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A me, 
A chi l’ha reso possibile… 
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C’era una volta… 
- Un re! - diranno subito i miei piccoli lettori. 

No, ragazzi, avete sbagliato.  
C’era una volta un pezzo di legno. 

 
Carlo Collodi – Pinocchio 
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 “We know that today, education is still the key to real and lasting freedom - it is 
still true today. So it is now up to us to cultivate that hunger for education in our 

own lives and in those around us. And we know that hunger is still out there -  
we know it.” 

 
Michelle Obama - Commencement speech at Dillard University 

New Orleans, May 10 2014 
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Science means constantly walking a tightrope between blind faith and curiosity; 
between expertise and creativity;  

between bias and openness;  
between experience and epiphany;  

between ambition and passion;  
and between arrogance and conviction, 

 in short, between an old today and a new tomorrow.  
 

Heinrich Rohrer 
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ABSTRACT 
 
 

 

 

The research activity presented in this PhD Thesis aimed to analyse the 

numerous and various metrics proposed for the quantification of motor stability in 

human motion analysis. 

Human motion analysis points to provide quantitative measures for the objective 

characterization of specific motion patterns, such as gait, with the aim to support 

evidence based clinical decision. In a biomechanical perspective, the quantification of 

joint kinematics and dynamics was demonstrated to be effective for the assessment of 

functional limitations associated with specific pathological conditions, of the 

effectiveness of surgical and rehabilitative procedures, and of prosthetic devices. 

In recent years, the significant interest in finding effective methods for the 

quantification and prediction of fall risk in elderly subjects, due to its social and 

economical costs, led to a proliferation of novel metrics, applied to motion analysis 

data, for the quantification of locomotor stability. 

The majority of these metrics originate from the theory of dynamical systems 

and have been used in robotics to design controllers. Thus, they have been applied to 

gait analysis data, assuming similar interpretability in terms of motor control, resulting 

in a large amount of published studies, often leading to not conclusive and sometimes 

contrasting results. This can be related to the lack of a methodological reference for the 

appropriate experimental assessment and implementation of these metrics (e.g. target 

variables, number of strides, sampling frequency, implementation parameters) and of a 

clear functional correlate, establishing the relationship between the metrics and their 

possible clinical interpretation (i.e. different metrics quantify different mathematical 

features of the analysed variable, which need to be related to specific characteristics of 

motor control). 

Aiming to assess gait stability as an expression of motor control, both intrinsic 

properties of the human body and their relationship with the specific movement pattern 
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must be taken into account. To this purpose, non-linear metrics, such as Lyapunov 

Exponent, Recurrence Quantification Analysis, Harmonic Ratio, and Multiscale Sample 

Entropy, describing different aspects (e.g. stability, regularity, complexity) of gait 

pattern related to the motor control system (e.g. chaotic, stochastic, locally stable), were 

analysed. 

 

The aim of this PhD dissertation was to improve the understanding of these non-

linear metrics, providing evidence for the definition of methodological references for 

their experimental assessment, implementation, and possible clinical interpretation in 

specific conditions. 

 

In particular: 

• to provide correct and reliable acquisition, the harmonic content of trunk 

acceleration signal during gait was investigated, as well as the potential 

influence of reduced sampling frequency in the computation  

• to guide experimental assessment, the potential influence of testing 

conditions (i.e. environment and test protocol), was analysed in young 

healthy adults 

• to propose possible clinical interpretation in a specific clinical context, the 

analysed non-linear metrics were related to clinical rating scales in a sub-

acute stroke population, providing an integrated clinical interpretation of 

specific motion characteristics. 

 

Even though not exhaustive, the results of this research activity provide an 

essential set of basic knowledge for the definition of a reference for the reliable use and 

interpretation of these non-linear metrics. 
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INTRODUCTION 
 
 

 

Walkers are “practitioners of the city”, for the city is made to be walked.  
A city is a language, a repository of possibilities, and walking is the act of 

speaking that language, of selecting from those possibilities.  
Just as language limits what can be said, architecture limits where one can walk, 

but the walker invents other ways to go. 
 

Walking is how the body measures itself against the earth. 
Rebecca Solnit, Wanderlust: A History of Walking 

 

 

 

 

Interest in human motion goes back very far in human history, and it has 

been motivated by curiosity, needs and made possible by methods available at that 

time. The ancient Greek philosopher Aristotele (383 a.C. - 321 a.C.) published, 

besides many other fundamental works, also a (short) text ∏EPI ∏OPEIAS 

ZΩIΩN [1] focusing on the gait of animals. Aristotele defined locomotion system 

as “the parts that are useful to animals for movement in place”. This text is the 

first known document on biomechanics [2]. It already contains very detailed 

observations about the motion patterns of humans when involved in some 

particular activities. After that, art was definitely a major driving force for many 

centuries for specifying human motion (e.g. Leonardo da Vinci, Braune, and 

Fischer), but motion was only presented by means of static artwork. The first 

dynamic presentation of motion was through moving pictures, and this came 

nearly 2000 years later, at the end of the 19th century. Eadweard Muybridge 

(1830 - 1904), by a dispute that a galloping horse may have all four hooves off the 

ground, in 1878 set up a series of cameras for recording fast motion alongside a 

barn; his rapid sequence of photographs of a galloping horse showed all four 

hooves off the ground for part of the time [3,4]. His technique was applied to 
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different movement studies (e.g. walking, walking downstairs, boxing) becoming 

de facto the beginning of biomechanics of human motion. 

Approaching the modern time, human motion analysis has modified its 

goals, from a simple observation and qualitative description to a quantitative and 

objective characterization of specific motion patterns, such as gait, with the aim to 

quantify performance, possible functional limitations, along with impairment and 

disability, and to support evidence based clinical decisions [5,6]. 

In a biomechanical perspective, the quantification of joint kinematics and 

dynamics was demonstrated to be effective for the assessment of functional 

limitations associated with specific pathological conditions or aging (i.e. risk of 

falling in elderly subjects), of the efficacy of surgical and rehabilitative 

procedures, and of prosthetic devices. 

In recent years, the search for effective methods to quantify and predict 

fall risk in elderly subjects has risen particular interest in both research and 

clinical practice, since falls place a heavy economic burden on society, and are 

responsible for a considerable loss of life quality [7,8]. Proposals of novel metrics 

have proliferated for the quantification of locomotor stability from motion 

analysis data. These metrics originate from dynamical system theory (e.g. 

Lyapunov Exponents [9], Recurrence Quantification Analysis [10], and Poincaré 

Plots features [11]), frequency domain analysis (e.g. Harmonic Ratio [12], Index 

of Harmonicity [13]), and information theory (e.g. Sample Entropy). They 

quantify different signal features, aiming to characterize underlying system 

characteristics. For instance, Lyapunov Exponents and Recurrence Quantification 

Analysis are meant to evaluate the local stability and the nature (e.g. chaotic, 

stochastic) of the analysed system. Poincaré plot features address the variability of 

the analysed signal. Harmonic Ratio gives an indication of the regularity of the 

analysed signal trough the spectral analysis and, a sort of quantification of the 

complexity of the signal is evaluated by Sample Entropy (or Multiscale Sample 

Entropy on multiple spatio-temporal scales). These non-linear metrics, already 

applied in other contexts, such as robotics [14,15], have been widely used on gait 

analysis data, assuming similar interpretability in terms of motor control system. 
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Sample Entropy has been found to discriminate subjects of different ages 

[16], faller and non-faller elderlies [17] or pathological ones [18,19]. Despite of 

the promising results, these studies often lead to opposite conclusion i.e. higher 

entropy [17,18] vs lower entropy [16,20–22] associated to better health condition. 

These discrepancies could be due to different acquisition and measure parameters 

used (e.g. sampling frequency and coarse graining parameter). 

 Local dynamic stability during gait, quantified using largest Lyapunov 

Exponents [23], is meant to quantify locomotor stability. Although Lyapunov 

Exponents have shown to be related to risk of falling [20], and to discriminate 

different subjects’ conditions [19–21,24–26], there is no common consensus on 

the implementation (e.g. parameters and variables [27] of the state space 

reconstruction), on experimental assessment (e.g. indoor walking, treadmill, free 

walking) and moreover, on data acquisition and processing (e.g. sampling 

frequency, data filtering).  

 Also the harmonic ratio presents several issues concerning its 

implementation and reliability. In the literature, several studies [12,28–32] applied 

harmonic ratio to different gait variables (e.g. trunk acceleration, head 

acceleration), and on different portions of signal (e.g. single stride [29], multiple 

strides [33,34]). Moreover, even applying the method to both the same variable 

and signal portion, the measure reliability is low [29]. This could be due to non-

homogeneous acquisition, pre-processing, and task protocols used. The reported 

studies referred to different walking condition (e.g. walking straight or in circle), 

acquired with different sampling frequency (e.g. from 50 to 200 Hz) and 

implementing different pre-processing (e.g. filtered signal or unfiltered one). 

 From a methodological point of view, analysing relevant aspects 

associated with the specific experimental conditions is essential, since non-linear 

time series analysis often showed non-monotonic relationships due to intrinsic 

non-linear nature of the measure, even when applied in the same context [12,35]. 

Moreover, it is known that results of non-linear time series analysis of gait 

accelerations strongly depend on sensor placement [12]. 

The shortly reported literature review shows not conclusive and often 

contrasting results that can be associated with the lack of a methodological 
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reference for the appropriate experimental assessment and the implementation of 

these metrics (e.g. target variables, number of strides, sampling frequency, 

implementation parameters) and of a clear functional correlate, establishing the 

relationship between the metrics and their possible clinical interpretation (i.e. 

different metrics quantify different mathematical features of the analysed variable, 

which need to be related to specific characteristics of motor control).  

The choice of the target signal variables should be driven by what the 

metrics are meant to provide, i.e. the quantification of locomotor stability in terms 

of motor control system interpretation. In general, human movements, as any 

other manifestation of biological systems, are investigated by analysing different 

specific characteristics (e.g. complexity, adaptability, regularity), often 

generalized as variability and stability. 

On one hand, human movement variability can be defined as the typical 

variations that are present in motor performance and are observed across multiple 

repetitions of a task. Bernstein et al. [36] suggested that the same task may be 

accomplished with different motion patterns exploiting redundant degrees of 

freedom (e.g. different kinematics, loading conditions, muscle activation 

patterns). On the other hand, in dynamical systems, stability refers to a 

coordinative pattern’s resilience to a change in response to a perturbation as 

measured by variance or deviation from the preferred or attractor state, or the 

ability to rapidly return to an attractor state [37]. Consequently, stability arises 

from the intrinsic properties of the model (e.g. masses, inertias, control system) 

and the specific movement pattern (e.g. gait) [38]. According to the above-

mentioned concepts, the variability of gait is evaluated assessing changes in the 

peripheral realization of the pattern itself [38–41] (e.g. stride time data); whereas 

the stability of gait pattern should be assessed on a signal that is a summary of 

both the intrinsic properties of the human body and the specific movement 

pattern. Recent studies [40,42], assessing both healthy (from 4 year-old children to 

25 year-old young adults) and pathological subjects (stroke), analysed the role of 

joint kinematics variability in relation to the stability of the centre of mass 

trajectory, approximated by the lower trunk [38,43,44]. They found that joint 
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kinematics variability lead to stabilize the lower trunk trajectory, suggesting that 

the lower trunk analysis can be used to track gait stability changes. 

The aim of this PhD dissertation was to contribute to a better 

understanding of these non-linear metrics, when applied to trunk acceleration 

data during gait, providing evidence for methodological reference for their 

experimental assessment, implementation, and possible clinical interpretation in 

specific conditions. 

Therefore, the present work starts with an overview of the non-linear 

stability measures used to quantify locomotor stability (Chapter 1). This first 

Chapter aims to illustrate the mathematical reference of the analysed metrics, 

highlighting the role of relevant parameters and the possible interpretation when 

applied in gait analysis. 

From Chapter 2 to Chapter 4, relevant open issues about the definition of 

methodological references for the implementation and experimental assessment of 

the analysed non-linear metrics have been addressed. To this end:  

• the harmonic content of trunk acceleration signal during gait of 

nine age groups from 7 to 85 year-old was analysed (Chapter 2) 

• it was assessed if and how a reduced sampling frequency (from 

128 Hz to 42.6 Hz) influences the computation of the analysed 

non-linear metrics (Chapter 3) 

• the potential influence of testing conditions (i.e. environment and 

test protocol) was analysed in young healthy adults (Chapter 4)	

Finally, in Chapter 5 the possible clinical interpretation of the proposed 

metrics was investigated in a sub-acute stroke population, analysing the 

relationship between the proposed novel metrics, describing gait characteristics, 

and an extended selection of clinical rating scales. 
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 Chapter 1 

 
 

NON-LINEAR METRICS  
FOR THE CHARACTERIZATION  

OF HUMAN LOCOMOTION 
 
 
 

Mathematics is the language with which God wrote the universe 
Galileo Galilei  
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1. NON-LINEAR METRICS FOR THE 
CHARACTERIZATION OF HUMAN 

LOCOMOTION 
 

 

1.1 INTRODUCTION 
 

In recent years, the significant interest in finding effective methods for the 

quantification and prediction of fall risk in elderly subjects, has led to a 

proliferation of novel metrics proposals, to be applied to motion analysis data, in 

particular gait, for the quantification of locomotor stability [1–8]. 

These metrics, already applied in other contexts [9,10], have been widely 

used on gait analysis data, assuming similar interpretability in terms of motor 

control system. Among these, in this dissertation, the metrics, which had 

demonstrated the best performance in terms of reliability, usability and specificity 

(e.g. stability, regularity, complexity, harmonicity) of gait as related to motor 

control (e.g. chaotic, stochastic, locally stable) according to literature1 [1,2,4–

6,8,11], were selected. In particular, Recurrence Quantification Analysis (RQA) 

and Lyapunov Exponent (LE) [12], already applied in robotics and originated from 

a non-linear analysis methods based on a dynamical systems theory, analyse the 

time domain of the employed signal. They give an indication about, the nature 

(i.e. chaos, stochastic, noisy signal) and the stability of the observed dynamic 

system. Harmonic Ratio (HR) [13], proposed to assess the harmonic content of 

the signal, analyses the frequency domain giving ad indication about the 

regularity and harmonicity of the employed signal. Moreover, from the field of 

information theory the concept of entropy, through the Sample Entropy (SEN) 

[14] measure, has been used to evaluate the complexity of the signal. 

																																																								
1 Literature published before April 2015 
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In this Chapter an overview of the mathematical base of the above-

mentioned non-linear indexes, with particular attention to their applicability in 

gait analysis (e.g. tuning of parameters) were discussed. 

 

 

1.2 INDEXES DERIVED FROM THE 

DYNAMICAL SYSTEM APPROACH 
 

The term system generally refers to a certain portion of the physical world, 

which is the object of the observation. The terms dynamic and dynamical are 

generally used to describe systems that evolve or change over time. Consequently, 

a dynamic system is completely defined by a set of variables called state 

variables, which evolve over the time, and by the rules/laws namely state 

equations that describe the observed temporal evolution [15]. 

The state-space is the collection of all possible state variables values. 

Curves in state-space are known as the state trajectories and from its study is 

possible to determine the structural characteristics (e.g. node point, limit cycle, 

toroid, and more in general N-dimensional attractors) of the system. The 

importance and utility of the state-space clearly appears. 

On one hand, for the systems that can be mathematically modelled the 

state-space is known from the state equations, consequently its dimension is equal 

to the number of state variables (or state equation due to the Rouché-Capelli 

theorem). On the other hand, in all the case in which the equations of the system 

are unknown, such as generically the biological system and so the motor control 

system, a time series can be used to reconstruct the attractor of the underlying 

dynamic process [16]. 
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1.2.1 STATE-SPACE RECONSTRUCTION  
 

The state-space reconstruction from a time series is a powerful approach 

for the analysis of the complex non-linear systems, widespread in the natural and 

human word. This is a very important step to identify the structural characteristics 

of the time series and it is also necessary in the calculus of the Recurrence 

Quantification Analysis, Lyapunov Exponent, and other non-linear tools. 

The embedding transformation, based on the Takens’ theorem (1981) [16] 

that provides the conditions under which a smooth attractor can be reconstructed 

from the observations, aims to transform a time series, which has one dimension, 

into a higher dimensional space in order to create the state-space underling the 

observed system. 

The minimum number of required variables in order to create a valid state-

space from a given time series is called embedding dimension; in this space the 

true structures of the observed system are completely contained. 

In order to obtain the reconstructed state-space shifted time versions of the 

original time series are used. 

In particular, given a time series 𝑋 =  𝑥!… 𝑥!  , a time (or number of 

sample) delay ( 𝑙𝑎𝑔 ) used as shift and an embedding dimension (𝑒𝐷 ) the 

reconstructed state-space (𝑆𝑆!! ) is composed by vectors 𝑠𝑠!!  described by the 

equation 1.1 

 

𝑠𝑠!! =  𝑥!,… , 𝑥!! !"!! ∗!"#           𝑖 = 1,… 𝑒𝐷    (1.1) 

 

Follows 

 

𝑆𝑆!! =  𝑠𝑠!! ,… , 𝑠𝑠!! ,… ,𝑠𝑠!"!          𝑖 = 1,… 𝑒𝐷   (1.2) 

 

The reconstructed state-space depends from the time delay (𝑙𝑎𝑔) and from the 

embedding dimension (𝑒𝐷). 
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Time delay	
In order to find an appropriate value of the time delay (𝑙𝑎𝑔) it is important 

to understand the meaning of this parameter. 

Each state-space contains the information of the system at a specific time. A 

vector, 𝑥!  should contain the information about the system at time  𝑖  and, 

𝑥!!!"# should contain the information about the system at time  𝑖 + 𝑙𝑎𝑔. Therefore 

finding an appropriate delay means to find the value that gives new information 

about the system that could not be obtained from the previous state-space. On one 

hand, if the time delay is too small the information obtained from the state-space 

at time 𝑖 + 𝑙𝑎𝑔 is almost the same extracted from the pervious state-space at time 

𝑖. On the other hand, if the time delay is too large, although the two state-space 

provide different information, a lot of information could be lost between them. 

Therefore, the relationship between 𝑥! and 𝑥!!!"# is to be quantified.  

 In the literature [17,18], two methods have been proposed aiming to 

address this issue: the zero crossing of the autocorrelation function and the first 

minimum of the average mutual information. 

The autocorrelation function evaluates only linear relationship (and not 

non-linear ones) between the shifted time series; this could be a criticality due to 

the intrinsic non-linear nature of the motor control system.  

To evaluate non-linear relationship average mutual information can be 

used [19,20]; indeed it can be interpreted as the non-linear version of the 

autocorrelation function [21].  

If the first minimum of the average mutual information occurs for a time 

delay of 1 means that there is non correlation among the data; if this behaviour 

persists in all the employed data set it is possible conclude that the data are very 

noisy. Instead, if the average mutual information does not display a minimum, all 

the data points are strongly correlated to each other and consequently it is no 

possible know new information from different point of the state-space. 

In these research studies (Chapters 3, 4, and 5), the first minimum of the 

average mutual information algorithm has been applied in order to identify the 

time delay used in the state-space reconstruction. The time delay was set to 10 
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samples, that using a sample frequency at 128 Hz means a time delay of 0.078 s. 

This choice is also in according with other studies [6,22–26] that evaluate trunk 

acceleration data during gait. 

Even thought time delay value dramatically affects the shape attractor, it is 

not clear the impact in the calculus of metrics derived from the attractor itself 

[17]. For this reason the determination of the time delay has to be performed 

paying attention to, in particular, two factors: first, as above discussed, the 

algorithm choice that have to be driven by the linear (autocorrelation function) or 

non-linear (mutual information) nature of the observed system; second the 

influence of the sampling frequency. It goes without saying that the time delay 

and the corresponding number of samples are in relation with the used sampling 

frequency; moreover if the spectral analysis of the signal identifies that the used 

sampling frequency is unnecessary too high, shifted versions of the signal can be 

strongly correlated, and no time delay could be found. However, down-sampling 

the data could be a reliable processing in order to identify a time delay more 

appropriate [17]. This highlights the importance to identify and use a correct 

sampling frequency: not using an unnecessary high sampling frequency just to 

obtain more data points.  

 

Embedding Dimension	
Usually the term dimension means a measure to describe the size of an 

object: length, width, and height. A 3-dimensional object like a cube in a 2-

dimensional space is wrongly identified with a square rather than line depending 

from the chosen plain; consequently, the true shape of a object is revealed when it 

is exanimated in a higher-dimensional space or where the dimensionality is equal 

to the true dimensions of the observed object. 

Considering that a time series is an object in its state-space (i.e. its 

emergent attractor) and, as for the objects, the time series should be observed in a 

higher-dimensional space in order to identify its true structure, otherwise hidden 

in a lower-dimensional space. It follows that the determination of the embedding 

dimension is crucial to identify the right shape of the attractor. 
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In the literature, a general method to find an appropriate embedding 

dimension has been proposed. This involves the calculus of dynamic invariant 

(e.g. correlation dimension, Lyapunov Exponent) for successive embedding 

dimensions [27]: the appropriate embedding dimension is find when increasing 

the embedding dimension no changes in the dynamic invariant are observed. 

However one of the main drawbacks of this approach is the computational cost 

required to reconstruct the spate-space for increasing embedding dimensions. To 

address this issue the false nearest neighbour algorithm was proposed, becoming 

the most commonly used method to determine the embedding dimension [28,29]. 

This approach is based on eliminating false projections that occur when the space 

dimension is not large enough to unfold the dynamics of the attractor [28,30]. 

In this dissertation, an embedding dimension of 5 samples, using the false 

nearest neighbour algorithm, was found for all the directions of the trunk 

acceleration signal during gait accordingly with others studies [6,22–26,31]. 

 

 

1.2.2 RECURRENCE QUANTIFICATION ANALYSIS 
 

The Recurrence Quantification Analysis (RQA) is a non-linear method for 

data analysis that quantifies the number and duration of recurrences (or 

neighbours) points of the analysed dynamical system presented in its 

(reconstructed) state-space trajectory [32]. It does not assume data stationary, and 

more in general it places no restrictions both on the statistical distribution of data 

and on data set length. 

RQA is based on the analysis of particular features of the recurrence plots, 

including a quantification of deterministic structure and of non-stationarity 

[18,32,33]; it was developed by Zbilut and Webber Jr. [18,32] and extended, 

including measures of complexity [34]. 

Over the past decades, recurrence plot has proven to be valuable data 

visualization and analysis tools in the theoretical study of complex, time-varying 

dynamical systems as well as in various applications in biology, neuroscience, 
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biomechanics, psychology, physiology, engineering, physics, geosciences, 

linguistics, finance, economics, and other disciplines [30].  

 

RQA algorithm consists in 3 main steps: 

 

	
Figure 1: Flowchart of Recurrence Quantification Analysis. 

 
	

Once the state-space is reconstructed (detailed above-mentioned) the next 

step is to create the recurrence plot. Here the recurrence points, namely points 

separated in time but which are (spatial) neighbours in the reconstructed state-

space reflecting the evolution of the observed dynamics (as time progresses) [26], 

are identified. Simply, the recurrence plot reveals all the times when the state-

space trajectory of the dynamical system visits roughly the same area in the state-

space. In order to obtain the recurrence plot the distance between all the points of 

the embedded time series have to be calculated. If this distance is less than or 

equal to a threshold, radius (r), the point is a recurrence. It clearly appears that 

RQA required several input parameters: time delay and embedding dimension, 

used for the state-space reconstruction, and radius (r). For time delay (lag) and 

embedding dimension (eD) choice see the above-mentioned details. As concerns 

the radius (r), it has to be carefully tuned, indeed, if it is too low (r=0) only the 

exactly matching points would be considered recurrent, and this would be 



	 32 

expected only for ideal mathematical examples. Instead, if radius (r) is too high all 

the points would be considered recurrent suppressing the variance of the observed 

measure [26]. Radius (r) in this PhD dissertation was chosen at 40% of the 

maximum distance between data points in the embedding state-space in order to 

minimize the floor and ceil effects [18]. 

The third and last step is the features extraction. In literature several features 

have been proposed in order to evaluate different system characteristics (e.g. 

periodicity, random and stochastic behaviour, noise component, complexity, 

chaos) [26,31,35].  

In this dissertation (Chapter 3, 4, and 5) the analysed features of the 

recurrence plot were: Recurrence Rate (RR), Determinism (DET), Average 

Length of Diagonal Line (AvgL). 

 

Recurrence Rate (RR) is the number of recurrent points in the recurrence 

plot expressed as a percentage of the number of possibly recurrent points. It is the 

percentage of points within a distance r of one another. The obtained RR values 

for a given time series will depend on the used r values [18,26,34–36]. 

Mathematically speaking, the number of recurrent points delineates the number of 

embedded vector pairs near each other in N-dimensional space; meaning that 

embedded processes manifesting periodic dynamics have higher recurrence values 

than other embedded processes characterized by aperiodic dynamics [18]. In other 

words, RR gives an indication about how often a trajectory visits similar locations 

(points) in the state-space. 

 

Determinism (DET) is the percentage of recurrent points which fall on 

upward diagonal line segments. DET will depend on the specified definition of 

the number of points forming a line segment. This is usually set as four 

consecutive recurrent points [31]. This is an extremely important variable, since it 

distinguishes between recurrent points that are individually dispersed and those 

that are organized into specific diagonal patterns. DET reflects the degree of 

determinism because, upward diagonal line segments indicate that the system is 

revisiting the same region of the attractor (or of the reconstructed space) 
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repeatedly; consequently it is related to the predictability of the dynamic system. 

In particular, DET relates to how often the trajectory re-visits similar state space 

locations (“shape”); the higher DET the more regular is the dynamic structure of 

the data [18,37]. 

 

Average Length of Diagonal Line (AvgL) is the average upward diagonal 

line length, where the diagonal lines are defined following determinism definition. 

AvgL indicates how long the repeated trajectory “lasts”, this can be interpreted as 

the duration of the most repeated “shape”. It is related to the velocity in the 

execution of the test (i.e. higher AvgL is expected for slower gait), but this 

duration is not independent from the regularity of the pattern (i.e. the gait is 

slower because each stride on average is slower) [31,37]. 

 

From the literature [5,31,36,38] it is possible conclude that higher RR and 

DET more regular is the dynamic of the dynamical structure of the system namely 

the motor control system. Moreover, AvgL is related to the task execution 

velocity [31,37]. RQA features (RR, DET, AvgL) have been shown to promising 

correlation with clinical scale, in a sub-acute stroke population [37], and also 

RQA were found to be positively associated with fall history [5]. RQA could 

hence represent useful tools in the identification of subjects for fall prevention 

programs [5] and to complement the standard clinical gait assessment [37]. 

Additionally, Bisi et al. [38] suggested that RQA better discern gait stability 

differentiating not only between unstable toddlers and stable healthy adults, but 

also evidencing the expected trend of the toddlers towards a higher stability with 

walking experience, and indicating elderly subjects as stable as or less stable than 

young adults. 
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1.2.3 LYAPUNOV EXPONENT 
 

Lyapunov Exponent (LE) has been one of the most popular techniques used 

to evaluate the local stability in a dynamical system. It has been widely used for 

the analysis of various biological systems such as human gait [8,39–41], postural 

sway [42–44] and handwriting [45], due to the unnecessary exhibition of a 

discernable periodic structure, and therefore it does not exploit the pseudo-

periodicity of some motor tasks [17]. 

The local stability of a dynamical system characterizes whether nearby (i.e., 

perturbed) points of a orbits will remain in a neighbourhood of that orbit or be 

repelled away from it, quantifying how the system state responds to very small 

(local) perturbations continuously in real time [12]. The exponential trend has 

been shown to approximate the moving away (i.e. divergence or convergence) 

from orbits [12,27,46,47]. 

Lyapunov Exponent is defined as the average exponential rate of divergence 

or convergence of nearby orbits (trajectory) in the state-space. It is common to 

focus only on the largest LE [40,46,48,49], it determines the fastest divergence 

exponential evolution. Positive exponents indicate local instability, with larger 

exponents indicating greater sensitivity to local perturbations. 
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Rosenstain et al. [47] provided a method to estimate the average exponential 

divergence (i.e. Lyapunov Exponent), for an embedded time series. The algorithm 

can be summarized as follows: 
 

 
Figure 2: Flowchart Lyapunov Exponent algorithm 

 

In particular, Euclidean distances between neighbouring trajectories in state-

space were computed as a function of time and averaged over all original pairs of 

initially nearest neighbours. Lyapunov Exponents (λ) were estimated from the 

slopes of linear fits to these exponential divergence curves: 

 

𝑦 𝑖 =  !
!!

𝑙𝑛 𝑑!(𝑖)      (1.3) 

 

where 𝑑!(𝑖) was the Euclidean distance between the jth pair of initially nearest 

neighbours after i discrete time steps (i.e. 𝑖Δ𝑡  seconds) and ∗  denotes the 

average over all values of j [47]. 

These local divergence curves always exhibited positive divergence 

reflecting the natural variability and intrinsic noise of the biological system 
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[42,46,48]. For chaotic systems, the local divergence would be linear, reflecting a 

constant exponential rate of divergence [47], and the slope of that line would 

approximate the maximum Lyapunov Exponent for the system. Since the obtained 

curves were clearly not linear [46], no basis for defining a true Lyapunov 

Exponent for human walking were found [42]. Nevertheless, these local 

divergence exponents have shown to provide a metrics for estimating the 

sensitivity of human walking to small intrinsic perturbations [46]. 

Lyapunov Exponent can be calculated over some finite time interval. In the 

local dynamical stability of gait finite time interval of 1 stride and of 6 strides 

have been proposed. In particular, short-term Lyapunov Exponent λs was 

calculated from the slope of linear fit to the divergence curve between 0 and 1 

stride and long-term Lyapunov Exponent λL was calculated as the slope between 

the 4th and 10th strides. 

Using Rosenstain et al. [47] method, the LE calculation (short-term and 

long-term) principally depends on the parameters used for the state-space 

reconstruction [47]. These aspects are well explained in the first part of this 

Chapter. Moreover, in this dissertation the LE were calculated using four different 

state-space: one composed by the three acceleration directions (antero-posterior 

medio-lateral and vertical) of the trunk and three composed by the delay 

embedding (eD = 5 and lag = 10) of each trunk acceleration components. 

Several studies using Rosenstein et al [47] approach for the calculation of 

LE have been presented in literature [25,46,50–54]. However, the systematic 

review proposed by Riva et al. [11] concluded that all subjects always showed a 

significant degree of local instability during locomotion, even though no subject 

ever fell or stumbled during the tests, and no association were found between 

Lyapunov Exponents and fall risk [55]. Moreover, Bisi et al [23,24,38] founded 

that short-term Lyapunov Exponents were able to discern between toddler and 

adult groups, in particular increasing of age population corresponds a decreasing 

of instability. 
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1.3 INDEXES DERIVED FROM FREQUENCY 

DOMAIN 
 

Frequency-domain analysis is one of the most important tools in signal 

processing applications. While time-domain analysis shows how a signal changes 

over time, frequency-domain analysis shows how the signal’s energy is 

distributed over a range of frequencies. A frequency-domain representation also 

includes information on the phase shift that must be applied to each frequency 

component in order to recover the original time signal with a combination of all 

the individual frequency components. 

A signal can be converted between the time and frequency domains with a 

pair of mathematical operators called a transform. An example is the Fourier 

Transform, which decomposes a function into the sum of a (potentially infinite) 

number of sine wave frequency components. The frequency-domain 

representation of a signal carries information about the signal’s magnitude and 

phase at each frequency. The spectrum frequency is the frequency domain 

representation of the signal [56].  

Among novel metrics proposals for the quantification of locomotor 

stability several of them directly or indirectly analyse the harmonic content of the 

signal. On one hand, the direct analysis of the spectrum usually implies the 

calculation of the Fourier Transform or of the power spectrum density: as 

Harmonic Ratio [13], used to quantify regularity. On the other hand, the harmonic 

content of the signal affects metrics when identifying specific features that are 

calculated from different filtered versions of the original signal, such as 

Multiscale Sample Entropy (MSE) [14], an assessment of the complexity of the 

signal at different time-scales. In particular MSE merges the knowledge of the 

information theory with a multiscale approach (see Chapter 1.3.2).  
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1.3.1 HR 
 

The Harmonic Ratio (HR) is an index based on the spectral analysis here 

applied on the lower trunk accelerations signal. 

Mathematically, Harmonic Ratio (HR) is calculated by decomposing the 

antero-posterior (AP), vertical (V), and medio-lateral (ML) acceleration directions 

signal into harmonics using a discrete Fourier transform [13]. The summed 

amplitudes of the first 10 even harmonics are divided by the summed amplitudes 

of the first 10 odd harmonics for the AP and V acceleration directions, and vice-

versa for the ML accelerations. This difference is due to the fact that whereas the 

AP accelerations have two periods every stride, showing a dominance of the 

second harmonic, representing step frequency (i.e. two times the fundamental 

frequency) and subsequent even harmonics, ML accelerations have only one 

period per stride, reflecting a dominance of the first (i.e. fundamental frequency) 

and subsequent odd harmonics [13].  

Although, this index is widely used in gait analysis [6,38,57–61] there is no 

common standard implementation. The main discrepancies, which arise from the 

literature, concern: the choice of the signal portion on which calculating the index 

that means both step-by-step [58] and the entire acceleration signal collected over 

several strides [4–6,38,62], and the identification of the fundamental frequency, 

HR parameter [13]. Regarding the evaluation of the fundamental frequency, this 

can be performed either in the time domain, as the inverse of the mean stride time, 

or in the frequency domain as the frequency corresponding to the maximum of the 

Fourier Transform acceleration modulus (see Chapter 4 for more details). 

In this dissertation HR was calculated on the entire signal and the 

fundamental frequency was obtained trough the frequency domain. 

A higher HR is an indication of increased regularity of gait, which can be 

interpreted as increased stability. Bisi et al. [38] suggested that HR better discern 

gait stability differentiating not only between unstable toddlers and stable healthy 

adults, but also evidencing the expected trend of the toddlers towards a higher 



	 39 

stability with walking experience, and indicating elderly subjects as stable as or 

less stable than young adults. 

 

 

1.3.2 MSE 
 

Carnot (1824), as first in classical thermodynamics, developed the concept 

of Entropy (EN). He defined entropy as a state function that quantifies the energy 

in a system that cannot be used to performed work. Later, Boltzman (1896) gave 

further insights into the concept of entropy, by using probability theory to 

describe entropy on a molecular scale. 

Later, the concept of entropy has been also used in the field of information 

theory. Shannon entropy (1948) is defined as the loss of information in a time 

series or signal. It is based on what it is known about the current states of the 

system and how well the next state can be predicted. If a system has very low 

entropy, the next state of the system is very predictable, vice versa if a system has 

very high entropy. 

The Sample Entropy (SEN) [63] derived from the Approximated Entropy, 

developed by Pincus et al. [64] with the intention to be used in the analysis of 

experimental time series data generated by biological process. 

Mathematically, SEN reflects the conditional probability that two sequences 

of m consecutive data points, which are similar to each other, will remain similar 

when one more consecutive point is included. Being “similar” means that the 

value of a specific measure of distance (e.g. Euclidean, Chebyshev) is less than a 

threshold (r) [14].  

SEN provides a measure of unpredictability or irregularity of the time series 

that should not be always interpreted as complexity: a very periodic signal and a 

highly random one are both very low in complexity, but have different SEN 

values [17,37]. However, in motion analysis, SEN can be considered a measure of 

how much the acquired trunk acceleration deviates from the cyclic nature of gait 
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and, therefore, in this context it is common practice to interpret SEN as a measure 

of complexity [14,22,63]. 

Multiscale Sample Entropy (MSE) has been introduced, by Costa et al.[14], 

to quantify the complexity (i.e. sample entropy, SEN) of a time series on multiple 

spatio-temporal scales. 

The multiscale approach consists into create consecutive coarse-grained 

time version of the original time series. Given a time series, 𝑋 =  𝑥!,… , 𝑥! , the 

constructed consecutive coarse-grained version are obtained by averaging a 

successively increasing number of data points in a non overlapping windows as 

shown in Figure 3. 

 

  
Figure 3:	Schematic illustration of the coarse-graining procedure for scales 2 and 3 [14]. 

 

Each element of the coarse-grained time series, 𝑦!
(!) is calculated accordingly to 

the equation: 

 

𝑦!
(!) =  !

!
𝑥!

!"
!! !!! !!!      (1.4) 

 

where τ represents the scale factor and 1 ≤ 𝑗 ≤ 𝑁 𝜏. The length of each coarse-

grained time series is 𝑁 𝜏. For scale 1, the coarse-grained time series is simply the 

original one. Then for each one of the coarse-grained time series the SEN could 

be calculated obtained the Multiscale Sample Entropy (MSE). 

The effects of the coarse graining procedure could be interpreted as a sort of 

moving average (low pass) filter. Indeed, the obtained coarse-grained time series 
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setting τ i.e. 2 has no zero frequency content below fs/2 Hz, where fs is the 

sampling frequency of the original time series. In general, a coarse-grained time 

series have frequency content different to zero below fs/τ Hz. 

Therefore, MSE is a function of m and r (derived from the calculus of SEN) 

and τ (due to the coarse grain procedure) parameters, but is largely independent 

by the time series length when the total number of data points is larger than 

approximately 750 samples [63,65]. 

Costa et al. [14] found that MSE is not very dependent on the specific 

values of m and r. Instead particular attention has to be paid in τ tuning. The 

frequency content of the coarse-grained signal will be dependent not only from 

the chosen τ but also from the sampling frequency of the original time series. 

Thus, only MSE values obtained with both same τ and sampling frequency or a 

same combination of these two parameters (fs and τ) should be compared, in this 

manner the frequency content of the coarse-grained analysed series will be equal. 

Moreover, τ has to be chosen coherently and consistently with the frequency 

content of the analysed signal. 

In this dissertation m=2, r=0.2 and τ ranging from 1 to 6 were used. 

In biomechanics, MSE and/or SEN have been applied to evaluate gait 

stability and were found to be promising quantitative methods for evaluating fall 

risk in elderly and/or pathologic subjects [5,22,38,66–68]. Leverick et al. [66] 

found that SEN measures experienced statistically significant increases in 

response to increasing age and gait impairment caused by cognitive interference 

on healthy adults and elderlies. Bisi et al. [38] evaluated the performance of 

different gait stability indexes on young adults and toddlers at the onset of 

walking (toddlers were assumed as individuals whose gait is a priori unstable) and 

found that SEN was able to differentiate between unstable toddlers and stable 

healthy individuals. In another study Bisi et al. [22] demonstrated that MSE 

complexity is a relevant parameter of gait development during life, decreasing 

from immature to mature gait and then increasing again during old age. 
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2. GAIT TRUNK ACCELERATION: 
CHARACTERIZATION OF THE 

SPECTRUM FROM DEVELOPMENT 
TO DECLINE 

 

 

2.1 ABSTRACT 
	

Acquisition and processing of trunk acceleration signal during gait have 

assumed a key role in motor assessment. This has led to the development of 

different indexes and metrics to evaluate gait performances that, directly or 

indirectly, imply the analysis of the harmonic content of the signal. The 

knowledge of the spectrum characteristics of the trunk acceleration signal during 

gait is crucial to identify hardware and software requirements and to correctly use 

the indexes and their parameters. The aim of this study was to characterize the 

spectrum of humans gait at different ages: from 7 to 85 years old. To do this, the 

fundamental frequency and the frequency corresponding to the 50, 90, 95 and 

98% of the normalized power of the trunk acceleration during gait were analysed. 

Results highlighted that: the harmonic content (at 98%) of the acceleration signal 

for all the analysed population, with exception of the adolescents, is below 30 Hz 

and the highest frequency contribute is associated to the AP direction. In 

adolescents, spectrum is wide up to 45 Hz. 

 

 

 

Keys words: Frequency analysis, fundamental frequency, gait, gait 

signal bandwidth, stride frequency. 
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2.2 INTRODUCTION 
	

 

In recent years, due to the development and advance in commercial 

wearable inertial measurement units (IMUs), accelerometric measures have 

become extensively used for the functional characterization of gait in both healthy 

(e.g. children, adolescents, adults, elderly) and pathologic (e.g. Parkinson, Stroke) 

subjects [1–5].  

Accelerometric measures collected at different sites (often lower trunk, but 

also head, upper trunk, ankle, wrist) have been used to calculate a number of 

parameters characterizing gait functions and performance. Among these, the most 

common are probably gait temporal parameters (i.e. toe off, heel strike, stride 

time, cadence, step time), but also spatial parameters (i.e. stride length) [6–9], and 

more or less complex metrics proposed to quantify different properties of gait and 

related motor control, such as variability, stability, complexity, and regularity 

[10–12]. 

ABBREVIATIONS 
7YC 7-years old children  
9YC 9-years old children  
15YAf 15-years old adolescents Female Not Grown 
15YAm_NG 15-years old adolescents Male Not Grown 
15YAm_G 15-years old adolescents Male Grown 
25YA 25-years old adults  
45YA 45-years old adults  
65YA 65-years old adults  
85YE 85-years old elderlies  
AP Antero-posterior direction 
ML Medio-lateral 
V Vertical 
fs Sampling frequency 
FF Fundamental Frequency 
FFNORM Normalized Fundamental Frequency 

f50%ap,ml,v 
Frequency corresponding to the 50% of the normalized power of trunk acceleration in the 
three directions 

f90%ap,ml,v 
Frequency corresponding to the 90% of the normalized power of trunk acceleration in the 
three directions  

f95%ap,ml,v 
Frequency corresponding to the 95% of the normalized power of trunk acceleration in the 
three directions  

f98%ap,ml,v 
Frequency corresponding to the 98% of the normalized power of trunk acceleration in the 
three directions  
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A number of different methods and algorithms have been proposed to 

calculate these parameters and indexes, often based on very different approaches 

(e.g. for gait temporal parameters: thresholds, features, frequency analysis, 

similarity models). Nevertheless, most of these algorithms directly or indirectly 

analyse the harmonic content of the signal. On one hand, the direct analysis of the 

spectrum usually implies the calculation of the Fourier Transform or of the power 

spectrum density, as, for instance, to calculate Harmonic Ratio [13] and Index of 

Harmonicity [14], used to quantify regularity. On the other hand, the harmonic 

content of the signal may affect metrics when identifying specific features that are 

calculated from different filtered versions of the original signal, such as 

Multiscale Sample Entropy [15], used to assess complexity at different time-

scales. 

In addition to these processing aspects, smart devices (e.g. smartphones 

Android or iOS based) seem to be revolutionizing gait analysis. Indeed, the use of 

smartphones with embedded accelerometers has offered new opportunities for 

clinicians and researchers to easily and relatively inexpensively record and 

characterize gait in detail [7,8,16]. Moreover they have also been proposed as 

portable devices allowing continuous and/or pervasive monitoring of gait, also in 

pathologic populations [17,18] aimed to be effective for the assessment of 

functional limitations associated with specific pathological conditions, of the 

powerfulness of surgical and rehabilitative procedures. 

Although this approach is extremely interesting and opens a number of 

possible applications, some technical aspects have still to be better analysed. 

Several studies [19,16,20–23] showed that features computed on the signal that is 

acquired with smart devices are comparable to the ones obtained from the 

traditional accelerometers, maintaining the same acquisition parameters (e.g. 

sampling frequency). However, these commercial devices, due to multiple 

functions provided, currently do not support constant sampling frequencies (i.e. 

main acquisition parameter) higher than 50 Hz (for a android systems) that is 

significantly lower than what is usually adopted in reference research studies 

(higher than 100 Hz) [17]. 
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Even though in literature several studies [24–28] characterized a set of signal 

features in time, frequency, and time-frequency domains, to extract clinically 

valuable information from gait accelerometer signals, none of them analysed 

specifically the spectrum characteristics of the gait acceleration signal. This is 

surprising, considering the relevance of spectrum characteristics for the proper 

design of signal acquisition and processing.  

What is lacking is a characterization of the harmonic content of gait acceleration 

signal with reference values of parameters that allow to perform a reliable and 

coherent, with the observed task and population, design of signal acquisition and 

processing. 

Recalling the signal theory, the most characterizing parameters are the 

fundamental frequency (i.e. the greatest common divisor of all the frequency 

components contained in the signal), and the bandwidth, (i.e. frequency range in 

which the signal’s spectral density is nonzero or above an arbitrary threshold 

value), at different percentage of signal’s power. Moreover, frequency resolution 

of the signal spectrum, that is the capacity to discriminate two near frequency 

components in the spectrum, influences the accuracy of all the given values 

parameters. Thus, frequency resolution, which depends from the time duration of 

the assessed signal, has to be carefully managed.  

The present study was designed to partially fill this gap, characterizing the 

harmonic content of the acceleration signal of lower trunk during gait in 

populations from 7 to 85 years of age. The acceleration of lower trunk was 

addressed in particular, because it is assumed to approximate the acceleration of 

the centre of mass, describing the typical inverse pendulum mechanics, 

characterizing human natural gait [29]. Measures of lower trunk acceleration were 

extensively used to calculate gait spatio-temporal parameters [7,30,31] quantify 

gait performance, stability, and fall risk in elderly and pathologic subjects [32–

34], and describe gait performance and maturation in populations of different ages 

[11,35,36]. 

  The aim of this study was to characterize the spectrum of humans gait at 

different ages: from 7 to 85 years old. To do this fundamental frequency, 

frequency corresponding to the 50%, 90%, 95% and 98% of the signal power 
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were assessed, taking in to account the appropriate gait trunk acceleration signal 

spectrum resolution. 

 

 

 

2.3 MATERIALS and METHODS 
	

2.3.1 Participants 
Nine age groups (7 to 85 years of age) of 10 healthy subjects each were 

included in the study. Group details are shown in Table 1. 

 All participants had no known developmental delay or reported 

musculoskeletal pathology. Adolescents (15 years of age) were divided in 3 

groups to isolate the possible influence of gender and growth spurt on motor 

performance, as reported by Bisi et al [36]. Group 15YAm_G included 10 male 

adolescents, who had a growth spurt in the previous 3 months; group 15YAm_NG 

included 10 male adolescents, who had no growth spurt in the previous 3 months; 

group 15YAf included 10 female adolescents, none of the female adolescents had 

a growth spurt in the period of observation. Anthropometric characteristics did not 

show any statistical significant differences from adolescent (all groups) to elderly. 

The Review Board Committee of the authors’ institution approved the 

study, and informed consent was obtained from adult participants and from the 

participants’ parents for children. 

 

POPULATION ACRONYM AGE 
[year] 

WEIGHT 
[kg] 

HEIGHT 
[cm] 

7-years old children  7YC 7 (7, 7) 29 (22, 37) 129 (119, 134) 
9-years old children  9YC 9 (9, 9) 34 (22,45) 140 (138,145) 
15-years old adolescents Female  
Not Grown  15YAf 15 (15,15) 54 (49, 74) 162 (147, 172) 

15-years old adolescents Male 
Not Grown  15YAm_NGa 15 (15,15) 64 (49, 74) 172 (169,176) 

15-years old adolescents Male 
Grown  15YAm_Ga 15 (15,15) 59 (46, 65) 

∆w=2 (-1, 4) 
172 (160,175) 
∆h=3.6 (3, 4) 

25-years old adults  25YA 25 (22, 26) 70 (48, 86) 168 (154, 187) 
45-years old adults  45YA 45 (41, 48) 74 (45, 100) 174 (155, 193) 
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POPULATION ACRONYM AGE 
[year] 

WEIGHT 
[kg] 

HEIGHT 
[cm] 

65-years old adults  65YA 65 (62, 69) 85 (68, 120) 176 (164,186) 
85-years old elderlies  85YE 85 (84, 91) 74 (57, 90) 177 (160, 175) 
 
Table 1: Details of age groups: median, minimum and maximum values. 
 

2.3.2 Experimental setup 
Two tri-axial wireless inertial sensor (OPAL, Apdm USA) were fixed: one 

on the lower back at L5 level using elastic belt, orienting the three axes along the 

antero-posterior (AP), vertical (V) and medio-lateral (ML) body directions, and 

one above the ankle for the stride detection [31]. 

The participants walked at self-selected speed for about 30 seconds along 

a straight path free from obstacles and distractions. Trunk acceleration was 

recorded with a sampling frequency (fs) at 128 Hz. 

 

2.3.3 Data analysis 
First, for all the subjects, an integer number of strides to cover at least a 

time duration of 20 seconds of the acquired acceleration signal were analysed, 

excluding the first 5 and the final 3 or more seconds, to avoid gait initiation and 

termination phases. The number of analysed strides raged from 23 (7YC) to 14 

(15YAf). Maximal signal duration was 21.3 s. 

The analysis of an integer number of strides was required for coherent 

sampling, and the minimum duration of 20 seconds to guarantee a frequency 

resolution of 0.05 Hz [37]. 

Unfiltered data were analysed to assure that information was not lost 

and/or modified by the filtering process. The only performed pre-processing was 

to remove the mean value and/or linear trend from all the components of the 

acceleration signal. 

Stationary of the trunk acceleration signal of each subject in all the three 

directions was tested and verified using the method described by Bendat, J. S. et 

al., [38]: a non-parametric approach, that makes no basic assumptions about the 

nature of the system and does not assume that the data are normally distributed 
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[39]. 

The following features on trunk acceleration were computed for all subjects: 

 

Fundamental Frequency FF (2.1): 

 

!! =  !"#!∈[!,!!/!] !"#( !"!!"!!!"!!"!!!"!!!)
!

!   (2.1) 

	
where dft is the Discrete Fourier Transform, computed using the Fast Fourier 

Transform algorithm, of the trunk acceleration signal module. 

The frequency corresponding to the 50, 90, 95 and 98% of the normalized 

power of trunk acceleration in the three directions (f!",!",!",!"%!",!",!) (2.2): 

 

!!",!",!",!"%!",!",! = ! ∈  0, !!! min !"#$%&'()*!"#!",!",!
!"!"!!",!",!

%− 50,90,95,98%   

(2.2) 

 

To avoid influence of the anthropometric parameters, the fundamental 

frequency was normalized FFNORM [40]. Whereas, in order to assess possible 

interference between the harmonic content and the fundamental frequency, all the 

other features were normalized ( f!",!",!",!"%!",!",!!"#$
) with respect to the 

fundamental frequency. 

A Jarque-Bera test [41] was performed to verify the normal distribution of 

the calculated features on the different groups. Since the normal distribution was 

not verified on all the groups, median, 25- and 75-percentile values were 

calculated. In order to evaluate how precisely the median value of the analysed 

age groups approximated the median value of the corresponded population, the 

confidence interval (CI) at 95% was calculated for each feature and age group. 

Data processing and statistical analysis were implemented in Matlab 2015b 

(MathWorks BV, USA). 
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2.4 RESULTS 
All the 50th, 25th, and 75th percentile values of the analysed features (normalized 

and not normalized) were included in the corresponding CI with a level of 

significance 5% (CI at 95%). 

 

2.4.1 Fundamental Frequency 

FF ranged from a maximum of 1.1 Hz, for the 7 year-old (7YC), to a 

minimum of 0.88 Hz for the male grown adolescents (15YAm_G). 

In particular, FF decreased from 7YC to all 15YA group, increased for 

25YA and then showed similar values from 45YA to 85YE. 

The normalized fundamental frequency FFNORM showed a different trend 

with respect to FF. Similar values (0.30) from 7YC to 15YA were found, with 

exception of the adolescent not grown male that showed the lowest value (0.26). 

Instead, from 25YA (0.32) to 85YE (0.29) FFNORM values decreased. 

In Figure 1 the median 25- and 75-percentile, for FF and FFNORM -panel A 

and B respectively- for all the populations were presented. 

 

2.4.2 !!",!",!",!"%!": harmonic content in AP direction. 

The frequency corresponding to the 50% of the normalized power of the 

trunk acceleration in AP direction ranged from a maximum value of 4.5 Hz for 

15YAm_NG to a minimum value of 2.03 Hz for 85YE. 

f!",!",!"%!" showed similar values for all populations with exception of all 

the adolescent groups, which exhibited higher values. Similar results were found 

for the normalized features. 

 

2.4.3 !!",!",!",!"%!": harmonic content in ML direction. 

No trend was observed for all features in ML direction. 

f!"%!" ranged from 4.96 Hz (45YA) to 8.31 Hz (9YC), f!"%!" from 10.16 
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Hz (45YA) to 12.91 (15YAf), f!"%!"  from 13.04 Hz (45YA) to 16.38 

(15YAm_NG) and f!"%!" from 17.12 (25YA) to 20.01 (65YA). 

 

2.4.4 !!",!",!",!"%!: harmonic content in V direction. 

f!"%! showed similar values for all groups, with a maximum value (3.49 

Hz) for 15YAm_G and a minimum value (1.97 Hz) for 45YA. 

Increasing the percentage of normalized power (from 90% to 98%) the 

trend becomes more pronounced: 7YC, 9YC, 25YA and 45YA show similar 

values, while the remaining groups -all adolescents, 65YA and 85YE- show 

higher values than the other populations, but close to each other. The same results 

were found for the normalized features. 

Median, 25- and 75-percentile values of all the features -not normalized 

and normalized- in AP and V direction are reported in Figure 2. Grey tones 

become darker from f!"% to f!"%. 

Detailed values (median, 25- and 75-percentile) of each feature (FF, 

FFNORM, f!",!",!",!"%!",!",!  and f!",!",!",!"%!",!",!!"#$
) in all directions (AP, ML 

and V) can be found in the supplementary material. 
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Figure 1: Median, 25- and 75-percentile of fundamental frequency (FF) and normalized 
fundamental frequency (FFNORM), panel A and B respectively, for all the age groups. 
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Figure 2: Median, 25- and 75-percentile of !!",!",!",!"% (A and C panels), and !!",!",!",!"%!"#$ (B and D panels) on AP and ML direction respectively. Darkening 
grey tones are associated with increasing percentage of normalized power. 
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2.5 DISCUSSION 
 

Accelerometric measures during gait are extensively used to evaluate 

motor function in both healthy (e.g. children, adolescents, adults, elderly) and 

pathological (e.g. Parkinson, Stroke) subjects [1–5]. In particular, trunk 

acceleration during gait allows assessing different characteristics of the motor 

pattern itself in different populations, from timing to more complex aspects of 

motor control, such as variability, stability, complexity and regularity, quantified 

by means of different indexes and metrics that, directly or indirectly, analyse the 

harmonic content of the signal. 

However, spectrum of trunk acceleration during gait was not previously 

characterized in the literature, making even more critical the lack of 

standardization (e.g. sampling frequency, time duration of the signal) in signal 

acquisition and processing. 

Therefore the fundamental frequency and the frequency corresponding to 

the 50, 90, 95 and 98% of the normalized power of the trunk acceleration during 

gait of nine age groups from 7 to 85 year-old were analysed. 

For the purpose of the analysis, stationary of the analysed signal was 

verified [38,39] for durations of at least 20 seconds including an integer number 

of strides. 

For a correct and reliable spectral analysis of a discrete, periodic and finite 

duration signals, two aspects have to be taken into account: the frequency 

resolution and the coherent sampling, both of them directly dependent on the 

signal windowing, thus, on the time duration of the signal itself. 

The frequency resolution, that means the capacity to discriminate two near 

frequency components in the spectrum, is closely related to the duration of the 

analysed signal. Indeed, in the time domain, a finite length signal is a product 

between the signal, ideally of unlimited duration, and the window signal (usually 

a rect signal); this product becomes, in the frequency domain, a convolution 

product between the Fourier Transform of the analysed signal and of the window 
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signal (usually sinc one). The spectrum frequency resolution depends to the size 

of the main lobe of the window signal Fourier Transform (sinc signal). It follows 

that the obtained spectrum frequency resolution is proportional to the inverse of 

the time duration of the analysed signal; the proportionality factor is related to the 

used window signal [37]. The coherent sampling, when sampling frequency and 

the signal fundamental frequency are synchronized, is necessary to avoid spectral 

leakage, presence of unreal components in the spectrum. When the fundamental 

frequency of the signal is not a priori known, it is well practice to analyse signals 

including an integer number of periods (i.e. here strides) and/or to use a window 

signal able to reduce this effect [37]. The bias introduced by an inappropriate 

frequency resolution and/or incorrect coherent sampling could be limited both 

through an ad-hoc windowing and tuning the time duration of the signal [37]. Due 

to the absence, to the authors’ knowledge, of literature about how different 

window signals could modify frequency analysis of trunk acceleration during gait 

and being the use of rect signal a de facto standard to windowing trunk 

acceleration, the authors’ choice was to follow this same approach to allow 

comparison with other studies. In addition, the signal length of a minimum of 20 

seconds was chosen to guarantee the minimum resolution frequency and an 

integer number of strides to avoid spectrum leakage. For this work a resolution 

frequency of at least 0.05 Hz -three orders of magnitude smaller than the highest 

possible frequency (fs/2 = 64 Hz)- was used. 

The obtained FF values are in agreement with the results of other studies 

[28,42,43], that analysed stride frequency (cadence), suggesting that the 

fundamental frequency (FF) corresponds to the stride frequency (cadence). 

Nevertheless, computing stride frequency directly from the signal spectrum and 

not in the time domain, as the inverse of mean stride time, is more robust to both 

errors resulting from stride detection and from outlier values, resulting from 

irregular isolated strides. Accordingly, the calculation of FF from the signal 

spectrum could be used as robust and reliable method to estimate reference 

cadence. Indeed, on the data of this study, differences in stride frequency, 

calculated in the time domain and directly from the signal spectrum, are in the 

range of 0.05-0.1 Hz. Even if these discrepancies could appear negligible, when 
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stride frequency is used to compute non-linear metrics for the gait assessment 

[13,14] can lead to incorrect results. 

For groups 7YC, 9YC, 15YAf, 15YAm_NG, similar FFNORM values were 

found, suggesting that in these groups stride frequency changes are more related 

to anthropometric characteristics [43,44] than to changes in motor control. 

On the other hand, different FFNORM values were observed in all other 

populations. In particular, 15YAm_G showed lower values than all other 

populations and than not grown peers (15YAf and 15YAm_NG), suggesting some 

relevant change in motor control in the adolescents dealing with a growth spurt 

[36]. Then, decreasing FFNORM values were observed with age from 25YA to 

85YA, suggesting an influence of aging [45,46]. 

The normalization of f!",!",!",!"%!",!",!  with respect to the FF was 

performed in order to evaluate if the fundamental frequency of each population 

influenced the harmonic content of the signal. The results showed similar values 

and trends, for normalized and non-normalized features, suggesting that the 

observed differences are peculiar of the populations. 

Values of f!",!",!",!"% highlight how the spectrum, in AP and V direction, 

is characterized by a peak at low frequency (around 3.5 Hz) and then by a uniform 

and low power band, wider in AP than in V direction. ML direction, instead, is 

characterized by a flat spectrum. 

In general, the results of the present study suggest operative indications 

about how the trunk acceleration signal should be acquired and processed: (i) if 

the harmonic content is directly analysed, not less than 20 seconds of duration 

with an integer number of strides should be analysed, allowing a sufficient 

frequency resolution and avoiding spectrum leakage; (ii) to ensure 98% of the 

harmonic content of the signal, a sampling frequency higher than 90 Hz for 

adolescents and higher than 60 Hz for the other age population should be used. 

The limited number of subjects included for each population could be 

considered a limitation of the present study. On the other hand, the fact that gait is 

a motor paradigm and the limited dispersion of data in each population supports 

the results of the analysis. On the other hand, the obtained inferential statistics 
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results confirmed that the chosen age samples were representative of the 

corresponding populations. Moreover, even though, to the knowledge of the 

authors, frequency features of lower trunk acceleration signal during gait was not 

previously assessed in literature, therefore no specific comparison is possible, the 

results of the present work are in agreement with other studies 

[11,28,35,36,47,48] that indirectly analysing the harmonic content of trunk 

acceleration signal and stride frequency as related to age. The lack in the literature 

of similar studies given, this work is a preliminary study for more detailed 

analyses, eventually referring to different sites of acceleration measurement 

and/or different populations (i.e. pathologic populations), to which the present 

results can not be generalized. 

Concluding, the present work provides a characterization of the spectrum 

of lower trunk acceleration signal during gait pattern as related to age in different 

populations, providing, for the first time, reference values for the proper signal 

acquisition and processing.  

The calculation of fundamental frequency (FF) from trunk acceleration 

spectrum of a signal of sufficient duration can serve as a more robust approach for 

the estimation of mean cadence during gait. 

The harmonic content (at 98%) of the acceleration signal for all the 

analysed population, with exception of the adolescents, is below 30 Hz where the 

high frequencies contribution is due to AP direction. On the other hand, the 

spectrum resulted to wide up to 45Hz when analysing adolescent populations. 

 

 

 

2.6 ACKNOWLEDGMENTS 
	

Authors would like to thank participants, their parents and teachers and 

coordinators of the schools “Istituto San Giuseppe Lugo” and “Liceo di Lugo” 

(Italy) that allowed data acquisition.  



	 65 

2.7 SUPPLEMENTARY MATERIAL 
	

2.7.1 FF and FFNORM 
	
POPULATION FF [Hz] 

FFNORM [-] 

7YC 1.10 (1.05-1.15) 
0.30 (0.28-0.30) 

9YC 1.08 (1.00-1.08) 
0.30 (0.29-0.31) 

15YAf 0.98 (0.95-1.03) 
0.30 (0.29-0.30) 

15YAm_NG 0.96 (0.93-1.03) 
0.30 (0.29-0.32) 

15YAm_G 0.90 (0.85-0.93) 
0.28 (0.27-0.29) 

25YA 1.03 (1.00-1.05) 
0.32 (0.30-0.31) 

45YA 1.00 (0.91-1.05) 
0.31 (0.29-0.31) 

65YA 0.95 (0.90-1.00) 
0.29 (0.27-0.31) 

85YE 0.92 (0.88-0.95) 
0.28 (0.26-0.29) 

 
Table 1: Median, 25- and 75-percentile of FF (white background), and FFNORM (grey 
background). 
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2.7.2 !!",!",!",!"%!" 	
	

POPULATION 
!!"%!" [Hz] !!"%!" [Hz] !!"%!" [Hz] !!"%!" [Hz] 
!!"%!"!"#$

 [-] !!"%!"!"#$
 [-] !!"%!"!"#$

 [-] !!"%!"!"#$
 [-] 

7YC 2.80 (2.25-4.55) 12.23 (10.35-13.50) 15.08 (12.35-18.20) 22.08 (18.25-25.6) 
2.47 (2.05-3.96) 11.03 (10.71-12.56) 14.02 (12.77-15.49) 20.60 (17.74-23.19) 

9YC 4.30 (4.15-5.50) 12.60 (10.85-13.10) 15.55 (14.25-16.80) 21.87 (19.35-23.30) 
4.05 (4.00-5.12) 11.79 (10.85-12.41) 14.88 (13.26-15.60) 20.40 (17.59-21.67) 

15YAf 3.90 (3.75-5.70) 20.30 (14.25-26.60) 26.30 (19.85-34.25) 37.63 (31.50-44.55) 
3.98 (3.71-5.85) 21.59 (13.90-25.33) 28.09 (19.33-32.62) 39.10 (30.73-45.69) 

15YAm_NG 3.78 (3.55-4.10) 23.00 (17.90-34.20) 29.85 (25.60-41.40) 37.85 (36.00-48.45) 
4.05 (4.00-4.06) 22.64 (16.78-35.08) 29.35 (22.09-42.46) 39.29 (35.22-50.44) 

15YAm_G 3.70 (3.45-9.45) 24.38 (18.95-29.18) 32.05 (22.40-34.70) 35.90 (33.00-43.45) 
4.05 (3.94-9.65) 26.90 (21.37-33.26) 36.52 (23.58-39.80) 41.62 (35.68-43.75) 

25YA 2.63 (2.15-4.10) 13.38 (12.25-14.05) 16.43 (15.30-19.15) 24.70 (22.30-27.35) 
2.48 (2.05-4.00) 13.06 (11.36-13.71) 15.83 (14.23-17.50) 23.53 (21.24-26.68) 

45YA 2.625 (1.85-4.20) 14.65 (12.40-18.10) 20.85 (17.75-21.40) 25.55 (23.90-27.75) 
2.71 (2.15-3.89) 15.11 (11.81-17.66) 20.69 (17.07-23.54) 27.02 (25.53-30.00) 

65YA 2.13 (1.95-4.20) 12.35 (10.45-15.50) 17.70 (15.60-20.40) 24.55 (20.80-27.70) 
2.16 (2.10-4.00) 13.15 (9.95-16.32) 18.88 (15.60-23.31) 25.32 (22.26-29.26) 

85YE 1.98 (1.85-2.70) 12.80 (10.80-15.60) 16.85 (14.70-18.25) 22.15 (20.25-23.90) 
2.08 (2.05-2.92) 14.08 (12.00-17.49) 17.52 (16.21-22.12) 24.06 (21.89-28.97) 

 
Table 2: Median, 25- and 75-percentile of !!",!",!",!"% (white background), and !!",!",!",!"%!"#$ (grey background) in AP direction. 
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2.7.3 !!",!",!",!"%!" 
	

POPULATION 
!!"%!" [Hz] !!"%!" [Hz] !!"%!" [Hz] !!"%!" [Hz] 
!!"%!"!"#$

 [-] !!"%!"!"#$
 [-] !!"%!"!"#$

 [-] !!"%!"!"#$
 [-] 

7YC 7.35 (7.10-8.10) 11.97 (11.45-13.05) 14.15 (13.15-14.8) 17.78 (15.75-18.85) 
6.92 (6.45-8.71) 11.07 (10.57-12.05) 12.82 (12.52-13.59) 15.91 (15.30-18.06) 

9YC 8.38 (7.30-9.20) 12.20 (11.5-13.25) 14.05 (13.15-14.85) 17.10 (16.05-18.25) 
7.81 (6.91-8.36) 11.22 (10.80-12.55) 13.07 (12.81-14.32) 15.98 (15.52-17.45) 

15YAf 6.80 (6.35-7.15) 13.22 (11.85-14.45) 16.05 (14.35-16.95) 19.75 (16.60-21.25) 
6.90 (6.80-7.06) 13.48 (11.85-14.82) 15.76 (14.72-17.72) 19.62 (17.03-22.36) 

15YAm_NG 6.80 (5.70-7.05) 13.10 (11.20-14.50) 16.35 (13.8-17.25) 19.05 (18.05-20.90) 
6.97 (5.84-8.00) 14.99 (10.93-15.26) 18.18 (13.09-18.62) 21.57 (17.11-22.67) 

15YAm_G 6.90 (6.05-8.30) 12.08 (11.25-14.45) 14.23 (13.15-17.65) 19.25 (16.85-22.80) 
7.29 (6.90-9.06) 14.21 (12.50-16.23) 16.81 (14.94-18.30) 22.66 (18.39-24.19) 

25YA 5.38 (3.30-7.45) 11.05 (10.25-12.55) 14.20 (12.00-16.10) 17.40 (15.40-18.65) 
5.73 (3.07-6.93) 11.04 (9.86-12.73) 14.57 (11.95-15.33) 16.86 (15.95-18.52) 

45YA 4.95 (4.25-5.85) 10.13 (9.45-12.15) 13.18 (11.40-17.10) 17.53 (15.35-20.95) 
4.95 (4.05-6.83) 11.33 (9.00-12.97) 14.25 (10.97-16.68) 18.19 (16.81-21.49) 

65YA 6.30 (5.25-8.25) 10.98 (10.10-13.45) 14.80 (12.25-17.05) 19.68 (18.45-21.85) 
6.91 (5.14-8.68) 11.73 (11.10-14.94) 15.19 (13.29-18.94) 21.59 (18.29-23.78) 

85YE 6.35 (4.35-7.35) 11.65 (10.20-14.65) 13.08 (12.15-17.80) 16.30 (14.60-23.45) 
7.12 (4.95-7.74) 14.12(11.33-15.80) 15.85(13.50-18.85) 18.65(16.61-24.47) 

 
Table 3: Median, 25- and 75-percentile of !!",!",!",!"% (white background), and !!",!",!",!"%!"#$ (grey background) in ML direction. 
	
	
	
	
	



	 68 

2.7.4 !!",!",!",!"%!  
 

POPULATION 
!!"%! [Hz] !!"%! [Hz] !!"%! [Hz] !!"%! [Hz] 
!!"%!!"#$

 [-] !!"%!!"#$
 [-] !!"%!!"#$

 [-] !!"%!!"#$
 [-] 

7YC 2.33 (2.20-2.45) 10.65 (8.90-11.70) 12.88 (12.15-13.60) 15.63 (14.35-16.15) 
2.07 (2.05-2.09) 10.00 (9.86-10.68) 11.98 (11.76-12.36) 14.49 (14.00-14.95) 

9YC 2.23 (2.20-2.45) 12.05 (9.70-12.90) 13.63 (11.19-14.75) 16.15 (14.25-17.69) 
2.09 (2.05-2.28) 10.95 (9.70-12.00) 12.52 (11.10-13.72) 15.02 (13.62-16.00) 

15YAf 2.93 (2.10-4.25) 11.30 (9.80-12.05) 13.48 (11.40-14.90) 18.53 (16.65-20.45) 
2.84 (2.10-4.72) 11.88 (10.05-12.76) 14.00 (11.69-16.26) 18.64 (17.08-21.69) 

15YAm_NG 3.55 (2.10-4.70) 11.20 (9.40-12.75) 13.93 (12.00-15.80) 19.28 (16.80-20.60) 
3.02 (2.05-5.84) 10.87 (9.84-15.21) 14.09 (12.31-19.75) 19.56 (17.59-24.31) 

15YAm_G 4.15 (3.10-5.15) 10.95 (10.20-12.10) 13.85 (12.15-15.25) 17.65 (16.90-20.25) 
4.49 (3.88-5.83) 12.19 (11.58-13.44) 15.39 (13.89-17.53) 19.36 (18.16-23.58) 

25YA 2.15 (2.10-2.20) 9.80 (8.20-10.55) 11.48 (10.15-12.80) 14.18 (12.80-14.55) 
2.05 (2.05-2.10) 9.97 (7.90-10.20) 11.86 (9.90-12.85) 13.86 (13.07-15.52) 

45YA 1.98 (1.80-2.15) 8.68 (7.60-10.30) 12.35 (10.60-13.35) 15.03 (13.60-16.60) 
2.05 (2.05-2.06) 9.86 (7.81-11.38) 12.06 (11.87-12.53) 15.62 (14.06-16.00) 

65YA 2.15 (1.95-3.10) 9.58 (8.80-10.55) 12.18 (10.60-13.95) 17.55 (13.90-21.75) 
2.06 (2.05-3.94) 10.05 (9.57-10.57) 12.77 (11.55-13.67) 18.29 (16.90-22.89) 

85YE 2.05 (1.90-2.40) 10.03 (8.35-11.05) 14.18 (12.40-14.65) 18.18 (14.15-19.20) 
2.06 (2.05-2.74) 10.45 (9.03-13.39) 15.19 (13.74-15.72) 19.28 (17.15-20.72) 

 
Table 4: Median, 25- and 75-percentile of !!",!",!",!"% (white background), and !!",!",!",!"%!"#$ (grey background) in V direction. 
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Some say they see poetry in my paintings; 
I see only science. 

Georges Seurat 
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3. CONTINUOS MONITORING: FROM 
LABORATORY TO PORTABLE 

DEVICE, INFLUENCE OF SAMPLING 
FREQUENCY 

 

	

3.1 ABSTRACT 
 

The understanding of locomotor stability is a critical issue in the 

assessment of fall risk in both pathological and elderly subjects. Clinical 

assessment of fall risk is typically based on clinical rating scales that heavily rely 

on the clinician’s subjective judgment. Instrumental stability and variability 

indexes of gait can represent a promising solution for the objective quantification 

of locomotor functionality and fall risk. Furthermore, stability and variability 

indexes have shown promising correlations with clinical scales, potentially 

providing a better insight in the functional analysis of gait pattern. 

For an effective exploitation of this approach, the subject’s gait can be 

analysed in daily living conditions, acquiring a large number of strides to 

guarantee acceptable measure reliability. This is possible with a continuous 

monitoring of subjects at risk. A smartphone can be the ideal device for this goal, 

since it is user friendly and cheap. On the other hand, although the inertial 

measurement units mounted on it have nothing to envy to other commercially 

available devices, the sampling frequency at 100-200 Hz is not compatible with 

the multiple functions performed by a conventional device. Thus, the influence of 

reduced (from 128 to 42.6 Hz) sampling frequency on the estimated variability 

and stability indexes was investigated. The results highlight that down-sampling 

(at 42.6 Hz) is viable, if specific constraints are taken into account in the 

implementation of the analysed metrics. 
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Key words: fall risk; fall risk assessment; fall risk monitoring; under-sampling 
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3.2 INTRODUCTION 
 

 

The understanding and assessment of gait stability is a fundamental step to 

identify the subject’s risk of falling, since falls often occur during walking among 

older adults [1]. Subject specific factors leading to fall risk should be identify in 

order to perform effective clinical intervention. 

Recent studies [2,3] demonstrated that clustering appropriate selected 

indexes provides indication regarding the specific subject alterations increasing 

fall risk. Even though promising results were shown, several variability and 

stability indexes require a high number of strides in order to guarantee an 

acceptable reliability [4] of the measure. 

The effective exploitation of this approach is meant in its implementation 

on a portable device for the continuous monitoring of subjects at risk. This would 

allow the acquisition of a large number of strides, as well as the continuous 

monitoring of motor stability in daily living conditions. The ideal device to 

maximize the exploitation together with subject’s acceptance can be a smart 

device, such as a modern smartphone. 

ABBREVIATIONS 
ORG Acquired signal 
FILT Filtered signal 
UNDER Under-sampled signal 
INTERP Interpolated signal 
SD Standard Deviation 
CV Coefficient of Variation 
NI Non-stationary Index 
IV Inconsistency of the variance 
PSD1 Short term variability of stride estimated via Poincaré plots 
PSD2 Long term variability of stride estimated via Poincaré plots 
HR Harmonic Ratio 
IH Index of Harmonicity 
sLE Short term Lyapunov Exponent 
lLE Long term Lyapunov Exponent on the vertical acceleration direction 
RQA Recurrence Quantification Analysis 
rr Recurrence Rate  
Det Determinism 
AvgL Averaged diagonal line length 
SEN Sample entropy 
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The accelerometers, in general the inertial measurement units (IMUs), 

embedded in modern smartphones, have nothing to envy to other commercially 

available devices used mainly for research purpose. Several studies [5–8] have 

demonstrated that smartphone accelerometers display similar performance in 

terms of accuracy, although they do not guarantee sampling frequencies 

comparable with those conventionally adopted [9], due to the provided multiple 

functions and required memory storage. 

On one hand, the non-constant sampling could be compensated using 

interpolation techniques of variable complexity [9–11]; on the other hand, the 

influence of a reduced sampling frequency, usually at 50 Hz for Android systems 

[9], could not be a priori evaluated or neglected, considering also the non linear 

nature of the analysed variability and stability indexes.  

This analysis is an essential step to transfer gait assessment from the 

laboratory to the real practice without loosing relevant information. Despite its 

importance, to the knowledge of the authors, this specific aspect was not assessed 

previously in the literature. 

From signal theory, it is known that the down-sampling process has, in 

general, two effects on the signal: one in the time domain, due to the reduction of 

the number of samples (i.e. sample effect), and one in the frequency domain, (i.e. 

frequency effect) associated with the aliasing occurring, as all the frequency 

components above the half of the new sampling frequency (under-sampling 

Nyquist frequency) are not zero, accordingly to Shannon theorem. 

Mathematically, the sample effect can be compensated using an 

interpolation algorithm that does not include new (i.e. high) frequency 

components, using interpolation as an artifice to just increase the number of 

samples without changing the frequency content of the signal. On the other hand, 

no compensation is possible for frequency effect. 

The aim of the present study was to evaluate the influence of a reduced 

sampling frequency in the computation of stability and variability indexes, used 

for the assessment of gait in young healthy subjects.  
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3.3 MATERIALS and METHODS 
 

3.3.1 Participants 
Sixteen healthy young subjects (24 ± 2 year, 65.3 ± 13 kg, 169 ± 10 cm, 5 

males e 11 females) were enrolled in the study. Only subjects with no self-

reported history of locomotor disturbances or injuries that could affect their 

normal walking behaviour, or cause fatigue during the experimental protocol were 

included. The Review Board Committee of the authors’ institution approved the 

study, and informed consent was obtained from all participants. 

 

3.3.2 Experimental setup 
The subjects performed a walking task outdoor in a quiet open space 

within the university premises, on a flat surface, along a straight path at self-

selected speed on 250 m long dead-end road. During the task the participants did 

not have verbal interaction with other people, or other contact with obstacle 

causing possible distractions. 

Subjects wore 2 tri-axial accelerometers (Opal, APDM, USA), one located 

at the level of the fifth lumbar vertebra, to acquire the trunk acceleration, and one 

on the right ankle needed for the stride detection [12]. 

Acceleration and angular velocity in vertical (V), medio-lateral (ML) and antero-

posterior (AP) directions were acquired with a sampling frequency (fs) at 128 Hz. 

 

3.3.3 Signal Processing 
In order to evaluate the influence of a reduced sampling frequency, three 

different signals, from the acquired trunk acceleration and ankle angular velocity 

(ORG), were calculated: 

• filtered (FILT) 

• under sampled (UNDER) 

• interpolated (INTERP) 
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as schematically depicted in Figure 1. 

Signal processing was implemented in Matlab 2015b (MathWorks BV, 

USA). 

	
Figure 1: Flowchart of the performed signal processing. 

	

Filtered Signal 
The filtered signals were obtained using two different processing 

procedures: real and ideal low pass filtering with a cut off frequency at 20 Hz, in 

order to assess also the effect of a different filtering process. 

The real low pass filter was obtained using MatLab 2015b built-in Filter 

building application, that given the desired filter characteristics (e.g. filter 

response, impulse response, pass band and stop band frequency, pass band ripple, 

and stop band attenuation) returned the filter coefficient and parameters. Thus, 

signals with different frequency content than the original one, but with same 

number of samples, were obtained. 

The real filters characteristics are reported in Table 1. 
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REAL LOW PASS FILTER 

FILTER SPECIFICATION ALGORITHM 
Impulse response F.I.R Design Method Equal ripple 
Order filter Minimum Design Options MatLab default 

Filter type Single Rate FILTER IMPLEMENTATION 
FREQUNCY SPECIFICATION Structure Direct Form 

Pass Band [-] ([Hz]) 0.3125 (20 Hz) FEATURE 
Stop Band [-] ([Hz]) 0.3281 (21 Hz) Phase Delay 198 

MAGNITUDE SPECIFICATION Phase Group Delay 198 
Pass Band Ripple [dB] 1 ABS(FFT) in 21 Hz 0.37 
Stop Band Attenuation [dB] 100 Re{FFT} in 21 Hz -0,35 

 
Table 1: Real low pass filters characteristics (MatLab built-in Toolbox). 
 

Under-sampled Signal: 
Once the original signals were filtered, an under-sampling process was 

performed. The under-sampling frequency (fs_UNDER) was chosen three times 

smaller than the acquisition one (fs = 128 Hz), obtaining a fs_UNDER = 42.6 Hz 

lower than the smartphone allowed sampling frequency [9]. 

This way, a signal with equal frequency content of the filtered one, but 

with different number of samples (three times less), was obtained. 

 
Interpolated Signal:  

Once the original signals were filtered and under-sampled, an interpolation 

process, in order to obtain signals with a sampling frequency equal to the 

acquisition one but without frequency components above fs_UNDER/2, was 

performed. Thus, signals with same frequency content of the under-sampled one 

and with same number of samples of the original one was obtained. 

 

3.3.4 Stability and Variability Indexes: 
Stride detection was estimated from the angular velocity around the 

medio-lateral axis of the ankle [12] for each signal (i.e. original, filtered, under-

sampled, and interpolated) and stride times were calculated accordingly. The first 

and last three strides were removed in order to exclude both gait initiation and 

termination phases, 200 strides were analysed in all the conditions. 
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The following variability indexes were calculated on the stride time series 

of each subject and signal (i.e. filtered, under-sampled, and interpolated): 

Variability indexes: 

• Standard deviation of the stride time (SD); 

• Coefficient of Variation (CV) [13] 

• Non-stationary Index (NI) [13] 

• Inconsistency of the variance (IV) [13] 

• Short and Long term variability of stride estimated via Poincaré plots 

(PSD1 and PSD2) [14]. 

 

For all the subjects and for each obtained trunk acceleration signal (i.e. 

filtered, under-sampled, and interpolated) the following stability indexes were 

performed: 

Stability indexes: 

• Harmonic Ratio (HR_v, HR_ap, HR_ml) [15] (see Chapter 1 for more 

details); 

• Index of Harmonicity (IH_v, IH_ap, IH_ml) [15]  

• Recurrence Quantification Analysis (RQA) implying the calculation of 

recurrence rate (RR), determinism (DET) and averaged diagonal line 

length (AvgL) [17] (see Chapter 1 for more details); 

• Short term Lyapunov exponents (sLE_v, sLE_ap, sLE_ml) [16] (see 

Chapter 1 for more details); 

• Sample entropy (SEN_v, SEN_ml and SEN_ap) [18] (see Chapter 1 for 

more details).	

	

Indexes Parameters: 
As detailed explained in Chapter 1, most of the indexes parameters depend 

on the sampling frequency, consequently their values were tuned accordingly (i.e. 

fs_UNDER = fs/3). Moreover, all the parameters values were chosen following the 

indication reported in Chapter 1. In Table 2 all the used parameters values are 

shown: 
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INDEX PARAMETERS SIGNALS 
ORG FILT UNDER INTERP 

SD Nr strides 200 - - - 
CV Nr strides 200 - - - 
NI Nr strides 200 - - - 
IV Nr strides 200 - - - 
PSD1 Nr strides 200 - - - 
PSD2 Nr strides 200 - - - 

RQA 

Nr strides 200 - - - 
lag 10 samples - 3 samples - 
eD 5 - - - 
m 4 - - - 

LE 
Nr strides 200 - - - 

lag 10 samples - 3 samples - 
eD 5 - - - 

SEN 

Nr strides 200 - - - 
m 2 - - - 
r 0.2 - - - 
τ 3 and 6 - 1 and 2 - 

 
Table 2: Indexes parameters. - indicates no change from the acquisition parameters (ORG 
column). 
 

 

3.3.5 Statistical Analysis: 
A Shapiro-Wilk test was performed on all the above-mentioned indexes, 

calculated for all the signals, showing that the data were not normally distributed. 

Kruskal-Wallis test with minimum level of significance (p_value) of 5% were 

performed to compare the indexes values obtained on the four different signals. If 

a significant interaction was found (p_value < 5%), Tukey-Kramer correction was 

considered for post-hoc analysis. In particular the multiple comparisons 

performed were: 

1.  Original signal vs filtered one, in order to evaluate the frequency effect. 

2.  Filtered signal vs, under-sampled one, in order to evaluate the sample 

effect. 

3. Filtered signal vs interpolated one, in order to assess if an interpolation 

could solve the sample effect. 

4. Original signal vs under-sampled one, to evaluate the overlapping of the 

sample and frequency effects. 
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As it concerns MSE, coarse-grained procedure with τ = 3 and 6 for the 

original signal (fs = 128 Hz) were compared to coarse-grained procedure with τ = 

1 and 2 for the under sampled (fs_UNDER = fs/3 = 42.6 Hz) one. 

 

 

3.4 RESULTS 
 

Similar results were obtained using the signal filtered with an ideal low 

pass filter or a real one. 

The statistical analysis results showed that all the variability (SD, CV, NI, 

IV, PSD1, and PSD2) indexes were not influenced by the under-sampling process. 

Stability indexes displayed two different behaviours: 

• No significant differences between stability indexes (HR, LE, and SEN in 

all the directions) calculated on the acquired signal and on the under 

sampled one, mining that these indexes were not influenced by the under-

sampling process. 

• Significant differences between stability indexes (det, AvgL, Max, and 

Div in all the directions) calculated on the filtered signal and on the under 

sampled one. However, concurrently, the same indexes showed no 

significant differences between the values obtained from the filtered signal 

and the interpolated one; mining that these indexes were influenced by the 

under-sampling process, suffering of the sample effect, however the 

interpolation process solved this problem making under-sampling eligible. 

In Table 4 the obtained results were summarized. 
 

 
Frequency 

Effect 
Sample 
Effect 

Interpolation 
Solved 
Sample 
Effect 

Under-
sampling 
Allowed 

Under-
sampling 

Allowed with 
Interpolation 

SD    
✓ 

 
CV    

✓	
 

NI    
✓	

 
IV    

✓	
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Frequency 

Effect 
Sample 
Effect 

Interpolation 
Solved 
Sample 
Effect 

Under-
sampling 
Allowed 

Under-
sampling 

Allowed with 
Interpolation 

PSD1    
✓ 

 
PSD2    

✓ 
 

HR_ap    
✓ 

 
HR_ml    

✓	
 

HR_v    
✓	

 
IH_ap    

✓ 
 

IH_ml    
✓	

 
IH_v    

✓	
 

rr_ap    ✓  
det_ap  

✗ ✗ 
 

✓ 

AvgL_ap  
✗	 ✗	

 
✓	

MaxL_ap  
✗	 ✗	

 
✓	

Div_ap  
✗ ✗ 

 
✓ 

rr_ml    ✓  
det_ml  

✗ ✗ 
 

✓ 

AvgL_ml  
✗	 ✗	

 
✓	

MaxL_ml  
✗	 ✗	

 
✓	

Div_ml  
✗ ✗ 

 
✓ 

rr_v    ✓  
det_v  

✗ ✗ 
 

✓ 

AvgL_v  
✗	 ✗	

 
✓	

MaxL_v  
✗	 ✗	

 
✓	

Div_v  
✗ ✗ 

 
✓ 

sLE_ap    
✓	

 
lLE_ap    

✓ 
 

sLE_ml    
✓	

 
lLE_ml    

✓ 
 

sLE_v    
✓	

 
lLE_v    

✓ 
 

sLE_tot    ✓	  

lLE_tot    ✓  

SEN_ap    ✓  

SEN_ml    ✓	  

SEN_v    ✓	  

 
Table 3: ✗ indicates presence of sample or frequency effects (first and second column) and ability 
of the interpolation process to solve the sample effect (third column). ✓ indicates in which 
condition the under-sampling is eligible.  
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3.5 DISCUSSION 
	

The understanding and assessment of gait stability is a fundamental step to 

identify the subject’s risk of falling [1]. Several variability and stability indexes 

have been proposed for the subject specific assessment of fall risk, demonstrating 

[2,3] capability to provide indication regarding the specific subject alterations 

increasing fall risk, potentially leading to a better insight in the functional analysis 

of gait pattern. Even though promising results were found, several variability and 

stability indexes require a high number of strides, a clinical issue, in order to 

guarantee an acceptable reliability [4] of the measure. For an effective 

exploitation of this approach in clinical practice, the continuous monitoring of 

subjects at risk is needed. In this respect smartphone is the ideal device for this 

goal. Although the IMUs mounted on smartphones have nothing to envy to other 

commercially available devices, they do not support high (i.e. above 100 Hz) 

sampling frequency. The influence of a reduced sampling frequency, usually at 50 

Hz for Android systems [9], could not be a priori evaluable and negligible, also 

given the nonlinear nature of the variability and stability indexes. Consequently, 

the aim of the present study was to evaluate the influence of a reduced sampling 

frequency (from 128 Hz to 42.6 Hz) in the computation of stability and variability 

indexes, used for gait assessment. 

From the signal theory it is known that an under-sampling process implies, 

in general, two effects on the under sampled signal: 

• Reduced number of sample (sample effect) 

• Different frequency content (frequency effect) 

In this study both the above-mentioned effects were evaluated, together 

with a possible strategy based on the interpolation process to solve the sample 

effect. 

 The results showed that all the variability indexes were influenced neither 

by the sample effect, nor by the frequency one. This finding is not surprising since 

the variability indexes were performed on the stride time data. Stride time was 

estimated from the angular velocity around the medio-lateral axis of the ankle 
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[12], which even filtered at 20 Hz preserves its natural periodicity needed for the 

stride time calculations. 

The stability indexes showed two different behaviours that converge into 

the same results: the decrease of sampling frequency from 128 to 42.6 Hz did not 

influence them. In details, the stability indexes that analysed the frequency 

content of the signal (i.e. HR and MSE) were influenced neither by the frequency, 

nor by the sample effect. This could be explained because the frequency content 

of the signal at the 95% was guaranteed [Chapter 2]. Moreover, when considering 

the MSE only coarse-grained coherent comparisons were performed. τ = 3 and 6 

for the original signal (fs = 128 Hz) were compared to coarse-grained procedure 

with τ = 1 and 2 for the under sampled (fs_UNDER = fs/3 = 42.6 Hz) one. Indeed, 

operating a three times coarse-grain procedure from a signal sampled at 128 Hz 

would filter frequencies higher than 42.6 Hz, namely the frequency content of the 

under sampled signal (i.e. τ = 1); while operating six coarse grain procedures on a 

signal sampled at 128 Hz or two coarse grain procedures from a sampling 

frequency of 42.6 Hz would filter frequencies higher than 21.3 Hz [18]. 

The stability indexes that analyse the time domain (see detail in Chapter 1) 

can be split into two groups: one composed by the indexes (LE and rr in all the 

directions) not influenced by the under-sampling (either sample or frequency 

effects) and one composed by the indexes (det, AvgL, Max, and Div in all 

directions) influenced by the under-sampling (i.e. sample effect) overcame by the 

interpolation process. 

As better explained in Chapter 1 these indexes are based on the space state 

reconstruction through the delay embedding technique [19]. The time delay (i.e. 

lag) and embedding dimension (i.e. eD) were tuned accordingly for all the 

analysed signals (i.e. original, filtered, under sampled, and interpolated). This 

coherent setting of parameters (sampling frequency related) led to avoid influence 

of the reduced sampling frequency. This is not completely true for the features of 

the recurrence plot with the exception of the recurrence rate (rr).  

The recurrence plot of the under sampled signal has dimension lower (i.e. 

three times less) than the acquired one; consequently it might influence the 

evaluated structures (e.g. diagonal line). Instead, the rr is not influenced by this 
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dimension reduction likely due to its intrinsic definition (i.e. as the ratio between 

the recurrence points and all the recurrence plot’s points). 

This study highlight that down-sampling (at 42.6 Hz) is feasible, if 

specific constraints are taken into account in the implementation of the analysed 

indexes. One possible limitation, given the many comparisons performed 

simultaneously, is type I error (multiple comparison problem). Although, several 

comparisons were performed to investigate different features of gait (variability 

and stability), when assessing similar aspects (e.g. variability) or when the same 

analysis approach (e.g. frequency domain analysis, or time domain analysis) was 

used, equal behaviours were obtained, thus reinforcing the results.  

In conclusion this study highlights that the under-sampling process at 42.6 

Hz is not compromising the evaluation of the fall risk monitoring from the 

laboratory to a portable device. However, these results cannot be generalized to 

other under-sampling frequency (lower than 42.6 Hz), assuming that frequency 

content below 20 Hz and a decrease of the number of samples will influence the 

indexes calculation. 
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Chapter 4 

 
 

MOVING FROM LABORATORY TO REAL 
LIFE CONDITIONS: INFLUENCE ON THE 

ASSESSMENT OF VARIABILITY AND 
STABILITY OF GAIT1 

 
 
 

“You’ve got the key of the street” 
Charles Dickens, The Pickwick Papers 

 
“Il camminare presuppone che  

a ogni passo il mondo cambi  
in qualche suo aspetto e pure  

che qualcosa cambi in noi” 
Italo Calvino, I mille giardini 
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4. MOVING FROM LABORATORY TO 
REAL LIFE CONDITIONS: 

INFLUENCE ON THE ASSESSMENT 
OF VARIABILITY AND STABILITY 

OF GAIT 
 
 

4.1 ABSTRACT 
 

The availability of wearable sensors allows shifting gait analysis from the 

traditional laboratory settings, to daily life conditions. However, limited 

knowledge is available about whether alterations associated to different testing 

environment (e.g. indoor or outdoor) and walking protocols (e.g. free or 

controlled), result from actual differences in the motor behaviour of the tested 

subjects or from the sensitivity to these changes of the indexes adopted for the 

assessment. In this context, it was hypothesized that testing environment and 

walking protocols would not modify motor control stability in the gait of young 

healthy adults, who have a mature and structured gait pattern, but rather the 

variability of their motor pattern. 

To test this hypothesis, data from trunk and shank inertial sensors were 

collected from 19 young healthy participants during four walking tasks in 

different environments (indoor and outdoor) and in both controlled (i.e. following 

a predefined straight path) and free conditions. Results confirmed what 

hypothesized: variability indexes (Standard deviation, Coefficient of variation and 

Poincaré plots) were significantly influenced by both environment and walking 

condition. Stability indexes (Harmonic ratio, Short term Lyapunov exponents, 

Recurrence quantification analysis and Sample entropy), on the contrary, did not 

highlight any change in the motor control.  

In conclusion, this study highlighted an influence of environment and 

testing condition on the assessment of specific characteristics of gait (i.e. 
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variability and stability). In particular, for young healthy adults, both environment 

and testing condition affect gait variability indexes, whereas neither affect gait 

stability indexes. 

 

 

 

Key words: daily life gait; variability indexes; stability indexes; indoor and 
outdoor walking; inertial sensors; accelerometers. 
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4.2 INTRODUCTION 
 

 

 

Laboratory assessment has been the standard setting for quantitative gait 

analysis for several decades. However, in recent years, the availability of wearable 

inertial measurement units has allowed to quantitatively and easily assess gait also 

out of the lab [1,2].  

The assessment of gait out of the laboratory, whereby it is not constrained 

to a predefined path, aims at reproducing a testing condition more similar to that 

of daily living. This type of assessment is particularly interesting for the 

investigation of gait performance and of the underlying motor control with a 

specific focus on the quantification of dynamic stability and fall risk. It can 

potentially overcome the limitations (e.g. limited acquired number of stride) of 

data acquired in laboratory conditions [2]. Moreover, the monitoring of gait, as 

obtained from various types of quantitative descriptive indexes, provides 

information that can significantly impact the design of more effective training and 

rehabilitative interventions [3]. 

ABBREVIATIONS 
SD Standard Deviation 
CV Coefficient of Variation 
PSD1 Short term variability of stride estimated via Poincaré plots 
HR Harmonic Ratio 
HR_v Harmonic Ratio computed on the vertical acceleration direction 
HR_ml Harmonic Ratio computed on the medio-lateral acceleration direction 
HR_ap Harmonic Ratio computed on the antero-posterior acceleration direction 
sLE Short term Lyapunov Exponent 
sLE_v Short term Lyapunov Exponent on the vertical acceleration direction 
sLE_ml Short term Lyapunov Exponent on the medio-lateral acceleration direction 
sLE_ap Short term Lyapunov Exponent on the antero-posterior acceleration direction 
RQA Recurrence Quantification Analysis 
RR Recurrence Rate  
DET Determinism 
AvgL Averaged diagonal line length 
SEN Sample entropy 
SEN_v Sample entropy on the vertical acceleration direction 
SEN_ml Sample entropy on the medio-lateral acceleration direction 
SEN_ap Sample entropy on the antero-posterior acceleration direction 
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Several studies [2,4,5] analysed the gait pattern of faller and non-faller 

elderly and pathological subjects in daily-living conditions using indexes assumed 

to quantify the motor performance and the underlying motor control. However, 

limited knowledge is available regarding if and how the testing environment (e.g. 

indoor or outdoor) and the imposition of a specific walking path (e.g. free or 

controlled) might affect gait pattern and performance, and whether the indexes, 

commonly adopted to quantify these aspects, are sensitive to these changes.  

Therefore, it is crucial to understand whether the alterations, associated to 

different testing conditions, result from actual differences in the motor behaviour 

of the analysed subjects or rather from the sensitivity of the indexes adopted for 

the assessment. 

It is almost impossible to infer this knowledge analysing elderly and/or 

pathologic subjects, however for young healthy subjects, it can be assumed that 

the motor control of a mature and structured gait pattern [6], will not be 

significantly affected by the testing conditions. Therefore, environmental and 

testing conditions are not expected to modify the motor control stability in the gait 

of a young healthy adult, who has the ability to face far more challenging 

conditions, but changes in the variability of the motor pattern could be expected 

as an adaptation to the environment in order to maintain stability.  

The definition and applicability of the concepts of variability and stability 

is well defined in mechanics, while the two are often used addressing similar 

meanings in gait analysis referring to motor control. On one hand, in a complex 

dynamic system as human gait, variability could arise from the deterministic 

dynamics of the system (e.g. when a chaotic attractor is present as in human gait 

[7]). It follows that the measured variability is a reflection of the multiple degrees 

of freedom of the system and does not necessarily imply destabilization of the 

system itself [7]. On the other hand, stability could arise from both the intrinsic 

properties of the system (i.e. motor control) and the specific movement pattern 

(i.e. gait) [7,8].  

It could be argued that while gait variability is an indirect assessment of 

the motor control through gait performance (e.g. stride time), stability is instead a 

direct evaluation of the performance of the underlying motor control [7–9]. 
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Besides traditional approaches based on the quantification of mechanical 

features of gait [10], a number of indexes have been proposed to quantify aspects 

more related to motor control [11,12]. These indexes can be generally grouped as 

variability (i.e. standard deviation, coefficient of variation, Poincaré plots) and 

stability indexes (i.e. Lyapunov exponents, harmonic ratio, sample entropy and 

recurrence quantification analysis) [11], based on their mathematical 

implementation and which characteristics of the analysed signal they are expected 

to quantify. 

According to the above mentioned concepts of variability and stability, 

variability indexes, usually applied on stride time data, are meant to assess 

changes in the peripheral realization of the gait pattern [7–9,13], whereas stability 

indexes, usually applied on trunk acceleration data, are meant to assess the 

stability of the trajectory of the centre of mass. Indeed, recent studies [9,14,15], 

analysing both healthy (from 4 years-old children to 25 years-old young adults) 

and pathological subjects (stroke), analysed the role of the variability in joint 

kinematics in determining a successful control of the stability of the centre of 

mass trajectory, approximated by the lower trunk [7,16,17]. Stride time and trunk 

acceleration data are two manifestations of the same control system in healthy and 

pathologic subjects [18,19]. 

With this differentiation in mind, and since healthy young subjects have a 

well achieved and stabilized gait pattern [6], our hypothesis is that, when testing 

young healthy subjects walking along both controlled and free paths, the indexes 

related to motor stability are not expected to be significantly affected. Conversely, 

modifications should be observed in variability indexes, due to the possibility to 

adjust the gait pattern to the environment in order to maintain stability.  

In particular, an increase in variability indexes both from indoor to outdoor and 

from controlled to free conditions is expected, while no significant changes in gait 

stability indexes should be observed.  

The present study aims at testing this hypothesis evaluating the influence 

of environment (indoor and outdoor) and testing conditions (controlled and free) 

on gait assessment when using variability and stability indexes in a young healthy 

population. 
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4.3 MATERIALS and METHODS 
 

In a cross-over study, nineteen healthy young volunteers (5 females, 14 

males, 28±3 years, 1.75±0.09 m, 72.0±9.2 kg) were recruited after having 

provided informed consent. Only subjects with no self-reported history of 

locomotor disturbances or injuries that could affect their normal walking 

behaviour, or cause fatigue during the experimental protocol were included in the 

study. The University of Sheffield’s Research Ethics Committee granted ethical 

approval for the study. 

Subjects wore two inertial measurement units (Opal, APDM, USA): one 

located on the lower trunk on the fifth lumbar vertebra, and one attached frontally 

on the right shank, 2 cm above the lateral malleolus, for stride detection [10]. 

Measures of accelerations of the trunk and angular velocity of the right shank 

were recorded at 128 Hz.  

Subjects completed four walking tasks in two different environments 

(indoor and outdoor) and in both controlled (i.e. following a predefined straight 

path) and free conditions (see details in Table 1) [20], indicated as ICW (Indoor 

Controlled Walking), OCW (Outdoor Controlled Walking), IFW (Indoor Free 

Walking) and OFW (Outdoor Free Walking), respectively. All participants 

performed the walking task in the different testing conditions, in one day, 

following the same order: OCW, OFW, IFW, ICW. 

 

CONDITION ACRONYM DESCRIPTION DURATION 
/REPETITIONS 

Indoor controlled 
walking ICW Walking at preferred speed along an 

indoor straight path 20.0 m long walkway. Eight repetitions. 

Outdoor 
controlled 
walking 

OCW 
Walking at preferred speed along an 
outdoor straight path 50.0 m long 
walkway. 

Six repetitions. 

Indoor free 
walking IFW Walking along corridors within a 

university building, avoiding stairs. Two minutes. 

Outdoor free 
walking OFW 

Walking along footpaths open to the public 
in the city centre without any restrictions 
in route or walking speed, avoiding stairs. 

Fifteen minutes. 

 
Table 1: Summary of the walking conditions performed during the experimental protocol, with 
acronym, description, and duration or repetition [20]. 
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• ICW was performed in a quiet corridor of the university building, and 

participants were asked to walk on a straight line for 20 m. The distance 

was measured and marked on the floor using adhesive tape.  

• For IFW condition, participants were instructed to walk inside the 

university corridors starting from the main entrance, with no restriction of 

route, opening and closing doors as necessary. The data was always 

collected during normal working hours, in mostly busy corridors. 

• OCW was performed in a quiet open space within the university premises, 

on a flat tarmac surface.  

• For OFW, participants were instructed to walk freely in the city centre, 

with no restrictions regarding route or walking speed, but avoiding stairs. 

 

During IFW and OFW the participants did not have verbal interaction with 

other people, but they may have had to adjust their gait due to the presence of 

others in the surroundings. Interactions with other people were possible, 

particularly during IFW. Finally, during IFW and OFW turns could also be 

recorded in addition to straight walking. However, turns and resting periods were 

segmented and excluded from the analysis. Turn events with durations between 1-

3 stride time and angles around the vertical axis over 40° were identified and 

removed using the method specified by El-Gohary et al. [21]. Resting periods 

were defined as those when the time between subsequent heel strikes [10] was 

higher than 1.5 s. 

For each participant and each condition 80 strides were analysed, since 

this was the maximum number of strides available in all conditions. 

Gait variability was assessed on stride times using the variability indexes: 

• Standard Deviation (SD) 

• Coefficient of Variation (CV) [22] 

• Short term variability of stride estimated via Poincaré plots (PSD1) [23]. 

Gait stability was assessed applying to the vertical (v), medio-lateral (ml), and 

antero-posterior (ap) trunk acceleration components the stability indexes: 
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• Harmonic Ratio (HR_v, HR_ap, HR_ml) [24] (see Chapter 1 for more 

details); 

• Short term Lyapunov exponents (sLE_v, sLE_ap, sLE_ml) [25,26] (see 

Chapter 1 for more details); 

• Recurrence quantification analysis (RQA) implying the calculation of 

recurrence rate (RR), determinism (DET) and averaged diagonal line 

length (AvgL) [27] (see Chapter 1 for more details); 

• Sample entropy (SEN_v, SEN_ml and SEN_ap) [28] (see Chapter 1 for 

more details). 

These indexes were selected, among those previously used to detect 

changes in the gait pattern [4,12,29,30], based on the available number of 

consecutive strides per trial, which would ensure a reliability of at least 20% 

[11,31]. Raw unfiltered data were analysed to assure that information was not lost 

or altered. 

Matlab R2015b (MathWorks BV, USA) was used for data and statistical 

analysis. 

A Shapiro-Wilk test was performed on all the above-mentioned indexes, 

showing that they were not normally distributed. Median, 25th and 75th percentile 

values were hence calculated. Kruskal-Wallis test with minimum level of 

significance of 5% was performed to compare the indexes values obtained in the 

different walking conditions. Dunn-Sidak correction was considered for post-hoc 

analysis. 
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4.4 RESULTS 
 

Figure 1 shows a representative time series of trunk acceleration in the 

antero-posterior direction and the angular velocity of the shank around the medio-

lateral axis for each condition. 

All variability indexes varied significantly between the analysed walking 

conditions, conversely from the stability indexes (with the only exception of HR 

in both v and ap) as shown in Figure 2. In particular, the Kruskal-Wallis test 

showed statistically significant differences for PSD1 between OCW and OFW 

and between ICW and OFW, with values 35% higher in OFW than in OCW and 

ICW. 

SD and CV in ICW were significantly different from both OCW and OFW 

conditions, being approximately 20% lower. 

Despite the fact that HR_v and HR_ap significantly diminished when 

moving from ICW to OFW, the observed numerical differences were lower than 

the known reliability thresholds of this indexes [11]. Similarly, significant but not 

reliable variations were observed for HR_ap between OFW and OCW and 

between OFW and IFW. 
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Figure 1: First line: representative trunk acceleration signal in antero-posterior direction in the four (ICW, OCW, IFW and OFW) walking conditions. Second line: 
representative angular velocity of the shank around the medio-lateral axis in the four (ICW, OCW, IFW and OFW) walking conditions. 
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Figure 2: Median, 25th and 75th percentiles and the p_value of variability and stability indexes results showing significant differences (p_value<5%) for the four 
walking conditions (ICW, OCW, IFW and OFW). Grey dotted lines indicate significant differences below the index reliability that can be associated to the analysed 
number of strides [11]. 
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4.5 DISCUSSION 
 

The walking pattern of young healthy adults was analysed in different 

environments (indoor and outdoor) and testing conditions (controlled and free) to 

assess if and how variability and stability, quantified using commonly used 

variability and stability indexes [11], would be affected. The hypothesis in the 

specific population was that stability would not change significantly, while 

variability would increase moving from indoor to outdoor and from controlled to 

free condition. 

Overall, the results confirmed the study hypothesis: on one hand 

variability indexes, associated to the specific gait pattern, can be altered by testing 

conditions; on the other hand, stability indexes, related to the underlying motor 

control, are influenced neither by the environmental nor by the type of walking. 

The differences observed in SD e CV values between Indoor Controlled 

Walking (ICW) and Outdoor Free Walking (OFW) indicate that stride time 

variability changes significantly when moving from the laboratory to outdoor 

walking conditions. This was further confirmed by the PSD1 values: both 

observed differences (ICW vs OFW and OCW vs OFW) and the trend (increased 

values from indoor controlled condition to the outdoor free one) highlighted how 

short-term variability of stride times [23] should be interpreted with caution when 

analysing data from different environments and testing conditions. 

The variability indexes were influenced also by the environment in the controlled 

walking (ICW vs OCW): it has to be acknowledged that besides the change in the 

environment, differences in the length of the path in the two walking conditions 

can also affect gait variability, as suggested for older subjects [32]. 

No significant difference was found in stability indexes, in accordance 

with the study hypothesis. SEN showed similar values for all testing conditions, 

moreover the observed trends, in all directions, are in accordance to those reported 

in the literature [4,33]: higher SEN values for increasing τ. This further supports 

the study hypothesis, highlighting how the stability of trunk acceleration during 
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gait is not influenced by testing conditions and environment in young healthy 

adults. 

The increase in gait variability, associated to different testing conditions of 

gait in healthy young adults, suggests that this behaviour should not always be 

considered as a warning symptom, as usually interpreted for elderly subjects [34]. 

Changes in variability are not necessarily related to a reduction of gait stability, 

hence not necessarily to be interpreted as an increase in fall risk. 

Given the many comparisons performed simultaneously, type I errors 

(multiple comparison problem) are deemed possible. However, in the present 

study, several comparisons were performed to investigate different aspects of gait 

control and, when assessing similar aspects (e.g. variability), the same trends were 

obtained from different parameters, thus reinforcing the results. In addition, a bias 

could have been introduced by the choice of performing the four walking tasks in 

the same order. However, both the homogeneity of the results (similar analysed 

aspects showed same behaviour) and, when present, highly significant differences 

(p_value << 5%) suggest the potential bias to be marginal, if not negligible.  

In conclusion, this study highlighted the influence of environment and 

testing condition in the assessment of specific characteristics of gait (i.e. 

variability and stability). In particular, when assessing the gait of young healthy 

adults, both environment and testing condition affect variability indexes, whereas 

neither of the two affects stability indexes. 

In general, these results cannot be generalized to other populations, 

assuming that testing in or out of the lab will not affect gait stability assessment, 

for instance, in elderly and/or pathologic subjects. Nevertheless, the eventual 

assessment of significant differences in stability indexes, quantified for indoor and 

outdoor walking conditions in elderly and/or pathologic populations, would 

suggest an increased frailty of these subjects in terms of motor stability and fall 

risk, when compared to the reference performance of young healthy adults. 
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4.7 SUPPLEMENTARY MATERIAL 
 

Index 
Walking conditions Statistical significance 

(p_value<5%) ICW OCW IFW OFW 

SD [s*10-2] 
Median 1,76 2,16 2,08 2,15 ICW vs OCW and ICW vs OFW 

(25th-75th) (1,46-1,97) (1,97-2,61) (1,65-2,93) (1,76-3,08) 

CV%  
Median 1,70 

(1,41-1,79) 
2,07 
(1,94-2,56) 

2,09 
(1,58-2,61) 

2,11 
(1,71-2,84) 

ICW vs OCW and ICW vs OFW. 
(25th-75th) 

PSD1*10-2 
Median 1,29 

(1,11-1,36) 
1,30 
(1,17-1,45) 

1,42 
(1,14-1,91) 

1,76 
(1,46-1,98) 

ICW vs OFW and OCW vs OFW. 
(25th-75th) 

HR_v 
Median 4,24 

(3,74-5,28) 
4,38 
(3,72-4,74) 

3,96 
(3,59-5,13) 

3,50 
(2,97-4,19) 

ICW vs OFW* 
(25th-75th) 

HR_ml 
Median 2,17 

(1,85-2,75) 
2,24 
(1,84-2,50) 

2,22 
(1,86-2,56) 

2,00 
(1,72-2,19) 

 
(25th-75th) 

HR_ap 
Median 3,99 

(3,83-4,91) 
3,91 
(3,60-4,51) 

4,01 
(3,58-4,75) 

3,26 
(3,10-3,43) 

OFW vs ICW*, IFW vs OFW* and OCW vs OFW* 
(25th-75th) 

sLE_v 
Median 1,29 

(1,13-1,52) 
1,43 
(1,28-1,57) 

1,34 
(1,18-1,52) 

1,33 
(1,15-1,50) 

 
(25th-75th) 

sLEml 
Median 0,88 

(0,68-1,03) 
1,01 
(0,86-1,15) 

0,84 
(0,72-1,04) 

0,78 
(0,69-0,90) 

 
(25th-75th) 

sLE_ap 
Median 0,98 

(0,82-1,20) 
1,04 
(0,82-1,28) 

1,01 
(0,87-1,25) 

0,89 
(0,73-1,12) 

 
(25th-75th) 

RR_v 
Median 13,99 

(12,77-15,02) 
14,21 
(12,74-15,61) 

14,38 
(12,83-14,89) 

14,78 
(13,59-17,25) 

 
(25th-75th) 

DET_v 
Median 82,39 

(76,61-85,45) 
81,10 
(75,81-83,83) 

81,41 
(77,76-86,24) 

84,30 
(75,61-86,67) 

 
(25th-75th) 
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Index 
Walking conditions Statistical significance 

(p_value<5%) ICW OCW IFW OFW 

AvgL_v 
Median 11,69 

(10,29-13,24) 
11,81 
(11,02-13,28) 

12,42 
(10,73-13,28) 

12,31 
(10,14-13,17) 

 
(25th-75th) 

RR_ml 
Median 9,07 

(7,84-10,70) 
8,59 
(7,93-9,75) 

8,66 
(8,03-9,51) 

7,96 
(7,56-8,93) 

 
(25th-75th) 

DET_ml 
Median 47,83 

(40,73-57,71) 
47,67 
(37,87-54,78) 

48,69 
(41,18-57,04) 

42,35 
(37,41-48,94) 

 
(25th-75th) 

AvgL_ml 
Median 6,46 

(6,01-6,92) 
6,21 
(6,10-6,95) 

6,44 
(5,91-6,95) 

5,99 
(5,72-6,39) 

 
(25th-75th) 

RR_ap 
Median 15,37 

(15,00-15,92) 
15,67 
(14,38-16,75) 

15,71 
(14,67-16,44) 

14,74 
(13,89-16,24) 

 
(25th-75th) 

DET_ap 
Median 74,99 

(64,55-83,58) 
78,96 
(66,64-83,49) 

73,43 
(69,21-82,21) 

71,53 
(59,31-80,92) 

 
(25th-75th) 

AvgL_ap 
Median 9,58 

(7,65-10,38) 
9,14 
(7,45-9,59) 

9,58 
(7,87-10,07) 

8,10 
(7,29-8,98) 

 
(25th-75th) 

SEN_v 
τ=1 

Median 0,33 
(0,31-0,37) 

0,32 
(0,31-0,36) 

0,35 
(0,32-0,38) 

0,36 
(0,31-0,40) 

 
(25th-75th) 

SEN_v 
τ=2 

Median 0,46 
(0,42-0,51) 

0,43 
(0,40-0,52) 

0,47 
(0,44-0,49) 

0,49 
(0,43-0,54) 

 
(25th-75th) 

SEN_v 
τ=3 

Median 0,57 
(0,55-0,61) 

0,55 
(0,52-0,65) 

0,61 
(0,54-0,64) 

0,59 
(0,55-0,67) 

 
(25th-75th) 

SEN_v 
τ=4 

Median 0,66 
(0,63-0,75) 

0,67 
(0,64-0,78) 

0,71 
(0,64-0,77) 

0,69 
(0,65-0,83) 

 
(25th-75th) 

SEN_v 
τ=5 

Median 0,72 
(0,70-0,86) 

0,79 
(0,74-0,88) 

0,78 
(0,69-0,87) 

0,84 
(0,72-0,98) 

 
(25th-75th) 

SEN_v 
τ=6 

Median 0,79 
(0,72-0,92) 

0,86 
(0,75-0,98) 

0,81 
(0,76-0,95) 

0,86 
(0,74-1,03) 

 
(25th-75th) 

SEN_ml 
τ=1 

Median 0,62 
(0,50-0,69) 

0,54 
(0,47-0,62) 

0,59 
(0,52-0,65) 

0,54 
(0,49-0,62) 

 
(25th-75th) 

SEN_ml Median 0,85 0,80 0,85 0,81  



	 109 

Index 
Walking conditions Statistical significance 

(p_value<5%) ICW OCW IFW OFW 
τ=2 (25th-75th) (0,72-0,99) (0,64-0,94) (0,78-1,00) (0,68-0,91) 
SEN_ml 
τ=3 

Median 0,99 
(0,89-1,24) 

0,97 
(0,81-1,14) 

1,05 
(0,89-1,17) 

1,01 
(0,85-1,17) 

 
(25th-75th) 

SEN_ml 
τ=4 

Median 1,15 
(1,00-1,36) 

1,06 
(0,94-1,24) 

1,26 
(1,01-1,35) 

1,19 
(1,03-1,35) 

 
(25th-75th) 

SEN_ml 
τ=5 

Median 1,29 
(1,04-1,44) 

1,21 
(1,09-1,33) 

1,42 
(1,11-1,48) 

1,33 
(1,16-1,53) 

 
(25th-75th) 

SEN_ml 
τ=6 

Median 1,37 
(1,16-1,45) 

1,30 
(1,19-1,45) 

1,44 
(1,24-1,53) 

1,40 
(1,26-1,66) 

 
(25th-75th) 

SEN_ap 
τ=1 

Median 0,32 
(0,30-0,38) 

0,28 
(0,26-0,35) 

0,35 
(0,29-0,40) 

0,31 
(0,26-0,37) 

 
(25th-75th) 

SEN_ap 
τ=2 

Median 0,44 
(0,37-0,52) 

0,42 
(0,38-0,49) 

0,43 
(0,39-0,52) 

0,44 
(0,39-0,53) 

 
(25th-75th) 

SEN_ap 
τ=3 

Median 0,51 
(0,45-0,63) 

0,54 
(0,45-0,58) 

0,50 
(0,44-0,64) 

0,55 
(0,49-0,66) 

 
(25th-75th) 

SEN_ap 
τ=4 

Median 0,60 
(0,51-0,69) 

0,60 
(0,53-0,71) 

0,60 
(0,51-0,71) 

0,64 
(0,59-0,77) 

 
(25th-75th) 

SEN_ap 
τ=5 

Median 0,63 
(0,57-0,73) 

0,64 
(0,59-0,81) 

0,66 
(0,57-0,73) 

0,76 
(0,69-0,86) 

 
(25th-75th) 

SEN_ap 
τ=6 

Median 0,65 
(0,62-0,79) 

0,69 
(0,64-0,80) 

0,67 
(0,63-0,77) 

0,75 
(0,68-0,85) 

 
(25th-75th) 

 
Table 3: Median, 25th and 75th percentiles of variability and stability indexes results obtained for the four walking conditions (ICW, OCW, IFW and OFW). Significant 
differences (p_value<5%): asterisks (*) indicate differences below the indexes reliability that can be associated to the analyzed number of strides [11]. 
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5. TOWARDS AN OBJECTIVE 
ASSESSMENT OF MOTOR FUNCTION 
IN SUB-ACUTE STROKE PATIENTS: 

RELATIONSHIP BETWEEN 
CLINICAL RATING SCALES AND 

INSTRUMENTAL GAIT STABILITY 
INDEXES 

 

	

5.1 ABSTRATC 
	

The assessment of walking function alterations is a key issue to design 

effective rehabilitative interventions in sub-acute stroke patients. Nevertheless, the 

objective quantification of these alterations remains a challenge.  

Clinical rating scales are commonly used in clinical practice, but have 

been proven prone to errors associated to the evaluator subjective perception. On 

the other hand, instrumental measurement of trunk acceleration can be exploited 

for an objective quantitative characterization of gait function, but it is not applied 

in routine clinical practice, because the resulting quantitative indexes have not 

been related to the clinically information, conventionally provided by the rating 

scales. To overcome this limitation, the relationship between the indexes, in 

specific clinical conditions, and rating scale must be better investigated, to support 

their exploitability in the clinical practice as a fast and reliable screening tool. 

Thirty-one sub-acute stroke patients (17 with and 14 without cane) 

participated in the study. All were assessed with 6 rating scales (MI, TCT, MRI, 

FAC, WHS, CIRS) and 2 functional tests (2MWT and TUG). Sample Entropy 

(SEN) and Recurrence Quantification Analysis (RQA) in AP, ML and V 

directions were calculated over 2MWT and walking section of TUG. The 
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influence of assessment task and cane was analysed, as well as correlation of SEN 

and RQA indexes with clinical rating scales. 

SEN and RQA on the medio-lateral plane resulted influenced by the use of 

the cane, while the correlations between indexes and clinical scales showed that 

SEN and RQA for antero-posterior direction correlate positively with WHS. 

 

 

 

Key words: Stability indexes; stroke; walking deficits; clinical scales; 
wearable sensors. 
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5.2 INTRODUCTION 
 

 

 

Sub-acute stroke patients are often affected by residual alterations of gait 

associated to an increased risk of fall [1,2]. These patients are identified, 

according to Sullivan [3], as those in between the acute and the chronic phase, in 

the continuous timeline starting on the stroke on-set until years post-stroke. 

Different symptoms (e.g. dystonia, spasticity, muscle weakness) may be observed 

during the evolution of the disease. Some of them (e.g. spasticity occurring in 

about 30% of patients [4]) have a highly variable onset and can occur in short-, 

medium- or long-term post-stroke period [5], interfering with the recovery of the 

ability to walk, to social participation and to autonomous living. The primary aim 

of the rehabilitation process is to restore and maintain the ability to perform 

actives of daily living, usually starting within the first days after the event and 

often continuing during the chronic stroke phase [6]. 

A recent review [7] has shown that, in the chronic stage, walk training 

resulted in increased walking speed and distance compared with no/placebo 

ABBREVIATIONS 
NoCane Sub-acute stroke patents with the ability to walk without cane 
Cane Sub-acute stroke patents, who needed additional support for walking 
2MWT 2-Minute Walk Test 
d_2MWT Travelled distance during 2MWT 
TUG Timed-Up and Go Test 
t_TUG Execution time of the TUG 
MI Motricity Index 
TCT Trunk Control Test 
RMI Rivermead Mobility Index 
FAC Functional Ambulation Category 
WHS Walking Handicap Scale 
CIRS Cumulative Illness Rating Scale 
SI Severity Index 
CI Co-morbidity Index 
RQA Recurrence Quantification Analysis 
RR Recurrence Rate  
DET Determinism 
AvgL Averaged diagonal line length 
SEN Sample entropy 
SEN_v Sample entropy on the vertical acceleration direction 
SEN_ml Sample entropy on the medio-lateral acceleration direction 
SEN_ap Sample entropy on the antero-posterior acceleration direction 
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treatment. Hence, restoring gait ability is not only a primary objective during the 

sub-acute phase, but a feature to be extended to all post stroke recovery stages. 

Therefore, the assessment of walking functional alterations is crucial to design an 

effective rehabilitative project. Unfortunately, the objective quantification of these 

alterations remains a challenge, not allowing to eventually discriminate patients, 

who retain some functional reserve and consequently could benefit from 

additional specific rehabilitation. 

In clinical practice, the assessment of motor function is usually performed 

using rating scales and/or motor functional tests. In the perspective of a multi-

dimensional rehabilitation process, these can assess patients through the 

International Classification of Functioning (ICF), which focuses on function, 

disability and contextual factors. Nevertheless, different clinical scales address 

different clinical aspects, can be time consuming and prone to inaccuracies and 

bias resulting from the subjective perception of the evaluator [8]. 

On the other hand, instrumental assessment of walking can provide an 

objective quantitative evaluation. In particular, indexes proposed for the 

quantification of gait stability, calculated on trunk acceleration, raised great 

interest in recent years. They have been proposed to provide a synthetic and easy 

to use method for the objective quantitative characterization of gait function, and 

have shown promising results in the assessment of walking deficits and fall risk in 

healthy elderly subjects [2,9–11]. 

Differently from clinical rating scales, these indexes are fast and easy to 

use, requiring only a few minutes for the acquisition of trunk accelerations during 

gait, and are not affected by intra-rate variability. Thus, they could serve as an 

effective screening tool for the identification of those subjects potentially 

retaining some functional reserve, who could benefit of additional specific clinical 

assessment and rehabilitation. 

Nevertheless, the possible exploitation of these indexes for clinical use 

requires, first of all, to establish their relationship with clinical scales, the current 

standard for clinical assessment. 

On the other hand, from a methodological point of view, it is also essential 

to analyse relevant aspects associated to the specific experimental assessment 
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conditions, since non-linear time series analysis often showed contradictory 

results and non-monotonic relationships due to their intrinsic non-linear nature, 

even when applied in the same context [12,13]. Therefore, it is important to 

understand the specific conditions, in which the indexes are applied. 

In particular, for the specific acquisition of trunk acceleration data during 

gait, different functional tests, already applied in clinical practice, could be 

instrumented. Different tests used to assess endurance (e.g. 2-Minute Walk Test 

(2MWT) [14,15]) or mobility (e.g. Timed-Up and Go Test (TUG) [16,17], 

Balance Evaluation Systems Test [18]) and others include a walking task. Among 

these, 2MWT is certainly the one offering the steady walking condition usually 

referred to for the calculation of gait stability indexes [19], while the walking 

section of TUG [16,17] is usually shorter and included between two transient 

conditions (standing from a chair and a U-turn), thus potentially different in the 

perspective of motor control assessment, for stroke patients in particular. 

Nevertheless, TUG has already been instrumented for clinical practice [17] and 

proposed for this type of assessment. 

 In addition to this, stability indexes have already been proposed and 

analysed for normal gait [11,19], while a large number of stroke patients cannot 

walk without the support of a cane, which modifies ground reaction forces and 

consequently can modify trunk accelerations. From the point of view of non-

linear analysis, both these aspects -tasks and populations characteristics- should 

be taken into account to implement a reliable analysis. 

Therefore, the aim of the present study was: a) from a methodological 

point of view, to evaluate how the stability indexes are affected by the task used 

for the acquisition of trunk acceleration during gait (i.e. 2MWT vs TUG) and by 

the use of a support (i.e. NoCane vs Cane) in the reference target population of 

sub-acute stroke patients; b) in the perspective of possible clinical exploitation, to 

assess the relationship between instrumental gait stability indexes calculated on 

2MWT and TUG and some of the most used clinical scales for the assessment of 

sub-acute stroke subjects (NoCane and Cane). 
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5.3 MATERIALS and METHODS 
 

5.3.1 Study subjects 
 

Thirty-one sub-acute stroke patients participated in the study, divided in 

two groups: NoCane, who were able to walk without a cane (53±10years, 

70±11kg, 9males and 8females) and Cane, who required the support of a cane for 

walking (64±11years, 70±15kg, 9males and 5females). 

Sub-acute stroke patients were selected based on clinical indication for the 

analysis, from 7 days following the stroke [3]. 

The inclusion criteria were: absence of cardiovascular, neurological, 

psychiatric diseases and severe visual/auditory impairments; absence of 

musculoskeletal pathologies influencing locomotion, with the exception of stroke; 

ability to stand up from a chair, walk along 6m and sit down (TUG); resistance to 

fatigue allowing to walk for two minutes; ability to understand and follow 

instructions. 

The Review Board Committee of the authors’ institution approved the 

study, and informed consent was obtained from all participants. 

 

5.3.2 Clinical evaluation 
 

In agreement with clinicians, a selection of clinical scales was 

implemented in order to obtain a complete ICF description of stroke outcomes. 

The selected clinical scales were: 

a) Motricity Index (MI): to assess limb motor function. 

b) Trunk Control Test (TCT): to evaluate trunk control. 

c) Rivermead Mobility Index (RMI): to assess different aspects of mobility 

in everyday life situations. 

d) Functional Ambulation Category (FAC): to evaluate patient’s walking 

ability. 
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e) Walking Handicap Scale (WHS): to evaluate the actual use of walking in 

daily life. 

f) Cumulative Illness Rating Scale (CIRS): to measure the patient’s somatic 

health. It comprises Severity Index (SI) and Co-morbidity Index (CI). 

Each subject also performed two clinical motor tests: 

a) 2MWT: endurance test that measures the travelled distance (d_2MWT) in 

2 minutes of walking at self-selected speed in a corridor longer than 80 m. 

b) TUG: a simple test to measure mobility level as well as static and dynamic 

balance skills. It consists of rising from a chair, walking 6 m, turning 

around, walking back to the chair and siting down. The clinical outcome is 

the test execution time (t_TUG). 

The same expert clinician performed all assessments to avoid inter-evaluator 

errors. 

 

5.3.3 Experimental setup	
One 3D-accelerometer (G-Walk, BTS Bioengineering, Italy; fs = 200Hz) 

was mounted on the lower trunk as close as possible to L5 to record 

approximately the acceleration of the centre of mass. 

 

5.3.4 Data analysis	
The whole signal of 2MWT and the walking portions [17] of TUG were 

used for the calculation of stability indexes. 

Among all the indexes proposed in the literature for the quantification of gait 

stability [11,19], Sample Entropy (SEN) [20] and Recurrence Quantification 

Analysis (RQA) in particular the analysed features were: recurrence rate (RR), 

determinism (DET) and averaged diagonal line length (AvgL) [21–23], were 

chosen (see Chapter 1 for computational details), because they did not require step 

segmentation [11], which can be critical in stroke patients due to the alteration of 

gait cycle; moreover these indexes could be quantified with acceptable reliability 



	 122 

[19] for the limited duration of the walking section of TUG. For all the 

computational details see Chapter 1. 

All indexes were calculated for the antero-posterior (AP), medio-lateral 

(ML) and vertical (V) trunk acceleration direction. 

Jarque-Bera test was performed to verify the normal distribution of the calculated 

indexes on the different groups (i.e. TUG, 2MWT, NoCane, Cane): since the 

normal distribution was not verified for all groups, median, 25- and 75-percentile 

values were calculated. 

Kruskal-Wallis test with minimum level of significance at 5% was used to 

perform the paired comparison of the effect of TUG vs 2MWT and of NoCane vs 

Cane on SEN for all time scales and all RQA features in each direction. Pearson 

correlation coefficients and the associated p_value were calculated per group (i.e. 

NoCane and Cane) and per task (i.e. TUG and 2MWT) between the log-transform 

of the indexes and the scores of clinical scales. 

 

 

 

5.4 RESULTS 
 

For SEN: 

• SENap and SENv showed higher values for all time scales during TUG 

than during 2MWT, in both NoCane and Cane group. In ML direction the 

opposite trend was found. 

• NoCane and Cane groups showed similar values of SENap obtained for 

2MWT; whereas, during the execution of TUG: NoCane had lower median 

values than Cane for τ=1,2 and opposite trend for τ ranging from 3 to 6. 

• SENv, calculated for 2MWT, showed lower values for NoCane subjects 

than for Cane ones for τ=1,2 and the opposite trend was found with τ 

ranging form 3 to 6. 
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• For TUG instead, NoCane showed values lower than Cane with τ ranging 

from 1 to 5, and the opposite trend for τ=6. 

• SENml showed higher values for NoCane than for Cane in both tasks. 

• Kruskal-Wallis test on SENml (τ=1,2) showed a significant task effect for 

the NoCane group (p=0.01 and p=0.03), while SENv (τ=1,2) showed a 

significant supports effect during the execution of TUG (p=0.002 and 

p=0.04). 

 

For RQA: 

• DET and AvgL, in all directions, showed opposite trends both for groups 

and tasks. In particular: DET calculated for 2MWT showed higher values 

than for TUG. Moreover, DET showed higher values for NoCane subjects 

than for Cane ones. 

• Kruskal-Wallis test showed support (NoCane vs Cane) effect on RRml 

(p=0.009), DETv (p=0.002) and in all directions for AvgL (p<0.05) if 

calculated on 2MWT, while for RRap and DETv (p=0.01) if calculated on 

TUG data. Task effect was found for NoCane group on RR, DET and 

AvgL in AP and ML directions (p<0.04), while on RR and DET in V 

direction (p=0.03) for Cane subjects. 

 

Median values, 25th and 75th percentiles of SEN (for all τ) and RQA (all 

features) are shown in Figure 1 and 2, respectively. 
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Figure 1. Median values (and 25th and 75th percentiles) for SEN values. Groups are identified by color (NoCane light grey and Cane dark grey) and tasks by 
symbol (of median values) (o for 2MWT and x for TUG). Asterisks (*) represent statistically significant differences (p_value<5%) between: tasks (same group), if 
above the bar plot, or groups (same task) if under the bar-plots. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Median values (and 25th and 75th percentiles) for RR, DET and AvgL values. Groups are identified by color (NoCane light grey and Cane dark grey) and 
tasks by symbol (of median values) (o for 2MWT and x for TUG). Asterisks (*) represent statistically significant differences (p_value<5%) between: tasks (same 
group) if above the bar plot, or groups (same task) if under the bar-plot. 
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 Regarding the correlation of indexes with clinical rating scales, in NoCane 

group: 

• for both tasks, SENap and RQAap (all features) correlated significantly 

with WHS; moreover, RQAml (all features) correlated with t_TUG, 

d_2MWT and MI, while RQAv (all features) showed no correlation. 

• SENml (τ=2,3) correlated with WHS, during the execution of 2MWT, and 

with t_TUG (τ=2…6) and d_2MWT (τ=2…4) during TUG. 

• SENv (τ=2…6), calculated for 2MWT, correlated with t_TUG. 

• No correlation was found for RQAv with clinical scales in both 

conditions. 

In Cane Group: 

• for both tasks, RQAap correlated with t_TUG and SENap showed no 

correlation 

• SENml (τ=5,6), calculated on TUG, correlated with FAC. 

 

Pearson correlation coefficients (p_value lower than 5%) between the indexes 

from the two tasks and the clinical scores are reported in Table 1 and Table 2 for 

NoCane and Cane group, respectively. 

 

 
 

INDEXES CLINICAL SCALES 
t_TUG MI TCT RMI d_2MWT FAC WHS SI CI 

SEN_ap1 
2MWT       -0,48     -0,59     

TUG 0,55       -0,63   -0,64     

SEN_ap2 
2MWT             -0,59     

TUG             -0,67     

SEN_ap3 
2MWT             -0,55     

TUG             -0,64     

SEN_ap4 
2MWT             -0,58     

TUG             -0,65     

SEN_ap5 
2MWT             -0,53     

TUG             -0,59     

SEN_ap6 
2MWT             -0,52     

TUG             -0,59     

SEN_ml1 
2MWT                   

TUG                   

SEN_ml2 
2MWT                   

TUG -0,69       0,57         
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INDEXES CLINICAL SCALES 
t_TUG MI TCT RMI d_2MWT FAC WHS SI CI 

SEN_ml3 
2MWT             -0,50     

TUG -0,56       0,58         

SEN_ml4 
2MWT             -0,48     

TUG -0,49       0,50         

SEN_ml5 
2MWT                   

TUG -0,48                 

SEN_ml6 
2MWT                   

TUG -0,50                 

SEN_v1 
2MWT     -0,53             

TUG                   

SEN_v2 
2MWT -0,53                 

TUG                   

SEN_v3 
2MWT -0,54                 

TUG                   

SEN_v4 
2MWT -0,55                 

TUG                   

SEN_v5 
2MWT -0,57                 

TUG                   

SEN_v6 
2MWT -0,52                 

TUG                   

RR_ap 
2MWT                   

TUG             0,55     

DET_ap 
2MWT             0,51     

TUG       0,72   0,69 0,89     

AVG_ap 
2MWT             0,58     

TUG             0,67     

RR_ml 
2MWT 0,68       -0,63         

TUG 0,84       -0,68         

DET_ml 
2MWT 0,49 -0,49     -0,55         

TUG 0,67 -0,48     -0,63         

AVG_ml 
2MWT 0,66       -0,63         

TUG 0,75 -0,58     -0,64         
 
Table 1. Significant Pearson correlation coefficients (p_value<5%) of NoCane subjects. White 
lines: (significant) correlations between indexes, obtained from 2MWT, and clinical scales. Grey 
lines: (significant) correlations between indexes, obtained from TUG, and clinical scales. 
 

 

 

INDEXES CLINICAL SCALES  
t_TUG MI TCT RMI d_2MWT FAC WHS SI CI 

SEN_ml1 
2MWT                 0,42 

TUG                  

SEN_ml2 
2MWT                   

TUG                   

SEN_ml3 
2MWT                   

TUG                   

SEN_ml4 
2MWT                   

TUG                   
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INDEXES CLINICAL SCALES  
t_TUG MI TCT RMI d_2MWT FAC WHS SI CI 

SEN_ml5 
2MWT                   

TUG           -0,55       

SEN_ml6 
2MWT                   

TUG           -0,63       

SEN_v1 
2MWT         -0,61      

TUG 0,56           -0,64    

SEN_v2 
2MWT         -0,63        

TUG             -0,65     

SEN_v3 
2MWT         -0,58         

TUG             -0,56     

RR_ap 
2MWT                   

TUG         -0,57 -0,55       

DET_ap 
2MWT                   

TUG         -0,54         

AVG_ap 
2MWT                   

TUG                   

RR_ml 
2MWT 0,69           -0,57     

TUG 0,72                 

DET_ml 
2MWT 0,55           -0,62     

TUG 0,57                 

AVG_ml 
2MWT 0,55                 

TUG 0,67                 
 

Table 2. Significant Pearson correlation coefficients (p_value<5%) of Cane subjects. White lines: 
(significant) correlations between indexes, obtained from 2MWT, and clinical scales. Grey lines: 
(significant) correlations between indexes, obtained from TUG, and clinical scales. 
 

 

 

 

5.5 DISCUSSION 
 

To analyse how stability indexes are affected by specific experimental 

conditions and correlate with all clinical rating scales, SEN and RQA were 

calculated for trunk acceleration data collected during 2MWT and TUG in two 

groups of sub-acute stroke subjects (NoCane and Cane). The same subjects were 

also assessed with clinical rating scales by the same expert evaluator. 

Both SEN and RQA have been proposed as metrics for the quantification 

of motor stability, although they actually quantify different specific characteristics 
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of the analysed signal. From the perspective of its mathematical implementation, 

SEN is a conditional probability measure that quantifies the likelihood of a 

sequence of m consecutive data points, matching another sequence of the same 

length, to still match the other sequence when their length is increased of one 

sample [24]. SEN provides a measure of unpredictability or irregularity of the 

time series that should not be always interpreted as complexity: a very periodic 

signal and a highly random one are both very low in complexity, but have 

different SEN values [25]. However, for the sake of the present study, SEN can be 

considered a measure of how much the acquired trunk acceleration deviates from 

the cyclic nature of gait and, therefore, in this context it is common practice to 

interpret SEN as a measure of complexity [20,24,26]. 

Comparing SEN values, obtained for the two tasks in both groups, they 

were found higher during 2MWT than during TUG in both AP and V directions, 

while the opposite trend was observed in ML direction. TUG can be considered to 

require higher cognitive (i.e. programming the next movement) and 

biomechanical (i.e. adapting gait pattern to the task constrains) efforts than 

2MWT to correctly complete the task. In this perspective, these results are in 

agreement with those previously reported by Lamoth et al. [27], who reported 

higher values of SEN in AP direction, but not in ML (V was not analysed), 

analysing elderly subjects performing dual task, and interpreted this result as an 

indicator that changes in cognitive functions result in changes in gait complexity 

and automaticity. Accordingly, these results suggest that gait during 2MWT is 

perceived as less complex/more automatic than that during TUG. 

The support effect on SEN was found mainly in V direction and for low τ 

values. Even if the results were not all statistically significant, a trend could be 

observed: in ML direction, for both tasks, NoCane subjects showed higher SEN 

values than Cane ones. SEN results can be related to the level of automaticity in 

the control of gait, therefore small SEN values can be associated to high 

automaticity [26]. In this perspective, these results suggest that NoCane subjects 

exhibit a more complex (less automatic) gait pattern than Cane ones in ML 

direction, highlighting the dominant constraint of the cane in this direction. 
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In AP and V directions, SEN changes for increasing τ. For τ from 1 to 3, 

Cane subjects showed higher SEN than NoCane ones, vice versa for higher τ. τ 

values lower than 3 (i.e. frequency components higher than 33Hz) were 

characterized by high complexity for Cane subjects, while τ higher than 4 (namely 

frequency below 25Hz) for NoCane ones. In general, this suggests that Cane 

subjects are characterized by high complexity at high frequencies (low τ), vice 

versa for NoCane ones. This could be explained taking into account muscular 

stiffness, a characteristic symptom of stroke patient, magnified by the use of 

supports. 

From the perspective of their mathematical implementation, RQA features 

quantify the structure in the recurrence plot. In particular, DET relates to how 

often the trajectory re-visits similar state space locations (“shape”), the higher 

DET the more regular is the dynamic structure of the data [28]; AvgL is the 

average length of all the found diagonal structures [11,28] (i.e. how long the 

repeated trajectory ‘lasts’), this can be interpreted as the duration of the most 

repeated “shape”. It is related to the velocity in the execution of the test (i.e. 

higher AvgL is expected for slower gait), but this duration is not independent 

from the regularity of the pattern (i.e. the gait is slower because each stride on 

average is slower). Therefore, results suggest that: i) all groups had a more regular 

dynamic structure of gait during 2MWT than during TUG, confirming TUG gait 

more challenging/less automatic; ii) NoCane group repeated the same “shapes” 

more than Cane, in agreement with Labini et al. [21]. On the other hand, AvgL 

results can be explained by its intrinsic time dependent nature: NoCane subjects 

were, in general, faster than Cane ones, thus NoCane repeated shapes were shorter 

than Cane ones. Moreover, during 2MWT all subjects walked faster than during 

TUG, thus the repeated trajectories were shorter in TUG than in 2MWT. 

To the knowledge of the authors, the correlation between stability indexes 

and the scores of clinical scales in sub-acute stroke subjects was not assessed 

previously. 

In NoCane, WHS correlated positively with RQAap and negatively with SENap 

in both tasks, this suggests that subjects with a good use of walking in daily life 
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exhibit slow gait pattern (i.e. high AvgL), high regularity (i.e. high RR and DET), 

and low complexity/high automaticity (i.e. low SEN) [26] of gait in AP direction. 

High regularity (i.e. high RR and DET) and a slow pattern (i.e. high 

AvgL) in AP direction also correlated positively with t_TUG, commonly 

associated to low functional performance, but in these subjects correlated 

positively with WHS, due to the concurrent high regularity (i.e. high RR and 

DET), and low complexity/high automaticity (i.e. low SEN) of the gait pattern. 

Moreover, SENml and SENv also correlated negatively with t_TUG. This result 

confirms that a gait pattern with an increased t_TUG, but regular and slow in AP 

direction and with low complexity/high automaticity in AP, and ML or V 

directions, although slow is similar to that of an healthy subject [21,26,29], still 

providing a good functional outcome (i.e. higher WHS values). This seems to 

suggest that TUG outcomes could be analysed and interpreted in more detail 

using non-linear indexes, and related to other functional scales, providing insight 

in the actual effective use of gait in daily life. 

The negative correlation between WHS and SENv for Cane and NoCane 

subjects confirms an efficient walking related to low complexity/high 

automaticity, and seems suggests that the use of the cane constraints the gait 

pattern not only in ML but also AP direction. 

As for NoCane, t_TUG correlates positively with RQAml also in Cane, 

supporting the idea that a high t_TUG is not necessarily related to a reduced gait 

performance, and a decreased speed can still be associated to a functional gait 

pattern in daily life. 

Of course, these results require further investigation, due to the very 

specific analysed population and the limited number of subjects, which could be a 

possible limitation of the study. Nevertheless, the coherence of the results of the 

statistics in the different conditions, and the accordance with existing literature, 

support these preliminary results for future investigations. 

No correlation was found with CIRS, but, considering the specific 

population analysed in the present study, this is not surprising, since stroke 

outcome is likely to be predominant over all other possible pathologies. Minor, 

but promising, correlations were found between RQAml and MI and between 
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SENml and FAC, suggesting that RQAml and SENml could identify changes in 

motor abilities in limbs and in walking, respectively. Nevertheless, these results 

require further investigations, due to the small number of subjects analysed and to 

the moderate and sparse values of the obtained Pearson coefficient. 

One possible limitation, of this preliminary study, is the limited number 

strides (few more than 10) in the analysed gait section for TUG. Nevertheless, 

Riva et al. [19] showed that 10 strides are sufficient to reach a steady value and 

reliability is quite high (at least 20%) for SEN and RQA. Moreover, time series 

from TUG included a number of data points between 2800 and 8000, and SEN is 

largely independent on the time series length when the total number of data points 

is larger than 750 [20,30]. 

In conclusion, this preliminary study suggest that: i) both complexity 

(SEN) and repeatability (RQA) of gait pattern are influenced by the use of 

supports in ML direction; ii) TUG gait is a more challenging than 2MWT; iii) 

non-linear stability indexes SEN and RQA show promising correlations with 

clinical scales, potentially providing a better insight in the functional analysis of 

gait pattern. In particular, a regular (i.e. high RR and DET) gait pattern with low 

complexity (i.e. low SEN) and slow pattern (i.e. high AvgL) in AP direction can 

be related to an efficient use of walking in daily life (WHS), although an overall 

slow speed associated to high values of t_TUG. 

Clearly, for an effective exploitation in clinical practice, further efforts are 

required to establish reference values for indexes and correlated clinical scales. 

Future researches will focus on the inclusion of a higher number of participants 

per group and on the assessment of different populations. These improvements 

will allow to strengthen and to further understand these preliminary conclusions. 
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CONCLUSION 
 

 

 

 

“We are made wise not by the recollection of our past, 
 but by the responsibility for our future.” 

George Bernard Shaw 
 

 

 

The purpose of this dissertation was to improve the understanding of the 

non-linear metrics proposed for the quantification of locomotor stability, 

contributing to the identification of methodological references for their 

implementation and experimental assessment, and suggesting a possible clinical 

interpretation in a specific clinical context.  

These non-linear metrics originated from dynamical system theory (e.g. 

Lyapunov Exponents [9], Recurrence Quantification Analysis [10], and Poincaré 

Plots features [11]), frequency domain analysis (e.g. Harmonic Ratio [12], Index 

of Harmonicity [13]), and information theory (e.g. Sample Entropy). They 

quantify different signal features, aiming to identify underlying system 

characteristics. An illustration of the mathematical reference of the analysed 

metrics, highlighting the role of relevant parameters and the possible 

interpretation when applied in gait analysis, was given in Chapter 1. 

Relevant open issues have been addressed in this thesis (Chapter 2, 3 and 

4) about the definition of methodological references for the implementation and 

experimental assessment of the analysed non-linear metrics. 

 First of all, in order to provide indications for the proper signal acquisition 

and processing, the spectrum of lower trunk acceleration signal during gait was 

characterized as related to age in different populations (i.e. 7, 9, 15, 25, 45, 65, 

and 85 years of age). The harmonic content (at 98% of the normalized power) of 

the trunk acceleration signal for all the analysed age groups, with exception of the 
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adolescents, resulted below 30 Hz, with the high frequency contribution in the 

antero-posterior direction. In the adolescent population, spectrum amplitude 

reached 45 Hz. This result allowed to define a standard reference for sampling 

frequency of gait trunk acceleration: sampling frequency higher than 60 Hz (90 

Hz for the adolescents) is necessary to avoid aliasing effect and to not lose signal 

information. 

These results are directly related with the study presented in Chapter 3, 

which aims to evaluate the effect of sampling frequency down-scaling on non-

linear index estimation. Smartphones with embedded accelerometers can been 

considered ideal devices for continuous monitoring; if, on one hand, their 

advantages are clear (on board inertial sensors, user-friendliness, low cost, etc.), 

on the other hand, they hardly support data acquisition from on board sensor with 

sampling frequency higher than 50 Hz. Consequently, it comes clear the 

importance of evaluating the effect of sampling frequency down-scaling on 

indexes estimation. The results suggest that indexes analysing the frequency 

content of the signal are not influenced by sampling frequency reduction (down to 

42 Hz), while those analysing signal in the time domain are. However, by using 

appropriate interpolation methods, this issue can be overcome. 

Other relevant aspects that can influence gait assessment, in particular 

when using non-linear metrics, are testing environment and walking condition 

protocol. Aiming to evaluate these, the walking pattern of young healthy adults 

(control/referred population) was analysed in different environments (indoor and 

outdoor) and testing conditions (controlled and free) to assess if and how gait 

variability and stability, quantified using non-linear metrics, would be affected. 

The hypothesis in the specific population was that stability would not change 

significantly, variability vice versa. The results confirmed, in general, the ability 

of the analysed metrics to quantify the target characteristics of gait, although with 

different levels of accuracy, and in particular, that metrics for the quantification of 

stability and variability do actually different aspects of motor control and are 

affected in different ways by experimental conditions. 

Finally, in the last Chapter (Chapter 5) of this Thesis, the possible clinical 

interpretation of the proposed metrics was investigated. The relationship between 
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the non-linear metrics, instrumental gait characterization, and an extended 

selection of clinical rating scales (standard clinical gait assessment) was evaluated 

in a sub-acute stroke population. The study suggests that non-linear stability 

indexes (i.e. Sample Entropy and Recurrence Quantification Analysis) show 

promising correlations with clinical scales, and potentially provide a better insight 

in the functional analysis of gait pattern. 

Even though not exhaustive, these results provide essential basic 

knowledge for the definition of a reference for the reliable use and interpretation 

of the analysed non-linear metrics. Future natural development will be extending 

the same investigations to different, both healthy and pathological, populations, in 

order to overcome the main limitations of this dissertation, namely the possibility 

to generalize (when and if possible) the obtained results to other populations. 

In conclusion, this Thesis provides relevant and clear guidelines for a 

correct and reliable implementation and experimental assessment of the analysed 

non-linear indexes; moreover they lay the groundwork for a better insight of the 

clinical functional correlation of the non-linear indexes. 

The obtained results will allow, henceforth, to perform the assessment of 

gait stability without bias due to the different experimental conditions and absence 

of an implementation methodology reference. 

 

 

 

 

“The important thing is not to stop questioning.  
Curiosity has its own reason for existing.” 

 Albert Einstein 
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