3.3.7A-C), it did not affect their stoichiometry.  

 

Effect of treatment with 7,8-DHF in P45 mice: general results 

A two-way ANOVA on the body weight of P45 mice showed no genotype x treatment interaction 

[F(1,62) = 1.57, p = 0.215], a main effect of genotype [F(1,62) = 4.98, p = 0.029], but no main effect 

of treatment. A post hoc Fisher LSD test showed that Ts65Dn mice retained a reduced body weight 

in comparison with euploid mice and that treatment did not affect their body weight (Fig. 3.3.2C). In 

contrast, treated euploid mice underwent a body weight reduction in comparison with their untreated 

counterparts (Fig. 3.3.2C). A two-way ANOVA on the brain weight of P45 mice showed no genotype 

x treatment interaction [F(1,62) = 2.06, p = 0.156], and no main effect of both genotype and treatment. 

A post hoc Fisher LSD test showed that untreated Ts65Dn mice had a reduced brain weight in 

comparison with untreated euploid mice and that treatment restored this defect (Fig. 3.3.2D).  
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Figure 3.3.6. Effects of neonatal treatment with 7,8-DHF on the BDNF/TRKB receptor system in the 

hippocampal formation of P15 Ts65Dn and euploid mice. Western blot analysis of the BDNF/TRKB 

receptor system in the hippocampal formation of P15 Ts65Dn and euploid mice that received either vehicle or 

7,8-DHF in the postnatal period P3-P15. A: representative western blots showing immunoreactivity for the 

phosphorylated TRKB receptor (p-TRKB), the full length TRKB receptor (TRKB-FL), the truncated TRKB 

receptor (TRKB-T1), and the housekeeping gene GAPDH. B: Levels of BDNF (untreated euploid mice: n=20; 

untreated Ts65Dn mice: n=21; treated euploid mice: n=5; treated Ts65Dn mice: n=6) and representative 

western blots showing immunoreactivity for BDNF and the housekeeping gene GAPDH. C: Levels of TRKB-

FL (untreated euploid mice: n=19; untreated Ts65Dn mice: n=19; treated euploid mice: n=5; treated Ts65Dn 

mice: n=6). D: Levels of p-TRKB-FL (untreated euploid mice: n=15; untreated Ts65Dn mice: n=16; treated 

euploid mice: n=5; treated Ts65Dn mice: n=6). E: levels of TRKB-T1 (untreated euploid mice: n=19; untreated 

Ts65Dn mice: n=21; treated euploid mice: n=5; treated Ts65Dn mice: n=6). Data in (B, C, E) were normalized 

to GAPDH; data in (D) were normalized to TRKB-FL. Protein levels (mean  SE) are expressed as fold 

difference in comparison with untreated euploid mice. * p < 0.05; ** p < 0.01; *** p < 0.001 (Fisher LSD test 

after two-way ANOVA). White asterisks in the black bar indicate a difference between treated Ts65Dn mice 

and treated euploid mice. Abbreviations: 7,8-DHF, 7,8-dihydroxyflavone; Eu, euploid; Veh, vehicle.
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Figure 3.3.7. Effects of neonatal treatment with 7,8-DHF on the BDNF/TRKB receptor targets ERK1/2 

in the hippocampal formation of P15 Ts65Dn and euploid mice. Data refer to P15 Ts65Dn and euploid 

mice that received either vehicle or 7,8-DHF in the postnatal period P3-P15. A,B: Western blot analysis of p-

ERK1/p-ERK2 (untreated euploid mice: n=10; untreated Ts65Dn mice: n=12; treated euploid mice: n=5; 

treated Ts65Dn mice: n=6) (A) and total ERK1/ERK2 levels (untreated euploid mice: n=11; untreated Ts65Dn 

mice: n=11; treated euploid mice: n=5; treated Ts65Dn mice: n=6) (B) and representative western blots (C) 

showing immunoreactivity for p-ERK1, p-ERK2, ERK1, ERK2 and for the housekeeping protein α-Tubulin. 

Data in (B) were normalized to α-Tubulin; data in (A) were normalized to total ERK1 and total ERK2, 

respectively. Protein levels (mean  SE) are expressed as fold difference in comparison with untreated euploid 

mice. * p < 0.05; ** p < 0.01; *** p < 0.001 (Fisher LSD test after two-way ANOVA). Black asterisks in the 

gray bar indicate a difference between untreated Ts65Dn mice and treated euploid mice. White asterisks in the 

black bar indicate a difference between treated Ts65Dn mice and treated euploid mice. Abbreviations: 7,8-

DHF, 7,8-dihydroxyflavone; Eu, euploid; Veh, vehicle. 
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Effect of 7,8-DHF on hippocampus-dependent learning and memory in P45 mice 

At the age of P45, mice can be behaviorally tested with tasks that explore hippocampus-dependent 

learning and memory (Guidi et al., 2014). In order to establish whether positive effects of treatment 

on brain morphology translates in a functional amelioration, we treated euploid and Ts65Dn mice 

from P3 to P45-50 and examined their behavior with the Morris Water Maze (MWM) test. The 

learning phase of the test lasted 5 days and on day six mice were subjected to the probe test in order 

to evaluate spatial memory. For the learning phase, the following variables were evaluated: escape 

latency, time in periphery, percentage of time in periphery, path length, proximity, and swimming 

speed. We carried out a three-way mixed ANOVA for all variables followed by post hoc Fisher LSD 

test. Results of ANOVA are reported hereafter and results of the post hoc test are summarized in 

Table 3.3.3. 

A three-way mixed ANOVA on escape latency, with genotype and treatment as grouping factors and 

day as a repeated measure revealed no effect of genotype x treatment x day [F(4,228) = 1.52, p = 

0.196]. We found a genotype x day interaction [F(4,228) = 3.10, p = 0.016], a treatment x day 

interaction [F(4,228) = 2.77, p = 0.028], no genotype x treatment interaction [F(1,57) = 0.03, p = 

0.874], a main effect of genotype [F(1,57) = 42.58, p < 0.001], a main effect of treatment [F(1,57) = 

10.14, p = 0.002], and a main effect of day [F(4,228) = 21.75, p < 0.001]. In accordance with previous 

findings, euploid mice exhibited a fast learning improvement with time, while untreated Ts65Dn mice 

exhibited a very scarce learning improvement and the latency to reach the platform did not decrease 

throughout the test (Fig. 3.3.8A, Table 3.3.3). In contrast, treatment improved learning in Ts65Dn 

mice and, save for day 3, their performance was similar to that of untreated euploid mice (Fig. 3.3.8A, 

Table 3.3.3). Treatment with 7,8-DHF induced an improvement in the latency of euploid mice in 

comparison with their untreated counterpart (Fig. 3.3.8A), although the difference was statistically 

significant on day 2 only (Table 3.3.3).  

A three-way mixed ANOVA on the time spent in the periphery zone (thigmotaxis) revealed an effect 

of genotype x treatment x day [F(4,228) = 2.88, p = 0.023]. We found no genotype x day interaction 
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[F(4,228) = 0.99, p = 0.412], a treatment x day interaction [F(4,228) = 3.31, p = 0.012], no genotype 

x treatment interaction [F(1,57) = 0.001, p = 0.992], a main effect of genotype [F(1,57) = 19.63, p < 

0.001], a main effect of treatment [F(1,57) = 8.07, p = 0.006], and a main effect of day [F(4,228) = 

27.72, p < 0.001]. A post hoc Fisher LSD test showed that while untreated Ts65Dn mice spent more 

time in the periphery than untreated euploid mice, Ts65Dn mice treated with 7,8-DHF spent a similar 

time as euploid mice (Fig. 3.3.8B, Table 3.3.3), suggesting an improvement in the searching strategy. 

A reduction in thigmotaxis was also shown by euploid mice treated with 7,8-DHF. 

A three-way mixed ANOVA on the percentage of time spent in the periphery showed an effect of 

genotype x treatment x day [F(4,228) = 3.01, p = 0.019]. We found a genotype x day interaction 

[F(4,228) = 2.47, p = 0.045], a treatment x day interaction [F(4,228) = 7.76, p < 0.001], no genotype 

x treatment interaction [F(1,57) = 1.48, p = 0.229], a main effect of genotype [F(1,57) = 11.71, p = 

0.001], a main effect of treatment [F(1,57) = 8.04, p = 0.006], and a main effect of day [F(4,228) = 

23.88, p < 0.001]. A post hoc Fisher LSD test showed that the time spent in the periphery by untreated 

Ts65Dn mice, expressed as percentage of the total latency, was similar to that of untreated euploid 

mice (Fig. 3.3.8C, Table 3.3.3). This means that the proportion of time spent in the periphery and 

outside the periphery was similar in euploid and Ts65Dn mice. Since in Ts65Dn mice the total latency 

to reach the platform was longer than in euploid mice, this means that Ts65Dn mice spent more time 

swimming in the periphery as well as outside the periphery. This implies that their longer escape 

latency can be attributable to both higher thigmotaxis levels and poorer spatial learning. In treated 

Ts65Dn mice the percentage of time in thigmotaxis underwent a reduction in comparison with their 

untreated counterparts (Fig. 3.3.8C, Table 3.3.3), suggesting an improvement in spatial learning. 

A three-way mixed ANOVA on path length revealed no effect of genotype x treatment x day 

[F(4,228) = 2.09, p = 0.082]. We found a genotype x day interaction [F(4,228) = 7.80, p < 0.001], no 

treatment x day interaction [F(4,228) = 0.54 p = 0.707], no genotype x treatment interaction [F(1,57) 

= 0.05, p = 0.819], no main effect of genotype, no main effect of treatment but a main effect of day 

[F(4,228) = 43.74, p < 0.001]. In all groups, the path length decreased from day 1 to day 5 (Fig. 
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3.3.8D, Table 3.3.3). Until day 4, all four groups the path length was similar, even though in untreated 

Ts65Dn mice, the reduction was smaller than in untreated euploid mice. On day 5, the path length of 

untreated Ts65Dn mice was significantly larger in comparison with untreated euploid mice (Fig. 

3.3.8D, Table 3.3.3). In contrast, on day 5 the path length of treated Ts65Dn mice was equal to that 

of treated and untreated euploid mice, suggesting an improvement in the searching strategy.  

A three-way mixed ANOVA on the mean distance to the trained platform position (Gallagher’s test; 

proximity) revealed an effect of genotype x treatment x day [F(4,228) = 2.59, p = 0.038]. We found 

a genotype x day interaction [F(4,228) = 3.93, p = 0.004], a treatment x day interaction [F(4,228) = 

4.79, p < 0.001], no genotype x treatment interaction [F(1,57) = 1.12, p = 0.295], a main effect of 

genotype [F(1,57) = 9.66, p = 0.003], a main effect of treatment [F(1,57) = 12.91, p = 0.001], and a 

main effect of day [F(4,228) = 13.39, p < 0.001]. Fig. 3.3.8E shows that while in untreated euploid 

mice the proximity to the platform position increased from day 1 to day 5, untreated Ts65Dn mice 

underwent no improvement. Treated Ts65Dn mice underwent an improvement and on day 5 their 

proximity was significantly larger than their untreated counterparts and similar to that of untreated 

and treated euploid mice (Fig. 3.3.8E, Table 3.3.3), indicating a better swimming strategy to locate 

the platform.  

A three-way mixed ANOVA on swimming speed revealed an effect of genotype x treatment x day 

[F(4,228) = 3.20, p = 0.014]. We found no genotype x day interaction [F(4,228) = 0.71, p = 0.584] , 

no treatment x day interaction [F(4,228) = 1.98, p = 0.098], no genotype x treatment interaction 

[F(1,57) = 0.09, p = 0.760], a main effect of genotype [F(1,57) = 5.27, p = 0.025], no main effect of 

treatment, but a main effect of day [F(4,228) = 20.05, p < 0.001]. A post hoc Fisher LSD test showed 

that in untreated Ts65Dn mice the swimming speed was similar to that the others three experimental 

groups throughout the learning phase (Fig. 3.3.8F, Table 3.3.3), suggesting that their longer escape 

latency was not due to speed reduction. Treated Ts65Dn mice had a reduced speed in comparison 

with untreated euploid mice on day 1, 2, and 3 but this condition disappeared in days 4 and 5, 

suggesting that their reduced escape latency was not due to an improvement in swimming speed. 
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Treated euploid mice had a reduced speed in comparison with untreated euploid mice on day 1, but a 

similar speed on days 2-5 (Fig. 3.3.8F, Table 3.3.3).  

In the probe test, we considered the following parameters as an index of spatial memory: i) latency 

to enter the trained platform zone (latency), ii) frequency of entrances in the trained quadrant 

(frequency), iii) proximity to the trained platform position (Gallagher’s test; proximity), iv) 

percentage of time spent at the periphery (thigmotaxis); v) swimming speed; vi) percentage of time 

spent in each quadrant. For all the parameters analyzed in the probe test, with the exclusion of the 

percentage of time spent in each quadrant, we conducted a two-way ANOVA, with genotype and 

treatment as independent variables, followed by a post hoc Fisher LSD test. A two-way ANOVA on 

the latency showed no genotype x treatment interaction [F(1,57) = 0.87, p = 0.356], but a main effect 

of genotype [F(1,57) = 10.24, p = 0.002] and a main effect of treatment [F(1,57) = 4.60, p = 0.036]. 

A post hoc Fisher LSD test showed that untreated Ts65Dn mice exhibited a larger latency than euploid 

mice. Treatment with 7,8-DHF caused a notable reduction in the latency of Ts65Dn mice that became 

similar to that of untreated euploid mice (Fig. 3.3.9A). A two-way ANOVA on the frequency showed 

no genotype x treatment interaction [F(1,57) = 0.001, p = 0.992], but a main effect of genotype 

[F(1,57) = 10.06, p = 0.002] and a main effect of treatment [F(1,57) = 7.46, p = 0.008]. A post hoc 

Fisher LSD test showed that untreated Ts65Dn mice exhibited a reduced frequency of entrances than 

euploid mice. In treated Ts65Dn mice, there was an increase in the frequency, that became similar to 

that of untreated euploid mice (Fig. 3.3.9B), although this effects was only marginally significant. A 

large increase in the frequency of entrances took place in treated euploid mice (Fig. 3.3.9B). This 

effect is in line with the reduction in the percentage of time they spent at the periphery (Fig. 3.3.9F). 

A two-way ANOVA on the proximity showed no genotype x treatment interaction [F(1,57) = 1.60, p 

= 0.211], but a main effect of genotype [F(1,57) = 4.81, p = 0.032] and a main effect of treatment 

[F(1,57) = 7.05, p = 0.010]. A post hoc Fisher LSD test showed that untreated Ts65Dn mice swam at 

a larger distance from the trained platform zone in comparison with untreated euploid mice (Fig. 

3.3.9C). Treated Ts65Dn mice swam closer to the trained platform zone and their performance 
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became similar to that of untreated euploid mice (Fig. 3.3.9C).   

A two-way ANOVA on the percentage of time spent in the periphery showed no genotype x treatment 

interaction [F(1,57) = 0.62, p = 0.436], no main effect of genotype but a main effect of treatment 

[F(1,57) = 12.03, p = 0.001]. A post hoc Fisher LSD test showed that in untreated Ts65Dn mice the 

percentage of time spent in the periphery was similar to that of untreated euploid mice (Fig. 3.3.9D). 

This indicates that Ts65Dn mice spent the same proportion of time in and outside the periphery as 

euploid mice. In treated Ts65Dn mice the percentage of time spent in the periphery was reduced in 

comparison with their untreated counterparts mice (Fig. 3.3.9D), suggesting that improvement in 

thigmotaxis contributes to the shorter latency to reach the trained platform zone. A reduction in the 

percentage of time in the periphery was also exhibited by treated vs. untreated euploid mice (Fig. 

3.3.9D). 

As during the learning phase, two-way ANOVA on the swimming speed showed no genotype x 

treatment interaction [F(1,57) = 0.44, p = 0.511], no main effect of genotype and no main effect of 

treatment and a post hoc Fisher LSD test showed no differences between groups (Fig. 3.3.9E). 

A paired samples t-test showed that untreated Ts65Dn mice exhibited no differences in the time spent 

in the trained platform quadrant in comparison with the other quadrants (Fig. 3.3.9F). In contrast, 

treated Ts65Dn mice spent significantly more time in the trained platform quadrant in comparison 

with the NE quadrant [t(14) = 2.49; p = 0.026] and with the SE quadrant  although the latter difference 

was only marginally significant [t(14) = 2.05; p = 0.059] (Fig. 3.3.9F). Untreated euploid mice spent 

significantly more time in the trained platform quadrant in comparison with the NE [t(15) = 3.09; p 

= 0.008] and SE quadrant [t(15) = 2.16; p = 0.047] quadrants (Fig. 3.3.9F). Likewise, treated euploid 

mice spent significantly more time in the trained platform quadrant in comparison with the NE [t(15) 

= 3.85; p = 0.002] and SE quadrant [t(15) = 6.02; p < 0.001] quadrants (Fig. 3.3.9F).  

Taken together, these results show that Ts65Dn mice are impaired in spatial learning and memory. 

Treatment with 7,8-DHF indices an amelioration in Ts65Dn mice day by day in all parameters of the 

learning phase, although not to a significant level. At day 5, however, the performance of Ts65Dn 
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mice underwent a significant improvement in comparison with their untreated counterparts and was 

similar to that of untreated euploid mice. Importantly, in the probe test the behavior of treated Ts65Dn 

mice was similar to that of untreated euploid mice. This evidence suggests a complete restoration of 

hippocampus dependent memory. 

 

Effect of treatment with 7,8-DHF in 5 month-old mice: general results 

A two-way ANOVA on the body weight of 5 month-old mice showed no genotype x treatment 

interaction [F(1,34) = 2.64, p = 0.114], and no main effect of either genotype or treatment. A post hoc 

Fisher LSD test showed that Ts65Dn mice retained a reduced body weight in comparison with euploid 

mice and that treatment slightly increased their body weight (Fig. 3.3.2E). No effects of treatment on 

body weight were detectable in euploid mice (Fig. 3.3.2E). A two-way ANOVA on the brain weight 

of P45 mice showed no genotype x treatment interaction [F(1,34) = 0.24, p = 0.626], and no main 

effect of both genotype and treatment. A post hoc Fisher LSD test showed no difference in brain 

weight among groups (Fig. 3.3.2F).  

 

Effect of 7,8-DHF on hippocampus-dependent learning and memory in 5 month-old mice 

We examined the behavior of mice that had received 7,8-DHF or vehicle starting from four months 

of age. Behavioral testing started when mice were 5 month-old and lasted 11 days. Treatment was 

continued during behavioral testing. For the learning phase, we evaluated: escape latency, percentage 

of time at the periphery, path length, and swimming speed. 

A three-way mixed ANOVA, with genotype and treatment as grouping factors and day as a repeated 

measure, on the escape latency revealed no effect of genotype x treatment x day. We found no 

genotype x day interaction, a treatment x day interaction [F(7,238) = 2.23, p = 0.032], no genotype x 

treatment interaction, a main effect of genotype [F(1,34) = 20.63, p < 0.001], no main effect of 

treatment but a main effect of day [F(7,238) = 24.67, p < 0.001]. While euploid mice exhibited a fast 

learning improvement with time, untreated Ts65Dn mice exhibited a very scarce learning 
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Figure 3.3.8. Effect of treatment with 7,8-DHF on spatial learning in young adult Ts65Dn and euploid 

mice. Mice received either vehicle or 7,8-DHF in the period P3-P45-50 and were behaviorally tested with the 

MWM starting from 6 days before reaching 45-50 days of age (untreated euploid mice: n=16; untreated 

Ts65Dn mice: n=14; treated euploid mice: n=16; treated Ts65Dn mice: n=15). The curves in (A-F) report data 

of euploid mice that received either vehicle (empty circle) or 7,8-DHF (filled circle) and Ts65Dn mice that 

received either vehicle (empty square) or 7,8-DHF (filled square). A-E: Learning phase of the MWM evaluated 

as latency to reach the platform (A), time spent in the periphery (thigmotaxis) (B), percentage of time spent in 

the periphery (C), path length (D), and proximity to the platform zone (E). F: Swimming speed. B-D: Values 

represent mean  SE. Statistical analyses for: untreated Ts65Dn vs Treated Ts65Dn, * p < 0.05; ** p < 0.01; 

*** p < 0.001; untreated euploid mice vs untreated Ts65Dn mice, # p < 0.05; ## p < 0.01; ### p < 0.001 (Fisher 

LSD test after two-way ANOVA). Detailed statistical analysis is reported in Table 3.3.3. Abbreviations: 7,8-

DHF, 7,8-dihydroxyflavone; cm, centimeters; Eu, euploid; sec, seconds.
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Table 3.3.3. P values of the Fisher LSD test for the indicated variables of P45 mice. 

 

Abbreviations: 7,8-DHF, 7,8-dihydroxyflavone; Eu, euploid; sec, seconds; Ts, Ts65Dn; Veh, vehicle.  
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Figure 3.3.9. Effect of treatment with 7,8-DHF on spatial memory in young adult Ts65Dn and euploid 

mice. Spatial memory was assessed in the probe test after spatial learning (same mice as in Fig. 3.3.7). In the 

probe test, memory was assessed as latency to reach the trained platform zone (A), number of crossings 

(frequency) over the trained platform quadrant (B), proximity to the trained platform zone (C), percentage of 

time spent in the periphery (D), percentage of time spent in quadrants (F). E: Swimming speed during the 

probe test. Values represent mean  SE. (*) p < 0.06; * p < 0.05; ** p < 0.01; *** p < 0.001; (Fisher LSD test 

after ANOVA). Black asterisks in the gray bar indicate a difference between untreated Ts65Dn mice and 

treated euploid mice; white asterisks in the black bar indicate a difference between treated Ts65Dn mice and 

treated euploid mice. The symbol § in (F) indicates a difference between each individual quadrant and the 

trained platform quadrant (see key on the left). for each experimental group. § p < 0.05; §§ p < 0.01; §§§ p < 

0.001; (two-sample paired t-test). Abbreviations: 7,8-DHF, 7,8-dihydroxyflavone; Eu, euploid; NE, north-east; 

NW, north-west; SE, south-east; SW, south-west; sec, seconds.
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improvement and the latency to reach the platform did not decrease throughout the test (Fig. 3.3.10A, 

Table 3.3.4). Likewise, Ts65Dn mice treated with 7,8-DHF showed a scarce learning improvement 

and their performance was not statistically different from that of untreated Ts65Dn mice (Fig. 

3.3.10A, Table 3.3.4). In euploid mice treated with 7,8-DHF the latency was reduced in comparison 

with that of untreated euploid mice starting from day 5 (Fig. 3.3.10A, Table 3.3.4), although the 

difference was not statistically significant.  

Three-way mixed ANOVA on the percentage of time spent in the periphery revealed an interaction 

of genotype x treatment x day [F(7,238) = 2.140, p = 0.04]. We found a genotype x day interaction 

[F(7,238) = 3.28, p = 0.003], no treatment x day interaction, no genotype x treatment interaction, and 

no main effects of genotype, treatment and day. A post hoc Fisher LSD test showed no differences 

among groups in the percentage of time spent in the periphery, with the exception of the first day, on 

which treated euploid mice explored more than the other groups (Fig. 3.3.10B, Table 3.3.4). 

Three-way mixed ANOVA on the path length showed no effect of genotype x treatment x day. We 

found a genotype x day interaction [F(7,238) = 2.21, p = 0.034], no treatment x day interaction, no 

genotype x treatment interaction, a main effect of genotype [F(1,34) = 4.22, p = 0.048], a main effect 

of treatment [F(1,34) = 14.11, p = 0.001], and a main effect of day [F(7,238) = 13.33, p < 0.001]. A 

post hoc Fisher LSD test showed that path length decreased throughout the test for all experimental 

groups. Untreated euploid and Ts65Dn mice made the same path length over the entire test, with 

slight but not significant differences (Fig. 3.3.10C, Table 3.3. 4). In treated euploid mice the path 

length decreased day by day faster than in their untreated counterpart, suggesting a positive effect on 

the search strategy (Fig. 3.3.10C, Table 3.3.4). The path length also decreased faster in treated 

Ts65Dn in comparison with untreated Ts65Dn mice, and on days 3, 6, and 7 this decrement reached 

statistical significance (Fig. 3.3.10D, Table 3.3.4). This indicates that treated Ts65Dn have a better 

strategy to reach the platform in comparison with their untreated counterpart. Three-way mixed 

ANOVA on the path length showed no effect of genotype x treatment x day. We found no genotype 

x day interaction, no treatment x day interaction, no genotype x treatment interaction, no main effects 
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of either genotype or treatment, but a main effect of day [F(7,238) = 8.49, p < 0.001]. A post hoc 

Fisher LSD test showed no differences among groups in swimming speed and this parameter 

decreased day by day for all experimental groups (Fig. 3.3.10D, Table 3.3. 4). Treated Ts65Dn had 

a reduced swimming speed in comparison with the other groups every day of the test, although this 

difference was not statistically significant (Fig. 3.3.10E, Table 3.3.4). 

In the probe test, we considered the following parameters as an index of spatial memory: i) latency 

to enter the trained platform zone (latency), ii) frequency of entrances in the trained platform zone 

(frequency), iii) proximity to the trained platform position (Gallagher’s test; proximity), iv) 

percentage of time spent in the periphery (thigmotaxis), v) swimming speed, vi) percentage of time 

spent in quadrants. A two-way ANOVA on the latency showed no genotype x treatment interaction, 

no main effect of treatment but a main effect of genotype [F(1,32) = 5,59, p = 0.024]. A post hoc 

Fisher LSD test showed that untreated Ts65Dn mice exhibited a longer latency than untreated and 

treated euploid mice, although this difference was statistically significant in comparison with 

untreated euploid mice only, and that treatment did not improve latency (Fig. 3.3.11A). A two-way 

ANOVA on the frequency showed no genotype x treatment interaction, no main effect of treatment 

but a main effect of genotype [F(1,32) = 6.44, p = 0.016]. A post hoc Fisher LSD test showed that 

untreated Ts65Dn mice exhibited a reduced frequency of entrances than untreated euploid mice and 

that treatment did not cause a frequency increase (Fig. 3.3.11B). A two-way ANOVA on the 

proximity showed no genotype x treatment interaction, but a main effect of genotype [F(1,32) = 5.08, 

p = 0.031] and a main effect of treatment [F(1,32) = 6.54, p = 0.016]. A post hoc Fisher LSD test 

showed that untreated Ts65Dn mice swam at a larger distance from the trained platform zone in 

comparison with untreated and treated euploid mice, although this difference was statistically 

significant vs. the latter only (Fig. 3.3.11C). In treated Ts65Dn mice, the distance from the trained 

platform zone was not different in comparison with that of untreated euploid mice, although it was 

not different also in comparison with Ts65Dn mice (Fig. 3.3.11C). This indicates an improvement in 

searching strategy of treated Ts65Dn mice, and this result is in agreement with that obtained on path 
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length during learning phase (see Fig. 3.3.10C). A two-way ANOVA on thigmotaxis showed no 

genotype x treatment interaction, no main effect of both genotype and treatment. In agreement with 

evidence for the learning phase, a post hoc Fisher LSD test showed that in the probe test there were 

no differences in thigmotaxis among experimental groups, even though treated and untreated euploid 

mice spent more time in the center of the pool in comparison with Ts65Dn mice (Fig. 3.3.11D). 

Two-way ANOVA on the swimming speed showed no genotype x treatment interaction, no main 

effect of both genotype and treatment. A post hoc Fisher LSD test no differences among groups, with 

the only exception of treated Ts65Dn mice that had a lower swimming speed in comparison with 

untreated euploid mice (Fig. 3.3.11E).  

A paired samples t-test showed that untreated Ts65Dn mice exhibited no differences in the time spent 

in the trained platform quadrant in comparison with the other quadrants (Fig. 3.3.11F). Like their 

untreated counterparts, treated Ts65Dn mice did not discern among quadrants (Fig. 3.3.11F). 

Untreated euploid mice spent significantly more time in the trained platform quadrant in comparison 

with the NE [t(11) = 2.98; p = 0.013], SE quadrant [t(11) = 3.43; p = 0.006] and NW [t(11) = 2.23; p 

= 0.047] quadrants (Fig. 3.3.11F). Likewise, treated euploid mice spent significantly more time in 

the trained platform quadrant in comparison with the SE [t(6) = 3.52; p = 0.013] quadrant but not 

with the other two (Fig. 3.3.11F).  

Taken together, data from learning phase and probe test show that treatment with 7,8-DHF 

administered from 4 to 5 months of age improves only partially spatial hippocampal skills in the 

Ts65Dn mouse. Indeed, in contrast to what we observed in P45 mice, there were no effects of 

treatment on latency to reach the platform neither in learning phase nor in the probe test, although 

Ts65Dn mice treated with 7,8-DHF had a reduced swim path and swam closer to the trained platform 

zone in comparison with untreated Ts65Dn mice. These discrepancies between P45 and 5 month-old 

mice suggest that there is an effect of age in Ts65Dn mice that changes their response to BDNF 

mimetics, such as 7,8-DHF. It remains to be established whether other doses of 7,8-DHF would be 

able to ameliorate more strongly hippocampus-dependent behavior in adult Ts65Dn mice. 
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Interestingly, 5 month-old euploid mice treated with 7,8-DHF showed an improvement in almost all 

parameters of the learning phase (but not of the probe test) analysed in this study in comparison with 

their untreated counterpart. Indeed, although there is no statistical differences (see Table 3.3.4), 

treated euploid mice had a reduced latency to reach the platform, spent less time at the periphery, and 

had a shorter swim path. These data indicates that a molecule that stimulate the BDNF/TRKB 

pathway increases learning abilities in adult healthy mice. 

 

Effect of 7,8-DHF on neurogenesis in 5 month-old Ts65Dn and euploid mice 

Immature granule neurons express doublecortin (DCX) during the period of neurite elongation (from 

one to four weeks after neuron birth) (Couillard-Despres et al., 2005), which allows evaluation of 

total number of new granule cells. In order to establish whether treatment with 7,8-DHF enhances 

hippocampal neurogenesis, brain sections of mice treated for one month with saline or 7,8-DHF were 

subjected to immunohistochemistry for DCX. A two-way ANOVA on the number of DCX-positive 

cells showed no genotype x treatment interaction but a significant effect of genotype [F(1,14) = 24.83, 

p < 0.001] and no effect of treatment. In agreement with previous evidence, untreated Ts65Dn mice 

had a reduced number of new granule cells in comparison with untreated euploid mice (Fig. 

3.3.12A,B). Treatment with 7,8-DHF did not increase the number of new granule cells that remained 

reduced in comparison with control euploid mice (Fig. 3.3.12A,B). In euploid mice treatment with 

either vehicle or 7,8-DHF did not affect the number of proliferating cells (Fig. 3.3.12A,B).  

 

Effect of 7,8-DHF on the phosphorylation levels of the TRKB receptor in 5 month- old Ts65Dn 

and euploid mice 

Binding of BDNF or its mimetic 7,8-DHF to the TRKB full length receptor (TRKB-FL), that 

possesses an intracellular tyrosine kinase domain, causes receptor dimerization and 

autophosphorylation. By contrasts, the truncated form of the TRKB receptor (TRKB-T1) lacks 

tyrosine kinase activity. In order to establish the effect of 7,8-DHF on the expression levels and 
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Figure 3.3.10. Effect of treatment with 7,8-DHF on spatial learning in 5 month-old Ts65Dn and euploid 

mice. Mice received either vehicle or 7,8-DHF in the period 4M-5M+9 days and were behaviorally tested with 

the MWM during the last 9 days of treatment (untreated euploid mice: n=13; untreated Ts65Dn mice: n=11; 

treated euploid mice: n=7; treated Ts65Dn mice: n=7). The curves in (A-D) report data of euploid mice that 

received either vehicle (empty circle) or 7,8-DHF (filled circle) and Ts65Dn mice that received either vehicle 

(empty square) or 7,8-DHF (filled square). A-C: Learning phase of the MWM evaluated as latency to reach 

the platform (A), percentage of time spent in the periphery (B), path length (C). D: Swimming speed. Values 

in (B-D) represent mean  SE. Statistical analyses for: untreated Ts65Dn vs Treated Ts65Dn, * p < 0.05; 

untreated euploid mice vs untreated Ts65Dn mice, # p < 0.05; ## p < 0.01; ### p < 0.001 (Fisher LSD test 

after two-way ANOVA). Detailed statistical analysis is reported Table 3.3.4. Abbreviations: 7,8-DHF, 7,8-

dihydroxyflavone; Eu, euploid; sec, seconds. 
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Table 3.3.4. P values of the Fisher LSD test for the indicated variables of 5 month-old mice. 

  Latency (s) 

   D1 D2 D3 D4 D5 D6 D7 D8 

Eu+Veh Eu+7,8-DHF 0.296 0.135 0.170 0.281 0.078 0.051 0.293 0.209 

  Ts65Dn+Veh 0.017 0.006 0.001 0.003 0.022 0.060 0.079 0.282 

  Ts65Dn+7,8-DHF 0.018 0.005 0.083 0.002 0.108 0.073 0.174 0.194 

Eu+7,8-DHF Ts65Dn+Veh 0.283 0.331  ≤ 0.001 0.001 0.001 0.001 0.015 0.037 

  Ts65Dn+7,8-DHF 0.217 0.204 0.008 ≤ 0.001 0.004 0.002 0.038 0.029 

Ts65Dn+Veh Ts65Dn+7,8-DHF 0.767 0.659 0.144 0.585 0.668 0.882 0.852 0.722 

  Time at the periphery (%) 

   D1 D2 D3 D4 D5 D6 D7 D8 

Eu+Veh Eu+7,8-DHF 0.016 0.215 0.159 0.559 0.293 0.414 0.459 0.096 

  Ts65Dn+Veh 0.617 0.907 0.980 0.234 0.490 0.405 0.516 0.917 

  Ts65Dn+7,8-DHF 0.975 0.805 0.312 0.093 0.359 0.237 0.225 0.357 

Eu+7,8-DHF Ts65Dn+Veh 0.007 0.269 0.178 0.119 0.113 0.139 0.209 0.125 

  Ts65Dn+7,8-DHF 0.032 0.194 0.038 0.050 0.088 0.084 0.091 0.026 

Ts65Dn+Veh Ts65Dn+7,8-DHF 0.693 0.735 0.317 0.519 0.758 0.653 0.525 0.328 

  Path Lenght (m) 

    D1 D2 D3 D4 D5 D6 D7 D8 

Eu+Veh Eu+7,8-DHF 0.531 0.739 0.030 0.166 0.107 0.067 0.259 0.085 

  Ts65Dn+Veh 0.620 0.447 0.033 0.082 0.070 0.175 0.105 0.361 

  Ts65Dn+7,8-DHF 0.018 0.979 0.627 0.773 0.725 0.206 0.441 0.420 

Eu+7,8-DHF Ts65Dn+Veh 0.850 0.746  ≤ 0.001 0.007 0.003 0.005 0.016 0.017 

  Ts65Dn+7,8-DHF 0.111 0.787 0.129 0.144 0.262 0.601 0.749 0.407 

Ts65Dn+Veh Ts65Dn+7,8-DHF 0.054 0.535 0.024 0.225 0.062 0.021 0.037 0.124 

  Swim speed (cm/s) 

   D1 D2 D3 D4 D5 D6 D7 D8 

Eu+Veh Eu+7,8-DHF 0.531 0.954 0.789 0.473 0.453 0.152 0.730 0.343 
 Ts65Dn+Veh 0.620 0.292 0.821 0.749 0.815 0.929 0.654 0.689 

  Ts65Dn+7,8-DHF 0.018 0.104 0.150 0.913 0.616 0.119 0.484 0.071 

Eu+7,8-DHF Ts65Dn+Veh 0.477 0.401 0.947 0.670 0.356 0.144 0.476 0.559 

  Ts65Dn+7,8-DHF 0.180 0.166 0.298 0.468 0.827 0.908 0.754 0.435 

Ts65Dn+Veh Ts65Dn+7,8-DHF 0.432 0.480 0.225 0.706 0.494 0.113 0.292 0.152 

 Abbreviations: 7,8-DHF, 7,8-dihydroxyflavone; Eu, euploid; Ts, Ts65Dn; Veh, vehicle.  
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Figure 3.3.11. Effect of treatment with 7,8-DHF on spatial memory in 5 month-old Ts65Dn and euploid 

mice. Spatial memory was assessed in the probe test after spatial learning (same mice as in Fig. 3.3.10). In the 

probe test, memory was assessed as latency to reach the trained platform zone (A), number of crossings 

(frequency) over the trained platform zone (B), proximity to the trained platform zone (C), percentage of time 

spent in the periphery (D), percentage of time spent in quadrants (F). E: Swimming speed during the probe 

test. Values represent mean  SE. (*) p < 0.06; * p < 0.05; *** p < 0.001 (Fisher LSD test after ANOVA). 

Black asterisks in the gray bar indicate a difference between untreated Ts65Dn mice and treated euploid mice. 

The symbol § in (F) indicates a difference between each individual quadrant and the trained platform quadrant 

(see key below). for each experimental group. (§) p < 0.06; § p < 0.05; §§ p < 0.01 (two-sample paired t-test). 

Abbreviations: 7,8-DHF, 7,8-dihydroxyflavone; Eu, euploid; NE, north-east; NW, north-west; SE, south-east 

sec, sec, seconds 
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activity of the TRKB receptor, hippocampal homogenates of treated and untreated mice were 

subjected to western blot analysis. A two-way ANOVA on the levels of BDNF showed no genotype 

x treatment interaction and no main effect of both genotype and treatment. Accordingly with data 

obtained in P15 mice, a post hoc Fisher LSD test did not reveal any difference in BDNF levels 

between untreated euploid and Ts65Dn mice aged 5 months (data not shown). Treatment with 7,8-

DHF did not affect the levels of BDNF in euploid as well as Ts65Dn mice (data not shown). 

A two-way ANOVA on the levels of TRKB-FL receptor showed no genotype x treatment interaction, 

no main effect of genotype but a main effect of treatment [F(1,26) = 16.51, p < 0.001]. A post hoc 

Fisher LSD test showed that untreated and Ts65Dn mice had reduced levels of the TRKB-FL receptor 

in comparison with untreated euploid mice (Fig. 3.3.13B). Treatment with 7,8-DHF caused an 

increase in the levels of the TRKB-FL receptor that became similar to those of untreated euploid 

mice. An increase in TRKB-FL receptor levels also took place in treated euploid mice in comparison 

with their untreated counterparts, although the difference was not statistically significant. A two-way 

ANOVA on the levels of the phosphorylated form of the TRKB receptor (p-TRKB) showed no 

genotype x treatment interaction, no main effect of genotype but a main effect of treatment [F(1,23) 

= 5.31, p = 0.03]. A post hoc Fisher LSD test showed that in untreated Ts65Dn mice the levels of p-

TRKB were similar to those of euploid mice (Fig. 3.3.13C). In Ts65Dn mice, treatment with 7,8-

DHF caused a reduction in the levels of p-TRKB in comparison with their untreated counterparts as 

well as in comparison with untreated euploid (Fig. 3.3.13C).  

A two-way ANOVA on the levels of the TRKB-T1 receptor showed no genotype x treatment 

interaction and no main effect of either genotype or treatment. A post hoc Fisher LSD test showed 

that untreated Ts65Dn mice has similar levels of TRKB-T1 as untreated euploid mice. Treated 

Ts65Dn and euploid mice underwent an increase in the levels of TRKB-T1 in comparison with their 

untreated counterparts but the difference was not statistically significant (Fig. 3.3.13D). 
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Figure 3.3.12. Effect of treatment with 7,8-DHF on the number of new granule cells in the dentate gyrus 

of 5 month-old mice. A: Examples of sections processed for fluorescence immunostaining for DCX from the 

DG of untreated and treated mice. Calibration bar: 50 µm. B: Number of DCX-positive cells in the DG of of 

untreated euploid (n=6) and Ts65Dn mice (n=6) and euploid (n=4) and Ts65Dn (n=4) mice treated with 7,8-

DHF. Values represent mean  SE. * p < 0.05; *** p < 0.001 (Fisher LSD test after two-way ANOVA). Black 

asterisks in the gray bar indicate a difference between untreated Ts65Dn mice and treated euploid mice; white 

asterisks in the black bar indicate a difference between treated euploid and treated Ts65Dn mice. 

Abbreviations: 7,8-DHF, 7,8-dihydroxyflavone; Eu, euploid; Gr, granule cell layer; SGZ, subgranular zone.
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Figure 3.3.14. Effects of treatment with 7,8-DHF on the TRKB receptor. Western blot analysis of the 

TRKB receptor in hippocampal homogenates of treated and untreated mice. A: representative western blots 

showing immunoreactivity for the phosphorylated TRKB receptor (p-TRKB), the full length TRKB receptor 

(TRKB-FL), the truncated TRKB receptor (TRKB-T1), and the housekeeping gene GAPDH. B-D: Levels of 

TRKB-FL (B) p-TRKB (C) and TRKB-T1 (D) of untreated euploid (n=8) and Ts65Dn (n=9) and euploid (n=7) 

and Ts65Dn (n=7) mice treated with 7,8-DHF. Values represent mean  SE. * p < 0.05; p < 0.01 *** p < 0.001 

(Fisher LSD test after two-way ANOVA). Black asterisks in the gray bar indicate a difference between 

untreated Ts65Dn mice and treated euploid mice; white asterisks in the black bar indicate a difference between 

treated euploid and treated Ts65Dn mice. Abbreviations: 7,8-DHF, 7,8-dihydroxyflavone; Eu, euploid. 
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3.3.5 Discussion 

 

Results show that treatment with a BDNF mimetic restores hippocampal neurogenesis and dendritic 

spine density in pups and largely improves behavior in young adult mice. In contrast, 7,8-DHF 

administration in adult mice is ineffective on neurogenesis and only partially improves behavior, 

suggesting that the magnitude of treatment effects may change with age.  

 

Treatment with the BDNF mimetic 7,8-DHF positively impacts the major defects of hippocampal 

development in Ts65Dn mice 

In disagreement with data obtained in adult Ts65Dn mice (Bimonte-Nelson et al., 2003, Fukuda et 

al., 2010, Begenisic et al., 2015), we did not find any reduction in BDNF protein levels in the 

hippocampus of P15 Ts65Dn mice, suggesting that BDNF expression may be differently regulated 

during different life stages. Although there were no differences of BDNF expression levels in neonate 

Ts65Dn in comparison with euploid mice, treatment with 7,8-DHF resulted in the recovery of 

neurogenesis reduction and dendritic pathology, consistently with the pivotal role played by BDNF 

in brain development.  

We found that treatment with 7,8-DHF increased the number of proliferating cells in the SGZ of 

Ts65Dn mice. Indeed, while the number of dividing cells in untreated Ts65Dn mice was -30% in 

comparison with untreated euploid mice, in treated Ts65Dn mice their number was -13% (see Fig. 

3.3.3C), indicating that 7,8-DHF causes a large improvement in proliferation potency. Importantly, 

although the number of dividing cells in the SGZ of Ts65Dn mice was not fully rescued after 

treatment, total granule cell number was fully restored. This result may be explained by an effect of 

7,8-DHF on the process of phenotype acquisition, with a shift in the relative number of cells destined 

to become neurons. P15 Ts65Dn mice exhibited an impairment in the process of spinogenesis. The 

finding that their granule neurons had a reduced spine density indicates that this defect starts at early 

phases of hippocampal development. This spine defects implies a reduction in the number of 
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excitatory terminals and, consequently, reduced complexity of hippocampal circuitry. Consistently 

with this conclusion, an evaluation of the levels of the presynaptic protein SYN in Ts65Dn mice 

showed that the counterpart of the spine density reduction was a reduction in SYN levels. We showed 

that treatment with 7,8-DHF restored the number of dendritic spines of Ts65Dn mice as well as SYN 

levels, suggesting a treatment-induced restoration of the hippocampal circuitry.  

Conflicting results are reported in the literature regarding the pro-proliferative effect of the 

BDNF/TRKB system in different species and cellular systems (Foltran and Diaz, 2016, Vilar and 

Mira, 2016). Many studies suggest that BDNF fosters neurogenesis and neuron maturation but not 

proliferation of NPCs. Our results suggest that in Ts65Dn mice activation of the TRKB receptor 

enhances NPCs proliferation, in addition to neurogenesis and neuron maturation. Although the effect 

on proliferation was less prominent than the effect on neurogenesis and neuron maturation, the 

outcome was restoration of the defective cellularity in the granule layer of the DG. It is of interest to 

observe that some of the neurogenesis-enhancing therapies attempted so far in mouse models of DS 

may present caveats for human use due to the risk of uncontrolled proliferation in peripheral tissues 

and, thus, have a cancerogenic effect (Bartesaghi et al., 2011, Gardiner, 2015). The finding that 7,8-

DHF, in spite of its relatively moderate pro-proliferative activity, is able to restore the final number 

of granule neurons may render this molecule a good candidate for therapy in DS.  

 

Treatment with 7,8-DHF rescues hippocampus-dependent behavior in young adult Ts65Dn mice 

The granule cells of the DG are the first element of the hippocampal trisynaptic circuit, a circuit 

whose function is fundamental for long-term memory. The dendrites of the granule cells receive their 

major input from the entorhinal cortex that represents an interface between the hippocampal 

formation and the rest of the brain. Signals from polymodal association cortices sent by the entorhinal 

cortex to the DG are processed by the trisynaptic circuit and then sent back to the entorhinal cortex. 

Hippocampus-dependent learning and memory impairment is a consistent feature of DS and the 

Ts65Dn mouse model (Demas et al., 1996, Carlesimo et al., 1997, Vicari et al., 2000, Belichenko et 
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al., 2007, Salehi et al., 2009). We found here that in Ts65Dn mice treated with 7,8-DHF there was an 

improvement in hippocampus-dependent learning and a rescue in spatial memory, as assessed in the 

probe test, indicating that the effects of treatment on the hippocampal defects that characterize the 

trisomic condition translate into a behavioral benefit. It remains to be established whether after 

treatment cessation these effects are retained at further life stages.  

 

Activation of the TRKB receptor by 7,8-DHF enhances the activity of TRKB receptor-dependent 

signaling 

In the hippocampus of P15 Ts65Dn mice we found normal levels of BDNF, TRKB-FL, and TRKB-

T1 receptors. Results showed a reduction in the levels of BDNF and TRKB-FL receptor in Ts65Dn 

mice after thirteen days of treatment with 7,8-DHF, suggesting a compensatory reduction of their 

transcription and/or an increase in their degradation. The absence of a similar reduction in treated 

euploid mice suggests that the mechanisms underlying degradation of the TRKB receptor may be 

more powerful in the trisomic brain. It must be noted that, although treatment induced an overall 

reduction in TRKB receptor levels, its phosphorylation increased, indicating that treatment activates 

TRKB receptor, and, hence, TRKB-dependent pathways. Accordingly, we found here that in treated 

Ts65Dn mice there was an increase in the levels of p-ERK1 and p-ERK2, which is consistent with 

the treatment-induced phosphorylation increase of the TRKB receptor. ERK activity is required for 

cell proliferation (Lefloch et al., 2008), and there is evidence that the BDNF/TRKB signaling-induced 

increase in spine density of hippocampal pyramidal neurons is ERK1/2 dependent (Alonso et al., 

2004). Thus, we hypothesize that the increased activity of ERK1/2 after 7,8-DHF treatment may 

represent a key contributor to the rescue of hippocampal development in Ts65Dn mice.  

Although much is now known regarding the role of ERK1/2, the mechanisms underlying their 

expression still need to be elucidated (Busca et al., 2016). We found here that treatment with 7,8-

DHF increased both ERK1 and ERK2 levels. A recent study shows that the ratio between total ERK1 

and ERK2 protein levels in different mouse brain regions is about 1:4, that the same ratio holds for 
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p-ERK1/2 and that derangement of these ratios has adverse effects on the brain (Lefloch et al., 2008). 

Importantly, in Ts65Dn mice, treatment caused an increase in ERK1/2 and p-ERK1/2 but their ratios 

remained similar to those of their untreated counterparts. This indicates that treatment enhances the 

activity of ERK1/2 without disrupting the important balance between the two ERK isoforms. 

 

Treatment with 7,8-DHF has no adverse effects on viability and growth of Ts65Dn mice  

In order to evaluate whether 7,8-DHF as adverse effects in Ts65Dn mice, we considered mice 

viability, body weight, and brain wheight. We found no effect of treatment on mice viability. There 

is evidence that in rodents treatment with BDNF causes a reduction in food intake and that activation 

of muscular TRKB by 7,8-DHF regulates energy metabolism in muscles (Gray et al., 2006, Chan et 

al., 2015). Conversely, rodent models with a reduction in BDNF/TRKB signaling exhibit hyperphagia 

and obesity (Chan et al., 2015). We found that a relatively short treatment with 7,8-DHF (13 days: 

from P3 to P15) as well as a more prolonged treatment (42-47 days: from P3 to P45-50) did not cause 

a body weight reduction in Ts65Dn mice. In addition, we did not found an adverse effect of treatment 

on the brain weight of Ts65Dn mice, but rather, a positive effect on brain growth. From these findings 

it appears that a chronic treatment with 7,8-DHF has a safe profile on the general health of Ts65Dn 

mice, suggestig a high translational impact  of treatment with 7,8-DHF.  

 

Treatment with 7,8-DHF does not rescue neurogenesis but leads to an improvement of behavior 

in adult Ts65Dn mice 

In contrast with the positive effects of a treatment with 7,8-DHF seen in Ts65Dn pups, we found that 

41 days of treatment with 7,8-DHF in adult Ts65Dn mice did not enhance hippocampal neurogenesis. 

Although with a different magnitude, treatment amelliorated hippocampus-dependent learning 

abilities as in young-adult as in adult Ts65Dn mice. There are evidence that treatment with 7,8-DHF 

in 5XFAD mice (a mouse model of familial AD) increases dendritic spine density in hippocampal 

neurons and rescues memory deficits (Zhang et al., 2014). Given that there was a lack of neurogenesis 
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enhancement in 5 month-old treated Ts65Dn mice, it would be reasonable that good effects of 7,8-

DHF observed in learning phase of MWM may be related to an improvement in neuronal maturation 

(dendritic arbour/dendritic spines) of pre-existent hippocamapal granule cells. This could lead to an 

amelioration of hippocampal circuitry and, thus, hippocampal dependent behavior. Further studies 

should be conducted to settle this issue. These results in the Ts65Dn mouse model of DS are consistent 

with evidence obtained in models of other brain disorders, showing that treatment with 7,8-DHF, 

administered at the same dose (5.0 mg/kg) used in this study, ameliorates cognition (Jang et al., 2010, 

Liu et al., 2010, Andero et al., 2011, Andero et al., 2012, Devi and Ohno, 2012, Zeng et al., 2012, 

Zhang et al., 2014). Treatment with 7,8-DHF ameliorates motor function in a mouse model of 

Hungtington’s disease (Jiang et al., 2013) and improves motor performance and neuronal survival in 

a mouse model of amyotrophic lateral sclerosis (Korkmaz et al., 2014). This is in contrast with our 

observation in Ts65Dn mice, where we observed a mild reduction in swimming speed during MWM 

in adult mice treated with 7,8-DHF.  

The schedule of treatment used in the studies mentioned above ranged from a few days to months, 

suggesting that the lack of an effect on neurogenesis in Ts65Dn mice observed here is unlikely to be 

related to an insufficient duration of treatment. Different disorders of the nervous system may show 

common molecular signatures but also widely different molecular alterations, suggesting that the 

outcome of a given therapeutic approach may not be necessarily shared by different brain disorders. 

It seems reasonable to conclude that the reduced effects of treatment with 7,8-DHF on neurogenesis 

observed here in the Ts65Dn model may be related to differences in the molecular pathways that are 

perturbed in this model and in the models in which 7,8 DHF resulted effective. In this connection, it 

is of importance to observe that 5XFAD mouse model of AD shows reduction in both TRKB-FL and 

p-TRKB receptors and that treatment with 7,8-DHF for 12 days restores both TRKB-FL and p-TRKB 

receptor levels (Devi and Ohno, 2012). In the same model, treatment for 4 months increases p-TRKB 

(although not total TRKB) levels (Zhang et al., 2014). Aged rats, exhibit significant decreases in 

TRKB and p-TRKB levels in the hippocampus compared to young controls and administration of 
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7,8-DHF for 34 days enhances p-TRKB (but not total TRKB) levels (Zeng et al., 2012). Finally, in a 

mouse model of Hungtington’s disease, treatment with 7,8-DHF from 6 to 20 weeks of age has been 

shown to increase p-TRKB levels (Jiang et al., 2013). 

We found here that Ts65Dn mice exhibit reduced levels of the TRKB receptor but normal levels of 

its active form (p-TRKB). This is at variance with the 5XFAD mouse model and with aged rats that 

exhibit reduced levels of both the TRKB and p-TRKB receptors. In Ts65Dn mice treatment with 7,8-

DHF largely increased the expression of the TRKB receptor that became twice as large as that of 

untreated Ts65Dn mice but, surprisingly, it reduced the relative levels of its active form (p-TRKB). 

The mechanisms underlying the treatment-induced increase in TRKB levels with a concomitant 

reduction in its relative phosphorylation form remain to be elucidated. It should be taken into account 

that, however, higher levels of TRKB-FL would lead to an increase in the number of receptors that 

can be phosphorylated and, in fact, we observed an increase of 32% in p-TRKB absolute levels 

(normalizing p-TRKB on GAPDH) in the hippocampus of Ts65Dn treated with 7,8-DHF (data not 

shown). Whatever the explanation, since the BDNF/TRKB receptor system plays an important role 

in the modulation of neurogenesis, deregulation of this pathway observed in Ts65Dn mice after 

treatment with 7,8-DHF may explain the lack of a beneficial effect on neurogenesis 
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4. GENERAL DISCUSSION AND CONCLUSIONS 

 

4.1 Goal 

In spite of the growing interest in the field of potential treatments for cognitive impairment in DS, 

there are no effective therapies for DS so far. The overall goal of my thesis work was to give a 

contribution to the discovery of effective pharmacotherapies for DS.  

 

4.2 Model 

To this purpose, I have used the Ts65Dn mouse model because, in spite of unavoidable limitations 

i) it is the model that most closely recapitulates the human condition and ii) most of the 

pharmacotherapies attempted so far have used this model, which allows a comparison across different 

interventions (see (Bartesaghi et al., 2011, Stagni et al., 2015a)). 

 

4.3 Timing  

Considering that neurogenesis and dendritogenesis defects occur at very early phases of brain 

development (Takashima et al., 1981, Becker, 1991, Vuksic et al., 2002, Contestabile et al., 2007, 

Guidi et al., 2008, Larsen et al., 2008, Guidi et al., 2011a, Lu et al., 2012), prenatal therapies should 

be the most appropriate choice in order to restore the trisomy-linked developmental defects of the 

brain. However, the prenatal period also represents a critical time for the development of the other 

organs forming the body. This aspect should be considered carefully and may raise concerns in the 

framework of potential treatments, unless their safety is granted. In rodents, the hippocampal dentate 

gyrus produces most of its neurons in the first two postnatal weeks (Brazel et al., 2003). Thus, the 

neonatal period appears to be an ideal time window in order to establish whether it is possible to 

correct neurogenesis and dendritogenesis defects with selected molecules and to establish the long-

term effect (if any) of treatment. Information gained with early postnatal treatments may provide an 

answer to various key questions. 1) Is the selected molecule effective in correcting neurogenesis? 2) 
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Does the same molecule also correct dendritogenesis defects? 3) Does treatment elicit long-term 

effects? 4) Does treatment elicit adverse effects during treatment or after treatment cessation? This 

information may have a powerful translational impact at least in two directions. 1) Molecules 

effective and without side effects may be exploited in children with DS in order to IMPROVE their 

brain and cognitive performance. If clinical trials in children with DS will show a clear efficacy 

without side effects this outcome may suggest that it could be worthwhile to test the effective 

molecule during pregnancy and to run the risk of possible unpredictable side effects in the face of a 

potential full RESCUE of brain development. 

 

4.4 Rationale for the chosen treatments and their effects 

With this idea in mind, in this study I have examined the effects of three different molecules on 

development of the hippocampus. Which was the idea that lead to the selection of these molecules? 

The general idea was to act on pathways important for neurogenesis and dendritogenesis and that are 

known to be perturbed in DS.  

APP is one of the triplicated genes that appears to be involved in several detrimental effects in the 

DS brain (see (Bartesaghi et al., 2011)). One of its cleavage products, AICD, strongly interferes with 

the SHH pathway, a pathway fundamental for morphogenesis and neurogenesis (Trazzi et al., 2011, 

Trazzi et al., 2013). In particular, AICD increases the transcription of PTCH1 which, in turn, keeps 

the SHH pathway in a repressed state. The outcome of this inhibition is a reduction in the proliferation 

rate of NPCs and a reduced propensity to acquire a neuronal phenotype. Since AICD derives from 

the cleavage of the carboxy-terminal fragments of APP that is operated by the enzyme γ-secretase, 

inhibition of the activity of γ-secretase should reduce the formation of AICD. This should translate 

into a reduction on PTCH1 levels and disinhibition of the SHH pathway. We used the γ-secretase 

inhibitor ELND006 (Basi et al., 2010) and found that neonatal treatment with this compound restored 

neurogenesis and neuron number in the DG and synaptic development in the hippocampal formation 

(DG and hippocampus) of Ts65Dn mice. Most of these effects were retained at one month after 
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treatment cessation and were accompanied by restoration of the synaptic function at the synapse 

between granule cells and field CA3 pyramidal neurons. 

DYRK1A belongs to the triplicated genes that are considered to be strongly involved in neurogenesis 

impairment in DS (Chen et al., 2013). Many of the downstream targets of DYRK1A are associated 

with the control of cell growth and survival, especially in the nervous system (Hindley and Philpott, 

2012, Chen et al., 2013). DYRK1A impairs cell cycle progression of embryonic progenitors through 

various mechanisms, suggesting that inhibition of its activity may restore neurogenesis in DS. Several 

small-molecule inhibitors of the protein kinase activity of DYRK1A are available. Many DYRK1A 

inhibitors also inhibit CDK-like kinase 1. EGCG (the major polyphenolic compound of green tea), 

however, has been identified as a specific DYRK1A inhibitor (Bain et al., 2003). Therefore, treatment 

with EGCG may be exploited in order to inhibit DYRK1A activity and, consequently, counteract the 

negative effects exerted by DIRK1A on neurogenesis in the DS brain. Indeed, green tea extracts 

appear to improve learning in the adult Ts65Dn mouse and exert some behavioral, although 

ephemeral, benefits in young adults with DS (De la Torre et al., 2014, de la Torre et al., 2016). It is 

possible that treatment with EGCG in the critical time window of hippocampal neurogenesis has more 

pronounced effects on hippocampal neurogenesis and that these effects are retained with time, which 

might lead to a long-lasting behavioral improvement. In order to clarify this issue, we have treated 

Ts65Dn mice in the neonatal period and examined the short- and long-term effects of treatment. We 

found that at the end of treatment there was full restoration of hippocampal neurogenesis, neuron 

number and synapse development. Unfortunately, at one month after treatment cessation, these effects 

had disappeared and there were no signs of behavioral improvement.  

BDNF is a neurotrophin that plays a key role in brain plasticity by specifically binding to the TRKB 

teceptor. This binding triggers the activity of several intracellular pathways, thereby favoring 

neurogenesis, neuritogenesis and spine growth (Haniu et al., 1997). In the DS brain, BDNF levels are 

already reduced at fetal life stages and reduced BDNF levels have been shown in various brain regions 

of the Ts65Dn mouse (Bimonte-Nelson et al., 2003, Guedj et al., 2009, Bianchi et al., 2010a, Fukuda 
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et al., 2010, Toiber et al., 2010, Begenisic et al., 2015, Stagni et al., 2015b, Kazim et al., 2017, 

Villarroya et al., 2017). In view of the role of the BDNF-TRKB system in neurogenesis and dendritic 

morphogenesis, interventions targeted to the BDNF-TRKB system may be exploited in order to 

improve the trisomy-linked neurodevelopmental defects. Systemic administration of BDNF is 

impracticable because BDNF has a poor blood-brain barrier penetration. 7,8-dihydroxyflavone (7,8-

DHF), however, is a flavone-derivative that penetrates the blood brain barrier, binds with high 

specificity to the TRKB receptor and activates its downstream signaling cascade (Liu et al., 2010, Liu 

et al., 2013, Liu et al., 2016). Administration of 7,8-DHF has been shown to exert therapeutic efficacy 

in various animal disease models that are related to deficient BDNF signaling. Based on these 

premises we sought to establish whether it is possible to restore neurogenesis in the Ts65Dn mouse 

by targeting the TRKB receptor with 7,8-DHF. We found that Ts65Dn mice, neonatally-treated with 

7,8-DHF, underwent restoration of neurogenesis, granule cell number, and dendritic spine density. 

Mice that were treated with 7,8-DHF from postnatal day 3 to adolescence exhibited restoration of 

learning and memory, indicating that the recovery of the hippocampal anatomy translated into a 

functional rescue. No adverse effects were observed on the general health and growth of mice. 

 

4.5 Potential translational impact of the study  

From the viewpoint of the magnitude and duration of the effects, the use of ELND006, a selective 

inhibitor of γ-secretase, seems to be a promising strategy. However, we also found some adverse 

effects, possibly due to the fact that so called “selective inhibitors” of γ-secretase are not completely 

selective. Indeed, a clinical trial with ELND006 in individuals with Alzheimer’s disease was 

interrupted due to toxicity. Therefore, the promising results of our study require that more selective 

inhibitors of γ-secretase and/or other means to prevent the transcriptional activity of AICD are 

created, in order to have a true translational impact for DS.  

While EGCG may represent a good strategy for the restoration of the major trisomy-due brain 

defects, the disappearance of its effects with time implies that a schedule of continuous treatment 
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should be used in order to maintain the brain in its restored state. The advantage of natural compounds 

is that they have a long tradition in the history of the humankind and, therefore their use is considered 

to be safe (at appropriate doses). Taken together, the results of this study suggest that neonatal 

treatment with EGCG represents a good strategy for DS. The timing however is not all, because even 

neonatal treatment must not be discontinued or, at least, followed by additional treatment according 

to a schedule that needs to be identified. However, potential adverse effects of a prolonged EGCG 

treatment on the bone should be carefully considered. 

Treatment with 7,8-DHF during the early postnatal period restored neurogenesis and spinogenesis in 

the hippocampus of Ts65Dn mice and treatment until adolescence lead to full recue of hippocampus-

dependent learning and memory.  It remains to be established whether these effects are retained after 

treatment cessation. If so, targeting the BDNF/TRKB pathway may represent a good treatment for 

DS. Even if the effects of 7,8-DHF will be proven to be ephemeral, since it is a natural compound 

present in plants and has been shown to have no adverse effects on vital organs, such as the kidney 

and the liver, it seems likely that repeated treatment may be feasible and have no drawbacks.  

A comparison of the three therapies used in this study indicates that although all are able to rescue 

neurogenesis, targeting the BDNF/TRKB pathway with 7,8-DHF may represent the treatment with 

the highest translational impact for children with DS because, it is effective and has the highest safety 

profile.  

 

4.6 Future directions and challenges 

In my study, I focused on the effects of treatments in the early postnatal period with the goal to 

identify molecules that can restore neurogenesis alterations in DS. I took advantage of the fact that in 

rodents hippocampal neurogenesis is very prominent in the early postnatal period. This makes it 

possible to treat mice and easily observe whether treatment is effective and has no patent adverse 

effects. Neurogenesis, however, is fundamentally a prenatal event. Therefore, the next step will be to 

establish whether prenatal treatments restore neurogenesis and cellularity throughout the brain. If so, 
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a generalized recovery of the functions that are impaired in DS may be expected. Preclinical 

demonstration that it is possible to pharmacologically prevent brain developmental alterations in a 

mouse model of DS with a variety of agents may stimulate the design of clinical trials during 

pregnancy with the molecule/s with the safest profile. Provided that the selected therapies elicit in 

fetuses with DS the same effects as in mice this would imply a drastic amelioration (restoration?) of 

intellectual disability. This is the challenge that faces the community of preclinical researchers 

interested in DS: to transform a dream into reality. 
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