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1. INTRODUCTION 

 

1.1. Water crisis 

About 70% of planet earth surface is covered by water and humans can only use 1% of that 

since 97% is saline water (sea sand oceans) and 2% is within the polar glacial ice caps 

(Gleick, 1993). The amount of water available for human use is either in underground sources 

or in surface water bodies such as river, lakes, and reservoirs. However, most of this water is 

not directly accessible. As a result, the available water for human use is categorised into three 

forms, rain water for food production, surface water and accessible ground water 

(Shiklomanov, 2000). Furthermore, in the regions where excesses fresh water available in 

surface water bodies, water is either lost through evaporation or reach the ocean without 

being utilized by humans. It was estimated that an average of 20% global runoff flows 

through Amazon River, without being used by indigenous population (Gleick, 1998). 

Therefore, whilst there are regions with excess water, in contrast, some regions such as 

Middle East, huge parts of Africa, and some portions of Europe and Southeast Asia suffer 

chronic water shortages, largely due to low rainfall distribution (Postel et al., 1996). 

 

Presently, water demands are on the rise whilst the supply is approaching the depletion due to 

a growing global population, climate change, and the rising demand for water in industrial 

sectors. As a result half a billion people live in water-starved countries and this number is 
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expected to reach three billion by year 2025 (Hanjra and Qureshi, 2010). As we are 

approaching year 2025, physical and environmental constraints on the use of water resources 

are beginning to dwindle gradually. Aquifers are being recharged by precipitation and in 

many areas groundwater is also pumped up to replenish this huge water demand, but in the 

scourge of climate change, deviations from normal rainfall patterns and steady decline in 

annual average rainfall are encountered (Postel, 2000; Hendrix and Salehayn, 2012). This 

significant disruption in cyclical rainfall patterns, bring droughts and long dry spells which 

affects surface and underground water availability (Vetter, 2009; Green et al., 2011). The 

precipitation is erratic and not evenly distributed throughout years, there are wet and dry 

years. Water scarcity becomes the limiting factor in food production in many countries 

(Hanjra and Qureshi, 2010). And therefore, water-starved countries are not able to meet their 

food requirements when using the conventional and non-conventional resources within their 

borders (Qadir et al., 2007). 

The largest consumer of water is the agricultural sector, which amounts up to 92% and the 

remaining part is shared between other industry and domestic water supply (Hoekstra et al., 

2012). However, earlier predictions were indicating that 84.5% of total global freshwater 

available, was consumed by agricultural sector as illustrated in Table 1.1 (Shiklomanov, 

1997). This rise in freshwater use is assumed to be driven by global population increase and a 

rise in increasing food demands. The second largest freshwater consumer is the reservoir 

losses through evaporation and leakages (Jury and Vaux 2007). 
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Table 1.1. Annual global water withdrawals of freshwater by water use category in 1995, 

data taken from Shiklomanov, 1997 (Source: Jury and Vaux, 2007). 

 

 

 

 

 

 

 

Water used in agricultural sector is not directly recycled back into the freshwater sources, and 

compounds contained in chemically synthesized fertilizers and pesticides, through leaching 

and surface runoffs, contaminate the freshwater sources. Henceforth, water becomes polluted 

through eutrophication, a process where surface water bodies are enriched with nutrients 

caused by fertilizer application on agricultural soils (Andreoli, 1993). Also, wastewater 

effluents from the industry and households amounts to 90-95% of wastewater regenerated by 

wastewater treatment plants (WWTP) are reticulated and treated to replenish the fresh water 

sources (Florke et al., 2013). Some of this water is treated and re-used, but the quality of 

effluents adjoining the receiving waters is under constant scrutiny, since there are resilient 

and persistent pollutants (e.g. antibiotics, heavy metals and pesticides etc) that are not well 

treated in WWTP. In developing countries, the situation is worsened by highly polluted 

wastewater returning to freshwater supplies, rendering fresh water from stream and rivers 

unusable (Jury and Vaux, 2007). Globally, pollutants contained in wastewater such as organic 

compounds, heavy metals, suspended solids and bacterial pathogens have been detected in 

receiving water sources in alarming concentrations (Schwarzenbach et al., 2010; Köck-

Schulmeyer et al., 2013). To improve wastewater quality, treatments of various kinds are 

Sector or use 

category 

Annual 

withdrawal 

(km3/year) 

Total 

withdrawal 

(%) 

Annual 

consumption 

(km3/year) 

Total 

consumption 

(%) 
Agriculture 2504 66.1 1753 84.5 

Municipal 344 9.1 50 2.4 

Industry 752 19.9 83 4.0 

Reservoir 

losses 

188 4.0 188 9.1 

Total 3788 100.0 2074 100.0 
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employed to curb the pollution of fresh and underground water sources. Therefore, water 

scarcity is not only about physical availability, but other factors such as water quality, the 

efficiency of various uses, and the institutional capacity to meet rising demands. 

 

1.2. Water pollution 

The occurrences of regulated and emerging pollutants in the aquatic environments are caused 

by natural factors and human activities (Weiner, 2008). Major contributors to water pollution 

are agricultural practices, industrial and domestic wastes discharged into freshwater sources 

in different pathways (Schriever et al., 2007).  

The extensive application of chemical fertilizers in cultivation of food crops gives rise to 

number of water pollutants. The major pollutants that are disseminated by this practise are 

nitrates, phosphates, sulphates, and toxic metals. The supplementary nutrients applied to the 

soil are not totally taken up by plant roots. The remaining quantities in the soil leach into 

underground water resulting in increased concentrations of nitrates, nitrites, ammonia, 

sulphates and phosphates into the water aquifers. These nutrients accelerate the growth of 

algae in surface water and cause eutrophication that poses direct and indirect threats to the 

environment. Some species of these algae such as Cyanobacterium microcystis produce 

toxins in water resources which are harmful to animals and humans (Jury and Vaux, 2007; 

Azizullah et al., 2011). Also, when the algae decompose, decomposing microbes use oxygen 

inducing biological oxygen demand (BOD), which consequently becomes detrimental to 

aquatic organisms. Early discoveries indicated that superphosphate fertilizers contain some 

heavy metals as cadmium as by-product (Schroeder and Ballassa, 1963). Even nowadays, a 

caution is given on extensive use of fertilizers containing toxic metals since it leads to the 

contamination of soil and water (Li and Wu, 2008). 
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Antibiotics are other emerging water pollutants that are brought through soil fertilization 

based on animal manure. Seemingly, the veterinary antibiotics after taken by animals, are not 

completely metabolised, and are discarded in animal excreta in portions of unchanged form 

(Martinez, 2009). Therefore, soils amended with antibiotic contaminated manure, disperse the 

antibiotics into the surface and underground water sources through surface runoffs and 

seepages, respectively. The release of antibiotics in the aquatic environments becomes 

ecological detrimental since it inhibits the growth of microorganisms, such as bacteria, fungi, 

or protozoa and it aggravates antibiotic resistance. 

Likewise, pesticides are chemical compounds that are used extensively in agronomic 

practices to combat the effects of crop pests, weeds and nematodes in order to improve crops 

quality and yields. In the fields, pesticides are applied as seed coatings, dusts direct on the 

soil and by spraying on the leaves of the target crop. These methods of application create 

different pathways for pesticides to intrude the surrounding environment and eventually 

contaminate water sources. Surface runoffs become major pathway for spray drifts and spills 

from targeted crop, which can reach the atmosphere and the soil, respectively. For example, 

annual loss of herbicide metamitron through a surface run off in a sugarbeet field within 10 

km2 was estimated to be 2423 kg/year, ranging from 0.06 to 0.38% of the application (Huber 

et al., 1998). Alike, metamitron was applied on the rate of 700 g/ha with total application of 

5.9 kg which through surface runoffs from the field, an average concentration of 1.23 µg/l 

was detected in the nearby stream (Schriever et al., 2007). In investigating the amount of 

pesticides in the river water, groundwater and in sediments of Danube River (Serbia), it was 

found that water samples contained about 1-5 ng/l, whereas sediments contained about 1-3 

ng/g of total pesticides residues detected (Radovic et al., 2015). Amid the pesticides 

investigated, the most prevalent pesticides found in surface water, underground water and in 

sediments alike, were carbofuran, atrazine and propazine. Most pesticides are generic, 
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meaning they are not specifically targeting specific organisms. And therefore, they pose 

health risks to other untargeted organisms they come into contact with (Van der Werf, 1996; 

Arias-Estevez et al., 2008). Due to uncontrollable mobility of pesticide from the agricultural 

lands, extreme toxic substances had been banned to curb the scourge of environmental and 

diminish possible hazards towards living organisms. 

Assessment of wastewater effluents from industries in India and Spain revealed that 

wastewater contained number of pollutants which were found to be the cause of water 

pollution in nearby water sources (Krishna et al., 2009; Lokhande et al., 2011, Neito et al., 

2013). Among the pollutants that were found in surface water during these studies were: 

heavy metals, dyes, paints and pharmaceuticals from mining, textile and other industries. In 

developed countries the industrial wastewater is stringently prohibited to be discarded 

directly to freshwater streams without preceding proper treatment, however, in some of them 

the opposite is observed (Azizullah et al 2011). Wastewater from industries such as mining 

had proved to be paramount contributors to heavy metals pollution in aquatic environments 

(Owamah, 2014). Pharmaceutical manufacturing industries had been found to dispense huge 

amounts of antibiotics in the environment through their wastewater and additional presence 

of other organic solvents, catalysts, additives, reactants and raw materials contained in 

wastewater influent, make treatment of antibiotics in WWTP to be difficult (Sreekanth et al., 

2009; Kummerer, 2009 b). Also, since hospital and municipal wastewater carried antibiotics 

resistant genes (Escher et al., 2011; Prayitno et al., 2013; Rodriguez-Mozaz et al., 2015), 

consequently pollution in surface water bodies was observed (Deng et al., 2016). 

 

Domestic and urban wastewater was found to be the hub of bacterial pathogens. In developed 

world sewage spillages and pipe burst are well maintained, but in developing countries 

spillages are frequently experienced. Consequently, faecal coliform Escherichia coli is 



7 

 

detected in surface water sources and that serves as indicator of human waste contamination 

(Farooq et al., 2008). Since E. coli had developed resistance to sewage treatment methods, 

this makes them to pollute receiving water bodies (Costa et al., 2008). According to World 

Health Organisation (WHO) guidelines, neither E. coli nor thermo tolerant coliform 

organisms should be present in 100 ml of drinking water (WHO, 1993). However, in Africa 

most people are living in rural areas with lack of proper sanitation, and therefore found 

drinking water directly from the streams, wells and rivers. Reports of cholera and chronic 

diarrhoea had been indicated as the source of water-borne diseases from these bacterial 

pathogens. Also, landfills for domestic solid waste disposal are another source of polluting 

the underground water with various hazardous and toxic pollutants in the proximity of these 

domestic waste landfills (Guisti, 2009). 

As mentioned previously, the existence of these pollutants in aquatic environments leads to 

serious public health hazards to humans, aquatic life and animals coming into contact with 

(Haddis and Devi 2008). Reports also indicated that directly drinking water polluted with 

impurities or indirectly ingested from food chain can cause serious health hazards to man, 

animals and the aquatic life (Webb et al., 2003; Watkinson et al., 2008). Recent studies 

investigated the effects of aquatic polychlorinated biphenyls and organochlorine pesticides on 

cancer mortality for elderly people, and it was found that the probability of mortality 

increased as the body fat increases (Kim et al., 2015). Hence, contamination of watersheds 

remains a big concern on accumulation of pollutants beyond acceptable levels. In addition, 

the abovementioned water polluting sources also exacerbate parameters such as BOD, 

chemical oxygen demand (COD), total dissolved solids (TDS), total suspended solids (TSS), 

and salinity and diminish the water quality to be unsafe for drinking and for other uses 

(Azizullah et al., 2011).  
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The main aquatic pollutants entailed in this thesis are antibiotics, heavy metals and pathogens 

because they are the major emerging and regulated water contaminants that the third world 

countries struggle to treat conventionally due to lack of technical and financial resources at 

their disposals. 

1.2.1. Antibiotics 

Antibiotics are used worldwide to cure bacterial infections in humans, pets, livestock, and 

fish farming (Lalumera et al., 2004). Antibiotic discovery was through screening and 

isolating soil-derived actinomycetes (Lewis, 2013). Since the early days of this discovery and 

their use, pathogenic microorganism shad ability to form resistant and persistent mutants, 

giving rise to vanity of antibiotics (Cohen et al., 2013; Mackay, 2014).With the development 

of antibiotic resistance genes, new antibiotic classes had been synthesised, namely 

sulfonamides, tetracyclines, β-lactams, aminoglycosides, chloramphenicols; macrolides, 

quinolones, diarylquinolines and many others. The mechanisms in which pathogenic 

organisms become resistance to antibiotic are displayed in Table 1.2.  

 

Table 1.2. The resistance mechanism of pathogenic bacteria to antibiotics (Source: Acar and 

Rostel, 2001). 

Mechanism Antibiotic Resistance level 

Efflux Tetracyclines, macrolides, quinolones Low 

Penetration β-lactams, tetracyclines Low 

Target site alteration β-lactams, aminoglucosids, macrolides, 

quinolones, glicopeptides 

Variable 

Bypass Sulfonamides High 

Enzymatic inactivation β-lactams, aminoglicosides, macrolids 

lincosamides 

High 
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In general, antibiotics become efficient by destabilizing essential cellular functions of the 

target pathogenic organisms, however in defence of the target, organisms are able to trigger 

different resistance mechanisms such as increased efflux of the drug, destruction of the 

antibiotic, inactivation of enzymes, decreased penetration, develop bypass pathways and 

reproduce mutant genes modification (Lewis, 2013). The highest modes of resistance 

mechanism used by pathogenic organisms are bypass pathways and enzyme inactivation of 

the antibiotic. The rapid spread of antibiotic resistant bacteria in the environment had become 

a threat to public health since it results to problems of infection control. In addition, there are 

many pathways in which these antibiotic resistant bacteria are dispatched and transported due 

to existence of antibiotics in aquatic environment (Livermore, 2005; Manaia et al., 2016). 

Firstly, animal manure had been found to contain portions of veterinary antibiotics and their 

metabolites, as previously mentioned. In China, samples of swine manure were investigated 

on the presence of sulfonamides, tetracyclines and macrolides (Pan et al., 2011). It was found 

that swine manure was containing all the antibiotic classes, with shocking maximum 

concentration of chlortetracycline (CTC) up to 764.4 mg/kg. Elsewhere, researchers detected 

recoveries of veterinary antibiotics in different animal manures and in soils (Martinez-

Carballo et al., 2007; Karci and Balcioglu, 2009). The significance of these studies exhibit 

evidently that application of animal manure can lead to contamination of arable lands with 

veterinary antibiotics. Hence wastewater from livestock farming areas and surface water 

samples from the surroundings were investigated for the presence of veterinary antibiotics 

(Wei et al., 2011). It was found that wastewater from livestock farms contained about 10 

types of antibiotics, and river samples contained 9 of them. The most frequently detected 

veterinary antibiotics from animal wastewater samples were sulfamethazine (SMZ), 

oxytetracycline (OTC), tetracycline (TC), sulfadiazine (SDZ) and sulfamethoxazole (SMX) 

with a maximum concentration of 211.0, 72.9, 10.3, 17.0 and 63.6 µg/l, respectively. 
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Consequently, lower concentrations were observed in river water samples, SMZ (4.7 µg/l), 

OTC (2.2 µg/l), TC (0.8 µg/l), SDZ (1.0 µg/l) and SMX (0.6 µg/l) than those found directly 

in animal wastewater. 

Since antibiotics are used by humans and in livestock, fish productions, number of studies 

had reported that antibiotics had been found in animal wastewater (Wei et al., 2011), 

aquaculture (Sapkota et al., 2008), domestic solid waste landfills (from dumping expired 

antibiotics) (Wu et al., 2015), hospital, industrial and urban wastewater effluents (Escher et 

al., 2011; Prayitno et al., 2013; Rodriguez-Mozaz et al., 2015). The persistence of antibiotics 

in the environment had been closely associated to the spread of antibiotic resistant genes in 

the aquatic environment (Goa et al., 2012; Bouki et al., 2013; Rizzo et al., 2013). And also, 

since ponds and river water can be contaminated with antibiotics (Wei et al., 2011; Jiang et 

al., 2013), irrigating agricultural crops with contaminated wastewater from such water 

sources, resulted into antibiotic resistant strains accumulated on soils and possible 

underground water sources (Chefetz et al., 2008; Borgam and Chefetz, 2013). Due to mobile 

transportation of antibiotic resistant bacteria in the soil, plant roots uptake is encouraged, 

posing health risks to humans consuming those contaminated food crops (Rajapaksha et al., 

2014; Williams et al., 2015). The fate of antibiotics in the aquatic environment became a 

major threat to fresh water systems, humans and animals as well as it affects largely available 

water quality. Various strategies had been sought to lessen the occurrence of antibiotics in 

aquatic environments as to reduce the emission of antibacterial resistant genes. 

 

1.2.1.1. Strategies to remove antibiotics  

In developed countries, all the domestic, industrial and animal farm wastewater containing 

antibiotics and antibiotic resistant bacteria end up reaching the WWTP. Conventional 

methods of eradicating antibiotics in the WWTP involve several steps such as flocculation, 
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sedimentation, filtration and chlorination; conversely, all these steps were unable to provide 

the barrier against pharmaceutical active compounds (Adams et al., 2002; Hebeer, 2002, 

Gobel et al., 2007). Due to poor adsorption of antibiotics in the active sludge of the WWTP, 

tertiary treated wastewater was found to contain antibiotics, giving a rise to accumulation of 

antibiotics in surface water bodies in the magnitude of 10-1000 ng/l (Le-Minh et al., 2010). 

Other retention methods used in WWTP such as chemical coagulation and sand filtration 

demonstrated an incompetent eradication of polar pharmaceuticals (Ternes et al., 2002; 

Nakada et al., 2008). Hence, literature revealed that tertiary treated municipal wastewater was 

found to contain antibiotics concentrations in the range of 0.26-2.8 µg/l and 0.65-1.1 µg/l for 

SMX and tetracycline, respectively (Batt et al., 2007; Gao et al., 2012). 

 

Animal dung containing antibiotics when applied as organic fertilizers on soils has a potential 

to pollute underground water sources with antibiotics. However soils are considered as 

natural sorbents and through adsorption process, soils can prevent leaching down of 

antibiotics to the underground aquifers. Adsorption is a process whereby a dissolved 

contaminant adheres to the surface of a solid sorbent, due to host-guest hydrophobic and 

electrostatic interactions between the adsorbate and the adsorbent. Nevertheless, soils seem to 

have low affinity towards SMX antibiotic since it was found to be least retained among 

trimethoprim, clindamycin, clarithromycin antibiotics on 13 types of soils tested (Kodesova 

et al., 2015).The poor SMX sorption was due to the negative effects of soil pH, SMX existed 

mainly in anionic form at pH above its pKa of 5.7. Besides, in soils with low content of soil 

organic matter (SOM), antibiotics become mobile and possible to contaminate ground water 

through leaching. Clay minerals and organic matter found in soils and sediments habitually 

occur in association with one another. Thus, in a model study that sought to adsorb 

sulfonamides using clay minerals, it was discovered that sorption was sensitive to pH and 
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laboratory results could not be used in real soils since clays in real soils could be coated with 

organic matter and metal oxides (Goa and Pedersen 2005). 

The utilization of activated carbon in a post-filtration process of wastewater treatment was 

found to be most effective method for removing antibiotics (AWWA, 1990). Several studies 

had confirmed almost a complete removal of the most common types of antibiotics in 

deionised and surface water using powder activated carbon(PAC), and the adsorption 

increased with increased of PAC dosage with up to 4 h of time to reach the adsorption 

equilibrium (Adam et al., 2002; Nam et al., 2014; Zhang et al., 2016). Though, in the model 

study done by Nam and co-workers (2014), a decline in adsorption was observed due 

inhibiting competition of dissolved organic matter (DOM) contained in natural waters. 

Additionally, at low temperatures (5 ºC), a reduced antibiotic removal was observed; 

indicating that during cooler seasons the PAC would be less effective on field scale 

application. Moreover, the amount of dosage in a large scale operations and the regeneration 

of PAC render the use of activated carbon both uneconomical and environmentally unsafe 

(Babel and Kurniawan, 2003; Snyder et al., 2007). 

Most recently, alternative cost effective adsorbent derived from wooden waste materials had 

been investigated to remove antibiotics from aqueous environments. Sawdust biomass was 

investigated for the adsorption of ciprofloxacin hydrochloride antibiotic from water (Bajpal et 

al., 2012). The adsorption of ciprofloxacin hydrochloride antibiotic on sawdust was optimum 

at pH 5.8 at a rate of 11.6 mg/g (64% of the initial concentration) and adsorption equilibrium 

reached within 1 h. In another study vine wood waste was separately activated by aqueous 

solution of NaOH, KOH, ZnCl2, NaCl and HNO3 at 600 ºC for 2 h, in order to retain 

amoxicillin from water (Poureterdal and Sadegh, 2014). For a more accurate description of 

activation methods see Section 1.2.2.1.4. The activating agent NaOH (5% w/w) realised the 

best removal efficiency on amoxicillin (56%), cephalexin (76%), tetracycline (88%) and 
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penicillin G (74%) compared to other chemical agents. It is still early to rule out waste 

materials effectiveness on loading of antibiotics from water, since this phenomenon had been 

widely researched on heavy metal retention and valuable results had been obtained (Zhang et 

al, 2010). 

Zeolites are natural minerals found in a volcanogenic sedimentary rock and zeolitic tuffs. 

Natural zeolites are hydrated alumino silicate minerals and due to their porous structure had 

been utilised largely in cation exchange, molecular sieving, catalysis and adsorption (Wang 

and Peng, 2010). Besides natural zeolites, it had been reported that zeolites can be 

synthesized from coal fly (Murayama et al, 2002, Li et al., 2011), carbon sources (Janssen et 

al., 2003), and colloidal silica (Li et al., 2007) just to mention a few. Synthesis of zeolite by 

hydrothermal treatment of coal fly ash in 2.0 M NaOH and modified using 

hexadecyltrimethylammonium (HDTMA) surfactant, increased the surface area from 1.02 to 

91.50 m2/g (Li et al., 2011). Also, impregnating carbon source with SiO2 precursor and 

subjecting it to hydrothermal treatment at 150 ºC, it formed a zeolite crystal. In this method 

the carbon source is burned off to leave the mesopores in the crystallized zeolite with defined 

supercages of uniform pore size and shape, suitable to adsorb matching size molecules. 

Moreover, it was reported that hexagonal alumino silicate mesostructures can be modified by 

acidity and steam to promote AlO4 and SiO4 tetrahedral connectivity of crystalline zeolites 

with improved pore size and surface area (Liu et al., 2000). Modifying natural zeolites with 

iron oxides at 20 and 85 ºC increased the surface area from 27.5 m2/g to 37.2 and 55.5 m2/g, 

respectively (Mockovčiaková et al., 2006).  

Natural zeolite had been found to be both cost-effective and efficient adsorbent for retaining 

both organic and inorganic contaminants found in water (Babel and Kurniawan, 2003; Polat 

et al., 2005). A clinoptilolite, a natural zeolite was investigated on removal of veterinary 

antibiotic enrofloxacin from water (Otker and Akmehmet-Balcıoglu, 2005). It was found that 
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enrofloxacin was almost completely removed at pH 5 after 1 h of contact time. For this 

reason, enormous model studies had been investing different antibiotic removal by different 

kinds of zeolites on aqueous environment (Braschi et al., 2010 a; Martucci et al., 2013; Liu et 

al., 2013). Some of these studies on removal of sulfonamides using zeolites will be discussed 

shortly.  

In addition, efficient treatment method against particular antibiotics in WWTP does not 

necessary mean it also reduces the development of antibiotic resistance bacteria. For instance, 

β-lactams antibiotics since they are easy to hydrolyze have been found in the environment at 

very low concentrations (Helland et al., 2010). Contrary, resistant bacteria and genes 

encoding resistance against certain β-lactams have been detected in WWTP in alarming 

concentrations (Kummerer, 2009 b; Bouki et al, 2013). Therefore, antibiotic character and 

molecular structure should be considered for the effectiveness of removal strategy of 

individual antibiotic class and its encoded antibiotic resistant bacteria in the aquatic 

environment. 

 

1.2.1.2. Sulfonamides 

Sulfonamide antibiotic group is the first discovered antibiotics, which are broad spectrum 

antibiotics utilized to cure variety of ills in both humans and animals (Sarmah et al., 2006; 

Martinez, 2009). Sulfonamides (sulfa drugs) are mainly utilized to fight against urinary tract 

infections. Sulfa drugs restrain the multiplication of pathogenic bacteria by acting as 

competitive inhibitors of the enzyme dihydropteroate synthetase (DHPS), an enzyme 

involved in folic acid synthesis (Livermore 2005). Sulfonamides are amphoteric naturally; 

they generally function as weak acids in water due to their pKa values ranging from 5.0 to 

7.5. Also, most veterinary sulfonamides posses at least two nitrogen functions groups, and the 
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amide attached to the solfon group is referred to as N1 and deprotonates at pH > 5.5–7 

(Sarmah et al., 2006). See the structure sketched below in Figure 1.1. 

 

Figure 1.1. General chemical structure of selected sulfonamides 

 

Sulfa drugs after administered, they are not completely metabolised and discarded as human 

or animal excreta in portions of unchanged form. For instance SMX found in sewage, 

consisted of 15% recoveries of parent compound (Hirsch et al., 1999), 60% of metabolites 

were transformed into N
4-acetyl-SMX (Göbel et al., 2007), 9% of SMX-N1-glucoronide 

conjugate and traces of N-hydroxyl-SMX, 4-nitroso-SMX and 4 nitro-SMX (Van der Ven et 

al., 1995, Bonvin et al., 2013). On photolysis degradation of 4–nitroso-SMX, it was observed 

that a back transformation to the original parental compound was possible (Kahle and Stamm, 

2007; Bonvin et al., 2013). Other pathway in which sulfa drugs can reach the underground 

water sources is through leachates from animal excreta and soils ameliorated with antibiotic 

contaminated animal manure. It had been reported that when soil fertility is amended with pig 

manure containing sulfonamides, the development of resistance bacteria of sul 1 and sul 2 

genes was evident (Heuer et al., 2011). 
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1.2.1.3. Strategies to remove sulfa drugs  

A high silica zeolite Y was investigated on retention of sulfonamide antibiotics such as SDZ, 

SMZ, and sulfachloropyridazine (SC) in aqueous environment (Braschi et al., 2010 a). All 

these sulfonamide antibiotics were removed from water within 1min of contact time at room 

temperature. Also in another study, SMX was almost completely removed in water at pH 6 

within a few minutes by zeolite Y (Blasioli et al., 2014). Several model studies indicated that 

organophylic high silica zeolites had ability to quickly remove sulfa drugs from aqueous 

environments: the host-guest interactions, adsorption capacity and sulfonamide arrangement 

into their porosities be explicated by in situ FTIR spectroscopy and confirmed by ab initio 

computational modelling (Fukahori et al., 2011; Braschi et al., 2010b; Martucci et al, 2013; 

Blasioli et al., 2014). A single molecule of sulfa drug was stabilized by either the vicinity of 

methyl or amino groups to the wall of the zeolite cage. In this way organic molecule was held 

tight by multiple weak H-bonds and van der Waals type interactions inside zeolite Y cage. 

The confinement of sulfonamides inside the cage is accountable for the irreversible extraction 

of adsorbed sulfa drugs from water. It was also demonstrated the adsorption mechanism of 

sulfa drugs on zeolite Y is irreversible with high adsorption rate and quick kinetics. In 

addition, adsorption of sulfonamides on zeolites was found to be pH dependant, it decreases 

as pH increases irrespective of sorbent dosage (Kahle and Stamm, 2007; Fukahori et al., 

2011). The function of soil and water pH and the pKa of the sulfonamides are very crucial for 

adsorption of sulfa drugs since at pH higher than the pKa, sulfonamides exist primarily in 

disassociated anionic form and have higherwater solubility, thereby leading to lower sorption 

by zeolite (Fukahori et al., 2011). Therefore, since only neutral sulfa drug species could be 

adsorbed on zeolite supercages via hydrophobic interaction, removing of sulfa drugs at 

WWTP becomes problematic on the matrix of pH above 7.5.  
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The degradation of embedded sulfa drugs inside the adsorption sites of zeolite had been 

investigated by an in situ high-temperature synchrotron X-ray powder diffraction (XRPD) 

and thermal treatment of exhausted zeolite (Leardini et al., 2014). The imperative intention of 

this study was to remove the entrapped sulfa drugs and regenerate the zeolite. Authors 

observed no alteration of the zeolite crystal structure due to static heating in furnace at 

temperatures 575 ºC for 2 h, and the zeolite was able to re-adsorb equal amounts of sulfa 

drugs in their first cycle. Most recently, Braschi and co-workers (2016) had investigated the 

regeneration of exhausted zeolite preloaded with SC, SD, SM and SMX sulfa drugs 

employing physico-chemical treatments. Zeolite was loaded in both deionised and natural 

river water and the following physico-chemical treatments were examined, namely 

photolysis, Fenton-like reaction, thermal treatment and solvent extraction. Both photolysis 

and Fenton-like reaction resulted into insignificant abatement of sulfa drugs into the zeolite, 

whereas both thermal treatment and solvent extraction fully regenerated exhausted zeolite. 

The thermal treatment at 500 °C for 4 h, and mixture of equal amounts of acetonitrile, 

methanol and water for solvent extraction, achieved the best regeneration of loaded zeolite 

samples.  

Most of all, the quick and irreversible sorption of sulfa drugs by zeolites, successful 

regeneration of exhausted zeolite by thermal and solvent extraction renders high silica zeolite 

Y an excellent sorbent in remedial of sulfonamides from aqueous environments. 

 

1.2.2. Heavy metals 

Heavy metals in aquatic environment are another environmental concern due to their toxicity 

to living organisms. Human activities such as industrialization and mining had proved to be 

paramount contributors to heavy metals (Owamah, 2014; Chand et al., 2015). At very low pH 

values, heavy metals become soluble in water leading to heavy metal contamination of 
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surface and underground water. Since heavy metals are not biodegradable, they can 

accumulate in food and potable water and become serious human health hazard and 

environmental pollution (Fu and Wang, 2011).  

Nevertheless, some heavy metals such as cobalt (Co), copper (Cu), chromium (Cr), iron (Fe), 

magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se) and zinc 

(Zn) are considered essential trace elements for biochemical and physiological cellular 

functions in human bodies, their inadequate or excessive supply may lead into a variety of 

deficiencies and critical illnesses (WHO, 1996). The mechanism in which excessive heavy 

metal ions induces toxicity is through enzyme inhibition, oxidative stress and impaired 

antioxidant metabolism (Gumpu et al., 2015). Consequently, through free radical generation 

that leads to DNA damage, lipid peroxidation and depletion of protein sulfydryl leading to 

adverse health effects. Enhanced generation of reactive oxygen species (ROS) leads to 

oxidative stress which can overwhelm cell’s intrinsic antioxidant defences resulting to cell 

damage or death (Ali et al., 2013). Other heavy metals such as arsenic (As), cadmium (Cd), 

chromium (Cr), lead (Pb) and mercury (Hg) had been reported as of significance public 

health concern due to their high degree of toxicity at very low concentrations (Tchounwou et 

al., 2014). Human exposure to drinking water or alimentary chain polluted with heavy metals, 

can lead to various sickness, brain damage and neurological disorders. For instance, human 

exposure to low concentrations of 2-3 µg Cd/g creatinine may result to kidney damage, bone 

effects and fractures (Järup, 2003).  

Besides the public health risks associated with consuming crops containing high 

concentrations of heavy metals, concerns are also on effects on plant growth parameter. 

Plants require micronutrients such as Zn, Cu, Fe, Co and Mn for plant growth. However, 

excess of these trace elements may lead to plant growth inhibition and toxicity symptoms. 

Since Cu and Zn are constituents of various enzymes and plant proteins, they are considered 
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essential for plant growth and development (Hall, 2002). Excessive amounts of these trace 

elements can induce toxicity symptoms at due to their activeness at cellular levels, whereas 

inadequate supply can cause displacement by other essential elements resulting to deficiency 

symptoms. For instance Zn toxicity in vegetables showed young leaf chlorosis, browning of 

roots and reduction of plant growth parameters such as shoots and roots (ul Islam et al., 

2007). In this study, plant growth reduction was observed to be 73% and 63% of shoot weight 

for fresh celery and Chinese cabbage, respectively. For this reason irrigation water quality 

had been regulated by FAO to contain Zn (200 µg/l), Cu (17 µg/l), Fe (500 µg/l) Co (50 µg/l) 

and Mn (500 µg/l) (Ayers and Westcott, 1994). Therefore contaminated water sources with 

heavy metals require adequate treatment before various utilizations. 

 

1.2.2.1. Strategies of removing heavy metals from water: An overview 

Since the pollution of water sources by heavy metals has been occurring, various remedial 

strategies had been investigated and employed. These heavy metal remedial techniques 

include but not limited to physico-chemical treatments and biosorption, and are well 

documented (Kurniawan et al., 2006; Mohan and Pittman, 2007; Barakat et al, 2011). 

Benefits and limitations of these heavy metal remedial strategies are tabulated in Table 1.3 

below. 

1.2.2.1.1. Physico-chemical strategies 

Chemical precipitation and coagulation-floatation in treatment of heavy metal contaminated 

water can be summarised by addition of precipitant and coagulant agents to form insoluble 

precipitates of metal hydroxide and stabilisation of colloidal particles which are separated 

from the water by sedimentation at pH 9-11 conditions, respectively (Aziz et al., 2008; 
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Heredia and Martin, 2009). Ion-exchange process is a reversible interchange of ions between 

the solid and liquid phases; resin has the specific ability to exchange its cations with those of 

the metals in the solution (Khan and Paquiza, 2011). The membrane filtration processes 

successfully removed metals from the wastewater through ultrafiltration, reverse osmosis, 

nanofiltration and electrodialysis (Feini et al., 2008; Efligenir et al., 2014). Adsorption is a 

process of mass transfer of metal ions from the liquid phase to the solid phase surface, the 

solid retained heavy metal ions from the solution (Inyang et al., 2012). Since adsorption and 

ionic exchange strategies generate no toxic sludge, are emerging as the environmentally safe 

methods of redeeming heavy metals from aqueous environments. 

 

1.2.2.1.2. Biosorbents 

The efficiency of algae, bacteria and fungi to remove heavy metals from aqueous 

environment had been investigated (Veglio and Beolchini, 1997; Kadukova and Vircikova, 

2005). The cell wall of microorganisms constitutes of functional groups such as 

polysaccharides, lipids and proteins, which have many binding sites for metals. The physico-

chemical interactions between metal ions and functional groups of the cell wall are 

independent from cell metabolism; enabling a quick and active sorption. Another biological 

method of eliminating heavy metals from water is by phytofiltration (Tangau et al., 2011, 

Lone et al., 2008). Heavy metals from water are taken up by metal accumulating plant species 

through these processes, phytostabilization, rhizofiltration, phytoaccumulation and 

phytovolatilization. The mobilization of metal ions is assisted by microorganisms, bacteria 

and fungi, living at the rhizosphere closely associated with plants roots, which contribute to 

increase the bioavailable fraction of metal ions. As a result, heavy metals such as Cd, Zn, Co, 

Mn, Ni, and Pb are taken up to 100 or 1000 times more than those taken up by non-

accumulator metal plants (Erdei et al., 2005). Also, live roots were more effective in heavy 
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metal biosorption than dried plant roots biomass (Dushenkov et al., 1995). However, live 

roots take time to grow, and using plant biomass is a destructive mechanism, for this reason 

agricultural waste biomass had been investigated as alternative biosorbents for heavy metal 

retention from water. Agro-waste material preparations and applications as either raw or 

modified biomass are discussed fully below. 

 

1.2.2.1.3. Agro-waste raw materials 

Biomass is a biosorbent that is prepared by drying of the plant material to reduce water 

content and to prevent mould and fungal development. Drying of the material is often done in 

ovens at low temperatures ranging from 60-120 °C (Hameed et al., 2009) or the material 

placed in the sun for few days (Mirsha et al., 2010). After the material is grounded and sieved 

to a desired particle diameter size ranging from 0.125 to 5 mm, it is ready to be used as 

adsorbent without any further treatment. The BET surface area of biomass from peel waste is 

very limited, ranging from 13 to 25 m2/g (Annadurai et al., 2002; Memon et al., 2008; 

Memon et al., 2009; Hossain et al., 2012). Surface chemistry constitutes various functional 

groups responsible to enhance adsorption process; limited surface area and total pore volume 

reduce the adsorption capacity of such biomass materials (Prahas et al., 2008). However, raw 

biomass materials had been reported to had achieved excellent adsorption rates for various 

pollutants including heavy metals (Mishra et al., 2010), dyes (Arami et al., 2005), phenolic 

compounds (Achak et al., 2009) and cefradine pharmaceutical (Hu et al., 2012). Table 1.4 

depicts the effect of particles size and treatment of waste materials on the surface area. 
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Table 1.3. Outlined heavy metal treatment techniques with their benefits and limitations. 

Method of treatment Benefits Limitations 

1,2,3
Physico-

chemical 

Chemical 
precipitation 

Simple process, convenient 
and safe operation  

Large volume of sludge 
for disposal, slow metal 
precipitation, poor 
settling  

Coagulation-
flocculation  

Shorter time to settle out 
suspended solids, improved 
sludge settling  

Large volume of sludge 
for disposal 

Floatation  Low cost, quick hydraulic 
retention 

Subsequent treatments 
are compulsory 

Membrane filtration Convenient operation, 
higher bonding selectivity, 
smaller space requirement  

Inadequate selectivity, 
pre-treatment required, 
high residual metal 
concentration, prone to 
membrane fouling  

Ion exchange Possible metal recovery, 
less time consuming, no 
sludge generation  

Limited pH range for the 
ion-exchange resin  

Adsorption Well established, higher 
removal efficiency and no 
sludge generations  

High operational costs 
and very high selectivity  

Biosorbents 

4Living 
microorganisms 

Biological sequesters of 
heavy metal through 
microbial precipitation. 

High cost of growing 
pure cultures. Sorption 
can be reduced due to 
lower temperatures and 
lack of energy sources  

5,6Phytofiltration 
plants 

Very effective remediation 
of heavy metals in very low 
concentrations in large 
volumes of water.  

Requires pH adjustment, 
chelating agents addition 
may encourage leaching. 
Very slow process 

7Agro-
wastes 

Raw 
materials 

Low cost sorbent, freely 
available and easy to 
prepare 

Low adsorption 
efficiency 

Treated 
materials 

Very effective adsorbent Cost of thermal treatment 
and chemical agents 
become cost effective 

1Kurniawan et al, 2006, 2Fu and Wang, 2011, 3Barakat, 2011, 4Kadukova and Vircikova, 
2005, 5Tangau et al., 2011, 6Lone et al., 2008, 7Demirbas, 2008 
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In a study, an investigation on the adsorption capacity of sun dried pineapple peels, 

eucalyptus bark sawdust and mango bark sawdust towards retention of Zn(II) was established 

(Mishra et al., 2010). The results showed that eucalyptus sawdust obtained the highest 

adsorption percentage (84%) and pineapple peels showed the least (22.9%). In this 

investigation it was established that biosorption efficiency and metal ion interaction with 

adsorbent surface depended on the presence of hydroxylic or carboxylic functional groups 

involved in metal ion adsorption and surface porosity of these different base materials. In 

another study, banana peel biomass was investigated on adsorption of Pb(II) and Cd(II) 

(Anwar et al., 2010). The results showed that, 1g of banana peel biomass adsorbed 2.18 mg 

and 5.71 mg for Pb(II) and Cd(II), respectively. The optimal removal percentage on banana 

peels at pH 5 was 85.3% and at pH 3 was 89.2% for Pb(II) and Cd(II), respectively. Also, 

research done by Perez-Marin and co-workers (2007) on removal of Cd(II) from aqueous 

solution using biomass of orange peels revealed that adsorption was strongly influenced by 

pH. For instance, an increase of pH from 2 to 6 realised adsorption percentage of 8 to 98, 

respectively. A similar trend was observed for Cr(III) adsorption by orange peel biomass, 

where the removal of Cr(III) increased with the increase in pH (Perez-Marin et al., 2009). In 

the case of Cr(III), orange peel adsorption capacity increased from 0.57 to 1.44 mmol/g from 

pH 3 to 5. The lower adsorption of both heavy metals (i.e. Cd and Cr) at lower pH values was 

due to the competition with H+ for adsorption sites, and by electrostatic repulsion of metal 

cations with the protonated biomass surface. Also the deprotonated carboxylic group (-COO-) 

of orange biomass became responsible for uploading of heavy metals at pH values higher 

than 5.  
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1.2.2.1.4. Thermal treated agro-waste 

The abovementioned method of biomass synthesis is subject to activation phase to become an 

activated carbon. There are two activation methods, namely physical and chemical. Physical 

activation is characterized by pyrolysis (carbonisation) of biomass material in the absence of 

O2 or in the presence of CO2 or steam in a muffle furnace at varying temperatures ranging 

from 200-1200ºC (Rajeshwarisivaraj et al., 2001; Rashidi et al., 2012). This is done to 

remove moisture, to eliminate non-carbon elements and open pores on the material 

(Sundaryanto et al., 2006). Increasing pyrolysis residence time and temperature, reduced the 

carbon yield percentage (Zhang et al., 2010). The reduction of carbon yield is due to 

increases of carbon burn-offs from the material and the formation of ash. The surface area of 

peel waste biochars prepared at 700 ºC ranged from 200 to 243 m2/g (Chen and Chen, 2009; 

Foo and Hameed, 2012; Hashemain et al., 2014). 

Potato peel waste biomass subjected to pyrolysis at 700 ºC, was investigated for adsorption of 

Cu(II) in aqueous solution of 150 mg/l (Aman et al., 2008). It was observed that optimum 

adsorption of 99.8 % was achieved at pH 6. Also, regeneration studies on exhausted potato 

peel biochar with deionised water and HCl, showed that up to 5 cycles, there was no 

significant difference between the adsorption and desorption. Therefore, potato peel biochars 

according to this study can be reused to adsorb Cu(II) repeatedly more than 5 times. Cu(II) 

removal by rice husk, olive pomace and orange waste biochars prepared at 300 and 600 ºC, 

was also studied (Pellera et al., 2012). In this study, it was discovered that the optimum 

adsorption percentage of 90.1, 88.7 and 77.8 % was achieved by biochars of rice husks, 

orange waste and olive pomace, respectively. Also, it was observed that adsorption of Cu(II) 

increased as pH increases from 2 to 7 and the optimum pH was 7, and precursors prepared at 

300 ºC achieved better adsorption than when prepared at 600 ºC. 
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Table 1.4. Effects of agro-waste preparation method on BET surface area. 

Precursor  Particle 

size (mm) 

Condition BET surface 

area (m
2
/g) 

References 

Raw peels 

Orange and 
banana  

5 Oven dried for 24 h at 
100-120 °C 

20.6-23.5 Annandurai et al., 2002 

Banana peel 5 Oven dried for 24 h at 
105 °C 

22.59 Hossain et al., 2012 

0.125 Oven dried for 8 h at 
100 °C 

13 Memon et al., 2009  

Orange peel 1-2 Oven dried for 72 h at 
50 °C 

128.7 Li et al., 2008 

Thermal treated peels 

Pineapple  1-2 Pyrolyzed at 700 °C  233 Foo and Hameed, 2012 

Cassava 0.15-0.25 Pyrolyzed at 700 °C 
for 1 h 

270 Rajeshwarisivaraj et al., 
2001 

Banana  0.2 Pyrolyzed at 500 °C 
for 1 h 

875.3 Mohammed and Chong, 
2014 

Orange  0.154 Pyrolyzed at 700 °C 
for 6 h 

201 Chen and Chen, 2009 

1-5 Pyrolyzed at 700 °C 
for 1 h 

243 Hashemain et al., 2014 

Chemical treated peels 

Banana  0.2 Esterified by soaking 
in methanol and HCl 

168.4 Mohammed and Chong, 
2014 

Jackfruit - Impregnated with 
HSO4 and pyrolyzed 
at 550 °C for 45 min 

1056- 1260 Prahas et al., 2008 

Cassava 

 

- Impregnated with 
KOH and pyrolyzed at 
650 °C for 1-3 h 

1154-1183 Sudaryanto et al., 2006 

 0.15-0.25 Impregnated with 
H3PO4 and pyrolyzed 
at 120 °C for 14 h 

490 Rajeshwarisivaraj et al., 
2001 
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1.2.2.1.5. Chemically treated agro-waste 

Chemical activation is a one-step method where pryolysis and activation occurs 

simultaneously. Preparation combines the impregnation of carbon-based materials with 

chemicals such as H3PO4, KOH, HCl, NaOH, ZnCl2, K2CO3or H2SO4 and heating at 

temperatures in the range of 450–900 °C for 1 to 4 h (Ioannidou and Zabaniotou, 2007). 

Depending on chemicals used for activation, an increase of functional groups may be 

induced, and cation exchange capacity may also be improved (Li et al., 2008; Feng et al., 

2010; Feng and Guo, 2012; Pouretedal and Sadegh, 2014). Also, combined effects of 

chemicals and temperature used in activation improved the pore development in the carbon 

structure. Increasing the activating temperature increases the pore development through 

realising of volatile species from the precursor but in this process the carbon yield percentage 

is reduced (Sudariyanto et al., 2006). However, pine wood activated with H3PO4 showed 

increase in porosity and BET surface area up to1400 m2/g at 450 ºC due to increase of 

activating temperature, further increase of temperature beyond this point, reduced the surface 

area slightly (Hared et al., 2007).  

Orange peels activated with NaOH and CaCl2 were used as biosorbent for removal of Cu(II), 

Pb(II) and Zn(II) ions from simulated wastewater (Feng et al., 2010; Feng and Guo, 2012). 

The results indicated the maximum adsorption percentage reached at pH 5.5 with rapid 

kinetics of 10 min was observed in the order 99.4%, 93.7% and 86.6% for Pb(II), Cu(II) and 

Zn(II), respectively. Orange peel waste biomass was found to contain pectin, soluble sugars, 

cellulose, hemicelluloses (Rivas et al., 2009). These major constituents contain methyl ester 

which does not bind the metal ions significantly, however, treating the biomass with NaOH 

improve its metal-binding ability by hydrolysis of methoxyl groups. Additionally, activating 

orange peel with CaCl2 makes the pectin contained in the orange peel to precipitate and 

reduces pectin solubility in solution. This combined effects of orange peel activated by NaOH 
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and NaOH-CaCl2 significantly improved adsorption capacity of Cu(II) by 20% (Feng et al., 

2010) and Pb(II) by 30% (Feng and Guo, 2012), respectively when compared to orange peel 

biomass.  

 

Cassava peels activated with H3PO4 was found to remove effectively Cr(VI), Hg(II) and 

Fe(II), obtaining a removal percentage of 99.83%, 86.42 and 92.85 respectively 

(Rajeshwarisivaraj et al., 2001). In this study, the high efficiency of adsorption was promoted 

by formation of phosphate group since the agro-waste was initially activated by H3PO4. In a 

research done by Mamon and co-workers (2008) on adsorption of Cd(II) by banana peels 

biochar activated with HCl, optimal adsorption efficiency was 95% at pH 8. The main 

contributing factor attributed to these results was pH effect in a way that at lower pH, a 

cationic Cd(II) compete with H+ ions for adsorption on a dried banana peels. Hence in this 

research, adsorption of Cd(II) on banana increased with increasing of pH up to pH 8, 

afterwards adsorption declined.  
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2. PART I: ZEOLITE ADSORPTION CAPACITY TOWARDS SMX IN THE 

PRESENCE OF HUMIC MONOMERS. 

 

2.1. State of the art 

It is widely known phenomenon that the existence of antibiotic compounds in aqueous 

environments provokes the spread of antibiotic resistant genes and antibiotic resistant 

bacteria (Goa et al., 2012; Bouki et al., 2013; Rizzo et al., 2013). The toxicity of antibiotic 

resistance genes bears both ecological and public health concerns. The antibiotic of interest 

for this thesis is SMX, belongs to the persistent sulfonamide antibiotic group. SMX is used as 

a model molecule to represent the other antibiotics in this group and particularly it is the most 

used drug after penicillin (Livermore et al., 2005). Sulfa drugs are used to inhibit the 

multiplication of pathogenic bacteria in both humans and animals. However, after SMX had 

been administered, it is not completely metabolised, and therefore discarded in portions of 

human and animal wastes. And so, SMX together with other antibiotic compounds had 

detected in surface water bodies, drinking water, animal, hospital, pharmaceutical and tertiary 

treated municipal wastewater (Kummerer, 2009 a; Wei et al., 2011; Goa et al., 2012). These 

traces of SMX had drawn the attention of researchers to come up with removal strategies to 

eradicate SMX from the aqueous environments, so as to eliminate the spread of antibiotic 

resistance genes (Gobel et al 2007; Nakada et al., 2008; Kodesova et al., 2015). 

Proposed adsorption methods had been found to be an effective to be employed to remove 

antibiotics from aqueous environments (Liu et al., 2013; Nam et al., 2014; Zhang et al., 
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2016). Although the use of adsorbents such as PAC is very effective on removal of antibiotics 

from natural waters, adsorption had been reduced drastically due pore clogging by DOM 

(Nam et al., 2014). Contrary, sulfa drug adsorption by high silica zeolite Y in water was not 

affected by the presence of DOM, instead marked with quick kinetics and irreversible 

adsorption (Braschi et al., 2010 a). The unclogging of high silica zeolite Y during adsorption 

of antibiotics was simply due to higher dimensions of DOM main components than those of 

zeolite micro pores (de Ridder et al., 2012). However, literature had not addressed the effect 

of organic components with molecular size similar with the pore diameter of high silica 

zeolites on adsorption of SMX whereby small molecular organic components and SMX can 

be adsorbed or pose competition for adsorption in the zeolite active sites. 

 

Fresh-water DOM originates from terrestrial soil organic matter (SOM) by microbial and 

plant activity at the soil/water interface. However, SOM is mainly made up of three 

constituents depending on their solubility in acids and alkali conditions, namely fulvic acids, 

humic acids, and humin (Nebbioso and Piccolo, 2013). Humic acids are a branched 

macromolecular network built up by numerous organic components of relatively small 

molecular weight held together by weak non-covalent bonds. Along with other molecules, 

phenolic compounds like catechol, caffeic, ferrulic, and p-coumaric acids, p-

hydroxybenzaldehyde, vanillin and many others are found to be building blocks of humic 

substances, hence are referred as humic monomers. For this thesis vanillin and caffeic acid 

were selected based on that they are both phenolic compounds with an aldehyde and 

carboxylic functional groups, respectively. Based on their molecular dimensions, both humic 

monomers are assumed to be diffusable into zeolite porosites. Therefore SMX adsorption into 

zeolite in the presence of these humic monomers was evaluated to check their adsorption 
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competition effects against SMX. In addition, to simulate natural, artificial and wastewater; 

the evaluation was conducted at different wide range of pH conditions. 

 

2.2. Materials and methods 

 

2.2.1. Chemicals 

Sulfamethoxazole (4-amino-N-(5-methylisoxazol-3-yl)-benzenesulfonamide, SMX), was 

obtained from Dr. Ehrenstofer GmbH (Germany) as a white powder with a purity of 99%. 

Vanillin (4-hydroxy-3-methoxybenzaldehyde, VNL) and caffeic acid (3-(3,4-

dihydroxyphenyl)-2-propenoic acid, CA) in powder form were supplied by Sigma Aldrich Co 

LLC (USA) with a purity of 95 % and 99 %, respectively.  

 

Aqueous solutions of SMX, VNL and CA at 50 M concentration were used for all the 

experiments except for adsorption isotherm determination in which solutions at the maximal 

solubility were prepared. The water solubility of SMX and humic monomers was determined 

by adding organic compounds to MilliQ water in amounts exceeding those required to 

saturate the solution. The obtained suspensions were sonicated for 15 min and, then, filtered 

through 0.45µm Durapore® membrane filters to eliminate undissolved solute from the 

solution. The solubility, measured by means of high performance liquid chromatography 

(HPLC-DAD), was 203  2.7 M for SMX, 9.5  12.5 and 0.25  3.4 mM for VNL and CA, 

respectively.  

High silica Y type zeolite (SiO2/Al2O3, 200 mol/mol) with a surface area of 750 m2/g was 

purchased from Tosoh Corporation (Japan).  
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2.2.2. Persistence of VNL and CA 

Aqueous solutions of humic monomers were prepared in polyallomer centrifuge tubes 

(Nalgene, NY, USA) dissolving 50 M of each in buffered media at pH 5 and 6 (10 mM, 

CH3COONa, Carlo Erba Reagents, Milano) and at pH 7 and 8 (10 mM Na2HPO4, Carlo Erba 

Reagents, Milano). The persistence was followed over 48 h at room temperature (RT) and the 

VNL and CA concentration was determined by HPLC. The experiment was conducted in 

triplicate. 

 

2.2.3. Adsorption kinetics 

To establish the time needed for SMX, VNL and CA to reach the adsorption equilibrium in 

zeolite Y, adsorption kinetics were followed over 2 h in non-buffered solutions (to eliminate 

buffering agent interference) at pH ranged between 5 to 8 (pH was regulated by using diluted 

solution of HCl and NaOH). Before the kinetics experiments, zeolite Y was pre-equilibrated 

to the desired pH value using water in a centrifuge tube. Then, the suspension was removed 

by centrifugation at 15000 rpm for 15 min and supernatant was replaced by solutions of 

SMX, VNL and CA (50  each) at controlled pH with a zeolite: solution ratio of 1 mg: 2 

ml. Samples were shaken at RT and at different times, the supernatants were separated from 

the solid phase by centrifugation and directly analyzed by HPLC. To guarantee the pH 

stability, it was checked and eventually adjusted by adding few drops of HCl or NaOH 

diluted solutions for the entire experiment duration. The experiment was conducted in 

duplicate. 

 

2.3.4. Adsorption screening 

Solutions containing SMX, VNL, or CA alone, or combinations of them (binary, SMX/VNL 

and SMX/CA, and ternary, SMX/VNL/CA) at 50 µM initial concentration each, were 
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prepared at different pH value ranging from 5 to 8 by adding few drops of HCl and NaOH 

diluted solutions. Adsorption screening was performed on zeolite Y, subjected to the pH 

stabilization procedure described in the previous section, with a zeolite: solution ratio of 1mg: 

2 ml. After contact, the suspensions were shaken for 1 hour, then centrifuged and the 

supernatants analyzed by HPLC. The pH of suspensions was checked and adjusted during the 

experiment. The amount of compounds adsorbed by zeolite Y, was calculated by the 

difference between initial and final concentration. 

 

2.2.5. Adsorption isotherms 

Adsorption isotherms of SMX and humic monomers on zeolite Y were carried out at RT and 

different pH values ranged between 5 and 8, with a zeolite: solution ratio of 1 mg: 2 ml. 

Adsorption isotherms were built at several initial concentrations in the range 0 – 200 M for 

SMX, and 0 - 9.5 mM for VNL.CA since we found marginal adsorption, so no adsorption 

isotherm was conducted. Suspensions of zeolite (at stable pH) and organic compound 

solutions were shaken for 1 h, then centrifuged and the supernatants analyzed by HPLC. The 

pH of suspensions was monitored and, eventually, adjusted for the entire experiment.  

Owing to the excellent adsorption capacity of zeolite Y (Braschi et al., 2010 a; Blasioli et al., 

2014) and the moderate solubility of SMX, additional points of the isotherm were obtained 

by exposing zeolite Y to subsequent adsorptions of the antibiotic solution at maximal 

solubility as follows: after 1 hour contact, suspensions of zeolite in SMX solution were 

centrifuged and the supernatant removed and analyzed by HPLC. Then it was replaced by 

fresh SMX solution. Subsequent adsorptions were performed until the zeolite reached its 

maximum adsorption capacity. Adsorption experiments were conducted in duplicate. 
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The concentration of antibiotic and humic monomers in aqueous phase at equilibrium was 

expressed as Ce (µM) whereas the amount adsorbed in zeolite (Cs, µmol /g of adsorbent) was 

calculated by the difference between the initial and final concentrations. 

 

2.2.6. FT-IR spectroscopy 

Harmonic vibrational frequencies were computed for SMX and VNL in their Density 

Functional Theory (DFT) optimized geometry (vide infra), and compared to experimental IR 

spectra.Experimental infrared spectra were collected on a Tensor27 spectrometer (Bruker, 

MA, USA) with 4 cm-1 resolution. Self-supporting pellets (10 mg each) of zeolite Y, singly 

loaded with SMX or VNL and with their mixture, were obtained with a mechanical press 

(SPECAC, UK) at ca. 7 tons cm-2 and placed into an IR cell equipped with KBr windows 

permanently attached to a vacuum line, allowing sample dehydration in situ. FTIR spectra of 

SMX or VNL in CH2Cl2 were performed in a NaCl cell for liquids. Spectrums of the bare 

zeolite were collected as a control. 

 

2.2.7. Chromatographic analysis 

The concentration of SMX, VNL and CA was determined using HPLC-DAD. The system 

was assembled with Jasco 880-PU Intelligent pump, a Jasco AS-2055 plus Intelligent 

Sampler, a Jasco 875-UV Intelligent UV-vis diodarray detector at 271 nm, a Jasco 

ChromNAV1.14.01 chromatography data software, a Jones Chromatography model 7971 

column heater and a 4.60 nm x 250 mm Waters Spherisorb® 5µm C8 analytical column 

(Waters, USA). The analytical column was kept at 35 ºC and eluted with acetonitrile: water 

(30:70 by volume, pH 2.7 for H3PO4) at a flow rate of 1ml/min. Under these conditions, the 

retention times were 6.8, 5.5 and 3.8 for SMX, VNL and CA respectively. 
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2.3. Results and discussions 

2.3.1. Chemicals characteristics 

The aim of this experiment was to investigate the adsorption of SMX on zeolite Y in the 

presence of humic monomers i.e. vanillin (VNL) and caffeic acid (CA) at different pH levels 

(5-8). These humic monomers were chosen based on their occurrence in waters and their size 

(containing one aromatic ring) which is smaller than the pore dimensions of zeolite Y. Since 

these molecules are smaller than SMX, they were assumed to pose competition during 

adsorption of SMX on zeolite Y. Both VNL and CA are phenols with aldehyde and 

carboxylic functional groups, respectively. The chemical structures and the pKa values of 

investigated chemicals are reported in Table 2.1. 

 

Table 2.1. Characteristics of molecules under investigation. 

Chemical name Acronym Chemical structure pKa Reference 

Sulfamethoxazole SMX 5.7 

Koizumi et al., 

1964 

Vanillin VNL 

 

7.4; 11.4 

The Chapman 

and Hall, 1995 

Caffeic acid CA 

 

4.5; 8.6; 

12.5 

Kiss et al., 1989 

 

 

2.3.2. Degradation of humic monomers in water 

Humic monomers water persistence was conducted to test the stability of these molecules in 

water in order to exclude their degradation products during the adsorption process. The 
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degradation kinetics of CA and VNL in the pH range of 5-8 was followed for 48 h, as 

displayed in Figure 2.1. 

Persistence of both humic monomers were stable at all pH investigated. A study done by 

Friedman and Jurgens (2000) confirms the stability of CA in acidic pH values 3-6 up to 24 h. 

Also, it was observed that CA degradation was evident at pH higher than 8 within 24 h 

contact time. Although in the present study two degradation products were observed, it was 

out the interest of this thesis to elaborate more on them. These results gave an indication of 

how long the adsorption experiments should be conducted to rule out the degradation effect. 

Hence the adsorption kinetics was conducted within 2 h.  

 

Figure 4.1.Degradation kinetics of a) VNL and b) CA (initial concentration, 50 μM) in 

buffered solutions at pH 5 and 6 (CH3COONa, 0.01M) and pH 7 and 8 (Na2HPO4, 

0.01M). A detail of CA kinetics in 2 h is reported in the insert. Error bars are 

reported as maximal semi-dispersion. 

 

VNL was stable within 48 h of our experiment in all the entire range of pH values (5-8) 

tested. CA was also stable from pH 5-7 within 48 h, whereas at pH 8 CA degradation was 

obFFigureserved of up to 60% of initial concentration (Ci) at 48 h period. In the first 2 h, the  

Figure 2.1. Degradation kinetics of vanillin (VNL) and caffeic acid (CA) (initial 

concentration, 50 μM) in buffered solution at pH 5 and 6 (CH3COONa, 0.01M) 

and pH 7 and 8 (Na2HPO4, 0.01M). A detail of CA kinetics is reported in the 

inset B. Bars indicate an absolute error. 
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2.3.3. Adsorption trials 

2.3.3.1. Adsorption kinetics 

According to the observed humic monomers degradation, the adsorption kinetics of VNL, CA 

and SMX on zeolite Y was followed within 2 h contact time in the pH range of 5 to 8. 

Adsorption kinetics was conducted to investigate the time needed by each molecule to reach 

the adsorption equilibrium. Figure 2.2 depicts the adsorption kinetics of all the molecules in 

investigation. 
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Figure 2.2. Adsorption kinetics of A) VNL B) CA and C) SMX on zeolite Y at different pH 

values (5-8) after 2 hours of contact time. A detail of VNL adsorption kinetics is 

reported. Bars indicate absolute error. 

 

The adsorption equilibrium of CA at pH 5 was reached within 15 min, a time longer than that 

observed for VNL and SMX (ca. 1 min), whereas CA at the higher pH values (6-8) no 

significant decrease in its initial concentration was found. This behaviour can be explained by 
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the value of pKa of 4.5 for CA (Table 4.1), when the pH is above the pKa, more negative 

species are formed. At pH below the pKa value, the molecule is in the neutral form so the 

affinity for the zeolite is higher. Likewise VNL’s fast adsorption kinetics was inversely 

affected by pH, resulting in adsorption decreasing as the pH increasing. Furthermore, at pH 8 

an inadequate amount of VNL (pKa of 7.4) was retained by the zeolite Y due to the 

occurrence of species mainly in anionic form at pH 8. 

The adsorption equilibrium of SMX was also very fast and was reached within 1 min at the 

entire pH range of 5-8. Several studies had confirmed this behaviour of SMX and other sulfa 

drugs on different kinds of zeolites (Braschi at al., 2010 a; Fukahori et al., 2011; Blasioli et 

al., 2014). On a slightly different zeolite HSZ-385, SMX adsorption was found to have quick 

kinetics reached within 1 min and the amount of SMX retained by the zeolite was inversely 

related to the pH value of water solution as in the present study (Fukahori et al., 2011). This 

adsorption behaviour can be explained in consideration of SMX pKa value of 5.7 (Table 4.1), 

and the hydrophobic nature of the zeolite Y. For instance, at solution of pH 5, SMX is mainly 

in neutral associated form, thus allowing the highest amount to be retained due to the 

hydrophobic host-guest interactions into the zeolite pores (Fukahori et al., 2011). 

Furthermore, observations indicating that VNL and SMX were adsorbed at the same time by 

zeolite Y, it can be speculated that these molecules can compete for the zeolite adsorption 

active sites. Therefore, adsorption screening was deemed necessary to give an indication of 

the behaviour of these molecules in the mixture towards the zeolite adsorption porosities.  

2.3.3.2. Adsorption screening 

Adsorption screening was conducted to investigate the adsorption behaviour of molecules as 

a single component, as well as in binary mixture and in ternary mixture (Table 2.2). As single 

components, the adsorption of VNL and SMX decreased by increasing of pH value, 

confirming what had already been observed in the adsorption kinetics. Similarly to adsorption 
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kinetics, CA was not adsorbed significantly at any pH value investigated. In single 

component, the adsorption of SMX on zeolite Y was found to be significantly higher than 

that of VNL in the entire pH range. As far as the adsorption in the binary mixture of SMX 

and VNL is concerned, adsorption trends that were observed were similar to those as single 

components.  

Table 2.2. Adsorption screening of VNL, SMX and CA [50μM each] on zeolite Y, alone and 

in the presence of equimolar concentration of each species at pH range between 5 to 

8 within 1 h contact time. Numbers in parenthesis are absolute error. 

pH 

VNL, SMX and CA adsorbed on zeolite 

(% of initial concentration) 

Single component Binary mixture Ternary mixture 

VNL SMX CA VNL  SMX CA SMX VNL SMX CA 

5 34.9 (1.3) 95.6 (0.0) 3.7 (1.1) 46.0 (0.0) 93.2 (1.0) 4.7 (0.6) 93.1 (0.6) 47.2 (0.4)  96.8 (0.5) 5.1 (0.3) 

6 23.5 (1.6) 88.0 (1.5) 0.5 (0.0) 36.9 (3.5) 77.9 (4.9) 4.0 (1.5) 85.4 (4.2) 37.6 (0.9)  81.0 (2.0)  4.9 (0.5) 

7 21.4 (0.8) 66.1 (4.6) 0.1 (0.0) 19.7 (6.3) 45.3 (4.9) 4.0 (1.0) 62.4 (11.8) 13.6 (0.3)  29.0 (0.4)  5.0 (2.0) 

8 0.0 (2.4) 26.1 (8.5) 2.9 (1.5) 12.2 (2.9) 14.7 (6.5) 1.8 (0.3) 8.6 (1.9) 6.4 (1.5) 11.8 (0.4) 0.0 (0.3) 

 

Since both SMX and VNL were co-adsorbed within 1 min, adsorption competition was 

induced, hence in the binary mixture SMX retention was reduced slightly reduced and VNL 

was enhanced compared to a single component. Similar trends of VNL and SMX adsorption 
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were also observed in the ternary mixture; due to ineffective adsorption of CA on zeolite Y. 

Since in the ternary mixture only VNL and SMX co-adsorption was observed, then CA non-

interference did not lead to pore clogging. Therefore, it was interesting to evaluate zeolite 

loading capacity and the affinity for VNL and SMX, which can be observed by adsorption 

isotherm. 

2.3.3.3. Adsorption isotherm 

Adsorption isotherm was conducted at room temperature (RT) to assess the maximal amount 

of SMX and VNL adsorbed as single compounds in zeolite pores and the affinity of each 

compound on the zeolite active adsorption sites. The adsorption and desorption isotherm of 

SMX and VNL are reported in Figure 2.3. Adsorption isotherm gives an indication of 

maximal loading capacity of zeolite and the affinity of zeolite towards the each molecule. 

The affinity of zeolite can be observed by the slope of the curve and maximum loading 

capacity can be observed by the plateau value.  

 

Figure 2.3. Adsorption and desorption isotherms of A) SMX and B) VNL by zeolite Y at 

different pH values 5-8 for 1 h contact time at RT. Bars indicate absolute error. 
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According to these findings, the amount adsorbed on zeolite Y at maximal concentration was 

about 22% (wt/wt) at pH 5 for SMX. In agreement with Blasioli and co-workers (2014), the 

isotherm curve of SMX exhibited two different adsorption regimes at pH 5.8-6. These 

adsorption regimes were due to different pores of zeolite. It was most probably that SMX was 

firstly adsorbed at higher affinity sites and when were completely filled, adsorption continued 

steadily at lower affinity sites. The maximal adsorption of SMX at pH 5 and 6 was almost 

equivalent to 22% of zeolite dry weight (dw), whereas at pH 7 and 8, it was only 3.3 and 

1.5% zeolite dw, respectively. As clearly shown by the curve slope, at SMX low 

concentrations, the affinity for the sorbent is inversely related to the pH value. As already 

been explained in kinetics study, the antibiotic pKa (5.7) can explain both the higher affinity 

for the zeolite at low concentrations and the higher antibiotic loading at the plateau at acidic 

pH values. Since adsorption at acidic pH already defined as irreversible (Blasioli et al., 2014), 

the SMX desorption experiments were investigated only at pH 7 and 8. As shown in caption 

of Figure 2.3 A, parallel lines to the x-axis indicates the irreversible adsorption of SMX from 

the zeolite Y cages also at pH 7 and 8. Several H-bonding, polar and van der Waals type host-

guest interactions between single antibiotic molecules and the zeolite pore wall acted 

simultaneously to irreversibly extract sulfa drugs from water (Braschi et al., 2010 b; Braschi 

et al., 2013; Blasioli et al., 2014). 

Since adsorption of VNL was negligible at pH 8, the adsorption and desorption isotherm for 

VNL by the zeolite Y was conducted in the pH range of 5-7. Zeolite affinity towards VNL 

and maximum loading capacity was inversely related to the water pH due to its pKa value 

(7.4). The maximum adsorption of VNL as indicated by a plateau was achieved at ca. 13 and 

8% zeolite dw at pH 5-6 and pH 7, respectively. At acidic pH, a full loading of the zeolite 

cages was found whereas 75% of cages were occupied at neutral pH. According to the 

desorption isotherm as detailed in Figure 2.3 B, the desorption curves overlapped the 
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adsorption ones at all investigated pH values, therefore indicating VNL adsorption as fully 

reversible. 

 

2.3.4. Infrared analysis 

Infrared analysis was conducted to check the host-guest interactions between each molecule 

and the zeolite adsorption sites. To observe the spectrum of single molecules of VNL, 

dichloromethane, a non polar solvent, was used (Figure 2.4 A).This allowed a better 

observation of the spectral features of the adduct that were eventually formed. Experimental 

FT-IR spectra of VNL in CH2Cl2 and singly embedded into the zeolite Y, along with the 

harmonic vibration spectrum calculated by the DFT level for the isolated molecule (in 

vacuum) are reported. In the spectrum of CH2Cl2, although strong solvent bands in the 3250-

2750 and 1500-1400 /cm range are overlapped to those of VNL, as well as the occurrence of 

signals coming from water traces in the region above 3600 /cm, the most part of VNL 

vibrations were also observed. 
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Figure 2.4. A) DFT calculated spectrum of VNL in vacuum (VNLCALC) and experimental 

spectra of VNL in CH2Cl2 and adsorbed into zeolite Y (Y-VNL). Experimental 

spectra of CH2Cl2 and zeolite Y are reported for comparison. B) Experimental 

spectra of the zeolite singly loaded with VNL (13% zeolite dw) or SMX (21% 

zeolite dw) and with a SMX+VNL mixture (7 and 20 % of zeolite dw, 

respectively). 

 

These features indicate that the interactions between VNL and the zeolite framework are due 

to weak dispersive forces whose contributions are strong enough to stabilize the 

intramolecular H-bonded VNL into the cage. Rietveld refinement performed on the VNL-
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loaded zeolite revealed the presence of about 9.5 molecules per unit cell (corresponding to 

11% zeolite dw and 1.18 molecules/cage), in good agreement with the loading data (13.3% 

zeolite dw) of the related adsorption isotherm. 

A detailed description of the host-guest interactions developed by SMX embedded into the 

same zeolite in amide form has been clearly defined by Blasioli and co-workers (2014). To 

maximize the possible guest-guest interactions into the zeolite pores, a Y sample 

simultaneously loaded with SMX and VNL (6.9 and 20.1% zeolite dw, respectively) was 

investigated by infrared and Rietveld analysis. In the sample, 100% of pores contained at 

least one SMX molecule whereas ca. 50% embedded one VNL molecule on average. The 

experimental IR spectrum of the SMX+VNL loaded mixture is reported in Figure 3.3 B, at 

this point, spectra of singly loaded SMX or VNL are reported for comparison. In the 

spectrum of the loaded SMX-VNL mixture, resembled bands occurred at position similar to 

those of the singly embedded compounds. As far as the VNL contributions are concerned, a 

clear perturbation of the carbonyl stretching region could be observed between 1700 and 

1650 cm-1, thus indicating this group likely involved in the stabilization of a SMX-VNL 

cluster. Concerning the SMX signals, the bands of singly embedded SMX (ca. 50%) are 

found overlapped to contributions of those clusterised with VNL (remaining 50%) and a clear 

perturbation of the stretching and bending NH signals was observed. In clusterised SMX, the 

stretching of NH at 3193 cm-1 is downshifted ( = -47 cm-1) with respect to its position when 

singly adsorbed (3240 cm-1), whereas the NH bending at 1626 cm-1 is upshifted ( = +5 cm-1) 

with respect to that as a single component (1621 cm-1). These findings clearly indicates an H-

bonding between the VNL carbonyl and the SMX NH (VNL-C=O∙∙∙HN-SMX), with the 

latter group which can be originated from both (i) SMX in amide form (SO2-NH-) and (ii) the 

heterocycle ring NH of SMX in imide form (SO2-N=C). 
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2.4. Conclusions 

 

By the experiments conducted to investigate the adsorption of SMX in the zeolite Y in the 

presence of humic monomers, the following can be concluded. VLN and CA was persistent 

in water at least for 1 h and VNL adsorption kinetics were as quickly as those of SMX on 

zeolite Y. CA adsorption on zeolite Y was marginal due to its acidity nature (pKa 4.7), as a 

result the CA did not show any effect on adsorption of SMX both in binary and ternary 

mixtures. Contrary, VNL doubled the amount adsorbed on zeolite Y in the presence of SMX 

both in binary and ternary mixture than as single component. Therefore neutral species of 

VNL that are formed due to pH lower than its pKa (7.4), can compete with SMX for zeolite 

adsorption sites (i.e. pores). However, since the adsorption of SMX is irreversible whilst that 

of VNL is reversible, therefore SMX should be retained more firmly by the zeolite. 

Furthermore, zeolite Y showed a preferential adsorption towards SMX due to its molecular 

structure configuration of “V” shape. These findings are of utmost interest for scientists 

working with zeolite-based technologies to treat wastewaters where a variety of humic 

phenolic compounds always occur. 
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3. PART II: ADSORPTION CAPACITY OF PEEL WASTE ON HEAVY METALS  

 

3.1. State of the art 

 

Water pollution by heavy metals cause both environmental and health problems throughout 

the world, due to their toxicity and poor biodegradability (Fu and Wang, 2011). The 

eradication of these elements from water through conventional methods requires either highly 

technical skills or comes at very high cost in which developing countries find it difficult to 

afford (Kurniawan et al., 2006; Mohan and Pittman, 2007; Barakat et al, 2011). 

Agro-waste by-products have been recently investigated as alternative cheap biosorbents for 

removing heavy metals from aqueous environment. These waste materials include residues of 

shells (walnuts, peanuts and hazelnuts), cereal waste (rice, wheat and maize), peels (banana, 

cassava, orange, and lemon) (Demirbas, 2008). Agro-waste materials are abundantly 

available and contain high organic carbon content, cellulose and lignin. Consequently, they 

have shown considerable potential for being used as sorbents for heavy metal removal.  

The juice and starch extracting plants produce peels, pits and stems as waste material with no 

economical value. For instance, in developing countries it was estimated that the production 

of orange peel (OP) (among other fruit and vegetables peel waste) was more than 1 million 

tons per annum in Egypt (Nerm et al., 2009) and about 250000 tons in South Africa (Van 
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Heerden et al, 2001). Hence the peel wastes that have been considered in this thesis to be 

used as adsorbent for Zn(II) and Cu(II) removal from aqueous environments were banana, 

orange, pineapple and potato peel. Agro-waste peels are rich in cellulose, lignocellulose and 

pectin which are active components for metal ion binding sites (Sud et al., 2008; Rivas et al., 

2009). These waste materials can be utilized as raw biomass sorbents or modified thermally 

or chemically. The main absorption mechanisms involved are: complexation, adsorption on 

the surface and in the pores, entrapment, ion exchange and chelation (Basso et al., 2002). 

Literature revealed high removal efficiency on Pb(II) and Cd(II) using banana peel biomass, 

obtaining 2.18 and 5.71 mg/g for Pb(II) and Cd(II), respectively (Anwar et al., 2010). Also, 

high removal efficiency above 95 % for Cd(II) and Cr(III) was achieved by using orange peel 

biomass (Perez-Marin et al. 2007; Perez-Marin et al., 2009). The abovementioned 

experiments were conducted on batch and the favourable pH for optimum condition was 

ranging between 4 and 6. However, amid precipitation of metal ions at pH values higher than 

6, it had been reported that carboxylate functional group (R-COO-) of banana peels probably 

was responsible of binding Cd(II) cations optimally at pH 8 (Memon et al., 2008). Therefore, 

without altering the pH of natural water which is expected to be in the range of 6-8, 

adsorption of metallic ions can be achieved.  

However, batch experiments become disadvantageous on application in large scale 

continuous flow operations due to time taken to reach the adsorption equilibrium (Zulfadhly 

et al., 2001; Vinodhin and Das, 2010). Coupled with this practise, peel waste exposed to 

aqueous phase for long periods tends to degrade off and releases soluble organic components. 

Therefore, to simple avoid the abovementioned, fixed bed column experiments had been 

investigated for retention of heavy metals in simulated industrial wastewater using untreated 

peel waste (Chao et al., 2014; Chatterjee and Schiewer, 2014; Simate and Ndlovu, 2015). 

Hence in this thesis, column experiments were conducted using peel waste biomass for 
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sorption of Zn(II) and Cu(II) spiked in natural river water. Cu and Zn are essential trace 

elements for human and plant use; however, human activities such as mining become a major 

reason why these elements are found abundantly in surface and underground water. 

This project is aiming to model the feasibility of using peel wastes materials in real 

applications on retention of Zn(II) and Cu(II) from polluted surface water sources. 

Furthermore, since river water is used for irrigation, the treated water samples using peels 

were evaluated on growth of romaine lettuce in hydroponic system. 

 

3.2. Materials and methods 

3.2.1. Peel wastes 

Peel waste is abundant and freely accessible resource material with no significant value. To 

make the most of this invaluable resource, 4 different peel wastes were selected based on 

their abundantly availability, namely banana peel (BP), orange peel (OP), potato peel (PoP) 

and pineapple peel (PP). The peels were separately collected from a kindergarten school in 

Bologna (Italy). 

The peels were oven dried at 120 ºC for 4 h. Dry peels were then crushed into a porcelain 

mortar and sieved at ≤ 0.5 mm particle diameter. Sieved peels underwent thermogravimetric 

analysis (TGA) using TG-DTA92 B (Setaram, France). Elemental analysis of the peels was 

conducted by a Spectro Arcos inductively coupled plasma spectrometer (ICP-OES) 

(Germany). Also, sieved peels were analyzed for their total organic carbon (TOC) and total 

nitrogen (TN) by a Thermo Fisher Scientific elemental analyzer (Mod. Flash 2000, USA). 
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3.2.2. Peel washing on column 

A glass microfibre filter (4.7 cm diameter) (Whatman GF/D, USA) was placed at the bottom 

of a glass column (3.6 cm of internal diameter). Then the column was filled with 1 g of each 

peel and washed with distilled water until the eluate (peel washing) was clear (ca. 500 ml). 

Several aliquots of each peel washing were analyzed for Ca, K, Mg, Na, P, S, Zn and Cu by 

ICP-OES. Each peel washing was also characterized for pH using a portable pH meter (XS 

Instruments, Mod. 510, Italy) and electrical conductivity (EC) at 20 °C with a MeterLab EC 

analyzer (Mod. CDM210, France), respectively. TOC and TN were measured with a 

Shimadzu elemental analyzer (Mod. TOC-V CPN and TNM-1, Japan) according to ISO 

8245:1999 and EN 1484:1997 methods, respectively. Briefly, ISO 8245:1999 involves 

oxidation of organic carbon in water to CO2 by combustion whereas EN 1484:1997 involves 

releasing of CO2 by using mineral acids to assist in N content analysis (Jensen et al., 2003). 

Peel washings were kept in dark and stored at 4°C. 

3.2.3. River water spiked with Zn and Cu 

Natural water samples were collected from river Reno in Bologna (44°31'00.4"N 

11°17'54.2”E) (Italy) and immediately filtered through 0.22 µm Whatman filter paper (USA) 

to remove microorganisms and suspended solids. The filtered water was characterized for 

chemical and physical characteristics as already described above for peel washings. River 

water was kept in dark and stored at 4 °C before use.  

A solution of Cu(II), Zn(II) or a mixture of both were prepared by adding 10 mg of CuCl2 

Sigma-Aldrich (Germany) or/and 10 mg of ZnCl2 (Sigma-Aldrich, Germany), to 1 l of 0.22 

µm-filtered river water. The Cu, Zn, and Cu+Zn solutions were then sonicated using an Elma 

sonicator (Germany) for 10 min and filtered again at 0.22 µm with Whatman filter paper 

(USA). The last filtration step was necessary to eliminate the suspended soluble solids from 
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the metal solution. After filtration, the concentrations of Cu (10 l), Zn (5 l), and Cu+Zn (2 l) 

in river water obtained by ICP-OES were 1.8 (±0.2), 4.8 (±0.7), 6.4 (±0.6) and 1.8 (±0.1) + 

6.4 (±0.6) ppm, respectively. The solutions were used as eluants in peel columns. 

3.2.4. Water treatment on peel column 

About 10 l, 5 l and 2 l of river water spiked with Cu (II), Zn (II) and their mixture, 

respectively, were passed through 1 g of each peel (BP, OP, PoP or PP) in column. Each 

eluate was collected in 100 ml aliquots up to 1 l and thereafter, aliquots of 1 l were collected 

in to make a total of 2, 5 and l0 l of different experiments. All experiments were conducted in 

duplicate. The retention of Zn and Cu by peel column was calculated as the difference 

between their concentrations before and after the treatment by ICP-OES (Spectro Arcos, 

SPECTRO Analytical Instruments GmbH, Germany) and was expressed as a percentage of 

peel dry weight (dw). After the adsorption experiment, treated water samples were kept in the 

dark at 4°C before used in other experiments. 

 

Adsorption isotherms of Cu and Zn on peel waste were carried out at RT. Adsorption 

isotherms were built at initial concentrations at 1.8 and 4.8 mg/l for Cu and Zn, respectively. 

A column with 1 g of peel waste was established and Zn and Cu solution were repeatedly 

percolated up to saturation of the adsorption sites of each peel. The metal amounts retained 

by the peel were calculated as the difference between the initial Cu and Zn concentrations 

(eluant solutions) and their concentrations after peel adsorption (eluate solutions) and related 

to the peel dry mass. All the total metal content measures were done by ICP-OES. 

Peel X and Gamma Ray mapping: BP, before and after adsorption of Zn was analyzed to 

detect the elements in the peel using motorized XRF for X Ray Fluorescence mapping 

analyzer (XG Lab, Italy). Besides Zn detection, Ca, Ti, Fe, Mo and Ni were also analyzed 

within 1 min at 50 kV tube voltage. 
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3.2.5. Lettuce growth experiment 

The effect of treated water samples collected from each peel column on the growth of 

romaine lettuce was investigated by a floating system in a glasshouse. The adopted floating 

system comprised of a hydroponic system equipped with a styrofoam sheet drilled to fit 

plants roots and a 34 cm x 24 cm x 10 cm polypropylene plastic bowl containing nutrient 

solution. Once the styrofoam sheet was cut to fit the size of plant roots, and put over the bowl 

with 4 l of nutrient solution, the roots became submerged to the nutrient solution and leaves 

were kept afloat by the styrofoam sheet. 

The following nutrient solutions were tested: the river water spiked with Cu (RWCu), Zn 

(RWZn) and their mixture (RWCu+Zn), as a positive control, waters treated by peels (i.e. 

Peel Cu, Peel Zn and Peel Cu+Zn), river water (RW) and tap water (TW) as a negative 

controls. Each water sample was corrected to fit the desired value of the standard nutrient 

solution (SNS) for macro elements: 0.6 mM of KH2PO4 and 5 mM of KNO3. All nutrient 

solutions were adjusted to pH 6 (±0.9) using diluted H2SO4 (AppliChem, Germany) and EC 

was found to be ≤ 2 mS/cm. Each trial (three plants-floating system container) was replicated 

three times. 

The chemical and physical analysis of water samples were conducted as previously 

mentioned for river water. 

The plant growth was followed for 28 days (4 weeks). Samples of nutrient solutions from 

each trail were taken to evaluate the nutrient plant uptake. At the end of 28 days, the lettuce 

was harvested and the fresh and dry weight for leaves and roots were recorded separately. 

The harvested lettuce leaves and roots were dried at 60°C for 72 h. 
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The concentration of Cu and Zn contained in the edible and non-edible parts of dried lettuce 

was determined by ICP-EOS after acid digestion. Briefly, an amount of 0.250 g of dry lettuce 

parts was weighed into PTFE recipients, added with 6 ml of 15.8 M of HNO3 (Sigma-

Aldrich, Germany) and 1.5 ml of 9.79 M of H2O2 (VWR Chemicals, Italy) and digested in a 

Mileston microwave oven (Shelton, CT, USA). The digested suspension was filtered at 0.45 

m through Whatman no.42 paper filters, brought to 20 ml with de-ionised water, and 

analysed through ICP-OES spectrophotometer. 

 

3.3. Results and discussions 

3.3.1 Characterisation of peels and water samples 

The TGA was executed to evaluate thermal degradation of carbonaceous materials in terms 

of moisture content, volatile matter, fixed carbon and ash. TG-DTG of the starting material 

(before washing) is displayed in Figure 3.1. In the derivative of thermograms (DTG curve), 

five major mass loss peaks can be observed for all peels in the following temperature ranges: 

below 150 °C, from 150 up to 280 °C, from 280 up to 360°C, from 360 up to 550 °C and 

above 550°C. According to the literature, the first loss at < 150 °C is due to the moisture 

content while the following losses are due to the decomposition of pectins, hemicelluloses 

and cellulose, respectively (Chen and Chen 2009). In Chen and Chen (2009) study, it was 

observed that lignin degraded in a wider temperature range above 300 ºC. 
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Figure 3.1. TGA-DTG analysis of different peels before washing. Change in mass of peel as 

a function of temperature (left) and the derivative curves (right). 

Therefore, it can be deduced that the major weight loss occurred at the temperature ranged 

between 280 and 360 °C, was attributed to cellulose decomposition up to 53.3, 50.0, 44.6 and 

42.9 wt % for BP, PoP, PP and OP, respectively. However, recent studies indicated average 

weight loss of 21 wt % at 312 ºC for cellulose decomposition of BP, OP and PP (Sanchez et 

al., 2014; Selvarajoo and Hanson, 2014). Nonetheless, what was observed in the raw material 

of peels was altered slightly due to washing of peels (washing process is described below) as 

presented in Figure 3.2. Alterations are observed at the temperature where decomposition 

peaks are occurring. For instance, due to washing of peels, decomposition peak for 

hemicellulose seemed to be absent (temperature range, 150 – 280 °C). This was due to partial 

decomposition of pectins and hemicellulose between 150 and 360 °C as a result a major 

weight loss was observed at this temperature range up to 87.3 and 59.8 wt % for PP and PoP, 

respectively. 
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Figure 3.2. Curves of thermogravimetric analysis (TGA-DTG) of different peels after 

washing. Change in mass of peel as a function of time (left) and the derivative 

curves (right). 

Above 400 °C, it was observed that a further loss in weight which affected all the peels, due 

to the total decomposition of the cellulose and the decomposition of lignin. BP, OP and PP 

decomposition peaks demonstrated another weight loss temperature above 550 °C relative to 

the complete decomposition of the residual carbonaceous material (Chen & Chen, 2009). 

Variations in temperature for the various decompositions recorded in the peels can be 

attributed to several side branches of the macromolecules and the different compositions of 

individual peels. 

 

Chemical content analysis of all peels was done to verify how much of heavy metals were 

contained in it before their use as sorbents. Peel wastes analysis performed on raw material 

(rm) revealed that all selected peels were free of Cu but contain traces of Zn and other 

chemical elements as displayed in Figure 3.3. Contrary to the finding of Rivas and co-
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workers (2008) who also found traces of other heavy metals such as Mn, Fe, Al, Ni, Cu, Cr 

on chemical content of OP biomass. 

The total organic carbon (TOC) was found to be more than 35 mg/g for BP, OP and PP with 

the exception of PoP where TOC was slightly lower (33 mg/g). However, PoP indicated 

higher levels of TN (1.92 mg/g) compared to 0.79, 090 and 1.22 mg/g for OP, PP and BP, 

respectively. 

Pulverized peel waste still contained pigments, which are responsible for the colour 

formation in fruit and vegetables, particularly flavedo of the orange peel (Mzini, 2002). To 

eliminate soluble components like organic acids or pigments contained in raw peels, before 

the adsorption experiments, it was necessary to wash the crushed peel waste with deionised 

water until the eluate was colourless. Washing out 1 g of peel wastes with 500/600 ml of 

deionised water drastically reduced the chemical composition of the raw materials. 

Apparently, K was the most significantly reduced chemical component of the peels by up to 

11, 9 and 4 mg/g for BP/PoP, PP and OP, receptively. Also an equal amount (1.5 mg/g) of 

removed P in BP, PP and PoP was observed.  
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Figure3.3.Elemental analysis of peel raw materials (rm), washed raw material, chemical 

losses and chemical content contained in washing water (ww). BP: (banana peel); 

OP: (orange peel); PoP: (potato peel) and PP: (pineapple peel).  

 

Also, washing water removed substantial amount of TOC and TN content in peels as reported 

in Table 3.1. TOC was removed up to more than 50% for OP and PP. Likewise TN removal 

percentage by washing water was more than 50% for PoP and PP.  
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Table 3.1.Chemical characteristics of peel washings (ca. 500 ml). 

Peels Raw material 

(mg/100 g) 

Water washings  

(mg/100 ml) 

Removal percentage 

(%) 

TOC TN TOC TN TOC TN 

BP 37.11 1.22 15.7 0.3 42.3 24.6 

OP 38.02 0.79 20.5 0.3 53.9 38.0 

PoP 33.13 1.92 9.0 1.0 27.2 52.1 

PP 36.80 0.90 20.8 0.5 56.5 55.6 

BP: (banana peel); OP: (orange peel); PoP: (potato peel) and PP: (pineapple peel) 

 

Natural water (river water) was selected to model a depollution strategy of natural waters 

contaminated with heavy metals The river water samples spiked with heavy metals were 

filtered using a 0.22 micron filter papers to consider the soluble forms of heavy metals and to 

eliminate those adsorbed on suspended solids. The general physico-chemical properties of 

river water are presented in Table 3.2. 

It was evident that the water was free of toxic heavy metals besides Zn which was found in 

very minute traces. According to WHO regulations on inorganic content of drinking water is 

2 and 3 mg/l for Cu and Zn, respectively. However, these regulations differ from country to 

country, for instance accepted limits for Cu and Zn in drinking water in South Africa is 1 and 

5 mg/l whereas in Netherlands is 2 and 3 mg/l, respectively (Mamba et al., 2008). 
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Table 3.2. The average of chemical and physical characteristics of river water samples 

filtered at 0.22 micron. 

Ca Fe K Mg Na P S Zn TOC TN EC PH 

(mg l
-1

) (µS/cm) 
 

54.36 0.08 3.78 14.28 39.78 0.07 15.12 0.03 1.60 0.79 3.26 8.60 

 

The average pH of all river water samples was 8.6, where metals can be solubilised by 

dissolved organic matter that contains many negative charges, helping cationic metals to 

increase their apparent solubility. River water samples spiked with the heavy metals resulted 

with the following concentrations: Cu(II), Zn(II), and Cu+Zn were 1.8 (±0.2), 4.8 (±0.7) and 

1.8 (±0.1) + 6.4 (±0.6) mg/l, respectively. 

 

3.3.2. Adsorption screening of heavy metals 

River water spiked with Cu, Zn and their mixture was percolated in glass columns containing 

the washed peels. The results of metal retention by the peels are shown in Table 3.3 below.  

Cu retention by BP was up to 17.8 mg/g and OP was least retaining 6.9 mg/g. According to 

the knowledge of the author, column experiments for adsorption of Cu and Zn utilizing peel 

waste are scanty. Therefore the present study cannot be compared to other similar studies. 

However, in some batch experiments a maximum adsorption capacity for BP biomass was 

found to be 20.37 mg/g Cu (Hossain et al., 2012). In the present study, BP retained about 

23.5 mg/g of Zn as a single component, whereas PP obtained a third of that amount when PP 

retained 6.9 mg/g. In another batch experiment, Cu and Zn were absorbed using BP and OP 

(Annadurai et al., 2002). With initial concentration of 15 mg/l of each metal at pH 6-8, BP 
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realised adsorption equilibrium of 4.75 (Cu), 5.80 (Zn) and OP obtained 3.65(Cu), 5.25 mg/g 

(Zn). From these results it can be comprehended that Zn had preferential adsorption than Cu 

and BP performed better than OP. A remarkable difference was observed when Cu and Zn 

was in binary mixture, all biosorbents had a preferential adsorption of Zn than Cu. Also, the 

adsorption of Zn remained slightly unchanged in single component and in binary with a total 

volume of 2 l, except for PP. As far as this study is concerned, Cu adsorption in singular 

component was in this order: BP>PP>PoP>OP but for Zn adsorption on peel waste was in 

this order: BP>OP>PoP >PP for both single and in binary mixture. 

 

Table 3.3. Adsorption screening of heavy metals in river water by peel wastes. Initial 

concentration was 1.8, 4.8, 6.4 and 1.8+6.4 mg/l for Cu (10 l), Zn* (5 l), Zn** (2 

l) and Cu+Zn (2 l), respectively. Numbers in parenthesis are absolute error. 

Peel 

Retained metal 

Single metal Binary mixture 

Cu 

(mg/g) 

Zn* 

(mg/g) 

Zn** 

(mg/g) 

Cu 

(mg/g) 

Zn 

(mg/g) 

BP 17.8 (0.6) 23.5 (0.6) 12.4 (3.1) 2.2 (0.1) 12.8 (0.7) 

OP 6.9 (0.3) 12.2 (1.3) 9.4 (6.6) 2.1 (0.1) 8.0 (0.6) 

PoP 8.2 (0.3) 9.1 (4.2) 4.5 (1.7) 1.6 (0.3) 5.4 (0.1) 

PP 10.5 (0.9) 6.9 (2.4) 6.8 (2.5) 2.5 (0.2) 2.5 (0.0) 

 

The adsorption results obtained by peel columns were reported as adsorption isotherms. The 

adsorption isotherms of Cu and Zn on peels at RT are presented in Figure 3.4. Each 

adsorption isotherm was conducted to assess the maximal amount of Cu and Zn adsorbed in 

peel waste biomass. The affinity of peel waste biomass can be observed by the slope of the 

curve and maximum loading capacity can be observed by the plateau value. 
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Figure 3.4. Metal retention capacity of 1 g peel waste on glass column. a) Cu retention [1.8 

mg/l]. b) Zn retention, [4.8 mg/l]. 

Although the adsorption increased as the volume of the metal solution increased, no maximal 

adsorption was reached by any peel sample was observed. BP showed the highest affinity 

towards Cu and Zn compared to the other peel waste biomass investigated.  

Various studies had demonstrated that maximum adsorption capacity of unmodified peel 

wastes as ones used in this study were having higher affinity towards Cu and Zn. For 

example, OP biomass obtained a maximal adsorption capacity of 44.28 and 21.25 mg/g at pH 

5.5 for Cu and Zn, respectively (Feng and Guo, 2012).  

Zn, K and Ca mapping of BP, before and after adsorption of Zn in the column experiment 

(Figure 3.5 A and B), was recorded using a portable XRF spectrometer ELIO produced by 

XGLAB SRL (Milano, Italy). The spectrum indicated that Zn and Ca concentrations clearly 

increased in the peel after water percolation whereas K content clearly decreased, in full 

agreement with the analysis of total metal content on treated water.  
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Figure 3.5. In the upper part, XRF spectra of BP before (blue curves) and after (black curves) 

percolation of river water spiked with Zn. In the lower part, single Zn, K and Ca 

mapping of peels before and after percolation of river water spiked with Zn. 

 

3.3.3. Effects of eluates on lettuce growth 

Hydroponics system was established to test the effects of treated water eluted from the peel 

column on growth of romaine lettuce (Lactuca sativa L. var. longifolia). The initial 

concentration of chemical content of all water samples were analyzed and stipulated in Table 

3.4, below. Thereafter, each water sample of 4 l was adjusted to fit the desired value of the 

standard nutrient solution of essential macro nutrients (SNS) and pH. The water samples were 
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tap water (TW), river water (RW), and eluates (BPCu, OPCu, PoPCu, PPCu; BPZn, OPZn, 

PoPZn, PPZn; BPCu+Zn, OPCu+Zn, PoPCu+Zn and PPCu+Zn). 

 

Table 3.4. Physical and chemical characteristics of water samples before used for 

hydroponics production of Lactuca sativa L. var. longifolia. (*lod: limit of 

detection). 

Treatment pH Electrical 

conductivity 

mS/cm 

TOC N K P Cu Zn 

mg/l 

TW 7.3 21 0.8 5.5 4.0 <*lod 0.014 0.054 
RW 7.4 21 0.5 4.0 3.0 <lod 0.002 <lod 
BPCu 7.2 18 15.1 0.6 16.2 <lod 0.166 0.090 
OPCu 7.1 18 24.9 0.7 5.0 <lod 0.597 0.122 
PoPCu 7.4 18 14.4 1.4 10.5 <lod 0.157 0.100 
PPCu 7.3 18 16.8 0.6 10.0 <lod 0.430 0.064 
RWCu 7.4 18 1.3 0.6 0.5 <lod 0.639 0.008 
BPZn 6.7 22 7.4 3.3 18.2 0.3 0.005 0.447 
OPZn 6.2 24 102.1 6.1 16.2 0.3 0.011 0.796 
PoPZn 6.9 22 82.8 7.0 16.8 0.3 0.011 0.835 
PPZn 6.7 21 148.6 4.9 9.0 0.6 0.010 0.945 
RWZn 6.9 24 0.5 3.0 2.9 <lod 0.003 3.103 
BPCu+Zn 6.7 8 109.0 4.1 29.2 0.4 0.021 0.477 
OPCu+Zn 6.5 19 56.9 7.4 6.7 <lod 0.028 0.326 
PoPCu+Zn 6.9 22 56.9 4.9 17.6 0.3 0.043 0.628 
PPCu+Zn 6.8 17 109.5 8.1 9.9 0.5 0.074 0.757 
RWCu+Zn 7.0 24 0.5 4.4 2.9 <lod 0.312 3.179 
 

The fresh weight of lettuce leaves and roots were measured at the end of the 28 day 

experiment as displayed in Table 3.5. There were no significant differences observed on 

lettuce leaves fresh weight due to all Cu percolated water samples. However, the root 

biomass of lettuce was significantly reduced by RWCu when compared to OPCu and TW. Cu 

is known to be essential in CO2 assimilation and photosynthetic systems, hence plant 

excessive exposure to Cu leads to reduced plant growth (Yadav 2010). It is worth noting that 

the heavy metal effects on plant growth differ with different type of vegetables. 
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In Zn experiment, significant differences were observed in both leaves and roots biomasses. 

BPZn obtained significantly higher fresh weight of leaves compared to other treatments 

except for OPZn and RWZn. Similarly trend was also observed in the roots biomass, whereby 

BPZn, was significantly obtained higher yields than the other treatments, with the exception 

of RWZn and TWZn. Apparently, in Cu+Zn experiment, BPCu+Zn obtained better yields on 

leaves and root biomass. These results indicate that the higher adsorption of Cu, Zn and 

Cu+Zn by BP, as previously mentioned, result to reduced metal ions and consequently higher 

lettuce growth. 

 

Table 3.5.Effects of water samples on fresh weight of romaine lettuce grown for 28 days in a 

floating system. 

Water 

sample 

Treatment 

Cu Zn Cu+Zn 

Leaves Roots Leaves Roots Leaves Roots 

(g) 

BP 20.13 a 4.933 ab 25.53a 3.04 a 25.00a 3.52 a 

OP 20.17 a 5.200 a 17.16 ab 1.70 b 20.61ab 2.23 b 

PoP 19.77 a 4.933 ab 17.00 bc 1.74 b 10.68 c 2.83 ab 

PP 19.43 a 4.867 ab 13.40 c 2.27 b 18.47 ab 2.01 bc 

RW 18.70 a 4.800 ab 24.82 ab 2.57 ab 18.52 ab 2.26 b 

RWMetal 20.57 a 3.233 b 14.65 bc 1.93 bc 14.65 bc 1.93 bc 

TW 22.53 a 5.167 a 15.27 bc 2.94 ab 15.27 bc 2.94 ab 

LSD (≤0.05) Ns 1.888 7.789 0.898 7.789 0.898 

   

    

Values in a column followed by different letters are significantly different (P≤0.05, LSD).  
ns, Non-significant 
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The Zn and Cu content of leaves and roots in all treatments were also measured. The 

distribution of these metals on leaves and roots is shown in Figure 3.5, below. It is indicated 

that Cu is more predominately on roots than on leaves, whereas Zn shows a vice versa. Cu is 

more concentrated on the non-edible part of lettuce, on the roots, and therefore leading to not 

much of concern. On the other hand Zn content on lettuce leaves was up to 1.6 µg/g, is far 

less than the accepted limit. A maximum Zn tolerance of 20 mg/kg for edible parts of 

vegetable crops has been suggested (Long et al., 2003). However, since Zn has nutritional 

value to humans, vegetable crops containing at least 5 mg/kg of Zn are considered to have a 

better nutritional quality than those with less (Worthington, 2001). Therefore, lettuce grown 

in hydroponics systems using eluates and river water spiked with heavy metals are edible, 

since they contained limited concentration of heavy metal content in their edible portions. 

 

Figure 3.4.The heavy metal distribution on a lettuce grown in hydroponics system. 
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3.4. Conclusions 

 

3.4.1. Adsorption capacity of peel waste on Cu and Zn 

The metal (Cu, Zn and Cu+Zn mixture) retention capacity of BP, OP, PoP and PP on column 

experiment was established. It was observed that river water with initial pH of 8.6, when in 

solution with CuSO4, ZnSO4 and the Cu-+Zn mixture, the pH is altered to be 7.3, 6.7 and 6.8 

respectively. BP was found to be the most effective biosorbent to adsorb Cu, Zn and Zn in the 

mixture up to 17.8, 23.5 and 12.8 mg/g, respectively. The reputable order was 

BP>PP>PoP>OP for Cu in singular component but for Zn was BP>OP>PoP>PP in single and 

in binary mixture. Therefore, peel waste proved to be the best alternative sorbents for 

decontaminating river streams contaminated with Cu(II), Zn(II) or the mixture. 

3.4.2. Lettuce grown in hydroponic system 

Lettuce was grown in a hydroponic system for 28 day in the standard nutrient solution of 

eluates from previous column studies and river water and tap water. RWCu reduced the root 

fresh weight significantly. BPZn and BPZn+Cu, showed significantly higher biomass yield of 

lettuce leaves and roots compared to negative controls. The leaves of lettuce accumulated 

more Zn than in the roots, and vice versa for the Cu. Therefore it can be concluded that 

treating Zn or Cu contaminated river water with peel waste is the alternatively suited best for 

lettuce production in the hydroponics system. 

Since the adsorption process depends entirely on a charge of the adsorbent’s surface and the 

pH of the solution, therefore, adsorbent surface modification for organic pollutants becomes 

highly recommended. So, an investigation to adsorb organic pollutants using heavy metal 

exhausted peels that went through pyrolysis modification to form biochars, can be suggested. 
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As biochar retention capacity on organic pollutants is assessed, it can be regenerated and 

reused repeatedly for inorganic pollutants found in aquatic environments. 
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� Reversible and pH-dependent
adsorption of vanillin by HS zeolite Y.

� Negligible adsorption of caffeic acid
by HS zeolite Y at any pH.

� Irreversible and pH-dependent
adsorption of sulfamethoxazole by
HS zeolite Y.

� Evidence of a vanillin-
sulfamethoxazole adduct into the
zeolite pores.

� Guest-guest interactions into zeolite
pores and computation of stabiliza-
tion energy.
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a b s t r a c t

The adsorption efficiency of a high silica zeolite Y towards sulfamethoxazole, a sulfonamide antibiotic,
was evaluated in the presence of two humic monomers, vanillin and caffeic acid, representative of
phenolic compounds usually occurring in water bodies, owing their dimension comparable to those of
the zeolite microporosity. In the entire range of investigated pH (5e8), adsorption of vanillin, as a single
component, was reversible whereas it was irreversible for sulfamethoxazole. In equimolar ternary
mixtures, vanillin coadsorbed with sulfamethoxazole, conversely to what observed for caffeic acid,
accordingly to their adsorption kinetics and pKa values. Lower and higher adsorptions were observed for
sulfamethoxazole and vanillin, respectively, than what it was observed as single components, clearly
revealing guest-guest interactions. An adduct formed through H-bonding between the carbonyl oxygen
of vanillin and the heterocycle NH of sulfamethoxazole in amide formwas observed in the zeolite pore by
combined FTIR and Rietveld analysis, in agreement with Density Functional Theory calculations of the
adduct stabilization energies. The formation of similar adducts, able to stabilize other naturally occurring
phenolic compounds in the microporosities of hydrophobic sorbents, was proposed.

© 2016 Elsevier Ltd. All rights reserved.
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The release of antibiotics in the environment has been
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associated to chronic toxicity and the onset of the antibiotic resis-
tance phenomena in bacteria (Gao et al., 2012). For these reasons,
the removal of antibiotics from water bodies has become a public
health issue which should be urgently addressed. Sulfonamides
(sulfa drugs) were the first group of synthetic antimicrobials sys-
tematically used to treat/prevent bacterial infections. (Sweetman,
2011). Due to the beneficial effect on production efficiency in
poultry and swine, sulfonamides are usually administrated as
growth promoters in livestocks (Dibner and Richards, 2005; Neu
and Gootz, 1996). Owing to their pH-dependent anionic nature,
sulfonamides accumulate inwater bodies, being neither completely
retained by soils (Pan and Chu, 2016) nor by activated sludge in
biological treatment plants (Manaia et al., 2016). Sulfamethoxazole
(SMX) is one of the top-selling sulfonamide antibiotic used in hu-
man and veterinary therapy. Several studies report about its
occurrence in aquatic ecosystems such as surface and drinking
water, as well as wastewater treatment plants and hospital efflu-
ents (Kummerer, 2001; Brown et al., 2006; Tamtam et al., 2008;
Watkinson et al., 2009). Above all, hospital and breeding farm
outputs represent point source pollution which requests special
consideration.

High silica (HS) zeolites have been recently tested to remove
pharmaceutical fromwaters (de Ridder et al., 2012; Martucci et al.,
2012; Grieco and Ramarao, 2013). In this contest, several model
studies have indicated HS zeolites to quickly remove high amount
of sulfonamide antibiotics from water (Braschi et al., 2010, 2013;
Fukahori et al., 2011; Blasioli et al., 2014; Martucci et al., 2014)
and to be easily regenerated (Leardini et al., 2014). Possible effect of
dissolved organic matter (DOM), naturally present in water bodies,
on sulfonamide adsorption into these zeolites has been ruled out,
owing to the dimensions of its main components which are higher
than those of the zeolite microporosities (Braschi et al., 2010), but
no investigation on the effect of organic components of molecular
size comparable with their pore window diameter has been
addressed. This aspect is of utmost importance in order to exploit
the zeolite microporosities to reduce the sulfonamide point source
pollution as breeding farm effluents.

Natural and wastewaters contain plenty of low molecular
weight organic molecules (Hem, 1987; Kordel et al., 1997). Among
them, the phenolic component, which is formed by compounds like
catechol, caffeic, ferulic, and p-coumaric acids, as well as p-
hydroxybenzaldehyde, vanillin, and other more, can be simulta-
neously found. The tendency of these compounds to aggregate
through biotic and abiotic oxidative coupling in soils to form humic
substances, where their chemical structures can be resembled, is
the reason for calling them humic monomers (Nyanhongo et al.,
2006; Tossel, 2009; Nuzzo and Piccolo, 2013). Due to the different
structure of phenolic compounds and their coexistence in natural
water compartments (Muscolo et al., 2013), two of them were
identified as a model to evaluate their effect on the adsorption of
sulfonamide antibiotics into a HS zeolite Y and, of more general
knowledge, their ability to clog eventually the microporosities of
siliceous hydrophobic sorbents. Vanilin and caffeic acid were
selected as representative of humic monomers because of their
different chemical nature (an aldehyde the former and an
hydroxycinnamic acid the latter) and reactivity in water. Their
adsorption competition against SMX, as a sulfonamide antibiotic
model, was tested into a large pH range to embrace that of natural,
artificial and wastewaters.

2. Materials and methods

2.1. Chemicals

Sulfamethoxazole (4-amino-N-(5-methylisoxazol-3-yl)-

benzenesulfonamide, SMX), was obtained from Dr. Ehrenstofer
GmbH (Germany) with 99% purity. Vanillin (4-hydroxy-3-
methoxybenzaldehyde, VNL) and caffeic acid (3-(3,4-
dihydroxyphenyl)-2-propenoic acid, CA) were supplied by Sigma
Aldrich Co LLC (USA) with 95 and 99% purity, respectively. Their
chemical structures and pKa values are reported in Table 1.

The water solubility of SMX and the two phenols at room
temperature (RT) was determined by adding each compound to
MilliQ water in amount exceeding that required to saturate the
solution. The suspensions were sonicated (15 min) and filtered at
0.45 mm (Durapore® membrane filters) to eliminate undissolved
particles. The solubility measured by HPLC was 203 ± 2.7 mM for
SMX, 9.46 ± 1.03 and 2.53 ± 0.31 mM for VNL and CA, respectively.

HS zeolite Y with SiO2/Al2O3 ¼ 200 and surface area of
750 m2 g�1 was purchased from Tosoh Corporation (Japan).

In the experiments conducted in the presence of zeolite, the
desidered pH values were achieved and kept constant by addition
of 0.1 N HCl/NaOH to avoid any possible coadsorption of buffering
components. The pH was controlled for the entire duration of the
trial.

2.2. Persistence of humic monomers in water

Aqueous solutions of VNL or CA (50 mM each) were prepared in
polyallomer centrifuge tubes (Nalgene, NY, USA) dissolving the
compounds in media buffered at pH 5 and 6 (10 mM CH3COONa,
Carlo Erba Reagents, Milano, Italy) and at pH 7 and 8 (10 mM
Na2HPO4, Carlo Erba Reagents, Milano, Italy). The persistence of the
two phenols was followed over 48 h at RT by HPLC. Each experi-
ment was conducted in triplicate.

2.3. Adsorption kinetics

Several aliquots of zeolite Y (1 mg) pre-equilibrated at the
desired pH in the 5e8 range were placed into polyallomer centri-
fuge tubes where 2 mL of SMX, VNL or CA solutions (50 mM each) at
the same pH were added. The suspensions were then placed on a
horizontal shaker at RT and, at different times, the supernatants
were separated from the pellet by centrifugation and analyzed by
HPLC. To guarantee the pH stability, the pH of each suspension was
checked and eventually adjusted by a few drops of 10 mM HCl/
NaOH solution for the entire experiment duration. The experiment
was conducted in duplicate.

2.4. Adsorption-desorption isotherms

Adsorption isotherms of SMX or VNL on zeolite Y were per-
formed at RT in the 5e8 pH range (zeolite:solution ¼ 1 mg:2 ml).
Each suspension was shaken for 1 h, then centrifuged and the su-
pernatants analyzed by HPLC. The pH of the suspensions was
monitored and adjusted during the entire experiment.

Owing to the high SMX adsorption capacity of zeolite Y and the
low SMX solubility at RT (203 ± 2.7 mM), the isotherm data points at
high concentrations were obtained as described in Blasioli et al.
(2014). The desorption trials were conducted with the dilution
method as reported in Blasioli et al. (2014). All adsorption-
desorption experiments were conducted in duplicate.

The concentration of antibiotic and humic monomers in
aqueous phase at equilibrium was expressed as Ce (mM) whereas
the amount adsorbed by the zeolite, expressed as Cs
(mmol g zeolite�1), was calculated by the difference between the
initial and final concentrations.
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2.5. Adsorption screening

Solutions containing SMX, VNL or CA (50 mM each), and their
possible combinations (binary solutionse SMXþ VNL or SMXþ CA
e and ternary solution e SMX þ VNL þ CA) were prepared at
different unbuffered pH values in the range 5e8. The adsorption
screening was performed at RT (zeolite:solution ¼ 1 mg:2 ml). The
suspensions were shaken for 1 h then centrifuged and the super-
natants analyzed byHPLC. The adsorbed amount of each compound
was calculated by the difference between initial and final
concentration.

2.6. FT-IR spectroscopy

Harmonic vibrational frequencies were computed for SMX and
VNL in their Density Functional Theory (DFT) optimized geometry
(vide infra), and compared to experimental IR spectra.

Experimental infrared spectra were collected on a Tensor27
spectrometer (Bruker, MA, USA) with 4 cm�1 resolution. Self-
supporting pellets (10 mg each) of zeolite Y, singly loaded with
SMX or VNL and with their mixture, were obtained with a me-
chanical press (SPECAC, UK) at ca. 7 tons cm�2 and placed into an IR
cell equipped with KBr windows permanently attached to a vac-
uum line, allowing sample dehydration in situ. FTIR spectra of SMX
or VNL in CH2Cl2 were performed in a NaCl cell for liquids. Spec-
trum of the bare zeolite were collected as a control.

2.7. X-ray powder diffraction

X-ray powder diffraction (XRPD) datawere collected on a Bruker
D8 Advance Diffractometer equipped with a Sol-X detector, using
Cu Ka1,a2 radiation. The spectra were measured in the 3�e110� 2q
range with a counting time of 12 s step�1. All the structure re-
finements were performed by using the Rietveld method (EXPGUI
version of GSAS (Toby, 2001)) in the Fd-3 space groups. The crystal
data and refinement details are summarized in the Supplementary
Materials (see Table 1S).

The structures in Fig. 4 were generated using the VESTA soft-
ware package (Momma and Izumi, 2011).

2.8. Chromatographic analysis

Concentrations of SMX, VNL, and CAwere determined by HPLC-
Diodarray analysis (Jasco, Japan) set at 267, 231, and 324 nm,

respectively, equipped with a 4.60 nm � 250 mm Waters Spher-
isorb® 5mm C8 analytical column (Waters, USA) kept at 35 �C into a
column oven (Jones Chromatography model 7971) and eluted with
acetonitrile:water (30:70 by volume, pH 2.7 for H3PO4, flow rate
1 ml min�1). Under these conditions, the retention times were 6.8,
5.5, and 3.8 min for SMX, VNL, and CA, respectively.

2.9. DFT calculations

All the calculations were performed at the DFT level with B3LYP
density functional (Becke, 1988, 1993), the most popular hybrid
density functional for molecular structure optimization and
vibrational spectra simulation: the B3LYP performances for this
kind of applications have been recently reviewed (Kovacs et al.,
2015). Different basis sets, both double- and triple-z (cc-pVDZ
and cc-PVTZ) were used for geometry optimizations, and energy
and frequency calculations; in the zeolite cage model, Si atoms
were assigned Hay and Wadt (LANL2) effective core potential and
basis set (Hay and Wadt, 1985a,b; Wadt and Hay, 1985). Dispersion
energy corrections were included through the semiempirical
approach proposed by Grimme and implemented in Gaussian09
(GD3 procedure) (Grimme et al., 2010). The Y zeolite cage was
modeled by extracting a suitable cluster from the database periodic
structure as described e.g. in Braschi et al. (2012).

3. Results and discussion

Freshwater lakes, ponds and streams usually have a pH of 6e8
depending on the surrounding soil and bedrock (http://
geology.com/rocks). For this reason, all the adsorption experi-
ments were conducted in the 6e8 pH range in order to evaluate the
effect of water pH on possible adsorption of SMX, VNL, and CA by
the zeolite. For sake of completeness, pH 5 was considered as well,
due to the acidic nature of the investigated compounds which are
likely to be better retained by the sorbent under acidic conditions.

To rule out the degradation of the humic monomers within the
time duration of adsorption trials, their persistence in buffered
water was firstly evaluated. The degradation kinetics of VNL and CA
in the 5e8 pH range is reported in the Supplementary Materials
(see Fig. 1S).

The concentration of VNL remained constant within 24 h in the
entire range of the investigated pHs whereas CA concentration
unchanged in the 5e7 pH range. At pH 8, CA was transformed with
a half-life time of 48 h into two degradation products. Since the

Table 1

Characteristics of chemicals under investigation.

Chemical name (Acronym) Chemical structure MW (mol g�1) pKa

Sulfamethoxazole (SMX)
H2N S

O

N

O

H

O
N

CH3

253.3 5.7a

Vanillin (VNL) HO

OH

O
CH

3

152.15 7.4; 11.4b

Caffeic acid (CA)
OH

OH

OH

O 180.16 4.5; 8.6; 12.5c

a Koizumi et al., 1964.
b The Chapman and Hall Chemical Database, 1995.
c Kiss et al., 1989.
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effect of basic pHs on the abiotic oxidation mechanism of CA is
well-known (Cilliers and Singleton, 1989), the identification of the
byproducts was considered beyond the scope of this study. As
shown in the inset of Fig. 1S(b), CA concentration could be
considered constant up to 1 h (~2% was transformed), thus safely
allowing the investigation of its adsorption for short contact times
(adsorption equilibrium of sulfonamides into this zeolite within a
few minutes (Braschi et al., 2010; Blasioli et al., 2014)).

3.1. Adsorption trials

In the light of the observations described above, the adsorption
kinetics of SMX, VNL, and CA on zeolite Y were followed within 1 h
contact as shown in Fig. 2S. The SMX adsorption equilibrium was
favourable in the entire range of pH investigated: the equilibrium
was reached within 1 min and the amount retained by the zeolite
was inversely related to the pH of water solutions. These findings
can be explained considering the hydrophobic nature of the sor-
bent and pH-dependent nature of SMX.

The hydrophobicity of zeolites is inversely related to the content
of extraframework cations counterbalancing the isomorphic sub-
stitution of Al3þ for Si4þ in the framework and to the content of
defects (silanol groups) in the framework (Kawai and Tsutsumi,
1992). The high SiO2/Al2O3 ratio (200) and the low content of H-
bonded silanols (24 SiOH per Y unitary cell, Braschi et al., 2010)
make the selected zeolite Y a hydrophobic material as proved by its
low water content when air dried (ca. 1% dw).

As far as the affinity of SMX for the hydrophobic zeolite is
concerned, the adsorption is favouredwhen the antibiotic molecule
is in associated form (pKa 5.7, Table 1). Therefore, the SMX affinity
was in the order: pH 5 (SMX mainly in neutral form) > pH 6 (both
neutral and anionic forms) > pH 7 (mainly anionic form) > pH 8
(anionic form).

The adsorption equilibrium of CA at pH 5 was reached within
15 min, whereas at higher pH values no visible adsorption was
found within 1 h. The CA pKa of 4.5 could explain its scarce affinity
for the zeolite in that in the entire pH investigate, the negative form
of CA predominate. For VNL, the adsorption equilibrium was
reached in 1 min over the entire range of pH, making thus its
adsorption competitive with SMX for the zeolite adsorption sites,
although the retained amount was significant only in the 5e7 pH
range. At pH 8, only a limited amount of VNL was retained by the
zeolite as expected by its pKa value (7.4) due to the occurrence of
species mainly in anionic form.

In the following, only the adsorption-desorption isotherms of
SMX and VNL are reported owing to the negligible adsorption of CA
in the investigated pH range.

As shown in Fig. 1A, the maximal adsorption of SMX at pH 5e6
was similar and attested at ca. 22% of zeolite dry weight (dw)
whereas at pH 7 and 8, the plateau was reached at 3.3 and 1.5%
zeolite dw, respectively.

As clearly shown by the curves slope at low concentrations, the
affinity for the zeolite is inversely related to the pH of the solution.
As already detailed, the antibiotic pKa value (5.7, Table 1) can
explain both the higher affinity and loading at acidic pH values.
Considering the number of cages contained in 1 g zeolite
(4.2 � 1020, Braschi et al., 2010) and the antibiotic molecules
adsorbed at pH 5e6 (5.3� 1020 on average), the presence of at least
one molecule per cage could be calculated, whereas a partial
loading was achieved at pH 7 and 8 (20 and 9% of cages embeds one
SMX molecule, respectively). The SMX adsorption reversibility was
investigated only at pH 7 and 8, being the adsorption at acidic pH
already defined irreversible (Blasioli et al., 2014). As shown in the
detail, both the SMX desorption isotherms at pH 7e8 run parallel to
the x-axis, thus indicating an irreversible adsorption at neutral-

basic pH values as well.
Fig. 1B shows the adsorption isotherms of VNL on the zeolite in

the pH range of 5e7 owing to its negligible adsorption at pH 8. The
VNL adsorption curves resemble an “S” type (Giles et al., 1960), also
known as a “cooperative” adsorption. According to the model, the
affinity of the adsorbate for the sorbent increases by increasing the
retained amount due to an extrastabilization among guest species
by interactions with those previously adsorbed, as well as with the
sorbent. The plateau concentration was inversely related to the
water pH and attested at ca. 13 and 8% zeolite dw at acidic and
neutral pH, respectively. At acidic pHs, a full occupancy of the
zeolite cages was found whereas 75% of cages were occupied at pH
7. As the desorption curves (see detail in Fig. 1B) overlapped to the
adsorption ones at any investigated pH, the VNL adsorption was
defined fully reversible, in accordance to its solubility (9.46 mM at
RT and pH 6).

As far as the possible effect of the humic monomers on SMX
retention by the zeolite is concerned, Table 2 reports an adsorption
screening conducted in aqueous solutions containing different
combinations of the investigated compounds at equimolar
concentrations.

The adsorption of SMX and VNL, as single components,
decreased at increasing pH in accordance to their pKa. For SMX, a
similar adsorption profile as a function of pH has been already re-
ported for a zeolite Y with a SiO2/Al2O3¼100 (Fukahori et al., 2011),
thus highlighting a similar affinity for the antibiotic in the 100e200
range of SiO2/Al2O3 ratio. In our study, the adsorption of SMX was
ca. threefold that of VNL in the entire pH range, with the exception
of pH 8, where only SMX was retained by the zeolite. As a single
component, CA adsorbed in low amount at pH 5 whereas it was not
retained at higher pH values.

When binary mixtures of SMX þ VNL were contacted with the
zeolite, a coadsorption of both compounds was observed in
agreement with their comparable and fast kinetics (<1min, Fig. 2S).
In the entire range of pH, the SMX amount retained in the presence
of VNLwas found reducedwith respect towhat it was observed as a
single component. On the contrary, VNL adsorption was found
higher in the presence of SMX than as a single component, thus
highlightening possible interactions with SMX into the zeolite
pores (vide infra). Interestingly, at pH 8 which is a pH common to
most part of natural surface waters, the embedded amount of VNL
and SMX was comparable (14.7 and 12.2% of initial concentration,
respectively). According to the pKa value of VNL with respect to
SMX (7.4 and 5.7, respectively), VNL adsorption should be favoured
at all the pH values. Likely, the lower SMX solubility, besides its
bulky structure that maximizes the van derWaals interactions with
the pore wall (Blasioli et al., 2014), favours its adsorption with
respect to VNL.

When binary mixtures of CA and SMX were exposed to the
zeolite, no significant amount of CAwas retained in the entire range
of investigated pHs, whereas SMX showed an adsorption profile
resembling that observed as a single component. These findings
can be explained by the lower pKa of CA with respect to SMX (4.5
and 5.7, respectively), besides its higher solubility (2.53 mM and
203 mM respectively).

The adsorption trend observed for the binary mixtures
(VNLþ SMX and CAþ SMX) was confirmed when ternary mixtures
of SMX þ VNL þ CA were contacted with the zeolite: only a
simultaneous adsorption of SMX and VNL was observed.

3.2. Host-guest interactions between VNL and HS zeolite Y

To maximize the host-guest interactions, a zeolite sample
loaded with VNL at 13.2% zeolite DW was investigated by IR anal-
ysis combined to Rietveld structure refinement of XRPD data. This
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allowed a better observation of the spectral features of the adduct
eventually formed.

In Fig. 2A, experimental FT-IR spectra of VNL in CH2Cl2 and
singly embedded into the zeolite Y are reported, along with the
harmonic vibrational spectrum calculated by the DFT level for the
isolated molecule (in vacuo). In the spectrum in CH2Cl2, although
strong solvent bands in the 3250e2750 and 1500e1400 cm�1

range are overlapped to those of VNL, as well as the occurrence of
signals coming from water traces in the region above 3600 cm�1,
the most part of VNL vibrations could be observed.

The assignment of the main absorptions was done by comparing
the values calculated in vacuo to the experimental ones as reported
in Table 3. Here, the computed harmonic frequencies are system-
atically overestimated with respect to the corresponding experi-
mental absorption but the spectral pattern was reproduced
accurately enough to allow the interpretation.

Noteworthy, the structure of VNL computed in vacuo is orga-
nized through an intramolecular five-membered ring with the OH
group H-bonded to the methoxyl oxygen atom (nPhO-H at
3751 cm�1). The same arrangement was also hypothesized in both
CH2Cl2 and when embedded into the zeolite (nPhO-H at 3518 and
3528 cm�1, respectively) owing to the nonpolar character of the
solvent and the zeolite pore wall. The similar position of the other
VNL bands in both environments confirmed the solvating effect of
zeolite on the guest molecule. These features indicate that the in-
teractions between VNL and the zeolite framework are due to weak

dispersive forces whose contributions are strong enough to stabi-
lize the intramolecular H-bonded VNL into the cage.

Rietveld refinement performed on the VNL-loaded zeolite
revealed the presence of about 9.5 molecules per unit cell (corre-
sponding to 11% zeolite dw and 1.18 molecules/cage), in good
agreement with the loading data (13.3% zeolite dw). These mole-
cules are hosted in the Y cage in crystallographic sites partially
statistically occupied (C1, C2, and C3 sites in Fig. 4S in the Supple-
mentary Materials). These molecules show the aromatic ring (C1
site) in the window that joins together neighbouring cages as
shown in Fig. 3A.

They can assume six different orientations which are identical
and related by a rotation of 60� about c or by a mirror operation
perpendicular to c (Fig. 4S in the Supplementary Materials). The C2/
C3 sites can be alternatively occupied by carbon or oxygen atoms,
because the molecule symmetry is lower than Fd-3. The methoxylic
group is given by C2 (when hosting oxygen) and C3 (when hosting
CH3), the carbonyl group is given by C2 (when hosting carbon) and
C3 (when hosting oxygen), and finally the hydroxyl group is given
by C2 (when hosting oxygen and C3 site is empty) (Fig. 4S).

The formation of more distorted wide-open apertures upon VNL
adsorption is likely associated to the observed relative expansion of
the framework thus explaining the increase of the unit cell pa-
rameters and the cell volume expansion (Table 1S).

Consequently, the Crystallographic Free Areas (C.F.A.) increased
(42.61 Å

2) when compared with the bare material (39.07 Å
2).
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Fig. 1. Adsorption and desorption isotherms (solid and dashed lines) of (A) sulfamethoxazole and (B) vanillin by HS zeolite Y at different pH (1 h contact time at RT). A detail of
isotherms is reported. Bars indicate the absolute error.

Table 2

Adsorption on HS zeolite Y of equimolar concentration of VNL, CA, and SMX as single components, binary and ternary mixtures at different pH (1 h contact time at RT). In
parenthesis the absolute error.

pH Amount adsorbed by the HS zeolite Y as a percentage of initial concentration (50 mM)

Single component Binary mixture Ternary mixture

VNL SMX CA VNL SMX CA SMX VNL SMX CA

5 34.9 (1.3) 95.6 (0.0) 3.7 (1.1) 46.0 (0.0) 93.2 (1.0) 4.7 (0.6) 93.1 (0.6) 47.2 (0.4) 96.8 (0.5) 5.1 (0.3)
6 23.5 (1.6) 88.0 (1.5) 0.5 (0.0) 36.9 (3.5) 77.9 (4.9) 4.0 (1.5) 85.4 (4.2) 37.6 (0.9) 81.0 (2.0) 4.9 (0.5)
7 21.4 (0.8) 66.1 (4.6) 0.1 (0.0) 19.7 (6.3) 45.3 (4.9) 4.0 (1.0) 62.4 (11.8) 13.6 (0.3) 39.0 (0.4) 5.0 (2.0)
8 0.0 (2.4) 26.1 (8.5) 2.9 (1.5) 12.2 (2.9) 14.7 (6.5) 1.8 (0.3) 22.6 (1.9) 6.4 (1.5) 11.8 (0.4) 0.0 (0.3)
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Variations of ellipticity (ε) (defined as the largest/shortest oxygen-
oxygen distances) of the 12MR apertures after organic molecules
adsorption are also reported (ε ¼ 1.06 and 1.02 in Y-VNL and Y,
respectively).

Owing to the full reversibility of the adsorption process (Fig. 1),
the refined distances can be ascribed to weak dispersive forces

acting between the VNL methoxyl/oxydryl oxygens (C2 site), as
well as the methyl group or the carbonyl oxygen (C3), and the
zeolite framework.

3.3. Guest-guest interactions between SMX and VNL embedded into

the HS zeolite Y

To maximize the possible guest-guest interactions into the
zeolite pores, a Y sample simultaneously loaded with SMX and VNL
(6.9 and 20.1% zeolite dw, respectively) was investigated by infrared
and Rietveld analysis. In the sample, 100% of pores contained at
least one SMX molecule whereas ca. 50% embedded one VNL
molecule on average.

The experimental IR spectrum of the SMXþ VNL loadedmixture
is reported in Fig. 2B. Here, spectra of singly loaded SMX or VNL are
reported for comparison. A detailed description of the host-guest
interactions developed by SMX embedded into the same zeolite
in amide form has been already addressed (Blasioli et al., 2014).

In the spectrum of the loaded SMX-VNL mixture (Fig. 2B), the
occurrence of bands at position similar to those of the singly
embedded compounds can be resembled. As far as the VNL con-
tributions are concerned, a clear perturbation of the carbonyl
stretching region could be observed between 1700 and 1650 cm�1,
thus indicating this group likely involved in the stabilization of a
SMX-VNL cluster. Concerning the SMX signals, the bands of singly
embedded SMX (ca. 50%) are found overlapped to contributions of
those clusterised with VNL (remaining 50%) and a clear perturba-
tion of the stretching and bending NH signals was observed. In
clusterised SMX, the stretching of NH at 3193 cm�1 is downshifted
(D ¼ �47 cm�1) with respect to its position when singly adsorbed
(3240 cm�1), whereas the NH bending at 1626 cm�1 is upshifted
(D ¼ þ5 cm�1) with respect to that as a single component
(1621 cm�1). These findings clearly indicates an H-bonding be-
tween the VNL carbonyl and the SMX NH (VNL-C]O/HN-SMX),
with the latter group which can be originated from both (i) SMX in
amide form (SO2eNH-) and (ii) the heterocycle ring NH of SMX in
imide form (SO2eN]C). Unfortunately, the computed stretching of
the SMX heterocycle NH is overlapped (3563 cm�1) to that of the
amide SO2eNH (3565 cm�1) thus making impossible any assign-
ment of the signal experimentally found at 3193 cm�1.

The XRPD pattern collected on Y-SMX-VNL, and compared to Y-
VNL and Y-SMX samples, showed differences in the intensity of the
diffraction peaks, with the most significant been associated to the
low 2q angle region (Fig. 3S in the Supporting Materials), related to
both the extraframework species nature and distribution.

Only small changes in the cell parameters of Y-SMX-VNL occur
with respect to Y-VNL sample; in particular, a slight decrease of a

Fig. 2. A) DFT calculated spectrum of VNL in vacuo (VNLCALC) and experimental spectra
of VNL in CH2Cl2 and adsorbed into zeolite Y (Y-VNL). Experimental spectra of CH2Cl2
and zeolite Y are reported for comparison. B) Experimental spectra of the zeolite singly
loaded with VNL (13% zeolite dw) or SMX (21% zeolite dw) and with a SMX þ VNL
mixture (7 and 20% of zeolite dw, respectively).

Table 3

Main vibrational modes of vanillin calculated in vacuo and experimentally determined in CH2Cl2 and adsorbed into the zeolite Y.

Vibrational modesa Vanillin

Computed In CH2Cl2 Embedded in Y

nPhO-H 3751 3518 3524
nCHPh 3203e3186 not visibleb 3070, 3013
vCH3 3138e3016 not visibleb 2943, 2824
vCHaldehyde 2866 2733 2731
vCOaldehyde 1758 1688 1693
nPhquadrant þ dPhO-H 1625 1597 1595
nPhsextant 1547 1510 1510
Defout-of-phase CH3 1506 1464 1466
Defin-phase CH3 þ dPhO-H þ dCHaldehyde þ nPhsextant 1467 not visibleb 1437
dCHaldehyde þ nPhsextant 1418 not visibleb 1402
dPhO-H þ dCHaldehyde þ nPhsextant 1409 1381 1381

a For definition of ring vibrational modes see: Colthup et al., 1990.
b Not visible because overlapped to CH2Cl2 bands.
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and cell volume parameters are observed (Table 1S). The Y-SMX-
VNL refinement revealed the presence of 4 VNL and 10 SMX mol-
ecules per unit cell (ca. 7 and 20% zeolite dw, respectively, and ca.
0.5 and 1 molecule per cage, respectively). According to Blasioli
et al. (2014), SMX molecules singly loaded are almost at the cen-
ter of the supercage with its plane perpendicular to the threefold
axes of the unit cell, whereas the isoxazole ring is found with six
different orientations (see Fig. 3B). In the Y-SMX-VNL sample
(Fig. 3C), the SMX aniline ring (C1 site) is situated in the window
that joins neighboring supercages. The SMX isoxazole and aniline
rings form a typical “V” configuration with the torsion angle
SeN2eC7 of about 125.7�, with respect to that (126.0�) refined after
adsorption of SMX as a single component (Blasioli et al., 2014).

As far as concerns coadsorbed VNL molecules, they can assume
the six different orientations related by a rotation of 60� about c
which are identical to those observed after adsorption of VNL as a
single component (Fig. 3A), with the aromatic ring in C1 site, and
C2/C3 sites which can be alternatively occupied by carbon or oxy-
gen atoms, as already reported for the Y-VNL system. The 12MR
apertures becamemore distorted (ε¼ 1.08), consequently the C.F.A.
is larger (42.25 Å

2) when compared with the as-synthesized ma-
terial (39.07 Å

2).
The refined bond distances between VNL and SMX in the cluster

highlighted that interactions occur between these two species, in
keeping with the data of FT-IR analysis. In particular, as shown in
Fig. 3C, the distance between C2 site of VNL (carbonyl oxygen) and
the SMX heterocycle ring N (NeC2 ¼ 2.98(4) Å) indicates the
interaction between the VNL carbonyl oxygen and the SMX het-
erocycle ring nitrogen as the most likely, whereas the nitrogen of
the SeNeC moiety (amide form) can also interact but at higher
interaction distance (3.04(4) Å, Fig. 3C). These results confirmed the
occurrence of an H-bonding between the VNL carbonyl group and
SMX NH, thus indicating the SMX imide form clustered to VNL.

DFT calculations could help to quantify the guest-guest inter-
action energy both for isolated SMX-VNL adducts and after
embedding in Y zeolite. The addition energy in vacuo was
computed at the B3LYP/cc-pVDZ level including Grimme's disper-
sion energy and the counterpoise correction to the BSSE (Boys and
Bernardi, 1970), resulting �14.9 kcal/mol for the SMX imide form
and �9.2 kcal/mol for the amide isomer, thus confirming the
Rietveld findings. The optimized structures of the two adducts are

reported in Fig. 4.
The adduct with imide SMX was then embedded in the Y cage

model and re-optimized at the same level (LANL2DZ effective core
potentials were used for Si atoms): the final structure is shown in
Fig. 4; besides the SMX-VNL NHeO bond already observed in vacuo,
two other hydrogen bonds establish between the SMX amine group
and a cage oxygen and between the cage silanol group and one
sulfonamide oxygen. For the embedded cluster the interactions
with the zeolite cage override the guest-guest interactions: in fact,
SMX and VNL are strongly distorted inside the cage, so that the
addition energy with respect to the isolated molecules is þ2.9 kcal/
mol, but when the interactions with the cage are added, the total
energy with respect to the isolated fragments becomes �56.2 kcal/
mol. Such a host-guest interaction is largely dominated by the
dispersion contribution, computed through Grimme's atom-atom
approach.

4. Conclusions

The effect of two model molecules of humic monomers (vanillin
-VNL e and caffeic acid e CA) on the adsorption of sulfamethoxa-
zole (SMX) by a high silica zeolite Y was assessed in batch solution
within a large range of pH. The adsorption of VNL as a single
component was kinetically favourable (<1 min), pH-dependent in
accordance to its weak acidic character (pKa 7.4), and reversible at
any pH. On the contrary, CA adsorption was always unfavoured
owing to its higher acidity (pKa 4.5). The adsorption of SMX was
also pH-dependent (pKa 5.4) but irreversible at all the pH values
considered, due to its bulky “V” structure which stabilizes the
embedded molecule. A SMX and VNL simultaneous adsorption was
observedwhen the zeolitewas exposed to their equimolarmixture:
the formation of a bulky 1:1 SMX-VNL cluster into the zeolite pores
explained their different (lower and higher, respectively) loading
from what it was observed as single compounds. As defined by
infrared analysis combined to Rietveld refinement, the adduct
formed into the zeolite pore through an H-bonding between the
heterocycle NH of SMX in amide form and the carbonyl oxygen of
VNL, with a stabilization energy, computed in vacuo at DFT level,
of �56.2 kcal/mol with respect to the isolated molecules. The for-
mation of similar adducts with sulfonamide antibiotics, all bearing
an heterocycle nitrogen able to stabilize other humic phenolic

Fig. 3. Possible orientations of VNL (A), SMZ (B) and SMZ þ VNL (C) in the zeolite Y cage (O: red, N: blue, S: yellow). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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monomer into the zeolite micropores, can be hypothesized.
In addition and of more general meaning, according to our re-

sults on model molecules, humic monomers do not seem involved
per se in the pore clogging of the zeolite, since derivatives of phe-
nols (as vanillin) can be released by the hydrophobic porosities of
the zeolite whereas the more acidic hydroxycinnamic acids (as
caffeic acid) are not retained at all. These findings are of certain
interest for scientists working with zeolite-based technologies to
treat natural and wastewaters where a variety of humic phenolic
compounds always occur.
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