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1. Cell Volume Regulation 

 

The capability of regulate the cell volume is a fundamental features of every cell in terms of 

structure and function. In physiological conditions, the ionic strength inside the cytoplasm 

is tightly regulated and in mammals, for instance, the total osmolytes concentration is 

maintained proximate to 300 mOsm. 

For many years, cell volume regulation has been consider as a minor physiological process, 

since the plasma osmolytes concentration is strictly regulated. Recently, important varieties 

of studies have shown that in some tissue, for instance renal medullary cells and 

chondrocytes, cells are challenged with osmolarity stresses that desire volume 

readjustments. Nevertheless, in the central nervous system (CNS) cells are encased in a rigid 

surrounding (head bone), thus their function is dramatically dependent on cell volume, 

especially involved when non-physiological conditions occur. 

Anisotonic conditions can also originate from pathological states like hypo- or 

hypernatraemia, the most common electrolytes disorder, where the homeostasis is 

impaired (75). 

Nevertheless, volume changes are integrant part of many physiological and cell-autonomous 

processes, including cell migration, proliferation, differentiation signalling and apoptotic cell 

death (73, 55, 161). It is possible to find gradients in other physiological stages like neuronal 

firing in the CNS, in kidneys, intestine and liver where cell swelling increase the production 

of glycogen and protein synthesis and vice versa, and of course blood.  

Every cell is constantly challenged with volume perturbation, originated from osmolyte 

microgradients, which may affect the concentration of molecules hypothetically involved in 

every cell function. In this way, the basic mechanisms involved in volume regulation have 

been preserved among all animal cells. 
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Cell volume changes subsequently to external challenges are based on a peculiar 

permeability of the cellular membrane. The lipid bilayer is permeable to water even though 

specialized proteins, which mediate the water diffusion across the plasma membrane, so-

called water channels or aquaporins, can increase this permeability (82, 85). 

Given a precise water permeability every cell disclose an “osmometric” behaviour in 

response to anisotonicity, thanks to passive movement of water inside and outside the cell 

until the osmotic gradient is reset in a novel chemical equilibria. However, the cell does not 

behave as a perfect osmometer, in the sense that cell volume changes do not follow a 

perfect proportionality, as predicted by the Boyle/Van’t Hoff law. 

Apparently, the 20-40% of the cellular volume is included in the so-called osmotically 

inactive components, like solutes and membranes. However, using freezing experiments 

and calculating the water content of cells it has been demonstrate that one fraction of water 

is osmotically inactive. Indeed, the ratio between the total cell volume minus the osmotically 

inactive component and the total water content it is always less than one. This ratio is 

termed as Ponder R (114). This discrepancy is likely to be ascribe to hydration water around 

macromolecules and ion, which is not free to move under the force generated by osmotic 

pressure. 

 

 

 

 

Figure 1.1: Chart where osmolality and cell volume are plotted. The interpolation serves to calculate 

the osmotically inactive component of the cell. 
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When a cell is exposed to hypertonic solution this cause cell shrinkage, whereas a hypotonic 

solution leads to cellular swelling. In the first case the initial volume is restore thanks to the 

process called regulatory volume increase (RVI), with the contribution of Na+-K+-2Cl− 

cotransport and Na+/H+exchange. In the latter, the process is termed as regulatory volume 

decrease (RVD) with a net efflux of KCl and organic osmolytes, followed by osmotic 

movement of water. 

 

 

1.1  Inorganic and organic osmolytes 

The most important inorganic osmolytes within the cell are two inorganic ions: potassium 

and chloride; they are indeed involved in small perturbation of the intracellular or 

extracellular environment; for many years research focused on these two ions even though 

in the recent years an increasing piece of evidence has shown the dramatic role of organic 

osmolytes in volume regulation. 

Organic osmolytes are confined inside the cell, including amino acids (taurine, glutamin 

acid), polyhols like myo-inositol and sorbitol and methylamines like betaine (165, 166). 

The necessity of organic osmolytes beside ions seems to be ascribed to a couple of reasons. 

First, a potential higher inorganic salt concentration might be not compatible with the 

function of some enzymes or other proteins (100). In this case, we do not have an 

interference role for such organic osmolytes. Another important aspect is that the majority 

of osmolytes do not carry  positive or negative charges and beyond that, they are 

electroneutral compared to inorganic salts which would excessively have an impact on 

membrane potential, for instance in neuronal excitability in the brain (63).  

Organic osmolytes are especially required in renal medulla (14), chondrocytes (32) and in 

the brain due to limited distensibility (110). 
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1.2 MOLECULAR MECHANISMS IN CELL VOLUME REGULATION 

 

1.2.1 Volume sensors 

Cell volume regulation origins from a variation of environmental parameters which lead to 

an adaptive response. When one cell perform this task, we are able to classify the 

mechanism in three different phases: sensing, transduction and effectuation. 

The sensing process is a complicate process that involved various mechanisms and actors. 

Despite the strong effort put in the recent years, the machinery involved in sensing volume 

perturbation remains unclear. 

Three types of osmotic stresses can be identified: chancing in ionic strength, mechanical 

membrane stretches (also related to extracellular matrix and cytoskeleton) and 

macromolecular concentration (altered metabolism) (55, 24, 111). These mechanisms are 

part of the osmosensing tool case of the cell and can act together and contribute to a specific 

response. 

Interestingly, in fungi, a histidine kinase complex set up the adaptive response (12), whereas 

in higher eukaryote the lack of this structure led to others osmosensory pathways.  

 

1.2.2 Cytoskeleton 

During osmosensing, a rapid and broadly activation e reorganization of actin cytoskeleton is 

involved in cell volume regulation. Moreover, the cytoskeleton plays a protective role in 

volume changes, reducing localized damages and increasing an intrinsic resistance of the cell 

(27). 

The impact of cytoskeleton in osmosensing is particularly clear when it comes to the 

dramatic alteration of polymerized actin in swelling (decrease) and shrinking (increase). (49, 

76, 36, 123). The mechanism behind this organization in rather complex and involves several 

protein group and families, including Rho family G proteins (78), cortactin (33), which is 
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activated during cell shrinkage, and ezrin/radixin/moesin proteins (118, 143). Most evident, 

when F-actin is disrupted, the osmo-response is overwhelmed, indicating the major role of 

cytoskeleton in these processes.  

Noteworthy, the activation of some ion channels in these conditions is linked to the 

cytoskeleton. For instance, the activation of the osmosensor TRPV4 (transient receptor 

potential vanilloid 4) shows a F-actin dependent mechanism (55). Another example is the 

Na+/K+/2Cl- transporter (NKCC1), which contributes to the regulatory volume increase (84). 

 

1.2.3 Integrins 

Integrins are protein receptor localized at the plasmamembrane level that are involved in 

cell adhesion, connecting the extracellular matrix (ECM) to the actin cytoskeleton (28). They 

carry out important functions in cell migration, proliferation and beside that, they have been 

implicated in cell volume regulation as osmosensors, although a direct evidence is still 

elusive.  What we know is that integrins are activated after osmotic perturbations, shrinkage 

or swelling. Moreover, they clearly activate volume regulated anion channels (VRAC) (23) 

and regulate an assortment of volume-sensitive potassium channels (77). 

 

1.2.4 Transient Receptor Potentials 

TRP ion channels are cation channels that can be highly selective or non-selective for calcium 

and response to a variegate physical stimuli. Compose of various subgroups, the vanilloid 

family (TRPV) is the most investigated group in osmotransduction. However, TRP can be 

classified into six subgroups, beside the vanilloid family, which are canonical (TRPC), 

mucolipin (TRPM), ankyrin (TRPA), melastatin (TRPML) and polycystin (TRPP). 

TRPV1 is deeply involved in volume regulation and it probably responses to membrane 

stretch, even though is experimentally challenging to separate a stretching signal from that 

of swelling (80). Nevertheless, TRPV4 KO mice exhibit impaired RVD and a close relation with 

mechanosensitivity, since it mediates swelling-activated calcium influx (106). Other channels 

seems to be involved in mechanosensitivity and cell swelling like TRPM7 (101), TRPC1 (83) 
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and TRPC6 (134). In the past few years two protein from the same family has been cloned 

and characterize as mechanically activated channels. They are called Piezo 1 and Piezo 2, 

which resemble the non-selective cation currents stretch-activated (SACs) found in bacteria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1.2: The transient receptor potential family and topological structures (148). 
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1.3 EFFECTORS IN CELL VOLUME REGULATION 

 

1.3.1 Regolatory Volume Decrease (RVD) 

After cell swelling, instant mechanisms take place leading to extrusion of intracellular 

organic osmolytes together with net efflux of KCl, via independent pathways or coupled to 

each other. 

 

1.3.2  Potassium Channels 

Many potassium channels exhibit a volume-dependence. Thanks to the  gradient occurring 

in every cell, an increase of K+ conductance would augment the exit of K+. This in turns will 

hyperpolarize the cell membrane, favouring the efflux of Cl-. Basically, the most important 

and effective mechanism in regulatory volume decrease, is the parallel activation of 

mechanisms which lead to the efflux of K+ and Cl-, known to be almost electroneutral. 

BKCa or maxi-potassium channels are activated in swelling conditions after membrane 

depolarization and an increase of cytosolic calcium. They are voltage-dependent and this 

could be related to a coupling mechanisms with chloride channels activation. The activity 

under hypotonic conditions has been demonstrated in several studies (see reference 161 for 

an extensive description). 

IKCa constitute another family which exhibit a voltage independence while activated by 

cytosolic Ca++. Many reports showed and identify this channels as mediator of potassium 

conductance in hypotonicty conditions (147).  Several mechanism have been proposed to 

explain the activation of these channels, including membrane stretch, actin cytoskeleton 

reorganization, intracellular calcium increase and activation by kinase such as PKC (72). 
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1.3.3 Volume-regulated Cl- channels 

 

The most important ion channel involved in the increased conductance of chloride upon cell 

swelling is the so called Volume-Regulated Anion Channel (VRAC). After 30 years being on 

the run the essential structure of VRAC has been solved (150). 

VRAC is a moderately outward rectifying channel, with inactivation at positive potentials. 

The most selective inhibitors of VRAC is DCPIB (an indanone compound). The activity of this 

channel is absent in resting conditions, when there is not any osmotic gradient. In hypotonic 

conditions VRAC is deeply activated and several mechanisms has been proposed including a 

reduction of intracellular strength, F-actin organization and changes in the membrane  lipid 

composition (72). Interestingly, it shows an intrinsic permeability to organic osmolytes such 

as taurine, and amino acids (aspartate and glutamate). Hence, taurine efflux during RVD is a 

prominent mechanism by which every cell responds to swelling. During RVD the passive loss 

of taurine, following its chemical gradient, is around 30-50%. 

 

1.3.4 KCl symport 

KCl release from the symport channel plays an important role in RVD (56). Four isoforms 

have been cloned so far (KCC1-KCC4) and three of them (KCC1, KCC3,KCC4) are activated in 

hypotonic conditions. KCC2 is not sensitive to this kind of stimuli and it is exclusively 

expressed in the central nervous system where it decrease the chloride concentration below 

its equilibrium in order to facilitate hyperpolarization from GABA channels (160). 
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1.3.5 Cell Volume in physiological processes 

Easy to imagine, cell volume regulations involved in many physiological processes and 

influences cell functions.  Two of the most important of these functions are cell migration 

and apoptosis. 

In cell migration, volume changes have a profound impact in epithelial cells (129) while in 

neutrophils migration, cell swelling is pivotal (122). Recently, it became clear that ion 

channels and transporter involved in cell volume regulation, are evidently important actors 

in cell migration. For instance, this role has been elucidated for NHE1 (sodium/hydrogen 

exchanger) which is present to the leading edge of migrating cells (136), for volume-

regulated anion channels (127) and for transient receptor potential channels like TRPV4 and 

TRPV1 (157). Particularly, imagine a cell in the process of migration, the shrinkage-related 

channels are localized at the leading edge, while the swelling-activated channels are found 

at the lagging edge, resulting in a forward movement (128). 

Figure  1.3 Ion channels involved in RVD, upon hypotonic stimulus (103) 
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Apoptotic volume decrease (AVD) is an important stage of programmed cell death. 

Important ion channels involved in this process are for instance VRAC, which are essential in 

AVD and nevertheless are involved in cancer resistance (72).  Moreover VRAC are activated 

by cisplatin (Ise et al., 2005). In the first stage of AVD, a reduction of intracellular 

concentration of K+, Cl- and Na+ is observed, followed by a 30% loss of water. In the second 

stage, due to inhibition of the Na+,K+-ATPase, a reduction of potassium and  an increase of 

intracellular sodium take place.(72) 

 

1.3.6 Cell Volume in physiopathological processes 

Cell volume and extracellular tonicity is usually maintained in a narrow window by 

homeostatic control. In any case, major disturbances occurring to biological fluids are  

common features in some pathological disorders. These states includes hyponatremia, 

hypernatremia (74) and malaria (131). Other pathological conditions like hypercatabolism 

and burn injuries lead to cell volume dysregulation (154, 10). 

Osmotic disturbance can also occur due to changing in the chemical composition of 

extracellular fluids, for instance during liver or kidney insufficiency where urea and NH3 

accumulate in the extracellular space. In diabetes mellitus, sorbitol accumulation can also 

challenge the correct volume homeostasis (153, 74). 

 It is well known that in liver cirrhosis, ammonia augmentation leads to astrocytic swelling in 

the brain, process which is partially involved in hepatic encephalopathy (51). In the central 

nervous system, moreover, osmotic changes can have tremendous consequences as the 

given space is confined and the extracellular space is very little compared to other tissues. 

During ischemia and reperfusion insults, energy depletion leads to insufficient activity of the 

Na+,K+-ATPase and consequent cell swelling due to impaired ability to maintain ions 

gradients (112). 
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2. Volume regulation in the central nervous 

system: role of astrocytes and ion channels  

 

 2.1 Glial cells: physiological role within the central nervous system  

Glial cells, commonly termed as glia, form the nervous system together with neurons. The 

Greek etymology suggest glia as the “glue of the nervous system”; however, this is not 

completely correct. Glia are non-neuronal cells that significantly contribute neuronal 

physiology as they maintain neuronal homeostasis, modulate synaptic genesis and fiber 

myelination, and provide neurons of trophic support and immune protection within the 

brain and central nervous system (CNS) as well as in peripheral nervous system (SNP) (Fig. 

2.1).  

Furthermore they destroy pathogens and remove dead neurons in order to maintain the 

appropriate neuronal function. In addition, the recognition of their action on the immune 

system led glia to become an integral part of a new discipline: neuroimmunology.  

It is also important to remind that we can distinguish between different types of glia: in the 

CNS we find astrocytes, oligodendrocytes, 

microglia and ependymal; in the (SNP) we 

can distinguish between Schwann cell, that 

form myelin sheaths, and satellite cells, 

which surround the bodies of ganglion 

neurons. 

Figure 2.1: Anatomical and functional organization in 

neuron-glia interactions: glial cells interacting with 

neurons, blood vessels and the micro-environment. 

Oligodendrocytes cover axons with myelin sheath to 

accelerate neuronal impulses. Astrocytes take contacts 

with synapses and vessels. Microglia monitor the brain 

parenchyma as immunitary cell type of the CNS (3). 
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2.1.1 Astrocytes  

Astrocytes are derived from neuronal stem cells and populate all regions of CNS, where they 

represent the most widely distributed cell type (52). Astrocytes (Fig. 2.2) are stellate cells 

with multiple fine processes that contact blood vessels, pial surface, and surround neurons. 

In gray matter, astrocytic processes unsheathe virtually every synapse. Astrocytes serve 

various functions including structural roles (they forms the blood-brain barrier), metabolic 

support of neuronal system supplying nutrients and neurotransmitter precursors, regulation 

of ion concentrations. Furthermore, they express several receptorial systems 

(neurotransmitter receptors) and immune signalling (cytokines and chemokines), providing 

a critical role in neuronal functions and affecting all neighbouring cell types. 

 

 

Figure 2.2: This immunofluorescent light micrograph shows mammalian brain astroglial cells, stained in green. Nuclei 

are stained in blue. Scientists are uncovering evidence that astrocytes do more than simply support neurons (60).  

 

2.1.2 Microglia  

Believed to be the most reactive and mobile cells of the central nervous system, microglia 

are the specialized phagocytic cells and they behave as central macrophages (45). Adult 

microglial cells originate from primitive myeloid precursors and show different 
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characteristics as compared to other macrophages: microglia, indeed, have highly motile 

processes by which they examine the brain surrounding (Fig. 2.3) (31).  

Thanks to a variety of signalling pathways microglia communicate with macroglial cells 

(astrocytes, oligodendrocytes and other glial cells), and neurons. These cells have the 

capacity to release a number of soluble factors that determine either beneficial or 

detrimental for the vicinal cells. Activated microglia can migrate to the site of injury, 

proliferate, and phagocytose cells and cellular compartments. 

 

 

 

Figure 2.3: Example of microglia cells around the red blood vessels in the retina. Both microglia and blood vessels are 

surrounded by nerve cells, not stained in this picture (57).  

 

 

2.1.3 Oligodendrocytes  

Oligodendrocytes are glial cells populating the CNS and producing myelin (80% lipid and 20% 

protein), an insulating sheath on axons and nerve fibers. A single oligodendrocyte is able to 

extend its processes to 50 axons, wrapping approximately 1 μm of myelin sheath around 

every axon (Fig. 2.4). Between the different segments of myelin-isolated neurons, it is 

possible to identify uncovered spots called nodes of Ranvier, which are crucial in the 

electrical transmission system. Indeed, the speed up of impulses occurs as propagation of 
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action potentials follows a salutatory fashion at the nodes of Ranvier, in which ionic flows is 

permitted.  

In the peripheral nervous system, the equivalent cell present is termed as Schwann cells: 

these cells, by contrast, can wrap around only one axon.  

 

 

 

 

 

 

Figure 2.4: Oligodendrocyte and myelin sheath: oligodendrocytes insulate neuronal axons, speeding-up electrical 

transmission (58) 

 

2.1.4 Ependymal cells  

Termed as ependymocytes, they are specialized cells that produce and secrete cerebrospinal 

fluid (CSF) and beat their cilia to permit the CSF fluid circulation. Situated in the cavities of 

the CNS where build up the walls of the ventricles as well as the blood brain barrier in the 

interface with blood circulation. They are thought to act as neural stem cells. 
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2.2 Astrocytes and volume homeostasis in the CNS 

 

Astrocytes constitute the most abundant cells within the brain; even though they are 

considered “star-like cells” they do exhibit a morphological heterogeneity. Indeed not all the 

astrocytes express the classic astrocytic marker GFAP (glial fibrillary acidic protein). This 

astrocytic marker stains all cultured astrocytes but in situ the expression is rather 

heterogenous; for instance is virtually expressed in every cell of the Bergmann glia, while in 

adult animals cortical astrocytes the expression of this protein is confined to a 15-20 percent. 

Astrocytes are both present in the gray matter and in the white matter. In the former, we 

find protoplasmatic astrocytes, which have fine and elaborate processes about 50 µm long.  

This type of astrocytes are capable to cover the entire three-dimensional space, virtually 

covering all the neuronal membranes and every synapse. The also take contact with blood 

vessel, constitute the so-called perivascular end feet. Moreover, they project towards the 

pial surface, isolating the brain parenchyma from the vascular and subarachnoid space, 

forming the glia limitants. Fibrous astrocytes are present in the white matter. They have 

different features including longer and less elaborate processes (300 µm) which also cover 

the nodes of Ranvier (perinodal astrocytes). 

Astrocytes play major role in brain homeostasis, morphological definition of the central 

nervous system, synaptic maintenance and brain defence. (94) 

 

 

Figure 2.5 Protoplasmatic astrocytes from mouse 

neocortex. Noteworthy, the complexity of astroglial 

processes virtually covering all the CNS synapses and 

perivascular interfaces (53).  
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2.3 Astrocytes physiological functions in homeostasis 

 

2.3.1 Glutamate metabolism 

 

Glutamate uptake from extracellular environment is a major task for astrocytes. The 

extracellular concentration of glutamate needs to be maintained under 1 µM.  Hence, 

astrocytes uptake glutamate in order to terminate glutamatergic neurotransmission and 

prevents glutamate to reach excitotoxic levels (glutamate is the most important and 

bountiful excitatory neurotransmitter in the brain) (132). 

Specific glutamate transporters are expressed and enriched in astrocytic processes, 

especially where they take contact with synapses. GLT1 and GLAST 1 are the most specific 

glutamate transporters (119, 125).  

Glutamate transport is an active process and require energy from ATP breakdown; briefly 

glutamate is cotransported with three Na+, while one hydroxide ion and one K+ are extruded 

from the cell (124). This leads to an increase of intracellular sodium concentration beside a 

Ph reduction. Glutamate is subsequently converted in glutamine  and recycled by neurons 

after extracellular release by astrocytes. 

Glutamate receptors, included mGluR, are present in the plasma membrane of astrocytes. 

During neuronal firing, release of glutamate in the synaptic space lead to astrocytic calcium 

intracellular store activation, leading to a calcium-dependent discharge of glutamate in the 

extracellular environment, eventually modulating synaptic activity (52) 

 

2.3.2 Potassium buffering 

In the central nervous system, neuronal action potential is followed by a repolarization 

phase, driven by potassium movements across the membrane, towards the extracellular 

space. The potassium increase is rapidly buffered in the interspace narrowing synapses, by 
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astrocytes. This important task accomplish the maintenance of the resting membrane 

potential of neurons, since a compromised K+ regulation leads or is related to severe 

pathologies, such as epilepsy (130). 

The basic mechanism proposed to address the role of astrocytes in potassium buffering 

implies the involvement of the astrocytic syncytium, which spatially buffers local high 

potassium concentration towards extracellular compartments where K+ is lower and 

eventually blood circulation. Among many potassium channels, the Kir 4.1 (Inwardly 

rectifying potassium channel 4.1) is mainly involved in the astrocytic potassium conductance 

(26). As a weakly-rectifying is capable to drive K+ inside and outside the cell, in a bidirectional 

fashion. Kir 4.1 expression is highly polarized in astrocytes, particularly in the processes 

enwrapping synapses and the processes facing capillaries. In this context, it is possible to 

term this process as “potassium spatial buffering” where K+ is cleared from high 

concentration areas (synapses) and released in the blood circulation, through the astrocytic 

syncytium. Gap junctions, connecting astroglial cells to each other and favouring cell-cell 

communication, play an important role in this mechanism (18). 

 

 

Figure 2.6 Astrocytes modulate neuronal activity by releasing different transmitters. (A) The tripartite 

synapses in this electron microscopy micrograph (A). The astrocytic process (green) enwraps both the 

presynaptic (pre) and postsynaptic (post) terminals. (B) Astrocytes release glutamate that modulate synaptic 

plasticity, neuronal excitability, and synchrony due to specific activation of the NMDA receptor. Astrocytes 

also release ATP, which is degraded to adenosine and strongly suppresses synaptic transmission by binding 

to the receptor adenosine A1 (48). 
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Astroglial cells are also involved in other physiological processes. For instance, astrocytes 

regulate synapse arrangement (otherwise formation of synapses would be greatly 

depressed), maintenance and elimination. Synaptic formation strictly depends on 

cholesterol, which is synthetized and secrete by astroglial cells, which can control for 

instance receptor density in the post and presynaptic membranes of neurons. Other 

signalling molecules, including tumour necrosis factor alpha (TNF-alpha), can affect synaptic 

maturation. TNF-alpha has been demonstrated to regulates the expression of glutamate 

receptors into postsynaptic membranes neurons (94). 

Moreover astrocyte, covering virtually all the surface facing the basal lamina of blood 

vessels, are capable to control and regulate local blood flow through calcium-dependent 

mechanisms which in turns cause vasodilatation or vasoconstriction. Regarding metabolic 

support, astrocytes seems to be correlated to the glucose-lactate shuttle, taking up glucose 

from the general circulation and supply neurons with new metabolic fuel. Indeed, astrocytes 

are the only cellular entities that can synthesize glycogen from glucose, operatic as an energy 

storage (94).  

 

 

 

Figure 2.7 Glucose-Lactate shuttle between Astrocytes and neurons (59).  
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2.4 Brain volume regulation: role of astrocytes and ion channels 
 
An action potential is very fast increase of the membrane potential  from −70 mV, which is 

a typical resting potential, to a peak value of about +40 mV. This elevation occurs in some 

milliseconds and it is followed by a less rapid decrease back to the resting potential value.  

In an action potential, voltage-gated sodium and potassium channels open and close in a 

very coordinate manner to permit the flow of ionic currents through the plasma membrane, 

according to the Nernst equation for each ionic entity. Hence, sodium enters in the cell and 

potassium is directed  towards the extracellular space. These transient variations in the 

membrane potentials triggers not only voltage-gated channels but also allow electro-

diffusion of ions through passive channels, particularly chloride which exhibits in most 

excitable ells, an high chloride permeability in resting Conditions. Minor changes in the 

spatial distributions of sodium, potassium and chloride occurs after every action potential 

and require fine adjustments through active ionic transportation. If the resetting of this 

perturbations are not fully complete before the following action potential, a progression of 

these ionic gradients is observed, which may induce volume changes (8, 13, 54).  In the 

central nervous system the interstitial spaces are reduced and cell swelling upon repeated 

action potentials can further increase extracellular potassium concentration and in turns 

affecting the membrane resting potential to increased values toward the firing threshold 

and an augmented excitability, which is linked to a number of disease including epilepsy and 

spreading depression. (9, 67).   

Astrocytes, involved as main actors in central homeostasis and volume maintenance and 

regulation, are deeply studied in order to unravelled the mechanisms beside volume 

regulation. Primary, volume regulation is a cell-cell mechanisms and ion channel together 

with aquaporin are crucial in addressing this task. Astrocytes indeed in physiological state, 

show a moderate and transient swelling upon neuronal activity, especially nearby synapses, 

as the extracellular space between pre- and post-synaptic membranes decreases (138). 

Astrocytes cultured in vitro and exposed to hypotonicity, rapidly swell through an osmotic 

driven water flux, mediated by aquaporin 4. At this moment, cellular components sense the 
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volume change in order to ignite the response and restore the initial volume. Elevation of 

intracellular calcium and cytoskeletal rearrangements seem to be the most important 

mechanisms in astrocytes (102, 88). [Ca2+]i rising in RVD is still controversial, as it is not clear 

whether calcium per se is able to trigger this adaptive response, or a biochemical calcium-

dependent pathways are activated. Involvement of the intracellular kinases such as P38, 

MAP-kinase and JUNK has been demonstrated, together with phospholipase A2 (PLA2), even 

though the exact contribution is still unclear. (109). Mechanosensitive receptors, such as 

transient receptor potential (TRP) might be also implicated in calcium transduction. 

Concerning effectors, VRAC channels play a pivotal role in RVD (155, 107, 69). Other anion 

channels might be also involved, particularly from the CLC family (39). Potassium 

conductance is as well involved in RVD even though the K+ channels have not been 

discovered yet. In this perspective, Kir 4.1 channel is also essential for volume regulation in 

the spinal cord, even though evidence in other regions of the CNS are still lacking. (34). 

2.5 Astroglial ion channels in volume regulation 

 

2.5.1 Aquaporin 4 

Aquaporin 4 is a water channel included in the aquaglyceroporin family, mainly expressed 

in the brain and constituting the most expressed aquaporin of the central nervous system. 

Aqp4 monomer is a 323 amino acids protein called isoform M1, since a shorter isoform that 

lacks the first 22 amino acids (M23, 301 AA) due to a shift in the initiation site on the same 

gene, has been also identified. (91) 

The two classical isoforms cooperate together to form primarily tetramers with a predicted 

central pore, and larger arrays called orthogonal array of particles (OAPs), which cover the 

astrocytic membrane where AQP4 is highly enriched, at the perivascular endfeet of astroglial 

cells. This clustering seems to be the active from of AQP4 even though the real role of these 

particles needs to be clarified. 

AQP4 is highly concentrated in astrocytic end feet (42), attesting to the polarization nature 

of astrocytes. AQP4 allows bidirectional flux of water following osmotic driven force.  
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Subsequently the AQP4 role has been deeply investigated in pathologies included ischemia 

and edema. After 23 years from AQP4 discovery, the role of this aquaporin is still not clear 

in these pathological states. The level of AQP4 in astrocytic end feet is depressed following 

transient ischemia (43) and this loss is more prominent in the regions where there was a 

vascular damage, delimiting the ischemic area. (41). Noteworthy, the polarized distribution 

of AQP4 is lost in reactive astrocytes (163). 

Downregulation of AQP4 were also found in other pathologies such as epilepsy (37), brain 

injury (121) and one model of Alzheimer (167), while increasing of AQP4 has been found in 

some inflammatory processes (from LPS treatment, 145) and central haemorrhage (156) and 

brain tumours (35, 99). 

Robust data indicate that AQP4 is involved in water and waste clearance from the CNS, 

becoming rate limiting in the water movement between the blood brain barrier. This was 

indicated from a recent study where studying fluorescent tracers in a living mouse brain 

were used (61). Cerebrospinal fluid (CSF) recycles inside the brain parenchyma along 

perivascular spaces. The tracer, following distribution in the brain parenchyma is 

accumulated nearby capillaries and veins, suggesting a paravenous drainage process. AQP4-

/- mice shows reduced tracer flow and delayed clearance in parenchyma. AQP4 may be 

relevant, not only form interstitial water, but also soluble factors, proteins and waste, 

included such neurodegenerative disease, where protein accumulation is an important 

factor in the etiopathogenesis. (167) 

 

 

2.5.2 TRPV4 

Cell-cell communication in astroglial syncytia and astroglia signaling is mediated by Ca2+ 

waves elicited by extracellular soluble factors and a variety of physical and chemical stimuli, 

included cellular swelling. Transient receptor potential cation channel subfamily V member 

4 (TRPV4) is a poly-modal cation channel and can be activated  by modest heat (47,  152) 

and endogenous ligands including arachidonic acid and anandamide (159). Cell swelling 
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activation of TRPV4 in anisotonic conditions seems to be linked to PLA2 stimulation and 

arachidonic acid action (152).  

Several studies demonstrated  that TRPV4 is critically involved in cell volume regulation and 

regulatory volume decrease in various cell types (11, 15). Our group recently showed that 

TRPV4 is expressed in rat cultured cortical astrocytes and   in situ  observation in the mouse 

brain, (16). Indeed activation of TRPV4 by a selective activator like 4-alpha-phorbol 12,13-

didecanoate (4αPDD), induced [Ca2+]i signals in cortical astrocytes in vitro, resembling the 

currents detected endogenously in other cell types (158, 120). Hypotonicity-induced 

[Ca2+]i elevation was dependent on extracellular calcium concentration and was blocked by 

ruthenium red, a non-specific TRPV4 inhibitor (151). In situ studies revealed that TRPV4 

highly enriched in the astrocytic endfeet membranes facing endothelial cells of blood 

vessels, as well as in ependymocytes in the ventricles. Interestingly, in this two domains, 

AQP4 is also very abundant. (96). 

 

 

2.5.3 VRAC 

The volume-regulated anion channel (VRAC) is probably the most important anion channel 

involved in cell volume regulation. This concept and VRAC expression has been 

demonstrated mostly in all types of vertebrate cells, including those of the CNS 

(135, 97, 104).  

In many studies, pharmacological inhibition of VRAC, blocked or seriously impaired RVD (55, 

97). This pivotal role of VRAC in volume regulation may partially ascribed  to the ability to 

mediate efflux of organic osmolytes. In astrocytes, the release of massive amounts of 

excitatory amino acids, glutamate and aspartate, upon brain injury, causes excitotoxic 

neuronal death. In this context, VRAC has been demonstrated to be permeable to glutamate 

involved in this excitotoxicity (68, 110). Astrocytes are more susceptible to ischemic swelling 

than neurons (89) and VRAC might be the main source of volume-dependent release of toxic 

amino acids in the brain. 
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After 30 years being on the run, the molecular identity of VRAC has been partially solved. In 

2014, two independent groups established that an essential sub-unit of VRAC is the leucine 

rich repeat containing 8 family member A (LRRC8A). (115, 150) 

The LRRC8 family includes five members. LRRC8A member is a protein of about 800 amino 

acid residues with a molecular weight of 95 kD. The C-terminal contains 17 leucine-rich 

repeats. (1). Notably, LRRC8 proteins share a common ancestor with pannexins, beside a 

weak homology in their transmembrane domain. Inlight of this, a hexameric conformation  

similarly to pannexins, has been suggested (1). This speculation might also include that 

multimers of LRRC8 are capable to form a structured channel-pore. Notably, it was reported 

that carbenoxolone, a VRAC blocker, inhibits  connexin hemichannels (22). 

 

Swelling-induced VRAC activation  

VRAC activation induced by cell swelling has been extensively demonstrated, even though 

the precise mechanisms is still elusive. Many different types of signaling cascade might 

contribute to the swelling-induced VRAC activation but their contribution seems to be 

partial or only permissive. Since cell swelling is usually accompanied by calcium signals, the 

contribution of calcium has been investigated in VRAC activation. VRAC is not a calcium 

dependent ion channel, as its activity does not directly reflects calcium dynamics (139). In 

any case, many studies reported that a minimal calcium concentration is required or some 

calcium-dependent enzymes are crucial for swelling-induced anionic current activation, like 

protein kinase C or Ca2+/calmodulin-dependent kinases (97). In cultured astrocytes, the 

mechanism of swelling-induced activation of VRAC clearly consists of Ca++-dependent and 

independent components. This [Ca++]i increase contributes to 30–40% of the total VRAC 

activation. Concerning the remaining 70-60%, the mechanisms in not yet determined, and it 

seems to be multicomponent and evidently calcium-independent (2). Remodeling of actin 

cytoskeleton has long been suggested to relate in some way to VRAC activation in many 

types of cells. In general, swelling-induced VRAC current reflects disassembly of 

submembrane cortical F-actin networks. (72) 
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Cell volume regulation is an essential process of every cell, and it occurs to not only restore 

the original volume when a cell is exposed to anisotonic condition, but also participate in 

such physiological processes in which change of shape is required to address such as 

apoptosis, differentiation, migration or proliferation. In this context, VRAC activation in has 

been well demonstrated in apoptosis, where VRAC is stimulate despite isovolumetric 

conditions. Moreover, in several cancer cell types, VRAC is downregulated and this correlate 

with a decreased propensity to apoptosis. Notably, this effect is more pronounced in drug-

resistant cancer cells (see Review 116).  Thus, VRAC currents seems to be highly regulated 

throughout the cell cycle, and consistent with its specific role in volume regulation, VRAC 

inhibition impairs cell proliferation. VRAC may also play an important role angiogenesis since 

specific blockers impaired vessel formation in many models (81, 117). In cell migration, the 

inhibition of VRAC activity limited cell movements, presumably reflecting the close 

involvement of local cell volume changes in cell motility (116). 

 

 

2.6 Interaction between ion channels and aquaporins in volume regulation  

2.6.1 AQP4 and Kir 4.1 

Potassium spatial buffering through the astroglial syncytium is accompanied by an osmotic 

driven water flux. Thus, a molecular partner for Kir 4.1 has been rapidly proposed. AQP4, 

the most important and expressed water channel in the brain has been extensively studied, 

since both proteins are enriched and co-localize in astrocytic endfeet in situ (90). This 

hypothesis has been subsequently tested in co-immunoprecipitation experiments, where 

Kir4.1 form a complex with APQ4 in Muller cells (29). In this study  DAPC proteins  were 

shown to selective anchoring  both AQP4 and Kir 4.1, as indeed shown by Amiry-

Moghaddam group, which deeply studied APQ4 polarization and molecular anchoring in 

situ,  reporting an AQP4/alpha-syntrophin interaction (alpha- syntrophin is part of the DAPC 

complex) (4, 5). At a functional level, it has been demonstrated that genetic knockout of 

AQP4 led to slowed dynamics in potassium buffering and seizures predisposition (20, 21). In 
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more physiological experimental paradigms, the role of this interaction is still unclear. An 

explanation for some discrepancy might be that the two proteins belong to different micro-

domains at the plasma membrane level, but able to cross talk to accomplish the same 

functions (18) 

 

2.6.2 AQP4 and VRAC 

Molecular interaction between AQP4 and VRAC has not been investigated yet. However, our 

group provided in vitro evidence that functional interaction between AQP4 and VRAC may 

occur in cortical rat astrocytes, as genetic knockout of aquaporin 4, reduce VRAC currents 

(19). Moreover, the interaction might be ATP-dependent, since the supplement of ATP in 

the internal solution in the patch-clamp experiment, restored the hypotonic-induced VRAC 

current (19). 

 

2.6.3 AQP4 and TRPV4 

Hypotonic stress in astroglial cells produce an increase in intracellular calcium. Our group 

demonstrated the presence of TRPV4 in rat cortical astrocytes in vitro and in situ (16). Later 

our group provided evidence of molecular and functional interaction between AQP4 and 

TRPV4, in co-immunoprecipitation experiments and functional assay, showing that an 

increase of intracellular calcium upon hypotonic stimuli require the presence of AQP4, since 

this response is absent in AQP4 Knockout mice (17) 
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Fig 2.8 Astroglial cells and ionic homeostasis. Noteworthy, the high polarized expression of astrocytic 

ion channels and aquaporins, involved in potassium buffering and volume homeostasis (18). 
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Aquaporin 4 (AQP4) is a highly conserved protein in mammals, since point mutation usually 

lead to a reduce water permeability (133). A recent study investigated the effect of a 

mutation in AQP4 gene in AQP4 membrane protein expression and water permeability (95). 

In this study, a novel point mutation of AQP4 origin an Asp/Glu switch, was observed in a 

Spanish sporadic case of deafness. Aspartate is position 184 is conserved across species. 

Moreover, the study of Nicchia e co-workers shows a reduce permeability of this mutant, 

heterologously expressed in cellular systems, probably affecting the mobility of the D loop 

of the protein.  

The group where I carried out my PhD program demonstrated the role of protein-protein 

interactions between AQP4 and the channel Transient receptor potential channel vanilloid 

subfamily 4 (TRPV4), in the regulation of cell volume of cultured rat cortical astrocytes (17). 

Interestingly, TRPV4-KO mice develop delayed-onset hearing loss together with a 

pronounced vulnerability of the cochlea to acoustic insults (140). Chloride channels are also 

involved in the maintenance of homeostasis in the brain and in particular, volume-regulated 

anion channels (VRAC) mainly address this task, possibly in every cell of vertebrate 

organisms (65) The current mediated by VRAC has been deeply studied over the last 30 

years. The molecular identity, partially solved in 2014 by two independent groups (115, 150), 

consist of an essential sub-unit termed as leucine rich repeat containing 8 family member A 

(LRRC8A). Notably, a functional interaction between AQP4 and VRAC has been 

demonstrated in astrocytes (17). 

On this basis, in the context of a project supported by MIUR FIRB-Futuro in Ricerca (project 

protocol BFR12SJA8_002 "Studio del ruolo fisiopatologico della mutazione D184E nel gene 

dell'Acquaporina-4" to Prof. Nicchia and Dr. Benfenati) we hypothesized that this mutation 

in the aquaporin 4 gene may affect the dynamics of AQP4 ion channel interaction.  Indeed, 

ion channels and aquaporin play a pivotal role in maintaining the homeostasis in the auditory 

system, especially for the cochlear fluid homeostasis and generation of 

the endocochlear potential (64).  

Hence, the aim of this study was to investigate the molecular and functional interactions 

between the mutant D184E of aquaporin 4 protein, with the ion channels TRPV4 and VRAC. 
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Moreover, since molecular tools, such as antibodies, are still not commercially available for 

VRAC, three antibody raised against LRRC8A antigenic polypeptides have been produced to 

investigate the expression of VRAC underpinning subunits in cortical astrocytes and mouse 

brain.  
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PART III 

MATERIALS AND METHODS 
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3.1 Cell Culture 

All primary cell culture were prepared at the Department of Pharmacy and Biotechnology 

(FABIT) of the University of Bologna. The experiments were performed according to the 

Italian and European council law on protection of laboratory animals, with the approval of a 

local bioethical committee and under the supervision of a veterinary commission of the 

University of Bologna. Every effort was made to minimize the number of animals used and 

their sufferings. Adult male C57BL/6 mice (Jackson Laboratories, Boulder, CO) were used in 

Medicine department of the University of Oslo, according to the European Council law on 

protectionn of laboratory animals. 

 

3.1.1 Astrocyte  

Cortical rat astrocytes we obtained from new born animals (Sprague Dawley) as described 

elsewhere (40).  Briefly, neonatal cerebral occipital cortices devoid of meninges, were 

mechanically triturated, using micropipettes until the tissue was completely dissociated and 

filtered with 70 µm nylon cell strainer (Falcon, BD Bioscience Bedford, MA, USA). The filtrate 

was transferred into a 25 cm2 culture flasks containing Dulbecco’s Modified Eagle 

supplemented with 15% fetal bovine serum and penicillin/streptomycin (100 U/ml and 100 

µg/ml, respectively), purchased from Gibco-Invitrogen, Milano, Italy. Culture flasks were 

maintained for 2–5 weeks in an incubator at controlled temperature and pH (37° C and 5% 

COs). After 2-3 weeks, astrocytes were re-plated onto the respective substrates by 

enzymatically dispersion, using 0,05% trypsin-EDTA (Gibco-Invitrogen), seeded at the 

desired concentration depending on the experiment. 
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3.2 COS-7 cells 

The COS-7 cells belong to an immortalized line derived from the African green monkey 

kidney. COS-7 cells were cultured in DMEM-glutamax, 10% FBS and penicillin (100-200 U/ml) 

- streptomycin (100 µg /ml) (Gibco-BRL). Cells cultured in cell flask were incubated at 37 °C 

and 5% CO2. 

 

3.2.1 Transfection of COS-7 cells 

The day before transfection, COS-7 cells were seeded in 60-mm Petri dishes at a density of 

5-8*105 per dish. Lipofectamine 2000 were used as transfection reagent (Invitrogen). COS-7 

were transfected  with the following constructs, depending on the experiment:  human 

TRPV4/pEGFP-N1 or AQP4 constructs,   including wild type and carrying the D184E mutation; 

AQP4-M1/pTarget, AQP4-M23/pTarget, AQP4-M1-D184E/pTarget, AQP4-M23-

D184E/pTarget). Co-transfection experiments were also performed to evaluate the 

interaction between TRPV4 and AQP4. 

 

3.3 Antibodies: 

The following primary antibodies were used: 

Target Protein Dilution Application Purchased 

Anti-TRPV4 1:200 Western Blot Alomone 

Anti-AQP4 1:500 Western Blot Santa Cruz 

Anti-AQP4 7µg/500 µg lysate Immunoprecipitation Chemicon 

Anti-LRRC8A-3 1:500 Western Blot Custom 

Anti-LRRC8A-2 1:200 Immunofluorescence and 

Immunoelectron Microscopy 

Custom 

Anti-GFAP 1:500 Imunofluorescence Chemicon 

Anti-GFP 1:1000 Western Blot Roche 
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Three custom polyclonal antibodies against LRRC8A were produced (Twin Helix, Milan). Two 

have been used in this experimental set up. One polyclonal antibodies was raised in rabbits 

against the peptide sequence QRTKSRIEQGIVDRSE, coupled to KLH through an N-terminally 

added cysteine. This sequence belong to the intracellular loop between TMD2 and TMD3. 

Another polyclonal antibody against the C-terminus of LRRC8A was raised in rabbits against 

the peptide NLTQIELRGNRLE following the same set up as the previous Ab. Sera were 

affinity-purified against the respective peptides. Peptides and serum negative control were 

also included in the project. 

 

3.4 Immunoblot analysis in COS-7 

COS-7 cells and 3–4 weeks cultured astrocytes were used for immunoblotting experiments.  

Cells were washed and scraped off in lysis buffer (50 mM Tris–HCl pH 7.4, 100 mM NaCl, 1 

mM EGTA pH 7.4, 0.5% sodium deoxycholate, 1% Triton) with supplemented protease 

inhibitors. The lysate was spun at 14,000 g for 30 min at 4 °C and protein concentration was 

determined in the supernatant using Bradford quantification (Invitrogen). For membrane 

protein isolation, biotinylation of cell membrane protein was performed and biotinylated 

protein were separated with immobilized streptavidin as previously described (38). 

Required amount of total protein lysate were separated into a polyacrylamide gel, electro-

transferred onto a PVDF membrane (Invitrogen), blocked in 5% BSA  and incubated with the 

primary Ab at 4° C for 12-16 hours. 

Membranes were then washed three time with PBS-T and probed with the required IgG 

horse radish peroxidase–conjugated secondary antibodies (Sigma), and developed with the 

enhancing chemiluminescence detection system (Santa Cruz Biotechnology, Inc).  

Mouse brain tissue was dissected (n=4) and processed for protein analysis. Brain regions 

were homogenized at 4 °C using 2 mL Lysing matrix D (MP Biomedicals) Eppendorf tubes 

containing Lysis buffer supplemented with protease inhibitor cocktail (Roche). 

Homogenization was performed in a FastPrep FP120 Cell Disrupter (MP Biomedicals), 
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shaken at intervals and intermittently cooled on ice. Supernatants were subsequently spun 

at high centrifuge speed and stored at -80 °C until downstream application as described in 

the previous paragraph. 

 

3.5 Electrophysiology 

Electrophysiology is a branch of physiology that studies the function of the organism from 

an electrical point of view, in normal conditions and under the influence of an external 

electrical potential. In 1991 the Nobel Prize in Physiology or Medicine was awarded to two 

German biophysical: Erwin Neher and Bert Sakmann with the following motivation: "for their 

discoveries concerning the function of single ion channel cell". They were the inventors of 

the patch-clamp technique ("block of the aria") that makes it possible to record the currents 

that flow through single ion channels in many types of biological membranes. The physiology 

of ion channels has Always Been a main topic of interest in neuroscience research. The 

patch-clamp technique is currently the gold standard for real-time investigation of ion 

channel conductance. It allows the investigation of a small set of ion channels down to 

single-channel recording. The technique can be applied on single cells in culture as well as 

on freshly prepared brain. 

To electrically isolated membrane patches, a thin glass pipettes that, after having been 

polished by the flame generated by an instrument called puller, appear to have a tip 

diameter of about 1 micrometer and a resistance of 1-10 ohm, they were sealed onto the 

membrane;  with a suction it  is established a high-resistance seal in the gigaohm range (cell-

attached configuration). The pipette tip once resting on the plasma membrane, was capable 

of electrically isolating the small flap (patch) membrane and allowed to record ionic currents 

mediated by the small population of channels within it until you get to possibly record the 

activities of a single channel. Thereby all ions passing through this patch flow into the 

membrane and current can be recorded by a chlorinated silver electrode connected to an 

electronic amplifier. 
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Small petri dishes were mounted on an inverted microscope (Nikon Diaphot, Nikon Italy, 

Firenze, Italy), equipped with epifluorescence filters to detect fluorescence from transfected 

cells, labeled with GFP (green). Currents were recorded with the patch clamp technique, in 

whole cell configuration (50). Patch pipettes were prepared from thin-walled borosilicate 

glass capillaries to obtain a tip resistance of 2–4 MΩ. Membrane currents were amplified 

with an EPC-7 amplifier (List ElectronicDarmstadt, Germany), and low-pass filtered at 2 kHz 

(3 dB) and data were acquired with a sample rate of 5 kHz. Traces were analyzed with offline 

with pClamp 6 software (Axon Instrument, Foster City, CA, USA) and Origin 6.0, (MicroCal, 

Northampton, MA, USA). Experiments were performed at room temperature (22–24 °C).  

3.6 Solutions and chemicals 

Saline solutions for patch clamp experiments were prepared with salts (Sigma-Aldrich) of 

the highest purity grade, and de-ionized and sterilized water.  

 For electrophysiological recordings the standard isotonic and control saline solution was 

(mM) 140 NaCl, 4 KCl, 2 MgCl2, 2 CaCl2, 10Hepes, 5 glucose, adjusted pH (7.4 with NaOH and 

osmolarity (310 mOsm with mannitol). In order to eliminate cation currents in some 

electrophysiological experiments, cations were substituted with the impermeant cation N-

methyl-D-glucamine (NMDG 140 nM). For microfluorometric experiments the control bath 

saline was (mM) 130 NaCl, 4 KCl, 2 MgCl2, 5 CaCl2, 10 TES, 5 glucose, adjusted pH (7.4 with 

NaOH and osmolarity (310 mOsm with mannitol). The Ca2+ free extracellular saline was 

prepared by omitting CaCl2 salt and adding a calcium-chelating agent (EGTA 0.5 mM). The 

hypotonic saline (260 mOsm) was prepared without adding mannitol. 

 

3.7 Calcium microfluorimetry 

 [Ca2+]i  intracellular concentration was calculated by ratiometric microfluorometry, using 

the ratiometric probe Fura 2-AM (Molecular Probes, Invitrogen, Milano, Italy),  which is one 

of the most used dyes in calcium studies. The binding of Ca2+ leads to a shift in the excitation 

wavelength, because of different conformation of the dye after calcium binding. 24 hours 
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before the measurements, low-density COS-7 cells were seeded on coverslips. The day of 

the experiment, the cells were incubated in 10 µM Fura-2-AM diluted in standard control 

solution, for 45 min at room temperature (22-25°C). For microfluorimetric analysis, cells 

seeded on coverslips were mounted on a perfusion chamber and perfused at a rate of 0.5 

ml/min as described elsewhere (152).  

Measurements of [Ca2+]i in single cells were performed by using an inverted fluorescence 

microscope (Nikon EclipseTE2000U, Nikon Italy) equipped with long-distance dry 

objective(40X) and appropriate filters. The emission fluorescence was selected  through a 

510-nm narrow-band filter and acquired with a digital charge-coupled device camera (VTi, 

VisiTech International Ltd., Sunderland, UK). Chopper frequency and settings were 

controlled by QuantiCell 2000 software (VisiTech). The fluorescence intensity measured at 

340 nm to 380 nm  with a sampling rate of 0.5 Hz.,  was plotted as  a ratio between 340 nm 

and 380 nm. This ratio is directly proportional to calcium concentration and can be use as a 

direct indicator of [Ca2+]i.  The calibration of the 340/380 reflecting the free [Ca2+]i was 

achieved as previously described (46). 

 

3.8 Brain sections and immunofluorescence 

The animal was transcardially perfusion-fixed for 15 min with 4 % formaldehyde and post-

fixed for 24 hours. The sections (thickness 15–20 nm) after a two-step washing in PBS, were 

blocked in 2% BSA, 1% Triton X-100 in PBS and incubated overnight with primary antibodies 

at the desired dilution, as explained in the paragraph 3.3. Brain sections were then incubated 

with a secondary antibody conjugated with different fluorescent probes, depending on the 

experiment. After washing, nuclei were stained with 4′,6-Diamidine-2′-phenylindole (DAPI) 

and mounted on the coverslips with Fluoromount (Molecular Probes). 

Images of brain sections were captured using a Zeiss SP1/MP (Oberkochen, Germany) 

confocal microscope and processed using Zeiss Imaging software. The microscope was 

equipped with a 400 nm diode, 488 nm Ar+ and 543 nm He-Ne lasers as exciting sources.  
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For COS-7 and astrocytes immunofluorescence experiments, cells were seeded on 

coverslips, after treatment with poly-D-lysine; after 48 hours, cells were fixed and probed 

with the primary Abs as described above. The next day cells were incubated with a secondary 

antibody, stained with DAPI and after mounting, analyzed using a Zeiss SP1/M confocal 

microscope 

In experiments conducted with control antigen, antibody was pre-adsorbed by incubation 

with immunizing peptide 1 h at room temperature (3 µg peptide/1 µg antibody). 

 

 

3.9 Fixation and tissue processing 

In immunoelectron experiment, the animals were perfusion-fixed as previously described 

(7). The specimens were plunged in subsequently higher glycerol concentrations (10%, 20%, 

30%) in order to cryoprotect them. The samples were then immersed into liquid propane 

(170 °C) in a cryofixation unit (Reichert KF80, Wien, Austria), incubated 0.5% uranyl acetate 

dissolved in anhydrous methanol (90 °C). The temperature was increased from to 45 °C, in 

4°C/h steps. Specimens were washed with anhydrous methanol and infiltrated with Lowicry 

lHM20 resin at 45 °C with a progressive increase in the ratio of resin to methanol. 

Polymerization was performed with UV light (λ 360 nm) for 48 h. 

3.10 Immunogold histochemistry 

The brain tissue ultrathin sections (90 nm) were incubated overnight with an anti-LRRC8A 

primary antibody at a proper concentration at room temperature, overnight. The following 

day, tissue sections were then probed with a secondary antibody, coupled to 15nm gold 

particles and after washing, contrasted with uranyl acetate and lead citrate.  Labeled 

sections were analyzed with a Philips CM 10 electron microscope (Eindhoven, Netherlands) 

at 60 kV (5, 6). Data were compared, as control, with pre-immune serum and immunizing 

peptide negative controls. 
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3.11 Statistical analysis 

Data are expressed as the mean standard error (SE) from at least three independent 

experiments. The statistical analysis was performed with two-tailed Student’s t-test (paired 

or unpaired depending on the experiments) and a statistically significant difference P was 

reported if p<0.05 or less. Analysis of variance was also performed (one-way ANOVA), 

followed by Newman-Keuls post hoc test for multiple comparisons. p<0.05 was considered 

statistically significant. 
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4.1 TRPV4 mediates intracellular calcium elevation upon hypotonic stimulus in 

COS-7 

 

Acquaporins and ion channels cooperate to maintain homeostasis; in the central nervous 

system, AQP4 and TRPV4 interact in order to serve this task. The former facilitating the 

osmotic-driven water movement and letter possibly sensing the mechanical stretch induced 

by osmotic cell swelling. The laboratory where I carried out my PhD program recently 

demonstrated a molecular and functional interaction between these two proteins. In order 

to study the physiophatological role of the D184E mutation in the AQP4 gene, we set up a 

heterologous system, able to express AQP4 and TRPV4 in the COS-7 cell line (African green 

monkey kidney fibroblast-like cell line suitable for transfection). This system provide a 

straightforward methodology to study protein-protein interactions in cellular models. This 

cell line derives from monkeys kidney does not endogenously express AQP4 nor TRPV4. COS-

7 were transiently transfected with  plasmid constructs, as indicated in the material and 

methods ,  in order to selectively express AQP4 M1 or M23 isoforms and TRPV4-GFP in a 

wild type genotype. Moreover, co-transfection with TRPV4 and AQP4 M1 or TRPV4 and 

AQP4 M23 was performed to investigate the interaction between the two proteins, in 

respect of the two AQP4 isoforms as well. 

On these cells we investigated the calcium dynamics upon hypotonic stimulus. The effect of 

exposure of the cells to hypotonic solution (Δ 60 mOsm) on intracellular calcium 

concentration [Ca2+]i was evaluated by calcium imaging, using the calcium fluorescent probe 

Fura-2. COS-7 cells, previously transfected with TRPV4, AQP4 M1, AQP4 M23 or co-

transfected with TRPV4/AQP4 M1 or TRPV4/AQP4 M23 were perfused with a control 

solution for 5 min, followed by a challenge with hypotonic solution in presence of 

extracellular calcium followed by the omission of Ca2+ from the external solution (Fig. 4). 

COS-7, which does not endogenously express TRPV4 nor AQP4, did not respond to the 

hypotonic stimulus in terms of intracellular [Ca2+] increase. The transfection of AQP4 M1 or 

M23 constructs did not affect calcium mobilization upon hypotonic challenge (Fig. 4,B-C), 

whereas transfection with TRPV4/EGFP induced a [Ca2+]I increase, which returned to the 
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resting condition when extracellular calcium was omitted from the hypotonic perfusion (fig 

4 D). COS-7 co-transfected with TRPV4 + AQP4-M1 or TRPV4 + AQP4-M23 and stimulated 

with the same experimental paradigm showed a similar calcium dynamics to those observed  

in the TRPV4/EGFP transfected cells (Fig. 4.1 D-F). The peak of the hypotonic induced 

increase in [Ca2+]I was significantly higher in TRPV4/EGFP transfected and co-transfected 

cells, when compared with the untrasfected and AQP4-M1 and AQP4-M23 ones. (Fig. 4.1, 

G).  
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Figure 4.1 Hypotonic challenge induces [Ca2+]I increase in Cos-7, when transfected with TRPV4. A) 

Representative trace of [Ca2+]I in native COS-7 cell line, perfused with control solution followed by hypotonic 

stimulus (Δ 60 mOsm), in the presence or lack of extracellular calcium. B) C) COS-7 transfected respectively 

with AQP4-M1 or AQP4-M23 did not affect calcium dynamics upon hypotonic stimulus. D) E) F) COS-7 

transfected or co-transfected with TRPV4 and AQP4-M1 or AQP4-M23 showed intracellular calcium raising 

when challenged with hypotonic solution. G) Graph of Fura-2 fluorescent ratio showing intracellular calcium 

peaks amplitude within the experimental group. Statistical analyses revealed a difference between the 

groups where TRPV4 was not transfected vs the groups were TRPV4 were transfected alone or co-transfected 

with AQP4 isoforms (n=10).  
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4.2 TRPV4 and AQP4 co-expression is critical for Volume Regulated Anion Channel 

(VRAC) activity 

Volume regulated anion channel has been proposed by several authors as the main effector 

mechanisms of RVD in astroglial cells. In a previous study, Benfenati and co-workers 

demonstrated that VRAC conductance was down regulated by knocking down AQP4 in 

culture rat cortical astrocytes (19). These data supported the hypothesis of a functional 

interaction between AQP4 and TRPV4 and VRAC, at least in vitro, thus we asked whether 

AQP4-TRPV4 complex formation was able to modulate VRAC activity in COS-7 cells.  

Whole cell patch-clamp experiments were performed on cells seeded at a low density, 24-

48h after re-plating and transfection. Analysis of COS-7 cells indicated that VRAC 

conductance depends on co-expression of TRPV4 and AQP4.  The VRAC current could be 

elicited in COS-7 cells co-transfected with TRPV4/EGFP and either of the AQP4 isoforms (Fig. 

4.2).  Currents recorded in cells transfected with TRPV4/EGFP, or TRPV4/EGFP+M23 and 

TRPV4/EGFP+M1 COS-7 were always compared with those recorded in untrasfected control. 

To evoke chloride currents, cells perfused with isotonic solution or hypotonic solution (∆Osm 

= 60 mOsm),  were held at -0 mV and after stepping to -80 mV for 4s, a voltage ramp protocol 

from -80 mV to +80 mV of a duration of 4 s was applied. Naïve COS- 7 cells display a classical 

hypotonic-induced, VRAC current. Interestingly, cells transfected with TRPV4/EGFP alone 

showed negligible VRAC currents. In cells co-transfected with TRPV4/EGFP and AQP4-M23 

the amplitude of the VRAC current was higher than in cells co-transfected with TRPV4/EGFP 

and AQP4-M1 (Fig. 4.2 A, right panels). Possibly, this difference reflects differences in 

transfection efficiency.  

To investigate the voltage and time-dependency of hypotonic induce conductance of 

untrasfected cells and TRPV4-GFP or TRPV4-GFP and AQP4M23 or M1 transfected cells, COS-

7 were stimulated with 6s voltage steps (Vh=0 mV) from -80 mV to +80 mV  (inset Fig. 4.2 B). 

Note the typical time dependent inactivation above +40mV described for VRAC current. 

Membrane currents recorded at -80 mV and + 80 mV were plotted as current density (Fig. 

4.2 C,D). Data reveal statistical difference in current density, between untrasfected COS-7 

cells and TRPV4/EGFP transfected cells treated with hypotonic solution (Fig. 4.2 C, p<0.05), 
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while the co-expression of TRPV4-GFP and AQP4 restore the hypotonic-induced current 

density to values comparable to those of the control, untransfected cells (Fig. 4.2 D). 

Taken together, these data indicate that AQP4-TRPV4 complex formation was able to 

modulate VRAC activity in COS-7 cells. As expected of a VRAC current, the magnitude of the 

osmotically induced current was largely unchanged after exchanging intracellular 

monovalent cations with the non permeant cation N-methyl-D-glucamine (NMDG) in the 

patch pipette solution (Fig. 4.2 E-F).  
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Figure 4.2 Functional antagonism between VRAC and TRPV4 in COS-7 cell line.  A) Current evoked in control 

conditions and hypotonic challenge (Δ = −60 mOsm/kg) of (from left): untransfected, TRPV4 alone, TRPV4 + 

AQP4-M23 and TRPV4 + AQP4-M1. B)Representative traces evoked by a step voltage protocol consisting of  

a voltage range from -80 mV to +80 mV with single 20 mV increments from a voltage holding of 0 mV. C) 

Current densities calculated at -80 mV and +80 mV in COS-7 transfected as explained in panel A; black line 

represent isotonic condition and red line depicts hypotonic challenge. D) Statistical analysis of the hypotonic-

induced current densities at -80mV and +80 mV, showing statistical difference between the untransfected 

group and TRPV4 group (* = p<0.05). In the right part of the graph the same experimental paradigm has been 

applied to COS-7 cells, substituting the physiological cations with NMDG (organic impermeant cation). In E 

the representative traces of electrophysiological recordings in isotonic and hypotonic solutions, current 

densities at -80 mV and + 80 mV (F) and in G statistical analysis displaying the same results as in D (* = p<0.05 

untrasfected vs TRPV4). 
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4.3 AQP4 and TRPV4 protein-protein interaction in co-transfected COS-7 cell line 

In 2011, Benfenati and colleagues demonstrated a physical and molecular interaction 

between TRPV4 and AQP4, in rat cortical astrocytes and in DiTCN_1 cells, an astrocytic cell 

line that endogenously express TRPV4 but not AQP4. In this context, the same experimental 

paradigm has been applied to the COS-7 cell line, used as a model for heterologous 

expression of the two proteins of interest. Noteworthy, data reported in figure 4.3 shows 

that TRVP4 and AQP4 are capable to physically interact, since an anti-AQP4 used in 

immunoprecipitation protocol, pulled down also TRPV4/EGFP protein, which can be 

detected in a western blot assay with an anti-GFP antibody (Fig. 4.3).  

 

 

 

Figure 4.3 Immunoblot of TRPV4 after immunoprecipitation with an anti-AQP4. COS-7 were transiently 

transfected with TRPV4-GFP and AQP4-M1. Co-immunoprecipitation of total proteins were subsequently 

performed using an AQP4 antibody. The immunoblot shows an immune-reactive band around 115 kDa, 

corresponding to the molecular weight of the TRPV4-GFP fusion protein (IP). Pre-clear negative control shows 

the absence of non-specific labeling of the agarose beads used in the experiment (n=5). 
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4.4 The D184E mutation dramatically affect the molecular interaction between 

TRPV4 and AQP4-M1 isoform 

 

In order to investigate the role of D184E mutation in the AQP4 gene, COS-7 were then 

transiently co-transfected with TRPV4-GFP and AQP4-M1 or AQP4-M23. 

Immunoprecipitation experiments were performed with an anti-AQP4, followed by 

immunoblotting of TRPV4, similarly to the previous experiment. The data revealed a 

dramatic decrease of the TRPV4/AQP4-M1 isoform interactions when TRPV4/EGFP and 

AQP4-D184E M1 isoform were transfected in COS-7. These data suggested a strong impact 

of the mutation in the protein-protein interaction (Fig. 4.4 A). Interestingly, as depicted in 

the figure 4.4 B, the co-transfection of COS-7 with AQP4-D184E and TRPV4/EGFP is not 

altering the molecular interaction of the two proteins. 
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Figure 4.4 AQP4 and TRPV4 protein iteraction is lost when the AQP4-M1 isoform carry the D184E mutation. 

Immunoblot analysis of TRPV4 in COS-7 cell line, transiently transfected with TRPV4-GFP and the two 

mutated isoforms of AQP4 (D184E M1 and D184E M23). The D184E mutation in the AQP4-M1 isoforms lead 

to a strong decrease of the TRPV4 immunoreactive band (IP) after co-immunoprecipitation protocol, using 

an anti-AQP4 (A). The protein-protein interactions was not affected when the mutated AQp4-M23 isoform 

was co-expressed with TRPV4-GFP, since immunopositive band is still present in the IP lane of the 

immunoblot (n= 3). 
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4.5 D184E mutation interfere with the membrane localization  

of AQP4 and TRPV4. 

The next experiment was aimed to evaluate whether the mutation D184E in the M1 isoform 

of AQP4 might affect the membrane expression, of AQP4 or TRPV4.  COS-7 were transfected 

with TRPV4/EGFP and AQP4 D184E M1 isoform and to selectively isolate and analyze 

membrane protein expression, a biotinylation experiment was carried out as described in 

“material and methods”, followed by western blot analysis. Preliminary data and 

densitometric analysis showed a slight decrease in the membrane expression of D184 M1 

isoform of AQP4. Interestingly, TRPV4/EGFP plasma membrane expression was remarkably 

decreased by 50% (Fig. 4.5, panel C), revealing a possible explanation by which the AQP4-

TRPV4 interactions is disrupted when the cells were co-transfected with AQP4-M1 mutated 

isoform.  
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Figure 4.5 D184E mutation induces altered TRPV4 membrane expression in transfected COS-7. COS-7 cell 

line, transfected with the TRPV4-GFP and AQP4 M1 D184E constructs were biotinylated and membrane 

proteins were isolated using streptavidin-agarose beads. Noteworthy, immunoblot analysis revealed a strong 

TRPV4 decrease when the mutated AQP4 isoform is present (D184E IP, A) and slight increase in AQP4 D184E 

M1 expression at a plasma membrane level (D184E IP, B). Same amount of plasmid constructs were transfect 

in COS-7 and non-transfected control was included. C) Densitometric analysis of TRPV4-GFP and AQP4 in 

COS-7 cells cotransfected with TRPv4-GFP and AQP4 WT or AQP4 D184E.  
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4.6 Expression of VRAC in COS-7 cell line. 

Since in the electrophysiological experiments, we had shown the hypotonicity-induced VRAC 

activation, we decided to investigate the expression of VRAC in COS-7. VRAC molecular 

identity has been recently solved and LRRC8A protein is an essential sub-unit. Two custom 

antibodies were produced and tested in immunoblot experiments and immunofluorescence 

experiments followed by laser scanning confocal microscopy. Single plane confocal image 

reported in figure 4.6, revealed specific immunolabeling of VRAC, particularly at the plasma 

membrane level, indicating that COS-7 cell line endogenously express LRRC8A protein. 

Moreover, over-expression of LRRC8A in COS-7 cells, promotes an increase in 

immunoreactive band in western blot around 95 kDa and strong labeling in 

immunofluorescence analysis (Fig. 4.6 A-B).  
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Figure 4.6 VRAC is expressed in COS-7 cell line. A) Single plane confocal immunofluorescence image of low 

confluence COS-7 cells. Immunofluorescence analysis of LRCC8A displays a strong specific signal in COS-7 line, 

by using the anti-LRRC8A n.3 (in red). B) Immunoblot of total COS-7 protein lysate.  Whole cell extract from 

COS-7 cells was assayed by western blot using anti-LRRC8A antibody n.2. Data show a strong immunoreactive 

double band around 95 kDa, probably assimilated to a different glycosylation pattern or peculiar LRRC8A 

protein isoforms. C) Confocal micrograph of one COS-7 cell co-transfected with LRRC8A and GFP, denoting a 

strong immunolabeling, mirroring LRRC8A over expression (red) and positive transfection control 

(GFP,green). 
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4.7 VRAC is expressed in rat cultured cortical astrocytes and mediates typical 

hypotonic-induced chloride currents. 

Abundant results in the literature demonstrated that AQP4, TRPV4 and VRAC play a pivotal 

role in CNS volume regulation, but little is known about VRAC expression in the brain. We 

next studied the expression of LRRC8A, the essential sub-unit of VRAC in cultured rat cortical 

astrocytes from new born rats. Sub-confluent astrocytes were immunolabeled with anti-

LRRC8A n.3 and nuclei stained with DAPI. The single plane confocal imaging of the signal 

typically observed in cultured astrocytes, depicted in figure 4.7 A, revealed that the 

expression of LRRC8A is very strong.  Immunoblot analysis of total astrocytic protein lysate, 

showed an intense immunoreactive band around 95kDa, the predicted LRRC8A molecular 

weight, confirming the elevated expression of the VRAC-protein sub-unit in cultured 

astrocytes. Moreover, astrocytes co-labeled for GFAP and LRRC8A confirmed the purity of 

the astroglial culture, since GFAP is a specific astrocytic marker. Note the clear LRRC8A 

immunostaining, principally localized in the plasma membrane, as depicted by the lack of 

overlay signal in the merge (Fig. 4.7 C, right panel)between GFAP signal (Fig. 4.7 C, left panel) 

and LRRC8A (Fig. 4.7 C, middle panel). In parallel, astrocytes in figure 4.7 panel D, stimulated 

with ramp protocol in the inset, described for figure 4.2) display the typical hypotonic-

induced VRAC current previously described in cortical astrocytes.  
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Figure 4.7 VRAC is  molecularly expressed in rat cortical astrocytes, which show the typical VRAC current. 

A) Single plane confocal immunofluorescence image of primary rat cortical astrocytes. Immunofluorescence 

analysis of LRCC8A displays a strong specific signal in astrocytes which is absent when the antibody targeting 

LRRC8A is omitted or when co-incubated with peptide control (data not shown). B) Immunoblot of total 

astrocytic protein lysate.  Whole cell extract from pure cultured astroglial cells was assayed by western blot 

using anti-LRRC8A antibody. Data show a strong immunoreactive double band around 95 kDa, probably 

assimilated to a different glycosylation pattern or peculiar LRRC8A protein isoforms. C) Confocal analysis was 

performed on subconfluent astrocytes co-immunolabeled for glial fibrillary acidic protein (GFAP, green) and  

LRRC8A (red).  This staining confirmed the purity of the astroglial culture, since GFAP is a specific astrocytic 

marker. Note the clear LRRC8A immunostaining, principally localized in the plasma membrane, as depicted 

by the lack of overlay signal between GFPA and LRRC8A. D) Representative traces of whole-cell currents 

evoked by a repetitive stimulation with a protocol delivered every 10 s (inset) that from a Vh of 0 mV 

hyperpolarizes the membrane potential to −80 mV for 3 s before the application of a 5-s depolarizing ramp 

to +80 mV. Current traces were recorded using Cs+ containing isotonic intracellular solution upon perfusion 

with extracellular saline (Isotonic), following hypotonic challenge (Hypotonic; Δ = −60 mOsm/kg) and after 

addition of 100 mM carbenoxolone, a classical VRAC inhibitor,  to the hypotonic saline bath. 



 
58 

 

4.8  VRAC is expressed in the mouse brain, especially in astrocytes. 

In order to address the expression pattern of VRAC in the brain, immunofluorescence and 

confocal microscopy, immunogold electron microscopy and western blot experiments were 

performed. Sagittal sections from the adult mouse brain were immune-labeled with an anti-

LRRC8A (Fig. 4.8, A-D, red) as specified in “material and methods”. We focused on the 

expression in astrocytes, since these cells are the most important when it comes to volume 

regulation in the brain. Thus, the sections were co-stained for the astrocytic marker GFAP 

(Fig. 4.8, A-D, green). Confocal microscopy analysis shows a specific labeling in the mouse 

brain, particularly in the cortex parenchima as well as in the cortical surface. Nevertheless, 

co-localization of the astrocytic marker GFAP and LRRC8A indicate that VRAC is highly 

expressed in astrocytes, especially at astrocytic endfeet facing upper and lower pial surfaces 

(also in the lower surface) and at those enwrapping blood vessels. Notably, the expression 

in non-GFAP cells of LRRC8A indicated the protein is expressed also in other brain cells. 

To analyze sub-cellular localization of LRRC8A, immunogold experiments were performed, 

coupled with electron microscopy analysis. As shown in figure 4.8 E the signal mirroring 

VRAC expression (using an anti-LRRC8A), is localized at astrocytic end feet, facing blood 

vessels. Molecular expression of LRRC8A in brain regions was also investigated performing 

immunoblot experiments. As depicted in figure 4.8 F, the antibody recognize a band at 95 

kDa in all the analyzed brain regions and noteworthy, the plasma membrane fractions of 

brain regions (hippocampus and parietal cortex) showed a strong and clear immune-reactive 

band, indicating that LRRC8A is localized at the plasma membrane. 



 
59 

 

 

               

                        



 
60 

 

 

Figure 4.8 LRRC8A molecular expression in the mouse brain.  A) Single plane confocal immunofluorescence 

image of sagittal cryosection of mouse brain. Immunofluorescence photomicrographs of cortical section co-

incubated with anti-GFAP (green), anti-LRRC8A (red) and merge reveal immunolabeling of astroglial cells 

throughout the tissue. The staining is more evident at astrocytic end feet facing upper and lower pial surfaces 

(B and C) and at those enwrapping blood vessels (A and B, arrows). E) Immunogold electron microscopy 

analysis of LRRC8A expression in CNS.  Electron microscopy of post embedded cortical sections. High 

magnification images of two different blood vessels of cerebral cortex. Astrocytic endfeet is labeled with 

immunogold particles reflecting the expression of  LRRC8A. F) Immunoblot of total and plasma membrane 

fraction (PM) of homogenised brain regions.  The custom antibody vs LRRC8A recognizes an immunoreactive 

band around 95 kDA. In PM samples a strong and clear band is detected at 95 kDa. (Hipp: Hippocampus; PCx: 

Parietal Cortex; FCx: Frontal Cortex; Mb: Middle Brain; St: Substantia Nigra; Cb: Cerebellum). 
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PART IV 

DISCUSSION AND CONCLUSIONS 
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The main findings and contribution to theory of my PhD project are the following: 

1-the functional antagonism between TRPV4 and VRAC in a heterologous system, previously 

reported in HEK-293 cells (98), can be overcome by co-expression of AQP4 and TRPV4.  

2-The evidence that a D184E mutation of the  M1 isoform of AQP4 gene impair the molecular 

interaction between TRPV4 and AQP4.  

3-The definition of the expression pattern of LRRC8A subunits, underpinning VRAC 

conductance (REF), in COS-7 heterologous system, in astrocytes and in the mouse brain. 

AQP4, TRPV4 and VRAC play a major role in cell volume regulation, particularly in the brain 

(18, 65). The majority of cell volume regulation occurs at the expense of astrocytes, thereby 

preserving the nerve cell volume. Regulatory volume decrease (RVD) and regulatory volume 

increase (RVI) are general homeostatic negative feedback mechanisms used by organisms 

to respond to anisotonic conditions. At present it is belived that AQP4 and TRPV4 are 

involved in the osmosensing and transduction mechanisms in astrocytes (17), while VRAC 

seems to be, together with potassium channels, the main effector in RVD (Hoffmann 2009; 

Nilius 1997). Moreover, it has been shown that upon brain injury, astrocytic VRAC activation 

might promote the release of massive amounts of organic molecules such as excitatory 

amino acids, glutamate and aspartate, which in turn may lead to detrimental excitotoxic 

effects (141, 68, 108, 110). 

In this work, we demonstrated that in our COS-7 cell system TRPV4 is responsible for the 

increasing of calcium under hypotonic conditions, since no response was observed in non-

transfected cell. Even though the co-transfection of AQP4 (both M1 and M23 isoforms) did 

not apparently change the calcium dynamics in terms of peak amplitude, we can clearly 

notice that the number of oscillations and the total calcium movement is distinct when 

TRPV4/EGFP and AQP4-M1 or M23 are co-expressed.  

Regarding the dramatic down-regulation of VRAC currents when TRPV4 was transfected in 

COS-7 cells, this intriguing result has been previously observed in HEK-293 cells by Nilius 

group in 2001 (98). On this regard it is relevant that our data showed that the concomitant 

expression of AQP4 and TRPV4 restored the hypotonicity-induced VRAC current. 
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Interestingly, we may suppose that a protein-protein interaction is occurring at this site, 

where TRPV4 and VRAC may compete for the same protein, which could be indeed AQP4, 

otherwise TRPV4 and VRAC may physically interact, directly or via macromolecular protein 

complex.  It is plausible to suppose that the complex formation improve the osmosensitivity 

of TRPV4 due to a faster swelling rate mediated by AQP4 expression. Based on the data 

reported by Benfenati and colleagues (16, 17), it can be supposed that the co-existence of 

the 3 proteins is necessary to obtain and efficient cell volume regulation in all the three 

components, swelling, osmosensation-transduction and effector. However, at present the 

hypothesis need to be further validated with future experiments on KO mice and by using 

mutated Isoforms of LRRC8A in heterologous expression. Concerning signaling underpinning 

possible functional interaction between VRAC and TRPV4, evidently TRPV4 and VRAC have 

different cascade signaling.  It has been shown that ATP signaling cascade regulate both 

proteins, even though data are still elusive and contradictory. VRAC activation and 

modulation is linked to ATP: it has been proposed the VRAC might be permeant to ATP in 

vitro and brain slice (142) although the predicted pore seems to be not large enough to let 

ATP passage through this channel. Moreover VRAC is inhibited by ATP via open-channel 

block under physiological voltage conditions (146) and VRAC activity is regulated by ATP 

(126).  A possible explanation of these discrepancy is due to the different systems used for 

the study that vary from primary astrocytes cell culture, secondary cell line (REF) and brain 

slice (REF). It has been suggested that intracellular calcium signaling is linked to VRAC 

regulation and trigger phosphorilation events involving PKC and Ca++/calmodulin dependent 

kinases (2, 87).   

It is well known that TRPV4 activation, upon hypotonic stimulus, increases intracellular 

calcium, which is required to trigger a calcium-dependent VRAC current fraction. Whether 

this calcium waves are essential in RVD is still under debate. We have demonstrated in 

cortical rat astrocytes that TRPV4 is essential for RVD, even though other groups found the 

activation of TRPV4 is essential for osmosensation but not for RVD (93, 86). We have to point 

the fact that in different cellular system, the role of hypotonic-activated calcium signals may 

have different roles. Nevertheless, astrocytes in vivo are a very heterogeneous population, 
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which may differently responds to hypotonicity. On this regards, our group shows indeed 

that not all the astrocytes in the rat brain express TRPV4 (16, 17), and not all the astrocytes 

responds to hypotonic challenge with the same calcium dynamics (25).  Recently, a 

functional interaction between TRPV4 and AQP4 has been demonstrated in Muller glia (66), 

underlining the importance of the interaction of these two players in RVD. 

Our group provided in vitro evidence that functional interaction between AQP4 and VRAC 

may occur in cortical rat astrocytes, as genetic knockout of aquaporin 4, reduced VRAC 

currents (19). This interaction might be ATP-dependent, since the supplement of ATP in the 

internal solution in the patch-clamp experiment, restored the hypotonic-induced VRAC 

current (19). Concerning TRPV4, it was reported that TRPV4 evokes ATP release in several 

systems (162), underlining a link between TRPV4 and purinergic receptor activation during 

RVD. It would be interesting in the near future to investigate the ATP-dependency in the 

mechanisms that synergically regulate AQP4, TRPV4 and VRAC activity.  

Taking advantage from the fact that LRRC8A has been reported as an essential sub-unit for 

VRAC, it will be interesting to study molecular interactions between VRAC and other protein 

channels, including aquaporins and TRPV4. Noteworthy, the three proteins may be part of 

the same plasma membrane microdomain or lipid rafts, and they all seems able to interact 

with the cellular cytoskeleton, through the mediation of specific molecules and binding 

domains. For aquaporin-4, the mechanism by which AQP4 anchors to the cytoskeleton is 

well understood and involves an interaction with alpha-syntrophin, a member of the 

dystrophin complex (4) via PDZ binding domain sequence (92). TRPV4 directly interact with 

the cytoskeleton at different levels, the first like was discovered observing that microtubule-

associated protein 7 (MAP7) interacts with actin microfilaments and enhances TRPV4 

presence in the plasma membrane and activity (137). The binding of MAP7 was proposed to 

be at the channel c-tail. Moreover, TRPV4 interact with F-actin and this interaction is 

essential to support channel activation following cell swelling (15). TRPV4 displays a PDZ 

binding site, linked to ZO-1, similarly to Kir 4.1 and AQP4. The last 4 amino acids of TRPV4 in 

position 868-871 contain indeed a C-terminal PDZ domain (44). 
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VRAC also interact with the actin skeleton, as a reorganization of the F-actin has been 

demonstrated (144). Moreover, it is well documented that leucine-rich repetitive domains 

mediate diverse protein-protein interactions (71; 1). It is thus conceivable that LRRC8 

protein may act as scaffold function to bring signaling inside the cell, maybe also 

independently from VRAC activity (164). 

 

Interestingly, Benfenati and colleagues have shown a physical interaction between the two 

proteins in 2011 and interestingly this mutation seems to affect this interaction. This AQP4 

mutation was found in a deaf patient. AQP4 in inner ear is present exclusively in non 

neuronal cells. AQP4-KO -/- mouse has a hearing deficit or a complete hearing loss, 

depending on the genetic background (79). It has been speculated that this deficit is due to 

a loss of osmotic equilibration in epithelial cells in the organ of Corti.  Here we additionally 

demonstrated that a D184E mutation in the aquaporin-4 gene lead to an impaired molecular 

interaction between AQP4 and TRPV4. 

The D184E mutation cause a reduced water permeability of AQP4, which seemed to be 

ascribed to a modified D-loop conformity in the protein, giving the propensity to equilibrate 

in a more “closed conformation” (95). It has to be highlighted that Nicchia’s group showed 

in terms of supra-structure organization, that this mutation seems to increase the tendency 

of AQP4 to form dimmers, even though major alterations in orthogonal array of particles 

have not been identified. We cannot although rule out the possibility the mutation might 

affect the OAPs dynamics and the interaction properties with other proteins. It is well known 

that the M23 isoform of AQP4 is responsible for the OAPs formation, since M1 alone is not 

capable to form higher complex structures. Indeed M23 isoform can include AQP4-M1 by 

heterotetramer formation. Live cell imaging indicate that the mechanism of OAP assembly 

by M23 involve tetramer-tetramer interactions between the N-terminal amino acid residues 

(30). Moreover, Verkman’s group in 2012 showed that the OAP formation by AQP4-M23 

involves hydrophobic intermolecular interaction of N-terminal AQP4 residues downstream 

of Met-23, indicating the inability of AQP4-M1 to form the same interactions (149).  
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In this context, our data indicate that the D184E mutation lead to an impaired TRPV4-AQP4 

interaction just in the M1 isoform, indicating a possible involvement of the first 22 amino 

acid residues in the molecular interaction between TRPV4 and AQP4. We cannot rule out 

the possibility that the dimerization effect seen by Nicchia’s group might “compete” with 

the TRPV4 interaction. Similarly to the paper from Nicchia’s group, we showed no significant 

difference in the membrane expression of mutated AQP4-M1 in the plasma membrane, 

whereas a 50% decrease in the TRPV4 expression may indicate that protein expression of 

TRPV4 is somehow link to AQP4, and could be another explanation for the decreased TRPV4-

AQP4 interaction. Eventually, it will also be interesting to investigate whether the mutation 

can affect phosphorilation of AQP4, since the D184E mutation is located between two 

phosphorilation sites, Ser-180 and Ser-188, which regulates AQP4 activity (168, 70). 

However, there are several controversial opinion whether AQP4 phosphorilations occurs in 

vivo.  

 

Beside the importance of the results described above, we believe that the main results of 

the present PhD work is the demonstration, for the first time of the molecular expression of 

LRRC8A in astrocytes, with different techniques. By using two custom designed antibodies 

against LRRC8A, we provide evidence that LRRC8A is expressed in primary rat cortical 

astrocytes, by immunofluorescence and western blot analyses. Notably, we also 

demonstrated in situ expression of LRRC8A in the mouse brain by immunofluorescence and 

confocal microscopy, immunoblotting and immunogold and electron microscopy. 

Interestingly, our results suggested that LRRC8A is expressed at higher levels in astrocytes, 

particularly at perivascular astrocytes and in the astrocytic membranes facing pial surfaces. 

This expression pattern resemble the TRPV4 location in the rat brain (16), indicating that the 

two protein might cooperate in astrocytes to maintain volume homeostasis in the CNS. 

Nevertheless, specific staining is present in non-GFAP cells in the brain, and in other cell 

types in other tissue we tested (data not shown) confirming the ubiquitarious presence of 

VRAC in other cellular types.  Negative control experiments for the custom antibodies has 

also been including, such as incubation with peptide control and omission of detergents in 
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the Immunofluorescence preparation, since the epitope is intracellular (data not shown). 

The latter control provide an evidence that the signal on the plasma membrane is specific 

since non-permeabilization of brain tissue or cultured cortical astrocytes display negligible 

signal (data not shown). 

It has to be underlined that the involvement of astroglial channels in osmoregulation may 

be different in physiological and pathological states. Indeed, alteration in cell volume occurs 

in response to neuronal activity, which cause ionic imbalance and osmotically driven fluxes 

through the plasma membrane (8, 13, 54, 18). Thus AQP4, TRPV4 and VRAC may act and 

interact differently depending on the physiological or pathological condition. In the light of 

this is important to further investigate the functional interactions in the same conditions 

and pay attention to kinetics processes. An example is the study conducted by Nicchia and 

co-workers where they show the role of AQP4 in facilitating the kinetics flux of water inside 

the cell, thus triggering RVD (86). Moreover, it is reported that swelling-induced activation 

of VRAC occurs at the moment where cell volume exceed a note threshold, which, in isolated 

cells correspond to a 30%-50% volume increase (105). 

In conclusion, the results of my PhD studies provide new insights into key molecular and 

functional player involved central nervous system homeostatic volume regulation. In 

particular they suggested and reinforce the tenet that a macromolecular complex or a 

straight functional interaction between TRPV4, AQP4 and VRAC might be essential for the 

cell volume regulation. The study of ion channels and aquaporins will lead to a better 

understanding of CNS physiology and possibly to the identification of molecular target for 

the treatment of pathological states, such as brain edema or epilepsy, for which actual 

therapies are mostly ineffective.  
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