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DOTTORATO DI RICERCA IN MATEMATICA

CICLO XXX

Settore Concorsuale di afferenza: 01/A5

Settore Scientifico disciplinare: MAT/08

NUMERICAL SOLUTION OF
LARGE-SCALE LINEAR MATRIX

EQUATIONS

Presentata da: Davide Palitta

Coordinatore Dottorato

Chiar.ma Prof.ssa

Giovanna Citti

Relatore

Chiar.ma Prof.ssa

Valeria Simoncini

Esame finale 2018







Al mio papà.
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Introduction

In this thesis, the numerical treatment of the continuous-time Sylvester equation

AX +XB +C = 0, A ∈ RnA×nA ,B ∈ RnB×nB ,C ∈ RnA×nB , (i)

is explored. Sylvester equations arise in different settings, such as problems of control [14, 1],
discretization of partial differential equations (PDEs) [82, 26], block-diagonalization [45,
Chapter 7.1.4], and many others. See, e.g., [99] and the references therein. Very recent ap-
plications include optimization techniques for neural networks [75], the analysis of biological
systems [117], and the reconstruction of dynamical networks [108].

Due to its important role in control theory, we also address the case of the Lyapunov
equation

AX +XAT +C = 0, A,C ∈ Rn×n,C = CT , (ii)

that is equation (i) with B = AT and C symmetric. For instance, consider the continuous-
time linear system

Σ ∶ {
ẋ(t) = Ax(t) +Cinputu(t),
y(t) = CToutputx(t), x(0) = 0,

(iii)

where x is the model state, u is the input and y the output; A, Cinput and Coutput are
time-invariant. Then, assuming A stable, that is all its eigenvalues have negative real part,
the solution P and Q of the following Lyapunov equations

AP + PAT +CinputC
T
input = 0, and ATQ +QA +CoutputC

T
output = 0,

are called the controllability and observability Gramians respectively, and they provide useful
information for measuring, e.g., the energy transfers in the system (iii). See, e.g., [1, Section
4.3.1]. It can also be verified that if A is stable and the right-hand side C in (ii) is positive
(semi)definite then X is positive (semi)definite. See, e.g., [101]. This means that both the
controllability and observability Gramians are positive semidefinite matrices.

Alternatively, when Cinput and Coutput have the same number of columns, we can compute
the cross-Gramian W by solving the Sylvester equation

AW +WA +CinputC
T
output = 0,

which furnishes information about both the controllability and observability of the system.
If Cinput and Coutput have a single column, or if A is symmetric and Cinput, Coutput are such
that CToutput(zI −A)−1Cinput is symmetric, where (zI −A)−1 is the resolvent of A, it can be

shown that W 2 = PQ, so that the eigenvalues of W are the square root of the eigenvalues of
PQ. See, e.g., [39]. Usually, the eigenvalues of PQ are called the Hankel singular values of Σ
and they satisfy important invariance properties. See, e.g., [1, 40] for a detailed discussion.
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INTRODUCTION

In what follows, we will focus on the algebraic problems (i) and (ii) with particular
attention to the case when the matrices involved are of large dimensions. As pointed out
in [99, Section 1], the definition of large-scale problem is architecture dependent. However,
throughout the thesis, we say that a problem is large if the size of the data is of the order
of 104 or greater. For smaller problems, various decomposition-based methods have been
developed and they can be used on standard laptops with moderate energy consumption.
See, e.g., Section 1.3.

A characteristic aspect of the large-scale setting is that although data are sparse, the
solution X is in general dense so that storing it may be unfeasible. Therefore, it is necessary
that the solution allows for a memory-saving approximation, that is there exists a matrix
X̃, X̃ ≈ X which can be cheaply stored. Moreover, efficient algorithms for the computation
of X̃ must be designed.

An extensive literature treats the case of equations (i)–(ii) with low-rank right-hand side*

C = C1C
T
2 , C1 ∈ RnA×s, C2 ∈ RnB×s, s ≪ nA, nB . This assumption, together with certain

hypotheses on the spectral distribution of A and B, is a sufficient condition for proving a
fast –in many cases exponential – decay in the singular values of X, see, e.g., the discussion
at the beginning of Chapter 2, [86, 95] and the recent work [4] about Lyapunov equations
with nonnormal coefficients. This decay justifies the search for a low-rank approximation
X̃ = Z1Z

T
2 to X so that only the two tall matrices Z1, Z2 ∈ Rn×t, t≪ n, are actually computed

and stored, remarkably reducing the storage demand. This is the task of the so-called low-
rank methods and a large amount of work in this direction has been carried out in the past
few years. Very different algorithms belong to this family such as projection methods [97, 35],
low-rank ADI [15, 13], low-rank sign function methods [6, 7]. See the thorough presentation
in [99] and the references therein. In Section 2.1 we will recall the general framework of
projection methods for Sylvester and Lyapunov equations with low-rank right-hand side.

The case of large-scale Sylvester and Lyapunov equations with not necessarily low rank
right-hand side has not been deeply analyzed so far and efficient numerical methods are
still lacking in the literature. In this thesis we aim to significantly contribute to this open
problem by introducing solution methods for equations with different structure in their data.
In particular, in Chapter 3 we address the case when the coefficient matrices and the right-
hand side are generally banded. For this kind of equations an early contribution has been
given by Haber and Verhaegen in [51]. We will show that the memory-saving approximation
X̃ to X preserves the banded structure of the data and its bandwidth depends on the
conditioning of the coefficient matrices. For ill-conditioned problems it will be illustrated
that X can be represented by a pair (XB , Sm), X ≈ XB + SmS

T
m, where XB is banded and

Sm is low-rank so that moderate allocation requirements are still possible.
In Chapter 4 a more general structure of the data will be considered. In particular, we

will suppose A, B and C to be matrices with low quasiseparable-rank. Roughly speaking,
a matrix is said to be quasiseparable if its off-diagonal blocks are low-rank matrices, and
the quasiseparable rank is defined as the maximum of the ranks of the off-diagonal blocks.
Therefore, this structure can be viewed as a generalization of the case of (standard) low-rank
and banded matrices.

We further consider equations of the form

AX +XB +

p

∑
i=1

NiXMi +C1C
T
2 = 0, (iv)

A,Ni ∈ RnA×nA , B,Mi ∈ RnB×nB , C1 ∈ RnA×s, C2 ∈ RnB×s, s ≪ n, which are sometimes

*In case of the Lyapunov equation, C1 = C2.
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INTRODUCTION

referred to as generalized Sylvester equations since they can be viewed as the sum of a
Sylvester operator L(X) = AX +XB and a linear operator Π(X) = ∑

p
i=1NiXMi.

Many problems arising from the discretization of PDEs can be formulated as generalized
Sylvester equations [90, 82]. Moreover, the generalized Lyapunov equation, which corresponds
to equation (iv) with B = AT , Mi = Ni and C1 = C2, arises in model order reduction of bilinear
and stochastic systems. See e.g. [12, 31, 11] and references therein. More precisely, if we
consider the bilinear system

ΣBil ∶ {
ẋ(t) = Ax(t) +∑

p
i=1Nix(t)ui(t) +Cinputu(t),

y(t) = CToutputx(t), x(0) = 0,
(v)

where A,Ni ∈ Rn×n, Cinput ∈ Rn×p, Coutput ∈ Rn×s, u(t) = [u1(t), . . . , up(t)] ∈ Rp and y(t) ∈
Rs, the solutions of the generalized Lyapunov equations

AP+PAT +
p

∑
i=1

NiPN
T
i +CinputC

T
input = 0, and ATQ+QA+

p

∑
i=1

NT
i QNi+CoutputC

T
output = 0,

are the generalized observability and reachability Gramian associated with (v) and they carry
important information about the H2-norm of ΣBil; see, e.g., [10].

It is not easy to explicitly write down the necessary and sufficient conditions for the
well-posedness of equation (iv) in terms of its coefficient matrices. However, as we recall
in Section 5.2, the assumption ρ(L−1Π) < 1, where ρ(⋅) denotes the (operator) spectral
radius, is a sufficient condition for the existence of a unique solution X. This hypothesis
means that L consists of the dominant part of the overall operator and many numerical
algorithms are designed in terms of the regular splitting L+Π. See, e.g., [31, 96, 11]. We also
rely on the assumption ρ(L−1Π) < 1 and, under some further hypotheses on the coefficient
matrices, we propose novel approximation spaces for the solution of (iv) by projection. To the
best of our knowledge, effective projection methods for generalized Sylvester and Lyapunov
equations were lacking in the literature as appropriate spaces have not been identified yet.
In Section 6.2 we try to fill this gap for a particular class of problems that commonly arise
in the aforementioned applications.

7



INTRODUCTION

8



Notation and initial definitions

We now introduce some notation and we recall the definition and some properties of common
linear algebra tools used throughout the thesis.

Unless differently stated, all the matrices invoked in this thesis are real and square.

ααα s × s matrices
(X)i,j (i, j)-th entry of the matrix X
(x)k k-th component of the vector x

XT transpose of X
X∗ conjugate transpose of X
βT bandwidth of the symmetric matrix T (T )i,j = 0 for ∣i − j∣ > βT
λmax(T ) the largest (in magnitude) eigenvalue of T
λmin(T ) the smallest (in magnitude) eigenvalue of T
Λ(T ) spectrum of T

⟨A,B⟩F matrix inner product ⟨A,B⟩F ∶= trace(BTA)
∥A∥F Frobenius norm ∥A∥2

F ∶= ⟨A,A⟩F
∥A∥2 induced Euclidean norm ∥A∥2 ∶= sup

∥x∥2=1
∥Ax∥2

κ(A) spectral condition number of T κ(A) ∶= ∥A∥2∥A−1∥2

∥A∥max max norm ∥A∥max ∶= maxi,j ∣(A)i,j ∣
∥ ⋅ ∥ any submultiplicative matrix norm
L generic linear and continuous operator

L ∶ Rn×n → Rn×n
∥L∥ operator norm induced by the matrix norm ∥ ⋅ ∥ ∥L∥ ∶= sup

∥A∥=1 ∥L(A)∥
In identity matrix of order n�

On zero matrix of order n�

ei i-th column of I
Ei ∈ Rsm×s i-th block of s columns of Ism
[A,B] matrix obtained by putting the matrix B

next to the matrix A��

vec(X) n2-vector obtained by stacking the columns of
X ∈ Rn×n one below the other

Re(α), Im(α) the real and imaginary part of α ∈ C
C−, C+ left and right open half complex plane
Range(S) vector space generated by the columns of the matrix S
span(S) vector space generated by the elements in the set S
O(⋅) big-O notation

Table 1: Table of symbols and notation.

�The subscript is omitted whenever the dimension is clear from the context.
��Both having conforming dimensions.
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NOTATION AND INITIAL DEFINITIONS

Definition I ([59]). For given matrices A ∈ RnA×mA and B ∈ RnB×mB the Kronecker product
is defined as

A⊗B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(A)1,1B (A)1,2B ⋯ (A)1,mAB
(A)2,1B (A)2,2B ⋯ (A)2,mAB

⋮ ⋮

(A)nA,1B (A)nA,2B ⋯ (A)nA,mAB

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ RnAnB×mAmB .

Lemma II ([59]). The Kronecker product defined in Definition I has the following properties:

(1) vec(AXB) = (BT ⊗A)vec(X);

(2) If A ∈ RnA×nA , B ∈ RnB×nB and Λ(A) = {λi}
nA
i=1, Λ(B) = {ψj}

nB
j=1, then

Λ(A⊗B) = {λiψj ∣ i = 1, . . . , nA, j = 1, . . . , nB},

and
Λ(InA ⊗B +A⊗ InB) = {λi + ψj ∣ i = 1, . . . , nA, j = 1, . . . , nB}.

Any matrix equations can be recast in terms of a large linear system by exploiting the
properties of the Kronecker product. Indeed, by using (1) in Lemma II, we can rewrite
equation (i) as

(BT ⊗ InA + InB ⊗A)vec(X) = −vec(C).

This will be used in the following Section to determine the necessary and sufficient conditions
for the well-posedness of the Sylvester and Lyapunov equations.

Definition III ([59]). For a given matrix A ∈ Rn×n, its field of values is defined as the
following set of complex numbers

W (A) ∶= {z ∈ C ∣ z = x∗Ax, x ∈ Cn, x∗x = 1}. (vi)

Lemma IV ([59]). Some of the relevant properties of the field of values are the following.

(1) For any A ∈ Rn×n, W (A) is a convex and compact set of C.

(2) For any A ∈ Rn×n and α ∈ C,

W (A + αI) =W (A) + α, and W (αA) = αW (A).

(3) For any A ∈ Rn×n,
Λ(A) ⊂W (A).

(4) For any A,B ∈ Rn×n,
W (A +B) ⊂W (A) +W (B).

(5) For any A,Q ∈ Rn×n, Q unitary, that is QQ∗ = I,

W (Q∗AQ) =W (A).

Definition V. We say that a matrix A ∈ Rn×n is positive definite, A > 0, if

Re(x∗Ax) > 0, for all x ∈ Cn, x∗x = 1,

and positive semidefinite, A ≥ 0, if

Re(x∗Ax) ≥ 0, for all x ∈ Cn, x∗x = 1.

The matrix A is negative (semi)definite, A < 0 (A ≤ 0), if −A is positive (semi)definite.

Notice that A is positive (negative) definite if W (A) is strictly contained in C+ (C−).

10



Chapter 1

Preliminaries

1.1 Existence and uniqueness of the solution

The well-posedness of the continuous-time Sylvester equation

AX +XB +C = 0, A ∈ RnA×nA ,B ∈ RnB×nB ,C ∈ RnA×nB , (1.1.1)

can be guaranteed in different ways. In the early 50’s Roth showed in [92] that equa-
tion (1.1.1) admits a solution if and only if the matrices

[
A C
0 −B

] and [
A 0
0 −B

] ,

are similar and the similarity transformation is given by

[
I X
0 I

] ,

where X is the solution to (1.1.1).
Alternatively, as already stated, equation (1.1.1) can be recast in terms of an nAnB×nAnB

linear system
Avec(X) = −vec(C), A ∶= InB ⊗A +B ⊗ InA ,

which admits a unique solution for every vec(C) ≠ 0 if and only if the matrixA is nonsingular.
Thanks to the property (2) in Lemma II, if Λ(A) = {λi}

nA
i=1, Λ(B) = {ψj}

nB
j=1, the spectrum

of A can be written as Λ (A) = {λi + ψj ∣ i = 1, . . . , nA, j = 1, . . . , nB}, so that the condition
Λ(A) ∩ Λ(−B) = ∅ guarantees the nonsingularity of A. In the following we always assume
that the latter condition is satisfied and therefore equation (1.1.1) has a unique solution X.

A similar reasoning leads to the condition λi + λj ≠ 0 for all i, j = 1, . . . , nA for the
well-posedness of the continuous-time Lyapunov equation in (ii).

AX +XAT +C = 0, C = CT (1.1.2)

Notice that the symmetry of C implies that X is symmetric. As already mentioned, in control
theory the matrix A is usually supposed to be stable, that is all its eigenvalues have negative
real part, see, e.g., [1], and this is a sufficient condition for the existence and uniqueness of
X.

11



1. Preliminaries

Numerical schemes for large-scale problems may require additional assumptions on the
coefficients in order to be employed in the solution process. For instance, projection methods
need W (A)∩W (−B) = ∅, and W (A) ⊂ C− in the case of the Lyapunov equation. See Sections
2.1–2.1.1.

1.2 Solution in closed-form

The solution X to (1.1.1) admits different closed-form representations. Here we report some
of the main ones. See, e.g., [99] and [72] for early contributions.

(i) Integral of resolvents.

X =
1

4π2 ∫Γ1
∫

Γ2

(λInA −A)
−1
C (µInB −B)

−1

λ + µ
dµdλ,

where Γ1, Γ2 are two closed curves containing the spectrum of A and B respectively.

(ii) Integral of exponentials.

X = ∫

+∞

0
eAtCeBtdt, (1.2.3)

where eD denotes the matrix exponential of D ∈ Rn×n. Here Λ(A), Λ(B) are supposed
to be separated by a vertical line.

(iii) Finite power sum. Let C = CAC
T
B and am of degree m be the minimal polynomial

of A with respect to CA, that is the smallest degree monic polynomial such that
am(A)CA = 0. Similarly, let bk of degree k be the minimal polynomial of B with
respect to CB . Then

X = −
m−1

∑
i=0

k−1

∑
j=0

γi,jA
iCBj = −[CA,ACA, . . . ,Am−1CA](γ ⊗ I)[CB ,BTCB , . . . , (Bk−1)TCB]T ,

where γ ∈ Cm×k is the solution of the Sylvester equation defined by the compan-
ion matrices of am and bk and right-hand side [1,0, . . . ,0]T [1,0, . . . ,0] of conforming
dimension.

(iv) Similarity transformations. Let A and B be diagonalizable, namely there exist non-
singular matrices U and V such that U−1AU = Λ, Λ = diag(λ1, . . . , λnA) ∈ CnA×nA , and
V −1BV = Ψ, Ψ = diag(ψ1, . . . , ψnB) ∈ CnB×nB . If C̃ ∶= U−1CV , then

X = UX̃V −1, where (X̃)i,j = −
(C̃)i,j

λi + ψj
.

These closed-forms have inspired several procedures for the numerical solution of equation
(1.1.1). For instance, the representation by integral of exponentials (ii) has been used to
design the algorithm presented in Section 3.2, and the closed-form (iv) can be employed in
the solution of small-scale equations as illustrated in Section 2.2.1.

All the previous representations can be rewritten with straightforward modifications in
case of equation (1.1.2).

12



1. Preliminaries

1.3 Numerical solution of the small-scale problem

Although this thesis deals with numerical methods for large-scale matrix equations, we now
recall the Bartels-Stewart algorithm [5], one of the most commonly used methods for prob-
lems of moderate dimensions, namely equation (1.1.1) with nA, nB ≤ O(103). Indeed, the
solution of small-scale equations can be encountered as intermediate step in iterative methods
for large-scale problems. See Sections 2.1–2.1.1.

The algorithm consists of three phases. First since A and B are supposed to be real, the
real Schur decompositions A = QARAQ

T
A and BT = QBRBQ

T
B are computed. Conversely to

its complex counterpart, the real Schur decomposition allows us to avoid complex arithmetic
but the computed matrices RA and RB can be quasi-triangular, that is they have 2×2 blocks
on the diagonal in case of complex eigenvalues.

Pre and post-multiplying by QTA and QB respectively, equation (1.1.1) is transformed into
an equivalent one but with (quasi-)triangular coefficient matrices RA and RTB . Thanks to the
structure of its coefficients, the new equation can be solved entry-wised by substitution. The
procedure is easy to handle in case of triangular RA and RB whereas the diagonal 2×2 blocks
can be dealt with by solving the correspondly 2×2 Sylvester equation if quasi-triangular RA
and RB are computed. See [5] for more details.

At the end, a backward transformation is performed to obtain the solution X to the
original problem (1.1.1). The overall procedure is summarized in Algorithm 1.1.

Algorithm 1.1: Bartels-Stewart algorithm for the Sylvester matrix equation [5].

input : A ∈ RnA×nA , B ∈ RnB×nB , C ∈ RnA×nB
output: X ∈ RnA×nB

1 Compute the real Schur decompositions A = QARAQ
T
A, BT = QBRBQ

T
B with RA,

RB quasi-upper triangular
2 Solve RAX̃ + X̃RTB +QTACQB = 0

3 Compute X = QAX̃Q
T
B

Line 1 is the most expensive step of Algorithm 1.1. Indeed, explicitly computing the
Schur decomposition form costs 10n3 flops for a matrix of size n. Moreover, also in case of
sparse A and B, the matrices QA and QB are dense and they have to be stored due to the
final transformation in line 3. These are the reasons why the application of Algorithm 1.1 is
limited to small-scale problems.

To limit computational costs, several variants of the Bartels-Stewart algorithm have been
developed. For instance, if A and B have very different dimensions*, say nA ≪ nB , in the
algorithm proposed by Golub, Nash and Van Loan [44] the Schur form of BT is replaced by
the Hessenberg decomposition. The computational cost of the latter factorization is 5/3n3

B

flops that has to be compared with the 10n3
B flops required by the Schur decomposition.

Algorithm 1.1 can be employed also in case of the Lyapunov equation (1.1.2) and only
one Schur decomposition has to be computed in line 1. However, a specifically designed
algorithm was proposed in case of A stable and a positive semidefinite C. In this case X
is symmetric and positive semidefinite [101] and it thus admits a Cholesky factorization
X = LLT . In [55], Hammarling showed how to determine the Cholesky factor L without
computing X first. This method turns out to be more robust and accurate than the Bartels-
Stewart counterpart especially in case of an ill-conditioned X.

*Although both moderate.
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Chapter 2

Sylvester and Lyapunov
equations with low-rank
right-hand side

In this Chapter we address the numerical solution of large-scale Sylvester equations (1.1.1)
with a particular structure in the right-hand side. Indeed, we suppose C to be low-rank,
namely C = C1C

T
2 where C1 ∈ RnA×s, C2 ∈ RnB×s, s≪ nA, nB . Equation (1.1.1) can thus be

written as

AX +XB +C1C
T
2 = 0. (2.0.1)

Since the right-hand side is low-rank and under certain hypotheses on the spectral distribu-
tion of A and B, it can be shown that the singular values of X have a fast decay, see, e.g.,
[86, 95], thus justifying the search for a low-rank approximation X̃ = Z1Z

T
2 to X so that

only these two tall matrices are actually computed and stored avoiding the allocation for the
dense matrix X that can be unfeasible for large-scale problems.

One of the most commonly used low-rank approximability result for Sylvester equations
has been presented in [46]. If M ∈ Cn×n is such that Λ(M) ⊂ C−, then its inverse can be
expressed as M−1 = ∫

∞
0 etMdt and, for some fixed k, the integral can be approximated by

the quadrature formula

M−1
= ∫

∞

0
etMdt ≈

k

∑
j=−k

wje
tjM , (2.0.2)

where the weights wj and nodes tj are given in [46, Lemma 5] and derived from [103]. In
particular, an explicit formula for the approximation error is given by

XXXXXXXXXXX
∫

∞

0
etMdt −

k

∑
j=−k

wje
tjM

XXXXXXXXXXX

≤Ke−π
√
k, (2.0.3)

where K is a constant that only depends on the spectrum of M .

In case of the Sylvester equation (2.0.1), the solution X can be explicitly expressed as
vec(X) = (InB ⊗A+B⊗InA)

−1 vec(−C1C
T
2 ) and (InB ⊗A+B⊗InA)

−1 can be approximated
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2. Sylvester and Lyapunov equations with low-rank right-hand side

by (2.0.2) if Λ(A) ∪Λ(B) ⊂ C− so that

vec(X) ≈
k

∑
j=−k

wje
tj(InB⊗A+B⊗InA) vec(−C1C

T
2 ) =

k

∑
j=−k

wje
tjInB⊗AetjB⊗InA vec(−C1C

T
2 )

=
k

∑
j=−k

wj (InB ⊗ e
tjA) (etjB ⊗ InA)vec(−C1C

T
2 ) =

k

∑
j=−k

wj [e
tjB ⊗ etjA]vec(−C1C

T
2 ).

By using the property (i) in Lemma II, we can write

X ≈ −
k

∑
j=−k

wje
tjAC1C

T
2 e

tjB
T

=∶X, (2.0.4)

where X is such that rank(X̄) ≤ (2k + 1)s and ∥X −X∥ ≤ ∥C1∥∥C2∥Ke
−π
√
k, K is a constant

that only depends on the spectrum of I ⊗A +B ⊗ I.
The computation of X by (2.0.4) might be not numerically adequate and it is not used

in practice. However, this result legitimizes the employment of low-rank methods in the
solution of (2.0.1).

Projection methods have been shown to be among the most competitive low-rank methods
and in the following Section we recall their general framework for solving (2.0.1). Moreover,
in Section 2.2 we propose some computational enhancements of the classical algorithm lead-
ing to a reduction in both the computational efforts and the memory requirements of the
procedure in case of equations with symmetric coefficient matrices.

To simplify the presentation, from now on we will focus on the case of the Lyapunov
matrix equation, that is B = AT (n ≡ nA = nB), A stable and C1 = C2. The solution X will
be thus square, symmetric and positive semidefinite [101]. In later Sections we will describe
how to naturally treat the general case with A and B distinct and not necessarily with the
same dimensions, and different C1,C2.

2.1 Projection methods

For the Lyapunov equation

AX +XAT +C1C
T
1 = 0, A ∈ Rn×n, C1 ∈ Rn×s, s≪ n, (2.1.5)

projection methods compute the numerical solution X̃ in a sequence of nested vector sub-
spaces, Km ⊆ Km+1 ⊆ Rn, m ≥ 1. The approximation, usually denoted by Xm, is written as
the product of matrices

Xm = VmYmV
T
m , (2.1.6)

where Km = Range(Vm), Vm = [V1, . . . ,Vm] ∈ Rn×sm, sm ≪ n, with Ym symmetric and
positive semidefinite. For the sake of simplicity, we assume the matrix Vm to be full rank*

and to have orthonormal columns so that dim(Km) = sm.

Before presenting the general framework of projection methods, we would like to stress
how the quality and effectiveness of the approximation process deeply rely on how much

*This is not easy to guarantee in practice, especially for large values of s. See, e.g., [49, Section 8] for
some deflation strategies to overcome the possible linear dependence of the computed basis vectors.
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2. Sylvester and Lyapunov equations with low-rank right-hand side

spectral information is captured by Km, without the space dimension being too large. The
block Krylov subspace

Km = K◻
m(A,C1) ∶= Range{[C1,AC1, . . . ,A

m−1C1]} = {
m−1

∑
i=0

AiC1ςςςi, ςςςi ∈ Rs×s} , (2.1.7)

[93] was the first candidate proposed for solving large-scale Lyapunov matrix equations in
[94]. Numerical experiments show that K◻

m(A,C1) may need to be quite large before a
satisfactory approximate solution is obtained [85, 97]. This large number of iterations causes
high computational and memory demands. A similar behavior can be observed when the
global Krylov subspace

Km(A,C1) = span{C1,AC1, . . . ,A
m−1C1} = {

m−1

∑
i=0

AiC1γi, γi ∈ R} ,

is employed in the solution process [65] since Km(A,C1) can be viewed as a subspace of
K◻
m(A,C1). Indeed, Km(A,C1) can be obtained from (2.1.7) choosing ςςςi = γiIs.

In the last decade, more sophisticated spaces leading to nonpolynomial approximations
to X have been investigated. In particular, recent alternatives include projection onto the
extended Krylov subspace [97]

EK◻
m(A,C1) ∶= Range{[C1,A

−1C1, . . . ,A
m−1C1,A

−mC1]}, (2.1.8)

and the more general rational Krylov subspace

K◻
m(A,C1, s) ∶= Range{[C1, (A − s2I)

−1C1, . . . ,
m

∏
j=2

(A − sjI)
−1C1]}, (2.1.9)

where s = [s2, . . . , sm] are given shifts [35, 36]. Extended and rational Krylov subspaces
contain richer spectral information that allows for a significantly lower subspace dimension
at the cost of more expensive computations per iteration since s system solves with the
coefficients matrix are required at each iteration.

Once Km is chosen, the orthogonalization procedure employed in building the basis Vm
determines the sparsity pattern of the matrix Tm ∶= V TmAVm, that is the projection of A onto
Km. In particular, if Km is the (standard) block Krylov subspace K◻

m(A,C1), the block
Arnoldi process [93, Section 6.12] produces a block upper Hessenberg matrix Tm with blocks
of size s,

Tm =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

τττ11 τττ12 ⋯ ⋯ τττ1m

τττ21 τττ22 τττ23 ⋯ τττ2m

⋱ ⋱ ⋱ ⋮

⋱ ⋱ τττm−1,m

τττm,m−1 τττm,m

⎞
⎟
⎟
⎟
⎟
⎟
⎠

∈ Rsm×sm.

In Algorithm 2.1 we summarize the (m+1)-th step of the block Arnoldi procedure where
the new basis block Vm+1 ∈ Rn×s and the s × s blocks τττ i,m, i = 1, . . . ,m + 1 are computed.
The orthogonalization is performed by the modified block Gram-Schmidt procedure (MGS),
see, e.g., [93]; to ensure local orthogonality in finite precision arithmetic, MGS is executed
twice. Notice that the new basis block Vm+1 consists of s columns, that is s new basis vectors
are added to the current space. Therefore dim(K◻

m+1(A,C1)) = dim(Range([Vm,Vm+1])) =

(m + 1)s.
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2. Sylvester and Lyapunov equations with low-rank right-hand side

By construction, the basis blocks Vi’s are orthogonal blocks, that are also orthogonal to
each other, and the following (block) Arnoldi relation holds

AVm = VmTm + Vm+1τττm+1,mE
T
m. (2.1.10)

See, e.g., [93, Section 6.12].

We now turn our attention to the numerical procedure for computing the approximation
(2.1.6). Once a suitable subspaceKm is chosen, the matrix Ym can be determined by imposing
additional conditions. One such possibility is the orthogonality (Galerkin) condition on the
residual Rm = AXm + XmA + C1C

T
1 . Other different conditions to determine Ym can be

considered. For instance, the minimization of the residual norm or the orthogonality of the
residual with respect to some other space have been explored in the literature. See, e.g.,
[60, 74, 63].

To implement the Galerkin condition, let us write Rm in vector form, that is

vec(Rm) = (A⊗ I + I ⊗A)vec(Xm) + vec(C1C
T
1 ).

We impose vec(Rm) to be orthogonal to the space spanned by Vm ⊗ Vm, that is

(Vm ⊗ Vm)
T

vec(Rm) = 0 ⇔ V TmRmVm = 0. (2.1.11)

The same result can be obtained by imposing Rm ⊥ Km with respect to the matrix inner
product ⟨⋅, ⋅⟩F . See, e.g., [94].

Substituting Rm into (2.1.11), we have V TmAXmVm + V TmXmAVm + V TmC1C
T
1 Vm = 0, and

with Xm as in (2.1.6), we obtain

(V TmAVm)YmV
T
mVm + V TmVmYm (V TmAVm) + V TmC1C

T
1 Vm = 0. (2.1.12)

We assume Range(V1) = Range(C1), that is C1 = V1γγγ for some nonsingular γγγ ∈ Rs×s. Since
Vm has orthonormal columns, V TmC1 = E1γγγ where E1 ∈ Rsm×s is the first block of s columns
of Ism. Equation (2.1.12) can thus be written as

TmYm + YmTm +E1γγγγγγ
TET1 = 0. (2.1.13)

The computation of Ym thus requires the solution of equation (2.1.13) whose well-
posedness is not guaranteed a-priori. To overcome this issue, the matrix A is usually assumed
to be negative definite so that Tm is stable. Indeed, for any eigenpair (λ,u) ∈ C×Csm, u∗u = 1,
of Tm we get

Re(λ) = Re (u∗Tmu) = Re (u∗V TmAVmu) = Re (z∗Az) < 0, z ∶= Vmu.

This further condition on A may be viewed as a shortcoming of projection methods since the
original problem (2.1.5) requires weaker conditions to be solvable. See Chapter 1. However,
both A negative definite and Tm stable are sufficient conditions for the existence of a unique
solution to (2.1.5) and (2.1.13) respectively, and projection methods can work in practice
without these hypotheses. See, e.g., [74].

As long as m is of moderate size, decomposition-based methods can be employed to solve
equation (2.1.13). See, e.g., Algorithm 1.1 and [5, 55, 44].

As shown in the next Proposition, coming from, e.g., [62], the last s columns (or rows)
of the solution matrix Ym are employed to compute the residual norm.
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2. Sylvester and Lyapunov equations with low-rank right-hand side

Algorithm 2.1: One step of block Arnoldi method with block MGS.

input : A ∈ Rn×n, Vm = [V1, . . . ,Vm] ∈ Rn×ms
output: Vm+1 ∈ Rn×s, τττ i,m, i = 1, . . . ,m + 1

1 Set τττ i,m = 0 for i = 1, . . . ,m

2 Set V̂ = AVm
for ` = 1,2 do

for i = 1, . . . ,m do

3 Compute ααα = VTi V̂

4 Set τττ i,m = τττ i,m +ααα

end

5 Compute V̂ = V̂ − ∑
m
i=1 Viτττ i,m

end

6 Perform economy-size QR of V̂, V̂ = Vm+1τττm+1,m

Proposition 2.1.1 ([62]). Let Rm be the residual matrix Rm = AXm +XmA+C1C
T
1 , then

∥Rm∥F =
√

2∥YmEmτττ
T
m+1,m∥F . (2.1.14)

Proof. We have

∥Rm∥
2
F = ∥AXm +XmA +C1C

T
1 ∥

2
F = ∥AVmYmV

T
m + VmYmV

T
mA +C1C

T
1 ∥

2
F .

By applying the Arnoldi relation (2.1.10), it holds

∥Rm∥2
F = ∥VmTmYmV Tm + Vm+1τττm+1,mE

T
mYmV

T
m + VmYmTTmV Tm + VmYmEmτττTm+1,mVTm+1 +C1C

T
1 ∥2

F

= ∥Vm (TmYm + YmTTm + V TmC1C
T
1 Vm)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

V Tm + Vm+1τττm+1,mE
T
mYmV

T
m + VmYmEmτττTm+1,mVTm+1∥2

F .

Since ⟨Vm+1τττm+1,mE
T
mYmV

T
m , VmYmEmτττ

T
m+1,mV

T
m+1⟩F = 0, we can write

∥Rm∥
2
F = ∥Vm+1τττm+1,mE

T
mYmV

T
m ∥

2
F + ∥VmYmEmτττ

T
m+1,mV

T
m+1∥

2
F

= ∥τττm+1,mE
T
mYm∥

2
F + ∥YmEmτττ

T
m+1,m∥

2
F = 2∥YmEmτττ

T
m+1,m∥

2
F ,

where in the last step the symmetry of Ym is exploited.

The matrix Ym is determined by solving (2.1.13), and it is again symmetric and pos-
itive semidefinite. At convergence, the transformation Xm = VmYmV

T
m is never explicitly

computed or stored. Instead, we factorize Ym as

Ym = Ŷ Ŷ T , Ŷ ∈ Rsm×sm, (2.1.15)

from which a low-rank factor of Xm is obtained as Zm = VmŶ ∈ Rn×sm, Xm = ZmZ
T
m. The

matrix Ym may be numerically rank deficient, and this can be exploited to further decrease
the rank of Zm. We write the eigendecomposition of Ym, Ym = WΣWT (with eigenvalues
ordered non-increasingly) and discard the negligible eigenvalues, that is Σ = diag(Σ1,Σ2),
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2. Sylvester and Lyapunov equations with low-rank right-hand side

W = [W1,W2] with ∥Σ2∥F ≤ ε. Therefore, we define again Ym ≈ Ŷ Ŷ T , with Ŷ = W1Σ
1/2
1 ∈

Rsm×t, t ≤ sm; in this way, ∥Ym − Ŷ Ŷ T ∥F ≤ ε. Hence, we set Zm = VmŶ ∈ Rn×t. We notice
that a significant rank reduction in Ym is an indication that all relevant information for
generating Xm is actually contained in a subspace that is much smaller than Km. In other
words, if t≪ sm, the generated subspace is not efficient in capturing the solution information
and a different and much smaller space could have been generated to obtain an approximate
solution of comparable accuracy. The overall procedure is summarized in Algorithm 2.2.

Algorithm 2.2: Galerkin projection method for the Lyapunov matrix equation.

input : A ∈ Rn×n, A negative definite, C1 ∈ Rn×s, ε > 0
output: Zm ∈ Rn×t, t ≤ sm

1 Set β = ∥C1∥F
2 Perform economy-size QR of C1, C1 = V1γγγ. Set V1 ≡ V1

for m = 2,3, . . . , till convergence, do
3 Compute next basis block Vm and set Vm = [Vm−1,Vm]

4 Update Tm = V TmAVm
5 Solve TmYm + YmTm +E1γγγγγγ

TET1 = 0, E1 ∈ Rms×s

6 Compute ∥Rm∥F =
√

2∥YmEmτττ
T
m+1,m∥F

7 if ∥Rm∥F /β2 < ε then
8 Stop

end

end

9 Compute the eigendecomposition of Ym and retain Ŷ ∈ Rsm×t, t ≤ sm

10 Set Zm = VmŶ

2.1.1 The case of the Sylvester equation

The strategy presented for the Lyapunov equation (2.1.5) can be extended to the Sylvester
equation (2.0.1). In this case, projection methods seek an approximate solution Xm ∈ RnA×nB
to (2.0.1) of the form Xm = VmYmU

T
m where the orthonormal columns of Vm and Um span

suitable subspaces Km and Cm, respectively�. The construction of two approximation spaces
is thus requested and, for the sake of simplicity, we limit our discussion to the standard
Krylov method, that is Km = K◻

m(A,C1) and Cm = K◻
m(BT ,C2). As in the Lyapunov case,

Ym is computed by imposing a Galerkin condition on the residual matrix Rm ∶= AXm +

XmB +C1C
T
2 , that is

V TmRmUm = 0. (2.1.16)

We assume C1 = V1γγγ1, C2 = U1γγγ2 for some nonsingular γγγ1,γγγ2 ∈ Rs×s, and a similar discussion
to the one presented in the previous Section shows that condition (2.1.16) is equivalent to
solving the reduced Sylvester problem

TmYm + YmJ
T
m +E1γγγ1γγγ

T
2 E

T
1 = 0, (2.1.17)

where Tm ∶= V TmAVm, Jm ∶= UTmB
TUm = (ιιιij) are both block upper Hessenberg sm × sm

matrices computed via the block Arnoldi procedure. A sufficient condition for the existence

�Although the space dimensions of Km and Cm are not necessarily equal, we limit our discussion to the
same dimension for simplicity of exposition.
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2. Sylvester and Lyapunov equations with low-rank right-hand side

of a unique solution to (2.1.17) in terms of the coefficient matrices A, B is given by the
assumption of disjointW (A) andW (−B). Indeed, equation (2.1.17) admits a unique solution
if and only if λi − υj ≠ 0 for every λi ∈ Λ(Tm) and υj ∈ Λ(JTm). If (λi, ui) ∈ C × Cm,
(υj , hj) ∈ C ×Cm, u∗i ui = h

∗
jhj = 1 are eigenpairs of Tm and JTm respectively, we have

Re(λi) −Re(υj) = Re(u∗i Tmui) −Re(h∗jJ
T
mhj) = Re(u∗i V

T
mAVmui) −Re(h∗jU

T
mBUmhj)

= Re(z∗Az) −Re(y∗By), z ∶= Vmui ∈ CnA , y ∶= Umhj ∈ CnB , z∗z = y∗y = 1,

and this is nonzero as w∗Aw− q∗Bq ≠ 0 for every w ∈ CnA , q ∈ CnB , w∗w = q∗q = 1, assuming
W (A) ∩W (−B) = ∅.

The last s rows and columns of Ym are employed in the residual norm calculation. Indeed,
letting Tm = V Tm+1AVm and Jm = UTm+1B

TUm, an argument similar to the one used for
proving Proposition 2.1.1 shows that

∥Rm∥
2
F = ∥τττm+1,mE

T
mYm∥

2
F + ∥YmEmιιι

T
m+1,m∥

2
F , (2.1.18)

where τττm+1,m = ETm+1TmEm ∈ Rs×s and ιιιm+1,m = ETm+1JmEm ∈ Rs×s. See also, e.g., [99, 26].

At convergence, we factorize the matrix Ym = Ŷ1Ŷ
T
2 . Also in the Sylvester problem

Ym may be numerically singular. In this case, the factors Ŷ1, Ŷ2 ∈ Rsm×t, t ≤ sm, such
that ∥Ym − Ŷ1Ŷ

T
2 ∥F ≤ ε can be computed via the truncated singular value decomposition of

the nonsymmetric matrix Ym. The low-rank factors Z1, Z2 of Xm, Xm ≈ Z1Z
T
2 , are then

computed as Z1 = VmŶ1 and Z2 = UmŶ2. Algorithm 2.3 outlines the complete procedure.

Algorithm 2.3: Galerkin projection method for the Sylvester matrix equation.

input : A,B ∈ Rn×n, C1,C2 ∈ Rn×s, ε > 0
output: Z1, Z2 ∈ Rn×t, t ≤ sm

1 Set β1 = ∥C1∥F , β2 = ∥C2∥F
2 Perform economy-size QR of C1, C1 = V1γγγ1, and C2, C2 = U1γγγ2. Set V1 ≡ V1, U1 ≡ U1

for m = 2,3, . . . , till convergence, do
3 Compute next basis blocks Vm, Um and set Vm = [Vm−1,Vm], Um = [Um−1,Um]

4 Update Tm = V TmAVm, Jm = UTmBUm
5 Solve TmYm + YmJ

T
m +E1γγγ1γγγ

T
2 E

T
1 = 0, E1 ∈ Rms×s

6 Compute ∥Rm∥2
F = ∥τττm+1,mE

T
mYm∥2

F + ∥YmEmιιι
T
m+1,m∥2

F

7 if ∥Rm∥F /(β1β2) < ε then
8 Stop

end

end

9 Compute the singular value decomposition of Ym and retain Ŷ1, Ŷ2 ∈ Rsm×t, t ≤ sm

10 Set Z1 = VmŶ1, Z2 = UmŶ2

2.2 Enhanced projection methods for equations with
symmetric coefficients

In the following Sections we propose some computational enhancements of Algorithm 2.2
and 2.3 in case of equations with symmetric coefficient matrices.
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2. Sylvester and Lyapunov equations with low-rank right-hand side

We first focus on the Lyapunov equation and, as the approximation space Km expands,
the principal costs of Algorithm 2.2 are steps 3 and 5. For A symmetric and Km = K◻

m(A,C1),
the computational cost of the basis construction in line 3 can be reduced. The matrix
Tm = V TmAVm stemming from the block Arnoldi procedure must be block upper Hessenberg
and symmetric, so that it is block tridiagonal

Tm =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

τττ11 τττ12

τττ21 τττ22 τττ23

⋱ ⋱ ⋱

⋱ ⋱ τττm−1,m

τττm,m−1 τττm,m

⎞
⎟
⎟
⎟
⎟
⎟
⎠

∈ Rsm×sm,

with blocks of size s.
Since τττ i,m = 0, i = 1, . . . ,m − 2, from the Arnoldi relation (2.1.10) we have

AVm = Vmτττm,m + Vm−1τττm−1,m + Vm+1τττm+1,m,

and therefore, at least in exact arithmetic, it holds

Vm+1τττm+1,m = AVm − Vmτττm,m − Vm−1τττm−1,m. (2.2.19)

The procedure that takes advantage of (2.2.19) is called block Lanczos method and it can
be employed in line 3 of Algorithm 2.2. Algorithm 2.4 describes this process at iteration
m+ 1, with W = AVm if the block Krylov space K◻

m(A,C1) is chosen (beside each command
is the leading computational cost of the operation). We recall once again that we assume
throughout the full rank of the generated basis. Deflation could be implemented as it is
customary in block methods whenever rank deficiency is detected.

Algorithm 2.4: One step of block Lanczos with block MGS.

input : m, W , Vm−1,Vm ∈ Rn×s
output: Vm+1 ∈ Rn×s, τττm−1,m, τττm,m, τττm+1,m ∈ Rs×s

1 Set τττm−1,m = τττm,m = 0
for l = 1,2 do

for i =m − 1,m do
2 Compute ααα = VTi W ← (2n − 1)s2 flops
3 Set τττ i,m = τττ i,m +ααα ← s2 flops
4 Compute W =W − Viααα ← 2s2n flops

end

end
5 Perform economy-size QR of W , W = Vm+1τττm+1,m ← 3ns2 flops

We emphasize that only the last 3s terms of the basis must be stored, and the compu-
tational cost of Algorithm 2.4 is fixed with respect to m. In particular, at each iteration m,
Algorithm 2.4 costs O((19n + s)s2) flops.

To check convergence, projection methods require to compute the matrix Ym by solv-
ing the reduced problem (2.1.13) whose complexity depends on the approximation space
dimension. The solution of the reduced problem is meant to account for a low percentage
of the overall computational cost. Unfortunately, this cost grows nonlinearly with the space
dimension, therefore solving the reduced problem may become very expensive if a large ap-
proximation space is needed. In particular, the computation of the whole matrix Ym requires
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2. Sylvester and Lyapunov equations with low-rank right-hand side

full matrix-matrix operations and a Schur decomposition of the coefficient matrix Tm, whose
costs are O((sm)3) flops. See Section 1.3. Clearly, step 5 becomes comparable with step 3
in cost for sm≫ 1, for instance if convergence is slow, so that m≫ 1.

In case of Lyapunov equations with symmetric coefficient matrix A, we devise a strategy
that significantly reduces the computational cost of evaluating the residual norm for both
K◻
m(A,C1) and the extended Krylov subspace EK◻

m(A,C1).
Moreover, Step 10 of Algorithm 2.2 shows that at convergence, the whole basis must be

saved to return the factor Zm. This represents a major shortcoming when convergence is
slow, since Vm may require large memory allocations. In case of K◻

m(A,C1), a “two-pass”
strategy is implemented to avoid storing the whole basis Vm; see [69] for earlier use of this
device in the same setting, and, e.g., [42] in the matrix function context.

The procedures are then generalized to address equation (2.0.1) with symmetric A, B.
The results of the following Sections are taken from [83].

2.2.1 Computing the residual norm without the whole Ym for K◻
m(A,C1)

The solution of the projected problem (2.1.13) requires the Schur decomposition of Tm.
For real symmetric matrices, the Schur decomposition amounts to the eigendecomposition
Tm = QmΛmQ

T
m, Λm = diag(λ1, . . . , λsm), and the symmetric block tridiagonal structure of

Tm can be exploited so as to use only O((sm)2) flops; see Section 2.2.2 for further details.
Equation (2.1.13) can thus be written as

ΛmỸ + Ỹ Λm +QTmE1γγγγγγ
TET1 Qm = 0, where Ỹ ∶= QTmYmQm. (2.2.20)

Since Λm is diagonal, the entries of Ỹ can be computed by substitution [99, Section 4], so
that

Ym = QmỸ Q
T
m = −Qm (

eTi Q
T
mE1γγγγγγ

TET1 Qmej

λi + λj
)
ij

QTm. (2.2.21)

It turns out that only the quantities within parentheses in (2.2.21) are needed for the residual
norm computation, thus avoiding the O((sm)3) cost of recovering Ym.

Proposition 2.2.1. Let Tm = QmΛmQ
T
m denote the eigendecomposition of Tm. Then

∥Rm∥
2
F = 2 (∥eT1 SmD

−1
1 Wm∥

2
2 + . . . + ∥eTsmSmD

−1
smWm∥

2
2) , (2.2.22)

where Sm = QTmE1γγγγγγ
TET1 Qm ∈ Rsm×sm, Wm = QTmEmτττ

T
m+1,m ∈ Rsm×s and Dj = λjIsm +Λm

for all j = 1, . . . , sm.

Proof. Exploiting (2.1.14) and the representation formula (2.2.21) we have

∥Rm∥2
F = 2∥YmEmτττ

T
m+1,m∥

2
F = 2

XXXXXXXXXXX

(
eTi Q

T
mE1γγγγγγ

TET1 Qmej

λi + λj
)
ij

QTmEmτττ
T
m+1,m

XXXXXXXXXXX

2

F

= 2
s

∑
k=1

XXXXXXXXXXX

(
eTi Smej

λi + λj
)
ij

Wmek

XXXXXXXXXXX

2

2

.

(2.2.23)
For all k = 1, . . . , s, we can write

XXXXXXXXXXX
(e

T
i Smej
λi + λj

)
ij

Wmek

XXXXXXXXXXX

2

2

=
⎛
⎝
sm

∑
j=1

eT1 Smej
λ1 + λj

eTj Wmek
⎞
⎠

2

+ . . . +
⎛
⎝
sm

∑
j=1

eTsmSmej
λsm + λj

eTj Wmek
⎞
⎠

2

= (eT1 SmD−1
1 Wmek)

2 + . . . + (eTsmSmD−1
smWmek)

2
.

(2.2.24)
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Plugging (2.2.24) into (2.2.23) we have

∥Rm∥2
F = 2

s

∑
k=1

sm

∑
i=1

(eTi SmD
−1
i Wmek)

2
= 2

sm

∑
i=1

s

∑
k=1

(eTi SmD
−1
i Wmek)

2

= 2
sm

∑
i=1

∥eTi SmD
−1
i Wm∥

2

2
.

Algorithm 2.5: cTri.

input : Tm ∈ R`m×`m, γγγ, τττm+1,m ∈ R`×` (` is the block size)
output: res (= ∥R∥F )

1 Tridiagonalize PTmTmPm = Fm
2 Compute Fm = GmΛmG

T
m

3 Compute ET1 Qm = (ET1 Pm)Gm, ETmQm = (ETmPm)Gm
4 Compute Sm = (QTmE1γγγ) (γγγ

TET1 Qm) ← (2` − 1)`2m + (2` − 1)`2m2 flops

5 Compute Wm = (QTmEm)τττTm+1,m ← (2` − 1)`2mflops

6 Set res = 0
for i = 1, . . . , `m do

7 Set Di = λiI`m +Λm

8 res = res + ∥(eTi Sm)D−1
i Wm∥

2

2
← 2`2m + `m + ` flops

end

9 Set res =
√

2
√
res

2.2.2 The algorithm for the residual norm computation

Algorithm 2.5 summarizes the procedure that takes advantage of Proposition 2.2.1. Comput-
ing the residual norm by (2.2.23) has a leading cost of 4s3m2 flops for standard Krylov (with
` = s). This should be compared with the original procedure in steps 5 and 6 of Algorithm 2.2,
whose cost is O(s3m3) flops, with a large constant. Proposition 2.2.1 also shows that only
the first and last ` components of the eigenvectors of Tm are necessary in the residual norm
evaluation and the computation of the complete eigendecomposition Tm = QmΛmQ

T
m may

be avoided. To this end, the matrix Tm can be tridiagonalized, PTmTmPm = Fm, explicitly
computing only the first and last ` rows of the transformation matrix Pm, namely ET1 Pm
and ETmPm. The eigendecomposition Fm = GmΛmG

T
m is computed exploiting the tridiagonal

structure of Fm. The first and last ` rows of the eigenvectors matrix Qm are then computed
by ET1 Qm = (ET1 Pm)Gm and ETmQm = (ETmPm)Gm, avoiding the expensive matrix-matrix
product Qm = PmGm.

Once the stopping criterion in step 7 of Algorithm 2.2 is satisfied, the factor Zm can
be finally computed. Once again, this can be performed without explicitly computing Ym,
which requires the expensive computation Ym = QmỸ Q

T
m. Indeed, the truncation strategy

discussed around (2.1.15) can be applied to Ỹ by computing the matrix Y

̂

∈ Rsm×t, t ≤ sm

so that Ỹ ≈ Y

̂

Y

̂
T

. This factorization further reduces the overall computational cost, since
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2. Sylvester and Lyapunov equations with low-rank right-hand side

only (2ms − 1)tms flops are required to compute QmY

̂

, with no loss of information at the
prescribed accuracy. The solution factor Zm is then computed as Zm = Vm (QmY

̂

).
To make fair comparisons with state-of-the-art algorithms that employ LAPACK and

SLICOT subroutines (see Section 2.2.6 for more details), we used a C-compiled mex-code
cTri to implement Algorithm 2.5, making use of LAPACK and BLAS subroutines. In partic-
ular, the eigendecomposition Tm = QmΛmQ

T
m is performed as follows. The block tridiagonal

matrix Tm is tridiagonalized, PTmTmPm = Fm, by the LAPACK subroutine dsbtrd that ex-
ploits its banded structure. The transformation matrix Pm is represented as a product of
elementary reflectors and only its first and last ` rows, ET1 Pm, ETmPm, are actually com-
puted. The LAPACK subroutine dstevr is employed to compute the eigendecomposition
of the tridiagonal matrix Fm. This routine applies Dhillon’s MRRR method [33] whose
main advantage is the computation of numerically orthogonal eigenvectors without an ex-
plicit orthogonalization procedure. This feature limits to O((`m)2) flops the computation
of Fm = GmΛmG

T
m ∈ R`m×`m; see [33, 34] for more details.

2.2.3 A “two-pass” strategy to avoid the storage of the whole basis

While the block Lanczos method requires the storage of only 3s basis vectors, the whole
Vm = [V1, . . . ,Vm] ∈ Rn×sm is needed to compute the low-rank factor Zm at convergence
(step 10 of Algorithm 2.2). Since

Zm = Vm(QmY

̂

) =
m

∑
i=1

ViE
T
i (QmY

̂

), (2.2.25)

we suggest not to store Vm during the iterative process but to perform, at convergence, a
second Lanczos pass computing and adding the rank-s term in (2.2.25) at the i-th step, in
an incremental fashion. We point out that the orthonormalization coefficients are already
available in the matrix Tm, therefore Vi is simply computed by repeating the three-term
recurrence (2.2.19), which costs O((4n + 1)s2) flops plus the multiplication by A, making
the second Lanczos pass cheaper than the first one.

It is well known that the short-term recurrence of the block Lanczos method may lead
to a loss of orthogonality of the columns of Vm which in turn affects the computation of the
matrix Tm. We assume this phenomenon to be very mild so that the calculation of Tm does
not dramatically suffer from the lack of an explicit reorthogonalization. If this is not the
case, a full orthogonalization procedure should be preferred and the two-pass strategy does
not provide any gain as the complete basis has to be stored.

2.2.4 Enhanced extended Krylov subspace method

Rational Krylov subspaces have shown to provide dramatic performance improvements over
classical polynomial Krylov subspaces, because they build spectral information earlier, thus
generating a much smaller space dimension to reach the desired accuracy. The price to pay is
that each iteration is more computationally involved, as it requires solves with the coefficient
matrices. The overall CPU time performance thus depends on the data sparsity of the given
problem; we refer the reader to [99] for a thorough discussion.

In this Section we show that the enhanced procedure for the residual norm computation
can be applied to a particular rational Krylov based strategy, the extended Krylov subspace
method, since also this algorithm relies on a block tridiagonal reduced matrix when data
are symmetric. Different strategies for building the basis Vm = [V1, . . . ,Vm] ∈ Rn×2sm of the
extended Krylov subspace EK◻

m(A,C1) can be found in the literature, see, e.g., [61, 80, 97].
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An intuitive key fact is that the subspace expands in the directions of A and A−1 at the same
time. In the block case, a natural implementation thus generates two new blocks of vectors
at the time, one in each of the two directions. Starting with [V1,A

−1V1], the next iterations

generate the blocks V
(1)
m ,V

(2)
m ∈ Rn×s by multiplication by A and solve with A, respectively,

and then setting Vm = [V
(1)
m ,V

(2)
m ] ∈ Rn×2s. As a consequence, the block Lanczos procedure

described in Algorithm 2.4 can be employed with W = [AV
(1)
m ,A−1V

(2)
m ] (with 2s columns).

The orthogonalization process determines the coefficients of the symmetric block tridiagonal
matrix Hm with blocks of size 2s,

Hm =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

ϑϑϑ11 ϑϑϑ12

ϑϑϑ21 ϑϑϑ22 ϑϑϑ23

⋱ ⋱ ⋱

⋱ ⋱ ϑϑϑm−1,m

ϑϑϑm,m−1 ϑϑϑm,m

⎞
⎟
⎟
⎟
⎟
⎟
⎠

∈ R2sm×2sm,

such that Vm+1ϑϑϑm+1,m = [AV
(1)
m ,A−1V

(2)
m ] −Vmϑϑϑm,m −Vm−1ϑϑϑm−1,m. The coefficients ϑϑϑ’s cor-

respond to the τττ ’s in Algorithm 2.4, however as opposed to the standard Lanczos procedure,
Hm ≠ Tm = V TmAVm. Nonetheless, a recurrence can be derived to compute the columns of Tm
from those of Hm during the iterations; see [97, Proposition 3.2]. The computed Tm is block
tridiagonal, with blocks of size 2s, and this structure allows us to use the same approach
followed for the block standard Krylov method as relation (2.1.14) still holds. Algorithm 2.5
can thus be adopted to compute the residual norm also in the extended Krylov approach
with ` = 2s. Moreover, it is shown in [97] that the off-diagonal blocks of Tm have a zero lower
s × 2s block, that is

τττ i,i−1 = [
τττ i,i−1

0
] , τττ i,i−1 ∈ Rs×2s, i = 1, . . . ,m.

This observation can be exploited in the computation of the residual norm. Indeed, the same
argument of Proposition 2.1.1 leads to

∥Rm∥F =
√

2∥YmEmτττ
T
m+1,m∥F ,

and τττm+1,m can be passed as an input argument to cTri instead of the whole τττm+1,m.
The extended Krylov subspace dimension grows faster than the standard one as it is aug-

mented by 2s vectors per iteration. In general, this does not create severe storage difficulties
as the extended Krylov approach exhibits faster convergence than standard Krylov in terms
of number of iterations. However, for hard problems the space may still become too large
to be stored, especially for large s. In this case, a two-pass-like strategy may be appealing.
To avoid the occurrence of sm new system solves with A, however, it may be wise to still

store the second blocks, V
(2)
i , i = 1, . . . ,m, and only save half memory allocations, those

corresponding to the matrices V
(1)
i , i = 1, . . . ,m.

Finally, we remark that if we were to use more general rational Krylov subspaces (2.1.9),
which use rational functions other than A and A−1 to generate the space [99], the projected
matrix Tm would lose the convenient block tridiagonal structure, so that the new strategy
would not be applicable.

2.2.5 Generalization to Sylvester equations

The strategy presented for Lyapunov equations with symmetric data can be extended to the
Sylvester equation (2.0.1) where the coefficient matrices A,B are both large symmetric and
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2. Sylvester and Lyapunov equations with low-rank right-hand side

negative definite. Similarly to the Lyapunov case, the projected problem (2.1.17) in line 5
of Algorithm 2.3 has to be solved. Computing the eigendecompositions Tm = QmΛmQ

T
m,

Λm = diag(λ1, . . . , λsm), and Jm = PmΥmP
T
m, Υm = diag(υ1, . . . , υsm), the solution Ym to

(2.1.17) can be written as

Ym = QmỸ P
T
m = −Qm (

eTi Q
T
mE1γγγ1γγγ

T
2 E

T
1 Pmej

υi + λj
)
ij

PTm, (2.2.26)

and its last s rows and columns are employed in the residual norm calculation (2.1.18).
The same arguments of Section 2.2.1 can be applied to the factors in (2.1.18) leading

to Algorithm 4 for the computation of the residual norm without explicitly assembling the
matrix Ym. The eigendecompositions in step 1 are not fully computed. In particular, only
the spectrum and the first and last ` components of the eigenvectors of Tm and Jm are
explicitly computed following the strategy presented in Section 2.2.2.

Algorithm 2.6: Computing the residual norm for A and B large.

input : Tm, Jm ∈ R`m×`m, γγγ1,γγγ2, τττm+1,m, ιιιm+1,m ∈ R`×`
output: res (= ∥R∥F )

1 Compute Tm = QmΛmQ
T
m and Jm = PmΥmP

T
m

2 Compute Sm ∶= (QTmE1γγγ1) (γγγ
T
2 E

T
1 Pm)

3 Compute Fm ∶= (QTmEm)τττTm+1,m, Gm ∶= (PTmEm) ιιιTm+1,m

4 Set res = 0
for i = 1, . . . , `m do

5 Set D′
i ∶= υiI`m +Λm and D′′

i ∶= λiI`m +Υm

6 res = res + ∥eTi SmD
′−1
i Gm∥

2

2
+ ∥eTi S

T
mD

′′−1
i Fm∥

2

2

end
7 Set res =

√
res

If equation (2.0.1) is solved by the standard Krylov method, the two-pass strategy pre-
sented in Section 2.2.3 can be easily adapted to the Sylvester case. Indeed, denoting the
basis matrices of K◻

m(A,C1) and K◻
m(B,C2) by Vm = [V1, . . . ,Vm] and Um = [U1, . . . ,Um]

respectively, the low-rank factors Z1 and Z2 in line 10 of Algorithm 2.3 can be written as

Z1 = Vm (QmŶ1) =
m

∑
i=1

ViE
T
i (QmŶ1) , Z2 = Um (PmŶ2) =

m

∑
i=1

UiE
T
i (PmŶ2) ,

where Ŷ1, Ŷ2 ∈ Rsm×t, t ≤ sm, are low-rank factors of Ỹ in (2.2.26) that is ∥Ỹ − Ŷ1Ŷ
T
2 ∥F ≤ ε

for a given ε.
As in the Lyapunov case, the factors Z1, Z2 can be computed in a second Lanczos

pass since the terms ViE
T
i (QmŶ1) and UiE

T
i (PmŶ2) do not require the whole basis to be

available. Therefore, for the Sylvester problem (2.0.1), the “two-pass” strategy allows us to
store only 6s basis vectors, 3s vectors for each of the two bases.

In some applications, such as the solution of eigenvalues problems [116] or boundary
value problems with separable coefficients [113], the matrices A and B in (2.0.1) could have
very different dimensions. In particular, one of them, for instance, B, could be of moderate
size, that is nB ≪ 1000. In this case, the projection method presented in Section 2.1.1
can be simplified. Indeed, a reduction of the matrix B becomes unnecessary, so that a
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numerical solution Xm to (2.0.1) of the form Xm = VmYm is sought, where the columns
of Vm span Km = K◻

m(A,C1), as before. The Galerkin condition on the residual matrix
Rm ∶= AXm +XmB +C1C

T
2 thus becomes

V TmRm = 0, (2.2.27)

see [99, Section 4.3] for more details. The procedure continues as in the previous cases,
taking into account that the original problem is only reduced “from the left”. Assuming
C1 = V1γγγ1, we obtain

0 = V TmAXm + V TmXmB + V TmC1C
T
2 = (V TmAVm)Ym + (V TmVm)YmB +E1γγγ1C

T
2 ,

that is

TmYm + YmB +E1γγγ1C
T
2 = 0. (2.2.28)

Computing the eigendecompositions Tm = QmΛmQ
T
m, Λm = diag(λ1, . . . , λsm) and B =

PΥPT , Υ = diag(υ1, . . . , υnB), the solution matrix Ym to (2.2.28) can be written as

Ym = QmỸ P
T
= −Qm (

QTmE1γγγ1C
T
2 P

λi + υj
)
ij

PT . (2.2.29)

As before, the block tridiagonal structure of Tm can be exploited in the eigendecomposition
computation Tm = QmΛmQ

T
m, while the eigendecomposition B = PΥPT is computed once

for all at the beginning of the whole process.

The expression of the residual norm simplifies as ∥Rm∥F = ∥Y TmE
T
mτττ

T
m+1,m∥F . To compute

this norm without assembling the whole matrix Ym, a slight modification of Algorithm 2.5
can be implemented. The resulting procedure is summarized in Algorithm 2.7 where only
selected entries of the eigenvector matrix Qm in step 1 are computed; see the corresponding
strategy in Section 2.2.2.

Algorithm 2.7: Computing the residual norm for A large and B small.

input : Tm ∈ R`m×`m, τττm+1,m ∈ R`×`, PTC2γγγ
T
1 ∈ Rn2×`, {υi}i=1,...,nB

output: res (= ∥R∥F )

1 Compute Tm = QmΛmQ
T
m

2 Compute Sm = (PTC2γγγ
T
1 ) (ET1 Qm)

3 Compute Wm = (QTmEm)τττTm+1,m

4 Set res = 0
for i = 1, . . . , n2 do

5 Set Di = υiI`m +Λm

6 res = res + ∥(eTi Sm)D−1
i Wm∥

2

2

end
7 Set res =

√
res

A reduced rank approximation to the solution Ym obtained by (2.2.29) is given as Ỹ ≈

Ŷ1Ŷ
T
2 , so that the low rank factors Z1, Z2 are computed as Z1 = Vm (QmŶ1) and Z2 = PŶ2.

Again, a two-pass strategy can be employed to avoid storing the whole matrix Vm.
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2.2.6 Numerical examples

In this Section some numerical examples illustrating the enhanced algorithms are reported.
All results were obtained with Matlab R2015a on a Dell machine with two 2GHz processors
and 128 GB of RAM.

We compare the standard implementation of projection methods – Algorithm 2.2 and 2.3
for Lyapunov and Sylvester equations respectively – and the proposed enhancements, where
lines 5 and 6 of Algorithm 2.2–2.3 are replaced by Algorithm 2.5, 2.6 or 2.7 depending on the
considered problem. For the standard implementation, different decomposition based solvers
for line 5 in Algorithm 2.2–2.3 are employed: The Bartels-Stewart algorithm (function lyap),
one of its variants (lyap2)�, and the Hammarling method (lyapchol). All these algorithms
make use of SLICOT or LAPACK subroutines.

Examples with a sample of small values of the rank s of C1C
T
2 are reported. In all our

experiments the convergence tolerance on the relative residual norm is tol = 10−6.

Example 2.2.1. In the first example, the block standard Krylov approach is tested for
solving the Lyapunov equation AX +XA + C1C

T
1 = 0. We consider A ∈ Rn×n, n = 21904

stemming from the discretization by centered finite differences of the differential operator

L(u) = (e−xyux)x + (exyuy)y,

on the unit square with zero Dirichlet boundary conditions, while C1 = rand (n, s), s = 1, 4,8,
that is the entries of C1 are random numbers uniformly distributed in the interval (0,1).
C1 is then normalized, C1 = C1/∥C1∥F . Table 2.1 (left) reports the CPU time (in seconds)
needed for evaluating the residual norm (time res) and for completing the whole procedure
(time tot). Convergence is checked at each iteration. For instance, for s = 1, using lyapchol

as inner solver the solution process takes 38.51 secs, 36.51 of which are used for solving the
inner problem of step 5. If we instead use cTri, the factors of Xm are determined in 7.25
seconds, only 4.42 of which are devoted to evaluating the residual norm. Therefore, 87.9%
of the residual computation CPU time is saved, leading to a 81.2% saving for the whole
procedure. An explored device to mitigate the residual norm computational cost is to check
the residual only periodically. In the right-hand side of Table 2.1 we report the results in
case the residual norm is computed every 10 iterations.

Table 2.2 shows that the two-pass strategy of Section 2.2.3 drastically reduces the memory
requirements of the solution process, as already observed in [69], at a negligible percentage
of the total execution time.

Example 2.2.2. The RAIL benchmark problem§ solves the generalized Lyapunov equation

AXE +EXA +C1C
T
1 = 0, (2.2.30)

where A,E ∈ Rn×n, n = 79841, C1 ∈ Rn×s, s = 7. Following the discussion in [97], equation
(2.2.30) can be treated as a standard Lyapunov equation for E symmetric and positive
definite. This is a recognized hard problem for the standard Krylov subspace, therefore the
extended Krylov subspace method is applied, and convergence is checked at each iteration.
Table 2.3 collects the results. In spite of the 52 iterations needed to converge, the space
dimension is large, indeed dim (EK◻

m(A,C1)) = 728 and the memory-saving strategy of
Section 2.2.4 may be attractive; it was not used for this specific example, but it can be

�The function lyap2 was slightly modified to exploit the orthogonality of the eigenvectors matrix.
§http://www.simulation.uni-freiburg.de/downloads/benchmark/Steel%20Profiles%20%2838881%29
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time res gain time tot gain time res gain time tot gain
(secs) (secs) (secs) (secs)

s = 1 (444 its)

lyap 42.36 89.5% 45.18 83.9% 4.78 89.7% 7.87 52.9%
lyapchol 36.51 87.9% 38.51 81.2% 4.27 88.5% 7.59 51.25%

lyap2 34.27 87.1% 37.07 80.4% 3.85 87.2% 7.14 48.1%
cTri 4.42 Î 7.25 Î 0.49 Î 3.70 Î

s = 4 (319 its)

lyap 819.02 96.4% 825.44 95.6% 88.52 96.6% 95.60 91.65%
lyapchol 213.87 86.1% 220.51 83.6% 21.38 86.1% 26.83 70.2%

lyap2 212.99 86.0% 219.34 83.5% 20.28 85.3% 27.65 71.1%
cTri 29.78 Î 36.21 Î 2.97 Î 7.98 Î

s = 8 (250 its)

lyap 2823.31 97.9% 2836.29 97.6% 305.11 98.2% 313.49 95.8%
lyapchol 415.42 85.7% 427.21 84.1% 38.94 85.7% 46.96 71.8%

lyap2 424.23 86.0% 435.90 84.4% 41.39 86.5% 49.15 73.1%
cTri 59.25 Î 67.89 Î 5.56 Î 13.22 Î

Table 2.1: Example 2.2.1. CPU times and gain percentages. Convergence is checked every
d iterations. Left: d = 1. Right: d = 10.

memory reduced CPU time
whole Vm mem. alloc. (secs)

n s m s ⋅m 3s
21904 1 444 444 3 1.44
21904 4 319 1276 12 2.35
21904 8 250 2000 24 3.74

Table 2.2: Example 2.2.1. Memory requirements with and without full storage, and CPU
time of the second Lanczos sweep.

easily implemented. The gain in the evaluation of the residual norm is still remarkable, but
less impressive from the global point of view. Indeed, the basis construction represents the

majority of the computational efforts; in particular, the linear solves A−1V
(2)
i , i = 1, . . . ,52,

required 17.60 seconds.

time res gain time tot gain
(secs) (secs)

lyap 11.25 75.9% 75.53 7.7%
lyapchol 6.05 55.2% 70.76 1.5%

lyap2 6.68 59.4% 73.01 4.5%
cTri 2.71 Î 69.70 Î

Table 2.3: Example 2.2.2. CPU times and gain percentages.

Example 2.2.3. In this example, we compare the standard and the extended Krylov
approaches again for solving the standard Lyapunov equation. We consider the matrix
A ∈ Rn×n, n = 39304, coming from the discretization by isogeometric analysis (IGA) of the
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2. Sylvester and Lyapunov equations with low-rank right-hand side

3D Laplace operator on the unit cube [0,1]3 with zero Dirichlet boundary conditions and a
uniform mesh. Since high degree B-splines are employed as basis functions (here the degree is
4 but higher values are also common), this discretization method yields denser stiffness and
mass matrices than those typically obtained by low degree finite element or finite difference
methods; in our experiment, 1.5% of the components of A is nonzero. See, e.g., [30] for more
details on IGA.

For the right-hand side we set C1 = rand(n, s), s = 3, 8, C1 = C1/∥C1∥F . In the standard
Krylov method the residual norm is computed every 20 iterations. The convergence can
be checked every d iterations in the extended approach as well, with d moderate to avoid
excessive wasted solves with A at convergence [97]. In our experiments the computation of
the residual norm only takes a small percentage of the total execution time and we can afford
taking d = 1. In both approaches, the residual norm is computed by Algorithm 2.2. Table
2.4 collects the results.

m whole Vm reduced time res two-pass time tot
mem. alloc. mem. alloc. (secs) (secs) (secs)

s = 3
St. Krylov 280 840 9 1.59 20.75 44.56
Ex. Krylov 30 180 180 0.09 - 85.54

s = 8
St. Krylov 260 2080 24 3.84 45.35 93.49
Ex. Krylov 27 216 216 0.57 - 347.99

Table 2.4: Example 2.2.3. Performance comparison of Standard and Extended Krylov meth-
ods.

The standard Krylov method generates a large space to converge for both values of s.
Nonetheless, the two-pass strategy allows us to store only 9 basis vectors for s = 3 and 24
basis vectors for s = 8. This feature may be convenient if storage of the whole solution
process needs to be allocated in advance. By checking the residual norm every 20 iterations,
the standard Krylov method becomes competitive with respect to the extended procedure,
which is in turn penalized by the system solutions with dense coefficient matrices. Indeed,

for s = 3 the operation A−1V
(2)
i for i = 1, . . . ,30 takes 32.75 secs, that is 38.29% of the overall

execution time required by the extended Krylov subspace method. Correspondingly, for
s = 8 the same operation performed during 27 iterations takes 152.92 secs, that is, 44.94% of
the overall execution time. This example emphasizes the potential of the enhanced classical
approach when system solves are costly, in which case rational methods pay a higher toll.

Example 2.2.4. In this example, a Sylvester equation (2.0.1) is solved. The coefficient
matrices A,B ∈ Rn×n, n = 16384, come from the discretization by centered finite differences
of the partial differential operators

LA(u) = (e−xyux)x + (exyuy)y and LB(u) = (sin(xy)ux)x + (cos(xy)uy)y ,

on [0,1]2 with zero Dirichlet boundary conditions. The right-hand side is a uniformly
distributed random matrix where C1 = rand(n, s), C1 = C1/∥C1∥F and C2 = rand(n, s),
C2 = C2/∥C2∥F , s = 3, 8. Since both A and B are large, equation (2.0.1) is solved by the
standard Krylov method presented in Section 2.1.1 and 217 iterations are needed to con-
verge for s = 3, and 145 iterations for s = 8. The residual norm is checked at each iteration
and Table 2.5 collects the results. Two approximation spaces, K◻

m(A,C1) = Range(Vm),
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K◻
m(B,C2) = Range(Um), are generated and a two-pass strategy is employed to cut down

the storage demand. See Table 2.6.

time res gain time tot gain
(secs) (secs)

s = 3 (217 its)
lyap 60.19 83.6% 65.32 76.2%
lyap2 74.05 86.6% 78.08 80.1%
cTri 9.89 Î 15.51 Î

s = 8 (145 its)
lyap 201.28 88.7% 208.93 81.5%
lyap2 140.92 83.8% 149.95 74.2%
cTri 22.74 Î 38.65 Î

Table 2.5: Example 2.2.4. CPU times and gain percentages.

memory reduced CPU time
whole Vm, Um mem. alloc. (secs)

n s m 2s ⋅m 6s
16384 3 217 1032 18 2.62
16384 8 145 2320 48 4.93

Table 2.6: Example 2.2.4. Memory requirements with and without full storage, and CPU
time of the second Lanczos sweep.

Example 2.2.5. In this last example, we again consider the Sylvester problem (2.0.1), this
time stemming from the 3D partial differential equation

(e−xyux)x + (exyuy)y + 10uzz = f on [0,1]3, (2.2.31)

with zero Dirichlet boundary conditions. Thanks to the regular domain, its discretization
by centered finite differences can be represented by the Sylvester equation

AX +XB = F, (2.2.32)

where A ∈ Rn
2×n2

accounts for the discretization in the x, y variables, while B ∈ Rn×n is

associated with the z variable. The right-hand side F ∈ Rn
2×n takes into account the source

term f in agreement with the space discretization. See Section 5.1 for a detailed discussion.

In our experiment, n = 148 (so that n2 = 21904) and equation (2.2.32) falls into the case
addressed in the last part of Section 2.2.5. The right-hand side is F = −C1C

T
2 where C1,C2

are two different normalized random matrices, Cj = rand(n, s), Cj = Cj/∥Cj∥F , j = 1,2, and
s = 3, 8. Convergence is checked at each iteration and Table 2.7 collects the results.

The method requires 190 iterations to converge below 10−6 for s = 3 and 150 for s = 8,

and a two-pass strategy allows us to avoid the storage of the whole basis Vm ∈ Rn
2×sm. See

Table 2.8.
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time res gain time tot gain
(secs) (secs)

s = 3 (190 its)
lyap 15.47 75.7% 17.88 63.6%
lyap2 25.35 85.2% 27.50 76.3%
cTri 3.76 Î 6.51 Î

s = 8 (150 its)
lyap 36.99 68.2% 40.90 60.0%
lyap2 77.04 84.7% 80.91 79.8%
cTri 11.77 Î 16.35 Î

Table 2.7: Example 6.2.1. CPU times and gain percentages.

memory reduced CPU time
whole Vm mem. alloc. (secs)

n2 s m s ⋅m 3s
21904 3 190 570 9 0.93
21904 8 150 1200 24 1.31

Table 2.8: Example 2.2.4. Memory requirements with and without full storage, and CPU
time of the second Lanczos sweep.

2.3 Closing considerations

In the recent literature, projection methods have been shown to be among the most effective
procedures for solving Lyapunov and Sylvester equations with low-rank right-hand side.

In case of symmetric coefficient matrices, we have improved the classical algorithm pre-
senting an expression for the residual norm that significantly reduces the cost of monitoring
convergence when projection is based on K◻

m and EK◻
m.

For the standard Krylov approach, the combination with a two-pass strategy makes this
algorithm appealing compared with recently developed methods, both in terms of computa-
tional costs and memory requirements, whenever data do not allow for cheap system solves.

The proposed enhancements rely on the symmetric block tridiagonal structure of the pro-
jected matrices. In case this pattern does not arise, as in the nonsymmetric setting or when
general rational Krylov subspaces are employed, different approaches must be considered.
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Chapter 3

Sylvester and Lyapunov
equations with banded
symmetric data

In this Chapter we deal with a different class of equations. In particular, we no longer
consider equations with a low-rank right-hand side but we are interested in the numerical
solution of large-scale Lyapunov equations

AX +XA −C = 0, (3.0.1)

where A ∈ Rn×n is symmetric and positive definite, C ∈ Rn×n is symmetric, and both are
large and banded matrices with bandwidth βA, βC , respectively*. Numerical methods for
(3.0.1) with large, banded, and not necessarily low rank right-hand side have not be given
attention so far, in spite of possible occurrence of this setting in practical applications; see,
e.g., [51, 82, 66].

If A is well conditioned, the entries of X present a decay in absolute value as they
move away from the banded pattern of C. Therefore, a banded approximation X̂ ≈ X
can be sought. This idea was exploited in [51], where two algorithms for computing X̂
were proposed. We show that if A is well conditioned, a matrix-oriented formulation of the
conjugate gradient method (cg) provides a quite satisfactory banded approximation at a
competitive computational cost.

For general symmetric banded data, the decay pattern of X fades as the conditioning of
A worsens, to the point that for ill-conditioned matrices, no appreciable (exponential) decay
can be detected in X. Nevertheless, we show that X can be split into two components, which
can be well approximated by a banded matrix and by a low-rank matrix, respectively. This
observation leads to a feasible numerical procedure for solving (3.0.1) both in terms of CPU
time and memory requirements.

In Section 3.2.6, the procedures are then generalized to handle Sylvester equations with
symmetric banded data and positive definite coefficient matrices.

*The minus in the given matrix C is just for convenience in the derivation of what follows. Equivalent
results can be obtained considering equations of the form AX +XA +C = 0 as well.
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3. Sylvester and Lyapunov equations with banded symmetric data

3.1 The case of well conditioned A

In the case when A is well conditioned, it is possible to fully exploit the banded structure of
the data, and to substantially maintain it in a suitably constructed approximate solution. To
this end, advantage can be taken of recently developed results on the entry decay of function
of matrices; see, e.g., [17, 18, 27, 32]. For instance, bounds for the entries of the inverse of
A ∶= A⊗ I + I ⊗A (viewed as a banded matrix with bandwidth nβA) have been employed to
estimate the decay in the entries of the solution X to (3.0.1).

Theorem 3.1.1 ([51]). Consider equation (3.0.1) and let

τ ∶=
1

2∣λmax(A)∣
max

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1,
(1 +

√
κ(A))

2

2κ(A)

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

, and ρ ∶=
⎛

⎝

√
κ(A) − 1

√
κ(A) + 1

⎞

⎠

1
nβA

,

then

∣(X)i,j ∣ ≤ τ
n

∑
k=1

n

∑
`=1

∣(C)k,`∣ρ
∣(`−j)n+k−i∣. (3.1.2)

By exploiting the Kronecker structure of A, sharper bounds for (A−1)
i,j

can be derived,

see, e.g., [27], leading to different, and possibly more accurate, estimates for ∣(X)i,j ∣.

Theorem 3.1.2. Consider equation (3.0.1) and define λ1 = λ1(ω) ∶= λmin(A) + iω, λ2 =

λ2(ω) ∶= λmax(A) + iω, and R ∶= α +
√
α2 − 1 where α ∶= (∣λ1∣ + ∣λ2∣) /∣λ2 − λ1∣. Then

∣(X)i,j ∣ ≤
n

∑
k=1

n

∑
`=1

θk,`∣(C)k,`∣, (3.1.3)

where

� If k ≠ i and ` ≠ j, then

θk,l =
64

2π∣λmax(A) − λmin(A)∣2 ∫
∞

−∞

( R2

(R2 − 1)2
)

2

( 1

R
)
∣k−i∣
βA

+
∣`−j∣
βA

−2

dω.

� If either k = i or ` = j, then

θk,l =
8

2π∣λmax(A) − λmin(A)∣ ∫
∞

−∞

1√
λmin(A)2 + ω2

R2

(R2 − 1)2
( 1

R
)
∣k−i∣
βA

+
∣`−j∣
βA

−1

dω.

� If both k = i and ` = j, then

θk,` =
1

2λmin(A) .

Proof. The statement directly comes from [98, Theorem 3.3] summing up on the entries of
C.

We emphasize that since C is banded, only few (C)k,` are nonzero, so that only few terms
in the summation (3.1.3) are actually computed.
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Figure 3.1: Magnitude of Xe500 and its estimates (3.1.2) and (3.1.3).

Example 3.1.1. To illustrate the quality of the new bound compared with that in Theo-
rem 3.1.1 we consider the data generated in Example 3.1.2 later in this section. For 6n = 1020
in Figure 3.1 we report the entry magnitude in logarithmic scale of the 500-th column of the
solution X, Xe500 (solid line), together with the corresponding computed bounds in (3.1.2)
(dashed line) and in (3.1.3) (dashed and dotted line). The new bound correctly captures the
decay of the entries, while (3.1.2) predicts a misleading almost flat slope.

Since A is symmetric and positive definite (SPD), the matrix-oriented cg method can
be employed in the numerical solution of (3.0.1), in agreement with similar matrix-oriented
strategies in the literature; see, e.g., [58] for an early presentation.

An implementation of the procedure is illustrated in Algorithm 3.1.
Several properties of Algorithm 3.1 can be observed. For instance, since C is symmetric,

it is easy to show that all the iterates, Wk,Xk, Pk,Rk, are symmetric for all k if a symmetric
X0 is chosen. This implies that only one matrix-matrix multiplication by A in line 2 is
needed. Indeed, if Sk ∶= APk−1, then Wk = APk−1 + Pk−1A = APk−1 + (APk−1)

T = Sk + S
T
k .

Furthermore, only the lower – or upper – triangular part of the iterates need be stored,
leading to some gain in terms of both memory requirements and number of flops. Some easy
tricks have to be adopted to perform the matrix inner products and the Frobenius norms in
line 3, 6, 8 as well as for the matrix-matrix products in line 2.

We next show that all the matrices involved in Algorithm 3.1 are banded matrices, with
bandwidth linearly depending on k, the number of iterations performed so far. This matrix-
oriented procedure is effective in maintaining the banded structure as long as k is moderate,
and this is related to the conditioning of the coefficient matrix.
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Algorithm 3.1: cg for the Lyapunov matrix equation.

input : A ∈ Rn×n, A SPD, C,X0 ∈ Rn×n with banded storage, εres > 0, mmax

output: Xk ∈ Rn×n

1 Set R0 = C −AX0 −X0A, P0 = R0

for k = 1,2, . . . ,mmax do
2 Wk = APk−1 + Pk−1A

3 αk =
∥Rk−1∥2F
⟨Pk−1,Wk⟩F

4 Xk =Xk−1 + Pk−1αk
5 Rk = Rk−1 −Wkαk
6 if ∥Rk∥F /∥R0∥F < εres then
7 Stop

end

8 βk =
∥Rk∥2F
∥Rk−1∥2F

9 Pk = Rk + Pk−1βk
end

Proposition 3.1.3. If X0 = 0, all the iterates generated by Algorithm 3.1 are banded matrices
and, in particular,

βWk
≤ kβA + βC , βXk ≤ (k − 1)βA + βC , βRk ≤ kβA + βC , βPk ≤ kβA + βC .

Proof. We first focus on the effects of Algorithm 3.1 on the bandwidth of the current iterates.
We recall that if G,H ∈ Rn×n are banded matrices with bandwidth βG, βH respectively, the
matrixGH has bandwidth at most βG+βH . The multiplication byA in line 2 of Algorithm 3.1
is the only step that increases the iterate bandwidth at iteration k, therefore we have βWk

≤

βA+βPk−1 , βXk ≤ max{βXk−1 , βPk−1}, βRk ≤ max{βRk−1 , βWk
} and βPk ≤ max{βRk , βPk−1}. We

now demonstrate the statement by induction on k. Since X0 = 0, R0 = C and βR0 = βP0 = βC .
Moreover, for k = 1,

βW1 ≤ βA + βC , βR1 ≤ max{βR0 , βW1} ≤ βA + βC ,

βX1 = βC , βP1 ≤ max{βR1 , βP0} ≤ βA + βC .

Supposing that the statement holds for k = j − 1 > 1, we prove it for k = j.

βWj ≤ βA + βPj−1 ≤ βA + (j − 1)βA + βC = jβA + βC ,

βXj ≤ max(βXj−1 , βPj−1) ≤ βPj−1 ≤ (j − 1)βA + βC ,

βRj ≤ max(βRj−1 , βWj) ≤ βWj ≤ jβA + βC ,

βPj ≤ max(βRj , βPj−1) ≤ βRj ≤ jβA + βC .

A similar result can be shown if X0 is a banded matrix. Theorem 3.1.3 implies that after
k iterations all iterates are banded matrices with bandwidth at most kβA + βC . Moreover,
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only their lower (or upper) triangular parts are stored so that the number of nonzero entries
of each iterate is at most

n +
kβA+βC

∑
i=1

(n − i) = n + (kβA + βC)n − 1

2
(kβA + βC)(kβA + βC − 1) = O(n).

Exploiting Theorem 3.1.3, it can be shown that the computational cost of Algorithm 3.1
linearly scales with the problem size n. This is a major saving of the matrix-oriented version
of the algorithm, compared with its standard vector-oriented counterpart with A, which
would require O(n2) operations per iteration.

Corollary 3.1.4. For small values of k, the computational cost of the k-th iteration of
Algorithm 3.1 amounts to O(n) flops.

Proof. We first notice that if G,H ∈ Rn×n are banded matrices with bandwidth βG, βH
respectively, the matrix-matrix product GH costs O(n(2βG + 1)(2βH + 1)) flops. Therefore,
the number of operations required by line 2 of Algorithm 3.1 is

O(2n(2βA + 1)(2βPk+1 + 1)) = O (2n(2βA + 1)(2(kβA + βC) + 1)) = O (8kβ2
An) .

Similarly, matrix-matrix products with banded matrices determine the matrix inner products
⟨⋅, ⋅⟩F , and thus the Frobenius norms ∥⋅∥F , in lines 3 and 8. Finally, again the summations in
lines 4,5 and 9 require a number of operations of the order of the number of nonzero entries
of the matrices involved, that is O(n).

When A is well conditioned, the simple matrix-oriented cg typically outperforms more
sophisticated methods proposed in the very recent literature. A typical situation is reported
in the next example.

Example 3.1.2. We consider an example from [51], where A = M ⊗ I6 + In ⊗ L ∈ R6n×6n,
M = tridiag(e, e, e) ∈ Rn×n, L = tridiag(e, a − e, e) ∈ R6×6, e = −0.34, a = 1.36. The right-hand
side is C = Q⊗11T +0.8I6n where 1 ∈ R6 is the vector of all ones and Q = tridiag(0.1,0.2,0.1) ∈
Rn×n; note the change of sign in A and D compared with [51]. Both matrices A and C
are block tridiagonal with blocks of size 6 and βA = 6, βC = 11. Furthermore, thanks
to the Kronecker structure of A, it easy to provide an estimate of its condition number
which turns out to be independent of n as λmax(A) = λmax(M) + λmax(L) and λmin(A) =

λmin(M) + λmin(L). Since M and L are tridiagonal Toeplitz matrices, we can explicitly
compute their spectrum and it holds λmax(L) = a−e+2∣e∣ cos(π

7
), λmin(L) = a−e+2∣e∣ cos( 6

7
π),

λmax(M) = e + 2∣e∣ cos( π
n+1

) and λmin(M) = e + 2∣e∣ cos( n
n+1

π). See, e.g., [100]. Therefore,

κ(A) =
λmax(A)

λmin(A)
=

a + 2∣e∣ (cos(π
7
) + cos( π

n+1
))

a + 2∣e∣ (cos( 6
7
π) + cos( n

n+1
π))

=
a + 2∣e∣ (cos(π

7
) + cos( π

n+1
))

a − 2∣e∣ (cos(π
7
) + cos( π

n+1
))

≤
a + 2∣e∣ (cos(π

7
) + 1)

a − 2∣e∣ (cos(π
7
) + 1)

≤ 40, for all n.

The matrix A is thus well-conditioned and Algorithm 3.1 can be employed in the solution
process. By using classical cg convergence results (see, e.g., [2, Section 13.2.1]), it follows
that k̄ = 44 iterations will be sufficient to obtain a relative error (in energy norm) less than
10−6 for all n�. The solution Xk̄ will be a banded matrix with bandwidth βXk̄ ≤ 43βA +βC =

269.

�In the experiment we actually need 45 iterations to converge as the stopping criterion is based on the
relative residual norm and not on the relative error (in energy norm).
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We next apply Algorithm 3.1 for different values of n and relative residual tolerance 10−6,
and we compare the method performance with that of the second procedure described in [51].
This method consists in a gradient projection method applied to minX ∥C−AX−XA∥2

F where
the initial guess is chosen as a coarse approximation to the integral in (3.2.4). We employ
the same setting suggested by the authors; see [51] for details. The results are collected in
Table 6.2 where the CPU time is expressed in seconds. In the first instance, Algorithm 3.1 is
stopped as soon as the relative residual norm satisfies the stopping criterion. In the second
instance, a fixed number of iterations for Algorithm 3.1 is used, so as to obtain the same final
approximate solution bandwidth as that of the procedure in [51]. With this second instance,
we are able to directly compare the accuracy and efficiency of cg and of the method in [51].

6n cg (Algorithm 3.1) cg (Algorithm 3.1) Algorithm [51]
Its. βX Time Res. Its. βββX Time Res. βX Time Res.

10200 45 275 17.1 8.4e-7 8 53 0.7 1.2e-1 53 123.1 5.5e-1
102000 45 275 170.8 8.4e-7 8 53 4.6 1.2e-1 53 1880.2 5.5e-1

1020000 45 275 1677.2 8.4e-7 8 53 56.9 1.2e-1 53 23822.9 5.5e-1

Table 3.1: Algorithm 3.1 and the second procedure presented in [51] applied to Example 3.1.2.
Results for different values of 6n. For cg, in bold is the quantity used in the stopping
criterion.

Because the condition number is bounded independently of n, the number of cg iterations
is also bounded by a constant independent of n; this is clearly shown in the table. Therefore
the total CPU time to satisfy a fixed convergence criterion scales linearly with n. The results
illustrated in Table 6.2 show that Algorithm 3.1 is very effective, in terms of CPU time, while
it always reaches the desired residual norm, when this is used as stopping criterion. This is
not the case for the algorithm in [51], which would probably require a finer parameter tuning
to be able to meet all stopping criteria.

If the final bandwidth is the stopping criterion, the obtained accuracy is comparable with
the results of algorithm [51], however cg is many orders of magnitude faster.

The situation changes significantly if A is ill conditioned, since a larger number of itera-
tions will be required to determine a sufficiently good approximation. This difficulty is not
a peculiarity of the method, but rather it reflects the fact that the exact solution X cannot
be well represented by a banded matrix. Therefore, any acceleration strategy to reduce the
cg iteration count will necessarily end up constructing a denser approximation. In this case,
a different strategy needs to be devised, and this is discussed in the next section.

3.2 A new method for ill-conditioned A

If A is ill-conditioned, the entries of the solution X to (3.0.1) do not have, in general, a fast
decay away from the diagonal, so that a banded approximation is usually not sufficiently
accurate. By using the closed-form (ii) presented in Section 1.2 for the matrix X that can
be written as

X = ∫

+∞

0
e−tACe−tAdt, (3.2.4)

where the minus in the matrix exponential is due to the positive definiteness of A, we next
derive a splitting of the matrix X that leads to a memory saving approximation.
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Theorem 3.2.1. Let X(τ) = ∫
τ

0 e−tACe−tAdt, for τ > 0, so that X ≡X(+∞). For τ > 0 the
solution matrix X in (3.2.4) can be written as

X =X(τ) + e−τAXe−τA. (3.2.5)

Proof. We can split X as X = ∫
τ

0 e−tACe−tAdt + ∫
+∞
τ e−tACe−tAdt, where the first term is

X(τ). Performing the change of variable t = s + τ it holds

∫

+∞

τ
e−tACe−tAdt = ∫

+∞

0
e−(s+τ)ACe−(s+τ)Ads

= e−τA ∫
+∞

0
e−sACe−sAdse−τA = e−τAXe−τA.

The splitting in (3.2.5) emphasizes two components in the solution matrix X. If τ is
sufficiently large, the second term is clearly numerically low rank, since e−τA is numerically
low rank. Depending on the magnitude of τA, the following Theorem 3.2.2 proved in [18]
ensures that the first term is banded. As a result, Theorem 3.2.1 provides a splitting of X
between its banded and numerically low rank parts. Our new method aims at approximating
these two terms separately, so as to limit memory consumptions.

Theorem 3.2.2 ([18]). Let M be Hermitian positive semidefinite with eigenvalues in the
interval [0,4ρ]. Assume in addition that M is βM -banded. For k ≠ `, let ξ = ⌈∣k − `∣/βM ⌉,
then

(i) For ρt ≥ 1 and
√

4ρt ≤ ξ ≤ 2ρt, ∣(e−tM)k,`∣ ≤ 10 e−
ξ2

5ρt ;

(ii) For ξ ≥ 2ρt, ∣(e−tM)k,`∣ ≤ 10 e
−ρt

ρt
(
eρt
ξ

)
ξ
.

In our setting, Theorem 3.2.2 can be applied to e−t(A−λminI) by appropriately scaling the
original matrix e−tA. For small t, Theorem 3.2.2 ensures that e−tA has small components

away from the diagonal so that it can be well approximated by a banded matrix, e−tA
⋀

≈ e−tA;

the product e−tA
⋀

Ce−tA
⋀

is still banded.
With these considerations in mind, we are going to approximate X by estimating the two

quantities X(τ), e−τAXe−τA in (3.2.5), for a suitable τ > 0, that is

X =X(τ) + e−τAXe−τA ≈XB +XL,

where the banded matrix XB approximates the fast decaying portion X(τ), while XL ap-
proximates the numerically low rank part e−τAXe−τA.

3.2.1 Approximating X(τ) by a banded matrix

The approximation of the first term by a banded matrix is obtained with the following steps:

i) We first replace the integral in X(τ) by an adaptive quadrature formula;
ii) We approximate the two exponential matrix functions by rational counterparts, using

a partial fraction expansion;
iii) We truncate the elementary terms in the partial fraction expansion to banded form.
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3. Sylvester and Lyapunov equations with banded symmetric data

The a-priori accuracy of the first two steps can be estimated by using well established
results in the literature applied to the eigendecomposition of A. In the third step, terms of
the type (tiA − ξjI)

−1 are dense, however recent theoretical results ensure that they can be
approximated with banded matrices by truncation.

We start with step (i), that is

X(τ) = ∫
τ

0
e−tACe−tAdt ≈

τ

2

`

∑
i=1

ωie
−tiACe−tiA, (3.2.6)

where ti =
τ
2
xi +

τ
2
, while xi, ωi are respectively the nodes and weights of the formula; in

our experiments we considered a matrix-oriented version of the adaptive Gauss-Lobatto
quadrature in [43, Section 4.5] with given tolerance εquad.

As for step (ii), rational functions provide very accurate approximations to the matrix
exponential eA ≈ Rν(A). See, e.g., [3, 28, 106]. In particular, we have investigated Padé and
Chebyshev rational approximations.

Padé: The matrix exponential eA can be well approximated by a diagonal Padé approximant
of degree (d, d) if ∥A∥ is small enough�. We thus satisfy this condition by using the

relation eA = (e2−kA)2k , a technique typically called “scaling and squaring”. The Padé
approximant is known explicitly for all d. See, e.g., [57, Chapter 10]. In this case the
evaluation of the matrix exponential requires 2d + 3 + k matrix multiplication and one
inversion where k = ⌈log2 ∥A∥⌉. This strategy is also implemented in the MATLAB
function expm.

Chebyshev: Since A is supposed to be positive definite, the matrix exponential e−tA can
be approximated by a rational Chebyshev function that is uniformly accurate for every
positive value of t. See, e.g., [87]. The rational function is of the form

ex ≈
θ1

x − ξ1
+ . . . +

θd
x − ξd

.

Given the poles and the weights in the above expansion, this strategy requires d inver-
sions and additions. See Section 3.2.2 for a numerical procedure to compute the poles
and weights ξi, θi.

Remark 3.2.3. In general, evaluating the matrix exponential e−tiA by means of the Padé
approximant performs better when tiA has a moderate norm. When ti ∥A∥2 is large the
squaring phase becomes the bottleneck of the computation. In this case we should rely on
the rational Chebyshev expansion, which has a cost independent of ∥A∥2.

In our setting rational Chebyshev functions in R+ appear to be appropriate. They admit
the following partial fraction expansion

Rν(A) =
ν

∑
j=1

θj(A − ξjI)
−1, (3.2.7)

where θj , ξj ∈ C are its weights and (distinct) poles, respectively. For A real, the poles ξj are
complex conjugate, yielding the simplified form

Rν(A) =
ν−1

∑
j=1,
j odd

2Re (θj (tiA − ξjI)
−1

) + θν (tiA − ξνI)
−1
, (3.2.8)

�The exact choice of the ball where Padé is accurate enough depends on the desired accuracy and the
value of d.
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3. Sylvester and Lyapunov equations with banded symmetric data

where ξν is the real pole of Rν if ν is odd. The formula is well defined. Indeed, since A is
symmetric, the matrix tiA − ξjI is invertible if ξj has nonzero imaginary part. In case of a
real ξν , a direct computation shows that ξν < 0 for ν ∈ {1, . . . ,13}, ν odd, so that tiA − ξνI
is nonsingular as well. We refer the reader to Section 3.2.2 for details on the computation
of the weights and poles of the rational Chebyshev function (3.2.7). The number ν of terms
in (3.2.7) is closely related to the accuracy of the computed approximation. Indeed, it holds
(see, e.g., [28])

sup
λ≥0

∣e−λ −Rν(λ)∣ ≈ 10−ν ;

a similar estimate holds for ∥e−A−Rν(A)∥ for A symmetric. Few terms are needed to obtain
a quite accurate approximation, for our purposes.

The rational function approximation (3.2.8) requires the computation of several inverses
of the form (tiA − ξjI)

−1 for all i = 1, . . . , `, j = 1, . . . , ν, which are, in general, dense. This

leads to the third approximation step above, that is a banded approximation (tiA − ξjI)
−1
⋀

≈

(tiA − ξjI)
−1 with bandwidth much smaller than n. The quality of this approximation is

ensured by the following result, which takes great advantage of the complexity of the shifts
ξj ’s.

Proposition 3.2.4 ([41]). Let M = υ1I + υ2M0 be βM -banded with M0 Hermitian and

υ1, υ2 ∈ C. Define a ∶= (λmax(M) + λmin(M))/(λmax(M) − λmin(M)) and R ∶= α +
√
α2 − 1

with α = (∣λmax(M)∣ + ∣λmin(M)∣)/∣λmax(M) − λmin(M)∣. Then,

∣(M−1)
p,q

∣ ≤
2R

∣λmax(M) − λmin(M)∣
B(a) (

1

R
)

∣p−q∣
βM

, p ≠ q, (3.2.9)

where, writing a = ζR cos(ψ) + iηR sin(ψ),

B(a) ∶=
R

ηR
√
ζ2
R − cos2(ψ)(ζR +

√
ζ2
R − cos2(ψ))

,

with ζR = (R + 1/R)/2 and ηR = (R − 1/R)/2.

If spectral estimates are available, the entry decay of (tiA−ξjI)
−1 can be cheaply predicted

by means of (3.2.9), so that the sparsity pattern of the banded approximation (tiA − ξjI)
−1
⋀

to (tiA − ξjI)
−1 can be estimated a-priori, during its computation. The actual procedure to

determine (tiA − ξjI)
−1
⋀

is discussed in Section 3.2.2.
The matrix exponential e−tiA in (3.2.6) is thus approximated by

R
⋀

ν(tiA) ∶=
ν−1

∑
j=1

2Re (θj(tiA − ξjI)
−1
⋀

)+ θν(tiA − ξνI)
−1
⋀

≈Rν (tiA) , i = 1, . . . , `.

We notice that the entries of the most external diagonals of R
⋀

ν(tiA) might be small in

magnitude. To further reduce the bandwidth of R
⋀

ν(tiA), we thus suggest to set to zero

those components of R
⋀

ν(tiA) that are smaller than εquad, that is, we replace the matrix

R
⋀

ν(tiA) with the matrix R̃ν(tiA) defined as follows

R̃ν(tiA) ∶= R
⋀

ν(tiA) − Ei, (Ei)k,j ∶=

⎧⎪⎪
⎨
⎪⎪⎩

(R
⋀

ν(tiA))
k,j
, if ∣(R

⋀

ν(tiA))
k,j

∣ < εquad,

0, otherwise.
(3.2.10)
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3. Sylvester and Lyapunov equations with banded symmetric data

Collecting all these observations, we have

X(τ) ≈
τ

2

`

∑
i=1

ωiR̃ν(tiA)CR̃ν(tiA) =∶XB , (3.2.11)

and the bandwidth βXB of XB is such that βXB ≤ 2 maxi{βR̃ν(tiA)} + βD. The overall
procedure for computing XB is illustrated in Algorithm 3.2.

Algorithm 3.2: Numerical approximation of X(τ).

input : A ∈ Rn×n, A SPD, C ∈ Rn×n, ν ∈ N, εB , εquad, τ > 0
output: XB ∈ Rn×n, XB ≈X(τ)

1 Compute ti, ωi, i = 1, . . . , `, for the Gauss-Lobatto formula (3.2.6)
2 Compute ξj , θj , j = 1, . . . , ν, for the rational Chebyshev approximation (3.2.7)
3 Set XB = 0

for i = 1, . . . , ` do

4 For j = 1, . . . , ν compute (tiA − ξjI)
−1
⋀

5 Set R
⋀

ν(tiA) ∶= ∑
ν−1
j=1 2Re (θj(tiA − ξjI)

−1
⋀

)+ θν(tiA − ξνI)
−1
⋀

6 Compute R̃ν(tiA) as in (3.2.10)

7 Set XB =XB + ωiR̃ν(tiA)CR̃ν(tiA)

end
8 Set XB = τ

2
XB

3.2.2 Implementation details for computing XB

In this section we illustrate some details to efficiently implement Algorithm 3.2.
For given coefficients of the numerator and denominator polynomials (see, e.g., [29]), the

weights and poles of the rational Chebyshev function (3.2.7) can be computed by the residue
theorem, implemented in Matlab via the function residue. In our experiments we always
used ν = 7, thus providing a maximum attainable accuracy of the order of 10−7.

The approximation of (tiA−ξjI)
−1 for all considered i’s and j’s is the most time consum-

ing part of the process to obtain XB . This is performed by using a sparse approximate inverse
approach, which has been extensively studied in the context of preconditioning techniques
for solving large scale linear systems; see, e.g., [19, 16, 20]. Furthermore, many packages
such as SPAI§ and FSAIPACK¶ are available on-line for its computation. Unfortunately,
open software seldom handles complex arithmetic, as it occurs here whenever the poles have
nonzero imaginary part.

With the notation in Proposition 3.2.4, we have

∣((tiA − ξjI)
−1)

p,q
∣ ≤

2R

∣λ2 − λ1∣
B(a) (

1

R
)

∣p−q∣
βA

, p > 1,

and this allows us to explicitly compute only those entries that are above a given tolerance,
taking symmetry into account.

§https://cccs.unibas.ch/lehre/software-packages/
¶http://hdl.handle.net/11577/3132741
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For every column q = 1, . . . , n, we compute p̄q (ti, ξj) such that

p̄q (ti, ξj) = argmin

⎧⎪⎪
⎨
⎪⎪⎩

p > 1, s.t.
2R

∣λ2 − λ1∣
B(a) (

1

R
)

∣p−q∣
βA

< εB

⎫⎪⎪
⎬
⎪⎪⎭

,

where εB is a given threshold. Defining p̂q (ti, ξj) ∶= min{n, q + p̄q (ti, ξj)}, we calculate
((tiA − ξjI)

−1)
p,q
, q = 1, . . . , n, p = q, . . . , p̂q(ti, ξj). To this end, we perform an LDLt factor-

ization of tiA − ξjI, that is tiA − ξjI = L(ti, ξj)D(ti, ξj)L(ti, ξj)
T , and solve

L(ti, ξj)D(ti, ξj)L(ti, ξj)
T sq = eq, q = 1, . . . , n. (3.2.12)

Since tiA + ξjI is a βA-banded matrix, the computation of L(ti, ξj) and D(ti, ξj) requires
O(nβA) flops. We do not compute all the entries of sq but only the ones in position r,
r = q, . . . , p̂q (ti, ξj), suitably performing the forward and backward substitution with L(ti, ξj)
and L(ti, ξj)

T respectively. Notice that L(ti, ξj) maintains the bandwidth of A. Therefore,
the computation of the p̂q (ti, ξj) − q + 1 entries of sq costs O(2βA(p̂q (ti, ξj) − q + 1)) flops.
The computed sq approximates the q-th column of (tiA + ξjI)

−1, in particular, (sq)r =

((tiA+ ξjI)
−1eq)r for r = q, . . . , p̂q (ti, ξj). The overall computational cost of (3.2.12), for all

q, amounts to O(2βA∑
n
q=1(p̂q (ti, ξj) − q + 1)) flops.

If S = [s1, . . . , sn] and s denotes its diagonal, we define (tiA + ξjI)
−1
⋀

∶=S+ST −diag(s),

and it holds ∥(tiA + ξjI)
−1
⋀

− (tiA + ξjI)
−1∥max < εB . The matrix (tiA + ξjI)

−1
⋀

has to be
computed for all i = 1, . . . , `, j = 1, . . . , ν, leading to a computational cost that amounts to
O(2βA∑i,j,q(p̂q (ti, ξj) − q + 1)) flops. In all our numerical experiments we set ν = 7 and,

thanks to the observation in (3.2.8), we can compute (tiA + ξjI)
−1
⋀

, for i = 1, . . . , `, and only

four terms in j. Fixing i ∈ {1, . . . , `}, the four matrices (tiA + ξjI)
−1
⋀

, j = 1,3,5,7, are com-
puted in parallel decreasing the cost of the overall procedure to O(2βA∑i,q maxj{p̂q (ti, ξj)−
q + 1}) flops.

3.2.3 Approximating e−τAXe−τA by a low-rank matrix

We next turn our attention to the second component in (3.2.5), e−τAXe−τA. We show that
for large τ this matrix can be well approximated by a low-rank matrix.

Proposition 3.2.5. Consider the matrix e−τAXe−τA. Then, rank(e−τAXe−τA) ↘ 0 as
τ → +∞, and there exists a matrix XL ∈ Rn×n, rank(XL) = ¯̀≪ n, such that

∥e−τAXe−τA −XL∥
2
2 ≤

3

4λ2
n

e−2τ(λn+λn−¯̀)∥C∥
2
F , (3.2.13)

where λ1 ≥ . . . ≥ λn > 0 denote the eigenvalues of A.

Proof. Let A = QΛQT , Λ = diag (λ1, . . . , λn), λ1 ≥ . . . ≥ λn > 0, be the eigendecomposition
of A. Then, we can write e−τAXe−τA = Qe−τΛ(QTXQ)e−τΛQT = Qe−τΛY e−τΛQT , where
Y ∈ Rn×n is such that ΛY + Y Λ −QTCQ = 0. We notice that e−τλi ≤ e−τλj for all j ≤ i and
e−τλi → 0, τ → +∞, for all i = 1, . . . , n. Hence, e−τAXe−τA = Qe−τΛY e−τΛQT is numerically
low-rank as τ → +∞ since rank(e−τΛ) = rank (diag(e−τλ1 , . . . , e−τλn)) ↘ 0 as τ → +∞.

For a fixed ¯̀, we consider the partition Q = [Q1,Q2], Q1 ∈ Rn×(n−¯̀),Q2 ∈ Rn×¯̀
, e−τΛ =

blkdiag(e−τΛ1 , e−τΛ2), Λ1 = diag(λ1, . . . , λn−¯̀),Λ2 = diag(λn−¯̀+1, . . . , λn), and Y = [Y11, Y12;Y21, Y22]
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3. Sylvester and Lyapunov equations with banded symmetric data

with blocks Yst, s, t = 1,2, of conforming dimensions, that is Yst is the solution of the Sylvester
equation ΛsYst + YstΛt −Q

T
s CQt = 0, s, t = 1,2. Then,

e−τAXe−τA = Qe−τΛY e−τΛQT = [Q1,Q2] [
e−τΛ1

e−τΛ2
] [Y11 Y12

Y21 Y22
] [e

−τΛ1

e−τΛ2
] [Q

T
1

QT2
] .

Defining XL ∶= Q2e
−τΛ2Y22e

−τΛ2QT2 , rank(XL) = ¯̀, we have

∥e−τAXe−τA −XL∥
2
2 = ∥[Q1,Q2] [

e−τΛ1

e−τΛ2
] [
Y11 Y12

Y21 0
] [
e−τΛ1

e−τΛ2
] [
QT1
QT2

]∥

2

2

= ∥[
e−τΛ1

e−τΛ2
] [
Y11 Y12

Y21 0
] [
e−τΛ1

e−τΛ2
]∥

2

2

≤ (∥e−τΛ1Y11e
−τΛ1∥2 + ∥e−τΛ2Y21e

−τΛ1∥2 + ∥e−τΛ1Y12e
−τΛ2∥2)

2

≤ (e−2τλn−¯̀∥Y11∥2 + e
−τ(λn+λn−¯̀)∥Y21∥2 + e

−τ(λn+λn−¯̀)∥Y12∥2)
2

≤ (e−2τλn−¯̀∥Y11∥F + e
−τ(λn+λn−¯̀)∥Y21∥F + e

−τ(λn+λn−¯̀)∥Y12∥F )
2

≤ (e−2τλn−¯̀ + 2e−τ(λn+λn−¯̀))
2
∥Y ∥

2
F

≤ (e−τλn−¯̀ + 2e−τλn)
2
e−2τλn−¯̀∥Y ∥

2
F ≤ 3e−2τ(λn+λn−¯̀)∥Y ∥

2
F .

Since Y is such that ΛY + Y Λ −QTCQ = 0, it holds ∥Y ∥2
F ≤

∥C∥2F
4λ2
n

, and we can write

∥e−τAXe−τA −XL∥
2
2 ≤

3

4λ2
n

e−2τ(λn+λn−¯̀)∥C∥
2
F .

The proof is constructive, since it provides an explicit form for XL, that is XL =

Q2e
−τΛ2Y22e

−τΛ2QT2 , where Λ2 contains the ¯̀ eigenvalues closest to the origin, and the
columns of Q2 constitute the associated invariant subspace basis; Y22 is the solution of a
reduced Lyapunov equation.

Depending on the eigenvalue distribution, Proposition 3.2.5 shows that a good approxi-
mation may be obtained by using only few of the eigenvectors of A, where however ¯̀ is not
known a priori. Moreover, the computation of ¯̀ eigenpairs of a large matrix, though SPD
and banded, may be too expensive. We thus propose to employ a Krylov subspace type pro-
cedure to capture information on the relevant portion of the eigendecomposition of A. More
precisely, let Km(A−1, v) ∶= Range([v,A−1v, . . . ,A−m+1v]) where v ∈ Rn is a random vector
with unit norm, let the columns of Vm = [v1, . . . , vm] ∈ Rn×m, m ≪ n, be an orthonormal
basis of Km(A−1, v) and Km = V TmAVm. If Vm is such that e−τA ≈ Vme

−τKmV Tm , then we
approximate

e−τAXe−τA ≈ Vm (e−τKm (V TmXVm) e−τKm)V Tm . (3.2.14)

The use of A−1 in the definition of the Krylov subspace Km(A−1, v) is geared towards a fast
approximation of the smallest eigenvalues of A and the associated eigenvectors, particularly
suitable for the approximation of the exponential [107]. We observe that e−τAXe−τA solves
the Lyapunov equation

Ae−τAXe−τA + e−τAXe−τAA − e−τACe−τA = 0.
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Substituting the approximation in (3.2.14) we can define the following residual matrix

Rm = AVme
−τKm(V TmXVm)e−τKmV Tm + Vme

−τKm(V TmXVm)e−τKmV TmA

−Vme
−τKm(V TmCVm)e−τKmV Tm .

To complete the approximation, we need to replace V TmXVm with some easily computable
quantity Zm ≈ V TmXVm, so that the final approximation will be

e−τAXe−τA ≈ Vm (e−τKmZme
−τKm)V Tm .

To this end, we get inspired by the projection methods procedure presented in Section 2.1
and we impose the standard matrix Galerkin condition on the residual matrix Rm, that is
V TmRmVm = 0. Explicitly writing all terms in this matrix equation leads to the solution of
the following m ×m Lyapunov equation

KmZm +ZmKm −Cm = 0, (3.2.15)

where Cm = V TmCVm. Note that the matrix exponential terms e−τKm simplify. For m ≪ n
equation (3.2.15) could be solved by decomposition-based methods such as the Bartels-
Stewart method [5], or its symmetric version, the Hammarling method [55]. We opt for
the explicit computation, since the eigendecomposition is also used to get the final matrix
Sm. Following the discussion in Section 2.2.1, if Km = ΠmΨmΠT

m, Ψm = diag(ψ1, . . . , ψm),
denotes the eigendecomposition of Km, equation (3.2.15) is equivalent to

ΨmẐm + ẐmΨm −ΠT
mCmΠm = 0, (3.2.16)

where Ẑm = ΠT
mZmΠm. Since Ψm is diagonal, we can write (Ẑm)

i,j
=
(ΠTmCmΠm)i,j

ψi+ψj . With

Ẑm at hand, and with its eigendecomposition being Ẑm =WΘWT , we can set

Sm ∶= Vm (Πme
−τΨmWΘ1/2) , so that e−τAXe−τA ≈ SmS

T
m. (3.2.17)

A rank reduction of Sm can be performed if some of the diagonal elements of Θ1/2 fall
below a certain tolerance, so that the corresponding columns can be dropped. This post-
processing gives rise to a thinner matrix Sm, with fewer than m columns.

Assume that the matrix XB in (3.2.11) has been already computed. Then the space
Km(A−1, v) is expanded until the residual norm of the original problem

∥R∥F ∶= ∥A(XB + SmS
T
m) + (XB + SmS

T
m)A −C∥F ,

is sufficiently small. Exploiting the sparsity of XB and the low-rank property of SmS
T
m,

the quantity ∥R∥F can be computed in O(sn) flops, where s = rank(Sm), without the
construction of the large and dense matrix R. See Section 3.2.4 for more details. The overall
procedure is summarized in Algorithm 3.3.

The two-step procedure for the approximation of X provides a threshold for the final
attainable accuracy, and in particular for ∥R∥F . Indeed, assume that XB ≠X(τ). Then the
final residual cannot go below the discrepancy X(τ) −XB even if the low rank portion of
the solution is more accurate. Indeed,

R = A(XB + SmS
T
m) + (XB + SmS

T
m)A −C

= A(XB −X(τ)) + (XB −X(τ))A
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

+A(X(τ) + SmS
T
m) + (X(τ) + SmS

T
m)A −C

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
.
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3. Sylvester and Lyapunov equations with banded symmetric data

Algorithm 3.3: Iterative approximation of e−τAXe−τA.

input : A ∈ Rn×n, A SPD., C,XB ∈ Rn×n, v ∈ Rn, τ, εres, εit > 0, mmax ∈ N
output: Sm, ∈ Rn×s, s≪ n, such that SmS

T
m ≈ e−τAXe−τA

1 Set µ = ∥C∥F

2 Compute the Cholesky factorization A = LLT

3 Set V1 = v/∥v∥
for m = 1,2, . . . until convergence do

4 Expand Km = V TmAVm, Cm = V TmCVm
5 Compute the eigendecomposition Km = ΠmΨmΠT

m

6 Solve ΨmẐm + ẐmΨm −ΠT
mCmΠm = 0

7 Compute the eigendecomposition Ẑm =WΘWT

8 Set Sm ∶= Vm (Πme
−τΨmWΘ1/2) and reduce columns if desired

9 Compute ∥R∥F /∥C∥F
10 if ∥R∥F /∥C∥F < εres or ∣∥R∥F − µ∣/∥R∥F < εit or m >mmax then
11 Stop

end

12 v̂ = L−TL−1vm
13 ṽ ← Orthogonalize v̂ w.r.t. Vm
14 Set vm+1 = ṽ/∥ṽ∥ and Vm+1 = [Vm, vm+1]

15 Set µ = ∥R∥F

end

The quantity Rideal = A(X(τ)+SmS
T
m)+(X(τ)+SmS

T
m)A−C is the ideal (non-computable)

residual one would obtain if the banded part were computed exactly. Therefore, R differs
from this ideal residual by the quantity A(XB −X(τ)) + (XB −X(τ))A. In particular,

∥R −Rideal∥F = ∥A(XB −X(τ)) + (XB −X(τ))A∥F ≤ 2 ∥A∥F ∥XB −X(τ)∥F

and
∣∥R∥F − ∥Rideal∥F ∣ ≤ 2 ∥A∥F ∥XB −X(τ)∥F .

Therefore, even if SmS
T
m is accurate, ∥R∥F may stagnate at the level of ∥XB −X(τ)∥F . To

limit this stagnation effect, we include a stopping criterion that avoids iterating when the
residual stops decreasing significantly, and in all our numerical experiments we set εit = εquad,
where εquad is related to the accuracy of XB .

3.2.4 Implementation details for computing the low rank part of
the solution

We first notice that the update of the matrices Km = V TmAVm, Cm = V TmCVm in line 4 of
Algorithm 3.3 only requires the addition of one extra column and row at each iteration.
Moreover, for the sake of robustness we perform a full basis orthogonalization at step 13,
though in exact arithmetic this would be ensured by the symmetry of A. Alternative com-
putationally convenient strategies would include a selective orthogonalization [84].

The computational core of Algorithm 3.3 is the residual norm calculation in line 9. The
sparsity of XB and the low rank of Sm allow for a cheap evaluation of ∥R∥F without the
explicit computation of the dense and large R. To this end, we first write down a quite
standard Arnoldi-type relation for A holding for the space Km(A−1, v).
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3. Sylvester and Lyapunov equations with banded symmetric data

Lemma 3.2.6. For v ∈ Rn, v ≠ 0, let the columns of Vm be an orthonormal basis of
Km(A−1, v) generated by the Arnoldi method, so that A−1Vm = VmHm + vm+1hm+1,me

T
m.

Let η = ∥(I − VmV
T
m )Avm+1∥ and v̂ = (I − VmV

T
m )Avm+1/η. Then

AVm = [Vm, v̂]Gm, with Gm = [
Im V TmAvm+1

0 η
] [

H−1
m

−hm+1,me
T
mH

−1
m

] ∈ R(m+1)×m.

Proof. Consider the Arnoldi relation A−1Vm = Vm+1Hm = VmHm + vm+1hm+1,me
T
m, where

Hm ∈ R(m+1)×m, (Hm)i,j = hi,j , collects the orthogonalization coefficients stemming from the
Arnoldi procedure in lines 12–14 in Algorithm 3.3. Premultiplying by A and postmultiplying
by H−1

m we get

AVm = VmH
−1
m −Avm+1hm+1,me

T
mH

−1
m = [Vm,Avm+1] [

H−1
m

−hm+1,me
T
mH

−1
m

] .

Let η v̂ ∶= Avm+1 − VmV
T
mAvm+1 where η = ∥Avm+1 − VmV

T
mAvm+1∥2. Then

Avm+1 = η v̂ + VmV
T
mAvm+1 = [Vm, v̂] [

V TmAvm+1

η
] ,

so that

AVm = [Vm,Avm+1] [
H−1
m

−hm+1,me
T
mH

−1
m

]

= [Vm, v̂] [
Im V TmAvm+1

0 η
] [

H−1
m

−hm+1,me
T
mH

−1
m

] = [Vm, v̂]Gm,

where Gm ∈ R(m+1)×(m+1) and Wm ∶= [Vm, v̂] has orthonormal columns by construction.

Proposition 3.2.7. With the notation of Lemma 3.2.6, let Wm = [Vm, v̂] and Sm = Vm (Πme
−τΨmWΘ1/2) =∶

Vm∆m. Moreover, let RB = AXB +XBA −C and γ = ∥RB∥F . Then

∥R∥
2
= γ2

+ ∥Jm∥
2
F + 2 trace (Jm (WT

mRBWm)) ,

where Jm = [
Im
0

Gm] [
0 ∆m∆T

m

∆m∆T
m 0

] [
Im
0

Gm]

T

∈ R(m+1)×(m+1).

Proof. Recalling that ∥G +H∥2
F = ∥G∥2

F + ∥H∥2
F + 2⟨G,H⟩F , it holds

∥R∥2
F = ∥A(XB + SmS

T
m) + (XB + SmS

T
m)A −C∥2

F

= ∥ASmS
T
m + SmS

T
mA∥2

F + ∥AXB +XBA −C∥2
F

+2⟨ASmS
T
m + SmS

T
mA,AXB +XBA −C⟩F .

The banded matrix RB = AXB +XBA − C and its Frobenius norm can be computed once
for all at the beginning of Algorithm 3.3. The computation of the additional two terms
can be cheaply carried out in O(sn) flops. We first focus on the matrix ASmS

T
m + SmS

T
mA.

Denoting ∆m ∶= Πme
−τΨmWΘ1/2, we have

ASmS
T
m + SmS

T
mA = [Vm,AVm] [

0 ∆m∆T
m

∆m∆T
m 0

] [
V Tm
V TmA

] . (3.2.18)
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Using Lemma 3.2.6 we have

ASmS
T
m + SmS

T
mA =Wm [

Im
0

Gm] [
0 ∆m∆T

m

∆m∆T
m 0

] [
Im
0

Gm]

T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Jm

WT
m,

so that
∥ASmS

T
m + SmS

T
mA∥

2
F = ∥Jm∥

2
F ,

and only matrices of order (at most) m + 1 are involved in the computation of this norm.
Concerning the computation of ⟨ASmS

T
m + SmS

T
mA,AXB +XBA −C⟩F we have

⟨ASmS
T
m + SmS

T
mA,RB⟩F = trace(WmJmW

T
mRB) = trace(JmW

T
mRBWm),

and, similarly to Km and Cm, the matrix WT
mRBWm ∈ R(m+1)×(m+1) requires only the two

matrix-vector products WT
mRB[vm, v̂] to be updated at each iteration.

Although the computation of the residual norm costs O(sn) flops at each iteration, lines
9–11 still remain among the most expensive steps of the overall procedure for solving (3.0.1)
and they are thus performed periodically, say every d iterations.

3.2.5 Complete numerical procedure and the choice of τ

The algorithm we propose, hereafter called lyap banded, approximates the solution X to
(3.0.1) as X ≈ XB + SmS

T
m where XB is banded and Sm is low rank. It is important to

realize that unless τ → +∞, the entries of SmS
T
m contribute in a significant way towards the

solution, and in particular to the nonzero entries of the leading banded part of X. Indeed,
even assuming that XB is exact, that is XB =X(τ), we obtain

e−2τλmax(A) ≤
∥X −XB∥

∥X∥
≤ e−2τλmin(A), (3.2.19)

since ∥X −XB∥ = ∥e−τAXe−τA∥ ≤ ∥e−τA∥2∥X∥ = e−2τλmin(A)∥X∥, and ∥e−τAXe−τA∥ ≥ ∥X∥
∥eτA∥2 =

e−2τλmax(A)∥X∥.
The performance of lyap banded crucially depends on the choice of τ . Indeed, a large

τ corresponds to a wider bandwidth of X(τ) and thus to a possibly too wide βXB . On
the other hand, Corollary 3.2.5 says that e−τAXe−τA is numerically low rank if τ → +∞.
Therefore, if the selected value of τ is too small then the numerical rank of e−τAXe−τA may
be so large that an accurate low rank approximation is hard to determine; see Table 3.5 in
Section 3.3. A trade-off between the bandwidth of XB and the rank of Sm has to be sought.
To make the action of e−τA scaling-independent, and without loss of generality, equation
(3.0.1) can be scaled by 1/λmin(A), and this is done in all our experiments. This seemed to
also speed-up the computation of the adaptive quadrature formula.

To automatically compute a suitable value of τ we proceed as follows. Intuitively, we fix
a maximum value for βXB and compute the corresponding τ by using the decay estimate of
Theorem 3.2.2 applied to X(τ). If X(τ) is approximated by the Gauss-Lobatto quadrature
formula (3.2.6), the decay in its off-diagonal entries can be estimated by that of e−τACe−τA

(for i = `, xi = 1 and ti = τ in (3.2.6)). Note that according to Theorem 3.2.2, the entries of
e−τA contribute the most to the bandwidth of e−tA, t ∈ [0, τ] away from the main diagonal,
and thus to the right-hand side of (3.2.6). In addition, following the discussion at the

50



3. Sylvester and Lyapunov equations with banded symmetric data

beginning of Section 3.2, the multiplication by C does not seem to dramatically influence
the final bandwidth of e−τACe−τA. Let us thus focus on the first column of e−τA. To
apply Theorem 3.2.2 to e−τA we fix a value βmax ∈ N and define ξ̄ ∶= ⌈∣βmax − 1∣/βA⌉. For�

ρ = (λmax(A) − λmin(A))/4 and
√

4ρτ ≤ ξ̄ ≤ 2ρτ , we have

∣(e−τA)βmax,1∣ ≤ e−τλmin(A)∣(e−τ(A−λmin(A)I))βmax,1∣ ≤ 10 e−
ξ̄2

5ρτ e−τλmin(A). (3.2.20)

Similarly, for ξ̄ ≥ 2ρτ ,

∣(e−τA)βmax,1∣ ≤ 10
e−ρτ

ρτ
(
eρτ

ξ̄
)

ξ̄

e−τλmin(A). (3.2.21)

Our aim is to estimate for which τ the quantity ∣(e−τA)βmax,1∣ is not negligible while the
components from βmax + 1 up to n in the same column can be considered as tiny. Since we
would like to have a reasonably large value of τ while maintaining βmax moderate, we only
consider the bound (3.2.20) in our strategy. Indeed, (3.2.21) requires ξ̄ ≥ 2ρτ , that is a very
large βmax, to obtain a sizable value of τ . Fixing a threshold ετ , we can compute τ as

τopt = argmin{t ≥ 0 s.t. ∣(e−tA)βmax,1∣ ≥ ετ}. (3.2.22)

In [18] it has been shown that the bounds in Theorem 3.2.2 are rather sharp, leading to
correspondingly sharp bounds (3.2.20)–(3.2.21). This allows us to save computational costs
by replacing (3.2.22) with

τ ∶= argmin{t ≥ 0 s.t. 10 e−
ξ̄2

5ρt e−tλmin(A) ≥ ετ} ≈ τopt,

and a direct computation shows that

τ =
1

10ρλmin(A)
(−5ρ log(ετ /10) −

√

25ρ2 log2
(ετ /10) − 20ρλmin(A)ξ̄2) . (3.2.23)

To clarify the discussion, let us consider the vector-valued function f ∶ R → Rn, fi(t) ∶=

10 e−
ξ2i
5ρt e−tλmin(A), ξi = ⌈∣i − 1∣/βA⌉, i = 1, . . . , n. Choosing τ as in (3.2.23) ensures that

fξ̄+1(τ) ≥ ετ whereas fξ̄+1+k(τ) < ετ , k > 0, so that also ∣(e−τA)ξ̄+1+k,1∣ < ετ . A graphical
description is provided in the following Example 3.2.1.

t = t1 t = τ
fξ̄(t) 1.27 ⋅ 10−4 1.74 ⋅ 10−5

fξ̄+1(t) 7.95 ⋅ 10−5 1 ⋅ 10−5

fξ̄+2(t) 4.90 ⋅ 10−5 5.66 ⋅ 10−6

Table 3.2: Example 3.2.1. Values of fξ̄+k(t), k = 0,1,2, t = t1, τ .

Example 3.2.1. Consider A = L/λmin(L) where L = tridiag(−1,2,−1) ∈ Rn×n, n = 200.
Figure 3.2 displays the function f for different values of t and for τ computed by (3.2.23)
where ετ = 10−5 and βmax = 50. The range of the y-axis is restricted to [10−15,102] so as
to better appreciate the trend of the largest entries of f(t). Since βmax = 50 and βA = 1,

�We recall that for the scaled problem, λmin(A) = 1, however for the sake of generality we prefer not to
substitute its value.
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τ = 0.0088

Figure 3.2: f(t) for different values of t and n = 200.

it holds that ξ̄ = 49. For t = t1, fξ̄+1(t1) = 1.11 ⋅ 10−50 < ετ so that t1 is not a useful value
for our purpose. On the other hand, for t = t3, fξ̄+1(t3) = 2.79 ≥ ετ but also many of the
subsequent values satisfy fξ̄+1+k(t3) ≥ ετ . This may lead to an undesired large bandwidth

when the rational approximation to e−t3A is actually computed. We obtain a similar behavior
for f(t) when t = t2, τ , but only for t = τ we have that fξ̄+1(τ) ≥ ετ , whereas it holds that
fξ̄+1+k(τ) < ετ , as illustrated in Table 3.2.

The overall procedure for solving (3.0.1) is summarized in the following algorithm.

lyap banded: Numerical approximation X ≈XB + SmS
T
m.

Input : A ∈ Rn×n, A SPD, C ∈ Rn×n, βmax, ν,mmax ∈ N, ετ , εB , εquad, εRes
Output: XB ∈ Rn×n, Sm ∈ Rn×s, s≪ n

1 Compute τ by (3.2.23)
2 Compute XB by Algorithm 3.2
3 Compute Sm by Algorithm 3.3

Notice that approximations to the extreme eigenvalues of A are necessary to be able
to compute τ via (3.2.23). In all our numerical examples, approximations to λmin(A) and
λmax(A) were obtained by means of the Matlab function eigs.

3.2.6 Numerical solution of the Sylvester equation

The procedure proposed in the previous Sections can be extended to the case of the Sylvester
equation,

AX +XB −C = 0, (3.2.24)
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with A ∈ RnA×nA , B ∈ RnB×nB banded and SPD, and C ∈ RnA×nB banded. For ease of
presentation we consider the case n = nA = nB , while different nA, nB could be considered as
well. Once again, the selection of which numerical procedure should be used between those
discussed in the previous Sections depends on κ(A), where here A = B ⊗ I + I ⊗A. In this
case, κ(A) = (λmax(A) + λmax(B))/(λmin(A) + λmin(B)), therefore the magnitude of κ(A)

depends on the relative size of the extreme eigenvalues of A and B.
If A is well-conditioned, Algorithm 3.1 can be applied with straightforward modifications

in lines 1 and 2. Notice that, even if C is symmetric, none of the cg iterates is symmetric so
that the memory-saving strategies and computational tricks discussed in Section 3.1 cannot
be applied. Nevertheless, the bandwidth of the iterates still grows linearly with the number
of iterations.

Proposition 3.2.8. If X0 = 0, all the iterates generated by cg applied to equation (3.2.24)
are banded matrices and, in particular,

βWk
≤ kmax(βA, βB) + βC , βXk ≤ (k − 1)max(βA, βB) + βC ,

βRk ≤ kmax(βA, βB) + βC , βPk ≤ kmax(βA, βB) + βC .

Proof. The same arguments of the proof of Theorem 3.1.3 can be applied noticing that the
bandwidth of the matrix Wk = APk + PkB is such that βWk

≤ max(βA, βB) + βPk .

If A is ill conditioned, Algorithm lyap banded can be generalized to handle the new
setting. The solution X can be written as (see, e.g., Chapter 1)

X = ∫

+∞

0
e−tACe−tBdt = ∫

τ

0
e−tACe−tBdt + ∫

+∞

τ
e−tACe−tBdt. (3.2.25)

A procedure similar to Algorithm 3.2 can be applied to approximate the first integral.
Clearly, the presence of two different matrix exponentials increases the computational cost
of the method as two approximations R̂ν(tiA), R̂ν(tiB) have to computed at each node.

To approximate the second integral addend in (3.2.25) we can generalize Algorithm 3.3.
Taking into account the presence of two coefficient matrices, a left and a right space need to
be constructed, namely Km(A−1, v), Km(B−1,w), as it is customary in projection methods
for Sylvester equations. See Section 2.1.1.

The choice of τ may be less straightforward in case of (3.2.24). If A and B have similar
condition numbers, we suggest to still compute τ by (3.2.23) but replacing λmin(A) by
λmin(D), where D is the matrix with the widest bandwidth** between A and B.

3.3 Numerical examples

In this section we present numerical experiments illustrating the effectiveness of the method
lyap banded. All results were obtained with Matlab R2015a on a Dell machine with two
2GHz processors and 128 GB of RAM. All reported experiments use the parameter settings
in Table 3.3.

**Also the computation of ρ in (3.2.23) will change accordingly.
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εres = 10−3 relative residual stopping tol (cg, lyap banded)
mmax = 2000 max number of iterations (cg, lyap banded)
(ετ , βmax) = (10−5,500) setting for the computation of τ in lyap banded
(ν, εB , εquad) = (7,10−7,10−5) truncation and approximation parameters for XB

Table 3.3: Parameter settings.

Example 3.3.1. We consider the symmetric tridiagonal matrix A ∈ Rn×n (thus βA = 1)
stemming from the discretization by centered finite differences of the 1D differential operator

Lu = −
1

γ
(exux)x + γu,

on [0,1] with zero Dirichlet boundary conditions. The matrix A is asymptotically ill-
conditioned due to the second order term of the operator, and κ(A) grows with n. The
parameter γ ∈ R is used to vary the condition number of A. The right-hand side C of (3.0.1)
is a diagonal matrix (thus βC = 0) with random diagonal entries. We run lyap banded
for different values of n and κ(A) and compare its performance with that of Algorithm 3.1.
In lyap banded the parameter τ is computed with the parameters set in Table 3.3. The
relative residual norm ∥R∥F /∥C∥F is computed every d = 10 iterations. Table 3.4 collects
the results as n and γ vary.

n γ κ(A) cg (Algorithm 3.1) lyap banded
Its. βX Time Res. τ βXB s Time Res.

4 ⋅ 104 1000 6.61e3 290 289 3.77e2 9.87e-4 2.73 488 7 1.75e3 3.64e-4
500 2.68e4 583 582 1.57e3 9.92e-4 0.56 578 340 1.94e3 9.73e-4
200 1.72e5 1475 1474 1.09e4 9.99e-4 0.08 594 366 1.97e3 9.42e-4

7 ⋅ 104 1800 6.19e3 281 280 6.20e2 9.82e-4 2.98 474 7 3.06e3 2.94e-4
1000 2.02e4 507 506 2.02e3 9.89e-4 0.76 572 576 3.95e3 9.75e-4
400 1.29e5 1277 1276 1.41e4 9.98e-4 0.11 592 624 4.16e3 9.92e-4

105 2500 6.53e3 288 287 9.11e2 9.94e-4 2.77 486 7 4.40e3 3.17e-4
1500 1.82e4 481 480 2.56e3 9.96e-4 0.84 570 812 6.77e3 9.73e-4
500 1.67e5 1456 1455 2.65e4 9.96e-4 0.08 594 892 7.15e3 9.87e-4

Table 3.4: Example 3.3.1. Results for different values of n and γ. s = rank(Sm). Time is
CPU time in seconds.

Algorithm 3.1 is very effective up to κ(A) ≈ O(104), while for the same κ(A) lyap banded
is rather expensive in terms of CPU time compared to cg. The role of the two methods is
reversed for κ(A) = O(105). In this case, cg takes very many iterations to meet the stopping
criterion; the costs of lyap banded grow far less dramatically, making the method compet-
itive, both in terms of CPU time and storage demand. The bandwidth obtained by cg is
lower than that obtained by the banded portion in lyap banded for the smaller conditions
numbers, while the situation is reversed for the largest value of κ(A).

Regarding lyap banded, we notice that for fixed n both βXB and rank(Sm) grow with
κ(A). In particular, rank(Sm) is consistently much lower for the first value of γ than for
the other ones. This can be explained by noticing the quite different value of τ taken as γ
varies. This dramatically influences the exponential exp(−2τ), and thus the expected error
bound for the banded part of the approximation. For instance, for n = 4 ⋅ 104 we obtain

τ = 2.73, exp(−2τ) = 4.3 ⋅ 10−3

54



3. Sylvester and Lyapunov equations with banded symmetric data

τ = 0.56, exp(−2τ) = 3.2 ⋅ 10−1

τ = 0.08, exp(−2τ) = 8.5 ⋅ 10−1

Taking into account the error upper bound in (3.2.19), we have ∥X −XB∥ ≤ ∥X −X(τ)∥+
∥X(τ) −XB∥ ≤ e−2τ∥X∥ + ∥X(τ) −XB∥. Therefore, if XB is a good approximation to X(τ),
the leading term in the bound is e−2τ∥X∥. For τ = 2.73, the small value of e−2τ shows that
the banded part XB is already a good approximation to the final solution, so that a very
low rank Sm is sufficient to finalize the procedure. This is not the case for the other values
of τ .

For similar values of κ(A), only rank(Sm) is affected by an increment in the problem size.
This phenomenon is associated with the strategy we adopt for choosing τ . Indeed, a fixed
value βmax is employed and τ is computed according to (3.2.23); this way τ only depends on
the (rescaled) extreme eigenvalues of A, whose magnitude is similar for comparable κ(A).
Since the n eigenvalues of A seem to spread quite evenly in the interval [1, κ(A)] the number
¯̀ of eigenvectors required to get an equally accurate low-rank matrix XL in Corollary 3.2.5
increases with n.

We next set n = 40000, γ = 500. All the other parameters are as before. We vary τ to
study how its choice affects the performance of the algorithm. The reference value of τ (first
line in Table 3.5) is obtained with the default values of the parameters, as in Table 3.3, and
with the automatic procedure of Section 3.2.5. All the other values of τ are selected as 10j ,
j = −2, . . . ,1.

τ βXB rank(Sm) Time Res.
0.56 578 340 1.94e3 9.73e-4
0.01 92 1894 4.46e3 1.14e-2
0.1 270 861 1.52e3 9.81e-4

1 720 270 2.74e3 9.75e-4
10 878 213 5.78e3 1.49e-3

Table 3.5: Example 3.3.1. Results for different values of τ .

As expected, a small τ leads to a very tight bandwidth of XB but a too large rank
of Sm. On the other hand, a very large τ causes an increment in the bandwidth of XB

while a very low-rank Sm is computed. Notice that a proper value of τ is essential also
in terms of accuracy of the numerical solution. Indeed, for τ = 0.01, Algorithm 3.3 stops
because the maximum number of iterations mmax = 2000 is reached, while for τ = 10 a too
small residual norm reduction causes a stagnation flag. Good performance is obtained for
τ = 0.1,1, although both values lead to larger memory requirements than those obtained
with τ computed by (3.2.23).

Example 3.3.2. We consider the matrix A ∈ Rn×n stemming from the discretization by
centered finite differences of the 1D differential operator

L(u) = −uxx + γ log(10(x + 1))u,

on Ω = (0,1) with zero Dirichlet boundary conditions and γ > 0. If Ω is discretized by n
nodes (x1, . . . , xn), we have

A = −
(n − 1)2

12
pentadiag(−1,16,−30,16,−1) + γdiag(χ1, . . . , χn), χj = log(10(xj + 1)),
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3. Sylvester and Lyapunov equations with banded symmetric data

where four neighboring points were used for each grid node. As in the previous example, the
matrix A is asymptotically ill-conditioned and γ is chosen to control its condition number,
so that A = A(γ). The right-hand side C of (3.0.1) is a symmetric tridiagonal matrix with
random entries and unit Frobenius norm. Both A and C are banded, with βA = 2 and βC = 1.

n γ κ(A) τ Time XB (βXB ) Time Sm (s) Time Tot. Res.

4 ⋅ 104 5000 7.00e5 2.07e-2 2.69e3 (522) 2.54e2 (431) 2.95e3 9.39e-4
800 4.20e6 3.45e-3 2.77e3 (522) 2.68e2 (431) 3.04e3 9.49e-4
300 1.08e7 1.32e-3 2.54e3 (522) 2.58e2 (430) 2.79e3 9.61e-4

7 ⋅ 104 15000 7.27e5 1.99e-2 4.69e3 (522) 1.25e3 (736) 5.94e3 9.88e-4
2000 5.27e6 2.78e-3 5.05e3 (522) 1.42e3 (735) 6.47e3 9.99e-4
800 1.28e7 1.16e-3 4.85e3 (522) 1.34e3 (735) 6.19e3 9.97e-4

105 50000 4.51e5 3.22e-2 6.61e3 (522) 3.61e3 (1049) 1.02e4 9.85e-4
5000 4.38e6 3.34e-3 6.87e3 (522) 3.57e3 (1049) 1.04e4 9.94e-4
200 6.78e7 2.13e-4 7.15e3 (522) 3.64e3 (1046) 1.08e4 9.99e-4

Table 3.6: Example 3.3.2. Results for different values of n and γ. The timings reported are
in seconds. s = rank(Sm).

We solve this problem only by lyap banded as the large n’s and the moderate values
of γ we considered lead to sizeable values of κ(A). All the thresholds and parameters of the
procedure are set as in Table 3.4. In Table 3.6 we collect the results as n and γ vary. We
also report the CPU time devoted to the computation of XB and Sm respectively.

We notice that in this example, the fixed value βmax leads to a constant βXB for all
the tested n’s. Moreover, for a given n, also the rank of the computed Sm turns out to be
almost independent of κ(A). This can be intuitively explained by referring to Figure 3.3,
where the values of exp(−τλj) above 10−8 are plotted for three automatic selections of τ -
as the operator parameter γ changes - and for the smallest eigenvalues of A. The legend
also gives the number of values above the threshold, for the given τ . Both the distribution
and the number of eigenvalues of A = A(γ) giving an exponential above the threshold 10−8

are approximately the same for all selections of τ , showing that the automatic selection of τ
well adapts to the change in the spectrum given by the different γ’s.

3.4 Closing considerations

The numerical solution of large-scale Lyapunov equations with non low-rank right-hand side
is a very challenging task. In this Chapter we have faced the case of banded symmetric data
and positive definite coefficient matrix A.

In case of well-conditioned A, the numerical solution can be satisfactorily approximated
by a banded matrix, so that the matrix-oriented cg method has been shown to be a valid
candidate for its computation.

If the coefficient matrix is ill-conditioned, no banded good approximation can be deter-
mined in general. However, we showed that the solution X can be represented in terms of
the splitting XB + SmS

T
m, with XB banded and Sm low-rank, and an efficient procedure for

computing the pair (XB , Sm) was presented. Our preliminary numerical results show that
the new method is able to compute a quite accurate approximate solution, and that the
tuning of the required parameters is not too troublesome.

Both the derivation and the algorithm were extended to the case of Sylvester equations
with banded symmetric data and positive definite coefficient matrices.
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Figure 3.3: Values of exp(−τkλj) above the threshold 10−8. Larger eigenvalues of A con-
tribute very little to the value of the exponential.
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Chapter 4

Sylvester and Lyapunov
equations with quasiseparable
symmetric data

In this Chapter we consider equations with a very general structure in their data. In partic-
ular, we are interested in Sylvester equations of the form

AX +XB −C = 0, (4.0.1)

where A,B,C ∈ Rn×n are rank-structured and A, B are SPD. More precisely, we assume that
the matrices A, B and C are quasiseparable. Informally, a matrix is said to be quasiseparable
if its off-diagonal blocks are low-rank matrices, and the quasiseparable rank is defined as the
maximum of the ranks of the off-diagonal blocks. Therefore, the structures in the equations
studied in the previous Chapters, that is a (standard) low-rank right-hand side or banded
data, can be viewed as particular instances of the more general quasiseparable framework.

We say that a matrix is numerically quasiseparable when the above property holds only
up to a certain ε, i.e., only few singular values of each off-diagonal block are above a certain
threshold. In this sense, the quasiseparability is often numerically present in X when we have
it in A, B and C, so that a low memory requirement is demanded for storing the solution.

A simple yet meaningful example arises from the context of PDEs: consider the differen-
tial equation

⎧⎪⎪
⎨
⎪⎪⎩

−uxx − uyy = log (τ + ∣x − y∣) , (x, y) ∈ Ω,

u(x, y) ≡ 0, (x, y) ∈ ∂Ω,
(4.0.2)

where Ω = [0,1]2 and τ > 0. The discretization by centered finite differences of equation
(4.0.2) with n nodes in each direction, (xi, yj), i, j = 1, . . . , n, yields the following Lyapunov
equation

AX +XA −C = 0, A,C ∈ Rn×n,

Ci,j = log (τ + ∣xi − yj ∣) ,

h ∶= 1
n−1

,

A =
1

h2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1
−1 2 −1

⋱ ⋱ ⋱

−1 2 −1
−1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Since A is banded it is quasiseparable, but also C shares this property. This is due to the
presence of the modulus function that is not regular in the whole domain but it is analytic
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Figure 4.1: On the left, maximum numerical ranks of the off-diagonal blocks of C for different
values of τ and n = 300, using a threshold of 10−14 for truncation. On the right, singular
values of YC ∶= C(n

2
+ 1 ∶ n,1 ∶ n

2
) and YX ∶=X(n

2
+ 1 ∶ n,1 ∶ n

2
) rescaled by the 2-norm of the

two blocks respectively for τ = 10−4. The black dashed line indicates the machine precision
2.22 ⋅ 10−16.

when the sign of x − y is constant. This happens in the sub-domains corresponding to
the off-diagonal blocks. Separable approximation (and thus low-rank) can be obtained by
expanding the source log(τ + ∣x+ y∣) in the Chebyshev basis. In Figure 4.1 (on the right) we
have reported the decay of the singular values of one off-diagonal block of C and X for the
case of τ = 10−4 and n = 300. In this case the numerical quasiseparable rank of the right-hand
side C and the solution X does not exceed 20 and 30, respectively. This property holds for
any τ > 0: in Figure 4.1 (on the left) we have checked the quasiseparable rank of the matrix
C for various values of τ , and one can see that it is uniformly bounded. The rank is higher
when τ is small, because the function is “less regular”, and tends to 1 as τ → ∞, because
the off-diagonal blocks tend to a constant in this case.

The problem of solving linear matrix equations whose coefficients are represented as H-
matrices has already been addressed in [47, 48]. Recently, in [21, 23] the use of hierarchical
matrices in the cyclic reduction iteration for solving quadratic matrix equations has been
deeply studied. We will exploit the framework ofH-matrices to store quasiseparable matrices
and to perform matrix operations at an almost linear cost (up to logarithmic factors).

From a computational point of view, we compare the use of Hierarchical matrices in the
matrix sign iteration [91], and in the estimation of the integral formula (3.2.25).

The representation of the solution X by means of the integral formula (3.2.25) has been
used in [47] as a theoretical tool to estimate the quasiseparable rank of the solution, but the
derived bounds may be very pessimistic, and are linked with the convergence of the integral
formula, which cannot be easily made explicit. We improve these estimates by developing a
theoretical analysis which relies on some recent results [9], exploited also in [21], where the
numerical rank of the solution X is determined by estimating the exponential decay in the
singular values of its off-diagonal blocks.

The results that follow are presented in [77] where further analysis and numerical exper-
iments are also discussed.
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4. Sylvester and Lyapunov equations with quasiseparable symmetric data

4.1 Quasiseparable structure in the solution

The main purpose of this section is to prove that, under some reasonable assumptions on
the spectrum of A and B, the solution X to the matrix equation (4.0.1) is numerically
quasiseparable if A, B and C are quasiseparable.

4.1.1 Quasiseparability

The literature on quasiseparable (or semiseparable) matrices is rather large, and the term
is often used to denote slightly different objects. Therefore, we recall the definition of
quasiseparable matrices that we will use throughout this Chapter. We refer to [111, 110, 37,
109] and the references therein for a complete survey about quasiseparable and semiseparable
structures.

Definition 4.1.1. A matrix A is quasiseparable of order k if the maximum of the ranks of
all its submatrices contained in the strictly upper or lower part is exactly k.

Figure 4.2: Pictorial description of the quasiseparable structure; the off-diagonal blocks can
be represented as low-rank outer products.

Example 4.1.1. A banded matrix with bandwidth k is quasiseparable of order (at most)
k. In particular, diagonal matrices are quasiseparable of order 0, tridiagonal matrices are
quasiseparable of order 1, and so on.

Figure 4.3: Graphic description of the quasiseparability of banded matrices; in grey, the
nonzero entries.

4.1.2 Zolotarev problems and decay in the off-diagonal singular val-
ues

We are interested in exploiting the quasiseparable rank in numerical computations. In many
cases, the request of the exact preservation of a certain structure is too strong – and it cannot
be guaranteed. However, for computational purposes, we are satisfied if the property holds
in an approximate way, i.e., if our data are well-approximated by structured ones. This can
be rephrased by asking that the off-diagonal blocks of the solution X of (4.0.1) have a low
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4. Sylvester and Lyapunov equations with quasiseparable symmetric data

numerical rank. More precisely, given a generic off-diagonal block of the sought solution X,
we want to prove that only a limited number of its singular values are larger than ε ⋅ ∥X∥2,
where ε is a given threshold. This kind of analysis has been already carried out in [21, 23, 78]
for studying the numerical preservation of quasiseparability when solving quadratic matrix
equations and computing matrix functions. See also the Ph.D. thesis [76] for more details.

In order to formalize this approach, we extend a result on the singular values of the
solution to a Sylvester equation with a low-rank right hand-side. Altough by means of a
very different machinery, this result justifies the use of low-rank methods for equation (2.0.1),
similarly to the argument presented at the beginning of Chapter 2.

The former approach is based on an old problem considered by Zolotarev at the end of
the 19th century [118], which concerns rational approximation in the complex plane. The
following version can be found, along with the proof, in [9, Theorem 2.1] or in a similar form
in [21, Theorem 4.2].

Theorem 4.1.2. Let X be an n×n matrix that satisfies the relation AX+XB−C = 0, where
C is of rank k and A,B are normal matrices. Let E,F be two disjoint sets containing the
spectra of A and −B, respectively. Then, the following upper bound on the singular values of
X holds,

σ1+k`(X)

σ1(X)
≤ Z`(E,F ) ∶= inf

r(x)∈R`,`

maxx∈E ∣r(x)∣

miny∈F ∣r(y)∣
, ` ≥ 1,

where R`,` is the set of rational functions of degree at most (`, `).

Theorem 4.1.2 provides useful information only if one manages to choose the sets E and
F well separated. In general it is difficult to explicitly bound Z`(E,F ), but some results
exist for specific choices of domains, especially when E and F are real intervals; see, e.g.,
[50, 9]. The combination of these results with Theorem 4.1.2 proves the well-known fact that
a Sylvester equation with positive definite coefficients and with a low rank right-hand side
has a numerically low-rank solution.

Theorem 4.1.3. Let A,B be symmetric positive definite matrices with spectrum contained
in [a, b], 0 < a < b. Consider the Sylvester equation AX +XB − C = 0, with C of rank k.
Then the solution X satisfies

σ1+k`(X)

σ1(X)
≤ 4ρ−2`

where ρ = exp( π2

2µ( ba )
) and µ(⋅) is the Grötzsch ring function

µ(λ) ∶=
π

2

K(
√

1 − λ2)

K(λ)
, K(λ) ∶= ∫

1

0

1

(1 − t2)(1 − λ2t2)
dt.

Proof. Applying Theorem 4.1.2 with E = [a, b] and F = [−b,−a] we get

σ1+k`(X)

σ1(X)
≤ Z`(E,F ).

Using Corollary 3.2 in [9] for bounding Z`(E,F ) we get the claim.

Remark 4.1.4. A slightly weaker bound which does not involve elliptic functions is the
following [9]

Z`([a, b], [−b,−a]) ≤ 4ρ−2`, ρ = exp
⎛

⎝

π2

2 log (4 b
a
)

⎞

⎠
, 0 < a < b < ∞.
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It is easy to see that in case of Lyapunov equations with symmetric positive definite
coefficients we can replace the quantity b/a with the condition number of A.

Corollary 4.1.5. Let A be a symmetric positive definite matrix with condition number κ(A),
and consider the Lyapunov equation AX +XA −C = 0, with C of rank k. Then the solution
X satisfies

σ1+k`(X)

σ1(X)
≤ 4ρ−2`

where ρ = exp ( π2

2µ(κ(A))) and µ(⋅) is defined as in Lemma 4.1.3.

We are now interested in proving that the solution of a Sylvester equation with low-order
quasiseparable data is numerically quasiseparable. An analogous task has been addressed
in [47]. The approach developed by the authors can be used for estimating either the rank
of X in the case of a low-rank right-hand side or the rank of the off-diagonal blocks of
X when the coefficients are hierarchical matrices. In particular, it has been shown that
if the coefficients are efficiently represented by means of the hierarchical format then also
the solution shares this property. The estimates provided in [47] exploit the convergence of
a numerical integrating scheme for evaluating the closed integral formula (3.2.25). These
bounds are however quite implicit, and are more pessimistic than the estimates provided in
[86], and in [102] for the case of a low-rank right hand-side (which is the setting where all
the previous results are applicable).

Here, we directly characterize the off-diagonal singular values of the solution applying
Theorem 4.1.2 block-wise.

Theorem 4.1.6. Let A and B be symmetric positive definite matrices of quasiseparable
rank kA and kB, respectively, and suppose that the spectra of A and B are both contained
in the interval [a, b]. Then, if X solves the Sylvester equation AX +XB −C = 0, with C of
quasiseparable rank kC , a generic off-diagonal block Y of X satisfies

σ1+k`(Y )

σ1(Y )
≤ 4ρ−2`,

where k ∶= kA + kB + kC , ρ = exp( π2

2µ( ba )
) and µ(⋅) is defined as in Lemma 4.1.3.

Proof. Consider the following block partitioning for the Sylvester equation

[
A11 A12

A21 A22
] [
X11 X12

X21 X22
] + [

X11 X12

X21 X22
] [
B11 B12

B21 B22
] − [

C11 C12

C21 C22
] = 0.

where the off-diagonal blocks — in each matrix — do not involve any elements of the main
diagonal and all the dimensions are compatible. Without loss of generality we can consider
the case Y = X21. Observe that, writing the above system block-wise we get the following
relation

A21X11 +A22X21 +X21B11 +X22B21 −C21 = 0.

In particular the block X21 solves the Sylvester equation

A22X21 +X21B11 − (C21 −A21X11 −X22B21) = 0,

in which the right-hand side has (standard) rank bounded by k. Since A22 and B11 are
principal submatrices of symmetric positive definite matrices, they are again symmetric
positive definite and such that κ(A22) ≤

b
a
, and κ(B11) ≤

b
a
. Therefore, using Lemma 4.1.3

we get the claim.
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Figure 4.4: Off-diagonal singular values in the solution X to (4.0.1) where C is a random
diagonal matrix and A = B = MMT with M bidiagonal matrix with ones on the main
diagonal and random elements – chosen in (0,1) – in the subdiagonal. The dimension of the
matrices is n × n with n = 300. The blue dots represent the most significant singular values
of the off-diagonal block X(n

2
+1 ∶ n,1 ∶ n

2
). The red squares represent the theoretical bound

given by Theorem 4.1.6.

In Figure 4.1.2 we compare the bound given in Theorem 4.1.6 with the off-diagonal
singular values of the solution. In this experiment the matrix C ∈ Rn×n, n = 300, is diagonal
with random entries and A = B = MMT where M ∈ Rn×n is bidiagonal with ones on the
main diagonal and random elements – chosen in (0,1) – in the subdiagonal. The theoretical
bound manages to describe the superlinear decay of the off-diagonal singular values. On
the other hand, there is a significant gap between this estimate and the real behavior of the
singular values. This is due to the fact that we are bounding the quantity Z`(E,F ) where
E and F are the convex hulls of Λ(A) and Λ(−B) respectively, instead of considering the
Zolotarev problem directly on the discrete spectra. This is done in order to find explicit
bounds but it can cause an overestimation as outlined in [8].

4.1.3 Preservation of the quasiseparable and banded structures

The results of the previous Section guarantee the presence of a numerical quasiseparable
structure in the solution X to (4.0.1) when the spectra of A and −B are well separated in
the sense of the Zolotarev problem.

In Chapter 3 we studied the preservation of the banded pattern and the banded plus low-
rank structure in the solution X in case of Lyapunov and Sylvester equations with banded,
thus quasiseparable, data. It is worth noticing that these results do not require the separation
property on the spectra of the coefficient matrices. This means that there are cases – not
covered by the results of Section 4.1.2 – where the quasiseparability is still preserved.

In order to validate this consideration we set up some experiments concerning the solution
to (4.0.1) varying the structure of the coefficients and of the right-hand side. In particular,
the features of the solution we are interested in are: the distribution of the singular values σ`
of the off-diagonal block X(n

2
+1 ∶ n,1 ∶ n

2
)�� and the decay in the magnitude of the elements

��Notice that, in order to obtain a good hierarchical representation of the given matrices, the same structure
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Figure 4.5: Test 1. We compute Xi ∈ Rn×n, n = 300, as the solution of AXi+XiA−Ci = 0 for
i = 1,2 respectively. A is symmetric and tridiagonal with eigenvalues in [0.2,+∞) (positive
definite and well-conditioned). C1 is tridiagonal symmetric while C2 is a dense random
symmetric quasiseparable matrix of rank 1.

∣(X)i,j ∣ getting far from the main diagonal. The latter quantity is represented with the
distribution of the maximum magnitude along the subdiagonal ` as ` varies from 1 to n. In
all the performed tests we set n = 300 and the solution X is computed by the Bartels-Stewart
algorithm [5].

Test 1: We compute Xi as the solution of AXi+XiA−C=0i for i = 1,2. The matrix A is chosen
symmetric tridiagonal with eigenvalues in [0.2,+∞), in particular A is positive definite
and well-conditioned. The right-hand side C1 is taken tridiagonal symmetric with
random entries while C2 is a random dense symmetric matrix with quasiseparable
rank 1. In the first case, Theorem 3.1.2 ensures that – numerically – the banded
structure is maintained in the solution and this is shown in Figure 4.1.3. Notice that
the decay in the off-diagonal singular values is much stronger than the decay in the
bandwidth so that, in this example, it is more advantageous to look at the solution
as a quasiseparable matrix instead of a banded one. Theorem 4.1.6 guarantees the
solution to be quasiseparable also in the second case whereas the banded structure is
completely lost.

Test 2: We compute the solution X of AX +XA −C = 0. We consider A = tridiag(−1,2,1) −
1.99 ⋅ I, so that it is indefinite and ill-conditioned, and we set C equal to a random
diagonal matrix. As highlighted in Figure 4.1.3, both the quasiseparable and the band
structure are not present in the solution X.

Test 3: We compute Xi as the solution of AXi +XiB −Ci = 0 for i = 1,2. The matrix A and
−B are chosen symmetric and tridiagonal with eigenvalues in [0.2,14] and [0.5,14], so

needs to be present also in the upper off-diagonal block, and in the smaller off-diagonal blocks obtained in
the recursion. Here we check just the larger off-diagonal block for simplicity; in the generic case, one may
expect the quasiseparable rank to be given by the rank of this block.
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Figure 4.6: Test 2. We compute the solution X of AX +XA−C = 0 and we analyze the off-
diagonal block X(n
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2
). A = tridiag(−1,2,1)−1.99 ⋅I (indefinite and ill-conditioned)

while C is a random diagonal matrix.
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Figure 4.7: Test 3. We compute Xi ∈ Rn×n, n = 300, as the solution of AXi −XiB −Ci = 0
for i = 1,2, respectively. A and B are symmetric and tridiagonal with eigenvalues in [0.2,14]
and [0.5,14] (well conditioned but without separation of the spectra). C1 is tridiagonal
symmetric while C2 is a dense random symmetric quasiseparable matrix of rank 1.
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Figure 4.8: Test 4. We compute the solution X ∈ Rn×n, n = 300, of AX + XA − C = 0.
A = tridiag(−1,2,1) (positive definite and ill-conditioned) while C is a random diagonal
matrix.

both well conditioned but with interlaced spectra. The right-hand side C1 is chosen
tridiagonal symmetric while C2 is set equal to a random dense symmetric matrix with
quasiseparable rank 1. The results in Figure 4.1.3 suggest that both the structures
are preserved in the first case and lost in the second case. Once again, in the case of
preservation, the decay in the off-diagonal singular values is stronger than the decay in
the bandwidth. Notice that, when present, the quasiseparability of the solution cannot
be predicted by means of Theorem 4.1.6, but the generalization of Theorem 3.1.2 to
the case of the Sylvester equation can be employed to estimate the banded structure
of the solution. This test shows how the banded structure is a very particular instance
of the more general quasiseparable one.

Test 4: We compute the solution X of AX +XA − C = 0. We chose A = tridiag(−1,2,1), so
it is positive definite and ill-conditioned, and we set C equal to a random diagonal
matrix. Figure 4.1.3 clearly shows that quasiseparability is preserved while the banded
structure is not present in the solution X. In this case, the quasiseparability of the
solution can be shown by Theorem 4.1.6. Equivalently, one can exploits the arguments
in Section 3.2 to show that the solution can be represented as the sum of a banded
matrix and a low-rank one so that X is quasiseparable.

To summarize, the situations where we know that the quasiseparable structure is present in
the solution of (4.0.1) are:

(i) A,B and C quasiseparable and spectra of A and −B well separated*;

(ii) A,B and C banded and well-conditioned.

*We consider the spectra to be well separated if Theorem 4.1.6 can be used to prove the quasiseparability.
As we have seen, this also includes cases where the spectra are close, such as when they are separated by a
line.

67



4. Sylvester and Lyapunov equations with quasiseparable symmetric data

On the other hand, for using the computational approach of Section 4.3 we need the spectra
of A and −B to be separated by a line.

4.2 HODLR-matrices

An efficient way to store and operate on matrices with an off-diagonal data-sparse structure
is to use hierarchical formats. There is a vast literature on this topic. See, e.g., [52, 24,
54] and the references therein. We rely on a particular subclass of the set of Hierarchical
representations sometimes called Hierarchically off-diagonal low-rank (HODLR), which can
be described as follows; let A ∈ Cn×n be a k-quasiseparable matrix, we consider the 2 × 2
block partitioning

A = [
A11 A22

A21 A22
] , A11 ∈ Cn1×n1 , A22 ∈ Cn2×n2 ,

where n1 ∶= ⌊n
2
⌋ and n2 ∶= ⌈n

2
⌉. Since the antidiagonal blocks A12 and A21 do not involve

any element of the main diagonal of A, they have rank at most k, so they are represented as
low-rank outer products. Then, the strategy is applied recursively on the diagonal blocks A11

and A22. The process stops when the diagonal blocks reach a minimal dimension nmin, at
which they are stored as full matrices. The procedure is graphically described in Figure 4.9.
If nmin and k are negligible with respect to n then the storage cost is linear-polylogarithmic
with respect to the size of the matrix.

It is natural to compare the storage demand required by the HODLR representation and
the truncation of banded structures, when they are both present in the solution. Consider
the following test: we compute the solution X of a Lyapunov equation with a tridiagonal
well-conditioned coefficient matrix A and a diagonal right hand-side with random entries.
As discussed in the previous Section, the solution has a fast decay in the magnitude of the
entries as getting far from the main diagonal. We compare the accuracy obtained when
the solution X is stored in the HODLR format with different thresholds in the low-rank
truncation of the off-diagonal blocks, and when a fixed number of diagonals are memorized.
In particular, the accuracy achieved keeping 5k diagonals and truncating the SVD of the
off-diagonal blocks using thresholds 10−k, for k = 0, . . . ,16, is illustrated in Figure 4.10. We
can see that the two approaches have comparable performances for this example. See also
Example 4.4.2 in Section 4.4 for a further comparison of the two approaches.

Figure 4.9: The behavior of the block partitioning in the HODLR-matrix representation.
The blocks filled with grey are low rank matrices represented in a compressed form, and the
diagonal blocks in the last step are stored as dense matrices.

The HODLR format has been studied intensively in the last decade and algorithms with
almost linear complexity for computing matrix operations are available, see, e.g., [53, Chapter
3]. Intuitively, the convenience of using this representation in a procedure is strictly related
with the growth of the numerical rank of the off-diagonal blocks in the intermediate results.
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Figure 4.10: Accuracy obtained approximating the solution X to a Lyapunov equation
keeping a certain number of diagonals and by truncating the HODLR representations with
nmin = 50 and different thresholds. The plot reports the accuracy obtained with respect to
the memory consumption when A is banded and well conditioned and C is a diagonal matrix
with random entries. The matrices have dimension n = 2048, the storage cost for the dense
matrix X is 32678 KB.

While designing our numerical tests, we could not find a MATLAB toolbox focusing on
HODLR matrices. Therefore, we developed our own package, called hm-toolbox, which
is freely available at https://github.com/numpi/hm-toolbox�. The basic linear algebra
operations (sum, product and inversion, as well as LU factorization) are implemented by
means of block-wise operations. The off-diagonal blocks are represented as low-rank outer
products, and after each arithmetic operation the representation is updated using an economy
size SVD which has a linear cost in the size of the matrix. This guarantees that we use an
optimal representation at each step. For a complete description of the employed algorithms
we refer to [53, 76]. The computational costs of operating with HODLR-matrices are reported
in Table 4.1.

Operation Computational complexity
Matrix-vector multiplication O(kn log(n))

Matrix-matrix addition O(k2n log(n))

Matrix-matrix multiplication O(k2n log2
(n))

Matrix-inversion O(k2n log2
(n))

Solve linear system O(k2n log2
(n))

Table 4.1: Computational complexity of the HODLR-matrix arithmetic. The integer k is the
maximum of the quasiseparable ranks of the inputs while n is the the size of the matrices.

�We are in debt to L. Robol and S. Massei for the implementation of the routines in the software package.
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4.3 Solving the Sylvester equation

In this Section we show how to deal with the issue of solving (4.0.1) taking advantage of the
quasiseparable structure of the data. We first discuss the matrix sign function iteration and
then we show how to efficiently evaluate the integral formula (3.2.25). Both these algorithms
are implemented in the hm-toolbox.

4.3.1 Matrix Sign Function

In [48] Grasedyck, Hackbusch and Khoromskij first showed how to efficiently solve Sylvester
equations whose coefficients are representable as hierarchical matrices with low-rank off-
diagonal blocks. The procedure consists in plugging the hierarchical matrix arithmetic into
the algorithm proposed by Roberts in [91], which requires the computation of the matrix
sign function. More precisely, Roberts’ algorithm relies on the following result.

Theorem 4.3.1. Let A,B ∈ Cn×n be positive definite, then the solution X to (4.0.1) verifies

X =
1

2
N12, (4.3.3)

where

[
N11 N12

0 N22
] ∶= sign([

A C
0 −B

]) ,

and – given a square matrix M – we define sign(M) ∶= 1
πi ∫γ(zI −M)−1dz with γ a path of

index 1 around the eigenvalues of M with positive real part.

The sign function of a square matrix S ∶= sign(M) can be approximated applying the
Newton’s method to the equation X2 − I = 0 with starting point S0 = M . This requires to
compute the sequence

S0 =M, Si+1 =
1

2
(Si + S

−1
i ), (4.3.4)

which converges to S, provided that M has no eigenvalues on the imaginary axis [48]. Rewrit-

ing (4.3.4) block-wise, applied to M ∶= [
A C
0 −B

], yields

Ai+1 =
1

2
(Ai +A

−1
i ), Bi+1 =

1

2
(Bi +B

−1
i ), Ci+1 =

1

2
(A−1

i CiB
−1
i +Ci), (4.3.5)

where A0 = A,B0 = B, C0 = C and Ci+1 → 2X. As stopping criterion we used the condition

∥Ai+1 −Ai∥F + ∥Bi+1 −Bi∥F + ∥Ci+1 −Ci∥F ≤
√
ε,

where ε is the selected accuracy. This can be heuristically justified saying that since the
Newton method is quadratically convergent, if the above quantity is a good estimate of
the error of the previous step then we have already obtained the solution at the required
precision.

In [48] the computation of (4.3.5) is performed using the hierarchical matrix arithmetic.
When an appropriate scaling is performed during the iteration, convergence is reached in
few steps [57]. The scaling strategy is crucial to keep the number of iterations of the Newton
scheme low and it consists in applying the iteration steps to the matrix

Mα ∶= [
αA C
0 −α−1B

] .
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The scaling parameter α > 0 can be optimally chosen at every iteration, as shown in [57].

When the spectra of A and B are real, the optimal choice is αi =
√

∥S−1
i ∥

2
/ ∥Si∥2. However,

if hierarchical matrix arithmetic is employed, the scaling strategy may introduce a non-
negligible error propagation as outlined in [48]. A good trade-off is to scale only in the first
iteration. This does not affect the accuracy of the iterative scheme if the matrix S0 can
be exactly represented in the hierarchical format [48, Remark 5.3], and allows to keep the
number of iterations proportional to log(max{κ(A), κ(B)}) [48].

4.3.2 Solution by means of the integral formula

We now propose to apply a quadrature scheme for evaluating the semi-infinite integral in
(3.2.25). Thanks to the H-arithmetic employed in the solution process, we do not need
to split the integral (3.2.25) into two components as illustrated in Theorem 3.2.1. Indeed,
quadrature rules require the computation of matrices of the form Di ∶= e−tiACe−tiB for
certain ti ∈ [0,+∞[ that mantain a low quasiseparable rank if A, B and C are quasiseparable.
Indeed, as shown in Proposition 3.2.5, Di is low-rank, and thus quasiseparable, for large ti
whereas arguments from [79] illustrate the preservation the quasiseparable structure in etiA,
etiB for moderate ti. Therefore, all the matrices involved in the approximation of the integral
have a low numerical quasiseparable rank and the memory requirements remain moderate.

We proceed as follows. We perform the change of variable t = f(ϑ) ∶= L ⋅ cot (ϑ
2
)

2
where

θ is the new variable and L is a parameter chosen to optimize the convergence. In all our
numerical experiments L = 100. This is a very common strategy for the approximation of
integral over infinite domain, which is discussed in detail by Boyd in [25]. We transform
(3.2.25) into

X = 2L∫
π

0

sin(ϑ)

(1 − cos(ϑ))2
e−Af(ϑ)Ce−Bf(ϑ)dϑ, (4.3.6)

which can be approximated by a Gauss-Legendre quadrature scheme. Other quadrature for-
mulas, as Clenshaw-Curtis rules, can be employed. However, as discussed by Trefethen
in [105], the difference between Gauss-Legendre and Clenshaw-Curtis formulas is small.
Moreover, in most of our tests, Gauss-Legendre schemes showed some slight computational
advantages over Clenshaw-Curtis rules as the cost of computing the integration points is
negligible�.

The quadrature scheme yields an approximation of (4.3.6) of the form

X ≈
m

∑
j=1

ωj ⋅ e
−AfjCe−Bfj =∶X, (4.3.7)

where ϑj are the Legendre points, fj ∶= f(ϑj), ωj = 2Lwj ⋅
sin(ϑj)

(1−cos(ϑj))2 and wj are the Legendre

weights.

Finally, we numerically approximate the quantities e−Afj and e−Bfj , which represents
the dominant cost of the algorithm. For this task, the rational approximations outlined
in Section 3.2.1 can be employed and they have been both implemented in our toolbox.
The evaluations of the matrix exponentials expm(−fj ⋅ A), expm(−fj ⋅ B) are performed
according to the strategy outlined in Remark 3.2.3 and the overall procedure is summarized
in Algorithm 4.1.

�In practice we have precomputed the points for the usual cases, so that an explicit computation of them
is never carried out in the numerical experiments.
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Algorithm 4.1: Solution of a Sylvester equation with quasiseparable data by
(4.3.7).

input : A,B,C ∈ Rn×n, m ∈ N
output: X ∈ Rn×n, X ≈X

1 Set L and compute wj , ϑj , fj = L ⋅ cot(ϑi
2
)2, for j = 1, . . . ,m

2 Set X = 0
for j = 1, . . . ,m do

3 Set X =X +wj
sin(ϑi)

(1−cosϑi)2 ⋅ expm(−fj ⋅A) ⋅C ⋅ expm(−fj ⋅B)

end

4 Set X = 2L ⋅X

4.4 Numerical examples

An extensive computational comparison among different approaches for quasiseparable Sylvester
equations – as well as their implementation – is still lacking in the literature, and in
this section we perform some numerical experiments trying to fill this gap. To this end,
we employ the MATLAB hm-toolbox that we have developed while writing [77]. The
toolbox – which includes all the tested algorithms – is now freely available at https:

//github.com/numpi/hm-toolbox. All the timings reported are relative to MATLAB 2016a
run on a machine with a CPU running at 3066 MHz, 12 cores§, and 192GB of RAM¶.

To test the accuracy of our approach we report the relative residual on the linearized
system of the computed solution. If S is the coefficient matrix of the linearized system we
measure the relative residual,

r(S,X) ∶=
∥S ⋅ x − c∥2

∥S∥F ⋅ ∥x∥2

, x = vec(X), c = vec(C),

which can be easily shown to be the relative backward error in the Frobenius norm [56].
When we deal with Sylvester problems, we have S = I ⊗A+B ⊗ I with A and B symmetric.
This allows to use the — easier to compute — bound

∥S∥
2
F ≥ n(∥A∥

2
F + ∥B∥

2
F ),

so that

r(S,X) =
∥S ⋅ x − c∥2

∥S∥F ⋅ ∥x∥2

=
∥AX +XB −C∥F

∥I ⊗A +B ⊗ I∥F ⋅ ∥X∥F
≤

∥AX +XB −C∥F
√

n(∥A∥
2
F + ∥B∥

2
F ) ⋅ ∥X∥F

,

and we actually compute and check the right-hand side in the above expression. Notice
that this never requires to form the large system matrix S, and can be evaluated using the
arithmetic of hierarchical matrices when considering large scale problems.

Example 4.4.1. We consider the 2-dimensional (2D) Laplace equation on the unit square
Ω = [0,1]2

§All the available cores have only been used to run the parallel implementation of the solver based on the
integral formula. All the other solvers did not exploit the parallelism in the machine.

¶Notice that is a different machine than the one used to obtain the results in Sections 2.2.6, 3.3 and 6.2.4.
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>> n = 2048;

>> hmoption(’threshold’, 1e-12);

>> hmoption(’block-size’, 256);

>> f = @(x,y) log(1 + abs(x - y));

>> A = (n-1)^2 * spdiags(ones(n,1) * [ -1 2 -1 ], -1:1, n, n);

>> H = hm(’tridiagonal’, A);

>> C = hm(’chebfun2’, f, [-1,1], [-1,1], n);

>> X = lyap(H, C, ’method’, ’sign’);

>> qsrank(X)

ans =

13

Figure 4.11: Example of a MATLAB session where the hm-toolbox is used to compute the
solution of a Lyapunov equation involving the 2D Laplacian and a numerically quasiseparable
right hand-side.

⎧⎪⎪
⎨
⎪⎪⎩

−uxx − uyy = f(x, y), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω.

We construct the matrix A corresponding to the discretization of the 1D second-order
derivative by centered finite differences with n nodes

A =
1

h2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1
−1 ⋱ ⋱

⋱ ⋱ −1
−1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, h =
1

n − 1
,

so that the discrete problem representing the above equation on an n×n grid using centered
finite differences can be written as AX +XA −C = 0; C contains the values of the function
f(x, y) on the grid. We consider the case where f(x, y) = log(1 + ∣x − y∣). As already
discussed, this choice yields a numerically quasiseparable right hand-side. This is due to the
fact that in the sub-domains corresponding to the off-diagonal blocks, f is analytic and it is
well approximated by a sum of few separable functions. One can also exploit this property
in order to retrieve the HODLR representation of C; the sampling of a separable function
g(x) ⋅ h(y) on a square grid provides a matrix of rank 1 and the sampling of g and h yield
its generating factors. The computation of the expansion of f in the sub-domains has been
performed by means of Chebfun2 [104].

Using hm-toolbox, the equation can be solved with few MATLAB commands, as shown
in Figure 4.11 for the case n = 2048. The function hmoption can be used to set some options
for the toolbox. In this case we set the relative threshold for the off-diagonal truncation to
10−12, and the minimum size of the blocks to 256. The class hm implements the hierarchical
structure, and here we initialize it using a sparse tridiagonal matrix. Invoking the lyap

function uses our implementation specialized for H-matrices. In this example, we used the
sign function iteration, which is the default method for the implementation of lyap. The
quasiseparable rank of the solution (obtained using the function qsrank) is 13, which is
reasonably small compared to the problem size.
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n TimeSign ResSign QS rk TimeExp TimeParExp ResExp QS rk Timelyap

512 0.71 2.973e-12 13 3.69 1.51 3.921e-09 13 0.85
1024 1.73 4.328e-12 14 9.37 3.21 8.706e-10 14 7.52
2048 4.76 2.027e-11 13 22.78 6.34 7.213e-10 14 80.15
4096 13.33 5.189e-11 15 57.15 14.51 5.734e-11 12 523.16
8192 35.93 3.646e-11 13 136.42 31.82 9.233e-12 11 –

16384 92.83 1.004e-10 14 334.75 70.28 3.138e-12 11 –
32768 245.82 1.549e-10 16 790.28 154.65 1.424e-12 11 –
65536 609.86 1.334e-10 15 1825.20 351.82 8.861e-13 10 –

131070 1474.56 1.575e-10 17 4122.17 763.05 2.025e-12 9 –

Table 4.2: Example 4.4.1. Timings and features of the solution of the Laplacian equation
for different grid sizes. For the methods based on the HODLR arithmetic the minimum
block size is set to 256 and the relative threshold in truncation is ε = 10−12. For small
problems we also report the timings of the lyap function included in the Control Toolbox
in MATLAB. The relative residuals of the Lyapunov equation are reported as well for the
different methods. The residuals for the parallel version of Algorithm 4.1 have been omitted
since they coincide with the ones of the sequential one. In fact, the two algorithms perform
exactly the same computations.
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Figure 4.12: Example 4.4.1. Timings for the solution of the Laplacian equation for different
grid sizes. The performances of the different algorithms are reported. The dashed line
reports the theoretical complexity of O(n log2

(n)).

In Table 4.2 and Figure 4.12 we show the solution timings for different grid sizes. We
stress that, since full matrices are never represented, memory requirements remain limited.
The storage of dense matrices is required if the function lyap from the Matlab Control
Toolbox is employed in the solution process, so that we have comparisons with the latter
only for n ≤ 4096.

The results in Table 4.2 show that the timings are just a little more than linear in the
size of the problem. Figure 4.12 illustrates that the complexity is in fact O(n log2 n), for
Algorithm 4.1.

The approach based on the sign function iteration is faster than the one that exploits the
integral formula. Nevertheless the latter has a slightly better asymptotic cost since it requires
O(n log2

(n)) flops instead of O(n log3
(n)). Another advantage of the integral formula is the

easy parallelization. In fact, the evaluation of the integrand at the nodes can be carried out
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6n TimeSign ResSign TimeParExp ResExp QS rk Timecg Rescg
768 1.06 8.952e-13 1.96 9.441e-12 13 1.17 2.955e-11

1536 2.74 1.416e-12 4.98 4.916e-12 12 2.49 2.810e-11
3072 8.28 9.734e-12 13.11 1.527e-11 12 4.78 2.665e-11
6144 19.30 4.941e-12 32.21 1.075e-11 10 9.23 2.571e-11

12288 48.44 4.763e-12 79.45 1.357e-11 10 18.25 2.412e-11
24576 117.32 4.711e-12 189.84 1.805e-11 10 36.96 3.217e-11
49152 277.82 1.090e-11 445.03 1.621e-11 10 67.18 3.030e-11
98304 589.51 3.872e-11 1092.13 2.692e-11 10 121.31 2.867e-11

196610 1312.63 1.045e-10 2677.12 8.160e-11 9 213.08 2.750e-11

Table 4.3: Example 4.4.2. Timings and features of the solution of the heat equation for
different grid sizes. For the methods based on the HODLR arithmetic the minimum block
size is set to 256 and the relative threshold in truncation is ε = 10−12. In this example
the quasiseparable rank of the solution coincides for the implementation based on the sign
function and on the integral formula, so we have only reported it once.

in a parallel fashion on different machines or cores. In our tests we used 32 integration nodes
(that is m = 32 in Algorithm 4.1) so that the maximum gain in the performances can be
obtained using 32 cores. The results reported in Table 4.2 confirm the acceleration of the
parallel implementation when using 12 cores.

Example 4.4.2. We now consider the same problem of Example 3.1.2. Both the matrices
A and C are banded, with bandwidth 6 and 11, respectively. However, a more careful
investigation shows that the quasiseparable rank of A is 6, but C is a rank-1 quasiseparable
matrix: the quasiseparable representation can exploit more structure than the banded one
in this problem.

We have solved this problem for different values of n, from n = 128 to n = 32768. For
each n, the size of the associated matrices A and C is 6n × 6n. We have also compared
the performance of the quasiseparable approach to the one of Algorithm 3.1 which instead
exploits the banded structure of the problem leading to a O(n) computational cost as shown
in Proposition 3.1.4.

Figure 4.13 confirms the predicted O(n log2 n) complexity for the methods that we pro-
pose. The timings of cg are comparable to the sign function iteration for small dimensions,
but then the absence of the log2

(n) factor in the complexity is a big advantage for the former
method.

The table in Figure 4.13 reports the memory demand when the solution is stored in the
HODLR and in the sparse formats. We can see that the method using HODLR matrices,
although slower, is more memory efficient compared to cg of a factor of about 2.

4.5 Closing considerations

In this Chapter we have generalized the structure that can be considered when dealing
with large-scale Sylvester and Lyapunov equations. In particular, equations with symmetric
quasiseparable data have been studied and, warranted by new theoretical results, two efficient
solution strategies have been presented.

These methods can be applied also in the cases analyzed in the previous Chapters, that is
equations with a low-rank right-hand side or banded symmetric data as the latter structures
can be viewed as particular instances of the broaden quasiseparability. However, as shown
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6n MemHODLR MemSparse

768 1464 6015
1536 3169 13122
3072 6915 26637
6144 14023 52400

12288 29967 101513
24576 63774 190464
49152 135230 363543
98304 285820 691180

196610 571632 1309512
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Figure 4.13: Example 4.4.2. On the left, the memory consumption in storing the solution X
computed via the parallel version of Algorithm 4.1 and cg, respectively. The first exploits the
HODLR representation while the second one makes use of the sparse format. The numerical
values reported are in KB (Kilobytes). On the right, the timings for performing the different
solution procedures.

in Example 4.4.2, we expect the algorithms exploiting the Hierarchical format to be less
competitive with respect to state-of-the-art low-rank methods or lyap banded. Indeed, the
latter algorithms are specifically designed for dealing with low-rank right-hand sides and
banded data respectively and they fully exploit these structures.
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Chapter 5

Generalized linear matrix
equations

This Chapter serves as introduction to Chapter 6, and introduces a class of generalized
linear matrix equations stemming from the FD discretization of PDEs under quite general
hypotheses. We provide the details of this derivation, highlighting the role of each term in
the continuous context. Moreover, closed-forms of the solution of some classes of equations
are reported and an efficient method for small-scale problems is proposed.

We consider linear matrix equations of the form

AX +XB +

p

∑
i=1

NiXMi −C = 0, (5.0.1)

where A,B,Ni,Mi,C ∈ Rn×n are large matrices and p ≪ n. This equation is sometimes
referred to as the generalized Sylvester equation, e.g., in [12], since it can be viewed as the
sum of a Sylvester operator L ∶ Rn×n → Rn×n, L(X) ∶= AX + XB, and a linear operator
Π ∶ Rn×n → Rn×n, Π(X) ∶= ∑

p
i=1NiXMi.

Linear matrix equations of the form (5.0.1) arise in different applications. In particular, in
the following Section we show how the discrete problem stemming from the discretization by
centered finite differences of the 2D and 3D convection-diffusion partial differential equation
admits a representation in terms of (5.0.1). Other differential problems whose discretization
leads to generalized linear matrix equations have been considered in the recent literature. For
instance, in [90] the partial differential equation modeling a waveguide problem is considered,
whereas elliptic PDEs with correlated random inputs are tackled in [88]. The special case
of the generalized Lyapunov equation, which corresponds to equation (5.0.1) where B = AT ,
Mi = Ni and C symmetric, arises in model order reduction of bilinear and stochastic systems.
See, e.g., [12, 31, 11] and references therein.

5.1 An example coming from PDEs

We consider the convection-diffusion partial differential equation

−ε∆u +w ⋅ ∇u = f, in Ω ⊂ Rd, (5.1.2)

with d = 2,3, where w is the convection vector, while ε is the positive and constant viscosity
parameter. In particular, we assume that the components of w are separable functions in
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the space variables, and that Ω is a rectangle or a parallelepipedal domain. For simplicity
the equation is equipped with Dirichlet boundary conditions; the analyzed procedures could
be used with Neumann boundary conditions as well.

Standard finite difference or finite element discretizations yield the algebraic large non-
symmetric linear system

Au = f . with A ∈ RN×N , (5.1.3)

The algebraic problem (5.1.3) can be recast in terms of a multiterm linear matrix equation
of the form (5.0.1). In [82], this reformulation has been used to develop a class of effective
preconditioners for (5.1.3) that compare rather well with state-of-the-art and finely tuned
algebraic multigrid preconditioners.

In the next Section we describe how the matrix equation form can be derived.

5.1.1 The two-dimensional case

For the ease of presentation, we shall first concentrate on the two-dimensional problem, that
is equation (5.1.2) with d = 2, and then extend our derivation to the three-dimensional case
in Section 5.1.3.

We start by recalling the matrix equation associated with the discretization by five-point
stencil finite differences of the Poisson equation −∆u = f on a rectangular domain Ω ⊂ R2.
For the sake of simplicity, we shall assume that Ω = (0,1)2. Let Ωh be a uniform discretization
of Ω, with nodes (xi, yj), i, j = 1, . . . , n−1. Then assuming homogeneous Dirichlet boundary
conditions are used, centered finite difference discretization leads to the linear system (5.1.3)
with

A = Tn−1 ⊗ In−1 + In−1 ⊗ Tn−1,

and Tn−1 = −1/h2tridiag(1,−2,1) ∈ R(n−1)×(n−1), h the mesh-size, is the symmetric tridiagonal
matrix approximating the second-order derivative in one dimension, while the entries of u
contain an approximation to u at the nodes, having used a lexicographic order of the entries.

We thus take a step back, and describe in detail the process leading to the Kronecker
formulation, with the aim of deriving its matrix counterpart. This description will allow us
to also include the boundary conditions in a systematic manner.

Let Ω̄h be a uniform discretization of the closed domain Ω̄, with equidistant points in
each direction, (xi, yj), i, j = 0, . . . , n. Analogously, Ui,j = U(xi, yj) is the value of the ap-
proximation U to u at the nodes. For each i, j = 1, . . . , n−1 we have the usual approximations

uxx(xi, yj) ≈
Ui−1,j − 2Ui,j +Ui+1,j

h2
=

1

h2
[1,−2,1]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ui−1,j

Ui,j
Ui+1,j

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

and analogously for the y direction, but from the right,

uyy(xi, yj) ≈
Ui,j−1 − 2Ui,j +Ui,j+1

h2
=

1

h2
[Ui,j−1, Ui,j , Ui,j+1]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
−2
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Let

T = −
1

h2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ ∗

∗ −2 1
1 ⋱ ⋱

⋱ ⋱ 1
1 −2 ∗

∗ ∗

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ R(n+1)×(n+1); (5.1.4)
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the unspecified values “*” are associated with boundary values of U and will be discussed in
Section 5.1.2. Collecting these relations for all rows i’s and for all columns j’s, for the whole
domain we obtain

−uxx ≈ TU, −uyy ≈ UT.

With these approximations we can write the following classical matrix form of the finite
difference discretization of the Poisson equation on a square domain (see, e.g., [114])

TU +UT = F, where (F )i,j = f(xi, yj) + b.c.. (5.1.5)

Except for the boundary conditions, the Kronecker formulation of (5.1.5) gives the same
form as (5.1.3).

For the convection-diffusion equation with separable coefficients a similar derivation pro-
vides a generalized Sylvester matrix equation. We state the result in the following proposi-
tion, where separable convection coefficients are assumed. To this end, we define the matrix

B =
1

2h

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∗ ∗

∗ 0 1
−1 ⋱ ⋱

⋱ ⋱ 1
−1 0 ∗

∗ ∗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R(n+1)×(n+1), (5.1.6)

which represents the centered finite difference approximation of the first order one dimen-
sional (1D) derivative on a uniformly discretized interval.

Proposition 5.1.1. Assume that the convection vector w = (w1,w2) satisfies w1 = φ1(x)ψ1(y)
and w2 = φ2(x)ψ2(y). Let (xi, yj) ∈ Ω̄h, i, j = 0, . . . , n and set Φk = diag(φk(x0), . . . , φk(xn))
and Ψk = diag(ψk(y0), . . . , ψk(yn)), k = 1,2. Then with the previous notation, the centered
finite-difference discretization of the differential operator in (5.1.2) leads to the following
operator:

Lh ∶ U → εTU + εUT + (Φ1B)UΨ1 +Φ2U(BTΨ2). (5.1.7)

Proof. The first two terms of Lh(U) were derived for (5.1.5). We are left with showing that
the first order term can be expressed in terms of the 1D discretization matrix B in (5.1.6).
We have

φ1(xi)ψ1(yj)ux(xi, yj) ≈ φ1(xi)
u(xi+1, yj) − u(xi−1, yj)

2h
ψ1(yj)

=
1

2h
φ1(xi)[−1,0,1]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ui−1,j

Ui,j
Ui+1,j

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ψ1(yj),

and analogously,

φ2(xi)ψ2(yj)uy(xi, yj) ≈
1

2h
φ2(xi)[Ui,j−1, Ui,j , Ui,j+1]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ψ2(yj).

Collecting these results for all grid nodes and recalling that Ui,j = U(xi, yj), we obtain

(φ1(xi)ψ1(yj)ux(xi, yj))i,j=0,...,n ≈ Φ1BUΨ1,

(φ2(xi)ψ2(yj)uy(xi, yj))i,j=0,...,n ≈ Φ2UB
TΨ2,

and the result follows.
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5.1.2 Imposing the boundary conditions

The algebraic problem needs to be completed by imposing the boundary values. These will
fill up the undefined entries in the coefficient matrices, and in the right-hand side matrix.
To this end, we recall that with the given ordering of the elements in U , the first and last
columns, Ue1 and Uen+1 respectively, correspond to the boundary sides y = 0 and y = 1,
whereas the first and last rows take up the values at the boundary sides x = 0 and x = 1.
With this notation, we wish to complete the corners of the matrices T and B, giving rise
to the matrices T1, T2 and B1,B2, respectively, so that the following matrix equation is well
defined for (xi, yj) ∈ Ω̄h:

εT1U + εUT2 +Φ1B1UΨ1 +Φ2UB2Ψ2 = F. (5.1.8)

With the same notation as for U , the entries of F corresponding to i, j ∈ {0, n} will contain
contributions from the boundary values of U , which are determined next.

For the boundary conditions to be satisfied, the operator Lh(U) = εT1U+εUT2+Φ1B1UΨ1+

Φ2UB2Ψ2 should act as the (scaled) identity operator for points at the boundary. To this
end, from the generic matrix T we define the matrix T1 as follows:

T1 = −
1

h2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 0
1 −2 1

1 −2 1
⋱ ⋱ ⋱

⋱ ⋱ 1
0 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ R(n+1)×(n+1),

while the matrix corresponding to the first order operator (B in the generic case) can be
written as

B1 =
1

2h

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0
−1 0 1

−1 0 1
⋱ ⋱ ⋱

−1 0 1
0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ R(n+1)×(n+1).

For the derivative in the y direction, right multiplication should also act like the identity,
therefore we can define T2 = T

T
1 and correspondingly, B2 = B

T
1 . We are thus ready to define

the missing entries in F so that (5.1.8) holds. For the first column, that is for the side y = 0,
we write

Fe1 = (εT1U + εUT2 +Φ1B1UΨ1 +Φ2UB2Ψ2)e1

= εT1Ue1 + εUT2e1 +Φ1B1UΨ1e1 +Φ2UB2Ψ2e1

= εT1Ue1 +
ε

h2
Ue1 +Ψ1(y0)Φ1B1Ue1,

where we used the fact that B2Ψ2e1 = 0. Similar reasonings ensure that the boundary values
at y = 1 are imposed, thus defining Fen+1. For the side x = 0 we have

eT1 F = eT1 (εT1U + εUT2 +Φ1B1UΨ1 +Φ2UB2Ψ2) = e
T
1 F

= eT1 εT1U + eT1 εUT2 + e
T
1 Φ1B1UΨ1 + e

T
1 Φ2UB2Ψ2

=
ε

h2
eT1 U + εeT1 UT2 + φ2(x0)e

T
1 UB2Ψ2,

where the fact that eT1 Φ1B1 = 0 was used. The definition of eTn+1F follows analogously.
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5.1.3 The three-dimensional case

The 3D convection-diffusion equation can be stated as in (5.1.2), for Ω ⊂ R3. To convey our
idea, we again first focus on the Poisson equation, and then generalize the matrix formu-
lation to the finite difference discretization of the non-self-adjoint problem (5.1.2). For the
sake of simplicity, we shall assume that Ω = (0,1)3, though more general parallelepipedal
domains could also be considered. We discretize Ω̄ with equidistant nodes in each direction,

(xi, yj , zk), for i, j, k = 0, . . . , n. To fix the ideas, let U
(k)
i,j = U(xi, yj , zk) denote the value of

the approximation U to u at the node (xi, yj , zk) (other orderings may be more convenient
depending on the equation properties). We also define the tall matrix

U =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

U (0)

⋮

U (n)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
n

∑
k=0

(ek+1 ⊗U
(k)

) ∈ R(n+1)2×(n+1).

Let T be as defined in (5.1.4). Then, for I ∈ R(n+1)×(n+1) the identity matrix,

−uxx ≈
n

∑
k=0

(ek+1 ⊗ TU
(k)

) = (I ⊗ T )
n

∑
k=0

(ek+1 ⊗U
(k)

) = (I ⊗ T )U ,

−uyy ≈
n

∑
k=0

(ek+1 ⊗U
(k)T ) =

n

∑
k=0

(ek+1 ⊗U
(k)

)T = UT,

−uzz ≈ (T ⊗ I)U .

With these approximations we can thus obtain the following matrix form of the finite differ-
ence discretization of the Poisson equation:

(I ⊗ T )U + UT + (T ⊗ I)U = F, (5.1.9)

where F = ∑
n
k=0(ek+1⊗F

(k)) ∈ R(n+1)2×(n+1) and (F (k))i,j = f(xi, yj , zk). The Kronecker for-
mulation of the matrix equation (5.1.9) determines the usual approximation of the Laplacian
operator by seven-point stencil finite differences,

∆ ≈ I ⊗ I ⊗ T + I ⊗ T ⊗ I + T ⊗ I ⊗ I ∈ R(n+1)3×(n+1)3 .

For the convection-diffusion equation with separable coefficients a similar derivation provides
a generalized Sylvester matrix equation. We state the result in the following proposition.

Proposition 5.1.2. Assume that the convection vector w = (w1,w2,w3) satisfies w1 =

φ1(x)ψ1(y)υ1(z), w2 = φ2(x)ψ2(y)υ2(z), and w3 = φ3(x)ψ3(y)υ3(z). Let (xi, yj , zk), i, j, k =
0, . . . , n be the grid nodes discretizing Ω̄ with mesh size h, and set Φ` = diag(φ`(x0), . . . , φ`(xn)),
Ψ` = diag(ψ`(y0), . . . , ψ`(yn)), and Υ` = diag(υ`(z0), . . . , υ`(zn)), ` = 1,2,3. Then, with B
as defined in (5.1.6), the centered finite-difference discretization of the differential operator
in (5.1.2) leads to the following operator:

Lh ∶ U → (I ⊗ εT )U + εUT + (εT ⊗ I)U +

(Υ1 ⊗Φ1B)UΨ1 + (Υ2 ⊗Φ2)UB
TΨ2 + [(Υ3B) ⊗Φ3]UΨ3. (5.1.10)

Proof. The second order terms of Lh(U) correspond to a multiple of (5.1.9). We are thus left
with showing that the first order term can be expressed by means of the 1D discretization
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matrix B. We first fix k = k̄ and we have

φ1(xi)ψ1(yj)υ1(zk̄)ux(xi, yj , zk̄) ≈ υ1(zk̄)φ1(xi)
u(xi+1, yj , zk̄) − u(xi−1, yj , zk̄)

2h
ψ1(yj)

=
1

2h
υ1(zk̄)φ1(xi)[−1,0,1]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

U
(k̄)
i−1,j

U
(k̄)
i,j

U
(k̄)
i+1,j

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ψ1(yj).

Analogously,

φ2(xi)ψ2(yj)υ2(zk̄)uy(xi, yj , zk̄) ≈
1

2h
υ2(zk̄)φ2(xi)[U

(k̄)
i,j−1, U

(k̄)
i,j , U

(k̄)
i,j+1]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ψ2(yj).

Collecting these results for all grid nodes (xi, yj , zk̄)i,j=0,...,n and recalling that U
(k)
i,j =

U(xi, yj , zk), we obtain

(φ1(xi)ψ1(yj)υ1(zk̄)ux(xi, yj , zk̄))i,j=0,...,n ≈ υ1(zk̄)Φ1BU
(k̄)Ψ1,

and
(φ2(xi)ψ2(yj)υ2(zk̄)uy(xi, yj , zk̄))i,j=0,...,n ≈ υ2(zk̄)Φ2U

(k̄)BTΨ2.

Therefore, for all z nodes,

(φ1(xi)ψ1(yj)υ1(zk)ux(xi, yj , zk))i,j,k=0,...,n

≈ [Υ1 ⊗ I]
n

∑
k=0

(ek+1 ⊗Φ1BU
(k)Ψ1) = [Υ1 ⊗ I](I ⊗Φ1B)[

n

∑
k=0

(ek+1 ⊗U
(k)

)]Ψ1

= [Υ1 ⊗ I](I ⊗Φ1B)UΨ1 = (Υ1 ⊗Φ1B)UΨ1,

and

(φ2(xi)ψ2(yj)υ2(zz)uy(xi, yj , zk))i,j,k=0,...,n

≈ [Υ2 ⊗ I]
n

∑
k=0

(ek+1 ⊗Φ2U
(k)BTΨ2) = [Υ2 ⊗ I](I ⊗Φ2)[

n

∑
k=0

(ek+1 ⊗U
(k)

)]BTΨ2

= [Υ2 ⊗ I](I ⊗Φ2)UB
TΨ2 = (Υ2 ⊗Φ2)UB

TΨ2.

On the other hand, for the z direction it holds

φ3(xi)ψ3(yj)υ3(zk)uz(xi, yj , zk) ≈ υ3(zk)φ3(xi)
u(xi, yj , zk+1) − u(xi, yj , zk−1)

2h

≈
1

2h
υ3(zk)φ3(xi)[−1,0,1]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

U
(k−1)
i,j

U
(k)
i,j

U
(k+1)
i,j

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ψ3(yj).

Collecting this relation for all blocks,

(φ3(xi)ψ3(yj)υ3(zk)uz(xi, yj , zk))i,j,k=0,...,n

≈ (Υ3B ⊗ I)
n

∑
k=0

[ek+1 ⊗ (Φ3U
(k)Ψ3)] = (Υ3B ⊗ I)(I ⊗Φ3)[

n

∑
k=0

(ek+1 ⊗U
(k)

)]Ψ3

= (Υ3B ⊗ I)(I ⊗Φ3)UΨ3 = [(Υ3B) ⊗Φ3]UΨ3.

and the result follows.
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Imposing the boundary conditions completely determines the entries of T in all three
instances, as well as the missing entries in B. Following the same steps as for the 2D case,
the matrix equation (5.1.10) can be written as

((I ⊗ εT1) + (εTT2 ⊗ I)) U + εU T3 + (Υ1 ⊗Φ1B1) U Ψ1 + (Υ2 ⊗Φ2) U B3Ψ2 + [(Υ3B
T
2 ) ⊗Φ3] U Ψ3 = F,

highlighting the presence of five distinct terms in the matrix equation. With this ordering
of the variables, it holds that B3 = B2 and T3 = T2.

5.2 Solution in closed-form

It is not easy to derive necessary and sufficient conditions for the well-posedness of equa-
tion (5.0.1) in terms of the coefficient matrices A, B, Ni, Mi. If one wants to mimic the
analysis carried out in Section 1.1 for standard Sylvester and Lyapunov equations, the linear
system

Avec(X) = vec(C), A ∶= BT ⊗ I + I ⊗A +

p

∑
i=1

MT
i ⊗Ni, (5.2.11)

has to be considered. Although its Kronecker form, the spectrum of the coefficient matrix
A cannot be characterized in terms of Λ(A), Λ(B), Λ(Ni), and Λ(Mi). However, we can
say that the generalized Sylvester equation (5.0.1) has a unique solution X for every C ≠ 0
if and only if A is nonsingular.

Easier to handle sufficient conditions for the well-posedness of equation (5.0.1) can be
deduced if further assumptions on the coefficient matrices are considered. In these cases,
closed-forms of X can also be derived.

Theorem 5.2.1. Consider equation (5.0.1) and suppose that Λ(A) ∩ Λ(−B) = ∅ and that
the matrices Ni, Mi are low-rank for all i, namely Ni = PiP̃

T
i , P, P̃i ∈ Rn×si and Mi =

QiQ̃
T
i , Q, Q̃i ∈ Rn×ti , si, ti ≪ n for all i = 1, . . . , p. Let L ∶= BT ⊗ I + I ⊗ A ∈ Rn

2×n2

,

U ∶= [Q̃1 ⊗ P1, . . . , Q̃p ⊗ Pp], V ∶= [Q1 ⊗ P̃1, . . . ,Qp ⊗ P̃p] ∈ Rn
2×q, q ∶= ∑

p
i=1 siti. Then, if the

matrix W = Iq + V
TL−1U is nonsingular, there exists a unique solution X to (5.0.1) and it

is such that
vec(X) = L−1vec(C) −UW −1V TL−1vec(C). (5.2.12)

Proof. The result follows by applying the Sherman-Morrison-Woodbury formula to the linear
system (5.2.11) noticing that in this case it holds A = L +UV T and that the nonsingularity
of L comes from the assumption Λ(A) ∩Λ(−B) = ∅.

A similar result has been derived in [90] whereas in [11] Benner and Breiten used the
Sherman-Morrison-Woodbury argument to show that the solution of a generalized Lyapunov
equation with low-rank Ni and C is expected to be low-rank. Moreover, in case of problems
of moderate dimensions, efficient numerical procedures for computing X by (5.2.12) have
been proposed in, e.g., [31, 89, 90].

A different framework where a closed-form solution can be derived is outlined in the
following Theorem.

Theorem 5.2.2. Let L,Π ∶ Rn×n → Rn×n be linear operators such that L is invertible,
ρ(L−1Π) < 1 and let C ∈ Rn×n. The unique solution of the equation L(X) + Π(X) − C = 0
can be represented as

X =
∞
∑
j=0

Zj , (5.2.13)
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where

⎧⎪⎪
⎨
⎪⎪⎩

Z0 ∶= L−1 (C) ,

Zj+1 ∶= −L−1 (Π (Zj)) , j ≥ 0.
(5.2.14)

Proof. By using the invertibility of L we have X = (I + L−1Π)−1L−1(C) and with the as-
sumption ρ(L−1Π) < 1 we can express the operator (I + L−1Π)−1 as a convergent Neumann
series (see, e.g., in [68, Example 4.5]). In particular, we obtain

X =
∞
∑
j=0

(−1)j (L−1Π)
j
L
−1

(C) .

The relation (5.2.13) follows by defining Zj ∶= (−1)j (L−1Π)
j
L−1 (C).

Theorem 5.2.2 can be used for any choice of linear operators L and Π. However, it gives
constructive insights when L is easy to invert so that an approximation to the solution of
L(X) +Π(X) −C = 0 can be constructed by truncating the series (5.2.13). In particular, let

X(`) ∶=
`

∑
j=0

Zj , (5.2.15)

where Zj are given by (5.2.14), then the truncation error can be bounded as follows

∥X −X(`)∥ ≤ ∥L
−1

(C)∥
ρ(L−1Π)`+1

1 − ρ(L−1Π)
. (5.2.16)

In our case, L(X) = AX +XB and Π(X) = ∑
p
i=1NiXMi and the truncated Neumann

series (5.2.15) thus requires the solution of `+ 1 (standard) Sylvester equations. In the next
Section we derive a numerical procedure that efficiently computes an approximation to X
by exploiting (5.2.15) in case of small-scale problems.

5.2.1 Solving small-scale generalized Sylvester equations

In case of problems of moderate dimension, say n = O(103), the Neumann series expansion
derived in Theorem 5.2.2 can be exploited to design an efficient numerical procedure. Indeed,
the computation of X(`) in (5.2.15) requires the solution of `+1 Sylvester equations (5.2.14)
which can be simultaneously reduced to triangular form (c.f., [89, Section 3]) as they are
defined by the same coefficient matrices. In particular, let A = QAUAQ

T
A and BT = QBUBQ

T
B

denote the Schur decompositions of A and BT respectively. Pre and post-multiplying the
equations in (5.2.14) by QTA and QB respectively, we obtain

UAZ̃0 + Z̃0U
T
B − C̃ = 0, (5.2.17a)

UAZ̃j+1 + Z̃j+1U
T
B +

p

∑
i=1

ÑiZ̃jM̃i = 0, j = 0, . . . , ` − 1, (5.2.17b)

where we have defined

C̃ ∶= QTACQB , Ñi ∶= Q
T
ANiQA, M̃i ∶= Q

T
BMiQB , Z̃i ∶= Q

T
AZiQB . (5.2.18)

The Sylvester equations with triangular coefficients (5.2.17) can be efficiently solved by back-
ward substitution as in the Bartels-Stewart algorithm [5] and it holdsX(`) = QA (∑

`
j=0 Z̃j)Q

T
B .

In the next Proposition we show how the Frobenius norm of the residual R(`) ∶= AX(`) +
X(`)B +∑

p
i=1NiX

(`)Mi −C can be cheaply computed without explicitly constructing X(`).
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Algorithm 5.1: Neumann series approach for (5.0.1).

input : Matrix coefficients: A,B,N1 . . . ,Np,M1, . . . ,Mp,C
output: Truncated Neumann series X(`)

1 Compute the Schur decompositions A = QAUAQTA, B = QBUBQTB
2 Compute C̃, Ñi M̃i for all i = 1, . . . ,m according to (5.2.18)

3 Solve UAZ̃0 + Z̃0U
T
B − C̃ = 0 and set X̃ = Z̃0

for j = 0,1, . . . till convergence do

4 Solve UAZ̃j+1 + Z̃j+1U
T
B +∑pi=1 ÑiZ̃jM̃

T
i = 0 and set X̃ = X̃ + Z̃j+1

5 Compute ∥R(j+1)∥F = ∥∑pi=1 ÑiZ̃j+1M̃
T
i ∥F

if ∥R(j+1)∥F ≤ tol then
6 Set ` = j + 1
7 Break

end

end

8 Return X(`) = QAX̃QTB

Proposition 5.2.3. Let X(`) be as defined in (5.2.15). Then the residual matrix R(`) ∶=
AX(`) +X(`)B +∑

p
i=1NiX

(`)Mi −C is such that

∥R
(`)∥

F
= ∥

p

∑
i=1

ÑiZ̃`M̃i∥

F

. (5.2.19)

Proof. It holds

∥R(`)∥
F
= ∥AX(`) +X(`)B +

p

∑
i=1

NiX
(`)Mi −C∥

F

=
XXXXXXXXXXX
A

`

∑
j=0

Zj +
`

∑
j=0

ZjB +
p

∑
i=1

Ni
`

∑
j=0

ZjMi −C
XXXXXXXXXXXF

=
XXXXXXXXXXXXXX
AZ0 +Z0B −C
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+A
`

∑
j=1

Zj +
`

∑
j=1

ZjB +
p

∑
i=1

Ni
`

∑
j=0

ZjMi

XXXXXXXXXXXXXXF
=

=

XXXXXXXXXXXXXXXXXXXXX

AZ1 +Z1B +
p

∑
i=1

NiZ0Mi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+A
`

∑
j=2

Zj +
`

∑
j=2

ZjB +
p

∑
i=1

Ni
`

∑
j=1

ZjMi

XXXXXXXXXXXXXXXXXXXXXF

= . . . = ∥
p

∑
i=1

NiZ`Mi∥
F

= ∥QA (
p

∑
i=1

NiQ
T
AQAZ`Q

T
BQBMi)QTB∥

F

= ∥
p

∑
i=1

ÑiZ̃`M̃i∥
F

.

In conclusion, the following iterative procedure can be used to approximate the solution
to (5.0.1): the matrices (5.2.18) are precomputed, then the Sylvester equations in triangular
form (5.2.17) are solved until the residual of the Neumann series (5.2.19) is sufficiently
small. The final approximation X(`) is constructed only after the iteration has completed.
The procedure is summarized in Algorithm 14.
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Chapter 6

Generalized Sylvester and
Lyapunov equations with
low-rank right-hand side

In this Chapter we focus on computational strategies to solve large-scale generalized Sylvester
equations with low-rank right-hand side

L(X) +Π(X) −C1C
T
2 = 0, C1,C2 ∈ Rn×r, r ≪ n. (6.0.1)

We assume ρ(L−1Π) < 1 so that a unique solution X to (6.0.1) exists. See Section 5.2.
From a computational point of view, assuming L−1Π to be a contraction allows us to

employ solution processes based on a regular splitting of the overall operator L +Π, that is
a numerical solution Xk can be computed by the iterative procedure

Xk+1 = −L
−1

(Π(Xk)) + L
−1

(C1C
T
2 ). (6.0.2)

It easy to show how Xk+1 computed by (6.0.2) is equivalent to the truncated Neumann series
X(`) in (5.2.15).

The procedure in (6.0.2) is numerically inadequate in case of large-scale problems as it
provides a dense matrix Xk+1. Therefore memory-saving strategies have to be devised also
in this setting. Procedures belonging to the class of low-rank methods have been developed.
In particular, in [11], the authors propose a bilinear ADI (BilADI) method which naturally
extends the low-rank ADI algorithm for standard Lyapunov problems to generalized Lya-
punov equations. A nonstationary iterative method based on (6.0.2) is derived in [96]. In
particular, the inversion of L that corresponds to the solution of a large-scale (standard)
Sylvester equation is computed by K-PIK which efficiently implements an extended Krylov
subspace method. See Chapter 2 and [97, 26]. The projection method is coupled with a
low-rank truncation of the current iterate Xk+1. In [70] a greedy low-rank technique for
general equations of the form ∑

p
i=1AiXBi −C1C

T
2 = 0 is presented.

The application of these methods has been often heuristically motivated. Indeed, the
existence of a low-rank approximant X̃ to X has been shown only in case of a low-rank Π by
applying a Sherman-Morrison-Woodbury argument. See [11]. In the next Section , assuming
that L−1(C1C

T
2 ) can be well approximated by a low-rank matrix, we show that ρ(L−1Π) < 1

is a sufficient condition for the existence of a low-rank numerical solution X̃ to (6.0.1).
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6.1 Low-rank approximability

The closed-form of X derived in Theorem 5.2.2 can be exploited to show that the solution
to (6.0.1) can be often approximated by a low-rank matrix. We base our reasonings on the
low-rank approximability properties of the Sylvester operator L presented at the beginning
of Chapter 2. Since the solution X to (6.0.1) can be obtained summing the solutions of
equations (5.2.14), we can extend several results concerning the low-rank approximability of
the solution to (standard) Sylvester equations to the case of generalized Sylvester equations
assuming ρ(L−1Π) < 1. More precisely, under the low-rank approximability assumption of
L, the right-hand side of the Sylvester equations (5.2.14) is a low-rank matrix for every j
since C1C

T
2 is low-rank and p≪ n.

Theorem 6.1.1. Let L be the Sylvester operator L(X) = AX +XB, Π the linear operator
Π(X) = ∑

p
i=1NiXMi, C1,C2 ∈ Rn×r and k a positive integer. Let X(`) be the truncated

Neumann series (5.2.15). Then there exists a matrix X
(`)

such that

rank(X
(`)

) ≤ (2k + 1)r +
`

∑
j=1

(2k + 1)j+1pjr, (6.1.3)

and

∥X(`) −X
(`)

∥ ≤Ke−π
√
k, (6.1.4)

where K is a constant that does not depend on k and only depends on L and `.

Proof. For a given k, let Lk be such that L−1
k (C) = ∑

k
j=−k ωje

tjACetjB
T

so that∥L−1−L−1
k ∥ ≤

Ke−π
√
k as in (2.0.3). We then consider the sequence

⎧⎪⎪
⎨
⎪⎪⎩

Z0 ∶= L−1
k (C1C

T
2 ),

Zj+1 ∶= −L−1
k (Π(Zj)), j ≥ 0.

(6.1.5)

Defining β ∶= ∥L−1Π∥ and βk ∶= ∥L−1
k Π∥, we have

∥Zj+1 −Zj+1∥ ≤ ∥L
−1

(Π(Zj)) − L
−1

(Π(Zj))∥ + ∥L
−1

(Π(Zj)) − L
−1
k (Π(Zj))∥

≤ β∥Zj −Zj∥ +Ke
−π
√
k
∥Π∥∥Zj∥.

From the above expression, a simple recursive argument shows that

∥Zj+1 −Zj+1∥ ≤ β
j+1

∥Z0 −Z0∥ +Ke
−π
√
k
∥Π∥

j

∑
t=0

βj−t∥Zt∥. (6.1.6)

Using the submultiplicativity of the operator norm, it holds that ∥Zj∥ = ∥L−1
k (Π(Zj−1))∥ ≤

βk∥Zj−1∥. In particular ∥Zj∥ ≤ β
j
k∥L

−1
k ∥∥C1C

T
2 ∥, and therefore, from (6.1.6) it follows that

∥Zj+1 −Zj+1∥ ≤ β
j+1

∥L
−1
− L

−1
k ∥∥C1C

T
2 ∥ +Ke−π

√
k
∥Π∥

j

∑
t=0

βj−t∥L−1
k ∥∥C1C

T
2 ∥

≤ [βj+1
+ ∥Π∥∥L

−1
k ∥

j

∑
t=0

βj−tβtk]Ke
−π
√
k
∥C1C

T
2 ∥. (6.1.7)
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Since L−1
k converges to L−1, and by using the continuity of the operators, we have that ∥L−1

k ∥

and βk are bounded by a constant independent of k. Therefore from (6.1.7) it follows that

there exists a constant Kj+1 independent of k such that ∥Zj+1 − Zj+1∥ ≤ Kj+1e
−π
√
k. The

relation (6.1.4) follows by defining X
(`)

∶= ∑
`
j=0Zj and observing

∥X(`) −X
(`)

∥ ≤
`

∑
j=0

∥Zj −Zj∥ ≤ e
−π
√
k

`

∑
j=0

Kj =Ke
−π
√
k,

where K ∶= ∑
`
j=0Kj .

The upper-bound (6.1.3) follows by induction observing that rank(Zj+1) ≤ (2k + 1)p ⋅
rank(Zj).

Notice that the right-hand side in (6.1.3) does not grow linearly with neither the number
of terms p defining the operator Π nor the number ` of terms considered in the truncated
Neumann series (5.2.15). Therefore, (6.1.3) is meaningful only in case of equations with a
right-hand side of small rank r, p moderate and such that few terms in (5.2.15) are necessary
to obtain an accurate numerical solution, that is ρ(L−1Π) ≪ 1. In these cases the truncated
Neumann series X(`) allows for a low-rank approximation and the employment of low-rank
methods in the solution of (6.0.1) is motivated as

∥X −X
(`)

∥ ≤ ∥X −X(`)∥ + ∥X(`) −X
(`)

∥ ≤ ∥L
−1

(C1C
T
2 )∥

ρ(L−1Π)`+1

1 − ρ(L−1Π)
+Ke−π

√
k.

See also [81] for further results on the low-rank approximability of X.

6.2 Generalized Sylvester equations with low-rank com-
muting coefficients

We now consider equation (6.0.1) with ρ(L−1Π) < 1 and equipped with a further assumption
that may seem unusual at a first glance. In particular, we suppose that the commutators of
the matrix coefficients of the operator Π and the coefficients defining the Sylvester operator L
are low-rank. More precisely, if {A,B} ∶= AB−BA denotes the commutator of two matrices,
we assume that there exist Pi, P̃i ∈ Rn×si and Qi, Q̃i ∈ Rn×ti such that si, ti ≪ n and the
commutators fulfill

{A,Ni} = ANi −NiA = PiP̃
T
i , (6.2.8a)

{B,Mi} = BMi −MiB = QiQ̃
T
i , (6.2.8b)

for i = 1, . . . , p. The property (6.2.8), which we refer to as low-rank commutation, is in
this framework a generalization of the concept of commuting matrices. The case of pure
commutation, which occurs for instance when Ni = fi(A),Mi = gi(B) with fi, gi polynomials
or analytic functions, is analysed in, e.g., [72, 11]. Also in case of a low-rank Π [11], equations
(6.2.8) are satisfied. Moreover, many discretization procedures lead to structured matrices
(e.g., Toeplitz, circulant, etc...) that commute up to low-rank factors [9].

The framework of projection methods presented in Section 2.1 can be easily adapted
to solve generalized Sylvester equations. Nevertheless, effective solvers based on projection
are still lacking in the literature [11] and methods based on a regular splitting of L + Π
are more commonly used. See Section 6.1. In the next Sections, we propose a projection
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method where the projection spaces are selected by identifying certain features of the solution
to (6.0.1) based on our characterization of X by a Neumann series expansion and the low-
rank commutation properties (6.2.8). More precisely we use extended Krylov subspaces with
an appropriate choice of the starting blocks.

To the best of our knowledge, exploiting the low-rank commutativity properties (6.2.8)
was first proposed in [64] in the context of numerical methods for matrix equations.

6.2.1 Projection methods for generalized equations

As already mentioned, the framework of projection methods presented in Section 2.1 can
be easily adapted to handle generalized Sylvester equations with a low-rank right-hand side
(6.0.1). In particular, two sequences of nested subspaces of Rn, i.e., Km−1 ⊂ Km and Cm−1 ⊂

Cm, are computed. Motivated by the low-rank approximability of the solution illustrated in
Theorem 6.1.1, projection methods construct approximations to X of the form

Xm = VmYmU
T
m, (6.2.9)

where Vm and Um are matrices with orthonormal columns representing respectively an or-
thonormal basis of Km and Cm.

As in the standard case, the matrix Ym can be obtained by imposing the Galerkin or-
thogonality condition, namely the residual

Rm ∶= AXm +XmB +

p

∑
i=1

NiXmMi −C1C
T
2 , (6.2.10)

is such that V TmRmUm = 0. This condition is equivalent to Ym satisfying the following small
and dense generalized Sylvester equation

TmYm + YmJ
T
m +

p

∑
i=1

Gm,iYmFm,i −Dm,1D
T
m,2 = 0, (6.2.11)

where,

Tm ∶= V TmAVm, Jm ∶= UTmB
TUm, Dm,1 = V

T
mC1, Dm,2 = U

T
mC2, (6.2.12a)

Gm,i ∶= V
T
mNiVm, Fm,i ∶= U

T
mMiUm, i = 1, . . . , p. (6.2.12b)

The iterative procedure consists in expanding the spaces Km and Cm until the norm of the
residual matrix Rm (6.2.10) is sufficiently small.

As outlined in Section 2.1, a projection method is efficient only if the subspaces Km and
Cm generate important spectral information without the space dimensions being large. The
extended Krylov subspace method presents this feature and it is nowadays recognized as one
of the most effective procedure for solving standard linear equations with low-rank right-
hand side. We want to exploit the approximation properties of EK◻

m also in our framework
and we thus select Km = EK◻

m(A,C1), Cm = EK◻
m(BT ,C2) where C1, C2 are the starting

blocks, which we will show how to select in our setting in Sections 6.2.2 and 6.2.3. The
procedure is summarized in Algorithm 6.1 where the matrices Z1 and Z2 are the low-rank
factors of (6.2.9), i.e., they are such that Xm = Z1Z

T
2 . Notice that, in the case of generalized

Lyapunov equations, the new basis blocks Vm and Um are equal (hence also the basis matrices
Vm and Um) and Algorithm 6.1 can be optimized accordingly. Moreover, for the case of the
(standard) Sylvester equation, i.e., equation (5.0.1) with p = 0, Algorithm 6.1 is equivalent
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Algorithm 6.1: Galerkin projection method for the generalized Sylvester matrix
equation.

input : A,B,N1 . . . ,Np,M1, . . . ,Mp ∈ Rn×n , C1,C2 ∈ Rn×r C1 ∈ Rn×r1 and
C2 ∈ Rn×r2

output: Z1,Z2 ∈ Rn×t, t ≤ 2m ⋅min{r1, r2}

1 Set β1 = ∥C1∥F , β2 = ∥C2∥F

2 Perform economy-size QR of C1, C1 = V1γγγ1, and C2, C2 = U1γγγ2. Set V1 ≡ V1, U1 ≡ U1

for m = 2,3, . . . , till convergence, do
3 Compute next basis blocks Vm, Um and set Vm = [Vm−1,Vm], Um = [Um−1,Um]

4 Update Tm = V TmAVm, Jm ∶= UTmB
TUm, Dm,1 = V

T
mC1, Dm,2 = U

T
mC2,

Gm,i ∶= V
T
mNiVm, Fm,i ∶= U

T
mMiUm, i = 1, . . . , p

5 Solve TmYm + YmJ
T
m +∑

p
i=1Gm,iYmFm,i −Dm,1D

T
m,2 = 0

6 Compute ∥Rm∥2
F = ∥τττm+1,mE

T
mYm∥2

F + ∥YmEmιιι
T
m+1,m∥2

F

7 if ∥Rm∥F /(β1β2) < ε then
8 Stop

end

end

9 Compute the singular value decomposition of Ym and retain Ŷ1 ∈ R2mr̄1×t,

Ŷ2 ∈ R2mr2×t, t ≤ 2m ⋅min{r̄1, r2}

10 Set Z1 = VmŶ1, Z2 = UmŶ2

to Algorithm 2.3 with the choice of the starting blocks C1 = C1 and C2 = C2. Under the
condition that ∥Rm∥ is small, Xm is an approximation of the solution to (5.0.1) such that
rank(Xm) ≤ 2m ⋅min(r1, r2), r̄1 = rank(C1), r̄2 = rank(C2).

As in case of standard equations, the block Arnoldi procedure equipped with the modified
block Gram-Schmidt can be employed in the basis construction providing the matrices Tm,
Jm in step 4 and the new basis blocks Vm+1,Um+1 in step 3. See Section 2.1 and the discussion
at the beginning of Section 2.2.4.

The matrices Gm,i and Fm,i in step 4 can be computed by extending the matrices Gm−1,i

and Fm−1,i with a block-column and a block-row. Moreover, the matrix Xm is never explicitly
formed. In particular, the Frobenius norm of the residual (6.2.10) can be computed as in
(2.1.18). This can be shown by an argument similar to the one adopted in Proposition 2.1.1
as the block Arnoldi relations

AVm = VmTm + Vm+1τττm+1E
T
m, BUm = UmJm + Um+1ιιιm+1E

T
m,

still hold.
A breakdown in Algorithm 6.1 may occur in two situations. During the generation of

the basis of the extended Krylov subspaces, (numerical) loss of orthogonality may occur in
step 3. This issue is present already for the Sylvester equation [97, 26] and we refer to [49] for
some safeguard strategies that may mitigate the problem. We assume that the bases Vm and
Um have full rank. The other situation where a breakdown may occur is in step 5. It may
happen that the projected problem (6.2.11) is not solvable. For the Sylvester equation the
solvability of the projected problem is guaranteed by the condition that the field of values
of A and −B are disjoint. See Section 2.1.1. We extend this result to the case of generalized
Sylvester equations. In our setting we need an additional condition and instead of using the
field of values, it is natural to employ the ratio field of values defined in, e.g., [38].
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Proposition 6.2.1. Consider the generalized Sylvester equation (5.0.1) and assume that the
field of values of A and −B are disjoint, and that the ratio field of values of ∑

p
i=1M

T
i ⊗Ni

and BT ⊗ I + I ⊗A, i.e.,

R(
p

∑
i=1

MT
i ⊗Ni,BT ⊗ I + I ⊗A) ∶=

⎧⎪⎪⎨⎪⎪⎩

y∗ (∑pi=1M
T
i ⊗Ni) y

y∗ (BT ⊗ I + I ⊗A) y ∣ y ∈ Cn
2

∖ {0}
⎫⎪⎪⎬⎪⎪⎭
,

is strictly contained in the open unit disk. Then the projected problem (6.2.11) has a unique
solution.

Proof. Let Lproj(Y ) ∶= TmY +Y J
T
m and Πproj(Y ) ∶= ∑

p
i=1Gm,iY Fm,i. The projected problem

(6.2.11) is equivalently written as Lproj(Ym) +Πproj(Ym) −Dm,1D
T
m,2 = 0. Since A and −B

have disjoint fields of values, Lproj is invertible. See Section 2.1.1.
From Theorem 5.2.2 we know that there exists a unique solution Ym to (6.2.11) if

ρ (L−1
projΠproj) < 1. This condition is equivalent to asking ∣λ∣ < 1, where (λ, v) ∈ C×C4m2r̄1r̄2∖

{0} is an eigenpair of the following generalized eigenvalue problem

(

p

∑
i=1

FTm,i ⊗Gm,i) v = λ(Jm ⊗ I + I ⊗ Tm)v. (6.2.13)

Using the properties of the Kronecker product, equation (6.2.13) can be written as

p

∑
i=1

(UTm ⊗ V Tm ) (MT
i ⊗Ni) (Um ⊗ Vm) v = λ(UTm ⊗ V Tm ) (BT ⊗ I + I ⊗A) (Um ⊗ Vm) v.

By multiplying the above equation from the left by v∗ we have that

∣λ∣ =
RRRRRRRRRRR

x∗ (∑
p
i=1M

T
i ⊗Ni)x

x∗ (BT ⊗ I + I ⊗A)x

RRRRRRRRRRR

, x ∶= (Um ⊗ Vm) v.

Since R (∑
p
i=1M

T
i ⊗Ni,B

T ⊗ I + I ⊗A) is strictly contained in the unit circle we conclude
that ∣λ∣ < 1.

Proposition 6.2.1 guarantees the well-posedness of the projected problems (6.2.11) but it
has a further computational implication. Indeed, assuming thatR (∑

p
i=1M

T
i ⊗Ni,B

T ⊗ I + I ⊗A)

is strictly contained in the unit disk entails that the projected equations (6.2.11) can be
solved by Algorithm 14 so that expensive linearizations via Kronecker transformations are
not necessary.

6.2.2 Krylov subspace and low-rank commuting matrices

Algorithm 6.1 is efficient only if the starting blocks C1 and C2 are low-rank matrices and if the
subspaces EK◻

m(A,C1) and EK◻
m(BT ,C2) have good approximation properties. Therefore,

we now derive certain features of the solution to (6.0.1) that naturally suggest a proper
choice of the starting blocks. The low-rank of the starting blocks will rely on the low-rank
commutation property of the coefficients (6.2.8). We describe the steps of our reasoning as
follows.

� The solution to the generalized Sylvester equation (6.0.1) can be represented as a
converging Neumann series (5.2.13). By truncating this series, X(`) gives an approxi-
mation to the solution to (6.0.1).
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� The terms in the truncated Neumann series (5.2.14) satisfy a sequence of Sylvester
equations where, at each j, the right-hand side of the current equation involves the
solution to the previous equation. We consider approximate solutions to this sequence.
More precisely, we denote by Z̃j the result of Algorithm 6.1 applied to each Sylvester
equation (5.2.14).

� The matrix X̃(`) = ∑
`
j=0 Z̃j is an approximation to the solution to (6.0.1) and we show

that it can be factorized as X̃(`) = Z1Z
T
2 such that Range(Z1) ⊆ EK◻

m(A,C1) and
Range(Z2) ⊆ EK◻

m(BT ,C2) for certain C1 and C2. We give a characterization and a
procedure for computing C1 and C2. One condition for these matrices to be low-rank
concerns the commutators (6.2.8) being low-rank. These two matrices will be used as
starting blocks in Algorithm 6.1.

Although the above reasoning is based on solving a sequence of Sylvester equations, our
approach consists of applying Algorithm 6.1, only one time, directly to the generalized
Sylvester equation (6.0.1).

We first need a technical result which shows that, if the commutator of two matrices has
low rank, then the corresponding commutator, where one matrix is taken to a given power,
has also low rank. The rank increases at most linearly with respect to the power of the
matrix. The precise statement is presented in the following lemma.

Lemma 6.2.2. Suppose that A and N are matrices such that {A,N} = PP̃T . Then,

{Aj ,N} =

j−1

∑
k=0

AkPP̃TAj−k−1.

Proof. The proof is by induction. The basis of induction is trivially verified for j = 1. Assume
that the claim is valid for j, then the induction step follows by observing that

{Aj+1,N} = Aj+1N −NAj+1
= AjPP̃T + (AjN −NAj)A,

and applying the induction hypothesis on AjN −NAj .

As already pointed out, the low-rank factors of the right-hand side are natural start-
ing blocks for the (standard) Sylvester equation. If we apply this result to the sequence
of Sylvester equations in Theorem 5.2.2, we obtain subspaces with a particular structure.
For example, the approximation Z1,0Z

T
2,0 to Z0 provided by Algorithm 6.1 is such that

Range(Z1,0) ⊆ EK◻
m(A,C1) and Range(Z2,0) ⊆ EK◻

m(BT ,C2). Since Z0 is contained in
the right-hand side of the definition of Z1, in order to compute an approximation of Z1, we
should consider the subspaces Ni ⋅ EK◻

m(A,C1) and MT
i ⋅ EK◻

m(BT ,C2) for i = 1, . . . , p.
By using the low-rank commutation property (6.2.8) such subspaces can be characterized by
the following result.

Theorem 6.2.3. Assume that A ∈ Rn×n is nonsingular and let N ∈ Rn×n such that {A,N} =

PP̃T with P, P̃ ∈ Rn×s. Let C ∈ Rn×r, then

N ⋅ EK◻
m(A,C) ⊆ EK◻

m(A, [NC,P ]).

Proof. Since EK◻
m(A,C) = K◻

m(A,C)+K◻
m(A−1,A−1C), an element of N ⋅ EK◻

m(A,C) can
be written as N ⋅ ∑

m−1
j=0 AjCςςςj +N ⋅ ∑

m
j=1A

−jCυυυj where ςςςj ,υυυj are r×r matrices. See (2.1.7).
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6. Generalized Sylvester and Lyapunov equations with low-rank right-hand side

We focus on the first term N ⋅ ∑
m−1
j=0 AjCςςςj . By using Lemma 6.2.2, we have

N ⋅
m−1

∑
j=0

AjCςςςj =
m−1

∑
j=0

AjNCςςςj −
m−1

∑
j=0

j−1

∑
k=0

AkP (P̃TAj−k−1Cςςςj) ,

so that, Range(N ⋅ ∑
m−1
j=0 AjCςςςj) ⊆ K◻

m(A, [NC,P ]) ⊆ EK◻
m(A, [NC,P ]).

We can show that Range(N ⋅ ∑
m
j=1A

−jCυυυj) is a subset of EK◻
m(A, [NC,P ]) with the

same procedure since {A−1,N} = −(A−1P )(A−T P̃ )T .

In order to ease the notation and improve conciseness of the results that follow, we
introduce the following multivariate generalization of the Krylov subspace for more matrices

Gd(N1, . . . ,Np;P ) = span{Ni1⋯NisPz ∣1 ≤ ij ≤ p,0 ≤ s ≤ d, z ∈ R
r
} ,

where P ∈ Rn×r, that is Gd(N1, . . . ,Np;P ) is the space generated by the columns of the
matrices obtained multiplying – in any order and with repetition – s of the p matrices Ni,
0 ≤ s ≤ d, and the matrix P . For instance, G2(N1,N2;P ) is generated by the columns of

[P, N1P, N2P, N1N2P, N2N1P, N
2
1P, N

2
2P ]. (6.2.14)

Other characterizations of Gd may be derived via combinatorial tools.
Notice that the definition of Gd generalizes the definition of the standard block Krylov

subspace as Gd(N ;P ) = K◻
d(N,P ).

The solution strategy for (6.0.1) outlined at the beginning of this Section is formalized in
the following Theorem. In order to state the Theorem we need the result of the application
of the extended Krylov method to the (standard) Sylvester equations of the form

AZ +ZBT −C1C
T
2 = 0, (6.2.15a)

AZ +ZBT +
p

∑
i=1

(NiZ1,j)(MiZ2,j)
T
= 0, (6.2.15b)

as described in [97, 26]. As already stated, this is identical to applying Algorithm 6.1 with
p = 0.

Theorem 6.2.4. Consider the generalized Sylvester equation (6.0.1), with coefficients com-
muting according to (6.2.8). Let Z̃0 = Z1,0Z

T
2,0 be the result of Algorithm 6.1 applied to

the (standard) Sylvester equation (6.2.15a) with starting blocks C1 = C1 and C2 = C2.
Moreover, for j = 0, . . . , ` − 1, let Z̃j+1 = Z1,j+1Z

T
2,j+1 be the result of Algorithm 6.1 ap-

plied to the Sylvester equation (6.2.15b) with starting blocks C1 = [N1Z1,j , . . . ,NpZ1,j] and

C2 = [MT
1 Z2,j , . . . ,M

T
p Z2,j]. Let X̃(`) be the approximation of the truncated Neumann series

(5.2.15) given by

X̃(`) ∶=
`

∑
j=0

Z̃j .

Then, there exist matrices Z1,Z2, Ĉ
(`)
1 , Ĉ

(`)
2 such that Range(Z1) ⊆ EK◻

(`+1)d(A, Ĉ
(`)
1 ) and

Range(Z2) ⊆ EK◻
(`+1)d(B

T , Ĉ
(`)
2 ) and

X̃(`) = Z1Z
T
2 ,

94



6. Generalized Sylvester and Lyapunov equations with low-rank right-hand side

where

Range(Ĉ
(`)
1 ) ⊆ G`(N1, . . . ,Np;C1) + G`−1(N1, . . . ,Np;P ), (6.2.16a)

Range(Ĉ
(`)
2 ) ⊆ G`(M

T
1 , . . . ,M

T
p ;C2) + G`−1(M

T
1 , . . . ,M

T
p ;Q), (6.2.16b)

and P ∶= [P1, . . . , Pp], Q ∶= [Q1, . . . ,Qp].

Proof. We start proving that for j = 0, . . . , `, there exists a matrix Sj such that Range(Z1,j) ⊆

EK◻
(`+1)d(A,Sj) and

Range(Sj) ⊆ Gj(N1, . . . ,Np;C1) + Gj−1(N1, . . . ,Np;P ). (6.2.17)

We prove this claim by induction. The basis of induction is trivially verified with S0 ∶= C1

recalling that G0(N1, . . . ,Np;C1) = Range(C1) and assuming G−1(N1, . . . ,Np;C1) = ∅. We
now assume that the claim is valid for j > 0 and we perform the induction step. By con-
struction, we have Range(Z1,j+1) ⊆ EK◻

d(A, [N1Z1,j , . . . ,NmZ1,j]). By applying Theo-
rem 6.2.3 and the induction hypothesis, Range(NiZ1,j) ⊆ EK◻

(j+1)d(A, [NiSj , Pi]) for any

i = 1, . . . , p. Therefore, Range(Z1,j+1) ⊆ EK◻
(j+2)d(A, [N1Sj , . . . ,NpSj , P ]). We define

Sj+1 ∶= [N1Sj , . . . ,NpSj , P ] which concludes the induction.
From (6.2.17) we now obtain the relation

Range([S0, . . . , Sj]) ⊆ Gj(N1, . . . ,Np;C1) + Gj−1(N1, . . . ,Np;P ),

that directly implies (6.2.16a) by setting Ĉ
(`)
1 ∶= [S0, . . . , S`]. Equation (6.2.16b) follows from

completely analogous reasoning. The final conclusion follows by defining Z1 ∶= [Z1,0, . . . ,Z1,`]

and Z2 ∶= [Z2,0, . . . ,Z2,`].

The main message of the previous Theorem can be summarized as follows. The low-rank
factors of the approximation to X(`) (5.2.15) obtained by sequentially solving the Sylvester
equations (5.2.14) by an extended Krylov subspace method are contained in particular ex-
tended Krylov subspaces with a specific choice of the starting blocks. In particular the start-

ing blocks are selected as C1 = Ĉ
(`)
1 , C2 = Ĉ

(`)
2 where Ĉ

(`)
1 and Ĉ

(`)
2 fulfill (6.2.16a)-(6.2.16b).

Our approach consists in applying Algorithm 6.1 directly to the generalized Sylvester equa-
tion (6.0.1) with this choice of the starting blocks.

A practical procedure that generates starting blocks that fulfill (6.2.16) consists in se-
lecting C1 and C2 such that their columns are respectively a basis of the subspaces

G`(N1, . . . ,Np;C1) + G`−1(N1, . . . ,Np;P )

and
G`(M

T
1 , . . . ,M

T
p ;C2) + G`−1(M

T
1 , . . . ,M

T
p ;Q).

For instance, a basis of G2(N1,N2;P ) can be obtained from the columns of the matrix in
(6.2.14).

The choice of the starting blocks involves the parameter `. In theory, a suitable choice of `
could be derived by using the error estimate in (5.2.16). However, this is not always possible
since the quantity ρ(L−1 Π) is, in many cases, not known and computationally demanding
to approximate. The choice of ` is a trade-off between accuracy and efficiency. The starting

blocks Ĉ
(`)
1 and Ĉ

(`)
2 , for large `, provide spaces EK◻

m(A,C1) and EK◻
m(BT ,C2) with

better approximation features, but with potentially higher dimensions. In Figure 6.1 we
plot the convergence history of Algorithm 6.1 applied to a (randomly generated) generalized
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Lyapunov equation AX +XA +NXN − ccT = 0 with A ∈ Rn×n circulant and N = L + uuT ∈

Rn×n, L circulant, u, c ∈ Rn, n = 1000. All the matrices and vectors involved have random
entries. Since circulant matrices commute, {A,N} = PP̃T , P = [Au,u], P̃ = [u,−Au].
Algorithm 6.1 is tested for the starting blocks Ĉ(`) with ` = 0,1,2 selected according to
Theorem 6.2.3, i.e., Ĉ(0) = c, Ĉ(1) = [c,Nc,P ], Ĉ(2) = [c,Nc,N2c,P,NP ].

As it can be appreciated from the plot, an increase in ` leads to a more accurate approxi-
mation to the solution to (6.0.1), but to an increment in the computational cost of the whole
procedure as spaces of larger dimensions are generated. Our approach is computationally
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Figure 6.1: Convergence history of Algorithm 6.1 applied to a generalized Lyapunov equation
AX +XA + NXN − ccT = 0 with A ∈ Rn×n circulant and N = L + uuT ∈ Rn×n, u, c ∈ Rn,
n = 1000. All the matrices and vectors involved have random entries. Different starting
blocks Ĉ(`) are tested: Ĉ(0) = c, Ĉ(1) = [c,Nc,P ], Ĉ(2) = [c,Nc,N2c,P,NP ], P = [Au,u].

attractive only if the starting blocks C1 = Ĉ
(`)
1 and C2 = Ĉ

(`)
2 have low rank, otherwise the

dimension of the generated subspaces would grow to quickly leading to unfeasible computa-
tional costs.

There are other methods based on generating several projection subspaces (with the
same coefficient matrix) as in, e.g., [96, 31]. Since Algorithm 6.1 generates only one pair
of extended Krylov subspaces with given starting blocks, an advantage of our approach
with respect to these methods consists in avoiding redundancy in the approximation spaces.
In particular, if several Krylov subspaces with the same coefficient matrix are generated
independently of each other, they may have a nontrivial intersection or in general they may
have similar approximation properties. From a computational point of view, this means that
considerable efforts are wasted to breed similar information.

In certain cases the dimension of the subspaces G` is bounded for all the `, i.e., there exist

matrices C1 ∈ Rn×r̄1 and C2 ∈ Rn×r̄2 such that Range(Ĉ
(`)
1 ) ⊆ Range(C1) and Range(Ĉ

(`)
2 ) ⊆
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Range(C2) for all `. This condition is satisfied, e.g., if the matrix coefficients Ni, Mi are
nilpotent/idempotent or in general if they have low degree minimal polynomials. Therefore,
it is possible to select the starting blocks such that Algorithm 6.1 provides an approximation
of X(`) for all `, i.e., the full series (5.2.13) is approximated. See [64, Section 4.3].

6.2.3 The case of a low-rank Π(X) = ∑pi=1NiXMi

Our numerical method can be improved when Π(X) = ∑
p
i=1NiXMi is low-rank. Indeed, if

we consider a generalized Sylvester equation (6.0.1) where Ni = PiP̃
T
i and Mi = Q̃iQ

T
i are

low-rank matrices for all i, the commutators {A,Ni} and {B,Mi} are clearly low rank and
the theory and the procedure presented in the previous Sections can be adopted as well.
However, the solution to (6.0.1) can be further characterized and an efficient (and different)
choice of the starting blocks C1,C2 can be derived. The assumption ρ(L−1 Π) < 1 is no
longer needed to show the low-rank approximability of X. This property can be illustrated
via a Sherman-Morrison-Woodbury argument as proposed in [11]. The following proposition
shows that the generalized Sylvester equation (6.0.1) can be implicitly written as a Sylvester
equation with right-hand side involving the columns of the matrices Pi and Qi for i = 1, . . . , p.

Proposition 6.2.5. Consider the generalized Sylvester equation (6.0.1). Assume that L is
invertible, and that Ni = PiP̃

T
i and Mi = Q̃iQ

T
i are such that Pi, P̃i ∈ Rn×si and Qi, Q̃i ∈ Rn×ti ,

si, ti ≪ n. Then there exist αααi ∈ Rsi×ti , i = 1, . . . , p, such that

AX +XB − (C1C
T
2 −

p

∑
i=1

PiαααiQ
T
i ) = 0. (6.2.18)

Proof. The proof follows by defining αααi ∶= P̃
T
i XQ̃i.

Proposition 6.2.5 leads to the natural choice of the starting blocks C1 ∶= [C1, P1, . . . , Pp]
and C2 ∶= [C2,Q1, . . . ,Qp] for this kind of equations. Indeed, the right-hand side of the stan-
dard Sylvester equation (6.2.18) can be written as [C1, P1, . . . , Pp][C2,−Q1ααα

T
1 , . . . ,−Qpααα

T
p ]
T ,

and, although the αααi’s are not computable as they involve X, it holds

Range(C2) = Range([C2,−Q1ααα
T
1 , . . . ,−Qpααα

T
p ]),

so that EK◻
m(BT ,C2) = EK◻

m(BT , [C2,−Q1ααα
T
1 , . . . ,−Qpααα

T
p ]).

6.2.4 Numerical examples

We now illustrate our approach with some numerical examples where we compare our ap-
proach with two different methods for generalized Lyapunov equations: BilADI [11] and
GLEK [96]. The results are generally in favor of our approach, since the other methods are
less specialized to the specific structure. However, they have a wider applicable problem
domain.

Two variants of BilADI are considered. In the first variant we select the Wachspress
shifts, see e.g., [115], computed with the software available on Saak’s webpage*. In the
second variant H2-optimal shifts [10] are used. As proposed in [11], 4 Wachspress shifts and
8 H2-optimal shifts are considered in the solution process.

The GLEK code is available at the webpage of Simoncini�. In this algorithm we selected
tol inexact= 10−2 while the default setting is used for all the other thresholds.

*https://www2.mpi-magdeburg.mpg.de/mpcsc/mitarbeiter/saak/Software/adipars.php
�http://www.dm.unibo.it/˜simoncin/software.html
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The implementation of our approach is based on the modification of K-PIK [97, 26]
for generalized Sylvester equation as described in Algorithm 6.1. The projected problems,
computed in step 5, are solved with the procedure described in the Section 5.2.1. A MATLAB
implementation of Algorithm 6.1 is available online�.

In all the methods that we test, the stopping criterion is based on the relative residual
norm and the algorithms are stopped when it reaches tol = 10−6. We compare: number
of iterations, memory requirements, rank of the computed approximation, number of linear
solves (involving the matrices A and B, potentially shifted) and total execution CPU-times.

As memory requirement (denoted Mem. in the following tables) we consider the number
of vectors of length n stored during the solution process. In particular, for Algorithm 6.1
it consists of the dimension of the approximation space. In GLEK, a sequence of extended
Krylov subspaces is generated and the memory requirement corresponds to the dimension of
the largest space in the sequence. For the bilinear ADI approach the memory requirement
consists of the number of columns of the low-rank factor of the solution. For GLEK, we just
report the number of outer iterations. The CPU–times reported for BilADI do no take into
account the time for the shifts computation.

All the algorithms require solving linear systems with A and B – potentially shifted –
and we precompute the LU-factors of these matrices. During the iterative procedures the
resulting triangular systems are solved by the Matlab backslash.

All results were obtained with MATLAB R2015a on a computer with two 2 GHz proces-
sors and 128 GB of RAM.

Example 6.2.1. The time invariant multi-input and multi-output (MIMO) bilinear system
described in [73, Example 2] yields the following generalized Lyapunov equation

AX +XAT + γ2
2

∑
i=1

NiXN
T
i −CCT = 0, (6.2.19)

where γ ∈ R, γ > 0, A = tridiag(2,−5,2), N1 = tridiag(3,0,−3) and N2 = −N1 + I. We
consider C ∈ Rn×2 being a normalized random matrix. In the context of bilinear systems,
the solution to (6.2.19), referred to as Gramian, is used for computing energy estimates of
the reachability of the states. The number γ is a scaling parameter selected in order to
ensure the solvability of the problem (6.2.19) and the positive definiteness of the solution,
namely ρ(L−1Π) < 1. This parameter corresponds to rescaling the input of the underlying
problem with a possible reduction in the region where energy estimates hold. Therefore, it
is preferable not to employ very small values of γ. See [12] for detailed discussions.

For this problem the commutators have low rank, more precisely {A,N1} = −{A,N2} =

PP̃T , with P = 2
√

3[e1, en] and P̃ = 2
√

3[e1,−en]. As proposed in Section 6.2.2 we use Algo-

rithm 6.1 with starting blocks C1 = C2 = [C,N1C,P ] since Range(C
(1)
1 ) = Range([C,N1C,N2C,P ]) =

Range ([C,N1C,P ]). Notice that in this example we have prefered ` = 1 when choosing the
starting block as the selected accuracy has been always attained. If it had not been the case,
larger values of ` would have been employed.

Table 6.1 illustrates the performances of our approach and the other low-rank methods,
GLEK and the BilADI, as γ varies. We notice that the number of linear solves that our
projection method requires is always much less than for the other methods. Moreover, it
seems that moderate variations of γ, that correspond to variations of ρ(L−1Π), have a smaller
influence on the number of iterations in our method compared to the other algorithms.

�http://www.dm.unibo.it/˜davide.palitta3
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γ Its. Mem. rank(X) Lin. solves CPU time
BilADI (4 Wach.) 1/6 10 55 55 320 51.26

BilADI (8 H2-opt.) 10 55 55 320 51.54
GLEK 9 151 34 644 14.17

Algorithm 6.1 6 72 60 36 3.77
BilADI (4 Wach.) 1/5 14 71 71 588 55.15

BilADI (8 H2-opt.) 14 69 69 586 54.31
GLEK 12 173 39 1016 22.06

Algorithm 6.1 6 72 61 36 4.23
BilADI (4 Wach.) 1/4 24 89 89 1454 67.61

BilADI (8 H2-opt.) 23 89 89 1371 66.83
GLEK 21 218 50 2348 51.49

Algorithm 6.1 8 96 81 48 6.72

Table 6.1: MIMO example. Comparison of low-rank methods for n = 50000.

Example 6.2.2. We now consider the following generalized Lyapunov equation

AX +XAT + PP̃TXP̃PT − ccT = 0, (6.2.20)

where A = n2tridiag(1,−2,1) and P, P̃ ∈ Rn×p, c ∈ Rn have random entries and unit norm.
We use Algorithm 6.1, and as proposed in Section 6.2.3, we select C1 = C2 = [c,P ] as
starting blocks. In Table 6.2 we report the results of the comparison to the other methods
for p = 1. We notice that our approach requires the lowest number of linear solves. The ADI

n Its. Mem. rank(X) Lin. solves CPU time
BilADI (4 Wach.) 10000 60 57 57 2462 4.25

BilADI (8 H2-opt.) 42 55 55 1420 2.54
GLEK 4 240 28 310 3.10

Algorithm 6.1 46 184 49 92 2.77
BilADI (4 Wach.) 50000 327 61 61 18673 315.56

BilADI (8 H2-opt.) 96 61 61 4580 81.47
GLEK 4 454 28 565 24.78

Algorithm 6.1 78 312 47 156 21.09
BilADI (4 Wach.) 100000 - - - - -

BilADI (8 H2-opt.) 84 65 65 4058 174.04
GLEK 4 457 29 631 66.77

Algorithm 6.1 97 388 44 194 55.58

Table 6.2: Comparison of low-rank methods applied to (6.2.20) varying n with p = 1.

approaches demand the lowest storage because of the column compression strategy performed
at each iteration. However, due to the large number of linear solves, these methods are slower
compared to our approach. For large-scale problems the BilADI method with 4 Wachspress
shifts does not converge in 500 iterations. GLEK provides the solution with the smallest
rank.

We now consider (6.2.20) for p > 1. Notice that this corresponds to an operator Π defined
by the sum of p terms of rank 1. In particular, we apply Algorithm 6.1 to equation (6.2.20)
for p = 5,10,15. The results are collected in Table 6.3. The number of iterations performed
decreases as p increases. However, since the rank of the starting block increases with p, the

99



6. Generalized Sylvester and Lyapunov equations with low-rank right-hand side

n p Its. Mem. rank(X) Lin. solves CPU time
10000 5 33 396 50 198 9.38

10 27 594 48 297 19.87
15 24 768 44 384 27.35

50000 5 55 660 43 330 54.87
10 45 990 41 495 117.26
15 40 1280 42 640 245.87

100000 5 68 816 43 408 133.72
10 56 1232 41 616 332.68
15 50 1600 44 800 743.86

Table 6.3: Algorithm 6.1 applied to (6.2.20) varying n and p.

dimension of the approximation space increases, and thus does the number of linear solves.
As a result, the computation time increases with p.

If we replace the matrix A with A/n2 in equation (6.2.20), neither BilADI nor GLEK
converge since the Lyapunov operator is no longer dominant, i.e., ρ(L−1Π) > 1. However,
the existence of a low-rank numerical solution is guaranteed by [11, Theorem 1], and our
algorithm still converges providing a solution X in 46 iterations with rank(X) = 184 for
n = 10000 and p = 1. In this case, the projected problems cannot be solved with the
approach described in Section 5.2.1. However, since the projected problems are also of the
form (6.2.20), they can be solved with a Sherman-Morrison-Woodbury approach for matrix
equations [31, 89, 90]. In this case we used the method presented in [31, Section 3].

6.3 Closing considerations

The novel projection spaces we have proposed in Section 6.2.2 deeply rely on the low-rank
commutation feature of the matrix coefficients (6.2.8). The structured matrices that present
this feature are already analyzed in literature although, to our knowledge, this was never
exploited in the setting of Krylov-like methods for matrix equations. Low-rank commuting
matrices are usually studied with the displacement operators. More precisely, for a given
matrix Z, the displacement operator is defined as F (A) ∶= AZ − ZA. For many specific
choices of the matrix Z, e.g., Jordan block, circulant, etc., it is possible to characterize
the displacement operator and describe the matrices that are low-rank commuting with Z.
See, e.g., [67, 9], [22, Chap. 2, Sec. 11] and references therein. The theory concerning the
displacement operator may potentially be used to classify the problems that can be solved
with our approach.

The pursued approach is based on the extended Krylov subspace. However, the more
general rational Krylov subspace (2.1.9) can be employed as well. Indeed, the commutator
{A,N} is invariant under translations of the matrix A but further research is needed to
characterize the spaces and study efficient shift-selection strategies as it has been done in
[35] for standard Lyapunov equations.

In conclusion, we wish to point out that the low-rank approximability characterization
given in Theorem 6.1.1 may be of use outside of the scope of projection methods. For in-
stance, Riemannian optimization methods are designed to compute the best rank k approxi-
mation (in the sense of, e.g., [71, 112]) to the solution of a matrix equation. This approach is
effective only if k is small, i.e., the solution is approximable by a low-rank matrix, for which
we have provided sufficient conditions.
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Chapter 7

Conclusions

In this thesis the numerical solution of large-scale Sylvester and Lyapunov equations has
been deeply analyzed.

We have proposed enhanced projection methods for equations with symmetric coefficient
matrices and low-rank right-hand side and, more remarkably, the open problem of Sylvester
and Lyapunov equations with not necessarily low-rank right-hand side has been tackled.

In particular, in Chapter 3 we have addressed the case when the coefficient matrices and
the right-hand side are generally banded. Depending on the conditioning of the coefficients,
two different algorithms have been proposed. In case of well-conditioned coefficient matrices,
we have illustrated how the solution X can be well approximated by a banded matrix X̃ and
the matrix-oriented cg method has been shown to be a valid candidate for its computation.

For ill-conditioned problems, X can be represented by a couple (XB , Sm), X ≈ XB +

SmS
T
m, where XB is banded and Sm low-rank so that a low memory allocation is required.

The computation of the two terms XB and Sm involves several state-of-the-art numerical
linear algebra tools. More precisely, sophisticated adaptive quadrature rules, rational ap-
proximations to the matrix exponential and recent results on the decay of the inverse of
matrices are employed in the computation of XB whereas Sm requires the construction of
a projection space where an ad-hoc procedure for calculating the residual norm has been
developed in the stopping criterion.

The banded structure studied in Chapter 3 has been further generalized and in Chapter 4
Sylvester and Lyapunov equations with quasiseparable data have been analyzed. New bounds
on the numerical quasiseparable rank of the solution X have been proposed for this broad
kind of equations legitimizing the search for a low-rank quasiseparable approximant X̂ ≈X.
Moderate efforts are needed for operating and storing quasiseparable matrices with a low
quasiseparable rank and two efficient numerical methods equipped with H-matrix arithmetic
have been illustrated.

In the last part of the thesis we have studied large-scale generalized Sylvester equations
of the form

L(X) +Π(X) +C = 0,

where L(X) = AX +XB and Π(X) = ∑
p
i=1NiXMi. If ρ(L−1Π) < 1, this equation admits a

unique solution and we have shown that it can be well approximated by a low-rank matrix
in case of a low-rank right-hand side C, a moderate p and ρ(L−1Π) ≪ 1. In this case, if
the coefficient matrices commute up to low-rank factors, novel approximation spaces for an
effective numerical solution based on projection have been proposed.
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