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Abstract (English version)

Computed Tomography perfusion (CTp) is a functional imaging technique

that has aroused a lively interest in oncology in the recent years mainly be-

cause it is a very promising approach for early assessment of the effectiveness

of the new anti-angiogenic therapies for cancer treatment. Nonetheless, some

difficulties to achieve standardized, repeatable and reproducible results have

slowed down its application in the daily clinical practice. This Thesis work ad-

dresses three important issues that needed to be faced to advance CTp towards

standardization: the lack of methods to measure the reliability of results, the

clinical relevance of the global perfusion parameter values commonly utilised,

a critical revision of protocols of the multi-centre studies, essential to assess

CTp reproducibility. In this work, lung and liver CTp examinations have been

considered, since they are among the most studied sites in oncology.

First, through a voxel-based spatio-temporal signal analysis, I set up an

error index capable to measure the quality of perfusion results and validated

it using examinations whose signals was degraded by different patient motion

degrees. After proving the effectiveness of the index to detect unreliable perfu-

sion values on single voxels, structured regions affected by noise (e.g. artefacts)

or representing semantic patterns undesirable in CTp studies (e.g. vessels or

bronchi) have been looked for on whole slices. Exploiting the voxel-based anal-

ysis and the same error index, an adaptive algorithm developed on purpose

has allowed detecting all those regions automatically, and to exclude their per-

fusion values from either any subsequent processing or clinical consideration.

The common practice in CTp perfusion studies is providing one averaged

value only for each perfusion parameter, computed on the whole tumour, with

the main purpose of reducing the effects of data variability, but at the expense

of tumour heterogeneity, a key feature that is neglected. Accordingly, whole

lung lesions were considered to inquire into the clinical representativeness of

global perfusion values. After removing all perfusion errors, and proposing a

statistical index to quantify tumour functional heterogeneity, the use of one
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global value has been proved to even mislead clinical considerations.

The last part of the Thesis regards the activities carried out in the widest

European liver CTp multi-centre study. Some algorithms for signal enhance-

ment to improve the accuracy of perfusion results were developed so as to

make CTp examinations of different Centres more comparable. Some mean-

ingful results regarding baseline and blood flow values of liver are reported

and discussed, highlighting whether and to what extent different CT scanners

affect CTp outcomes. Starting from an extensive analysis regarding the great

number of differences in the actual execution protocols, acquisition parameters

and information storing, tentative guidelines are provided to help considering

all the concealable sources of heterogeneity in advance, before planning the

multi-centre protocols.



Abstract (Italian version)

La Tomografia Computerizzata perfusionale (TCp) è una tecnica di imaging

funzionale che negli ultimi anni ha suscitato un crescente interesse nel campo

oncologico, in quanto ha dimostrato di essere una tecnica molto promettente

per la valutazione precoce dell’efficacia delle nuove terapie anti-angiogeniche

per il trattamento dei tumori. Ciò nonostante, la sua applicazione nella pratica

clinica è stata rallentata a causa della difficoltà nel conseguire risultati stan-

dardizzati, ripetibili e riproducibili. Questa Tesi tratta tre importanti aspetti

che dovevano essere affrontati per far avvicinare la TCp alla standardizzazione:

la mancanza di metodi per misurare l’affidabilità dei risultati, la rilevanza clin-

ica dei parametri perfusionali globali comunemente utilizzati in letteratura ed

una revisione critica dei protocolli degli studi multicentrici, essenziali per la

valutazione della riproducibilità della tecnica. Questo lavoro tratta esami TCp

polmonari ed epatici in quanto fegato e polmone sono tra gli organi maggior-

mente esposti all’insorgenza dei tumori.

Innanzitutto, attraverso un’analisi spazio temporale del segnale basata su

singolo voxel, è stato messo a punto un indice di errore in grado di misurare la

qualità dei risultati perfusionali. Tale indice è stato inoltre validato utilizzando

esami i cui segnali apparivano alterati da differenti gradi di movimento del

paziente. Dopo aver provato l’efficacia dell’indice nel rilevare singoli voxel

associati a valori perfusionali non affidabili, sono state cercate su intere slice

regioni affette da rumore strutturato, quali artefatti, o rappresentanti strutture

fisiologiche, quali vasi e bronchi, normalmente escluse negli studi perfusionali.

Sfruttando l’analisi orientata al voxel ed il medesimo indice di errore, è stato

sviluppato un algoritmo adattativo specifico che ha consentito di rilevare tutte

quelle regioni in modo automatico e di escludere i loro valori perfusionali da

qualsiasi successiva elaborazione o considerazione clinica.

È pratica comune negli studi TCp fornire un unico valore mediato calco-

lato sull’intero tumore per ogni parametro perfusionale con lo scopo principale

di ridurre l’incertezza dei dati ma con l’effetto secondario di trascurare la
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variabilità dovuta all’eterogeneità tumorale, che rappresenta un’1importante

caratteristica per ogni valutazione clinica. Quindi, allo scopo di indagare la

rappresentatività clinica dei valori perfusionali globali, sono state considerate

lesioni tumorali complete ed è stato proposto un indice statistico in grado di

identificare l’eterogeneità funzionale. Dopo aver rimosso tutti i valori perfu-

sionali non affidabili, è stato dimostrato come un unico valore globale non

possa essere rappresentativo ed anzi, possa fuorviare le conclusioni cliniche.

Infine, l’ultima parte della Tesi riguarda le attività portate avanti nel con-

testo del più ampio studio multicentrico europeo di TCp epatica. Innanzitutto

vengono proposti diversi algoritmi sviluppati per il miglioramento del seg-

nale e dell’accuratezza dei risulti perfusionali, cos̀ı da rendere maggiormente

comparabili gli esami TCp effettuati in Centri differenti. In seguito, vengono

riportati e presentati alcuni interessanti risultati riguardanti i valori epatici di

baseline e di blood flow, discutendo quanto diversi scanner TC possano even-

tualmente influenzare la riproducibilità dei risultati perfusionali. A partire

da un’analisi approfondita riguardante l’elevato numero di differenze riscon-

trate nei protocolli effettivi di esecuzione degli esami TCp nei parametri di

acquisizione e nella memorizzazione dell’informazione sono state infine fornite

delle linee guida preliminari con lo scopo di aiutare a considerare in anticipo,

prima della pianificazione dei protocolli multicentrici, tutte le possibili fonti di

eterogeneità, comprese quelle implicite.
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Chapter 1

Introduction and Thesis

overview

Cancer is among the leading causes of death worldwide [1]. Only in Italy,

the Italian Association of Cancer Registries (AIRTUM) has forecasted 365000

new tumour diagnoses in 2016 alone (i.e., about 1000 subjects per day) [2]. In

particular, over the world the most common site of diagnosed cancer is lung,

followed by breast and colonrectum [3]. Lung cancer is also the most common

cause of tumour death [4], followed by liver cancer [3]. A peculiarity of this last

kind of tumour is that, in the liver, metastatic cancers are more common than

primary cancers. For instance, the liver is the most common site of metastasis

from colorectal cancer (CRC) [5].

In the last few years, the worldwide risk of dying from cancer is globally

decreased [6]. This improvement is also attributable to the introduction of

the new anti-angiogenic therapies that, administered in combination with con-

ventional chemotherapy (i.e., cytostatic drugs) and radiotherapy, have shown

to increase patients survival in several cancer types [7]. Differently from con-

ventional anti-cancer therapies, the effects of anti-angiogenic treatments are

visible earlier on tissue functional behaviour (i.e., the vascular network of the

tumour) and only later in time on morphology [8]. As a result, a lively interest

has aroused around new perspective biomarkers, useful to monitor the sta-

tus of tissue neovascularization and to evaluate the effects of anti-angiogenic

therapies.

Computed Tomography perfusion (CTp) is an imaging technique that thanks

to its wide availability, low invasivity, and capability to provide images with

a high spatio-temporal resolution, results to be one of the most promising

methodologies for the earlier assessment of the efficacy of the anti-angiogenic
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Chapter 1. Introduction and Thesis overview

therapies [9]. Through the analysis of the CTp sequences acquired, it is possi-

ble to compute perfusion parameters owing information regarding tissue vas-

cularization. In particular, these perfusion parameters have shown to be useful

to evaluate tumour neovascularization, characterize and differentiate tissues,

monitor anti-angiogenic therapies, and predict patient survival in several can-

cer types [8, 10].

Despite the high potential shown by CTp in both cancer diagnosis and

prognosis, there are still some open issues that have prevented the use of this

technique in the standard clinical practice [8]. In this Thesis, I focus my

attention on three topics related to the keywords reliability, standardization,

and reproducibility of perfusion results. The first issue regards the lack of

methods to evaluate perfusion results’ accuracy and to detect the presence of

non-systematic errors. In the literature, all the perfusion values achieved have

always been considered reliable, even when affected by errors (e.g. caused

by the presence of noise or artefacts), this constituting an obstacle for the

achievement of repeatable perfusion results. The second issue is related to the

low reproducibility of perfusion values, mainly caused by the huge amount of

variability sources affecting CTp data and results. To face this problem, many

authors have used global perfusion parameters, often computed as the average

of voxel-based perfusion values found on a single tumour section or on the

whole tumour. However, the higher reproducibility achieved by global values

with respect to voxel-based ones is due to the averaging operation, that reduces

sensibility of results to all the variability sources, tissue heterogeneity included,

this weakening, if not jeopardizing the clinical relevance of results. The third

and last issue regards the lack of standardization in both the acquisition and

data processing protocols. This problem has been an obstacle to the set-up of

multi-centre studies which are fundamental to introduce an imaging technique

as a standard to be used in the clinical routine. Actually, the huge amount of

inhomogeneities between data has even prevented the evaluation of perfusion

values reproducibility computed on examinations acquired by using different

Computed Tomography (CT) scanners.

The goal of my PhD activities was to face these issues to allow improv-

ing the CTp techniques to come to a more and more quantitative imaging

(Chapter 3). In particular, the first issue has been faced by developing an

automatic method to identify and exclude from the analysis those perfusion

values computed on data particularly affected by noise or artefacts and thus

considered to be unreliable. To this purpose, a fine-to-coarse strategy has been

developed, which starting from the quantitative analysis of the signal coming
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Chapter 1. Introduction and Thesis overview

from the single voxel, was extended first to the single tumour section (Chap-

ter 4) and finally to the whole lesion (Chapter 5). This technique, that has

been applied to CTp examinations acquired in the same Centre and pertaining

to patients with liver and lung cancer, permitted to obtain better perfusion

results (i.e., more reliable and repeatable) on which drawing clinical evalua-

tions. The second issue has been faced by carrying out a deep analysis about

the representativeness of global perfusion values used in the literature. To

this purpose, a three step statistical analysis has been carried out to evaluate

the representativeness of tumour and single section global perfusion values. In

addition, an indicator of tumour functional heterogeneity has been proposed

to evaluate whether perfusion values equivalences found out with statistical

tests were numerical only or also owned a clinical significance (Chapter 5).

The third issue was faced by deeply analysing data coming from the first

CTp multi-centre study on liver and by carrying out a preliminary perfusion

analysis. Through the analysis of the almost 400 examinations acquired in

15 different Centres, it was possible to identify all the intra- and inter-centre

sources of variability affecting CTp data (and outcomes, accordingly) and to

provide a sort of guidelines to correctly set-up this kind of studies (Chapter 6).

In addition, data of different Centres acquired by using the same acquisition

protocol were analysed to evaluate whether the use of different CT scanners

could affect perfusion results (Chapter 7).

Besides the present introductory Chapter, this Thesis is organized in seven

Chapters, all treating different aspects of the same matter. Accordingly, the

experimental results are presented in Chapters 4, 5, 6, 7, pertaining to the

specific topic of the related Section. The content of this Thesis is organized as

follows:

• Chapter 2 contains the background and the state of the art regarding the

use of CTp in oncology. Starting from the description of angiogenesis

(i.e., the key process driving tumour growth), it is possible to under-

stand the increasing need for the assessment of anti-angiogenic therapies

efficacy and why dynamic contrast enhanced (DCE) imaging techniques

have become so important in oncology. A comparison between different

DCE techniques is carried out to motivate why CTp represents one of

the most suitable techniques for the evaluation of therapies‘ efficacy and

of cancer’s diagnosis and prognosis. Then, a summary of the main clin-

ical results achieved through the analysis of CTp perfusion parameters

is reported, with particular attention to lung cancers and liver tumours.
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Chapter 1. Introduction and Thesis overview

Finally, the most relevant open issues still delaying the use of CTp in

the clinical practice are discussed.

• Chapter 3 starts going into the matter of this Thesis work and presents

the main methods used to process and analyse temporal tissue signals.

First of all, a discussion about the strategies selected to post-process CTp

images and the extracted voxel-based signal which perfusion parameters

are computed on is reported. Four temporal error indexes to evaluate the

signal quality are then proposed and compared, motivating the reasons

standing behind the choice of the error index selected for our studies.

After that, two different methods to automatically find out a cut-off

value between “good” signals and “bad” signals are presented. Finally,

an index to assess tumour functional heterogeneity is proposed.

• Chapter 4 describes the analysis that has been carried out first on the sig-

nal of single voxels and, subsequently, on tumour sections. In particular,

the temporal error index selected in Chapter 3 is validated as a marker of

perfusion values unreliability. This has been done by exploiting signals

of a different known quality that were achieved by building four different

sequences for each patient, according to as many alignment methods for

motion correction. Therefore, the analysis of CTp voxel-based signals

has been shifted to slice level. The two automatic thresholding methods

presented in Chapter 3 have been applied to the error values computed

on the signals of whole tumour sections so as to find out the unreliable

voxels to be excluded from the analysis. In particular, this procedure has

shown to be able to automatically detect and exclude all those structures

(e.g. bronchi, vessels, and artefacts) usually jeopardizing qualitative and

quantitative perfusion analysis.

• In Chapter 5, the analysis carried out on the single tumour section has

been extended to the whole lesion. A deep study regarding tumour het-

erogeneity representativeness of global and single-slice perfusion values

used in the literature is carried out. In particular, the error and per-

fusion parameters are computed on each slice of the tumour, as well as

the index presented in Chapter 3 and representing the tumour functional

heterogeneity. Then, a three step analysis is carried out. First of all, the

representativeness of the global perfusion values computed on the whole

lesion with respect to those computed on the single slices was evaluated

to verify whether and to what extent, the use of global perfusion values
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Chapter 1. Introduction and Thesis overview

could be representative of tumour single section. After that, the equiv-

alence between perfusion of different sections of the same tumour was

evaluated to verify to what extent single tumour sections could be rep-

resentative of the whole tumour. Finally, spatial perfusion distribution

is compared in tumours having the same global perfusion value to assess

whether the use of one perfusion value computed over the whole tumour

could be effective in clinical decision making.

• Chapter 6 deals with the analysis of data collected in the first CTp

multi-centre study on liver. All the standardization issues related to the

acquisition protocol are analysed as well as the intra- and inter-centre

variability sources that could affect perfusion analysis. In particular, the

implication of using different CT scanners or the variability introduced

by different operators are discussed. Besides that, a quality image anal-

ysis of the CTp sequences acquired in different Centres is carried out for

an early assessment of the possible inhomogeneities introduced by differ-

ent CT scanners or acquisition parameters. Finally, a draft of possible

guidelines regarding how a CTp multi-centre study should be carried out

is presented.

• Chapter 7 describes all the methods that have been implemented to

improve data and perfusion computation of multi-centre examinations

to evaluate how the use of different CT scanners affect perfusion results.

In particular, the algorithm to compute perfusion has been improved and

adapted to the analysis of CT examinations of normal liver. An algorithm

for liver ROIs registration on CT images has been implemented in its

early stage. In addition, a method to correctly compute baseline values

(i.e., the tissue density value before the arrival of contrast agent), which

are of a fundamental importance to achieve accurate perfusion values

has been developed and tested against the most common methods used

in the literature. After that, baseline values of examinations acquired in

different Centres have been computed and compared to evaluate whether

and to what extent the use of different CT scanners affects baseline

values. Finally, tests on perfusion values computed on patients of a

single Centre and of different Centres have been carried out to assess

and analyse single and dual-input hepatic perfusion values in patients

with CRC and to evaluate whether the use of different CT scanners

affects the computed results.
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• Concluding remarks and hints for possible future works are reported and

discussed in Chapter 8.

The work developed in this Thesis has been carried out within the:

• Computer Vision Group (CVG), Advanced Research Center on Elec-

tronic Systems (ARCES), University of Bologna, Italy. Director: Prof. Alessan-

dro Bevilacqua

in partnership with the following institutions:

• Diagnostic Imaging Unit, Istituto Romagnolo per lo Studio e la cura dei

Tumori (IRCCS-IRST), Meldola (Forĺı-Cesena), Italy. Director: Dr. Domenico

Barone

• Department of Radiology, Beaujon Hospital, Clichy, France, Director:

Prof. Valérie Vilgrain

The activities discussed in this Thesis pertain to two projects:

• PERFECT - Automatic analysis of hepatic and lung PERFusion through

the usE of CT-4D image reconstruction

• PIXEL - Perfusion IndeX: Evaluation for Liver metastases

In particular, I spent the first two years to implement and validate the error

indexes and the thresholding methods presented in Chapter 3 and discussed

in Chapter 4 that permitted to achieve reliable perfusion values. During the

second year I also started working on the analysis regarding the representa-

tiveness of global perfusion values often adopted in the literature with respect

to tumour heterogeneity. Instead, during the last year I mainly focused my

attention on data regarding the multi-centre study and carried out analyses

and experiments presented in Chapters 6 and 7 to evaluate whether the use

of different CT scanners affects the outcomes of perfusion examinations. The

methods developed and the results obtained have been partly published in four

scientific journals, five international and four national conference proceedings.

In addition, they have been also presented in three oral communications.

My 3-year PhD programme in Bioengineering was granted by the Italian

Minister of Education, Universities and Research (in Italian, MIUR).
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Chapter 2

Background and state of the art

Tumour angiogenesisis is the hallmark of cancer capability to develop and

metastasize. In the last few years, several tumour anti-angiogenic drugs have

been developed, arousing interest around minimally invasive imaging tech-

niques that have shown promising capability to assess the effects of these new

therapies. CTp is one of the imaging techniques mostly investigated to this

purpose. The analysis of the signal that can be extracted from each tissue voxel

of the CT image sequence allows the computation of perfusion parameters con-

nected to tissue angiogenesis. Despite the clinical usefulness of CTp has been

demonstrated in several studies, some open issues prevent its application in

the clinical practice.

In the next paragraphs of this Chapter, all these aspects will be taken

into account and discussed to allow a better understanding of this PhD Thesis

work.

2.1 Tumour angiogenesis and imaging biomark-

ers

The term “angiogenesis” is used to describe the process of new vessels for-

mation that is essential for the embryologic development, the normal tissue

growth, and tissue reparation [11]. Angiogenesis regularization happens at a

molecular level and is driven by several factors, the principal of which is the

vascular endothelial growth factor (VEGF) [12].

Some pathologies, such as cancer, are able to interfere with the cellular an-

giogenesis regularization factors giving origin to abnormal vascular networks.

Gene mutations inside tumour cells indeed, cause the release of new regular-
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ization factors that perturb the regular angiogenesis process [13] entailing the

creation of new vessels that are more dilated, tortuous, and permeable than

the normal ones [14]. Moreover, the coexistence of multiple cancer genetic

subpopulations provokes variable degrees of neovascularization in different tu-

mour types [15]. All these features contribute to improve the degree of tumours

heterogeneity that has a deep influence on lesion’s growth and response to anti-

cancer therapies (i.e., chemotherapy, radiotherapy, and immunotherapy) [14,

16].

Angiogenesis has become the hallmark of tumour capability to develop

and metastasize and the target for the production of new anti-cancer thera-

pies [17]. Anti-angiogenic drugs able to inhibit vascular tumour growth (i.e.,

anti-VEGF) have been then widely developed in the last few decades [7].

The administration of these therapies also in combination with conventional

chemotherapy and radiotherapy have shown to increase patients survival for

several cancer types. A positive impact on patients overall survival (OS)

and progression-free survival (PFS) has indeed been found in cancer of the

lung [18, 19], liver [20, 21], colon-rectum [22, 23], kidney [24, 25], breast [12,

26], and ovary [27, 28]. Despite these encouraging results, there are also some

studies that did not observe any significant improvement in survival due to

anti-angiogenic drugs administration. This is the case of breast cancer [29]

and CRC [30, 31]. Moreover, there are some tumour sites such as pancreas,

prostate, and skin in which anti-angiogenic therapies have only a limited im-

pact on OS [32]. Several studies have thus been carried out to try understand-

ing the mechanism which anti-angiogenic drugs are based on and improving

their efficacy accordingly [33, 34]. At the beginning, it was hypothesized that

anti-angiogenic agents would have destroyed tumour vessels, depriving can-

cer from oxygen and nutrient necessary to its growth [35, 36]. However, this

would have also prevented drugs to reach the tissue, this yielding an increasing

tumour hypoxia, a well-known marker of poor response to therapies [37] and

patient OS [38]. Further on, it was found that anti-angiogenic drugs act as a

vascular normalization factor, remodelling the network of vessels to a normal

vasculature, hence permitting a higher drug delivery [33]. Anyway, the mech-

anism by which the anti-angiogenic therapies are able to improve survival over

chemotherapy alone is still not fully clear [39].

The development of anti-angiogenic drugs brings about the need for biomark-

ers able to evaluating the status of the tissue neovascularization process and

to monitoring the effects of anti-angiogenic therapies. The most widely used

methods to assess the efficacy of chemoterapeutic agents are the Response
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Evaluation Criteria in Solid Tumour (RECIST) [40] and RECIST 1.1 [41], be-

sides the World Health Organization (WHO) criteria [42]. All these criteria

are uniquely based on the evaluation of changes on lesions number and size, by

measuring the long-axis of the lesion in one (in case of RECIST or RECIST 1.1)

or two (in case of WHO) dimension. Anyway, due to their non-cytotoxicity,

the anti-angiogenic drugs aim at normalizing the vascular network of cancers

without necessarily influencing tumour size and affect morphology quite a long

time after functional changes happened [8]. This is the reason why the con-

ventional criteria characterizing treatment response may not be effective and

there is a need for new and more effective biomarkers [15, 43].

The invivo biomarkers that can be used to evaluate angiogenesis can be of

two types: direct or indirect ones [44, 45]. An ideal direct biomarker would

be the microvessel density (MVD) that has shown a good correlation with

poor prognosis and tumour metastases [46]. However, biopsy requires taking a

tissue sample, an invasive procedure of limited applicability and effectiveness

to provide a direct measure of biomarkers. In fact, due to its invasiveness,

biopsy cannot be used with the frequency needed to monitor angiogenesis

and to assess therapies effects [47]. In addition, only a very small portion

of tissue is analysed,thus making biopsy prone to error sampling and inter-

observer variability and not suitable for the analysis of highly heterogeneous

tissues, accordingly [48]. The need of more appropriate and accurate biomark-

ers aroused interest towards indirect biomarkers, in particular derived from

DCE imaging techniques, which are able to provide perfusion parameters cor-

related to the tissue vascular characteristics. DCE imaging techniques are

indeed non-invasive methods able to assess the microcirculatory function of

the investigated tissues [49, 50] and the tumour response to therapies, earlier

than permitted with techniques based on morphological changes only [8]. All

the DCE imaging techniques are based on the same principle, that is the mea-

surement of tissue and vascular enhancement over time obtained by acquiring

images of the same sample before, during, and after the administration of a

contrast agent (CA). Finally, the application of apposite kinetic models, and

methods, on the signal extracted from the images allows computing perfu-

sion parameters [51]. More details regarding the perfusion parameters and

the methods used for their computation are provided in Sects. 2.2.1 and 2.2.2,

respectively.

The main DCE imaging techniques that have been used in the characteri-

zation and assessment of tumour angiogenesis are:
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• DCE CT

• DCE magnetic resonance imaging (MRI)

• DCE ultrasound (US)

• Positron-emission tomography (PET)

The main features of these imaging techniques are resumed in Table 2.1.

Dynamic imaging techniques

Technique
Morphologic Functional

Availability Cost Other features
information information

DCE-CT Very good Very good High Medium
Exposure to ionizing radiation

Toxicity of CA
Attenuation proportional to CA concentration

DCE-MRI Very good Very good Low High Versatility in pulse sequences

DCE-US Medium Good Very high Low
Highly operator dependent
Limited depth of penetration

PET Very bad Good Very low High
Radiation exposure
High toxicity of CA

Emission proportional to CA concentration

Tab. 2.1: Main features characterizing the most used functional imaging tech-
niques.

DCE-CT is undoubtedly one of the most used imaging techniques for an-

giogenesis evaluation. The main strong point of this technique is its capability

of providing high spatial-temporal resolution data, this favouring the achieve-

ment of high quality morphological and functional information [9]. Moreover,

the wide availability and the low-cost of this technique has fostered its spread

and use [49]. Despite its lower availability and higher costs, DCE-MRI is an-

other widely used technique. Similarly to DCE-CT, DCE-MRI provides very

high spatial-temporal data, but without exposing patients to ionizing radia-

tions [52]. Nonetheless, DCE-MRI is a highly versatile technique since it allows

choosing between several pulse sequences. As drawbacks, this methodology re-

sults to be very complex and the signal provided is not directly proportional

to CA concentration inside tissue [9]. Another used imaging technique is the

DCE-US. This low-cost and widely available technique also provides functional

information without releasing any ionizing radiations [52]. However, besides

suffering from intra- and inter-observer variability, DCE-US suffers from tech-

nical limitations such as the low depth of tissue penetration and a lower quality
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of the morphologic information provided [53]. As regards nuclear medicine, one

technique used is PET, that is high sensitive to signal variations even with very

low quantities of CA, is capable to provide metabolic information and provides

a signal that is directly proportional to the concentration of CA inside tissue.

Nevertheless, this technique has many drawbacks such as high cost, radiation

exposure, technical complexity, and lack of morphological information [9]. In

addition, differently from the imaging techniques previously discussed, PET

does not directly investigate the vascular system. This causes in some cases

apparent divergent assessments of tumour physiology with respect to perfu-

sion parameters obtained using DCE-CT, DCE-MRI, or DCE-US [54]. To

overcome some of the above mentioned drawbacks, the use of combined PET

and DCE-CT is discussed in the literature more and more frequently. In fact,

joining together morphological and functional information of DCE-CT with

metabolic one provided by PET, it is possible to gather these complemen-

tary information in one, very effective, tool [55]. However, the very long time

needed for examinations and the extremely high costs [16] limit its use.

2.2 Perfusion parameters in CTp

Perfusion has been defined as the transport of blood to a unit volume of tissue

per unit of time [56]. The first publication regarding the use of DCE-CT to

quantify perfusion (i.e., CTp) dates back to 1980 [57]. In that study, the au-

thor proposed for the first time a method to compute the blood flow (BF ) of

the brain in healthy patients. However, in those years both image acquisition

and data processing were too slow to allow the technique to become widely

accepted. At the beginning, CTp has been used only in perfusion studies of

the myocardial and the kidney [51]. The turning point arrived with the in-

troduction of two technical innovations: the use of multiple detector rows and

of slip rings. The former allowed improving the z -coverage of the analysed

tissue for each gantry rotation [58], while the latter allowed continuous rota-

tion of the x-ray tube by removing all the fixed connections of the rotating

components. These innovations permitted faster image acquisitions and the

introduction of the helical (or spiral) scan mode. Differently from the “classic”

acquisition modality (the axial mode), where the image acquisition occurs in

static conditions, in the helical scan mode the patient table is continuously

moved while the image acquisition goes on, allowing the acquisition of a tis-

sue volume rather than separate tissue slices [59]. The spread of CT systems
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equipped with multiple detector rows and slip rings allowed the diffusion and

the use of CTp in several diseases with particular success in acute stroke and

oncology [54].

To enable the computation of perfusion parameters, CTp relies on four

principles:

• the repetition of image acquisition of the same tissue portion

• the administration of a “short and sharp” bolus of iodinated CA

• the selection of at least one vessel supplying the analysed input

• the application of proper methods and kinetic models to extract signal

and compute perfusion parameters

The repetition of image acquisition of the same tissue portion before, during,

and after the administration of CA shows the attenuation changes caused by

CA arrival which are related to tissue perfusion [60]. In particular, by using

a iodinated CA the tissue attenuation changes are directly proportional to

CA concentration inside tissue that are thus easily measurable [61]. At the

beginning, tissue contrast enhancement is mainly due to the arrival of CA in

the intravascular (IV) space. As time goes on, CA gradually moves by passive

diffusion from the IV to the extravascular (EV) and the extracellular spaces,

and the tissue contrast enhancement is due to the presence of CA within

both the blood vessels and the interstitial space [13]. These two phases can

be observed in the tissue signal that can be extracted from the CTp image

sequences. By placing a region of interest (ROI) on the analysed tissue, it is

then possible to extract a time concentration curve (TCC) from each voxel

of the ROI. Therefore, this time signal is composed by the density values,

expressed in Hounsfield Units (HU), assumed by a specific voxel of the ROI in

different time instants. Since the HU values are directly proportional to the

quantity of CA within the IV and the EV space of a voxel in a specific time

instant, the shape of the TCCs reflects the passage of CA inside tissue [62].

CA has to be administrated in a small quantity and at a high flow rate

in order to obtain a “short and sharp” bolus [63], needed to allow a more

accurate computation of perfusion parameters [61]. Moreover, the increase of

the iodine delivery rate helps reducing the dose and, in case of organs with

a dual blood supply (e.g liver and lung), permits to better identify the two

tissue enhancement portions of the signal caused by CA bolus coming from

the two different vascular input [64].
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The third requirement of CTp is the selection of at least one vessel nour-

ishing the analysed tissue. By placing a ROI inside the selected input vessel

(usually an artery such as the aorta), and by averaging the density values in-

side the ROI of each acquisition time instant, it is possible to obtain a single

TCC that will be “compared” with the tissue TCCs in order to compute perfu-

sion parameters [8]. Several recommendations about the correct choice of the

input vessel and the positioning of the ROI have been made in the literature.

The selection of a feeding vessel big enough to prevent partial volume effects

causing the underestimation of the input signal, is highly recommended [63].

Moreover, originally it was suggested to place the arterial ROI as close as pos-

sible to the analysed tissue in order to reduce time delay effects and achieve

more accurate perfusion parameters. However, recently several algorithms

have been developed in order to correct for this delay and this requirement

is thus not so mandatory [65]. In organs characterized by a dual-input blood

supply such as liver and lung, it is possible to place a ROI on each vascular

input. This means that in the liver it is possible to draw a ROI on the aorta

(or on an hepatic artery) and one on the portal vein [8], while in the lung it

is possible to place one ROI on the aorta and a second one on a pulmonary

artery [66]). In Figure 2.1, there is an example of the ROIs that can be drawn

Fig. 2.1: A liver CTp image with ROIs placed on aorta (in the red colour), portal
vein (in the blue colour), and spleen (in the green colour) (a) and the averaged
TCCs extracted from each ROI (in the same colours) (b).

in the liver in order to consider a dual vascular supply. In these organs, the

use of a single input instead of two means assuming that the tissue vascular

supply is predominantly arterial and accepting that a systematic underesti-

mation of perfusion values occurs (as it is reported in [67] for the lung and

in [68] for the liver). The use of two input allows improving the reproducibil-

13



Chapter 2. Background and state of the art
2.2. Perfusion parameters in CTp

ity of perfusion results, the characterization of tissues, and the assessment of

treatment response. Indeed, in a study of 7 patients with liver tumours it was

observed that perfusion results obtained by using two input were more repro-

ducible than those computed by considering a single input only [68]. Moreover,

the computation of perfusion parameters achievable only by considering two

vascular input allowed to differentiate malignant and benign lung lesions [69]

and to distinguish hepatic tumour from normal liver tissue [70, 71]. Perfusion

parameters achieved with dual-input were also used by Ohno et al. in order

to predict response to chemio and radiotherapeutic treatments and the OS of

53 [72] and 66 [73] patients with non-small cell lung cancer (NSCLC). Or else,

by analysing these parameters, Wei-Fu et al. [74] found a threshold value able

to predict patient survival after therapies administration. However, the possi-

bility to consider a dual-input blood supply in the perfusion analysis strictly

depends on the z -coverage of the CT system and on the acquisition protocol

adopted. Indeed, as reported in [75] for liver and in [76] for lung, by using

a narrow volume coverage or an inappropriate field of view (FOV), it is not

always possible to acquire in the same image both the tissue being studied

and the two vascular input. If the two input vessels are not present in the CT

images, one input only has to be considered.

The last principle which CTp is based on is the application of apposite

kinetic models and methods to the arterial and the tissue TCCs in order to

compute perfusion parameters [52]. All the models applied assume that the

tissue behaves as a linear and time-invariant system. This means that the

output of the system (i.e., the tissue) to multiple stimuli (i.e., the arrival of

CA bolus from different input) is equal to the sum of the tissue response to

the single stimuli separated. Moreover the response of the system is considered

constant in time, independently from the time instant in which the stimulus is

applied. On the base of these assumptions, two different theoretical concepts

on which the models and the methods to compute perfusion parameters are

based, have been developed [61]: the indicator dilution theory (IDT) and the

pharmacokinetics compartment models (PCM).

In the next paragraph (Sect. 2.2.1), a summary of the physical and bio-

logical meaning of the main used perfusion parameters is reported. Instead,

Sects. 2.2.2 and 2.2.3 report the principal methods and models used to compute

perfusion parameters on the base of IDT and of PCM principles.
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2.2.1 The perfusion parameters

CTp permits the calculation of several perfusion parameters, depending on

the kinetic model or method applied to the signal. By assuming that CA does

not diffuse from the IV space (i.e., modelling tissue as a single-compartmental

model) it is possible to measure the BF , the blood volume (BV ), and the

mean transit time (MTT ). On the contrary, by assuming that CA can join

the EV space (i.e., apply a model with more than one compartment) it is

also possible to assess the permeability surface (PS ), the extraction fraction

(EF ), and the ktrans. The way by which each of these parameters is related

to the pathology features of tumour angiogenesis and to the effects that the

anti-angiogenic drugs have on the vascular network is complex [8]. In this

paragraph, the main quantitative perfusion parameters used in literature are

summarized as well as their physical meaning and how they are supposed to

enable the assessment of tumour angiogenesis and the evaluation of tumour

response to therapies.

BF has been defined as the transport of blood to a unit volume of tissue

per unit of time and is expressed in ml/min/100ml or in ml/min/100g [52]. Its

value tends to increase with the increase of MVD [60]. In organs characterized

by a dual vascular supply, it is possible to compute BF values separately for

the two contributions. For instance, in the liver there are the arterial BF

(aBF ) and the portal BF (pBF ) while in the lung there are the bronchial BF

and the arterial BF . The total BF value can then be achieved as the sum of

the two partial BF values and a perfusion index (PI ) can be computed to

quantify the influence of the two blood supplies over the total BF [77].

BV measures the volume of blood flowing in the tissue, including blood in-

side arteries, arterioles, capillaries, venules and veins. BV is usually measured

in ml/100ml or ml/100g [52]. As BF , the BV value increases with higher

MVD [60].

MTT represents the mean time taken by the blood to transit through the

tissue vascular network (from arteries to veins) and it is expressed in seconds

(s) [60]. This parameter is not directly extracted from the kinetic models, but

it is derived from BF and BV values (see Sect. 2.2.2).

PS measures the product between the permeability and the total surface

of the capillary endothelium in a unit mass of the tumour and is expressed in

ml/min/100 ml [78, 79]. As reported in Sect. 2.1, abnormal vessels generated

after a gene mutation show a poorly formed vascular basement membrane

characterized by a high permeability [14].
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EF has the same unit of measure as PS , but it represents the fraction of

CA arriving at the tissue that leaks into EV space in a single passage through

the vasculature. Like PS , EF is directly related to the permeability of the

analysed vessels to CA [78, 79].

Finally, ktrans is the constant flow rate of CA from IV to EV space and is

expressed in min−1 [78, 80].

The combination of these parameters allows making important evaluations

about the analysed tissues. For instance, the increase of BF and BV values can

point out the presence of newly formed vessels if PS assumes high values, or the

presence of mature vasculature if PS value is normal or low. On the contrary,

low BF and BV values can indicate the presence of necrosis or inflammation,

whether they are coupled with low or high PS values, respectively [81].

All these parameters are usually represented through the use of colorimetric

perfusion maps, such as that reported in Figure 2.2 (c) together with a full

Fig. 2.2: Lung CTp image (a), the lesion magnified (b), and relative BF colori-
metric map (c).

slice (a) and the magnified lung lesion (b). Here, blue colours are used to

highlight the regions with the lowest perfusion while red colours indicate the

highest perfused areas. Instead, the pink colour is used to point out unreliable

BF values (Sect 4.2). This way of visualizing results is particularly useful since

it permits a first visual analysis of the perfusion parameters and the assessment

of spatial correlation and functional heterogeneity.

Another category of perfusion parameters providing semi-quantitative mea-

sures exists and are sometimes adopted in perfusion studies. For instance, the

“area under the curve” (AUC) is related to BF and the quantity of CA admin-

istered, and it is computed as the integral of the tissue TCC. Also, the “peak

enhancement” is connected to BV and corresponds to the peak of the tissue
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TCC, while the “time to peak” is related to BF and represents the lag between

CA administration and the peak enhancement [82]. However, these measure-

ments are very sensible to differences in iodine sensitivity of CT systems and

depends upon several factors such as the arterial input function, patient’s cen-

tral hemodynamics, and their weight [83]. Quantitative measurements such as

those discussed above are consequently often preferred.

2.2.2 Methods based on IDT

IDT considers tissue as a “black box” and consequently analyse the system

without making any morphological or physiological assumption [84, 85]. In

general, the output of a system can be described by the convolution between

the input function and the impulse response function of that system. By con-

sidering the organ or the tissue investigated as the system, its input and output

functions correspond to the concentration of CA in the arterial inflow Ca(t) (in

mg/ml) and the venous outflow Cv(t) (in mg/ml), respectively. Instead, h(t)

is the probability density function of CA particles and, in practice, represents

the distribution of transit times required by the molecules of CA to move from

the entrance to the exit of the system, by whatever path. The relation between

Cv(t) and Ca(t) can thus be described as in Eq. 2.1:

Cv (t) = h (t) ⊗ Ca (t) =

∫ ∞

0

h (t− τ)Ca (τ) dτ (2.1)

Since, for the principle of mass conservation, all tracer particles entering the

system sooner or later leave it, the AUC of h(t) is unitary, as reported in

Eq. 2.2: ∫ ∞

0

h (t) dt = 1 (2.2)

Moreover, since h(t) is the frequency function of transit times, by definition,

MTT is given as its first moment, as described in Eq. 2.3 [61]:

MTT =

∫ ∞

0

th (t) dt (2.3)

However, since usually there are no a-priori information about the vascular

network, h(t) is unknown and MTT cannot be computed directly from Eq. 2.3.

In the particular case of a system with a single input and a single output, as

that depicted in Figure 2.3, it is possible to apply the Fick principle, describing

the law of mass conservation. In particular, the Fick principle states that Q(t),
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Fig. 2.3: Outline of a single input and single output mono-compartmental model.

the rate at which the quantity of CA (expressed in mg) accumulating in an

organ at any time t, depends on the organ BF , Ca(t) and Cv(t) [47], and it is

described by Eq 2.4:

dQ (t)

dt
= BF · Ca (t) −BF · Cv (t) (2.4)

However, venous outflow cannot be correctly measured by DCE imaging tech-

niques since the outflow vessels are too small if compared with the spatial

resolution of CT scanners. The measurement of Cv(t) would then be an un-

derestimation of its true value, due to partial volume effect [61, 86]. Therefore,

since the use of DCE imaging techniques only permits to measure regional BF

within a tissue or an organ, the Fick principle has to be reinterpreted. In par-

ticular, Q(t) is the mass concentration of CA in tissue (expressed as percentage

in mg/g) and BF is the specific BF of that tissue (in ml/min/g).

In order to compute BF parameters, two methods exist. While the first

one is based on the use of an additional assumption, the second one directly

faces the convolution problem through the use of Eq. 2.1. Both these methods

are presented below.

After the injection of CA, there is a period of time during which CA remains

inside tissue. During this period, it is possible to make the assumption of no

venous outflow (i.e., Cv(t) = 0), and this is the assumption which the first

method is based on to compute perfusion parameters. Hence, Eq. 2.4 can be

rewritten as follows:
dQ (t)

dt
= BF · Ca (t) (2.5)

and consequently, assuming that the rate of tracer accumulation is maximal

when the arterial concentration is maximal, we can write Eq. 2.6:[
dQ (t)

dt

]
Max

= BF · [Ca (t)]Max (2.6)
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With the acquisition of rapid series of CT images, it is possible to extract BF

from Eq. 2.6 and compute it as the rate between the maximum slope of the

tissue TCC (computed on the increasing portion of the TCC identified during

the first pass phase) and the peak height of the arterial TCC as shown in

Eq. 2.7 [61]:

BF =

[
dQ(t)
dt

]
Max

[Ca (t)]Max

(2.7)

This method to compute BF is known as the maximum slope method

(MSM) or simply slope method and has been validated in liver [87, 88],

kidney [89], pancreas [90], and brain [91, 92]. Figure 2.4 shows ideal aortic
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Fig. 2.4: Representation of the aortic TCC (in the red colour) and of a tissue
TCC (in the blue colour). The red star indicates the aortic peak while the blue
circle highlights the point of maximum slope of the tissue TCC.

and tissue TCCs with two markers in correspondence of the time points where

the parameters needed by the MSM (i.e., the aortic peak and the maximum

slope) have to be computed. The MSM can be applied also in biological

systems with a dual-input supply as the one schematized in Figure 2.5. In

these cases, the MSM is applied two times, by considering the contribution

of the two input functions separately. For instance, as regards the hepatic

district, while CA brought by the arterial input directly flows into the liver,

CA arriving through the portal vein arrives later, since it passes through the

spleen first. Therefore, usually the peak time of the splenic TCC is considered

as the separating time threshold between the two different TCC portions.

Indeed, while the enhancement of the tissue TCC before the splenic peak is
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Ca(t)

Cv(t)Biological

system

Cp(t)

Fig. 2.5: Representation of a dual-input and a single-output mono-compartmental
model.

considered to be caused predominantly by the arterial input, the part after is

mainly attributed to the portal vein. MSM is then applied twice according to

what depict in Figure 2.6. The first time, it is carried out on the first part of

Fig. 2.6: Typical tissue TCC of a dual-input system with the two portions sepa-
rated by the dotted vertical line and the two maximum slopes highlighted by the
red lines.

the tissue TCC by using the aorta or an hepatic artery as the vascular input,

and the second time on the second part of the tissue TCC using the portal

vein as the vascular input [8]. The same procedure can be used in the lung by

considering the left atrium peak as the time separator of the two tissue TCC

portions: the pulmonary portion before the peak, and the bronchial portion

after [76].

The main strong points of MSM are the mathematical, numerical and con-

ceptual simplicity. Nevertheless, the assumption of no venous washout does

not hold any more at the time instant when the tissue maximum slope is com-

puted. In fact, in some cases where the tissue is highly perfused and lowly

vascularized or the administered bolus of CA is not “short and sharp”, it may
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happen that part of CA starts leaking from the tissue before the maximum

slope time instant. In these cases, if the venous outflow is relevant, BF will be

underestimated [61, 86]. However, thanks to its easy implementation and to

its versatility, this method has been implemented in several commercial soft-

ware [52] and it is currently widely applied to several body districts such as

lung [73], liver [93], kidney [94], and pancreas [95].

The second method based on IDT and known as deconvolution method,

avoids the assumption of no venous outflow by solving the inverse process of

convolution. To well understand this method, the impulse residual function

R(t) has to be introduced. R(t) (represented in Figure 2.7) is a function

Time (s)

R
(t

)

Fig. 2.7: Input residual function R(t).

describing the quantity of CA still inside tissue at time t and can be written

through Eq. 2.8:

R(t) = 1 −
∫ t

0

h (τ) dτ (2.8)

By considering Eqs. 2.1 and 2.4 and thanks to R(t), it is possible to express

the relation between Ca(t) and the tissue concentration Ct(t) through Eq. 2.9

(see Appendix 8 for more details):

Ct (t) = BF ·R (t) ⊗ Ca (t) (2.9)

When CA is still in the IV network it is possible to solve the deconvolution

problem and extract the flow-scaled R(t), that is the product BF ·R(t) [47].

The value of BV and BF can be extracted as the area and the maximum height

of the kernel BF ·R(t), respectively [61, 86]. By applying the central volume
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principle [84], it is finally possible to compute MTT as the rate between the

area and the maximum height of the flow scaled R(t):

MTT =
BV

BF
(2.10)

Like MSM, the deconvolution technique allows considering the dual vascular

input. This can be done by describing the vascular input as the combination

between the two blood supplies. In particular, by introducing PI , the total

input of the system BF · Ca(t) can be written as described in Eq. 2.11:

BF · Ca(t) = PI · Ca (t) + (1 − PI) · Cp (t) (2.11)

Therefore, Eq. 2.9 can be rewritten as in Eq. 2.12:

Ct (t) = [PI · Ca (t) + (1 − PI) · Cp (t)] ⊗R(t) (2.12)

where Cp(t) is the concentration of the second vascular input [77].

Although the deconvolution method has been validated in cerebral stud-

ies both against microspheres [96] and stable xenon [96, 97], it presents sev-

eral drawbacks due to its numerical properties. Indeed, while the convolution

operation gives a unique result, the inverse problem is ill-posed and returns

multiple solutions, all mathematically approximating the result of the convo-

lution between Ct(t) and Ca(t), but with some of them having no physiological

meaning and without knowing the right one [86]. To solve this problem, ad-

ditional assumptions on the shape of R(t) or correction methods have to be

applied. Several methods have indeed been proposed to achieve more cor-

rect results [98, 99]. The most spread in literature include the use of Wiener

filter on the Fourier transform of the deconvolution problem [100] and the

application of regularization methods such as the truncated singular value de-

composition [101, 102] and the Tikhonov regularization method [102, 103]. A

further problem of deconvolution is due to its sensitivity to bolus dispersion

and delay. Indeed, to reach the tissue analysed, CA has to pass through vessels

and microvessels of different dimension and length, this causing a delay and

a dispersion of the bolus measured inside the arterial input. Therefore, since

the shape of the function R(t) extracted from deconvolution reflects properties

of both vasculature and tissue, CA delay and dispersion will affect R(t) shape

and in turn the obtained perfusion values [104, 105]. Many studies have thus

been conducted in order to reduce the side effects of this issue and to permit
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a more accurate estimation of perfusion parameters [106, 107]. Despite decon-

volution approach is complex and still shows some limitations, this technique

has been widely implemented and it is currently adopted in several perfusion

studies [108, 109, 110].

2.2.3 Methods based on the PCM

The alternative method to IDT to analyse the tracer kinetic is PCM. While in

IDT the tissue is considered as a black box, in PCM, some assumptions about

the physiology of the analysed tissues are taken into account.

To better understand this part and the terminology used, it is important to

have clear in one’s mind the tissue physiological fluids and their classification,

represented in Figure 2.8. Indeed, fluids can be subdivided in the two macro-

Intra-cellular

space

Extra-cellular space

Extra-vascular space

Intra-vascular space

Interstitial space

Transcellular space

TISSUE

Fig. 2.8: Classification of the fluids inside a physiological tissue.

categories of intra- and extra-cellular fluids. Moreover, the extra-cellular fluids

in their turn can be subdivided in IV and EV fluids. IV fluid is constituted by

blood plasma, while EV fluid is made of the interstitial and the transcellular

fluids. However, since the volume of the transcellular fluid is very low and

often negligible, EV space can be considered as made by the interstitial fluid

only. For this reason, EV is often called interstitial space.

Differently from IDT, in PCM tissue is described by several interacting

compartments, each reflecting a different state of the administered CA. Each

compartment is characterized by the same kinetic status as CA [105] and it

can be assumed as being either well-mixed or plug-flow. In the first case, the
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concentration within the compartment is assumed to be spatially uniform at

any given time (Figure 2.9 (a)), meaning that CA spreads and diffuses inside

(a) (b)
x

0 L

x

0 L

(c)
x

0 L

dx dx dx dx dxdx dx

Fig. 2.9: Example of a well-mixed (a) and a plug-flow (b) compartment, referred
to a generic time instant ti where CA is distributed uniformly and following a
gradient (from x = 0 to x = L), respectively. Finally, the plug-flow compartment
in (b) has been further subdivided in infinite single compartments, each having a
different constant spatial concentration (c).

the compartment instantaneously. On the contrary, in case of a plug-flow

compartment, the concentration of CA is considered to be spatio-temporally

variant, following a gradient (Figure 2.9 (b)). In particular, it is assumed

that CA is carried on through a tube, whose length is parametrised by x

(i.e., ranging from x = 0 to x = L). For instance, this assumption may hold

when describing the status of CA inside the capillary bed, whose diffusion from

arteriole to venule takes a finite time and is not uniform immediately along the

whole vessels path [62, 111]. The concentration inside the compartment is both

temporally and spatially-dependent. Therefore, in order to mathematically

describe the system, the tube is subdivided into a series of small cylindrical

sections discs with infinitesimal height dx → 0, that are rings with an inner

constant spatial concentration (i.e., practically discs), so as that each disc can

be considered as a single compartment (Figure 2.9 (c)) [111].

In the following paragraphs, the main PCM used in the literature to eval-

uate perfusion parameters are briefly described. Starting from the single-

compartment model, the next paragraphs consider models composed by even

more compartments, up to four. However, this section is mainly focused on

the single- and two-compartment models which are those mostly used in the

literature.

The dual-input single-compartment model (2I1CM) is characterized

by one well-mixed compartment, two vascular input and a single output (Fig-
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ure 2.5). This model can be described by the following differential equation:

dCt (t)

dt
= k1a · Ca (t) + k1p · Cp (t) − k2 · Ct (t) (2.13)

where the parameters k1a and k1p represent the arterial and the portal inflow

rate constant, respectively, and k2 is the outflow rate constant of the system.

By solving Eq. 2.13 for Ct(t), it is possible to write Eq. 2.14:

Ct (t) =

∫ t

0

[k1a · Ca (T − τa) + k1p · Cp (T − τp)] · e−k2·Ct(t−T )dT (2.14)

where τa and τp are the delay parameters representing the transit time of CA

from aorta and portal vein to the tissue, respectively. By fitting tissue TCCs

with the model described in Eq. 2.14 and exploiting a minimization of the

fitting errors to achieve the best fitting, it is possible to compute the values

of the parameters k1a, k1p and k2 for that fitting curve. aBF , pBF , and MTT

can thus be achieved according to Eqs. 2.15, 2.16, and 2.17:

aBF =
k1a
EF

(2.15)

pBF =
k1p
EF

(2.16)

MTT =
1

MTT
(2.17)

Since EF in the liver can be assumed as being unitary [112], aBF and pBF

correspond to k1a and k1p, respectively. This model has been validated against

microspheres by Materne et al. [112] in the liver and has been used in several

hepatic perfusion studies, such as [113, 114]. However, 2I1CM could be used

also in case of a single vascular input, by assuming k1p = 0. Therefore, starting

from Eq. 2.14, it is possible to obtain the following model:

Ct (t) =

∫ t

0

k1a · Ca (T − τa) · e−k2·Ct(t−T )dT (2.18)

Therefore, in this case, aBF represents the total BF value of the organ and

corresponds is equal to k1a. Nevertheless, this model has been mainly applied

to dual input systems.

The two-compartment exchange model (2CXM) describes the plasma

and the interstitial spaces as two well-mixed compartments (Figure 2.10).

Since it is assumed that EV exchanges CA with IV only, to fulfil the mass

25



Chapter 2. Background and state of the art
2.2. Perfusion parameters in CTp

Fiv

PS

viv

vev

Fig. 2.10: Schematic representation of 2CXM, where Fiv is the plasma flow, viv
and vev are the volume of the plasma and the interstitial space, respectively and
PS is the permeability surface between the two compartments.

conservation principle (stating that no CA accumulates in the system), the

exchange of CA between the two compartments is the same in both directions.

The equation of the model can be then written according to Eq. 2.19:

vev ·
dCev (t)

dt
= PS · Civ (t) − PS · Cev (t) (2.19)

where Cev and Civ represent CA concentration in EV and IV, respectively,

and vev is the EV volume. This model has been first applied to CT perfusion

studies [115], but recently its application has been extended to MRI perfusion

studies [116, 117].

The tissue homogeneity model (THM) is similar to 2CXM, but it de-

scribes the plasma space as a plug-flow system (Figure 2.11). However, this

model has not been widely adopted since the differential equations defining the

model does not have a time-domain solution [111]. To solve this problem, the

adiabatic approximation to the tissue homogeneity model (AATHM)

has been proposed by Lee [118]. The only difference between this model and

THM is the assumption that CA cannot pass through the capillary walls (i.e.,

PS = 0) in all spatial points other than x = L (as shown in Figure 2.12). IV

and EV can thus be respectively described by the two following differential

equations (Eq. 2.20 and Eq. 2.21):

viv
L

∂Civ (x, t)

∂t
= −Fiv ·

∂Civ (x, t)

∂x
(2.20)
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Fiv

PS

viv

vev

Fig. 2.11: Schematic representation of THM. Here, the plasma compartment is
represented as a plug-flow system.

Fiv

PS

viv

vev

x

0 L

Fig. 2.12: Schematic representation of AATHM. The plasma compartment is
represented as a plug-flow system and CA exchange occurs only at x = L.
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vev
dCev (t)

dt
= PS · Cv (t) − PS · Cev (t) (2.21)

where viv is the IV volume, Cv(t) is the plasma concentration at the venous

outlet, supposed to be equal to Civ(L, t), and Fiv is the plasma flow (i.e., the

volume of plasma entering a unit of tissue volume per unit of time, expressed

in ml/min/ml). AATHM has been implemented in commercial software [52]

and, as such, it has been widely used [119, 120].

The distributed parameter model (DPM) assumes that both the com-

partments are plug-flow (Figure 2.13). The interstitial space is thus modelled

Fiv

PS

viv

vev

Fig. 2.13: Schematic representation of DPM. Here, both plasma and interstitial
compartment are represented as plug-flow systems.

as a series of infinitesimal compartments which interact only with the neigh-

bouring capillary walls. Consequently, in this model both Civ and Cev depend

on the spatial position where they are measured. DPM is described by Eq. 2.22:

vev
dCe (t)

dt
= PS · Civ (x, t) − PS · Cev (x, t) (2.22)

DPM has been validated with microspheres [121] and it has been recently

applied mainly for the evaluation of liver perfusion [122, 123].

The two-compartment models presented above permit to evaluate the value

of four parameters: Fiv, PS , viv, and vev. However, due to their complexity, the

use of simpler models with two- or three-parameters has been often preferred.

These simpler models are derived from the four-parameter two-compartmental

models described above through the formulation of further assumptions on at

least one of the four parameters [82]. The three simplified two-compartment

models mainly used in the literature are presented below.
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The Tofts Model (TM) [124] assumes that the IV space is negligible (i.e.,

viv = 0) and can be described as in Eq. 2.23:

Ct (t) = ktrans · e−
ktrans

vevt ⊗ Ca (t) (2.23)

An extension of TM is the extended Tofts Model (eTM) that can be de-

rived by the compartmental model discussed above, through the assumption of

infinite Fiv (i.e., highly perfused tissues). This assumption allows considering

Ca(t) equals to Civ(t) and ktrans equals to PS . The eTM can be described by

Eq. 2.24 :

Ct (t) = viv · Civ (t) + ktrans · e−
ktrans

vevt ⊗ Ca (t) (2.24)

In TM, only ktrans and vev can be assessed, while in eTM it is also possible to

evaluate the viv value. Despite the accuracy of these parameters highly depend

on the tissue hemodynamic status, that is often unknown in advance [125], both

these two- and three-parameter models are often currently applied [116, 126,

127, 128].

On the contrary, the uptake model is based on the assumption that due

to high vev or low PS , Cev(t) is much lower than Civ(t) and hence the outflow

from the interstitial space is negligible. This model can be derived from any

of the four-parameter models previously discussed by imposing the condition

Cev = 0. This three-parameter model allowing to evaluate Fiv, PS , and viv [82]

is not so diffused in CTp. However, the Patlak model that can be derived

by the uptake model, assuming Fiv as an infinity quantity, has been widely

adopted. In Patlak model, Civ(t) is considered equal to Ca(t), while ktrans is

equal to PS . From Eq. 2.25:

Ct (t) = viv · Civ(t) + ktrans ⊗ Ca (t) (2.25)

it is thus possible to extract viv and ktrans [129, 130]. By imposing X (t) =∫∞
0 Ca(τ)dτ

Ca(t)
, and Y (t) = Ct(t)

Ca(t)
it is possible to rewrite Eq. 2.25 in the simpler

form:

Y (t) = viv + ktrans ·X (t) (2.26)

Thanks to the possibility of linearise Eq. 2.25 and thus to solve the problem

graphically [129, 130], Patlak model is highly attractive. Indeed, this model

has been implemented both in in-house and commercial software and widely

adopted in several perfusion studies [131, 132, 133].

Some few perfusion studies using three [134, 135] and four [135] compart-
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mental model have been proposed in the literature. However, due to their

complexity caused by the high number of compartments and of parameters

considered, the use of these models have still not gain a wide success in CTp

perfusion studies.

Table 2.2 presents a brief summary of the main features regarding the

discussed methods to compute perfusion parameters.

Kinetic models and methods used to compute perfusion parameters

Principle Method/Model NC Parameters Assumptions Complexity

IDT
MSM 1 BF No venous outflow Low

Deconvolution 1 BF , BV , MTT Assumptions about the shape of R(t) High

PCM

2I1CM 1 aBF and pBF well-mixed compartment Medium

2CXM 2 Fiv, PS , viv, vev IV and EV are well-mixed Medium

THM 2 Fiv, PS , viv, vev IV is plug-flow and EV is well-mixed High

AATHM 2 Fiv, PS , viv, vev
IV is plug-flow, EV is well-mixed, and the

High
exchange of CA occurs only at venous end

DPM 2 Fiv, PS , viv, vev IV and EV are plug-flow High

TM 2 ktrans, viv, vev Fiv ≈ ∞ and viv ≈ 0 Low

eTM 2 ktrans, vev Fiv ≈ ∞ or viv ≈ 0 Medium

Patlak model 2 ktrans, viv Cev<Civ Low

Tab. 2.2: Main features of the most commonly used methods and models: the
principle on which they are based on, the number of compartments (NC) they
consider, the perfusion parameters they yield, the assumptions which they are
based on, and their complexity level.

2.3 Clinical Application of CT perfusion in on-

cology

CTp has proved to be a very useful tool in several clinical applications. Sev-

eral very recent reviews [10, 136, 137, 138, 139, 140, 141], have been indeed

published gathering clinical results obtained through the use of CTp. This

paragraph resumes the main clinical results achieved by exploiting CTp pa-

rameters in several body districts, with a special focus on lung and liver, which

are the two organs dealt with in this Thesis.
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2.3.1 Correlation of CTp parameters with tissue angio-

genesis

One of the main reasons for which DCE imaging techniques were introduced in

the oncology research is the needs for tools able to assess tumour angiogenesis.

To this purpose, CTp parameters showed to be well correlate with several an-

giogenesis biomarkers (e.g. MVD or VEGF) in cancer of lung [142], liver [143],

prostate [144], kidney [145], head and neck [146], and soft tissues [147]. In par-

ticular, in the lung cancer a significant correlation between MVD and BV [142,

148] and also between MVD and BV [149] was found in patients with several

tumour subtypes. In two more studies on the lung cancer carried out by Ma

et al., a correlation between MVD and the perfusion parameters was found

also for PS [150] and MTT [151]. Moreover, in this last work a great correla-

tion between VEGF and BF , BV , PS , and MTT was also reported [151]. As

regards liver tumours, a significant correlation was observed between VEGF

receptor 2 and BF , BV , and the hepatic PI (HPI ) [143]. The arterial and the

total BF instead, resulted to be correlated with both MVD [71] and the level

of circulating IL-8 [152]. However, discrepancies between results were found in

CRC. Indeed, while Goh et al. [153] found correlation between PS , BV , and

MVD, in two more recent works [154, 155] no significant correlations could be

found between MVD and BF , BV , MTT , PS , and ktrans. A possible reason

why these results do not agree can be found in [155]. In this work, Dighe et

al. suggest that while CTp parameters aim at measuring tumour functional

characteristics, the MVD is based on the morphological count of all vessels,

some of which could not even be perfused.

2.3.2 The use of CTp parameters in diagnosis

Cancer diagnosis and therapeutic decision making strictly depend on the in-

formation that a clinician is able to achieve as regards extension, stage, grade,

and stratification of tumours. By using conventional imaging techniques, can-

cer tissue often does not show features allowing distinguishing it from healthy

tissues. Detection and assessment of tumour extension is consequently rarely

possible with conventional imaging techniques and, when so, it is often not

possible to characterize the tissue as benign or malign. Of course, assessing

both tumour grade and stage that have shown to be correlated with tumour

aggressiveness and prognosis, and that are therefore fundamental for the choice

of the therapy on the decision making process, is quite impossible with the use
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of conventional imaging [82]. On the contrary, CTp has shown to be effective

in characterization, differentiation, and estimation of tumour grade and stage.

Several perfusion parameters have indeed shown to be significantly different if

measured in the tumour or in the normal tissue. For instance, BF and PS in

the prostate [156] and BF , BV , and PS in the kidney [157] showed to be signif-

icantly higher in tumour than in the surrounding tissue. Moreover, BF , BV ,

PS , and MTT were found to be significantly different in the pancreas [133]

and in the colon-rectum [158]. In the liver, things are more complicated due to

the effects that tumour progression has on liver blood supply. It is well-known

indeed that the evolution of hepatocellular nodules in hepatocellular cancer

(HCC) cause a decrease in the pBF and an increase in the aBF and in the

HPI [8]. This was observed in several studies comparing normal liver with

metastases from CRC [70] and normal liver with HCC [71, 159]. Opposite

results were obtained for the global BF value in the comparison between HCC

and normal tissue. Indeed, while Yang et al. [71] found global BF value lower

in HCC than in normal liver, Ippolito et al. [159] found the global BF value

higher. Anyway, BF value is not the only marker that have been identified

to characterize liver tumours. Indeed, by analysing liver metastases from en-

docrine tumours, Lefort et al. [160] found that BF was significantly higher

and MTT was significantly lower in metastatic tissue that in normal liver.

Also Frampas et al. [161] observed a significant difference between MTT val-

ues computed in HCC and in the surrounding normal parenchyma. Wang et

al. [123] instead, found as a characterization marker the PS value that resulted

to be significantly higher in the metastases from neuroendocrine tumours than

in the normal liver.

Completely different is the case of lung nodules detection. Thanks to the

high density difference between lung normal tissue (that typically ranges be-

tween −700 and -900HU [162]) and lung nodules (usually between −200 and

200HU [163]) it is not so difficult to detect the presence of abnormal tissue

mass even with conventional imaging techniques. However, density alone can-

not allow differentiating between benign and malignant lung nodules [164]. To

this purpose, CTp has shown to be very useful by proving that benign and

malignant nodules are characterized by significantly different perfusion values.

This was demonstrated for BF , BV , EF in [165, 166], for BF , BV , PS in [167],

and for the pulmonary PI in [76]. Further studies also taken into account the

inflamed tissue were carried out by Li et al. [168] and Ma et al. [151]. Both

the authors found that BF and BV were able to discriminate benign nod-

ules from inflamed tissue and malignant nodules. However, none of these two
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parameters was significantly different to enable a differentiation between the

inflamed tissue and the malignant nodules. A solution to this issue was pro-

posed by Li [168], that also investigated PS . This last perfusion parameter

indeed, showed significant differences between inflamed tissue and malignant

nodules, thus enabling their discrimination. The combined use of BF and

PS , or of BV and PS can thus yielding a complete discrimination between

inflamed tissue, benign and malignant solitary lung nodules. CTp parameters

have also shown a great differentiation capability in the colon-rectum to dis-

tinguish between cancer and diverticulitis [158] and in pancreas to differentiate

adenocarcinomas and masses forming pancreatitis [133].

Another important feature necessary to make a correct diagnosis is the

knowledge of tumour subtypes. In this way, CTp has also shown good perfor-

mance in kidney to identify papillary renal cell carcinoma, chromophobe renal

cell carcinoma and angiomyolipoma [157], and in the liver to discriminating be-

tween HCC, hypo-vascularized, and hyper-vascularized metastases [169]. Het-

erogeneous results were instead found as far as the differentiation of lung cancer

subtypes was concerned. Li et al. [148] did not find any significant differences

between BV values computed in adenocarcinomas, squamous cell carcinomas,

large cell carcinomas and small cell carcinomas. Similar results were obtained

by Spira et al. [149], that analysed BF and BV in adenocarcinomas, squamous

cell, and small cell lung cancers. On the contrary, a more recent research of

Nguyen-Kim et al. [170] addressing dual vascular supply pointed out a signifi-

cant difference of BF values in some tumour subtypes. In particular, BF was

found to be lower in adenocarcinomas than in squamous cell carcinomas and

large-cell carcinomas, while in large-cell carcinomas the bronchial BF resulted

to be significantly higher than in adenocarcinomas. Instead, Fraioli et al. [171]

by using a single vascular input, found significant differences in BV values of

large cell carcinoma, adenocarcinoma and squamous cell carcinoma.

Other two information needed to make a correct and accurate diagnosis are

tumour staging and grading. Capability of CTp to assess tumour staging has

been drawn in prostate [172] and in head and neck [173] cancer. On the con-

trary, the study by Reiner et al. [145] on renal cell carcinoma did not show any

correlation between tumour stage and BF , BV , and ktrans. As regards tumour

grading, a good efficacy of CTp was observed in colorectal [154], prostate [172],

brain [174], and pancreas [175] cancer. Worse results were instead obtained

for kidney, liver, and lung cancer. In particular, the results obtained in kidney

varied based on tumour types. In the same year, Reiner et al. [145] did not

obtain any correlation between renal cell carcinoma grade and BF , BV , and

33



Chapter 2. Background and state of the art
2.3. Clinical Application of CT perfusion in oncology

ktrans, while Zhang et al. [176] shown the capability of BV to differentiate be-

tween high and low grade of clear cell carcinoma. In the liver, a study enrolling

52 patients with HCC did not found any correlation between tumour grading

and aBF , pBF , total BF , HPI , and BV . In lung, both Nguyen-Kim et al. [170]

and Li et al. [148] did not found any correlation between tumour grading and

the perfusion parameters being tested (i.e., PI in [170], and BF , BV , MTT

in [148]). However, opposite results were achieved in a larger study carried

out by Spira et al. [149] that observed a correlation between lung cancer grade

and BF values in 72 patients with several different subtypes of lung cancer. In

this study indeed, lower values of BF corresponded to a higher tumour grade.

2.3.3 The use of CTp in therapy monitoring and sur-

vival predicting

Another important issue for which DCE imaging techniques have been intro-

duced is the assessment of anti-angiogenic drugs efficacy and the early pre-

diction of their outcome. In a recent work, Prezzi et al. [177] report how the

effects of anti-cancer therapies can be evaluated by using BF , BV , PS , and

EF . Indeed, the standard chemotherapy and the vascular disrupting agents,

provoke the reduction of BF , BV , PS , and EF values, while the administra-

tion of radiotherapy produces their reduction only after an initial increase.

The administration of angiogenesis inhibitor only affects the values of PS and

BF , which first increase and then diminish. All these effects have been ob-

served in several studies regarding different body districts. For instance, the

administration of Bevacizumab and radiotherapy has been found to cause a

reduction in BF , BV , and PS values of the soft tissues sarcomas [147]. A

decrease of BF values was observed in neuroendocrine tumours after the ad-

ministration of Bevacizumab and Everolimus [178], in esophageal cancer after

chemoradiation therapy [179] and in chest and abdomen after the administra-

tion of a combination of AZD2171 and gefitinib [180]. In a study regarding

advanced HCC a decrease of BF , BV , and PS was observed after the adminis-

tration of bevacizumab in combination with gemcitabine and oxaliplatin [181].

In NSCLC, the administration of sorafenib and erlotinib caused a decrease of

BF value [182], while the use of chemotherapy combined with anti-angiogenic

drugs (e.g. paclitaxel and bevacizumab) caused a significant reduction of BF

and PS values in advanced lung adenocarcinoma [183], large cell carcinoma,

adenocarcinoma, and squamous cell carcinoma [171].

CTp has also shown to have a great prediction capability of patient survival
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with cancer in several body districts. Perfusion parameters have been capable

of discerning the patients responding to therapy from those who did not in

soft tissues sarcomas [147], in esophageal [179, 184], oropharynx [185], and

lung cancer. In particular, in NSCLC BF was significantly different between

responders and non responders in [73, 182, 186], while the total tumour BV

was identified as the most effective indicator in [187]. Instead, significant

differences in both BF , BV , and PS values were found in the advanced lung

adenocarcinoma between responders and non-responders patients [183]. As

regards the liver, different results were achieved by Frampas et al. [161] and

Jiang et al. [181] through the analysis of different perfusion parameters. In 11

patients with advanced HCC, treated with sorafenib and suritinib, Frampas

did not find any significant differences at baseline between BF , BV , MTT ,

and PS values between RECIST progressors and non-progressors (measured

at month one and two). On the contrary, Jiang et al. [181] found that the

ktrans value measured in 23 patients with HCC and treated with bevacizumab

and GEMOX-B was significantly different in responders and non-responders.

In that case, ktrans could be considered as a biomarker predicting patients

response.

CTp parameters also showed to correlate with OS in cancer of esopha-

gus [179, 184], colon-rectum [188], rectum [189], pancreas [190], brain [191],

liver [74], and lung [39, 72]. The relation between CTp parameters and PFS

was demonstrated in oropharynx [185], liver [181] and lung [182] cancer. As

regards the lung, in a recent study Hayano et al. [192] did not notice any cor-

relation between OS or PFS and BF , BV , and MTT values computed in 35

patients with NSCLC. These results are at the opposite of those obtained in

the two studies on NSCLC found in by Wang et al. [186] and Li et al. [193],

which confirmed the capability of CTp parameters to predict both patient OS

and PFS. The main difference between these studies is in the perfusion param-

eters considered. In the work of Wang et al., PS was the marker of survival,

which was not computed by Hayano et al.. Differently, Li et al. considered

a dual vascular supply and identified the marker of survival in the bronchial

BF , while Hayano computed perfusion values by using a single input only.

A further final improvement brought by the use of CTp is the assessment

of perfusion parameters’ capability to predict the development of metastases,

as it was shown in two studies on CRC [194] and rectal cancer [189].
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2.4 Open issues in CTp

Despite CTp has shown to be a very promising technique in the oncological

field for its capability to assess angiogenesis, characterizing and differentiating

tissues, monitoring therapies, and predicting survival of tumours in several

body districts (Sect. 2.3), it has not been applied in the clinical practice yet.

Several issues concerning the CTp examinations are still open and needs to be

dealt with. These issues regard different phases of the process involved in the

achievement of correct perfusion results, from CT images acquisition till the

computation of perfusion parameters. Some of the steps have already been

faced in literature, some at last partially, while some others have still to be

addressed. The main ones are:

• the lack of standardization in both acquisition and data analysis proto-

cols

• the definition of the acquisition parameters in function of the radiation

dose

• the lack of repeatability and reproducibility of perfusion results

• the presence of patient motion

• the application of the most correct post-processing procedure

• the selection of methods and models to compute perfusion parameters

• the way to analyse the reliability of perfusion results

All these issues are discussed in the following subsections.

2.4.1 Lack of standardization

One of the most critical issues of CTp is the lack of standardization in both ac-

quisition and data analysis protocols. In fact, this issue prevents the widespread

use of CTp [8], the comparison of results obtained in different clinical stud-

ies [111], and the implementation of multi-centre studies [111, 195].

The problem of the lack of standardization has been addressed by Miles

et al. in [83]. The Delphi process involving several DCE-CT experts allowed

the development of guidelines addressing various aspects of the acquisition and

the data analysis protocols. The first issue that has been faced regards CT

scanner requirements. Indeed, the limited z -coverage has been one of the many
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limitations of CTp up to the recent advances of CT systems. In fact, until a

few years ago the need of examinations with a high temporal resolution limited

the width of the studied volume, that had to be limited to a single section, or

a few sections, only [63, 54]. The introduction of CT machines endowed with

256 or 320 detector rows and capable to acquire images at a high temporal

resolution in both axial and helical modalities, allowed achieving a wider z -

coverage and performing the analysis of the whole tumour or of multiple lesions

present inside an organ [81]. In addition to the indications on CT scanner

requirements, the work in [83] also returns recommendations regarding the

acquisition protocol to be followed, the CT system quality assurance (that

should be carried out on phantoms before beginning each clinical trial), and

the results that should be presented in a CTp study.

Despite the useful recommendation given in [83], several aspects of CTp

acquisition and processing protocols still needs to be faced. Indeed, without

knowing exactly the effects that a variation of acquisition parameters would

cause on results, the use of different acquisition protocols would prevent the

comparison of results obtained in different CTp studies and the set-up of multi-

centre studies. In particular, multi-centre studies are essential before introduc-

ing an imaging technique as a standard to be used in the clinical routine. This

issue is addressed in Chapter 6, where through the analysis of data coming

from a CTp multi-centre study on liver, it has been possible to draw some

preliminary guidelines about the set-up of multi-centre studies.

2.4.2 Radiation dose and Acquisition parameters

The reduction of radiation dose is one of the main challenges of CTp. Due to

the cancer risk associated to radiation exposure, the dose delivered to patients

should be decreased as much as possible, without compromising the quality

of the achieved perfusion results [83]. The radiation burden is associated to

the CT tube current and voltage (and finally to mAs), and to the number of

“volumes” acquired. The decrease of tube current and voltage allows reducing

the radiation dose administered to the patient [131] at the expense of the

quality of results [8]. The reduction of detected signal results in increased

noise levels [64] and in artefacts from beam hardening [8] that can significantly

affect the quality of the computed perfusion values. A possibility to face this

problem and reduce image noise is increasing the slice thickness and lowering

the resolution of the reconstruction filters. However, this would lower the

image spatial resolution [196]. Another possible solution to reduce the overall
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radiation dose is to diminish the number of images acquired by shortening the

duration of the examination or by decreasing the sampling frequency. However,

the diffusion of CA inside tissue and its spread out of the IV space take a

finite time and the use of too short duration acquisition sequences could not

allow monitoring these events, hence yielding possibly misleading perfusion

values. This is yet more true for those perfusion parameters such as PS and

EF describing CA exchange between two or more compartments [54]. On the

other hand, the radiation dose reduction by decreasing the sampling frequency

leads to a poorer image temporal resolution, this affecting the accuracy of the

computed perfusion parameters. This is particularly true for those perfusion

parameters computed by using methods based on the IDT, such as MSM, for

which having a high temporal resolution is of fundamental importance [197].

However, independently from the method adopted, the exposure reduction has

unavoidable consequences on the acquired image quality and on the accuracy

of perfusion results computed on those data. A trade off between heavily side

effects associated to the received radiation dose and benefits deriving from the

clinical information coming from CTp thus needs to be found [81]. Actually,

several perfusion studies have been carried out in order to estimate perfusion

parameters quality achieved by using low-dose acquisition protocols [131, 198,

199]. However, at present there are no precise guidelines about the exact

method to adjust acquisition parameters in order to guarantee a satisfying

image quality and a “low” radiation dose for each patient [83].

2.4.3 Repeatability and reproducibility

Repeatability and reproducibility of perfusion parameters are mandatory pre-

requisites of CTp technique to enable its use in the clinical practice. In the last

few years, some studies have been carried out to this purpose. For instance,

Sahani et al. [200] found a high correlation and a low variability between BF ,

BV , MTT , and PS values computed on two consecutive CTp image sequences

acquired at 30 hours time distance in 4 patients with HCC. Low differences

between BF , BV , MTT , and PS values were also found by Goh et al. [201]

in two consecutive CTp examinations performed in 48 hours on ten patients

with CRC. Two different studies were instead carried out on lung to assess

perfusion parameters reproducibility by using different z -coverage [202, 203].

In both these works, ten patients with lung cancer underwent two consecutive

CTp scans (repeated within 24 hours) and the median BF and PS values were

computed on both a single slice and four adjacent tumour sections. A greater
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reproducibility of perfusion parameters was achieved by computing them on

analysing a wider volume coverage. Two more studies [204, 205] were finally

performed to assess reproducibility of perfusion parameters with respect to the

acquisition time length of the examination and the application of motion cor-

rection methods. Seven patients with liver tumour [204] and 10 patients with

lung cancer [205] underwent CTp examination. In both the studies, results

obtained in lung cancer, in tumour liver, and in normal tissue resulted to be

more reproducible by using longer acquisition scan and by applying the motion

correction algorithm. These findings were particularly true for PS . Indeed, as

discussed in Sect. 2.4.3, to achieve a correct value, PS has to be computed

on long acquisition sequences. Of course, using long acquisition time results

in unavoidable patients respiratory motion, this requiring motion correction

algorithms to reduce data variability.

Despite the encouraging results obtained in the studies discussed above,

a lot of work still needs to be carried out. The activities can be resumed

in two main tasks. First of all, it is important to analyse repeatability and

reproducibility in a wider number of patients to achieve a higher statistical

significance of results. Thereafter, it is necessary to carry out multi-centre

studies that use examinations acquired in different Centres and therefore with

different CT scanners, which can propagate differences on protocols and so

on [8, 83]. These two tasks have been partly addressed in Chapter 7, where

almost 400 liver CTp examinations acquired in 19 different Centres have been

considered for perfusion analysis, although 87 examinations have been analysed

at the end.

In addition, in order to achieve a correct and effective assessment of re-

peatability and reproducibility of perfusion results, it is also necessary to con-

sider voxel-based perfusion values, instead of global ones (used in the works

discussed above). Employing mean or median operators allows obtaining more

repeatable and reproducible results that, however, cannot take into account

local spatial heterogeneity of tissues analysed (see also Sect. 2.4.7). To also con-

sider tissue’s spatial features, it is therefore necessary to perform a voxel-based

analysis, that however is much more sensible to the presence of random and

systematic errors caused by both image acquisition and data analysis [206]. In-

deed, the presence of noise, artefacts, and anatomical structures (i.e., bronchi

and vessels) can jeopardize the reliability of the computed perfusion parame-

ters and, in turn, their repeatability. The fact that in the literature, all the

perfusion values achieved have always been considered reliable, disregarding

the presence of model or numerical errors, has represented a huge obstacle
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to the achievement of repeatable perfusion results. Consequently, the lack of

indexes to assess perfusion results accuracy and to detect and quantify at least

the non-systematic errors is a crucial point for the achievement of repeatable

results. Developing tools to assess results reliability is thus necessary in order

to go towards large-scale trials [195]. This issue is faced in Chapter 4.

2.4.4 The problem of motion

Motion has always represented a great issue to be faced in CTp studies. Both

voluntary (e.g. respiratory motion) and non-voluntary (e.g. peristaltic mo-

tion) motion can bring to voxel-based TCCs composed by signals coming from

different tissue portion and consequently lead to incorrect perfusion results.

Respiratory motions are those causing the most significant consequences on

TCCs’ quality and mainly affect tissues of the upper abdomen and thorax [81].

This issue has ever been very challenging, especially in those studies using CT

scanners permitting a narrow z -coverage only. In these cases, indeed, the mo-

tion of tissue out of the FOV causes data loss [63]. Several approaches have

been proposed in the literature to cope with this issue, the principals of which

are: the use of immobilization devices and hypotonic agents, the acquisition

of images in breath-hold conditions (that anyway can be limited in time), and

the adoption of motion correction methods [52]. The use of motion correc-

tion algorithm has shown to yield more reproducible perfusion results [204,

205] and to be necessary to achieve reliable results, otherwise the examina-

tions should have to be discarded [207]. Also the guidelines in [83] suggest

the use of motion correction algorithms and recommend to exclude from the

analysis those images particularly affected by patient motion. This issue has

been partly faced in Sect. 7.2, dealing with the early prototypic algorithm for

automatic motion correction of liver CTp images I have developed.

2.4.5 Signal post-processing

The application of spatio-temporal filters to the CT images and to the TCCs

allows correcting for the presence of acquisition noise, discretization errors,

and motion artefacts. However, the lack of guidelines about their application

can cause variability in the results obtained through the use of different post-

processing procedures [83]. As regards the spatial domain, the median filters

with kernels of size 3 [208] or 5 [209, 210] are the most used, since they are ef-

fective on removing noise while preserving geometric structures present in the
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images. However, the literature also reports the use of smoothing filters, such

as the weighted means [211, 212], that cannot preserve edges as median filters

do. Instead, as for the time domain, smoothing filters and fitting methods are

often applied to the TCCs. To this purpose, Moreira et al. [213] proposed the

use of a 7-point moving average filter to analyse cerebral CTp images. This

temporal filter was selected between the moving average, the moving median,

and the smoothing filter as the one showing the best trade-off between appli-

cation simplicity and goodness of results achieved. Instead, 3-point moving

average filters were adopted in CTp studies of the myocardium [211] and on

simulated liver TCCs [214]. In particular, in the work of Romano et al. [214]

the aBF values were computed by using three different methods of temporal

smoothing. The moving average method applied to the simulated TCCs re-

sulted to be superior to the other two methods based on parametric fitting

strategy. To achieve denoised signal indeed, it is also possible to apply para-

metric and non-parametric fitting techniques. The former relies on assump-

tions regarding the diffusion model of CA inside the tissue voxel analysed and

returns a signal reflecting these assumptions. The latter yields resulting TCCs

that are more faithful to the original signal, meanwhile being more affected

by the presence of outliers and noise. In [215], both non-parametric spline fit-

ting method and the parametric Gamma-variate model are successfully used to

compute aBF in 8 patients with HCC. The Gamma model described in [216,

217] has been widely adopted in perfusion studies [119]. However, by changing

the assumption on the kinetic diffusion of CA inside the analysed tissue, it is

also possible to apply other models such as the Weibull [218] or the Hill [219]

ones. In particular, the Hill’s model fits the assumption of no venous outflow,

since its increasing sigmoidal shape well describes the arrival of the bolus of

CA inside tissue, but not its flowing out. A family of curves for the Gamma-

variate, Weibull, and Hill models are represented in Figure 2.14.

2.4.6 Methods and models to compute perfusion pa-

rameters

The choice of the best model or method to compute perfusion parameters is still

widely debated. Each technique relies on different assumptions regarding CA

distribution inside tissue, this leading to the computation of different perfusion

parameters (as reported in Table 2.2). Moreover, the adequacy of methods or

models to compute perfusion parameters may depend on the acquisition proto-

col used. A short acquisition protocol, ending before CA flowing out from IV

41



Chapter 2. Background and state of the art
2.4. Open issues in CTp

(a) (b) (c)

Fig. 2.14: Gamma-variate (a), Weibull (b), and Hill (c) model are represented.

space, can indeed be suitable to methods based on a single compartment. On

the contrary, longer acquisition protocols allow assessing also the vascular per-

meability of the analysed tissue by computing perfusion parameters such as PS

or ktrans through the application of two, or more, compartment models [54]. In

case of retrospective studies, the selection of the method or model that has to

be applied must take into account the limitations imposed by the acquisition

protocol applied (such as duration and sample frequency). On the contrary,

in case of a perspective study it is possible to decide a-priori which perfusion

parameters to study, which method or model to apply to achieve those param-

eters, and which acquisition protocol, accordingly [64]. However, at present

there is not any established agreement yet, regarding which parameters should

be considered and, consequently, which model and acquisition protocol should

be applied in the various perfusion studies [83].

Currently, only few studies exist that have compared perfusion parame-

ters obtained with different kinetic models applied on human tumour tissues.

Kanda et al. proposed two studies that compared perfusion parameters com-

puted using different methods, based on the assumption of a single compart-

ment. In [113], the mean values of aBF , pBF , and HPI were computed in 109

patients with a high risk of malignant liver tumour by using the dual-input

maximum slope (DIMS) method and the 2I1CM. Results of statistical tests

pointed out the differences between parameters obtained with the two meth-

ods and highlighted the fact that they are not directly comparable. The same

results were obtained in [114], where aBF , pBF , and HPI were computed

in 88 patients with liver metastases by using the MSM, the single compart-

ment model, and the deconvolution method. Perfusion results computed by

using the various methods and models were again hardly comparable. In-
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stead, three more works compared perfusion parameters obtained by using

two-compartment models. In particular, in [220] the values of BF , BV , MTT ,

and PS were computed in 19 patients with advanced HCC by using 2CM,

TM, eTM, AATHM, and DPM. The study was repeated after 10-12 days from

the administration of the anti-angiogenic treatment since its aim was to study

whether any parameter could be a predictor of 6-month PFS. The results

highlighted that both the absolute values of each perfusion parameter and

the differences measured in the two examinations were significantly different

among the models applied. Similar results were obtained in [188] in the evalu-

ation of the capability of perfusion parameters to predict the 5-year OS in 46

patients with primary CRC. The value of BF , BV , MTT , PS , EF , vev, and

ktrans computed by using four different models (2CM, eTM, AATHM, DPM)

resulted to be significantly different. Instead, another study [221] carried out

on 44 patients with CRC, compared ktrans and BV values achieved by applying

AATHM and Patlak model. Also in this case, the perfusion results achieved

with the two models were significantly different and could not be directly com-

pared. Anyway, it is important to remark that in this last study, the use of

different commercial software might have affected the obtained results. Indeed,

in [222] the use of the same commercial software before and after the upgrade

on the same datasets of 30 patients with suspected CRC, leads to significantly

different values of BF , BV , MTT , and PS . This study demonstrates that also

the use of different commercial software (even if produced by the same ven-

dor) can deeply affect perfusion results and prevent comparison of parameters

computed in different studies.

2.4.7 The analysis of results

Another source of inhomogeneity that could lead to different clinical consider-

ation is the modality used to analyse perfusion results. To this purpose, it is

possible to subdivide the problematic into three main issues, which regard the

ROIs selection, the method of analysis used (global or voxel-based), and the

number of tumour sections considered.

The first issue regards the lack of consensus on how the tissue ROIs should

be drawn [83]. Due to tumour heterogeneity, the analysis of data coming from

different tissue portion could yield different clinical consideration. In a re-

cent study involving 27 patients with lung cancer indeed, the mean BF and

BV values were computed in several ROIs of different size and placed in dif-

ferent position of the same tumour section. The results of statistical tests
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highlighted that the computed perfusion parameters showed a high variability

between ROIs of different size and position and that the highest reproducibil-

ity of results was achieved using the ROI encompassing the whole tumour

surface [110].

The second issue regards the selection of one of the two methods that can

be used to analyse perfusion parameters [223]. The first one is based on the use

of statistical indexes (e.g. mean or median value of the perfusion parameters)

that allows obtaining a unique perfusion value aiming at being representative

of the whole ROI, or the whole tumour. This method permits a simple and

fast analysis of perfusion results [223] and generates perfusion parameters with

a great intra-observer and inter-observer reproducibility, whether global values

are computed on a single slice [201] or on a number of tumour sections [200]. In

any case, this method does not bring any information about the spatial distri-

bution of perfusion patterns and masks the local tissue variability that are the

characteristic feature of tumours (i.e., tumour heterogeneity) [60]. The second

method to be used consists in a voxel-based perfusion analysis. This method

enables the study of local perfusion heterogeneity and the detection of hypo-

and hyper-vascularized areas [223]. As reported by Petralia et al. in [52, 60],

the voxel-by-voxel analysis can be done both qualitatively, by visually assess-

ing perfusion maps, and quantitatively by analysing histograms of perfusion

values [224] or by adopting fractal analysis [225, 226]. However, voxel-based

analysis requires longer and more complex computational techniques [223] and

the use of global perfusion parameters is still often preferred.

The third issue regards the selection of the number of tumour sections on

which perfusion parameters have to be computed. Due to tissue heterogeneity,

perfusion of a single slice may not reflect perfusion of the whole tumour [8].

More reproducible perfusion results were achieved in two studies of lung can-

cer [202] and CRC [203] by using a greater z -coverage. However, both these

studies have been conducted by using global values that cannot take into ac-

count tumour heterogeneity. Also in this case, the lack of guidelines facilitates

the spread of different, and sometimes not appropriate, solutions. Despite the

knowledge that tumour heterogeneity can highly affect perfusion parameters

computed on a single slice, there are still several studies that currently com-

pute perfusion parameters on a single tumour section only [192, 227, 228]. In

order to evaluate the representativeness of global and voxel-based perfusion

results computed on the whole tumour and on a single slice with respect to

tissue heterogeneity, a deep analysis has been carried out in Chapter 5.
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Computation of CTp

parameters

In this Chapter, the methods and the indicators that have been defined, im-

plemented, and tested during my PhD activities are presented and discussed.

First of all, the pre-processing techniques applied to the CTp data of each

examination and the methods used to compute perfusion parameters are pre-

sented (Sect. 3.1). Then, a series of error indexes is taken into account in

order to evaluate the quality of the signal on which the perfusion parameters

are computed. Four temporal indexes of goodness of fit are indeed investigated

and compared to find out the most suitable one to evaluate TCCs’ quality and

to assess the reliability of the perfusion values computed. A couple of spatio-

temporal indexes able to evaluate the evolution over time of tumour spatial

heterogeneity is also presented (Sect. 3.2). In order to establish which perfusion

values were characterized by the highest errors and hence had to be considered

as being unreliable and excluded from the analysis, two automatic thresholding

methods of the error index distribution are proposed (Sect. 3.3). Finally, two

indicators used to evaluate local spatial coherence of perfusion maps (Sect. 3.4)

and tumour functional heterogeneity are introduced (Sect. 3.5).

3.1 From image sequence to TCC

In this section, the pre-processing techniques applied to CTp images and to

TCCs are presented. The liver and lung CTp image sequences studied in this

manuscript have all been acquired in axial scan mode. Indeed, despite using

an helical acquisition would allow obtaining a more accurate registration [183]

and covering a wider volume coverage [229, 203], the improvement brought by
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the “spiral” scan mode is light in case of hidden tumours or lesions extending

for few slices only [230]. Moreover, the fact that the axial scan mode allows

acquiring images at a higher temporal resolution meanwhile delivering a lower

radiation dose to patients, makes this technique the most preferable one [60].

In the next paragraphs, the denoising methods applied to the CTp images

and to the TCCs (Sect. 3.1.1) are presented as well as the method selected to

compute perfusion parameters (Sect. 3.1.2), and the model chosen to fit the

resulting TCCs (Sect. 3.1.3).

3.1.1 Denoising methods

In order to remove noise from the acquired images and from the TCCs, a cou-

ple of filters have been applied. The techniques presented have been selected

in preliminary studies among several methods. The criterion applied to select

these techniques was related to the achievement of the best trade-off between

signal denoising and preservation of data information content. The first denois-

ing step is applied to the sequence images and is implemented through the use

of a median filter with a 5-pixel kernel size, that allows removing noise while

preserving edges. The very small dimension of this filter allows to achieve an

effective denoising that removes the bigger outliers mainly due to acquisition

noise without loosing the image information content. Subsequently, an autore-

gressive (AR) filter is applied to the TCCs in order to further reduce the effects

of noise, motion artefacts and discretization. The application of this method

is based on the assumption that the signal can be modelled as a sequence of

correlated samples affected by random noise. This assumption hods in case

of TCCs since they are characterised by a common trend that consists in a

first increase due to CA uptake inside tissue, followed by a very slowly decay

caused by the CA outflow. Each TCC can thus be described through the use

of the AR process shown in Eq. 3.1:

yAR(m) =

p∑
k=1

a(k)yAR(m− k) + η(m) (3.1)

where yAR is the signal described through autoregression, a(k) represents the

generic AR coefficient, p is the order of the AR model and η(m) is the white

noise process. Both the coefficients and the order of the AR model are esti-

mated by using the Yule-Walker method [231, 232]. This procedure permits

to capture temporally local correlation between consecutive samples and to
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denoise the signal, accordingly.

3.1.2 Perfusion values computation

Since the main goal of this Thesis is to provide methods allowing clinicians

to make more correct and more aware clinical decisions, independently from

the parameters that are computed and from the methods used to compute

their values, I decided to work on BF values computed by using the MSM. As

discussed in Sect. 2.3, BF has shown to be a multi-purpose parameter since

it is one of the most versatile and useful. It can indeed be applied also to

organs characterised by a dual vascular input, such as liver and lung, where

it has shown to be correlated with tumour angiogenesis [143, 149] and to be

very useful for the formulation of a correct diagnosis [167, 169] and progno-

sis [73, 74]. Despite the BF value can be computed by using several methods

and models, I decided to use the MSM since it is robust (Sect. 2.2.2) and it

does not need any prior assumption about the investigated tissue [84], thus

allowing to preserve the generic purpose of this research work. Moreover, the

mathematical simplicity of the MSM [52] permits to keep under control all the

possible error sources related to the model. Indeed, the use of more complex

methods or models can introduce a bias in the perfusion results computed.

For instance, the deconvolution method leads to results whose robustness and

precision strongly depend on the regularization methods applied [98]. Instead,

the compartmental models, are based on the assumption that are made on

the tissue vascular system and that consequently affect the value of the com-

puted perfusion parameters [62]. On the contrary, the use of a simple and

robust method free from any assumption about the analysed tissue permits

to directly evaluate the efficacy of the algorithm applied without introducing

further sources of uncertainty and instability. For these reasons, the MSM

resulted to be the most suitable for our purpose.

3.1.3 The fitting model

Despite the application of spatio-temporal data denoising methods, TCCs can

still remain very noisy and show an oscillating behaviour. Since to compute

perfusion parameters we decided to use the MSM, we can focus our atten-

tion on the first portion of the TCCs (i.e., the one before CA recirculation).

Figure 3.1 (a) reports an example of liver TCC together with the curve interpo-

lating its data points. For obvious reason, here the application of the MSM and
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Fig. 3.1: Liver TCCs’ data points (the black markers) are reported together with
their linearly interpolating curve (in the blue colour) (a), non-parametric fitting
curve (obtained with spline, in the green colour) (b), and parametric fitting curve
(achieved with Hill’s equation, in the red colour) (c).

the computation of the maximum slope value cannot be done directly on the

interpolant curve. In fact, due to the presence of non filtered noise or artefacts

affecting data, it is possible to incur in incorrect solutions that would bring to a

wrong estimation of the BF value. Consequently, in the presence of noisy data,

the use of fitting methods becomes indispensable. As discussed in Sect 2.4.5,

it is possible to adopt both non-parametric (e.g. that of Figure 3.1 (b)) and

parametric fitting strategies (e.g. that of Figure 3.1 (c)). However, in the pres-

ence of highly oscillatory tissue TCCs also the use of non-parametric fitting

can be misleading, since TCCs may adapt to signal oscillations. Instead, the

use of a parametric fitting method allows achieving as the best signal as pos-

sible describing the expected global behaviour of the tissue TCCs, thus being

less sensible to the presence of noise and outliers. Since the MSM is based

on the assumption of no venous outflow and the only portion of the tissue

curve needed to compute the BF value is the increasing one, it is possible to

choose the Hill’s model as the parametric fitting [219]. This sigmoidal-shape

parametric model permits to correctly describe the enhancement phase of the

TCC caused by the arrival of CA. The Hill’s equation indeed, has been often

used to describe the non-linear drug response in pharmacodynamics models,

but is also suited to model CA pharmacokinetics [233]. The Hill’s equation

can be described by Eq. 3.2:

y(t) = E0 + (Emax − E0)
tα

(EC50 + t)α
(3.2)
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where E0 is the baseline concentration value of the tissue before CA arrival,

Emax is the saturation value of tissue concentration, EC50 is the time instant

of half-maximum response concentration of the curve, and α is the non-linear

parameter that mostly affect the slope of the curve. A representation of these

parameters can be find in Figure 3.2.
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Fig. 3.2: Liver TCC’s data points (the blue markers), their fitted version through
the Hill’s equation (the red line), and its parameters E0, Emax, and EC50.

Figure 3.3 reports three liver TCCs pertaining to different voxels of the

(a) (b) (c)

Fig. 3.3: Examples of liver TCCs (the black markers) with increasing noise level
from left to right and their interpolating piecewise curve (in the blue colour),
non-parametric fitting spline curve (in the green colour), and parametric fitting
sigmoidal curve (in the red colour).

same CTp examinations with different noise levels. Each TCC is represented
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together with its interpolating piecewise linear curve, its non-parametric fitting

curve based on the spline model, and its parametric fitting curve achieved by

using the Hill’s equation. In Table 3.1, the values of the maximum derivative

Maximum first derivative and BF values in interpolating and fitting TCCs

TCC Type of curve
Maximum first BF value

derivative (HU/s) (ml/min/100g)

Fig. 3.3 (a)
Interpolating 5.13 61.5

Spline 5.11 61.3

Hill’s equation 5.24 62.8

Fig. 3.3 (b)
Interpolating 5.30 63.6

Spline 2.27 27.2

Hill’s equation 1.84 22.1

Fig. 3.3 (c)
Interpolating 8.73 104.8

Spline 2.56 30.7

Hill’s equation 1.21 14.5

Tab. 3.1: Maximum value of the first derivative and consequent BF value achieved
using interpolation (a), non-parametric fitting spline (b), and parametric fitting
with Hill’s equation (c).

and of BF computed on the enhanced phase of the curves are reported for

each TCC and for each type of fitting or interpolating curve. In the first TCC

(Figure 3.3 (a)) the noise characterizing the enhancement portion of the curve

is negligible and the three curves (the interpolating, the non-parametric fitting,

and the parametric fitting ones) similarly describe the evolution of the TCC’s

increasing portion. Indeed, the maximum value of the first derivative computed

on the enhancement part of the three curves and BF values, accordingly are

almost equivalent. Instead, the second TCC (Figure 3.3 (b)) is characterized

by a little more noise in its enhancement part. In this case, the interpolating

curve remarks each oscillation of the TCC, leading to an overestimated BF

value. On the contrary, the global trend of the TCC that is clearly identifiable

by visual evaluation is well represented by the two fitting methods yielding very

similar BF values. Finally, the third TCC (Figure 3.3 (c)) is characterized by

the widest oscillations. Also in this case, computing the maximum slope on an

interpolating curve would lead to unrealistic BF values, very far from those
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achievable through a fitting approach. Yet more, in this case the oscillations are

so heavy that the use of non-parametric fitting would be unsuitable. In fact, the

presence of strong noise in the enhancement part of the curve affects the non-

parametric fitted curve that tends to adapt to the local trend of the TCC data

points. In this case, the maximum first derivative value (and, consequently

BF ) is twice as big as that achieved through the parametric fitting. The

model based fitting is the only one capable to follow the global trend of the

TCC even with a high presence of noise, thus yielding more robust results.

In conclusion, the results achieved with a model based fitting in case of

low noise are similar to those obtained with the other two methods. On the

contrary, in case of a high noise level, the parametric model based fitting is the

only one preventing BF computation from falling in local minima solutions.

This approach, based on the Hill’s equation has shown to be well suited to the

MSM and it has been chosen in my Thesis to fit the TCCs. It is worth noting

that all the results published in [230, 234, 235, 236, 237] rely on this method.

3.2 Goodness of fit: some error indexes

The quality of the data acquired can be affected by several factors (Sect. 2.4),

such as CTp acquisition parameters, noise, and artefacts (in particular those

coming from respiratory motion), that can have a strong influence on the

shape and the smoothness of the TCCs and, consequently, on the perfusion

parameters estimated. In the literature several attempts to reduce the impact

of these error sources have been carried out, starting from the application of

motion correction methods [238, 239] to the improvement of TCCs quality by

removing outliers. In particular, these last types of method can be based on

several principles such as the qualitative assessment [212], or the quantitative

estimation of the degree of motion that can affect an image sequence [126], or

the quantitative evaluation of the noise affecting each TCC [215, 234, 229].

In order to evaluate image quality some methods have been proposed in

the literature. In [240] and [241] for instance, image quality is qualitatively

evaluated by expert readers. Instead, in other works quantitative assessments

of image quality are made through the measurement of tissue standard devi-

ation std [242] and of the contrast-to-noise ratio [243]. Despite these efforts,

the work of Miles et al. [83] highlights the need of quantitative indicators of

signal and fitting quality (e.g. signal to noise ratio (SNR) and goodness of

fit respectively) which the reliability of the computed perfusion parameters
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depends on. By providing clinicians with goodness-of-fit indexes would make

it possible for them to have an indicator of perfusion values’ reliability, this

helping them to make more aware clinical decisions.

To this purpose, I analysed and evaluated the capability of several temporal

(Chapter3Section2Sub1) and spatio-temporal (Chapter3Section2Sub2) indexes

to assess the consistency of the fitted curves with the original data and the

evolution over time of the local spatial tissue features.

3.2.1 Temporal error indexes

This section is dedicated to the temporal quantitative indexes that have been

tested to evaluate TCCs’ quality. All these indexes are based on the analysis

of residuals ϵ defined as the distance, measured at the time instant i between

the observed TCC data points Yi and the computed value Ŷi referring to the

curve fitting the TCC (Eq. 3.3):

ϵi =
∣∣∣Yi − Ŷi

∣∣∣ (3.3)

Therefore, the higher the value of residuals, the worse the fitting model repre-

sents the original data. An example of the residuals of a TCC is reported in

Figure 3.4, where each blue vertical bar represents a residual ϵi of the signal.

Fig. 3.4: The original TCC (represented with the black stars) is fitted by using
the Hill’s equation and the vertical blue bars are the residuals ϵ.
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Four temporal indexes aiming at measuring the goodness of fit were eval-

uated:

• the residual’s standard deviation (σϵ)

• the residual’s sum of squared errors (SSE )

• the coefficient of determination (R2)

• the mean of the absolute value of residuals (µϵ)

To allow a better understanding of the main strength and weakness points

of the error indexes that are going to be discussed, let us refer to the synthetic

TCCs represented in Figure 3.5. The TCCs of Figure 3.5 (a)-(c) (referred to

(a) (b) (c)

(d) (e)

Fig. 3.5: Synthetic TCCs characterized by different noise levels and trends. TCCs
A (a), B (b), and C (c) are characterized by a very low noise with TCC B having
the fewest data-points and TCC C the lowest contrast enhancement. TCC D (d)
is characterized by the presence of some outliers, thus having a noise higher than
TCC A, B, and C. TCC E (e) instead, is the one with the highest noise level.

as TCC A, TCC B, TCC C respectively) are all characterized by a low noise

level. In these three curves we have the same ϵ values in every time instant, but

while TCC B has fewer data points than TCCs A and C, TCC C presents the
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lowest concentration enhancement. In addition, with respect to TCC A, TCCs

D (Figure 3.5 (d)) and TCC E (Figure 3.5 (e)) have the same number of data

points, show a comparable concentration enhancement, but are characterized

by a higher noise levels. Indeed, differently from TCC A, TCC D presents

some outliers, while TCC E (Figure 3.5 (e)) show the highest noise level with

high residuals almost equally distributed all over the time instants.

Table 3.2 reports the values of the four error indexes (σϵ, SSE, R2, and µϵ)

Temporal error indexes

Error index TCC A TCC B TCC C TCC D TCC E

σϵ 0.69 0.85 0.69 1.24 0.83

SSE 30.66 20.55 30.66 70.78 519.50

R2 0.995 0.994 0.989 0.989 0.923

µϵ 0.80 0.86 0.80 1.02 4.23

Tab. 3.2: σϵ, SSE, R
2, µϵ values computed on the TCCs of Figure 3.5.

computed on the five TCCs of Figure 3.5 that are going to be discussed.

In many perfusion studies the first and often the only one statistical pa-

rameter that is evaluated to assess the presence of irregularities, and thus

considered as a marker of noise is the standard deviation. To this purpose,

I have analysed σϵ whose value is computed as the standard deviation of ϵ,

according to Eq. 3.5:

σϵ =

√∑N−1
i=0 (ϵi − ϵ̄)2

N
(3.4)

where N is the number of TCC’s data points considered and ϵ̄ is the mean

value of the residuals ϵ (Eq. 3.5):

ϵ̄ =
1

N

N−1∑
i=0

ϵi (3.5)

In particular, σϵ is an index that is very sensible to the presence of outliers

in the TCC. Indeed, comparing TCC A (or TCC C, that have the same residual

distribution) with TCC D (that is the one with some outliers), in Table 3.2

we can see high differences in the values of σϵ. A small difference of this error

index between TCCs A and B can be observed due to the lower number of

samples composing the TCC B. However, the main drawback of this index can
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be noted by comparing TCCs A, D and E. Indeed, the value of σϵ in TCC E

is higher than that of TCC A, but is much lower than that of TCC D, that

is much less noisy. This is because the presence of high, but almost uniform

residuals is not detected by σϵ aims at revealing the inhomogeneities between

the residual values. Therefore, σϵ results to be inappropriate to measure the

TCC’s quality.

The SSE, also known as the residual sum of squares or sum of squared

residuals, is another error index that is often adopted to analyse the goodness

of a regression. This indicator is computed according to Eq. 3.6:

SSE =
N−1∑
i=0

(ϵi)
2 (3.6)

As we can see from Table 3.2, the SSE is able to correctly detect the

increasing presence of noise in TCCs. Indeed, this index has low values in

the TCCs A, B, and C that are characterized by a low noise level, higher

in TCC D, and yet more in TCC E. However, the value of SSE depends on

the number of data points constituting the TCC. In fact, TCC B has the

same noise level as TCC A, but has fewer data points and is consequently

characterized by a much lower value of SSE. In this case, TCC B erroneously

seems to have a much better fitting quality with respect to TCC A. This aspect

can be particularly awkward if a method to remove outliers is applied to the

TCCs before fitting [234]. Indeed, since in this case it is possible to have

TCCs characterized by different number of data points (e.g. in case of random

sampling [234]), the use of SSE would be misleading. TCCs with the same

noise level (and the same fitting quality), but with different number of data

points, would indeed differ by SSE and the perfusion parameters computed on

TCCs having less data points would be considered as being more reliable.

Another goodness-of-fit index that has been widely used in regression anal-

ysis is R2. Its value ranges from 0 (bad fit) to 1 (good fit) and is computed as

the rate between the total sum of data squares SStot and the SSE (Eq. 3.7):

R2 =
SStot

SSE
(3.7)

where SStot is calculated in Eq. 3.8 as:

SStot =
N−1∑
i=0

(Yi − Ȳ )
2

(3.8)
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and Ȳ is the mean value of the TCC data points (Eq. 3.9):

Ȳ =
1

N

N−1∑
i=0

Yi (3.9)

R2 has shown to be able to well detect the differences of noise level in TCCs A,

D, and E. In addition, by comparing its value in TCCs A and B (Table 3.2),

it is possible to see that the presence of a lower number of data points does

not affect its value. However, R2 has a drawback that needs to be considered.

In fact, its value directly depends on SStot that in its turn varies according to

the range of the TCC’s concentration values. In case of high perfused tissues,

there is a greater enhancement than that occurring in low perfused tissues.

On the other hand, a higher enhancement results in a higher SStot, and R2

values, accordingly. Consequently, by comparing TCCs A and C (Table 3.2)

that are characterized by the same residual values, but a different contrast

enhancement, one can see a lower value of R2 in the TCC with the narrower

range of concentration values (i.e., TCC C). TCC C would then be erroneously

considered as the one with the worst fit quality and the one yielding the less

reliable perfusion values, accordingly. Because tumours are usually affected by

high morphological and functional tumour heterogeneity, the use of R2 is not

appropriate for the evaluation of TCCs’ quality.

µϵ is an index that evaluates TCC residual values directly. This indicator

is computed as the mean value of the absolute residuals, as follows:

µϵ =
1

N

N−1∑
i=0

|ϵi| (3.10)

µϵ has shown to be able to correctly estimate the TCC’s quality. Indeed, by

comparing TCC A, D, and E, it is possible to note that the value of µϵ is

directly proportional to the noise level. Indeed, in TCC D where there are

only few outliers, µϵ value is only a little greater than that assumed in TCC

A. On the contrary, in TCC E that is characterized by high residual values in

every time instant, the value of µϵ is much higher than that in TCCs A and

D. Moreover, this error index, being averaged is independent from the number

of TCC’s samples and from the range covered by the concentration values of

the curve, thus resulting in comparable values between TCCs A, B, and C.

Thanks to its capability, µϵ is the temporal index that have been selected

to assess TCC’s quality. Its use in perfusion studies has been validated in [230]
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(Sect. 4.2) while its usefulness in clinical studies has been demonstrated in [236]

(Sect. 4.3).

3.2.2 Spatio-temporal error indexes

Two spatio-temporal indexes have been studied in order to investigate the

temporal evolution of the local (image-based) spatial features of a group of

TCCs:

• the mean of the local standard deviation (MS )

• the variability of the local standard deviation (SS )

Given a window W (x, y) of dimension w × w and centred in the voxel with

coordinate (x, y), it is possible to achieve for the image acquired in the time in-

stant i a group of concentration values ΩW (i) with standard deviation σi(ΩW ).

Low values of σi(ΩW ) point out a local homogeneity, while high σi(ΩW ) values

hint at a region of the image analysed containing tissue with heterogeneous

density values. Figure 3.6 reports two 9 × 9 windows W (x, y) taken on the

same tumour sections. While the upper window (with the red border, (b)) con-

tains a more homogeneous tissue portion (σi(ΩW ) = 10.9), the lower one (with

the green border, (c)) contains density values more spatially heterogeneous

(σi(ΩW ) = 20.2). This difference is even more evident in the related his-

tograms of density values reported in Figure 3.7. Indeed, while the histogram

of the tissue region characterized by the lowest σi(ΩW ) value is narrower (Fig-

ure 3.7 (a)), the other one (Figure 3.7 (b)) spans over a wider (nearly twice)

range of bins.

The index MS is computed for each voxel (x, y) according to Eq. 3.11:

MS =
1

N

N−1∑
i=0

σi(ΩW ) (3.11)

as the mean of the values assumed by σi(ΩW ) in each time instant i by the voxel

(x, y) in the centre of the window W (x, y). This spatio-temporal index has been

conceived to estimate the mean degree of spatial homogeneity over time in the

local neighbourhoods of (x, y). Accordingly, a low MS value corresponds to

tissue regions that remains locally homogeneous over the acquisition period,

independently from the variations of ΩW intensity values.
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(b)

(c)
(a)

Fig. 3.6: An unenhanced lesion (a) and two 9 × 9 windows W (x, y) related to
tissue portions with different local density heterogeneity degrees (b,c).

(a) (b)

Fig. 3.7: Histograms of density values (a,b) of the two tissue regions shown in
Figure 3.6 (b) and (c), respectively.
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The index SS computed for each voxel (x, y) according to Eq. 3.12:

SS =

√∑N−1
i=0 (σi(ΩW ) −MS)2

N
(3.12)

as the standard deviation of the values assumed by σi(ΩW ) in each time in-

stant i. This second index aims at monitoring the temporal variations of the

texture range for neighbour voxels. Accordingly, SS presents a low value if

the variability of spatial characteristics of the TCCs pertaining to ΩW (i) are

kept constant over time. For instance, this happens in case of uniform spatial

enhancement. On the contrary, SS assumes high values when the local range

of density values is not preserved over time. For instance, this can happen

in case of not negligible motion, when voxels belonging to structures with a

different tracer response fall in different time instants into the same window

W (x, y), or in the unusual case of neighbour tissue voxels with a markedly

different tracer dynamics.

Both MS and SS can be represented through the use of colorimetric maps

that can be very useful for radiologists and clinicians. Indeed, the combination

of this two spatio-temporal indexes can allow drawing several considerations

about the analysed tissue. For instance, low values of both MS and SS may

indicate homogeneous regions undergoing a uniform enhancement. Instead,

high values of MS associated with low values of SS point out heterogeneous

tissue regions that keep their heterogeneity constant during the whole exam-

ination. On the contrary, high values of both MS and SS could represent

heterogeneous regions with a heterogeneity varying over time.

The use of these two indexes that in the context of preliminary studies have

shown to be good indicator of spatial homogeneity and temporal uniformity,

has been deepened in a CTp study of the CVG [235].

3.3 Automatic error thresholding

In Sect. 3.2.1, a temporal index able to effectively evaluate the fit quality of the

TCCs has been presented. The use of µϵ colorimetric maps can allow clinicians

to make more correct and aware clinical evaluation by weighing BF values

visible inside the colorimetric maps. For instance, a tissue region characterized

by very high perfusion values can be correctly considered as a hyper-perfused

area if the values of the error index regarding that region are low. On the

contrary, if the µϵ values of that area are high, the corresponding perfusion
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values should not be included in the analysis, since computed on TCCs that has

been wrongly fitted. High µϵ values are due to the presence of high residuals,

that is, the TCC is far from the fitted curve and accordingly from the ideal

model that has been adopted to describe the kinetic of CA inside the tissue.

This may occur in the presence of noise and artefacts affecting TCCs’ data

points, or in cases of anatomical structures (e.g. as vessels or bronchi) that

are functionally different from the tissue analysed. However, the use of µϵ maps

to evaluate the reliability of the corresponding BF values may be influenced

by inter-observer variability. Indeed, without a cutoff value pointing out which

BF values should be considered in the analysis and which one should be not,

different clinicians could subjectively decide to consider or not the presence of

tissue regions that could make the difference in the ultimate clinical decision

making (e.g. hyper- or hypo-perfused areas). Moreover, the greatest part of

CTp studies are based on global values computed as the mean or the median

perfusion values achieved in one or more tumour sections. By considering

all the perfusion values, without excluding those highly affected by errors,

the resulting global perfusion value might be significantly different from the

correct one, thus leading to different clinical conclusion. Therefore, the lack

of a threshold value for the error indexes prevents clinicians from correctly

deciding which perfusion values should be considered in the decision making

process.

To this purpose, I studied some solutions permitting to automatically find

out a cutoff value for µϵ that could be specific for each CTp examination.

First of all, I analysed the distribution of the µϵ values of several examinations

in order to take advantage from the statistical indexes, such as the mean

(E[µϵ]) and the standard deviation (σµϵ) of µϵ. An example of histograms and

colorimetric maps of µϵ values achieved in healthy liver and lung cancer tissues

are reported in Figure 3.8. Here, the healthy liver tissue is not particularly

affected by artefacts or noise and does not contain any big vessels. Its µϵ

histogram (Figure 3.8 (a)) has a Gaussian-like shape and it is spread over a very

narrow range of values (2 − 5HU). On the contrary, the lung tumour tissue

is much more heterogeneous and affected by partial volume effect (Sect. 4.3).

In this case, the error index histogram is characterized by an unimodal bell-

shaped curve with a long right tale (Figure 3.8 (c)). The right portion of

the histogram, and especially its right tail, retains the highest error values

corresponding to the voxels of the colorimetric map represented with the hotter

colours (i.e., those affected by partial volume effect). In order to automatically

find out a threshold value able to identify the TCCs mostly affected by noise
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(a) (b) (c) (d)

Fig. 3.8: Histograms and colorimetric maps of µϵ values computed in healthy
liver (a,b) and NSCLC (c,d).

(i.e., those in the right tale of µϵ histogram) that expectedly would have given

rise to the most unreliable BF values, I tested two thresholding approaches

that could be applied to µϵ histogram:

• the 2σ method

• the triangle method

The first method is based on the 2− σ rule stating that “for many reason-

ably symmetric unimodal distributions, approximately 95% of the population

lies within two standard deviation of the mean” [244]. In particular, if x is

an observation and µ and σ are respectively the mean and the standard de-

viation of the distribution, the 2 − σ rule can be described by the following

mathematical notation:

Pr(µ− 2σ ≤ x ≤ µ + 2σ) ≈ 0.9545 (3.13)

However, since the hypothesis of Gaussianity does not perfectly hold, this

approach just detects the voxels with a very high error only. This implicitly

means accepting that high error could anyway returns reliable perfusion values.

In our case, samples with a low µϵ value point out a good fit and hence have

not to be removed. A threshold value T2σ to be applied to the µϵ histogram

can thus be defined as:

T2σ = E[µϵ] + 2σµϵ (3.14)

By applying the 2 − σ rule to the µϵ histogram of Figure 3.8 (c) it is possible

to achieve the result represented in Figure 3.9. The bins of Figure 3.8 (a)

represented in the blue colour are those with over-threshold error values and

correspond to perfusion values that can be considered unreliable. In particular,
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Fig. 3.9: Histogram (a) and TEM (b) pertaining to the same patient of Fig-
ure 3.8 (c), (d). The voxels and the bin in the cyan colour are those characterised
by a µϵ value lower than T2σ while those in the blue colour have an over threshold
error value.

these bins correspond to those voxels that have been represented in the blue

colour inside the thresholded error map (TEM) of Figure 3.9 (b). On the

contrary, the bins of the histogram and the voxel of the TEM represented in

the cyan colour are those with a µϵ value lower than the threshold T2σ and

that should be considered for the perfusion analysis.

Since the histogram has only positive values and is usually characterized by

a long right tale, the exclusion from the analysis of µϵ values greater than T2σ

results to be a method quite conservative, tending to exclude very high values

only. Therefore, in order to exclude the errors so to achieve a more simmetrical

distribution, another well-established and more aggressive method was consid-

ered. Indeed, the triangle method has been conceived for removing tails in

unimodal distributions [245]. The threshold TT that can be found by applying

the triangle method corresponds to the bin of the histogram whose top has the

maximum perpendicular distance to the straight line joining the mode and the

last bin of the distribution. This geometric method is less conservative than

the 2 − σ rule and consequently the relation TT < T2σ ever holds. However,

due to the high risk to incur in local minima solutions, the application of the

triangle method cannot be done directly on the raw histogram. Therefore, it

is necessary to follow a two-step pre-processing procedure. First of all, it is
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appropriate to remove the farthest outliers by cutting the 2.5% of voxels with

the highest error values. This step needs to be done in order to avoid that

the presence of few bins placed very far from the mode can cause an incorrect

selection of the TT value, greater than the correct one. For instance, Fig-

ure 3.10 shows an histogram of µϵ values thresholded with the triangle method
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Fig. 3.10: Histogram of µϵ with TT value (the red vertical line) found by applying
the triangle method on all data (a) and after having excluded voxels with the
highest error (i.e., those after the green vertical line) (b).

by considering all the values (Figure 3.10 (a)) or by excluding those voxels

characterized by the highest errors (Figure 3.10 (b)). The second step to be

performed is the application of a moving average filter to the bin values of the

µϵ histogram. The local inhomogeneity among bins and the accidental presence

of a bin particularly high could indeed lead to the selection of an incorrect TT

value too. The size of the moving average filter is selected through the use of

an adaptive algorithm that automatically chose the best window for each CTp

examination in order to gain the best trade-off between histogram smoothness

and preservation of data content. Figure 3.11 shows how the application of a

moving average filter can affect the selected TT value.

Finally, in Figure 3.12 a comparison between the two automatic threshold

methods analysed is reported. In the histogram and in the corresponding TEM,

the two different threshold values that can be chosen accordingly with the 2−σ

rule and the triangle method are visible. In the cyan colour are represented

those voxels characterized by low error values (µϵ < TT ). In the red colour

are represented those voxels whose BF values would be considered as being

unreliable only by the triangle method (TT ≤ µϵ < T2σ). The blue colour,

instead, points out those voxels that would be excluded from the analysis by
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Fig. 3.11: Histogram of µϵ with TT value (the red vertical line) found by applying
the triangle method to the original data (a) or to data filtered with a moving
average filter (b).

Fig. 3.12: Histogram (a) and TEM (b) pertaining to the same patient of Fig-
ure 3.8 (c), (d) and 3.9. The voxels and the bin in the cyan colour are those
characterised by a µϵ value lower than TT . The red bins and voxels are associated
to those TCCs having error index between TT and T2σ. The blue colour instead,
is used for those bins and voxels with very high error value (greater than both TT

and T2σ).
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both thresholding methods (µϵ ≥ T2σ).

The 2 − σ rule has been used for the first time to remove outliers from

lung and liver CTp examinations in the study [230] carried out by the CVG.

Moreover, its clinical usefulness has been proved and compared with that of

the triangle method in [236], using several CTp examinations pertaining to

patients with primary lung cancer. Finally, triangle method, that has shown

to be the most effective ones, has been selected and applied in other recent

CVG studies [235, 237].

3.4 Quantitative assessment of perfusion local

spatial coherence

An important feature that has to be taken into account to evaluate the good-

ness of the algorithm applied to compute perfusion parameters is the spatial

coherence of the results obtained. All the methods and models discussed in

Sect. 2.2 permits the computation of perfusion parameters by evaluating the

signal coming from a single voxel without taking into account the trend of

the neighbour TCCs. Since tissue TCCs pertaining to a small window should

usually tend to follow quite gradual and coherent transitions instead of un-

dergoing abrupt changes from voxel to voxel, the measure of spatial coherence

can provide information regarding the reliability of the estimated perfusion

maps. An index that can be used to assess the dispersion of a distribution

of values around their mean is the coefficient of variation (CV ). For instance,

considering all the BF values of a ROI, the CV (expressed in arbitrary units)

can be computed as the rate between the BF standard deviation σBF and the

BF mean µBF , according to Eq. 3.15:

CV =
σBF

µBF

(3.15)

This index has been adopted in CTp studies in order to assess the perfusion

uncertainty and variability of BF values [209, 246]. However, by using the

CV on the whole ROI, it is not possible to take into account the spatial

relations of perfusion values. Accordingly, in order to achieve a measure of

the local spatial perfusion coherence, the local CV (lCV ) has been proposed.

This index is computed for each voxel (x, y) as the CV of the window of

dimension w × w centred on (x, y). The colorimetric map of lCV that can

be achieved allows to visually evaluate the spatial coherence of BF values.
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Furthermore, by computing the mean and the standard deviation of all the

lCV values (µlCV and σlCV , respectively) it is possible to achieve a measure of

the global spatial coherence of the analysed tissue. For instance, Figure 3.13

reports four colorimetric maps of the same section of a lung lesion computed
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Fig. 3.13: BF (a,c) and lCV (b,d) maps of a lung lesion computed on TCCs
before (a,b) and after (c,d) considering motion correction. The pink colour is used
to represent unreliable BF values and those voxels where the lCV values cannot be
computed because there are not enough reliable BF values in the adjacent voxels.

on TCCs of different qualities1. In the first row the BF (Figure 3.13 (a))

and the lCV (Figure 3.13 (b)) colorimetric maps computed on TCCs affected

1Credits to Eng. Serena Baiocco for providing these data.
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by motion are represented. Instead, in the second row (Figure 3.13 (c), (d))

the same colorimetric maps are computed on TCCs that have been corrected

through the use of a motion correction method. As one can see, the BF

map (Figure 3.13 (c)) computed on the motion corrected data is locally more

homogeneous than the other BF map (Figure 3.13 (a)). However, while µlCV

values well describe this feature by decreasing from 47.91 to 42.12, as the TCCs

quality improves, the CV computed on the whole ROI increases from 68.06 to

75.33, showing not to be able to capture the local map coherence.

The lCV has been adopted in two studies carried out by the CVG. In par-

ticular, in the first one [234] an algorithm based on random sample selection

(RANSAC) to remove outliers from the TCCs was proposed. Thanks to the

capability of this algorithm to provide better TCCs on which computing perfu-

sion parameters it was possible to achieve BF colorimetric maps with a higher

spatial coherence. The improvement brought by the use of this algorithm of

outlier removal was tested on 14 examinations pertaining to as many patients

with NSCLC and verified both qualitatively and quantitatively through the use

of lCV. In the second work [237], the use of lCV was deepened and validated in

15 patients with primary lung cancer. In this study, lCV proved its capability

to provide information about tissue local heterogeneity independently from the

amount of noise affecting images.

3.5 Quantitative measurement of functional het-

erogeneity

Despite heterogeneity is one of the main features of tumour tissue and can be

present both at morphological and at functional level (Sect. 2.1), it has often

been neglected (Sect. 2.4.7). Since CTp aims at giving the possibility to assess

the functional characteristics of the analysed tissue, I looked for an index that

could allow the quantification of tissue hemodynamic heterogeneity.

The Shannon entropy (or briefly, Entropy) constitutes a well-known mea-

sure of data information content [247]. This parameter was introduced in the

information theory in the late 1948 [248] and since then it has been applied in

several fields, image analysis included. The Entropy (E) is computed as

E = −
k−1∑
i=0

p(vi)log2p(vi) (3.16)
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where k is the number of the possible outcomes and p(vi) is the frequency of

the ith outcome. Entropy measures are reported in arbitrary units (a.u.).

In Figure 3.14 there is an example of three photo sorted by increasing

Fig. 3.14: Three photographs depicting different landscapes are sorted from left
to right by increasing Entropy values.

Entropy values. The landscape with the lowest Entropy value (E=5.97, Fig-

ure 3.14 (a)) is indeed the one containing fewer details, while the one with

the highest Entropy value (E=7.83, Figure 3.14 (c)) is the one showing more

elements, most of which introduced by human beings. Instead, the photograph

in the middle (Figure 3.14 (b)) is the one with an intermediate complexity and

consequently is also characterized by a mid Entropy value (E=6.50).

The Entropy has been often used in texture analysis and it has also been

applied in oncology. For instance, it has been used to evaluate texture ir-

regularities [249], and have proved to provide important information for the

formulation of tumour diagnosis [250, 251] and prognosis [192, 252]. How-

ever, to the best of our knowledge, Entropy has never been applied to the

colorimetric maps of perfusion parameters. In order to achieve a measure of

tissue hemodynamic heterogeneity I computed Entropy on the BF colorimet-

ric maps. In this case, the p(vi) of Eq. 3.16 represents the frequency of BF

values inside the BF map. Figure 3.15 reports the BF colorimetric maps per-

taining to five adjacent sections of the same tumour, sorted from left to right

by increasing Entropy values. As in the example of the landscape photos,

Entropy has shown to be once again able to detect the information content

of the BF maps that here is the functional heterogeneity. The colorimetric

maps related to the second level of the tumour is the most homogeneous one

(Figure 3.15) (a) and presents the lowest Entropy (E = 7.43). Its adjacent

slice at level 3 instead, is the colorimetric map of the tumour with the highest

heterogeneity (Figure 3.15) (e) and consequently is characterized by the high-
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Fig. 3.15: Five CT images (first row) and BF colorimetric maps (second row)
pertaining to consecutive sections of the same tumour and sorted from left to
right by increasing Entropy values: the slice at level 2 (E = 7.07) (a), level 1
(E = 7.43) (b), level 5 (E = 7.62) (c), level 4 (E = 7.92) (d), level 3 (E = 8.10) (e).
The BF values represented in the pink colour are those considered as non-reliable
and are not included in the computation of the Entropy value.

est Entropy value (E = 8.10). An intermediate functional heterogeneity can

instead be observed in the more external sections of the lesion that accordingly

present mid Entropy values with respect to sections 2 and 3. Indeed, levels 1

(Figure 3.15) (b), 4 (Figure 3.15) (d), and 5 (Figure 3.15) (c) are characterized

by Entropy values of E = 7.43, E = 7.92, and E = 7.62 respectively.

The use of Entropy on BF values has been applied for the first time in [253]

to quantify the functional heterogeneity of different sections of the same tu-

mour or of different lesions (Chapter 5).
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Chapter 4

A method to assess perfusion

values reliability

In this Chapter, the issue of the lack of indexes capable to assess the reliability

of perfusion results described in Sect. 2.4.3 is faced. In particular, in Sect. 4.1,

a specific background regarding issues related to respiratory motion and the

presence of noise and artefact in CT images is reported. In Sect 4.2, the

validation of the temporal index µϵ presented in Sect. 3.2.1 as an indicator

of signal quality and of perfusion values reliability is carried out. After that,

an automatic method employing µϵ values to automatically detect unreliable

perfusion values is presented and compared with the manual method used in

literature to exclude perfusion values apparently out of the physiological range

(Sect 4.3).

4.1 Background

As discussed in Sect. 2.4.3, reliability and reproducibility of the functional

results still represent open issues. Among the factors affecting the outcomes of

CTp examinations, three of the most relevant ones are the presence of motion,

noise, and acquisition artefacts in the CT images. In addition, the presence of

anatomical structures, such as vessels and bronchi, can further affect reliability

of the obtained results and jeopardize perfusion maps. In this section, all these

aspects are discussed.

As regards motion, it has been proved that respiratory movements induce

artefacts that can break the spatial fidelity of the imaged structures, caus-

ing inconsistent intensity trends for the generic spatial location of interest.

Figure 4.1 depicts a clear example of motion artefacts found in a liver CTp
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Fig. 4.1: Liver CTp image deeply affected by motion artefacts.

image of a patient with CRC. In addition, respiratory movements and tu-

mour spatial heterogeneity can lead to mis-registrations in both transverse

(x-y plane) and craniocaudal (z axis) directions and yield misleading rapid

or slow inflow/outflow patterns, affecting reliability of the resulting perfusion

parameters.

Many methods to reduce and to compensate for patient motion have been

proposed in the literature (Sect. 2.4.5). However, here I want to draw reader’s

attention on the alignment methods applied to the acquired CT images and

on their effects on TCCs and on perfusion values, accordingly. In the litera-

ture, erroneous estimations of perfusion parameters for a single tumour level

analysis (i.e., fixed slice at z -location) have been reported in [212, 254] for

liver CTp, so that multi-level methods, based upon retrospective visual selec-

tion of image sets contiguous to a reference z -axis position, are suggested [202,

254]. Manual translation of ROIs [208] as well as manual and anatomic-based

image registration with respect to a reference slice are applied in lung [255]

and liver [239] CTp, where motion effects can be even more evident. However,

only few methods take into account x-y misalignments jointly with z -axis mis-

alignments, meaning that a specific assessment of 3D manual registration is

absent [255]. As a matter of fact, recent clinical studies are still conducted em-

ploying x-y or craniocaudal compensation only [210], or not even that [159].

Some registration methods aim at assessing the effectiveness of image align-

ment only [255, 239], or the reproducibility of perfusion parameters [204, 205],
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while none of them, to our best knowledge, measure the effect of motion on

TCC signal, also correlating these measures with the reliability of perfusion

analyses. In fact, the impact of motion artefacts on CTp reproducibility for

such methods is discussed for liver and lung tumours in [204, 205], emphasizing

how variability in the estimation of perfusion parameters can reach 70% − 90%

in the absence of any kind of compensation, while decreasing to relatively lower

values (10% − 20%) when data registration is applied. However, these works

do not mention the reliability of perfusion patterns, which were not even sub-

mitted for evaluation to radiologists.

The study and the measurement of the effects of motion artefacts on TCCs

and on perfusion values reliability is carried out in Sect. 4.2.

Another issue hampering the achievement of reliable and reproducible re-

sults is the presence of noise and acquisition artefacts in CT images. Despite

software embedded in CT scanner are capable to reduce their presence, streaks

and dark bands are often well visible on CT images, sometimes so heavily as

to impede the use of CT examinations [256].

Image noise (also known as Poisson noise) is an effect caused by the statis-

tical error of low photon counts that can be seen on CT images in the form of

bright and dark streaks mainly in direction of the greatest attenuation. Noise

presence can be reduced only with the use of CT system’s reconstruction al-

gorithm [257]. Figure 4.2 reports an example of liver CTp image affected by

Fig. 4.2: Liver CTp image affected by Poisson noise.

Poisson noise.
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CT artefacts can be grouped into three categories:

• physics-based artefacts, resulting from the physical processes involved in

the data acquisition

• patient-based artefacts, strictly related to the patient such as those due

to motion or to presence of metallic materials

• scanner-based artefacts, due to hold ups of some scanner components

Examples of physics-based artefacts are the well-known beam hardening effect,

the partial volume effect, the photon starvation, and the undersampling. Beam

hardening is caused by the passage of x-ray beam through a tissue. Low-

energy photons are absorbed by the tissue more than high-energy photons and

accordingly, the mean energy value of the beam leaving the tissue increases

(i.e., the beam becomes “harder”). This would results in artefacts, such as

streaks and dark bands appearing between two dense objects, and in cupping

artefacts, consisting in different attenuation of the photon beam when crossing

tissue middle portion and edges [258]. Beam hardening artefacts, such as

those represented in Figure 4.3, could also arise in the presence of a high

(a) (b)

Fig. 4.3: Lung CTp images affected by beam hardening causing dark bands (a)
and streaks (b).

CA concentration. The effects of this type of artefacts can be reduced by

using iterative reconstruction and by combining data from multiple scans [257].

Partial volume instead, is an effect related to spatial resolution and is caused

by the loss occurring when an object partially occupies the sensitive volume

(i.e., the volume from which emitted photons would be detected at a given

detector location) of the imaging instrument [259]. For instance, when the
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tissue analysed is affected by rapid motion or when there are inconsistencies

between two views (i.e., the detectors see an object from one angle of view,

but not from the others), partial volume artefacts will occur. An example of

inconsistencies between two views is represented in Figure 4.4. This effect can

Fig. 4.4: Inconsistency between two views: only one of the two detectors see the
object in the green colour.

be reduced by using thinner acquisition sections [256]. Photon starvation is

an effects occurring when a too low number of photons reach the detector,

leading to heavy streaking artefacts. This effect is often visible at pelvis or

shoulder level (Figure 4.5) where several attenuating anatomical structures

are present [260]. Photon starvation can be reduced by using methods of tube

current modulation and algorithm of active filtration. The increase of tube

current indeed, allows reducing the effects of the problem, but at the expense

of a higher radiation dose delivered to the patient [256]. Finally, undersampling

occurs when few projections are used to reconstruct a CT image (view aliasing)

or when few detectors are used within a projection (ray aliasing). This effect

is very important in pixel-based analysis where fine details are important and

can be solved by using high resolution acquisition techniques [256].

As regards patient-based artefacts, the most important are those related to

motion and to the presence of metallic objects, such as prosthetic devices and

surgical clips. In Figure 4.61 a patient-based artefact caused by the presence

of a hip’s prosthetic devices is shown. This last category yields streaking

artefacts that can be partially attenuated through the use of proper correction

1courtesy of http://abcradiology.blogspot.it
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Fig. 4.5: Lung CTp image acquired at shoulder level and presenting clear photon
starvation artefacts.

Fig. 4.6: Patient-based artefacts caused by the presence of prosthetic devices.

software [261].

Scanner-based artefacts mainly derives from the miscalibration of one or

more detectors. The constant error given by the detector in each angular po-

sition results in a ring artefact centred on the isocentre of rotation [262], such

as those shown in Figure 4.7. This type of effects can be reduced with the ap-

plication of correction software and solved by recalibrating CT detectors [257].

Besides artefacts [263], also vessels [204] and bronchi [264] are usually man-

ually excluded from the perfusion analysis not to jeopardize the visual analysis

of perfusion colour maps nor the automatic computation of local or global sta-

tistical indexes regarding perfusion values.

In general, the unreliable perfusion values in colour maps are simply con-
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Fig. 4.7: Liver CTp image affected by scanner-based artefacts caused by the
miscalibration of several detectors.

sidered as those being out of range of physiological parameters, for instance,

due to vessels [152] and are detected and excluded by manually drawn an ex-

cluding ROI or adjusting an appropriate window level [83]. So far, the TCC

fitting errors and goodness of fit indexes have been mainly used to evaluate the

reliability of given simulated model fitting, from a theoretical point of view, in

lung CTp [209] or liver MRI [265] perfusion studies, rather than to assess the

voxel-based reliability of perfusion values.

In order to face the problems given by the presence of anatomical structures

(e.g. vessels and bronchi) and CTp reconstruction and acquisition artefacts

that could compromise the correct interpretation of a CTp colour map, an

automatic method to detect and exclude from perfusion analysis the regions

affected by this problem has been proposed in Sect. 4.3.

4.2 Validation of the temporal error index µϵ

The aim of this section is to study and measure the effects of motion artefacts

on TCCs and on the consequent reliability degree of perfusion colorimetric

maps through visual assessment by expert Readers. To this purpose, three

different motion compensation approaches that must show increasing effec-

tiveness were considered: no compensation, x-y only and 3D (which includes

rigid shifting along both the x-y plane and the z -axis). The temporal error
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index µϵ presented in Sect. 3.2.1 is computed on each sets of TCCs resulting

from the alignment procedure. In this way, it is easier to assess whether our

quantitative index is really able to detect this expected increasing effective-

ness, which would confirm its capability to correlate with quality of image

alignments. For the sake of completeness, a fourth registration method (here-

after, 1D), aligning on the z direction only, was considered. This method is

sometimes used in lung and liver perfusion [210], but its rank of effectiveness

with respect to the other three methods just mentioned, is unknown a priori.

In addition, the sets of perfusion maps achieved were submitted for assess-

ment by radiologists, so as to check if better alignments in any way yield more

reliable colorimetric maps. In fact, if a better image registration expectingly

brings more reliable TCCs on the available data, it cannot be taken for granted

that these yield more reliable perfusion patterns in the colorimetric maps, also

because alignments themselves might always introduce “regional artefacts”.

The set of CTp examinations used in this study are described in Sect. 4.2.1.

Each of them were acquired following the protocol described in Sect. 4.2.2.

After that, a ROI was drawn on lesion contour and aligned according to four

different strategies as reported in Sect. 4.2.3. On the whole, each patient

provided a different set of results for each of the four motion compensation

approaches, for a total amount of 44 different configurations. Voxel-based BF

values were computed on all the 44 sets of data by applying the image and

signal denoising procedures reported in Sect. 3.1.1, TCC fitting through Hill’s

equation, and computation of perfusion values according to the single-input

maximum slope (SIMS) method (Sect. 2.2.2). The temporal error index µϵ

presented in Sect. 3.2.1 was then computed on each TCC of the 44 sets of data

and validated through the procedure described in Sect. 4.2.4. Statistical tests

were carried out on the achieved data as described in Sect. 4.2.5. Experimental

results are finally presented and discussed in Sect. 4.2.6, while concluding

remarks are reported in Sect. 4.2.7.

4.2.1 CTp examinations

In order to validate our temporal error index (i.e., µϵ) as indicator of both

TCC quality and perfusion values reliability, a set of lung and liver CTp ex-

aminations pertaining to a study approved by the Institutional Review Board

of IRST was used2. The patients considered showed one primary NSCLC le-

2This study was approved by the IRB (Comitato Etico Area Vasta) of the IRCCS-IRST,
Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola (FC), ITALY,
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sion or liver metastases. In particular, the examinations selected for this first

retrospective study pertained to patients who had not been able to hold their

breath for the whole duration of the acquisition. All these examinations show

residual breathing and undergo artefacts from motion. However, only exami-

nations with at least 25% of slices to be replaced with different z levels were

included in the study. Finally, 11 CTp examinations pertaining to as many

patients (age range 36 - 81 y.o.) were enrolled. Tumour type and extent of the

analysed sections are reported in Table 4.1.

Tumours’ features

Patient Tissue Type Stage Section (cm2)

ID1 Liver metastasis - 2.74

ID2 Liver metastasis - 1.95

ID3 Liver metastasis - 4.04

ID4 Liver metastasis - 2.39

ID5 Lung adenocarcinoma IV 22.11

ID6 Lung adenocarcinoma IV 15.82

ID7 Lung adenocarcinoma n.a. 20.58

ID8 Lung squamocellular carcinoma IIIB 7.29

ID9 Lung adenocarcinoma n.a. 17.33

ID10 Lung adenocarcinoma IV 8.57

ID11 Lung squamocellular carcinoma n.a. 4.33

Tab. 4.1: Table summarizing the eleven cases requiring multi-slice alignment (n.a.
stands for “not available”).

4.2.2 Acquisition protocol

The patients’ datasets were collected according to two different scanning pro-

tocols, depending on the investigated tissue (i.e., lung or liver). CT scans were

performed on a 256-slice CT system (Brilliance iCT, Philips Medical Systems,

Best, The Netherlands), with patients in the supine (feet first) position. An

initial, low dose, unenhanced full-body CT scan was performed to identify

the target lesions at baseline conditions. A 50 −ml intravenous bolus of CA

with ID: IRST 162.04, on Oct 27, 2010, as a part of a wider study: Perfusion multidetector
computed tomography (256 slices) in patients with advanced NSCLC: evaluation of tumour
response after chemotherapy and radiation therapy.
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(Iomeron, Bracco, Milan, Italy) was then injected at 5ml/s for axial cine DCE-

CT, according to two different protocols for liver and lung examinations.

In liver perfusion protocol, a single acquisition of duration 55s, consisting

of 36 scans with 50mm of z -coverage (10 slices × 5mm thickness, 0.33s rota-

tion time, at 120kV , 140mA, 70mAs). Image data are reconstructed to 360

cine images (512 × 512 pixel, 350mm × 350mm, 5 −mm slice spacing, 1.57s

temporal resolution).

In lung perfusion protocol, a single acquisition of duration 25s, with patient

instructed for breath-hold, giving 20 scans with 55mm of z -coverage (11 slices

× 5mm slice thickness, 0.4s rotation time, at 80kV , 250mA, 100mAs). Image

data are reconstructed to 220 cine images (512 × 512 pixel, 11 slices, 350mm

× 350mm, 5 −mm slice spacing, 1.25s temporal resolution).

Accordingly, the generic protocol provides for M scans, each corresponding

to different sampling instants, of K levels each (e.g. for the lung perfusion

protocol M = 20, K = 11).

4.2.3 Image alignment

The target lesions and the arterial input (aorta) were selected in agreement

by two radiologists on a reference slice and the temporal sequence of slices

related to the corresponding (couch) z -location (level) was annotated as ref-

erence sequence. For each lesion, an ROI was then manually outlined by the

radiologists on the reference slice.

Three alignment methods were assessed in this study and compared with

the unregistered approach. Altogether, these are the four procedures used:

Standard fixed mode (SF): the reference ROI is unregistered, that is,

kept fixed along the reference sequence, as it usually occurs for standard CTp

protocols supported by most perfusion software provided by CT manufacturers.

TCCs are built by sampling the HU (image) values at the same pixel location

for all the slices of the reference sequence. In case of motion, TCCs obtained

with this alignment method are expected to be the most subject to artefacts.

Transverse manual registration (2D): the reference ROI is manually

translated on the x-y plane of each slice of the reference sequence so that it

visually matches the borders of the lesion. In each image of the reference

sequence, each TCC is built by sampling the HU values found in the same

ROI’s pixel. According to this method, motion compensation is performed

only for x-y translations.

Multislice manual registration (3D): given the reference slice, adjacent
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slice levels (up to two levels before and after the reference level) are visually

explored by the radiologists who choose, for each of the M scans, the level

which visually presents the best matching with the reference lesion. The re-

sulting slice sequence is then referred to as the best sequence (in Figure 4.8,

the lesion ID5 from lung perfusion dataset is shown as an example), and 2D is

then performed on this sequence. According to this procedure, a 3D manual

alignment is achieved by also taking into account motions in the craniocaudal

direction.

Transverse manual registration (1D): the reference ROI is kept fixed

along the best sequence selected in 3D. According to this method, motion com-

pensation is performed only for z translation, along the craniocaudal direction.

However, although four correction approaches were considered, I would like

to draw reader’s attention mainly on SF, 2D and 3D since, by construction,

they perform with increasing quality and I expect our quantitative index to be

capable of detecting this order relationship, accordingly. To this purpose, 2D

and 1D are alternative, both expected to perform better than SF and worse

than 3D.

4.2.4 Validation procedure

So for the registration accuracy has been evaluated by assessing visual or

automatic alignment (e.g. overlap) with respect to ground-truth anatomi-

cal structures achieved by manual segmentation [255, 239], or by evaluating

the repeatability of perfusion estimations in multiple acquisitions [204]. How-

ever, no indication has been provided about the effects of image alignment on

the resulting TCCs which represent, on the other hand, the source data used

to calculate the perfusion parameters. More specifically, a recent approach

considers the quality of TCCs over the whole liver merely as a predictor for

patient motion [210]. Besides that, there is no mention of further quality check

steps by radiologists. As a matter of fact, in real studies (where no synthetic

ground-truth is available) clinical evaluation of the perfusion maps should be

performed by radiologists through visual inspection of the perfusion scan, in

order to validate the outcome of the perfusion software, confirming the pres-

ence of plausible spatial perfusion patterns. For these reasons, to validate µϵ

as a reliability index of perfusion values, two procedures have been proposed:

a quantitative one, based upon the temporal regularity of TCCs (i.e., the ten-

dency of the real signal to approach the trend of the ideal one, represented by

the fitting curve), and a qualitative one, performed by radiologists and based

81



Chapter 4. A method to assess perfusion values reliability
4.2. Validation of the temporal error index µϵ

Fig. 4.8: An example of selection of the best sequence from a lung perfusion
dataset (ID5) on several (four, in this case) contiguous z levels (i.e., adjacent slices),
where Z∗ is the reference slice and ∆Z represents one z level. Accordingly, sampling
of HU levels at consecutive time instants is performed by selecting multiple levels.
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upon visual evaluation of the resulting perfusion patterns.

As a measure of the spatial fidelity of the sampled time concentration

signal and, accordingly, of its reliability in the presence of acquisition motion

artefacts, µϵ value was computed in each voxel. Accordingly, a colorimetric

map can be generated from the processed image sequence. Four colorimetric

maps of µϵ were consequently achieved for each examination, one for each

alignment method. The expected value E[µϵ] and the standard deviation σ(µϵ)

of the quantitative index values were finally calculated for each alignment

approach and for each patient.

In addition, the automatic threshold method based on the 2 − σ rule

(Sect. 3.3) has been applied to the histograms of µϵ to find out unreliable

perfusion values.

The use of this threshold as the reliability index offers a fair compara-

tive analysis for assessing the effects attributable to the alignment methods

only. In particular, I would expect that SF, 2D/1D and 3D, respectively, have

increasingly lower values for E[µϵ].

As regards qualitative index, two Readers with more than 25 years of ex-

perience in interpreting CT studies in oncology ranked the four alignment

procedures through visual exploration of the perfusion maps, using a 4-point

scale, according to the likelihood of the resulting perfusion maps with respect

to the expected enhancement patterns. The rank is an integer number ranging

from 1 to 4, where “1” corresponds to the expected perfusion pattern. The

evaluation was performed for each examination in three stages, two of which

were performed in a blinded fashion. In the first stage, each radiologist ex-

amined the full CTp sequence in order to form his own opinion regarding the

perfusion pattern. After selecting the reference sequence for the SF, through

consensus, the Readers outlined the ROIs and built the 1D, 2D and 3D se-

quences. Then, in the second stage, each Reader was provided with the four

colorimetric maps, built on the sequences just defined and corresponding to the

different alignment procedures. The colorimetric maps were proposed with no

label and in random order and each Reader assigned each map its proper rank.

In the last stage, the Readers established the final rank through agreement.

Accordingly, the rank constitutes the qualitative index.

4.2.5 Statistical analysis

The paired two-sided Wilcoxon signed rank test implemented in R software

(version 3.0.1, The R Foundation for Statistical Computing) was used to assess
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the differences in E[µϵ] between the three correction schemes (2D, 3D, 1D) and

the fixed approach (SF) and between the 3D alignment configuration and the

remaining 2D, 1D motion correction methods. p-value ≤ .01 were considered

for statistical significance.

4.2.6 Experimental results

The results of the visual ranking of perfusion patterns for the four alignment

procedures are summarized in Table 4.2, together with E[µϵ] and σ(µϵ) com-

Quantitative and qualitative indexes related to perfusion maps

IDs
SF 2D 1D 3D

E[µϵ] σ(µϵ) R E[µϵ] σ(µϵ) R E[µϵ] σ(µϵ) R E[µϵ] σ(µϵ) R

ID1 4.69 1.19 3 4.63 1.12 2 4.33 0.74 2 4.33 0.77 1

ID2 7.05 3.29 2 7.14 2.97 2 5.52 1.70 1 4.63 0.74 1

ID3 5.58 1.68 3 5.39 1.27 4 5.13 1.37 2 4.50 0.75 1

ID4 6.43 2.28 4 6.34 2.08 3 5.27 1.36 2 4.78 0.82 1

ID5 12.12 7.66 2 10.49 5.15 2 8.51 2.26 1 8.57 2.30 1

ID6 8.62 4.10 2 8.24 3.25 3 7.57 1.45 1 7.53 1.46 1

ID7 9.46 16.17 4 8.26 2.62 3 8.09 1.50 2 7.82 2.53 1

ID8 19.65 25.15 3 9.56 5.56 2 12.07 9.81 2 9.05 2.30 1

ID9 12.32 3.21 2 12.20 2.99 2 11.69 2.67 1 11.63 2.53 1

ID10 8.67 4.46 2 7.79 2.84 1 8.34 3.43 2 7.50 2.12 1

ID11 14.01 16.95 2 9.87 10.58 2 6.21 1.89 1 5.69 1.17 1

Tab. 4.2: Table summarizing both quantitative and qualitative indexes related
to perfusion maps, for the four different alignment configurations (R stands for
Rank).

puted on the ROI. The results pertaining to the quantitative index are also

reported in Figure 4.9, with bar plot of E[µϵ] and error bars representing σ(µϵ).

Firstly, it can be seen that the improvements brought by motion correction are

more evident for lung tumours (ID5-ID11), both in terms of E[µϵ] and σ(µϵ),

where the lack of breath-hold causes more marked movements and structures

with very different densities with respect to the lesion (e.g. air) can be in-

cluded, if the ROI is fixed. In fact, while the SF and 2D bars have almost

same height for liver tumours, in general, for lung tumours, E[µϵ] is far higher

for SF, and 2D, or 1D, alone may lead to a good improvement (e.g. ID11),

even in terms of σ(µϵ). In addition, while movements in the liver are often
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Fig. 4.9: Bar plot of E[µϵ], with error bars equal to σ(µϵ), for the eleven cases
with the four alignment modes.

oscillatory, in the lung the ROI may have a longer craniocaudal translation (as

shown in Figure 4.8). In fact, while liver metastases required just two z levels,

often lung tumours required three or four of them, mainly in cases where the

lesion lays in the inferior lobes, near to the diaphragm. This is why between

2D and 1D motion compensation, the latter usually yields better results.

As it can be seen, also by looking at Table 4.2, the 3D alignment procedure

determines, in all cases, the lowest value of E[µϵ], highlighting a general better

fit of the model to data, also with a more homogeneous behaviour (the lowest,

or comparable, values of σ(µϵ)). This confirms that smoother signal transitions

occur if both translational and craniocaudal compensation are applied. In

addition, as far as E[µϵ] and σ(µϵ) are concerned, Figure 4.9 shows that 3D

is always better than 2D, which, in turn, is strictly superior to SF (except

for ID2, when E[µϵ] are statistically comparable), as expected. Moreover,

this analysis still applies when considering SF, 1D, 3D (except for ID1, ID5,

ID6, ID9, where 3D and 1D have statistically comparable values for E[µϵ]).

Therefore, the quantitative index conceived confirms its capability to measure

the quality of alignments with respect to the available data. In this way, it

also becomes possible, and interesting, even to include in the comparison two

unrelated alignments, such as 2D and 1D. As a matter of fact, our quantitative
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index shows that on two occasions (ID8, ID10) only 2D performs better than

1D.

After ascertaining that E[µϵ] can measure and rank the quality of align-

ments, I now aim at assessing whether, and to what extent, better alignments

yield more reliable perfusion patterns. Shifting to the qualitative index, it is

possible to see that, although the perfusion maps achieved with 3D are consis-

tent with what the radiologists expected, the visual analysis highlights some

more uncertainties regarding the likelihood of colorimetric maps resulting from

SF and 2D with respect to the expected perfusion patterns. In fact, although

in the majority of cases perfusion maps from 2D are considered more reliable

than those from SF, four times they are considered as being equivalent and,

above all, two more times (in one liver and in one lung tumour case) they are

even perceived as being worse. Nonetheless, 1D maps are always considered

to be better than SF’s.

Usually, also due to global correlation between fitting pre-correction errors

and changes in BF values, it is taken for granted that better alignments yield

more reliable perfusion patterns [229, 266]. Therefore, I would like to draw

reader’s attention on those cases where coherence between quantitative and

qualitative ranks does not hold, that is where the quantitative and the qual-

itative indices do not agree, with respect to the expected behaviour, mainly

limiting this comparison to SF with 2D/1D, and to 2D/1D with 3D. In fact,

as already stated, nothing can be expected a priori by comparing 2D and 1D

motion compensations. Accordingly, I start analysing cases where compara-

ble errors yield different ranks (ID1, ID4), moving on to those cases where

statistically significant differences in E[µϵ] are not reflected in the perfusion

maps (ID2, ID5, ID11), concluding with the most relevant situations, where

significant differences in the quantitative index yield opposite ranks (ID3, ID6).

Starting by ID1, although the couples SF, 2D and 1D, 3D have comparable

values for E[µϵ], the perfusion maps from SF, 2D are ranked differently as

well as those from 1D, 3D. In fact, this lesion mostly oscillates along the x-y

plane, with a rather uniform “wide” hypo-perfused core, surrounded by a more

perfused thin region, in the shape of an outer circle. Failing in aligning this

region correctly, yields a perfusion map where the core actually extends up to

the border, breaking off the perfused outer circle. On the whole the errors are

similar, but the information generated changes. This is also what happens,

to a different extent, with 2D and 1D alignments, when performed alone. In

addition, although 1D and 3D have the same errors, only the pattern of the 3D

map is fully reliable. Similar considerations can be made for ID4, although a
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more relevant motion along the z direction makes 1D more effective, but with

a significantly higher error than 3D.

On the contrary, there are cases where significant differences in the quanti-

tative error have not effect on the information content of the perfusion maps.

ID2 is the smallest liver lesion (Table 4.1) also showing a “blinking” behaviour

(i.e., disappearing from the reference slices now and then) and translational

compensation is almost useless, as confirmed by the E[µϵ] values (both, quite

low) achieved when compensating along the craniocaudal direction only or

according to the 3D approach. ID5 (lung lesion of Figure 4.8) has very a

heterogeneous BF , and perfusion maps from SF and 2D yield a comparable

information content (with relevant unreliable parts), although 2D compensa-

tion yields a statistically significant improvement (P≤ 0.001), while 1D and

3D show comparable errors and reliable perfusion patterns. This is due to

the real shifting being mainly along the craniocaudal direction, but the asym-

metry of the lesion makes its changing sectioncaptured on the reference slice,

shifting along the x-y plane, simulating a translational motion that, actually,

is almost negligible. Finally, ID11 is the most stable lesion, apart from just

very few slices, where it shows a motion mainly along the craniocaudal direc-

tion. This is why ID11 has the lowest values for the quantitative index among

the lung tumours, as regards 1D and 3D. Accordingly, although 2D compen-

sates, this does not improve the overall perfusion pattern, as can be seen in

Figure 4.10 (b), also due to a high number of unreliable values. On the other

(a) (b) (c) (d)

Fig. 4.10: BF colorimetric maps of ID11 resulting from SF (a), 2D (b), 1D (c) and
3D (d) alignment approaches. The pink colour highlights pixels whose perfusion
values have been considered unreliable.

hand, 1D compensation lowers the error and yields a perfusion map (c) which

is considered as being as much reliable as that from 3D motion compensa-

tion (d), although the latter has an even a lower value. In addition, the range

of BF values for perfusion maps from SF (a) and 2D (b) is comparable, as well
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as their mean value (about 73ml/min/100g). On the other hand, the range

is narrower for 1D (c) and 3D (d) perfusion maps, although being comparable

with each other, as well as their mean value (about 56ml/min/100g).

Still remaining are the two most meaningful cases where qualitative and

quantitative assessments are reversed for SF and 2D alignments. I firstly con-

sider ID3 (Figure 4.11) for the liver, a so-called target lesion that represents

Fig. 4.11: Details of colorimetric maps of ID3 for µϵ (first row) and BF (second
row), resulting from the different alignment approaches (from left to right: SF, 2D,
1D, 3D). The white arrow points to an increase of perfusion that appeared even
more unexpected as it relates to a region where the error decreased, as shown in
the corresponding error map.

a meaningful perfusion study due to marked respiratory motions, both along

the x-y plane and craniocaudal direction. However, this lesion has quite a

high-perfusion core surrounded by a low perfused region, and it is the widest

liver lesion (Table 4.1), meaning that despite its motion the core of a fixed ROI

may sample different parts of a low-perfusion tissue. This is why E[µϵ] and

σ(µϵ) are quite limited (Figure 4.9 and Table 4.2). In addition, this is why a

much greater improvement is brought by 1D. Figure 4.11 shows the resulting

colorimetric maps related to µϵ (first row) and BF (second row). The first two

columns (from left) refer to the SF and 2D results, respectively. As it can be

seen, the manual compensation of translational motion yields improvements

on the µϵ map - the errors are attenuated in 2D, especially for boundary pixels

(red pixels in the maps roughly corresponds to unreliable pixels according to
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the two-σ rule previously described). As for corresponding BF maps, they

show both a central region with a high perfusion, surrounded by less perfused

pixels, with a more extended perfused area on the outer boundaries for 2D. It

is worth noting that according to a visual evaluation (Table 4.2), the perfusion

map from 2D (rank 4) was considered worse than SF’s (rank 3), mainly right

because of more evident signs of perfusion in the upper side (white arrow) of

2D error map. In addition, SF map is more similar to 3D even to a non-expert

eye. In fact, if just translational compensation could improve the quantitative

index (i.e., the reliability of TCCs), contemporary and non-independent mo-

tion on craniocaudal direction could even worsen the map. On the other hand,

1D compensation only (Figure 4.11, third column) yields a greater improve-

ment and, when considering the 3D alignment (fourth column), the effect of

the reduction of motion components in the craniocaudal direction can clearly

be appreciated, leading to the best results both at numerical and visual level.

The µϵ map shows the best values with a range that is halved with respect to

the previous two maps from SF and 2D and the associated perfusion map is

more realistic, presenting a very thin perfused region in the upper periphery,

with a high-perfusion area for bottom-right pixels of the ROI, with a pattern

that best resembles what the radiologists expected to see after their visual

inspection.

I have just discussed colorimetric maps of a hepatic lesion whose perfusion

patterns are somehow related to each other, at qualitative level. On the other

side, the lung lesion I am about to analyse, ID6, is paradigmatic of what the

real effect of 3D alignment on TCC and, accordingly, on perfusion patterns

could be. This is even more interesting because, among the lung lesions, ID6

is the most static one according to the x-y plane and 2D yields the minimum

improvement, as it can be seen at a glance from the plot of Figure 4.9. Fig-

ure 4.12 shows the colorimetric maps of BF values for ID6, referring to the

different alignment methods, where unreliable pixels are set to “pink”. As it

can be seen, the amount of discarded values ranges from very few pixels for 3D

(Figure 4.12 (c)), while it increases when moving towards SF (Figure 4.12 (a)).

The most important point, however, is the position of pink pixels and of the

most perfused patterns. By comparing Figure 4.12 (a) and (b), the slight im-

provement yielded by the manual translation in the upper borders of the lesion

is visible, where movements include air samples that jeopardise the reliability

of TCCs and, accordingly, of the maximum slope computation. However, the

overall map visually seems to worsen in 2D with small sparse aggregates of

unreliable pixels. This is the reason why the radiologists chose SF, although
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(a) (b) (c)

Fig. 4.12: BF colorimetric maps of ID6 resulting from SF (a), 2D (b) and 3D (c)
alignment procedures. The pink colour highlights pixels whose perfusion values
have been considered not reliable.

the quantitative indices in Table 4.2 are slightly better for 2D. It is worth

remarking that there is no way to further improve the perfusion map with-

out resorting to compensation along the craniocaudal direction (also, the map

from 1D, not shown here, is considered comparable to 3D’s for both the in-

dices). Figure 4.12 (c) has been built by choosing four different z levels and it

is clearly the best image and, yet more, this is the lung examination showing

the most uniform behaviour (E[µϵ], σ(µϵ) ranging from 7.53 to 8.62, and from

1.45 to 4.10, respectively), also being among the most stable one (see E[µϵ],

σ(µϵ) for SM in Table 4.2). However, the perfusion pattern in Figure 4.12 (c)

is quite different from Figure 4.12 (a), (b). More specifically, in Figure 4.12 (c)

it is still possible to appreciate some trace of the most perfused regions in Fig-

ure 4.12 (a), (b), although the most perfused pattern is at the bottom right,

rather than at the bottom left.

I should highlight that this could be an unavoidable side-effect of motion

compensation along the craniocaudal direction, where the definite colorimetric

map actually results from different slices, in spite of the accurate tracking. In

fact, while a section of a lesion shifting along the x-y plane only could be

tracked (only theoretically) with no errors, the tracking along the z direction

is (practically) always prone to “errors” which, for small lesions, could be of a

half a slice thickness, or even more. This means that what sampled in 3D could

represent a sort of “mixture” of different slices. Practically speaking, since

translation motion is rarely alone, 2D compensation could represent different

lesion’ sections. Nevertheless, the radiologists considered the colorimetric map

from 3D as the most reliable one, after considering both SF and 2D which, by
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coincidence, they saw previously, as being reliable. In practice, although this

behaviour is apparently unknowable, we should not forget that radiologists

form their own opinion by examining all the slices of the whole CTp scan.

Therefore, it is possible to- state that both inner parts (i.e., non-pink pixels)

of Figure 4.12 (b), (c) could contain reliable patterns, just referring to different

lesion sections.

4.2.7 Concluding remarks

First of all, results achieved in Sect. 4.2.6 shows that a better alignment could

not yield more reliable perfusion patterns, also because regionally high errors

could give a low contribution to the overall fitting error E[µϵ]. For instance,

high errors mainly due to initial motion (i.e., related to the first few slices) may

slightly affect the slope of the TCC. On the contrary, a motion in the interval

around the maximum slope time instant would significantly alter the BF value,

meanwhile being compliant with a low fitting error. Nevertheless, the auto-

matic thresholding method based upon statistical analysis of distribution of

our fitting error can highlight and exclude unreliable perfusion values in both

lung and liver lesions. The recommendation for all the foregoing is that every

perfusion maps should be critically re-evaluate by radiologists, independently

from the alignment procedure followed.

A further point is that when radiologists “play” a cine sequence to form in

their mind a perfusion map, what they expect can be found on perfusion maps

built with different registration methods, and slice sequences, accordingly. This

is because what radiologists see while observing the whole sequence of CT

images often happens at different z -depths, and not just on the reference slices.

Finally, I have proven that considering a 3D alignment, albeit being based

on rigid translations, is not an option, it is a necessity, since there are cases

where perfusion maps arising from x-y alignments are considered to have a

worse quality than those maps originating from no alignments.

In conclusion, the method presented to assess the reliability of perfusion

patterns after motion compensation contributes towards achieving a more ac-

curate and reproducible computation of perfusion values, this representing a

ground stage towards the clinical use of CTp studies.

The results presented in this Section have been published in [230].
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4.3 An automatic method to detect unreliable

perfusion values

After studying the signal pertaining to a single voxel through the use of the

index µϵ, I move my attention to the analysis of the signal coming from a

whole tumour slice. The aim of this section is to present a novel quantitative

and automatic method to detect those anatomical structures (mainly vessels

and bronchi) and those regions undergoing CTp reconstruction and acquisition

artefacts, that could compromise the correct interpretation of a CTp colour

map and, ultimately, the clinical outcome. The approach is again based on

the computation of the TCCs’ error index µϵ associated with the thresholding

methods presented in Sect. 3.3. The ability of our method to automatically re-

move the “misleading” regions is assessed and compared with the performance

of two 25-year experienced radiologists who detected, and manually bounded

for further exclusions the anatomical structures and the regions undergoing

artefacts. Moreover, changes of mean perfusion values and, above all, of their

standard deviation and CV, were analysed before and after removing the auto-

matically segmented regions. Finally, some meaningful comparisons between

colour maps achieved by using our approach and the manual thresholding on

BF values commonly used by Readers are discussed.

The set of examinations that have been selected for this study is de-

scribed in Sect. 4.3.1. Acquisition protocol and data processing are resumed in

Sect. 4.3.2. Sect. 4.3.3 presents the manual procedure carried out by the radiol-

ogists to identify vessels, bronchi, and artefacts visible on the CTp sequence of

each examination. In order to “quantify” the proficiency of the two very expert

Readers on detecting and outlining the possible signs of errors in perfusion val-

ues stemming from the CT sequence, the ROIs manually drawn were compared

with corresponding TEM, using statistical indexes. The comparison procedure

is described in Sect. 4.3.4, while the statistical tests applied are mentioned in

Sect. 4.3.5. In addition, some perfusion maps are compared where errors are

removed through our approach versus manual thresholding on perfusion val-

ues. Finally, BF mean, standard deviation, and CV values of the examination

before and after thresholding are computed and compared. Experimental re-

sults are presented and discussed in Sect. 4.3.6. Finally, Sect. 4.3.7 draws some

concluding remarks.
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4.3.1 CTp examinations

In this study, some CTp examinations of patients with primary NSCLC have

been selected among those of the study used in Sect. 4.2. In particular, lesions

having maximum transverse diameter greater than 2.5cm, and area wider than

3.14cm2 were used. Lesions whose boundaries could not be accurately identi-

fied, such as in case of highly inflamed tissues surrounding the tumour, were

excluded from the study. Finally, 22 patients (age range 36 - 81 y.o.) were

enrolled for the study, for a total amount of thirty-four examinations, with as

many lesions.

4.3.2 Acquisition protocol and data processing

The acquisition protocol followed to acquire the CTp examinations is that for

lung tumours described in Sect. 4.2.2. Two ROIs were drawn, on the aorta and

on the lesion contour, respectively. As a consequence of the results presented

in Sect. 4.2, the tissue ROIs were aligned following the 3D procedure. The

TCCs extracted from each voxel of the ROI were again fitted through the use

of Hill’s equation. Both µϵ and BF values were computed for each voxel of the

ROI and represented through the use of colorimetric maps, following the same

procedures described in Sect. 4.2.

Since µϵ histograms were all characterized by a bell-shape with a long right

tale (as described in Sect. 3.3) and higher µϵ are associated to unreliable per-

fusion values (Sect. 4.2), the two thresholding methods described in Sect. 3.3

have been applied to the µϵ distribution of each examination so as to achieve

two threshold values: T2σ and TT . TEMs as those presented in Sect. 3.3 were

created for each examination.

4.3.3 Manual annotation

For each examination, the initial sequence of 20 scans is looked through to de-

tect and manually annotate the main causes affecting the analysis of perfusion

maps, represented by artefacts, and anatomical structures such as vessels and

bronchi. The purpose of this annotation stage was twofold. On the one hand,

I wanted to achieve the best possible performance, and to this purpose the

first radiologist (hereafter, Reader A) was given no time limit for his analysis.

On the other hand, I aimed to obtain realistic results, and for this reason the

second radiologist (hereafter, Reader B) had to complete his analysis in a time
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Fig. 4.13: From left to right, lesions ID15, ID34, ID14, ID17. A small vessel (a)
and a bronchus (b) manually contoured by Readers A and B, respectively; artefact
regions induced by motion (c) and beam hardening (d), graphically annotated by
Readers A and B, respectively.

compliant with a “routine” CTp study, under the same conditions as those in

a clinical environment. The analyses were accomplished in a blind fashion.

First of all, the two Readers analysed the whole set of images in cine-mode

and detected the presence of vessels and bronchi inside the lesion. After that,

they manually outlined in the reference slice the anatomical structures also

visible in the reference sequence (Figure 4.13 (a) and (b)) using a graphic

device (Intuos R⃝Pro, Wacom, Krefeld, Germany). Then, the radiologists iden-

tified, and manually annotated in the reference slice, the lesion’s regions un-

dergoing the different type of artefacts, although mainly arising from partial

volume effects induced by residual motion and from beam hardening (Fig-

ure 4.13 (c), (d)). As one can see in Figure 4.13, while vessels and bronchi are

usually well identifiable, detecting artefacts is much harder and, even when

succeeding, both boundaries and extent cannot be detected with accuracy.

4.3.4 Comparison between annotated slices and thresh-

olded error masks

The way the anatomical structures and artefacts were detected and outlined,

mainly the uncertainty in delineating artefacts, drove our choice regarding the

approach to compare the regions manually outlined with the outcome of our

automatic error detection approach. For this reason, the number of numerical

structures found (or missed) and the presence of artefacts in a given region

were considered, since their extent was not visually assessable. Nevertheless,

different types of artefacts, in the same lesion are considered separately. Ac-

94



Chapter 4. A method to assess perfusion values reliability
4.3. An automatic method to detect unreliable perfusion values

cordingly, there are four different outcomes from the matching procedure: “hit”

or true positive (TP), false positive (FP), true negative (TN), “miss” or false

negative (FN), all arranged into three 2 × 2 contingency tables, for vessels,

bronchi, and artefacts, respectively [267]. Also, it is worth recalling that we

are interested in detecting only those acquisition and reconstruction artefacts,

vessels, and bronchi that can hamper the perfusion values, rather than arte-

facts or anatomical structures in themselves. Therefore, the thresholded error

masks was chosen as the reference (i.e., the “ground truth”) and the regions

manually outlined by radiologists were considered as the test condition. For

instance, when a Reader detects an item that has no correspondence on the

thresholded error mask (this representing a FP), this does not necessarily hints

a mistake, rather most probably what detected does not hamper the compu-

tation of perfusion values. On the other side, in case that a Reader does not

outline any item in correspondence of an error structure present in the thresh-

olded error map, this is considered a FN only after that a radiologist confirmed

the nature of that error structure, that is vessel, bronchus or artefact. The

simplest case is when no error structures are detected, nor visually neither

automatically, when the TN number in each contingency table is increased

by one. As far as the TP are concerned, at the beginning I hypothesized to

segment the thresholded error maps into connected ROIs and perform an au-

tomatic matching between manual and computed ROIs. Then, several known

strategies could have been considered to decree a match, ranging from inclusion

criteria to overlapping thresholds, even weighted to allow for possible different

sizes [268]. As a matter of fact, this could work for anatomical structures, but

would fail for artefacts and using different approaches would not have been

fair. Besides that, in any case determining the FNs would require the inter-

vention of radiologists. In addition, if our purpose is to quantify the Readers

errors (with the meaning defined at the beginning of this paragraph), then

it is enough to find out how many error causes, in terms of structures and

artefacts, are missed visually. For all these reasons, I decided that a visual

matching performed by the Readers would be the most appropriate for our

purposes.

4.3.5 Statistical analysis

To assess the Readers’ performance I measured how their errors, in terms of FP

and FN, impact on the the total number of negative (N=FP+TN) and positive

(P=TP+FN) cases, respectively. This is given by the frequency of their errors
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over the total number of cases, namely, the FP rate (FPR=FP/N) and the FN

rate (FNR=FN/P), computed on each of the three contingency tables. FPR

and FNR are also known as Type I and Type II statistical errors, respectively.

Also, in order to better understand the implications of these errors, it could

be useful to think of them as functions of specificity (SPEC) and sensitivity

(SENS), these being entities more used in clinics, where FPR=1-SPEC and

FNR=1-SENS.

The paired two-sided Wilcoxon signed rank test was used to compare the

mean BF values before and after thresholding, while the one-tail F test and

Z test were computed to assess the reduction of standard deviation and CV,

respectively, after thresholding. All tests are implemented in R software (ver-

sion 3.2.1, The R Foundation for Statistical Computing). p-value ≤ .01 were

considered as being statistically significant.

4.3.6 Experimental results

Table 4.3 shows the outcome of the comparison between manual annotations

Contingency tables and statistical indexes

Reader A Reader B

Type P N TP TN FP FN FPR(%) FNR(%) TP TN FP FN FPR(%) FNR(%)

Vessels 18 26 16 26 0 2 0 11 12 24 2 6 8 33

Bronchi 8 27 7 27 0 1 0 13 7 26 1 1 4 13

Artefacts 41 9 26 7 2 15 22 37 20 3 6 21 67 51

Tab. 4.3: Table summarizing contingency tables and statistical indexes relative
to the analysis conducted by the two radiologists regarding the presence of vessels,
bronchi, and artefacts.

and computed thresholded error maps, related to the 34 examinations. The

first consideration concerns the possible causes of alteration of perfusion data

(column ‘P’), that in this study were artefacts (41), vessels (18, with mean

area of about 16mm2), and bronchi (8, mean area around 23mm2). Also, FPR

and FNR columns highlight that Reader A always performed better than, or

at most as the same as, Reader B. In particular, Reader A had a specificity of

100% regarding the detection of bronchi and vessels, although Reader B also

showed quite a good performance in terms of FPR for these physiological struc-

tures. As an example, Figure 4.14 (a) shows an example of manual detection

by Reader A of bronchi and vessels, all of them detected automatically also
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Fig. 4.14: Lesions ID29 (a,b), and ID19 (c,d). Three vessels (in red) and two
bronchi (in yellow), manually highlighted by Reader A, together with two missed
artefact regions (green arrows) (a), with corresponding thresholded error masks (b);
two vessels (in red) detected by Reader A only, one bronchus (in yellow), and one
artefact from beam hardening (in green), manually contoured by Reader A (c),
with correspondent thresholded error mask (d).

by the T2σ threshold (Figure 4.14 (b), blue regions). However, both Readers’

performance decrease when it does not come down to missing structures. For

instance, Figure 4.14 (c) shows two vessels detected by Reader A only, and

highlighted by our approach (one of which, pointed out by the green arrow in

Figure 4.14 (d), detected through TT only).

Things change as Readers face artefacts. Although manifest artefacts

can be detected by both Readers (e.g. the beam-hardening artefact of Fig-

ure 4.14 (c), in green), apparently more subtle artefacts, like the two shown

in Figure 4.14 (a), originating from partial volume effects (left green arrow)

and beam hardening (right arrow), are missed by both Readers (this represent-

ing two FNs), whereas they are correctly detected by our automatic method

Figure 4.15 (b). Or else, even when artefacts are correctly detected, with a

surprisingly high precision (the three green sharpened ROIs in Figure 4.15 (a)),

their ramifications (mostly highlighted by pink pixels in Figure 4.15 (b)) are left

out of consideration – for the sake of honesty, they are almost impossible to be

assessed to the naked eye. Nonetheless, in the lesion shown in Figure 4.15 (c),

Reader B strives to argue the extent of this beam-hardening artefact induced

by the high concentration of CA into vena cava, during the initial phase of CT

acquisition. However, although the shape was not far wrong, again the extent

is heavily underestimated, as shown by the outcome of the automatic method

in Figure 4.15 (d). Moreover, this is an example where any clinical consid-

eration regarding this case could be severely misleading, due to more than

one third of the lesion (2537 out of 7299 voxels) being unreliable in a scatter
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Fig. 4.15: Lesions ID12 (a,b), and ID33 (c,d). A beam-hardening artefact manu-
ally detected with a high accuracy by Reader B (a) and the corresponding thresh-
olded error mask (b); a well-defined shape of an artefact drawn by Reader B (c),
that however fails in detecting the wide extent of its effects, highlighted in the error
mask (d).

manner, and the examination is strongly suggested to be definitely excluded.

The great benefits of using an automatic method to exclude unreliable

pixels can be also appreciated when considering the most spread alternative,

that is manual thresholding on perfusion colour maps. Figure 4.16 (a) shows an

Fig. 4.16: Lesions ID32, where no misleading regions are detected (a), with its
colour BF map manually thresholded (b); the thresholded error mask (c) and the
final BF map achieved after excluding the error regions and a subsequent visual
thresholding by using the same value as before (d).

interesting example of lesion, coming from quite a stable CT sequence, where

neither physiological structures nor artefacts where detected. Accordingly, the

few pink pixels in the corresponding perfusion colour map (Figure 4.16 (b))

only arise from the voxels with too high perfusion values, removed by Readers

through agreed manual thresholding. The resulting BF map is plausible and

shows a perfusion peak, on the top right border, whose BF values are around
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200ml/min/100g. However, the thresholded error mask in Figure 4.16 (c)

clearly highlights a high-error region, just in correspondence of the perfused

area, correctly removed as shown by the presence of the pink pixels in the BF

map in Figure 4.16 (d). This is a meaningful example where a simple manual

thresholding fails, since the error affects voxels with apparently acceptable

perfusion values. The scatter plots in Figure 4.17 resume this concept, with

Fig. 4.17: Scatter plots to explore the relationship between BF values and µϵ

errors, referring to cases ID19 (Figure 4.14 (c)) (a), ID12 (Figure 4.15 (a)) (b),
ID32 (Figure 4.16 (a)) (c), ID33 (Figure 4.15 (c)) (d). As one can see, errors also
affect physiological BF values. Blue dots are detected by the 2-σ rule, while the
red ones are detected by the triangle method only.

colour convention as the same as Figure 3.12 (a). Although, as expected, there

are cases where the errors are almost exclusively associated to non-plausible

BF values (Figure 4.17 (a), referring to lesion of Figure 4.14 (c)), most of

times errors are shared between high and low perfusion values, as shown in

Figure 4.17 (b) (referring to lesion of Figure 4.15 (a)) and Figure 4.17 (c)

(pertaining to Figure 4.16 (a)). Nonetheless, in case of wide extending artefacts

is not rare to find lesions where errors affect almost exclusively the voxels whose

BF values fall in the physiological range, as shown in Figure 4.17 (d), referring

to the lesion shown in Figure 4.15 (c).

The resulted presented above can be better acknowledged when looking at

the meaningful BF histograms of Figure 4.18, referring to lesions ID14 (a) and

ID33 (b), showing which BF values are removed by thresholding (for a better

readability, only the triangle method is shown, in the red colour). As one

can see, there are cases (Figure 4.18 (a)) where non-physiological BF values

mostly lie on tail as well as there are lesions (Figure 4.18 (b)) where removed

BF values are spread throughout the whole range, almost proportionally, and

the average of removed BF values is nearly the same as that of the original

distribution. As a consequence, as shown in Figure 4.19 mean values basically

remain unchanged for 2-σ thresholding (6 cases out of 34), almost half of them
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Fig. 4.18: BF values of the whole lesion (cyan colour) and those removed by the
triangle method (red colour), referring to lesion ID14 (a) and ID33 (b).

Fig. 4.19: Mean of BF values (µ) in the original examination (solid cyan line,
diamonds), after 2-σ (dashed blue line, squares) and triangle (dotted red line,
triangles) thresholding.
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(18 out of 34) with triangle thresholding reduce. As regards standard deviation,

they all reduce (Figure 4.20), most of them with statistical significance (20

Fig. 4.20: Standard deviation (σ) of BF values in the original examination (solid
cyan line, diamonds), after 2-σ (dashed blue line, squares) and triangle (dotted red
line, triangles) thresholding.

cases with 2-σ thresholding, and even 29 using triangle). These reductions

partly reflect in CVs, reported in Figure 4.21, which diminish in 12 cases with

Fig. 4.21: CVs related to BF values in the original examination (solid cyan line,
diamonds), after 2-σ (dashed blue line, squares) and triangle (dotted red line,
triangles) thresholding.

2-σ and 16 cases with triangle thresholding.

4.3.7 Concluding remarks

In the first place, this research work shows that the highest values of µϵ are re-

lated just to those regions corresponding to anatomical structures (i.e., vessels
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and bronchi) or affected by artefacts, altering the computation of the perfu-

sion colour map. In particular, the results presented confirm that removing

unreliable BF values could yield significant changes (commonly, reductions)

in the mean BF value of a lesion, often used as a significant statistical param-

eter in several clinical studies [170, 147], this contributing to carry out more

precise clinical assessments. Also, what this study proves is that visual-based

annotation is undoubtedly inadequate to discover the source of uncertainty in

a CTp sequence. At most, devoting more time to this task reduces the number

of FP and FN, always improving FPR and FNR (except for bronchi), but the

improvement is quite relevant limitedly to the anatomical structures. On the

other hand, this study highlights that the different types of artefacts represent

the most spread causes possibly hampering perfusion parameter values, much

more than physiological structures, perhaps this not being surprisingly and in

line with what most probably every radiologists expect. However, what seems

to be heavily underestimated is the extent of the negative effects of artefacts,

this representing the highest risk if relying only on visual assessment of CTp

perfusion sequences and maps.

In the second place, it has not to be forgotten that perfusion maps are usu-

ally provided “as is”, without any pixel-wise indication on their reliability and

what radiologists usually do through visual analysis is, at most, just detect-

ing perfusion peaks not compliant with physiological values and exclude them.

This behaviour is prone to either neglect local perfusion peaks or including all

local errors if compatible with physiological outcome. This work shows that

in most cases errors are present also in the whole range of physiological perfu-

sion values, mostly due to the presence of artefacts, highlighting at least one

examination where an apparent perfusion peak would have been kept when

clipping the colour scale manually.

The automatic error detection strategy presented, represents a method-

ological approach towards a more and more quantitative CTp imaging, this

constituting an ineluctable way towards achieving a routine clinical use of

CTp.

The results that have been presented in this Section have been published

in [236].
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Multi-slice analysis of BF values

In this Chapter, I extend the analysis conducted so far on the signal coming

from single voxel (Sect. 4.2) and single slice (Sect. 4.3) to the whole tumour.

While in the literature it is widely agreed that considering tumour volumes

provides more information than using a single section, usually single slices are

merged together to provide global parameters. However, the clinical represen-

tativeness of global perfusion values and their capability to deal with tumour

heterogeneity has never been investigated. This issue is faced in this Chap-

ter. In particular, a specific background is reported in Sect. 5.1 and the set

of CTp examinations selected for this study is described in Sect. 5.2. The

methodologies previously discussed to automatically detect and exclude un-

reliable perfusion values from the analysis (Sect. 4.3) are applied to all the

lesion sections, as well as the indicator of functional heterogeneity presented

in Sect. 3.5 (Sect. 5.3). A deep statistical analysis is carried out to assess

the clinical representativeness of global perfusion values and their capability

to deal with tumour heterogeneity (Sect. 5.4). Experimental results and some

concluding remarks are finally reported in Sects. 5.5 and 5.6.

5.1 Background

Tumour heterogeneity, representativeness of tumour regions, reliability of re-

sults, and reproducibility of CTp examinations represent different as well as

interconnected issues that should be addressed as a whole. In fact, as discussed

in Sect. 2.1, heterogeneity is an intrinsic characteristics of all tumours that is

also reflected in the hemodynamic behaviour, for instance, in areas of angio-

genesis or necrosis [249]. As a consequence, which part of the tumour could be

the most representative one for clinical assessments has been widely debated.
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Traditionally, the first CTp examinations were performed on one slice, due to

technology limitation of data acquisition and processing apparatuses [87]. Af-

terwards, the improvement of technology has permitted to work on the whole

tumour [269], or groups of slices, as the central ones [171]. However, authors

have still continued working on a single section only [236], chosen as the one

representing the largest tumour “diameter” [175], or better incorporating the

solid-appearing part of the target lesion [270], or else being in the middle scan

position [186, 271, 272]. Nonetheless, several researchers choose the single tu-

mour section based on visual considerations only [210], such as that having the

best quality [227], or the widest area [192], jointly to the least variability [228].

Undoubtedly, the most important issue to make CTp entering the clini-

cal practice is the possibility to achieve between-patient and among-patients

standardization. To this purpose, the reproducibility of reliable results is an

essential requirement, but it must be coupled to the clinical representative-

ness of numerical results. In the literature, it has been widely stated that by

considering the whole tumour [202], or even group of slices [205], perfusion pa-

rameters may improve reproducibility and repeatability [238], against a single

slice. That is, considering a wider “population” (i.e., more slices), averaging

values helps achieving a “global” tumour behaviour. Using global mean or

median values can also work for diagnosis purposes, where CTp has been used

to discriminate between benign and malignant in different types of lung le-

sions, including pulmonary solitary nodules. For instance, the overall mean of

pulmonary index, pulmonary and bronchial BF is computed on multiple slices

in [76] and on three tumour sections chosen according to the axial, coronal and

sagittal planes, in [273]. The overall median of all the CTp parameters for the

whole tumour is computed in [269], where the median was preferred over the

mean operator to avoid outliers.

All the studies considered refer to global perfusion parameters, whether

they are mean or median values, encompassing all the tumour characteristics.

However, in this way, besides the uncertainty intrinsic to the CTp acquisition

and processing procedure, global parameters also reduce the variability due to

tumour heterogeneity. This is acknowledged by several authors, which recog-

nize that global values only provide an overall measure of variability [203] and

that “may not be optimal for tumour evaluation prior to treatment or therapy

response evaluation” [224]. Nevertheless, very few attempts have been made

to try assessing the capability of CTp parameters to evaluate the treatment

response of patients with NSCLC, but the lack of reproducibility could not con-

firm the results. For instance, the study in [183], dealing with CTp monitoring
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of anti-angiogenic therapies in lung cancer, concludes that CTp can detect

therapy-induced changes in perfusion, but the lack of reproducibility depletes

these findings. Similar outcomes regarding the CTp capability of monitoring

anti-angiogenic therapies were reported in [187], even though in this case, no

reproducibility studies have been performed. On the other side, more recently

the authors in [192] could not find any correlation between CTp parameters

and survival of patients treated with anti-angiogenics and chemotherapy. Also,

they concluded that entropy only, computed on the HU, could be considered

as an independent prognostic factor for OS, this suggesting the importance of

tumour heterogeneity in assessing tumour aggressiveness.

5.2 CTp examinations

The same set of 22 patients with one primary NSCLC, previously enrolled in

the retrospective study described in Sect. 4.3 were considered. Here, as an

added inclusion criteria, I selected lesions having the longest axial diameter

larger than 15mm in at least three sections. Altogether, 12 patients (9 men,

3 women, mean age 64.7 y.o., range 42-81 y.o.) with a target lesion having

mean longest axial diameter of 43.5mm (range 25.3-75.2mm) and a mean area

of 1625mm2 (range 433-1995mm2) remained. Five of them underwent at least

one follow-up (FU), for a total amount of 26 CTp examinations.

5.3 Acquisition protocol and data processing

All the examinations were acquired following the acquisition protocol designed

for lung tumours, described in Sect. 4.2.2, and underwent the same treatments

used for the lesions of Sect. 4.3. In fact, tissue ROIs were drawn on each

tumour section and aligned following our 3D approach. Spatial filtering was

applied on CT images according to what described in Sect. 3.1 and the Hill’s

equation was used to fit the extracted TCCs. Voxel-based BF values were

computed according to the SIMS method. Unreliable BF values were excluded

from the analysis by using the triangle thresholding method. Mean BF values

representative of each slice (µs) and of the whole lesion (µw) were computed

for each examination. Median values were also computed for each slice (Ms)

and the whole lesion (Mw). The ranges (r) between minimum and maximum

of µs and Ms, rµ and rM respectively, were computed as a variability measure

referred to the whole volume.
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The entropy, E, presented in Sect. 3.5 was computed on the BF maps

of the whole tumour (Ew) and of each slice (Es), with the purpose to get a

measure of the hemodynamic heterogeneity. The range rE between minimum

and maximum Ew values is also considered as a measure of the heterogeneity

variability in the whole tumour. E measures are reported in arbitrary units

(a.u.).

5.4 Statistical analysis

Three groups of statistical tests were performed to assess the capability of

global values, computed on the whole tumour, to represent the clinically rele-

vant perfusion features of a tumour, assuming that the heterogeneity is among

the most important ones [36]. First, the one-way analysis of variance (ANOVA)

was performed to check whether all slices (the “groups”) of the same tumour

have the same mean value, that is, whether they can represent the same pop-

ulation, in terms of BF values. An analogous assessment was carried out for

medians, through the Chi-squared test of independence. The second group

consists in the two-tail t-test and the Wilcoxon rank sum test, which were uti-

lized for three different purposes. In fact, they were applied to test, for each

lesion, the difference of means and medians, respectively, between each slice

and the whole tumour, with the purpose to check whether a slice exists which

can represent the whole tumour (i.e., having the same global value). The same

tests were also carried out to check for µs or Ms differences between couples

of slices, whether they belonged to same tumour or different ones. Finally,

they were employed to select which tumours have the same statistical µw or

Mw values, to further compare their perfusion patterns (i.e., their Ew). In

fact, computing and using a global mean, or median, perfusion value for CTp

studies implicitly means that sets of BF values (e.g. slices or whole tumours)

with same µs (or Ms) as µw (or Mw) are clinically equivalent. The third group

of tests is composed by the one-tail t-test only, which was performed to assess

the differences between the means of Es for baseline and FU examinations.

p-value ≤ .05 were considered for statistical significance. Statistical analy-

sis was performed by using statistical software (R, version 3.2.1, The R Foun-

dation for Statistical Computing).
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5.5 Experimental results

In this section, a subset of the most interesting results achieved is presented.

Results obtained for baseline and FU examinations are kept separate and

resumed inside different sections in order to allow detecting possible differ-

ences between untreated lesions, preserving their natural vascular structure,

and lesions whose vascular network has been modified by the action of anti-

angiogenic treatments.

As the first outcome, it is worth reporting that the hypotheses that means

or medians BF values of slices were all equivalent were rejected for each exam-

ination. Actually, this finding was expected and suggests that the variability

between slices is significantly greater than the variability within slices [267].

Tables 5.1 and 5.2 report the most significant measures (entropy, mean,

median, and range) for all examinations, calculated on BF values of each slice

and the whole tumour.

5.5.1 Baseline CTp

Table 5.1 resumes the most significant measures for the baseline CTp exam-

inations. Statistical analysis shows that ten slices exist which have the same

global BF as the respective whole tumour, seven times regarding mean values,

and eight ones median values. Five times the whole tumour could be repre-

sented by the same slice detected by both µw and Mw values. µw and Mw

values never selected the slice with maximum Es and one time selected the

slice with minimum Es (ID12 and ID4, for mean and median, respectively).

Figure 5.1 reports the five slices of ID12, one of the most interesting lesion,

where the average BF value of the whole tumour (µw =125.0) corresponds to

that of the first slice (µs =124.5, Figure 5.1 (a), last row). It is worth noting

that this slice also retains the minimum Es =7.48, that is the lowest hetero-

geneity. In fact, it shows quite a uniform, low, perfusion. On the contrary,

the last slice (Figure 5.1 (e)) shows a marked heterogeneity, the highest one

(Es =8.37), having in its upper part a hyper-perfused region (with BF values

higher than 300), and a lower hypo-perfused region with BF values nearly 40.

5.5.2 Follow-ups CTp

Table 5.2 resumes the most significant measures for the FU CTp examinations.

Fifteen slices were representative of the whole tumour, thirteen of which re-

garding mean BF values, and eight pertaining to median values. Five times,
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Baseline examinations

slice whole tumour

patient measure 1 2 3 4 5 measure value r

ID1
Es 7.27 7.27 7.26 6.75 6.61 Ew 7.14 0.66
µs 67.9 62.9 62.3 45.8 40.5 µw 56.0 27.4
Ms 56.9 50.9 45.7 33.8 28.4 Mw 41.4 28.5

ID2
Es 8.17 8.15 8.22 8.05 7.91 Ew 8.20 0.31
µs 124.1 115.8 128.5 118.2 108.3 µw 120.1 20.2
Ms 107.3 96.6 110.8 99.8 93.2 Mw 102.0 17.6

ID3
Es 7.81 7.75 7.89 7.85 7.67 Ew 7.87 0.23
µs 117.6 111.3 116.4 115.1 102.3 µw 111.8 15.2
Ms 101.3 103.1 102.4 103.7 93.5 Mw 100.1 10.2

ID4
Es 7.26 7.38 7.31 7.36 7.44 Ew 7.39 0.18
µs 65.7 69.7 65.1 68.1 71.2 µw 68.0 6.1
Ms 54.9 56.9 47.9 50.0 53.6 Mw 52.8 9.0

ID5
Es 7.81 7.84 7.36 6.60 7.79 Ew 7.70 1.23
µs 115.1 106.8 80.7 43.2 107.3 µw 87.2 71.8
Ms 93.2 87.1 67.4 38.2 90.6 Mw 67.6 55.0

ID6
Es 6.10 5.96 6.38 6.62 6.59 Ew 6.54 0.66
µs 33.3 31.7 41.3 52.7 63.9 µw 42.9 32.2
Ms 27.5 28.5 34.5 47.0 58.8 Mw 36.8 31.3

ID7
Es 6.37 6.27 6.53 – – Ew 6.67 0.26
µs 46.2 38.2 60.9 – – µw 47.9 22.7
Ms 38.6 30.5 55.3 – – Mw 40.7 24.8

ID8
Es 7.43 7.07 8.10 7.92 7.62 Ew 7.95 1.03
µs 74.9 61.5 138.4 156.0 118.6 µw 105.2 94.5
Ms 57.1 53.9 119.0 141.7 104.1 Mw 85.3 87.8

ID9
Es 8.54 7.59 7.65 8.03 8.53 Ew 8.24 0.95
µs 175.7 79.6 81.4 104.6 160.1 µw 118.4 96.1
Ms 158.3 60.0 62.3 73.0 133.2 Mw 88.9 98.3

ID10
Es 6.75 6.66 6.42 6.52 6.76 Ew 6.66 0.34
µs 45.9 44.2 38.2 40.8 48.5 µw 43.4 10.3
Ms 37.8 37.3 32.5 34.6 42.6 Mw 36.4 10.1

ID11
Es 7.46 7.34 6.89 7.63 – Ew 7.50 0.74
µs 92.2 80.7 58.9 92.6 – µw 80.0 33.8
Ms 76.5 61.4 51.3 74.1 – Mw 63.3 25.2

ID12
Es 7.48 7.64 7.86 8.01 8.37 Ew 8.07 0.89
µs 124.5 110.0 113.6 116.8 157.4 µw 125.0 47.4
Ms 118.7 106.1 104.0 112.7 145.9 Mw 116.0 41.9

Tab. 5.1: Summary of measures for slices and whole tumour referred to baseline
CTp examinations: Entropy (E), Mean (µ) and Median (M) BF values, where the
subscripts s and w stand for slice or whole, respectively. For the whole tumour,
r of each slice-based measure is computed as well. Italicized and bold-italicized
values point out minimum and maximum value of a given measure, respectively.
Bold non-italicized values highlight an equivalence between µs and µw, or Ms and
Mw.
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Follow-up examinations

slice whole tumour

patient FU measure 1 2 3 4 5 measure value r

ID2 1
Es 7.85 8.06 7.99 7.88 7.72 Ew 8.08 0.34
µs 99.6 130.6 118.3 111.4 97.6 µw 112.8 33.0
Ms 85.2 110.4 99.9 85.6 75.2 Mw 92.4 35.2

1
Es 6.50 6.26 7.33 7.70 – Ew 7.50 1.44
µs 47.7 38.0 76.8 145.6 – µw 77.5 107.6
Ms 41.1 33.6 70.4 120.7 – Mw 60.1 87.1

2
Es 6.63 6.21 6.40 6.90 – Ew 6.82 0.69
µs 58.1 42.2 45.8 80.0 – µw 53.5 37.8
Ms 49.2 38.6 32.5 71.4 – Mw 43.2 38.9

ID6 3
Es 6.37 6.26 6.73 6.43 – Ew 6.67 0.47
µs 40.8 40.9 45.7 54.6 – µw 44.4 13.8
Ms 33.3 36.9 36.3 50.4 – Mw 37.8 17.1

4
Es 6.42 6.31 6.49 6.42 6.18 Ew 6.45 0.31
µs 42.7 38.1 40.3 39.3 35.3 µw 39.2 7.3
Ms 38.6 31.8 32.8 33.2 30.6 Mw 33.2 8.0

5
Es 7.47 6.14 5.94 5.64 5.75 Ew 6.50 1.84
µs 96.1 33.3 24.7 19.9 24.7 µw 35.8 76.3
Ms 91.8 29.1 19.4 16.4 21.7 Mw 24.7 75.4

ID7

1
Es 7.57 6.57 7.20 – – Ew 7.64 1.00
µs 145.5 52.2 97.7 – – µw 95.5 93.3
Ms 133.8 42.6 78.4 – – Mw 78.4 91.2

2
Es 5.82 6.33 5.90 – – Ew 6.33 0.51
µs 34.1 48.8 58.0 – – µw 45.0 23.8
Ms 32.2 42.8 56.7 – – Mw 39.8 24.4

ID9 1
Es 7.45 6.47 6.60 6.50 6.58 Ew 6.80 0.98
µs 80.8 36.9 45.1 38.7 41.6 µw 46.2 43.8
Ms 67.6 31.4 39.6 34.1 36.2 Mw 38.4 36.2

1
Es 7.04 6.83 6.63 7.46 – Ew 7.20 0.83
µs 71.4 54.7 50.4 108.4 – µw 66.9 58.0
Ms 60.7 47.3 44.6 96.5 – Mw 55.5 51.9

2
Es 6.77 6.66 7.26 7.49 7.53 Ew 7.40 0.87
µs 52.4 43.3 67.7 90.9 107.9 µw 70.2 64.6
Ms 41.7 33.6 55.6 84.0 95.9 Mw 56.5 62.3

ID11 3
Es 7.20 7.17 7.30 7.49 – Ew 7.40 0.32
µs 74.8 73.2 75.9 90.5 – µw 78.1 17.3
Ms 70.4 66.2 69.7 81.0 – Mw 71.0 14.8

4
Es 7.05 7.20 7.22 7.28 7.32 Ew 7.29 0.27
µs 69.0 72.9 70.9 71.5 79.0 µw 72.3 10.1
Ms 64.3 64.1 60.1 61.1 70.1 Mw 63.3 10.0

5
Es 7.57 7.39 7.52 7.87 8.24 Ew 7.81 0.85
µs 80.9 71.7 76.7 99.9 144.7 µw 90.1 73.0
Ms 60.7 55.2 61.3 74.2 123.2 Mw 66.8 68.0

Tab. 5.2: Summary of measures for slices and whole tumour referred to FU CTp
examinations. Notations are the same as those in Table 5.1. Here, the FU number
is also reported.
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Fig. 5.1: ID12: the whole scan (first row), HU (second row) and BF maps (third
row) ordered from left to right according to the scan position (the third section
is the central one). The BF maps are visualized using the same colour scale. By
chance, they are are also sorted according to their E value: Es =7.48 (a), Es

=7.64 (b), Es =7.86 (c), Es =8.01 (d), Es =8.37 (e).

mean and median global BF values identified the same slice. For lesion ID6-

FU3 (Figure 5.2, µw =44.4 and Mw =37.8) and ID6-FU4 (Figure 5.3, µw

Fig. 5.2: BF maps of the four consecutive slices of ID6-FU3 (1-4, from left to
right). µw =44.4, Mw =37.8.

=39.2 and Mw =33.2), the same slices (i.e., slice 3 for both) were those with

maximum E (Es =6.73 and Es =6.49, respectively), probably due to these
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Fig. 5.3: BF maps of the five consecutive slices of ID6-FU4 (1-5, from left to
right). µw =39.2, Mw =33.2.

examinations being subsequent FUs of the same lesion. In addition, this is the

only ID where mean and median select the highest E. As regards ID6-FU4, it

shows limited BF ranges (rµ =7.3 and rM =8.0, among the lowest values of all

examinations) and µs and Ms are substantially equivalent for the three central

slices. This consideration regarding mean range also holds for ID6-FU3, where

rµ =13.8 is a little higher, but still among the lowest ones. As for median, in

ID6-FU3 it also selects slice 2 (Ms =36.9) that has the lowest Es =6.26. On

the other side, in ID11-FU4 (Figure 5.4), Mw =63.3 selects slice 1 (Ms =64.3)

Fig. 5.4: BF maps of the five consecutive slices of ID11-FU4 (1-5, from left to
right). µw =72.3, Mw =63.3.

which is the one with the lowest Es =7.05.

5.5.3 Baseline and FU CTp

In this section, the analysis is extended over the whole dataset, by considering

all the CTp examinations together. As regards the whole sets of slices, the

most meaningful result is that, on the whole, 93 slices were not represented

by the global BF values computed on the whole tumour. As for the sets of
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whole tumours, here the sets of slices referring to two couples of meaningful

lesions are analysed. Figure 5.5 shows the BF maps of the four consecutive

Fig. 5.5: BF maps of the four consecutive slices (1-4, from left to right) composing
lesions ID11, baseline (µw =80.0, first row), and lesion ID6-FU1 (µw =77.5, second
row). µw’s are statistically equivalent.

slices (1-4, from left to right) of ID11 (µw =80.0, first row) and ID6-FU1 (µw

=77.5, second row). Although these lesions have statistically equivalent µw, the

respective composing slices have a different heterogeneity distribution. In fact,

the heterogeneity in all slices (except for slice 3) of ID11 is quite comparable,

as it can be seen from Es values of Tables 5.1. On the contrary, slices 1 and

2 of ID6-FU1 (Figure 5.5 (a) and (b), second row) are quite homogeneous

and low-perfused, while slice 4 (Figure 5.5 (d), second row) has the highest

µs =150.8 and Es =7.75. In addition, here the heterogeneity is made of local

homogeneities, with a hyper-perfused upper region and a hypo-perfusion in

the lower one.

Similar comments can be done for ID3 and ID2-FU1, made of five slices

each, whose BF maps are shown in Figure 5.6, first and second row, respec-

tively. ID3 (µw =111.8), shows a heterogeneity that keeps quite “homoge-

neous” within all slices (rE =0.23, the second lowest value), also in terms of

mean (rµ =15.2) and median (rM =10.2) BF (among the lowest values), with

all µs around µw =111.8. On the other hand, the heterogeneity in ID2-FU1

(µw =112.8), is made of well-defined hyper- and hypo-perfused regions, mostly
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Fig. 5.6: BF maps of the five consecutive slices (1-5, from left to right) composing
lesions ID3, baseline (µw =111.8, first row), and lesion ID2-FU1 (µw =112.8, second
row). µw’s are statistically equivalent.

evident in the upper and lower part, respectively, of slices 2 and 3.

Finally, I also analysed the distribution of all slice entropies Es for baseline

and FU examinations, separately. Related histograms are reported in Fig-

ure 5.7 (a) and Figure 5.7 (b), respectively. Even at a glance, the histograms

Fig. 5.7: Histograms of entropies Es of all slices for baseline (a) and FU (b)
examinations. Mean values, highlighted by the vertical red lines, are 7.4 and 6.9,
respectively.

of baseline examinations appear shifted right with respect to the FU ones. In

fact, for baselines mean and standard deviation are 7.4 and 0.75, respectively,

while for FUs they are 6.9 and 0.64. Statistical tests confirm that the mean

entropy of all slices is greater for baseline examinations (p-value ≤ 10−4).
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5.6 Concluding remarks

In this Chapter, the representativeness of global mean and median values, as

far as the heterogeneity is concerned, has been analysed starting from the as-

sumption that computing and using a global mean, or median, perfusion value

for clinical purposes means accepting that the characteristics of the tumour

is represented by that value alone. Accordingly, this implies that sets of BF

values (e.g. slices or whole tumours), with statistically equivalent mean or me-

dian values, are equivalently representative. However, the outcome presented

in Sect. 5.5 proves that these are numerical equivalences only, not clinical ones.

In fact, some cases of lesions, with same global mean or median BF values,

which showed a very different heterogeneity were discussed. In addition, after

analysing tumour slices having the same global values as the whole tumour,

I realized that, when those slices existed, for baseline examinations they were

never those with the highest information content. Rather, it happened that

in two examinations the whole tumour had mean and median BF values cor-

responding to the slice with the lowest heterogeneity (ID12 and ID4, respec-

tively), while the remaining slices showed relevant clinical signs of different

heterogeneities. Consequently, global perfusion values computed on the whole

tumour cannot be appropriate for therapy assessment and cannot improve the

reproducibility of heterogeneity. As far as single slices are concerned, although

preserving more details, they may be not representative of the clinical status

of the whole lesion and this could severely mislead clinical considerations.

On the other hand, measuring heterogeneity is a key issue to achieve useful

information to assess the effectiveness of anti-angiogenic therapies, that cannot

be left out of consideration. This is confirmed by the comparison between the

average BF entropy of all slices before (baseline) and after (FU) treatment,

proving the effectiveness of treatments themselves, expectedly reducing the

overall BF heterogeneity of tumours. Using all the single slices of a tumour,

endowed with global BF values and a BF heterogeneity measures, would rep-

resent a step forwards, useful to help radiologists to draw more reliable clinical

considerations.
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PIXEL: a muti-centre study

A necessary step before introducing perfusion imaging techniques in clinical

practice is their validation in multi-centre studies. However, setting up this

type of studies can be very complex and, at present, only very few multi-centre

perfusion studies have been published. Probably, the project “Perfusion IndeX:

Evaluation for Liver metastases (PIXEL)” is the first CTp BF multi-centre

study on liver that has been carried out and I had the opportunity to work

on its data. In this Chapter, after a brief introduction regarding BF multi-

centre studies, the main issues related to this type of studies are discussed. An

analysis of the most important intra- and inter-centres sources of variability

that can affect the image quality and perfusion results achievable from CTp

examinations is then carried out on PIXEL data. After that, an early analysis

of image quality is performed on the examinations of each Centre in both

frequency and temporal domain. Finally, several hints and suggestions to

correctly set up a CTp BF multi-centre study are provided on the base of

PIXEL experience.

6.1 The need for multi-centre studies

The white paper [45] disseminated by the European Society of Radiology and

addressed to radiologists’ community is only one of the several attempts that

have been done to prompt a greater awareness about the enormous wealth car-

ried out by imaging biomarkers. Indeed, the role of image-based biomarkers has

become increasingly important in several medical areas, such as oncological,

cardiovascular, neurological, psychiatric, musculoskeletal, metabolic, inflam-

matory, and autoimmunity-based diseases [274]. Nonetheless, as highlighted

by the authors in [275], the introduction of a biomarker in the clinical practice
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results in a very complex procedure. Indeed, to substitute a clinical endpoint

with an imaging biomarker, such as OS or PFS, the correlation between the

biomarker and the clinical endpoint must be shown in a series of prospective

multi-centre studies culminating in a formal meta-analysis.

The need for perfusion multi-centre studies has been widely claimed in

the recent literature [64, 276, 277]. Nonetheless, the set-up of this type of

clinical studies is quite complex, this thwarting their implementation. Actually,

any guidelines specific for BF multi-centre studies have never been drawn.

However, from the work presented in [275] some general hints can be inferred,

aiming at investigating the main key-points of image-based markers validation.

In this work, the authors state that to compare results across studies, the

adoption of established standards is vital. Of course, this is also true in multi-

centre studies in which standardization should be achieved at any level, starting

from the recommendations regarding patient preparation acquisition protocols

to image reconstruction process, post-processing procedures and data analysis.

Indeed, the standardization of techniques is fundamental to limit the intra- and

inter-centre sources of variability hidden in both the acquisition and processing

steps, this enabling a correct comparison of results.

As regards all the clinical multi-centre studies, their protocol should be

defined in detail before beginning the data acquisition and by taking into con-

sideration all the limitations that may occur [275]. Indeed, as stated in [64],

to include more than one Centre meanwhile preserving the study standard-

ization as much as possible, it is necessary to adapt the study design to the

“largest common denominator among participants”. This aspect undoubtedly

represents a weak point of multi-centre studies since the achievement of the

best standardization might not agree with the best technology available and

constitute a limitation of the study, hampering the achievement of good re-

sults. Besides standardization, another aspect that should be assessed before

beginning a multi-centre study is data quality. Indeed, in the guidelines by

Miles et al. specific to CTp [83], it is suggested to measure DCE-CT image‘s

iodine sensitivity and noise (that are the two factors mostly affecting exami-

nations quality) at the beginning of each clinical trials. The iodine sensitivity

and noise measures should be carried out on phantoms that mimic the body

size of patients and by using the same image acquisition protocol that is go-

ing to be adopted in the study [83]. As proved in the phantom study carried

out on 9 different CT systems on [278], the adoption of this procedure might

allow to find allow finding out a iodine calibration factor allowing to reduce

variability introduced on quantitative measurements of contrast enhancement
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by the different CT scanners, thus allowing a direct comparison of the results

achieved.

Due to the complexity of the multi-centre studies set-up, actually there

are still very few studies that have been conducted in the oncological field

involving more than a single Centre. Among these studies there are two works

carried out with PET [279] and PET/CT [280] that introduced and applied

a series of calibration factors enabling data comparison between Centres. In

the first study [279], the effects of differences between PET calibration, image

resolution, and ROI size and positioning were investigated on phantoms and

on 23 patients with oesophageal carcinoma or lymphom. At the end of this

study, the authors proposed correction factors permitting to compare data

pertaining to the three Centres involved in the study. These correction factors

have been adopted also in the PET/CT multi-centre study on NSCLC [280]. In

this work, the examinations of 52 patients collected in 7 different Centres were

successfully analysed to assess the prognostic capability of PET/CT during

radiotherapy. Nevertheless, none of these two studies carry out a perfusion

analysis.

To the best of our knowledge, only three multi-centre perfusion studies have

been carried out so far. The first one is a French DCE-US study, involving

19 oncologic Centers for the evaluation of anti-angiogenic treatments in 539

patients with different types of solid tumours (primary HCC or metastatic

breast cancer, melanoma, colon cancer, gastrointestinal stromal tumours, or

RCC). In this case, all the DCE-US examinations were acquired with the

same type of machine and processed by using the same software [281]. The

second perfusion BF multi-centre study regards DCE-MRI. In this case, the

examinations of 9 patients with advanced squamous cell carcinoma of head

and neck acquired in two different Centres were used to determine DCE-MRI

efficacy to assess perfusion effects caused by response to lapatinib (a tyrosine

kinase inhibitor) [282]. In this work, two patients were discarded due to the low

quality of their examinations, but no analysis regarding multi-centre variability

were carried out and not any issue introduced by the use of different MRI

scanners was discussed. Finally, as regards DCE-CT two studies were carried

out using examinations acquired in different Centres. The former enrolled 356

patients with lung nodules across 7 Centres [283] to investigate the capability

of tissue contrast enhancement to predict benignity of nodules, but without

computing any perfusion parameter. Instead, the latter carried out a perfusion

analysis on examinations acquired in two Centres referring to patients with

CRC, aiming at identifying the practical and technical challenges inherent to
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the CTp technique. However, none of these works carried out any analysis

regarding multi-centre variability or discussed any peculiarity introduced by

the use of different CT scanners.

The first CTp study involving more than one Centre is a French study

named “Perfusion IndeX: Evaluation for Liver metastases (PIXEL)”. During

my period abroad, I had the opportunity to start working at this project

initially involving 19 Centres and almost 400 patients. The aim of PIXEL is to

assess the capability of HPI to predict the development of hepatic metastases

in patients with initially non-metastatic CRC before the administration of

anti-cancer therapies. As a derived goal of the study there is the identification

of a threshold value for the HPI allowing discriminating between patients

who developed liver metastases within 3 years from the CTp examination and

patients who did not. The evaluation of other indexes besides HPI and the

assessment of inter-observer variability represent further goals of the project.

The inclusion criteria of the project were:

• adult patients (age>18 y.o.)

• absence of previous cancer pathologies

• patients with CRC (with the tumour positioned more than 15cm far from

the anal margin)

• patients without liver metastases (presence of metastasis in sites other

than liver does not prevent patient inclusion)

• patients that gave their written consent

• patients followed at the hospital

Exclusion criteria are instead resumed by the following items:

• patients with liver metastases at the time of cancer diagnosis

• patients with chronic liver diseases

• patients who received chemotherapy before undergoing liver CTp

• patients who underwent cancer colorectal surgery before undergoing liver

CTp

• patients allergic to CA

• patients with renal impairment
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• pregnant patients

Finally 15 Centres and 338 patients took part in the study. Table 6.1 resumes

PIXEL Centres and patients

Centre ID Centre CT scanner CT model
Number of Age range
patients and mean

1 Beaujon GE Lightspeed VCT 71 33 - 89 (69)

2 Hegp Broussais GE Lightspeed VCT 32 35 - 86 (66)

3 Ambroise Paré Philips MX8000 IDT 16 18 41 - 89 (67)

6
Henri Mondor

GE Lightspeed VCT 1 (68)
A. Chenevier

7 Pitié Salpêtrière Philips Brillance 64 7 49 - 78 (70)

8 Chu Nantes GE Lightspeed VCT 20 37 - 84 (68)

9 Chru Angers Philips MX8000 IDT 16 44 42 - 89 (71)

10
Haut-Lévêque

Siemens Definition 64 13 50 - 79 (69)
Bordeaux

12 Claude Huriez Philips Brillance 40 11 52 - 81 (65)

14
Centre Hospitalier

Philips Brillance 40 23 51 - 93 (70)
Lyon Sud

15
Institut Gustave

GE Lightspeed VCT 23 50 - 87 (64)
Roussy Villejuif

16 Chu Amiens GE Lightspeed Pro 32 49 43 - 92 (72)

17
Institut mutualiste

GE Discovery CT 750 HD 20 43 - 84 (65)
Montsouris

18
Chu Caen - Hôpital

Philips Brillance 40 2 60 - 81 (71)
Cte De Nacre

19
Cabinet d’héatologie et

Philips MX8000 IDT 16 4 58 - 81 (67)
de gastro entérologie

Tab. 6.1: Summary of the main information regarding the Centres included in
PIXEL: ID, CT scanner, number of patients included in the study together with
their age range and mean (between brackets).

some data regarding the Centres and the patients included. Hereinafter, each

CTp examination is pointed out with an ID number where the number of the

Centre and of the patient are written after letters C and N, respectively (e.g.

ID C8N3 corresponds to the examination of the third patient of Centre 8).

The acquisition protocol was defined during a first meeting between the

responsible people of each hospital. A first unenhanced spiral CT scan was

carried out on the liver to identify the correct region that had to be analysed.

Right after, an axial CTp acquisition was performed so as to include the portal

vein trunk and the right hepatic parenchyma. The image acquisition started

119



Chapter 6. PIXEL: a muti-centre study
6.2. Technical issues in multi-centre studies

contemporaneously with the administration at 5ml/s of 40ml of iodinated

CA, with a concentration of 350mgI/ml. The CA bolus was followed by

the injection of 20ml of physiologic solution. Patients were asked to shallowly

breath over the two minutes of the CTp acquisition phase. CT tube current and

voltage were kept fixed at 100mA and 80kV , respectively, with a 1s rotation

time and exposure of 100mAs. The tissue was acquired every 1sec during the

first 30s and every 3s for the remaining 90s, yielding a total amount of 60

scans, each composed of 8 sections of 5mm thickness.

Examinations were performed since 2008 to 2011, and the patients were

monitored for 3 years after the CTp examination to assess weather they de-

veloped liver metastases. When the study started, not any indication about

the proper way to set up a multi-centre study was available and no previous

CTp multi-centre studies had ever been carried out. Therefore, no phantom

measurements or check of the correctness of the acquisition protocol param-

eters were carried out. The only check carried out on the first three to five

CTp examinations of each Centre was to verify whether the nominal sections

of the liver had been included in the CTp images. In case it had not been,

the responsible person for the Centre was reminded regarding the paramount

importance of the correct selection of the liver level to be analysed.

6.2 Technical issues in multi-centre studies

As discussed in Sect. 6.1, to carry out a successful BF multi-centre study it

is necessary to adopt common methodologies between Centres and achieve a

standardization throughout all the stages of data acquisition, processing, and

analysis. However, defining standard guidelines among Centres can be very

challenging. Indeed, despite all efforts that can be made, the use of different

scanners can hamper and sometimes prevent the achievement of comparable

data [284]. In multi-centre studies, two types of issues may cause results

variability. The former is related to the use of different devices in different

Centres, while the latter is related to the application of different acquisition

protocol. In this section, technical issues met during analysis of PIXEL data

and strictly related to the use of different vendors and models of CT scanners

in different Centres are reported and discussed.

Digital Imaging and Communications in Medicine (DICOM) is the stan-

dard adopted in medical imaging to handle, store, print, and transmit infor-

mation [285]. DICOM files are provided of a header that can contain all the
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details regarding the examination carried out, including information about pa-

tient, acquisition protocol, device used, or even the operator that accomplished

the study. Each information is described in a DICOM tag which can be public

or private, and collected in a DICOM field. Public information are those that

can be included in the standard data elements, such as the patient name or

the tube current value. On the contrary, private fields are often not visible

with common DICOM viewers and are mainly used from vendors to include

device-specific information. Despite DICOM files should contain all the infor-

mation needed for a quantitative analysis and be an effective standard, this

does not always happen. Indeed, in the review on [284] there is an important

call for manufacturers to ensure that DICOM files include embedded data in

well-defined public fields.

During the preliminary data analysis that I carried out together with the

computer engineers of the CVG1 on the CTp sequences acquired for PIXEL,

we immediately had to face two technical issues preventing perfusion data

analysis:

• the lack of some crucial information on the DICOM header

• the differences between the content of DICOM fields of different CT

vendors

The former is related to the configuration of the Picture Archiving and

Communication System (PACS) of the Centre. PACS is the system permit-

ting to store, transfer, and access all types of medical images [286]. Despite

PACS is usually configured to process and store all fields inside DICOM files,

the storage of private tags often has to be specifically enabled. Consequently,

if PACS is not configured to process also private tags, the DICOM transfer to

PACS could cause an information loss [287]. This is what happened in some

CTp examinations of PIXEL. Normally, the lost of information contained in

private fields should not compromise image data processing since, as reported

above, these fields should contain only information useful to the vendor. How-

ever, GE CT scanner store the image acquisition time instant, that should

be stored inside a standard DICOM tag, in the private tag ‘MidScanTime’

(0019,1024). While the availability of the exact image acquisition time could

not be of interest for the majority of clinical applications, the knowledge of this

parameter is of fundamental importance in perfusion analysis. Unfortunately

1a special thanks goes to Eng. Alessandro Gherardi for its help and the tools provided
in the analysis of DICOM sequences.
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there are no way to recover data missed by PACS and the only method to

recover the lost information is to retrieve the examinations directly on the CT

scanner. As regards PIXEL data, acquisition time instants were missed in 40

examinations pertaining to Centres 1 (25 examinations), 15 (2 examinations),

16 (13 examinations).

The second problem we met by analysing PIXEL data regards differences

between DICOM tags of different CT vendors. Indeed, as introduced above,

DICOM should be a standard, but vendors can modify the properties and the

content of public and private tags. The authors on [288] report how difficult

might be the analysis of the information encoded in CT DICOM metadata

due to the embedding of some required information in private tags and to

differences that can exist between fields with same tags of the same vendor

and model make by using different acquisition modalities. In our case, the

main problems we encountered regarded consistency of DICOM fields content.

In particular, three types of problems could be found:

1. data format in the same standard DICOM field were non consistent

2. private tags were used to contain data useful for data analysis and that

should be embedded in standard DICOM tags

3. the same standard DICOM tag was used by different vendors to hold

information with a different meaning

As regards the first problem, differences in encoding of standard DICOM

tags were found between different vendors. The value of the variables em-

bedded in a specific DICOM field could indeed be encoded as a string or as

sequence of bytes. To enable correct loading and usage of these parameters, an

algorithm able to automatically interpret all data of DICOM fields and trans-

late their values in a common format was implemented. A unique data format

was chosen for each parameter on the base of the suitability to data analysis.

For instance, fields containing a numeric value, such as time or tube current

and voltage, were all converted to double format so as to allow automatic

comparison between data acquired with different CT scanners. Another very

important issue is represented by the precision of the temporal data stored.

For instance, in some Centres, such as Centre 1 and 2, all the fields having

a time content are expressed in seconds and have a resolution of 1s while in

other Centres such as Centre 3 or 10, the resolution increases to less than 1ms,

thus becoming more suitable for perfusion analysis.
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The second issue regards the storage of information useful for data pro-

cessing in private field instead of standard DICOM tags. For instance, while

in Philips CT scanners the acquisition time is saved in the public field ‘Con-

tentTime’ (0008,0033), in GE scanners this information is stored in the private

tag ‘MidScanTime’ (0019,1024) that, besides being not standard, it may raise

problems, and with PACS, it is much more difficult to be retrieved. In fact, as

discussed above, private tags are not readable from all the DICOM viewers.

The third and last issue is related to the different usage that vendors do of

the same standard DICOM tag. As an example, let us consider the DICOM

sorting. To correctly carry out a perfusion study, the images acquired have to

be correctly sorted. In Centres such as Centre 9, this can simply be done by

referring to the value of the tag ‘InstanceNumber’ (0020,0013) that increases as

the order of the slices acquired (by z level and acquisition time). However, this

tag does not always assume the same meaning. For instance, in Centre 3 the

tag ‘InstanceNumber’ contains the slice ID related to a specific volume. If 60

tissue volumes are acquired, ‘InstanceNumber’ contains only integer number

between 1 and 60. To correctly sort DICOM images it is thus necessary to

consider also the tag ‘AcquisitionNumber’ (0020,0012) containing the number

of the volume acquired. However, in some other Centres, such as Centre 2,

‘AcquisitionNumber’ contains a number pointing out whether the image has

been acquired during the first or the second phase of the acquisition (i.e., the

first or the second 30 − s acquisition interval). In order to fix the problem of

data sorting, an algorithm considering information from the standard DICOM

tags ‘AcquisitionNumber’, ‘InstanceNumber’, ‘ContentTime’, ‘SliceLocation’

(0020,1041) and from the private tag ‘MidScanTime’, when it exists, has been

set up.

6.3 PIXEL data: early analysis

As we have seen, several issues in multi-centre studies that can cause results

variability exist. Indeed, in addition to the difficulties related to the use of

different CT scanners, variability introduced by the use of different acquisition

parameters need to be considered. Since this is the first multi-centre study and

no information or hints about which parameters could have mainly affected

results, a complete and deep analysis of all the possible sources of intra-Centre

and inter-Centre variability was carried out. Together with the member of

CVG, all the aspects that could affect data and consequently perfusion results
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reliability and comparability were examined. The main steps of the preliminary

analysis carried out on PIXEL data together with the most significant results

achieved are resumed and discussed in the following paragraphs.

6.3.1 The DICOM files

A first check was carried out on the whole dataset to verify that the CTp

examinations were complete with all images and meta-files. When available,

the DICOMDIR file encoding the DICOM directory structures (i.e., how files

are organized) and some metadata regarding patient and acquisition protocol

were used. This file helps identifying and selecting the DICOM files proper

of the perfusion protocol, which are often mixed together with files regard-

ing other routine examinations, such as full-body non-enhanced or enhance

CT. On the contrary, the lack of the DICOMDIR file makes this first check

stage much more challenging, time-consuming and prone to errors. Indeed,

a modality that can be used is to visually check all the DICOM files of each

examination and then extrapolate only those hundreds files pertaining to per-

fusion protocol. However, this manual procedure can lead some DICOM file

to be erroneously excluded from the analysis. A semi-automatic method that

could help in such selection is that of exploiting the content of the DICOM

tags ‘SeriesDescription’ (0008,103E), which contains a description of the series

acquired. However, this tag is optional (i.e., its corresponding field could also

be empty, as happens for the examinations of Centre 16) and it may also have

different contents, depending on the operator selecting its value. For instance,

in Centre 1 this DICOM tag is described as “Perfusion Foie” (i.e., “liver per-

fusion” in French), in Centre 9 it assumes the value “PERFUSION”, while

in Centre 10 it can be equal to “Dyn2min 4.8 B30s” or “DynMulti 2min 5.0

B30s”. In particular, in this last Centre, the several acronyms composing the

tag refer to features of the acquisition parameters adopted. Indeed, “Dyn” and

“Multi” refer to the type of acquisition, which is dynamic and multi-slice (al-

though the term “multi” is not always specified), and are followed by the total

duration of the acquisition (2 min), the slice thickness (4.8 mm or 5 mm) and

the CT software’s convolution kernel used for data reconstruction (“B30s”).

Due to the variability of the content of this tag, in some cases the use of the

manual method for DICOM selection is inevitable.
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6.3.2 The dataset

Once the DICOM files pertaining to perfusion analysis have been correctly

identified, it is necessary to verify that the dataset is complete. For each

examination, the number of DICOM files must equals the result of the product

between the number of sections composing each tissue volume acquired (that,

however, has not been defined in the nominal acquisition protocol (NAP)) and

the number of acquisition time instants (according to the NAP, they should

be 60). For instance, with 8 sections for each tissue volume, 480 DICOM

files are expectedly collected for each examination, while with 16 sections per

volume the number of DICOM files reach 960. The a priori knowledge of these

numbers permits to easily find out whether some data have been missed. For

instance, the examination of the third patient of Centre 8 has 479 DICOM,

this suggesting that one DICOM file has been missed. Examinations where

the missed DICOM files could not be found neither recovered from the source

were excluded from the study.

6.3.3 Volume slices: number and thickness

The number of the acquired slices per volume depends on the sections’ thick-

ness: since the CT z -coverage is limited by a physical constraint, it is possible

to achieve more sections by reducing their thickness. For instance, in some

CT scanners with a maximum z -coverage of 4cm, it is possible to acquire 8

sections of 5mm each or 16 sections of 2.5mm. The nominal slice thickness in

the acquisition protocol of PIXEL was equal to 5mm. However, 8 Centres only

adopted this slice thickness value in all the examinations (Centres 1, 6, 8, 12,

14, 15, 16, and 18). On the contrary, in Centres 3 and 17 some examinations

were acquired with a slice thickness of 5mm and some others of 6mm. In Cen-

tre 7, the slice thickness used was of 5mm or of 0.625mm. The remaining 4

Centres, used a slice thickness other than 5mm in all the examinations: 2.5mm

were adopted in Centre 2, 4.8mm in Centre 10, 6mm in Centres 9 and 19. A

different slice thickness affects quality of the data acquired and consequently,

of the perfusion results. Indeed, by reducing slice thickness it is possible to

achieve more details about the tissue, to reduce partial volume effects, and to

increase quality of motion correction, but at the expense of an higher noise

level inside images. The comparison of results achieved with a different slice

thickness should therefore be considered carefully.
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6.3.4 Pixel size

Another aspect related to partial volume effect is pixel size. Voxel dimension

was not established in the NAP, but it can have relevant effects on the preci-

sion of the perfusion values computed. Indeed, using bigger voxel sizes mean

averaging more information that has to be represented in one voxel. Very dif-

ferent voxel sizes have been found in the same Centre and between different

Centres, ranging from 0.29mm to 0.98mm. The voxel size is also related to

the FOV selected for the acquisition. Figure 6.1, reports an example of three

(a) (b) (c)

Fig. 6.1: In (a), a wide FOV has been used (examination C9N4), in (b), the
FOV is correctly placed (examination C1N1) while, in (c), the FOV is very narrow
(examination C1N62).

examinations acquired with a different FOV. In Figure 6.1 (a), the FOV is

too wide, this resulting in the acquisition of CT images with big pixel size

(0.98mm) and lot of background that is useless. In Figure 6.1 (b), the FOV

is correctly centred on the patient and the acquisition covers all the abdomen

section (voxel size of 0.54mm). Finally, in Figure 6.1 (c) the FOV is narrow

and focused on the liver only. In this case, the voxel size is smaller (0.49mm)

than in the other two examinations, thus permitting to achieve more precise

perfusion values. However, often the use of too a narrow FOV does not permit

to visualize the spleen (that is fundamental for the application of the DIMS),

besides causing sometimes a data loss, since respiratory movements can move

liver outside the FOV. Accordingly, the examinations with a very narrow FOV

have to be included with a great care.
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6.3.5 Acquisition protocol and time information

The sampling time in the acquisition protocol is really a tricky issue to cope

with. The knowledge of the correct time instants in which each image was

acquired is fundamental to achieve reliable perfusion values. For instance,

overestimating the time interval between two acquisition, yields to underes-

timate the BF , meanwhile overestimating BV and MTT . The example in

Figure 6.2 reports a tissue curve of the examination C8N2. The data points

(a) (b)

Fig. 6.2: The same TCC is represented by using two different timelines. In (a) the
real acquisition time of each sample is used (BF of 37.9ml/min/100g), while in (b)
data samples are distributed according to the NAP (BF of 23.3ml/min/100g).

of the same TCC have been placed using different time samples: in (a) the

real reported acquisition time was used (i.e., one image, and hence one data

point, each second), while in (b) data points have been distributed according

to the NAP (the first 30 samples are placed at 1s distance and the last 30 at

3s). BF values computed on the two curves differ of 14.6ml/min/100g, this

highlighting the importance of knowing and using the correct acquisition time

instants.

As regards the acquisition time instants, the acquisition protocol was cor-

rectly followed in all the examinations of Centres 1, 6, and 16. However, even if

the acquisition protocol has been correctly followed, some examinations present

a time glitch (i.e., one or more tissue volumes have been acquired with a lag,

that might be of the order of milliseconds or even of seconds). A couple of

examples of time glitch are presented in Figure 6.3, showing the time intervals

between consecutive volumes acquired in three different examinations. In Fig-

ure 6.3 (a), the NAP has been followed and no time glitches are present. In
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(a) (b) (c)

Fig. 6.3: Time intervals between consecutive volumes referred to three different
examinations. Time intervals of C16N1 are presented in (a). In this case no glitches
are present. In (b), the time intervals of C1N1 show a small glitch in the second part
of the acquisition. Finally, (c) shows time intervals of C17N1 where a significant
glitch is present in the middle of the sequence.

fact, between consecutive volumes there are exactly 1s in the first part and 3s

in the second part of the acquisition. In Figure 6.3 (b), a short time glitch is

visible in the second portion of the acquisition, where the interval between two

consecutive sampling instants is longer than 3s. Finally, in Figure 6.3 (c) a big

glitch (of more than 4s) is visible in the examination whose volumes have all

been acquired with 1s of sampling time. These time glitches are completely

operator independent and can be randomly present in different examinations

of the same Centre, without any apparent reason. Consequently, the only way

to achieve correct perfusion results is to use the acquisition time specified in-

side DICOM tags. The use of the acquisition time instant declared in the NAP

is thus not recommended to compute perfusion and has to be accurately eval-

uated in those cases where time information are not available from DICOM

files.

Particular difficulties to follow the NAP were met by those Centres with

a Philips CT scanner, which does not allow switching the time sampling fre-

quency as GE does. Therefore, some Centres such as 3, 9, 12, 18, and 19

adopted the solution of acquiring all the sequence of images with 1s sampling

time. In some cases, images were acquired for 60 times (60s), this resulting

in very short acquisitions. In other cases, the duration of the acquisition was

kept fixed to 120s (e.g. Centre 12), this resulting in a huge number of data and

an heavy radiation dose delivered to patients. In some other Centres the two

phases have been separated by a pause of 2s (e.g. Centre 15) or 4s (e.g. Centre

10). In Centres 7, 8 and 17 instead, different temporal acquisition protocols

have been adopted in different examinations. Indeed, while some examinations
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of Centre 8 have been correctly acquired following the NAP, some others have

been acquired by using two phases (the former having a time interval of 1s

and the latter of 4s, separated by a pause of 2s), and another one using a one

phase only. In Centre 17 instead, some examinations have been acquired by

keeping the time interval fixed at 1s (with the exception of the glitch of 4s

between the first and the last slot of 30 volumes) and some others by using

a protocol similar to that followed in Centre 15. As regards Centre 7, each

examination has been acquired using different time intervals. In particular,

one examination only was acquired using a one phase protocol (with a time

sampling fixed at 1s). The remaining examinations were carried out using a

two phase protocol, adopting either a uniform time sampling for both phases,

fixed at 1.5s or 1s time sampling for the first phase and 3s for the second one.

In addition, the time interval between phases varies from 8s to 26s. The case

of Centre 2 is different since the examinations have been all acquired using

a multi-phase protocol composed by four different parts having different time

intervals between volumes (3s, 2s, 3s, and 5s were sequentially used as time

intervals). Finally, a yet different acquisition protocol was followed by Cen-

tre 14. Through the analysis of the acquisition time instant, it was possible

to realise that all the examinations of that Centre had been acquired with a

lag between the two phases of the protocol of nearly 14s. The lack of the

acquisition portion during which CA diffuses inside tissue prevents the use of

the data acquired by this Centre that had to be definitively excluded from all

perfusion studies. The same conclusion can be drawn also for those examina-

tions of Centre 7 acquired by using two phases and a very high time interval.

Unfortunately, for 57 examinations of Centres 1, 3, 7, 10, 12, 15, and 16 it

was not possible to retrieve the acquisition time instants neither to check out

the acquisition protocol followed for these examinations. At the moment, not

any test has been carried out yet to assess whether and to what extent, these

glitches may affect the reliability of the obtained TCCs and of the computed

perfusion values, accordingly.

Finally, it is worth noting that two examinations pertaining to Centre 12

(C12N10 and C12N11) could not be analysed, since their DICOM fields were

all empty. The acquisition protocol applied and the sample timing used could

thus not be verified and the two examinations were consequently not considered

any longer.
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6.3.6 Tube current and voltage

Other two parameters that deeply affect the quality of CT data acquired are

the tube current and voltage. The nominal values are 100mA and 80kV re-

spectively. However, several differences have been found between the values of

these two basic parameters in several Centres. In three Centres only (Centres

1, 6, 10) indeed, the examinations were acquired by using the nominal tube

current and voltage parameters. In Centres 8, 16 and 17, the same param-

eters were used for almost all the patients. In four patients indeed, one of

the two parameters has been modified. In four Centres, the tube voltage was

correctly kept at 80kV , but different values of tube current were applied. For

instance, Centre 2 applied a tube current of 80mA, while Centres 12 and 18

used tube current values definitely higher (equals to 200mA and 260mA, re-

spectively). In Centre 15, the examinations are performed by using a variable

and very high tube current, ranging from 204mA to 672mA. The use of high

tube current values does not jeopardize the quality of CT images, but mainly

contribute to deliver patients a very high radiation dose. In Centres 9 and

19, tube current and voltage were kept at 90kV and 133mA, respectively, for

all patients. In Centre 7, the greatest part of examinations have been carried

out at 80kV and 303mA, respectively. However in this Centre, several ex-

ceptions have been made. Indeed, two examinations (C7N6 and C7N1) have

been acquired at 30mA and 100mA (the former at 120kV ). In addition, a

third examination (C7N3) has been acquired in two different phases having

different acquisition parameters. In particular, part of the examination has

been acquired with a tube current of 50mA and voltage of 120kV , while in

the latter part, 303mA and 80kV , have been used, respectively. Therefore,

the quality of these three examinations has to be assessed with a particular

care, since too a low tube current could compromise image quality insomuch

to prevent the achievement of reliable results. Accurate quality controls are

finally needed also for the patients of Centres 3, where both tube and voltage

current consistently vary between patients, assuming several different values

without apparent motivations.

6.3.7 Radiation dose

Related to the tube current and voltage values, there is the radiation dose

delivered to patients. This aspect does not directly influence quality results,

but constitute a very important aspect of perfusion studies. The maximum

nominal dose level in the acquisition protocol had to be lower than 100mAs. To
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verify whether the radiation dose has been kept low, I checked several DICOM

tags. While the field ‘ExposureTimeInms’ (i.e., the duration of exposure for

the frame in milliseconds) is empty in all the examinations and ‘CTDIvol’ (i.e.,

CT Dose Index describing the average dose for this frame, in mGy) is often

incomplete, the only field available to evaluate the radiation dose delivered to

patients is ‘Exposure’ (i.e., the exposure expressed in milliampere per second,

calculated as the product of exposure time and tube current). By analysing

this DICOM tag in the various examinations, I noticed that the exposure was

kept low in almost all the examinations. An exception is represented by those

few examinations of Centres 3, 7, 8, 16 and 18 where high values of tube current

had been selected, making exposure vary between 130mAs and 200mAs, and

for all the patients of Centre 15 where the exposure reached a peak of 672mAs.

6.3.8 Administration of the contrast agent

Another aspect of the acquisition protocol that could introduce variability in

perfusion results regards CA. As reported in [289], the use of different quanti-

ties, concentration, and injection rate of CA can have deep effects on the shape

of arterial and tissue TCCs. The nominal CA administration in PIXEL was of

40ml at 5ml/s. However, the features of the injected CA should be specified

in optional DICOM tags such as ’ContrastBolusVolume’ and ’ContrastBolus-

IngredientConcentration’ (pointing out the volume injected in ml of diluted

CA and the mg of active ingredient per ml of diluted agent, respectively) that

are often empty. Partial information about CA injection have been retrieved

from DICOM tags in 6 Centres only. What emerged is that also in this case,

many variations have been made in the different Centres, and even through

the examinations of the same Centre. In Centres 2, 6, 8, different quantities of

CA have been administered to patients. Indeed, while in Centre 6 the quan-

tity of CA was proportional to patient weight (1.5ml/kg), in Centres 2 and 8

variable quantities of CA (40ml, 50ml, 60ml, and 80ml) were administered in

different examinations, apparently without any selecting criterion. In Centres

8 and 15 instead, different injection rate (4ml/s and 5ml/s) were applied for

CA administration. On the contrary, in Centre 16, what varied is CA concen-

tration (350 and 370mgI/ml). Besides different CA quantities, injection rate,

and concentration, even different CA were administered in different Centres

and in the same Centre as well. For instance, in Centre 2 three different io-

dinated intra-vascular CA (Xenetin, Iomeron, Omnipaque) were administered

to patients. To the best of our knowledge, there are still no studies comparing

131



Chapter 6. PIXEL: a muti-centre study
6.3. PIXEL data: early analysis

the effects of using different CA on perfusion results. In this case, CA are all

of the same type: iodinated and intra-vascular. However, it is important to

pay attention on the possible variability introduced by these CA.

Finally, it is important to note that in examinations C9N43 and C10N16

no CA was administered to patients. Therefore, these two examinations were

excluded from the analysis.

6.3.9 CT scanners

Further sources of variability that can affect quality of results achieved di-

rectly derive from the different CT scanners used. The use of different image

reconstruction algorithms and filters in different CT scanner models or vendors

may indeed affect the quality of CT images on which perfusion parameters are

computed and induce variability, accordingly. As a matter of fact, different

filter types and convolution kernels to reconstruct images in examinations were

used in Centres 2, 3, 7, 15, 16, and 17, and even within the same Centre. In

the absence of proper calibration studies using phantoms, it is not possible

to evaluate how much these factors introduce variability in perfusion results.

However, results achieved by analysing images of the same Centre, obtained

by using different reconstruction algorithms, and used together, should be first

analysed separately to assess the degree of variability introduced, before being

compared.

6.3.10 Resuming of the acquisition parameters used in

the different Centres

Table 6.2 resumes the main acquisition parameters used in the different Cen-

tres. We recall that Centre 14 was excluded from the analysis due to its tempo-

ral acquisition protocol being unsuitable for perfusion analysis (see Sect. 6.3.5).

In addition, 5 examinations pertaining to different Centres have been excluded

from this resuming Table. In fact, CA was not administered to two patients

of Centres 9 and 10, this leading to a total amount of 43 and 12 patients in

the two Centres, respectively. Two more examinations from Centre 12 have

been excluded, because of the lack of any information inside DICOM tags.

Finally, one patient from Centre 7 has been excluded since the examination

was acquired using different acquisition parameters during the two phases of

the examination (see Sect. 6.3.6).

Acquisition time protocol used in Centre 2 is not specified in Table 6.1 since
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Acquisition parameters summary

Centre ID
Tube Tube Exposure Slice CA Time sampling

current (mA) voltage (kV ) (mAs) thickness (mm) D (ml) S (ml/s) C (mgI/ml) n1 t1 (s) delay (s) n2 t2 (s)

NAP 100 80 100 5 40 5 350 30 1 0 30 3

1 100 80 100 5 NA NA NA 30 1 0 30 3

2 80 80 80 2.5

40(2)

NA NA Multi-phase60(19)

80(7)

NA(4)

3

149(7)

NA NA NA 60 1 - - -
152(2) 80(4) 50(2) 5(5)

200(4) 90(11) 100(15)

300(1) 120(3) 150(1) 6(13)

303(4)

6 100 80 100 5 * 5 NA 30 1 0 30 3

7
30(1) 80(5) 100(5) 5(5)

NA NA NA ** ** ** ** **100(1) 120(1) 150(1) NA(1)

303(4)

8
100(19) 80(18) 100(19)

5
40(13) 4(1)

NA
30 1 0 30 3

200(1) 100(1) 200(1) 50(1) 5(13) 30 1 2 30 4

120(1) NA(7) NA(7) 60 1 - - -

9 133 90 100 6 NA NA NA 60 1 - - -

10 100 80 100 4.8 NA NA NA 30 1 4 30 3

12 200 80 100 5 NA NA NA 120 1 - - -

15

204(1)

80

204(1)

5 40 NA 30 1 2 30 3

239(1) 239 (1)

261(1) 261(1) 4(3)

392(1) 392(1)

405(1) 405(1)

427(1) 427(1) 5(19)

438(15) 438(15)

672(1) 672(1)

16
100(48)

80
100(48)

5 NA NA
350(11)

30 1 0 30 3150(1) 150(1) 370(12)

NA(26)

17
100(19) 80(19)

100
5(19)

NA NA
350(15) 30 1 4 30 3

133(1) 90(1) 6(1) NA(5) 30 1 4 30 1

18 260 80 130 5 NA NA NA 60 1 - - -

19 133 90 100 6 NA NA NA 60 1 - - -

Tab. 6.2: Summary of the acquisition parameters of the NAP and of those used
in the different Centres. If different value of the same parameters have been used
in a Centre, the number of examinations acquired with each parameter value is
pointed out between brackets. D, S, and C have been used to indicate quantity,
injection speed, and concentration of CA administered. * the quantity of CA was
patient-based (see Sect. 6.3.8). ** a different time sampling was used for each
examination of the Centre.
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it is composed by several acquisition phases using different sampling frequency

(see Sect. 6.3.5).

Finally, information regarding CA administration are often not available

(NA) inside DICOM tags since included in optional public fields (see Sect. 6.3.8).

Undoubtedly, tube current and voltage and slice thickness are three of the

acquisition parameters that mostly affect perfusion results. As one can see,

only 6 Centres (1, 6, 7, 8, 16, and 17) acquired at least one examination using

for these parameters the values agreed in the NAP. Therefore, a total amount

of 158 examinations have been acquired using at least the agreed tube current

and voltage and slice thickness (71 in Centre 1, 48 in Centre 16, 19 in Centre

17, 18 in Centre 8, 1 in Centres 6 and 7).

6.4 Assessment of image quality

In the CTp guidelines by Miles et al. [83], it is clearly stated that quality as-

surance is of fundamental importance. In its simplest definition, image noise

is measured as the standard deviation of voxel values in a homogeneous area.

Measures of image quality such as standard deviation or SNR are indeed sug-

gested and necessary in multi-centre studies, where differences in CT scanners

and related software may bias data analysis. In Sect. 6.3, the main sources

of variability in the acquisition protocol of each Centre that can affect quality

of results have been discussed. For instance, the use of a lower tube current

can lead to a higher photon starvation effect, while a lower spatial resolution

(i.e., arising from using wider voxel area or thicker slice sections) results in

heavier partial volume effects. Nowadays, all CT scanners are endowed with a

reconstruction software that can somehow attenuate or correct artefacts and

noise. However, each vendor has its own software and the computing pipeline

applied to data are protected. The efficacy of the reconstruction and correc-

tion algorithms may vary between CT scanners of different vendors or even

between different models of the same vendor.

In the following paragraphs, the main results achieved through image qual-

ity analysis in both frequency (Sect. 6.4.1) and temporal (Sect. 6.4.2) domains

are reported and discussed. Three examinations were randomly chosen from

each Centre. Centres 6 and 18 having less than three examinations were ex-

cluded, as well as Centre 14 whose examinations were not suitable for perfusion

analysis (Sect. 6.3.5). The analysis carried out on these examinations is com-

posed by four main steps, resumed in Table 6.3. First of all, I verified whether
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Summary of image quality tests

Domain Test Aims Analysis

Frequency 1 Verify presence of noise peaks Frequency analysis of CT images’ spectrum

Time

1 Evaluate background noise Background density values analysis

2
Evaluate background noise Study of background density

temporal variability values variations over time

3 Evaluate liver noise
Comparison of liver and background
noise and analysis of SNR values

Tab. 6.3: Summary of image quality tests carried out.

noise affecting CT images could be identified in the frequency domain and

removed through the use of frequency filtering techniques. To this purpose I

visually analysed the frequency spectrum of CT images of each examination,

searching for frequency peaks or patterns. After that, I carried out an analysis

in the temporal domain made of three different tests. First, I evaluated the

influence of beam hardening, scatter noise, and CT reconstruction algorithms

on CT images through the analysis of the background noise. In particular,

the histograms and the standard deviation of the background density values

collected in the whole temporal sequence were analysed. In the second test,

I verified whether noise caused by beam hardening, scatter noise, and CT

scanner reconstruction algorithm keep constant over time. To this purpose,

I analysed the variations of mean background density values between slices

acquired in different time instants. Finally, I evaluated the presence of noise

inside liver. Since in this portion of the image, noise depends both on fac-

tors affecting background and on features of the tissue analysed, I selected a

uniform region of the liver (i.e., without big vessels) and compared liver and

background noise through the use of statistical indexes and the computation

of SNR.

6.4.1 Frequency domain

First of all, an analysis of the frequency spectrum of the single slices was per-

formed to find out possible peaks related to noise patterns. In Figure 6.4,

three representative frequency spectrum related to as many different CT ven-

dors, together with the images on which they were computed, are reported.

All the examinations acquired with CT scanners of the same vendor are char-
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(a) (b) (c)

(d) (e) (f )

Fig. 6.4: Frequency spectrum and relative CT images acquired with GE (a,d),
Philips (b,e), and Siemens (c,f) scanners, pertaining to examinations C1N1, C7N7,
and C10N1, respectively, are represented.
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acterized by similar frequency spectra, independently from the model of the

scanner used. Probably, this is due to the different reconstruction algorithms

used by vendors. In particular, by analysing several frequency spectrum, I

realised that all those computed on CT images acquired with GE scanners

(Figure 6.4 (a)) are characterized by features creating a sort of Moire pattern

resembling the traits of a pepper-wort. On the contrary, the spectrum of CT

images acquired with Philips (Figure 6.4 (b)) or Siemens (Figure 6.4 (c)) scan-

ners are characterised by completely different features. In fact, their spectrum

shows that data are mainly distributed on the four principal directions of the

space (horizontal, vertical, and diagonal ones). Despite in some examinations

the traits of the spectrum can be less or more pronounced, features of CT im-

ages acquired with Philips and Siemens scanners results to be very similar. All

the frequency spectra analysed, do not show any frequency peak. This can be

ascribed to the use of reconstruction algorithms (which are probably based on

Fourier sampling) and to the presence of artefacts (e.g. beam hardening and

scatter) and Poisson noise, that are unstructured. Therefore, typical frequency

filtering methods cannot improve image quality in terms of noise and artefacts

removal.

6.4.2 Temporal domain

The image analysis presented in this section considers CT images of the refer-

ence sequence (see Chapter 4) of each examination. Examinations of Centres

3 and 7 were excluded from the analysis since the lack of time information

inside DICOM fields to correctly sorting the images prevented their usage.

The analysis carried out in the temporal domain is subdivided into three main

steps. The first one regards the analysis of the noise characteristic of the image

generation process (i.e., hardware and software reconstruction noise), mostly

independent from the image content. Thereafter, the analysis moves towards

liver tissue noise, also depending on the features of the tissue analysed. Finally,

a comparison between outcomes of these two steps is carried out by means of

apposite indexes.

First of all, I analysed the content of images in a void region of the scan-

ner. A ROI was placed on the background visible in the reference slice of each

examination. A great care was used to exclude blankets and patient clothes

from the ROIs of all the slices of the reference sequence. Examinations with

a FOV so narrow as not to allow drawing a ROI on the background (e.g. Fig-

ure 6.1 (c)) could not be used in this part of the analysis and were replaced by
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examinations of the same Centre having a wider FOV. Therefore, histograms of

the density values of the ROI collected in all the time instants of the sequence

were created and standard deviation values were computed. Some examples

of the ROIs drawn on the reference slice, together with the histogram of den-

sity values, is reported in Figure 6.5. All histograms represent a Gaussian

(a) (b) (c) (d)

Fig. 6.5: CT images with the ROI placed on background region and histograms
of background density values of examinations C19N12 (a,b) and C1N65 (c,d).

distribution centred on around −1000HU , which is the density value of the

air in the ideal case (i.e., without noise). Some of them (as the one shown in

Figure 6.5 (b)) also present a peak in correspondence of −1000HU . Instead,

the peak in all histograms on the lowest attenuation values (i.e., −1024HU)

is the density values set up a-priori for the voxels falling out of the FOV. The

mean and standard deviation values computed on the whole sequence of each

examination by excluding the peak on −1024HU are resumed in Table 6.5.

The noise found in these regions can be attributed to the reconstruction al-

gorithms used in CT scanner, beam hardening effect and scatter noise. The

standard deviation of background value distributions varies from negligible

(4.6HU , Centre 8, second examination) to significant levels (29.6HU , Centre

16, first examination). The examinations more affected by acquisition noise

are those of Centres 2, 10, 16, while those showing the lowest noise levels are

those of Centres 8, 9, 15, 19.

After that, we investigated whether the noise in these background regions

kept constant over time. To this purpose, we computed mean and standard de-

viation of background values in each slice of the sequence. Both the histograms

of means and standard deviations are characterized by a Gaussian distribution

(two examples are provided in Figure 6.6). However, while the histograms of

means (Figure 6.6 (a), (b)) usually present similar range, those of standard

deviation’s can be more varying. For instance, while in C8N2 (Figure 6.6 (c))
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Mean and standard deviation of background density values

Centre
Examination 1 Examination 2 Examination 3

Mean (HU ) Std (HU ) Mean (HU ) Std (HU ) Mean (HU ) Std (HU )

1 −998.2 10.8 −986.5 23.1 −997.4 8.9

2 −980.9 27.8 −987.7 22.1 −995.9 13.3

8 −1005.4 9.5 −996.5 4.6 −988.6 10.5

9 −991.7 13.1 −1003.2 8.3 −996.4 9.6

10 −993.5 17.6 −992.1 19.6 −989.3 21.0

12 −990.9 16.4 −994.4 16.0 −993.3 15.9

15 −991.5 6.8 −993.0 7.0 −997.7 14.7

16 −973.9 29.6 −995.3 11.7 −976.6 29.4

17 −994.0 16.6 −994.3 16.3 −995.8 15.3

19 −999.4 9.8 −1007.0 6.5 −994.2 13.5

Tab. 6.4: Mean and standard deviation of background density values computed
on the whole sequence of the three examinations considered for each Centre.
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Fig. 6.6: Histograms of means (a,b) and standard deviations (c,d) of background
density values collected in the slices of examinations C8N2 (a,c) and C1N27 (b,d).
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the distribution of standard deviations is very narrow (range of about 1HU),

meaning that the noise keeps constant in all slices of the examination, in C1N27

(Figure 6.6 (d)) the range is wider (about 6HU), this pointing out that noise

changed over time. In addition, in order to have a measure of the variations

of the density values in the background regions over time, the standard devi-

ation of the mean density values computed on each slice were calculated for

each examination. These results are represented in Figure 6.7, where standard
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Fig. 6.7: Standard deviation of the mean of the background density values referred
to all slices of the sequence (a) and related histogram (b).

deviation of mean background density values found in the 30 examinations

analysed vary from 0.7HU to 5.0HU . The examinations showing the highest

variation are those characterized by the most variable noise. As one can see

from both the graphics of Figure 6.7, there are only three examinations (i.e.,

C2N46, C2N49 and C8N1) presenting values of mean background standard

deviation greater than 3HU . Instead, in the most part of the examinations

(i.e., those with standard deviation of mean values lower than 3HU), the vari-

ations of system noise are limited. This is most probably due to periodical

manteinance by manufacturers, which must ensure a stable performance of

CT scanner over time.

As the second step of the analysis, we focused our attention on the noise

present in the liver that is just partly related to the acquisition process, but

also due to image content (for instance, patient motion can cause artefacts

affecting tissue image, but not image background). To this purpose, a ROI

has been drawn on a region of the liver excluding big vessels, that remained

quite uniform over time. Since the presence of CA inside tissue affects liver
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density values, only slices belonging to baseline portion of the sequence were

considered in this part of the analysis. In order to select slices pertaining to

the baseline portion only, the time instant of CA arrival in aorta was used as

discriminant. Indeed, until CA does not arrive inside input vessels of the liver,

it cannot reach the tissue. To this purpose, a ROI was placed on the aorta and

the last local minima before the aortic peak was selected. Figure 6.8 reports an
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Fig. 6.8: The aortic curve (in the red colour) and one TCC of the examination
C1N2 (in the blue colour) are shown. The green vertical line highlights the last
local minimum of the aortic TCC before it starts enhancing.

example of the point selected on the aortic TCC of examination C1N2. This

same point is also used also in the algorithm developed to compute correct

baseline values and described in Sect. 7.3.2.

Liver density values found in the baseline portion of each examination are

all characterized by a normal distribution, such as those shown in Figure 6.9.

Table 6.5 resumes mean and standard deviation values of these distribution

together with other fundamental data related to image quality, such as tube

current and voltage, or background standard deviation. Despite distributions

of baseline density values of liver show average values µD that are consistent

with those found in the literature [290], some unexpected very low (less than

µD−2·std) or even negative density values, mainly attributable to the presence

of both noise and artefacts inside images, are present in all the examinations,

as well as extremely high density values (above µD + 2 · std) also due to the

presence of microvessels, artefacts and noise.

As the last step of this analysis, I evaluated noise related to tissue only. To

this purpose, I compared the noise measured in the liver (i.e., depending from
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Main parameters regarding image quality

Centre Examination σB (HU ) σL (HU ) σL/σB µl(HU) SNR (dB)
Tube Tube

current (mA) voltage (kV )

C1
N1 10.4 31.1 3.0 68.2 16.4

100 80N27 24.4 37.3 1.5 66.3 8.7

N65 8.4 19.9 2.4 64.7 17.8

C2
N46 27.4 67.4 2.5 51.7 5.5

80 80N47 27.2 54.0 2.0 57.7 6.5

N49 12.0 30.3 2.5 60.6 14.1

C8
N1 8.8 25.5 2.9 41.0 13.4 100 100

N2 4.6 11.1 2.4 52.0 21.1 200 120

N13 9.8 24.6 2.5 68.5 16.9 100 80

C9
N4 12.8 26.2 2.0 54.9 12.6

133 90N5 8.4 16.7 2.0 66.9 18.1

N6 9.4 22.7 2.4 66.5 17.0

C10
N1 18.55 47.79 2.6 59.3 10.1

100 80N5 21.1 58.6 2.8 63.4 9.6

N6 22.0 58.5 2.7 56.3 8.1

C12
N1 16.9 56.4 3.3 54.5 10.2

200 80N2 15.8 34.1 2.2 59.5 11.5

N5 16.0 50.2 3.1 52.4 10.3

C15
N6 14.9 22.3 1.5 42.4 9.1 438

80N7 6.5 14.8 2.3 64.7 20.0 405

N12 7.0 18.9 2.9 53.5 18.2 239

C16
N4 31.6 45.8 1.4 63.1 6.0

100 80N13 11.1 34.3 3.1 52.0 13.4

N14 31.5 57.0 1.8 67.8 6.7

C17
N1 17.5 33.5 1.9 57.6 10.3

100 80N2 17.1 27.1 1.6 64.6 11.5

N3 15.9 27.5 1.7 65.1 12.2

C19
N7 9.5 16.7 1.8 62.1 16.3

133 90N12 5.9 11.1 1.9 73.4 21.9

N13 13.7 40.6 3.0 46.2 10.6

Tab. 6.5: σB , σL, ratio between σL and σB , µL, SNR, tube current and voltage
referred to the 30 examinations considered.
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Fig. 6.9: CT slice of examination C1N1 with the ROI placed on a liver uniform
region (a) and a histogram of liver density values (b). Density values exceeding
mean ±2 · std are highlighted in the red colour and probably are those mainly
affected by noise, artefacts or presence of microvessels.

tissue, beam hardening effect, scatter noise, and CT scanner reconstruction

algorithm) with that of the background (i.e., attributable to the same causes,

except for tissue). The ratio between liver standard deviation σL and back-

ground standard deviation σB was computed. SNR (expressed in dB), was

calculated according to Eq. 6.1:

SNR = 20log10(µL/σB) (6.1)

where µl is the mean liver density value. σB and σL found in the examinations

considered are represented in Figure 6.10. As expected, the noise on the liver,

depending on both acquisition scanner and patient is higher than that on

the background. In particular, the two histograms of Figure 6.10 highlight

that the range of background standard deviation is about a half that of liver

standard deviation. However, the CV of the two examinations are almost

equal (50% in the liver and 47% in the background), this pointing out a high

consistency between data acquired in the liver and in the background. Indeed,

if by increasing the signal, also the noise increases proportionally, the SNR

(i.e., the inverse of CV) keeps constant, independently if measured in the

tissue or in the background. The highest liver noise level has been found in two

examinations of Centre 2 and in all those of Centres 10, 12, 16. Most of these
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Fig. 6.10: Liver (in the blue colour) and background standard deviation (in the
green colour) of each examination are represented (a), together with the related
histograms (b,c).
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examinations also show high background noise levels. It is important noting

that Centres 2, 10, 12, and 16, showing the highest noise levels, are equipped

with different CT scanner model (a GE Lightspeed VCT, a GE Lightspeed Pro

32, a Philips Brilliance 40, and a Siemens Definition 64). Consequently, the

lower quality of examinations cannot be attributed to the CT scanner model

used in the acquisition.

As regards the ratio between liver and background standard deviation value

is greater than 1 in all the examinations (i.e., the noise on the liver is always

higher than that on the background). The highest values of the ratio can be

found in some examinations of Centres 1, 8, 20, 12, 19. This probably means

that the quality of CT scanner does not permitted to set proper acquisition

parameters.

Finally, according to Eq. 6.1, I computed SNR whose values are resumed in

Table 6.5 and represented in Figure 6.11. As one can see from the histogram
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Fig. 6.11: SNR of each examination (a) and the related histogram (b)

.

(Figure 6.11 (b)), SNR varies from 5.5 to 21.9dB almost uniformly. Indeed,

except for the peak around 10dB, there is almost an equal number of exam-

inations showing each different value of SNR. Tube current used to acquire

each examination represent one of the main causes making SNR varying in

the same Centre. In fact, two of the examinations of Centre 2 (C2N46 and

C2N47), that are those acquired with the lowest tube current, present very

low SNR values (5.5 and 6.5dB), pointing out a low image quality. The agree-

ment between acquisition parameters and image quality is even more evident

in Centre 8, where examination C8N2 that has been acquired using a very
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high tube current (200mA) has the highest SNR value (21.1dB), if compared

with the other two examinations (SNR of 13.4 and 16.9dB, tube current of

100mA). However, an exception to this “rule” is represented by the exami-

nations of Centre 15 where C15N6 the examination acquired with the highest

tube current, is also the one showing the lowest SNR. The causes of this in-

consistency can be found in the different pixel size and filters used during the

phase of image reconstruction of these three examinations of the same Centre.

Finally, it is interesting to note that examinations of Centres 10, 12, and 17

are those presenting the most similar SNR values, pointing out that in these

Centres, the image quality is kept constant over patients.

6.5 Some hints to set up of a CTp multi-centre

study

The set-up of a multi-centre study is something of very challenging. The

selection of a standardized acquisition protocol and method of data processing

to be used between Centres may not be enough to assure the success of the

study. In fact, several issues and pitfalls can be hidden behind apparently

simple choices, such as the adoption of a unique shared protocol, indeed very

difficult to implement. Every information has to be collected with a high

detail before beginning the acquisition campaign, so as to prevent as much as

possible all the eventual sources of variability. Based on PIXEL experience,

this section resumes some hints that besides the guidelines by Miles et al. [83]

for the CTp studies should be taken into account to improve the set up of a

CTp multi-centre study. The information described in the next paragraphs

can be resumed in the following five groups:

• planning phase

• calibration phase

• medical staff training

• early check of the CTp examinations

• data analysis

The planning phase starts from the enrolment of candidate Centres that will

take part to the study, till the selection of the acquisition protocol and the
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details regarding data processing. The second phase is of fundamental impor-

tance to reduce between-Centres variability and performing a first skim of the

Centres enrolled. Later on, a training period of the technicians and the medical

staff of each Centre that will be involved in the execution of the CTp examina-

tions is strongly advised so as to guarantee the foster homogeneity of the data

acquired. A check of the first (3-5) CTp examinations acquired in each Cen-

tre is then necessary to detect and correct possible discrepancies between the

expected and the achieved results. Finally, the last group of recommendations

regards the way data are processed.

6.5.1 Planning phase

This phase is particularly delicate for all the clinical studies and in case of

multi-centre studies is of vital importance. First of all, a board of experts in-

cluding at least radiologists, physicists, computer engineers responsible of data

processing should be set up. The information regarding technical characteris-

tics of the medical devices that will be used in each Centre to carry out CTp

examinations must be collected and analysed by this board. All the limitations

and the problems related to the devices used in each Centre should be known,

starting from those directly related to the CT scanner, such as the maximum

spatial and temporal resolution achievable by the device, to those related to

the connected devices, such as the injection pump used to administer CA or

the storage system of the Centre.

Later on, a meeting between responsible people of each Centre and the

board of experts features of devices used in the several Centres must be carried

out to defined the protocol to be followed. During this meeting, all the aspects

of the study should be faced. The appropriate patient population that can be

included in the study should be defined as well as all the inclusion and exclusion

criteria. The acquisition protocol to be used should be established considering

radiation dose, quality issues, and devices limitations. Centres using devices

with inappropriate requirements (e.g. CT scanners that are not able to allow a

good temporal resolution [83]) should be excluded from the study. Moreover,

as discussed in Sect 6.1 the acquisition protocol should be set so as it could be

fullfilled by each Centre, in order to guarantee the lowest data variability, this

improving further reproducibility studies. The inclusion of each Centre should

also be evaluated based on how much the examination quality should decrease

due to the inclusion. Of course, excluding some Centres may compromise study

timelines and the global validity of the results achieved. A proper trade-off
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has to be found before beginning the multi-centre study.

As regards longitudinal studies, it is important to note that they should

be carried out by using the same equipment and acquisition methods adopted

during the first examinations, in order not to add late sources of result vari-

ability.

6.5.2 Calibration phase

Before carrying out CTp examinations on patients, it is highly suggested to

make static and dynamic analyses of quality on phantoms. Specific calibra-

tions such as those carried out in [278], should be applied across Centres to

ensure that consistent perfusion parameters can be obtained. Large differences

between image quality of different Centres (that, for instance, can be assessed

by using SNR) should be evaluated with particular care. To avoid any bias on

data analysis, the adjustment of the acquisition protocol or the exclusion of

those Centres giving a too low image quality should be also considered in the

early stage of the study.

6.5.3 Training of medical and technical staff

Before beginning the acquisitions, the medical staff of each Centre that is

going to perform the CTp examinations should undergo a specific training.

This is fundamental to reduce as much as possible the sources of inter-Centre

variability related to the acquisition phase. Information regarding patient

preparation ([83]), acquisition protocol, information to be inserted in DICOM

field, and data storage should be clearly communicate to the technical staff

and acknowledged. Finally, a special recommendation should be given about

the preparation of the data to be send to experts that will carry out the

perfusion analysis. To avoid loss of data information, examinations should be

downloaded and stored directly from CT scanner rather than from PACS. A

check to assess the completeness of the stored data should be carried out for

each examination. Moreover, events possibly affecting data quality such as

detectors recalibration or change of the x-ray tube should be reported to the

experts responsible of data analysis.

6.5.4 Check of CTp examinations

The first 3 to 5 CTp examinations acquired by each Centre should be examined

from an expert before acquiring more data. The acquisition of the correct tissue
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portion and the presence of all the parameters needed to carry out a perfusion

analysis should be checked. The agreement between the acquisition parameters

of the examinations and those declared in the standardize protocol should be

verified. All the problems found out during this first analysis must be reported

to the Centre involved, so that it can agree a possible solution. A second

check should be carried out on these Centres to verify whether the problem

encountered has been solved. In case of persisting problems, it is necessary

to evaluate whether the effects caused on results by these inconsistencies can

be negligible or if it is necessary to exclude the Centre from the study, thus

avoiding administration of radiation dose to patients whose examinations will

not be analysed in the study.

6.5.5 Data analysis

After receiving the first CTp examinations from the Centres, the experts should

carry out a preliminary data analysis. An early check of the data received is

important to prevent further exclusion of examinations from the study due to

missing data. In this case, it is indeed important to request data to the Centre

as soon as possible so it can be recovered before being missed. It is necessary

to verify that all the acquisition parameters are stored in the DICOM header.

Subsequently, it must be checked whether the acquisition parameters used for

each examination have been kept constant throughout the whole duration of

the study and if they correspond to those of the NAP. Finally, an image quality

study has to be carried out for each examination in order to verify whether

the quality has been changing over time. The results achieved during this

preliminary data analysis should be evaluated in order to decide whether each

examination can be included in the study.

After these checks, the same post-processing methods should be applied to

each examination (exception made for calibration factors that could change

between each Centre or examination). The same filtering techniques, align-

ment methods, fitting algorithm and model to compute perfusion parameters

should be used as well as the same methodology to place the ROIs on tissue and

vascular inputs. Finally, a standardised protocol to qualitatively and quanti-

tatively interpret images must be used. Adoption of voxel-based techniques to

evaluate perfusion values reliability and to discard misleading data (such those

presented in Chapter 4) are suggested. Moreover, a statistical data analysis

to test between-Centres variability should be carried out before using all data

coming from different Centres. Clinical outcomes could indeed be affected by
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between-Centres variability sources and separate data evaluations might be

required.
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Chapter 7

PIXEL: a muti-centre study

In order to extend our study on normal liver and on examinations acquired

in several Centres, the algorithm previously developed to process CTp images

and compute perfusion parameters in tumours has been deeply revised and

improved (Sect. 7.1). In particular, in this Chapter, several algorithms have

been implemented and tested, such as that to register liver ROIs on CTp

image sequences (Sect. 7.2), or that to compute more correct baseline values1.

Finally, early analyses have been first carried out on patients of Centre 1, and

subsequently extended to some more Centres to achieve landmark values of

baseline (Sect. 7.3) and BF in normal liver (Sect. 7.4) and to verify whether

the use of different CT scanners could affect the results achieved (Sect. 7.3

and 7.4).

7.1 Summary

During the first analysis of PIXEL examinations (Sect. 6.3 and 6.4), a lot of

parameters were highlighted that introduce intra- and inter-centre variability

and prevent the acquisition of data under the same standardized protocol.

Since this is one of the first CTp multi-centre study that has ever been carried

out, the effects of deviation of each parameters from the nominal ones are

unknown. To reduce as much as possible the number of variability sources

and carry out an analysis in which differences between results depend only

on inter-patients and inter-scanner variability, I started by including in the

analysis only the examinations acquired according to NAP. Both the studies

on baseline and BF values (detailed in Sects. 7.3 and 7.4, respectively), have

1The “baseline” is meant as the portion of the TCC before the arrival of CA inside tissue
(Sect. 7.3)
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been first carried out on a randomly selected set of patients belonging to a

single Centre and subsequently extended to more Centres. The reason is that

Centre 1 had the greatest number of examinations and, moreover, correctly

applied NAP to all examinations. As regards multi-centre studies, Centres

with at least 10 patients whose examinations have been acquired by using

the same tube current and voltage, exposure, and slice thickness agreed in

NAP were identified. In particular, Centres 8, 16, and 17 were selected and

the highest number as possible of usable examinations were identified in each

Centre. Multi-centre analysis was carried out by using the same number of

examinations in each Institute.

Working on normal liver required that, besides the algorithms, the Graph-

ical User Interface (GUI) ought to be upgraded as well. In particular, the

GUI has been optimized in order to improve its performance on data process-

ing, for both time processing and memory usage. Also, it had to be partly

redesigned to allow for missing information due to inhomogeneities of acquisi-

tion protocol. For instance, the possibility for the user to insert a time vector

corresponding to the acquisition protocol adopted by the Centre where DI-

COM acquisition time was lost, has been introduced. The DIMS method was

finally implemented and inserted into the GUI.

Also the algorithm to compute perfusion values from data acquired with

the liver protocol has been reviewed step by step. The algorithm pipeline is

shown in Figure 7.1. In this section, all the steps of the algorithm pipeline are

CT image 

sequence

ROI 

definition
Filtering

Motion

correction

Baseline

computation

Perfusion 

computation
Perfusion

values

Pre-processing Computation

Fig. 7.1: The whole algorithm pipeline allowing to compute perfusion results from
data acquired with liver protocol.

outlined, while some steps (i.e., motion correction, baseline computation, and

perfusion computation) are detailed in the next sections of the Chapter.

The first step of the pipeline regards ROI definition. In CTp (Chapters 3

and 4), a large ROI is drawn on the reference slice, outlining tumour borders.

However, when dealing with normal tissues, no mass is present to be contoured.

Tissue ROIs have then been manually drawn on a central section of the volume

acquired and placed within the outer border of the liver. Whole ROI has to lay
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within the liver borders in all the images of the CTp sequence and, possibly,

should be placed quite far from liver margins so as to avoid partial volume

effects. The ROI placement procedure must be carried out with a great care

so as to exclude big vessels, such as portal vein or hepatic artery. An example

of a typical ROI drawn on a liver section is represented in Figure 7.2.

Fig. 7.2: ROI of examination C8N7 drawn on normal liver, far from liver margins
and excluding big vessels.

After ROI definition, a two-stage pre-processing is performed: CT image

filtering and motion correction. As regards the first step, several spatial filters

applied to the raw data was considered. Mean and median filter of different

size (3 × 3, 5 × 5, and 7 × 7) were tested on PIXEL data. Figure 7.3 reports

the effects of these filters applied on the same liver image as Figure 7.2. As

one can see, the application of filters characterized by increasing kernel size

produces deeper effects on CT images. In fact, the 3×3 mean (Figure 7.3 (a))

and median (Figure 7.3 (d)) filters cause a very light effect on CT images

that is almost imperceptible. Instead, a filter with kernel size 5 produce a

little more evident effect. In fact, in Figure 7.3 (b) and (e), it is possible to

detect the exact area on which the filter has been applied. Instead, 7×7 mean

(Figure 7.3 (c)) and median (Figure 7.3 (f)) filters are even more aggressive

and cause a strong blur on images. At the end of this preliminary analysis, I

decided to keep the same 5 × 5 median filter previously used to process CT

images of liver and lung tumours. The reason for this choice was that using
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(a) (b) (c)

(d) (e) (f )

Fig. 7.3: Mean (first row) and median (second row) filter of different size are
applied to DICOM image of examination C8N7. In particular, results of filtering
obtained using kernel dimension 3×3, 5×5, and 7×7, are represented in (a,d), (b,e),
and (c,f), respectively.
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median filters allows exploiting original HU density values, thus avoiding the

introduction of new values resulting from mathematical operations, such as

averaging. As regards filter kernel size, I selected the 5 × 5 since I considered

it as a good trade-off between information preserving and noise removal.

Motion correction is another problem that had to be faced. Due to the long

duration of the acquisition protocol (i.e., 2 min), all the examinations have

been acquired in condition of shallow breathing. Consequently, the effects of

motion were evident in all directions and the application of motion correction

methods was necessary. The ROIs pertaining to liver and lung tumour exam-

inations analysed in Chapters 3 and 4 were manually aligned. However, this

was possible thanks to the relatively low number of examinations and frames

available for each acquisition (only 20 time instants for lung and 36 for liver,

respectively). The high number of examinations of this project (almost 400)

and acquisition time instants of each examination (60) roused the needs for

an automatic motion correction algorithm. Unfortunately, to the best of our

knowledge, there are no general purpose methods available for liver motion

correction CTp applications. Consequently, I developed my own early proto-

typic algorithm that permitted to achieve good preliminary results and it is

going to be improved with the collaboration of the computer science engineers

of the CVG. The algorithm is presented in Sect. 7.2.

After defining the ROI and pre-processing the sequences, the first compu-

tation we decided to address was the baseline (i.e., the density values assumed

by tissue before CA arrival). In ideal conditions (i.e., without noise), tissue

density values before CA arrival (i.e., the baseline attenuation value) should

be constant in time. By subtracting from each TCC its baseline value, it is

therefore possible to achieve the time attenuation curves (TACs) [86]. Practi-

cally, TACs are TCCs without offset that in ideal conditions assume value of

zero before the arrive of CA in the tissue. In Figure 7.4 (a), a tissue TCC is

reported together with the baseline value selected and the corresponding TAC

achieved by subtracting the baseline value from the TCC.

Due to the influence of the baseline value, I decided to directly address

baseline computation in my Thesis work. As discussed in Sect. 7.3, in the

literature several methods to compute baseline values and TACs have been

used. However, these methods often lead to different results that deeply affect

the computed perfusion values finally achieved. For instance, an underestima-

tion of baseline value (as the one represented in Figure 7.4 (b)) would lead

to a TAC with a greater AUC, this resulting in overestimated BV values. Of

course, since MSM is based on the computation of tissue TCC slope that re-
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Fig. 7.4: An aortic (in the red colour) and a tissue TCC (in the blue colour) are
shown together with the horizontal dot line representing baseline value selected
and the TAC (in the green colour) that can be achieved by subtracting baseline
value to TCC. In (a), the baseline is correctly selected while in (b) its value is
underestimated, this resulting in a different TAC, having a greater AUC.

mains unchanged after the subtraction (or addition) of an offset, BF values

computed with this method remains unchanged after the selection of one or

another baseline values. However, as discussed in Chapter 3, the goal of this

Thesis is not to develop algorithms specific for the application of the MSM,

but to set-up methodologies that can be applied to all the methods and mod-

els. Since in PIXEL protocol, image acquisition started contemporaneously

with the injection of CA, several images without presence of CA inside tissue

were available. This allowed me to carry out a study on baseline values and

to set-up an algorithm (see Sect. 7.3) to compute for each tissue voxel the

best baseline value that should be used in perfusion studies. Results achieved

with this algorithm were compared with those obtained by using the methods

presented in the literature. Finally, two studies have been carried out. The

former employed data of a single Centre to test the goodness of the algorithm

developed by comparing baseline values obtained with those reported in the

literature achieved with unenhanced CT scan. The latter study was based

on multi-centre data analysis and have been carried out to analyse whether

the use of different CT scanners could introduce variability on baseline values

computed.

The last step of the algorithm pipeline of Figure 7.1 is the computation of

perfusion parameters. This has been done by using the MSM by considering

both single and dual vascular input, the latter being implemented from scratch.

Finally, two studies have been carried out and described in Sect. 7.4. In the
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former, examinations of a single Centre were considered while, in the latter, a

multi-centre data analysis has been carried out to evaluate whether the use of

different CT scanners could introduce variability on perfusion results.

7.2 Early prototype of rigid registration algo-

rithm

As discussed in Sect. 7.1, PIXEL data were acquired by asking patients to

breath shallowly. This kind of breathing causes motion throughout the se-

quence in all the three main directions. However, if the acquisition is long and

without pauses so as to permit patients to breath, shallow breathing repre-

sents the best method to acquire images. Indeed, by asking patients to hold

their breath as much as they can, it might happen that some deep breaths

in the second part of the examination jeopardize the outcome and that the

examination has to be discarded since affected by too a high motion moving

the investigated tissues out of the FOV. For instance, the work in [155], using

breath-hold protocol, finally excludes 14 out of 43 patients with CRC due to

respiratory motion.

Since it was the first time I coped with examinations acquired in shallow

breathing, first of all I tried understanding how deep the motion caused by

breathing was. To this purpose, I randomly chose some examinations from

Centre 1 and for each of them I drew a ROI on a central slice (the refer-

ence slice) of the sequence, following the liver contour. After that, I manually

carried out a ROI alignment by using the 3D modality (see Sect. 4.2). Conse-

quently, for each acquisition time instant, the slice showing the best matching

with the reference slice was selected. Figure 7.5 reports an example of the

slices that have been selected in five consecutive time instant. The ROI was

then over imposed on the selected slice for each time instant and translated on

the x-y plane to achieve the best matching with liver contour as possible. In

Figure 7.6 (a)-(e), ROIs of examinations C1N7 aligned on the same five con-

secutive acquisition time instant are shown. In Figure 7.6 (f), the same ROIs

are all superimposed to emphasize the displacement in x-y. Displacement of

the ROI along the z direction and on the x-y plane could then be measured.

For instance, the maximum ROI displacement between two consecutive time

instants measured in examination C1N59 is equal to 4.4mm in x direction,

to 14.2mm in y direction, and to 3 slices (15mm) in z direction. As for the

maximum displacement of the ROI on the whole acquisition, it was equal to
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z=2 z=3 z=4 z=5

t=15

t=14

t=13

t=12

t=11

Fig. 7.5: Example of z level selection in consecutive time instant of examination
C1N7. Each row represents a time instant while each column a different z level.
The selected z level of each time instant is contoured by the red square.
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(a) (b) (c)

(d) (e) (f )

Fig. 7.6: Example of a ROI aligned on the x-y plane of different slices of exam-
ination C1N7, pertaining to different time instants. In (f), the ROIs in (a-e) are
been superimposed.
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119.1mm, 148.6mm, and 4 slices (20mm) in x, y, and z direction, respectively.

As one can see, even the motion between two consecutive time instants can be

relevant, especially in the y and z directions.

One of the main difficulties, and probably the reason why no algorithms for

liver motion correction specific for CTp examinations have been developed so

far, is represented by the very narrow section of liver that can be analysed with

CTp, this causing the loss of many anatomical reference points that could be

used to make tissue alignment easiest. Moreover, the presence of a very narrow

FOV (especially in case when only a portion of liver is acquired) makes motion

correction even more challenging.

To face this issue, I developed a preliminary algorithm for automatic rigid

motion correction. As the first step, I simplified the problem by decomposing

motion in two parts: in the cranio-caudal direction and in the transversal

plane. Accordingly, the alignment procedure of the tissue ROI drawn by the

clinicians on a reference slice can be split in two main steps:

1. selecting the correct z level (i.e., the slice on which placing the ROI)

2. aligning the ROI in the x-y plane

Thereafter, for both these steps, I looked for the most suitable anatomical

reference points fulfilling the following criteria:

• being capable of providing clear information regarding liver motion

• being of general-purpose (i.e., not specific for a single patient or acqui-

sition protocol or CT scanner)

• being easily detectable by an automatic procedure

As regards the alignment in the craniocaudal direction, as a reference point I

identified the space between liver and thorax. Indeed, as shown in Figure 7.72,

liver is characterized by a wedge shape, with the base at the top and the vertex

at the bottom. The space occupied by the liver on the transversal plane (that is

the one on which images are acquired) allows evaluating with a great accuracy

the liver z level. In particular, Figure 7.8 shows an example of 4 adjacent

slices with a ROI encompassing this region. As one can see, the space between

thorax and liver undergo relevant size changes by selecting different z levels.

Instead, as regards motion on the x-y plane, I realized how liver follows

the motion of the rib cage caused by breathing. Indeed, during the inspira-

tion phase, the rib cage expands and liver follow the ribs (Figure 7.9) that

2courtesy of http://pie.med.utoronto.ca
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Fig. 7.7: Representation of liver, its vasculature (in the red and blue colours) and
biliary ducts (in the green colour).

(a) (b) (c) (d)

Fig. 7.8: Four adjacent slice of examination C1N7 with a ROI contouring the
space between liver and thorax.

(a) (b)

Fig. 7.9: An example of two CT images of examination C1N7 acquired at the end
of the inspiration (a) and expiration (b) phases.
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consequently, can be chosen as anatomical reference points. In the following

paragraphs, the steps taken in order to achieve a correct 3D rigid alignment

are reported and discussed. The procedure has to be applied to all the images

acquired in each time instant.

The first part of the algorithm aims at selecting the correct z level on

which translating the ROI by measuring the distance between liver border’s

and thorax. In order to automatically select the correct slice in each time

instant, it is necessary to follow these three main steps:

1. bounding patient’s body

2. selecting the image area on which algorithm has to work

3. bounding the region between liver and thorax

For the sake of clarity, the pipeline of this first part of the algorithm is repre-

sented in Figure 7.10.

Bounding 

patient’s 

body

Bounding 

region 

between liver 

and thorax

Selecting

the correct

z level

Working area

selection
HU image

Selection of the correct z level

Fig. 7.10: Pipeline of the first part of the motion correction algorithm allowing
selecting the correct z level at each time instant.

The first step needed to find the correct z level on which translate the

ROI is the separation of patient’s body from the background (i.e., air, clothes,

blankets, and patient’s table). To this purpose, a mean spatial filter has been

applied to the original CT image (Figure 7.11 (a)) in order to smooth details

and differences between similar structures (Figure 7.11 (b)). After that, a

threshold to exclude low density structures (mainly pertaining to the back-

ground) has been applied to the filtered CT images. The mask achieved has

been first inverted (Figure 7.11 (c)), then modified through the application of

162



Chapter 7. PIXEL: a muti-centre study
7.2. Early prototype of rigid registration algorithm

(a) (b) (c) (d)

Fig. 7.11: Original CT image of examination C1N7 (a) and its filtered version (b).
Mask achieved by thresholding low density values (c) and after closure opera-
tion (d), giving the mask of patient body.

a closing operation, allowing obtaining a second mask perfectly discriminating

between patient’s body and background (Figure 7.11 (d)).

To second step aims at speeding up the algorithm and excluding misleading

anatomical structures from the analysis, to this purpose, the area of the image

where the algorithm focuses its analysis has been restricted to the dorsal right

side of the rib cage (that inside images corresponds to the bottom left of the

patient). Since in some examinations patients were not centred in CT images

(e.g. due to a restricted FOV centred on the liver) the centre of CT images

(CCTI) could not be used to identify the posterior right portion of patient’s

rib cage. To this purpose, a method exploiting vertebrae position has been

used. Since the vertebral column is one of the few anatomical structures that

does not move during acquisition, its vertebrae position has been identified

on a non-enhanced image, once and for all. In order to automatically detect

vertebrae, a threshold on CT images has been performed (Figure 7.12 (a)),

this permitting to select highest density values only (corresponding to bones,

calcifications, or high concentration of density values inside vessels). Then, a

morphological closing has been applied (Figure 7.12 (b)) to exclude the smallest

objects and fill the “holes” due to the presence of bone marrow (that having

a lower density with respect to bones has been excluded from the mask).

Thereafter, the vertebra in the slice has been selected as the bigger object

inside the obtained mask and the coordinates of its central point have been

calculated (Figure 7.12 (c)). Finally, the area of interest where the algorithm

have to focus on has been selected. In particular, the centre of the vertebra

has been used as the point discriminating between the right and the left side of

the patient. As regards the identification of the bottom and the top portion of
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Fig. 7.12: Thresholded mask including only high density values of an unenhanced
CT image of examination C1N7 (a) and its closure version (b). Original CT image
with the centre of vertebra (red marker) and the border of the region selected (in
the green colour) highligted (c).

the rib cage, the CCTI has been used if the centre of the vertebra was placed

under the CCTI (i.e., the FOV is large and the posterior part of the patient is

included in the bottom half of CT image). On the contrary, if the centre of the

vertebra was found above the CCTI (i.e., the FOV is narrow or the images are

not centred on the patient), the whole left portion of the image was considered

(Figure 7.12 (c)).

The third and last step of the algorithm used to select the correct slices

is that detecting and outlining the region between liver and thorax. To this

purpose, the original CT image (Figure 7.11 (a)) was thresholded to obtain a

mask excluding background and anatomical regions having very low density

values (e.g. those areas not pertaining to a specific anatomical structure such

as an organ). In this case, the original CT image has been used, in place of the

filtered image, to achieve the most precise profile of this region. Then, the ob-

tained mask (Figure 7.13 (a)) underwent a closing operation to remove a great

part of noisy voxels (Figure 7.13 (b)). In order to remove background elements,

the mask of Figure 7.13 (b) was ANDed voxel-by-voxel with the patient’s body

mask obtained at the previous step of the algorithm (Figure 7.11 (c)), to ob-

tain Figure 7.13 (c). After that, all the elements of the mask out of the region

defined at the first step of the algorithm (Figure 7.12 (c)) were excluded from

the analysis (Figure 7.13 (d)). At this point, the region between liver and

thorax has been isolated. Therefore, the maximum thickness of this region

(intended as the maximum orthogonal distance between liver and the thorax)

can be measured as shown in Figure 7.13 (d).
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(a) (b) (c) (d)

Fig. 7.13: Thresholded mask (a) obtained from the original CT image of ex-
amination C1N7 by excluding structures with very low density values, after the
application of a closing operation (b), the AND operation with the body patient
mask (c) and the selection of the region identified in the first step (d). The red line
in (d) points out the maximum thickness of the region between liver ad thorax.

Distance between liver and the thorax found on the reference slice is com-

pared with that found in the other images of the sequence. In each time instant,

the slice showing the most similar distance to that found on the reference slice

was selected.

In order to evaluate the efficacy of this algorithm to select the correct slice,

a 3D alignment have been manually performed on several examinations. The

outcomes of these tests showed that the algorithm always selected the same

slice manually chosen by clinicians.

After selecting the correct z level where copying the ROI in each time

instant, it is necessary to translate the ROI on the x-y plane. As discussed

above, ribs are great reference points for this phase of the algorithm. Therefore,

it is necessary to automatically identify ribs in each image of the sequence

and use their relative distance to the ROI to correctly align it on the image

sequence. To this purpose, it is necessary to follow these three steps:

1. identifying the ribs

2. detecting the set of proper points of the ribs (i.e., their inner part with

respect to patient’s body)

3. fitting the ribs’ points found at the previous step

These steps are also represented in the pipeline of Figure 7.14.

To identify ribs inside each CT image of the reference sequence, I applied

a threshold to isolate high density structures. However, this would cause the

inclusion of undesired structures (e.g. vessels filled with CA). To reduce the
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Ribs 
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Fig. 7.14: Pipeline of the second part of the algorithm of motion correction
allowing to obtain the ROI’s alignment on the x-y plane.

possibilities of achieving misleading results, I excluded the majority of the areas

found inside the rib cage. To this purpose, I first applied an erosion operation

to the mask of patient’s body (Figure 7.11 (d)) using a structuring element of a

high dimension so as to preserve all ribs, including the dorsal ones that usually

are far from body contour due to the presence of dorsal muscles in patient

back. The eroded mask ANDed with the original CT image is represented

in Figure 7.15 (a). The eroded portion of patient’s body mask corresponding

(a) (b) (c)

Fig. 7.15: Eroded CT image of examination C1N7 (a), portion of the image
eroded (b), and results of thresholding in (c), performed to include in the analysis
high density elements only.

to the region where ribs can be found has been used. The image obtained

by applying the eroded mask to the original CT image (Figure 7.15 (b)) has

therefore been thresholded in order to include in the analysis the high density

elements only (Figure 7.15 (c)).
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After having identified ribs, it has been necessary to identify the side of

their border closest to the internal part of the patient. To this purpose, the

point found in the middle of the mask of patient’s body has been taken as

reference point (RP). The closest points of each rib to RP are those we are

looking for. In order to select them, a closing operation (Figure 7.16 (a)), has

(a) (b)

Fig. 7.16: Mask of high density structures obtained from Figure. 7.15 (c) after
closing operation (a). Selected points of the ribs (in the blue colour) and RP (in
the red colour) (b).

been applied to the thresholded mask of Figure 7.15 (c), to close the holes

caused by the presence of bone marrow. Thanks to this passage, it has been

possible to obtain a unique continuous element for each rib. After that, the

distance between RP and the points of each rib has been computed. The 5%

of the closest points of each rib (Figure 7.16 (b)) have been considered as the

internal side of the rib. A percentage number has been chosen to weight the

number of points to be considered for each rib, depending on their dimension.

However, in some cases, some points found do not belong to ribs. Indeed, if a

vessel is close to liver borders (and hence to rib cage) and filled with CA, it

could be erroneously included (Figure 7.17 (a)). In order to avoid the inclusion

of misleading points not pertaining to the ribs, I exploited the characteristic

convex shape of the rib cage. First of all, I created a mask having the points

identified as the vertices (Figure 7.17 (b)). Thereafter, I created its convex

hull (Figure 7.17 (c)). All those points placed inside rib cage and hence not

belonging to ribs, responsible for concavities in the first mask, were excluded

from the analysis (Figure 7.17 (d)). After isolating the points of each ribs, I

fitted these points by means of smoothing splines (Figure 7.18). The fitting

167



Chapter 7. PIXEL: a muti-centre study
7.2. Early prototype of rigid registration algorithm

(a) (b) (c) (d)

Fig. 7.17: Example of examination (C1N7) (a) in which small vessels filled of CA
could mislead the analysis. Mask of the points identified (b), convex mask (c), and
points excluded from the analysis (d) (in the red colour).

(a) (b)

Fig. 7.18: Example of fitting applied to the points of the rib cage on an un-
enhanced (a) and enhanced (b) CT images of examination C1N7.
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curve draw the interior contour of rib cage that will be used as a guide for the

translation of tissue ROI on the x-y plane.

In order to align tissue ROI on each slice, the horizontal and vertical dis-

tances between ROI and ribs’ fitting curve have been measured. In particular,

starting from the reference slice on which the clinician has drawn the tissue

ROI, the horizontal distance is measured as the distance between the left-most

points of the fitting curve and of the ROI. Instead, the vertical distance is mea-

sured as the distance between the bottom-most points of the fitting curve and

the ROI. These distances can be better visualized in Figure 7.19 (a) where the

(a) (b) (c) (d)

Fig. 7.19: ROI manually drawn on the reference slice of examination C1N7 and
horizontal and vertical lines passing through the left-most and bottom-most points
of the ROI (in the blue colour) and the ribs fitting curve (in the red colour) (a).
Examples of a ROI automatically aligned on CT images acquired during baseline
phase (b), in correspondence of CA arrival in aorta (c), and during the enhanced
phase (d).

left and bottom-most points of the ROI and the fitting curve of the ribs are

highlighted by vertical and horizontal lines. The distance between the red and

the blue lines have been used in the other slices of the sequence to reposition

the ROI. In particular, by finding in each CT image the left-most and the

bottom-most points of the fitting curve, it is possible to replace the ROI by

keeping the horizontal and vertical distances fixed. Figure 7.19 (b)-(d) depicts

an example of ROIs aligned with the automatic algorithm and placed on slices

acquired in different time instants. As one can see, the algorithm developed

is capable to follow liver motion. Its flexibility allows obtaining good results

on both un-enhanced and enhanced CT images, independently from size and

position of tissue ROI. Comparison with manual alignment showed that po-

sitions of the ROIs manually aligned were comparable with those achieved

automatically.

However, this automatic motion correction algorithm has some limitations.
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First of all, it cannot be applied on examinations showing a too narrow FOV.

Vertebrae and at least three ribs on the right flank and the dorsal side of the

patient should be present inside images to permit the correct translation of the

ROI on the x-y plane. Moreover, the algorithm could meet difficulties in the

identification of the correct z level in those cases where the acquisition has col-

lected data from the upper part of the liver. In these cases, the space between

liver and thorax could not be so different between adjacent slices. Even though

this is not the case of PIXEL examinations, because the acquisitions had to

be focused on the central part of the liver. In order to apply this method to

any type of liver CTp examinations, this algorithm should be refined.

Despite these limitations, this preliminary implementation of the algorithm

has shown to work well on the most part of PIXEL examinations. The algo-

rithm presented in this section constitutes the starting point for more advanced

and complete methods of motion correction, allowing to include also those ex-

aminations previously excluded (i.e., those with a very narrow FOV) and to

carry out an elastic registration. Expert computer science engineers of the

CVG are actually working on this topic.

7.3 Baseline

As discussed in Sect. 7.1, the selection of a correct baseline value is of fun-

damental importance to achieve reliable perfusion results [81, 86]. However,

actually several methods to compute baseline and obtaining TACs have been

adopted in the literature, but to the best of our knowledge, no studies have

been carried out to determine which method could be the best one to achieve

baseline values and which are the main advantages and disadvantages of the

methods commonly used. In the following paragraphs, the methods that have

been used in the literature to achieve baseline values and to obtain TACs are

discussed (Sect. 7.3.1). An algorithm for the computation of the correct base-

line values is then described (Sect. 7.3.2), compared with methods used in the

literature (Sect. 7.3.3), and applied to some examinations of PIXEL. Results

achieved considering examinations of Centre 1 only and of four different Cen-

tres are presented and discussed (Sects. 7.3.4 and 7.3.5, respectively). Finally,

some concluding remarks are reported in Sect. 7.3.6.
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7.3.1 TACs computing methods

The achievement of a correct TAC on which computing perfusion values de-

pends on the baseline values selected that can differ according to the choices

regarding the following three aspects:

• use of local or global baseline values

• number of slices considered to compute baseline

• method used to subtract baseline to TCCs

Both local and global baseline values have been used in the literature. Global

baseline values are usually computed as the average of liver density values

inside the tissue ROI on the first image acquired [63]. Global values have

been used both in those studies where perfusion parameters are computed on

a single TCC (obtained by averaging density values in the ROI at every time

instant) [291, 292, 112], and in those studies where a voxel based analysis

is carried out [135]. Despite liver is considered an organ characterized by

a homogeneous texture [293], local density variations due to micro-vascular

structures composing this tissue can be present. As discussed in Sects. 7.3.4

and 7.3.5, local baseline values in the same patients can cover a range of values

even higher than 30HU . The use of local baseline values, following local density

variations of liver tissue are thus crucial to achieve reliable perfusion values

and avoid incurring in under-or over-estimation.

Most of times, baseline is extracted from the first slice acquired in the

sequence [294, 86] so as to be sure that CA has not arrived yet. If local baseline

values are used, this means for each TCC considering its corresponding density

value in the first CT image acquired as the baseline value. In this case, the

presence of noise and artefacts affecting the first CT image can alter baseline

values and lead to incorrect perfusion values. Of course, if the acquisition

protocol used allows to have only one scan in which tissue is non-enhanced,

the baseline value can be extracted from that image only. On the contrary,

if further non-enhanced scan are available, it would be important to use all

of them so to achieve as more reliable baseline values as possible. To this

purpose, the authors in [193] used two volumes acquired before the arrival of

CA in the heart to compute baseline, even if they do not explain how the

baseline was computed on the two images. Probably, the work computing

perfusion on rats [295] is the first one declaring to compute baseline as the

average of the density values of more than one scan (the first 4-5 acquisitions
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are indeed used). Therefore, the needs of baseline values less affected by the

presence of noise and artefacts starts being a recognized necessity [81, 86].

A further source of variability can be found in the methods used to extract

the TACs. To this purpose, several methods exist leading to as many differ-

ent perfusion results. The first method consists in the subtraction of the first

image from the images acquired after the arrival of CA inside tissue. TACs

are therefore directly extracted from the resulting CT images [86, 254]. The

main drawback of this method arises from motion issues being neglected. In-

deed, if patient move (and this is our case since acquisitions are carried out

in shallow breathing conditions), there will be a mismatch between the tis-

sues to which baseline values pertain and the tissue from which these baseline

values are subtracted. This problem does not hold when TACs are obtained

by subtracting local baseline values directly from the data-point of the tissue

TCCs considered [81, 193]. Indeed, since TCCs are usually extracted from

already registered images, density values composing one TCC belong to the

same tissue portion. Consequently, baseline values subtracted from the TCC

correctly pertain to the same tissue portion to which all the TCC data points

pertain.

To achieve the best baseline density values as possible, it is thus important

to adopt local baseline values and to use as the highest number of data points

as possible. Finally, to achieve TAC these baseline values are subtracted voxel-

based directly from TCCs.

7.3.2 Baseline value computation

In this section, the method to compute baseline values is presented. This

algorithm allows computing the best baseline values as possible for each tissue

voxel through exploiting the maximum possible number of data-points.

The main problems related to baseline computation are:

1. deciding the baseline portion (BP), that is how many time instants to

include, that is which are the time instants before CA arrival

2. setting up a proper processing method

As regards the second item, we simply perform an average operation on the

data point selected in the first item. While the first point of BP is naturally

chosen as the first time instant, the real problem is to find out what the ending

point (EP) is.
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The algorithm to find out voxel-based baseline EP values is an adaptive

iterative algorithm subdivided into five steps:

1. tissue TCCs denoising

2. selecting the TCC portion on which looking for BP termination

3. iterative TCC fitting

4. computing TCCs fitting error index

5. selecting the time instant corresponding to EP

The first step needed to better distinguish between the two TCC portions

(i.e., BP and the portion after CA arrival) is the application of a 5-point

moving average filter to each TCC. This procedure allows to better detect the

global trend of the TCCs and to reduce quantity of noise inside the signal that

could lead to the achievement of misleading results. Figure 7.20, reports an

Fig. 7.20: Example of TCC (in the blue colour) randomly chosen among those of
patient C1N1, and its corresponding filtered version (in the black colour) achievable
by applying a 5-point moving average filter.

example of a liver TCC (in the blue colour) that has been randomly selected

from the examination C1N1. As one can see, the signal resulting from the

application of a temporal filter to the TCC (in the black colour) permits to

achieve a denoised curve whose trend better follows the ideal one (see Sect. 2.2).

Thereafter, I started looking for the possible time instants of EP. While

the first data points of each TCC certainly belong to BP, in order to speed up
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the algorithm I selected the proper TCC portion on which looking for baseline

EP. Both the extremities of this interval of possible EPs were selected in a

conservative way so as to preserve all the possible solutions. In particular, the

starting point of the interval (SI) is selected as the time instant of CA arrival in

aorta, following the same principle used in Sect. 6.4.2. While SI is the same for

all the TCCs (since it is extracted from the aortic signal that is one for all tissue

voxels), the ending point of the interval (EI) is kept variable. In particular,

EI is selected for each voxel as the minimum time instant between the peak

time instant of the tissue TCC peak and of the averaged TCC (computed as

the averaged tissue TCC on the whole ROI). The purpose of selecting the

minimum between these two time instants is to reduce computation time in

those cases where a high noise level causes a delay in the absolute peak of

the tissue TCC. This step allows the algorithm to adapt the research of EP

to the most appropriate signal portion, dependently on the time taken by CA

to join that specific tissue voxel. In this way, EI always represents one of

the points surely localised after the arrival of CA in the corresponding tissue

voxel. This permits to include in the interval all the data points that could

correspond to EP and to exclude those data that have been acquired after the

arrival of CA inside tissue. Figure 7.21 reports an example of the EI selected:

(a) (b)

Fig. 7.21: The mean TCC (in the black colour) and one TCC of the examination
C1N2 (in the blue colour) are shown together with SI (the green vertical line) and
EI (the blue (a) or the black (b) vertical line). In (a) EI has been selected from
the tissue TCC while in (b) from the mean curve.

in Figure 7.21 (a) the EI corresponds to the peak of the tissue TCC while in

Figure 7.21 (b) it corresponds to the peak of the mean tissue TCC.

After defining the set of possible solutions, the part of the algorithm aiming
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at computing the correct EP has been implemented. Based on the ideal case

(i.e., absence of noise) where the TCC data points belonging to BP have con-

stant values, TCCs BP has been modelled with a horizontal line. In particular,

an iterative algorithm considering at each iteration different possible EP has

been implemented. Indeed, in the first iteration, the first TCC portion up to

SI is fitted with a horizontal line. The ordinate of the fitting line is given by

the average values of the TCC data points considered. Then, at each iteration,

one more subsequent TCC point is included in the TCC portion that is fitted.

This iterative fitting process goes on until EI is found. An example of the

partial results of this process is reported in Figure 7.22 (a).

0 5 10 15
63

64

65

66

67

68

Time (s)

C
o
n
c
e
n
tr
a
ti
o
n
 (
H

U
)

0 5 10 15
0

0.5

1

1.5

Time (s)

µ
ε
(H

U
)

(a) (b)

Fig. 7.22: A TCC of the examination C1N2 (in the black colour), its SI (the
red vertical line) and the linear (horizontal) fit obtained during the first five iter-
ations (a); the correspondent µϵ values calculated at each iteration, reported by
using the same colour (b).

Now that all the possible BPs of the TCC have been modelled, an index able

to evaluate the coherence between the TCCs data points considered at each

iteration and their ideal version represented by their fitting curve is needed.

To this purpose, the goodness-of-fit error index µϵ has been used. In this

case, the residuals ϵ in each data point are calculated as usual as the distance

between the original data and their fitted (expected) version. Every time that

a data point is included in the analysis, the µϵ value computed increases if it

is far from the last mean TCC value computed, and decreases if it is closer.

Figure 7.22 (b) shows µϵ values computed at each iteration on the TCC data

points considered. However, it is worth noting that an increase of the µϵ value

can be caused by both presence of noise and CA arrival inside tissue. In order
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to reduce the influence of noise and the probability for the algorithm to fall

in local minima solutions, a 5-point moving average filter has been applied on

the time series of the µϵ values (Figure 7.22 (b)).

Now that all the possible TCCs BP and an index evaluating BP data

points coherence with their expected version are available, the correct baseline

EP value has to be selected. To this purpose, I decided to take advantage

from the features of the first and second derivative of the signal. To achieve

precise derivative values of signal, I exploited the analytic derivatives proper-

ties. Therefore, µϵ values achieved after the application of the moving average

filter have been fitted through the use of smoothing spline, by using a very low

smoothness degree. Figure 7.23 shows an example of TCC (a), with related
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Fig. 7.23: A TCC of examination C1N2 and its EI (the red vertical line) (a); the
µϵ values achieved after the application of moving average filter (the blue stars)
and of spline (the black solid line) (b); the first derivative of the fitted µϵ values,
its local minima (the green markers) and EI (the red vertical line) (c).

µϵ values achieved after the application of the moving average filter and its

continuous version (b). Thereafter, the first analytic derivative of the fitted µϵ

has been computed (c) and its local minima values identified. The local min-

ima values of the first derivative correspond to points after which the original

signal (in this case µϵ) increases. As discusses above, the increase of µϵ can

correspond both to the inclusion of an outlier or to the arrival of CA inside

the tissue voxel. In this last case, the increase of µϵ will be constant for several

time instant (i.e, for all the enhancement portion of the TCC). Consequently,

the last local minima value of the first derivative of fitted µϵ could be assumed

as the time instant when enhancement starts. An exception arises in those

cases where the first derivative of µϵ is constant and does not present a local

minima, in correspondence of CA arrival (Figure 7.24). To also detect these

points, I computed the local minima of the second derivative of µϵ and se-

lected those data points with an absolute value lower than a specific threshold
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(a) (b) (c) (d)

Fig. 7.24: A TCC of examination C1N2 and its EI (the red vertical line) (a); the
µϵ values achieved after the application of moving average filter (the blue stars)
and of spline (the black solid line) (b); the first derivative of the fitted µϵ values
and its local minima (the green markers) (c); the second derivative of the fitted µϵ

values and the points where the first derivative is constant (red markers) (d).

(experimentally found and fixed equals to 0.01). The time instant of end BP

has been then selected for each TCC as the last of the local minima on the

first and the second derivative. Accordingly, the baseline value of the TCC is

finally computed as the mean value of the TCC data points of the BP.

7.3.3 Baseline algorithm: preliminary test

In this paragraph, a comparison of results achieved with the algorithm devel-

oped and the state-of-the-art algorithms is carried out. To this purpose, the

algorithm to compute baseline values was first tested on some CTp exami-

nations randomly chosen between those of Centre 1. In this paragraph, data

regarding three representative examinations (C1N23, C1N37, C1N38) are pre-

sented and discussed. Colorimetric maps and histograms of baseline values

achieved for these examinations are reported in Figure 7.25 while Table 7.1

collects the main statical parameters, such as mean, median, standard devia-

tion, and range values, respectively. As one can see, baseline histograms, can

be of several shapes. For instance, histogram of Figure 7.25 (a) presents a sort

of Gaussian-like distribution with a short tale on the right that is heavy till

65HU and very light for higher density values. The histogram in the middle

(Figure 7.25 (b)) is bimodal, presents a heavy left tail, and is the one with

the wider range of baseline values (26.7HU). The histogram of the last ex-

amination (Figure 7.25 (c)) instead, is multimodal, but the range of baseline

values represented (16.4HU) is similar to that of the first histogram (15.2HU).

None of these histograms present groups or sparse baseline values far from the

principal distribution. This is reflected also in the three colorimetric maps
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Fig. 7.25: Baseline histograms and colorimetric maps achieved with our adaptive
algorithm and pertaining to examinations C1N23 (a,d), C1N37 (b,e), C1N38 (c,f).
The red vertical line on histograms points out the mean baseline value of that
examination.

Baseline values

Examination Mean (HU ) Median (HU ) std (HU ) Range (HU )

C1N23 58.7 58.4 2.1 15.2

C1N37 60.3 60.4 4.2 26.7

C1N38 64.7 64.3 3.0 16.4

Tab. 7.1: Mean, median, standard deviation, and range of baseline values achieved
in three examinations (C1N23, C1N37, and C1N38) by using the algorithm pro-
posed in Sect. 7.3.2.
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(Figure 7.25 (d), (e), (f)) that does not show groups of voxels with homo-

geneous colours quite close to the hot ones. All neighbouring voxels assume

colours in a continuous range, this hinting at similar tissue features inside the

ROI. By observing the colorimetric maps it is also possible to achieve informa-

tion about the spatial distribution of baseline values. As one can see, all the

colorimetric maps are locally highly homogeneous. The presence of a local spa-

tial correlation is demonstrated by the gradual passage of baseline values from

lower to higher baseline values that in colorimetric maps results in progres-

sive colour gradients. This spatial correlation of baseline values reflects local

spatial coherence of tissue features. Moreover, since baseline values obtained

through the use of our algorithm are computed in each voxel by using only

data pertaining to one TCC, independently from the signal of the neighbour

voxels, baseline local spatial homogeneity can be considered as a qualitative

indicator of algorithm goodness.

Below, results obtained with the algorithm described in Sect. 7.3.2 are

compared with those of the methods proposed in the literature and discussed

in Sect. 7.3.1. For the sake of a better readability, the adaptive algorithm of

Sect. 7.3.2 is referred to as “BFA” (i.e., Baseline finding algorithm), while the

methods proposed in the literature are referred in a different way, according

to the approach utilized. Thereafter, with the label “G1”, we refer to the one

global baseline value obtained as the average of the density values of the ROI

of the first CT image [135]. “V1” points out the method where the voxel-based

baseline values are assumed as being the corresponding density values of the

ROI of the first CT image [294]. Finally, “V5” refers to the method where the

voxel-based baseline values are computed as the mean density values assumed

by each voxel in the first five CT images [295]. The main features of these four

methods to compute baseline are resumed in Table 7.2.

Since before CA arrival the tissue density should be constant, this portion

of TCC could be fitted by a horizontal line whose ordinate is equal to the

baseline value. Therefore, to have a measure of the goodness of the baseline

value chosen, µϵ has been computed on the BP of each TCC automatically

selected by our algorithm as the absolute mean value of residuals between the

original TCC value and the computed baseline value. Table 7.3 resumes mean

and standard deviation of baseline and µϵ computed with the four different

methods.

Figures 7.26 and 7.27 present baseline histograms and colorimetric maps

achieved for the three examinations by computing baseline values accordng to

V1 and V5, respectively, where histograms of Figure 7.26 are composed by

179



Chapter 7. PIXEL: a muti-centre study
7.3. Baseline

Baseline methods

Method
Number of Type of

volumes considered value

G1 1 Global

V1 1 Voxel-based

V5 5 Voxel-based

BFA
As many

Voxel-based
as possible

Tab. 7.2: Summary of the main features of the methods used to compute baseline.

Baseline values computed with four different methods

Baseline µϵ

Examination Algorithm Mean (HU ) std (HU ) Range (HU ) Mean (HU ) std (HU ) Range (HU )

C1N23

BFA 58.7 2.1 15.2 3.86 0.66 5.5

V1 59.3 5.3 37.0 5.23 1.98 15.3

G1 59.3 − − 4.23 0.81 5.7

V5 58.6 2.8 19.2 4.08 0.75 5.8

C1N37

BFA 60.3 4.2 26.7 5.58 0.86 6.8

V1 58.5 8.5 58.0 7.81 2.91 22.3

G1 58.5 − − 6.67 1.47 10.6

V5 59.1 5.4 37.4 6.12 1.21 11.4

C1N38

BFA 64.7 3.0 16.4 3.74 0.94 6.7

V1 66.4 5.1 34.0 4.92 2.03 14.1

G1 66.4 − − 4.73 1.20 8.2

V5 64.4 3.4 20.8 3.94 0.97 6.7

Tab. 7.3: Baseline’s and µϵ’s mean, standard deviation, and range values obtained
on the three examinations of Table 7.1 by using four different algorithms for the
computation of baseline values.
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(a) (b) (c)

(d) (e) (f )

Fig. 7.26: Baseline histograms and colorimetric maps achieved with V1 and per-
taining to examinations C1N23 (a,d), C1N37 (b,e), C1N38 (c,f). The red vertical
line on histograms points out the mean baseline value of that examination.

(a) (b) (c)

(d) (e) (f )

Fig. 7.27: Baseline histograms and colorimetric maps achieved with V5 for pa-
tients C1N23 (a,d), C1N37 (b,e), and C1N38 (c,f). The red vertical line on the
histograms point out the mean baseline value.
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integer-valued bins (as the density values inside CT images).

As one can see from Table 7.3, mean and standard deviation values of

µϵ are ever lower in BFA that is the algorithm computing baseline on the

highest number of time instants of each TCC as possible. The second method

in terms of goodness of baseline chosen is V5. Indeed, this algorithm that is

voxel-based exactly as BFA, compute baseline values by averaging the first five

density values assumed by the TCC, this resulting in a more robustness with

respect to methods based on a single image only. Indeed, the highest values

of µϵ mean and standard deviation are assumed by V1 and G1 that compute

baseline considering a single image only. In particular, V1 is the one showing

the highest error index, since any averaging operations that could attenuate

the influence of local noise and artefacts are not used.

Colorimetric maps of Figure 7.26 obtained with V1 are much less homoge-

neous than those obtained by using BFA in all the three examinations. More-

over, V1 baseline histograms of the three patients show a wider range with

respect to the other methods (see Table 7.3). On the contrary, baseline values

achieved with V5 are more similar to those obtained with BFA. Indeed, colori-

metric maps are much more homogeneous than those achieved with V1, even

though a lower local variability can be noted, with respect to those obtained

with BFA, mainly due to the lower number of points considered. Greatest

differences between neighbouring baseline values are most of all visible in ex-

amination C1N37. As expected, also the range of baseline values achieved with

V5 is intermediate between those obtained with V1 and BFA. The histograms’

range values is related to colour content found in perfusion maps. Indeed, the

greatest difference of baseline range values computed with V5 and BFA is vis-

ible in the examination C1N37 (i.e., the one showing the highest local colour

differences for the baseline values computed with V5).

Since BFA has shown to be the best method to compute baseline values, dif-

ferences between results achieved using the proposed algorithm and the other

three methods have been computed in each voxel for the three examinations.

Histograms of absolute differences between baseline values achieved with BFA

and the methods used in the literature are reported in Figure 7.28. As one can

see, average differences increase according to the value of µϵ computed.

The use of different methods to compute baseline value leads to different

results that affect reliability of perfusion values computed. The two methods

mainly used in the literature (V1 and G1) are those yielding the least correct

baseline values. As regards V5, despite it allows achieving good results, dif-

ferences with BFA can differ of even more than 5HU . The use of voxel-based
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Fig. 7.28: Histograms of absolute differences between baseline values computed
according to BFA and to V1 (first row), G1 (second row), and V5 (third row),
referring to different examinations; from left to right: C1N23, C1N37, C1N38,
respectively. Vertical red lines point out histograms mean value.
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baseline values computed on the largest number of time instants is therefore

highly suggested, in order to achieve the best perfusion results as possible.

7.3.4 Baseline values in a single Centre

In this section, the BFA algorithm has been applied referring to 40 exam-

inations randomly chosen from Centre 1. One central section of each CTp

sequence has been selected and a ROI has been drawn free-hand on the liver,

following the modalities described in Sect. 7.1. ROIs area mean and standard

deviation was of 23.18 ± 10.3cm2. Voxel-based baseline values have been com-

puted for each ROI and represented through the use of a colorimetric map.

Mean, median, standard deviation, and range values have been computed for

each patient.

Baseline values obtained in each examination together with their mean

values are represented in Figure 7.29. Each data column represents one ex-

Examination

Fig. 7.29: Baseline bins of each examination, represented with blue dots, appear-
ing like continuous blue lines. Red markers represent mean baseline values for each
examination.

amination. The blue points composing each column represent the bin having

non-zero values in the related histogram of baseline values. As one can see,

range of baseline values of each examination are quite similar in almost all the

examinations. Averaged baseline values under 40HU have been found in two

examinations only and could point out presence of steatosis [296].

Averaged baseline values over all the examinations are resumed in Table 7.4
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Baseline values in Centre 1

Mean (HU ) Median (HU ) std (HU ) Range (HU )

61.7 63.6 10.1 32− 79

Tab. 7.4: Mean, median, standard deviation, and range of baseline values achieved
in 40 examinations of Centre 1 using BFA algorithm.

In the literature, normal mean density values for the liver have been mea-

sured through the use of unenhanced CT scans and are around 50 − 65HU [297].

Other works, extend their range value to 30HU − 70HU [290, 298, 299]. In a

recent retrospective study involving 48 patients with normal liver who under-

went two CT examinations carried out with two different CT scanners in less

than one year [300], the mean liver density values measured ranged respec-

tively from 9.6 to 63.2HU and from 20 to 77.2HU . Therefore the mean values

achieved for baseline in our study are compliant with values of normal liver

reported in the literature. Consequently we can conclude that baseline values

of normal liver of patients with CRC are compliant with values of normal liver

in healthy subjects reported in the literature.

In Figure 7.30, the histogram of the absolute differences between mean and

Fig. 7.30: Histogram of the absolute differences between mean and median base-
line values of the various examinations.

median baseline values of the 40 examinations is shown. As one can see, mean

and median baseline values are very similar in all the examinations (difference
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values lay under 1HU), this suggesting quite symmetric distributions (as those

achieved in Sect. 7.3.3, Figure 7.25 (a), (b), (c)).

Finally, all the baseline colorimetric maps computed showed a high spatial

correlation, this confirming preliminary results achieved in Sect. 7.3.3 (Fig-

ure 7.25 (d), (e), (f)). Indeed, presence of spatial coherence hints at local

similarities of tissue features and at the goodness of the algorithms developed.

7.3.5 Multi-centre study of baseline values

In this section, a multi-centre study has been carried out on baseline values

of examinations pertaining to 4 different Centres. Centre 8 was the one with

the smallest number of patients that could be enrolled in the study since 10

of them had to be discarded. Indeed, in 6 examinations some DICOM files

were missed, in 2 examinations a different acquisition protocol from the one

agreed in PIXEL (Sect. 6.1) was followed, and two more patients developed

liver metastases within three years from the CTp examination. Finally, 10

examinations remained available in Centre 8 and, in order to have a fair com-

parison between Centres, the same number of patients was selected in the other

three Centres as well. 40 examinations (10 from each Centre) were chosen on

the whole that met the criteria discussed in Sect. 7.1.

Tissue ROIs were drawn on each examination following the method dis-

cussed in Sect. 7.1. Baseline values of each examination were computed by

using the BFA algorithm described in Sect. 7.3.2 and represented through

the use of a colorimetric map. Baseline mean, median, standard deviation,

and range values were computed for each examination. One-way ANOVA

(p-value ≤ 0.05) was applied to check for differences of mean baseline values

among Centres.

ROIs area mean and standard deviation values in Centres 1, 8, 16, and 17,

were of 20.1 ± 6.0cm2, 25.9 ± 7.6cm2, 22.3 ± 7.0cm2, 21.7 ± 8.7cm2, respec-

tively. Baseline mean, median, standard deviation, and range values computed

for each Centre are resumed in Table 7.5. Again, as occurred in the single-

centre study discussed in Sect. 7.3.4, baseline values of patients with CRC

found in these 4 Centres are compliant with values of normal liver reported in

the literature [297, 290, 298, 299, 300].

Histograms of the baseline values collected in each Centre are represented

in Figure 7.31. As the first consideration, all the histograms are multimodal

meaning that the baseline values can be arranged into groups. As one can see,

Centre 8 is the one presenting the largest range of baseline values. By com-
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Baseline values of 40 examinations acquired in 4 different Centres

Centre Mean (HU ) Median (HU ) std (HU ) Range (HU )

1 56.0 58.3 13.1 67.6

8 60.6 64.4 15.0 87.0

16 59.0 58.8 11.1 66.2

17 62.3 62.0 4.7 29.6

Tab. 7.5: Baseline mean, median, standard deviation, and range values in 40
examinations acquired in 4 different Centres.
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Fig. 7.31: Histogram baseline values referring to all the examinations of Centres
1 (a), 8 (b), 16 (c), 17 (d).
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paring baseline ranges of the various Centres on the histograms, it is possible

to note that in Centre 8 there are some baseline values that are very low with

respect of those achieved in the other Centres. By deepening the analysis, I

realized that these baseline values mostly pertained to one patient affected by

liver steatosis (being his mean liver value 8.9HU lower than mean spleen value

21.6HU of more than 10HU [296]). Patients with this kind of disease were

not excluded from PIXEL cohort and liver values of this examination were

compliant with this type of pathology [301]. While histograms of Centres 1

and 16 show distributions with similar range, Centre 17 is characterized by a

very narrow distribution (this is also confirmed by standard deviation value,

that in Centre 17 is almost one third with respect to the other Centres).

As an example, in Figure 7.32 four baseline colorimetric maps pertaining

(a) (b) (c) (d)

Fig. 7.32: Baseline colorimetric maps of Centres 1 (a), 8 (b), 16 (c), and 17 (d).

to examinations randomly chosen from Centres 1, 8, 16, 17, respectively, are

shown. As one can see from Table 7.5, all the four Centres present statistically

equivalent mean baseline values, as confirmed by one-way ANOVA. In addition,

also in this multi-centre study, all the baseline colorimetric maps pertaining to

the different Centres show a spatial local correlation, with quite gradual colour

changes between different regions of the ROI. This spatial correlation reflects

the local spatial coherence of tissue features. Moreover, since the baseline

values obtained with our algorithm are computed in each voxel by using only

data pertaining to one TCC, independently from the signal of the neighbouring

voxels, the baseline local spatial homogeneity can be considered as a qualitative

indicator of the algorithm goodness.
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7.3.6 Concluding remarks

One of the first operation to perform a CTp study is the subtraction of baseline

values from TCCs (Sect. 2.2). Therefore, the selection of a correct baseline

value is of fundamental importance in order to achieve accurate perfusion

results. In the literature, several methods to compute baseline values are

presented, although no comparative studies decreeing the best method exist.

However, no studies to evaluate which could be the best one have been carried

out so far.

A novel algorithm to compute baseline values has been conceived to improve

the methods used in the literature by considering as the highest number of data

points as possible. The data analysis highlighted the effectiveness of this new

method and its capability of providing better results if compared to the other

methods. The use of our adaptive voxel-based approach method to compute

baseline values is therefore highly suggested for all the liver CTp studies.

Moreover, the analysis carried out on patients of Centre 1 pointed out that

the baseline values of normal liver in patients with CRC are compliant with

values of normal liver reported in the literature for healthy subjects. This

result was also confirmed in the examinations acquired in Centres 8, 16, 17.

In addition, the outcome of statistical analysis carried out on baseline values

obtained in the multi-centre study pointed out that the use of different CT

scanners does not affect baseline values.

7.4 Computation of perfusion values

In several hepatic CTp studies, perfusion values obtained in cancer tissue have

been compared with those computed on normal liver. However, in case of

liver diseases, perfusion values are obtained on normal liver in often small tis-

sue regions, just apparently free from pathology, without considering that the

obtained results could somehow be influenced by the presence of occult metas-

tases or by the pathology itself. In the next paragraphs, I refer to perfusion

values computed on patients with CRC, but free from any hepatic disease.

Patients who developed liver metastases within three years from CTp exam-

ination, or that might be affected by liver steatosis, were excluded from the

study. Perfusion values obtained in patients of the same Centre (Sects. 7.4.1

and 7.4.2) and of four different Centres (Sects. 7.4.3 and 7.4.4), respectively,

are compared with each other to assess whether the use of different CT scan-

ners might affect perfusion parameters. Although in the literature the use of
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dual vascular input is highly suggested, many works are still carried out by

using a single vascular input. Here, all the measures presented are obtained by

considering both single (Sects. 7.4.1 and 7.4.3) and dual (Sects. 7.4.2 and 7.4.4)

vascular input. Some concluding remarks are finally reported in Sect. 7.4.5.

7.4.1 Single input BF values in normal liver

In this first study, perfusion values have been computed in all the examinations

of Centre 1, on patients with healthy liver that did not developed metastases.

In addition, in order to ensure nominally more homogeneous values, I excluded

two patients with proved liver steatosis and one not-well defined circular for-

mation. In three more cases, CTp acquisition was not centred on liver and

perfusion analyses were not possible. Three more examinations were finally

discarded since artefacts were too heavy. Altogether, 14 examinations were

excluded from the study and 57 patients were finally considered.

ROIs were drawn in each examination following the same criteria used in

Sect. 7.1. A single central section was selected and a ROI was drawn on the

liver, avoiding big vessels. BF was computed in each voxel of the ROI through

the use of the SIMS. BF values were shown through the use of colorimetric

maps and their mean and standard deviation values were computed for each

patient. Mean, median, standard deviation, and interquartile range (IQR) of

all mean BF values were finally computed.

Mean of ROIs’ area was of 22.3 ± 12.1cm2. BF values of each examination

together with their mean values are shown in Figure 7.33. Each column of data

is representative of one examination. The blue data of each column represent

the bin having non-zero values in the related histogram of BF values. The

other statistical parameters are resumed in Table 7.6.

Single input perfusion parameters in normal liver

Perfusion Unit of
Mean Median std IQR

parameter measure

BF ml/min/100g 34.3 32.5 13.1 14.6

Tab. 7.6: Mean, median, standard deviation, and interquartile range values of
mean BF values of the examinations of Centre 1.

Let us define the mean and the standard deviation of the BF mean values

of each examination as mmBF and smBF , respectively, and the mean and the
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Examination

Fig. 7.33: Representation of BF values of each examination considered in Centre
1. Red markers represent mean BF values for each examination. Green horizontal
line represents the mean BF values computed over all the examinations of Centre 1.
Blue horizontal lines delimit the range between mean and one standard deviation
of the BF values computed over all the examinations of Centre 1.

standard deviation of the BF standard deviation values of each examination

as msBF and ssBF , numered from bottom to top, left to right, respectively. By

calculating the two thresholds T1 and T2 as follows:

T1 = mmBF + smBF (7.1)

T2 = msBF + ssBF (7.2)

it is possible to classify the distributions of BF values in four different groups

(Figure 7.34). The former represents most of the examinations (76%) while

the other three only a minority of cases. The first group includes all the exam-

inations having a BF mean value lower than T1 and a BF standard deviation

value lower than T2 (these examinations are represented in the green colour

in Figure 7.34). C1N1 and C1N32 are two examples of examinations pertain-

ing to this group and having different distributions of BF values. Indeed, as

one can see from Figure 7.35, both the examinations are characterized by a

Gaussian-like distribution of BF values, but while the histogram of C1N1 (Fig-

ure 7.35 (a)) is symmetric, that of C1N32 (Figure 7.35 (c)) has a long-right

tail. The high perfusion values of this tail pertain to the highly perfused region

in the middle-upper portion of the ROI (Figure 7.35 (d)), possibly due to the

presence of a vessel. However, by excluding this highly perfused region (Fig-
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Fig. 7.34: Scatter of mean and standard deviation BF values. Red vertical and
horizontal lines represent the threshold values T1 and T2 used to subdivide the four
groups of examinations, respectively.
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Fig. 7.35: Histograms and BF colorimetric maps of examinations C1N1 (a,b) and
C1N32 (c,d). In (e) the colorimetric map of C1N32 after the exclusion of BF values
higher than 35HU .
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ure 7.35 (e)), one can see that tissue is heterogeneously perfused with BF values

varying from 10 to 35ml/min/100g. The colorimetric maps of Figure 7.35 (b)

and (e) are representative of normal liver functional features, showing gradual

spatial variations from low to high perfusion values, this hinting at the coex-

istence of alternating adjacent high and low vascularized regions. The same

heterogeneous coarse texture is visible in all the examinations of Centre 1.

The second group (represented in Figure 7.34 by the markers in the ma-

genta colour) collects the examinations having a low BF mean (less than T1)

value, but a high BF standard deviation (above T2). In Figure 7.36, two rep-

(a) (b) (c) (d)

Fig. 7.36: Histograms and BF colorimetric maps of examinations C1N37 (a,b)
and C1N71 (c,d).

resentative examples of examinations pertaining to this category are reported.

As one can see, both the histograms of Figure 7.36 (a), (c) are bi-modal. Also

in this group of examinations, the tissue is still composed by both high and low

vascularized regions. However, despite the presence of local perfusion correla-

tion between neighbouring voxels (Figure 7.36 (b), (d)), the spatial transitions

between low and high BF values are sharper with respect to those found in the

first group of examinations, this causing a lack of voxels with medium perfusion

values and the bi-modality of the relative histograms, accordingly. Of course,

the symmetry of the BF histograms strictly depends on the percentage of the

area of the two regions composing the tissue. Indeed, while in C1N37 the area

of the tissue showing the highest perfusion equals that of the regions with the

lowest perfusion, this causing a sort of histogram symmetry (Figure 7.36 (a)),

in C1N71 the regions lowly perfused are predominant and this is reflected in

the histogram shape that is heavily right skewed (Figure 7.36 (c)). For the sake

of completeness, the right tale (perfusion values higher than 65 ml/min/100g)

is constituted by the voxels of the vessel present in the middle-upper portion

of the ROI.
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The third group (represented in the blue colour in Figure 7.34) is that

collecting examinations having a high mean BF (higher than T1) and a low

BF standard deviation (lower than T2). In Figure 7.37, two representative

(a) (b) (c) (d)

Fig. 7.37: Histograms and BF colorimetric maps of examinations C1N7 (a,b) and
C1N30 (c,d).

examinations (C1N7 and C1N30) pertaining to this category are reported. As

one can see, the tissue of these examinations results to be more perfused than

those found in the previous groups. The histograms (Figure 7.37 (a), (c)) are

both Gaussian-like and present just light right tails, this meaning that a great

portion of the tissue analysed is characterized by high perfusion values. Indeed,

differently from examinations C1N32 and C1N71, where the voxels presenting

the highest perfusion values are grouped in one small connected region, in

the colorimetric maps of C1N7 and C1N30 (Figure 7.37 (b), (d)), the high

perfusion values are distributed on extended connected areas. Therefore, in

this case, the very high perfusion values are not ascribable to the presence of

a vessel, but rather to the intrinsic features of the tissue analysed which is

highly vascularized.

Finally, the last category (represented in the black colour in Figure 7.34)

include examinations having high BF mean and standard deviation values

(higher than T1 and T2, respectively). In this group, two examinations only

have been included. Both C1N21 and C1N26 present a wide range of perfusion

values, also including very high BF values (higher than 100ml/min/100g).

Their corresponding histograms (Figure 7.38 (a), (c)) have a Gaussian-like

shape with a long right tale. The highest perfusion values (i.e., those in the

right tail of the histograms) are all collected in small connected regions of the

colorimetric maps (Figure 7.38 (b), (d)), corresponding to quite big vessels.

In order to remove unreliable perfusion values caused by the presence of

vessels, artefacts, and noise, the triangle method has been applied to threshold
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(a) (b) (c) (d)

Fig. 7.38: Histograms and BF colorimetric maps of examinations C1N21 (a,b)
and C1N26 (c,d).

the colorimetric perfusion maps of each examination. The distributions of

perfusion values obtained for each examination after applying thresholding

are represented in Figure 7.39. As one can see, comparing it with Figure 7.33,

Examination

Fig. 7.39: Representation of BF values of each examination considered in Centre
1 after thresholding. Red markers represent mean BF values for each examination.
Green horizontal line represents the mean BF values computed over all the exami-
nations of Centre 1. Blue horizontal lines delimit the range between mean and one
standard deviation of the BF values computed over all the examinations.

BF values distributions of most of the examinations are practically unchanged

after thresholding, since characterized by very low fitting errors. Nonetheless,

in other examinations, such as C1N21 and C1N26, the highest perfusion values

are mainly attributable to the presence of vessels and the effects of thresholding

become clearer and well visible in Figure 7.39. Figure 7.40 reports histograms

and colorimetric maps of examinations C1N21 and C1N26 obtained after the
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Fig. 7.40: Histograms and BF colorimetric maps of examinations C1N21 (a,b)
and C1N26 (c,d) after thresholding.

application of thresholding method. As one can see, by comparing Figures 7.38

and 7.40 the right tale of the two histograms (Figure 7.38 (a) and (c)) heavily

shrank and the typical liver heterogeneous texture found in the examinations

of the other groups is now well visible (Figure 7.40 (b) and (d)).

Mean, median, standard deviation, and interquartile range values of all

mean BF values of each examination are resumed in Table 7.7. As one can

Single input perfusion parameters in normal liver after thresholding

Perfusion Unit of
Mean Median std IQR

parameter measure

BF ml/min/100g 34.1 32.5 12.9 14.0

Tab. 7.7: Mean, median, standard deviation, and interquartile range values of
mean BF values achieved after the application of the triangle method in the ex-
aminations of Centre 1.

see, the exclusion of unreliable perfusion values has yielded a moderate de-

crease of the statistical parameters resumed in Tables 7.6 and 7.7. Indeed,

the exclusion from the analysis of the highest BF values (e.g. those related to

the presence of vessels) causes the reduction of mean perfusion values, while

the removal of the most unreliable BF values (both high or low) leads to

a decrease of both standard deviation and interquartile range values. This

can be noted also by looking at the histograms of mean and standard devia-

tion of BF values of each examination before (Figure 7.41 (a), (c)) and after

(Figure 7.41 (b), (d)) thresholding. In particular, after thresholding, both

the histograms (Figure 7.41 (b), (d)) are narrower and with a higher con-

centration of data on the left side than those achieved without thresholding
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Fig. 7.41: Histograms of mean (a,b) and standard deviation (c,d) of BF values
before (a,c) and after thresholding (b,d).

(Figure 7.41 (a), (c)), this causing a reduction of the distributions’ mean, stan-

dard deviation, and interquartile range values. However, since examinations

of Centre 1 were not particularly affected by high noise levels or the presence

of artefacts and vessels, the application of thresholding causes only slight vari-

ations on the distributions of BF mean and standard deviation values and,

consequently, the reduction of the overall statistical indexes (i.e., those re-

ported in Tables 7.6 and 7.7) can be considered negligible, although for single

examinations they could be relevant.

7.4.2 Dual input BF values in normal liver

The same examinations and ROIs of Sect. 7.4.1 were also used to compute

perfusion values considering a dual vascular input. In addition, a ROI was

placed on the portal vein and on the spleen of each examination of Centre

1 (Figure 7.42). 22 examinations were excluded from the study since it was

not possible to detect either the spleen or the portal vein. Indeed, spleen was

not visible inside CT images of 17 examinations due to the too narrow FOV

or to splenectomy (Figure 7.43 (a)), while in 5 more examinations the portal

vein either the spleen were not visible because of the z level selected that

was different from different from the one agreed (Figure 7.43 (b)). A total

amount of 35 examinations were finally analysed. Voxel-based aBF , pBF ,

and HPI values were computed using the MSM and shown through the use of

colorimetric maps.

aBF , pBF , and HPI were computed on each voxel of the tissue ROI. Mean

and standard deviation values of these perfusion parameters were calculated

for each patient. Distribution of aBF , pBF , and HPI values are represented

in Figure 7.44. Mean, median, standard deviation, and interquartile range of
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Fig. 7.42: ROIs placed on portal vein (in the red colour) and spleen (in the green
colour), referring to examination C1N24.

(a) (b)

Fig. 7.43: CT images of examinations C1N21 (a) and C1N79 (b), excluded from
dual input analysis due to the too narrow FOV and a wrong z level acquired,
respectively.
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(a)

(b)

(c)

Examination

Examination

Examination

Fig. 7.44: aBF (a), pBF (b), and HPI (c) found in the examinations of Centre
1. Red markers represent mean BF values for each examination. Green horizontal
line represents the mean BF values computed over all the examinations of Centre 1.
Blue horizontal lines delimit the range between mean and one standard deviation
of the BF values computed over all the examinations of Centre 1.
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mean aBF , pBF , and HPI values were finally computed and are resumed in

Table 7.8.

Dual input perfusion parameters in normal liver

Perfusion Unit of
Mean Median std IQR

parameters measure

aBF ml/min/100g 19.4 17.3 8.8 8.0

pBF ml/min/100g 94.4 93.6 26.6 37.3

HPI % 18.0 15.7 9.1 12.1

Tab. 7.8: Mean, median, standard deviation, and interquartile range values of
mean aBF , pBF , and HPI values found in the examinations of Centre 1.

In healthy subjects, the major part of blood is supplied to liver by the portal

vein [302, 303]. The data shown in Table 7.8 and in Figure 7.44 highlight that

this condition holds even in case of patients with CRC. Indeed, mean aBF

is lower than mean pBF in all the examinations and consequently, the mean

HPI assumes values always lower than 50%. However, as one can see by

analysing the distributions of HPI (Figure 7.44 (c)), the local HPI values can

also reach very high peaks, revealing the presence in some examinations of

voxels characterized by a prevalence of arterial vascularization. Nonetheless,

these examinations are all characterized by very wide range of HPI values.

In fact, no examinations showing a narrow range (lower than the 70%) and

containing very high HPI values (higher than 80%) exist. Therefore, generally,

liver tissue is prevalently characterised by portal vascularization and in those

cases where there are some tissue voxels mostly receiving blood from arterial

circulation, they represent only a minority of cases. In Figure 7.45, is reported

an examples of an examination having some voxels characterized by prevalent

arterial vascularization. High local HPI values (Figure 7.45 (c)) are all grouped

in continuous regions, mainly corresponding to those hypo-vascularized areas of

pBF represented in the blue colour inside the corresponding colorimetric map

(Figure 7.45 (b)). Therefore, despite the global prevalence of blood supply is

portal, inside liver there can be adjacent regions receiving blood in different

percentage from the aorta and the portal vein. This result is also supported by

data found in the literature, which report HPI values in normal liver that are

higher than 50% [229, 240, 304] and in some cases reach peaks of even more

than 80% [240].
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(a) (b) (c)

Fig. 7.45: Examples of aBF (a), pBF (b), and HPI (c) colorimetric maps, refer-
ring to patient C1N83 having very high HPI values.

The scatter plots of aBF and HPI mean and standard deviation values

(Figure 7.46) point out that there is a relationship of direct proportionality be-
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Fig. 7.46: Scatter of aBF (a), pBF (b), and HPI (c) mean and standard deviation
values.

tween mean and standard deviation of these parameters, that is, aBF and HPI

standard deviation are data dependent. In Figure 7.47, colorimetric maps of

different examinations having low (Figure 7.47 (a)) and high (Figure 7.47 (b))

aBF mean and standard deviation values are reported. As one can see, the

couple of colorimetric maps apparently show comparable distributions of per-

fusion values. However, by analysing the two maps from a quantitative point

of view, it is possible to see that colours are split on completely different ranges

and that consequently, resulting mean and standard deviation values are to-

tally different. The same considerations can be drawn for the couple of HPI

colorimetric maps of Figure 7.47 (c) and (d). Perfusion mean and standard de-

viation values for the colorimetric maps represented in Figure 7.47 are reported
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(a) (b) (c) (d)

Fig. 7.47: aBF (a,b) and HPI (c,d) colorimetric maps pertaining to examinations
having low (a,c) and high (b,d) mean and standard deviation values.

in Table 7.9.

Perfusion mean and standard deviation values

Figure Examination
Perfusion Unit of

Mean std
parameter measure

7.47 (a) C1N9 aBF ml/min/100g 12.6 6.0

7.47 (b) C1N26 aBF ml/min/100g 44.6 18.3

7.47 (c) C1N85 HPI % 14.1 4.7

7.47 (d) C1N22 HPI % 37.8 6.2

Tab. 7.9: Perfusion mean and standard deviation values of maps represented in
Figure 7.47.

As regards pBF , no relationships are present between its mean and its

standard deviation values (Figure 7.46 (b)).

Now, let us apply the triangle method (Sect. 4.3) to aBF and pBF dis-

tributions of each examination to exclude unreliable perfusion values. The

results obtained are reported in Figure 7.48 where the distributions of aBF ,

pBF , and HPI values of each examination are represented. Here, HPI values

of each examination are taken into consideration only in those voxels where

both aBF and pBF are considered as being reliable. As for BF values in the

single input analysis, the most clear effects of triangle thresholding method are

visible on the highest aBF and pBF values caused by the presence of noise,

artefacts, and misleading anatomical structures (i.e., vessels) that have been

removed from the analysis. Meaningful examples are C1N1, C1N36 as regards

aBF and C1N5, C1N24 for pBF . On the contrary, effects of thresholding are
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(a)

(b)

(c)

Examination

Examination

Examination

Fig. 7.48: aBF (a), pBF (b), and HPI (c) found in the examinations of Centre
1 after excluding the most unreliable perfusion values. Green horizontal line rep-
resents the mean BF values computed over all the examinations of Centre 1. Blue
horizontal lines delimit the range between mean and one standard deviation of the
BF values computed over all the examinations of Centre 1.
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less evident on distribution of HPI values, although they can be better high-

lighted through the comparison of Figures 7.44 and 7.48 (e.g. see C1N13 and

C1N70).

Mean, median, standard deviation, and interquartile range of mean aBF ,

pBF , and HPI obtained after the application of the triangle method are re-

sumed in Table 7.10. Once again, global results collected after thresholding are

Dual input perfusion parameters in normal liver after triangle thresholding

Perfusion Unit of
Mean Median std IQR

parameters measure

aBF ml/min/100g 19.2 17.3 8.9 8.1

pBF ml/min/100g 93.6 92.7 26.3 37.6

HPI % 17.9 15.7 9.1 12.0

Tab. 7.10: Mean, median, standard deviation, and interquartile range values of
mean aBF , pBF , and HPI values found in the examinations of Centre 1 after the
exclusion of the most unreliable perfusion values.

very similar to those of Table 7.8 obtained from the original data. Of course,

this is not surprising, since these values come from global operators (e.g. mean

or median) that flatten the differences.

7.4.3 Multi-centre study on single-input BF values

In this section, single-input BF values are computed on 40 examinations ac-

quired in four different Centres. The aim of this multi-centre study is to

evaluate whether and to what extent the use of different CT scanners may

affect BF values in normal liver. To this purpose, patients free from liver dis-

eases and who did not develop liver metastases within three years from CTp

examination, were randomly selected from Centres 1, 8, 16, and 17. In order

to carry out both a single-input (in this section) and a dual-input perfusion

analysis (in Sect. 7.4.4), the 10 examinations selected from each Centre have

both portal vein and spleen visible inside CT images.

A circular ROI has been drawn inside aorta and another one has been

outlined on one section of the liver, following the same criteria adopted in

Sect. 7.4.1. Voxel-based BF values have been computed for each examination

by applying the SIMS method and shown through the use of colorimetric

maps. Mean, median, standard deviation, and interquartile range have been
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calculated for each Centre on the mean BF values of each examination. One-

way ANOVA and Kruskal-Wallis tests (p-value ≤ 0.05) have been applied to

BF values of the four Centres to verify whether the use of different CT scanners

could introduce variability on computation of the averaged perfusion values.

BF values distributions of each examination, together with their mean

values, are represented in Figure 7.49. The black line highlighting BF mean

Examination

Fig. 7.49: BF values of each examination of Centres 1 (in blue), 8 (in green), 16
(in purple), and 17 (in cyan) are represented. BF mean value of each examination
is highlighted with the red marker while the BF mean value obtained in each Centre
is represented by the black line.

value over the 10 examinations of each Centre has nearly the same height in

all the groups. Their values are reported in Table 7.11, together with median,

BF values of normal liver acquired in 4 different Centres

Centre
Mean Median std IQR

(mg/ml/100g) (mg/ml/100g) (mg/ml/100g) (mg/ml/100g)

1 35.2 33.1 11.3 10.9

8 32.8 28.5 13.9 17.4

16 33.8 28.5 17.3 6.9

17 34.0 32.4 13.7 22.2

Tab. 7.11: BF mean, median, standard deviation, and interquartile range of BF
mean values achieved from the 40 examinations acquired in Centres 1, 8, 16, 17.

standard deviation, and interquartile range of each Centre. Median BF values

of the four Centres are all lower than their means and less homogeneous. In

fact, BF values histograms of each Centre are all right skewed, this pointing out

205



Chapter 7. PIXEL: a muti-centre study
7.4. Computation of perfusion values

that in each group there is a greater number of examinations having BF value

lower than the global mean value of the Centre. The highest standard deviation

of BF values can be found in Centre 16, where examination C16N13 stands out

from the others due to its particular high perfusion values. However, Centre

16 also shows the lowest BF interquartile range. Since standard deviation

considers all data while the interquartile range ignores the outliers, such a low

value of interquartile range points out that despite the presence of C16N13,

perfusion results of Centre 16 are those with the lowest variability. For the

sake of completeness, let us show the colorimetric map of examination C16N13.

BF values of this examination are particularly high both with respect to the

examination of Centre 16 and to those of the other Centres. However, as one

can see from Figure 7.50 (a), functional tissue features of this examination

(a) (b)

Fig. 7.50: BF colorimetric map (a) and µϵ histogram of examination C16N13 (b).

does not differ from those described in Sect. 7.4.1 (i.e., alternated adjacent

regions characterized by low and high levels of vascularization). In addition,

by analysing colour gradients inside BF colorimetric map (Figure 7.50 (a))

and the shape of the µϵ values histogram (Figure 7.50 (b)), it emerges that

the computed perfusion values are correct. Indeed, the local spatial coherence

and the gradual variation from low to high adjacent perfusion values gives hint

of a good quality of the map (Figure 7.50 (a)). As regards the histogram of

µϵ values (Figure 7.50 (b)), the very low range of the error values and their

nearly normal distribution without right tales (that as described in Chapter 3

is typical of normal liver tissue not particularly affected by noise or by the

presence of artefacts and vessels), prove that the achieved perfusion values

have to be considered as being reliable since computed on reliable TCCs. The

visual analysis of the CT image sequence also confirmed that no big vessels

or artefacts were visible on tissue ROI. Therefore, the high perfusion values
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found in C16N13 can be exclusively attributed to features of tissue, that in

this patient results to be exceptionally vascularized.

In addition, I would like to bring reader’s attention on the trend of BF

values and distributions among sets of subsequent patient’s IDs, that is possible

to identify in Figure 7.49, especially for the examinations of Centre 17. As

a matter of facts, patients ID have been assigned in this Centre according

to increasing acquisition time, except for the first two examinations (since

C17N3 has been acquired after C17N4, in the same day as C17N6). A possible

motivation could be looked for a gradual change of acquisition parameters (also

including CA administration), however there are not enough information to

check it. Finally results of one-way ANOVA and Kruskal-Wallis tests confirm

that differences between mean and median BF values in the four Centres are

not statistically significant (p-value = 0.99 and p-value = 0.84, respectively).

This analysis has been repeated by applying thresholding triangle method

to error data, but results remain the same and no appreciable changes can be

detected.

7.4.4 Multi-centre study on dual-input BF values

Perfusion parameters of the same examinations used in Sect. 7.4.3 are com-

puted by considering a dual vascular blood supply. ROIs have been drawn on

the portal vein and on the spleen of each examination (see Sect. 7.4.2). aBF ,

pBF , and HPI have been computed for each patient as reported in Sect. 7.4.2.

One-way ANOVA and Kruskal-Wallis tests (p-value ≤ 0.05) have been com-

puted for data of the four Centres to verify whether the use of different CT

scanners could introduce variability on dual input perfusion mean and median

values respectively computed on healthy liver.

Figure 7.51 shows the distributions of aBF , pBF , and HPI values found

in the various examinations. Examination C16N14 presents some aBF values

higher than 130ml/min/100g (the highest one has value 493.9ml/min/100g).

These outlier values are caused by the presence of artefacts and noise that can

be removed through the application of the triangle method (see Figure 7.52).

In order to correctly visualize aBF distributions of all the examinations, the

highest limit of the y axis has been fixed to 130ml/min/100g.

In Table 7.12 mean, median, standard deviation, and interquartile range of

aBF , pBF , and HPI found in each Centre are reported.

As one can see from both Figure 7.51 and Table 7.12, Centre 17 is the

one showing the lowest inter-patient perfusion values dispersion (i.e., in this
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(a)

(b)

(c)

Examination

Examination

Examination

Fig. 7.51: aBF (a), pBF (b), and HPI (c) values of each examination of Centres
1 (in blue), 8 (in green), 16 (in magenta), and 17 (in cyan) are represented. BF
mean value of each examination is highlighted with the red marker while the BF
mean value obtained in each Centre is represented by the black line.
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Dual input perfusion parameters in normal liver

Centre
Perfusion Unit of

Mean Median std IQR
parameters measure

1
aBF ml/min/100g 18.0 17.3 8.7 9.6

pBF ml/min/100g 107.4 107.2 28.4 41.8

HPI % 15.6 12.6 9.9 12.5

8
aBF ml/min/100g 17.6 9.8 20.0 4.7

pBF ml/min/100g 94.9 100.1 40.8 55.0

HPI % 17.9 9.4 20.3 6.7

16
aBF ml/min/100g 24.3 17.5 19.3 15.1

pBF ml/min/100g 105.2 91.4 31.9 52.9

HPI % 18.2 14.5 10.4 14.9

17
aBF ml/min/100g 14.3 12.7 5.9 2.3

pBF ml/min/100g 103.3 104.4 27.0 25.8

HPI % 12.6 11.5 4.6 5.3

Tab. 7.12: Mean, median, standard deviation, and interquartile range values of
mean aBF , pBF , and HPI values found in the examinations of Centres 1, 8, 16,
17.
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Centre distributions of aBF , pBF , and HPI in the various patients are more

similar than in the other Centres), as shown by its lowest standard deviation

and interquartile range values. On the contrary, when considering Centres

1, 8, and 16 only, Centre 8 is the one showing the highest standard deviation

values. However, as regards aBF and HPI , Centre 8 is also the one showing the

lowest interquartile range, this meaning that by removing the “most outlier”

examinations (e.g. C8N19 and C8N20), the remaining ones show very similar

perfusion mean values.

Also in this dual-input study, aBF results much lower than pBF in all the

examinations, except for C8N20 showing HPI mean, median, and standard

deviation of 65.3%, 66.6%, 13.9%, respectively. Despite these values could seem

exceptionally high, such HPI values (of even about 77.9%) have been already

found in the literature for patients with CRC, free from liver metastases and

steatosis [304]. However, the presence of this exception does not affect global

HPI values of the Centre whose median value is the lowest one and whose

mean value is very low (17.9%), compliant with those values found in the

literature [305].

Results of both one-way ANOVA and Kruskal-Wallis tests point out that

differences between perfusion parameters obtained in different Centres are not

statistically significant for all the perfusion parameters analysed. p-value ob-

tained for aBF , pBF , and HPI using the two statistical tests are resumed in

Table 7.13.

Summary of p-value

Perfusion parameter One-way ANOVA Kruskal-Wallis

aBF 0.50 0.29

pBF 0.84 0.92

HPI 0.74 0.49

Tab. 7.13: Summary of p-value obtained for One-way ANOVA and Kruskal-Wallis
tests applied on dual-input perfusion values.

In order to remove the most unreliable perfusion values possibly affecting

the accuracy of perfusion results, the triangle thresholding method have been

applied to data. Distributions of aBF , pBF , and HPI values are shown in

Figure 7.52. Mean, median, standard deviation, and interquartile range values

obtained after removing unreliable results are resumed in Table 7.14. As seen
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(a)

(b)

(c)

Examination

Examination

Examination

Fig. 7.52: aBF (a), pBF (b), and HPI (c) values obtained after the application
of the triangle thresholding method for each examination of Centres 1 (in blue),
8 (in green), 16 (in magenta), and 17 (in cyan) are represented. Mean values of
each examination are highlighted with the red marker while the mean value of each
Centre is represented by the black line.
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Dual input perfusion parameters in normal liver

Centre Perfusion Unit of
Mean Median std IQR

parameters measure

1
aBF ml/min/100g 17.8 17.3 8.6 9.7

pBF ml/min/100g 106.3 107.1 27.7 39.3

HPI % 15.6 12.6 10.0 12.4

8
aBF ml/min/100g 17.5 9.6 20.1 4.7

pBF ml/min/100g 94.6 100.3 41.3 55.0

HPI % 17.7 9.4 20.4 6.8

16
aBF ml/min/100g 24.0 17.3 19.0 15.1

pBF ml/min/100g 103.8 89.8 30.5 51.2

HPI % 18.1 14.3 10.3 15.0

17
aBF ml/min/100g 13.9 12.2 6.2 3.5

pBF ml/min/100g 102.8 104.0 26.9 23.5

HPI % 12.3 11.0 4.8 5.4

Tab. 7.14: Mean, median, standard deviation, and interquartile range values of
mean aBF , pBF , and HPI values found in the examinations of Centres 1, 8, 16,
17 after thresholding most unreliable perfusion values.

in the previous sections, removing unreliable values just bring a little variation

of global perfusion values, in this case within absolute values lower than 1.5%.

However, more evident improvements can be appreciated in the distribution of

perfusion values achieved for each examination. For instance, the examination

C16N14 first characterized by aBF values higher than 200ml/min/100g, after

thresholding shows aBF values lower than 100ml/min/100g.

By analysing the global results collected in Table 7.14, it is possible to

note that, once again, Centre 17 is that characterized by the lowest standard

deviation and interquartile range values, while Centre 8 is that showing the

highest standard deviation value and the lowest aBF and HPI interquartile

ranges (if considering Centres 1, 8, and 16 only).

Despite the removal of unreliable perfusion values, examination C8N20 still

presents a prevalently arterial vascularization (HPI value higher than 50%),

this confirming that this feature is attributable to tissue features only, and not

to computing errors introduced by the high presence of noise or artefacts.

p-value of aBF , pBF , and HPI obtained by applying one-way ANOVA

and Kruskal-Wallis tests to respectively verify whether mean and median of
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perfusion values could show any inter-Centre variations are resumed in Ta-

ble 7.15. The statistical analysis carried out on thresholded data confirms the

Summary of p-value

Perfusion parameter One-way ANOVA Kruskal-Wallis

aBF 0.61 0.25

pBF 0.86 0.91

HPI 0.75 0.48

Tab. 7.15: Summary of p-value obtained for One-way ANOVA and Kruskal-Wallis
tests applied on dual-input perfusion values after thresholding the most unreliable
perfusion values.

results obtained by the same tests applied to the original data. Indeed, as one

can see, no statistically significant differences have been highlighted between

Centres. p-value are very similar to those obtained on non-thresholded data.

The highest variation between p-value can be noted for the tests applied on

aBF that consequently, can be considered as the perfusion parameter mostly

affected by presence of noise, artefacts and vessels inside the tissue analysed.

7.4.5 Concluding remarks

Several CTp studies compute perfusion values on healthy tissue in order to

have a reference point. However, frequently these studies get these reference

values on few patients, often from a small tissue region of liver considered as

being normal. In addition, the liver of these patients are often affected by

pathologies, even tumours, that are not excluded to possibly affect normal

tissue. Accordingly, these BF values could not be appropriate as a reference.

On the contrary, results reported in Sects. 7.4.1 and 7.4.2 have been computed

on a wide set of patients free from any liver pathologies and by considering

in each examination as the widest tissue regions as possible. Therefore, these

results represent an important landmark for all the future hepatic single- and

dual-input perfusion studies using healthy tissue as a reference point.

Finally, as regards the two CTp studies that have been carried out in

Sects. 7.4.3 and 7.4.4, the outcomes are definitely encouraging. Indeed, results

obtained in four Centres of PIXEL on examinations acquired by using different

CT scanners, but same acquisition protocol and parameters are directly com-

parable. Therefore, these results create a fast track for the set up of further
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multi-centre studies that represent the first step to permit CTp to be adopted

in clinical routine. The development of further studies, comparing a higher

number of examinations, acquired with other different CT scanner models,

but with the same acquisition protocol, would indeed confirm the capability of

CTp to provide reproducible results. After that, further multi-centre studies

investigating CTp capability of providing diagnostic and prognostic informa-

tion would allow moving forward a definitive decision regarding the usefulness

of this technique.
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Chapter 8

Conclusions

Lung and liver cancers are the most common causes of tumour death. Sev-

eral steps forward have been done in cancer care through the introduction of

anti-angiogenic therapies, but the lack of techniques to be used in the stan-

dard clinical practice to early assess their efficacy is an obstacle to make the

most of their usage. This Thesis addresses CTp, one of the most promising

techniques for the earlier assessment of the efficacy of the anti-angiogenic ther-

apies. Despite CTp can provide fundamental functional information regarding

both tumour diagnosis and prognosis, some open issues still exist that prevent

its use in the standard clinical practice. This Thesis aims at filling in some

gaps so as to advance CTp technique towards ordinary use in oncology. The

most relevant achievements can be summarized as follows:

• methods and indexes to detect unreliable CTp perfusion values

• assessment of the clinical representativeness of the global averaged per-

fusion values

• tentative guidelines to set up a multi-centre CTp study

• signal processing algorithms to improve accuracy of perfusion values

• comparison of perfusion results of examinations carried out in different

Centres

First, a method conceived and realized to automatically detect and ex-

clude from perfusion analysis those unreliable perfusion values associated to

the presence of noise, artefacts, vessels, and bronchi has been validated. The

advantage brought by using this method over the classical manual approach

is twice. The first is the huge amount of time saved by radiologists, due to
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the automation of the post-processing stage. Besides that, this method allows

detecting those structures affecting perfusion results which are missed by ra-

diologists, or at least allows determining their correct extent. It is also worth

noting that our results confirm that removing unreliable perfusion values yield

a significant improvement on the accuracy of perfusion results, and of clinical

assessment, accordingly.

As regards the representativeness of the global perfusion values, often used

in CTp studies to achieve a higher reproducibility, a deep analysis has been

carried out. The results of statistical tests combined with the evaluation of a

specific statistical index used to assess the degree of perfusion heterogeneity,

highlighted that global perfusion values cannot be appropriate for therapy

assessment, since they disregard the heterogeneities and “flatten” the range

of perfusion values. Moreover, the inconsistencies found between numerical

and clinical equivalences highlight that the use of global values may even lead

to misleading clinical considerations. Therefore, in order to make reliable

clinical diagnosis, radiologists should use all the tumour slices, endowed with

a perfusion heterogeneity measure.

During my PhD period, I have also had the opportunity to work at the

widest European multi-centre CTp study (PIXEL) on liver and to analyse all

the examinations collected in the 15 different Centres, providing my contribu-

tion at both methodological and technical level. First of all, the detection and

the analysis of all the intra- and inter-centre sources of variability allowed me

to draw some hints on how to correctly set-up a multi-centre study. Hopefully,

these hints will give a deep contribute to build up more accurate guidelines,

prompting the spread of multi-centre studies that represent a crucial step to

translate CTp in the standard clinic. Moreover, the signal processing algo-

rithms I developed, such as those to compute the baseline values of the unen-

hanced stage of CTp or to automatically register ROIs on liver CTp images,

provide a real contribution to the achievement of more accurate perfusion pa-

rameters. In addition, the results of perfusion analysis carried out on normal

liver show that they can be used as a benchmark for hepatic single- and dual-

input perfusion studies, thus becoming very useful for the assessment of effects

of liver pathologies on normal tissue. Finally, the two perfusion studies carried

out on examinations acquired in different Centres, following the same NAP,

highlighted that perfusion results could be directly compared, for both single-

and dual-input models. These encouraging outcomes could favour proliferation

of multi-centre studies needed to assess the reproducibility of CTp technique,

by analysing a huge number of examinations, performed with CT scanners of
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different models and vendors.

For the sake of completeness, it is worth remarking that all the methods

and the algorithms presented in this Thesis (except for the algorithm to align

liver CTp images) can be applied on both liver and lung tissues, also being

independent from either the methods used to compute perfusion parameters

or the perfusion parameters themselves. Actually, in this work I have dis-

cussed results achieved through the maximum slope method that permits BF

computation only. However, all the considerations drawn regarding the meth-

ods to automatically detect unreliable perfusion values, the representativeness

of global perfusion values, or the correct computation of baseline values, also

hold if considering other perfusion models or computing methods and perfusion

parameters, such as BV , MTT or PS .

In conclusion, the work presented in this Thesis provides a clear upgrade

of the state of the art. Researchers and clinicians have now at their disposal

methods and techniques helping them to achieve more accurate and reliable

results and making more aware clinical considerations. However, more accu-

rate models and methods have to be explored in multi-centre studies set up

using updated guidelines stemming from previous experiments. As a matter of

fact, assessing reproducibility of results through multi-centre studies or meta-

analysis is a crucial step to make CTp-based image biomarkers entering the

clinical practice. Despite the solution is not at hand, I strongly believe that the

integration between medical, bioengineering and computer science techniques,

will play a key role in the next future to help translation of CTp into clinics.
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Appendix

In this section, the steps needed to obtain Eq. (2.9) presented in Chapter (2)

are reported. It is worth noting that this part is almost never included in

the papers discussing models and methods to compute perfusion parameters,

probably because it is dense of mathematical concepts that could jeopardize

reader’s attention. For this reason, I chose to create a dedicated appendix so

as to keep a better fluency of the reading inside Chapters.

First of all, I recall some properties of convolution and therefore I illustrate

the procedure used to obtain Eq. (2.9).

Given two functions f(t) and g(t), their convolution is defined as:

f(t) ⊗ g(t) =

∫ ∞

0

f(τ) · g(t− τ)dτ (A.1)

The convolution of a continuous function f(t) with the discontinuous unit step

function σ(t) (whose values are equals to 0 for t < 0 and to 1 for t ≥ 0) is

represented in Eq. A.2:

f(t) ⊗ σ(t) =

∫ t

0

f(τ)dτ (A.2)

Eq. (A.2) in combination with the associative and distributive property of the

convolution product yields Eq. A.3:∫ t

0

f(τ) ⊗ g(τ)dτ = [f(t) ⊗ g(t)] ⊗ σ(t) =

= f(t) ⊗ [g(t) ⊗ σ(t)] = f(t) ⊗
∫ t

0

g(τ)dτ

(A.3)
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and thus ∫ t

0

[f(τ) − f(τ) ⊗ g(τ)]dτ = [f(t) − f(t) ⊗ g(t)] ⊗ σ(t) =

= f(t) ⊗ σ(t) − f(t) ⊗ g(t) ⊗ σ(t) = f(t) ⊗ [σ(t) − g(t) ⊗ σ(t)] =

= f(t) ⊗ [σ(t) −
∫ t

0

g(τ)dτ ]

(A.4)

After recalling these mathematical concepts, let us come back to Eq. (2.4).

Since the organ of interest gives volume tissue concentration Ct(t) rather than

mass concentration Q(t), it is possible to work with the quantity Ct(t), instead

of Q(t), by multiply both sides of Eq. (2.4) by tissue density ρ. In this way we

obtain Eq. (A.5):

ρ ·BF · Ca (t) − ρ ·BF · Cv (t) (A.5)

where

ρ · dQ (t)

dt
=

dCt (t)

dt
(A.6)

Because tissue density is closed to unity in most cases (and this is true in both

liver and lung), in the literature ρ is often neglected to simplify notations.

Therefore, we can rewrite Eq. (A.5) according to Eq. (A.7):

dCt (t)

dt
= BF · Ca (t) −BF · Cv (t) = BF · [Ca (t) − Cv (t)] (A.7)

By integrating Eq. (A.7), it is possible to obtain Eq. (A.8):

Ct(t) = BF ·
∫ t

0

[Ca(τ) − Cv(τ)]dτ (A.8)

After that, by substituting Cv(t) with its definition given in Eq. (2.1), it is

possible to rewrite Eq. (A.8) according to Eq. (A.9):

Ct(t) = BF ·
∫ t

0

[Ca(τ) − h(τ) ⊗ Ca(τ)]dτ (A.9)

By exploitinig Eq. (A.4), it is possible to rewrite Eq. (A.9) in Eq. (A.10):

Ct(t) = BF · Ca(t) ⊗ [σ(t) −
∫ t

0

h(τ)dτ ] (A.10)

Since in real time domains t is always equals or greater than zero, the function
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σ(t) is always unitary. Therefore, we can write Eq. (A.11):

Ct(t) = BF · Ca(t) ⊗ [1 −
∫ t

0

h(τ)dτ ] (A.11)

that according to the definition of R(t) (given in Eq. (2.8)) becomes Eq. (A.12):

Ct(t) = BF · Ca(t) ⊗R(t) (A.12)

Finally, by applying the commutative principle, it is possible to obtain Eq. (2.9)

presented in the literature.
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224



List of Abbreviations
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GUI Graphical user interface
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HCC Hepatocellular carcinoma
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IDT Indicator dilution theory

IQR Interquartile range
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k1a Arterial inflow rate constant in 2I1CM
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k2 Outflow rate constant in 2I1CM

ktrans Flow rate constant
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lCV Local coefficient of variation
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n.a. Not available

NAP Nominal acquisition protocol
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OS Overall survival

p AR model’s order
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PET Positron emission tomography

PFS Progression-free survival

PI Perfusion index
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Q Mass concentration of CA in tissue

R Impulse residual function

R2 Coefficient of determination

rµ µs range

rM Ms range
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ROI Region of interest

SEN Sensitivity

SF Standard fixed mode

SI Interval starting point

SIMS Single-input maximum slope
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SS Variability of the local standard deviation

SSE Sum of squared error
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std Standard deviation
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TEM Thresholded error maps
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Yi TCC’s data point at the time instant i
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