ESSAYS IN VERTICAL AGREEMENTS AND CONSUMER BEHAVIOR

Presentata da: Marco Magnani

Coordinatore Dottorato
Prof. Vincenzo Denicolò

Supervisore
Prof. Vincenzo Denicolò

Esame finale anno 2018
Contents

Abstract

1 Hybrid Allocation of Control Rights over Retail Pricing

1.1 Introduction .. 4

1.2 Literature .. 6

1.3 Model setup ... 17

1.3.1 Market demand ... 18

1.3.2 Market configurations 19

1.3.3 Timing .. 21

1.3.4 Vertical integration 21

1.4 Model analysis with per unit linear fees 22

1.4.1 Wholesale configuration 23

1.4.2 Agency configuration 25

1.4.3 Hybrid configuration 27

1.4.4 Comparison and choice of business configurations 30

1.5 Model analysis with ad valorem fees 34

1.5.1 Wholesale configuration 34

1.5.2 Agency configuration 34

1.5.3 Hybrid configuration 38
2 The Choice of Brand Licensing under Double-Sided Moral Hazard 47

2.1 Introduction 50

2.2 The choice of brand licensing 52

2.3 The model 57

2.3.1 Timing of the contracting game 59

2.3.2 Brand licensing 59

2.3.3 In-house production 67

2.4 Discussion 68

2.4.1 Brand licensing 69

2.4.2 In-house development 72

2.4.3 Optimal choice of the business strategy 73

2.5 Concluding remarks 75

3 Social Influence Bias in Ratings: A Field Experiment 81

3.1 Introduction 84

3.2 Contribution and Hypotheses 87

3.3 Experimental Design and Procedures 89

3.4 Empirical Analysis 92

3.5 Discussion and Conclusions 99

.1 List of variables 103

.2 Flyer 104

.3 Questionnaire 105
4 The Economic and Behavioral Consequences of Online User Reviews: A Literature Review 109

4.1 Introduction 112

4.2 Methodology and organization 115

4.3 Economic dimension 116

4.3.1 C1: Sales 118

4.3.2 Marketing strategies 126

4.4 Behavioral dimension 130

4.4.1 C3: Product adoption 131

4.4.2 C4: Rating behavior 137

4.5 Summary 141
Abstract

This dissertation consists of three original papers and a literature review. Two of them illustrate applied theoretical models to issues in Industrial Organization and vertical relationships between firms. The third work presents a field experiment aimed at exploring a relevant question related to consumer behavior in digital markets.

The first paper investigates a retailer’s choice in allocating the control rights over retail pricing decisions at different levels of the distribution channel. A retailer can internalize this pricing decision acting as a traditional pure reseller, or let all suppliers to choose the retail price—therefore, acting as a pure marketplace. Finally, a retailer can also select a hybrid configuration where some prices are chosen at the downstream level while others are chosen at the upstream level. This market configuration choice is explored considering the costly extraction of channel surplus, differentiated products and two distinct pricing schedules: per unit linear fees and ad valorem proportional fees. Results show that retailers adopt a hybrid configuration as a middle ground between the two extremes, where pricing decisions are delegated, for all products, either to retailer or manufacturers. As a hybrid, retailers can mitigate inefficiencies from double marginalization (pure reseller) and from aggressive competition between manufacturers (pure marketplace). This result arises only when upstream firms compensate retailers via ad valorem proportional fees. The presence of per unit linear fees, indeed, is not enough to incentivize retailers to keep control over prices: the firm prefers to delegate the choice to manufacturers because the linear fee acts as a cushion over margins and increases the vertical channel efficiency.
The second paper analyzes the make-it-or-license-it choice of a firm under a situation of double-sided moral hazard. As the brand owner/licensor aims at maximizing profits of all the activities under the parent brand, the licensee only focuses on the branded extension product; this brings about a disalignment of interests. The decision is investigated considering spillover effects between the core and the extension products, which may be either negative (brand dilution) or positive (brand enhancement). Brand licensing emerges as an equilibrium choice under brand dilution (respectively, enhancement) when the consumer perceives a large (small) distance between the extension product and parent brand. Furthermore, the optimal contract under brand licensing is found to be a per unit royalty fee and a fixed payment, in line with observed contracts. An interesting result of the paper is the existence of an optimal positive fee even under the situation of one-sided moral hazard and risk-neutrality of the two firms—thanks to the presence of the spillover effect.

The third paper explores the issue of rating bubbles within online feedback systems. Empirical findings showed that the distribution of online user reviews on e-commerce and booking websites are bimodal and that ratings cluster around extremely low and extremely high values. As user ratings are used during production search and adoption, if they don’t reflect true preferences they might lead to suboptimal choices. Many explanations were proposed to explain this phenomenon. In this paper, the focus is on social influence bias: the tendency of people to imitate peers’ actions and to follow the norm. A field experiment was conducted where subjects were asked to rate a hotel property after they had completed their stay. Treatments were in the form of different signals about prior customers’ ratings during the rating phase; e.g., a sentence informing subjects that prior ratings were extremely positive. The analysis found the presence of positive social influence bias, in that high ratings affect the individual rating behavior in a significant way (while moderate/negative ratings do not affect the decision). Further, the bias is stronger for new customers (as they had yet to form an actual opinion about the experience, or are in the process of doing that); and for people that do not use/read online reviews. This paper advocates for a strong reform in online rating systems where the tendency is to show too much information that
might affect rating behaviors.

The last paper is accompanied by a thorough and deep review of the literature about the consequences of online user ratings on product sales/performance (economic dimension) and product adoption/rating behavior (behavioral dimension). The topic is increasingly investigated by academic researchers and industry professionals alike. This overview presents established results and insights as issues for future research.
Chapter 1

Hybrid Allocation of Control Rights over Retail Pricing
Abstract

Over the past few years, retail stores have increasingly accommodated the presence of manufacturers that have autonomy over the sale of products to consumers. Third party sellers compete directly with Amazon on its website, while large department stores have devoted areas managed by companies in the apparel, cosmetics and consumer electronic industries. A hybrid retailer is a firm that lets some manufacturers set the retail price of some products while retaining control over the retail prices of other, possibly competing, products. The drivers of the adoption of such hybrid configurations have received scant attention by scholars. By means of a theoretical model drawn from the literature of vertical relations, this paper aims at addressing the main trade-offs a retailer faces when delegating control rights over retail prices to manufacturers. Results show that retailers adopt a hybrid configuration as a middle ground between a pure reseller model, where it sells all products, and a marketplace model, where manufacturers sells all products. As a hybrid, retailers can mitigate inefficiencies from double marginalization (pure reseller) and from aggressive competition between manufacturers (pure marketplace). This result arises only when upstream firms compensate retailers via ad valorem proportional fees. The presence of per unit linear fees, indeed, is not enough to incentivize retailers to keep control over prices: the firm prefers to delegate the choice to manufacturers because the linear fee acts as a cushion over margins and increases the vertical channel efficiency.
1.1 Introduction

While browsing Amazon, one might have realized that the same product can be sold by several sellers. Amazon typically directly manages the sale of popular products but these are also offered by a plethora of third party companies. There exists an interlayer competition within the same retailing platform: the retailer, a downstream firm, competes neck and neck with firms at the upstream level (manufacturers and suppliers) on the same ground to attract consumers—retail prices, shipping methods and marketing activities. Amazon, as well as many other online retailers, started as a pure reseller: buying products from upstream firms and selling them directly to consumers. A few years ago, e-commerce companies started to incorporate marketplaces where upstream firms could be retailers on their own (Wells et al., 2015). As of 2017, sales from third party sellers accounted for 50% of total Amazon sales and represented the second-largest revenue source of the company. 1 Many traditional physical retailers, typically reluctant in delegating decisions to other firms, have also opened online stores to allow the presence of third party sellers; e.g., Sears Marketplace.

Such hybrid retailing structures are not exclusive to electronic commerce. 2 In fact, many brick-and-mortar retailers, especially large department stores, have increasingly delegated control rights over product sale to manufacturers. Companies like Macy’s act as resellers for a portion of their catalogue and, at the same time, they allow manufacturers to have an autonomous presence within their stores. Brands can manage in-store operations and pricing, as well as hire their own employees and run in loco advertising campaigns. Manufacturers might also control inventory and merchandising (Jerath and Zhang, 2010). This business strategy is often called store-within-a-store or concession model. While very common for luxury products, cosmetics and apparels, this arrangement has now extended to many other categories, such as consumer electronics and toys. 3 Similarly to online marketplaces, the retailer offers a space, which can be utilized by manufacturers as they prefer, and provides foot traffic by attracting consumers. As Anuj Puri, JLL’s Global Head of Retail Leasing said: “The store-within-a-store concept improves the appeal of brands among consumers. These stores can attract customers that bring energy into an otherwise tired business. There are many retailers now pursuing this store-within-a-store concept

2The term “hybrid retailer” has been used by scholars and industry professionals alike to identify different situations. Hybridity might arise from the adoption of both physical and digital sales channels (Bhatnagar and Syam, 2014). Or it might be due to retailers performing both product sale and custom business. Throughout the paper, a hybrid retailer is one which adopts both direct sale to final consumers and allow third party sellers to do the same on its retailing platform.

to broaden their retail offerings and attract new consumers."

Whilst being relevant in the retailing industry, the topic of hybrid retailers has received only scant attention by scholars. This paper aims at understanding under which market conditions a retailer finds profitable to adopt a hybrid configuration, instead of being a pure reseller or a pure marketplace. The two extreme situations both present advantages for the retailer, which is assumed to be the architect of the channel. The theoretical model here presented considers the retailer’s choice in terms of trade-offs between managing the retail pricing decision and delegating the sale to upstream firms. The hybrid retailer represents a middle ground able to mediate over efficiencies of reseller and marketplace selling modes.

Under a traditional reseller configuration, usually called wholesale model, the retailer purchases the product from upstream firms and typically acquires control of every variable related to the final sale—including retail prices and discounts. Contractual agreements between retailers and suppliers can be very complex and contain upfront payments, slotting fees and quantity discounts. The main feature of such contracts is a linear wholesale price paid by the retailer for each unit bought. Wholesale prices are one of the main contributors of the final retail price (McShane et al., 2016). On the contrary, agency model refers to those innovative contracts that give control rights over pricing and marketing to manufacturers. Under agreements of this kind, the retailer gets compensated for opening up its marketplace to other sellers. In electronic commerce, retailers usually charge sellers three-part tariffs composed of: a fixed monthly fee, a fixed linear fee on each product sold and a percentage on revenues generated through the platform (the referral fee). For example, Amazon charges up to $39.99 a month to sell on the Marketplace plus a $0.99 fee on each unit sold and a revenue-sharing fee which varies from 4% for consumer electronics to above 20% for jewelry. Similarly, Sears proportional fees ranges from 5.50% (gaming consoles) to 17.50% (jewelry).

This paper presents a simple model where a pure reseller, a pure marketplace and a hybrid configuration are compared in a vertical channel with two upstream firms and a monopolistic retailer. The three business models are analyzed considering agency agreements with per unit linear fees and ad valorem proportional fees, mirroring actual observed contracts. The mediating factors of the analysis, which is solely focused on retail pricing decisions, are the degree of differentiation between products and the cost to extract channel surplus, which captures inefficiencies such as the presence of moral hazard and

risk-averse sellers.

The next sections will be organized as follows: Section 1.2 is devoted to a brief review of relevant papers in the literature of wholesale and agency contracts, and hybrid retailers. Section 1.3 details the fundamentals of the model. Sections 1.4 and 1.5 present analysis and results of the model considering two distinct pricing schedules: per unit linear fees and ad valorem proportional fees. Finally, Section 1.6 reports a summary of the findings and directions for future research.

1.2 Literature

This work is related to two emerging streams of the literature in organizational design of vertical channels. The first one aims at understanding the drivers behind the choice between traditional wholesale agreements (the retailer decides the retail prices) and newer agency agreements (the choice of the retail prices is made by manufacturers/suppliers). The topic became relevant in light of recent antitrust cases where Apple and five publishers were investigated for setting up the conditions to artificially raise retail prices in the e-book market—a collusive behavior was possible thanks to a shift of control rights over retail prices from downstream to upstream and to the presence of price parity clauses.

The second stream of literature, instead, considers the possibility for players in the industry to adopt both wholesale and agency agreements within the same retailing platform, effectively creating a hybrid retailer. While closely related with the previous topic, this one has been initially explored by referring to new distribution techniques in physical retailing. In large department stores many products can be found within boutiques which “sell a particular brand exclusively, and are designed to reflect the image of that brand” (Jerath and Zhang, 2010, p. 748). At the same time, the sale of other (possibly competing) products is directly managed by the retailer. The existence of such hybrid structures stimulated the interest of academic scholars. In fact, research has later been extended to consider the business strategies of online retailers as well. Amazon is a prime example of hybrid retailer but many others have adopted the same business model.

Vertical relationships between manufacturers and retailers have been thoroughly covered by prior scholars. One of the seminal papers in the literature of vertical relationships between retailers and manufacturers is Choi (1991), who considered a duopoly upstream market composed of two manufacturers selling competing products. The main departure from previous studies was to consider a common, monopolistic, retailer selling both products rather than exclusively only one of them. Choi (1991) compared
three market configurations differing in the relative influence of the retailer with respect to manufacturers on the market—that is, at which stage wholesale and retail prices are decided. The standard situation is when manufacturers decides over wholesale prices and the retailer follows in its choice of retail prices. The opposite case is when the retailer chooses its margin and then manufacturers set wholesale prices. Considering a linear demand specification, retail prices do not differ across configurations while wholesale prices are higher the higher the relative weight of manufacturers. The three examples are considered in isolation without introducing the possibility of an endogenous choice of channel configuration. Further, retail prices are always set by the retailer. Many other aspects have been considered by the literature since then: channel coordination under different market structures, both upstream and downstream (Moorthy, 1988); “make-or-buy” decisions; vertical integration (McGuire and Staelin (1983), Bonanno and Vickers (1988)). The tendency, though, was to consider market structures as given and typically determined ex-ante by manufacturers as “the architects of the channel” (Abhishek et al., 2015, p. 3). The increasing role of retailers in setting up vertical channels and the peculiarities of online retailers have urged the needs of exploring further the issue (Inderst and Mazzarotto, 2008).

The rising popularity of agency contracts has pushed scholars to look further in the drivers of their implementation, especially on digital platforms. Two features of such contracts have particularly been under scrutiny: the shift of control rights over retail prices from downstream (retailers) to upstream (manufacturers)—facilitated by electronic channels and the sale of digital goods; and the presence of revenue-sharing/ad valorem fees instead of more traditional per unit transfer prices. In this strand of the literature, most of the papers are based on a much talked antitrust case in the e-book industry where the shift from wholesale to agency contracts was at the core of the investigation. During the early phase of the e-book market, electronic retailers agreed with publishers to adopt wholesale contracts. Amazon, for example, was purchasing e-books at the same per unit price of printed counterparts; then, it was setting a retail price below $9.99. In 2010, Apple entered the market by opening its own e-book store (along with the launch of the iPad), after having signed agency contracts with publishers. The authorities found that this decision, along with the inclusion of price parity clauses, pressured other retailers to adopt agency contracts as well. It also eased price coordination among publishers, now in full control of retail prices. Empirical evidence showed that, indeed, retail prices sharply increased after Apple entry. Eventually, though banning price parity clauses, antitrust authorities did not explicitly ruled out agency contracts. Nowadays, retailers and publishers can still decide which contract to implement—whilst in

5 See United States v. Apple Inc., 12 Civ. 2826 (DLC) and Case COMP/39.847/E-BOOKS.
the e-book market some restrictions were imposed (e.g., retailers can set discounts even if the price is set by publishers). This policy conclusion was an occasion for academic researchers to understand the dynamics of these agreements, for which little was actually known.

Liu and Shuai (2015) analyzed equilibrium outcomes of four types of business configurations in a bilateral duopoly with differentiation both across products (interbrand competition) and retailers (intra-brand competition) modelled after Dobson and Waterson (2007). Differences are along two dimensions: which side decides over retail prices; and the type of compensations between manufacturers and retailers (per unit versus ad valorem fees). The authors found that under standard per unit linear prices firms always prefer to be first-mover (e.g., manufacturers prefer to charge wholesale prices rather than retail prices) and retail prices are higher when they are chosen by the side featuring more substitutability between products (hence, first-mover can compete less on wholesale prices). The opposite occurs under revenue-sharing fees, where retail prices are higher when they are chosen by the level featuring less substitutability. It is worth mentioning that, under ad valorem revenue-sharing fees, choices do not depend on said fees. Without marginal costs, firms choosing retail prices, and taking ad valorem fees as given, consider the latter as constant parameters multiplying the profit function—thus irrelevant in the maximization problem. For this reason, firms do not actually choose ad valorem fees and competition is only in terms of retail prices. The assumption drives results, as under linear pricing competition occurs on both sides and therefore being the first-mover in setting prices matters.

Investigating the impact of agency contracts on prices, Foros et al. (2017) focused on a bilateral duopoly again based on Dobson and Waterson (2007). The authors initially compared a situation where both retailers adopt agency agreements (with symmetric ad valorem fees) with a situation where both adopt wholesale agreements. The main difference between the agreements is the level of the channel at which retail prices are decided. The authors found that retailers (manufacturers, respectively) care more about intrabrand (interbrand) competition when competing. When agency agreements are in place, upstream firms compete with each other and retail prices are higher with respect to the opposite situation if substitution between retailers is higher with respect to substitution between goods. The result arises from the fact that each level of the industry is able to internalize one type of substitution effect and therefore the degree of competitive pressure affects final decisions. The paper is a strong argument against

6It is worth mentioning that Foros et al. (2017) do not present a proper wholesale model because retailers set both the transaction fee (i.e., a revenue-sharing fee) and the retail price. In a traditional wholesale agreement, transaction fees are set by manufacturers. The paper, though, is not focused on the choice of intermediate prices and is focused on electronic retailing where such contracts are more common.
the idea that agency agreements can lead to collusive outcomes—higher retail prices arise because of inherent features of the market. The authors explored a mixed regime where one retailer sells products through agency agreements and the other one through wholesale agreements; here, retail prices are exactly between equilibrium prices in the two extreme cases. Retailers simultaneously choosing whether to adopt agency agreements would never adopt a mixed regime though. When only one retailer implements agency contracts, there are incentives for the competitor to follow and therefore adopting the same contractual agreement—similarly to a prisoner’s dilemma situation. Within a similar framework and considering the same bilateral duopoly, Lu (2017) compared wholesale and agency agreements by also considering the choice of wholesale prices by manufacturers (Foros et al. (2017) abstracted from this choice). Unsurprisingly, the author found that the agency model always leads to lower retail prices because of the absence of a properly defined double marginalization—which also implies higher consumer surplus. Furthermore, manufacturers lose under agency contracts because they cannot exert their market power over downstream firms. The author wrote that such contracts may be understood as a retailer power restraint. [...] Although strong manufacturers have no incentive to do so, insecure manufactures may use restraints of this kind to induce retail service and brand promotion (Lu, 2017, pp. 166-167).

Gaudin and White (2014) also investigated the conditions behind the different outcomes of wholesale and agency agreements following the e-book antitrust case. The authors compared the two contracts in a vertical monopoly where only one product is sold: e-books. The retailer might also control a market where it sells a complementary product (e.g., an e-book reader), essential for the fruition of the first product and a fixed entry cost for consumers. The difference in retail prices between the two business formats hinges on the presence of this complementary product. The agency model leads to higher retail prices with respect to wholesale pricing when the retailer is able to control the price of the device. The intuition is based on the fact that the retailer has two pricing instruments, which can balance in order to maximize the joint surplus; therefore, in the wholesale model, the retailer lowers the wholesale price and extract consumer surplus using a fixed fee; this leads to a higher agency price, since the publisher is not able to exploit this complementary market, and set the retail price as usual. This mechanism cannot be exploited when the retailer is not able to control the sale of the complementary device. The authors, though, concluded that agency pricing might lead to higher retail prices because of factors other than mere agreements between upstream firms—therefore adding another theoretical argument against collusion between manufacturers. Modelling a theoretically more sophisticated e-book industry, Johnson (2013) drawn a similar conclusion. In this model, differentiation is present both at the retailer level.
(symmetric duopoly on an Hotelling line) and at the upstream level (a finite number of symmetric firms on a Salop circle); manufacturers multi-home (i.e., sell through both retailers). In the first period, consumers decide from which retailer to purchase, and the demand of the product is realized; in the second period, consumers buy another unit of the product from the same platform. Indeed, one of the main aspect of the model is the so-called lock-in effect: once consumers have chosen a platform, they cannot switch to another one (i.e., they must single-home). Contracts between firms are standard; in the wholesale model, manufacturers set simultaneously wholesale prices, and then retailers sets simultaneously, and non-cooperatively, retail prices. In the agency model, the retail pricing decision is done by upstream firms, and the revenue-sharing rule is exogenous and taken as given. The main result of the paper has agency retail prices being higher than wholesale ones in the first period, but lower in the second period. The economic reason is the following: upstream and downstream firms value consumer lock-in differently. Retailers would like to get as many consumers as they can in the first period in order to have overall higher profits; thus, in the first period of the wholesale model, they compete aggressively in order to lock-in consumers, and they set low retail prices. Manufacturers do not have this incentive because they multi-home and potentially can serve all consumers. Henceforth, the wholesale model is characterized by a first-period subsidization and retailers acting as monopolist in the second period; this is the reason why retail prices are first higher and then lower in the agency model, since direct competition is maintained across manufacturers in the second period. As for the choice of the business formats, the author concluded that retailers prefer nonetheless the agency model whenever upstream substitutability is weak with respect to downstream substitutability; this result mirrors Foros et al. (2017), where retailers were willing to shift price control upstream, as a device to avoid destroying channel surplus due to too high competition.

Even before e-books were a mass-market commercial product, wholesale and agency contract have been a subject of study by scholars. Hagiu (2007), for example, presented a market composed of an intermediary and several identical sellers, who can sell their product only through the former. The intermediary can choose to act either as a traditional reseller or as a platform. Borrowing from the two-sided market literature, the intermediary sets access fees to both sellers and consumers (and a buyout offer to sellers in the wholesale model)—it has full bargaining power with respect to each side; and the market demand depends on how many upstream firms join the platform (there are network externalities). Under wholesale agreements, the retail price is set by the intermediary; instead, under agency agreements, the price is decided by sellers. In equilibrium, the intermediary prefers a traditional wholesale model when-
ever the probability that sellers have unfavourable expectations is high enough; namely, this contract is a way to avoid the typical coordination problem of a two-sided platform, always concerned in attracting enough agents on both sides, such that they both benefit with each other. The main economic trade-off, here, is between the cost of managing by itself the sale of products (wholesale model) and the costs of attracting sellers (agency model). When the author introduced product differentiation, intermediary’s attitude towards the reseller mode becomes starker, since the higher the substitutability (or the complementarity) the more willing the retailer is to act as a multi-product monopolist and internalize all the cross-effects.

More recently, the strategic choice of wholesale versus agency selling formats has been analyzed in Abhishek et al. (2015). The authors investigated under which market circumstances retailers delegate retail pricing decisions to manufacturers when the latter have an external (traditional) reselling channel which is subject to spillover effects from sales in the main (electronic) channel. This paper is methodologically very similar to the model presented here because it considers per unit wholesale prices in wholesale agreements and ad valorem fees in agency agreements. The market structure considered, though, is composed of a monopolistic manufacturer and a duopoly at the downstream level. Therefore, a hybrid configuration is not within-retailer but cross-retailer, similarly to Foros et al. (2017): one retailer adopts agency agreements while the other adopts wholesale agreements. By delegating the pricing decision to the manufacturer, retailers can mitigate the double marginalization problem, hence without spillover effects this would be their favorite configuration. Under spillover effects impacting manufacturer’s profits, the choice is less clear. For example, if there are negative externalities, the manufacturer would increase wholesale prices (to make up for losses in the traditional channel), consequently raising retail prices—retailers, at that point, would be incentivized to choose agency agreements to improve channel efficiency. Instead, positive externalities combined with agency agreements would lead the manufacturer to decrease the retail price below the efficient level (and therefore negatively impacting retailer compensation). Retailers, thus, prefer wholesale agreements, because they can retain some pricing power and avoid the incentive of slashing retail prices. A hybrid market structure emerges as a way to mitigate both inefficiencies for intermediate values of the spillover effect.

The model presented in this paper is closely related to Jerath and Zhang (2010). The authors considered a channel structure with an upstream duopoly selling differentiated products to a downstream monopoly. Firms decide over retail prices and demand-augmenting costly services. They compared three channel arrangements: retailer-resell, where the retailer buys the product from manufacturers at a
linear wholesale price and eventually decides over retail prices and service levels; \textit{store-within-a-store}, where manufacturers, instead, decide over both choice variables; and a hybrid structure, where the retailer acts as a reseller for one product and let the other manufacturer to sell through a store-within-a-store. The authors assumed the retailer has full bargaining power and therefore charges a fixed fee which makes manufacturers indifferent between selling the product or not. Further, the retailer is also in charge of deciding which business configuration to adopt. The main result of the paper shows that the retailer seeks channel efficiency therefore allowing store-within-a-store arrangements at low differentiation (low competition between manufacturers) and retailer-resell arrangements at high differentiation (double marginalization creates inefficiencies but direct competition between manufacturers would be too inefficient). In sum, a hybrid configuration emerges when differentiation is at intermediate values, as a way to mitigate the inefficiencies of the two arrangements. Further, the author illustrated that when returns to service are high, the hybrid arrangement becomes less desirable because the two inefficiencies are cushioned by having a more attractive product.

Similar contracts were also explored in Kurtulus and Savaskan (2013), which looked at Direct-Store-Delivery (DSD) agreements. Under such contracts, manufacturers (instead of retailers) deliver the product directly to the store and manage some in-store operations, e.g., marketing and promotion and inventory management. In many stores, DSD agreements are implemented for some products, while some others within the same category follow a more conventional procedure where the retailer manages all in-store operations and distribution duties. The authors investigated the incentive for a retailer to adopt both DSD and conventional agreements in a market structure with an upstream duopoly and a unique retailer. The difference between the two contracts lies in who bears replenishment costs, which depend on the quantity delivered and sold. Therefore, the retail pricing decision is always made by the retailer but under DSD (conventional, respectively) agreements manufacturers (retailer) bear(s) additional costs. Rather than an actual decision variables, Kurtulus and Savaskan (2013) considered the shift of variable cost component from downstream to upstream. As under DSD agreements the cost is borne by manufacturers (i.e., competing firms), this contract helps in mitigating the double marginalization problem and therefore leads to higher channel profits. In this model, the retailer does not collect upstream surplus; the choice of the configuration is made by both levels of the channel. The retailer considers which model leads the highest profits and takes into account the offer made to manufacturers, which can either accept a DSD contract or reject it. Eventually, a hybrid configuration emerges when products are neither too differentiated nor too close with each other. Firms trade off channel efficiency with margins: for exam-
ple, when products are too similar, the retailer prefers to shift costs upstream but manufacturers do not want to bear them as competition would already be too fierce—therefore rejecting the offer. Kurtulus and Savaskan (2013) proposed an interesting model which is, though, fundamentally different from the idea behind this paper—the shift of control rights over retail prices.

Hybrid retailing structures have been analyzed outside the traditional vertical channel theoretical framework by adopting models drawn from the two-sided market literature. Gautier et al. (2016), for example, analyzed a similar environment by focusing on the type of search consumers face in each configuration, calling the wholesale structure “middleman” and the agency structure maketmaking”—therefore referring to the hybrid structure as “marketmaking middleman”. The essential idea behind the model is the role of the retailer/intermediary in creating more efficient matches between buyers and sellers—operating as a directed market search. As a middleman, the retailer can increase the sales volume by buying and stocking inventories from manufacturers, hence providing buyers immediate service. As a marketmaker, the retailer allows for an efficient spread of information within the platform. When there exists an outside option in terms of a decentralized market, the retailer feels the competitive pressure and has an incentive to decrease prices. In order to stop the profit bleeding because of lower margins, the retailer allows a hybrid configuration where allocation efficiency (more transactions) is reached and rivals join its business. Hagiu and Wright (2014) focused, instead, on the allocation of control rights over marketing activities (rather retail prices) such as the type of promotional activity or the size of the shelf space where a monopolist retailer faces a finite, though large, number of upstream firms. The main assumption of the paper is that the each product’s optimal marketing level depends on information privately owned by the retailer and on information privately owned by the supplier. Under a wholesale configuration (reseller), such marketing activities are chosen by the retailer while under an agency configuration (marketplace), they are chosen by suppliers. Results showed that the retailer prefers to hand marketing activities over to suppliers whenever its private information is less precise, that is, it is characterized by more variability. The intuition is that the party who is more able to efficiently use information about the decision variable should have control over it. As the private information needs not to be the same across products, a hybrid configuration emerges when the retailer has an informational advantage on a subset of products (hence sold under wholesale agreements) and is at a disadvantage for the remaining products, for which suppliers determine the marketing level. The authors presented some moderating factors that might push the hybrid configuration towards either extremes. For example, when marketing generates positive spillover effects, the retailer has an incentive to internalize the choice even for those product
for which there might be an informational gap—as the retailer better appropriate such externalities with respect to competing suppliers. The retailer might want to operate as a hybrid also when there is heterogeneous valuation of the products (long-tail products with low valuation and short-tail products with short valuation) and directly manage more popular products when reseller variables costs are lower (leaving more costly and less popular products to suppliers). Hagiu and Wright (2014) provided an empirical validation of these results. Using data from Amazon, they showed that, indeed, the company directly sells only a relatively small portion of DVDs and, in particular, the more popular ones, delegating the sale of niche products to third party seller.

Jiang et al. (2011) offered a different explanation of the reason why retailers should allow third party sellers on their own platform. In line with empirical evidence presented in the paper, as well as in Hagiu and Wright (2014), the authors focused on the idea that Amazon, and more generally large online retailers, tends to sell popular products, leaving niche and “long-tail” products to independent sellers. Similarly to chains, which directly manage stores in highly profitable areas and leave to franchisees less attractive places, Amazon might want to leave smaller products to third-party sellers as the latter can face lower costs (and have more expertise) in managing the sale. The paper focused on mid-tail products and tried to understand at which point the retailer kicks in. Letting an independent seller on its platform allows the retailer to gain by charging a fee and by obtaining information about the demand of the product, which is privately owned by the seller and can be considered its type (similarly to Hagiu and Wright (2014), the core of the analysis lies on who owns useful information to extract consumer surplus). Using a framework with asymmetric information, the authors found that the retailer has the incentive to attract third party sellers and eventually learn the demand of their products—if it is high enough, the retailer starts to sell that very product by directly competing with sellers. At that point, sellers find worthwhile to keep demand low in early phases to avoid the retailer to learn their type. Retailer can counteract by raising the fee to drive high demand sellers out—which is not optimal when the probability of high-type sellers is low. It is worth mentioning that Jiang et al. (2011) assumed that as soon as the retailer starts selling the product, independent seller’s sales go to zero. Therefore, the model does not explicitly model a hybrid structure, rather it considers the entry of the retailer in one of the product markets already present on its platform—abstracting from any surrounding environment where the firms are operating in. The idea that the retailer can infer some useful data of market demand by allowing sellers to operate on its platform has been modeled also in Muthers and Wismer (2013). The authors considered a monopolistic retailer primarily acting as a platform hosting sellers’ products under either a
two-part tariff or a proportional fee. In the model, first the retailer chooses the optimal tariff to sell on its platform; then, sellers decide whether to join the platform, as an investment choice where they have to sustain a fixed randomly drawn cost. Afterwards, the retailer can decide to start selling complementary products, thus directly competing with sellers on its platforms (here, the hybrid configuration is called dual mode). The downstream firm can observe how much it would cost to offer a similar product and consequently whether to enter. When the retailer’s marginal cost of production is low enough (i.e., the retailer is relatively more efficient than sellers), it finds profitable to create a hybrid platform, and an hold-up problem arises. This eventually leads to insufficient seller investment incentives, and poor seller participation (with respect to an efficiency benchmark where a social planner maximizes expected welfare). Proportional revenue-based fees represent a way of mitigating the hold-up problem through which the retailer can commit to not enter into the market and compete with sellers; agency contracts are modelled as three-part tariffs: alongside a fixed fee and a per-unit price, there is a percentage of revenues that goes to the retailer. The intuition behind this result relies on how the fee enters a seller’s decision in setting the retail price; a positive proportional revenue-based fee, indeed, acts as an increase of the marginal cost of production. This implies that, under a three-part tariff agreement, when deciding whether to enter product markets, the retailer must not only consider the relative advantage in term of marginal costs with respect to sellers, but also how much of this very advantage is due to the artificial increase because of the fee. The retailer, therefore, faces a trade-off: entering the product market and alienating the seller base, or adjusting the proportional fee and letting sellers to invest. This model is useful to explain the reason why many electronic retailers have decided to adopt agency agreements and, in turn, when a retailer should adopt a hybrid business model. There are a couple of assumptions that limited the analysis though. First, sellers do not compete with each other, and when the retailer decides to enter product market, it makes agreement with an external seller. Furthermore, the authors focused on a retailer that is typically more informed than sellers on its platform; the extent to which this informational advantage is actually exploited is not clear, though—a more common assumption is to let informational advantage differ across levels of the vertical chain (Hagiu and Wright, 2014) or to have sellers being more informed (Jiang et al., 2011).

The choice of the allocation of control rights over retail prices has only seen scant empirical attention. Data to analyze retailer behavior are difficult to collect, especially those necessary to investigate the drivers of a shift between one configuration to another. However, online retailers provide a fruitful ground for this research topic because they allow easier tracking of firm strategies across time. Netemeyer
et al. (2012) referred to wholesale agreements as retailer-managed retail (RMR) systems and to agency agreements as manufacturer-managed retail (MMR). Rather than the motives leading retailers to adopt either or both models, the authors analyzed the effects of the switch from RMR to MMR agreements; to do so, they used data from a Chinese store which started adopting MMR for all products in the cellphone category and gradually in the watch category. Consistently with theory, they observed that agency/MMR agreements lead to lower prices because of intensified competition between manufacturers. Further, sales also increase—perhaps due to more service offered by manufacturers. Contrarily to the retailer, which manages a large inventory and cannot train employees to be knowledgeable on each and every product, manufacturers can focus resources on increasing marketing and service level on their products to the benefit of demand. DSD arrangements, instead, have been subject of analysis in Chen et al. (2008b), which estimated demand and cost parameter in the market of carbonated beverages. Using data from Amazon, Zhu and Liu (2016) assessed the reasons why a retailer should decide to act as a reseller and directly competing with independent sellers on the same platform. In line with theoretical predictions in Jiang et al. (2011) and Hagiu and Wright (2014), the authors found that Amazon targets popular products: as the demand increases so is the likelihood of Amazon entering the market. When the retailer becomes a reseller there is also a general decrease in service/shipping fees, which leads to higher demand. At the same time, though, third party sellers are discouraged by this aggressive competition and might exit the platform. Related to store-within-a-store arrangements as detailed by Jerath and Zhang (2010) and the introduction of a new brand, Li et al. (2016) found support to the idea that such arrangement can improve commercial performance and consumer satisfaction—hence providing to be useful tools for manufacturers to increase product demand.

When analyzing agency contracts, this paper considers two different ways of sharing profits across sides, in line with observed contracts. More specifically, the retailer can be compensated by manufacturers either using a per unit fee (similar to a wholesale price) or adopting an ad valorem fee, namely a revenue-sharing rule. Ad valorem fees have become largely used in online commerce. For example, Apple takes a 30% cut on all revenues generated through the App Store; Amazon charges third party sellers from 7% to as high as 25% on transaction price. Recently, scholars have started to investigate the rise of ad valorem fees as a way to share profits between upstream and downstream—especially looking at the credit card industry and e-commerce. Shy and Wang (2011) compared per unit fees to proportional/ad valorem fees in a two-sided payment credit card market with a finite number of merchants and a monopolistic card network. The authors found that a proportional fee is preferred by the monopolist because it
helps in mitigating the double marginalization problem arising when market power is also present at the downstream level. When the number of merchants increases (hence double marginalization diminishes because of higher competition), the two types of fees become more similar in extracting profits. Muthers and Wismer (2013) also compared per unit and ad valorem fees in a vertical chain. According to the result of the paper, a proportional fee deters the retailer to directly sell products in its own store competing with third party sellers (therefore, it prevents the creation of a hybrid retailer). Comparing the two types of fees, Wang and Wright (2017) offered an explanation based on an inherent characteristic of e-commerce: the presence of many goods, differentiated in terms of consumer valuation and costs of production. In this model, a retailer hosts the trade of multiple goods. In each market, products are sold by identical sellers, and are differentiated according to a scale parameter which increases production costs and consumer valuations. The authors found that the proportional fee schedule maximizes platform revenues. Unlike a per unit fee, a proportional fee allows to extract more from high-cost high-value products (low price elasticity) and less from low-cost low-value products (high price elasticity), and therefore improves the efficiency of revenue extraction. A retailing platform, therefore, is better off in implementing agency contracts when it hosts the sales of very differentiated products in terms of value and production cost, and it is not able to perfectly observe such differences.

1.3 Model setup

Consider a vertical chain with one downstream firm, the retailer \(R \) hereafter, and two upstream firms, the manufacturers \(M_1 \) and \(M_2 \) hereafter. Thence, a downstream monopoly and an upstream duopoly. The focus on interbrand competition allows to disentangle the main trade-offs of a retailer deciding which business strategy to pursue. While it is true that the retailer’s choice itself might depend on strategies undertaken by other retailers, it is assumed that \(R \) is big enough and not affected by intrabrand competition when arranging contracts with manufacturers. A future extension might well consider the case of downstream competition, in a bilateral duopoly similar to Dobson and Waterson (2007). Also, it is assumed that \(M_1 \) and \(M_2 \) can only sell through \(R \) and there are no other channels (unlike Abhishek et al. (2015), who considered the presence of an external channel facing spillover effects from the primary one).

Each manufacturer creates a product at marginal cost \(c \geq 0 \) (and no fixed cost), which is then sold to consumers through \(R \) (no transformation of the product occurs in the process). The product can be sold
by means of wholesale agreements or agency agreements, as detailed in Section 1.3.2. Without loss of
generality, R does not face any variable or fixed distribution/operational cost. Hence, the model doesn’t
include the presence of DSD agreements like in Kurtulus and Savaskan (2013), because it focuses on
the shift of control rights over pricing decisions rather than in-store operations entailing costs to either
upstream or downstream firms.

1.3.1 Market demand

Let q_i be the quantity of the product created by $Mi, i = 1, 2$, and p_i its market retail price; then, demand
functions are symmetric and given by:

$$q_i(p) = \frac{1}{1 + \mu} - \frac{1}{1 - \mu^2} p_i + \frac{\mu}{1 - \mu} p_j, \quad \forall i, j = 1, 2 \text{ and } i \neq j,$$

(1.1)

where $p = (p_1, p_2)$. This linear demand specification is widely used in the literature on differentiated
duopolies (Jerath and Zhang (2010), Abhishek et al. (2015)). It is drawn by Shubik and Levitan (1980)
from the maximization problem of a representative consumer with a quadratic utility function.

The parameter $\mu \in [0, 1)$ represent horizontal differentiation: the two products are independent if $\mu = 0$ (the
cross-price effect is zero and demand reduces to $q_i(p_i) = 1 - p_i, \forall i = 1, 2$) and each firm becomes a
monopolist in the respective market. As $\mu \to 1$, the two products become more and more substitutes;
when μ is close to 1, the two products are, in fact, close to be homogeneous. μ, therefore, measures the
degree of competition intensity between $M1$ and $M2$: as μ gets larger, their market power diminishes.
The differentiation is inherent to the products, and concerns those features viewed and assessed by con-
sumers; they are not, hence, due to how the products are sold or marketed, as they appear on the shelves
of the same retailer.

The demand specification in Equation 1.1 has some desirable properties, as thoroughly explained
by Abhishek et al. (2015, pp. 4-5). First, the potential market size is decreasing in μ: as the two
products become more and more similar, a lower consumerbase shows up. Moreover, the own-price

7Shubik and Levitan (1980, pp. 68-71) considered the following utility function: $U = \frac{\alpha}{\beta} (q_1 + q_2) - \frac{1}{\beta} (q_1 + q_2)^2 - \frac{2\sigma^2}{\beta(1+\gamma)} - \sum_{i=1}^{2} p_i q_i$, where $\sigma^2 = \left(\frac{q_1 - q_2}{2}\right)^2$ and γ is a parameter representing product differentiation. When the representative consumer
maximizes his or her own utility with respect to quantities, it is possible to rearrange the solution in terms of direct market
demands: $q_i = \frac{1}{2} \left[\alpha - \beta \left(1 + \frac{1}{2} \right) p_i + \frac{\beta}{1+\gamma} p_j \right], \forall i, j = 1, 2 \text{ and } i \neq j$. To obtain the demand specification in Equation 1.1, the
following reparametrization is applied: $\alpha = \beta = \frac{1}{1+\gamma}$ and $\gamma = \frac{2\mu}{1+\mu}$. While the two measures of substitutability are defined
over different intervals (i.e., $\mu \in [0, 1)$ while $\gamma \in [0, +\infty)$), the main intuition holds: when μ (respectively, γ) is zero, the
two companies are offering independent products; when $\mu \to 1$ ($\gamma \to +\infty$), the products becomes more and more similar,
approaching perfect substitutability.
effect is increasing in μ, signaling a greater sensitiveness to the price when the competing product is more similar.

1.3.2 Market configurations

The key difference between each market configuration is the layer of the industry at which the control rights over the retail prices is allocated—that is, which firm is setting the retail price to consumers. R can decide into which agreement to enter with $M1$ and $M2$, effectively acting as the architect of the channel. This assumption is in line with observed market behavior by players in the industry.\(^8\)

Figure 1.1: Market configurations

(a) Wholesale configuration

(b) Agency configuration

(c) Hybrid configuration

R can act as a pure reseller as in Figure 1.1a: $M1$ and $M2$ sell the product at a per unit linear wholesale

\(^8\)In the context of vertical contracts, Inderst and Mazzarotto (2008) reviewed emerging literature assessing the increasing bargaining power of retailer vis-a-vis manufacturers.
price to R which, in turn, sells the product to consumers by setting the final price. This is the conventional distribution model commonly implemented in physical retailing, and by many e-commerce firms as well. On the contrary, R can act as a pure marketplace by allowing manufacturers to use its retailing platform and face directly consumers, as in Figure 1.1b; here, manufacturers are in charge of setting the final price to consumers. This type of contract has become popular in distributing digital goods (e.g., e-books, apps) and is now widely adopted by e-tailers selling physical products as well as brick-and-mortar stores.\(^9\) A third market configuration, a middle ground, is possible. R can adopt both types of contract within the same retailing platform, as shown in Figure 1.1c: for some products, R acts as a reseller, while for some other it plays the role of a marketplace. In this model, M1 and M2 are symmetric, hence it doesn’t matter which product is sold under which contract.

In both wholesale and agency contracts, R obtains a compensation from manufacturers, here called \(T_1\) and \(T_2\). The payment always contains a fixed fee as a way to formalize the assumption that R has full market power with respect to upstream firms. Then, in a wholesale contract, the compensation only includes this fixed fee (the transfer price is paid by R to upstream firms). Contrarily, in an agency contract, as the retail pricing decision is made by manufacturers, R asks for an additional compensation in terms of a marginal price—\(T\) is, therefore, a two-part tariff. I will consider two distinct types of fee: a per unit linear fee and an ad valorem proportional fee. The second type of fee is a share of revenues generated by the manufacturer through the direct sale of the product to consumers. Under a wholesale agreement, manufacturers sell the product to R at a per unit linear wholesale price, as a traditional vertical contract.

Finally, I will make an important assumption on the extraction of the fixed fee by R. Following Calzolari et al. (2017), I assume that manufacturers sustain an additional cost when paying the fixed fee which, in turn, is reflected in R sustaining a cost when getting paid; the cost being \(\lambda \geq 0\). The cost parameter “\textit{may capture various imperfections that impede rent extraction by means of fixed fees}” (Calzolari et al., 2017, p. 12). For example, manufacturers cannot perfectly observe the state of demand and are risk-averse—generating a problem of moral hazard. The cost of extraction will be formalized during the presentation of each configuration.

In sum, the three market configurations under analysis are:

1. **Wholesale (W):** R is a reseller for both products. M1 and M2 are distributors of the product towards the downstream market. \(w_1\) and \(w_2\) are the wholesale prices and \(p_1\) and \(p_2\) are the retail

\(^9\)The reseller/marketplace terminology has been widely adopted by the literature; e.g., Abhishek et al. (2015) and Hagiu and Wright (2014). See Section 1.2 for a more detailed discussion.
prices. R extract channel surplus by means of fixed compensations: $T_1 = F_1$ and $T_2 = F_2$. This configuration is shown in Figure 1.1a.

2. **Agency (A):** R is a marketplace for both products. $M1$ and $M2$ sets the retail price of their respective products and use R’s platform to sell them directly to consumers. R gets a compensation, T_1 and T_2, in terms of a fixed fee and a marginal price (either per unit or ad valorem fee). This configuration is shown in Figure 1.1b.

3. **Hybrid (H):** R is a reseller for $M1$’s product (without loss of generality, as the two manufacturers are symmetric) and a marketplace for $M2$’s product. In this case there is an *interlayer* price competition since R and $M2$ compete over the retail price. Then, R gets a fixed compensation from $M1$ and a two-part tariff from $M2$. This configuration is shown in Figure 1.1c.

1.3.3 Timing

In line with observed contracts and previous literature, retail prices are set in the last stage (by the retailer in a wholesale agreement, and by the manufacturer in an agency agreement). During the initial stages, firms set intermediate prices and make a *take-it-or-leave-it* offer to the firm at the other layer of the chain. When R acts as a reseller, manufacturers are choosing the wholesale price after R has decided over the fixed fee. In an agency agreement, instead, before the retail pricing decision, R decides over the compensation manufacturers will need to pay. Contracts are observed across manufacturers and all actions are public.

In order to choose which market configuration to adopt, R compares equilibrium profits under the three different situations and chooses the one leading to the highest profits. The decision will depend on the differentiation parameter, μ, and on the cost of extracting surplus, λ. The presence of manufacturer’s marginal cost, c, is necessary to have an equilibrium existing in the case of ad valorem fees, but can be set arbitrarily close to zero without loss of generality.

1.3.4 Vertical integration

The benchmark is represented by a vertically integrated firm producing and selling two products. The firm’s profit function is:

$$\pi^{VI}(\mathbf{p}) = \sum_{i=1}^{2} [(p_i - c)q_i(\mathbf{p})].$$

(1.2)
The multi-product monopolist maximizes profits in Equation 1.2 with respect to retail prices. The first-order conditions are:

$$\frac{\partial \pi_{VI}(p)}{\partial p_i} = q_i(p) + (p_i - c) \frac{\partial q_i(p)}{\partial p_i} + (p_j - c) \frac{\partial q_j(p)}{\partial p_i} = 0, \ i, j = 1, 2, \ i \neq j. \quad (1.3)$$

A firm selling both products can internalize the substitution effect, as shown by the third term in Equations 1.3.

Equilibrium outcomes are given by:

$$p_{VI}^i = \frac{1 + c}{2},$$
$$q_{VI}^i = \frac{1 - c}{2(1 + \mu)}, \ i, j = 1, 2, \ i \neq j. \quad (1.4)$$

Equilibrium prices do not depend on the differentiation parameter; the monopolist is able to fully internalize the substitution effect between the two products. Quantities are, on the other hand, decreasing with μ. As the closeness of the two products increase, total quantity decreases, a feature of this demand specification. Equilibrium profits are:

$$\pi_{VI} = \frac{(1 - c)^2}{2(1 + \mu)}. \quad (1.5)$$

The integrated firm prefer to sell both products instead of only one. This structure maximizes channel profits. The reasons why vertical integration is not often possible nor desirable have been extensively covered in the Industrial Organization literature. For example, Church (2008) covered the anti-competitive implications of vertical mergers.

1.4 Model analysis with per unit linear fees

For each market configuration described in Section 1.3.2, I computed equilibrium prices and profits. Each configuration is solved by backward induction as a one-time Stackelberg game—the equilibrium concept is therefore the Subgame Perfect Nash Equilibrium. In this part, I assume that, under agency agreements, R asks to manufacturers a per unit linear fee.

10${\bar{\pi}}_{VI} > \pi_{VI}(p)$ where $p = \operatorname{argmax}_{p'} \pi_{VI}(p') = (p' - c - d)q(p')$, for all values of the relevant parameters.
1.4.1 Wholesale configuration

R is a traditional reseller for both products. The contractual agreement between *R* and a manufacturer takes the form of a per unit linear wholesale price. *R* collects all channel profits by means of a (costly) fixed fee: \(T_i = F_i, \forall i = 1, 2 \). Profit functions are:

\[
\pi^W_{R}(p) = \sum_{i=1}^{2} (p_i - w_i)q_i(p) + F_i,
\]

\[
\pi^W_{Mi}(p) = w_iq_i(p) - cq_i(p) - (1 + \lambda)F_i, \; i, j = 1, 2, i \neq j,
\]

where \(w \) is the wholesale price set by manufacturers. I adopted the reduced form by Calzolari et al. (2017) when modeling the costly extraction of \(F \): manufacturers pay \((1 + \lambda)F \geq F\) as \(\lambda \geq 0 \). The higher the cost, the higher the fixed compensation to *R*, the less efficient the extraction of upstream profits. The timing is as follows:

1. *R* set \(F_1 \) and \(F_2 \), and \(M1 \) and \(M2 \) accept or reject; outside option is normalized to zero;
2. \(M1 \) and \(M2 \) set \(w_1 \) and \(w_2 \) respectively and *R* accepts or rejects;\(^{11}\)
3. *R* sets \(p_1 \) and \(p_2 \);
4. demand is realized.

As well-known in the literature of vertical relations, wholesale agreements leads to the so-called double marginalization problem: the final price is higher than the price which would maximize industry profits because both levels are charging a mark-up over the respective costs. This occurs because there is market power at both levels of the vertical channel.

R’s first-order conditions are:

\[
\frac{\partial \pi^W_{R}(p)}{\partial p_i} = q_i(p) + (p_i - w_i) \frac{\partial q_i(p)}{\partial p_i} + (p_j - w_j) \frac{\partial q_j(p)}{\partial p_i} = 0, \; i, j = 1, 2, i \neq j.
\]

As for the case of vertical integration in Section 1.3.4, *R* is a downstream multi-product monopolist, and therefore can choose the retail price of one product by considering the effect this decision has on the sale of the competing product. By internalizing the cross-price effects, *R* is able to charge higher prices with respect to two independent firms competing as a duopoly.

\(^{11}\)R’s outside option is selling the product of the other manufacturer as a vertical monopoly. In equilibrium, *R* always finds profitable to sell both products instead of only one.
Equilibrium wholesale prices are:

\[w_i^w = \frac{1 + c - \mu}{2 - \mu}, \quad \forall i = 1, 2. \]

(1.8)

Equilibrium retail prices and quantities are:

\[p_i^w = \frac{3 + c - 2\mu}{4 - 2\mu}, \quad q_i^w = \frac{1 - c}{2(2 - \mu)(1 + \mu)}, \quad \forall i = 1, 2. \]

(1.9)

Retail prices are decreasing in \(\mu \) in the relevant parameter space, which is not surprisingly because wholesale prices are decreasing in \(\mu \) as well. It is true that \(R \) can mitigate the substitution effect between the two products, but upstream manufacturers are still competing with each other. In turn, quantities are also decreasing in the differentiation parameter. The rate at which wholesale prices are decreasing in the differentiation parameter, though, is greater with respect to retail prices (in fact, they decrease twice as faster as retail prices). This means that \(R \)'s mark-up from each product is increasing in \(\mu \).

When collecting fixed fees, \(R \) takes into account the participation constraint by manufacturers, which binds in equilibrium:

\[\pi_{Mi}^w = 0 \rightarrow w_i^w q_i^w - cq_i^w - (1 + \lambda)F_i = 0 \]

\[\Rightarrow F_i^w = \frac{w_i^w q_i^w - cq_i^w}{1 + \lambda}, \quad i, j = 1, 2, \quad i \neq j, \]

(1.10)

\(F_i^w \) is the equilibrium fixed fee, decreasing in the cost of extraction. Note that \(R \)'s profits become:

\[\pi_R^w = \sum_{i=1}^{2} (p_i^w - w_i^w)q_i^w + F_i^w \]

\[= \sum_{i=1}^{2} p_i^w q_i^w - \lambda \frac{w_i^w q_i^w}{1 + \lambda} - \frac{cq_i^w}{1 + \lambda} \]

(1.11)

As expected, \(R \)'s ability to collect channel profits is weakened by the presence of costly extraction of fees; this inefficiency adds to the obvious problem of double marginalization, which also acts as an eroding force of channel profits. A positive value of \(\lambda \), on the one hand, increases the cost sustained by \(R \) in terms of the wholesale price (second term in Equation 1.11) and, on the other hand, decreases the amount of the upstream marginal cost absorbed by \(R \) (last term in Equation 1.11). Henceforth, double marginalization is exacerbated. It enters directly, by means of inefficiently high retail prices, and indirectly, by means of the decreased mark-up, as seen in Equation 1.11.
R’s equilibrium profits are:

$$\pi^{W}_R = \frac{(1 - c)^2(3 + \lambda - 2\mu)}{2(1 + \lambda)(2 - \mu)^2(1 + \mu)}$$ \hspace{1cm} (1.12)

The behavior of π^{W}_R is worth an analysis. First, $\frac{\partial \pi^{W}_R}{\partial \lambda}$ is always negative, which is intuitive as λ represents a de facto cost in appropriating upstream surplus. Furthermore, it is worth mentioning that $\frac{\partial \pi^{W}_R}{\partial \mu} |_{\lambda=0} < 0$; this case mirrors the same market configuration described in Jerath and Zhang (2010) (considering the absence of demand-augmenting services, which are not present in this model). When, instead, $\lambda > 0$ and high enough, the relationship between π^{W}_R and μ becomes non-monotone. As λ increases, π^{W}_R goes from being decreasing in μ, then convex, and then increasing. As differentiation decreases (μ goes up), prices decreases to the detriment of channel profits. But the pace at which prices decrease is faster upstream than downstream: manufacturers are competing in wholesale prices, while R acts as multi-product monopolist and is able to internalize some of the substitution between products. Henceforth, the negative effect on profits of an increasing μ is artificially mitigated by the fact that the higher λ, the higher the cost associated in extracting upstream profits.

1.4.2 Agency configuration

Under an agency agreement, R allows the manufacturer to sell products on its (physical or digital) store and set directly the price to consumers. Hence, R acts as a showroom. In this framework, $M1$ and $M2$ compete for setting retail prices, and pay R a per-unit (marginal) price on top of a fixed fee; the total transfer price is $T_i = w_i q_i + F_i$, $\forall i = 1, 2$. Profit functions are given by:

$$\pi^A_R(p) = \sum_{i=1}^{2} w_i q_i(p) + F_i,$$

$$\pi^A_{Mi}(p) = (p_i - w_i)q_i(p) - cq_i(p) - (1 + \lambda)F_i, \quad i, j = 1, 2, \ i \neq j,$$ \hspace{1cm} (1.13)

The timing of the game is:

1. R set fixed fees, F_1 and F_2, and linear fees w_1 and w_2, and $M1$ and $M2$ accept or reject; outside option is normalized to zero;

2. $M1$ and $M2$ set p_1 and p_2 respectively;

3. demand is realized.
Unlike the model in Jerath and Zhang (2010), and in line with actual contracts in the retailing industry as described in Section 4.1, \(R \) typically gets compensated by means of two-part tariff schedules: a usage fee for each unit sold through its store and a fixed (e.g., monthly) payment. The main difference with respect to the wholesale configuration presented in Subsection 1.4.1 is in the upstream choice of retail prices, hence decided by two competing firms. Manufacturers will not internalize the substitution effect between products, as a multi-product monopolist would do; at the same time, transfer marginal prices are chosen by a monopolist downstream firm, hence the double marginalization problem might become more severe.\(^{12}\)

Manufacturers’ first-order conditions are:

\[
\frac{\partial \pi^A_{M_i}}{\partial p_i} = q_i(p) + (p_i - w_i) \frac{\partial q_i(p)}{\partial p_i} - c \frac{\partial q_i(p)}{\partial p_i} = 0, \quad \forall i = 1, 2. \tag{1.14}
\]

Unlike a multi-product retailer, manufacturers are not able to internalize the cross-price effect on the competing product. This leads to fiercer downstream competition in retail prices.

\(R \) correctly conjectures the manufacturers’ decision, and maximizes its own profit function with respect to transfer prices. Equilibrium wholesale prices are:

\[
w^A_i = \frac{(\mu + \lambda(2 - \mu))(1 - c)}{2(1 + \lambda(1 - \mu))}, \quad \forall i = 1, 2. \tag{1.15}
\]

Contrarily to wholesale prices in Equation 1.8, these intermediate prices depends on \(\lambda \). For a given \(\mu \), \(w^A_i \) increases in \(\lambda \). In the extreme case where \(\lambda = 0 \), \(w^A_i = \frac{(1-c)\mu}{2}, \forall i = 1, 2 \). When \(\lambda \to \infty \), \(w^A_i = \frac{1-c}{2}, \forall i = 1, 2 \).

Equilibrium retail prices and quantities are:

\[
\begin{align*}
\hat{p}^A_i &= \frac{1 + c + 3\lambda + c\lambda - 2\lambda \mu}{2 + 4\lambda - 2\lambda \mu}, \quad \forall i = 1, 2, \\
\hat{q}^A_i &= \frac{(-1 + c)(1 + \lambda)}{2(-1 + \lambda(-2 + \mu))(1 + \mu)}, \quad \forall i = 1, 2.
\end{align*}
\tag{1.16}
\]

While retail prices are always decreasing in \(\mu \), per unit fees show the opposite behaviour. This means that (manufacturers’) margins are now decreasing in the differentiation parameter, unlike the wholesale

\(^{12}\)It is important to recognize that, in this context, the terms upstream and downstream might sound inappropriate. Indeed, traditionally, a downstream firm is a firm buying a product from a supplier/manufacturer and selling it to final consumers. Here, manufacturers are also selling to consumers, hence they are both upstream and downstream firms. At the same time, they are exploiting \(R \)’s downstream presence to interact with consumers. For the sake of coherence, I will always refer to \(M1 \) and \(M2 \) as “upstream firms” and \(R \) as a “downstream firm”, regardless of the configuration under investigation.
configuration. As $\lambda \to \infty$ (fixed fees vanish), $p_i^A = p_i^W, \forall i = 1, 2$ (similarly for quantities).

When collecting fixed fees, R takes into account the participation constraint by manufacturers, which binds:

$$\pi_{Mi}^{A} = 0 \rightarrow (p_i^A - w_i^A)q_i^A - cq_i^A - (1 + \lambda)F_i = 0$$

$$\Rightarrow F_i^A = \frac{(p_i^A - w_i^A)q_i^A - cq_i^A}{1 + \lambda}, \ i, j = 1, 2, i \neq j,$$

Equation 1.17

F_i^A is the equilibrium fixed fee, decreasing in the cost of extraction. Note that R’s profits become:

$$\pi_R^A = \sum_{i=1}^{2} w_i^A q_i^A + F_i^A$$

$$= \sum_{i=1}^{2} \lambda \frac{w_i^A q_i^A}{1 + \lambda} + \frac{p_i^A q_i^A - c}{1 + \lambda} \ (1.18)$$

In Equation 1.18, both terms decreases as λ gets larger. The last term, though, vanishes, as when R is unable to extract any upstream surplus it will simply gets profits from the linear fee.

R’s equilibrium profits are:

$$\pi_R^A = \frac{(1 - c)^2(1 + \lambda)}{2(1 + \lambda(2 - \mu))(1 + \mu)} \ (1.19)$$

Similarly to Equation 1.12, π_R^A is decreasing in μ for low values of λ; as this parameter grows, the function becomes first convex and then increasing in the differentiation parameter. The presence of a high cost of extraction makes R less sensible to the differentiation parameter to the point where it prefers to host highly similar products on its platform.

1.4.3 Hybrid configuration

The key aspect of a hybrid business strategy is the coexistence of wholesale and agency agreements within the same retailing platform. Without loss of generality, let R act as a reseller for $M1$’s product and as a marketplace for $M2$’s product as shown in Figure 1.1c. Total compensation to R changes across manufacturers: a simple fixed fee with zero linear price for $M1$ and a two-part tariff for $M2$. Profits functions are given by:

$$\pi_R^H = (p_1 - w_1)q_1(p) + w_2q_2(p) + F_1 + F_2,$$

$$\pi_{M1}^H = w_1q_1(p) - cq_1(p) - (1 + \lambda)F_1,$$

$$\pi_{M2}^H = (p_2 - w_2)q_2(p) - cq_2(p) - (1 + \lambda)F_2.$$

(1.20)
Therefore, R and $M2$ compete on retail prices: this can be considered an interlayer price competition, since R strategically interacts with one of the manufacturers in setting the final price to consumers. The difference with respect to previous market configurations is that the two competing firms are asymmetric: while the manufacturer only get profits from the sale of its product, R has two source of profits: the product for which it is setting the retail price and the portion of profits from the other product. The timing is:

1. R sets fixed fees, F_1 and F_2 and linear per unit fee, w_2, and $M1$ and $M2$ either accepts or rejects; $M1$ chooses w_1;
2. R and $M2$ set p_1 and p_2 respectively;
3. demand is realized.

Again, this sequence of events is realistic and can be inferred from observed contract in the industry. Under this market configuration, retail prices, as well as wholesale prices, are decided by independent firms.

R and $M2$’s first order conditions are:

$$\frac{\partial \pi_R^H}{\partial p_1} = q_1(p) + (p_1 - w_1) \frac{\partial q_1(p)}{\partial p_1} + w_2 \frac{\partial q_2(p)}{\partial p_1} = 0$$

$$\frac{\partial \pi_{M2}^H}{\partial p_2} = q_2(p) + (p_2 - w_2) \frac{\partial q_2(p)}{\partial p_2} - c \frac{\partial q_2(p)}{\partial p_2} = 0$$

(1.21)

$M2$ is acting no differently than under a pure agency configuration: the objective function is the same and the first-order condition is the same as Equation 1.14. R, on the contrary, does not solve the same maximization problem as in Subsection 1.4.1, about the wholesale configuration. While not being able to set both retail prices, though, R is still able to internalize the cross-price effect of product 1 on product 2 through the compensation it gets from $M2$. This effect, along with double marginalization occurring on product 1, leads prices to be higher with respect to an agency structure. Indeed, as prices are strategic complements, $M2$ responds to R’s pricing decision by setting a higher price with respect to a situation where the competitor is in the same condition (i.e., if it was $M1$ to set the retail price). For this reason, under a hybrid configuration, the two firms’ best response function have the same slope but different intercepts. A similar dynamic has been explored in Foros et al. (2017) who showed that asymmetry between contracts in a duopoly market shifts up best response functions.
Retail prices as a function of intermediate transfer prices are:

\[p_1^H(w_1, w_2) = \frac{2 + 2w_1 - \mu(1 - c - 3w_2 + \mu)}{4 - \mu^2}, \]
\[p_2^H(w_1, w_2) = \frac{2(1 + c + w_2) - \mu + w_1\mu - (1 - w_2)\mu^2}{4 - \mu^2}. \] (1.22)

In the first stage, firms compete in wholesale prices and \(R \) chooses the optimal fixed fee such that manufacturers’ participation constraint is binding. Optimal wholesale prices, set in the first stage, are:

\[w_1^H = \frac{(-2 + \mu)(-1 + \mu)(2 + \mu)(4 + \mu(2 + \mu(5 + \mu)) + \lambda(8 + \mu(2 + \mu(9 + \mu))) \cdot (12 + 5\lambda)\mu^4 + \lambda\mu^6)}{32 + 64\lambda + 8(2 - 3\lambda)\mu^4 - (12 + 5\lambda)\mu^4 + \lambda\mu^6}, \]
\[w_2^H = \frac{(-1 + c)(2 + \mu)(2\mu^2(-6 + \mu(2 + \mu)) + \lambda(-16 + \mu(1 + \mu)(8 + (-4 + \mu)\mu))}{32 + 64\lambda + 8(2 - 3\lambda)\mu^4 - (12 + 5\lambda)\mu^4 + \lambda\mu^6}. \] (1.23)

The convoluted form of Equation 1.23 is due to the fact that the decision-making firms are asymmetric. Then, optimal fixed fees are given by:

\[\pi_{M1}^H = 0 \rightarrow w_1^H q_1^H - cq_1^H - (1 + \lambda)F_1 = 0 \]
\[\Rightarrow F_1^H = \frac{w_1^H q_1^H - cq_1^H}{1 + \lambda} \] (1.24)
\[\pi_{M2}^H = 0 \rightarrow (p_2^H - w_2^H)q_2^H - cq_2^H - (1 + \lambda)F_2 = 0 \]
\[\Rightarrow F_2^H = \frac{(p_2^H - w_2^H)q_2^H - cq_2^H}{1 + \lambda} \] (1.25)

Note that \(R \)'s profits become:

\[\pi_R^H = (p_1^H - w_1^H)q_1^H + w_2^H q_2^H + F_1^H + F_2^H \]
\[= p_1^H q_1^H - \lambda w_1^H q_1^H \frac{q_1^H}{1 + \lambda} - cq_1^H \frac{q_1^H}{1 + \lambda} + \lambda w_2^H q_2^H \frac{q_2^H}{1 + \lambda} + p_2^H q_2^H - cq_2^H \frac{q_2^H}{1 + \lambda} \] (1.26)

Equation 1.26 combines Equations 1.11 and 1.18 as \(R \) signs a different contract with each manufacturer.

When \(\lambda = 0 \), Equation 1.26 boils down to \(\pi_R^H = (p_1^H - c)q_1^H + (p_2^H - c)q_2^H \). In the other extreme case, \(\lambda \rightarrow \infty \), it becomes \(\pi_R^H = (p_1^H - w_1^H)q_1^H + w_2^H q_2^H \).
Equilibrium retail prices are:

\[p_H^1 = \frac{8(3+c)(1+2\lambda) + 4(-1+c)(3+\lambda)\mu - 2(-5+c(-3+\lambda) + 11\lambda)\mu^2 + 4(-1+c)(-1+\lambda)\mu^3}{32 + 64\lambda + 8(2-3\lambda)\mu^2 - (12+5\lambda)\mu^4 + \lambda\mu^6} + \frac{-(8+4c+2\lambda+3c\lambda)\mu^4 - (-1+c)\lambda\mu^5 + \lambda\mu^6}{32 + 64\lambda + 8(2-3\lambda)\mu^2 - (12+5\lambda)\mu^4 + \lambda\mu^6} \]

\[p_H^2 = \frac{16(1+c + (3+c)\lambda) + 4(-1+c)(1+2\lambda)\mu + 2(7+c-(11+c)\lambda)\mu^2 - (-1+c)(-1+2\lambda)\mu^3 - (4(2+\lambda))}{32 + 64\lambda + 8(2-3\lambda)\mu^2 - (12+5\lambda)\mu^4 + \lambda\mu^6} + \frac{+c(4+\lambda))\mu^4 - (-1+c)(1+\lambda)\mu^5 + \lambda\mu^6}{32 + 64\lambda + 8(2-3\lambda)\mu^2 - (12+5\lambda)\mu^4 + \lambda\mu^6} \]

(1.27)

In a hybrid configuration, on the one hand the double marginalization is still present, because both retail pricing firms charge a mark-up over an intermediate price. On the other hand, though, all variables are decided by independent firms, competing with each other: retail prices are decided through competition between \(R \) and \(M_1 \); and wholesale/intermediate prices are decided through competition between \(R \) and \(M_2 \). The result is, therefore, different with respect to Jerath and Zhang (2010) where the product sold under agency agreements led to channel efficiency (because no intermediate fees were present). Ceteris paribus, this model generates higher retail prices overall. Surprisingly, though, it also generates higher channel profits. The presence of a per unit linear fee mitigates competition in retail prices acting as a cushion on margins.

1.4.4 Comparison and choice of business configurations

Figure 1.2 shows a comparison between retail prices across market configurations. The cost parameter, \(c \), does not affect the price ordering; hence, without loss of generality, I will set \(c = 0 \) during the analysis. \(\lambda \), instead, does have an impact on ordering. Note that this cost parameter only affects retail prices under agency and hybrid configuration as in wholesale agreements \(R \)'s initial choice is only about a fixed fee and therefore \(\lambda \) shows up in profits and not prices. The finding when comparing retail prices can be summarized as follows:

Proposition 1. Under an upstream duopoly and a downstream monopoly, wholesale agreements generate higher retail prices with respect to agency agreements. When the extraction of fixed fees is cheap enough, the wholesale configuration has the highest retail prices, while the agency configuration the lowest retail prices. The hybrid configuration generates intermediate average retail prices. Instead, when the extraction cost is high enough, the hybrid configuration produces the highest average prices.
Proof. The proof consists in solving combinations of differences between retail prices across market configurations, considering the relevant set of parameters. E.g., for which values of μ and λ, $p_W \geq p_A$, $p_W \geq p_1^H$ and $p_W \geq p_2^H$.

Under perfect substitution (i.e., $\mu \to 1$), $M1$ and $M2$ enter a harsh price competition, regardless the type of configuration in place, which drives prices towards either 0 (under the wholesale configuration) or w (under the agency configuration). R, instead, is able to internalize the cross-price effect and therefore act as a multi-product monopolist with no marginal costs whatsoever. Eventually, retail prices are equal to 0.5 across all market configurations: $p_W = p_1^H = p_2^H = \frac{1}{2}$. As shown in Equation 1.4, equilibrium prices under vertical integration does not depend on μ.

When $\mu = 0$, the two products are completely independent. The highest retail prices are under wholesale agreements, because monopoly power is parallelly exerted at both levels of the retailing channel. Agency agreements, instead, generate the lowest retail prices, because manufacturers, who are directly facing consumers, do not internalize the cross-price effect. The hybrid configuration sees retail prices converge to the two extremes: the price set by R ($M2$ respectively) is equal to the retail price set under wholesale (agency) agreements. Hence, when products are independent, $p_W = p_1^H = p_2^H = \frac{1}{2}$. All prices are equal to $\frac{3}{4}$ when $\lambda \to \infty$.

When $\mu \in (0,1)$, the pricing order is not as stark, and depends on the parameter λ. In particular, there exists a threshold, say $\hat{\lambda}$, such that when $\lambda \leq \hat{\lambda}$ then $p_W \geq p_1^H$ and $\lambda < \hat{\lambda}$ then $p_W \leq p_1^H$:

$$\hat{\lambda} = \frac{4(8 + \mu(4 - \mu(3 + 2\mu)))}{16 + (-1 + \mu)(-8 + \mu(4 + \mu))}$$

There also exists an additional threshold, say $\hat{\lambda}$, such that when $\lambda \leq \hat{\lambda}$ then $p_W \geq p_2^H$ and $\lambda < \hat{\lambda}$ then $p_W \leq p_2^H$. In sum, $\forall \mu \in [0,1)$:

- If $0 \leq \lambda \leq \hat{\lambda}$, then $p_W \geq p_1^H \geq p_2^H$;
- If $\hat{\lambda} < \lambda \leq \hat{\lambda}$, then $p_1^H \geq p_W \geq p_2^H$;
- If $\lambda > \hat{\lambda}$, then $p_1^H \geq p_2^H \geq p_W \geq p_A$;
- If $\lambda \to \infty$, then $p_1^H \geq p_2^H \geq p_W = p_A$.

\[\square\]
At the end, under a hybrid configuration, prices are more sensible to the fixed fee cost parameter. Figure 1.2 shows a comparison according to different values of λ. When the cost is low enough, as in Figures 1.2a and 1.2b, prices under a wholesale configuration are higher, while hybrid prices are lower than the corresponding configuration (i.e., the price of the product sold through wholesale (respectively, agency) agreements is lower than prices under wholesale (agency) configuration). When the cost increases, the ordering changes, as in Figure 1.2c. Here, hybrid prices become higher than the corresponding contracts under pure configurations.

In terms of profits, again c is normalized to zero without loss of generality. When setting up the retailing platform, R considers equilibrium outcomes in each configuration, and decides to adopt the business model leading the highest profit. The choice is in the (μ, λ) space.

Proposition 2. When the retailer uses per unit linear fees, the agency configuration always leads to strictly greater profits (unless products become perfect substitutes). This occurs regardless of the extraction cost of channel surplus.

Proof. R’s preferences are such that configuration k, $\forall k = W,A,H$ is chosen over the others as long as $\pi_k^R = \max \{ \pi_k^W, \pi_k^A, \pi_k^H \}$. First, as $\mu \to 1$, $\pi_k^W = \pi_k^A = \pi_k^H = \frac{1}{4}$. Then, $\forall \lambda$ and $\forall \mu \in [0,1)$, $\pi_k^A > \pi_k^H > \pi_k^W$.

Proposition 2 shows that, when per unit fees are implemented, the agency configuration always leads to greater channel profits. On the one hand, this structure brings efficiency in letting independent firms to compete in prices. On the other hand, this competition is mitigated by the presence of a fee which creates a double marginalization—which is less severe than under a wholesale agreement. Therefore, without demand-enhancing services as in Jerath and Zhang (2010), and considering the present of two-part tariffs with positive marginal fees, a hybrid configuration doesn’t emerge in equilibrium.
Figure 1.2: Equilibrium retail prices under per unit linear fees

(a) $c = 0, \lambda = 0$

(b) $c = 0, \lambda = .5$

(c) $c = 0, \lambda = 3$

(d) $c = .15, \lambda = 0$
1.5 Model analysis with ad valorem fees

In this section I explore the choice of the retailer when an ad valorem proportional fee is used under agency agreements, instead of a per unit fee (while per unit prices are still adopted by manufacturers under wholesale agreements). The analysis mirrors the one in Abhishek et al. (2015) where the opposite market structure is studied: a monopoly manufacturer and a duopoly in retailing.

1.5.1 Wholesale configuration

As I assume that ad valorem fees are chosen only under agency agreements, in this market configuration equilibrium outcomes are the same as in Section 1.4.1.

1.5.2 Agency configuration

Under an agency agreement, R allows the manufacturer to use its store and sets directly the price to consumers. In this framework, M1 and M2 compete for setting retail prices under a revenue-sharing agreement. Total compensation set by R is \(T_i = s_i p_i q_i + F_i \), \(\forall i = 1, 2 \). Profit functions are given by:

\[
\pi_R^i(p_i) = \sum_{i=1}^{2} s_i p_i q_i(p_i) + F_i, \\
\pi_{M_i}^j(p_j) = (1 - s_i) p_i q_i(p_i) - c q_i(p_i) - (1 + \lambda) F_i, \quad i, j = 1, 2, \; i \neq j,
\]

The timing of the game is:
1. R sets fixed fees, F_1 and F_2, and ad valorem fees, s_1 and s_2, and $M1$ and $M2$ accept or reject.

2. $M1$ and $M2$ set p_1 and p_2 respectively;

3. demand is realized.

Contrarily to a traditional per unit fee, the manufacturer’s marginal cost depends on retail price itself; Equation 1.28 can be rewritten as:

$$\pi_{Mi}^A(p) = p_i q_i(p) - (c + s_i p_i) q_i(p) - (1 + \lambda) F_i$$

hence the marginal cost is equal to $c + s_i p_i$, rather than $c + w_i$. The component of the marginal cost accruing to the choice of R is $s_i p_i$ versus the per-unit price w_i under a wholesale contract. The profit-maximizing manufacturer is charging a mark-up over $c (1 - s_i)$ instead of $c + w_i$. This cost add-on depends on the retail price. First-order conditions are:

$$\frac{\partial \pi_{Mi}^A}{\partial p_i} = (1 - s_i) \left(q_i(p) + p_i \frac{\partial q_i(p)}{\partial p_i} \right) - c \frac{\partial q_i(p)}{\partial p_i} = 0, \ \forall i = 1, 2. \tag{1.29}$$

By totally differentiating 1.29, it is possible to study the effect of the fee on the manufacturers’ pricing decision:

$$\frac{d p_i}{d s_i} = \frac{q_i(p) + p_i \frac{\partial q_i(p)}{\partial p_i}}{2(1 - s_i) \frac{\partial q_i(p)}{\partial p_i}}, \ \forall i = 1, 2,$$

which can be rearranged as:

$$\frac{d p_i}{d s_i} = \frac{p_i}{2(1 - s_i)} \left[1 - \frac{1}{\eta_i} \right], \ \forall i = 1, 2, \tag{1.30}$$

where $\eta_i = \frac{\partial q_i(p)}{\partial p_i} \cdot \frac{p_i}{q_i(p)}$. The equilibrium retail price is always increasing in the fee. This is intuitive as the fee represents an increase in the marginal cost. The rate at which the equilibrium retail price increases in s_i, though, is not constant and depends on s_i and the market elasticity. Under a per-unit price, instead, $\frac{d p_i}{d s_i} = \frac{1}{2}$.

In the second stage, Mi’s choice of retail prices leads to the following price function:

$$p_i(s) = \frac{(1 - s_i)(1 - s_j)(1 - \mu)(2 + \mu) + c(2 - 2s_j - (1 - s_i)\mu)}{(1 - s_i)(1 - s_j)(4 - \mu^2)}, \ i, j = 1, 2, i \neq j, \tag{1.31}$$

where $s = (s_1, s_2)$. Given these system of demands, retail prices are always increasing in the fee, as

13 The market demand is linear in prices, therefore $\frac{\partial^2 q_i(p)}{\partial p_i^2} = 0$.

35
shown in Equation 1.30:
\[
\frac{dp_i}{ds_i} = \frac{2c}{(1-s_i)^2(4-\mu^2)}, \ \forall i = 1, 2.
\] (1.32)

R correctly conjectures the manufacturers’ decision, and maximizes its own profit function with respect to the fees. Imposing symmetry (M1 and M2 are, indeed, symmetric), \(s_1 = s_2 = s^A\), there exists a unique solution to the maximization problem such that \(s^A \in [0, 1)\):
\[
s^A = 1 - \frac{1}{3(\lambda - \lambda \mu)} \left[3^{\frac{3}{2}} c \lambda (1 - \mu)(c(2 + \lambda - \mu) + (1 + \lambda)\mu) - (3A)^{\frac{1}{2}} \right]
\] (1.33)
where
\[
A = -9c^2(\lambda^2 - 9c^2\lambda^3) + 18c^2\lambda^2\mu + 18c^2\lambda^3 - 9c^2\lambda^2\mu^2 - 9c^2\lambda^3\mu^2 + \sqrt{3}\sqrt{c^3\lambda^3(-1 + \mu)^3(27c\lambda(1 + \lambda)^2(-1 + \mu) - (c(2 + \lambda - \mu) + (1 + \lambda)\mu)^3)}.
\]

This agency fee looks similar to the one found by Abhishek et al. (2015, pp. 8), denoted by \(a^*_{AA}\), which is a result of the competition between retailers to serve the distribution of the product of the monopolist manufacturer. Here, instead, \(s^A\) is the choice of a single firm, R. For this reason, when the fees are comparable, \(s^A\) is always higher than \(a^*_{AA}\), for all values of the differentiation parameter.

As R has full bargaining power in the contractual relationship with manufacturers, and the fee acts as an upward distortion from the actual marginal cost of production, when \(c \to 0\) then \(s^A \to 1\): the only constraint limiting R in collecting the whole upstream revenue disappears, and the fee can be set at its maximum level. Indeed, \(\frac{\partial s^A}{\partial c} < 0\): when the marginal cost of production increases, R must decrease the fee to preserve manufacturers’ margin (as a higher fee would bring an even higher marginal cost); since there is direct competition in retail prices, higher costs would imply lower margins. R must, therefore, balance the trade-off between the size of revenue-sharing (direct impact of the fee on its profits) and the effect of the fee on manufacturers’ marginal (indirect impact). Moreover, the equilibrium fee is always increasing the differentiation parameter: \(\frac{\partial s^A}{\partial \mu} > 0\). A fiercer upstream competition in setting retail prices drives down revenues, giving R incentives to increase the fee. When, instead, products are almost independent, M1 and M2 have a much greater market power and R has a stronger incentive to keep the fee low. Finally, \(\frac{\partial s^A}{\partial \lambda} > 0\). The higher the cost in extracting the fixed fee, the more distorted \(s^A\) is. The rate at which the fee increases with \(\mu\) depends on the magnitude of \(\lambda\). When \(\lambda\) is low, the optimal fee

\[14\text{When } d = 0\text{ and the spillover effect in Abhishek et al. (2015) is greater than zero, i.e., } \tau > 0.\]
is concave and increases faster with the differentiation parameter. Figure 1.4 illustrates the behaviour of the equilibrium fee with respect to μ with changing λ.

Equilibrium retail prices and quantities, as a function of the equilibrium fee, s^A, are:

$$p^A_i(s^A) = 1 - \frac{1 - c - s^A}{(1 - s^A)(2 - \mu)},$$

$$q^A_i(s^A) = \frac{1 - s^A - c}{(1 - s^A)(1 + \mu)(2 - \mu)}, \quad \forall i = 1, 2.$$ \hspace{1cm} (1.34)

The impact of μ on retail prices is both direct and indirect, through s_A. In particular, as differentiation decreases, retail competition is higher and therefore the direct effect of μ is negative. The indirect effect reinforces the previous one: s^A is decreasing in μ and therefore when differentiation decreases, the fee gets lower and retail prices decreases. Overall, the impact of μ on p^A is negative. λ has an indirect effect through s^A. When this parameter increases, s^A increases accordingly, leading to an increase in retail prices.

When collecting fixed fees, R takes into account the participation constraint by manufacturers, which binds:

$$\pi^A_{Mi} = 0 \rightarrow (1 - s^A_i) p^A_i q^A_i - c q^A_i - (1 + \lambda) F_i = 0$$

$$\Rightarrow F^A_i = \frac{(1 - s^A_i) p^A_i q^A_i - c q^A_i}{1 + \lambda}, \quad i, j = 1, 2, \ i \neq j.$$ \hspace{1cm} (1.35)
F_i^A is the equilibrium fixed fee, decreasing in the cost of extraction. Note that R’s profits become:

$$
\pi_R^A = \sum_{i=1}^{2} s_i^A p_i^A q_i^A + F_i^A
= \sum_{i=1}^{2} \left(p_i^A q_i^A \left(\frac{1 + \lambda s_i^A}{1 + \lambda} - cq_i \right) \right)
= \sum_{i=1}^{2} \left(\frac{\lambda (1 - s_i^A) p_i^A q_i^A + cq_i^A}{1 + \lambda} \right)
$$

The last formula in Equation 1.36 has been derived by adding and subtracting $\lambda p_i^A q_i^A$ and rearranging.

When extracting fixed fee is not costly ($\lambda = 0$), then R is able to efficiently to get the full channel surplurs $p_i^A q_i^A - cq_i^A$.

Equilibrium profits, as a function of the equilibrium fee, s^A, are:

$$
\pi_R^A(s^A) = \frac{2(1 - c - s^A)((-1 + s^A)(1 + s^A)\lambda(-1 + \mu) + c(-1 + s^A(2 + \lambda - \mu) + \mu))}{(1 - s^A)^2(1 + \lambda)(2 - \mu)^2(1 + \mu)}
$$

1.5.3 Hybrid configuration

Without loss of generality, let R act as a reseller for $M1$’s product, and as a marketplace for $M2$’s product as in Section 1.4.3. Profits functions are given by:

$$
\pi_R^H = (p_1 - w_1)q_1(p) + s_2 p_2 q_2(p) + F_1 + F_2,
\pi_{M1}^H = w_1 q_1(p) - c q_1(p) - (1 + \lambda) F_1,
\pi_{M2}^H = (1 - s_2) p_2 q_2(p) - c q_2(p) - (1 + \lambda) F_2.
$$

Again, R and $M2$ compete on retail prices. R strategically interacts with one of the manufacturers in setting the final price to consumers. The timing is:

1. R sets fixed fees, F_1 and F_2, and the ad valorem fee, s_1, and $M1$ chooses w_1; both manufacturers either accept or reject;

2. R and $M2$ set p_1 and p_2 respectively;

4. demand is realized.
This sequence of events is consistent with observed contract. \(R \) and \(M2 \)’s first order conditions are:

\[
\frac{\partial \pi^H_R}{\partial p_1} = q_1(p) + (p_1 - w_1 - d) \frac{\partial q_1(p)}{\partial p_1} + (s_2 p_2 - d) \frac{\partial q_2(p)}{\partial p_1} = 0
\]

\[
\frac{\partial \pi^H_{M2}}{\partial p_2} = (1 - s_2) \left(q_2(p) + p_2 \frac{\partial q_2(p)}{\partial p_2} \right) - c \frac{\partial q_2(p)}{\partial p_2} = 0
\]

\[(1.39) \]

\(M2 \) makes his decision no differently than under the previous agency configuration in Section 1.5.2. Instead, \(R \), while not being able to set both retail prices, is still able to internalize the cross-price effect of product 1 on product 2 through the share of revenues she receives from \(M2 \). This effect, along with double marginalization occurring on product 1, leads prices to be higher with respect to a pure agency structure. Indeed, as prices are strategic complements, \(M2 \) responds to \(R \)’s pricing decision by setting a higher price with respect to a situation where the competitor shares a symmetric objective function (namely, if it were \(M1 \) to set the retail price).

Unlike the case of per-unit fees and, more general, an agency configuration, under a hybrid configuration with ad valorem fees, the two firms’ best response functions have different slopes.\(^\text{15}\) More specifically:

\[
\frac{dp_1}{dp_2} = -\frac{\frac{\partial q_1(p)}{\partial p_1} + s_2 \frac{\partial q_2(p)}{\partial p_1}}{2 \frac{\partial q_1(p)}{\partial p_1}} \quad \frac{dp_2}{dp_1} = -\frac{\frac{\partial q_2(p)}{\partial p_2}}{2 \frac{\partial q_2(p)}{\partial p_2}}
\]

\[(1.40) \]

By asking a compensation from the sale of product 2, \(R \) is able to internalize the cross-price effect, i.e., \(s_2 \frac{\partial q_2(p)}{\partial p_1} \), which shows up in the slope of the reaction function. Given the symmetric nature of the demand functions,\(^\text{16}\) it turns out that \(\frac{dp_2}{dp_1} > \frac{dp_1}{dp_2} \): \(R \)’s best response function is steeper than \(M2 \)’s, indicating a stronger reaction to the rival’s choice. Indeed, a decrease in \(p_2 \) has two effects from \(R \)’s perspective: increasing the competitive pressure at the downstream level, when battling for consumers; and affecting revenues coming from product 2 through \(s_2 \). The first effect is reinforced by the second effect: by decreasing \(p_1 \) even more, a higher share of revenues is left to be taken through the agency

\(^{15}\)Under a wholesale configuration, the retail pricing choice is made by \(R \), so the concept of best response function is of no use. Under an agency configuration, the choice is made by manufacturers, who act independently; the slope of \(M_i \)’s best response function is \(\frac{dp_i}{dp_j} = -\frac{\frac{\partial q_i(p)}{\partial p_i}}{\frac{\partial q_j(p)}{\partial p_j}} \), \(i, j = 1, 2, i \neq j \). Given the demand specification in Equation 1.1, the slope is equal to \(\frac{\partial q_2}{\partial q_1} \); the lower the level of differentiation between products, the steeper the best response functions. The intuition is that firms are reacting more strongly to a change in the competitor’s price when the products they are selling are more similar.

\(^{16}\)Own- and cross-price effects are the same across products: \(\frac{\partial q_i(p)}{\partial p_i} = \frac{\partial q_i(p)}{\partial p_j} \) and \(\frac{\partial q_j(p)}{\partial p_i} = \frac{\partial q_j(p)}{\partial p_j} \).
contract. More specifically, in this model:\(^\text{17}\)

\[
\frac{dp_1}{dp_2} = \frac{(1 + s_2)\mu}{2}, \quad \frac{dp_2}{dp_1} = \frac{\mu}{2}.
\] (1.41)

The higher the differentiation parameter, the steeper both reaction functions are, as illustrated in Figure 1.5. This is not surprising, as products become more similar, and competition fiercer. \(R\)’s optimal responsiveness to the competitor’s price is also increasing in \(s_2\), as the agency contract provides him a second stream of revenues which depends negatively on his own price.

Figure 1.5: Best response functions (hybrid configuration)

(a) \(\mu = 0.2\) and \(w_1 = s_2 = c = 0.2\)

(b) \(\mu = 0.9\) and \(w_1 = s_2 = c = 0.2\)

Retail prices as a function of intermediate transfer prices are:

\[
P^H_1(w_1, s_2) = \frac{2 + 2w_1 - 2s_2(1 + w_1) + (2 + c)s_2\mu - (1 - c + \mu)\mu - s_2^2(1 - \mu)\mu}{(1 - s_2)(4 - (1 + s_2)\mu^2)},
\]

\[
P^H_2(w_1, s_2) = \frac{2c + (1 - s_2)(2 - \mu + w_1\mu - \mu^2)}{(1 - s_2)(4 - (1 + s_2)\mu^2)}. \quad (1.42)
\]

I computed the optimal fees (hereafter, \(w^H_1\) and \(s^H_2\)) numerically, as the analysis is intensive, considering

\(^\text{17}\)The slope of the reaction function can be found by differentiating the first-order condition of each profit-maximizing firm. Hence:

\[
\frac{dp_1}{dp_2} = \frac{\partial^2 \pi_1^w}{\partial p_1 \partial p_2} \quad \text{and} \quad \frac{dp_2}{dp_1} = \frac{\partial^2 \pi_2^w}{\partial p_2 \partial p_1}.
\]
the relevant set of parameters. Then, optimal fixed fees are given by:

\[\pi_{M1}^A = 0 \rightarrow w_1^A q_1^H - c q_1^H - (1 + \lambda) F_1 = 0 \]

\[\Rightarrow F_1^H = \frac{w_1^A q_1^H - c q_1^H}{1 + \lambda} \] (1.43)

\[\pi_{M2}^H = 0 \rightarrow (1 - s_2^A) p_2^H q_2^H - c q_2^H - (1 + \lambda) F_2 = 0 \]

\[\Rightarrow F_2^H = \frac{(1 - s_2^A) p_2^H q_2^H - c q_2^H}{1 + \lambda} \] (1.44)

Note that \(R \)'s profits become:

\[\pi_R^H = (p_1^H - w_1^H) q_1^H + s_2^H p_2^H q_2^H + F_1^H + F_2^H \]

\[= p_1^H q_1^H + p_2^H q_2^H - \lambda \frac{w_1^H q_1^H}{1 + \lambda} - \frac{c q_1^H}{1 + \lambda} - \frac{\lambda (1 - s_2^H) p_2^H q_2^H + c q_2^H}{1 + \lambda} \] (1.45)

Equation 1.45 combines Equations 1.11 and 1.36 as \(R \) signs a different contract with each manufacturer. If \(\lambda \) goes to zero, then \(R \) is able to fully extract the channel rents.

1.5.4 Choice of business configurations

Similarly to the case of per unit fees, I compare \(R \)'s profits under the three different market configuration, in order to understand which one leads greater channel profits and, therefore, will eventually be chosen.

The effect of manufacturers’ marginal cost is not relevant in the choice of the business configuration (hence set to an arbitrarily low value) and therefore the analysis focuses on the pair \((\mu, \lambda)\).

Proposition 3. Adopting ad valorem proportional fees, the retailer chooses to implement a hybrid configuration for intermediate values of the differentiation parameter. The choice is moderated by the cost of extracting fixed fees: the higher the cost, the more likely to adopt a hybrid configuration. Further, with a higher cost, the choice occurs for less differentiated products. The choice of a wholesale (agency, respectively) configuration emerges for low (high) differentiation.

Proof. \(R \)'s preferences are such that configuration \(k, \forall k = W, A, H \) is chosen over the others as long as

\[\pi_k^R = \max \{ \pi_k^W, \pi_k^A, \pi_k^H \} \] and depends on \(c, \mu \) and \(\lambda \). The proof relies on numerical analysis as functional forms are not tractable.

Figures 1.6a and 1.6b show the results of the proposition as a function of \(\mu \) for \(\lambda = 0 \) and \(\lambda = 2 \). The analysis shows that the hybrid configuration emerges for intermediate values of the differentiation.
parameter, in a similar fashion as Jerath and Zhang (2010). Here, though, the moderating factor is not demand-enhancing service level but costly extraction of the intermediate fee. Note that R aims at collecting channel profits through the fixed fee hence these two parameters play a role in generating surplus across upstream and downstream markets. When products are close to be independent, i.e., as $\mu \to 0$, a structure where manufacturers directly compete is optimal because it keeps prices low enough. As differentiation decreases, margins shrink and therefore R prefers to switch to wholesale agreements, where she can regain control over the cross-price effects and therefore avoid destruction of channel profits.

When μ is high, competition among manufacturers becomes too fierce and therefore R has an incentive to internalize the retail pricing decision. This occurs gradually as $\mu \to 1$, first incorporating the decision for one product and then for both (from hybrid to wholesale configurations). A wholesale agreement has the drawback of double marginalization, but this inefficiency is easily overcome by losses from aggressive retail price competition. The extraction cost of the fixed fee mitigates manufacturers’ competition. A higher λ makes the agency configuration more desirable by extending its choice for higher values of the differentiation parameter. In fact, as Figure 1.4 shows, the cost pushes the optimal revenue share up, which acts as a driver of higher retail prices downstream and counteracts the aggressiveness of competition between independent manufacturers. Under a per unit fee, R always prefers the agency configuration over the other two. The difference between the two contracts lies in how manufacturers react to the marginal fee. A per unit fee is considered as an increase in the marginal cost and the seller simply adds a mark-up over this cost. Instead, an ad valorem fee increases the marginal cost through a gap which depends on the decision variable (i.e., retail price) itself. The rate at which the retail price increases with the fee is not constant (as under a per unit fee) and depends on the market elasticity which, in turn, depends on the differentiation parameter. This leads manufacturers to react more strongly to an ad valorem fee when setting retail prices with respect to a per unit fee to the detriment of channel profits.
1.6 Concluding remarks and future research

In the past few years, retailers have increasingly delegated control over retail prices and in-store operations to manufacturers, effectively creating hybrid retailing structures. Amazon, for example, opened an online marketplace in 2004, where third party sellers can offer their products alongside those sold directly by Amazon. Other online retailers adopted the same business model shortly after. Physical retailers pursued a similar strategy through store-within-a-store arrangements: the presence of branded boutiques within stores that are managed directly by manufacturers. In many categories, similar products are sold by both the retailer and manufacturers (Jerath and Zhang, 2010). For example, the Apple Watch is sold directly by Apple within Macy’s stores—at the same time, Macy’s sells Garmin and Under Armour smartwatches. Why should retailers allow direct competition with upstream firms in their own store? Is the choice of adopting a hybrid structure affected by the type of contract offered to manufacturers? These questions have received little-to-none attention by scholars. Most of the work has been concentrated on analyzing the difference, in terms of prices and welfare, between wholesale and agency agreements. The former are traditional contracts where retailers purchase products from manufacturers to sell them directly to consumers. The latter, instead, are newer arrangements where manufacturers sell directly to consumers and compensate retailers for using their platform as a commercial space. This paper aimed at understanding under which market conditions the configuration where both contracts co-
exist within the same retailing platform emerges as an equilibrium outcome; here the retailer is assumed to be the architect of the channel (rather than the manufacturers).

The model presented here considers an upstream duopoly offering differentiated products and a downstream monopoly, and it compares three distinct business models: the wholesale configuration, where the retailer sets retail prices; the agency configuration, where, instead, manufacturers set retail prices; and the hybrid configuration, where one product is sold via a wholesale agreement and the other is sold via an agency agreement. Contrary to prior research, the model focused only on retail pricing decisions (as a way to avoid confounding factors coming from other choice variables) and considered positive marginal fees set by the retailer to manufacturers. In particular, two pricing schedules were compared in agency agreements: per unit linear fees and ad valorem proportional fees. Finally, I assumed that the retailer faces a costly extraction of channel surplus as a way to account for any possible inefficiency in the vertical channel. In deciding which configuration to adopt, the retailer must trade the inefficiency coming from double marginalization under wholesale agreements for the inefficiency coming from an aggressive competition under agency agreements. Manufacturers, indeed, are independent firms and they cannot internalize the substitution effect between products when setting prices.

The analysis showed that a hybrid configuration never emerges under per unit linear fees. Instead, the agency configuration is the one preferred by the retailer because it leads to greater channel profits. On the one hand, this structure brings efficiency in letting independent firms compete through prices. On the other other hand, this competition is mitigated by the presence of a fee which creates a double marginalization—which is less severe here than under a wholesale agreement. Surprisingly, under an agency configuration, the case with positive marginal fees dominates, in terms of channel surplus, the case with zero marginal fees (i.e., only fixed fees are collected). The presence of a positive marginal compensation pushes up retail prices (set by independent firms) and acts as a cushion to competition between manufacturers.

If, instead, ad valorem fees are implemented, a hybrid configuration might emerge when differentiation between products is intermediate and the cost of extracting surplus is higher. This is in line with observed contracts: most major hybrid online retailers adopt proportional (typically revenue-sharing) fees rather than linear fees. The difference between the two pricing schedules is clear. A per unit fee is internalized by manufacturers as a simple add-on over the marginal cost. Instead, an ad valorem fee increases the marginal cost through a wedge which depends on the decision variable itself (i.e., retail price). The rate at which the retail price increases with the fee is not constant (as under a per unit fee)
and depends on the market elasticity which, in turn, depends on the differentiation parameter. This leads manufacturers to react more strongly to an ad valorem fee when setting retail prices with respect to a per unit fee to the detriment of channel profits. Indeed, when products become less differentiated, manufacturers tend to slash their prices too much, while under a per unit fee the degree of competition is cushioned by the linear added cost. In sum, when ad valorem fees are adopted, the retailer tries to limit the incentive of manufacturers to destroy channel profits under agency agreements and implements wholesale agreements gradually as differentiation decreases, first by selling one product only, and then by selling both. The extraction cost of the fixed fee also mitigates competition between manufacturers. A higher cost makes the agency configuration more desirable by extending its choice for higher values of the differentiation parameter. In fact, the cost pushes the optimal fee up, which acts as a driver of higher retail prices downstream and counteracts the aggressiveness of competition between independent manufacturers. It is worth mentioning that these results are independent of the presence of any other choice variable affecting market demand—hence, they come only from the simple retail pricing decision.

However, the framework presents several shortcomings that can be addressed in future research. First, other demand specifications can be considered in order to assess whether results are robust and that they don’t depend on the shape of demand functions. Also, more complex market structures can be tested; for example the bilateral duopoly presented in Dobson and Waterson (2007), which would increase the complexity of the analysis but also provide useful predictions on whether, for example, the choice depends on downstream competitive pressure. Moreover, the symmetricity of manufacturers can also be relaxed. In fact, manufacturers can have different production technologies or consumers can have asymmetric preferences over substitute products. This element is important because when the two upstream firms are symmetric it doesn’t really matter which one adopts agency agreements in a hybrid configuration. When, instead, they are symmetric, the retailer might favor one manufacturers over the other for specific arrangements and, consequently, the choice of a hybrid configuration might be affected.
Chapter 2

The Choice of Brand Licensing under Double-Sided Moral Hazard\(^1\)

\(^1\)This chapter is a joint work with Professor Emanuele Bacchiega, Department of Economics, University of Bologna, and Professor Mariachiara Colucci, Department of Management, University of Bologna.
Abstract

Extending a brand within and beyond its original product category represents a major strategy for companies to obtain long-term profitability. A brand owner can opt to internalize the production of the extension product, or to license the brand to a third-party company. Brand licensing has been a very common strategy for growth for many companies, but it does not come without any risk: such an agreement can in fact expose to the risk of opportunistic behavior, leading to the brand dilution. Nevertheless, in-house production typically requires the ownership of resources and competences that may be too expensive to acquire or that the company may not have. We propose a theoretical framework with two goals: first, we study the design of the optimal licensing contract under double-sided moral hazard, second we analyze under which market conditions the brand owner relies on brand licensing. Both choices are investigated in terms of the perceived fit between the core and the extension product markets, a factor that has been overlooked by previous models, but that has been deemed as highly relevant in the business literature.
2.1 Introduction

Extending a brand within and beyond its original product category represents a major strategy for companies to obtain long-term profitability. In fact, by leveraging on the brand equity associated to their brand names, companies can launch new products and enter new markets, thus capturing new opportunities. The benefits from brand extension consist of lower new product introduction expenses, reduced perceived risks for consumers, and new product’s leg-up for its establishment on the market. Yet, such a strategy does not confine its effects to the (positive) influence of the parent brand on the extension product. In fact, a feedback effect exists from the extension product on the parent brand, which can be either positive or negative. The management literature refers to the former case as positive reciprocal effect or brand enhancement and to the latter as negative reciprocal effect or brand dilution. While brand enhancement is a further reason of attractiveness of brand extension, brand dilution, which occurs when the extension fails, hinders brand equity.

While launching brand extensions has been nevertheless a very common strategy for growth for many companies in the last decades, offering new products under the same brand name requires the ownership of resources and competences that the company may not have or that may be too expensive to acquire or develop internally. This observation leads to the related issue of the way the extension is managed, which, in turn can directly affect the decision as to whether to extend itself. In fact, companies should evaluate both the possession of necessary resources and the consequences on current activities and assets. Brand licensing appears to be an increasingly popular means for expansion in new product categories through the renting or leasing of the company’s brand name to an external actor.

Under a licensing agreement, a company (the licensor) gives an industrial or retail partner (the licensee) the rights to use its brand name in return for a negotiated payment (a fee or royalties, typically a percentage of wholesale revenues). Agreements can differ in the content (from purely manufacturing, distribution, all the way to retail), duration and geographical area (Raugust, 2012). In all such agreements, the licensor contributes with reputation, brand image and creativity, while the licensee with its manufacturing and distribution know-how. The licensor and the licensee have different goals and thus different strategies. The licensor’s goal is to nurture and to give strategic orientation to the brand. It searches for an exclusive image and product positioning, aimed at increasing brand awareness. The licensee’s goal is to exploit consumers’ brand awareness and push commercial diffusion that is to increase revenues (Raugust, 2012). In this vein, the success of a brand licensing program depends on the extent to
which such an arrangement meets the goals of both parties involved, as the licensor may want to receive (possibly high) royalties while controlling the use of the brand by the partner, whereas the licensee may want to maximize its investments in the product category and boost sales.

These agreements are thus open to the risk of opportunistic behavior by either party (Jayachandran et al. (2013); Robinson et al. (2014)). The licensor, on the one hand may deny support to the partner’s business, depending, as an instance, on the compensation structure of the contract, on the strategic relevance of the new product for the parent brand, or on the possibility to replace the licensee. This behavior may damage the profits of the licensee who risks her investments in the product. The licensee, on the other hand, may use the brand in an inappropriate manner, lowering product quality or using inappropriate channels, damaging the brand positioning and eventually the brand value. In the framework of brand licensing, the misbehavior of the licensee may have effects that go beyond the boundaries of the market for the licensed product, affecting the brand value (i.e., brand dilution) and, therefore, the profits obtained by the licensor on the other markets where it operates.

Given the importance and the strategic implications of the decision on how to extend a brand, this research has a twofold goal. First, we analyze the choice of the optimal contractual agreement under brand licensing, introducing the feedback effect from the extended product to the parent brand. This is clearly relevant in the case of brand dilution, but influences the contractual structure and the choice of the business model in the case of brand enhancement as well. In particular, we introduce the possibility that either parties of the agreement can behave opportunistically in pursuing their goals that, as said before, may not overlap (Jayachandran et al., 2013). Our second goal is to examine under what conditions a brand owner firm prefers to extend its brand through a licensing agreement rather than using in-house production, that is the choice of make-or-license.

To achieve our goals, we develop a multi-stage contracting model where both the brand owner/licensor and the licensee face a moral hazard problem as they cannot observe each other’s effort in, respectively, maintaining the relevance of the brand, and offering a desirable extension product while not putting at risk the value of the brand. We employ the model to characterize the optimal arrangement in terms of a royalty rate and a fixed payment, and the brand owner’s choice whether to become a licensor or to extend the brand via in-house production, basing on the distance of the two markets. We allow for the presence of a direct effect of the brand owner’s effort in the core market to the extension product market in order to improve the revenues on both markets. A key feature of our model is that there is a feedback effect (i.e., a reciprocal effect, e.g., Ahluwalia and Gürhan-Canli (2000); John et al. (1998); Loken and John
(1993); Romeo (1991)) stemming from the action of the licensee to the revenue that the brand owner reaps in the core market, which we model as an externality.

The remainder of this paper is organized as follows. Section 2 illustrates the importance of brand licensing and reviews the relevant literature developed in both the managerial and industrial organization research. Section 3 develops a general model of brand licensing. Section 4 analyses the model in a specific setup and compares brand licensing with in-house development. We conclude with a discussion of the results and their theoretical and empirical implications.

2.2 The choice of brand licensing

Licensing is a business tool that crosses over different industries, including fashion, sports, entertainment, music and art, that is now mature and global with retail sales of licensed products estimated in $241.5 billion worldwide in 2014 (LIMA Annual Global Licensing Study). In addition, the value of corporate brand licensing is very high; the leader in 2013 was Disney Consumer Products with $39.3 billion in retail sales of licensed merchandise. The licensing of brands, in particular, represents the third major sector of licensed products, being used to support brand extension and brand exposure especially for fashion labels (Raugust, 2012). In 2015, among the leading fashion companies, as for the revenues growth, are Luxottica, a well-known eyewear producer as well as distributor and licensee partner of many fashion brands, and G-III Apparel Group that has the licenses of brands such as Calvin Klein, Kenneth Cole, Tommy Hilfiger, Guess, Levi’s. While in the past brand licensing has helped many companies with established brands to grow rapidly and to promote a lifestyle on the market (i.e., offering a wide and complete product range), it has also been considered responsible for the failure and the brand dilution of important brands. Pierre Cardin was the epitome of brand extension via licensing, managing 500 licensing agreements, including one for toilet-seat covers; another example is Yves Saint Laurent that in 2001 managed 60 contracts, and then cut to 15 the next year (Corbellini and Saviolo, 2011). Besides the product over-saturation phenomenon, brand dilution is typically caused by the loss of control of the brand by the licensor, for which maintaining brand image and value is paramount (Raugust, 2012). An instance of this is provided by Calvin Klein that in 2000 charged Warnaco Group, its licensee, with brand equity dilution for breaching the jeanswear licensing and distribution contract, as the partner distributed products through warehouse clubs. For the first time, the same year, Warnaco filed countersuit attributing Calvin Klein for ineffective brand advertising and thus for damaging its business. In more recent years,
starting from late 1990s, companies have decided to limit the growth via licensing taking back control (in-house) of their related businesses, with the aim to control the production cycle and the flow of profits generated from the brand, that forms the basis of their operations. Today licensing shows its importance especially for distant business where production and distribution specificities hold, such as eyewear, watches, fragrances and cosmetics, and accessories (Corbellini and Saviolo (2011), Colucci et al. (2008)).

Despite of its practical importance, the managerial research has paid very little attention to brand licensing both from the theoretical and empirical standpoint. An exception is Jayachandran et al. (2013) who examine how the risk of moral hazard affects royalty rates that are used as a mechanism to align goals between licensor and licensee, across international markets. Another paper, by Colucci et al. (2008), investigates under what conditions brand licensing is preferred to internal development in the high-end fashion industry, focusing on the risks of licensee’s opportunistic behavior and negative reciprocal effect. Differently, Robinson et al. (2014) analyze how brand licensing announcements affects licensors’ shareholder values and suggest that investors react more favorably when the brand fit is greater, ultimately assessing the financial impact of the brand licensing. To the best of our knowledge, though, no prior study provides a theoretical framework to analyze at once the conditions that shape a (optimal) licensing agreement and their strategic implications to limit the biggest risk in licensing, the dilution of the brand (e.g., Robinson et al. (2014)).

Research on brand extensions (e.g., Loken et al., 2010; Vlckner and Sattler 2006) has typically informed previous works on brand licensing, being the brand licensing a means to launch a new product pursuing a brand extension strategy. Brand extension has been a central topic in the marketing literature since the nineties (Aaker and Keller (1990); Broniarczyk and Alba (1994)) and still represents a vibrant area of study. The literature has largely examined advantages and disadvantages associated with a brand extension strategy that has become in the past decades the predominant new product strategy, identifying as the main advantage the increased acceptance by the market coupled with a reduction in risks and costs of introductory marketing programs. The main disadvantage, when a brand extension fails, is the potential damage to the brand’s existing products and to the brand itself, posing the considerable risk of a brand equity dilution (Aaker and Keller (1990); John et al. (1998); Keller and Sood (2003)). Recent contributions attempt to offer a comprehensive framework of the determinants of brand extension success, and to highlight antecedents and consequences of consumer attitude toward a brand extension (Czellar (2003); Vöckner and Sattler (2006)). In the economic literature, starting from the seminal work by Wernerfelt (1988), a conspicuous stream of the literature has investigated the role of brand extensions
(often referred to as *umbrella branding*, in Industrial Organization) in signaling quality to consumers, by means of transferring the reputation of the brand to new products. Because consumers are not able to perfectly observe products’ quality, they make inferences based on the quality of the original branded product(s). Brands play in fact a relevant role in carrying information (e.g., reputation, quality) and firms must carefully design business strategies to take into account benefits and costs in exploiting such opportunity (Hakenes and Peitz (2008); Cabral (2009)). This strand of literature has then mostly focused on the brand extension decision per se (as branded products vs. new brands) rather than examining how companies carry out such extensions, that is the make-it-or-license-it decision (assuming, therefore, the in-house development as the preferable choice); this research has also taken the viewpoint of the brand owner vis-à-vis the consumer. The only and closest attempt to look at the relationship between the brand owner/licensor and the licensee is Buratto and Zaccour (2009), which focuses on advertising strategies in a fashion licensing contract using a differential game. Here, though, licensing is seen as a win-win strategy and no brand dilution is present, as advertising generates only positive externalities; furthermore the contractual agreement (in terms of royalty rates) is exogenous in that analysis.

Many findings in the brand extension literature hold in brand licensing contexts as well, but there are also critical differences (Robinson et al., 2014). Brand licensing, like brand extension, implies the use of a brand to produce and sell a new product, that is to take advantage of an established brand to effectively enter a new product category, but, differently from the brand extension, the licensing involves the lease of the brand, basing on a contractual agreement between two business entities (i.e., an interorganizational arrangement). This means that the brand owner, ceding the brand, will have a reduction of the control over it, becoming exposed to the risk of opportunistic behavior and brand dilution (Colucci et al., 2008). The brand owner in fact, while aiming at maximizing royalties, fears harming the brand image as well as adversely affecting sales of other established products marketed with the same brand name.

Drawing from the Management and Industrial Organization literature on brand extension and brand licensing, in this study we propose a model for analyzing all the dimensions of the decision to pursue a brand extension: we examine what is the optimal contractual agreement with the licensee, in terms of royalty rate which has been regarded as the mechanism to reduce the risks perceived by either party (Jayachandran et al., 2013), considering the case of a double-sided moral hazard; we also analyze what factors drive the choice of managing extensions via licensing over in-house production. This study contributes to extant literature by focusing on two factors highlighted in prior research on brand licensing, but still under-searched especially within a unique theoretical framework.
The first factor is represented by the presence of two-sided asymmetric information in the licensing relationship, which deserves more attention from research: both the brand owner and the licensee cannot perfectly monitor the partner’s activity, which generates the risk of moral hazard. More in detail, on the one hand, if the licensee behaves opportunistically she may shirk efforts in maintaining quality, manufacturing a poor quality product or using inappropriate distribution channels which would result into a devaluation of the brand (Jayachandran et al., 2013). On the other hand, we assume that the licensor also could neglect the licensee’s business, through, as an instance, ineffective advertising, and thus leading to a decrease in licensee’s sales and revenues. The presence of double-sided opportunistic behavior has been theoretically modelled in the context of contractual relationships that are similar to brand licensing. (Bhattacharyyya and Lafontaine, 1995) demonstrate that linear payments can be optimal in share contracts such as franchising and sharecropping. Choi (2001) looks at technological licensing where revenues are optimally shared via a per-unit payment (rather than an ad-valorem fee as in (Bhattacharyyya and Lafontaine, 1995)). In both cases, theoretical predictions are in line with observed practice among firms. Contrarily to such share contracts, brand licensing differs under two dimensions: first, the brand owner/principal has two streams of revenues—the original product and the extension product; second, there are mutual spillover effects on both streams from both firms. The optimal contract between the licensor and the licensee, therefore, takes into account the misalignment of incentives between partners in the agency relationship to shape the optimal royalty rate. It is worth noting that, differently from the standard double-sided moral hazard framework (Bhattacharyyya and Lafontaine, 1995), the licensee’s opportunistic behavior does not only damage the revenues generated by the licensed product, but all the revenues generated by the brand itself, and therefore it has a negative spillover effect on the licensor’s brand value (i.e., brand dilution). In our modified set up, we analyze the optimal licensing contract. We contrast brand licensing with in-house production, where the brand owner must sustain specific costs to gain the know-how and the technology to produce the extension product, while keeping control over the brand.

The second factor is represented by the level of fit between the brand and the extension product, conceptualized with how close the markets of the parent brand in its original application (i.e., the core product) and of the extension product are. The idea of fit in the marketing literature in fact refers to the degree of proximity or similarity between the two—parent brand and extension—as perceived by consumers. Fit has a double relevance: it is the major driver of brand extension success (Völckner and Sattler, 2006) since consumers would transfer brand perceptions from one product to another basing on
the perceived fit between the parent brand and the extension product (Aaker and Keller (1990), Park et al. (1991), Broniarczyk and Alba (1994)). Fit has also a weight in the feedback effect of brand extensions on the parent brand. Brand extensions in fact can produce reciprocal effects that can enhance or diminish the equity of the parent brand (Keller and Sood (2003), Swaminathan et al. (2001), Balachander and Ghose (2003)). In particular, such reciprocal spillover effects, when they are positive, can both strengthen the parent brand and influence sales of established products. Similarly, the main risk associated to a brand extension’s negative evaluation when a brand extension fails does not attain to the possible failure on the market of the new (extension) product, rather on the potential damage to the parent brand’s established products and, especially, to the dilution of the brand equity. In particular, unsuccessful brand extensions can damage the parent brand when there is a high degree of fit involved. Consumers’ confidence in the parent brand is more likely to be weakened with close extensions that represent an area in which the company is supposed to have considerable expertise, given the high degree of congruence with the parent brand (Keller and Sood (2003); Ahluwalia and Gürhan-Canli (2000); Czellar (2003)). Therefore, the fit in our model affects both the choice of entry in the new market in-house versus via licensing and the risk of brand dilution.

We find that, under double-sided moral hazard, an optimal licensing agreement exists, where the licensor proposes a royalty rate and a fixed fee to the licensee, who accepts the offer. The optimal rate is increasing in the fit: as the core and the extension product markets get closer, the licensor asks for a greater payment in order to compensate for the risks of brand dilution. Our results suggest that the royalty rate has a further role besides the ones of creating an incentive structure and extracting (a part of) the licensee’s profit that are usually acknowledged by the literature. In fact, the royalty rate acts as a contractual tool to mitigate the negative spillover from the licensee’s activity on the value of the parent brand. Moreover, we show that the optimal royalty rate increases with the value that can be extracted in the extension product market. In sum, higher royalty rates must be observed for closer markets because in such situations the effects for brand dilution are larger. When analyzing the choice of a brand owner in terms of business model to pursue to extend the parent brand, brand licensing can emerge as an equilibrium business strategy under a range of the relevant parameters. Not surprisingly, the lower the brand owner’s cost efficiency, the more inclined she is to license the extension product; on the other hand, the higher the fit, the less likely the brand owner is willing to pursue brand extension via licensing.
2.3 The model

A brand owner wants to extend its brand in order to leverage on the equity associated to the brand name to launch a new product. The choice is between extending through in-house production or via brand licensing. The latter involves contracting with a third-party firm, which becomes a licensee (and the brand owner becomes a licensor; in the model, the two terms will be used interchangeably). We assume that the extension product market leads to a monopoly, as we do not introduce any form of competition at this stage. This implies that the brand owner can only rely on a single licensee and that if the product has not been licensed, the brand owner itself is the sole producer.

The brand generates revenues through the parent brand and the extension product. From the brand owner’s point of view, the former can be considered his primary market, while the latter a secondary market. The revenues coming from the parent brand market entirely accrue to the brand owner.\(^2\) Under in-house production, revenues from the extension product are fully appropriated by the brand owner; under licensing, revenues are split between the two firms under a contractual arrangement. In terms of notation, the parent brand is denoted by \(b\), and the extension product by \(\ell\) (whether it is produced internally or licensed). Then, let \(e_b\) and \(e_\ell\) be the effort levels provided in the respective markets. The effort is demand-enhancing but costly and is non-contractible. More specifically, \(e_b\) can be interpreted as the effort the brand owner exerts in order to maintain brand relevance, which affects both the revenues coming from the parent brand and those coming from the extension product. \(e_\ell\), on the other hand, is the effort provided to specifically augment the demand of the extension product; this variable also affects how the parent brand is perceived, and might create brand dilution; we call this effect spillover/reciprocal effect. Figure 2.1 shows the relationship between brand owner and licensee in terms of efforts. We are agnostic about the nature of \(e_\ell\): it can be seen as the effort to improve the quality of the extension product, to determine its positioning in the market or to select the retail distribution channel which better fits the brand.

\(^2\)Without loss of generality, we assume that the parent brand is represented by the core product, and therefore parent brand revenues are those coming from the core product market.
The main trade-off between the two business models involves the cost of realizing the extension product. Under in-house development, the brand owner can perfectly monitor each production phase (and therefore it can exert the efficient level of effort) but it needs to sustain higher costs since the market is unproven and far, to a varying degree, with respect to the market of the core product (i.e., parent brand); hence, when producing the extension product internally, the brand owner is not as efficient as in the core product market. This cost is avoided under brand licensing as the brand owner selects an experienced licensee partner; nevertheless, a licensing contract does not imply that the interests of the two firms are fully aligned and, under imperfect monitoring, this may create a moral hazard problem. We consider the possibility of the brand owner engaging in opportunistic behavior as well, not supporting appropriately the licensee, who risks its investment. This creates a damage to the licensee as the extension product will be less valuable to consumers, and the brand owner can still offset this devaluation by means of higher royalties. In sum, in-house development entails a higher costs in augmenting the demand of the extension product, while brand licensing brings about reciprocal effects which depend on the consumers’ perceived fit between the parent brand and the extension product markets. The closer the markets, the larger the spillover effect on the licensor’s brand value when the licensee behaves opportunistically. Here, the core product and the extension product are independent hence the reciprocal effect follows from the fact that they both fall under the same brand, hence consumers can transfer perceptions across products. The fit is not related, thus, to differentiation between products, but simply to how close the two product categories are seen by consumers.
2.3.1 Timing of the contracting game

We assume that the brand owner has full bargaining power in designing the contract. This is in line with observed contracts, as the firm owns and controls the intellectual property. Under brand licensing, the timing of the game is as follows:

1. the brand owner makes a take-it-or-leave-it contractual offer to the licensee. The licensee accepts or rejects the offer.
2. The brand owner and the licensee set effort levels, \(e_b \) and \(e_\ell \) respectively.
3. The licensee decides how much to produce in the extension product market.
4. Demand and revenues are realized.

Note that under brand licensing, the brand owner is a licensor. Under in-house development, no third party is involved, and therefore every decision is taken by the brand owner:

1. the brand owner decides how much effort to exert, \(e_b \) and \(e_\ell \).
2. The brand owner decides how much to produce in the extension product market.
3. Demand and revenues are realized.

In both cases, we look at Subgame Perfect Nash Equilibria in terms of quantities and effort levels. Finally, the brand owner selects the business model leading to the highest profits. The choice will depend on the perceived fit between the parent brand and the extension product markets, and on parameters representing the brand owner’s efficiency under in-house development.

2.3.2 Brand licensing

We model the demand of the extension product as \(P(q; \theta) \), where \(q \) is the quantity, and \(\theta \) is a parameter such that \(\frac{\partial P}{\partial \theta} > 0 \). It can be interpreted as the consumers’ maximum willingness to pay; we normalize the impact of \(\theta \) on the willingness to pay, such that \(\frac{\partial P}{\partial \theta} = 1 \), which implies that the demand function is linear in this parameter; we will call \(\theta \) the consumers’ valuation of the extension product. Effort can be exerted in order to increase \(\theta \): \(\theta \equiv \theta(e_b, e_\ell) \), where \(\frac{\partial \theta}{\partial e_b}, \frac{\partial \theta}{\partial e_\ell} > 0 \); the demand externality is, therefore, always positive. Furthermore, \(\frac{\partial^2 \theta}{\partial e_b \partial e_\ell}, \frac{\partial^2 \theta}{\partial e_\ell \partial e_b} \) are interpreted as cross-partial effect of firms’ efforts on

\footnote{We will assume that the contract is a two-part tariff with a fixed fee able to extract all licensee’s rents, \(F \), and a royalty per-unit fee, \(s \). This contract is optimal.}
each others’ returns in the extension product market. For example, when $\frac{\partial^2 \theta}{\partial e_b \partial e_b} < 0$, there is a conflict between the two firms because as the brand owner puts more effort to maintain the parent brand, the licensee sees diminishing marginal returns in his market.

During the third stage, the licensee chooses q as $q(\theta) = \arg\max_q \pi(q; \theta) = P(q; \theta)q - cq$, where c is, without loss of generality, normalized to zero. Then, we define $\pi(\theta) \equiv \pi(q(\theta); \theta)$ as equilibrium profits in the extension product market before any effort is exerted by either parties.

We assume the parent brand generates revenues equal to $R(e_b, e_l; \alpha)$. In this market, we do not explicitly model a quantity/price choice by the firm, and we consider revenues as a black box affected by the effort choices. We assume that $\frac{\partial R}{\partial e_b} > 0$. At this stage, we do not make any assumption on how the licensee’s effort affects the parent brand revenues. Brand dilution may occur when the reciprocal effect is negative, i.e., $\frac{\partial R}{\partial e_l} < 0$; or when the effect is positive but smaller than the corresponding effect under in-house production.

A third element of $R(\cdot)$ is α: a parameter representing the perceived consumers’ distance between the core and the extension products. The smaller α, the closer the extension product is to the core product. We assume that, ceteris paribus, a smaller distance implies higher brand dilution. A main difference with respect to in-house production is in how e_l and α affect $R(\cdot)$. This will be developed in the related Section.

Effort is costly: let $c(e_i), i = b, l$ be the convex cost function firms face. Finally, we assume that both firms are risk-neutral, which does not pose any threat to our analysis, as described by Bhattacharyya and Lafontaine (1995) in the context of franchising contracts.

Complete contract

If effort levels are verifiable, then the brand owner can optimally implement a contract with a positive fixed fee and a transfer price equal to zero. The former is set such that the licensee’s participation constraint binds and is left with the outside option, normalized to zero. The transfer price takes the shape of a per-unit royalty, and acts as a marginal cost for the licensee. Let s be the royalty rate; then, the licensee extracts $\theta - s$, rather than θ, from consumers in the extension product market. When effort levels are contractible, the optimal royalty rate is equal to zero, as any other level would dissipate rents and not allow to reach optimal profits. This is similar to an integrated vertical firm which sets a wholesale price equal to the marginal cost in order to avoid the double marginalization problem. The complete contract specifies the effort levels, and the brand owner is able to reach the highest attainable profits. The brand
owner’s problem is:

$$\{e_b^{FB}, e_\ell^{FB}\} = \arg\max_{e_b, e_\ell} \Pi(e_b, e_\ell) = R(e_b, e_\ell; \alpha) + \pi(\theta(e_b, e_\ell)) - c(e_b) - c(e_\ell)$$

The first-order conditions are:

$$\frac{\partial R}{\partial e_b} + \pi' \frac{\partial \theta}{\partial e_b} - \frac{dc}{de_b} = 0$$

$$\frac{\partial R}{\partial e_\ell} + \pi' \frac{\partial \theta}{\partial e_\ell} - \frac{dc}{de_\ell} = 0$$

where $\pi' = \frac{d\pi}{d\theta}$. The first-order conditions can be reduced to:

$$\pi' = \frac{dc}{de_b} - \frac{\partial R}{\partial e_b} - \frac{\partial R}{\partial e_\ell} \frac{dc}{de_\ell}$$

At this point, we assume that firms do not have any budget constraint. The fact that, in reality, brand licensing contracts are mainly signed with positive royalty rates is a strong signal that, indeed, effort levels are not contractible and therefore brand owners need to incentivize licensees.

Optimal contract under non-verifiable effort

When the two firms cannot observe the two effort levels, and therefore the brand owner cannot enforce a specific level of the licensee’s effort, e_b^{FB} and e_ℓ^{FB} cannot be implemented. The contract implemented under incomplete information is composed by a royalty per-unit fee, s, and a fixed fee, F. This two-part tariff is standard in licensing contracts, as shown by Raugust (2012). Also, it has been shown that it is an optimal contractual form in models with double-sided moral hazard (e.g., Choi (2001), from which this model imports the main structure). Brand owner’s profits are:

$$\Pi_B(e_b, e_\ell) = R(e_b, e_\ell; \alpha) + sq(\theta(e_b, e_\ell) - s) - c(e_b) - F$$

As under complete information, the brand owner reaps two streams of revenues; nonetheless, while he is able to fully appropriate revenues coming from the parent brand, $R(e_b, e_\ell; \alpha)$, he needs to share revenues with the licensee in the extension product market. The brand owner receives s for each unit sold of this
product: \(sq(\theta(e_b, e_\ell) - s) \). The licensee’s profits are:

\[
\Pi_L(e_b, e_\ell) = \pi(\theta(e_b, e_\ell) - s) - c(e_\ell) - F
\]

The licensee operates in the extension product market and gets revenues from the direct sale of such product.

The choice of effort by the licensee affect brand owner’s profits in two ways: directly, in terms of shared revenues in the extension product market; and indirectly, through the reciprocal effect on the parent brand. The incentive compatibility constraints requires that both the brand owner and the licensee exert effort following:

\[
e_b(s) = \arg \max_{e_b} \Pi_B(e_b, e_\ell) = R(e_b, e_\ell; \alpha) + sq(\theta(e_b, e_\ell) - s) - c(e_b) + F
\]

and:

\[
e_\ell(s) = \arg \max_{e_\ell} \Pi_L(e_b, e_\ell) = \pi(\theta(e_b, e_\ell) - s) - c(e_\ell) - F
\]

First-order conditions are, respectively:

\[
\frac{\partial R}{\partial e_b} + sq' \frac{\partial \theta}{\partial e_b} - \frac{dc}{de_b} = 0
\] (2.3)

and:

\[
\pi' \frac{\partial \theta}{\partial e_\ell} - \frac{dc}{de_\ell} = 0
\] (2.4)

From (2.3): \(sq' \frac{\partial \theta}{\partial e_b} = \frac{dc}{de_b} - \frac{\partial R}{\partial e_b} \), while from Equation (2.4): \(\pi' \frac{\partial \theta}{\partial e_\ell} = \frac{dc}{de_\ell} \). Both firms set effort level to the point where marginal revenues are equal to marginal costs; brand owner’s marginal revenues are from both the parent brand and the licensed product.

We are now in a position to describe the effect of the royalty rate on the effort levels exerted by firms. Let \(e'_b \equiv \frac{dc}{de_b} \) and \(e'_\ell \equiv \frac{dc}{de_\ell} \). Then:

Proposition 4. \(e'_b \) is positive as long as:

\[
\frac{\partial^2 \Pi_B}{\partial e_b \partial e_\ell} = \frac{\partial^2 R}{\partial e_b \partial e_\ell} + sq' \frac{\partial^2 \theta}{\partial e_b \partial e_\ell} < -\frac{\partial \theta}{\partial e_b} \cdot \frac{\partial^2 \Pi_L}{\partial e_\ell^2}
\] (2.5)

\(q(\theta(e_b, e_\ell) - s) \) is the equilibrium quantity after the licensee has maximized his profits in the extension product market, and before the effort choice. The optimal quantity level is a function of \(\theta \), from which the licensee deducts the royalty rate.
while e'_b is negative as long as:

$$
\frac{\partial^2 \Pi_L}{\partial e'_l \partial e_b} = q' \frac{\partial \theta}{\partial e'_l} \frac{\partial \theta}{\partial e_b} + q \frac{\partial^2 \theta}{\partial e'_l \partial e_b} < -\frac{\partial \theta}{\partial e_b} \cdot \frac{\partial^2 \Pi_B}{\partial e'_l \partial e_b}
$$

(2.6)

Proof. Equations 2.5 and 2.6 are found by totally differentiating the first-order conditions. For more details, see the Appendix.

The cross-partial effect of the effort choice on firms’ profits drives the results in Proposition 4. The right-hand side of both conditions is always positive, meaning that $\frac{\partial^2 \Pi_B}{\partial e'_l \partial e_b}$ and $\frac{\partial^2 \Pi_L}{\partial e'_l \partial e_b}$ must be small enough such that $e'_b > 0$ and $e'_l < 0$. In fact, Proposition 4 is always true when both cross-partial effects are negative or equal to zero. For example, when $\frac{\partial^2 \Pi_B}{\partial e'_l \partial e_b} \leq 0$, an increase in the licensee’s effort decreases the marginal returns the brand owner would get by investing more effort to promote the parent brand. In this situation, the brand owner finds optimal to increase its level of effort when the royalty rate gets higher, in order to counterbalance this effect. More specifically, this occurs when $s q' \frac{\partial^2 \theta}{\partial e'_l \partial e_b} \leq -\frac{\partial^2 R}{\partial e'_l \partial e_b}$; if cross-partial returns in the extension product market are positive (i.e., $\frac{\partial^2 \theta}{\partial e'_l \partial e_b} > 0$), then cross-partial returns from the parent brand must be negative, that is, $\frac{\partial^2 R}{\partial e'_l \partial e_b} < 0$. Therefore, $e'_b > 0$ occurs when the damages created by the licensee in the primary market are greater than the benefit created in the secondary market. Similarly, on the licensee’s side, when $\frac{\partial^2 \Pi_B}{\partial e'_l \partial e_b} \leq 0$, it is always true that $e'_l < 0$. This always occurs when $\frac{\partial^2 \theta}{\partial e'_l \partial e_b} \leq 0$ because $q' \frac{\partial \theta}{\partial e'_l} \frac{\partial \theta}{\partial e_b}$ and q are positive. Hence, under decreasing cross-partial returns in the secondary market, the licensee finds optimal to decrease its effort when s increases. Of course, the two cases depicted above are not the only ones, as Equations 2.5 and 2.6 simply requires the left-hand sides to be smaller than the terms on the right-hand side, and not necessarily negative or equal to zero.

Though at first sight complex, these conditions have an interpretation. Equation (2.5) ((2.6), respectively) simply states that $e'_b > 0 (e'_l < 0)$ when the cross-partial effect of $e'_l (e'_b)$ on $\Pi_B (\Pi_L)$ is smaller than the second partial derivative of $\Pi_L (\Pi_B)$ filtered by the term $\frac{\partial \theta}{\partial e'_l} / \frac{\partial ^2 \theta}{\partial e'_l \partial e_b}$ (\frac{\partial \theta}{\partial e_b} / \frac{\partial ^2 \theta}{\partial e'_l \partial e_b})$. This term can be interpreted as a margin ratio, i.e., the weight of the marginal contribution of the brand owner’s (licensee’s) effort on the valuation of the extension product with respect to the licensee’s (brand owner’s) own marginal contribution. Then, by analyzing, for example, Equation 2.5, it turns out that, all things equal, as $\frac{\partial \theta}{\partial e_b}$ increases (and therefore the marginal ratio gets larger), the condition is more likely to be satisfied, i.e., $e'_b > 0$ becomes more likely. This effect is straightforward as no other term in the condition depends on $\frac{\partial \theta}{\partial e_b}$. This means that as the brand owner’s marginal contribution to the extension product becomes more relevant, he finds more incentives to increase the effort level with the royalty rate.
Equation 2.6, instead, is a bit more complex as the term \(\frac{\partial \theta}{\partial e_b} \) is present on both sides. The equation can be rewritten as:

\[
q' \left(\frac{\partial \theta}{\partial e_b} \right)^2 + q \frac{\partial^2 \theta}{\partial e_e \partial e_b} \frac{\partial \theta}{\partial e_b} < \frac{\partial \theta}{\partial e_e} \cdot \frac{\partial^2 \Pi_B}{\partial e_b^2}.
\]

As \(\frac{\partial \theta}{\partial e_b} \) increases, the condition becomes less likely to be satisfied when \(\frac{\partial^2 \theta}{\partial e_e \partial e_b} > 0 \), because the left-hand side becomes unambiguously larger. Surprisingly, when the brand owner’s contribution to the extension product gets larger, and the two effort levels are complementary in its consumers’ valuation, the licensee has more incentive to increase its effort level when the royalty rate increases.

Under the special case where \(\frac{\partial \theta}{\partial e_b} = \frac{\partial \theta}{\partial e_e} \), and therefore the two firms’ marginal contribution to the extension product valuation are identical, the two conditions can be reduced as follows:

\[
\frac{\partial^2 \Pi_B}{\partial e_b \partial e_e} < -\frac{\partial^2 \Pi_L}{\partial e_e^2} \\
\frac{\partial^2 \Pi_L}{\partial e_e \partial e_b} < -\frac{\partial^2 \Pi_B}{\partial e_b^2}
\]

Then, \(e'_b > 0 (e'_e < 0, \text{ respectively}) \) when licensee’s (brand owner’s) own-partial returns are larger than cross-partial returns on the brand owner’s (licensee’s) profit function.

In the case where \(\frac{\partial^2 \theta}{\partial e_e \partial e_b} = \frac{\partial^2 \theta}{\partial e_e \partial e_b} = 0 \), that is, the extension product valuation is linear in efforts (i.e., the two effort levels are independent), the brand owner’s cross-partial effect boils down to \(\frac{\partial^2 \Pi_B}{\partial e_b \partial e_e} = \frac{\partial^2 R}{\partial e_b \partial e_e} \).

Hence, Equation 2.5 is always satisfied when the two effort levels are negatively related, or independent, in the primary market. When the licensee damages the revenues from the parent brand, the brand owner has the incentive to increase the effort level following an increase in the royalty rate.

Prior to effort choice, the brand owner offers a contract to the licensee in the form of two-part tariff consisting in a royalty rate and a fixed fee. The latter is set such that the participation constraint is binding and therefore extracts all surplus from the licensee, who is then indifferent between accepting the contract or getting the outside option (normalized to zero). Then, the brand owner chooses the optimal royalty rate as:

\[
s^* = \arg \max_s \; \Pi_B(s) = R(e_b(s), e_e(s); \alpha) + sq(\theta(e_b(s), e_e(s) - s) - c(e_b(s))) + F(s)
\]
where \(F(s) = \pi(\theta(e_b(s), e_l(s) - s) - c(e_l(s))). \) The first-order condition is:

\[
\frac{\partial R}{\partial e_b} e_b' + \frac{\partial R}{\partial e_l} e_l' + q + sq' \left[\frac{\partial \theta}{\partial e_b} + \frac{\partial \theta}{\partial e_l} e_l' - 1 \right] + \pi' \left[\frac{\partial \theta}{\partial e_b} + \frac{\partial \theta}{\partial e_l} e_l' - 1 \right] - \frac{dc}{de_b} - \frac{dc}{de_l} = 0 \tag{2.7}
\]

Exploiting Equations (2.3) and 2.4, and the Envelope theorem such that \(\pi' = q \), we can rewrite Equation 2.7 as:\(^5\)

\[
\frac{\partial R}{\partial e_l} e_l' + sq' \frac{\partial \theta}{\partial e_b} e_b' + q \frac{\partial \theta}{\partial e_b} e_b' - sq' = 0 \tag{2.8}
\]

The choice of the optimal royalty rate \(s^* \) depends on the reciprocal effect on the parent brand (first term); on the incentives to both the brand owner and the licensee to exert effort (second and third terms); and on the negative effect on the quantity in the extension product market, because a larger royalty rate decreases the mark-up firms can extract in the extension product market (i.e. \(\theta - s \)), and consequently the optimal quantity. Following Choi (2001), Equation 2.8 can be rewritten as:

\[
s^* = \frac{\frac{\partial R}{\partial e_l} e_l' + q \frac{\partial \theta}{\partial e_b} e_b'}{q' \left[1 - \frac{\partial \theta}{\partial e_l} e_l' \right]} \tag{2.9}
\]

The optimal royalty rate needs not to be positive. The brand owner may both extract surplus from the licensee or subsidize it. The choice will depend on how the effort levels react to \(s \), and the impact of firm’s effort on each other’s relevant market. Let \(e_b' < 0 \); then, the denominator in Equation 2.9 is always positive (as we assumed that \(\frac{\partial \theta}{\partial e_l} > 0 \)). The sign of \(s^* \) is determined by the sign of the numerator; \(s^* > 0 \) if and only if:

\[
q \frac{\partial \theta}{\partial e_b} e_b' > -\frac{\partial R}{\partial e_l} e_l'.
\]

Proposition 5. When setting the optimal royalty rate, the brand owner must consider its effect on both parent brand revenues (via the licensee’s effort) and extension product revenues (via his effort). When \(e_b' > 0 \) and \(e_b' < 0 \), the optimal royalty rate is positive as long as marginal revenues from the action of the brand owner in the extension product market offsets marginal revenues or damages coming from the reciprocal effect. When \(e_b' < 0 \) and \(e_b' < 0 \), instead, a positive royalty rate is optimal only if the mitigation of the negative reciprocal effect (through higher royalties) is large enough to counterbalance the decrease in revenues in the extension product market.

Previously, we assumed that \(\frac{\partial \theta}{\partial e_b} > 0 \): firms’ effort always enhance the extension product valuation.

\(^5\)Remember that \(\frac{\partial R}{\partial e_b} = 1. \)
Henceforth, when \(e_b' > 0\), the optimal royalty rate is positive when its marginal revenues from the extension product are greater than marginal revenues/losses coming from the parent brand and due to the licensee’s activity. Indeed, \(\frac{\partial R}{\partial e}\ell e' \ell < 0\) when \(\frac{\partial R}{\partial e}\ell > 0\): if the licensee reacts negatively to an increase in \(s\), but its effort enhance parent brand revenues, then the brand owner suffers a damage for each increase in the royalty rate. On the contrary, when \(\frac{\partial R}{\partial e}\ell < 0\), then increasing the royalty rate has a positive effect on brand owner’s profits through discouraging the licensee to exert effort and mitigating the negative reciprocal effect.

When, instead, \(e_b' < 0\), then \(q \frac{\partial \theta}{\partial e_b} e_b'\) is always negative, and a positive royalty rate occurs if and only if \(\frac{\partial R}{\partial e}\ell < 0\) such that \(\frac{\partial R}{\partial e}\ell e' \ell > 0\). In this situation, the brand owner must strike a balance between the negative effect of increasing \(s\) on the extension product market (via his effort) and the positive effect of the same action on parent brand revenues (higher royalty income implies lower effort by the licensee and therefore mitigates the negative reciprocal effect).

Optimal contract under single-sided moral hazard

When moral hazard is one-sided, i.e., only the licensee has to exert unobservable effort to increase the attractiveness of the extension product (with spillovers on the parent brand), Equation 2.9 reduces to:

\[
s^* = \frac{\frac{\partial R}{\partial e}\ell e' \ell}{q'[1 - \frac{\partial \theta}{\partial e_b} e_b']}
\]

hence \(s^* > 0\) if and only if the numerator is positive; that is, when \(R(\cdot)\) is decreasing in \(e\ell\) and \(e'_\ell < 0\). When the effort level itself is negatively related with parent brand revenues (or the revenue function is concave), then the only way for the brand owner to mitigate this spillover effect is to ask for a positive royalty rate.

Proposition 6. Under one-sided moral hazard and spillover effects on the brand owner’s external revenues, there exists a positive optimal royalty rate even when firms are risk-neutral.

This shows that when another stream of revenues is present and is fully appropriated by the brand owner, there is still room for an optimal positive royalty rate.

\(\text{This is the case where } \frac{\partial R}{\partial e}\theta = \frac{\partial \theta}{\partial e}\theta = 0.\)
2.3.3 In-house production

If brand extension is internalized by the brand owner, the firm chooses e_ℓ as well. This means that on the one hand the brand owner can avoid brand dilution: the firm is able to have full control on the creation of the extension product. On the other hand, though, it is not as efficient in doing so as an experienced company would be. The brand owner can lack the know-how necessary to produce a high-quality product, or simply is not able to make the product attractive. Here, brand owner’s profit function is:

$$\Pi_I(e_b,e_\ell) = R_I(e_b,e_\ell) + \pi(\theta_I(e_b,e_\ell)) - c(e_b) - c(e_\ell) - \eta$$

There are three differences in brand owner’s profit function with respect to brand licensing. The former concerns $R_I(\cdot)$, parent brand revenues; under in-house production, we assume brand dilution is not present and the function does not depend on α. More specifically, $R_I(\cdot) \equiv R(\cdot; \alpha = 0) > 0$.

The second difference concerns the marginal effort of e_ℓ; we assume that $\frac{\partial \theta}{\partial e_\ell} > \frac{\partial \theta}{\partial e_b}$. This signals the inability of the brand owner in being as efficient as the licensee when providing effort to enhance the valuation of the extension product. In fact, we might accomodate the presence of a fixed entry cost that the brand owner must sustain when producing the extension product. Finally, we assume the presence of a positive fixed cost, $\eta > 0$.

The brand owner’s problem is:

$$\{e_I^b, e_I^\ell\} = \arg \max_{e_b,e_\ell} \Pi_I(e_b,e_\ell) = R_I(e_b,e_\ell) + \pi(\theta_I(e_b,e_\ell)) - c(e_b) - c(e_\ell) - \eta$$

First-order conditions are:

$$\frac{\partial R_I}{\partial e_b} + \pi' \frac{\partial \theta_I}{\partial e_b} - \frac{dc}{dc} = 0$$

$$\frac{\partial R_I}{\partial e_\ell} + \pi' \frac{\partial \theta_I}{\partial e_\ell} - \frac{dc}{dc} = 0$$

which can be reduced to:

$$\pi' = \frac{\frac{dc}{dc}}{\frac{\partial R_I}{\partial e_b}} = \frac{\frac{dc}{dc}}{\frac{\partial R_I}{\partial e_\ell}}$$

This analysis mirrors the case of complete information in Subsection 2.3.2: both effort levels are chosen by the brand owner. The difference is in both $R(\cdot)$ and $\theta(\cdot)$, so the two situations are not directly comparable. It might be that brand owner’s equilibrium profits are higher under complete information.
because internal cost to extend the brand are too large, or the opposite case might be true because brand dilution is too severe.

2.4 Discussion

In order to investigate these results further, and finally understand under which conditions the brand owner is relying on brand licensing, we consider an analytical example.

First, we lay the fundations of the revenues generated by the parent brand. When the brand owner internalizes the process of producing an extension product, it is able to perfectly monitor and control each phase and therefore the spillover effects on the parent brand are positive and can be fully appropriated:

$$R_I(e_b, e_\ell) = \theta_b e_b + \tilde{\theta}_\ell e_\ell.$$

θ_b ($\tilde{\theta}_\ell$) is the marginal contribution of the brand owner’s effort exerted in the core (extension) market on parent brand revenues. As both parameters are positive, effort levels increase revenues extracted by the brand itself. If, instead, the brand owner decides to license the extension product, he will find more difficult to control the production process. There might be the possibility of either brand dilution or brand enhancement; both effects are conditional on the distance between the core and the extension products. We model this by considering the following functional form:

$$R(e_b, e_\ell; \alpha) = \theta_b e_b + \gamma \frac{\theta_\ell}{1 + \alpha} e_\ell.$$

First, we assume that $\theta_b > \theta_\ell > \tilde{\theta}_\ell > 0$. The value of the core product is strictly greater than the value of the extension product; both are greater than what the brand owner can achieve when producing in-house. Moreover, without loss of generality, we normalize $\theta_b = 1$ such that $1 > \theta_\ell > \tilde{\theta}_\ell > 0$.

Further, the licensee’s effort is filtered by the function $\frac{\gamma}{1 + \alpha}$, which contains two relevant parameters. $\gamma \in [-1, 1]$ represents the magnitude and the direction of the spillover effect. When $\gamma < 0$ ($\gamma > 0$) there is brand dilution (brand enhancement), because $\frac{\partial R}{\partial e_\ell} < 0$ ($\frac{\partial R}{\partial e_\ell} > 0$). As mentioned in the previous Section, $\alpha > 0$ represents the distance between the core and the extension/licensed products. The larger α, the more distant the two products are. The spillover effect is less severe as $\alpha \to \infty$, which indicates distant markets in terms of consumer perception. For example, under full brand dilution (e.g., $\gamma = -1$), a smaller α implies a greater cost on the brand owner for the same level the licensee’s effort. This function is able
to incorporate the effect of the fit (here, as *inverse* fit, or distance), as previously discussed, within the spillover/reciprocal effect.

We further assume that the inverse demand function of the extension product is linear and given by $P(q; \theta) = \theta - q$, where $\theta \equiv \theta(e_b, e_\ell) = e_b + \theta_\ell e_\ell$ (with $\theta_\ell = \tilde{\theta}_\ell$ under in-house production); effort levels act as demand-enhancing variables and represent the intercept of the demand.

2.4.1 Brand licensing

Under brand licensing, the brand owner opts for a royalty per-unit rate, s; hence, equilibrium quantity and profits chosen by the licensee are:

$$q(\theta(e_b, e_\ell) - s) = \frac{1}{2}(\theta(e_b, e_\ell) - s) = \frac{1}{2}(e_b + \theta_\ell e_\ell - s)$$

$$\pi(\theta(e_b, e_\ell) - s) = \frac{1}{4}(\theta(e_b, e_\ell) - s)^2 = \frac{1}{4}(e_b + \theta_\ell e_\ell - s)^2$$

The fee s increases the marginal cost sustained by the licensee when producing the extension product (here normalized to zero).

Choosing the effort level is costly, and we assume that $c(e_i) = \frac{e_i^2}{2}$, $i = b, \ell$ (the quadratic form allows profit functions to be well-behaved). The brand owner and the licensee’s choice of effort levels follows, respectively:

$$e_b(s) = \arg\max_{e_b} \Pi_B(e_b, e_\ell) = R(e_b, e_\ell; \alpha) + sq(\theta(e_b, e_\ell) - s) - c(e_b) + F$$

$$e_b = e_b + \gamma \frac{\theta_\ell}{1 + \alpha} e_\ell + s \frac{1}{2}(e_b + \theta_\ell e_\ell - s) - \frac{e_b^2}{2} + F$$

and:

$$e_\ell(s) = \arg\max_{e_\ell} \Pi_L(e_b, e_\ell) = \pi(\theta(e_b, e_\ell) - s) - c(e_\ell) - F$$

$$\pi = \frac{1}{4}(e_b + \theta_\ell e_\ell - s)^2 - \frac{e_\ell^2}{2} - F$$
By solving the two first-order conditions simultaneously:

\[e_b(s) = \frac{1}{2} (2 + s) \]
\[e_\ell(s) = \frac{((2 + s) - 2s)\theta}{2(2 - \theta^2)} \]

\(e_b' \) is always positive, while \(e_\ell' \) is always negative.\(^7\) In our analysis, \(\theta \) and \(R(\cdot) \) are modelled such that the two effort levels are independent. Therefore, Equation 2.5 in Proposition 4 is satisfied because the cross effect on brand owner’s profits is zero. Equation 2.6, instead, is satisfied as long as

\[\frac{\partial^2 \Pi_B}{\partial e_\ell \partial e_b} = q' \left(\frac{\partial \theta}{\partial e_b} \right)^2 < -\frac{\partial^2 \Pi_B}{\partial e_b^2}. \]

The brand owner has an incentive to increase effort with \(s \) because it leads to an increase in royalty profits. The licensee decreases the optimal effort with \(s \) when its marginal profits are damaged by the brand owner’s effort choice.

Anticipating the decision in the effort stage, the brand owner maximizes its profit function by considering parent brand revenues, the amount of royalties flowing from the licensee, and the remaining rents captured through the fixed fee, as shown in Equation 2.7.\(^8\) Then:

\[s^*(\alpha) = \frac{2(1 + \alpha - \gamma\theta^2_\ell)}{(1 + \alpha)(5 - \theta^2_\ell)} \]

When \(\gamma < 0 \) (brand dilution), the optimal fee is always positive. The brand owner tries to balance the damage created by the licensee by means of a positive marginal compensation. If, instead, \(\gamma > 0 \) (brand enhancement) a positive compensation is due if and only if the magnitude is low enough, i.e., \(\gamma < \frac{1+\alpha}{\theta^2_\ell} \).

Since we assumed \(\theta_\ell < 1 \) and \(\alpha > 0 \), the optimal fee is always positive also under brand enhancement. Nevertheless, under brand enhancement, \(s^*(\alpha) < 0 \) when \(\theta_\ell \) is large enough. This would be the case of a overly positive spillover effect on parent brand revenues, with the brand owner having an incentive to subsidized the licensee to exert more effort.

The most interesting result is the relationship between \(s^* \) and \(\alpha \):

\[s^{*'} = \frac{2\gamma\theta^2_\ell}{(1 + \alpha)^2(5 - \theta^2_\ell)}. \]

\(\alpha \) represents the distance between the core and the extension products in terms of consumers’ perception. Then \(s^{*'} > 0 \) (\(s^{*'} < 0 \)) always under brand enhancement (brand dilution). When the spillover effect is

\(^7\)More specifically, \(e_b = \frac{1}{2} \) and \(e_\ell' = -\frac{\theta}{2(2 - \theta^2_\ell)}. \)

\(^8\)\(\Pi_B(s) \) is concave in \(s \) as the second derivative is \(-\frac{1}{2} < 0\) therefore the function is well-behaved.
negative, the farther the markets, the lower the compensation to the licensee must be as the damage is lower.

Proposition 7. Under brand dilution, the optimal fee decreases with the perceived distance. Under brand enhancement, the optimal fee increases with the perceived distance.

Figure 2.2 shows the two cases for a specific value of \(\theta \) and the different behaviour of \(s^* \) with respect to \(\alpha \).

Figure 2.2: Brand owner’s optimal choice: colored area—brand licensing

(a) \(\theta = .9, \gamma = -0.5 \)
(b) \(\theta = .9, \gamma = 0.5 \)

Comparison with the complete contract

Optimal effort levels are found by plugging \(s^* \) into \(e_b(s) \) and \(e_l(s) \):

\[
e_b^* = \frac{6(1 + \alpha) - (1 + \alpha + \gamma) \theta_l^2}{(1 + \alpha) (5 - \theta_l^2)}
\]

\[
e_l^* = \frac{4(1 + \alpha) \theta_l + (-1 - \alpha + \gamma) \theta_l^3}{(1 + \alpha) (5 - \theta_l^2) (2 - \theta_l^2)}
\]

When effort levels are contractible, first-best levels are:

\[
e_b^{FB} = \frac{2(1 + \alpha) - (1 + \alpha - \gamma) \theta_l^2}{(1 + \alpha) (1 - \theta_l^2)}
\]

\[
e_l^{FB} = \frac{(1 + \alpha + \gamma) \theta_l}{(1 + \alpha) (1 - \theta_l^2)}
\]
Then, total effort exerted in both cases is:

\[
e^*_b + e^*_\ell = \frac{12(1 + \alpha) + 4(1 + \alpha)\theta_\ell - 2(4 + 4\alpha + \gamma)\theta_\ell^2 + (-1 - \alpha + \gamma)\theta_\ell^3 + (1 + \alpha + \gamma)\theta_\ell^4}{(1 + \alpha)(-5 + \theta_\ell^2)(-2 + \theta_\ell^2)}
\]

\[
e^*_{FB}\ b + e^*_{FB}\ \ell = \frac{-2 - 2\alpha + \theta_\ell + \alpha\theta_\ell - \gamma\theta_\ell}{(1 + \alpha)(-1 + \theta_\ell)}
\]

The difference between total effort exerted in the first-best and total effort exerted under imperfect information is always positive. Under complete information, effort levels are maximized.

2.4.2 In-house development

When the production of the extension product is internalized by the brand owner, the optimal level of efforts solves the following problem:

\[
\{e^I_b, e^I_\ell\} = \arg\max_{e_b, e_\ell} \Pi_I(e_b, e_\ell) = e_b + \tilde{\theta}_\ell e_\ell + \frac{1}{4}(e_b + \tilde{\theta}_\ell e_\ell)^2 - \frac{2}{2} - e^2_\ell - \eta
\]

The brand owner is not as efficient as the licensee in providing effort to enhance the demand of the extension product; the marginal benefit of effort is smaller with respect to what a more knowledgeable third party would induce; i.e., \(\tilde{\theta}_\ell < \theta_\ell\). Moreover, we introduce a fixed entry cost, signalling the difficulty of the brand owner to produce a good in an unproven, or far, market. Note that, here, the notion of distance is technological rather than based on consumers’ perception; hence, the core and the extension products can be seen as very close by consumers but their production might require completely different technologies and know-how; e.g., leather bags and sunglasses.

By solving the brand owner’s problem:

\[
e_{bd} = \frac{2}{1 - \tilde{\theta}_\ell^2}
\]

\[
e_{\ell\ell} = \frac{2\tilde{\theta}_\ell}{1 - \tilde{\theta}_\ell^2}
\]

Equilibrium profits are:

\[
\Pi^*_I = \frac{(1 + \eta)\tilde{\theta}_\ell^2 + 1 - \eta}{1 - \tilde{\theta}_\ell^2}
\]

(2.11)
Optimal choice of the business strategy

In the first stage, by correctly conjecturing equilibrium profits under brand licensing and in-house production, the brand owner decides which business model to adopt. The choice will primarily depend on the distance parameter, \(\alpha\) and on the magnitude/sign of the spillover effect. Formally, we say that the brand owner has a preference for brand licensing as long as:

\[
\Pi^*_B(\alpha, \gamma) \geq \Pi^*_I(\tilde{\theta}_\ell, \eta)
\]

where \(\Pi^*(\alpha, \gamma) \equiv \Pi(e_b(s^*(\alpha, \gamma)), e_I(s^*(\alpha, \gamma)), s^*(\alpha, \gamma))\) and \(\Pi^*_I \equiv \Pi_I(e_{bl}(\tilde{\theta}_b), e_{Il}(\tilde{\theta}_I), \eta)\). As the brand owner aims at maximizing profits flowing from the brand, it needs to strike a balance between diluting the brand by licensing the product, and encountering a disadvantage by internalizing production. As an analysis spanning all the parameter space is challenging, in order to deliver stark results in the following we will make the following assumptions.

Assumption 1.

(i) In case of brand dilution \(\gamma = -1\).

(ii) In case of brand enhancement \(\gamma = 1\)

(iii) \(\eta = 0\)

Assumptions (i) e (ii) amount to restricting the reciprocal effect to its maximum (positive or negative) value.\(^9\) Assumption (iii), instead, increases the profitability of the option of in-house development: this notwithstanding, the ensuing Proposition shows that brand licensing remains the optimal option in non-empty parameter constellation, entailing that this remains the case for positive \(\eta\).

Proposition 8. A positive value of distance between the core and extension markets \(\overline{\alpha}\) exist, such that

1. (Brand Dilution) when \(\gamma = -1\) the brand owner selects in-house development for all \(0 \leq \alpha \leq \overline{\alpha}\), and brand licensing for all \(\alpha > \overline{\alpha}\).

2. (Brand enhancement) when \(\gamma = 1\) the brand owner selects brand licensing for all \(0 \leq \alpha \leq \overline{\alpha}\), and in-house development for all \(\alpha > \overline{\alpha}\).

Proof. The proof consists in analyzing \(\Pi^*_B(\alpha, \gamma) - \Pi^*_I(\tilde{\theta}_\ell, \eta)\). See the Appendix. \(\Box\)

\(^9\)A numerical analysis confirms the intuition provided by these “extreme” cases in the intermediate range \(-1 < \gamma < 1\).
The threshold of \(\alpha \) as identified by Proposition 8 is:

\[
\alpha = (-4 + (6 + 4 \gamma) \theta^2 - (1 + \gamma) \theta^4 - 2 \eta (-1 + \tilde{\theta}^2) (10 - 7 \theta^2 + \theta^4) + \\
- \sqrt{2} \sqrt{-\gamma^2 (1 + \tilde{\theta}^2) (1 + \theta^2 + \eta (-1 + \tilde{\theta}^2)) \theta^4 (10 - 7 \theta^2 + \theta^4) + \\
+ \tilde{\theta}^2 (-36 + (22 - 4 \gamma) \theta^2 + (-3 + \gamma) \theta^4)) / (4 - 6 \theta^2 + \theta^4 + 2 \eta (-1 + \tilde{\theta}^2) (10 - 7 \theta^2 + \theta^4) + \\
+ \tilde{\theta}^2 (36 - 22 \theta^2 + 3 \theta^4))
\]

When there is brand dilution, the brand owner prefers to internalize production when the two products are close (low \(\alpha \)). When instead the two products get farther, then the reciprocal effect is small and the brand owner would like to contract a third-party licensee. The result is not surprising but confirms the notion that the brand owner should rely on a licensee when the products are far from consumers’ perception.

The choice of the brand owner depends on the parametric space. The analysis will consider the tuple \((\alpha, \gamma)\) for different combinations of the marginal effort parameters, i.e., \(\theta\) and \(\tilde{\theta}\), and the fixed cost, \(\eta\).

Figure 2.3: Brand owner’s optimal choice: colored area—brand licensing

(a) \(\theta = 0.9, \tilde{\theta} = 0.5, \eta = 0\)
(b) \(\theta = 0.9, \tilde{\theta} = 0.15, \eta = 0\)

Figure 2.3 illustrates the brand owner’s equilibrium arrangement in the \((\alpha, \gamma)\) space when \(\eta = 0\) and with a decreasing gap in the marginal efforts, \(\theta - \tilde{\theta}\). The colored area shows all values of \((\alpha, \gamma)\) where \(\Pi_B(\alpha, \gamma) \geq \Pi_I\), namely when it is optimal for the brand owner to license the extension product. As the gap between marginal efforts is tightening, the brand owner finds more attractive to internalize
production, even in circumstances where brand enhancement would occur \((\gamma > 0)\). When the gap is high, as in Figure 2.3a, keeping constant \(\gamma\), it is more likely for the brand owner to choose in-house development when \(\alpha\) is low, hence the two product are close with each other. When the gap is relatively low, as in as in Figure 2.3b, the choice of in-house is increasingly more likely the higher \(\alpha\), hence when the two products are far from each other.

Figure 2.4 illustrates the optimal choice when also \(\eta\) changes. As expected, the higher the fixed cost to entry in the extension product market, the more likely the brand owner avoid internalizing the production process, as can been seen by comparing Figures 2.3a and 2.4a, and Figures 2.3b and 2.4b.

Figure 2.4: Brand owner’s optimal choice: colored area—brand licensing

(a) \(\theta_l = .9, \tilde{\theta}_l = .05, \eta = 0.05\)

(b) \(\theta_l = .9, \tilde{\theta}_l = .15, \eta = 0.05\)

Proposition 9. Brand licensing is the preferred business strategy when acquiring resources and competences is too expensive, i.e., for increasing values of \(\eta\); and when the gap in marginal efforts increases. As the proximity between the core product and the extension product markets increases, the brand owner finds optimal to switch to in-house development, avoiding the risk of brand dilution.

2.5 Concluding remarks

In this paper we have delved into the mechanics and the determinants of the choice whether to extend a brand internally or through brand licensing. Brand extension is a viable strategy to capture value in new markets. However, internal development is often expensive, because it might require the adoption
and the development of specific resources and competences. Brand licensing, thus, is an alternative, and less costly, business model. Licensing does not come without risks, though. On the one hand, in the presence of reciprocal effects the licensee’s decision about the extension product affect, possibly negatively, the profitability of the parent brand. On the other hand, under moral hazard both the licensee and the licensor can act opportunistically, failing to maximize the surplus generated by their relationship. The combination of these features reduces the profitability of both the extension product and, indirectly, the parent brand. Indeed, as the literature assessed, the risk of a negative reciprocal effect stemming from the licensee’s opportunistic behavior to the evaluation of the parent brand is one of the factors that companies consider when deciding which business model to adopt.

Notwithstanding the acknowledged relevance of these features, the extant literature has not yet delivered an analysis that simultaneously encompasses them. Our paper delivers several results. A general conclusion of our model is that, under a set of reasonable assumptions, the royalty rate is positive (hence the licensee compensates the brand owner/licensor) as long as its negative effect on parent brand’s revenues (channeled through a lower licensee’s effort) is outweighed by the positive effect it has on royalty income. Furthermore, a positive royalty rate exists also in the special case where moral hazard is one-sided (only the licensee exerts effort). This result is justified by the presence of an external spillover effect which enters the brand owner profit function without affecting the licensee’s choice.

Considering a specific model where parent brand revenues are linear while extension product revenues are quadratic, we found that the optimal royalty rate is increasing in the distance between products when there are positive spillover effect, while it is decreasing when spillover effects are negative. This result is intuitive: when the licensee’s behavior damages the brand owner, the incentive to exert effort should increase as the fit is higher. Also, we were able to find an optimal level of the (inverse) fit below which the brand owner opts to internalize production of the extension product. When the perceived distance is too small, the brand owner prefers to avoid any risk associated with a licensing contract in terms of moral hazard.
Appendix

Proof of Proposition 4. The optimal effort levels solve the following problems:

\[e_b(s) = \argmax_{e_b} \Pi_B(e_b, e_\ell) = R(e_b, e_\ell; \alpha) + sq(\theta(e_b, e_\ell) - s) - c(e_b) + F \]

\[e_\ell(s) = \argmax_{e_\ell} \Pi_L(e_b, e_\ell) = \pi(\theta(e_b, e_\ell) - s) - c(e_\ell) - F \]

By total differentiating the first-order conditions, Equations 2.3 and 2.4, the following system of equations is obtained:

\[
\begin{bmatrix}
\frac{\partial^2 \Pi_B}{\partial e_b^2} & \frac{\partial^2 \Pi_L}{\partial e_\ell^2} \\
\frac{\partial^2 \Pi_B}{\partial e_\ell \partial e_b} & \frac{\partial^2 \Pi_L}{\partial e_b \partial e_\ell}
\end{bmatrix}
\begin{bmatrix}
de_{e_b} \\
de_{e_\ell}
\end{bmatrix}
= \begin{bmatrix}
\frac{\partial^2 \Pi_B}{\partial e_\ell \partial s} \\
\frac{\partial^2 \Pi_L}{\partial e_b \partial s}
\end{bmatrix}
\]

By solving this system:

\[
\frac{de_b}{ds} = -\frac{\frac{\partial^2 \Pi_B}{\partial e_b^2} \frac{\partial^2 \Pi_L}{\partial e_\ell^2} - \frac{\partial^2 \Pi_B}{\partial e_\ell \partial e_b} \frac{\partial^2 \Pi_L}{\partial e_b \partial e_\ell}}{\det A} \quad (12)
\]

\[
\frac{de_\ell}{ds} = -\frac{\frac{\partial^2 \Pi_B}{\partial e_b \partial e_\ell} \frac{\partial^2 \Pi_L}{\partial e_\ell \partial s} - \frac{\partial^2 \Pi_B}{\partial e_\ell \partial e_b} \frac{\partial^2 \Pi_L}{\partial e_b \partial s}}{\det A} \quad (13)
\]

The equilibrium condition requires that \(\det A > 0 \), hence the sign of both equations depends on the sign of the numerator. Therefore, Equation 12 is positive as long as:

\[
\frac{\partial^2 \Pi_B}{\partial e_b^2} \frac{\partial^2 \Pi_L}{\partial e_\ell^2} - \frac{\partial^2 \Pi_B}{\partial e_\ell \partial e_b} \frac{\partial^2 \Pi_L}{\partial e_b \partial e_\ell} < 0.
\]

Assuming that \(q'' = 0 \),\(^{10}\) and considering the profit functions as specified in Equations 2.1 and 2.2, this expression simplifies to:

\[
q' \frac{\partial \theta}{\partial e_b} \left[q' \left(\frac{\partial \theta}{\partial e_\ell} \right)^2 + q' \frac{\partial^2 \theta}{\partial e_\ell^2} \right] + q' \frac{\partial \theta}{\partial e_\ell} \left[\frac{\partial^2 R}{\partial e_b \partial e_\ell} + sq' \frac{\partial^2 \theta}{\partial e_b \partial e_\ell} \right] > 0 \quad \text{and} \quad q' \frac{\partial \theta}{\partial e_\ell} \left[\frac{\partial^2 \Pi_B}{\partial e_b \partial e_\ell} - \frac{\partial^2 \Pi_B}{\partial e_\ell \partial e_b} \right] < 0. \quad (14)
\]

The sign of Equation 14 depends on the last term, that is, on the marginal effect of the licensee’s effort on brand owner’s ability to increase his revenues via his level of effort. More specifically, Equation 14 is

\(^{10}\) We assume that the demand function of the extension product is linear in the consumers’ willingness to pay; e.g., \(q(\theta, P) = \theta - P \) where \(\theta \equiv \theta(e_b, e_\ell) \).
negative as long as:

$$\frac{\partial^2 R}{\partial e_b \partial e_\ell} + sq' \frac{\partial^2 \theta}{\partial e_b \partial e_\ell} < -\frac{\partial \theta}{\partial e_b} \left(q' \frac{\partial \theta}{\partial e_\ell} \right)^2 + \left(q \frac{\partial^2 \theta}{\partial e_\ell^2} - \frac{\partial^2 c}{\partial e_\ell^2} \right).$$

Please note that the right-hand side is always positive, meaning that $\frac{\partial^2 R}{\partial e_b \partial e_\ell} + sq' \frac{\partial^2 \theta}{\partial e_b \partial e_\ell}$ must be negative, zero or positive up to the threshold. A sufficient condition under which this occurs is:

$$\frac{\partial^2 R}{\partial e_b \partial e_\ell} < 0.$$

It is worth noticing that as $s \to 0$, the condition shrinks to:

$$\frac{\partial^2 R}{\partial e_b \partial e_\ell} < -\frac{\partial \theta}{\partial e_b} \left(q' \frac{\partial \theta}{\partial e_\ell} \right)^2 + q \frac{\partial^2 \theta}{\partial e_\ell^2} - \frac{\partial^2 c}{\partial e_\ell^2}$$

and only the cross-marginal returns of the core product revenues matter; this is because the brand owner would not get any revenue from the extension product.

Equation 13 is negative when its numerator is negative. Again, assuming $q'' = 0$ and considering the aforementioned profit functions, the expression can be reduced to:

$$q' \frac{\partial \theta}{\partial e_b} \left[q \frac{\partial \theta}{\partial e_b} \frac{\partial \theta}{\partial e_\ell} + q \frac{\partial^2 \theta}{\partial e_\ell \partial e_b} \right] + q \frac{\partial \theta}{\partial e_\ell} \left[\frac{\partial^2 R}{\partial e_b^2} + sq \frac{\partial^2 \theta}{\partial e_b^2} - \frac{\partial^2 c}{\partial e_b^2} \right]$$

$$< 0$$

The sign of the numerator depends on the sign of $q' \frac{\partial \theta}{\partial e_b} \frac{\partial \theta}{\partial e_\ell} + q \frac{\partial^2 \theta}{\partial e_\ell \partial e_b}$, which assesses the contribution of the brand owner’s effort to the licensee’s revenues. More specifically, Equation 15 is negative as long as:

$$q' \frac{\partial \theta}{\partial e_\ell} \frac{\partial \theta}{\partial e_b} + q \frac{\partial^2 \theta}{\partial e_b \partial e_\ell} < -\frac{\partial \theta}{\partial e_b} \left(q' \frac{\partial \theta}{\partial e_\ell} \right)^2 + \left(q \frac{\partial^2 \theta}{\partial e_\ell^2} - \frac{\partial^2 c}{\partial e_\ell^2} \right).$$

A necessary condition under which this is true is that:

$$\frac{\partial^2 \theta}{\partial e_b \partial e_\ell} < 0.$$
Proof of Proposition 8. Let $\Delta \Pi \equiv \Pi_b(\alpha, \gamma) - \Pi^*_I(\tilde{\theta}, \eta)$. The function is continuous in α. First, note that η is a shift parameter, i.e., $\frac{d\Delta \pi}{d\eta} = 1$. Hence, we can set $\eta = 0$ without losing generality. Second, note that:

\[
\begin{align*}
\frac{\partial \Delta \Pi}{\partial \alpha} |_{\gamma < 0} &> 0 \\
\frac{\partial \Delta \Pi}{\partial \alpha} |_{\gamma = 0} &= 0 \\
\frac{\partial \Delta \Pi}{\partial \alpha} |_{\gamma > 0} &< 0
\end{align*}
\]

hence, when $\gamma = 0$, the function $\Delta \Pi$ does not have a root in α. When $\gamma < 0$ (resp. $\gamma > 0$) the function is increasing (decreasing). Consider the case where $\gamma = -1$. Then:

\[
\begin{align*}
\lim_{\alpha \to \theta^{-}} = \lim_{\alpha \to 0^{-}} \Delta \Pi &= \frac{-1 + 3\tilde{\theta}^2}{-1 + \tilde{\theta}^2} + \frac{6}{-5 + \tilde{\theta}^2} \\
\lim_{\alpha \to \infty} \Delta \Pi &= \frac{1}{6} \left(\frac{3 + 9\tilde{\theta}^2}{-1 + \tilde{\theta}^2} + \frac{1}{-5 + \tilde{\theta}^2} - \frac{4}{-2 + \tilde{\theta}^2} \right)
\end{align*}
\]

The function $\Delta \Pi |_{\gamma = -1}$ has a vertical intercept, and an horizontal asymptote as $\alpha \to \infty$. The horizontal intercept is always negative while the asymptote is positive as long as $\sqrt{3 - \sqrt{5}} < \theta_T < 1$ and $0 < \tilde{\theta}_T < \sqrt{\frac{4 - 6\theta^2_T + \theta^4_T}{36 - 22\theta^2_T + 3\theta^4_T}}$. As the function is continuous and strictly monotone, this implies that there exists a unique root in α when $\gamma = -1$.

A similar procedure can be applied to the case where $\gamma = 1$. Under this assumption, $\Delta \Pi$ is always decreasing. When $\alpha = 0$, it crosses the vertical axis on a positive value, while when $\alpha \to \infty$ there is a negative horizontal asymptote. This implies that there exists a unique root in α also when $\gamma = 1$.

Henceforth, $\Delta \Pi$ has a unique root in α when $\alpha > 0$ and $\gamma \in [-1, 0) \cup (0, 1]$. Further, it can be shown that $\alpha > 0$ as long as:

\[
\begin{align*}
\sqrt{3 - \sqrt{5}} < \theta_T < 1 \\
0 < \tilde{\theta}_T < \sqrt{-\frac{4 - 6\theta^2_T + \theta^4_T}{36 - 22\theta^2_T + 3\theta^4_T}} \\
-1 < \gamma < 1 - \frac{4}{\theta^2_T} + \sqrt{\frac{-1 + \tilde{\theta}^2}{-1 + \tilde{\theta}^2} \left(\frac{10 - 7\theta^2_T + \theta^4_T}{\theta^4_T} \right)}
\end{align*}
\]
Chapter 3

Social Influence Bias in Ratings: A Field Experiment

This chapter is a joint work with Simona Cicognani, Ph.D., Department of Economics, University of Verona and Professor Paolo Figini, Department of Economics, University of Bologna
Abstract

We investigate the empirical phenomenon of rating bubbles, i.e., the presence of a disproportionate number of extremely positive ratings, within user-generated content websites. By means of a field experiment that exogenously manipulated information disclosure, we test whether consumers are influenced by prior ratings (i.e., social influence bias) when evaluating their stay at a hotel. Results show that social influence bias is present and asymmetric: excellent ratings have a stronger influence on consumers’ rating attitude than mediocre ratings. Furthermore, new customers are more susceptible to social influence bias than repeat customers. Our results support the reform of online rating systems in order to mitigate social influence bias, especially as these platforms become more and more ubiquitous, particularly in the tourism sector.
3.1 Introduction

Nowadays, user-generated ratings are an inseparable component of the Web—an essential element of what is often called Web 2.0. They drive and complement customers’ behaviour and experience in many diverse economic sectors. Everything can be rated everywhere on the Internet: through review platforms (e.g., Yelp, TripAdvisor)—businesses mainly devoted to collecting and aggregating User-Generated Content (hereafter UGC); and through rating systems developed within e-commerce platforms (e.g., Amazon, eBay, Booking.com), databases (e.g., IMDB, Glassdoor), and social media (e.g., Facebook, Twitter, Disqus). Rating systems allow people to express and publish their opinion through either a binary scale (like/dislike) or, more commonly, Likert-type scales (the most popular, representing a satisfaction level ranging from 1 to 5 points), and most of the systems also include the possibility of writing a short review. Rating systems are so relevant that companies have started to enrich them by including the ability to upload pictures, rate several sub-categories, take surveys, share and rate reviews (e.g., Amazon’s ‘Was this review useful?’) and rate reviewers themselves (e.g., eBay’s feedback system).

The absolute importance of user-generated online ratings for businesses and social relationships in daily life drives the motivation for this paper. Together with being a relevant issue for data science, the ubiquity of online ratings has important implications in management and marketing, in the organization of markets, and in the behavioural pattern of users/customers, especially in the tourism industry. According to a recent report (Nielsen, 2015), consumers’ online opinions are trusted by 66% of customers—the third most-trusted source of information on products and services after recommendations from friends/relatives and branded websites. In general, consumers tend to trust this type of word-of-mouth information because of the perceived lack of commercial self-interest, which might bias information coming from other sources, such as intermediaries or companies (Litvin et al., 2008). Moreover, consumers tend to consider a user-generated rating as a more reliable quality signal than other observable cues such as price (De Langhe et al., 2016). The relevance of online ratings has recently propelled a thorough investigation about their integration within official classifications of services (see UNWTO (2014) for the hotel sector).

Yet, online ratings are not trouble-free and call for specific investigation. This paper focuses on investigating whether, and how, individual rating behaviour is affected by prior aggregate ratings. The interaction between individual behaviour and prior rating information might be one of the drivers for the empirical phenomenon of rating bubbles, or J-shaped rating distributions, i.e., the clustering of user
ratings on extremely positive values and, to a lesser extent, on extremely negative values. This empirical regularity has been found for experience goods (Chevalier and Mayzlin (2006), Hu et al. (2009), Luca and Zervas (2013)) and search goods (Lafky, 2014) alike, on many popular e-commerce websites. A consensus has yet to be reached about the reasons behind this phenomenon, and the aim of this paper is to disentangle and assess one of the possible explanations: social influence bias (hereafter SIB). The motivation is strong: not only is UGC employed as a trusted source of information and product quality but extreme ratings are perceived as more useful by people, while moderate ratings are typically ignored (Park and Nicolau, 2015). Nevertheless, Filieri (2016) showed that when consumers analyze the content of a review, in addition to the rating, they might find extreme scores less trustworthy under certain conditions; for example, “respondents perceive as untrustworthy negative reviews that discredit a property and recommend another one in the same review” (Filieri, 2016, p. 54). Furthermore, it has been shown that, being encouraged by positive ratings, firms are correcting prices to reflect online reputation (Yacouel and Fleischer, 2012). This poses an issue as long as online ratings do not reflect the actual quality of a product or service but are simply a result of behaviour that creates distortion in how the quality is perceived by consumers.

Several reasons have been proposed in the literature to explain this recurrent empirical evidence: purchasing bias, underreporting bias, observational learning, and herding behaviour. We conducted a field experiment in order to identify and isolate the impact of SIB on users’ ratings; SIB can be defined as the tendency to conform to the perceived norm in the community which, in our research, is represented by prior ratings. The experiment was conducted during the period July–September 2015 in the Riviera of Rimini, a key Italian tourism destination, in one of the most important sectors for user-generated online ratings: hotel accommodations.

In the recent literature, the influence of user reviews has been tackled under an economic dimension, by looking at its effects on sales and marketing strategies, and under a behavioural dimension, that is, how information about online ratings is incorporated in decisional processes by consumers, both in the purchasing decision and when rating a product or service that has already been purchased. A statistically significant relationship between the presence of online user reviews and sales has been established since the mid-2000s. Chevalier and Mayzlin (2006) identified that more favourable online reviews tend to increase relative sales of books. Similar results have been found in the movie industry (Chintagunta et al., 2010), for electronic products (Chen et al., 2011), and in software adoption (Duan et al., 2009). Given the relevance of UGC for experience goods and services, the food and accommodation sectors have also
been extensively investigated, and results confirmed the impact of user reviews on popularity of hotel and restaurants (Zhang et al. (2010b), Ye et al. (2011), Öğüt and Onur Taş (2012)). There is no consensus that the content of reviews alone affects product sales. In fact, it has been demonstrated through experiments that the number of ratings, rather than content, may be more influential (Viglia et al., 2014). Chen et al. (2004) and Duan et al. (2008a) suggested that an awareness effect, due to the number of reviews, rather than a persuasion effect (i.e., the score and content of reviews), affects sales in the markets for books and films respectively.

Our paper is related to an emerging stream of literature that focuses on whether and how the individual rating behaviour itself (not product choice) is affected by user-generated ratings. This is relevant because rating occurs when the consumer is already informed about the quality of the product from his/her own experience; hence, prior ratings should lose their role as informative signals and be irrelevant when forming an opinion. Nevertheless, the effect exerted by prior ratings might be relevant and persistent (Cosley et al., 2003). By means of a laboratory experiment in which subjects had to rate movies, Schlosser (2005) suggested the presence of a self-presentation concern: subjects exposed to negative reviews reviewed more harshly than those exposed to no reviews or positive ones because they perceived negative opinions as coming from experts and more objective people. Hu et al. (2009) also conducted a controlled experiment in which subjects had to rate randomly selected products that showed a J-shaped rating distribution on Amazon. Their results showed unimodal rating distributions and moderate average ratings; the authors suggested that the mismatch between the Amazon distribution and the experimental one was due to a purchasing bias (those who purchase a product are also those who hold more extreme, typically positive, opinions); and to an underreporting bias, or ‘brag-or-moan effect’ (that is, a rating self-selection, meaning that only consumers who hold strong opinions end up reviewing the product). The latter effect has been further explored by Lafky (2014), who identified a concern towards subsequent buyers and sellers, with ratings becoming signals to channel such altruistic attitude. SIB and herding effects are explicitly the focus of a study by Lee et al. (2015), who used field data on movie ratings on a popular social network. They found that friends’ ratings always affect one’s own ratings, while ratings from the larger cohort of respondents have an effect only when the movie is very popular. Krishnan et al. (2014) also found SIB on a platform where political ideas are shared and rated, and proposed a method based on non-parametric testing to mitigate the bias.

The novelty of our research is twofold. On the one hand, we focused on a typical experience good; this is in direct contrast with most previous studies, in which individual rating behaviour was analyzed
for search goods/services or for non-market items such as political opinions or personal comments (see for instance Muchnik et al. (2013)). Since the sense of ownership plays a relevant role when consumers are evaluating a product (Ong et al., 2015), it is important to discriminate between products that are purchased and consumed, and those that are not. In contrast to previous lab experiments, in which the product was provided to subjects by the experimenter, in the present work subjects self-selected themselves into the market.

On the other hand, the experimental design allowed us to assess any different behavioural patterns between repeat and new customers and between habitual reviewers and non-reviewers. This mirrors Schlosser (2005), who describes *posters* as those who write and publish reviews and *lurkers* as those who do not contribute—two overlooked topics in current research. To the best of our knowledge, the present study is one of the first experiments studying individual rating behaviour and SIB in the case of a real purchasing and consumption experience. The interaction between SIB and the issues of being a repeat customer or a frequent reviewer represent, therefore, a novelty of our contribution.

The paper is structured as follows: Section 3.2 sets the context for the paper and unfolds the main research questions together with the contribution of our approach; Section 3.3 describes the experimental design and the procedures followed; Section 3.4 presents the main results; and Section 3.5 discusses the findings and offers concluding remarks.

3.2 Contribution and Hypotheses

In contrast to previous studies reported in the literature, this experiment studied individual rating behaviour and SIB considering subjects who had self-selected themselves in the market of the service they were asked to rate. Moreover, we focused on a typical experience good: hotel accommodation. Unlike a decision regarding standardized products or opinions, booking a room is a multilayered decision entailing a high risk, since in the majority of cases the service has not been experienced beforehand. Consumers tend to rely on different forms of word-of-mouth (such as online UGC) to obtain sufficient information on quality and to reduce their level of uncertainty (Liu and Park, 2015). Hotels have been one of the first sectors for which online rating platforms and UGC have been developed, and therefore the issue is particularly relevant. If rating biases exist, consumers cannot properly infer the service quality during the purchasing phase, and firms are not able to appropriately tailor marketing strategies based on such information (Bronner and de Hoog, 2011).
We conducted a field experiment in order to specifically study the rating behaviour of individuals after they experienced the service they had chosen to purchase. The true perception about a rated item can be biased, if individuals are highly susceptible (Cosley et al., 2003), and early adopters of a product or influential opinion leaders are pivotal in the diffusion of information and behaviours. This possibly generates SIB. Informational cascades and bias in the perception of quality might imply that ‘aggregate collective judgment and socialized choice could be easily manipulated, with dramatic consequences for our markets, our politics, our health’ (Muchnik et al., 2013, p.647). The empirical evaluation of SIB is not an easy task, and although herding behaviour has been observed in many instances (Anderson and Holt, 1997; Çelen and Kariv, 2004), the main challenge comes from disentangling SIB from homophily, simultaneity, and other confounding factors. In many cases, individuals may be led to mimic others’ (observed) choices simply because of conformity concerns (Cicognani and Mittone, 2014). Therefore, our first hypothesis is:

Hypothesis 1. Consumers' rating behaviour is affected by prior ratings; SIB is present in online rating platforms.

Moreover, Schlosser (2005) suggested that negative opinions are more effective in distorting people’s attitude during the rating phase, as discussed in Section 3.1. Muchnik et al. (2013) also found asymmetric herding: whereas positive social influence accumulates, creating a tendency towards rating bubbles, negative social influence inspires users to correct negative ratings.\(^2\) Therefore, consistent with previous research, we also tested whether:

Hypothesis 2. SIB is asymmetric; excellent prior ratings have a different effect than mediocre prior ratings.

In services, a relevant dimension through which the customer base is segmented concerns repeated purchasing behaviour; thus we compared repeat visitors (i.e., customers who repeated the experience in the same hotel) against non-repeat visitors. Consistent with the seminal works of Stigler (1961) and Nelson (1970), we argue that repeat customers have already internalised their search costs, or, put differently, having previously purchased the service, they can consider it as a search good. In contrast, the service represents an experience good for new customers. In the post-experience setting of the experiment, this difference is important because repeat visitors have more private information about previous stays on which to build their evaluation. New customers, for whom the service takes the attributes of a credence

\(^2\)On the asymmetry of social influence, see also Coker (2012).
good, might be more susceptible to prior ratings in online systems. Hence, this leads us to hypothesize that:

Hypothesis 3. *Repeat customers are less influenced by prior ratings than new customers.*

In addition, despite the great availability of online and networked population-based datasets, our study differed from most of those reported in the literature because it was an online field experiment: the experiment itself was conducted online but subjects were contacted offline. In this way, we were able to include customers who were not used to reading online reviews, not to mention actively writing and posting them. If observational learning drives customers to familiarize themselves with online review systems and to recognize their limitations and possible biases, the rating behaviour of frequent reviewers would differ from that of infrequent reviewers. Our setting hence allowed us to distinguish SIB from underreporting bias (due to the inactivity of moderate customers). Following Hu et al. (2009), who reported that the J-shaped distribution is also an effect of underreporting bias, we expect that:

Hypothesis 4. *Non-reviewers’ and reviewers’ rating behaviours do differ.*

Finally, we posit that those customers not acquainted with reviewing online are those who are more susceptible to SIB, in line with the empirical research by Moe and Schweidel (2012), in which less frequent reviewers were found to imitate prior reviewers more than frequent ones. Hence:

Hypothesis 5. *Non-reviewers are more susceptible than reviewers to prior ratings.*

Hypotheses 3 to 5 represent the main novelty of our contribution: the interaction between SIB and the issues of being a repeat customer or a frequent reviewer have received scant attention so far in the literature.\(^3\)

3.3 Experimental Design and Procedures

The goal of the field experiment was to investigate the consequences of being exposed to different information sets (i.e., data about prior ratings for the same service) when rating an experience good. The experiment was preceded by a pilot study that framed the experiment; this initial phase was helpful in understanding the critical parts of the design (such as experimenter effect, compulsory answers, and greater heterogeneity in terms of information sets across treatments) and in fine-tuning treatments, questions,

\(^3\)Using data from a popular online apparel company, Anderson and Simester (2014) focused on the action of frequent reviewers in order to understand the incentives to write deceptive reviews.
and general accessibility to the questionnaire. The pilot study, conducted in June 2015, consisted of a paper-based questionnaire administered to restaurant customers just after they had dined and paid.

The field experiment was conducted between August 3, 2015 and September 30, 2015 in a 3-star superior hotel located in the Riviera of Rimini, an important seaside destination. It consisted of an online questionnaire (developed using the Google Forms platform) that customers could access through a URL listed in a flyer they received after their stay (the flyer is displayed in Appendix .2, Figure 3). The procedure of handing out the flyer was always conducted by the hotel manager, at the moment when customers were checking out; customers were informed that they could fill in the questionnaire within two weeks using their own computers, smartphones, or tablets. It was a field experiment in that the purchasing decision was made by subjects on their own, and the study methodology did not affect their experience at the hotel in any way. It was an online experiment because, although we contacted subjects offline, the questionnaire was completed online. Due to this design, we confirmed that subjects actually purchased and experienced the service under analysis, and that they felt comfortable rating the hotel in an environment that might remind them of actual online rating platforms.

The questionnaire included three parts: in the first part, customers were asked to rate the hotel (the overall experience and four other categories: sleep quality, value, service, and atmosphere) on a 5-point scale. This part, and the choice of the categories, aimed at mimicking the rating scale used by TripAdvisor and other popular rating platforms. The second part included socio-demographic questions, and the third part included questions about customers’ previous experience in the same hotel and destination and their attitude towards online reviews (see Questionnaire in Appendix .3, Figures 4-8). The experiment did not offer any reward based on performance, since subjects were simply expressing their opinion about a service. Furthermore, it is important to highlight that the focus of our study was the presence of SIB in online rating systems, and not the average rating or the rating distribution per se.

The experiment included three treatments, related to the set of information about prior ratings; the questionnaires were exactly the same, except for a sentence just above the overall rating question informing subjects about the rating attitude of previous customers. In the control treatment, customers were asked to fill in the questionnaire without any information about prior ratings. In the 3-point treatment, subjects were informed that at least 17 prior customers of the hotel had provided a rating of 3 on a 5-point scale. In the 5-point treatment, the questionnaire disclosed that at least 17 previous customers had provided a rating of 5.\footnote{As of July 2015, the hotel had an average rating of 4.5/5 across 232 reviews on TripAdvisor. Of these reviews, 17 rated the} The choice of disclosing only the absolute number of ratings, without referencing...
the total number of reviews or the total distribution of ratings, was central to the aim of the experiment; we did not want to provide too much information on the ratings’ distribution in order to test how a simple normative message can be read differently across treatments. Two treatments were chosen because the great majority of scores in online rating systems (including this very hotel) range between 3/5 and 5/5; a hypothetical 1-point treatment might have been interpreted as suspicious by subjects. Moreover, the 1-point treatment would have been difficult to build without incurring deception, because of the absence of 1/5 ratings on the hotel’s TripAdvisor page at the time of the experiment. Figure 3.1 displays this portion of the questionnaire across the three treatments.

Assignment to each of the three treatments was randomized; flyers containing the URLs related to the different treatments were handed out in sequence at the time of checkout, independently of customers’ characteristics. Out of 400 flyers distributed, 75 questionnaires (19%) were completed. After checking for the presence and integrity of codes from the flyers, and removing invalid questionnaires, a total of 67 observations were considered in the analysis—21 for the control treatment, and 22 and 24 for the 5-point and 3-point treatments, respectively.

Figure 3.1: Different informational sets across treatments

It is worth noting that the questionnaire was built in order to mimic popular rating websites. The introductory sentences and presentation of ratings (e.g., the terrible/excellent scale) were directly taken from a standard TripAdvisor rating page at the time. Finally, our experiment was designed around ratings, hotel as 3, and 130 rated it as 5; 17 was chosen as the reference number for both treatments in order to avoid deception.
and not textual reviews; although subjects could write a brief message at the end of the questionnaire, this was unrelated to the rating phase, not mandatory, and no prior reviews were shown within treatments. While recognizing the relevance of reviews, we opted for design simplicity in order to assess SIB according to the most commonly used heuristic on rating platforms, i.e., average user rating (Forman et al., 2008).

3.4 Empirical Analysis

Our results begin with descriptive statistics regarding the subject pool and the overall rating. We then test our hypotheses by means of non-parametric tests and regression analyses which estimate the impact of the treatments on the rating attitude, controlling for a set of subjects’ characteristics.

The main respondent characteristics are displayed in Table 3.1. Consistent with the hotel average profiling, they accurately represent the hotel’s clientele, with balanced gender representation. The average customer is about 46 years old, male, Italian, with upper-secondary education. He mainly travels with a partner or with family, spending 7–10 days at the hotel. Customers are already quite acquainted with the destination and with the hotel; on average, they have made previous visits to the destination five times, and to the hotel four times (12% of customers had visited the hotel and the destination more than 10 times, which is a typical characteristic of the customer base in the Riviera of Rimini). As for their rating attitudes, half of the respondents had never written an online review, whereas one-third had read a review about the hotel before booking the stay; 75% of respondents declared to have been affected by the reviews read.

5 A detailed description of the variables is provided in Appendix 1, Table 9.
Table 3.1: Summary statistics - selected variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dummy</th>
<th>Mean (Std. Dev.)</th>
<th>Min</th>
<th>Max</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>D</td>
<td>0.48 (0.50)</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td>45.58 (14.07)</td>
<td>16</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Italian citizenship</td>
<td>D</td>
<td>0.96 (0.21)</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Years of schooling</td>
<td></td>
<td>11.51 (2.84)</td>
<td>5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Travel type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Family</td>
</tr>
<tr>
<td>Travel length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4-7 days</td>
</tr>
<tr>
<td>First time destination</td>
<td>D</td>
<td>0.27 (0.45)</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Repeat customer</td>
<td>D</td>
<td>0.27 (0.45)</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Type of stay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Half board All inclusive</td>
</tr>
<tr>
<td>Hotel advice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Not reviewer</td>
<td>D</td>
<td>0.52 (0.50)</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Review read</td>
<td>D</td>
<td>0.33 (0.47)</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Review source</td>
<td></td>
<td>TripAdvisor/ Yelp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review influence</td>
<td>D</td>
<td>0.75 (0.88)</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other prices</td>
<td>D</td>
<td>0.49 (0.50)</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Period of stay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10/08-23/08</td>
</tr>
</tbody>
</table>

Notes: D refers to a dummy variable. The mode is reported for categorical variables which encompass more than two categories.

Table 3.2 reports the overall average rating of the hotel and of its characteristics, together with standard deviations, given by the subjects. Table 3.2 suggests that the average rating is not significantly different from the actual outcome on TripAdvisor at the time of the experiment, and that there is homogeneity in how the characteristics of the hotel are rated; the rating ranges from 4.49 for sleep quality to 4.81 for service.

Table 3.2: Summary statistics - ratings

<table>
<thead>
<tr>
<th>Rating</th>
<th>Mean (Std. Dev.)</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>4.61 (0.70)</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Sleep quality</td>
<td>4.49 (0.70)</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Value</td>
<td>4.72 (0.60)</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Service</td>
<td>4.81 (0.63)</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>4.78 (0.65)</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

A first hint on whether subjects’ rating behaviour differs across treatments is provided in Table 3.3. In line with Hypothesis 1, the overall rating mean is the lowest in the 3-point treatment and the highest in the 5-point treatment, with the mean of the control treatment lying in between the two. Evidence reported in Table 3.3 suggests that being exposed to information on excellent prior ratings may have boosted subjects’ overall rating. This is corroborated by Figure 3.2, in which the rating density under the 5-point treatment is strikingly more skewed towards 5/5 than under the 3-point and control treatments.
Table 3.3: Summary statistics - overall rating (by treatment)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean (Std. Dev.)</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>4.61 (0.70)</td>
<td>67</td>
</tr>
<tr>
<td>3-point</td>
<td>4.38 (0.82)</td>
<td>24</td>
</tr>
<tr>
<td>Control</td>
<td>4.52 (0.75)</td>
<td>21</td>
</tr>
<tr>
<td>5-point</td>
<td>4.95 (0.21)</td>
<td>22</td>
</tr>
</tbody>
</table>

This *prima facie* evidence is supported by non-parametric testing. When comparing the 5-point treatment overall rating with the overall rating in the control treatment, the difference is statistically significant at the 1% level (p = 0.007, two-sample Wilcoxon rank-sum test, \(n_1 = 22 \) and \(n_2 = 21 \), two-sided). Similarly, the difference between the 3-point and 5-point treatments is statistically significant at the 1% level (p = 0.002, two-sample Wilcoxon rank-sum test, \(n_1 = 24 \) and \(n_2 = 22 \), two-sided). This allows us to validate Hypothesis 1:

Result 1. *Consumers’ rating behaviour is affected by information on prior ratings.*

We now turn to the type of influence of prior ratings (Hypothesis 2), that is, whether excellent prior ratings have a different effect than mediocre ones on individual rating behaviour. We compare the overall rating in 3-point v. control, and 5-point v. control. Only the latter comparison is statistically significant (p = 0.007, two-sample Wilcoxon rank-sum test, \(n_1 = 22 \) and \(n_2 = 21 \), two-sided), whereas the former is not (p = 0.520, two-sample Wilcoxon rank-sum test, \(n_1 = 24 \) and \(n_2 = 21 \), two-sided).

Result 2. *SIB is asymmetric; being exposed to excellent prior ratings generates a significant positive bias in ratings, which is not mirrored by a negative bias when being exposed to mediocre prior ratings.*

Figure 3.2: Frequency distribution - overall rating (by treatment)
Table 3.4: Treatment effects on rating behavior

<table>
<thead>
<tr>
<th>Dep. variable</th>
<th>Logit (1)</th>
<th>OLS (2)</th>
<th>Ordered Logit (3)</th>
<th>OLS (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-point</td>
<td>2.648***</td>
<td>0.319**</td>
<td>2.913***</td>
<td>0.363**</td>
</tr>
<tr>
<td></td>
<td>(0.114)</td>
<td>(0.036)</td>
<td>(0.466)</td>
<td>(0.038)</td>
</tr>
<tr>
<td>3-point</td>
<td>0.038</td>
<td>-0.010</td>
<td>0.121</td>
<td>-0.025</td>
</tr>
<tr>
<td></td>
<td>(0.093)</td>
<td>(0.023)</td>
<td>(0.308)</td>
<td>(0.065)</td>
</tr>
<tr>
<td>(Pseudo) R²</td>
<td>0.243</td>
<td>0.257</td>
<td>0.238</td>
<td>0.316</td>
</tr>
<tr>
<td>Num. obs.</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>67</td>
</tr>
</tbody>
</table>

Notes: ***, **, * indicate the significance at the 1%, 5% and 10% respectively. All models include as control variables: gender; age; the stay period; being a new customer at the hotel; having read a review of the hotel; being an online reviewer. All but Model 3 also include the constant term. Coefficients are reported. Standard errors are clustered at the treatment level.

Hence, we find evidence that rating bubbles stem from asymmetric herding, consistent with previous literature (Muchnik et al., 2013). To corroborate Results 1 and 2, we estimated several econometric models (Table 3.4) using two alternative dependent variables: a dummy variable called Excellent rating, which takes the value 1 if the overall rating is 5, and 0 otherwise; and Overall rating, which is a categorical variable divided into three categories: equal to either 1, 2, or 3; equal to 4; and equal to 5. The rationale for this partition of Overall rating is due to the small number of observations for ratings below 4 (results, however, are robust for the use of the full-scale overall rating as a dependent variable); in order to have an efficient estimation, alternatives that are rarely chosen must be aggregated (Cameron and Trivedi, 2013). For each outcome variable, we estimated a non-linear model through maximum likelihood (Model 1 is a logit model, while Model 3 is an ordered logit model), and a linear regression model through OLS (Model 2 and 4) as a robustness check. All models in Table 3.4 included as control variables: gender; age; stay period (considering three parts of the overall period: early August; mid-August, peak weeks of the tourist season; late August–September); being a new customer at the hotel; having read a review of the hotel; being an online reviewer. The F-test for the joint significance of regressors always leads to the rejection of the null hypothesis, which validates the models as specified.

The coefficient of the 5-point treatment in the logit model illustrated in Table 3.4, column (1) shows the bias of being exposed to information about excellent prior ratings. To investigate the magnitude of the effect, we consider the OLS coefficient of Table 3.4, column (2). The coefficient represents a marginal effect and is positive, being equal to 0.319; by falling into the 5-point treatment, the probability
of a 5/5 rating increases by 32%. In contrast, being exposed to information about mediocre prior ratings does not create a statistically significant impact on the overall rating. Hence, the asymmetric influence of positive and mediocre prior ratings on consumers’ rating attitude is clear, which is consistent when moving from OLS to logistic specification.

The ordered logit model shown in Table 3.4, column (3) considers Overall rating as a dependent variable. As before, the coefficient of the 5-point treatment is positive and statistically significant, as well as the coefficient of the OLS specification in column (4). The OLS coefficient (marginal effect) means that observing extremely positive prior ratings increases by a substantial amount (0.36) the respondents’ average rating. The 3-point coefficients are not statistically significant, confirming the ineffectiveness of this treatment. As an alternative way to see these results, we also looked at the 5-point treatment odds ratio, that is, the change in the ratio of probabilities of rating 5/5 when the treatment is in place and without; the odds of giving a 5/5 rating versus any other rating is 14.13 times greater, given that all of the other variables in the model are held constant. The odds ratio is statistically significant at the 1% level. In sum, the econometric analysis confirms Hypotheses 1 and 2: SIB is a factor driving rating behaviours within online platforms, and people are more influenced by extremely positive ratings. Among the other covariates, the only variable that is always significant (and with a positive sign) in all the specifications and robustness checks is Female; this means that, on average, female reviewers tend to post higher scores than male ones. However, it is important to recall that our research question relates to the rating bias, and not to the rating distribution itself; therefore, all individual characteristics are orthogonal to the treatments.

From the information collected through the questionnaires, we are able to investigate whether the individual rating differs across different segments of the customer base, for example, those who had prior stays at the hotel, or those who are accustomed to online platforms. As for repeat customers, a natural behavioural prediction is that they are less likely to be influenced by prior ratings than new customers (Hypothesis 3), since they have more established and sound private information about the hotel characteristics. We can provide an answer to this question by running an ordered logit model\(^7\) which includes four interaction terms\(^8\): New customer/Repeat customer and 5-point and 3-point dummies respectively, with New customer (Repeat customer) being a dummy variable taking the value 1 if the subject has never

\(^7\)The ordered logit has been chosen over the logit model as the standard model following the results in Table 3.4, since it holds more information than the logit; however, results are robust for the use of the logit model and Excellent as the dependent variable.

\(^8\)We did not conduct non-parametric testing because of the low numerosity of some sub-segments of the subject pool.
Table 3.5: Treatment effects on rating behavior - repeat v. new customers

<table>
<thead>
<tr>
<th>Dep. variable</th>
<th>Ordered Logit (1)</th>
<th>OLS (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall rating</td>
<td></td>
</tr>
<tr>
<td>Repeat customer</td>
<td>-0.961 (0.655)</td>
<td>-0.095 (0.169)</td>
</tr>
<tr>
<td>5-point * New customer</td>
<td>15.980*** (0.987)</td>
<td>0.605*** (0.019)</td>
</tr>
<tr>
<td>5-point * Repeat customer</td>
<td>3.088*** (0.824)</td>
<td>0.374** (0.026)</td>
</tr>
<tr>
<td>3-point * New customer</td>
<td>-1.838*** (0.334)</td>
<td>-0.477** (0.041)</td>
</tr>
<tr>
<td>3-point * Repeat customer</td>
<td>1.787* (0.790)</td>
<td>0.304 (0.101)</td>
</tr>
</tbody>
</table>

(Pseudo) R² | 0.302 | 0.404 |
Num. obs. | 67 | 67 |

Notes: ***, **, * indicate the significance at the 1%, 5% and 10% respectively. Both models include as control variables: gender; age; the stay period; having read a review of the hotel; being an online reviewer. Model 2 also includes a constant term. Coefficients are reported. Standard errors are clustered at the treatment level.

(has already) stayed at the hotel prior to August 2015. Along with a linear model estimated with OLS including the same regressors, results are shown in Table 3.5, respectively in columns (1) and (2).

Results of this moderation analysis show that repeat customers do not rate differently than new customers: the Repeat customer coefficient is not statistically significant. In contrast, the interaction terms are statistically significant. In particular, repeat customers are also influenced by the informational treatments, but to a lesser extent than new customers.

Table 3.6: Predicted Pr(overall=5) - repeat v. new customers (by treatment)

<table>
<thead>
<tr>
<th>5-point treatment</th>
<th>3-point treatment / Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeat customer</td>
<td>0.938*** (0.017)</td>
</tr>
<tr>
<td>New customer</td>
<td>1*** (0.000)</td>
</tr>
</tbody>
</table>

Table 3.6 reports the predicted probabilities of rating 5/5 in the 5-point treatment versus the other groups across this customer’s characteristic. The joint reading of Tables 3.5 and 3.6 suggests that new customers are more susceptible to SIB, since the difference in predicted probabilities is more pronounced. In particular, new customers show a stronger SIB to mediocre prior ratings, denoting they are less reli-

9:3-point and control treatments have been aggregated for the sake of the comparison, since non-parametric testing and regression analysis previously shown how the two groups were not statistically different from each other.
Table 3.7: Treatment effects on rating behavior - reviewers v. non-reviewers

<table>
<thead>
<tr>
<th>Dep. variable</th>
<th>Ordered Logit (1)</th>
<th>OLS (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reviewer</td>
<td>1.587</td>
<td>0.349</td>
</tr>
<tr>
<td></td>
<td>(1.073)</td>
<td>(0.148)</td>
</tr>
<tr>
<td>5-point * Reviewer</td>
<td>0.707</td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td>(0.628)</td>
<td>(0.142)</td>
</tr>
<tr>
<td>5-point * Not reviewer</td>
<td>17.95***</td>
<td>0.603**</td>
</tr>
<tr>
<td></td>
<td>(1.606)</td>
<td>(0.075)</td>
</tr>
<tr>
<td>3-point * Reviewer</td>
<td>-0.255**</td>
<td>-0.120*</td>
</tr>
<tr>
<td></td>
<td>(0.110)</td>
<td>(0.039)</td>
</tr>
<tr>
<td>3-point * Not reviewer</td>
<td>0.524</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>(0.680)</td>
<td>(0.117)</td>
</tr>
</tbody>
</table>

(Pseudo) R^2 0.275 0.348
Num. obs. 67 67

Notes: ***, **, * indicate the significance at the 1%, 5% and 10% respectively. All models include as control variables: gender; age; the stay period; being a new customer at the hotel; having read a review of the hotel. Model 2 also includes a constant term. Coefficients are reported. Standard errors are clustered at the treatment level.

able in evaluating their experience. This leads us to report the importance of SIB, particularly for new customers, and to confirm Hypothesis 3:

Result 3. *Repeat customers are less susceptible to SIB than new customers.*

The subject pool included not only people who frequently use websites to post reviews, but also people who had never actively used online rating platforms. Understanding whether the ratings of these two groups of subjects differ would help to shed light on one of the proposed explanations for rating bubbles: the underreporting bias (also called ‘brag or moan’ effect in the literature); that is, those who write online reviews have more extreme (and typically more positive) preferences than those who do not bother to express and share their opinion. If the behaviour of the two types of subjects is not statistically different, then this type of bias would be excluded from the list of reasons driving J-shaped rating distributions on UGC platforms. The subject pool was almost equally divided between non-reviewers (35 subjects, 52% of the sample) and reviewers (32 subjects, 48%). The average overall rating for non-reviewers was 4.59/5, versus 4.63/5 for reviewers, a difference that is not statistically significant ($p = 0.557$, two-sample Wilcoxon rank-sum tests, $n_1 = 35$ and $n_2 = 32$, two-sided).

These results are confirmed by the regression analyses in Table 3.7. Here, the dummy variable *Not reviewer (Reviewer)* takes the value 1 if the subject had never (already) actively used an online rating
platform. Interaction terms were built in a similar fashion as model specifications in Table 3.5. Having experience in posting online reviews does not exert, *per se*, a significant effect on the rating behaviour of subjects; *Reviewer* is never statistically significant. This means that the rating behaviour of non-reviewers and reviewers do not differ, leading us to reject Hypothesis 4:

Result 4. *SIB is not confounded by underreporting bias; non-reviewers and reviewers’ rating behaviours do not differ.*

However, when interacted with the treatment variables, we note that *Reviewer* is not statistically significant in the 5-point treatment, while it is only weakly significant in the 3-point treatment. The opposite result is found for non-reviewers, who seem to be affected by excellent prior ratings and not by mediocre prior ratings. These results are robust for the use of OLS, as in Table 3.7, column (2).

<table>
<thead>
<tr>
<th></th>
<th>5-point treatment</th>
<th>3-point treatment / Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reviewer</td>
<td>0.774***</td>
<td>0.665***</td>
</tr>
<tr>
<td></td>
<td>(0.083)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Not reviewer</td>
<td>1***</td>
<td>0.743***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.059)</td>
</tr>
</tbody>
</table>

Table 3.8 reports the predicted probabilities of rating 5/5 in the 5-point treatment with respect to the other groups across rating habits. The joint reading of Tables 3.7 and 3.8 suggests that non-reviewers are more easily influenced by the 5-point treatment than reviewers.

Result 5. *Non-reviewers are more susceptible to excellent prior ratings than reviewers.*

Hence, the participation in the experiment of subjects who seldom or never used online rating systems exacerbated the overall level of SIB in the study. This has interesting managerial implications for these rating platforms, which will be discussed in the concluding section.

3.5 Discussion and Conclusions

The experiment we conducted fits into a stream of recent research tackling the social and economic issues of UGC and online rating platforms, particularly aimed at addressing the behavioural attitude of reviewers and assessing the relevance of SIB. If such a bias exists, individual ratings are unreliable proxies for the true quality of products, especially when distinguishing average from excellent products. Moreover,
aggregate ratings might be the result of herding, thus leading to problems such as rating bubbles.

We diverged from a few influential studies and proposed a novel online field experiment in which the approach mainly aimed at: i) assessing how individual rating behaviour is affected by information about prior ratings in the context of an important service rated online (hotel accommodation); ii) exposing previous non-reviewers to a rating system, in order to measure their reaction and to separate underreporting bias from SIB; iii) disentangling and analysing the rating behaviour of repeat customers of the same service in comparison to first-time visitors: this allowed us to test whether SIB plays a different role depending on whether the service falls more in the realm of experience (credence) rather than search goods. We devoted our attention to accommodation since this sector has been a pioneer in the development of e-commerce and online rating systems and even today plays a leading role through companies such as Booking, TripAdvisor, Yelp, and Expedia.

Our results are consistent with recent findings and confirm that SIB is a relevant issue in rating systems, in addition to being asymmetric, which is consistent with Muchnik et al. (2013): while subjects herd to the display of information about excellent ratings, they are not significantly influenced by information about mediocre ratings. It is important to stress that the effect we find has no relation with altruism towards other people (or cannot strictly be interpreted in this sense), because ratings were explained as confidential in regard to the experimental subjects, that is, they were read only by the hotel manager and the researchers.\footnote{Altruism towards other consumers during the rating process has been explored by Lafky (2014).} The novelty and relevance of our results is twofold: first, SIB is not a reinforcing effect of underreporting bias, i.e., the tendency of non-reviewers to have less extreme opinions. Underreporting bias does not play a role in driving rating distributions upwards in our experiment, since the rating behaviours of reviewers and non-reviewers are not statistically different, contrary to results suggested by Hu et al. (2009). However, we verified that prior excellent ratings particularly influence people who are not accustomed to post reviews on online platforms, consistent with Moe and Schweidel (2012), who found that less frequent posters are more positive and exhibit bandwagon behaviour. This suggests that the ever-growing involvement of new and naive reviewers in online rating platforms (and the marketing policy of services and apps to ask customers to rate online) might exacerbate SIB, and distort rating distributions even more in the future.

Second, we show that new customers are more heavily affected by prior ratings than repeat customers. This difference is not surprising, since repeat visitors have more private information stemming from their previous hotel stays and from their experience at the destination on which to build their evalu-
ation. New visitors, on the contrary, lacking this information, are more susceptible to previous opinions of others and are more subject to herding behaviours. Such customer base segmentation recalls the difference between search and experience (credence) goods, and suggests that SIB might be particularly relevant for experience and credence goods for which the set of private information is less reliable and where customers are more prone to follow the crowd.

Our results hence provide another voice for supporting reforms in the functioning of online rating systems. Since herding behaviour exists, the design of interfaces that provide little information about prior ratings to users when they are asked to review, as well as experimentation with machine-learning algorithms to estimate and automatically correct biases, might diminish the effect of SIB. Our results also support the implementation of time windows or thresholds in the number of reviews, where reviews are collected but not shown to other customers; with this type of system, a less biased distribution of ratings might emerge, and then become public. These data collection periods can be implemented when a service or product page is just published, but also throughout its online cycle. It is particularly important that online rating systems are designed such that users can escape rating biases. For instance, it is common to show average ratings within solicitation e-mails, when users are reminded to review the service or product they had purchased; according to our results, this type of information is likely to affect individual rating behaviour. Since SIB is particularly relevant for new customers and inexperienced reviewers, we ring a warning bell for the consequences of those attempts aimed at expanding the volume of ratings by attracting non-reviewers, a collateral effect of the growing integration of rating platforms with social networks. This managerial implication contrasts with the emerging literature about UGC enjoyment (Park and Nicolau, 2015), which calls for rich layouts and very informative websites. The trade-off between the amount of information which minimizes rating distortions and the amount which increases content enjoyment might represent a future direction of research.

The present work presents some limitations, particularly related to the small sample size under analysis. However, the fact that results are significant despite the small sample size suggests that the treatment effect is strong. Hence, the collection of more observations, or the repetition of the same experiment on a larger scale, would allow us to undertake more convincing and complete within-group analysis. Moreover, the implementation of new sets of treatments, such as public v. private posting of reviews would allow us to investigate another interesting phenomenon which takes place in online rating platforms: the multiple-audience effect.

Given the relevance of UGC and online ratings in the market for tourism services, the expansion of
the research scope might work through the replication of the experiment across, and within, different tourism businesses (restaurants, amusement parks, cultural activities), in order to take into account heterogeneous rating distributions, and to assess how these affect the overall experience at the destination.
1. List of variables

Table 9: List of variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>Dummy</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socio-demographic variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>D</td>
<td>The customer is a female</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td>Customer’s age in years</td>
</tr>
<tr>
<td>Italian citizenship</td>
<td>D</td>
<td>The customer is Italian</td>
</tr>
<tr>
<td>Years of schooling</td>
<td></td>
<td>Customer’s years of schooling (from 5, primary education, to 16, university education)</td>
</tr>
<tr>
<td>Tourist variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel type</td>
<td></td>
<td>The customer is travelling in business/couple/family/friends/solo</td>
</tr>
<tr>
<td>Travel length</td>
<td></td>
<td>Number of days spent at the hotel: 2-3 days/4-7 days/more than 7 days</td>
</tr>
<tr>
<td>First time destination</td>
<td>D</td>
<td>The customer has never been to the tourist destination before</td>
</tr>
<tr>
<td>Repeat customer</td>
<td>D</td>
<td>The customer has already been to the hotel before</td>
</tr>
<tr>
<td>New customer</td>
<td>D</td>
<td>The customer has never been to the hotel before</td>
</tr>
<tr>
<td>Type of stay</td>
<td></td>
<td>Full board/Full board All Inclusive/Half Board/Half Board All Inclusive/B&B</td>
</tr>
<tr>
<td>Period of stay</td>
<td></td>
<td>Period of stay at the hotel: 20/07-09/08; 10/08-23/08; 24/08-13/09</td>
</tr>
<tr>
<td>Rating behaviour variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not reviewer</td>
<td>D</td>
<td>The customer has never written an online review before</td>
</tr>
<tr>
<td>Reviewer</td>
<td>D</td>
<td>The customer has written an online review before</td>
</tr>
<tr>
<td>Hotel advice</td>
<td></td>
<td>The hotel was recommended to the customer by: no one/family or friends/advertising/other</td>
</tr>
<tr>
<td>Review read</td>
<td>D</td>
<td>The customer has read an online review of the hotel before booking the stay</td>
</tr>
<tr>
<td>Review source</td>
<td></td>
<td>The customer has read an online review of the hotel on TripAdvisor or Yelp/Facebook or social networks/forums/other</td>
</tr>
<tr>
<td>Review influence</td>
<td>D</td>
<td>The customer has been influenced by the review read about the hotel</td>
</tr>
<tr>
<td>Other prices</td>
<td>D</td>
<td>The customer looked at other hotel prices before booking her stay</td>
</tr>
<tr>
<td>Rating variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>Hotel overall rating (from 1, terrible, to 5, excellent)</td>
</tr>
<tr>
<td>Excellent rating</td>
<td>D</td>
<td>The hotel overall rating is 5 (excellent)</td>
</tr>
<tr>
<td>Sleep quality</td>
<td></td>
<td>Rating for hotel sleep quality (from 1, terrible, to 5, excellent)</td>
</tr>
<tr>
<td>Value</td>
<td></td>
<td>Rating for hotel value (from 1, terrible, to 5, excellent)</td>
</tr>
<tr>
<td>Service</td>
<td></td>
<td>Rating for hotel service (from 1, terrible, to 5, excellent)</td>
</tr>
<tr>
<td>Atmosphere</td>
<td></td>
<td>Rating for hotel atmosphere (from 1, terrible, to 5, excellent)</td>
</tr>
</tbody>
</table>
.2 Flyer

Figure 3: Flyer handed out to customers

Dear Customer, please help us to improve the quality of our hotel, and to study rating websites together with researchers at the University of Bologna.

Once back home, please fill in the questionnaire you can find at the following link: http://, and write the following code in the last page:

By filling in the questionnaire, you will participate to the draw of a wonderful prize. Your contribution will be really useful for our work, and for the academic research. Thanks!
.3 Questionnaire

Figure 4: First page of the questionnaire - opening layout

Rate your experience at Hotel **

Please fill in the following questionnaire about your experience at Hotel **. The questionnaire will not take you more than 10 minutes. The questionnaire is completely anonymous, and it will be useful in the study of rating systems on the Internet.

*Campo obbligatorio

Your overall rating of this property *

1 2 3 4 5

terrible poor fair average excellent

105
Figure 5: First page of the questionnaire - rating

Rate your experience at 1 to 6. *

Please fill in the following questionnaire about your experience at [accommodation]. The questionnaire will not take you more than 10 minutes. The questionnaire is completely anonymous, and it will be useful in the study of rating systems on the Internet.

*Please check yours.

<table>
<thead>
<tr>
<th>Your overall rating of this property</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>terrible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>excellent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please indicate your rating for each of the following categories

<table>
<thead>
<tr>
<th>Sleep quality</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>terrible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>excellent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value (quality/price)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>terrible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>excellent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>terrible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>excellent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atmosphere</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>terrible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>excellent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rate your experience at Hotel

Questionnaire

Gender:
- Male
- Female

Age:

Nationality:

Educational qualification:
- Primary
- Secondary
- High school
- University
- No qualification

What sort of trip was?
- Business
- Couple
- Family
- Friends
- Solo

How many people were with you during the stay at Hotel?

When did you stay at Hotel?

Choose the week(s) which include the days of your stay:
- 20/7 - 26/7
- 27/7 - 02/8
- 03/8 - 09/8
- 10/8 - 16/8
- 17/8 - 23/8
- 24/8 - 30/8
- 31/8 - 6/9
- 7/9 - 13/9

How much did your trip last overall?
- 1 day
- 2-3 days
- 4-7 days
- More than 7 days

Was this your first time in Hotel?
- Yes
- No

If this was not your first time in Hotel how many times have you already been there?

Have you already been at Hotel before this trip?
- Yes
- No

If you have already been at Hotel how many times?

Which kind of stay did you have at Hotel?
- Full board
- Full board All Inclusive
- Half board
- Half board All Inclusive
- Bed & Breakfast

- Indietro
- Continua
Figure 7: Third page of the questionnaire - rating attitude questions

Figure 8: Fourth page of the questionnaire - e-mail and verification code
Chapter 4

The Economic and Behavioral
Consequences of Online User Reviews: A
Literature Review
Abstract

Online user reviews have become an increasingly relevant informational tool during product search and adoption. Recent surveys have shown that consumers trust and rely on user reviews more than on website recommendations and experts’ opinions. As a new way of driving consumer purchasing intentions, they have, therefore, come under scrutiny by researchers. The objective of this paper is to offer an overview of the literature on the impact of online user reviews on economic indicators (e.g., sales, marketing strategies) and on consumer behavior, thereby extending on previous works that have taken a less focused approach. Furthermore, following the growing interest of academics and professionals alike on the topic, the present work starts an exploratory analysis on the consequences of user reviews on individual rating behavior—empirical regularities showed that online rating distributions tend to be concentrated on extreme values, possibly because of rating bias. As consumers and firms incorporate heuristic cues from such distributions during product search, biased ratings might lead to sub-optimal choices. This overview presents established results (e.g., the impact of volume on product sales) and insights as issues for future research.
4.1 Introduction

“You make money when you sell things—why would you allow negative reviews on your website?”

While online user reviews are now an essential part of our daily lives as consumers, people were highly skeptical when they had first been introduced.\(^1\) With the rise of e-commerce and online transactions, and the democratization of communication channels, consumers felt the rising urge to look for peers’ opinions before opening their wallet, more so than before. On top of the risk-taking nature characterizing the adoption of some type of goods—e.g., experience goods, for which reputation and recommendations always played a role, the Internet has introduced additional layers of uncertainty during the purchasing phase. First, electronic shopping channels do not allow consumers to physically see products; online, consumers do not have a first-hand experience with the product which, of course, prevents an initial screening (Ba and Pavlou, 2002). Moreover, the Internet has dramatically decreased the costs to start a business, with the result that anyone can manage an online store, even behind anonymity. Reputation and credibility are harder to establish in online markets, as consumers do not directly face sellers; trust has become a more relevant issue, while more difficult to establish because of the remote nature of transactions (Fung and Lee, 1999). It is useful to think product search and adoption as a costly activity (Stiglitz, 1989). While search costs related to prices and other visible product characteristics have decreased, the Internet was not able \textit{per se} to eliminate those costs regarding the ascertaining the quality of the product. Online user reviews became a necessary tool to make online shopping a more safe and familiar experience.

Nowadays, anything can be rated anywhere online: products are reviewed on e-commerce websites, but one also finds reviews on restaurants and hotels, movies and music, companies, and even reviews and reviewers themselves. Communications between peers about common experiences, for example through forums and chats, were fundamental in establishing the prominence of the World Wide Web. Organized systems allowing people to express their opinions about their habits as consumers, however, started to become popular only at the end of the last century. During the so-called dot-com bubble, there was an explosion of \textit{earn-to-review websites}, such as Epinions.com and Zagat.com, where users were encouraged to post reviews about products earning a small payment. As the San Francisco Chronicle commented in 2000, these websites were \textit{populist alternative[s] to Consumer Reports}, the popular magazine dedicated

to unbiased product testing. In the meantime, many e-commerce companies had begun to incorporate user-generated content (UGC, hereafter) systems within their online stores, thereby allowing consumers, though often only after having purchased a product, to post reviews—reducing the potential costs associated with publicly disclosing their opinions. Over the years, dedicated rating websites lost popularity to the favor of e-commerce websites. Services like TripAdvisor and Yelp kept growing, but they nevertheless have been starting to sell goods and services, on top of providing consumer reviews, as a way to leverage the enormous amount of UGC information they owned.

As the data show, the importance of online consumer reviews is a well-established fact. A comScore 2007 survey focused on the tourist industry found that Internet users reported using online reviews prior to paying for a service delivered offline; moreover, about 40% of those who had read online reviews decided to buy the service (e.g., restaurant meal and hotel accommodation). According to a 2016 Nielsen report, online reviews are increasingly incorporated into the product information search as a way to mitigate the risk of making online purchases and to make better and sounder decisions. Across categories, on average, half of the survey respondents stated that they look up product information online, including consumer reviews; travel-related products and services lead the chart. A 2016 BrightLocal survey confirmed the growing trend of interest in online reviews: in 2010, only 22% of people read reviews regularly—in 2016, the number jumped to 50%; at the same time, the percentage of people not interested in online reviews decreased noticeably, from 29% in 2010 to about 9% in 2016. Overall, 91% of respondents often or occasionally read online reviews. While the use of online reviews is no more up to debate, their trustworthiness is still a matter of discussion. Both the BrightLocal and the Nielsen reports found that consumers do trust online reviews, at least as much as personal recommendations and/or branded websites. Nevertheless, other recent surveys showed a more a skeptical attitude. According to Cox et al. (2009), consumers use online reviews as useful source of information, without considering them particularly trustful. A 2014 YouGov research found that, while 78% of Americans check out the review section before making a purchase and nearly half of them (44%) are active contributors, only 13% thought that online reviews were credible; among the reasons of this distrust: the possibility that

6According to the BrightLocal report, 84% of people trust online reviews as much as a personal recommendation.
businesses write fake reviews in order to look more desirable or to discredit competitors, and that users write reviews without actually having purchased the product.⁷ Despite their skepticism, because genuine online user reviews lack the self-promotional commercial interests behind the other informational cues generated by private companies, such as advertising, people continue to read them, to the point of even feeling an empathic connection to the reviewer.

Online reviews fall into the much wider communicational category of word-of-mouth (WOM, hereafter). Following the conceptualization by Lee and Youn (2009), WOM represents “interpersonal communication about products and services between consumers” concerning their personal experiences; research on traditional WOM dates back to the Sixties, and was developed in many fields, such as Marketing, Psychology and Economics. More specifically, online user reviews are part of a subcategory of WOM—electronic WOM (eWOM, hereafter); given their very existence through Web-connected interfaces. There are many aspects making online reviews (and eWOM in general) a quite peculiar type of communication. As eWOM typically occurs between people that do not have any prior relations, it can be seen as a remote many-to-many communication (Chatterjee, 2001). The possibility of maintaining anonymity, linked to the fact that people are more comfortable in making their opinions public when online, might explain the popularity of user reviews. Another aspect that differentiates online reviews from traditional WOM is their pervasiveness. Real life communication between peers happens in a specific place and at a specific time, and is typically one-shot. Through eWOM, instead, opinions becomes available to a large audience; and for a much longer time (at least until the hosting website is online). For a more detailed discussion about eWOM, King et al. (2014) is a good starting point.

Despite the impact of online user reviews on consumer behavior and market transactions, academic research has started to devote an increasing amount of attention only during the last decade. The social and economic aspects of online reviews have been thoroughly examined, leading to useful prescriptions for both businesses and consumers-as-reviewers alike. Psychology and Marketing scholars started to understand the motives leading consumers to write online reviews—in order to design more incentivizing and visually attractive rating platforms. Instead, the Economic literature put effort into investigating the effect of online user reviews on several market indicators, such as commercial performance. The influence of eWOM on consumer behavior has also been the subject of recent studies. The evolution of e-commerce platforms and the impact of UGC on everyday life have required a complete review

of related works, as a way to understand where the literature began and where it is heading. Many issues have yet to find a proper answer while some others can be considered established and not needing further discussion. In particular, this literature review focuses on the consequences of online reviews under several aspects. Professionals will appreciate the way the survey covers many industries and gives insights on how to structure user reviews for online shopping experiences. Academics will find it useful for understand where to direct future research on the topic.

The next sections will be organized as follows: Section 4.2 is devoted to introducing the methodology adopted in this review and how contents have been organized. Then, Sections 4.3 and 4.4 and related subsections are organized as individual literature reviews on a specific topic of interest. Finally, Section 4.5 reports a summary of the findings.

4.2 Methodology and organization

This review follows the concept-centric approach identified by Webster and Watson (2002). While there are many authors that are focusing specifically on drivers and effects of UGC systems, the topic is too recent to follow an author-centric approach. Previous scholars have organized studies about online user reviews in different ways. For example, King et al. (2014) organized key issues according to the unit of analysis (sender/receiver of eWOM) and the causes/effects of eWOM. In this literature review I create a taxonomy focused on the consequences of online reviews; therefore expanding on the receiver/effects area explored by King et al. (2014). Because during the last few years research has expanded in the area of effects of eWOM, there is the renewed need for tackling this issue more thoroughly. De Maeyer (2012), instead, focused on the impact of user reviews on sales and price strategies. On the one hand, the present work aims at updating De Maeyer (2012), providing a review of more recent studies, while, on the other hand, extending the analysis on the impact of eWOM on consumer behavior.

In particular, I concentrate on the consequences of online user reviews by two dimensions: an economic one and a behavioral one. The first dimension concerns the effect of reviews on economic transactions and firms’ strategies. The second dimension regards their effect on consumers’ attitudes. At the same time, I consider two temporal phases along which research has developed: the purchasing phase and the after-purchase phase. Table 4.1 shows the concept matrix of this taxonomy. Category 1 (C1) considers the effect of online reviews on product sales; the unit of analysis is, therefore, the product. Category 2 (C2) contains studies focused on how firms (i.e., the units) react to online reviews in terms of pricing
and business strategies. The unit of analysis of Category 3 (C3) and Category 4 (C4) is the consumer. For the purchase phase, I collected studies regarding which channels online reviews affect consumers’ product adoption; the after-purchase phase quadrant of the behavioral dimension incorporates, instead, studies about how online reviews affect the individual rating attitude.

Table 4.1: Organizing framework: consequences of online reviews

<table>
<thead>
<tr>
<th>phase</th>
<th>purchase</th>
<th>after-purchase</th>
</tr>
</thead>
<tbody>
<tr>
<td>dimension</td>
<td>economic</td>
<td>behavioral</td>
</tr>
<tr>
<td>C1: sales</td>
<td>C2: marketing</td>
<td>C3: product adoption</td>
</tr>
</tbody>
</table>

In sum, the four categories broadly corresponds to the following research questions:

C1: Do online reviews affect product sales? To what extent?

C2: How do firms incorporate the information about online reviews to shape their marketing strategies?

C3: Do online reviews affect consumers’ decision-making process when searching for a product?

C4: Are consumers affected by prior online reviews when rating a product they had purchased and consumed?

As online reviews are multidimensional objects, as often recognized by the literature (Dellarocas et al., 2007), this literature review also pays attention to which review components impact the outcome of interest. This literature review does not aim at being exhaustive on all possible outcomes. For example, beyond what is covered here, eWOM has been found to have an impact on seller reputation, on helpfulness and enjoyment of the online experience, and on the attitude towards repeated purchases. As research on these topics are still young, a literature review might follow in a few years from now. Nevertheless, these studies will be briefly mentioned if necessary, as they might be intertwined with the aforementioned topics.

4.3 Economic dimension

UGC systems have become an inseparable component of e-commerce transactions. By bridging the informational gap between buyers and sellers, online user reviews can help make a product worth purchasing. On the one hand, websites have already created spaces where such content is readily available, allowing consumers to incorporate such information immediately into the search/purchasing process. On
the other hand, firms have also started to consider user reviews during their strategy-making process, for example, by adjusting the product quality and features following previous consumers’ requests, or by charging a premium for those highly-rating products.

Earlier efforts in analyzing the economic consequences of eWOM were mainly focused on the impact on sellers’ activities, and on the establishment of trust between the parties involved in the transaction. Indeed, one of the most popular UGC system in the Nineties was the eBay feedback system, where buyers could rate sellers on the basis of the service offered (e.g., accuracy of product description, timeliness of the delivery). As a result, much attention was devoted to the buyer-seller relationship and the establishment of reputation systems within online platforms (Jøsang et al., 2007). Only in the early 2000s did academic interest converge on considering the impact online reviews might have had on product sales, and thus move the attention from the buyer to the product as the unit of analysis. Propelled by the desire to understand whether reviews could be a good predictor of sales, throughout the past decade, researchers have investigated the direct link between user reviews and product performance in the relevant market. Consequently, some attention has been dedicated to understanding the extent to which firms actually learn from reviews.

Within this area of research, scholars have mainly used empirical and field data from popular websites. In most of the studies, the relationship is analyzed within the same platform, namely as the effect of reviews on the sales/marketing strategies of products/firms on the same website. E.g., the effect of Amazon user reviews on the sales of products on Amazon itself (Chevalier and Mayzlin, 2006). In some other instances, the link was analyzed across outlets. E.g., the effect of movie eWOM on performance at the box office. Indeed, for some products, that is the only way to establish a relationship.

The impact of eWOM on sales is strongly supported by all studies. While it is true that the relationship between reviews and sales is statistically demonstrated, there exists a great variety in how researchers have come to explain it. Topics under on-going scrutiny are the effect of negative reviews on sales, versus the effect of positive reviews and whether it is the volume of reviews, rather than the valence, that has more influence on sales. The effect on marketing strategies is less clear and might need more attention; in particular, works analyzing strategies other than pricing are lacking. A useful question might be if firms are actively incorporating user reviews in ex-ante decisions, such as those on product quality. More research is necessary to have a full understanding of the response of firms to such an importantal information tool.
4.3.1 C1: Sales

Unsurprisingly, the vast majority of articles investigating the connection between eWOM and sales focused on goods and services in the entertainment and the tourism industries. Movies/books and hotel/restaurant services are traditional examples of experience goods, for which the quality is unproven until after consumption has occurred. Consumers, thus, are more likely to look for opinions of people that already experienced the product—especially with respect to search goods, which features can also be assessed through reviews from professionals or technical tables. However, more recent studies extended the scope of research by considering goods like electronic devices, exploiting the availability of data from e-commerce websites. Little attention has been devoted to the comparison between experience and search goods within the same retailing channel.

Overall, there exists a consensus: online user reviews do affect commercial performance of products. E-commerce websites hosting reviews do generate a different level of sales with respect to comparable websites that do not offer the possibility to leave personal messages about the purchase. Heterogeneity of results arises in terms of what components of eWOM are affecting performance and what is the sign of the effect. On this, evidence are more mixed. Nevertheless, valence and volume seem the play the largest role (as websites are typically designed to show average user ratings and number of reviews); positive reviews have a beneficial effects on sales; and the variance of reviews also matters. Further, it is worth mentioning that eWOM seems to affect popular products differently with respect to niche products. This is not surprising as the latter are generally less known and do not enjoy large advertising campaigns from firms—therefore relying on more direct and inexpensive communication channels.

Studies on the effects of online reviews on product sales do not exist in a vacuum—the causal consequences of any kind of information about products on their commercial performances have been widely investigated in many contexts. Specifically related to reviews, a stream of literature has focused on experts’ opinions on magazines, newspapers and other media. Contrarily to consumers, experts have the knowledge to discern and judge product characteristics in an objective manner. Similarly to consumers, nevertheless, they are free from commercial purposes and typically independent, as they don’t come from companies selling products (unlike advertising): experts can generally be trusted.\(^8\) Both types of reviews are trusted by consumers and reasonably have an impact on product adoption. A 2014 Nielsen survey

\(^8\) The unbiasedness of experts’ opinions is, nonetheless, subject to debate. In some industries, the existence of magazines and professional websites relies very much on advertisement by the same companies for which they review products. This conflict of interest has arisen in the video game sector, following several scandals where reviewers were forced or incentivized to be more lenient during the review process.
showed that 85% of consumers read an expert’s review before purchasing a product; the vast majority of them were influenced by its content. The reach of experts’ opinions, though, is not as wide as user reviews. Further, consumers relate more to opinions of their peers, rather than those of professionals paid to review something (De Langhe et al., 2016).

Chen et al. (2004) and Chevalier and Mayzlin (2006) are the first relevant works that tried to empirically investigate this relationship, and succeeded in doing so through grounded identification strategies. Chen et al. (2004) considered the role of both user reviews (here called consumer feedback) and recommendation systems on consumer demand. On the one hand, the very presence of consumer feedback should help consumers to reduce uncertainty about product quality; on the other hand, it is driving sales only when it is credible. The authors collected data from scraping Amazon book section, and used sales ranking as a proxy for sales volume. They drew from the marketing literature in estimating a linear model linking sales (i.e., ranking position) with three sets of regressors: product characteristics (e.g., price and discounts); consumer feedback (average score and volume); and website recommendations. Across model specifications and book categories, the volume of ratings has a positive impact on sales, unlike the rating itself, which seems to positively affect sales only for bestsellers. As popular books enjoy a bandwagon effect, they might be more likely to be subject of external factors. Nevertheless, the estimation technique did not consider the endogeneity problem coming from simultaneity: it is reasonable to think that consumer feedback is also influenced by sales (in particular, the volume of reviews).

Unlike Chen et al. (2004), Chevalier and Mayzlin (2006) were able to estimate a significant effect of ratings on sales, meaning that they could disentangle the impact of different rating distributions; also they looked at the long-lasting effect of reviews: how sales were affected a month after reviews had been accumulated. Indeed, Chevalier and Mayzlin (2006) used data from two online bookstores, Amazon and Barnes and Noble, and estimated the effect of valence by looking at the difference in sales of the same book across websites with the number of reviews being the only difference (i.e., difference-in-differences approach). This additional analysis complemented the interpretation of standard OLS

10Recommendation systems are tools implemented by online retailers within their websites that suggests potential purchases to consumers, based on their own previous searches. Their increasing relevance is nowadays a wide subject of study.

11This practice has become standard in empirical research. Online retailers typically dedicate a section of their websites to rank best-selling products (within and across product categories). Starting from the work of Schnapp and Allwine (2001), there is a long tradition in using information about these rankings to approximate actual sales (the latter not publicly available, unlike prices). Schnapp and Allwine (2001) identified a linear and positive relationship between the two variables, using proprietary data from Amazon. More advanced methodologies have been implemented in recent research papers, suggesting a non-linear, but still positive, relationship between the two variables (Wang and Wright, 2017).
estimation. In doing so, authors were able to control for unobservables that might have affected sales
and been correlated with reviews. During the exploratory analysis of the data, Chevalier and Mayzlin
(2006) found that rating distributions were skewed towards the highest scores and the average rating
were well above four out of five (the issue of rating bubbles will be widely covered in Section 4.4.2). In
the model specifications, alongside with consumer reviews, Chevalier and Mayzlin (2006) also included
prices, book features and shipping methods. Book-site-specific fixed effects were also accounted for.

Average ratings aside, Chevalier and Mayzlin (2006) also considered the fraction of extremely negative
and extremely positive reviews. Going by the results, Amazon consumer reviews are considered more
reliable than those on the other website: they affect sales in the expected way (the higher the average
score, the more positive the effect on sales). On Barnes and Noble, only extremely negative reviews carry
some weight on sales. These reviews were generally found to have a bigger impact than 5-star rating.

Using a randomized sample of books from Amazon and Barnes and Noble, similar results were found
by Sun (2012). Valence and volume were always positively correlated with sales; variance, instead, was
positively correlated but only for those product which average rating was below 4.1/5 stars.

In the tourism and service industry, scholars have mainly investigated the relationship between user
reviews and hotel room sales/booking. Ye et al. (2009), for example, used data from a popular Chinese
online travel agency. They found that positive average ratings increase hotel bookings and, in turn, the
volume of reviews (confirming the simultaneity issue feared by previous scholars). A related work built
on a much larger data set, Ye et al. (2011), found similar results; in addition, the authors also found
that the variance of ratings does not affect hotel bookings. Ögü and Onur Tat (2012) investigated the
effect of user feedback in conjunction with another, more objective, quality cue: the number of stars
assigned by national agencies to hotels. The authors, using data from the popular platform Booking,
found that an increase in rating valence leads to a statistically significant improvement of hotel room
sales: “a 1% increase in online customer ratings increases Sales per Room up to 2.68% in Paris and up
to 2.62% in London” (Ögün and Onur Tat, 2012, p. 210); instead, the official star rating does not seem
to affect performance. This is line with studies that found consumers do read official certification labels
but eventually put much more weight on peers’ opinions (De Langhe et al., 2016). The role of (positive)
valence has been established in other industries as well. Mo et al. (2015) looked at the sales of cleansers
on a popular Chinese e-commerce website. They found that positive reviews, as well as product image
and description, positively affect sales, while negative and moderate reviews don’t show any significant
impact on sales.
While the presence of positive feedbacks certainly translates in a positive effect on sales, negative reviews are found to either negatively affect sales or being not relevant. In fact, some studies in the marketing literature have concluded that negative reviews (from experts) might even be beneficial to commercial performance (Berger et al., 2010). In line with these results, Cui et al. (2010) looked at data from newly released products on Amazon and monitored the effect on performance across a longer time span than previous papers. While the valence was positively related to product sales, the authors found that negative feedback was much more impactful than positive feedback, and that the former might even spur an increase in sales of new products as long as the average user rating is globally positive. It seems that initially negative reviews raise product awareness and eventually are considered as valuable pieces of information by future purchasers: regardless their content, they might finally encourage product adoption. Further, the results indicated that these effects were not long-lasting and vanished over time. In addition, the authors analyzed the influence of user feedback across product types. It appeared that volume affects much more experience goods, while search goods sales are more influenced by the valence of reviews. Cui et al. (2010) was one of the first attempts to study the different responsiveness to eWOM of good types.

Framed in the relationship between product proliferation and online communication, Clemons et al. (2006) analyzed how user reviews affected products in the craft beer industry. The novelty of their approach was to focus on the variance of rating distributions, typically neglected or scantily covered by previous scholars. The role of the variance seems relevant in the context of hyperdifferentiated products: the proportion of enthusiastic consumers (i.e., those posting a very high score) might be more relevant than the average rating for those products that cater extreme preferences. The authors used data from a popular beer review website and sales provided by the Association of Breweries (sales data contained only firm-wide information, and not product-specific); in particular, they focused on sales growth. The association between reviews and sales was statistically significant; consistently with previous studies (Chevalier and Mayzlin, 2006), the higher the average rating, the higher the sales. Further, rating distributions skewed towards extremely positive ratings also have a positive effect on sales, in contrast with findings in other markets for more generic products (Ye et al., 2009). Finally, negative ratings seem to not affect much sales. This was in stark contrast with Chevalier and Mayzlin (2006), who found a more relevant role of negative ratings versus positive ones; this is explained by considering the differ-

12Under hyperdifferentiation, firms produce goods which are able to perfectly fit the tastes of each consumer on the preference spectrum. Extreme tastes are taken into account within specific products, that might find a limited, though profitable, market (i.e., niches). The fall of search costs thanks to digitization and e-commerce allowed hyperdifferentiated products to proliferate.
ences between the book and the craft beer industry and the fact that beer is a repeated-purchase good. The paper presented a strong case for hyperdifferentiation: if the high-end set of ratings has a positive impact on sales growth, then firms should offer more niche products and care less about products aimed at satisfying a wide audience.

Some studies were primarily aimed at introducing user reviews within sales forecasting models, especially for those goods that have a short lifecycle and sales concentration during the first weeks after the release. By looking at the movie industry and using review data from Yahoo Movies, Dellarocas et al. (2007) found that consumer feedback was not correlated with professional ratings, making them an additional valuable tool to forecast sales. Indeed, forecasting accuracy improved when user reviews were considered alongside with more traditional metrics, such as star power, marketing budgets and early commercial performance; the more favorable the user reviews, the better the box-office performance. Another interesting result was that the volume of reviews during the first day of release could be used to proxy early sales, which is particularly important when data are not public or they take some time to release. Dellarocas et al. (2007) expanded the research by Liu (2006), who considered user reviews from the same website to predict box-office sales. While Dellarocas et al. (2007) implemented a non-linear hazard model, Liu (2006) adopted a much simpler (and more tractable) linear model. The author found that the volume, rather than the valence, had a role in explaining box-office performance. Perhaps, a smaller range of movies and a less sophisticated model specification drove these results.

After the first wave of researches assessing the importance of eWOM as a driver of commercial performance, scholars have started to enrich their estimation models to account for the endogeneity nature of user reviews. Duan et al. (2008b), for example, adopted a simultaneous equation model which accounted for both the pre-release effect of eWOM and the effect of sales on such resource of information—what they called a positive feedback mechanism. They also considered a dynamic framework, able to deal with a long time horizon. The analysis confirmed that, indeed, dual causality may be a concern in this type of research. The data were the from the same source as Dellarocas et al. (2007) and (Liu, 2006): Yahoo Movies. The authors found that ratings per se do not affect movie performance but they do through volume: “user ratings do not directly influence box office revenue. However, they affect box office revenue indirectly through WOM volume.” (Duan et al., 2008b, p. 234). Also, this effect was significant across time, though vanishing moving away from the release period. The relation went also in the opposite direction: higher sales led to more reviews and therefore greater volume. Finally, the results suggested that volume is also affected by average user ratings; it seems that viewers are more willing to spread
their opinion when the online community positively welcomes the movie. In sum, revenues and valence influence volume which, in turn, influences commercial performance. The authors admitted that, being movies horizontally differentiated products, adoption might have depended more on the content itself of reviews, rather than the star rating, and that impulse purchasing might have been more likely. Therefore, only looking at average star ratings and volume might have constrained the analysis. Similarly, Zhu and Zhang (2010) aimed at verifying whether the significant impact of valence on sales was not due to unobserved quality, which would affect both indicators. In order to avoid the endogeneity problem, the authors considered the video game industry and the same titles released on two different platforms, adopting a difference-in-differences approach (Chevalier and Mayzlin (2006) did the same considering the same book sold by two different e-retailers). Further, they adopted a nested logit demand model for games to estimate the effect of user reviews on sales, in order to control for heterogeneity in consumer preferences. Even accounting for omitted variable bias, results showed that higher average ratings, and higher volume, had a positive effect on sales. The research also validated the idea that user reviews were particularly useful in affecting the performance of niche and less popular games. On the issue of the dynamic evolution of reviews and sales, Li and Hitt (2008) considered the fact early adopters are typically more enthusiastic about the product and therefore have the tendency to leave very positive feedbacks. Therefore, using data from Amazon, they found that reviews affect sales through this self-selection bias. At the same time, users do not realize this issue and are affected by biased reviews. The discussion about how consumer product adoption is affected by reviews is postponed to Section 4.4.1.

Duverger (2013) tried to extend previous literature by considering a dynamic non-linear relationship between UGC and sales (here, proxied by hotels market share), and including in the analysis the role of competition between firms and textual reviews in addition to ratings. The rich data set and the advanced econometric model allowed the author to confirm the hypotheses that ratings are an endogenous variable in the relationship with market shares and that rating valence improves hotel performance, both in the current time and across time (though at diminishing returns, confirming most of previous studies). The most interesting result is, perhaps, the fact that there exists a certain rating threshold above which hotels start to be negatively affected by valence. It seems there was a too-good-to-be-true effect, more pronounced for low- and mid-tiered properties. This was also confirmed by the effect of review length on market shares, on average negative, even when interacted with ratings. The issue of whether the textual content of reviews might affect sales has been a subject of analysis by Ghose and Ipeirotis (2011) among others—the analysis of texts has become popular only recently thanks to the adoption of
more advanced techniques. In particular, the authors identified factors within reviews that might have an impact on product adoption and, consequently, on sales. Using text mining techniques on Amazon product reviews, Ghose and Ipeirotis (2011) found that, on the one hand, subjectivity was positively related to sales for search goods (and not related at all to experience goods). On the other hand, reviews containing both subjective and objective sentences had a negative impact on sales of both good types. Experience goods, though, were negatively affected by the proportion of spelling mistakes, while both goods were positively affected by readability. On top of these results, the authors found that volume has a positive effect on sales, while valence has a positive effect only on search goods. The joint analysis of both ratings and textual contents might help to shed light on some counterintuitive results by previous scholars (Cui et al., 2010). For example, negative reviews can improve sales “when the reviewer clearly outlines the pros and cons of the product, thereby providing sufficient information to the consumer to make a purchase” (Ghose and Ipeirotis, 2011, p. 1505); that is, when the review is readable, does not contain spelling errors, and subjectively describes the negative attributes, which might not be as relevant to future purchasers. On the different impact of reviews across good types, Ghose and Ipeirotis (2007), using data from Amazon, found that reviews with text content focused on objective product features are affecting more performance of feature-based goods, such as digital cameras; instead, reviews with text content centered around subjective characteristics affect performance of experience goods such as DVDs.

Chintagunta et al. (2010) explored the issue of endogeneity in the movie industry, as Duan et al. (2008b). The authors, though, found that the valence, rather than the volume, affects sales. Driving these results, the fact that the authors decided to consider data at the local level,13 rather than at the national level. According to Chintagunta et al. (2010), there exists an aggregation bias that hides the true effect of average user ratings. Indeed, movies typically open in different period across markets; higher box office sales might result from openings in new territories and, at the same time, average user ratings might decrease because viewers in those markets where the movie had already opened didn’t like it. This would basically nullify the effect of interest. It is worth noticing that this phenomenon might arise only in specific industries or across relatively distant geographic markets. Using a policy shift by Amazon, framed as a natural experiment, Chen et al. (2011) investigated the role of e-WOM together with observational learning; while the former pertains other people’s opinions, the latter concerns observing what others are doing and learn from their actions. In the case of e-commerce, observational learning arises in terms of purchase recommendations based on other previous consumers’ habits. According to

13The authors used the so-called DMA-level geographic locations.
the authors, the true effect of user feedback on sales can be confounded by observational learning if both are present in the product page and therefore used by consumers as cues during product adoption. Indeed, results showed how e-WOM and observational learning interact with each other, when volume is considered: the higher the number of reviews, the stronger the effect on sales of recommendations based on others’ actions. Further, as previous studies have found (Chevalier and Mayzlin, 2006), online reviews had an asymmetric effect: negative ratings are much more impactful than positive ratings; and the influence on product performance is diminishing across product lifecycle.

Forman et al. (2008) suggested that, in addition to valence and volume, the reviewer identity disclosure might also be linked to product sales. The authors collected data from Amazon book section, and retrieved information about reviewer identity. They built dummies signalling whether a reviewer revealed the true name, the location or both. Results from linear estimation (based on Chevalier and Mayzlin (2006)) suggested that valence is not a predictor of sales; while identity disclosure is positively associated with the outcome variable. This effect appears to be stronger within geographical areas; if reviewers revealed their spatial location, product sales in the same area increased. It is worth noticing that the presence per se of source cues positively affects product sales, regardless actual ratings. Nonetheless, similar results were found by Ghose and Ipeirotis (2011), where identity disclosure was indeed positively related to sales, even when controlling for the quality of the review (e.g., in terms of readability). The reasons behind these results were not explained, though. Somehow, this research is in line with the idea that valence is not affecting in a significant way sales (Liu, 2006).

In addition to reviewer identity, sometimes reviews contain other information along with rating and textual contents. Many websites allow users to rate the helpfulness of user reviews. According to Chen et al. (2008a), this might be a factor which strengthens the relationship between reviews and sales. A positive vote to a review can increase how the review is perceived by potential buyers, affecting their choices; as with identity, an helpfulness indicator can increase the saliency of the quality signal. More in details, the authors considered three additional cues: the helpfulness of the review; the quality of the reviewer; and whether the review was highlighted on the product page. They collected data from Amazon book section over a period of about seven months. The interaction between average user ratings and helpfulness led to the expected results: a higher proportion of helpful votes exacerbates the effect of average scores. The positive (negative) effect of high (low) star ratings is stronger when, on average, those ratings come from reviews that have been considered useful by the online community. Nonetheless, the prominence of reviewers does not seem to affect product sales, perhaps because the information is not
immediately visible to buyers. Further, reviews in the spotlight play a role: they add to the influence by star ratings. Interestingly, these factors impacted more niche products than best-sellers, an effect that was found by previous scholars (Zhu and Zhang, 2010); indeed, less known products are more susceptible to such signals, while big sellers gain traction from the very fact that they are popular.

Not only sales have attracted the interest of scholars, but also other metrics to measure the success of a product or a firm. As the outcome variable, Zhang et al. (2010b) considered the online popularity of restaurant measured in terms of web traffic. By using data from the Chinese counterpart of Yelp, the authors were able to show that the average user rating has a statistically significant impact on the number of views of a restaurant’s webpage. This was true across rating categories, as Zhang et al. (2010b) estimated separately the effect of scores on food quality, atmosphere and service. Volume also had a positive impact on restaurant’s popularity. One of the factors driving these results might be that all the information were collected on the same page where the restaurant website could have been accessed—meaning that users could immediately react to a positive rating at a negligible cost. This is different than purchasing a product, which requires a different, more costly and engaging, effort.

4.3.2 Marketing strategies

“There is little debate as to whether WOM matters to the firm” (Godes and Mayzlin, 2004, p. 545): as the link between user reviews and sales has been widely recognized by academic researchs and industry professionals alike, firms have started considering how to incorporate eWOM into their marketing strategies as a way to increment profits and improve service quality and customer interaction. User reviews, after all, serve managers as a unique and rich tool to adapt marketing and promotional activities as well as choices related to the sale of products and services (Chen et al., 2008a); UGC systems act as an important avenue for no-cost market research (Rupert Hills and Cairncross, 2011, p. 34). Not being able to extract informational value from user reviews (and other related components of eWOM) may result in sub-optimal decisions concerning product sales (Kumar et al., 2010). Firms relying only on transaction information might miss opportunities to make the product/service more desirable and attractive.

I will make two considerations before exploring the issue further. First, I will not focus on the establishment itself of rating systems. It is important to notice that the existence of user reviews was necessary for firms to gain trust within electronic channels. According to Fung and Lee (1999, p. 516), “trust is particularly important in the electronic marketplace where the potential for opportunistic behavior is high”—hence, user reviews became a tool to enhance company/product reputation alongside
official signals such as the company’s name and certifications. The need for these feedback systems was pushed by online retailers, rather than by individual companies selling through such retailers. For example, eBay introduced its feedback systems in order to provide consumers additional information about seller quality. Amazon’s user reviews aimed at increasing transparency and information provision in an environment characterized by product overload. While such systems impacted sellers’ prospects within the retailing platform, for example increasing bidding prices (Ba and Pavlou, 2002), it is safe to assume that their presence is orthogonal to sellers’ response to average ratings—sellers consider UGC systems as established entities towards which they do not have any power whatsoever. The topic can be explored in isolation, without referring to the motives that led to the establishment of feedback systems.

Second, I will not consider actions firms can implement to respond or manipulate online user reviews. Indeed, many websites now allow managers to write a brief clarification to users that had reviewed their properties; and also to add reviews themselves within personal websites. These relates to additional tools rating platforms provide to sellers—another layer of analysis which depart from the focus of this literature review. Wei et al. (2013) showed that hotel managers should create tools to encourage customer engagement and to control eWOM more directly. The marketing literature has broadly explored this topic and research is still on-going.

Initial studies on the role of online user ratings on pricing decisions focused on price dispersion in electronic markets. Traditional theory predicts that e-retailers would be characterized by lower price dispersion versus traditional brick-and-mortar stores, because of lower search costs. Grover et al. (2006), citing evidences of great price dispersion in online stores, theorized that e-shopping presents features that might mitigate/counterbalance the effects of smaller search costs; that is, information overload and information equivocality. The latter refers to the great variance in consumers’ ratings for a specific product: “[t]hese differences in product-quality perceptions lead consumers to have differences in the amount they are willing to pay (reservation price) for the same product” (Grover et al., 2006, p. 306). Sellers, in turn, exploit this increase in willingness to pay by raising prices. Using data from Shopzille (formerly, Bizrate), a popular comparison website, the authors were able to validate the hypothesis that a greater variability in ratings lead to higher prices.

Yacouel and Fleischer (2012) studied reputation mechanisms within online travel agencies (OTAs), in particular evaluating the role of user reviews in the hotels’ pricing choice. Broadly speaking, OTAs show information to potential customers related to the quality of hotels; e.g., the number of official stars assigned by national authorities, pictures and, of course, user reviews. Unlike traditional operators, OTAs
can rely on such type of UGC information and, unlike many other e-commerce websites, OTAs allow reviews from actual customers only. Using data from Bookings, the authors found that hotels characterized by high scores in the staff performance valuation charged higher prices.14 In sum, higher quality (as signaled by user reviews) allowed firm to ask for a price premium within the platform. Further, the higher the star ranking, the higher the price mark-up—customers of luxury hotels were more demanding with respect to customers of cheap hotels, therefore they valued more quality signals such as eWOM. Yacouel and Fleischer (2012) were able to confirm the theoretical predictions that firms react to a change in reputation by changing accordingly their strategies in terms of pricing. Similarly, Öğüt and Onur Taş (2012) analyzed Booking reviews and prices to find the same positive significant relationship; and the same greater sensitivity of prices of higher star hotels. By estimating an hedonic pricing model, and using data from Booking, Abrate and Viglia (2016) proved the existence of a positive link between average user rating and price positioning. The study advocates for the inclusion of eWOM in dynamic pricing models, alongside other reputational variables such as official star ranking, and contextual variables such as the amount of competition in the same geographic area. In a similar fashion, Yang et al. (2016) found that better online user reviews brought hotels to charge higher prices, and therefore to overcome difficulties from selling their services in less busier periods of the year.

The influence of eWOM on firms’ strategies is not limited to the tourism industry. Kocas and Akkan (2016) considered Amazon data about books and found that booksellers charge lower prices when average user rating is higher. They justified this result by considering competition between sellers and the fact that a lower price combined with high ratings can help patronize customers. Jiang and Wang (2008) built a theoretical model of vertically differentiated products and showed that high user ratings of the high quality product result in less aggressive price competition and therefore in an overall increase in prices; while an improvement in ratings of the low quality product will intensify competition therefore leading to lower prices—user ratings are considered, therefore, a component of the perceived quality by consumers, and a driver of prices. The authors tested these predictions using Amazon data on digital cameras and multivitamins, finding support for the idea that user ratings might either mitigate or strengthen price competition among sellers. This work is interesting because it introduces an element of competition between firms, and consider eWOM as a product characteristic that can augment/enhance perceived product quality, therefore leading to a change in firms’ pricing strategies.

14They noted that other categories, such as cleanliness or comfort, were highly correlated with staff performance and therefore were excluded from the regression analysis.
DiRusso et al. (2011) considered a selection of electronic products on Amazon, and investigated factors determining retail prices; among these factors, reputation signals, such as the brand logo and the number of ratings sellers received. Unfortunately, the authors found that user ratings are negatively affecting prices—the explanation may lie in the presence of reverse causality; that is, sellers have higher ratings because they charge lower prices and therefore they are seen as more benevolent towards consumers, collecting higher scores.

Other than prices, service quality can also be affected by online user reviews. Consumers’ opinions can, on the one hand, inform sellers about what does not work in their product/service; and, on the other hand, they can work as a deterrent to offer a bad product/service, so to avoid bad comments that might negatively affect sellers’ perception among potential consumers. Contrarily to prices, service quality is a much more difficult choice variable to measure. Smyth et al. (2010) attempted at understanding whether hotel managers were improving quality following their presence on TripAdvisor; they found that as the website had became more widely used (by comparing two cities with different level of TripAdvisor penetration), hotel ratings improved together with an increase in managers’ responses—signalling the fact that hotels were sensitive to reviews and, possibly, tried to improve the service they offered. The analysis, nevertheless, is not rigorous as the authors only looked at correlation between variables. They could not explicitly rule out other confounding factors, such as the mainstream effect, namely the fact that as TripAdvisor becomes more popular it also attracts a wider audience, typically less critical and more apt to leaving higher ratings.

In sum, concerning the link between eWOM and marketing strategies, there are two main directions for future research. While the issue of endogeneity has been widely explored when investigating the relation between ratings and sales, the same cannot be said when considering the effect of ratings on prices. The estimation of more sophisticated model accounting for the issue of reverse causality is needed, as the simultaneity between user reviews and firms’ strategies is evident. Furthermore, until now, pricing decisions have been the main subject of analysis. Nevertheless, sellers might also want to alter other characteristics of their products following consumers’ feedback (Smyth et al., 2010). This is particularly relevant in the tourism industry, where service quality can be easily adjusted. A more thorough analysis of whether firms actually incorporate UGC to improve their product, rather than extracting more consumer surplus, is needed.
4.4 Behavioral dimension

“The consequences of WOM communication occur in the behavior of those who receive it—their awareness, beliefs, attitudes and actual decisions” (Chatterjee, 2001, pp. 6-7). As established in the introductory section, people have become accustomed to reading users reviews when they search for a product or service online. They might also value online user reviews more than offline counterparts (Cheema and Papatla, 2010) and find them more trustworthy than website recommendation systems (Senecal and Nantel, 2004). While browsing, potential consumers become eWOM receivers, and they incorporate such informal messages within the decision-making process up to the purchase and, possibly, the rating itself. Rating systems were established to reduce information asymmetries during e-shopping, hence they were specifically intended to be used by potential consumers—but to what extent do actually they affect choices? A large strand of the literature has developed in trying to understand the impact of online user ratings during the purchasing phase (i.e., on product adoption) and after the purchase (e.g., during rating itself).

The potential impact of WOM on individual purchasing choices depends on a variety of factors. One of the main drivers is the source of recommendations—e.g., friends and family; the degree of influence depends on the closeness between the sender and the receiver (Chatterjee, 2001). Nevertheless, online reviews are typically written by strangers. Henceforth, other factors likely affect the behavior of individuals: for example, the size of eWOM, which can be measured by the volume of review, and other informational cues that appear within the rating system such as the identity of the reviewer. Alongside empirical data, scholars have conducted many laboratory experiments in order to control the drivers under investigation during consumers’ purchasing and rating intentions. In many instances, rating interfaces have been specifically created as a way to stimulate specific responses and disentangle the drivers of consumer behavior more easily.

Understanding how consumers utilize the information from user reviews is highly relevant as this information can be biased, and therefore not reflecting of actual preferences. Li and Hitt (2008) tackled the issue of self-selection in online user reviews. Early adopters might have a different attitude towards product with respect to late-comers, the fact of which is the reflected in online ratings—as such, there might exist a correlation between the tendency of buying early and the satisfaction derived from the product. For example, a digital camera might initially receive low ratings because tech-savvy consumers did not find its features satisfying, while the same camera might meet the needs of a more generic...
Li and Hitt (2008) found the presence of such biases on the Amazon book section—user reviews exhibited a time trend, namely, early adopters were more enthusiastic than late-comers and therefore reviews were initially extremely positive, but then moderated. The presence of self-selection bias greatly impacts consumer behavior during browsing. Indeed, the authors found evidence that consumers don’t discount for this bias. This poses a threat for firms and consumers alike, being pushed to sub-optimal choice through biased signals.

4.4.1 C3: Product adoption

When deciding whether to buy a product and which product to buy, consumers might look for information about attributes of the product and for recommendation from different sources. Contrarily to firm-based recommendations, online user reviews are centered around the experience of actual consumers, and therefore are closer to what potential buyers are looking for (Bickart and Schindler, 2001). For this reason, consumers tend to conform to the opinion of anonymous reviewers and internalize this information during the browsing and purchasing process. The extent to which eWOM can affect consumer’s behavior depends on a variety of factors, many of which explored by previous scholars. The topic deserves attention because the way how consumers are researching products has widely changed throughout the years thanks to new technologies. In explaining consumer’s decision-making, traditional Marketing literature has adopted the “funnel metaphor”: consumers become aware of a variety of brands/companies (awareness phase) and then start systematically to narrow down the set using marketing messages and other communication signals (e.g., WOM). After becoming familiar and then actively considering certain brand, the consumer decides from which company to purchase and eventually whether to become a loyal consumers. A 2009 research by McKinsey 15 challenged this traditional view by theorizing a circular process called the “consumer decision journey”. Here, the consumer may add or subtract brands at any given time during the awareness and consideration phases; being exposed to constant advertisement, recommendations and other marketing-related activities on digital devices has destabilized the linear process of narrowing down the initial set of brands. Further, in today’s landscape, consumers are empowered agents as they can share their opinions with a large audience and become influential spokespersons, through rating systems, forums and social networks; they are “becoming more rational decision makers, making objectively better choices, and becoming less susceptible to the influence of

marketing and branding” (De Langhe et al., 2016, p. 818). This means that, after the purchase, they become active users evaluating their experience with the product and, possibly, informing others. The loyalty step, therefore, is weaker than in the traditional streamlined process. The research aims at indicating firms guidelines in how to change their communication strategies to accommodate this new take on consumer decision-making. Recent works seem to confirm the theory of the consumer decision journey. Jang et al. (2012) used a survey and a two-stage estimation model to show that consumers do use online user reviews during the consideration phase, rather than during the choice stage, and they constantly update their belief about product quality. Incorporating eWOM during a phase where a lot products are browsed/considered brings consumers to enlarge and shorten the set until finally convinced about which product to adopt.

Chatterjee (2001) was the first attempt in analyzing the role of online user reviews in consumers’ decision-making behavior. While eWOM loses direct person-to-person communication, it might recreate familiarity under different aspects. The authors considered the degree to which retailer patronization can moderate the effect of online user reviews, especially negative ones. By means of a laboratory experiment, the author was able to study the behavior of consumers that are familiar with a specific e-retailer and those that, instead, were attracted by lower prices and therefore were unfamiliar with the online store. Results showed that the former are less likely to search for online user reviews and are less affected by them in purchasing intentions. In particular, negative reviews influenced more the second type of consumers, in terms of considering the retailer credible and eventually proceed to purchase a product. The work is a strong advocate against the common “lowest price” advertising strategy as it attracts consumers that are more susceptible to eWOM and therefore more difficult to patronize.

By considering a choice in hotel booking, Vermeulen and Seegers (2009) directly investigated the impact of eWOM on decision-making behavior. In particular, by means of an experiment, the authors measured the effect of exposure to online user reviews on hotel awareness, hotel attitude and hotel consideration—representing the different steps in product adoption decision-making. Results showed that both positive and negative reviews increase awareness by bringing consumers to, at least, know more about the hotel. Positive (negative, respectively) reviews, then, improve (worsen) attitudes towards the hotel. Given higher awareness and better attitude, positive reviews increased hotel consideration by leading consumers to increasingly consider actually booking. Interestingly, negative reviews did not impact hotel consideration—the authors suggested that the awareness effect was large enough to compensate the more adverse attitude. Through the experiment, the authors were also able to collect
information about the stance on popular versus less-known properties. In line with what was found in
similar studies (Zhang et al. (2010a) Clemons et al. (2006)), lesser known hotels were more susceptible
to online reviews while familiarity with the hotel made consumers more resilient to being affected by
other people’s opinions, confirming the idea that familiarity with the firm makes consumers less willing
to rely on eWOM (Chatterjee, 2001). Through an experimental study, Mauri and Minazzi (2013) found
similar results. In their research, purchasing intention of subjects was significantly affected by valence
of the message—it improved under positive reviews and deteriorated under negative reviews. The same
effect was found on consumers’ expectation about the product.

Since the role of eWOM as influencer has been established, scholars have started to investigate
moderating factors and channel through which these signals were able to change consumers’ behavior.
While star ratings are indeed an important signal, textual content is also relevant. “[S]entiments expressed
in the text provide more tacit, context-specific explanations of the reviewer’s feelings, experiences, and
emotions about the product or service” (Hu et al., 2014, p. 42) and therefore should be considered when
assessing the influence of eWOM on product adoption. Using sentiment analysis on a sample of Amazon
reviews, Hu et al. (2014) were able to assess the different impact of ratings (numerical attributes) and
textual content (sentiment) on product adoption. They found that ratings themselves do not affect sales,
while sentiment does—and the two variables are positively correlated. These results can be understood
by considering the decision-making process of a consumers: ratings can be used initially to skim through
the many available alternatives—to narrow down the consideration set. And finally, textual reviews are
used to actually direct the choice. They also found that “most helpful” and “most reviews” (typically
highlighted in the product webpage) affect product adoption—they effectively work in raising consumer
attention and convincing him/her to purchase.

Lee et al. (2008) considered the effect of the quantity and the quality of negative online user reviews
on product adoption. Using a laboratory experiment, the authors found that the higher the proportion of
negative reviews, the more skeptical subjects were towards the product, with high-quality reviews being
more trusted than low-quality ones.\footnote{According to Lee et al. (2008), the quality of reviews refers to the type of information conveyed. High-quality reviews contain information about specific failures of the product, while low-quality reviews contain inessential and vague information.} Further, the authors introduced a moderating factor in the analysis:
consumer search involvement. Through a questionnaire, they were able to assess subjects’ effort in com-
pleting the task—high-involvement subjects were more affected by negative reviews and, consequently,
more affected by high-quality than low-quality negative reviews; low-involvement subjects didn’t show
any difference in attitude across review quality levels). The way high-involvement consumers (more specifically, travelers) adopt information from online user reviews has been under investigation in Filieri and McLeay (2014). On top of the quality of reviews, in terms of accuracy, relevance and value-added information, a strong predictor of travelers incorporating eWOM into their decision-making processes was product ranking. The huge amount of products readily available online leads consumers to skim them using simple cues, such as the position on the webpage. Therefore, high-involvement consumers use a mix of a central and a peripheral route to information adoption, and not only immediate heuristic cues. A similar consumer trait was analyzed by Gupta and Harris (2010), who called involvement “motivation”—as the “the amount of thought devoted to an argument” (Gupta and Harris, 2010, p. 1042). Highly motivated consumers use eWOM as another informative signal to infer the quality of the product; while consumers with low motivation acritically internalize eWOM and purchase the recommended product without second thought. Gupta and Harris (2010) conducted an experiment using a realistic online shopping website where they manipulated the presence and the type of eWOM shown to subjects. They found that, when exposed to eWOM, high-motivation consumers take more time in searching products in order to make a more informed decision to the point that they might even change their preferences to accommodate the opinion of previous consumers. Low-motivation consumers, instead, are more simply affected by user reviews, not incrementing their search time. The former, though, never decided to buy a suboptimal product even if recommended, while the latter easily followed eWOM whichever product was recommended. This result strongly suggests that the acritical adoption of eWOM information can lead to wrong choices if not properly processed.

Adopting the cognitive fit theory, and considering the traditional product life-cycle, Park and Kim (2009) aimed at understanding whether eWOM affected consumers with different levels of expertise about product types in different ways; and which review feature/content were resounding more to which group. For example, expert consumers seek information about technical attributes while novices prefer to read about the benefits of the product. The difference between the two types of consumers is important as expert consumers tend to write reviews earlier and, with their opinions, can affect subsequent, less savvy, consumers (Li and Hitt, 2008). The authors conducted an experiment where subjects were shown reviews of different types and were assessed on their knowledge about the product under analysis (a portable multimedia player). The experiment showed that “experts seek attribute information because they want to use their prior knowledge to infer product benefits from the stated attributes [...] By contrast, novices prefer the benefits only messages because the specification of product benefits facilitates
understanding of the given reviews” (Park and Kim, 2009, p. 404). In terms of product adoption, the cognitive fit theory was demonstrated: experts (novices, respectively) are more likely to purchase a product when reviews point out intrinsic features of the product (benefit stemming from the usage of the product). An interesting result comes from the impact of the number of reviews—while experts’ behaviour is mainly influenced by the quantity of more technically detailed reviews, novices are simply affected by the amount of reviews, regardless of their type—again, confirming the intuition regarding the acritical incorporation of informational cues in the decision-making process of less attentive people. In the hospitality industry, the most relevant product dimensions are core features (i.e., the ability of creating value for the customer) and relational services (i.e., features related to customer-employee relationship). These features are also the most talked about dimensions within online user reviews (Sparks and Browning, 2010). By building on these stylized facts, Sparks and Browning (2011) adopted an experimental design with a simulated rating website and several treatments differing in terms of the type of information available. Their analysis highlighted the positive influence of favorable hotel user reviews on consumers’ attitudes, as well as the dominance of core features over service quality in terms of persuasion. More generally, products may have a mix of different attributes: search, experience and credence attributes, mirroring the product type taxonomy widely adopted in the Economics of Information. Lim and Chung (2011), using a controlled experiment, found that consumers are more susceptible to comments, within reviews, about credence attributes—therefore those features that are difficult to properly assess even after the purchase. Additionally, negative eWOM has a far greater impact than positive, strengthening the idea that highly disapproving opinions might be viewed as more competent and therefore more credible (Schlosser, 2005).

The type of review also plays a role in forming the decision-making process of prospective buyers. The disclosure of reviewers’ identities might affect product adoption too, as mentioned in Section 4.3.1. Indeed, Forman et al. (2008) found that the impact of user reviews on sales is enhanced when information about reviewers are available. This is due to the fact that consumers, when faced with a large amount of information, rely on heuristic cues based on ease of understanding (e.g., star ratings) and familiarity (e.g., the identity). In these situations, as the authors wrote, “community members process information heuristically, using source characteristics as a convenient and efficient heuristic device on which to base their product purchase decisions” (Forman et al., 2008, p. 308). The presence of personal identifying information increase the perceived credibility (and especially trustworthiness) of online reviews, as well as their persuasive effect towards product adoption, as demonstrated by Xie et al. (2011). The authors
manipulated the presence of personal information disclosure of reviewers to subjects during a laboratory experiment where they asked to eventually indicate whether to book a hotel room. Further, the authors found that ambivalent reviews (i.e., those reviews containing contradicting/blurry messages) always negatively affect purchasing intention, even under identity disclosure.

Therefore, the channels through which eWOM might affect product adoption decisions might be many. For example, well-reviewed products stand out with respect to other similar products with less or no reviews at all, and are chosen out of their saliency (Hu et al., 2014). Another example is that consumers want to conform to the choice made by people that they perceive as sharing interests with. Cai et al. (2009) proposed an alternative channel: observational learning; that is, consumers learn from the choices of other consumers by observing them. While not being able to disentangle observational learning from conformity, the authors demonstrated that saliency does not play a role during product adoption when information about others’ choices are available. The experiment they conducted had subjects choose dishes during dinner at a restaurant, under different sets of information: a plaque showing the most popular dishes and a plaque showing the same dishes in random order without any information about their popularity. Customers were more likely to follow what was written on the first plaque rather than on the second one, showing that they wanted to learn from previous customers’ choices and adapt their choices accordingly.

The influence of eWOM on purchase intentions might even start from the choice of the retailer. Some websites, such as BizRate, are built as aggregators where users can compare products sold through different retailers and be informed about their characteristics; e.g., shipping methods, ease of browsing. These websites allow previous consumers to write reviews on their experience with linked retailers. Gauri et al. (2008) found that the percentage of positive reviews (rather than the mere number of reviews) positively affected intentions to repurchase—in fact, previous user reviews were the stronger driver in building loyalty towards a store, more than the speed of shipping and the number of years operating online.

The main concern with the aforementioned studies is how methodology has been applied. In order to investigate the behavioral consequences of eWOM on product adoption, the most efficient way is to utilize a controlled environment where the choice of prospective buyers choices can be analyzed. Laboratory experiments provide a useful tool but, at the same time, they constrain subjects to make decision in an artificial setting with products arbitrarily chosen by the experimenter. Therefore, consumers might lack intentionality and effects can be confounded with unrelated factors or mitigated to the point
of not being statistically significant. They might also otherwise be asked to choose among a variety of products—and therefore looking for actually desired products. But, as they do not actually pay for the product and the purchase is only simulated, they might simply lack the incentive to actively incorporate eWOM (and other types of information) into their decisions.

4.4.2 C4: Rating behavior

According to the consumer decision journey theory, consumers are active agents in the post-purchase phase as well. Thanks to digital technologies and social networks, they have become producers of content as well. A recent strand of literature has started to devote more attention to the way consumers are influenced by information after they have bought and experienced the product. In particular, the rating behavior itself is now subject to great scrutiny. As previously established, user reviews play a significant role in shaping consumer decisions and firm strategies alike. If eWOM does not arise from the disclosure of true preferences (which are, by definition, subjective) and product quality, and, therefore, is biased, it might lead to inefficient choices. It has been shown that low motivation consumers (i.e., those who do not spend much time in searching) tend to exclusively rely on heuristic cues when making a purchase and they are likely to make a suboptimal choice just because the product was suggested by previous customers (Gupta and Harris, 2010). Furthermore, consumers tend to “place enormous weight on the average user rating as an indicator of objective quality compared to other cues” (De Langhe et al., 2016, p. 819), such as official certifications and expert reviews. By framing the experiment as an online shopping experience, Lee and Youn (2009) found that, indeed, eWOM significantly affects consumer product judgement when coming from a rating platform rather than a personal, non-branded, blog.

The first work that acknowledged the possibility of consumers being affected by different types of information during the rating phase is Cosley et al. (2003). In particular, the authors focused on recommendations within rating interfaces and on the presence of predicted ratings computed by website algorithms and presented to users (a common practice in the early stages of the Web 2.0). By conducting an experiment on the website MovieLens, the authors showed that users are consistently influenced by disclosed information and tend to conform to the predicted rating, even though it was artificially created. This research paved the way of a new strand of literature focused, indeed, on the rating behavior which had ramifications in many fields, such as Political Science (e.g., how surveys affect voting behavior) and Marketing.

Online rating systems differ from offline counterparts in many aspects and, more importantly, in the
presence of a large and heterogeneous audience. The interaction between this factor and the presence of prior consumers’ opinions is the focus of Schlosser (2005) who considered two groups of people: posters, who expect to publicly disclose their evaluation, and lurkers, who, instead, do not anticipate such communication. In this experiment, subjects were asked to review a short animation clip after being exposed to a positive review, a negative review or no information whatsoever—and, at the same time, were divided in posters and lurkers, based on whether their review would have been publicly shown. Schlosser (2005) concluded that posters conform to negative reviews (and are not affected by positive reviews); they “view the author of a negative review as intelligent” (Schlosser, 2005, p. 261) and, given that their opinion will be publicly disclosed, they adjust their position accordingly, in order to be viewed equally intelligent. This social pressure lacks in lurkers who are not affected by either type of review. The impact of negative reviews has long been known by scholars (Mizerski, 1982), and measured in many other instances as mentioned in Section 4.3.1 and remains a concern for sellers. Schlosser (2005) was an important work as it showed how public attitude might differ from private attitude when judging a product.

The concern for rating biases is empirically grounded. Many studies found that online rating distributions are typically concentrated around either extremely positive or extremely negative ratings or both—as bimodel distributions (Chevalier and Mayzlin (2006), Godes and Mayzlin (2004)). On many websites, moderate ratings are almost non-existent. This might be due to quality levels distributed on the extremes of a spectrum—or because of factors related to the behavior of reviewers. The phenomenon of rating bubbles has been brought to attention by Hu et al. (2009): they compared rating distributions of randomly chosen Amazon products and of the same products rated in a laboratory setting. While online ratings followed a J-shaped distribution, offline ratings were more moderate and followed a unimodal distribution. The authors proposed two explanations: a purchasing bias, due to a self-selection of those people who originally had purchased the product (who are more enthusiastic than the average consumer); and an under-reporting bias, due to a self-selection of those people who had decided to review. The former has been reported by Li and Hitt (2008), and was supported by the decreasing trend in the rating data over time.

Another channel that has been proposed to explain rating bubbles is social influence bias, namely the tendency to imitate peers (i.e., previous consumers) during the rating phase. If such a mechanism is present, then rating biases can’t be avoided, because cumulated ratings would just converge to the initial average rating until a steady state is eventually reached. On top of the decision of whether to post a
review online, Moe and Schweidel (2012) analyzed the influence of prior ratings on actual evaluation. Interestingly, they were able to study the behavior of infrequent and frequent posters separately. They were able to demonstrate that the former are more likely to be influenced by previously expressed opinions (they show a bandwagon effect) and, overall, they tend to post more positive reviews. Instead, active posters tend to differentiate themselves with respect to the surrounding environment and, being more overly critical, they post more negative reviews to counterbalance the positivity of previous consumers. These results expand the conclusion in Schlosser (2005), who had found self-presentational concern in all posters, by considering the heterogeneity in the reviewer pool. The authors also found that “[i]ndividuals with either high or low postpurchase evaluations are more likely to contribute, whereas individuals with moderate postpurchase evaluations are less likely to contribute” (Moe and Schweidel, 2012, p. 383) and therefore not completely ruling out the underreporting bias theorized in Hu et al. (2009). Sridhar and Srinivasan (2012) considered the effect of prior ratings on different levels of product experience: positive features, regular negative features acceptable to the consumer, and product failure. Online social influence bias is adaptive, rather than passive: consumers react to the crowd because previous consumers might be considered as opinion leaders, and consumers might think themsevels as being the same. Thus, they might have an incentive to conform or disagree according to the situation. When product failure occurs, the authors find that the higher the online user ratings, the more negative the impact on individual rating attitude is—as a way to punish such positivity, which led to the purchase of a defective product. The same, though more moderate, negativity bias can occur for products that meet the consumer’s need—the authors explained that consumers might want to differentiate themselves from the crowd by seeking uniqueness. Instead, when products have some negative features, consumers will conform with the group’s opinion, therefore mitigating the negative opinion. Sridhar and Srinivasan (2012) were able to find these results using a control function approach and data from the hotel industry.

Ma et al. (2013) introduced reviewer’s personal characteristics in the analysis of the connection between prior and subsequent reviews on top of review characteristics such as length and time interval. Using data from Yelp, the authors showed that reviewers who are geographically mobile, socially connected and female, are less likely to be influenced by previous reviews. Also, more experienced reviewers, given their knowledge of rating systems, seem to be less affected; a result similar to those of previous studies (Moe and Schweidel, 2012). Interestingly, they also found that the longer the time since the last review, the more independent the next review is. Related to the presence of social links, Lee et al. (2015) studied a setting where users can write reviews after reading opinions from a generic crowd and
from friends. While eWOM is typically associated with communications between strangers, on social networks, it might take a more traditional form, through friends and family connections. Analyzing data from a social movie-website, the authors demonstrated that, on the one hand, prior ratings from friends always lead to a herding behavior (or a social influence bias, so to speak). On the other hand, prior ratings from a generic public trigger herding only when volume is large (i.e., for popular movies)—when, movies are niche, users tend to differentiate themselves from the crowd opinion. This work enriches the results from Schlosser (2005), by considering the presence of relation between peers and the quantity of reviews/popularity of the product. Krishnan et al. (2014) proposed a system to mitigate and correct the social influence bias, wherever relevant. To do so, they proposed a method to identify this distortion: “a nonparametric model based on the Wilcoxon statistic to test the hypothesis that the group of participants that changed their ratings are more tightly centered around the median value that those participants observed” (Krishnan et al., 2014, p. 4). Collecting data from a political platform, they did find that users are more likely to change their position after having read the community norm, that is the median rating arising from previous users.

A more careful look at ratings over time show in fact different patterns/trends. Some recent studies analyzed this aspect in detail, shedding new lights on rating behaviors. Using data from a retailer selling bath and beauty products, Moe and Trusov (2011) estimated a dynamic ratings model aimed at understanding whether there are social components during individual rating behavior and then simulated different scenarios with varying initial rating distributions. The authors showed that regardless of the initial ratings, average ratings converge on high scores. Godes and Silva (2012) investigated both a sequential and a temporal process. By using reviews from the Amazon book section, the authors were able to confirm that ratings are declining over time due to the fact that consumers have become more empowered and critical over time. Further, they showed that as reviews accumulate, more purchasing errors occur which, in turn, lowers ratings.

Most of these studies have considered laboratory experiments (Schlosser (2005), Hu et al. (2009)) or empirical data (Ma et al. (2013), Lee et al. (2015)) to assess the drivers of rating biases. Analyzing consumer behavior using these methodologies might not always be appropriate. Laboratory experiments might lack purchasing intentions (the product is arbitrarily chosen by experimenters and assigned to subjects) or saliency (subjects choose a product without paying for it). Data from websites do not allow for a precise tracking of consumers; e.g., it is impossible to know whether the product has been actually bought. Addressing these issues, Cicognani et al. (2016) conducted a field experiment in the accom-
modation industry. The authors asked hotel customers to rate the experience at the end of their stay. Randomly assigned questionnaires disclosed positive opinions from prior customers; moderate opinions; or were free of any opinion. Results showed that when extremely positive ratings were disclosed, subjects were more likely to assign the maximum score to the hotel. At the same, the other treatments showed no differences with each other and more moderate average scores overall. In line with previous research (Moe and Schweidel (2012), Ma et al. (2013)), the authors also found that frequent reviewers seem to be less affected by prior ratings. Repeat customers were also less influenced—perhaps because they have more solid opinions about the hotel. Field experiments in studying individual rating behavior are, therefore, an area where research could greatly expand as they provide a fruitful environment to faithfully track the consumer decision journey.

4.5 Summary

The increasingly relevant role of eWOM during consumer product search and adoption has led researchers and industry professionals to investigate the impact of such informational tools. Online user reviews are ubiquitous and have become a common and trusted source of information. Consumers are prone to purchase a product if it’s strongly suggested by user reviews or particularly popular on rating systems. Firms, instead, have the incentive to charge price premiums on well-reviewed products and, possibly, to follow consumers’ opinions when choosing the level of quality. While antecedents of reviews have been extensively covered before (King et al., 2014), consequences of reviews need additional scrutiny.

In this study, I presented a categorization of the impact of eWOM based on the product cycle phase (purchase/post-purchase) and on the unit of analysis (firm-product/consumer). The results of this overview show that scholars have reached a broad consensus on whether online user reviews influence product sales, and that they have enriched their models to account for the inherent endogeneity of the relationship. Indeed, the presence of eWOM always impacts commercial performance. Valence and volume typically play a role in driving sales, and the variance of the distribution also seems to affect reception. Disclosure of reviewer identity and textual contents might also affect sales. Many studies highlighted the different impact of eWOM on popular versus niche products (the latter being more affected); and on search versus experience goods. Future research should pay more attention on the different consequences of eWOM on different types of goods as the vast majority of works have studied them separately.
The effect on marketing strategies has mainly been studied considering firms’ pricing decisions. This might be considered a limit of the literature and represent a potential for future research. Nevertheless, the focus on pricing is obvious, considering that, on online retailers, prices, unlike other product characteristics, are public and easy to track. All of the reviewed studies have shown a positive relationship between the valence of reviews and prices. Firms use eWOM to infer consumer willingness-to-pay, and change pricing schedules accordingly. This has been widely covered in the hotel industry, where booking websites tend to rank properties according to user feedback. Fruitful research might extend the scope to other industries, and even consider pre-production or pre-sale choices, such as the quality of the products or other intrinsic characteristics. Furthermore, contrary to studies on product sales, in this stream of literature few attention has been devoted to the endogeneity problem. More positive reviews cause higher prices but, at the same time, reviews can be affected by the price level. This reverse causality issue has not been tackled by the literature even though it is relevant to find consistent results. Strong results might come from the presence of this simultaneity and the issue must be promptly addressed.

Under a behavioral point of view, research has first focused on the impact of eWOM on product adoption. Differently from traditional WOM, online user reviews rely on different features to influence consumers—their quantity, for example. Today’s consumer is constantly updating beliefs about products and is being empowered as an agent, even after the product has been bought. Identity disclosure and observational learning are two channels through which consumers incorporate online user reviews when deciding which product to buy. Interestingly, consumers react differently according to their level of motivation during product search. Many studies have found how low-motivation consumers acritically adopt eWOM information and therefore might be more subject to fraud and rating biases. This is of particular relevance because it might lead them to choose products that they would have not considered otherwise, or that do not satisfy their needs.

The problem of biased rating distributions has been investigated by the last stream of literature, on the effects of prior ratings on individual rating behaviors. Empirical data have shown that on e-commerce websites, ratings tend to cluster around extreme scores; instead, experimental data has presented a more moderate distribution of ratings. Some of the proposed reasons relate to the self-selection of purchasers (early-adopters are typically more enthusiastic about the product) and of reviewers (the so-called “brag-or-moan effect”, the tendency to disclose one’s own opinions only in extreme cases). On the other hand, many researchers have shown that there is a problem of social influence bias, that is, the tendency of consumers to conform to the opinions of prior customers. This creates rating distributions that cumulate over
initial ratings towards extreme scores. As consumers trust user reviews, these biases create inefficient market outcomes. The study of how rating behavior is affected by past reviews is the most promising one for future research. Indeed, studies in this area have mainly conducted laboratory experiments or exploited empirical data. Previous scholars have highlighted the importance of inferring consumer behavior through real purchasing experiences such that subjects self-select into the market rather than enter it following arbitrary choices made by experimenters. Furthermore, online data do not typically allow researchers to follow the consumer decision journey clearly, and might not allow for the control of the consumer’s actions. For these reasons, field experiments present a unique and fruitful opportunity to better understand individual rating behavior, especially in the tourism industry, and to provide new insights in some yet unanswered questions.
Bibliography

Chatterjee, P. (2001). Online reviews: do consumers use them?

Raugust, K. (2012). *The licensing business handbook: how to make money, protect trademarks, extend product lines, enhance merchandising, control use of images, and more, by licensing characters, teams, celebrities, events, trademarks, fashion, likenesses, designs & logos!* EPM communications.

UNWTO (2014). Online guest reviews and hotel classification systems - an integrated approach.

