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General introduction 

Livestock breeding programs: modern genetic selection and its 

challenges 
 

Since thousands of years ago, man has always tried to model the environment to obtain 

better food supply and living conditions. The first livestock breeding started thousands of 

years ago with the domestication of most animal species used today. For most of the human 

history, the selection of the best breeders was exclusively based on phenotypic evaluations 

with little awareness of the underlying causes of different productivities and appearances 

(Jonas and de Koning, 2015). In the last century, the increasing information on the genetic 

background of productive traits in livestock species has changed substantially breeding 

selection. The birth of quantitative genetics and the combination of theoretical approaches 

and experimental achievements led to the inclusion of multifactorial models in breeding 

schemes (reviewed in Hill, 2014; Jonas and de Koning, 2015). In livestock species, selection 

based on the recording of pedigree and performance information has been effective for the 

improvement of many traits, in particular for animals with short generation intervals and for 

productive traits with high heritability. However, the selection process for some traits has 

been slowly accelerating: this delay is due to the complexity of some production traits 

(sometimes hardly recordable or expressed in a sex-dependent manner), the long 

generation intervals characterising some livestock species and the existence of negative 

correlations between traits. Furthermore, it is worth remembering that quite all the 

production traits are quantitative, that is to say that have a measurable phenotype that 

depends on the cumulative actions of many genes and the environment. The polygenic 

nature of almost all the production traits participate in slowing down and hardening the 

improvement of these quantitative traits through breeding schemes. Over the last ten years, 

the development of new technologies and the progress of genetics and genomics have 

opened new horizons in breeding programs and have offered new solutions to these 

problems. In particular, genetic information is highly useful and informative when selection 

is addressed towards the improvement of productive traits that are linked to each other 

through negative correlations, which show low heritability, or whose expression depends 

from sex and is hardly measurable. 
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The first breeding approach combining genetic information and traditional selection 

schemes has been marker assisted selection (MAS). MAS aimed at finding molecular markers 

highly associated to productive traits: the assumption on which this approach was based is 

that rather than selecting animals exclusively on the phenotypic expression of the 

considered trait, it could be more efficient to select animals bearing favourable genetic 

variants for the genes and regions associated to quantitative traits (regions defined 

quantitative trait loci, QTL). Anyway, there has been a limited number of traits for which 

MAS used direct markers coding for the functional mutation. Indeed, direct markers (causal 

mutations) are extremely difficult to detect as it is particularly complex to prove causality 

between single markers and quantitative traits (Andersson, 2001). For this reason, MAS has 

been mainly performed using molecular markers (such as single nucleotide polymorphisms- 

SNPs- and microsatellites) in linkage disequilibrium with the unknown causal mutation. The 

identification of molecular markers and genetic regions associated to quantitative traits 

could be possible through the application of two main strategies: the genome scan approach 

(Andersson, 2001) and the candidate gene approach (Rothschild and Soller, 1997). The first 

strategy aims at finding the associations between a trait and anonymous DNA markers 

across the genome, in order to identify chromosomal locations involved in the expression of 

the trait. The genome scan has represented a powerful tool for the identification of QTL with 

a major effect, but provides reliable results only on condition that the markers considered 

are widely distributed across the genome, the postulated genetic model is accurate and the 

size of the used sample is reasonable. Furthermore, this approach has a low sensitivity for 

the identification of loci with small effects, and the obtained regions, spanning on average 

from 5 to 30 cM, need to be further investigated through subsequent fine mapping. On the 

other side, the candidate gene approach is addressed directly to investigate associations 

between a trait of interest and variations within known genes, which have been selected for 

the functional role of the coded proteins and/or for the location of the gene sequence inside 

an already identified QTL. Anyway, despite MAS was welcomed in a greatly optimistic way, it 

has not reached the initial proposed achievements due to the fact that the identification of 

reliable markers is difficult, especially when working with complex polygenic traits (Jonas 

and de Koning, 2015). 
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More recently, the advancements of molecular genetics facilitated large scale genotyping, 

allowing for each individual the study of hundreds of thousands SNPs at the same time 

through the use of SNP arrays. This technological progress has led to the birth of a new 

approach named genomic selection (GS), combining large scale population genotyping and 

selection schemes (Meuwissen et al., 2001). GS is based on the use of SNP arrays (high-

density SNP panels), which are genome-wide marker panels; the large scale population 

genotyping obtained by SNP arrays is then used to derive animals breeding values based on 

their genomic information. With this approach, the traditional estimated breeding values 

(EBVs) of a candidate breeder become Genomic EBVs (GEBVs). Traditional EBVs are 

estimated using pedigree information and measures obtained from evaluation schemes 

considering the breeder performances and the sib and/or the progeny productions. 

Generally all this information is processed using statistical models based on best linear 

unbiased predictions (BLUP; Henderson, 1975). In GS the GEBVs are the predictions of the 

genetic merit of an individual based on its genome. Anyway, to be accurate, GEBVs need to 

be validated on a large training population (or reference population). To date, GS can be 

implemented in practice for all main livestock species since genome-wide SNP panels, and 

sometimes also full sequence information, are available. Genomic selection has already been 

introduced into dairy cattle breeding programs leading to a consistent lowering in 

generation intervals, passing from 5-6 years in traditional selection schemes to 1.5 years in 

GS programs (Pryce and Daetwyler, 2012). The integration of genomic tools in dairy cattle 

had a substantial success, but the same can not be observed for other livestock species. The 

reasons of this difference between dairy cows and other livestock animals (such as beef 

cattle, pig and chicken) has to be found in the particular attributes characterising dairy cattle 

breeding programs. The generation interval is quite long and the offspring born from each 

insemination is generally constituted of one or two individuals, unlike in pigs and chickens 

where the generation interval is shorter and the offspring numerous. Additionally, beef 

cattle populations compared to dairy cattle are less uniform, as each country has different 

beef cattle breeds and asks for peculiar meat characteristics; this situation makes it difficult 

to obtain unique results from the genotypic data and perform cross-comparisons with large 

training populations in beef cattle (Garrick, 2011). The scenery of pig selection schemes is 

completely different from what can be observed in dairy cattle. First of all, the generation 

interval in pig species is noticeably shorter than that of dairy cattle, which makes less cost-
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effective the application of GS to pig selection. Furthermore, most pig breeding schemes use 

crossbreeding between paternal production-oriented breeds and maternal reproduction-

oriented breeds (Visscher et al., 2000). Because of this specific breeding program, it is 

particularly complex to set up GS in pig: any production traits are measured in crossbred 

pigs, while selection is based on the purebred lines they derived from, hindering the 

possibility of distinguishing environmental and genetic effects on the phenotypes. In the 

particular situation of pig breeding programs, the existence of different environmental 

effects between the purebred breeders (nucleus) and the crosbred pigs makes it difficult to 

obtain accurate genomic selection breeding values (GEBVs) using nucleus records (Nirea and 

Meuwissen, 2017). For all these reasons, GS has not yet been used in pig as a selection tool 

with the same reliability as in dairy cattle (Jonas and de Koning, 2015). Lillehammer et al. 

(2011) proposed GS as a potential tool to select efficiently maternal traits, which in 

traditional breeding programs are quite arduous to improve due to their low heritability. 

Dekkers (2007) suggested that a feasible way to overcome the problems of low genetic 

correlations between purebred and commercial crossbred performances could be the 

application of MAS to pig selection schemes. However, MAS to be effective need to rely on 

consistent knowledge of the genetic variations associated to the considered traits. In a 

recent paper, Lopes et al. (2017) propose for pig selection schemes to reconsider MAS in a 

new approach that combines also high-density SNP panels. In particular, the use of SNP 

arrays and association studies performed on the results of large scale population genotyping 

(genome wide association studies- GWAS) has increased the power and precision of the 

detection of markers linked to QTL. This strategy may represent a viable alternative to GS for 

the livestock breeding programs where the latter is still not economically sustainable. The 

suggested approach consists in performing a GWAS for the trait of interest on different 

populations genotyped through high-density SNP chips; then, the most associated markers 

derived from the GWAS are used for the MAS on the entire population and are accounted as 

fixed effects in BLUP prediction models (such as marker-assisted BLUP and marker-assisted 

genomic BLUP). This approach was tested in four distinct pig populations for the maternal 

trait "number of teats”: the most significant SNP resulting from all the four population was 

used for MAS, and the obtained prediction accuracy was compared to the accuracies 

obtained for the same trait using other prediction strategies (for example the traditional 

BLUP, the genomic BLUP and the Bayesian variable selection model). The application of MAS 
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using as markers the SNPs accounting for the strongest associations led to better prediction 

accuracies respect to BLUP and genomic BLUP (Lopes et al., 2017). This approach seems to 

be particularly effective respect to GS when it is not possible to have large training 

populations, such as for maternal traits in pig breeding programs. Nirea and Meuwissen 

(2017) proposed that a possible solution to the thorny issue of small reference populations 

could be represented by the use of a mixed training population constituted of both nucleus 

and crossbred animals. This strategy could be an answer for the application of GS to traits 

particularly affected by environmental effects, such as feed efficiency ratio (Nirea and 

Meuwissen, 2017).  

During the last four years, one world-wide running pig breeding company has announced to 

use GS in crossbred, while another pig breeding corporation reported to integrate pedigree 

information with genomic information obtained from large scale population genotyping; 

however, no details about the prediction methods and accuracies have been disseminated. 

Selection in chickens is characterised by features that make it quite similar to the pig 

selection scenario: such as in pigs, chickens are selected through pyramidal breeding 

programs, cross-breeding schemes are often used, the generation interval is short and the 

offspring is numerous (Jonas and de Koning, 2015). The studies performed until now are not 

able to provide a clear answer about whether or not genomic selection could bring 

advantages in chicken selection breeding programs. The theoretical studies about GS 

application in chicken breeding programs returned contradictory results, highlighting also 

the possibility of unwanted side-effects (Sitzenstock et al., 2013). 

 

A particular case: pig breeding and selection in Italy 

 

In this international scenario, a particular case is represented by Italian pig selection. Italian 

pig selection goals differ significantly from those demanded from the international market: 

in addition to the feed efficiency, Italian market demands meats suitable for the production 

of high quality meat products, such as dry-cured hams with protected origin designation 

(Parma and San Daniele hams). To obtain meat with these characteristics pig are slaughtered 
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at higher live weights (at least 160 kg for Italian heavy pigs or 130 kg for pigs slaughtered at 

an intermediate live weight) and older ages (eight or nine months of age). The breeding 

program is carried out by the Italian pig breeder association (Associazione Nazionale 

Allevatori Suini, ANAS) and is based on the selection of pigs belonging to three main breeds: 

Italian Large White, Italian Landrace and Italian Duroc. Italian selection schemes pursue the 

same efficiency objectives of other countries (for example reproductive efficiency, growth 

rate, feed efficiency and carcass characteristics), but additionally have a distinctive attention 

towards meat quality traits (Bosi and Russo, 2004). For such high quality production, meat 

must have an excellent aptitude for salting and seasoning and a right balance of fat and lean 

mass deposition is required in pig carcasses and thighs. Thighs must have a sufficient amount 

of covering fat, which prevents hams from loosing an excessive amount of water during the 

seasoning period. On the other side, hams should not have a too high backfat thickness and 

an excessive content of visible intramuscular fat, which are not well perceived by the 

consumers. Therefore, one of the main objectives for Italian heavy pig selection is 

represented by the maintenance of a constant backfat thickness while keeping a satisfactory 

amount of deposited lean mass. For the production of high quality seasoned products it is 

also mandatory that covering fat does not contain a percentage of linoleic acid beyond the 

established threshold of the 15% (Bosi and Russo, 2004). Higher contents of linoleic and 

polyunsaturated fatty acids cause the occurrence of rancidity and unwanted flavours in 

seasoned products, making them unsuitable for human consumption. Unlike in other 

countries, the Italian heavy pig selection aims at preserving a balance between fat and 

leanness without chasing the increase of muscle deposition: indeed, high contents of lean 

mass negatively affect meat colour, flavour and dry-cured ham firmness, causing also higher 

seasoning loss. The selection index utilized for the Italian breeding programs includes the 

estimated breeding values (EBVs) for: Average Daily Gain (ADG) calculated from 30 to 155 kg 

of live weight with a quasi ad libitum feeding level (expressed in grams); Backfat Thickness 

(BFT) recorded post mortem at the level of gluteus medius muscle (expressed in mm); Lean 

Cuts (LC) obtained from the sum of neck and loin weights (expressed in kg); Feed Conversion 

Ratio (FCR) obtained from feed intake recorded daily and body weight measured bimonthly 

(expressed in units); and Hams Weight (HW), which is the measure of thighs (expressed in 

kg). For Italian Duroc pigs a further EBV is considered in the breeding programs: Visible 

Intermuscular Fat (VIF), a selection criterion set up and utilised exclusively in this pig breed 
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in order to avoid an excessive presence of inter- and intramuscular fat in Italian Duroc 

thighs. VIF indicates the genetic value of Italian Duroc boars for the probability of 

transmitting excessive intramuscular fat depots to the offspring (Bosi and Russo, 2004). The 

EBVs are calculated using a BLUP Animal Model (Henderson and Quaas, 1976) with different 

fixed effects depending on the considered trait (Russo et al., 2000). 

Italian pig selection shows peculiar features, characterising Italian market from the ones of 

other countries. The differentiated breeding goals would make it particularly tricky to apply 

GS in this scenario: Italian heavy pig has been selected since many years for the 

improvement of different objectives respect to those of other European and international 

markets, creating a population with different genetics, different abilities towards fat and 

lean mass storage, and a longer production cycles than the other European pig populations 

(nine months of age for Italian heavy pig vs. on average six months of age for “lean” pigs 

used for the production of fresh pork products). Samorè et al. (2015) tested the impact of GS 

in a simulated Italian pig population. The whole experiment was designed to evaluate the 

possible application of GS in Italian pig selection schemes: to this aim, the authors 

considered the candidate boars as prediction population, for which was assumed the 

genotype, and as training population their full-sibs, for which were assumed both genotypic 

and phenotypic data. The application of GS showed positive results only when applied to 

traits with low heritability (such as reproduction or health traits), while none of the 

considered genomic models provided improved predictions for traits with average 

heritability levels and for pigs without recorded phenotypes. 

Genetics, genomics and new approaches to study complex traits in 

livestock species 

 

In the last 20 years, livestock science has seen an astonishing development in genomic 

technologies, passing from the QTL mapping in the early 1990s, to the release of the whole 

genome sequences of major livestock species (Bovine Genome Sequencing and Analysis 

Consortium et al., 2009; International Sheep Genomics et al., 2010; Groenen et al., 2012), 

until the availability of high-density SNP panels ranging from 10,000 to 50,000, 100,000 and 

up to five million SNPs today. Genomics have been successfully implemented in dairy cattle 
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modern selection schemes, but less consistently in breeding programs of other livestock 

species. However, these technological advancements offer the possibility for investigating 

more in deep also in these animal species the genetic and physiological causes affecting 

economically important traits in breeding populations. Technical progress in the field of 

large scale genotyping, next-generation sequencing, mass spectrometry and bioinformatics 

facilitates the study of highly complex traits, offering new approaches for the identification 

of complex biological patterns. The integration of OMICs technologies (genomics, 

transcriptomics, proteomics, lipidomics and metabolomics) in livestock science was 

welcomed in an optimistic way, with the hope that these new tools could shed light of the 

determinism of quantitative traits. High-density SNP panels are today widely used to 

perform Genome Wide Association Studies (GWAS) with productive traits in all the livestock 

species (reviewed in Sharma et al., 2015): this studies permit the identification of single 

markers, or contiguous regions of markers, associated with the trait of interest. In a second 

step, the regions highlighted by means of GWAS need to be investigated more in deep 

through the detection of candidate genes harbouring the causal mutations involved in the 

phenotypic variability. Similarly, the results obtained from transcriptomics, proteomics, 

lipidomics and metabolomics can help identifying transcripts and metabolites involved in 

complex traits, but require also validation studies targeting the identified candidate genes 

and physiological processes. Therefore, OMICs technologies and targeted studies on 

particular candidate genes or metabolic processes represent two complementary tools, 

which are able to offer a more complete knowledge of the genetic and physiological players 

behind livestock animals’ phenotype. Furthermore, the technological progress led to the 

development of new phenotypes: OMICs sciences provide information that outlines the 

biological responses of an organism to genetic mutations, diseases and environmental 

effects. Therefore, transcriptome, proteome or metabolome can also be considered as 

phenotypes. New tecnologies are also used to supply less expensive methods for the analysis 

of already known phenotypes: there is, for example, an increasing use of advanced imaging 

technologies for measuring carcass and meat characteristics (Santos-Garcés et al., 2014; 

Matika et al., 2016). Taken together, the technological advances and the use of a 

multidisciplinary approach can help identifying the main factors affecting complex traits, 

such as carcass and meat qualities, fat deposition and composition (which are central in 
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particular for pork high quality seasoned products), health and maternal traits (which are 

known to have low heritability).  

In the present research, different approaches are used to study complex traits in livestock 

species: the studies were mainly oriented towards the investigation of gene networks 

related to fat traits in pigs; additionally two preliminary researches were also assessed to 

detect factors related to piglets’ survival performances and the occurrence of dystrophic-like 

defects in chicken breast muscle.  
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Fat deposition and composition for the improvement of pork quality 

The different fat depots in carcass 

Due to the growing obesity epidemic over the last twenty years, there has been increasing 

interest in human medicine towards the investigation of the different functions of fat 

depots. In particular, the adipocytes showed to be cells with much more complex roles than 

being the simple lipid storage keepers that were considered until the discovery of fat-

secreted hormone leptin (Zhang et al., 1994; Friedman, 2010). From the beginning in 1994, 

the knowledge on adipocyte roles has increased and evidences about the involvement of 

these cells in the regulation of major metabolic, physiological, and genetic changes have 

been added. Even if they are generally referred as “fat”, the different adipose tissues exhibit 

divergent characteristics depending on their anatomical location. Animals show five main fat 

depots with different anatomical location and physiology: subcutaneous, intermuscular, 

intramuscular, visceral fat and bone adipose depots (Hausman et al., 2014). While in human 

medicine fat depots are mainly studied for their linking with mechanisms leading to obesity, 

insulin sensitivity and metabolic disregulation (Hausman et al., 2014), in animal science the 

quantity and composition of lipids stored in carcass and meat represent essential factors 

influencing the technological and nutritional quality of animal products. In particular, 

subcutaneous and intramuscular fat content and composition contribute importantly to the 

nutritional and technological values of fresh and seasoned pork products, and therefore are 

traits displaying a consistent economical interest. 

 

Intramuscular fat 

 

Intramuscular fat: intramuscular adipocytes and intramyocellular lipid 

droplets  

 

In livestock science, the term “intramuscular fat” (IMF) is generally used to define both the 

intramuscular fat depots and the intramyocellular lipid droplets. Intramuscular fat depots 

are composed of adipocytes infiltrated between and among skeletal muscle fibers (Hausman 
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et al., 2014); this interspersed adipose tissue gives the muscle a marbled appearance, 

causing IMF to be called “marbling” in meat animals (Wood et al., 1999; Hausman et al., 

2014). Adipocytes develop from pluripotent stem cells in both animals and humans, the 

potential to generate new fat cells continues throughout the lifespan. Adipocyte 

differentiation is a highly orchestrated process mediated by a large number of hormones, 

small non-coding RNA molecules (miRNAs), cytoskeletal proteins and transcription factors. 

The best understood regulators of adipogenesis are transcription factors (Mota de Sá et al., 

2017) such as CCAAT/enhancer binding protein (C/EBP), adipocyte determination and 

differentiation-dependent factor 1 (ADD1 or SREBP), C/EBPα undifferentiated protein (CUP 

or AP-2α), peroxisome proliferator-activated receptors (PPARs) and monocyte 

chemoattractant protein-1 (MCP-1) (Hausman et al., 2009). Intramuscular white adipocytes 

are cells with the specific role of storing energy: adipocytes contain a unique large lipid 

vacuole, which forces nucleus and mitochondria to be located into a thin rim at the 

periphery of the cell (Figure 1). In addition to this role, muscle-interspersed adipocytes may 

also have an active function in insulin sensitivity: Goodpaster et al. (2000) found in human a 

positive correlation between insulin resistance and the amount of adipose tissue 

interspersed in skeletal muscle, suggesting that IMF could be involved in a paracrine 

mechanism (Komolka et al., 2014) and play an essential role communicating with muscle 

through adipokines and myokines (Vettor et al., 2009). 

  

Figure 1: Illustration of a white adipocyte morphology (adapted from Sell et al., 2004). 

On the other side, lipid droplets are intracellular organelles present in most cells (including 

myocytes) with the fundamental role of storing lipids useful as energy reserve and as matrix 

for the synthesis of cell membrane constituents (Thiam et al., 2013). Intracellular lipid 



16 
 

droplets core is mainly composed of triacylglycerols and cholesteryl esters, surrounded by a 

phospholipid monolayer with the hydrophobic acyl-chains dissolved in the triacylglycerols 

core and the hydrophilic head groups interfacing with the aqueous cytosol (Wolins et al., 

2006; Thiam et al., 2013). This characteristic composition permits the lipid droplets to 

remain cohere inside the aqueous cytosol (Thiam et al., 2013). In myofibers, these 

intracellular organelles are mainly found adjacent to mitochondria and are known to be 

more present in Oxidative (slow-twitch type I) muscle fibers: the latter are reported to 

contain larger depots of intracellular triacylglycerols than fast-twitch (type IIA and IIB) fibers 

(Malenfant et al., 2001). Furthermore, intracellular lipid droplets surface is embedded with 

specific proteins controlling lipid metabolism and lipid droplets packaging inside cytosol 

(Figure 2). Among these proteins are Perilipins and lipases (such as Hormone sensitive lipase- 

HSL, alias LIPE, or Adipose triglyceride lipase- ATGL), which drive lipid storage and lipolysis 

(Wolins et al., 2006). In Figure 2 is reported the hypothesised general structure of 

intracellular lipid droplets. Anyway, apparently, there is spreading evidence that intracellular 

lipid droplets may be more complex and active organelles than thought so far: some lipid 

droplets were found to bear in their hydrophobic core ribosome-bound membranes (Wan et 

al., 2007), RNA, RNA binding proteins and ribosomal units (Cermelli et al., 2006; Wan et al., 

2007) and eicosanoid-producing enzymes and perilipins (Melo et al., 2011; Robenek et al., 

2009; Singh et al., 2009). 

 

Figure 2: Illustration of the basic structure of lipid droplets (adapted from Ohsaki et al., 2014). 

In animal science, despite intramuscular adipocytes and intramyocellular lipid droplets 

diverge for their anatomical location and physiology, it is not possible to analyse separately 
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their amount and composition: all the chemical analyses performed on meat return a picture 

that is the result of both intramuscular adipocytes and intramyocellular lipid droplets 

(Komolka et al., 2014). In Figure 3 are reported some images showing the differences among 

intramuscular adipocytes (Figure 3 B) and an example of how are located intracellular lipid 

droplets inside a myocyte (Figure 3 C).   

 

Figure 3: Illustration with the different fat depots in a beef cut. (A) Deep subcutaneous adipose 

tissue (dSAT) covering serratus dorsalis muscle, intermuscular adipose tissue (IMAT) between 

intercostalis interni and longissimus dorsi muscle, and intramuscular fat (IMF) within longissimus 

dorsi in cattle. (B) Cellular structure of IMF in M. longissimus dorsi (cattle, Eosin stained). (C) 

Intramyocellular lipids (IMCL, red dots, Oil-red O stained) in a muscle cell (M. longissimus dorsi, 

mouse) (adapted from Komolka et al., 2014). 

However, changes in IMF content are mainly due to variation in the accumulation of 

adipocytes between muscle fibers. Both adipocytes hypertrophy and hyperplasy may be 

involved in IMF variations in pigs (Gerbens, 2004). 

 

Intramuscular fat importance in pig meat quality 

 

In recent years sales of meat in many countries have fallen slightly, where more and more 

consumers are moved by the slogan “less and healthier”. Today, consumers demand for 

higher quality meats and are willing to pay more for healthier products obtained from 
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animals reared in high standard welfare conditions. Anyway, this request for high quality 

meats sometimes seems to be at odds with consumers’ request for leaner products. Even 

though fat is generally considered unhealthy, it influences meat characteristics: fat and fatty 

acids are extremely important as they contribute substantially to various aspects of meat 

quality and are central to the nutritional value of meat (Wood et al., 2008). Meat quality is a 

complex trait determined by different aspects, such as the microbiological food safety, the 

nutritional composition and the organoleptic attributes of the product. Meat eating quality 

is mainly related to tenderness, juiciness and flavour. Interestingly, IMF content seems to be 

positively correlated to all of these three characteristics in meat (Barton-Gade, 1990; Brewer 

et al., 2001). Several studies in different livestock species have shown that high IMF depots 

are correlated with lower resistance to shearing and higher tenderness, maybe because of 

the dilution of muscle fibrous protein by soft fat (Wood et al., 1999) or because the 

disposition of adipocytes around perimysial connective tissue forces the muscle structure 

(Wood, 1990). Fernandez et al (1999) proved that IMF levels higher than 2.5% bear 

favourable effects on sensory attributes of pork products obtained from different European 

pig populations, and Schworer et al. (1995) reported that the selection of high IMF in pigs is 

necessary to improve pork quality. On the whole, the recommended optimum range of IMF 

stands around 2.5-3%, and percentages below this threshold were associated to diminished 

eating quality. Furthermore, IMF content also participates in determining meat flavour 

through the compounds produced by the lipids degradation (such as aldehydes, alcohols and 

ketones), which participate in Maillard-like reactions (Mottram and Salter, 1989). Due to IMF 

proved importance for meat quality, there is an increasing interest towards the 

development of fast and cheap methods for IMF content determination in different muscles. 

In particular, the technological progress has come to selection aid, bringing more accurate 

technologies: Newcom et al. (2002) conducted one of the first studies aimed at using real-

time ultrasound to predict IMF percentage in a Duroc pig population finding values of 

correlation around 0.6 between the analysed and the predicted IMF content. Recently, Jung 

et al. (2015) performed the same study on four pig breeds, identifying a high phenotypic 

correlation (0.76) between measured and predicted IMF content.  
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Candidate genes involved in porcine intramuscular fat deposition 

 

The estimated heritability of IMF content in pigs ranges from 0.26 to 0.86, depending on the 

characteristics of the studied population, with an average of 0.5 (Sellier, 1998; Schwab, 

2007). This indicates that this trait could be manipulated through selection, although the 

conventional selection for IMF resulted poorly effective. The improvement of this trait 

through traditional selection approaches results particularly difficult, due to the unfavorable 

genetic correlations linking IMF with leanness deposition and feed efficiency traits 

(Hermesch et al., 2000) and the limitations in the measurement of this trait (which can be 

measured exclusively after slaughter). Together with the development of cheaper 

technologies for the determination of IMF content, there is increased interest towards the 

deciphering of the molecular mechanisms underlying IMF deposition. The identification of 

genes and markers that contribute to genetic variation in IMF can provide an alternative and 

effective strategy to improve IMF in pigs avoiding side-effects on other carcass traits. To date 

IMF is associated to 244 QTLs all over pig genome (http://www.animalgenome.org/cgi-

bin/QTLdb/ last accessed 23rd of March 2017). There are several genes lying in these QTLs 

that were found to be associated with IMF deposition. Some of them are directly related to 

fat deposition and metabolism, and due to their involvement in obesity and other related 

diseases were also investigated in human medicine. Among them is the Alpha-ketoglutarate 

Dependent Dioxygenase (also known as Fat mass and obesity associated gene- FTO), which 

has been associated to IMF deposition in different pig populations (Fan et al., 2009; 

Fontanesi et al., 2009). Fontanesi et al. (2009) investigated a mutation of FTO gene in two 

groups of Italian Duroc pigs divergent for VIF EBV and found statistically different allele 

frequencies between the two groups of extreme and divergent pigs. This association was 

then confirmed on a wider population of Italian Duroc (Fontanesi et al., 2010), suggesting 

that SNPs on this gene may have consistent effects on IMF deposition. Other genes found 

associated with IMF are the genes codifying for Fatty Acid Binding Proteins (FABP). Among 

them, FABP3 gene expression showed statistically different transcription levels between pigs 

diverging for IMF deposition (Li et al., 2010; Tyra et al., 2013), and nucleotide variations in its 

sequence have been related to this trait (Gerbens et al., 2001; Li et al., 2010; Tyra and 

Ropka-Molik, 2011). With the dawn of OMICs science, the new technological and 
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computational advances have been also applied to the investigation of IMF molecular bases. 

Davoli et al. (2016) performed a GWAS on Italian Large White individuals identifying three 

candidate genes possibly affecting the IMF content of Semimembranosus muscle: Sidekick 

cell Adhesion Molecule 1 (SDK1) gene located to date (Sus scrofa Build 10.2 assembly) on Sus 

scrofa chromosome (SSC) 3, Serine Carboxypeptidase 1 (SCPEP1) mapped on SSC 12 and 

Protein Phosphatase 3 Catalytic Subunit alpha (PPP3CA) lying on SSC 8. In particular, the 

authors suggested that, among these three genes, the most promising one, which deserves 

to be more deeply investigated, is PPP3CA: this gene encodes for a calcium- and calmodulin-

dependent protein phosphatase, also called calcineurin, which is a key enzyme in muscle 

fibers differentiation (da Costa et al., 2007). On the other hand, another GWAS performed 

on a Spanish population of Duroc pigs hypothesized the implication of the gene Leptin 

Receptor (LEPR) in IMF deposition (Ros-Freixedes et al., 2016). LEPR gene is mapped on SSC6 

in the region comprised between 135 and 136 Mb: this region accounted in Ros-Freixedes et 

al. study for 3.1% of the genetic variance associated to IMF in Gluteus medius muscle and 

corresponded to a chromosomal region where are reported several QTLs associated with 

feed intake, carcass fatness, backfat thickness and IMF content. LEPR appears to be an 

interesting candidate gene, especially because the coded receptor interacts with Leptin, an 

adipocytokine that regulates energy intake and expenditure. Anyway, the signal detected by 

the authors seems to indicate that the whole region where LEPR gene lies could have a 

relevant role in IMF deposition: LEPR overlaps another gene, the Leptin Receptor 

Overlapping Transcript (LEPROT) and is mapped near Janus Kinase 1 (JAK1) gene. These two 

other genes may be both involved in the phenotypic variations affecting IMF: on one hand, 

LEPROT encodes a protein that negatively regulates the presence of leptin receptors in the 

cell surface, while JAK1 is involved in the adipocytokine signaling pathway, promoting the 

leptin-induced transactivation of the satiety neuropeptide NPY gene (Muraoka et al., 2003). 

On the whole, the results obtained to date are often not concordant among the published 

studies. This divergence among the investigations reported in literature may be due to the 

polygenic nature of this trait, whose expression is probably affected by complex gene 

networks. To complicate matters further, the comparison of literature is also made harder 

by the fact that for the deciphering of the genetic basis of this trait were used breeds or 

crossbred pigs with different genetic backgrounds and divergent predispositions for the 
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deposition of IMF (i.e. Chinese pig breeds are more prone towards IMF deposition than 

European breeds). All these factors, together with the different environmental effects 

affecting pig populations studied in literature, contribute to the wide range of results in the 

current literature. Furthermore, livestock science literature lacks investigations on other 

possible candidate genes affecting IMF trait in pigs. In particular, among these genes are 

Perilipins (PLINs). PLIN genes code for proteins coating intracellular lipid droplets surface 

that are known to control stored lipid hydrolysis through the interaction with lipases. PLIN 

genes family in mammals is composed of five actors, from PLIN1 to PLIN5, sharing high 

sequence homology and a highly conserved N-terminal sequence (Figure 4) (Kimmel and 

Sztalryd, 2016). 

 

Figure 4: The conserved architecture of Plin genes family in mouse. The PAT domain (in red) is 

maintained among all the Plin genes and proteins, followed by 11-mer helical motif of varying lengths 

(blue). These two motifs are part of the N-terminal, an aminoacidic sequence highly conserved 

among Plins. The C-terminal (green) is the most divergent aminoacidic sequence among Plins 

proteins. The murine phosphorylation sites are indicated with a “P”. In mouse, four splicing variants 

for Plin1 have been described (adapted from Kimmel and Sztalryd, 2016). 

Each PLIN gene has a peculiar expression tissue: PLIN1 is mainly found in adipose tissue, 

PLIN2 and PLIN3 seem to be widely distributed, PLIN4 is characteristic of adipocytes, brain, 
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heart, and skeletal muscle, while PLIN5 is predominantly expressed in oxidative tissues, such 

as heart, oxidative muscle fibers and brown adipose tissue (Wolins et al., 2006; Yamaguchi et 

al., 2006; Dalen et al., 2007). The expression of all PLIN genes is controlled by Peroxisome 

Proliferator Activated Receptor (PPAR) family (Mandard et al., 2004; Poulsen et al., 2012), 

except for PLIN3, which is the only Perilipin lacking functional PPAR response elements in its 

promoter sequence. The regulation of PLINs transcription probably is also controlled by 

other transcription factors, apart from the PPARs: PLIN1 expression in human white adipose 

tissue is suppressed by the Liver X Receptor α (LXR-α) (Stenson et al., 2011) and Sterol 

Regulatory Element-binding protein 2 (SREBP2) was found inhibiting Plin5 in mouse liver 

(Langhi et al., 2014). Taken together, their expression patterns differentiated among tissues 

and their different regulation suggest that PLINs have different functional roles. PLIN1 is the 

most investigated component of this gene and protein family: compared to wild type 

individuals, Plin1 knockout mice fed diets enriched in fat content have higher lipolysis in 

adipocytes, leading to increases in circulating lipids and fatty acids with a consequent 

insurgence of steatosis in other organs, inflammatory responses, and insulin resistance 

(reviewed in Kimmel and Sztalryd, 2016). Similar responses were also observed in Plin2 

knockout mice and in Plin5 knockout mice, but in the latter no systematic effect on insulin 

sensitivity was observed (reviewed in Kimmel and Sztalryd, 2016). Thus, PLINs promote and 

regulate lipids storage and hydrolysis, but differences have been observed depending on the 

tissue considered, the training effort (whether the individuals were at rest or subjected to 

muscular training) and the fat content level in the diet. For this reason, it is not possible to 

highlight a unique mode of action for this family, whose members seem to act differently 

depending on where they are expressed and what is the physiological state and the diet of 

the animal. On the whole, PLINs seem to control lipases activity on the surface of 

intracellular lipid droplets: Plin5 is reported to be a scaffolding protein for key lipolytic 

players, such as Adipose Triglyceride Lipase (ATGL) (Wang et al., 2011; Granneman et al., 

2011), Hormone Sensitive Lipase (HSL, also known as LIPE) (Wang et al., 2009), and 

Comparative Gene Identification-58 (CGI-58) (Granneman et al., 2009; Wang et al., 2011). 

ATGL, HSL and CGI-58 are the main actors involved in the hydrolysis of the lipid droplets 

(Figure 5). The increasing number of studies identifying regulative pathways linking PLINs 

with these proteins suggests for PLINs a pivotal role in the control of intracellular energy 

fluxes.   
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Figure 5: ATGL catalyses the first step of lipolysis and is recruited onto lipid droplets surface by the 

co-factor CGI-58. ATGL hydrolyses triacylglycerol (TG) into free fatty acids (FA) and 1,3- diacylglycerol 

(DG). HSL, also bound to lipid droplets, hydrolyses diacylglycerol (DG) into free fatty acids (FA) and 

monoacylglycerol (MG). The latter is in turn hydrolysed to free fatty acids (FA) and glycerol by 

Monoglyceride Lipase (MGL or MGLL), which is soluble in the cytosol (adapted from Thiam et al., 

2013). 

Interestingly, the genes encoding for the above-mentioned lipases have also been identified 

as candidate genes involved in pig IMF deposition and composition: ATGL gene was found 

less expressed in pigs with high IMF deposition (Zhao et al., 2009; Zhang et al., 2015), 

similarly to HSL, which has been observed to have a significantly increased expression in lean 

pig breeds (Zhang et al., 2015); furthermore, SNPs in Monoglyceride Lipase (MGLL) and its 

gene expression levels were associated to IMF composition in Spanish crossbred pigs (Puig-

Oliveras et al., 2016). These evidences reported in literature suggest that together with 

these lipases, also PLIN genes (which are known to control the activity of the above-

mentioned lipases) can be considered interesting candidate genes for porcine IMF 

deposition. Anyway, very little information is known about PLINs in livestock species, and 

most of the knowledge about these genes and proteins derive from studies in mouse, 

human and cultured cells. Gandolfi et al. (2011) and Davoli et al., (2011) performed the first 

studies on PLIN1 and PLIN2 genes and proteins in pig: Gandolfi et al. identified for the first 

time that in pig muscle PLIN1 and PLIN2 proteins are localized in correspondence with 

intramuscular adipocytes and intramyocellular lipids, respectively, and Davoli et al. found a 

novel SNP in PLIN2 gene (GU461317:g.98G>A). Samples belonging to five different pig 

breeds were genotyped for PLIN2 SNP, but intermediate allele frequencies were found 
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exclusively in the Italian Duroc breed, where the SNP was significantly associated with ADG, 

FCR, LC and HW EBVs. 

A completely different landscape was proposed by Ren et al. (2017) in a recently published 

research. As IMF is generally recognized as a desirable attribute in pork meat and the 

selection for the improvement of this trait is particularly difficult, the authors proposed the 

use of transgenic pigs as a valuable resource for pork industry. The used pigs were 

genetically engineered individuals, exhibiting ectopic expression of Phosphoenolpyruvate 

Carboxykinase (PEPCK-C) driven by an α-skeletal-actin gene promoter. The transgenic pigs 

showed a consistent increase in IMF deposition respect to their wild type sibs, suggesting 

that enhancing the transcription of PEPCK-C has a direct effect on marbling. By the way, 

despite this interesting result, the use of engineered animals as meat source is not accepted 

public opinion, and to date this practice would arise consumers’ concerns.  

 

Backfat deposition and fatty acid composition traits in pigs 

 

Adipocytes as already reported in previous subchapters are highly specialized cells, which 

have different roles from serving the crucial function of energy storage to being hormone 

secreting cells. In animals and humans, the potential to differentiate new fat cells from 

pluripotent stem cells continues throughout the lifespan, and the reduction in adipocyte 

number may occur as a result of adipocyte apoptosis or dedifferentiation. To date, adipose 

tissue is considered as a major endocrine organ that secretes numerous proteins and lipid 

hormones (adipokines and lipokines) (reviewed in Galic et al., 2010) and controls several 

major metabolic, physiological, and genetic changes. Adipose tissue is also the site of de 

novo FA synthesis in pigs (O’Hea and Leveille, 1969). Pig backfat (BF) is composed of 

subcutaneous adypocytes. Subcutaneous adipocytes display higher capacity for storing fat 

(lipogenic activity) compared to IMF adipocytes, in addition to increased insulin-induced 

lipogenic and lipolytic efficiency and higher levels of both genes and enzymes involved in 

lipid metabolism. This indicates that BF and IMF have different and specific biological 

features. 
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Backfat importance in meat products quality  

 

BF thickness and BF fatty acid composition are extremely important traits affecting meat 

products quality, and play an essential role in particular in Italian heavy pig products: indeed, 

BF must be thick enough to obtain retailed fresh hams with fat cover ranging from 20 to 30 

mm. BF has a prominent effect in reducing seasoning loss in high quality hams: an 

insufficient fat covering of the thigh causes higher seasoning loss and worse organoleptic 

characteristic in dry-cured hams (Bosi and Russo, 2004). BF thickness is in fact negatively 

correlated to seasoning loss, with correlation coefficients ranging from –0.79 to –0.50 (Bosi 

et al., 1984; Bosi and Russo, 2004) and genetic correlations between BF thickness and curing 

loss after salting in the same range (Carnier et al.,1999). The positive effect exerted by BF 

thickness on dry-cured hams is due to the lower amount of water contained in adipose 

tissue respect to muscle (5- 15% vs 70-75%), fact that turns BF into a barrier hampering the 

exchanges between the inner muscle and the external environment (Bosi and Russo, 2004). 

In addition to BF deposition, another important trait for influencing the quality of hams and 

meat is represented by BF fatty acid composition. 

Fatty acids are classified on the basis of the length of their aliphatic chain (short, medium 

and long chain fatty acids) and on the basis of the type of the carbon-carbon bonds 

intervening in their chain: if the carbon atoms in their chains are exclusively tied with single 

bonds fatty acids are defined saturated, if there is a double bond they are known as 

monounsaturated, and when fatty acids have more than one carbon-carbon double bond 

are called polyunsaturated. Fatty acids have different characteristics depending on their 

composition: saturated fatty acids melt at higher temperatures (for example stearic melts at 

69°C) compared to unsaturated fatty acids, and in particular with polyunsaturated ones 

(linoleic acid melts at 5°C) (Wood, 1984). Therefore, fatty acid composition of adipose tissue 

affects its firmness, as the different fatty acids have different melting points. Wood et al. 

(1989) found that both the objective and the subjective measures of adipose tissue firmness 

can be simulated basing on the fat content of stearic and linoleic acids: stearic is positively 

correlated with the firmness of subcutaneous fat in the shoulder region (r=0.35 with the 

objectively measured firmness and r=0.40 with the subjectively measured firmness), while 

linoleic content is negatively correlated with these two parameters (r=-0.75 with the 
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objectively measured firmness and r=-0.78 with the subjectively measured firmness). In 

addition to firmness, the biochemical features of fatty acids relevantly affect also fat depots 

oxidative stability. A higher prevalence of polyunsaturated fatty acids results in an increased 

rate of rancidity, as polyunsaturated fatty acids are liable to oxidative breakdown, causing a 

worsening in the organoleptic and nutritional quality of the meat products and an overall 

impairment of these products suitability for technological processing. For that reasons, 

Parma and San Daniele consortia accept only thighs with a content of linoleic acid in BF 

lower than 15% of total fatty acids (Bosi and Russo, 2004; Disciplinare Prosciutto di Parma 

DOP, reported at 

http://www.prosciuttodiparma.com/pdf/it_IT/disciplinare.28.11.2013.it.pdf). On the other 

side, polyunsaturated fatty acids have beneficial effects on human health and are requested 

for a balanced diet (omega 3 fatty acids especially). This dichotomy rises questions about 

what tools should be used to reach a favourable balance between saturated and 

unsaturated fatty acids in meat products. BF composition is affected by the diet lipids 

composition (Wood et al., 2008), but also by the pig genetic type (Lo Fiego et al., 2005). The 

latter result suggests that BF composition can be successfully modified through genetic 

selection. 

 

Candidate genes involved in porcine backfat deposition and fatty acid 

composition 

 

The identification of markers associated to BF deposition and composition would provide 

genetic tools useful for the selection of animals displaying a right balance between lean and 

fat deposition and between unsaturated and saturated fatty acids. To date, pig genome is 

known to harbour 240 QTLs associated to BF at last rib, 190 to BF at tenth rib, 1,311 for fat 

composition (http://www.animalgenome.org/cgi-bin/QTLdb/ last accessed 23rd of March 

2017). Up to now, several genes have been identified as possibly associated to BF 

accumulation. One of the first genes found associated with pig fatness was Insulin Growth 

Factor 2 (IGF2): several SNPs in its sequence have been associated to variations in lean and 

fat deposition. Since Van Laere et al. (2003) found a SNPs in intron 3 of IGF2 responsible for 
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the association between the QTL comprising IGF2 region and fatness, numerous other 

authors have investigated mutations in this gene sequence and their associations with 

porcine fat deposition (Vykoukalová et al., 2006; Burgos et al., 2012). Anyway, despite IGF2 

was one of the first genes associated to fatness traits in pigs, its exact location in Sus scrofa 

Build 10.2 assembly is still unknown. Together with IGF2 gene, also the melanocortin-4 

receptor gene (MC4R) has been related to changes in pig adipogenic capabilities and has 

been widely studied in different pig breeds. Kim et al. (2000) identified a missense mutation 

in MC4R sequence with consequences on BF and growth rate of various pig lines, Chen et al. 

(2005) studied SNPs in both IGF2 and MC4R in different pig population (comprising purebred 

and crossbred pigs) and obtained significant associations with carcass traits and fat 

deposition, and Davoli et al. (2012) analysed the effects of a MC4R SNP on carcass and 

growth performances in Italian Duroc and Italian Large White pigs. Anyway, literature is not 

concordant about the effects of MC4R mutations on BF accumulation, as this effect has not 

always been detected in all the studies, and different pig breeds showed divergent 

associations. For instance, MC4R showed to affect BF accumulation only in Italian Large 

White, while no association was found between Italian Duroc and BF thickness (Davoli et al., 

2012). The authors suggested that this effect may be caused by breed-specific epistatic gene 

interactions between MC4R and other genes, affecting nutrient utilisation and addressing 

the growth towards lean or fat deposition depending on the breed different genetic and 

metabolic backgrounds. Another study carried out on Italian pig populations identified 

another candidate gene related to adipose tissue deposition: a SNP located in the sequence 

of the gene Proprotein Convertase Subtilisin/Kexin Type 1 (PCSK1) showed several 

associations with fatness (in Italian Duroc pigs exclusively) and with growth traits (in both 

Italian Duroc and Italian Large White pigs) (Fontanesi et al., 2012). Recently, among the 

genes found associated with BF thickness is present also Nuclear receptor subfamily 1, group 

H, member 3 (NR1H3, also known as Liver X receptor α, LXRα) (Zhang et al., 2016a). This 

member of the LXR nuclear receptor super family is an important regulator of lipid and fatty 

acid accumulation in different tissues and, among the others, its expression suppresses also 

PLIN1 transcription (Stenson et al., 2011). Two other genes associated to pig BF deposition 

and composition are Fatty Acid Synthase (FASN) and Insulin Induced Gene 2 (INSIG2): Grzes 

et al. (2016) found in four commercial pig breeds 12 novel polymorphisms in FASN gene 

sequence and seven novel SNPs in INSIG2 nucleotide sequence. Surprisingly, the two genes 
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showed inverted associations with fat traits respect to their respective functional role. 

Indeed, FASN, which is known for its role in fatty acid synthesis (FASN enzyme catalyses the 

synthesis of palmitate from acetyl-CoA and malonyl-CoA), showed statistical associations 

with BF thickness, while INSIG2 resulted to be highly associated with the fatty acid profile of 

the considered tissues (Grzes et al., 2016). By the way, despite the consistent number of 

studies, there are discrepancies among the results reported in literature and the 

understanding of the effects exerted by those candidate genes remains arduous. To shed 

light on the expression patterns linked to BF accumulation, recent studies have focused on 

the transcriptome of porcine adipose tissue, with the aim of finding differentially expressed 

transcripts suggesting new candidate genes related to this trait. Xing et al. (2016) used a 

high-throughput sequencing approach to identify transcriptomes and whole-genome 

differences from adipose tissue samples collected from three full-sibling pairs of pigs with 

divergent BF thickness. The authors obtained 20 differentially expressed genes that were 

then matched to the QTLs associated with fatness in pigs. This integrated approach 

permitted to identify two SNPs and one haplotype of Malic Enzyme 1 (ME1) gene 

significantly associated to fat deposition in pigs (Xing et al., 2016). The results achieved in 

the same research highlighted also Stearoyl-CoA Desaturase Δ9 (SCD) among the genes up-

regulated in the high BF thickness group of pigs. SCD is a candidate gene involved in the 

biosynthesis of unsaturated fatty acids, in particular it encodes a desaturase that catalyses 

the insertion of a cis double bond at the delta-9 position into fatty acyl-CoA substrates, 

including palmitoyl-CoA and stearoyl-CoA among its preferential substrates. This gene has 

already been studied by other authors as a candidate gene for oleic fatty acid content in 

muscle: Estany et al. (2014) identified different SNPs in its sequence and suggested that the 

mutation AY487830:g.2228T>C in SCD promoter region enhances fat desaturation. These 

results were confirmed in Spanish Duroc pigs by a GWAS that highlighted the SCD 

chromosomal region as involved in intramuscular fat content of oleic acid (Ros-Freixedes et 

al., 2016). Another GWAS performed by Zhang et al. (2016b) identified the SCD genomic 

region as involved in fatty acid composition: the authors performed a comprehensive GWAS 

taking into account five different pig populations, whose genotypes were investigated 

through high-density SNP panels. This research was addressed towards the deciphering of 

the main players involved in the fatty acid composition of Longissimus dorsi muscle and 

abdominal fat, but highlighted some candidate genes that can have a prominent role also on 
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subcutaneous fat composition. Both SCD and FASN regions showed associations with the 

contents of the different fatty acids: in agreement with the previous studies (Estany et al., 

2014; Ros-Freixedes et al., 2016) SCD region affected in particular the contents of 

palmitoleic, oleic and monounsaturated fatty acids, and markers nearby FASN were 

associated to the content of palmitic fatty acid (Zhang et al., 2016b). In addition, other 

candidate genes have been suggested by the authors: in particular several genes belonging 

to the ELOVL elongase family (ELOVL5, ELOVL6 and ELOVL7), which take part in the 

elongation of fatty acid carbon chain. Other loci associated to the fatty acid composition of 

muscle and abdominal fat were those harbouring the genes Acyl-CoA Synthetase Bubblegum 

Family Member 1 (ACSBG1, also known as Very Long-Chain Acyl-CoA Synthetase), Fatty Acid 

Desaturase 2 (FADS2) and Sterol Regulatory Element Binding Transcription Factor 2 (SREBP2) 

(Zhang et al., 2016b). These players seem to affect mainly the synthesis of long and very long 

fatty acids, while SCD and ELOVL6 are hypothesised to take a more active part in the 

synthesis of palmitoleic and oleic acids (C16 and C18). On the whole, the candidate genes 

suggested by Zhang et al. (2016b) may be considered also for their involvement in de novo 

fatty acid synthesis of subcutaneous fat tissue. Anyway, much remains to be understood and 

further studies are needed to shed light on the complex gene patterns acting in the 

biosynthesis of fatty acids. 
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Maternal traits in pig 

 

Maternal traits are extremely important for the pig breeding industry, but at the same time 

are quite arduous to improve as the prediction of the genetic merit for these traits requires 

long times and has low accuracy if progeny tests are not performed. In the 1980s and 1990s, 

litter size trait dominated the maternal index and was considered the main objective of 

selection schemes in maternal lines (Quinton et al., 2006). However, most studies recently 

present the economic relevance of a more balanced maternal breeding objective (Knap, 

2005; Serenius and Muhonen, 2007; Amer et al., 2014). Several authors proposed to include 

among the maternal traits that undergo the selection process also traits describing vitality, 

uniformity, robustness, welfare, and health of animals (Knap, 2005; Merks et al., 2012; 

Hermesch and Amer, 2013). Knap (2005) defined robustness traits as preweaning survival, 

growing pig survival, and the number of litters a sow has over a lifetime, which were all 

shown to contribute in the improvement of pig production profitability.  

 

Colostrum composition: an opportunity for the deciphering of sows’ 

maternal traits 

 

Within the landscape of the on-going research for new traits to be included in selection 

schemes, sow colostrum constitutes a virgin territory: unlike in dairy cattle, pig colostrum is 

to date poorly studied. 

Colostrum starts to be produced by the porcine mammary gland before parturition and this 

production continues until up to 48 hours after the onset of lactation (Klobasa et al., 1987). 

Then from around 24 to 36 hours after parturition, colostrum is gradually replaced by 

mature milk (Rooke and Bland, 2002). As in other mammals, nutrients from blood pass inside 

the mammary gland epithelial cells, where are used to synthesise milk components. Anyway, 

unlike dairy cattle, the porcine mammary gland does not contain any cisterns and milk is 

only stored in the alveoli and milk ducts (Hartmann and Holmes, 1989). This anatomical 

characteristic impairs the possibility of milking sows and makes it difficult to measure the 
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yield of sow colostrum and milk. Colostrum production is highly floating among sows (Farmer 

and Quesnel, 2009; Quesnel, 2011) and can be affected by the farrowing parity, the weight 

of the sow at the time of parturition, sow health and nutritional state, sow diet and sow 

genetic type (Klobasa et al., 1987; Le Dividich et al., 2005; Devillers et al., 2007; Farmer and 

Quesnel, 2009). Colostrum is known to have a different macroscopical composition respect 

to milk: similarly to what has been observed in dairy cattle, porcine colostrum has a higher 

content of protein than milk, and lower levels of lactose, fat and caseins (Klobasa et al., 

1987; Le Dividich et al., 2005). This difference in the protein amount has to be mainly 

imputed to colostrum content of immunoglobulins, which provides piglets with passive 

immunity: during the first day of life piglets intestinal mucosa is able to absorb colostrum 

immunoglobulins; this ability is then lost after the first hours of life, and if ingested 

immunoglobulins undergo digestion. Colostrum is a highly variable secretion, which 

experiences alterations throughout the whole period of its secretion. As time passes, the 

percentages of fat and lactose increase, while immunoglobulins consistently decrease (Table 

1).   

 

Table 1: Composition (%) and mean concentrations of immunoglobulins G and A (mg/ml) in 

colostrum collected at 3, 6 and 24 hours after the birth of the first piglet. The standard error of the 

mean is shown between brackets. ANOVA was used to analyse the time effect on colostrum 

composition and the P values were reported (adapted from Decaluwé et al., 2014).  

Decaluwé et al. (2014) demonstrated that piglets' daily weight gain and survival until 

weaning is positively associated with colostrum intake per kg of birth weight, confirming the 

importance of this secretion for the survival and growth until weaning. 
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Apart from immunoglobulins, colostrum composition in pigs is still poorly known and 

investigated. Other still unknown compounds could affect piglets’ survival and growth in 

addition to immunoglobulins, and the understanding of their changes could represent a first 

step towards the knowledge of the genes associated to different colostrum compositions. 
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Growth and health traits in broiler 

 

Selection in chickens has similar characteristics compared to pig breeding programs for both 

their architecture (pigs and chickens are selected through pyramidal breeding programs) and 

the peculiar attributes of the reproductive cycle in these two species (the generation interval 

is short and the offspring is numerous) (Jonas and de Koning, 2015). Furthermore, chickens 

are the fastest-growing farmed species, reaching in 40 days of life the slaughter weight. For 

all these reasons, GS (genomic selection) has not gained a prominent role in the selection of 

this livestock species, unlike in dairy cattle. Broiler have been selected intensively for growth 

traits such as body weight and feed efficiency, leading to a dramatic shortening of the 

production cycle: the National Chicken Council estimates that the average number of days it 

took to raise a chicken passed from 112 days in 1925 to 47 in 2016 

(http://www.nationalchickencouncil.org/about-the-industry/statistics/u-s-broiler-

performance/ last accessed on 26th of March 2017). In parallel, the market demand for 

heavier broiler increased drastically: in 2016 the market weight almost triples the one 

requested for broilers in 1925. Thus, broilers have been selected to reach heavier weights in 

less than the half of the time. Furthermore, consumers’ demand for breast meat has 

increased the value of this cut and led poultry producers to look for ways to optimise breast 

muscle growth (Thiruvenkadan et al., 2011). Selection for higher breast yield resulted in a 

genetic gain of 277% per generation, whilst keeping the body weight in the range of 2400 to 

2450 g and maintaining feed conversion and fertility (Schmidt et al., 2006). However, the 

selection for these traits also led to a dramatic increase in the incidence of health problems, 

such as lameness, ascites and several muscle myopathies and abnormalities (Dransfield and 

Sosnicki, 1999; Sandercock et al., 2009; Petracci and Cavani, 2012). Among the health 

problems observed in the last decades, ascites have been estimated as one of the 

pathologies causing the most important losses for poultry industry, accounting for about 1 

billion dollars annually around the world and for over 25% of broiler losses (Maxwell and 

Robertson, 1997; Navarro et al., 2002). This pathology has a complex aetiology: this growth-

related disease is a functional hypoxia caused by the high oxygen requirement for rapid 

growth and the inability of the heart and lungs to deliver sufficient oxygen to muscle tissue. 

This disorder leads in its final stages to accumulation of fluid in the abdominal cavity 
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(resulting in death). The measure of this phenotype (accumulation of fluid in abdomen) 

anyway has a very low heritability (ranging from 0.08 to 0.15) and is extremely difficult to be 

recorded in live animals. For this reason, Pakdel et al. (2002a, b) suggested the use of other 

phenotypic measures that could represent effective traits for the genetic selection against 

ascites. In particular, the haematocrit value showed high heritability (0.46-0.50) and is a trait 

that can be easily recorded. The heritability of the traits related to ascites is presented in 

Table 2.  

 

 

Table 2: Heritability estimates for the traits related to ascites (adapted from Thiruvenkadan et al., 

2011). 

These results showed that ascites had a genetic root, suggesting that selection against this 

pathology was possible. Three QTL affecting ascites related traits were detected (Rabie et al., 

2005; Pakdel et al., 2005b) and using this information in selection programs resulted in a 

higher broiler weight (+122 g) without increasing ascites incidence. 

 

The occurrence of dystrophy-like defects in broiler breast muscle 

 

During the last five years, an increasing number of flocks of commercial broiler chickens has 

showed a myopathy affecting the pectoralis major (and occasionally minor) muscles. This 

disease is characterised by myodegeneration of breast muscle, where the apoptotic 

myofibers are replaced with fat and fibrotic tissue (Sihvo et al., 2014; Mazzoni et al., 2015; 

Mutryn et al., 2015; Soglia et al., 2016). These characteristics strongly impair the nutritional 

and organoleptic quality of chicken breast meat: this detrimental effect is due to the altered 
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composition and reduced protein functionality in affected muscles, whose proteins show a 

lower ability to hold/bind water, causing the formation of gels containing denatured 

proteins and water (Mudalal et al., 2014; Mudalal et al., 2015). These alterations give birth 

to abnormal breasts, showing the defects generally called “white striping” (Kuttappan et al., 

2009) and “wooden breast” (Sihvo et al., 2014). It is not clear whether these two defects are 

part of the same myopathy, which worsening cause breasts to pass from white striping to 

wooden breast, or if white striping and wooden breast must be considered separately: 

white-striped fillets are characterised by the occurrence of white striations parallel to muscle 

fibers on the surface of the Pectoralis major muscle (Kuttappan et al., 2009) and are 

sometimes coupled with ‘wooden breast’, which is characterised by macroscopically visible 

hardened and pale areas in the caudal part of the fillet (Sihvo et al., 2014). Anyway, what is 

clear is that both these two defects exhibit similar histological changes, consisting of 

moderate-to-severe polyphasic myodegeneration with regeneration, as well as variable 

amounts of interstitial connective tissue accumulation or fibrosis (Sihvo et al., 2014). Lorenzi 

et al. (2014) reported that the incidence of white striping in commercial broiler chickens 

raised in Italy is quite high, in particular in medium and heavy broilers where it reaches 

43.0% of the slaughtered animals, with 6.2% of samples considered severe. Therefore, 

considering these data it is obvious that the occurrence of these defects is a troubling issue 

in poultry industry. As in the ascites case, one of the way that could be followed is the 

application of MAS for the selection of animals resistant to these myopathies. The 

heritability estimates for these two defects are not concordant among the results reported 

in literature: Bailey et al. (2015) reported for white striping an estimated heritability of 0.338 

and for wooden breast a heritability lower than 0.1. On the other hand, Alnahhas et al. 

(2016) proposed a stronger genetic determinism at the basis of white striping defect, with an 

estimated heritability of 0.65. With the aim of identifying genes and biological pathways 

related to the occurrence of wooden breast, Mutryn et al. (2015) performed a transcriptome 

analysis on Pectoralis major muscle samples of chickens showing a normal appearance of the 

breast muscle and individuals with affected muscles. On the whole, over 1500 genes were 

differentially expressed between affected and unaffected birds, and most of them were 

related to the physiological response against hypoxia and oxidative stress, were involved in 

cellular repair and in intracellular calcium homeostasis (Mutryn et al., 2015). Literature 

suggests a strong genetic determinism at the basis of the occurrence of these dystrophy-like 
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defects, but to date the information is still lacking of markers and candidate genes 

associated with the incidence of white striping and wooden breast.    
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Aim of the study 

The studies reported in the present thesis are addressed towards the application of different 

OMICs technologies to the analysis of productive traits in different species of farm animals. 

The study was mainly focused on the investigation of candidate genes and gene networks 

associated to porcine fatness traits using genomics, transcriptomics and single gene studies. 

Moreover, specific additional studies were planned to explore in preliminary analyses the 

factors affecting sows’ maternal traits through metabolomics and chicken breast muscle 

myopathies through microarray technique.  

The main subject developed was the identification and study of markers, genes and 

transcripts involved in porcine backfat deposition and fatty acid composition. Investigation 

on genes affecting intramuscular fat content in pig Semimembranosus muscle was also 

faced. For this purpose, different approaches have been considered: the research has been 

carried out integrating genome wide strategies with investigations focused on candidate 

genes chosen for their functional roles (such as Perilipin and lipases genes). The integration 

of different powerful and innovative approaches can be considered a promising emergent 

strategy to adopt, in particular for the traits for which selection process has been slowly 

accelerating.  

The research has been carried out in pigs and chickens with the following peculiar aims: 

- to investigate markers, genomic regions and transcripts related to porcine backfat 

deposition and/or backfat fatty acid composition through the combined approach of 

genomics, transcriptomics technologies and single gene studies (Chapters 1 to 5) and 

to investigate candidate genes for porcine intramuscular fat deposition integrating 

gene expression and protein expression data (Chapter 6); ii) to explore the factors 

affecting pig colostrum composition using a metabolomics approach and test the 

existence of compositional differences between three porcine breeds (Chapter 7); iii) 

to explore the factors affecting pig colostrum composition using a metabolomics 

approach and test the existence of compositional differences between three porcine 

breeds (Chapter 7); iv) To perform a microarray study for the detection of gene 

expression profiles involved in the occurrence of dystrophy-like defects in broilers 

breast muscle (Chapter 8).  
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Summary  

Dietary fatty acid composition has an impact on human health. There is an increasing 

request from consumers for healthier food and pork industry must respond to it without 

worsening performance and the technological properties of pork products. The inclusion of 

genetic markers for carcass fatty acid composition in pig selection schemes could be a useful 

tool to reach the right balance between unsaturated and saturated fatty acids to satisfy 

market demands. With the aim of finding genomic regions associated with porcine backfat 

fatty acid composition, a genome-wide association study was performed on 798 Italian Large 

White pigs genotyped through Illumina PorcineSNP60k. The strongest associations with 

backfat contents of palmitic, palmitoleic, oleic, medium chain and long chain fatty acids were 

found for the SSC8 region located at 119-122 Mb, where the gene ELOVL elongase 6 is 

mapped. Palmitic, palmitoleic, stearic and oleic acid contents were also found associated 

with SSC14, in particular with the genomic region at 121-124 Mb, where stearoyl-CoA 

desaturase Δ9 gene lies. On the other hand, the genomic regions associated with backfat 

contents of arachidic, arachidonic, omega6 and omega3 fatty acids showed to harbour 

mainly genes involved in dietary lipids and carbohydrates digestion, absorption and 

utilisation. To our knowledge, this is the first study performed in Large White pigs identifying 

markers and genomic regions associated with backfat fatty acid composition. The obtained 

results indicate the likely involvement of distinct molecular pathways leading to different 

fatty acid deposition.  

 

 

Introduction 

Over the last decades, the interest in the fatty acid (FA) composition of meat and other 

animal products has increased. Fat composition of both subcutaneous and intramuscular fat 

is an important factor influencing organoleptic and nutritional quality of animal products 

(Wood et al., 2008). In particular, FA composition strongly affects firmness, tenderness 

(Wood et al., 2008) and the technological quality of pork processed products. While pork 

rich in polyunsaturated fatty acids (PUFA) is preferable in healthy human diets (WHO, 2003), 

their higher susceptibility to oxidation (Shackelford et al., 1990) and the lower melting 

temperatures (Wood, 1984) make PUFA-rich pork cuts unsuitable for seasoning (Bosi et al., 
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2000). A higher amount of saturated fatty acids (SFA) is instead preferable for pork industry, 

but on the other side they may result in undesirable effects on human health (Kris-Etherton 

and Yu, 1997). The contrasting requests of consumers and pig meat industry raised in the 

last years the issue of selection schemes aimed at improving fat and meat FA composition. 

This goal appears to be still far from being reached and therefore a deeper knowledge of 

genes involved in FA biosynthesis and metabolism is needed (Zhang et al., 2016). Among the 

instruments available for the modern genomic studies, Genome Wide Association (GWA) 

analyses are the most used tool for the identification of the molecular drivers underlying 

animal and human traits and diseases (Sharma et al., 2015; Denny et al., 2016). Several GWA 

studies aimed at identifying loci associated with the different FA composition of pig 

subcutaneous (Corominas et al., 2013; Ros-Freixedes et al., 2016) and intramuscular fat 

(Muñoz et al., 2013; Davoli et al., 2015; Ros-Freixedes et al., 2016; Zhang et al., 2016) have 

been performed since today, and different QTL regions harbouring candidate genes for fat 

traits have been indicated. However, the knowledge on the genes involved in fat 

composition is still incomplete, and the results of the different studies do not always agree 

on the genomic regions associated with fat composition complex trait. 

The main objective of this study was to detect genomic regions associated with the most 

important backfat FA in a population of Italian Large White pigs. 

 

Materials and Methods 

Sampling 

For the present study, 889 Italian Large White pigs were used. The animals were pure breed 

pigs included in the Italian sib test genetic evaluation scheme performed by ANAS 

(Associazione Nazionale Allevatori Suini, ANAS; www.anas.it), reared in the same 

environmental conditions at the genetic test station with a quasi ad libitum feeding level 

(60% of the pigs were able to ingest the entire supplied ration). At about 150 kg of live 

weight the animals were transported to a commercial abattoir located at about 25 km from 

the test station in accordance with Council Rule (EC) No. 1/2005 regarding the protection of 

animals during transport and related operations. At the slaughterhouse, the pigs were 
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electrically stunned and bled in a supine position in agreement with Council Regulation (EC) 

No. 1099/2009 regarding the protection of animals at the time of slaughter. All slaughter 

procedures were monitored by the veterinary team appointed by the Italian Ministry of 

Health. Carcass weight and backfat thickness measured with Fat-O-Meter (FOM) at 8 cm off 

the midline of the carcass at the level placed between the third and fourth last ribs. Samples 

of blood and backfat were gathered, immediately frozen in liquid nitrogen and stored at -

20°C.  

 

Determination of backfat fatty acid composition 

The backfat tissue samples collected after slaughtering were conserved at -20°C until 

processed. Backfat FA composition was detected by direct trans-esterification, following the 

protocol reported by Murrieta et al. (2003). For each sample, 50 mg of frozen backfat was 

used for the total lipid extraction and then in each tube 0.5 mg of C19:0 methyl ester in 

hexane was added as internal standard. Gas chromatography was performed on GC-2010 

Plus High-end Gas Chromatograph (Shimadzu Corporation, Tokyo, Japan), using SPTM-2560 

Capillary GC Column (Sigma-Aldrich, Merck, Darmstadt, Germany). Backfat FA composition 

was expressed as the ratio between each FA and the total. Due to some missing information 

in the pedigree or in the measured phenotypes, 798 animals were taken into account for the 

following steps. The means and the standard deviations of the phenotypic traits measured in 

the 798 animals used for the GWAS are reported in Table 1. 

 

Genotyping data quality control and imputation of the missing genotypes 

DNA was extracted from the blood samples. The animals were then genotyped using 

Illumina PorcineSNP60 v2 BeadChip (Illumina Inc., San Diego, CA, USA), which contains 

61,565 SNP markers distributed across the whole genome (Ramos et al., 2009). Quality 

control of the high-density SNP data was carried out on PLINK (Purcell et al., 2007): SNPs 

with more than 10% of missing genotypes, minor allele frequencies below 0.01, or 

deviations from Hardy-Weinberg equilibrium with p-value below 0.001 were filtered out. 

After the quality control the data set included 49,662 markers. All individuals had a call rate 

greater than 0.90 and passed the quality control. Markers were then mapped using the pig 
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genome assembly Sus scrofa build 10.2, and the unmapped SNPs were excluded. Markers 

located on sexual chromosomes were also excluded from the study. Finally, missing 

genotypes were imputed using Beagle version 3.3.2 (Browning and Browning, 2009). The 

final number of SNPs included in the GWAS was 45,704. 

 

Genome-wide association study 

Before performing the GWAS, the phenotypes of the 798 animals were adjusted for carcass 

weight (as a covariate), slaughter day (27 slaughtering batches), sex (castrate or female), 

animal (using a pedigree with 2,301 individuals) and litter effects (393 litters) using an animal 

model.  

The associations between the genotypes and the adjusted phenotypes were assessed using 

the Bayes B approach as implemented in the GenSel software (Fernando and Garrick, 2014). 

The model was the following: 

 𝒚 = ∑ 𝒛 𝛼 𝛿 +
 
   𝒆 

where y was the vector of the adjusted phenotypes for each trait; zi was the vector of the 

coded genotypes for a SNP at locus i (i = 1 to k, where k is the number of SNPs); αi was the 

effect of the allele substitution of the SNP at locus i; δi was a random 0/1 variable 

representing the absence (0) or the presence (1) of a SNP i in the model for a certain 

iteration of the Markov chain Monte Carlo procedure; and e was the vector of random 

residuals normally distributed. Alternate homozygous genotypes were coded as -10 and 10, 

and heterozygotes as 0. The prior probability (π) that the SNPs had no effect (δi = 0) on the 

adjusted phenotypes was fixed at π = 0.985, and consequently the prior probability of the 

markers having an effect on the adjusted phenotypes (δi = 1) was 1–π = 0.015. Thus, the 

model fitted approximately 745 SNPs in each iteration. A total of 500,000 iterations were 

run, with a burn-in of 100,000. 

A Bayes Factor was calculated for each locus i (BFi) to evaluate the statistical relevance of the 

association between each SNP and the adjusted phenotypes. The Bayes Factor was 

calculated as follows: 
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where   ̂ is the posterior probability of a marker i of being included in the model at a given 

iteration of the Markov chain Monte Carlo procedure. Generally, for BF above 3.2 the 

marker association with the trait is considered substantial, strong for BF between 10 and 

100, and decisive for BF > 100 (Kass and Raftery, 1995). 

Furthermore, for each trait we predicted the collective genetic variance of the SNPs included 

in consecutive non-overlapping 1-Mb windows based on the markers position in Sus scrofa 

assembly build 10.2. This approach permitted taking into consideration the combined effects 

of SNPs which are closely located and could be in linkage disequilibrium (LD). Contiguous 1-

Mb windows that explained at least 0.5% of the total genetic variance each were merged 

and considered together, as in Ros-Freixedes et al. (2016). This approach permitted to take 

into account also the LD between markers placed in neighbouring regions or spanning more 

than 1 Mb. LD in candidate regions was evaluated using Haploview software (Barrett et al., 

2005). 

 

Functional characterization of the genes mapped in the most relevant regions 

Candidate genes in the most associated regions were identified through Ensembl (EMBL-

EBI), using the BioMart tool (Guberman et al., 2011) (url: 

http://www.ensembl.org/biomart/), and posteriorly their functional gene annotation was 

analysed using Enrichr (Kuleshov et al., 2016) (url: http://amp.pharm.mssm.edu/Enrichr/), 

with the aim of identifying pathways of genes involved in the genetic determinism of the 

studied traits. Among the results obtained from Enrichr, the pathways from both Reactome 

Pathway Database (Febregat et al., 2016) and KEGG PATHWAY database (Kanehisa et al., 

2016) were taken into account, with the aim of obtaining more complete information about 

the pathways related to the most associated regions. One of the regions associated with 

backfat FA composition comprised microRNAs. Aiming to identify if there were genes 

involved in adipogenesis and FAs biosynthesis among their target genes, their corresponding 
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hsa-miRNAs were used on PicTar (url: http://pictar.mdc-berlin.de/), utilising the algorithm 

for the predictions in vertebrates (Krek et al., 2005). 

The obtained associated regions were also compared with the information about the known 

QTLs reported on QTLdb (Hu et al., 2016) (url: http://www.animalgenome.org/cgi-

bin/QTLdb/index). 

 

Estimation of the genotypic effects for the most relevant markers 

For the most interesting genes according to the GWAS results and the functional 

characterization analysis, we selected a tag SNP in order to further evaluate its effect. 

Estimated means and differences between genotypes were assessed using a model that also 

included carcass weight (as a covariate), slaughter day, sex, and litter. The program Rabbit 

(Rabbit programme, 2012) was used. 

 

Results and discussion 

GWA studies have become a commonly used analysis tool in genomics, allowing the 

identification of new regions and markers on a wider level compared with single marker 

association studies. With the spreading use of GWAS, some issues regarding the most 

appropriate statistical approach to be used were raised. The use of Bayesian models permits 

to overcome some of the limits highlighted by the application of linear models to GWA 

studies (Guo et al., 2016), but on the other side the spread of distinct methods has 

complicated the comparison of results from different GWA studies. The use of a Bayesian 

approach for the present study permitted to obtain more than 30 different genomic regions 

associated with backfat composition and thickness, some of which were consistent with 

other regions reported in the literature. On the whole, the majority of the regions identified 

in this study were located near or inside QTLs already reported in literature, demonstrating 

the consistency of the present results. In particular, among all the 30 regions found herein 

associated with backfat FA composition, approximately 15 were consistent with (or directly 

related to) QTLs found in previous studies, 6 regions were new, showing no corresponding 

QTLs on databases, while the remaining were located in QTLs associated with traits and FA 
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other than the ones herein considered (Supplementary Table S1). Additionally, all the 4 

regions associated with backfat thickness in the present study were in agreement with 

literature. 

 The markers most associated with the studied traits are reported in Table 2 and 

Supplementary TableS 2. As visible from Supplementary Table S2 almost half of the markers 

that were found associated with backfat FA composition were mapped on chromosomes 7 

and 8 (8 markers were located on SSC7 and 9 SNPs on SSC8), but other relevant SNPs lied on 

SSC1, SSC5, SSC9, SSC10, SSC11, SSC14, SSC16, SSC17 and SSC18. In particular, the region 

included between 119 and 122 Mb on SSC8 consistently explained a great proportion of the 

genetic variance associated to medium chain fatty acids (MCFA) and long chain fatty acids 

(LCFA) (about the 70% of the genetic variance), and a smaller part of the genetic variance 

associated to palmitic, palmitoleic and oleic acids (10%, 3% and 1.78%, respectively) (Table 

2). This region harboured three of the markers most associated with backfat FA composition 

(H3GA0025321, SIRI0000509 and INRA0030422). Among them, the SNP that showed the 

highest Bayes Factor (BFi) was H3GA0025321, which was strongly associated with MCFA (BFi 

> 1000), with LCFA (BFi > 1000), and also with palmitic acid (BFi > 166) (Table 2). The same 

marker resulted to have a relevant effect also on palmitoleic and oleic acids (BFi = 12.02 and 

BFi = 10.05, respectively). Although the effects of this marker on MCFA and LCFA could be 

overestimated due to the phenomenon known as Beavis effect (Xu, 2003), it is worth noting 

that H3GA0025321 has already been identified in other association studies performed on 

different pig breeds (Corominas et al., 2013; Zhang et al., 2016). The H3GA0025321 marker 

has already been identified in a GWA study assessed by Corominas et al. (2013) on Iberian x 

Landrace crosses, where this polymorphism was found strongly associated with the palmitic 

and palmitoleic acid content in the intramuscular fat of Longissimus dorsi. Furthermore, in 

agreement with Corominas et al. (2013), we have found that, together with H3GA0025321, 

SIRI0000509 and INRA0030422 markers also were significantly associated with palmitic acid. 

In literature, these three markers were found to be in LD with mutations located in the 

promoter sequence of the nearby gene ELOVL elongase 6 (Corominas et al., 2013). This gene 

codes for an elongase, which catalyses the first and rate-limiting reaction of the four that 

constitute the long-chain fatty acids elongation cycle. In a recent investigation Corominas et 

al. (2015) suggested that the causal mutation responsible for the strong association found 
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for SSC8 119-120 Mb region could be ELOVL6:c.-394 G>A, a SNP located in ELOVL6 gene 

promoter region. Additionally, the three identified markers (H3GA0025321, SIRI0000509 and 

INRA0030422) and ELOVL6 gene mapped in the same SSC8 region where QTLs associated 

with palmitoleic (Muñoz et al., 2013), palmitic and oleic acid contents (Revilla et al., 2014) 

have already been identified. The associations observed in the present study for the three 

markers are completely in agreement with the ELOVL6 elongase critical role in regulating the 

length of FA chain: H3GA0025321 C allele was strongly related to higher amounts of stearic, 

oleic and LCFA, causing at the same time a consistent decrease in MCFA and C16 acids 

(palmitic and palmitoleic) (Table 3). 

In addition to the region where ELOVL6 gene is located, other regions were associated with 

the oleic acid content in backfat. In particular, the region included between 116 and 124 Mb 

on SSC14, which is involved in desaturation, was found to be consistently associated with 

stearic acid (1.18% of the trait genetic variance), oleic acid (1.23%), monounsaturated fatty 

acids (MUFA) (1.26%) and UFA content (0.82% of the trait genetic variance) (Table 2). 

MARC0006531 was the marker showing the highest Bayes Factors for this SSC14 region, and 

individuals displaying the AA genotype for this locus resulted to be more prone towards 

backfat MUFA and oleic acid deposition (Table 4). The region included between 121 and 123 

Mb on SSC14 that was found in the present study to be associated with MUFA and Oleic acid 

ontent in backfat, in line with previous studies (Ros-Freixedes et al., 2016). Two candidate 

genes are currently annotated in this region: stearoyl-CoA desaturase delta 9 (SCD) and 

ELOVL elongase3 (ELOVL3). Ros-Freixedes et al. (2016) pointed out that the signal detected 

at 123 Mb (where ELOVL3 gene lies) may be the result of a long LD block containing the 

markers in the downstream region of SCD gene. The results obtained from the present 

research showed that this region on SSC14 is not only important in Duroc, but also in Large 

White.  

Additionally, three different SSC5 regions were related to porcine backfat FA composition, 

although the amount of the genetic variance explained by these regions was quite limited. 

The window located at 65-66 Mb was associated to linolenic acid (explaining the 0.48% of 

the trait genetic variance), the region ranging from 70 to 75 Mb explained the highest 

genetic variance for backfat arachidic acid content (2.57%), and the window at 104-105 Mb 

was linked to linoleic, PUFA and PUFAΩ6 amounts (0.59%, 0.59% and 0.61% of the traits 
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genetic variance, respectively) (Table 2 and Supplementary Table S3). Interestingly, 

comparing Table 2 and Supplementary Table S3 results revealed that the genomic regions 

associated to short chain fatty acids (SCFA), arachidic, arachidonic, PUFA and PUFAΩ6 

backfat contents were other than those linked to palmitic, palmitoleic, stearic, oleic and 

MUFA backfat contents. In particular, this difference was also reflected in the results 

obtained from the functional characterization of the associated regions (Supplementary 

Table S4). On one hand, the regions associated to backfat contents of MUFA, UFA, MCFA, 

LCFA, palmitic, palmitoleic and oleic acids clustered together and resulted to harbour mainly 

genes related to FA chain elongation, desaturation and de novo biosynthesis. Indeed, the 

genes mapped inside these regions were involved in the “Regulation of cholesterol 

biosynthesis by SREBP” (SEC24 Homolog B, COPII Coat Complex Component- SEC24B, Insulin 

Induced Gene 1- INSIG1- and ELOVL6 gene), the “Synthesis of very-long fatty acyl-CoAs” 

(ELOVL6 and Very Long-Chain Acyl-CoA Synthetase- ACSBG1), the “Metabolism of lipids and 

lipoproteins” (SEC24B, ELOVL6, Phospholipase A2, Group XIIA- PLA2G12A- and 

Ethanolamine-Phosphate Phospho-Lyase- ETNPPL), the “Biosynthesis of unsaturated fatty 

acids” (SCD and ELOVL6 genes) and “Fatty acid elongation” (ELOVL3 and ELOVL6) 

(Supplementary Table S4).  

On the other hand, the genomic regions associated with backfat arachidic, arachidonic acid, 

PUFA, PUFAΩ6 and SCFA showed to harbour mainly genes involved in dietary lipids 

digestion, mobilisation and transport, in pancreatic secretion, in carbohydrates metabolism 

and in the pathway regulating gastrin secretion (Table 2 and Supplementary Table S4). 

Among these genes, Amyloid beta precursor protein binding family B member 1 interacting 

protein (APBB1IP) was located on SSC10 and on SSC14 were located Phospholipase A2 group 

III (PLA2G3), Pancreatic Lipase (PNLIP), Pancreatic Lipase-Related Protein 1 (PNLIPRP1) and 

Pancreatic Lipase-Related Protein 2 (PNLIPRP2). The gene APBB1IP (also called Rap1-GTP-

Interacting Adaptor Molecule- RIAM) is known for its role in the regulation of gastrin gene 

transcription in pancreatic islet cells (Simon et al., 1994). APBB1IP plays an essential role in 

mammalian energy metabolism, as APBB1IP knockout mice were found to show severe 

conditions of obesity, glucose intolerance, insulin resistance, liver steatosis and adipose 

tissue hypertrophy (Yeung et al., 2013). The region at 138-142 Mb on SSC14 associated to 

arachidic acid harbours the genes encoding for pancreatic lipases (PNLIP, PNLIPRP1 and 
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PNLIPRP2). These pancreatic-secreted lipases have the essential role of hydrolysing 

triglycerides and making the dietary fat digestion efficient (Berton et al., 2009). The 

implication of these lipases in fat deposition was unknown a few years ago; then, in the early 

2000s the administration of a pancreatic lipases inhibitor (Orlistat) was noticed to positively 

affect obesity in treated patients (Finer et al., 2000). Since that moment, the activity of 

pancreatic lipases and their genes have been studied in medicine for their effect on obesity 

and diabetes (Drew et al., 2007), and a mutation in PNLIP gene sequence was related to 

human congenital pancreatic lipase deficiency and fat malabsorption (Behar et al., 2014). 

Hence, mutations in the coding sequence of pancreatic lipase genes may be responsible for 

different lipids absorption in pigs, influencing also backfat fatty acid synthesis and 

deposition. The results of the present study suggest that APBB1IP, PLA2G3, PNLIP, PNLIPRP1 

and PNLIPRP2 may influence backfat FA composition and represent new candidate genes for 

backfat FA composition. Interestingly, taken together, the associations found for the 

different FA are consistent with what is known in literature about FA metabolism in 

mammals. While palmitic, stearic, SFA and MUFA are known to be mainly de novo 

synthesised, linoleic and α-linoleic acids are essential FA that must be provided by the diet, 

as mammals are known to be unable to endogenously synthesise them. 

Finally, it is worth noting that the windows of markers relevantly associated with backfat 

thickness harbour genes affecting miRNAs biogenesis (P-value = 2.38E-02, with the gene 

Dicer 1, Ribonuclease Type III (DICER1)) and hemostasis (P-value = 1.49E-02) (Supplementary 

Table S4). Among the genomic windows associated to backfat thickness, the chromosomal 

region included between 64 and 67 Mb on SSC11 to date is known to harbour exclusively the 

sequences of microRNAs taking part in the miR-17-92 cluster. This cluster is composed of 

ssc-mir-20a, ssc-mir-19a, ssc-mir-18a, ssc-mir-19b-1, ssc-mir-17 and ssc-mir-92a-1, which are 

known for promoting adipocyte differentiation in mouse preadipocytes by targeting 

Rb2/p130 gene (Wang et al., 2008) and have predicted binding sites on several genes related 

to adipocyte differentiation and lipids metabolism (Table 5). In an unpublished study carried 

out on porcine backfat tissue transcriptome, we found that microRNAs of the miR-17-92 

cluster are expressed in pig adipose tissue (unpublished data). These results suggest that this 

cluster may have an important role also in swine adipocytes differentiation. The association 

found between the region harbouring these microRNAs and backfat thickness may indicate 
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that mutations in the sequence of miR-17-92 cluster could alter their affinity towards the 

target genes, affecting preadipocytes differentiation and backfat thickness. Further studies 

are needed to support this hypothesis and to prove that the markers in this region can be 

related to changes in swine differentiating preadipocytes.  

To our knowledge, this is the first study performed in Large White pigs identifying markers 

and genomic regions associated with backfat fatty acid composition. The results of the 

present research strengthen the hypothesis that both ELOVL6 and SCD genes play an 

important role in determining pig backfat fatty acid composition, but emphasise also the 

need to deepen the knowledge of genes involved in feed digestion, as they too may affect 

backfat fatty acid composition through changes in lipids absorption efficiency. 
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Table 1. Means and standard deviations of the measured traits in the study population. 

Traits Mean SD 

Palmitic acid (C16)1 22.37 1.28 

Palmitoleic acid (C16:1, cis-9) 1 1.43 0.25 

Stearic acid (C18) 1 13.29 1.76 

Oleic acid (C18:1, cis-9) 1 38.43 1.59 

Linoleic acid (C18:2, cis-9, 12) 1 16.28 2.00 

Linolenic acid (C18:3Ω3) 1 0.74 0.17 

Arachidic acid (C20) 1 0.18 0.04 

Arachidonic acid (C20:4Ω6) 1 0.23 0.05 

Docosapentaenoic acid (C22:5Ω3) 1 0.05 0.01 

Docosahexaenoic acid (C22:6Ω3) 1 0.01 0.01 

Saturated Fatty Acids (SFA) 1 37.52 2.60 

Monounsaturated Fatty Acids (MUFA) 1 43.70 1.84 

Polyunsaturated Fatty Acids (PUFA) 1 18.34 2.16 

Unsaturated Fatty Acids (UFA) 1 62.04 2.55 

Polyunsaturated Fatty Acids omega 6 (PUFAΩ6) 1 16.39 2.01 

Polyunsaturated Fatty Acids omega 3 (PUFAΩ3) 1 0.81 0.17 

Short Chain Fatty Acids (SCFA) 1 0.07 0.02 

Medium Chain Fatty Acids (MCFA) 1 25.86 1.38 

Long Chain Fatty Acids (LCFA) 1 73.63 1.41 

Backfat thickness (mm) 26.52 5.06 

Carcass weight (kg) 118.79 8.57 

1 All the fatty acids or fatty acid categories are expressed as percentage on the total fatty acids 

amount.  
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Table 2. List of the 1-Mb windows explaining over 0.5% of the genetic variance associated with pigs backfat fatty acid composition and backfat 

thickness. In the table are reported also the extended regions, composed of at least two contiguous windows associated with the same trait, 

and whose explained genetic variances were summed. The top SNP and the candidate genes lying in the associated regions are listed in the 

right part of the table.  

Traits SSC 
Region1 

(Mb) 

Genetic 

Variance2 
  ̂

3 

Extended region4  

Top SNP 
SNP Bayes 

Factor 
Candidate gene(s) Region 

(Mb) 

Genetic 

Variance5 

 

Palmitic acid (C16) 8 119-120 9.2 0.99 119-122 10.19  H3GA0025321 166.13 ELOVL6 

 
8 9-10 0.68 0.58 8-10 1.15  SIRI0000509 23.01  

 
7 52-53 0.59 0.57 

  
   ACSBG1; IDH3A 

Palmitoleic acid (C16:1, 

cis-9)  
8 119-120 1.27 0.37 119-122 3.01 

 
H3GA0025321 12.02 ELOVL6 

Stearic acid (C18) 1 77-78 0.79 0.43 75-80 2     

 
14 117-118 0.68 0.54 116-118 1.18  MARC0006531 11.71  

Oleic acid (C18:1, cis-9)  8 119-120 1.78 0.74      INRA0030422 28.15 ELOVL6 

  14 122-123 0.45 0.51 121-124 1.23    SCD; ELOVL3 

Linoleic acid (C18:2, cis-

9, 12)  
5 104-105 0.97 0.59     

 
DRGA0006379 28.94  

 
10 55-56 0.52 0.45 

  
 H3GA0030320 13.24 APBB1IP 

  7 57-58 0.39 0.52 56-58 0.75     

Linolenic acid 17 17-18 1.2 0.52      MARC0013253 19.38  
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(C18:3Ω3)  

 
9 26-27 0.78 0.59 

  
 H3GA0026788 10.76  

 
5 65-66 0.67 0.48 

  
    

Arachidic acid (C20) 5 72-73 0.9 0.38 70-75 2.57  MARC0070351 7.39 ADIPOR2 

  14 138-139 0.48 0.34 138-142 1.13 

 

  

PNLIPRP1; 

PNLIPRP2; PNLIP; 

PNLIPRP3 

Arachidonic acid 

(C20:4Ω6)  
7 53-54 0.72 0.48     

 
  ACSBG1; IDH3A 

 
9 22-23 0.65 0.42 

  
   ME3 

Docosahexaenoic acid 

(C22:6Ω3) 
14 50-51 0.4 0.16 47-52 1.65 

 
  

MTMR3; INPP5J; 

PLA2G3; PISD 

Saturated Fatty Acids 

(SFA)  
7 53-54 0.97 0.68 51-54 1.58 

 
ASGA0033717 12.90 ACSBG1; IDH3A 

  1 77-78 0.74 0.50 75-80 2.04     

Monounsaturated Fatty 

Acids (MUFA)  
7 56-57 0.51 0.62 

  

 
   

 
14 122-123 0.5 0.53 121-124 1.26    SCD; ELOVL3 

Polyunsaturated Fatty 

Acids (PUFA)  
5 104-105 0.95 0.59     

 
   

  10 55-56 0.53 0.45      H3GA0030320 10.51 APBB1IP 

Unsaturated Fatty 7 53-54 0.91 0.68 51-54 1.42  ASGA0033717 11.82 ACSBG1; IDH3A 
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Acids (UFA)  

 
1 77-78 0.73 0.49 75-80 1.98     

 
1 277-278 0.59 0.39 277-280 0.87  MARC0053473 17.67  

  14 117-118 0.49 0.56 116-118 0.82     

Polyunsaturated Fatty 

Acids omega 6 

(PUFAΩ6)  

5 104-105 0.99 0.61     

 

   

  10 55-56 0.5 0.44      H3GA0030320 10.51 APBB1IP 

Polyunsaturated Fatty 

Acids omega 3 

(PUFAΩ3)  

14 50-51 0.43 0.22 48-52 1.64 

 

  
MTMR3; INPP5J; 

PLA2G3; PISD 

Short Chain Fatty Acids 

(SCFA)  
14 50-52 0.57 0.19 46-52 2.15 

 
  

MTMR3; INPP5J; 

PLA2G3; PISD 

Medium Chain Fatty 

Acids (MCFA)  
8 119-120 70.24 1.00 

  

 
H3GA0025321 >1000 ELOVL6 

Long Chain Fatty Acids 

(LCFA)  
8 119-120 70.38 1.00     

 
H3GA0025321 >1000 ELOVL6 

Backfat thickness  7 15-16 1.38 0.63 
10-12; 15-

16 
2.02 

 
H3GA0020080 42.27  

 11 65-66 17 0.53 0.39     miR-17-92 cluster 

 
7 122-123 0.91 0.60 

  
 ALGA0045097 17.67 DICER1 

1 Windows positions referred to Sus scrofa assembly Build 10.2, expressed in Mb. 
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2 Proportion of the collective genetic variance explained by the markers in the window on the total genetic variance of the trait. 

3 Posterior probability of inclusion in the model for the markers in the window. 

4 Extended region comprising contiguous windows explaining at least 0.5% of the genetic variance. 

 5 The proportion of genetic variance explained by the markers placed in the neighbouring windows of the extended regions. 

Docosapentaenoic acid (C22:5Ω3) is not reported in the table because no marker window explained at least 0.5% of the genetic variance.  
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Table 3. Estimated differences for the different genotypes of the marker H3GA0025321 and 1 

probability that the difference is lower than zero (P(<0)) for the traits resulted to be 2 

associated with the marker from the GWA study. 3 

Traits 
AA- AC  AC- CC  AA- CC 

Mean P(<0)  Mean P(<0)  Mean P(<0) 

Palmitic acid (C16) 0.86 0.00  0.11 0.36  0.97 0.00 

Stearic acid (C18) -0.27 0.96  -0.78 0.95  -1.06 0.99 

Palmitoleic acid (C16:1, cis-

9) 
0.14 0.00  0.06 0.18  0.20 0.00 

Oleic acid (C18:1, cis-9) -0.52 1.00  0.33 0.20  -0.18 0.68 

Medium chain fatty acids 

(MCFA) 
1.04 0.00  0.11 0.35  1.14 0.00 

Long chain fatty acids (LCFA) -1.00 1.00  -0.24 0.78  -1.24 1.00 

 4 

  5 
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Table 4. Estimated differences for the different genotypes of the marker MARC0006531 and 

probability that the difference is lower than zero (P(<0)) for the traits resulted to be 

associated with the marker from the GWA study. 

Traits 
AA- AC  AC- CC  AA- CC 

Mean P(<0)  Mean P(<0)  Mean P(<0) 

Stearic acid (C18) -0.37 0.99  -0.57 1.00  -0.94 1.00 

Oleic acid (C18:1, cis-9) 0.13 0.16  0.30 0.01  0.43 0.00 

Saturated fatty acids (SFA) -0.43 0.98  -0.67 1.00  -1.09 1.00 

Monounsaturated fatty 

acids (MUFA) 
0.18 0.10  0.48 0.00  0.67 0.00 
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Table 5. List of the miRNAs mapped in the region on chromosome 11 associated with backfat thickness. 

Region on SSC11 included between 64 and 67 Mb associated with backfat thickness 

miRNAs Ensembl Gene ID Ensembl Transcript ID 
miRNA predicted target genes related to lipid 

metabolism 
PicTar score 

ssc-mir-20a ENSSSCG00000019883 ENSSSCT00000021478 

Very low density lipoprotein receptor (VLDLR) 7.35 

Monoglyceride lipase (MGLL) 2.58 

Factor for adipocyte differentiation 104 (FAD104) 1.14 

ssc-mir-19a ENSSSCG00000019897 ENSSSCT00000021492 

Acyl-CoA synthetase long-chain family member 4 

(ACSL4) 

10.95 

Low density lipoprotein-related protein 2 (LRP2) 7.44 

Lysocardiolipin acyltransferase (LYCAT) 1.62 

#ssc-mir-18a ENSSSCG00000019535 ENSSSCT00000021130 

Estrogen receptor 1 (ESR1) 6.03 

Prostaglandin F2 receptor negative regulator 

(PTGFRN) 

4.18 

§ssc-mir-19b-1 ENSSSCG00000019902 ENSSSCT00000021497 

Low density lipoprotein-related protein 2 (LRP2) 7.44 

Adiponectin receptor 2 (ADIPOR2) 2.61 

Lysocardiolipin acyltransferase (LYCAT) 1.62 

Factor for adipocyte differentiation 104 (FAD104) 1.49 

*ssc-mir-17 ENSSSCG00000018617 ENSSSCT00000020212 
Very low density lipoprotein receptor (VLDLR) 7.35 

Factor for adipocyte differentiation 104 (FAD104) 1.26 

+ssc-mir-92a-1 ENSSSCG00000018681 ENSSSCT00000020276 Factor for adipocyte differentiation 104 (FAD104) 4.83 
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Monoglyceride lipase (MGLL) 3.53 

All the predicted sites were obtained using the corresponding hsa-mir, and using on PicTar the algorithm for the predictions in vertebrates and choosing the 

dataset “target predictions for all human microRNAs based on conservation in mammals”.  

# Results are referred to hsa-mir-18. 

§ Results are referred to hsa-mir-19b. 

* Results are referred to hsa-mir-17-5p, previously known as hsa-mir-17. 

+ Results are referred to hsa-mir-92. 
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Supplementary Table S1. Comparison between the regions obtained from the present study and the QTLs reported in literature for the same 

regions or in nearby chromosomal regions. 

GWA results  QTLs in literature1 

SSC2 Region (Mb) Trait  Trait Region (Mb) Literature 

1 18-19§ Linolenic acid (C18:3Ω3)  - - - 

1 75-80 
Stearic acid (C18), Saturated Fatty Acids (SFA), 

Unsaturated Fatty Acids (UFA) 
 

Saturated fatty acid 

content 
81.4 

Ramayo-Caldas et al., 

2012 

1 277-280 Unsaturated Fatty Acids (UFA), Palmitic acid (C16)  Oleic acid content 280.5-280.6 Sanchez et al., 2007 

2 107-108§ Palmitoleic acid (C16:1, cis-9)  - - - 

3 32-33§ Linolenic acid (C18:3Ω3)  - - - 

5 65-66§ Linolenic acid (C18:3Ω3)  - - - 

5 70-75 Arachidic acid (C20)  Arachidic acid content 69; 77 Yang et al., 2013 

5 104-105 

Linoleic acid (C18:2, cis-9, 12), Polyunsaturated Fatty 

Acids (PUFA), Polyunsaturated Fatty Acids omega 6 

(PUFAΩ6) 

 Average Feeding rate 107.5 Do et al., 2013 

7 5-6 Stearic acid (C18), Unsaturated Fatty Acids (UFA)  Linoleic acid content 8.8-13.8 Kim et al., 2006 

7 10-16 Backfat thickness  Average backfat 9.7-14.8 Paszek et al., 2001 
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thickness 

7 51-54 

Palmitic acid (C16), Stearic acid (C18), Arachidonic acid 

(C20:4Ω6), Saturated Fatty Acids (SFA), Unsaturated 

Fatty Acids (UFA) 

 

Arachidonic acid 

content; Cis-11-

Eicosenoic acid content 

50.8; 52.2 Yang et al., 2013 

7 56-58 
Monounsaturated Fatty Acids (MUFA), Linoleic acid 

(C18:2, cis-9, 12) 
 Linoleic acid content 49.2-49.4 Guo et al., 2009 

7 122-123 Backfat thickness  
Average backfat 

thickness 
106.8-120.7 Kim et al., 2005 

8 8-10 Palmitic acid (C16), Unsaturated Fatty Acids (UFA)  Palmitic acid content 0.8-6.7 Uemoto et al., 2012 

8 33-34 Stearic acid (C18)  
Average backfat 

thickness 
33-34 Jiao et al., 2014 

8 119-122 

Palmitic acid (C16), Palmitoleic acid (C16:1, cis-9), Oleic 

acid (C18:1, cis-9), Medium Chain Fatty Acids (MCFA), 

Long Chain Fatty Acids (LCFA) 

 

Palmitoleic acid 

content; Oleic acid 

content and Palmitic 

acid content 

114.2-122.3; 

117.4 

Muñoz et al., 2013; 

Revilla et al., 2014 

8 141-142 Unsaturated Fatty Acids (UFA)  Palmitoleic acid content 72-139 Clop et al., 2003 

9 22-23§ Arachidonic acid (C20:4Ω6) 
 

- - 
- 
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9 26-27 Linolenic acid (C18:3Ω3)  Palmitoleic acid content 24.6-71.4 Uemoto et al., 2012 

9 28-29 
Oleic acid (C18:1, cis-9), Monounsaturated Fatty Acids 

(MUFA) 
 

Palmitoleic acid content 24.6-71.4 Uemoto et al., 2012 

10 10-11 Palmitic acid (C16)  Palmitic acid content 5.9-13.9 Uemoto et al., 2012 

10 55-56 

Linoleic acid (C18:2, cis-9, 12), Polyunsaturated Fatty 

Acids (PUFA), Polyunsaturated Fatty Acids omega 6 

(PUFAΩ6) 

 Oleic acid content 61.5 Sanchez et al., 2007 

11 7-8 Linolenic acid (C18:3Ω3)  Linoleic acid content 7.8 
Ramayo-Caldas et al., 

2012 

11 65-66 Backfat thickness  Backfat at rump 68.5 Fontanesi et al., 2012 

13 167-174 Short Chain Fatty Acids (SCFA)  Cholesterol level 185.4-206.7 Yoo et al., 2012 

14 10-11§ Monounsaturated Fatty Acids (MUFA)  - - - 

14 46-52 

Short Chain Fatty Acids (SCFA), Docosahexaenoic acid 

(C22:6Ω3), Polyunsaturated Fatty Acids omega 3 

(PUFAΩ3) 

 
Homolonolenic acid content 

(C20:3) 

45 Yang et al., 2013 

14 116-124 
Stearic acid (C18), Oleic acid (C18:1, cis-9), 

Unsaturated Fatty Acids (UFA), Monounsaturated 
 

Monounsaturated fatty acid 

content and Stearic acid 

116.6-116.7; 

120.2 

Sanchez et al., 2007; 

Yang et al., 2013 

http://www.animalgenome.org/cgi-bin/QTLdb/SS/qtrait?trait_ID=533
http://www.animalgenome.org/cgi-bin/QTLdb/SS/qtrait?trait_ID=533
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Fatty Acids (MUFA) content; 

Oleic acid content 

14 138-139 Arachidic acid (C20)  Arachidic acid content 121-121.5 Zhang et al., 2016 

16 0-3 Backfat thickness  Backfat above muscle dorsi 0.3-67.6 Liu et al., 2008 

16 36-37 Arachidonic acid (C20:4Ω6)  Arachidic acid content 38.8-38.9 Guo et al., 2009 

17 17-18 Linolenic acid (C18:3Ω3)  
Eicosenoic acid to 

eicosanoic acid ratio 
22.5 

Ramayo-Caldas et al., 

2012 

18 3-4 Palmitic acid (C16)  Palmitic acid content 5.7-22.9 Uemoto et al., 2012 

18 41-42 Oleic acid (C18:1, cis-9)  Palmitic acid content 46.7-47.7 
Quintanilla et al., 

2011 

1 The reported QTLs were obtained from QTLdb (url: http://www.animalgenome.org/cgi-bin/QTLdb/index). 

2 SSC stands for Sus scrofa chromosome. 

§ For these regions there are not QTLs located in the neighbourhood or in the same genomic region reported in literarture. 
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Supplementary Table S2. Markers most relevantly associated with pigs backfat fatty acids composition listed on the basis of their genomic 

position. 

SSC Nucleotide Position1 Marker Trait Genetic Variance2   ̂
3 BFi

4 

1 18,577,487 ASGA0101644 Linolenic acid (C18:3Ω3)  1.21E-05 0.21 17.24 

1 277,975,238 MARC0053473 Saturated Fatty Acids (SFA)  2.45E-03 0.23 19.36 

   
Unsaturated Fatty Acids (UFA)  1.96E-03 0.21 17.67 

5 65,687,961 MARC0035523 Linolenic acid (C18:3Ω3)  4.29E-06 0.13 10.13 

5 71,056,487 MARC0070351 Arachidic acid (C20)  3.24E-07 0.10 7.39 

5 104,959,696 DRGA0006379 Linoleic acid (C18:2, cis-9, 12)  4.18E-03 0.35 28.94 

   
Polyunsaturated Fatty Acids (PUFA)  4.23E-03 0.33 26.99 

   
Polyunsaturated Fatty Acids omega 6 (PUFAΩ6)  4.08E-03 0.34 28.34 

7 5,620,893 ALGA0038213 Stearic acid (C18)  6.66E-04 0.20 16.32 

   
Saturated Fatty Acids (SFA)  2.27E-03 0.24 20.61 

   
Unsaturated Fatty Acids (UFA)  2.49E-03 0.25 21.87 

7 10,506,639 ALGA0038542 Backfat thickness  2.05E-03 0.14 10.56 

7 11,385,909 ASGA0031202 Backfat thickness  2.83E-03 0.16 12.35 
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7 15,108,730 H3GA0020080 Backfat thickness  3.41E-02 0.39 42.27 

7 51,426,179 ALGA0041370 Saturated Fatty Acids (SFA)  8.84E-04 0.15 11.74 

7 53,685,735 ASGA0033717 Stearic acid (C18)  3.67E-04 0.14 10.83 

   
Saturated Fatty Acids (SFA)  1.29E-03 0.16 12.90 

   
Unsaturated Fatty Acids (UFA)  9.76E-04 0.15 11.82 

7 122,615,348 ALGA0045097 Backfat thickness  6.58E-03 0.21 17.67 

7 122,628,410 ASGA0036491 Backfat thickness  5.27E-03 0.20 16.07 

8 8,826,922 ASGA0037719 Palmitic acid (C16) 6.40E-04 0.21 17.61 

   
Saturated Fatty Acids (SFA)  7.62E-04 0.15 11.45 

   
Unsaturated Fatty Acids (UFA)  7.85E-04 0.15 11.72 

8 9,494,068 DRGA0008295 Palmitic acid (C16) 3.16E-04 0.16 12.34 

8 33,282,771 H3GA0024720 Stearic acid (C18)  7.43E-04 0.20 16.55 

8 119,727,823 SIRI0000509 Palmitic acid (C16) 2.48E-03 0.26 23.01 

   
Oleic acid (C18:1, cis-9)  9.47E-04 0.21 14.62 

8 119,851,261 INRA0030422 Palmitic acid (C16) 7.93E-04 0.16 12.09 

   
Oleic acid (C18:1, cis-9)  3.35E-03 0.34 28.15 
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8 119,887,465 H3GA0025321 Palmitic acid (C16) 3.59E-02 0.72 166.13 

   
Palmitoleic acid (C16:1, cis-9)  7.96E-05 0.18 12.02 

   
Oleic acid (C18:1, cis-9)  4.59E-04 0.16 10.05 

   
Medium Chain Fatty Acids (MCFA)  1.61E-01 1.00 > 1000 

   
Long Chain Fatty Acids (LCFA)  1.55E-01 1.00 > 1000 

8 121,743,169 ALGA0049269 Palmitic acid (C16) 8.69E-04 0.22 18.39 

8 121,829,267 ASGA0039683 Palmitic acid (C16) 3.12E-04 0.14 10.73 

8 140,400,180 ASGA0102346 Backfat thickness  4.41E-03 0.17 13.84 

9 22,748,295 ASGA0099198 Arachidonic acid (C20:4Ω6)  9.83E-07 0.17 13.84 

9 26,225,411 H3GA0026788 Linolenic acid (C18:3Ω3)  4.45E-06 0.14 10.76 

10 10,036,337 MARC0022071 Palmitic acid (C16) 3.02E-04 0.17 13.01 

10 54,960,156 ALGA0105237 Palmitic acid (C16) 1.79E-04 0.14 10.32 

10 55,858,372 H3GA0030320 Linoleic acid (C18:2, cis-9, 12)  1.03E-03 0.20 13.24 

   
Polyunsaturated Fatty Acids (PUFA)  1.03E-03 0.19 12.57 

   
Unsaturated Fatty Acids (UFA)  5.50E-04 0.14 10.51 

   
Polyunsaturated Fatty Acids omega 6 (PUFAΩ6)  1.00E-03 0.19 13.02 
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11 7,320,581 ASGA0049556 Linolenic acid (C18:3Ω3)  7.33E-06 0.18 13.98 

11 63,662,080 M1GA0015159 Linolenic acid (C18:3Ω3)  6.28E-06 0.16 12.85 

11 65,750,596 INRA0036865 Backfat thickness  7.18E-03 0.20 16.79 

14 123,733,166 MARC0006531 Stearic acid (C18)  4.50E-04 0.15 11.71 

16 665,251 ASGA0071831 Backfat thickness  1.98E-03 0.14 10.43 

16 864,816 ASGA0071832 Backfat thickness  7.03E-03 0.22 18.35 

16 81,266,338 MARC0078879 Saturated Fatty Acids (SFA)  1.87E-03 0.22 18.35 

   
Monounsaturated Fatty Acids (MUFA)  3.66E-04 0.15 9.55 

   
Unsaturated Fatty Acids (UFA)  5.85E-04 0.14 11.12 

17 17,548,504 INRA0052808 Linolenic acid (C18:3Ω3)  1.36E-05 0.21 17.63 

17 17,686,439 MARC0013253 Linolenic acid (C18:3Ω3)  1.50E-05 0.23 19.38 

18 13,833,809 ASGA0078689 Palmitic acid (C16) 1.79E-04 0.15 11.28 

18 13,900,864 ASGA0088995 Palmitic acid (C16) 2.46E-04 0.16 12.89 

18 141,909,500 ASGA0102347 Oleic acid (C18:1, cis-9)  6.46E-04 0.18 11.93 

1 Marker positions referred to Sus scrofa assembly Build 10.2. 

2 Proportion of the genetic variance explained by the marker on the total genetic variance of the trait. 
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3 Posterior probability of the marker inclusion in the model iterations. 

4 BFi stands for the Bayes Factor of the marker. 

Docosapentaenoic acid (C22:5Ω3), docosahexaenoic acid (C22:6Ω3), polyunsaturated fatty acids omega 3 (PUFAΩ3) and short chain fatty acids (SCFA) are 

not reported in the table because no marker showed relevant association with these fatty acids (Bayes Factors were less than or equal to 3.2).  
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Supplementary Table S3. List of the 1Mb windows associated with pigs backfat fatty acids composition explaining at least 0.5% of the trait 

genetic variance. In the table are reported also the extended regions, composed of at least two contiguous windows associated with the same 

trait, and whose explained genetic variances were summed.  

Traits SSC 
Region1 

(Mb) 

SNPs in 

the 

region 

Genetic 

Variance2 
  ̂

3 

Extended region4 

Region 

(Mb) 

Genetic 

Variance5 

Palmitic acid (C16) 8 119-120 15 9.2 0.99 119-122 10.19 

 
8 9-10 26 0.68 0.58 8-10 1.15 

 
7 52-53 31 0.59 0.57 

  

 
10 10-11 26 0.57 0.59 

  

 
1 279-280 28 0.57 0.59 

  
  18 3-4 15 0.57 0.50     

Palmitoleic acid (C16:1, cis-9)  8 119-120 15 1.27 0.37 119-122 3.01 

  2 107-108 24 0.47 0.23 107-109 0.79 

Stearic acid (C18) 7 53-54 31 1.01 0.65     

 
8 33-34 22 0.84 0.52 

  

 
1 77-78 22 0.79 0.43 75-80 2 

 
14 117-118 25 0.68 0.54 116-118 1.18 

  7 5-6 31 0.57 0.51     

Oleic acid (C18:1, cis-9)  8 119-120 15 1.78 0.74     
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9 28-29 32 0.6 0.64 

  

 
18 41-42 22 0.57 0.52 

  
  14 122-123 23 0.45 0.51 121-124 1.23 

Linoleic acid (C18:2, cis-9, 12)  5 104-105 21 0.97 0.59     

 
10 55-56 15 0.52 0.45 

  
  7 57-58 28 0.39 0.52 56-58 0.75 

Linolenic acid (C18:3Ω3)  17 17-18 10 1.2 0.52     

 
9 26-27 30 0.78 0.59 

  

 
5 65-66 25 0.67 0.48 

  

 
3 32-33 14 0.61 0.37 

  

 
11 7-8 23 0.6 0.45 

  
  1 18-19 20 0.57 0.37     

Arachidic acid (C20)  5 72-73 19 0.9 0.38 70-75 2.57 

  14 138-139 31 0.48 0.34 138-142 1.13 

Arachidonic acid (C20:4Ω6)  7 53-54 31 0.72 0.48     

 
9 22-23 27 0.65 0.42 

  
  16 36-37 25 0.56 0.39     

Docosahexaenoic acid (C22:6Ω3) 14 50-51 29 0.4 0.16 47-52 1.65 

Saturated Fatty Acids (SFA)  7 53-54 31 0.97 0.68 51-54 1.58 

  1 77-78 22 0.74 0.50 75-80 2.04 

Monounsaturated Fatty Acids (MUFA)  9 28-29 32 0.72 0.70     
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14 10-11 28 0.51 0.57 

  

 
7 56-57 38 0.51 0.62 

  
  14 122-123 23 0.5 0.53 121-124 1.26 

Polyunsaturated Fatty Acids (PUFA)  5 104-105 21 0.95 0.59     

  10 55-56 15 0.53 0.45     

Unsaturated Fatty Acids (UFA)  7 53-54 31 0.91 0.68 51-54 1.42 

 
1 77-78 22 0.73 0.49 75-80 1.98 

 
8 9-10 26 0.62 0.60 

  

 
7 5-6 31 0.6 0.59 

  

 
1 277-278 12 0.59 0.39 277-280 0.87 

 
8 141-142 31 0.51 0.60 

  
  14 117-118 25 0.49 0.56 116-118 0.82 

Polyunsaturated Fatty Acids omega 6 

(PUFAΩ6)  
5 104-105 21 0.99 0.61     

  10 55-56 15 0.5 0.44     

Polyunsaturated Fatty Acids omega 3 

(PUFAΩ3)  
14 50-51 29 0.43 0.22 48-52 1.64 

Short Chain Fatty Acids (SCFA)  14 50-52 29 0.57 0.19 46-52 2.15 

  13 173-174 13 0.34 0.08 167-174 1.21 

Medium Chain Fatty Acids (MCFA)  8 119-120 15 70.24 1.00 
  

Long Chain Fatty Acids (LCFA)  8 119-120 15 70.38 1.00     
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Backfat thickness  7 15-16 25 1.38 0.63 
10-12;15-

16 
2.02 

 
7 122-123 15 0.91 0.60 

  

 
16 0-1 18 0.69 0.50 0-3 0.92 

  11 65-66 17 0.53 0.39     

1 Windows positions referred to Sus scrofa assembly Build 10.2, expressed in Mb. 

2 Proportion of the collective genetic variance explained by the markers in the window on the total genetic variance of the trait. 

3 Posterior probability of inclusion in the model iterations for the markers in the window. 

4 Extended region comprising contiguous windows explaining at least 0.5% of the genetic variance. 

 5 The proportion of genetic variance explained by the markers placed in the neighbouring windows of the extended regions. 

Docosapentaenoic acid (C22:5Ω3) is not reported in the table because no marker window explained at least 0.5% of the genetic variance.  
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Supplementary Table S4. List of the pathways in which are involved the genes located in the regions relevantly associated with the traits. 

Trait Pathway P-value 
Adjusted 

P-value 
Z-score 

Combined 

score 
Genes 

Palmitic acid (C16) 

Acetylcholine Binding And 

Downstream Events 
4.52E-05 2.51E-03 -2.32 13.88 

CHRNA3;CHRNB; 

CHRNA5 

Regulation of cholesterol 

biosynthesis by SREBP (SREBF) 
1.82E-03 6.73E-02 -1.90 5.14 SEC24B; INSIG1;ELOVL6 

Synthesis of very long-chain fatty 

acyl-CoAs 
4.14E-03 1.25E-01 -2.05 4.25 ACSBG1; ELOVL6 

Palmitoleic acid (C16:1, cis-9)  

Metabolism of lipids and 

lipoproteins 
2.08E-02 2.04E-01 -2.18 3.47 

SEC24B; ELOVL6; 

PLA2G12A; ETNPPL 

Regulation of cholesterol 

biosynthesis by SREBP (SREBF) 
3.94E-03 2.04E-01 -1.97 3.13 SEC24B; ELOVL6 

Stearic acid (C18) 

Biosynthesis of amino acids 2.01E-03 2.03E-01 -1.77 2.83 
GOT1; PGAM1; 

ALDH18A1; IDH3A 

Arginine and proline metabolism 5.77E-03 2.52E-01 -1.86 2.56 
GOT1; ALDH18A1; 

HOGA1 

B cell receptor signaling pathway 1.55E-02 2.61E-01 -1.83 2.46 CHUK; BLNK; PIK3AP1 

PPAR signaling pathway 1.34E-02 2.61E-01 -1.59 2.14 SCD; ACSBG1; SORBS1 

Fatty acid metabolism 4.68E-02 4.30E-01 -1.41 1.19 SCD; ACSBG1 
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Oleic acid (C18:1, cis-9)  

Biosynthesis of unsaturated fatty 

acids 
8.26E-03 3.61E-01 -1.59 1.62 SCD; ELOVL6 

Fatty acid elongation 9.60E-03 3.61E-01 -1.41 1.44 ELOVL3; ELOVL6 

Linoleic acid (C18:2, cis-9, 12)  

Myogenesis 6.22E-04 3.89E-02 -2.41 7.83 MYF6; MYF5 

CDO in myogenesis 6.22E-04 3.89E-02 -2.40 7.78 MYF6; MYF5 

Neurotransmitter Release Cycle 1.82E-03 7.56E-02 -1.97 5.08 GAD2; LIN7A 

Developmental Biology 6.53E-02 3.64E-01 -2.21 2.23 APBB1IP; MYF6; MYF5 

Linolenic acid (C18:3Ω3)  

Cytokine Signaling in Immune 

system 
1.32E-02 3.39E-01 -2.38 2.57 

GRIN2A; CIITA; SOCS1; 

TNFRSF17; TAB2; 

NUP43 

Amino acid synthesis and 

interconversion (transamination) 
3.35E-03 3.39E-01 -2.26 2.45 FOLH1B; NAALAD2 

Cellular responses to stress 2.99E-02 3.39E-01 -2.26 2.45 
PHC1; HSPH1; NOX4; 

NUP43 

Metabolism of amino acids and 

derivatives 
2.23E-02 3.39E-01 -2.23 2.41 

IYD; FOLH1B; 

NAALAD2; TYR 

Immune System 1.95E-02 3.39E-01 -2.20 2.38 

CIITA; GRIN2A; SOCS1; 

KLRB1; TNFRSF17; 

TAB2; NUP43; CLEC2D; 

ULBP1; KLRG1 

Arachidic acid (C20)  Digestion of dietary lipid 6.59E-08 8.37E-06 -1.94 22.68 PNLIPRP1; PNLIPRP2; 
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PNLIPRP3; PNLIP 

Lipid digestion, mobilization, and 

transport 
1.25E-05 7.94E-04 -1.82 12.98 

PNLIPRP1; PNLIPRP2; 

PNLIPRP3; PNLIP 

NCAM1 interactions 2.68E-03 1.14E-01 -2.03 4.41 GFRA1; CACNA1C 

Metabolism of lipids and 

lipoproteins 
3.91E-02 3.23E-01 -2.13 2.41 

PNLIPRP1; PNLIPRP2; 

PNLIP; PNLIPRP3 

Glycerolipid metabolism 5.50E-06 3.25E-04 -1.97 15.81 
PNLIPRP1; PNLIPRP2; 

PNLIPRP3; PNLIP 

Fat digestion and absorption 7.96E-05 2.35E-03 -1.82 11.01 
PNLIPRP1; PNLIPRP2; 

PNLIP 

Pancreatic secretion 8.83E-04 1.74E-02 -1.67 6.78 
PNLIPRP1; PNLIPRP2; 

PNLIP 

Arachidonic acid (C20:4Ω6)  

Cholinergic synapse 3.67E-02 2.46E-01 -1.98 2.77 CHRNB4; CHRNA3 

Neuroactive ligand-receptor 

interaction 
6.02E-03 2.35E-01 -1.89 2.74 

CHRNB4; CHRNA3; 

CHRNA5; GZMA 

Carbon metabolism 3.79E-02 2.46E-01 -1.58 2.22 ME3; IDH3A 

Fatty acid degradation 1.15E-01 3.13E-01 -1.33 1.55 ACSBG1 

Arachidonic acid metabolism 1.57E-01 3.13E-01 -1.29 1.50 GPX8 

Docosahexaenoic acid 

(C22:6Ω3) 
Phospholipid metabolism 1.28E-04 1.24E-02 -1.95 8.58 

MTMR3; INPP5J; 

PLA2G3;PISD 

 
Metabolism of lipids and 2.08E-02 1.39E-01 -2.13 4.21 MTMR3;INPP5J; 
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lipoproteins PLA2G3; PISD 

Saturated Fatty Acids (SFA)  

Neuroactive ligand-receptor 

interaction 
5.59E-04 1.73E-02 -1.89 7.68 

CHRNB4; CHRNA3; 

CHRNA5; GRIK2; 

MCHR2 

Fatty acid degradation 1.09E-01 2.82E-01 -1.38 1.75 ACSBG1 

Fatty acid biosynthesis 3.53E-02 2.59E-01 -1.19 1.61 ACSBG1 

Monounsaturated Fatty Acids 

(MUFA)  

Dectin-1 mediated noncanonical 

NF-kB signaling 
1.97E-02 2.88E-01 -2.24 2.79 BTRC; NFKB2 

Organelle biogenesis and 

maintenance 
2.55E-02 2.88E-01 -2.15 2.68 

ACTR1A; GBF1; PPRC1; 

MRPL43 

Fatty acid and ketone body 

metabolism 
1.74E-01 4.70E-01 -1.37 1.04 ELOVL3; MED17 

Linoleic acid (LA) metabolism 3.06E-02 2.88E-01 -0.82 1.02 ELOVL3 

Metabolism of lipids and 

lipoproteins 
1.91E-01 4.81E-01 -1.33 0.97 

STARD5; ELOVL3; 

MED17; CYP17A1 

Polyunsaturated Fatty Acids 

(PUFA) and Polyunsaturated 

Fatty Acids omega 6 

(PUFAΩ6)  

Myogenesis 2.40E-04 1.01E-02 -2.41 11.09 MYF6; MYF5 

CDO in myogenesis 2.40E-04 1.01E-02 -2.40 11.02 MYF6; MYF5 

Insulin receptor signalling cascade 2.04E-01 3.13E-01 -2.14 2.49 APBB1IP 

Gastrin-CREB signalling pathway 

via PKC and MAPK 
2.93E-01 3.41E-01 -1.93 2.07 APBB1IP 

Unsaturated Fatty Acids (UFA)  Acetylcholine Binding And 9.12E-05 5.32E-03 -2.32 12.14 CHRNA3; CHRNB4; 
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Downstream Events CHRNA5 

Presynaptic nicotinic acetylcholine 

receptors 
6.15E-05 5.32E-03 -2.27 11.89 

CHRNA3; CHRNB4; 

CHRNA5 

Fatty Acyl-CoA Biosynthesis 2.05E-01 5.97E-01 -0.90 0.46 ACSBG1 

Synthesis of very long-chain fatty 

acyl-CoAs 
1.11E-01 5.97E-01 -0.84 0.43 ACSBG1 

Polyunsaturated Fatty Acids 

omega 3 (PUFAΩ3)  

Phospholipid metabolism 7.49E-06 7.27E-04 -1.95 14.13 
MTMR3; PITPNB; 

INPP5J; PLA2G3; PISD 

Glycerophospholipid biosynthesis 7.76E-04 1.88E-02 -1.87 7.42 PITPNB; PLA2G3; PISD 

Metabolism of lipids and 

lipoproteins 
4.76E-03 6.60E-02 -2.18 5.93 

MTMR3; PITPNB; 

INPP5J; PLA2G3; PISD 

Metabolism of lipids and 

lipoproteins 
4.76E-03 6.60E-02 -2.18 5.93 

MTMR3;PITPNB;INPP5J

;PLA2G3;PISD 

Short Chain Fatty Acids (SCFA)  

Phospholipid metabolism 7.93E-05 9.67E-03 -1.95 9.07 
MTMR3; PITPNB; 

INPP5J; PLA2G3; PISD 

Glycerophospholipid biosynthesis 2.95E-03 7.19E-02 -1.86 4.89 PITPNB; PLA2G3; PISD 

Metabolism of lipids and 

lipoproteins 
3.33E-02 2.64E-01 -2.13 2.83 

MTMR3; PITPNB; 

INPP5J; PLA2G3; PISD 

Metabolism of carbohydrates 5.51E-01 6.35E-01 -1.41 0.64 SLC5A1 

Backfat thickness  

  

MicroRNA (miRNA) biogenesis 2.38E-02 1.75E-01 -2.23 3.90 DICER1 

Hemostasis 1.49E-02 1.75E-01 -2.12 3.71 SERPINA1; ITPK1; 
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SERPINA5 

In grey are reported the pathways obtained from Reactome, the remaining were obtained from KEGG (in white). 

In this table are not reported the Medium Chain Fatty Acids and the Long Chain Fatty Acids categories as their amounts in backfat showed in particular to be 

associated with three markers already indicated in previous studies to be in linkage disequilibrium with mutations in the promoter region of the ELOVL Fatty 

Acid Elongase 6. 

Docosapentaenoic acid (C22:5Ω3) is not reported in the table because no marker window explained at least 0.5% of the genetic variance.  
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Chapter 2: Transcriptional profiling of subcutaneous adipose tissue in 

Italian Large White pigs divergent for backfat thickness. 
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Summary 

Fat deposition is a widely studied trait in pigs for the implications with animal growth 

efficiency, technological and nutritional characteristics of meat products, but the global 

framework of the biological and molecular processes regulating fat deposition in pigs is still 

incomplete. This paper describes the backfat tissue transcription profile in Italian Large 

White pigs and reports genes differentially expressed between fat and lean animals 

according to RNA-seq data. The backfat transcription profile was characterized by the 

expression of 23,483 genes of which 54.1% were represented by known genes. Of 63,418 

expressed transcripts, about 80% were non previously annotated isoforms. By comparing 

the expression level of fat vs. lean pigs we detected 86 robust differentially expressed 

transcripts, 72 more expressed (e.g. ACP5, BCL2A1, CCR1, CD163, CD1A, EGR2, ENPP1, 

GPNMB, INHBB, LYZ, MSR1, OLR1, PIK3AP1, PLIN2, SPP1, SLC11A1, STC1) and 14 less 

expressed (e.g. ADSSL1, CDO1, DNAJB1, HSPA1A, HSPA1B, HSPA2, HSPB8, IGFBP5, OLFML3) 

in fat pigs. The main functional categories enriched in differentially expressed genes were 

immune system process, response to stimulus, cell activation, and skeletal system 

development, for the overexpressed, unfolded protein binding and stress response, for the 

under-expressed genes, which include five heat shock proteins. Adipose tissue alterations 

and impaired stress response are linked to inflammation and, in turn, to adipose tissue 

secretory activity similarly to what is observed in human obesity. Our results open the 

opportunity to identify biomarkers of carcass fat traits to improve pig production chain and 

to identify genetic factors that regulate the observed differential expression. 

 

 

Introduction 

Backfat deposition and fat traits are among the most important characters studied in pigs, 

due to their strong relation with human nutrition of pig products and for the technological 

characteristics of high quality Protected Designation of Origin (PDO) dry-cured hams. The 

amount of fat laid on the external part of the pig body (subcutaneous fat or backfat) is of 

extreme importance for growth performances, as the lesser is the deposed fat, the better 

the growth performances. Regarding technological aspects related to the dry-cured high 
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quality products and meat industry, an adequate layer of fat is required for the seasoning 

process of PDO products, like dry cured hams (Bosi and Russo, 2004; Čandek-Potokar and 

Škrlep, 2012).  

During the last decade, pig transcriptomic data have been obtained initially by expressed 

sequence tag sequencing (Mikawa et al., 2004; Uenishi et al., 2004; Chen et al., 2006; 

Gorodkin et al., 2007; Uenishi et al., 2007) and microarrays (Hornshøj et al., 2007; Ferraz et 

al., 2008; Moon et al., 2009), which allowed the comparison of gene expression level in 

several pig tissues. More recently, the RNA-seq approach was used to compare the 

transcription profile of different pig fat tissues or different pig breeds (Chen et al., 2011; Li 

et al., 2012; Corominas et al., 2013; Jiang et al., 2013; Zhou et al., 2013; Sodhi et al., 2014; 

Toedebush et al., 2014; Wang et al. 2014). The differentially expressed genes (DEG) 

reported in these studies are useful to investigate the metabolic pathways activated by or 

associated with an increased fat deposition in pig body. However, the large amount of data 

produced and the results reported in literature are often hardly comparable because of 

differences in the studied breeds; heterogeneous animals’ ages; and fat deposition stages. 

Moreover, these researches identified several new genes and transcripts not reported in 

swine or other species. To date, the global framework of the biological processes regulating 

backfat deposition in pigs is still incomplete, and literature is poor of studies carried out on a 

homogeneous sample of individuals of the same breed reared on the same environmental 

conditions. 

The objective of this research was to investigate the transcription profile of Italian Large 

White (ILW) pig backfat tissue and to compare the transcriptome of animals reared in the 

same herd and farming conditions and showing high (FAT) and low (LEAN) backfat thickness. 

Moreover a first functional characterization of DEGs has been obtained to provide new 

insights on genes, pathways and processes influencing the divergent aptitude of 

subcutaneous adipose tissue deposition in ILW pigs. 

 

Materials and methods 

Samples collection and RNA extraction 

We sampled twenty individuals from a purebred population of 949 ILW sib-tested pigs 

provided by the Italian National Association of Pig Breeders (Associazione Nazionale 
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Allevatori Suini, ANAS, http://www.anas.it. Accessed 22 June 2015). All animals used in this 

study were kept according to Italian and European law for pig production and all procedures 

described were in compliance with national and European Union regulations for animal care 

and slaughtering. The animals were reared on the ANAS Sib-Test genetic station from about 

30 kg live weight to at least 155 kg live weight. For the genetic evaluation of a boar, full sib 

triplets (two females and one castrated male) were farmed on the genetic station to be 

performance tested. The formula and amount of the ration were the same for all. It was 

based mainly on cereals and soybean, given in excess calculated using the “quasi ad libitum” 

rule (a ration sufficiently abundant that the 60% of pigs was able to ingest the full supplied 

food). At the end of tests, animals were transported to a commercial abattoir located at 

about 25 km far from the test station according to the Council Rule (EC) No 1/2005 on the 

protection of animals during transport and related operations and amending Directives 

64/432/EEC and 93/119/EC and Regulation (EC) No 1255/97. At slaughterhouse the pigs 

were electrical stunned and bled in a lying position in agreement with the Council 

Regulation (EC) No 1099/2009 on the protection of animals at the time of killing. All 

slaughter procedures were monitored by the Veterinary team appointed by the Italian 

Ministry of Health. Backfat samples were collected after slaughter, from 949 ILW pigs 

slaughtered at an average hot carcass weight of 118.97 kg (±0.29 SEM) and at an average 

age of eight months during the years 2011 and 2012 in 27 different slaughtering days. The 

collected samples were immediately frozen in liquid nitrogen and stored at -80°C in a deep 

freezer until RNA extraction. For the RNA-seq analysis we selected the animals according to 

the estimated breeding value (EBV) for backfat thickness (BFT) calculated by ANAS as 

described by Russo et al. (2000; 2008). EBVs were determined through a BLUP multiple-trait 

animal model procedure (Henderson and Quaas, 1976) using the BFT, measured in mm, 

recorded post mortem in correspondence of the gluteus medius muscle. The model included 

fixed effects of batch in test, sex, age at beginning of test, age of sow, weight at slaughter, 

age at slaughter, and inbreeding coefficient as well as the random effects of litter, individual 

permanent environment, and animal. Pigs’ genetic merit for the BFT trait was calculated 

taking into account the additive relationship matrix. EBVs were expressed as differences 

from the genetic mean value for the considered trait in the year 1993. Backfat thickness 

genetic index may present negative values because the value of the trait is referred to the 

fixed genetic base defined by ANAS as mean values of the pigs born in 1993 and considered 

http://www.anas.it/
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as “zero”, so the more negative values indicate lower values of BFT. The animals were 

selected to compose two groups of 10 pigs showing extreme and divergent characteristics 

for the BFT EBV with respect to the larger population of the 949 pigs (Table 1). The twenty 

animals considered for RNA-seq analysis were slaughtered in 12 dates, with 5 dates 

common to both groups. The animals were selected also according to their pedigree, in 

order to avoid the presence of full sibs in the considered groups. From now on the two 

groups will be referred as FAT and LEAN samples. 

 

RNA extraction, library preparation, sequencing 

Total RNA was extracted with Trizol (Invitrogen) according to the manufacturer’s 

instruction. RNA extracted samples were quantified using a Nanodrop ND-1000 

spectrophotometer (Nanodrop Technologies) and the quality of the RNA was assayed using 

an Agilent 2100 BioAnalyzer (Agilent Technologies). The RNA libraries were prepared from 

total RNA using the TruSeq RNA sample preparation kit (Illumina) and version 3 of the 

reagents, following the manufacturer’s suggested protocol. The libraries were tagged and 

couples of libraries were run on a single lane of an Illumina HiSeq2000. Reads are 100 nt 

paired-end represented in FASTQ format. 

 

Architecture of the bioinformatics pipeline 

A computational pipeline to process the sequencing data for gene/transcript expression 

estimation and to perform differential expression analysis between the two sample groups 

was developed. The pipeline components to achieve expression estimates were assembled 

using Scons software (http://www.scons.org/. Accessed 22 June 2015), which allows the 

parallelization and automation of the pipeline tasks. The pipeline and its following steps are 

detailed in the next paragraphs. 

 

RNA-seq data pre-processing and mapping to swine genome 

Exploratory analyses on the raw reads quality were carried out using the FastQC v0.10.1 

software (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 22 June 

2015), which generates an HTML report for each sample read set. Read fragments with 

http://www.scons.org/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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quality Phred score lower than 30 were trimmed using the DynamicTrim script of the 

SolexaQA v2.1 (Cox et al., 2010). The FASTX-Toolkit v0.0.13.2 

(http://hannonlab.cshl.edu/fastx_toolkit/. Accessed 22 June 2015) was used for trimming 

result report. A custom Python script using the HTSeq package (Anders et al., 2015) filtered 

out the trimmed reads shorter than 50 nucleotides. To maintain a consistent paired-end 

read set, discarded read mates were also filtered out, despite their length and quality. Each 

sample paired-end clean read set was mapped to the swine genome (Sscrofa10.2.70) by 

Tophat v2.0.8 (Kim et al., 2013) using default parameters with transcriptome inference from 

Ensembl annotation (Tophat2 used Bowtie v2.1.0.0; Langmead and Salzberg, 2012) and 

SAMtools v0.1.19()Li et al., 2009). 

 

Gene/transcript expression evaluation and transcript reconstruction 

Gene annotation for the reference genome was retrieved from Ensembl (BioMart) using the 

biomaRt R package (Durinck et al., 2009). Read alignments were processed by Cufflinks 

v2.1.1 (Roberts et al., 2011a; Roberts et al., 2011b; Trapnell et al., 2010) to identify and 

discover expressed genes and transcripts, and to quantify their expression. Expression data 

were indicated as Fragments Per Kilobase of transcript per Million mapped reads (FPKM). 

Cufflinks was applied to each sample alignment; then, we merged the transcript predictions 

in a non-redundant reference using the Cuffmerge tool from the Cufflinks package. To 

reduce artefacts deriving from the transcript prediction and normalisation strategies, only 

predicted transcripts at least 200 nt long and with minimal expression of 100 (Cufflinks 

normalised) reads in at least one of the two groups were considered for transcriptome 

reconstruction and for the following analyses. 

 

Gene and transcript differential expression assessment 

The samples were inspected by principal component analysis to examine their similarities. 

The read counts of each gene in the 20 considered samples were transformed with the 

variance stabilizing transformation function provided by the DESeq2 package (Anders and 

Huber, 2010) and used to compute the principal components. 

http://hannonlab.cshl.edu/fastx_toolkit/
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The genes identified by Cufflinks were assessed for differential expression (DE) between the 

LEAN and FAT groups, by means of two strategies, namely Cuffdiff2 (v2.1.1 from the 

Cufflinks package; Trapnell et al., 2012) and DESeq2 v1.2.1 (Anders and Huber, 2010). 

Instead, transcript DE was assayed only with Cuffdiff2. To represent gene expression, the 

two methods use similar statistical approaches based on generalized linear model (GLM) of 

the negative binomial family. Cuffdiff2 extends the model using a beta negative binomial 

distribution to handle uncertainty of multi-mapped reads. On the contrary, DESeq2 

considers only uniquely mapped reads (counted by means of the htseq-count script of the 

HTSeq package (Anders et al., 2015), but facilitate the specification in the statistical model 

of additional factors effecting the fit of the GLM. In this study, the statistical model included 

sex effect as a potential conditioning factor. Gene and transcript DE test computed P values 

were corrected according to the Benjamini-Hochberg procedure. Differentially expressed 

genes and transcripts were considered statistically significant according to false discovery 

rate less than or equal to 0.05. 

 

Transcript characterisation 

Using custom scripts including BEDTools v2.17.0 software (Quinlan and Hall, 2010), we 

retrieved the nucleotide sequences of the transcripts extracting from the Sus scrofa genome 

the stretches of nucleotides according to the annotation generated by the RNA-seq analysis 

tools. Transcripts were identified or characterised by sequence similarity using BLASTN and 

BLAST2 from the NCBI BLASTN suite 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_L

OC=blasthome. Accessed 22 June 2015) using Megablast algorithm (Morgulis et al., 2008). 

To assign a gene name, the sequences IDs obtained with this comparison were used to 

query the NCBI Gene and the UniGene databases (http://www.ncbi.nlm.nih.gov/unigene/. 

Accessed 22 June 2015). We used two strategies for transcript annotation. DE transcripts 

and genes were annotated by similarity using nr/nt nucleotide collection. The threshold 

considered for the identification of our transcripts was identity ≥80% in at least 70% of the 

sequence length of a transcript present in the database. Transcripts from new genes were 

characterized using a comparative genomics approach. We compared the new transcripts 

from intergenic regions with known human transcripts (RefSeq Release 72) by aligning with 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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BLASTN (NCBI BLAST 2.2.29+). For each transcript the best hit was considered, and then 

alignments with E-value greater than 10e-6, identity less than 60%, and length less than 100 

nucleotides were discarded. 

 

Prediction of coding/non-coding potential 

The transcript coding potential was predicted by CPC (Coding Potential Calculator; Kong et 

al., 2007). CPC is a support vector machine-based classifier of transcript protein-coding 

potential grounding on six features of sequence. Three features assess the extent and 

quality of the predicted transcript ORF: the Framefinder software identifies the longest ORF 

in the three forward and in the three reverse frames, then the coverage and the integrity of 

the predicted ORF are evaluated. Another three features derive from results of BLASTX 

search against UniProt Reference Clusters. All the features contribute together to a final 

score, and to the classification of transcripts as coding or non-coding. Only transcripts not 

including uncalled bases were considered for CPC analysis. 

 

Validation by quantitative real time-PCR 

The validation of selected RNA-seq results was performed using a quantitative real time-PCR 

(qRT-PCR) approach using 18 out of the 20 samples used for the RNA-seq analysis. Two 

samples, one in the FAT group and one in the LEAN group, were not considered because the 

total RNA extracted was used completely for the RNA-seq analysis. QRT-PCR validation was 

carried out using Rotor-Gene TM 6000 (Qiagen - Corbett Research). After DNase treatment 

(TURBO DNA-freeTM, Ambion, Applied Biosystems), 1 μg of total RNA was reverse 

transcribed using the iScript cDNA Synthesis kit (BIORAD) according to the manufacturers’ 

instructions. 

The samples were first used to analyze four candidate normalizing genes beta-2-

microglobulin (B2M), polymerase (RNA) II (DNA directed) polypeptide A, 220kDa (POLR2A), 

hypoxanthine phosphoribosyltransferase 1 (HPRT1), tyrosine 3-monooxygenase/tryptophan 

5-monooxygenase activation protein, zeta (YWHAZ). The primer pairs and the PCR 

conditions used are reported in Supplementary Table 1. The expression levels of these four 

genes were evaluated using NormFinder and B2M and HPRT1, the two most stably 

expressed normalizing genes, were utilized as reference genes. For each gene selected for 
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validation, we designed an external primer pair to obtain the amplicon for the standard 

curve construction and an internal primer pair for the qRT-PCR on Rotor Gene 6000 (Table 

S1). Standard curves for each gene were generated from 10-12 serial dilutions (from 109 to 

25 molecules/µl) of the PCR amplicons obtained with the external primer pairs and 

containing the internal primers used in the qRT-PCR analysis. Amplifications were performed 

in a total volume of 10 µl containing using 5 μl of the SYBR® Premix Ex Taq™ (Takara Bio 

Inc.), 0.5 µl of each primer and about 100 ng of cDNA. The used Premix Ex Taq™ is optimized 

for a two-step cycling, and the amplification conditions for the tested genes are reported in 

Table S1. The PCR efficiency was calculated as E=10 exp(-1/slope), with a range between -

2.7 and -4.3, indicating a good PCR efficiency result. All the PCR products were checked on a 

polyacrylamide gel and the specificity of the amplification was checked by a final melting 

curve analysis. 

Threshold cycles obtained for the samples were converted by Rotor Gene 6000 to mRNA 

molecules/µl using for each gene the relative standard curve (Bustin and Nolan, 2004). 

Moreover, the average mRNA molecules/µl for each sample was normalized dividing the 

mRNA molecules of a gene /µl by the geometric average of B2M and HPRT1 mRNA 

molecules/µl in the given sample, as suggested by Bustin and Nolan, 2004 and 

Vandesompele et al., 2002. Differences on the expression level calculated for FAT and LEAN 

samples were tested by two-tailed Student's t test. Statistical analyses were performed with 

SAS version 9.3 (SAS 9.3 Help and Documentation, Cary, NC. SAS Institute Inc.) and nominal 

P value ≤0.05 was considered as significance threshold. 

 

Functional characterization 

Functional annotation, classification and clustering of selected gene sets were carried out by 

DAVID Tools 6.7 (Huang et al., 2009) using Biological Processes, Molecular Function gene 

ontology categories and KEGG pathways. A threshold for significance of P<0.01 and P<0.05 

after Benjamini correction was considered for the selection of the functional categories 

respectively in the characterization of most expressed transcripts and for the selection of 

the functional categories of DEG. 

 

Results 
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Samples 

In this study we applied RNA-seq by Illumina technology to the study of gene expression in 

backfat tissue of 20 ILW pigs. We considered a large group of 949 sampled animals, with 

EBV for BFT ranging from -10.64 mm to 7.28 mm, with mean value and standard deviation 

(SD) -1.96 mm and 3.01, respectively. We selected, from the whole collected population, 

two groups of 10 unrelated pigs (FAT and LEAN) with extremely divergent EBVs for BFT, with 

1:1 sex ratio within each group. The mean values of each of the two selected groups of pigs 

are outside the range -7.98 mm / 4.06 mm defined by the mean value of the 949 samples ±2 

standard deviations. Specifically, FAT and LEAN animals were associated to average BFT 

values of +5.22 mm (±1.30 SD) and -8.63 mm (±1.40 SD) as indicated in Table 1. 

 

Sequencing, reads pre-processing and mapping 

Pairs of samples were run together, after barcoding, on a single lane of an Illumina HiSeq 

2000 apparatus, obtaining a total of 3,917,123,414 raw reads for the 20 considered samples, 

with an average of 195,856,171 raw reads per sample (Table S2; GEO accession GSE68007). 

After trimming and length filtering the clean reads per sample were on the average 

113,934,264 (58.04%) and were used for read-to-genome mapping (Figure S1A). Reads that 

align on a single genome locus (uniquely mapped reads) were on the average the 91.07% of 

the mapped reads (Table S2). The 72.42% of the uniquely mapped reads (72,219,306.45 on 

the average aligned to annotated exons, the 19.15% mapped on intergenic regions and the 

8.43% mapped on introns of annotated genes. The deep sequencing allowed the 

identification of genes expressed at low level and relatively rare alternatively spliced 

transcripts. We observed splicing events in the 21.19% of the reads on the average, 

providing useful information for the reconstruction of alternative transcript isoforms (Figure 

S1B). 

 

Transcripts and genes expressed in backfat samples 

The deep sequencing analysis of backfat transcripts performed on two groups of pigs 

divergent for fat deposition in this tissue allowed the detection of 63,418 transcripts. Many 

of them have not yet been annotated in the porcine genome, thus providing new consistent 
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resources for pig genome annotation and studies of adipose tissue biology. We identified 

the expression of genes on all porcine autosomes, sex chromosomes and mitochondrial 

genome. Chromosome 1 has the largest number of expressed genes (8.23%), followed by 

chromosomes 6 (7.84%) and 2 (7.25%). Furthermore, a non-negligible part (12.48%) of the 

expressed genes is located in genomic scaffolds (Figure S1C), as about the 7.5% of the 

genome has no assigned location yet, as described in Ensembl annotation of pig genome 

(database version 78 at the time of the analysis ; 

http://www.ensembl.org/Sus_scrofa/Location/Genome. Accessed 22 June 2015). In term of 

genes, we identified 23,483 expressed pig genes: 12,707 known and 10,776 putative new 

genes. 

Transcripts were split in different classes according to their matching with the genome 

annotations (Figure 1A, Table S3). Transcripts matching exactly the reference annotation are 

indicated as “known” transcripts; annotated transcripts’ new isoforms or overlapping with 

annotated transcript are indicated as “novel isoforms; and all other transcripts, such as 

those expressed from extragenic regions, are referred as “new” transcripts and might 

represent putative new genes. The majority of expressed transcripts are novel isoforms 

(35,030; the 55.2%) or known transcripts (12,969, representing the 20.5%) that are 

prevalently annotated as protein coding (12,883; 99.3%). The expressed new transcripts are 

15,419 (24.3%). 

Transcript lengths range from 200 to 50,610 nt, with median and average values of 3,224 

and 3,979. Average size exceeds the 2 kb pig mean transcript size that can be estimated 

according to Ensembl pig coding transcript annotation. We observed that the novel isoforms 

reconstructed are longer than “known” pig transcripts (Figure 1B). 

Sequences longer than 5 kb compose the 25% of the expressed transcripts. Noteworthy, we 

detected two transcripts overlapping ZBTB16 gene and two new transcripts from 

chromosome 16 that are longer than 40 kb. 

Considering transcripts expression, we observed that new transcripts are less expressed in 

fat tissue than known transcripts (Figure 1C). Nevertheless, all the three transcript 

categories span a considerably large range of expression values. 

The majority of the expressed genes (12,138; 52%) present only one transcript isoform 

expressed in fat tissue (Figure 1D); the 27.0% and the 18.3% of the genes present two and 

three expressed isoforms, respectively, whereas the remaining 12.7% of the genes are 



 - 108 - 

associated each one to 4 to 31 different isoforms. We identified 31 isoforms for the gene 

MAP4K4, for which a complex expression pattern is reported in humans: Ensembl release 79 

lists 20 MAP4K4 transcripts generated by at least 3 different promoters, by complex 

alternative splicing and by polyadenylation patterns, whereas five protein isoforms are 

reported in UniProt release 2015_3. 

Looking at isoform types, Figure 1E shows that many genes expressing only one transcript 

(first bar from the left) in fat tissue are putative new genes (green portion). Interestingly, 

some genes expressing only one transcript in fat tissue are represented only by a novel 

isoform (first bar, red shadows). The proportion of novel isoforms (red portion) increases 

along with the numbers of expressed transcripts per gene. Moreover, the transcripts classes 

showing exonic overlap compared to a reference transcript are found in genes with a 

varying number of transcripts and are particularly abundant in genes with up to three 

isoforms. The remaining transcript classes are very rare.  

Interesting new isoforms derived from known genes regard Perilipin 2 (PLIN2; alias ADFP, 

adipofilin), an important gene for fat metabolism in pigs (Davoli et al., 2010; Gandolfi et al., 

2011) whose expression in humans correlates positively with cytosolic triacylglicerol levels 

(Conte et al., 2013). Only one transcript is currently annotated in Ensembl for pig PLIN2 

(ENSSSCT00000005701), whereas according to our results, PLIN2 expressed four different 

isoforms. The most expressed PLIN2 transcript (expressed two times more in FAT than in 

LEAN pigs) is a non-annotated isoform (TCONS_00002441 in Table 2; 2441DE in Figure S3) 

characterized by the skipping of the fourth exon. The same transcript has also a shorter 3’ 

sequence with respect to the canonical PLIN2/ADFP form, probably due to the use of an 

alternative polyadenylation site. Importantly, the skipping of the 83 nt long exon four 

introduces downstream a shift in the reading frame and a premature stop codon. Thus, this 

transcript encodes a truncated protein (only 80 aa) corresponding to the N-terminal region 

and of the Perilipin domain of the PLIN2 protein annotated isoform (463 aa). The other two 

new transcripts differ from the annotated isoform, one for the skipping of exon 2, and the 

other for a longer first exon, probably due to alternative TSS usage by different promoters. 

The four expressed isoforms are also heterogeneous in the length of the 3’ UTR region. 

 

Coding and non-coding transcripts from new genes 
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We obtained a characterization of intergenic transcripts from new genes first both by 

similarity, comparing them against human transcripts, and by predicting their coding 

potential. New pig transcripts with an assigned human best hit were 10,020 (65%), 

expressed by 7,099 genes (66%), and corresponding to 4633 human Refseq sequences 

(3,882 unique gene symbols; Table S4). 

We considered 12,702 intergenic transcripts for protein coding potential analysis. For each 

transcript, the coding potential of both the forward and the reverse complement sequence 

were evaluated. According to CPC results, we classified the 35.8% (4,551) of transcripts as 

coding, and the 64.2% (8,151) as non-coding. As done by Zhou et al., (2014), we considered 

as proper non-coding only those transcripts classified as non-coding and having a CPC score 

lower than -1 for both the forward and the reverse sequence. A portion of the non-coding 

transcripts (37.5%) resulted with CPC score < -1 for both the forward and the reverse 

complement sequences. We refer to these transcripts as “reliable non-coding” class, which 

represented 24% (3,056) of the intergenic transcripts (Figure 2A). We observed that 

intergenic coding transcripts are on average longer than intergenic non-coding transcripts 

(4,149 and 3,083 nt, respectively), and that the reliable non-coding fraction has a even 

shorter average length (2,571 nt; Figure 2B and Table S5). Reportedly, non-coding 

transcripts tend to be shorter and to have fewer exons than coding transcripts in 

mammalian genomes (Iyer et al., 2015). 

Coding transcripts have an average expression in fat tissue higher than the non-coding 

transcripts (5.32 and 2.28 FPKM respectively, and 3.23 FPKM for the reliable non-coding 

group; Figure 2C). One reliable non-coding transcript is ranked within the 100 most 

expressed transcripts detected in backfat tissue; 15 reliable non-coding transcripts are 

within the 1,000 most expressed transcripts; and 98 are within the 10% most expressed 

transcripts (Table S6). In agreement with previous results showing that coding transcripts 

tend to present higher expression than non-coding ones (Cabili et al., 2011; Iyer et al., 

2015), we observe that intergenic transcripts ranking in the 10% most expressed in backfat 

tissue are enriched in the coding category (55%) and particularly if compared with the 

proportion of the coding category within the set of intergenic transcripts (35.8%; Figure 2D, 

green portions). 

 

Function of most expressed transcripts 
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A global view of the transcription profile of porcine backfat tissue was obtained by 

averaging the FPKM values of all 20 analysed samples. The 1411 most expressed transcripts, 

accounting together for 75% of expression, were chosen to extract the most expressed 

genes (Table S6). 

Among these genes, 59 are indicated as reliable non-coding (CPC score <1) and 66 showing a 

positive CPC score are indicated as putative coding. 

According to DAVID functional annotation and clustering, we characterized the biological 

processes (Table S7) associated to the most expressed genes. Ribosomal activity, oxidative 

phosphorylation, protein metabolic processes, intracellular protein transport, regulation of 

translation initiation, fatty acid metabolism, response to oxidative stress resulted to be the 

biological processes more represented in subcutaneous adipose tissue of the analysed 

samples. 

 

Gene/transcript differential expression 

Unsupervised analysis of gene expression profiles was carried out to inspect similarities 

among the samples. Principal component analysis revealed a clear separation of the LEAN 

and FAT samples according to the first two most informative components (Figure S4 A), 

which, notably, do not separate the samples by sex (Figure S4 B). 

Average gene expression values for FAT and LEAN groups were 32.46 and 33.63 FPKM). In 

both groups, few highly expressed genes contribute to the majority of the cumulative 

expression. For instance, roughly 25% of expressed genes (5,908 and 5,728 in FAT and LEAN, 

respectively) constitute 95% of the total detected expression (Figure S2). As expected, 

transcript expression distribution is similar to the gene expression distribution being 

positively skewed, with mean and median corresponding to 11.84 and 0.64 FPKM, 

respectively. Transcripts average expression values are lower than genes expression values 

since the latter was computed as the sum of transcripts expression of each gene. 

To identify a set of robust DEG and DET the transcription profiles of FAT and LEAN samples 

were compared with the integration of two methods applied at gene and at transcript 

levels. Cuffdiff2 identified 414 DEGs between FAT and LEAN groups, corresponding to 1,187 

transcripts: 266 DEGs are more expressed and 148 DEGs are less expressed in FAT samples. 

Fold changes in base two logarithmic scale of DEGs range from 0.46 to 8.95 for the higher 
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expressed genes, and from -6.19 to -0.47 for the less expressed ones (Table S8). DESeq2 

identified 586 DEGs (185 in common with the DEGs identified by Cuffdiff2) corresponding to 

1,504 transcripts: 358 genes are up-regulated and 228 genes are less expressed in FAT 

samples. DEGs base two logarithmic scale transformed fold changes (Log2 FC) range from -

1.13 to -0.20 for the less expressed genes and from 0.21 to 1.18 for the higher expressed 

genes (Table S9). Cuffdiff2 differential expression analysis at the transcript-level identified 

154 DE transcripts (corresponding to 153 genes): 48 were less expressed and 106 transcripts 

were more expressed in FAT samples, with Log2 FC ranging from -3.44 to -0.54 and from 

0.64 to 3.66, respectively (Table S10). On the whole, 818 genes were DE, or associated to at 

least one DE transcript, according to at least one method, were detected (Figure 3A). 

The overlapping of the different lists of DEGs and the list of DE transcripts (DET) evidenced a 

group of 86 DET that are identified by all the approaches, from now on referred as 

“common DET” (cDET). These DET belongs to 78 DEG, from now on referred as “common 

DEG” (cDEG) since five genes are represented by more than one isoform (Table 2). 

The cDET present the same fold change sign of the corresponding cDEG (Figure 3B): 72 DET 

were more expressed in FAT (max Cuffdiff2 gene-level Log2 FC 2.55 for DSC2 gene) and 14 

DET were less expressed in FAT (minimum Log2 FC -3.44 for an intergenic gene located in 

GL894890.1 scaffold). Among the 86 cDET, 44 are known transcripts, 16 are novel isoforms 

and 26 come from intergenic regions. 

cDEG are found in all chromosomes except for chromosomes 16 and Y, with up to 11 DE 

genes in chromosome 4 and 19 DE genes in scaffolds (Figure 3C). The most expressed 

(average FPKM greater than 100) known cDEG, reported in decreasing FPKM order, are 

DNAJB1, CTSH, CTGF, C1QC, SPP1 and CDO1. 

 

Coding and con-coding intergenic DET 

We considered the 41 novel isoforms or new transcript cDET for CPC analysis. In 14 of these 

transcripts both the forward and reverse sequence is probably non-coding, according to 

integrated ORF analyses and to similarity searches, and to CPC score thresholds used before. 

Five cDET with CPC score <-1 were scored as “reliable non-coding”. Of the remaining 

transcripts, nine presented low coding potential both in the forward and in the reverse 
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complement sequence but with CPC score ranging from -1 to 0 (“non-coding”), and 27 were 

classified as coding transcripts (Table S11). 

 

qRT-PCR confirmation of DE for selected genes 

To validate the results obtained by RNA-seq, eleven cDEG were chosen according to the 

absolute value of the Log2 FC between FAT and LEAN pigs, or for their functional role and 

involvement in relevant pathways. As reported in Figure 4, the DE of all selected genes has 

been validated, with high correlation between the fold changes obtained by RNA-seq and by 

qRT-PCR data. 

 

DE transcript characterisation 

We characterized the cDEG in terms of their functional role in adipose tissue. Using DAVID 

Bioinformatics Resources we first identified the functional categories, enriched in genes 

differentially regulated between FAT and LEAN groups. 

The Biological Process categories enriched in higher expressed DEG are response to 

stimulus, immune system process and cell activation, skeletal system development (Table 

3). DAVID clustering of the few lower expressed genes detected (ADSSL1, CDO1, DNAJB1, 

HSPA1A, HSPA1B, HSPA2, HSPB8, IGFBP5, OLFML3) allowed to identify the functional 

categories unfolded protein binding and stress response represented by five heat shock 

protein genes that are involved in protein stabilization after cellular stress.  

Apart from the Gene Ontology-based functional characterization of the whole subsets of 

higher- and lower-expressed genes we considered cDEG function and involvement in 

specific pathways, according to literature and knowledge bases. 

Several more expressed genes in FAT animals (ACP5, BCL2A1, CD1A, EGR2, ENPP1, GPNMB, 

INHBB, LYZ, MSR1, OLR1, PIK3AP1, PLIN2, SPP1, STC1) are characterized by a metabolic 

function mainly related to adipocyte growth regulation, while others (CCR1, CD163, 

SLC11A1) are known to be involved in immune defence of the organism. 

 

Discussion 

Transcriptome data highlight the adipose tissue complexity 
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The deep sequencing analysis of pig backfat transcriptome performed allowed finding 

thousands of genes and transcripts expressed. In the present study, we applied stringent 

cleaning and filtering procedures of the sequencing data and, on average, 90 million reads 

per sample were mapped, obtaining a higher sequencing depth compared to previous 

studies (Chen et al., 2011; Jiang et al., 2013; Sodhi et al., 2014; Wang et al., 2014). 

The adipose tissue is not only metabolically and transcriptionally active, but has been 

recognized as an important endocrine organ (Kershaw et al., 2004; Trayhurn et al., 2005). 

Adipocytes are a dynamic and highly regulated population of cells (Rosen and MacDougald, 

2006; Moreno-Navarrete and Fernández-Real, 2012). Our results agree with these data 

supporting the characterization of the adipocytes as highly specialised endocrine cells that 

can play key roles in various physiological processes. The multifunctionality and the 

complexity of the tissue is witnessed also by the high number of transcripts (more than sixty 

thousands) found in the present study, including many new transcripts from previously non-

annotated loci in porcine genome. The majority of the reconstructed sequences are novel 

isoforms of already known genes that express more than two different transcripts each. 

Similar patterns observed in human cells (Djebali et al., 2012) and the high quality of the 

sequenced reads used in our analysis support the idea that this is more attributable to an 

incomplete annotation of the transcript isoforms expressed in pig backfat, than to transcript 

reconstruction artefacts. The different isoforms derived from the same locus arisen from 

our analysis and observed for almost half of the expressed genes, may contribute to 

improve the knowledge of the porcine transcriptome, and to refine the current swine 

genome annotation. The new PLIN2 isoforms reported above are an interesting example, 

especially if compared to the human genome where at least eight PLIN2 transcript isoforms 

are annotated and only four of them are coding. Remarkably, three human PLIN2 isoforms 

encode N-terminal truncated amino acid chains that are similar to the truncated isoform we 

reconstructed in our study, and whose function has not yet been elucidated. Furthermore, 

Russell et al. (2008) identified in a PLIN2 deficient mouse cell line the expression of a PLIN2 

C-terminal truncated protein that may partially replace the function of the full-length 

protein. Additional studies are needed to understand if and how the short transcript we 

found differentially expressed could change the gene functions compared to the wild type 

long protein. 
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Functional characterisation of the adipose tissue expression profile 

The profile of the subcutaneous adipose tissue transcriptome in pigs was delineated and the 

functional analysis of the genes expressed in backfat tissue was performed to know their 

metabolic role and to connect them to specific competences of the tissue. We didn’t find 

particular differences between the functional categories of the genes expressed in the 

backfat tissue of FAT and LEAN pigs. More in details among the most expressed genes in the 

fat tissue, many are involved in metabolic pathways and biological processes related to 

protein metabolism, oxidoreductase activity for ATP production, regulation of lipid synthesis 

and degradation. 

 

Genes differentially expressed between LEAN and FAT animals converge and connect 

to specific functions 

The detection of DE genes and transcripts has been obtained by a stringent procedure 

grounding on integration of different methods for expression estimation and differential 

expression testing, as done in a recent study (Ropka-Molik et al., 2014) focused to muscle 

tissue gene expression in pigs of different breeds. In the present study, which compares pigs 

of the same breed and reared under standard conditions, we detected significant gene 

expression variations. The sensitivity of our approach was supported by the successful 

validation of all the eleven DEG assayed. 

We analyzed the biological functions of genes differentially expressed between FAT and 

LEAN animals (Figure 5). It is interesting to note that the main differences were found for 

functional categories of genes related Inflammation and immunity that resulted more 

expressed in FAT pigs. The genes less expressed in FAT animals include some heat shock 

protein genes. The biological functions of DEGs show a stronger activation in adipose tissue 

of FAT pigs of genes for important processes involved in hypertrophy and adipogenesis, such 

as differentiation and maturation. Supposedly, these biological processes could be altered in 

adipose tissue of FAT pigs due to dysregulated adipose metabolism and endocrinology 

similarly to what was hypothesized in humans (Sethi, 2010). On the whole, there is a 

consistent difference concerning the biological functions characterizing the most expressed 
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genes on backfat tissue and those of the genes differentially expressed between FAT and 

LEAN pigs. 

 

Some genes higher expressed in FAT animals could modulate backfat physiological 

processes 

Specific DEGs more expressed in FAT pigs participate to biochemical pathways related to 

and involved in adipocytes metabolism and adipose tissue physiology. Ectonucleotide 

pyrophosphatase/phosphodiesterase 1 (ENPP1) encodes a catalytic enzyme involved in 

adipocyte maturation (Liang et al., 2007). Pan et al. (2011) showed that the over-expression 

of ENPP1 in a human cell line resulted in adipocyte insulin resistance and demonstrated an 

association with fatty liver, hyperlipidemia, and dysglycemia. Accordingly, the study of 

Chandalia et al. (2012) underlined an increased ENPP1 expression in adipose tissue 

associated with defective adipocyte maturation leading to pathogenesis of insulin resistance 

and its associated complications for glucose and lipid metabolism in absence of obesity. In 

addition, Meyre et al. (2005) reported the presence of three ENPP1 SNPs in human gene 

associated with adult obesity and increased risk of glucose intolerance and type 2 diabetes. 

Furthermore, also the genes acid phosphatase 5, tartrate resistant (ACP5) and lysozyme 

(LYZ) that in this research have higher transcriptional level in FAT pigs have been reported to 

be involved in excessive backfat deposition in pigs and in the development of 

atherosclerosis (Padilla et al., 2013). 

In the present research, some genes overexpressed in the adipose tissue of FAT pigs, namely 

STC1, EGR2, and INHBB, are related to adipocyte differentiation and adipocyte maturation. 

STC1 (Stanniocalcin 1) has been reported in literature to be up-regulated during 

adipogenesis and to modulate steroidogenesis. Serlachius and Andersson (2004) related 

STC1 up-regulation to the set of survival genes in adipocyte differentiation, which is also 

associated to overexpression of the anti-apoptotic proteins BCL2 reported to be involved in 

inflammation pathway. EGR2 (early growth response 2) is a direct target of mir-224-5p, a 

negative regulator of adipocyte differentiation that is down regulated during the early 

process of mouse adipocyte differentiation, and the expression of EGR2 is increased (Peng 

et al., 2013). The INHBB (Inhibin beta B) gene coding for the activin B subunit is part of the 

inhibins/activins family of proteins with cytokine and hormone activity. In human and mice, 
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INHBB has been associated to the physiological and metabolic modifications during 

adipogenesis when it is highly expressed and is the predominant activin in human adipose 

tissue (Hoggard et al., 2009). INHBB is member of TGF-protein superfamily of secreted 

growth factors involved in many biological responses including regulation of apoptosis; 

proliferation and differentiation of human adipocytes; tissue remodeling; and inflammatory 

immune response (Dani C., 2013). It can be hypothesized that in FAT pigs the pro-adipogenic 

INHBB gene expression increases as it is involved in the differentiation of preadipocytes into 

mature adipocyte, and that INHBB is involved in many physiological processes and including 

the control of food intake and to energy metabolism through the regulation of hypothalamic 

and pituitary hormone secretions. Another gene overexpressed in FAT pigs related to 

feeding and pituitary secretions is GPNMB (glycoprotein transmembrane NMB). GPNMB is 

one of the receptors activated by bombesin-like endogenous peptide ligands, such as 

gastrin-releasing peptide (GRP), neuromedin B (NMB) and neuromedin C (GRP18-27). These 

receptors are involved in the regulation of many biological functions including 

thermoregulation, feeding, pituitary, gastric and pancreatic secretion. The NMB/NMB-R 

pathway is involved in the regulation of a wide variety of behaviours, such as spontaneous 

activity, feeding, and anxiety-related behaviour (Yamada et al., 2002).  

The OLR1 (Oxidized low density lipoprotein (lectin-like) receptor 1) gene resulted more 

expressed in FAT pigs compared to LEAN animals. This gene codes for a LDL receptor that 

belongs to the C-type lectin superfamily, one of many target genes, including perilipins, of 

the PPAR signalling, which is involved specifically in lipid metabolism and fatty acids 

transport. In this way, OLR1 is a receptor that mediates the recognition, internalization and 

degradation of oxidatively modified low-density lipoprotein by vascular endothelial cells. 

OLR1 removes oxidised low-density lipoproteins from the circulation, as part of lipid 

metabolism pathways (Mehta et al., 2002). 

 

Genes involved in immunity and inflammation are more expressed in FAT animals 

Some other genes overexpressed in FAT pigs are related to immunity. Inflammatory links 

between human obesity and metabolic diseases are well known mechanisms based on the 

recruitment of immune cells into adipose tissue (Kabir et al., 2014). The development of a 

pre-inflammatory condition in presence of dysregulated excessive adipogenesis is 
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associated with adipose macrophage infiltration and activation. From our study, we can 

hypothesize a similar process in backfat tissue of FAT pigs where we identified the over 

expression of the gene macrophage scavenger receptor 1 (MSR1), a membrane glycoprotein 

that in humans is involved in the pathologic deposition of cholesterol in arterial walls during 

atherogenesis (Haasken et al., 2013). Additionally, the overexpression of secreted 

phosphoprotein 1 (SPP1) in FAT pigs can suggest the hypothesis that this gene is acting as a 

proinflammatory cytokine that promotes monocyte chemotaxis and cell motility and might 

link, in pigs like in mice, fat accumulation to the development of insulin resistance by 

sustaining inflammation and the accumulation of macrophages in adipose tissue (Nomiyana 

et al. 2007). Interestingly, a porcine SPP1 gene polymorphism was associated to backfat 

thickness in the Landrace × Jeju (Korea) Black pig F2 population (Han et al., 2012). SPP1 

might play a key role in the pathway that leads to type I immunity enhancing interferon-

gamma and interleukin-12 production and suppressing interleukin-10 (Ashkar et al., 2000). 

Therefore, these data allow hypothesizing SPP1 as a gene associated, in pigs like to in human, 

to the link between obesity, adipose tissue inflammation, and insulin resistance. In addition, 

phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1), higher expressed in FAT pigs, is a 

positive regulator of phosphatidylinositol 3-kinase (PI3K) signalling. PI3K signalling pathway 

has a key role in the insulin-dependent regulation of adipocyte metabolism (glucose and 

lipid metabolism). Besides, PI3K participate in obesity-associated inflammatory cell 

recruitment (neutrophils and macrophages), as well as in the CNS-dependent neurohumoral 

regulation of food intake/energy expenditure (McCurdy and Clemm, 2013; Beretta et al., 

2015). 

Other genes found in the present research and related to inflammatory condition of the 

adipose tissue in FAT pigs are particularly interesting to mention. CD163, member of the 

scavenger receptor cysteine-rich superfamily (Guo et al., 2014; Smith et al., 2014); solute 

carrier family 11 (proton-coupled divalent metal ion transporter), member 1 (SLC11A1), a 

gene involved in the resistance to Salmonella infection (Kommadath et al., 2014) as well as 

the chemokine (C-C motif) receptor 1 (CCR1), that was previously found overexpressed in 

obese pigs (Kogelman et al., 2014); BCL2-related protein A1 (BCL2A1), a gene found to be 

overexpressed in pigs with an high obesity index and that is related to immunity, 

inflammatory pathway, and osteoclast differentiation (Kogelman et al., 2014); CD1a 

molecule (CD1A, indicated as PCD1A on the cited paper), a surface antigen involved in 
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immunity was found to be overexpressed in obese pigs by Kogelman et al. (2014). The same 

Authors highlighted a strong connection between fat deposition on the body (obesity), 

immunity and bone development. They also indicated that CCR1 gene is a strong candidate 

regulator of immune response as it is a receptor of pro-inflammatory chemokines in adipose 

tissue playing a pivotal role in obesity-associated diseases (Kabir et al. 2014; Lumeng and 

Saltiel, 2011). 

 

Heat shock response, protein folding and repair are impaired in FAT animals 

Considering the 14 genes less expressed in FAT animals, direct relationships with lipid 

metabolism are not apparent. However, the “unfolded protein binding” function is enriched 

among these genes, which include five functionally linked heat shock proteins (DNAJB1, 

HSPA1A, HSPA1B, HSPA2 and HSPB8). Heat shock proteins are involved in stabilization of 

existing proteins against aggregation, mediating the folding of newly translated proteins in 

the cytosol and in organelles, and also in the ubiquitin-proteasome pathway. DNAJB1, a 

member of the Hsp40 family, is a molecular chaperon involved in protein folding and 

protein complex assembly. DNAJB1, a member of the Hsp40 family, promotes protein 

folding and prevent misfolded protein aggregation, as HSPB8, a member of the Hsp20 

family, does (Vicario et al., 2014). DNAJB1 also stimulates the ATPase activity of protein of 

the Hsp70 family to which other genes less expressed in FAT pigs (HSPA1A, HSPA1B, and 

HSPA2) belong, indicating a possible functional link between these four genes. Our results 

suggest a general impairment of the protein folding and repair in the fattest animals, in 

accordance to previous observations of studies carried out on human obesity. Obesity is a 

pathological human condition in which a chronically positive energy balance induces in 

adipocytes, the cells in charge to store the excess of energy in fat depots, a persistent stress 

activating in turn defence processes as autophagy or apoptosis.  

As reviewed by Newsholme and de Bittencourt (2014), if the heat shock response, a key 

component of the physiological response to resolve inflammation, is hampered in adipose 

tissue, the adipocyte metabolic stress triggers fat cell senescence with reduction of the heat 

shock proteins activity. In this condition, the advance of inflammasome mediated secretory 

activity from adipose to other tissues promotes cellular senescence in many other cells of 

the organism, aggravating obesity-dependent chronic inflammation. This mechanism could 
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have been activated also in the FAT pigs of our experiment (Figure 5) due to a genetic 

aptitude of the fattest animals toward a higher fat deposition and adiposity similar to 

obesity. Indeed, a decrease in the synthesis of the mRNAs of the heat shock proteins and an 

increase of the expression of many genes related to an inflammatory status and to immune 

response is a characteristic of the fattest pigs. Increase of the expression of INHBB and SPP1 

denotes for instance the augmented production of cytokines and the higher expression of 

ENPP1 and PIK3AP1 may indicate a status of insulin resistance, one of the typical signals 

connected with obesity. 

 

Pig backfat deposition and impaired stress response may activate inflammation 

Our results agree with recent studies showing that several immune system and anti-

inflammatory processes are activated and play a critical role in the response to fat 

accumulation in porcine backfat tissue (Sodhi et al., 2014) and in visceral fat tissue 

(Toedebusch et al., 2014; Wang et al., 2014). Wang et al. (2014) and Zhou et al. (2013) used 

three female Landrace pigs to identify DEG between subcutaneous, visceral and 

intramuscular fat indicating that visceral and intramuscular adipose tissues were mainly 

associated with inflammatory features of the tissue and immune response. Our data suggest 

that also in backfat a predominant role of immunity processes is related to an increased 

adipose tissue deposition. 

The results obtained seem to sustain the hypothesis that the high fat accumulation in 

adipose tissue of pigs can determine the development of an inflammatory process 

producing a cascade of defence and adaptive reactions in the tissue, such as activation of 

immune system and mesenchymal cells differentiation in adipocytes. 

A deeper knowledge of the metabolic processes involved in fat deposition can be very 

important to develop the use the pig as model species to study obesity and related 

disorders for humans because of similar anatomy and physiology (Spurlock and Gabler, 

2008; Litten-Brown et al., 2010; Varga et al., 2010) and considering the above described 

similarities between pigs and humans. 

In order to fully elucidate the complex gene network regulating backfat deposition on pigs, 

it will be important to extend the basic knowledge by further coding and non-coding 

transcriptome characterization. Additional information would probably come from studying 
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interactions between the differentially expressed long RNAs identified in the present paper 

and the regulatory microRNAs expressed in porcine adipose tissue identified on some of the 

same animals (Gaffo et al., 2014). 

The results of the present work unlock the opportunity that some of the identified 

differentially expressed genes might be used as biomarkers (Ibáñez-Escriche et al., 2014) to 

improve carcass fat traits in to look for SNPs regulating their expression to be included in 

selection schemes to make more sustainable the pig production chain. 
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Table 1 - Genetic indexes and phenotypes for BFT and hot carcass weight of the pigs 

selected for the transcriptome analysis. 

Group Sample ID Sex 
Day of 

slaughter 
Slaughter 

weight (kg) (*) 
BFT phenotype 

(mm) 

BFT EBV 

  Mean SD 

FAT 

477 M 6 120 43 7.36 

5.22 1.3 

476 F 6 119 37 7.17 

474 M 2 113 38 6.03 

482 F 9   42 5.75 

478 F 7 118 33 5.05 

516 F 3 115 36 4.88 

479 M 8   41 4.76 

483 F 10 119 38 4.41 

489 M 18 108 35 3.54 

484 M 15 128 35 3.27 

LEAN 

490 M 19 113 24 -6.46 

-8.63 1.4 

473 F 2 132 23 -7.54 

487 M 18 110 23 -7.61 

517 M 4 117 20 -7.71 

485 F 17 126 20 -7.82 

475 M 5 119 20 -8.03 

481 M 9   22 -9.91 

486 F 17 123 19 -10.27 

488 F 18 128 19 -10.37 

480 F 9   16 -10.59 

EBV: estimated breeding value 

BFT: backfat thickness. 

(*) slaughter weight: the hot carcass slaughter weight is reported. For four animals the weight is not 

available due to a problem of the automatic recording system at the slaughterhouse. 
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Table 2. List of the DE genes and transcripts. 

Cufflinks transcript ID 
Cufflinks gene 

ID 
Gene locus Gene symbol 

Cuffdiff2 gene log2 
FC FAT vs. LEAN 

Transcript 
group 

Coding potential 

TCONS_00102010 XLOC_040987 JH118612.1:113132-140205 DSC2 2.55 Known - 

TCONS_00061823 XLOC_023331 4:78928264-78930654 - 2.46 New NON CODING 

TCONS_00033774 XLOC_013001 15:140797584-140847461 NYAP2 2.38 New CODING 

TCONS_00061359 XLOC_023211 4:35670339-35685878 DCSTAMP 2.23 Novel isoform CODING 

TCONS_00095554 XLOC_036823 GL893451.1:11131-27485 CRLF2 2.21 Known - 

TCONS_00093244 XLOC_035190 9:50996895-51001264 - 2.17 New NON CODING 

TCONS_00087029 XLOC_032796 8:140307937-140315415 SPP1 2.09 Known - 

TCONS_00003007 XLOC_000806 1:283547172-283552108 - 2.07 New CODING 

TCONS_00095549 XLOC_036822 GL893451.1:7060-10625 - 2.03 New NON CODING 

TCONS_00067029 XLOC_025404 5:36179189-36186325 LYZ 2.03 Known - 

TCONS_00042581 XLOC_016514 18:6731368-6733669 GIMAP2 1.98 Known - 

TCONS_00061600 XLOC_023265 4:55660234-55715444 ATP6V0D2 1.96 Novel isoform CODING 

TCONS_00039556 XLOC_015432 17:53815353-53827092 MMP9 1.92 Known - 

TCONS_00039900 XLOC_015518 17:4110395-4192029 MSR1 1.92 Known - 

TCONS_00061643 XLOC_023283 4:62172539-62226917 STMN2 1.85 Known - 

TCONS_00034645 XLOC_013236 15:62409564-62414328 - 1.84 New RELIABLE NON CODING 

TCONS_00091509 XLOC_034399 9:63158999-63198155 ST14 1.79 Novel isoform CODING 

TCONS_00098750 XLOC_038994 GL895411.1:0-1073 INHBB 1.65 New CODING 

TCONS_00022322 XLOC_008474 13:32323641-32330286 CCR1 1.63 Known - 

TCONS_00044383 XLOC_017319 2:11807281-11850646 MPEG1 1.63 Known - 

TCONS_00075056 XLOC_028007 6:70039585-70099223 PADI2 1.6 Known - 

TCONS_00095875 XLOC_037025 GL893645.1:0-307 - 1.57 New RELIABLE NON CODING 

TCONS_00084869 XLOC_032187 8:71288921-71302169 AMBN 1.56 Known - 

TCONS_00033691 XLOC_012975 15:133452328-133456736 SLC11A1 1.56 Known - 
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TCONS_00089513 XLOC_033895 9:90266412-90348498 SCIN 1.55 Known - 

TCONS_00042660 XLOC_016535 18:8306789-8313120 - 1.52 New CODING 

TCONS_00059834 XLOC_022860 4:99905518-99915176 CD1A 1.52 Novel isoform CODING 

TCONS_00059837 XLOC_022860 4:99905518-99915176 CD1A 1.52 Known - 

TCONS_00093519 XLOC_035465 9:101443296-101443885 GPNMB 1.46 New NON CODING 

TCONS_00098157 XLOC_038614 GL894967.1:126-517 GPNMB 1.42 New CODING 

TCONS_00018804 XLOC_007247 12:23439824-23441829 - 1.4 New CODING 

TCONS_00103084 XLOC_041497 X:37303173-37393818 CYBB 1.38 Known - 

TCONS_00065337 XLOC_024931 5:52504178-52625145 BCAT1 1.37 Novel isoform CODING 

TCONS_00098113 XLOC_038589 GL894923.1:47-563 GPNMB 1.36 New CODING 

TCONS_00002441 XLOC_000664 1:227333991-227356844 PLIN2 1.32 Novel isoform CODING 

TCONS_00044392 XLOC_017322 2:12191483-12243400 LPXN 1.31 Known - 

TCONS_00084565 XLOC_032101 8:33970571-33982450 UCHL1 1.27 Novel isoform CODING 

TCONS_00067389 XLOC_025495 5:64579162-64590512 OLR1 1.26 Known - 

TCONS_00059747 XLOC_022835 4:97720982-97736619 CD48 1.25 Known - 

TCONS_00028769 XLOC_011055 14:143745489-143752509 GMFG 1.23 Known - 

TCONS_00029056 XLOC_011139 14:8804077-8816800 STC1 1.23 Novel isoform CODING 

TCONS_00098643 XLOC_038938 GL895339.1:13269-61205 COTL1 1.15 Known - 

TCONS_00100592 XLOC_040068 GL896326.1:1999-3913 ACP5 1.13 Known - 

TCONS_00096837 XLOC_037668 GL894123.1:0-400 CD163 1.13 New CODING 

TCONS_00097297 XLOC_037990 GL894401.1:0-471 CD163 1.13 New CODING 

TCONS_00005002 XLOC_001331 1:125897935-125953413 AQP9 1.09 Known - 

TCONS_00096863 XLOC_037686 GL894145.1:0-401 CD163 1.09 New CODING 

TCONS_00071337 XLOC_027094 6:74616232-74621248 C1QC 1.08 Known - 

TCONS_00012469 XLOC_005058 11:21534980-21685851 LCP1 1.07 Novel isoform CODING 

TCONS_00079920 XLOC_030238 7:94900207-94906867 
AKAP5, 

LOC100153460 
1.06 Novel isoform CODING 
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TCONS_00041537 XLOC_016257 18:6613761-6621027 GIMAP4 1.06 Known - 

TCONS_00097908 XLOC_038444 GL894747.1:3047-10617 HMOX1 1.06 Novel isoform CODING 

TCONS_00030401 XLOC_011444 14:71516962-71521335 EGR2 1.05 Known - 

TCONS_00030878 XLOC_011579 14:117265093-117349965 BLNK 1.04 Known - 

TCONS_00056578 XLOC_021190 3:77408776-77439119 PLEK 1.04 Known - 

TCONS_00071335 XLOC_027093 6:74609911-74612993 C1QA 1.02 Known - 

TCONS_00081915 XLOC_030757 7:54395230-54406136 BCL2A1 1.01 Known - 

TCONS_00041554 XLOC_016261 18:6872940-6875292 GIMAP1 1 Known - 

TCONS_00085005 XLOC_032236 8:79743274-79751980 SFRP2 0.99 Known - 

TCONS_00098919 XLOC_039115 GL895590.1:0-1327 GPNMB 0.91 New NON CODING 

TCONS_00068526 XLOC_026077 5:52625315-52630242 BCAT1 0.89 New RELIABLE NON CODING 

TCONS_00062055 XLOC_023401 4:97099149-97103132 FCER1G 0.87 Known - 

TCONS_00009719 XLOC_003695 10:48841010-48961015 MRC1 0.86 Novel isoform CODING 

TCONS_00030894 XLOC_011584 14:117670639-117938624 PIK3AP1 0.85 Known - 

TCONS_00017526 XLOC_006800 12:36561025-36604089 CLTC 0.8 Novel isoform CODING 

TCONS_00062959 XLOC_023614 4:119674090-119703427 CD53 0.78 Known - 

TCONS_00081898 XLOC_030753 7:53623061-53644262 CTSH 0.78 Known - 

TCONS_00060570 XLOC_023035 4:119013307-119039899 ADORA3 0.74 Known - 

TCONS_00052401 XLOC_020144 3:11035819-11055510 LAT2 0.71 Known - 

TCONS_00004118 XLOC_001095 1:35133812-35137388 CTGF 0.68 Known - 

TCONS_00045043 XLOC_017499 2:59214054-59218018 IFI30 0.65 Known - 

TCONS_00004124 XLOC_001096 1:35240242-35281384 ENPP1 0.62 Known - 

TCONS_00062884 XLOC_023592 4:116704501-116707235 OLFML3 -0.54 Known - 

TCONS_00035484 XLOC_013426 15:131680309-131684630 IGFBP5 -0.65 Known - 

TCONS_00101718 XLOC_040809 JH118426.1:306724-312138 - -0.77 New RELIABLE NON CODING 

TCONS_00063805 XLOC_024145 4:77261119-77264781 - -0.77 New NON CODING 

TCONS_00050164 XLOC_018733 2:124815021-124828122 CDO1 -0.9 Novel isoform CODING 
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TCONS_00101559 XLOC_040715 GL896532.1:212-2567 ADSSL1 -1.02 New NON CODING 

TCONS_00079927 XLOC_030240 7:94987617-94990126 HSPA2 -1.1 Known - 

TCONS_00083805 XLOC_031620 7:66542203-66555641 - -1.18 New CODING 

TCONS_00041725 XLOC_016313 18:15292592-15295178 - -1.61 New CODING 

TCONS_00048853 XLOC_018425 2:65175406-65180520 DNAJB1 -1.66 Novel isoform CODING 

TCONS_00029533 XLOC_011248 14:35688332-35701411 HSPB8 -1.81 Known - 

TCONS_00094194 XLOC_036009 GL892492.1:0-3540 HSPA1B -2.32 New NON CODING 

TCONS_00101505 XLOC_040677 GL896522.1:9039-10877 HSPA1A -2.57 New RELIABLE NON CODING 

TCONS_00098059 XLOC_038555 GL894890.1:5-696 HSP70 -3.44 New NON CODING 
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Table 3. David functional annotation clustering obtained considering the significant 

Biological Processes GO terms (Benjamini adjusted P values <0.05) of genes more expressed 

in FAT than in LEAN animals. 

Annotation Cluster 1 Enrichment Score: 7.0 

Term Count Genes 

GO:0006954~inflammatory 
response 

12 
C1QA, SLC11A1, CYBB, ADORA3, OLR1, HMOX1, CCR1, LYZ, 
C1QC, BLNK, CD163, SPP1 

GO:0006952~defense response 15 
ADORA3, OLR1, CCR1, LYZ, COTL1, C1QC, CD163, INHBB, 
CD48, C1QA, SLC11A1, CYBB, HMOX1, SPP1, BLNK 

GO:0009611~response to 
wounding 

14 
ADORA3, PLEK, OLR1, CCR1, LYZ, C1QC, CD163, C1QA, 
SLC11A1, CYBB, CTGF, HMOX1, SPP1, BLNK 

GO:0009605~response to 
external stimulus 

17 
ADORA3, PLEK, OLR1, CCR1, LYZ, C1QC, CD163, INHBB, 
C1QA, SLC11A1, CYBB, CTGF, SFRP2, HMOX1, STC1, SPP1, 
BLNK 

GO:0050896~response to 
stimulus 

29 

ADORA3, AQP9, ENPP1, CCR1, UCHL1, ACP5, C1QC, CD48, 
SLC11A1, PLIN2, CTGF, HMOX1, FCER1G, BLNK, SPP1, 
EGR2, OLR1, PLEK, LYZ, CD1A, COTL1, CD163, INHBB, 
C1QA, CYBB, LAT2, SFRP2, STC1, LCP1 

GO:0006950~response to stress 19 
ADORA3, AQP9, PLEK, OLR1, CCR1, UCHL1, LYZ, COTL1, 
C1QC, CD163, INHBB, CD48, C1QA, SLC11A1, CYBB, CTGF, 
HMOX1, SPP1, BLNK 

Annotation Cluster 2 Enrichment Score: 2.7 

Term Count Genes 

GO:0001775~cell activation 7 CD48, SLC11A1, LAT2, PLEK, LCP1, BLNK, GIMAP1 

GO:0002274~myeloid leukocyte 
activation 

4 CD48, SLC11A1, LAT2, GIMAP1 

GO:0046649~lymphocyte 
activation 

6 CD48, SLC11A1, LAT2, LCP1, BLNK, GIMAP1 

Annotation Cluster 3 Enrichment Score: 2.4 

Term Count Genes 

GO:0048583~regulation of 
response to stimulus 

10 
C1QA, SLC11A1, LAT2, PLEK, ENPP1, HMOX1, FCER1G, 
C1QC, SPP1, GIMAP1 

GO:0050776~regulation of 
immune response 

7 C1QA, SLC11A1, LAT2, HMOX1, FCER1G, C1QC, GIMAP1 

GO:0050778~positive regulation 
of immune response 

6 C1QA, SLC11A1, LAT2, FCER1G, C1QC, GIMAP1 

GO:0002443~leukocyte 
mediated immunity 

5 C1QA, SLC11A1, LAT2, FCER1G, C1QC 

GO:0002682~regulation of 
immune system process 

8 
C1QA, SLC11A1, LAT2, HMOX1, SCIN, FCER1G, C1QC, 
GIMAP1 

Annotation Cluster 4 Enrichment Score: 2.0 

Term Count Genes 

GO:0060348~bone development 6 AMBN, CTGF, ACP5, STC1, GPNMB, SPP1 

GO:0031214~biomineral 
formation 

4 AMBN, ENPP1, GPNMB, SPP1 

GO:0001503~ossification 5 AMBN, CTGF, STC1, GPNMB, SPP1 
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GO:0001501~skeletal system 
development 

7 AMBN, CTGF, MMP9, ACP5, STC1, GPNMB, SPP1 

Annotation Cluster 5 Enrichment Score: 1.6 

Term Count Genes 

GO:0001775~cell activation 7 CD48, SLC11A1, LAT2, PLEK, LCP1, BLNK, GIMAP1 
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Figures 

Figure 1. Transcripts and isoforms classification. 

(A) Expressed transcript were classified, according to current gene annotations, into 8 types, 

reported with different colors (see legend) and grouped in three categories: K (known) 

collects transcripts found in reference annotation (yellow); I (isoform) collects alternative 

forms of transcripts (red shades); N collects new transcripts from not-annotated loci (green 

shades). The pie chart shows the number of transcripts detected, for each type, and their 

mutual proportions. Three transcript types of the N group have few elements (43 intronic; 5 

possible polymerase run-on fragments; 3 transcript intron overlap a reference intron on the 

opposite strand) and are barely visible in the chart. (B) Transcript length distributions in the 

three categories. (C) Transcript expression level distribution for the three categories. (D) 

Number of genes (vertical axis) with their number of transcript isoforms detected 

(horizontal axis). Genes with only one transcript isoforms detected are the most frequent; 

however, genes with up to 31 different isoforms were detected. (E) The proportion of each 

transcript type for the transcript isoforms grouped as in (D). Genes with only one isoform 

(first bar) are mainly intergenic genes (green part). For genes having more than one isoform 

expressed, the proportion of novel isoforms detected increases along with the number of 

different isoforms for a gene (red part). 
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Figure 2. Coding potential of new intergenic transcripts. 

According to CPC scores, calculated both for the forward and for the reverse complement 

sequence, the intergenic transcripts were classified as “coding”, “non-coding” and “reliable 

non-coding”. (A) The pie chart shows numbers and proportions of intergenic transcripts 

falling in each category and provides the color code for the figure panels. (B) and (C) show 

respectively the distribution of lengths and of expression levels of intergenic transcripts, 

binned in the three categories. (D) Percentages of transcripts per category are compared, 

considering all the intergenic transcripts and the subset of the intergenic transcripts ranked 

within the 10% most expressed transcripts considering the whole transcriptome. 
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Figure 3. Differentially expressed genes and transcripts identified. 

(A) Intersection of genes resulting differentially expressed (DE) according to DESeq2 and 

Cuffdiff2 analysis, and genes with at least one transcript resulting DE according to the 

transcript-level Cuffdiff2 analysis. We focused on the transcripts belonging to the 85 loci 

commonly identified by all the methods. (B) Proportions of the new and known DETs 

resulting higher- and lower-expressed in FAT vs. LEAN samples. (C) Number of DE genes 

mapping to chromosomes or to genome scaffolds (S). 
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Figure 4. qRT-PCR validation of eleven genes differentially expressed according to RNA-seq 

data.  

(A)Log2 FC values obtained from RNA-seq, according to Cuffdiff2 estimates, (black bars) and 

from qRT-PCR data (grey bars), for the eleven tested genes; (B) scatterplot showing the 

good correlation between the Log2 FC values calculated with the two experimental 

methods. 
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Figure 5. Genes differentially expressed between FAT and LEAN animals impact on specific 

and connected biological processes. 

Genes differentially expressed in FAT vs. LEAN pigs converge to specific functions that are 

more activated or impaired in FAT pigs. Genes and functions upregulated and 

downregulated in FAT pigs are shown in red and green shades, respectively. Several genes 

more expressed in FAT pigs are linked to fat deposition and lipid metabolism, to adipocyte 

differentiation and maturation or to signaling pathways regulating them; FAT pigs show as 

well increased expression of genes involved in inflammation and immunity and increased 

expression of genes involved in the control of complex behavior, also by inflammation-

mediated secretory activity of adipocytes. Metabolic alterations induce chronic stress in the 

adipose tissue. FAT pigs shows under-expression of several genes involved in stress response 

by unfolded protein binding and misfolded protein aggregation prevention. The impairment 

of these functions might in turn augment inflammation and the consequent secretory 

activity and possibly induce senescence. 
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Supporting information 

Additional supporting information may be found in the online version of this article. 

Supplementary Tables are included in the file: TranscriptomeILW_SupplementaryTables.xlsx 

 

 

Table S1 - Primers and PCR condition used for the validation. 

EXT: primer pairs used for the amplification of a larger PCR product 

INT: primer pairs used for the creation of the standard curve and for the qRT-PCR analysis 

Table S2 - Number of reads for each sample 

For each sample is indicated the total raw reads sequenced, total clean reads after the 

trimming and length filters and total reads mapped to the reference genome. Reported 

values refer to reads as they were single end (total clean paired reads are half the value in 

the table). Respective percentages are shown in the last three columns. 

Table S3 - Types of transcripts expressed in backfat tissue, according to the considered 

genome annotations. 

Transcripts, associated to eight Cufflinks class codes (see 

http://cufflinks.cbcb.umd.edu/manual.html#class_codes), were classified into three major 

informative groups. 

Table S4 – Intergenic transcript annotations. 

Table S5 - Transcript coding potential predicted by Coding Potential Calculator (CPC) for 

intergenic transcripts. 

Reliable noncoding: CPC score <-1 

Noncoding: CPC score -1=> / <=0 

Coding: CPC score >0 

Table S6 - Most expressed transcripts (top 75%) detected in porcine backfat. 

 

Table S7 - David functional annotation clustering of the most expressed genes. 

The 10 most relevant clusters are reported 

 

Table S8 - List of differentially expressed genes detected by Cuffdiff2. 
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Table S9 - List of differentially expressed genes detected by DeSeq2. 

 

Table S10 - List of differentially expressed transcripts detected by Cuffdiff2. 

 

Table S11 - Transcript coding potential predicted by Coding Potential Calculator (CPC) for 

the differentially expressed transcripts. 

Reliable noncoding: CPC score <-1 

Noncoding: CPC score -1=> / <=0 

Coding: CPC score >0 

 

Figure S1. Read processing and alignment results. 

(A) The boxplots show the distribution of the reads considered in different steps and filters 

of the computational analysis pipeline, in the 20 considered samples. From left to right we 

show the number of raw reads sequenced, of clean reads resulted from the filtering steps, of 

reads successfully mapped to the reference genome, and of reads with unique alignment in 

the genome. (B) From the left, the bars show the average amounts, in the 20 considered 

samples, of reads spliced, aligned to an exon, to an intron, to intergenic regions (according 

to the Sus scrofa 10.2 genome annotation), or spanning exon-intron borders. Different colors 

indicate the proportion of read aligning to chromosomes (blue), genome scaffolds (red) or 

mitochondrial genome (yellow). (C) Number of expressed genes detected in different 

chromosomes, in mitochondrial genome (Mt) or in genome scaffolds (S). 

 

Figure S2. Gene expression distribution in FAT and LEAN groups. 

Cumulative gene expression is shown for the two groups. The figure represents the number 

of genes (horizontal axis) required to reach different percentages (vertical axis) of the overall 

gene expression. The inner panel focus on the cumulative expression curves for 50% and 

75% of the expression. 

 

Figure S3.Alignment of the four detected isoforms of PLIN2 gene (red box) with the porcine 

and vertebrates transcripts present in Ensembl. 
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Figure S4. Principal component analysis (PCA) based on gene expression profiles. 

The figure presents sample separation according to the two principal components, 

explaining most of the gene expression variation in the data. Samples are represented by 

dots, with green and orange colours indicating LEAN and FAT samples, respectively in Panel 

A) and red and blue indicating females and castrated males in Panel B). The PCA shows a 

clear separation of LEAN and FAT samples, with no separation of samples by sex. 
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Summary  

Fat content, fatty acid composition and lean cut weight are important parameters which 

influence meat and carcass quality in pigs. Up to now, the genes involved in the regulation of 

the lipid and energy metabolism in porcine skeletal muscle and fat tissue are still relatively 

unknown. The aim of this study was to investigate the expression levels of fourteen genes 

(ACACA, ACLY, CES3, ENO3, FASN, INSIG2, LMNA, MTTP, ACVR1C, NAMPT, PLIN1, PLIN2, PLTP 

and SORT1) mapped on different chromosomes (1, 4, 7, 8, 9, 12, 15 and 17) which were 

chosen for their involvement in lipid or energy metabolism in porcine muscle and backfat 

tissue. Tissue samples from Italian Large White and Italian Duroc pig breeds were collected 

at the slaughterhouse and frozen in liquid nitrogen. After extraction, the mRNA was 

quantified by quantitative real time polymerase chain reaction (RT-PCR) and the 

transcription levels of the genes analysed were compared between breeds for each tissue. In 

the backfat tissue, differences were found for the ACACA, ACLY, and FASN genes whose 

highest gene expression levels were found in Italian Large White pigs. In addition, a 

correlation analysis was carried out between the transcription levels of the genes considered 

in each tissue and breed. Co-expression relationships still relatively unknown were 

identified, suggesting new associations between genes which in some cases differed 

between the two breeds. These results suggest differences between Italian Large White and 

Italian Duroc pig breeds determined at the genome level affecting carcass quality and fat 

traits. 
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Introduction 

The levels of leanness and fatness in pigs are the main determinants affecting meat and 

carcass quality traits. Porcine meat marbling, backfat thickness and lean cut amount are all 

essential elements for the quality of fresh meat and seasoned products. Several studies have 

been carried out on different pig breeds in order to identify the causative genes and to 

investigate the genetic basis of fat deposition. However, nowadays, the genes responsible 

for the phenotypic variation and for the differences among breeds in intramuscular fat 

content and backfat thickness are still relatively unknown (Puig-Oliveras et al., 2014). The 

analysis in different tissues of the expression levels of a set of potential candidate genes for 

fat deposition or energy metabolism and the identification of their co-expression 

relationships represent a useful step in identifying the genes involved in the lipid metabolism 

and the search for markers to be used in selection. Moreover, the knowledge of the 

correlation between the mRNA levels of this set of genes and some important carcass traits 

may help both to shed light on the metabolic pathways affecting pig performance and 

carcass quality, and to define the interactions among candidate genes for fat traits. 

The 14 genes were chosen from previous studies cited in the literature which were carried 

out in pig or other mammalian species (Table 1 and Supplementary Table S1). These genes 

have a direct or indirect involvement in fat deposition and are, in some cases, involved in 

human metabolic diseases. The majority of the genes selected, such as PLIN2, SORT1, PLIN1, 

MTTP, ACACA, ACLY, ENO3, FASN, ACVR1C, PLTP and CES3 are well known for their role in 

energy and lipid metabolism (Supplementary Table S1), while LMNA, INSIG2 and NAMPT are 

not directly involved in lipid metabolism but have already been considered in other species 

for a putative role in adipogenesis or lipid metabolism. LMNA, whose main role is related to 

nuclear stability and chromatin structure, also has a putative role in fat deposition 

(Verstraeten et al., 2011; Lopez-Mejia et al., 2014) and for this reason was included among 

the genes selected. Furthermore, INSIG2 was reported by Malzahn et al. (2014) as a gene 

associated with the body mass index in humans, even if this association is still under debate. 

In addition, NAMPT was also considered. This gene is mainly known to be involved in the 

rate-limiting step in nicotinamide adenine dinucleotide (NAD) biosynthesis. Čepica et al. 

(2010) found, in different pig populations, that NAMPT is located in a chromosomal region 

near a Quantitative Trait Locus (QTL) for backfat thickness, growth, body composition, feed 

intake, fatty acid composition and loin pH2. The literature regarding these genes mainly 
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focuses on several mammalian species, but very little or nothing at all is known regarding 

the importance of these genes in pig lipid metabolism. 

The aim of the present research was to compare between Italian Duroc (IDU) and Italian 

Large White (ILW) breeds the expression levels in backfat and skeletal muscle tissues of a set 

of potential candidate genes involved in lipid metabolism and/or adipogenesis.  

The identification of gene co-expressions divergent between the two breeds may help to 

shed light on the gene interactions related to the different phenotypic characteristics of the 

IDU and ILW pigs concerning lean and fat deposition aptitude. In addition, the study can 

contribute to improving knowledge regarding the expression profile in the pig muscle and fat 

tissue of the genes considered. 

 

Materials and Methods 

Animals and traits 

Italian Large White and Italian Duroc pig breeds were considered in this study. The samples 

were obtained from pure-breed sib-tested pigs included in the Italian sib-test genetic 

evaluation scheme carried out by Italian National Association of Pig Breeders (Associazione 

Nazionale Allevatori Suini, ANAS; www.anas.it). All the animals used in this study were kept 

according to Italian and European laws for pig production, and all the procedures described 

were in compliance with Italian and European Union regulations for animal care and 

slaughtering. The animals were reared on the ANAS Sib-Test genetic station from about 30 

kg live weight to at least 155 kg live weight. The pigs were fed with a quasi ad libitum 

nutrition level, which means that about 60% of pigs were able to ingest the entire supplied 

ration. At the end of the test, the animals were transported to a commercial abattoir located 

about 25 km from the test station in accordance with Council Rule (EC) No. 1/2005 regarding 

the protection of animals during transport and related operations and, amending Directives 

64/432/EEC and 93/119/EC and Regulation (EC) No. 1255/97. At the slaughterhouse, the pigs 

were electrically stunned and bled in a supine position in agreement with Council Regulation 

(EC) No. 1099/2009 regarding the protection of animals at the time of slaughter. All 

slaughter procedures were monitored by the veterinary team appointed by the Italian 

Ministry of Health. For each breed, samples of backfat and skeletal muscle tissue (obtained 

from semimembranosus muscle) were collected, immediately frozen in liquid nitrogen and 
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stored at -80°C until RNA isolation. At the slaughterhouse, it was possible to sample muscle 

tissue from 11 IDU (MIDU) and 20 ILW pigs (MILW), and backfat tissue from 12 IDU (BIDU) and 

26 ILW pigs (BILW). From this point on, these abbreviations will be used to indicate the four 

groups of pigs studied. The gene expression study for each tissue was carried out on the two 

groups of pigs in order to compare the gene transcription levels between breeds. In Table 2, 

the number of males and females for each group is indicated. Moreover, for all the pigs, 

ANAS provided the Estimated Breeding Values (EBVs) and the backfat thickness phenotypic 

trait, expressed in mm and measured at the slaughterhouse. For each group of samples, the 

mean values for the traits considered and the EBVs are reported in Table 2. The EBVs 

provided are Average Daily Gain (ADG, calculated from 30 to 155 kg of live weight with quasi 

ad libitum feeding level, expressed in grams), Backfat Thickness (BFT, recorded post mortem 

at the level of the gluteus medius muscle, expressed in mm), Lean Cuts (LC, the sum of neck 

and loin weight, expressed in kg), Feed Conversion Ratio (FCR, obtained from feed intake 

recorded daily and body weight measured bimonthly, expressed in units) and Ham Weight 

(HW, expressed in kg). The EBVs were calculated by ANAS according to the statistical model 

reported by Russo et al. (2000), using a BLUP-multiple trait animal model (Henderson and 

Quaas, 1976). The models considered were different for each trait and included fixed effects 

of batch, sex and age at the beginning of the test, age of the pig, weight at slaughter, age at 

slaughter, inbreeding coefficient, the random effects of litter and the individual permanent 

environmental and animal effects. Furthermore, ANAS considered the additive relationship 

matrix to calculate the genetic merit of the pigs for the traits analysed; the EBVs are always 

expressed as the difference from the genetic basis evaluated as “zero” calculated on pigs 

born in 1993. 

 

RNA source, total RNA extraction and cDNA preparation 

Total RNA was extracted from semimembranosus muscle and backfat tissue of ILW and IDU 

pigs using TRIZOL reagent (Invitrogen Corporation, Carlsbad, California), as described in 

Davoli et al. (2011). The quality and integrity of the RNAs were both checked by a reading on 

the ND-1000 Spectrophotometer (NanoDrop Technologies, Willmington, DE, USA), and 

visualisation on 1% agarose gel. The RNA samples were treated with DNaseI (Invitrogen 

Corporation) and, for each sample, 1 µg of total RNA was retrotranscribed to cDNA, 

according to the manufacturer’s instructions, using the Improm-II TM Reverse Transcription 

http://www.sciencedirect.com/science/article/pii/S0309174011000775#bb0035
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System and Oligo-dT primers (Promega Corporation, Madison, Wi, USA). The intronic primer 

sequence of AGPAT1 (1-acylglycerol-3-phosphate O-acyltransferase 1) gene was utilised in 

the PCR analysis to verify the contamination of possible residual DNA, amplifying the 

retrotranscribed products.  

 

Quantification of genes expression 

The expression levels of the genes studied in backfat and skeletal muscle tissues in IDU and 

ILW pigs were analysed using the relative quantitative Real-Time polymerase chain reaction 

(qRT-PCR) standard curve method (Pfaffl, 2004) and the data from each sample were 

normalised against the two different normalising genes for each tissue, according to 

Vandesompele et al. (2002) and GENORM (http://medgen.ugent.be/~jvdesomp/genorm/). 

The qRT-PCR analyses were carried out with the Light Cycler 1.0 System (Roche Diagnostics, 

Mannheim, Germany) using SYBR® Premix Ex TaqTM (TAKARA Bio INC, Olsu, Shiga, Japan), 10 

pmol of each primer and 2 µl of cDNA template diluted 1:10, for a total volume of 10 µl. The 

Light Cycler protocol was optimised using specific annealing temperatures for each primer 

couple (Supplementary Table S2). For the normalising genes and the 14 genes studied, a 

specific standard curve was obtained, amplifying 12 serial dilutions (from 109 to 50 

molecules/µl) of a known-concentration cDNA amplicon, obtained with a PCR using the 

external primer pairs. The PCR efficiency was calculated as E = 10 exp (-1/slope), with a 

range between -2.7 and -4.3, indicating good PCR efficiency results. All the PCR products 

were checked on a polyacrylamide gel, and detection of the melting temperature allowed 

checking the specificity of the amplicon. The coefficient of variation (CV = Standard Deviation 

of the Crossing Points/Average of the Crossing Points) of the replicated analysis for each 

sample (three in two different qRT PCRs) was accepted for CV < 0.5. The data obtained were 

normalised using different pools of normalising genes for the two tissues and, for that 

reason, it was not possible to compare the normalised transcription levels obtained in the 

backfat tissue with those obtained for muscle samples. To normalise the result of the 

expression data in backfat and muscle tissues, the genes beta-2-microglobulin (B2M), 

polymerase (RNA) II (DNA directed) polypeptide A, 220 kDa (POLR2A), Peptidylprolil 

isomerase A (cyclophilin A) (PPIA) and Thymosin beta 4, X-linked (TMSB4X) reported in 

different papers as normalising genes (Hsiao et al., 2001; Wang et al., 2012) were tested. The 

B2M and POLR2A genes were utilised to normalise skeletal muscle genes expression while 
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PPIA and TMSB4X were used for the mRNA quantification in backfat tissue. For each tissue, 

the normalised gene transcription levels were compared between breeds. 

In muscle and backfat tissues, only the expression levels for 12 genes out of the 14 initially 

chosen were measured due to the undetectable transcription level of MTTP and ACVR1C in 

the tissues considered. 

 

Statistical analysis 

R software was used for the statistical analyses, in particular, the Stats package (R Core 

Team, 2015). Within each tissue, the expression levels of the 12 detectable genes were 

compared between breeds using the Student’s t-test, considering P < 0.05 as a significance 

threshold. Moreover, Spearman’s correlations between gene expressions and the EBVs were 

calculated for the IDU groups (MIDU and BIDU) and the ILW groups (MILW and BILW). In addition, 

correlations between the transcription levels of the genes analysed were determined in 

order to find the co-expressed genes in each tissue for each breed. 

 

Results 

Expression study 

The expression study results are reported in Figure 1 for muscle tissue and in Figure 2 for 

backfat. In muscle tissue, the only significant comparison between MIDU and MILW pigs was 

observed for the ACLY gene (Figure 1), with a t test P value of 0.0178. The ENO3, NAMPT and 

LMNA genes were those most expressed in muscle tissue of both breeds. 

When observing the backfat tissue results (Figure 2), the higher PLIN1 and CES3 expression 

levels clearly stand out with respect to the other genes tested. Furthermore, in backfat 

tissue, the FASN, ACLY and ACACA mRNA levels differed significantly between the two 

breeds (P = 0.0273, P = 0.0024, P = 0.0039, respectively) and were notably higher in ILW than 

in IDU samples. 

 

Correlation analysis 

Muscle gene expression correlations. The gene expression data obtained in muscle tissue for 

the 11 MIDU and the 20 MILW pigs were used to carry out a Spearman’s correlation analysis 

between transcription levels and EBVs (Table 3). The MILW group never showed any 
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significant correlation with the performance EBVs in muscle tissue. On the contrary, in the 

IDU sample, the transcription levels of the PLIN1, ENO3, PLIN2, PLTP and LMNA genes were 

correlated with the traits considered. In particular, PLTP showed significant correlation 

coefficients with all the EBVs considered except LC; its expression was positively correlated 

with BFT (P = 0.021) and FCR (P = 0.003), and negatively correlated with ADG (P = 0.013) and 

HW (P = 0.007). In the IDU sample, HW was negatively affected by an increase in both PLTP 

and PLIN1 transcription levels; moreover, a worsening of feed conversion to body mass 

(expressed with FCR EBV) was observed. The significant correlation values between muscle 

gene expressions are reported in Table 4. In muscle tissue, a larger number of significant 

correlations between the gene expressions were found in ILW pigs than in IDU pigs; in 

particular, MIDU did not show any significant correlation of the transcription levels of PLIN1, 

PLIN2, CES3 and ACACA with the other genes. The FASN and ACLY genes did not show any 

significant correlations in either breed and, for that reason, the data are not reported in 

Table 4. In both breeds, all the correlations obtained between gene expressions in the 

skeletal muscle tissue were positive, and the most interesting ones will be commented on in 

the Discussion section. 

Backfat gene expression correlations. Spearman’s correlations between backfat gene 

expression levels and performance traits are reported in Table 5. The IDU pigs showed a 

higher number of correlations between gene expressions and EBVs in comparison to the ILW 

pigs which, in contrast, presented fewer and less significant correlation coefficients. The 

CES3, SORT1, PLIN1, LMNA, FASN and ACACA genes were significantly correlated with the 

EBVs and, in particular, CES3 showed the highest number of correlations and the most 

significant P value for FCR (P = 0.005) in IDU pigs. In IDU pigs, BFT EBV was correlated with 

the expressions of the CES3, PLIN1, LMNA, FASN and ACACA genes and, in particular, the 

highest significant correlations for BFT were found for FASN and ACACA expression (Table 5). 

In the backfat tissue of both breeds, when observing Spearman’s correlations between the 

transcription levels, some putative gene interactions and pathways could be hypothesised. 

Some interesting differences between breeds are visible. In particular, for the ENO3, PLIN2 

and ACLY genes, only the ILW group presented significant correlations between the 

expressions of these three loci and the other genes studied. Furthermore, the BILW pigs 

showed the most significant correlations (P values < 0.0001) for PLIN1 vs. NAMPT, PLIN1 vs. 

LMNA, SORT1 vs. LMNA, SORT1 vs. INSIG2, and between FASN and ACLY vs. ACACA 
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correlation. The only negative correlation found in our samples was between INSIG2 and 

ACLY in BILW pigs (Table 6). 

 

Discussion 

The results of the research indicate that there are differences between the two breeds for 

the correlations of gene expressions (co-expressions) in backfat and muscle tissues for the 

majority of the considered loci. The IDU and the ILW breeds have different characteristics 

regarding muscle and fat deposition; ILW pigs have a better feed conversion efficiency than 

IDU pigs (http://www.anas.it/circolari/201500000.PDF, page 22), however, maintaining the 

correct balance between muscle and backfat deposition. On the other hand, the IDU breed 

tends to a higher intramuscular fat deposition as compared to the ILW breed. This different 

aptitude for lean and fat tissue deposition between the two breeds is also visible in the 

results obtained. Indeed, the IDU and the ILW pigs showed some significant discrepancies 

concerning both the gene expression levels in the two tissues analysed and the gene co-

expressions within the tissues. Moreover, significant correlations were found between gene 

transcription and the EBVs. In backfat tissue, the genes involved in lipid synthesis (ACACA, 

ACLY and FASN) showed different expression levels between the breeds, with the highest 

transcription values identified in ILW pigs (Figure 2). The ACLY and ACACA genes code for the 

enzymes ATP citrate lyase and Acetyl-CoA carboxylase, respectively; the first is the primary 

enzyme responsible for the synthesis of cytosolic Acetyl-CoA while the second is a complex 

multifunctional enzyme system which catalyses the carboxylation of acetyl-CoA to malonyl-

CoA, the rate-limiting step in fatty acid synthesis (Davoli et al., 2014). Furthermore, a 

polymorphism of the Fatty acid synthase gene has already been reported in association with 

backfat deposition in ILW pigs (Braglia et al., 2014). In BILW pigs, the FASN and ACLY genes 

presented a high number of co-expressions with the other genes studied which were, for the 

most part, missing in BIDU pigs (Table 6). The ACLY, ACACA and FASN genes have a key role in 

lipogenesis, and the higher transcription level observed in backfat for the ILW samples can 

be considered consistent with the greater backfat deposition in this breed as compared to 

the IDU samples (Tables 2 and 6). On the other hand, the IDU samples showed a higher 

expression of ACLY and FASN genes in muscle tissue (Figure 1), in agreement with the 

predisposition of the IDU breed towards a more marked intramuscular fat deposition than 

the ILW breed. In line with these data, Cánovas et al. (2010) reported a more intense 
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transcriptional activity of the genes involved in fat metabolism for IDU pigs with extreme 

intramuscular fat deposition in the muscle tissue. Based on the results obtained, it is likely 

that the ILW and IDU pig breeds present different co-expression pathways for the ACLY, 

ACACA and FASN genes induced by the different lipogenic capability in the backfat and 

muscle tissue characterising the two breeds. 

In addition, in Table 3, the MIDU pigs presented significant correlations between the EBVs and 

the expression levels of the genes related to intracellular lipid droplet storage (PLIN1, PLIN2), 

lipoprotein metabolism (PLTP), glycolysis (ENO3) and adipose tissue differentiation (LMNA). 

On the contrary, for the same genes, the MILW pigs did not show significant values, likely 

highlighting the less pronounced aptitude towards intramuscular fat deposition of the ILW 

pigs as compared to the Duroc pigs. Verstraeten et al. (2011) and Boguslavsky et al. (2006) 

have proven the importance of LMNA gene for fat tissue deposition and adipocyte 

differentiation in mouse-cultured cells. Although evidence links LMNA to fat deposition in 

mice, this gene remains poorly explored in swine. 

Perilipin family genes are the main actors intervening on the modulation of intracellular lipid 

droplet hydrolysis. Even if the Perilipin 2 protein in the liver seems to promote lipid storage 

(Sun et al., 2012), in oxidative muscles, the same protein coats the cellular lipid droplets to 

promote hydrolysis in energy-requiring processes (Gandolfi et al., 2011; Sztalryd and 

Kimmel, 2014). In MILW pigs, PLIN2 presented a relevant number of significant co-expressions 

with the genes studied while MIDU pigs did not present any significant co-expression (Table 

4). This result seems to point out a more pronounced activity of this gene in the ILW samples 

than in the IDU samples which promotes the hydrolysis of the intracellular lipids stored in 

the muscle. 

The same results were obtained for CES3, a gene which catalyses a protein having carboxylic 

ester hydrolase activity (Shanghani et al., 2009). Similar to the data obtained for PLIN2 

expression, the presented results indicate that only in ILW muscle CES3 showed significant 

co-expressions with the majority of the genes considered. This result could allow 

hypothesising that this gene is involved in some processes in the ILW muscle more than in 

the same tissue of the IDU samples.  

Moreover, it is worth noting that SORT1 expression was positively correlated to lean cut 

deposition in BIDU pigs and negatively related to ADG in BILW pigs (Table 5). Sortilin 1 

functions are still not completely clear and, in the literature, Huang et al. (2013) 
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hypothesised the involvement of sortilin 1 in the formation of insulin responsive vesicles on 

perinuclear membranes and a possible engagement of SORT1 in the increase in insulin 

sensitivity in differentiating adipocytes. The two breeds considered have a different 

lipogenic activity for the tissues analysed as the ILW breed show a higher tendency to fat 

deposition in backfat tissue while the IDU pigs have a strong aptitude for muscle fat 

deposition as reported in the literature (Cánovas et al., 2010). It can be suggested that the 

differences observed in backfat tissue between the IDU pigs and the ILW pigs according to 

the SORT1 correlations with the EBVs may be associated to the different adipogenic 

disposition of the two breeds. 

In summary, differences between ILW and IDU concerning the transcription rate and the 

gene co-expressions were observed, dissimilarities which could be partially related to the 

different phenotypic characteristics of the two breeds. These phenotypic and molecular 

differences could be due to the distinct genetic origin of the Duroc breed as compared to 

Large White pigs, hypothesising that selection in European domestic pig breeds led to 

genetic differentiation in chromosomal regions harbouring genes involved in many 

metabolic pathways (Amaral et al., 2011). 

Moreover, the results suggest still unexplored roles and pathways linking some genes, such 

as the strong correlation intervening between SORT1 and LMNA (Tables 4 and 6), between 

INSIG2 and ACLY and between INSIG2 and SORT1 expressions (Table 6). However, additional 

studies will be required to prove the latter results. 

In our study, the correlations found in muscle (Tables 4 and 5) between PLTP gene 

expression and the EBVs can only be partially explained considering that the effect of this 

gene on pig fat deposition has been poorly investigated to date. PLTP codes for a 

phospholipid transfer protein involved in the cholesterol metabolism and this gene is 

currently considered for its influence on coronary diseases, diabetes and obesity (Qin et al., 

2014). The present results offer some new insights, providing additional information on pigs 

regarding PLTP co-expression pathways which may be useful in increasing knowledge of this 

gene. 

 

Conclusions 

The different aptitudes for lean and fat deposition characterising the Italian Duroc and 

Italian Large White breeds could also be partially identified at a transcriptional level for the 



 - 156 - 

genes studied, suggesting that, for each breed, distinct and specific gene effects on carcass 

quality and fat traits could exist. Additional functional or regulative roles for the genes 

considered can be hypothesised, but much remains to be tested in additional studies. 

However, the results obtained may help in offering new insights on some genes which are 

still relatively unknown in pigs.  
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Table 1. List of the 14 genes considered for the present expression study in pig muscle and 

backfat tissues sorted by chromosome location. 

GENE Coded Protein Chromosome (SSC)1 

PLIN2 Perilipin 2 SSC1 

LMNA Lamin A/C SSC4 

SORT1 Sortilin1 SSC4 

INSIG2 Insulin induced gene 2 SSC7 

PLIN1 Perilipin 1 SSC7 

MTTP Microsomal triglyceride transfer protein SSC8 

NAMPT Nicotinamide phosphoribosyltransferase SSC9 

ACACA Acetyl-CoA carboxylase alpha SSC12 

ACLY ATP citrate lyase SSC12 

ENO3 Enolase 3 (Beta, muscle) SSC12 

FASN Fatty acid synthase SSC12 

ACVR1C Activin A receptor type-1C SSC15 

PLTP Phospholipid transfer protein SSC17 

CES3 Carboxylesterase 3 Unplaced 

1 SSC is the acronym used for Sus scrofa chromosome. 

The position of the studied genes is indicated in NCBI Gene database 

(https://www.ncbi.nlm.nih.gov/gene) accessed on 11 September 2015. 
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Table 2. The considered groups of pigs and their composition in the top half of the table and 

in the bottom half the means ± the standard deviations of the traits and Estimated Breeding 

Values (EBVs) for the groups. 

 
Skeletal muscle samples Backfat samples 

MIDU MILW BIDU BILW 

Castrated males 6 8 6 11 

Sows 5 12 6 15 

Total 11 20 12 26 

Traits/EBVs     

Backfat thickness (mm)1 23.80 ± 6.63 27.75 ± 8.83 24.25 ± 6.40 29.42 ± 7.68 

ADG (g)2 48.00 ± 48.79 26.35 ± 48.55 45.00 ± 49.89 38.46 ± 27.49 

BFT (mm)3 -3.26 ± 3.81 -2.29 ± 7.34 -3.55 ± 3.94 -2.00 ± 6.83 

LC (kg)4 3.32 ± 4.45 1.91 ± 3.34 3.34 ± 4.45 2.27 ± 2.73 

HW (kg)5 1.06 ± 0.91 0.54 ± 0.99 1.16 ± 0.97 0.67 ± 0.70 

FCR6 -0.21 ± 0.15 -0.13 ± 0.27 -0.21 ± 0.15 -0.18 ± 0.16 

IDU is used to identify the groups of Italian Duroc breed pigs. 

ILW is used to identify the groups of Italian Large White breed pigs. 

1 backfat thickness phenotype in millimetres, phenotype measured at 8 cm off the midline of the 

carcass at the level placed between the third and fourth last ribs. 

2 Estimated Breeding Values obtained with a BLUP-multiple trait animal model for Average Daily Gain 

(ADG) calculated from 30 to 155 kg of live weight with quasi ad libitum feeding level, expressed in 

grams. 

3 Estimated Breeding Values obtained with a BLUP-multiple trait animal model for Backfat Thickness 

(BFT) recorded post mortem at the level of gluteus medius muscle, expressed in mm. 

4 Estimated Breeding Values obtained with a BLUP-multiple trait animal model for Lean Cuts (LC), the 

sum of neck and loin weights, expressed in kg. 

5 Estimated Breeding Values obtained with a BLUP-multiple trait animal model for Ham Weight (HW), 

the weight of thighs expressed in kg. 

6 Estimated Breeding Values calculated with a BLUP-multiple trait animal model for Feed Conversion 

Ratio (FCR) obtained from feed intake daily recorded and body weight bimonthly measured, 

expressed in units. 
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Table 3. Spearman’s correlation coefficients and relative P values between the Estimated 

Breeding Values (EBVs) and the expression levels in pig muscle tissue of the Italian Duroc 

breed pigs group (MIDU). 

 Estimated Breeding Values 

 ADG1 BFT2 LC3 HW4 FCR5 

PLIN1 MIDU - - - -0.654* 0.690* 

ENO3 MIDU - - - - 0.636* 

PLIN2 MIDU - - -0.645* - - 

PLTP MIDU -0.745* 0.709* - -0.781** 0.818** 

LMNA MIDU - 0.601* - - 0.627* 

The correlation is expressed with the r coefficient and * for P < 0.05, ** for P < 0.01. 

- is used for not significant values. In the table are reported only genes with significant correlations, 

expressed with the r coefficient and between brackets the relative P value. ILW pigs are not 

included in the table, as they did not showed significant corrrelations. 

1 EBV of Average Daily Gain calculated from 30 to 155 kg of live weight with quasi ad libitum feeding 

level, expressed in grams. 

2 EBV of Backfat Thickness recorded post mortem at the level of gluteus medius muscle, expressed in 

mm. 

3 EBV of Lean Cuts, the sum of neck and loin weights, expressed in kg. 

4 EBV of Ham Weight, expressed in kg. 

5 EBV of Feed Conversion Ratio obtained from feed intake daily recorded and body weight bimonthly 

measured, expressed in units. 
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Table 4. Spearman’s correlation coefficients between the expression levels of the 12 detectable genes in pig muscle tissue of the Italian Duroc 

pigs (MIDU) and Italian Large White pigs (MILW). 

  ENO3 PLIN1 PLIN2 NAMPT SORT1 CES3 PLTP LMNA INSIG2 ACACA 

ENO3 
MIDU 1 - - 0.927*** 0.939*** - 0.794*** 0.903*** 0.903*** - 

MILW 1 - 0.767*** 0.744*** 0.829*** - 0.707*** 0.810*** 0.773*** 0.875*** 

PLIN1 
MIDU - 1 - - - - - - - - 

MILW - 1 0.516* 0.505* 0.575** 0.680** - 0.619** 0.553* 0.643** 

PLIN2 
MIDU - - 1 - - - - - - - 

MILW 0.767*** 0.516* 1 0.892*** 0.889*** - 0.705*** 0.851*** 0.901*** 0.870*** 

NAMPT 
MIDU 0.927*** - - 1 0.900*** - - - 0.909*** - 

MILW 0.744*** 0.505* 0.892*** 1 0.789*** 0.516* 0.668* 0.833*** 0.974*** 0.761*** 

SORT1 
MIDU 0.939*** 

  
0.900*** 1 - - 0.773** 0.836** - 

MILW 0.829*** 0.575** 0.889*** 0.789*** 1 - 0.807*** 0.872*** 0.809*** 0.851*** 

CES3 
MIDU - - - - - 1 - - - - 

MILW - 0.680** - 0.516* - 1 - - 0.554* 0.531* 

PLTP 
MIDU 0.794** - - - - - 1 0.854** - - 

MILW 0.707** - 0.705*** 0.668** 0.807*** - 1 0.807*** 0.676** 0.659** 

LMNA 
MIDU 0.903*** - - 0.727* 0.773** - 0.854** 1 0.773** - 

MILW 0.810*** 0.619** 0.851*** 0.833*** 0.872*** - 0.807*** 1 0.815*** 0.810*** 

INSIG2 
MIDU 0.903*** - - 0.909*** 0.836** - - 0.773** 1 - 

MILW 0.773*** 0.553* 0.901*** 0.974*** 0.809*** 0.554* 0.676** 0.815*** 1 0.819*** 

ACACA 
MIDU - - - - - - - - - 1 

MILW 0.875*** 0.643** 0.870*** 0.761*** 0.851*** 0.531* 0.659** 0.810*** 0.819*** 1 
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The correlation is expressed with the r coefficient and * for P < 0.05, ** for P < 0.01, *** for P < 0.001. 

- is used for not significant P values. 
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Table 5. Spearman’s correlation coefficients and relative P values between the Estimated 

Breeding Values and the expression levels in pig backfat tissue of the Italian Duroc breed 

pigs group (BIDU) and the Italian Large White group (BILW). 

  Estimated Breeding Values 

  ADG1 BFT2 LC3 HW4 FCR5 

CES3 
BIDU -0.671* 0.697* - -0.622* 0.748** 

BILW - 0.478* - - - 

SORT1 
BIDU - - 0.700* - - 

BILW -0.395* - - - - 

PLIN1 
BIDU - 0.672* - - - 

BILW - - - - - 

LMNA 
BIDU - 0.648* - - 0.615* 

BILW - - - - - 

FASN 
BIDU - 0.701* - - - 

BILW - - - - - 

ACACA 
BIDU - 0.752** - - - 

BILW -0.452* - - - 0.489* 

The correlation is expressed with the r coefficient and * for P < 0.05, ** for P < 0.01. 

- is used for not significant P values. 

1 EBV of Average Daily Gain calculated from 30 to 155 kg of live weight with quasi ad libitum feeding 

level, expressed in grams. 

2 EBV of Backfat Thickness recorded post mortem at the level of gluteus medius muscle, expressed in 

mm. 

3 EBV of Lean Cuts, the sum of neck and loin weights, expressed in kg. 

4 EBV of Ham Weight, expressed in kg. 

5 EBV of Feed Conversion Ratio obtained from feed intake daily recorded and body weight bimonthly 

measured, expressed in units. 
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Table 6. Spearman’s correlation coefficients between the expression levels of the 12 detectable genes in pig backfat tissue of the Italian Duroc 

pigs (BIDU) and Italian Large White pigs (BILW). 

  ENO3 PLIN1 PLIN2 NAMPT SORT1 CES3 PLTP LMNA INSIG2 FASN ACLY ACACA 

ENO3 
BIDU 1 - - - - - - - - - - - 

BILW 1 - - - - - - - - - - 0.952*** 

PLIN1 
BIDU - 1 - - - 0.783** - 0.769** - 0.804** - 0.836** 

BILW - 1 0.668*** 0.842*** 0.509** 0.550** 0.528* 0.738*** - 0.535** - 0.669** 

PLIN2 
BIDU - - 1 - - - - - - - - - 

BILW - 0.668*** 1 0.637*** - - - - - 0.570** - 0.681** 

NAMPT 
BIDU - - - 1 - - - - - - - 0.818** 

BILW - 0.842*** 0.637*** 1 - 0.652*** 0.543* 0.585** - 0.524** - 0.678** 

SORT1 
BIDU - - - - 1 - - - 0.773** - - - 

BILW - 0.509** - - 1 - 0.588** 0.827*** 0.810*** - - - 

CES3 
BIDU - 0.783** - - - 1 - 0.790** - - - - 

BILW - 0.550** - 0.652*** - 1 - - - - - 0.687*** 

PLTP 
BIDU - - - - - - 1 - - - - 0.806** 

BILW - 0.528* - 0.543* 0.588** - 1 0.606** - - - - 

LMNA 
BIDU - 0.769** - - - 0.790** - 1 - - - - 

BILW - 0.737*** - 0.585** 0.827*** - 0.606** 1 0.611** - - - 

INSIG2 
BIDU - - - - 0.773** - - - 1 - - - 

BILW - - - - 0.810*** - - 0.611** 1 - -0.474* - 

FASN 
BIDU - 0.804** - - - - - - - 1 - 0.873*** 

BILW - 0.535** 0.570** 0.524** - - - - - 1 0.573** 0.785*** 
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ACLY 
BIDU - - - - - - - - - - 1 - 

BILW - - - - - - - - -0.474* 0.573** 1 0.762*** 

ACACA 
BIDU - 0.836** - 0.818** - - 0.806** - - 0.873*** - 1 

BILW 0.952*** 0.669** 0.681** 0.678** - 0.687*** - - - 0.785*** 0.762*** 1 

The correlation is expressed with the r coefficient and * for P < 0.05, ** for P < 0.01, *** for P < 0.001. 

- is used for not significant P values. 
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Figures 

 

Figure 1. The studied gene expression levels in pig muscle tissue for the Italian Duroc (MIDU) and the Italian Large White (MILW) samples. 
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Figure 2. The studied gene expression levels in pig backfat tissue for the Italian Duroc (BIDU) and the Italian Large White (BILW) groups. 
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Supplementary Table S1. The list of the 14 genes considered for the present expression study in pig, their chromosome mapping obtained 

from NCBI Gene database (https://www.ncbi.nlm.nih.gov/gene) accessed on 11 September 2015, and the role of the coded protein. 

GENE Coded Protein Chromosome1 Role Literature 

PLIN2 Perilipin 2 SSC1 
PLIN2 codes for a structural protein involved in 

development of adipose tissue. 

Gandolfi et al., 

2011 

LMNA Lamin A/C SSC4 

LMNA codes for a protein involved in nuclear stability and 

chromatin structure. It showed an increased expression 

level during adipogenesis. 

Lopez-Mejia et al., 

2014 

SORT1 Sortilin1 SSC4 

SORT1 codes for a protein receptor that also participates in 

lipoprotein metabolism. Its overexpression in adipocyte and 

neurons increases the insulin-stimulated glucose uptake. 

Coutinho et al., 

2001 

INSIG2 Insulin induced gene 2 SSC7 
Insulin Induced Gene 2 mediates feedback control of 

cholesterol synthesis and body mass index. 

Malzahn et al., 

2014 

PLIN1 Perilipin 1 SSC7 
PLIN1 codes for a lipid droplet coat protein that modulates 

lipid droplets hydrolysis 

Nowacka-Woszuk 

et al., 2008 

Vykoukalová et al., 

2009 

MTTP Microsomal triglyceride transfer protein SSC8 
MTTP codes for a protein that catalyses the transport of 

triglyceride, cholesteryl ester and phospholipid. 
Estellé et al., 2009 

NAMPT Nicotinamide phosphoribosyltransferase SSC9 

NAMPT codes for a protein involved in a rate-limiting 

reaction in mammalian NAD biosynthesis. This gene shows 

different expression levels in adipose tissue and regulates 

glucose-stimulated insulin secretion. 

Čepica et al., 2010 

ACACA Acetyl-CoA carboxylase alpha SSC12 
ACACA codes for a protein catalysing the biogenesis of long-

chain fatty acids. 
Muñoz et al., 2012 

ACLY ATP citrate lyase SSC12 

ACLY codes for a protein catalysing the synthesis of 

cytosolic acetyl-CoA and lipid synthesis. It may be involved 

in the biosynthesis of acetylcholine. 

Davoli et al., 2014 

https://www.ncbi.nlm.nih.gov/gene
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ENO3 Enolase 3 (Beta, muscle) SSC12 

ENO3 codes for a protein promoting the interconversion 

from diphosphoglycerate to phosphoenolpyruvate in 

glycolysis. 

Jian et al,.2008 

FASN Fatty acid synthase SSC12 

FASN codes for a multifunctional protein that catalyses 

formation of long-chain fatty acids from acetyl-CoA, 

malonyl-CoA and NADPH. It is a putative candidate gene for 

body fat development. 

Braglia et al., 2014 

ACVR1C Activin A receptor type-1C SSC15 

ACVR1C codes for a multifunctional receptor in adipose 

tissue and its role is also correlated to carbohydrate and 

lipid metabolism. ACVR1C gene expression is elevated 

during adipocyte differentiation. 

Murakami et al., 

2013 

PLTP Phospholipid transfer protein SSC17 

PLTP codes for a transporting phospholipids protein in 

plasma, which has multifaceted functions in lipoprotein 

metabolism and in cholesterol metabolism. 

Chang et al., 2011 

CES3 Carboxylesterase 3 Unplaced 

CES3 codes for an endoplasmic reticulum carboxylesterase 

that may be involved in cholesterol and ester metabolism. 

This gene is highly expressed in adipose tissue. 

Chang et al., 2014 

     

1 SSC is the acronym used for Sus scrofa chromosome.



172 
 

References for Supplementary Table S1 

Čepica S, Bartenschlager H, Ovilo C, Zrůstová J, Masopust M, Fernández A, López A, 

Knoll A, Rohrer GA, Snelling WM & Geldermann H (2010) Porcine NAMPT gene: 

search for polymorphism, mapping and association studies. Anim Genet 41:646-651. 

Chang J, Oikawa S, Iwahashi H, Kitagawa E, Takeuchi I, Yuda M, Aoki C, Yamada Y, 

Ichihara G, Kato M & Ichihara S (2014) Expression of proteins associated with 

adipocyte lipolysis was significantly changed in the adipose tissues of the obese 

spontaneously hypertensive/NDmcr-cp rat. Diabetol Metab Syndr 6:8. 

Coutinho MF, Bourbon M, Prata MJ & Alves S (2013) Sortilin and the risk of 

cardiovascular disease. Rev Port Cardiol 32:793-799. 

Davoli R, Braglia S, Zappaterra M, Redeghieri C, Comella M & Zambonelli P (2014) 

Association and expression analysis of porcine ACLY gene related to growth and 

carcass quality traits in Italian Large White and Italian Duroc breeds. Livest Sci 

165:1-7. 

Estellé J, Fernández AI, Pérez-Enciso M, Fernández A, Rodríguez C, Sánchez A, Noguera 

JL Folch JM (2009) A non-synonymous mutation in a conserved site of the MTTP 

gene is strongly associated with protein activity and fatty acid profile in pigs. Anim 

Genet 40:813-820 

Gandolfi G, Mazzoni M, Zambonelli P, Lalatta-Costerbosa G, Tronca A, Russo V & Davoli 

R (2011) Perilipin 1 and perilipin 2 protein localization and gene expression study in 

skeletal muscles of European cross-breed pigs with different intramuscular fat 

contents. Meat Sci 88:631-637. 

Jian W, Donghai Z, Changyan D, Xiaoxiong W, Liangqi L & Yuanzhu X (2008) 

Characterization of porcine ENO3: genomic and cDNA structure, polymorphism and 

expression. Genet Sel Evol 40:563-579. 



173 
 

Lopez-Mejia IC, de Toledo M, Chavey C, Lapasset L, Cavelier P, Lopez-Herrera C, Chebli 

K, Fort P, Beranger G, Fajas L, Amri EZ, Casas F & Tazi J (2014) Antagonistic functions 

of LMNA isoforms in energy expenditure and lifespan. EMBO Rep 15:529-539. 

Malzahn D, Müller-Nurasyid M, Heid IM, Wichmann HE, KORA study group, Bickeböller 

H (2014) Controversial association results for INSIG2 on body mass index may be 

explained by interactions with age and with MC4R. Eur J Hum Genet 22:1217-1224. 

Muñoz M, Alves E, Corominas J, Folch JM, Casellas J, Noguera JL, Silió L & Fernández A 

(2012) Survey of SSC12 regions affecting fatty acid composition of intramuscular fat 

using high-density SNP data. Front Genet 2:101. 

Murakami M, Shirai M, Ooishi R, Tsuburaya A, Asai K, Hashimoto O, Ogawa K, Nishino Y 

& Funaba M (2013) Expression of Activin Receptor-like Kinase 7 in Adipose Tissues. 

Biochem Genet 51:202-210. 

Nowacka-Woszuk J, Szczerbal I, Fijak-Nowak H & Switonski M (2008) Chromosomal 

localization of 13 candidate genes for human obesity in the pig genome. J Appl 

Genet 49:373-377. 

Vykoukalová Z, Knoll A & Čepica S (2009) Porcine perilipin (PLIN) gene: structure, 

polymorphism and association study in large white pigs. Cz J Anim Sci 54:359-364. 

  



174 
 

Supplementary Table S2. Primer used for the expression study in pig, in muscle and 

backfat tissues. 

Primer name Primer sequence (5’-3’) TM (°C) Size (bp) 

Primers used to check DNA contamination in mRNA samples 

AGPAT1 

AGPAT1 FOR 

AGPAT1 REV 

5’- AGGACGCAACGTCGAGAACA -3’ 

5’- GTGAGGGAGGGAAGTGGTGAG -3’ 
61°C 110 

Primers used for expression quantification 

PLIN2 

PLIN2-E-FOR 

PLIN2-E-REV 

5’- GGGCAAAAGATGCTATGACG -3’ 

5’- TCAGTGAGAGGGAGGTACTGG -3’ 
65°C 244 

PLIN2-I-FOR 

PLIN2-I-REV 

5’- ATCACTGAGGTGGTGGACAAG -3’ 

5’- GCTGCATCATCCGACTTCC -3’ 
63°C 112 

SORT1    

SORT1-E-FOR 

SORT1-E-REV 

5’- ACCAAGGAGGAAGGTGGAAA -3’ 

5’- TTGATAGGATGGCTGCTGTG -3’ 
59°C 340 

SORT1-I-FOR 

SORT1-I-REV 

5’- ACGCTTCCTACAGCATCTCC -3’ 

5’- GGGTCCTTCCAGCATCTTC -3’ 
60°C 179 

LMNA    

LMNA-E-FOR 

LMNA-E-REV 

5’- GTGACCATGATTGAGGACGA -3’ 

5’- AGTTGCCCAGGAGGTAGGAG -3’ 
63°C 313 

LMNA-I-FOR 

LMNA-I-REV 

5’- GAGGATGAGGATGGAGATGA -3’ 

5’- GGAGGAGCCAGAGGAGATG -3’ 
66°C 189 

CES3    

CES3-E-FOR 

CES3-E-REV 

5’- TTCTGGTGTTGTCTCCCTTG -3’ 

5’- GCCAAACTCTTGCTTGTTGA -3’ 
67°C 380 

CES3-I-FOR 

CES3-I-REV 

5’- CACCTCGGCTGTCTTTGTTC -3’ 

5’- GAATCTCTTCAGGCATCTTGG -3’ 
60°C 176 

PLIN1    

PLIN1-E-FOR 

PLIN1-E-REV 

5’- AGACAAAGTCCTCGGTGCTG -3’ 

5’- TGGTCATCGTGATCCTCCTC -3’ 
60°C 477 

PLIN1-I-FOR 

PLIN1-I-REV 

5’- TCCAGCCAAGGAAGAGTCAG -3 

5’- GGAAGGTGTGTTGAGAGATGG -3’ 
63°C 125 
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MTTP    

MTTP-E-FOR 

MTTP-E-REV 

5’- TGACCTTCATTCAGCACCTC -3’ 

5’- TTTCAAGTCCACCCAGGATT -3’ 
56°C 399 

MTTP-I-FOR 

MTTP-I-REV  

5’- TGTGGATGCTGTCACCTCT -3’ 

5’- TATCGTTGCTCCCAAAGGAA -3’ 
66°C 194 

NAMPT    

NAMPT-E-FOR 

NAMPT-E-REV 

5‘- TGGGCATCTTCCAATAGAGG -3’ 

5’- CTGCTGCTGGCACTGAATAG -3’ 
57°C 410 

NAMPT-I-FOR 

NAMPT-I-REV 

5’- CCTGGTATCCAATCACAGTGG -3’ 

5’- CCCTATGCCAGCAGTCTCTT -3’ 
63°C 158 

ENO3    

ENO3-E-FOR 

ENO3-E-REV 

5’- GTCATCAAGGGCAAATACGG -3’ 

5’- AGGTCCAGGTCTTCCAGTCA -3’ 
61°C 334 

ENO3-I-FOR 

ENO3-I-REV 

5’- CTACCGCAACGGGAAGTATG -3’ 

5’- TCAATGGAGACCACAGGATAG -3’ 
63°C 162 

FASN    

FASN-E-FOR 

FASN-E-REV 

5’- CCAGCATCACCATAGACACG -3’ 

5’- CTCCTTGGAACCGTCTGTGT -3’ 
59°C 317 

FASN-I-FOR 

FASN-I-REV 

5’- AACGTCCTGCTGAAGCCTAA -3’ 

5’- CATTGAGGATGGTGGCGTAT -3’ 
62°C 181 

ACACA    

ACACA-E-FOR 

ACACA-E-REV 

5’- GCGAGCAACATCACATCAGT -3’ 

5’- GCAAATGGGAGGCAATAAGA -3’ 

57°C 496 

ACACA-I-FOR 

ACACA-I-REV 

5’- TACCTGCGAGTGGAGACACA -3’ 

5’- TGGTGACTTGAGCGTGAGAG -3’ 
60°C 127 

ACLY    

ACLY-E-FOR 

ACLY-E-REV 

5’- CCCAGACATGAGAGTGCAGA -3’ 

5’- ATCCCAAGGGTGACGATACA -3’ 
61°C 359 

ACLY-I-FOR 

ACLY-I-REV 

5’- CCTTATCCTGAATGTAGACGGTTT -3’ 

5’- AATGAAGCCCATACTCCTTCC -3’ 
63°C 151 

INSIG2    

INSIG2-E-FOR 

INSIG2-E-REV 

5’- GGAGAGACAAAGTCACCTGGA -3’ 

5’- GCTACGCACCGCATTACACT -3’ 
63°C 329 
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INSIG2-I-FOR 

INSIG2-I-REV 

5’- TCTTTCCACCGGATGTGATT -3’ 

5’- GCACCGCATTACACTGGAC -3’ 
63°C 164 

ACVR1C    

ACVR1C-E-FOR 

ACVR1C -E-REV 

5’- CAGCAAGATTACCCCTTCACA -3 

5’- GGCACTCCATATCGTCCTTG -3’ 
60°C 340 

ACVR1C -I-FOR 

ACVR1C -I-REV 

5’- AGAGTAATTTTGGAAGCCCACA -3’ 

5’- TGTAAAGGTTCTCCCTCAG -3’ 
60°C 168 

PLTP    

PLTP-E-FOR 

PLTP-E-REV 

5’- CTGGAGCAAGAGCTGGAGAC -3’ 

5’- GCAGGAGACGTTGGACACTT -3’ 
62°C 315 

PLTP-I-FOR 

PLTP-I-REV 

5’- AGCCAGAGCAGGAGCTGA -3’ 

5’- AGAGCCGTGTGGATGGAA -3’ 
66°C 139 

Normalising genes 

PPIA 

PPIA-E-FOR 

PPIA-E-REV 

5’- TAACCCCACCGTCTTCTTC -3’ 

5’- GTTTGCCATCCAACCACTC -3’ 
64°C 317 

PPIA-I-FOR 

PPIA-I-REV 

5’- AAAACTTCCGTGCTCTGAG -3’ 

5’- GCCACCAGTGCCATTAT -3’ 
63°C 125 

TMSB4X    

TMSB4X-E-FOR 

TMSB4X-E-REV 

5’- ACTGCGTAGACCGGATTCCT -3’ 

5’- TTCGCCATTCTTTGATGTGA -3’ 
62°C 339 

TMSB4X-I-FOR 

TMSB4X-I-REV 

5’- GCCAGCTTGCTTCTCTTGTTC -3’ 

5’- GACAAACCCGATATGGCTG -3’ 
63°C 120 

B2M    

B2M-E-FOR 

B2M-E-REV 

5’- CACTTTTCACACCGCTCCA -3’ 

5’- TCTCCCCGTTTTTCAGCA -3’ 
57°C 218 

B2M-I-FOR 

B2M-I-REV 

5’- TCGGGCTGCTCTCACTGT -3’ 

5’- TCTGGGGCGGATGGAAC -3’ 
56°C 135 

POLR2A    

POLR2A-E-FOR 

POLR2A-E-REV 

5’- CACCCACAGCACCCATCC -3’ 

5’- CCCTCCACATTCTGCTG -3’ 
61°C 573 

POLR2A-I-FOR 

POLR2A-I-REV 

5’- TCGCCTCTTCTATTCCAA -3’ 

5’- GCCTTCTCGATGACCTC -3’ 
60°C 165 

For all the considered genes in the table below are reported the used primer, the annealing 

temperature expressed in °C and the size in base pairs (bp). 
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Each primer name is composed by the gene name, “I” for internal primer or “E” for external 

primer, “FOR” for the left primer and “REV” for the right primer. 

1TM (°C) Annealing temperature 
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Summary  

The perilipins (PLIN) belong to a family of structural proteins that play a role regulating 

intracellular lipid storage and mobilization. Here, PLIN1 and PLIN2 have been evaluated 

as candidate genes for growth, carcass, and meat quality traits in pigs. A sample of 607 

Duroc pigs were genotyped for two single nucleotide polymorphisms, one in intron 2 

of the PLIN1 gene (JN860199:g.173G>A) and the other at the 3’ untranslated region of 

the PLIN2 gene (GU461317:g.98G>A). Using a Bayesian approach we have been able to 

find evidence of additive, dominant, and epistatic associations of the PLIN1 and PLIN2 

polymorphisms with early growth rate and carcass length. However, the major effects 

were produced by the dominant allele A at the PLIN2 polymorphism, which also 

affected the carcass lean weight. Thus, pigs carrying an additional copy of the allele A 

at the g.98G>A PLIN2 polymorphism had a probability of at least 98% of producing 

carcasses with heavier lean weight (+0.41 kg) and ham weight (+0.10 kg). The results 

obtained indicate that the PLIN2 polymorphism can be a useful marker for lean 

growth. In particular, it may help to reduce the undesired negative correlated response 

in lean weight to selection for increased intramuscular fat content, a common scenario 

in some Duroc lines involved in the production of high quality pork products. 
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Introduction 

Growth rate and carcass lean content are crucial characteristics for the economic 

viability of pork production. Selection emphasizing lean content has led to reduce 

some pork quality attributes, including the intramuscular fat (IMF) content. The use of 

molecular markers may be useful to improve the genetic progress in traits that are 

difficult and expensive to measure (Dekkers, 2004), but also to break down 

unfavorable genetic correlations between antagonistic traits, such as those between 

lean growth rate or carcass lean content and IMF content (Ros-Freixedes et al., 2012; 

Ros-Freixedes et al., 2013). In this scenario, performing association studies with 

candidate genes related to proteins affecting fat metabolism is of particular interest. 

The perilipins (PLIN) belong to a family of structural proteins that coat intracellular 

lipids into cytosolic droplets (Kimmel et al., 2010), where they regulate intracellular 

lipid storage and mobilization by fine-tuning the activity of lipases (Bickel et al., 2009). 

The composition of PLIN changes as lipid droplets enlarge and mature. Perilipin 2 

(PLIN2) is the most prominent PLIN protein in most adult cell types and in immature 

adipocytes. In contrast, the large central mature lipid droplets of mature adipocytes 

are largely coated by perilipin 1 (PLIN1). Recently, PLIN1 and PLIN2 have been shown 

to co-localize in the skeletal muscle of pigs (Gandolfi et al., 2011). 

Mutations in the PLIN genes have been associated to body fat mass in mice (Saha et 

al., 2004) and humans (Qi et al., 2004; Corella et al., 2005; Ruiz et al., 2011). So far only 

two reports in pigs have investigated the association of PLIN1 and PLIN2 

polymorphisms with a limited number of production traits. In the first report, two 

synonymous single nucleotide polymorphisms (SNP) in exons 3 and 6 of PLIN1 showed 

suggestive associations with average daily gain (ADG) and backfat thickness in Large 

White pigs (Vykoukalová et al., 2009). In a second study, a 3’ untranslated region (UTR) 

SNP at the PLIN2 gene (GU461317:g.98G>A) was found to be associated to lean growth 

and content but not to visible intermuscular fat (Davoli et al., 2011). The aim of the 

present study was to further investigate the contribution of PLIN1 and PLIN2 genes to 

a wider range of performance, carcass, and meat quality traits in pigs and, in 

particular, to confirm whether PLIN1 and PLIN2 genotype variants exert a differential 

effect on lean growth and IMF content. 
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Materials and methods 

Animals, traits and sample collection 

A total of 607 Duroc barrows from 88 sires and 348 dams were used for the analyses. 

Pigs were randomly sampled in seven batches from the same commercial line and 

performance-tested from 75 d to 210 d of age under commercial conditions (Ros-

Freixedes et al., 2012). During the test period they had ad libitum access to commercial 

diets. A complete description of the line and of the procedures followed for testing and 

sample collection is given in Ros-Freixedes et al. (2012). The traits recorded included 

live body weight (BW), backfat thickness, and loin thickness at 120, 180, and 205 d. 

Backfat and loin thickness was ultrasonically measured at 5 cm off the midline at the 

position of the last rib (Piglog 105, Herlev, Denmark). After slaughter at 210 days, the 

carcass weight and length, the carcass backfat and loin thickness, and the ham weight 

were measured. Carcass backfat and loin thickness at 6 cm off the midline between the 

third and fourth last ribs, together with the carcass lean percentage, were estimated 

using an on-line ultrasound automatic scanner (AutoFOM, SFK-Technology, Herlev, 

Denmark). After chilling for about 24 h at 2ºC, the pH was measured in the longissimus 

dorsi and in the semimembranosus muscles. Samples of at least 50 g of gluteus medius 

muscle and longissimus dorsi were taken, immediately vacuum packaged, and stored 

in deep freeze until required for IMF content and fatty acid determination (Bosch et 

al., 2009). 

 

Single nucleotide polymorphism genotyping  

Genomic DNA was isolated from freeze-dried muscle samples using standard protocols 

(Sambrook et al., 1989). To search for sequence variation in the pig PLIN1 gene, the 

genomic, cDNA, and EST sequences available in the GenBank 

(http://www.ncbi.nlm.nih.gov/Genbank) and in the Ensembl databases 

(http://www.ensembl.org) were compared for an in silico variability analysis. Italian 

heavy pigs were used to validate the in silico-identified SNPs. 

Seven primer pairs (Supplementary Table S1) were designed using Primer3 v.0.4.0 

software (http://frodo.wi.mit.edu/primer3/) to amplify seven porcine PLIN1 gene 

http://www.ncbi.nlm.nih.gov/Genbank
http://www.ensembl.org/
http://frodo.wi.mit.edu/primer3/
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fragments. The PCR products were sequenced on both strands using the BigDye 

Terminator v3.1 Cycle Sequencing kit (Life Technologies, Grand Island, NY, USA) in a 

ABI PRISM 3100-Avant Genetic Analyzer (Life Technologies). The sequences obtained 

were compared by multiple alignments, performed with MEGA software v4.0 

(www.megasoftware.net/).  

The JN860199:g.173G>A PLIN1 SNP polymorphism, which was selected for subsequent 

analyses, was genotyped by PCR-restriction fragment length polymorphism assay. PCR 

products obtained with the “P2” primer set (Supplementary Table S1) were digested 

with Hin1II (Fermentas, Vilnius, Lithuania) and the resulting products were resolved on 

polyacrylamide gels. For PLIN2, the GU461317:g.98G>A SNP, in the 3’ UTR region of 

the gene, was genotyped by High Resolution Melting PCR in a Rotor-Gene™ 6000 

(Corbett Research, Mortlake, New South Wales, Australia) following the protocol 

described in Davoli et al. (2011). The linkage disequilibrium between SNP was 

estimated as r2 using the Haploview software (Barrett, 2009). 

 

Association analysis 

The additive, dominant, and epistatic effects of the PLIN genotypes were estimated 

independently for each trait using a Bayesian setting, in line with the methodology 

described in Ros-Freixedes et al. (2012). A two-generation pedigree was used for the 

analyses. In matrix notation, the model used for the ith trait was yi = Xibi + Ziai + ei, 

where yi is the vector of observations for trait i; bi, ai, and ei are the vectors of 

systematic, polygenic, and residual effects, respectively; and Xi and Zi the known 

incidence matrices that relate bi and ai with yi, respectively. The systematic effects 

were the batch (7 levels), the age at test as a covariate, and orthogonal coefficients for 

additive (a), dominance deviation (d) and first-order epistatic effects (aa: additive × 

additive; ad: additive × dominance; da: dominance × additive; and dd: dominance × 

dominance) for PLIN1 and PLIN2 SNPs. Pigs in a given batch were contemporaneous 

pigs tested at the same unit and slaughtered in the same abattoir. The litter effect was 

not included because, on average, there were less than 2 piglets per litter. The 

orthogonal coefficients for the genetic effects were calculated using the algorithm 

proposed by Alvarez-Castro & Carlborg (2007).  

http://www.journalofanimalscience.org/content/92/7/2905.full#ref-3
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The models were solved using Gibbs sampling with the TM software (Legarra et al., 

2008). The traits were assumed to be conditionally normally distributed 

as[  |          
 ]  (    +         

 ), where    
  is the residual variance and I the 

appropriate identity matrix. The animal effects conditionally on the additive genetic 

variance    
  were assumed multivariate normally distributed with mean zero and 

variance A   
 , where A was the numerator relationship matrix. The matrix A was 

calculated using 1043 animals in the pedigree. Flat priors were used for bi while the 

variance components were set to the values obtained by Ros-Freixedes et al. (2013) 

with data and pedigree from 1996 onwards. Statistical inferences were derived from 

the samples of the marginal posterior distribution using a unique chain of 500,000 

iterations, where the first 100,000 were discarded and one sample out of 100 

iterations retained. The additive, dominance, and epistatic effects were assessed by 

calculating both the probability of each of these components being greater or lower 

than zero and their highest posterior density interval at 95% of probability (HPD95). 

Statistics of marginal posterior distributions and the convergence diagnostics were 

obtained using the BOA package (Smith, 2005). Convergence was tested using the Z-

criterion of Geweke (Geweke, 1992) and visual inspection of convergence plots. 

 

 

Results and discussion 

Polymorphisms and sequence variation of PLIN genes 

The in silico analysis on publicly available genomic, EST, and cDNA sequences revealed 

ten SNPs (detected at least twice) within the coding sequence of PLIN1, located in the 

exons 1, 2, 5, and 8 (data not shown) and five SNP in intronic regions. Seven genomic 

regions containing these putative SNP were subjected to direct sequencing in 20 

animals from three Italian heavy pig breeds. A total of 2,437 bp of the pig PLIN1 gene 

were screened, which covered 1,126 bp of the coding sequence, the complete 183-bp 

5’ UTR, and 1,128 bp of intronic regions and part of the promoter and 3’ downstream 

genomic region, according to the annotation of the Ensembl entry 

[ENSSSCG00000001844]. The sequencing covered the positions of the putative SNP 

detected in silico, with the exception of the SNPs on exon 8, which were not analyzed 
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due to the unsuccessful amplification of this region. Four SNP (two intronic and two 

exonic) were detected by sequencing in the Italian heavy pig breeds (Table 1). The two 

intronic SNPs were novel and the sequences were reported to GenBank [JN860199; 

SNP g.173G>A and g.3484C>G]. The two exonic SNPs, which were detected in our in 

silico analysis, were both synonymous and had been reported before (GenBank: 

AM931171; SNP g.4119A>G and g.7966T>C; Vykoukalová et al., 2009). The four SNP 

were in complete linkage disequilibrium in the initial panel of 20 pigs. The intronic 

JN860199g.173G>A SNP was selected for subsequent analyses because a restriction 

enzyme was available to analyze this mutation. 

To assess the association of these mutations with productive parameters, the PLIN1 

JN860199:g.173G>A and PLIN2 GU461317:g.98G>A SNPs were genotyped in a 

population of 607 Duroc pigs, which had data available on performance, fattening and 

meat quality traits (Ros-Freixedes et al. 2012). 

The allele frequencies and the distribution genotypes for PLIN1 and PLIN2 SNPs are 

reported in Table 2. In both SNPs the alleles were segregating at intermediate 

frequencies, with the allele G being the less frequent in JN860199:g.173G>A (minor 

allele frequencies of 0.38) and alleles G and A showing identical gene frequency for 

GU461317:g.98G>A. As expected, since PLIN1 and PLIN2 are lying in different 

chromosomes, the two SNPs were in linkage equilibrium (r2= 0.04). 

 

Effect of PLIN genotypes 

The additive, dominant, and epistatic effects of PLIN1 g.173G>A and PLIN2 g.98G>A 

SNPs associated to BW and growth rate at different ages during the fattening period 

are given in Table 3. The substitution of A for G in PLIN1 showed some evidence of a 

negative additive effect on BW (-0.66 kg at 120 d and -0.68 kg at 180 d, with a 

probability of 6% and 10% of being greater than zero, respectively), but a strong 

evidence of a positive additive effect in PLIN2, with values of +0.95 kg, +1.19 kg, and 

+1.08 kg at 120 d, 180 d and 205 d, respectively, with an associated probability of 

being greater than zero superior to 95% in the three ages. The substitution effect of A 

for G for BW was similar at 120 d, 180 d, and 205 d, thereby indicating that the 

beneficial effect of allele A on BW was due to increased growth at early stages. In 

agreement with this, the effect of allele A at PLIN2 for ADG was evident up to 120 d 
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(+7.26 g/d, with a probability of being positive of 98%) but not thereafter, both from 

120 to 180 d (+4.15 g/d) and from 180 to 205 d (-0.42 g/d). Consequently, the variance 

associated to the additive effects of PLIN2 g.98G>A SNP (Falconer and Mackay, 1996) is 

able to capture a greater proportion of the total additive variance of BW (Ros-

Freixedes et al., 2013) at 120 d (1.49%) than at 205 d (1.12%). A negative dominant 

effect for BW at 120 and 180 days in PLIN1 (-1.04 kg and -1.56 kg, respectively, with 

associated probabilities of being negative of 95% and 97%) and a positive dominant 

effect for BW at 180 days in PLIN2 (+1.17 kg, with associated probability of being 

positive of 94%) were observed. No clear evidence of epistasis between PLIN1 and 

PLIN2 SNP was observed for BW and ADG, with the exception of an additive × additive 

effect for BW at 120 d (-0.88 kg, with associated probability of being positive of 6%) 

and for ADG up to 120 d (-7.94 g/d, with associated probability of being positive of 

4%). 

The additive, dominant, and epistatic effects of PLIN1 g.173G>A and PLIN2 g.98G>A 

SNPs associated to backfat and loin thickness at 120 d, 180 d and 205 d of age are 

given in Table 4. The PLIN1 g.173G>A SNP did not show a clear pattern of association 

with fatness traits, but results on the PLIN2 g.98G>A SNP indicated that allele A is 

positively associated to backfat thickness at early ages (+0.17 mm and +0.19 mm, at 

120 d and at 180 d, respectively, with a probability of being positive of 91% and 98%) 

and negatively to backfat thickness at 205 d (-0.22 mm, with a probability of being 

positive of 10%). The effect of the PLIN2 g.98G>A SNP on backfat thickness followed a 

similar pattern as for ADG, with the positive effect of allele A at 120 d vanishing at later 

ages.  

In agreement with these results, no strong evidence of association of PLIN1 and PLIN2 

SNPs with carcass backfat thickness, and carcass loin thickness was observed (Table 5). 

However, allele G at PLIN1 and allele A at PLIN2 had some beneficial effects on carcass 

traits. Thus, pigs carrying an additional copy of allele G at PLIN1 and allele A at PLIN2 

had longer carcasses (+0.62 cm and +0.43 cm, with a probability of being positive 

greater than 96% and 99%, respectively) and, more interestingly, those carrying allele 

A at PLIN2 showed a higher carcass lean weight (+0.41 kg, with a probability of being 

positive of 99.9%). This latter effect should be interpreted as a result of a moderate 

but favorable change in both carcass weight (+0.58 kg, with a probability of being 
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positive of 86%), mostly as a consequence of increased growth rate at early ages, and 

carcass lean percentage (+0.23%, with a probability of being positive of 80%). As a 

result, the PLIN2 g.98G>A SNP reached to explain 0.59% of the additive variance of 

lean weight. Moreover, a positive effect of allele A at PLIN2 on ham weight was also 

detected (0.10 kg, with a probability of being positive of 94%).  

No evidence was found indicating that meat quality traits (pH and IMF) were additive 

by PLIN1 and PLIN2 SNP, although some minor changes were observed for IMF fatty 

acid composition (Table 6). In particular, allele A at PLIN1 decreased PUFA (-0.20%) and 

increased MUFA (-0.20%) while allele A at PLIN2 decreased SFA (-0.24%). Evidence 

supporting the existence of dominant and epistatic effects associated to carcass and 

meat quality traits was mostly circumscribed to traits where the additive effects were 

more evident (carcass length and carcass lean weight), thereby suggesting that the 

mode of action of PLIN1 and PLIN2 on the traits that they are influencing is subjected 

to complex regulations. As for BW and ADG, the dominant effect associated to lean 

weight was negative in PLIN1 (-0.19 kg, with a probability of 2% of being positive) but 

positive in PLIN2 (0.41 kg, with 99.9% probability of being positive). These dominant 

values were around two-fold higher than their respective additives, a result which 

supports for an underdominant PLIN1 and overdominant PLIN2 gene action for lean 

weight. To check for overparameterization, the additive and dominance effects were 

estimated ignoring the epistatic effects. The estimates obtained (results not shown), 

although slightly higher, were in line with those reported previously including epistatis, 

thereby confirming the favourable effects of allele G at PLIN1 and allele A in PLIN2.    

Our findings are consistent with the results in Vykoukalová et al. (2009), who found 

suggestive associations of the two exonic PLIN1 SNP with ADG in Large White pigs, 

and, particularly, with those in Davoli et al. (2011), who reported a favourable effect of 

allele A at PLIN2 on ADG, feed conversion ratio, lean cuts, and ham weight estimated 

breeding values in Italian Duroc. The five members of the PLIN family have been 

studied in depth in humans and model animals. Most reports have focussed on PLIN1, 

the main perilipin protein in mature adipocytes, particularly in relation to BW and 

obesity-related phenotypes (Smith and Ordovas, 2012), but results do not show a 

consistent trend across them. It must be taken into account that, depending on the 

energy state of the organism, PLIN1 either limits lipase access to stored triglycerides 
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(in the fed state) or facilitates hormonally stimulated lipolysis (in the fasted state). This 

dual activity is illustrated by the fact that both PLIN1-null and PLIN1-overexpressing 

mice are protected from diet-induced obesity (Saha et al, 2004). In our pig population, 

mutations in the PLIN1 did not correlate with growth or fat deposition traits. This 

indicates that genes other than PLIN1 are the main players of fat deposition in pig, or 

that other mutations outside the transcribed sequence, for instance in the regulatory 

5’ or 3’ regions, might have a more relevant effect over the expression of the gene. In 

contrast, only few reports in humans and mice have focused on PLIN2 gene. Our 

results indicate that allele A at the PLIN2 g.98G>A SNP has beneficial effects on early 

growth, lean growth and prime retail cuts. In agreement with this, the genomic 

position of PLIN2 on chromosome 1 co-localises with quantitative trait loci for ADG (Liu 

et al., 2007), BW at birth (Guo et al., 2008), and daily feed intake (Kim et al., 2000) 

(Supplementary Table S2). Of the five PLIN proteins, PLIN2 and 3 are by far the most 

prominent in human skeletal muscle (Gjelstad et al., 2012), with PLIN2 accounting for 

>60% of total perilipin content. It has been shown that PLIN2 is also the main perilipin 

in pig muscle (Gandolfi et al., 2012). Therefore, it is not surprising that PLIN2 is related 

to growth and lean weight, as perilipins regulate not the deposition of fat per se, but 

more importantly, the accessibility of lipases to the stored fats in response to the 

energy demands of the cells.  

Our results indicate that PLIN2 g.98G>A SNP can be a useful marker for lean growth, 

which is a relevant trait for the pig industry in general, very interested in fast- growing 

lean animals. Although results are encouraging for Duroc, further association studies 

are needed to confirm whether this polymorphism similarly affects other pig breeds. 

However, it is in this breed where it can be of particular interest. Duroc lines are the 

most used in premium quality markets, where pigs are raised to heavy weights and 

IMF becomes a key trait. In such scenario it is very convenient to find selection criteria 

addressed to reduce the undesired negatively correlated response on BW to selection 

for IMF. 
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Table 1. Single nucleotide polymorphisms (SNP) detected by sequencing the porcine 

PLIN1 gene in Italian heavy pigs. 

SNP1 Gene position 2 Gene location Amino acid change 

JN860199 g.173G>A 691 Intron 1 - 

JN860199 g.3484C>G 4,004 Intron 1 - 

AM931171g.4119A>G 4,119 Exon 2 Synonymous3 

AM931171g.7966T>C 7,966 Exon 5 Synonymous3 

1 GenBank accession number is indicated. 

2 Position from the start codon as referred to the entry 

[Ensembl:ENSSSCG00000001844; assembly Sscrofa10.2: chromosome 7; 

601266014:60139897:-1]. 

3 These SNPs are also reported by Vykoukalová et al., 2009 
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Table 2. Number of pigs (N), frequency of the allele G (f (G)), and number of pigs per PLIN1 and PLIN2 genotypes by batch.  1 

 2 

 3 

 4 

 5 

6 

 
 

 PLIN1 (JN860199:g.173G>A)  PLIN2 (GU461317:g.98G>A) 

 N  f(G)  GG AG AA  f(G)  GG AG AA 

Batch 1 108  0.51  36 38 34  0.49  23 60 25 

Batch 2 102  0.51  31 42 29  0.37  16 44 42 

Batch 3 66  0.35  13 20 33  0.50  15 36 15 

Batch 4 69  0.33  6 34 29  0.43  16 27 26 

Batch 5 84  0.26  6 32 46  0.60  31 39 14 

Batch 6 95  0.31  8 42 45  0.61  37 42 16 

Batch 7 83  0.32  8 37 38  0.48  19 42 22 

Total 607  0.38  108 245 254  0.50  157 290 160 
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Table 3. Mean (standard deviation) and additive, dominant, and epistatic effects of PLIN1 JN860199:g.173G>A and PLIN2 7 

GU461317:g.98G>A polymorphisms associated to live body weight and growth rate at different ages 8 

 9 
 

10 
 11 
 

12 
 13 
 

14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 

23 
 24 
 

25 
 

26 
 27 
 28 
 29 
 

30 
 31 
1 The numbers 1 and 2 refers to PLIN1 and PLIN2, respectively, with the additive effects expressed as A-G; P (>0): Posterior probability of a 32 

value being positive. In bold, probabilities above 0.90 or below 0.10. 33 

34 

  Additive (a) and dominant (d) effects1   

  PLIN1,g.173G>A   PLIN2, g.98G>A  Epistatic effects1 

Trait 
Mean 
(SD) 

a1 P(>0) d1 P(>0)  a2 P(>0) d2 P(>0)  a1a1 P(>0) a1d2 P(>0) d1a2 P(>0) d1d2 P(>0) 

Body weight, kg 
                  

120 d 
61.28 

(12.13) 
-0.66 0.06 -1.04 0.05 

 
0.95 0.99 0.77 0.89  -0.88 0.06 0.47 0.71 -0.51 0.29 1.35 0.86 

180 d 
107.32 
(11.01) 

-0.68 0.10 -1.56 0.03 
 

1.19 0.98 1.17 0.94  -0.78 0.14 0.64 0.73 0.13 0.55 0.59 0.65 

205 d 
122.15 
(11.33) 

-0.42 0.27 -0.51 0.29 
 

1.08 0.96 1.03 0.87  -1.01 0.12 0.19 0.56 0.46 0.63 0.18 0.55 

Daily gain, g/d 
                  

0-120 d 
500.77 
(80.94) 

-4.76 0.09 -6.93 0.09 
 

7.26 0.98 5.51 0.86  -7.94 0.04 4.70 0.76 -4.59 0.27 12.04 0.88 

120-180 d 
766.88 

(112.88) 
-1.95 0.38 -6.83 0.29 

 
4.15 0.74 4.37 0.69  2.26 0.60 1.10 0.54 15.38 0.87 -10.22 0.30 

180-205 d 
596.23 

(193.43) 
5.72 0.70 22.65 0.94 

 
-0.42 0.48 -9.57 0.48  -8.23 0.28 -3.27 0.41 20.03 0.82 -22.91 0.24 
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Table 4. Mean (standard deviation) and additive, dominant, and epistatic effects of PLIN1 JN860199:g.173G>A and PLIN2 U461317:g.98G>A 35 

polymorphisms associated to backfat and loin thickness at different ages. 36 

1 The numbers 1 and 2 refers to PLIN1 and PLIN2, respectively, with the additive effects expressed as A-G; P (>0): Posterior probability of a 37 

value being positive. In bold, probabilities above 0.90 or below 0.10. 38 

39 

  Additive (a) and dominant (d) effects1   

  PLIN1,g.173G>A  PLIN2, g.98G>A  Epistatic effects1 

Trait 
Mean 
(SD) 

a1 P(>0) d1 P(>0)  a2 P(>0) d2 P(>0)  a1a1 P(>0) a1d2 P(>0) d1a2 P(>0) d1d2 P(>0) 

Backfat thickness, mm 
                 

120 d 
11.05 
 (2.72) 

-0.07 0.29 -0.18 0.17  0.17 0.91 -0.07 0.33  -0.23 0.07 0.03 0.55 -0.14 0.29 0.59 0.95 

180 d 
17.76 
 (3.74) 

-0.06 0.27 -0.15 0.14  0.19 0.98 -0.10 0.31  -0.76 0.16 0.54 0.69 0.15 0.56 0.79 0.68 

205 d 
20.66 
 (4.15) 

0.01 0.52 -0.24 0.16  -0.22 0.10 -0.03 0.46  -0.41 0.03 0.06 0.58 0.12 0.63 0.05 0.54 

Loin thickness, mm 
                 

120 d 
40.38 
(3.25) 

0.33 0.92 -0.40 0.15  -0.42 0.04 -0.59 0.04  0.07 0.59 -0.23 0.31 -0.91 0.04 0.31 0.66 

180 d 
45.04 
(3.97) 

0.26 0.85 -0.56 0.20  -0.05 0.41 -0.63 0.03  0.23 0.75 1.51 0.93 0.49 0.82 -0.42 0.28 

205 d 
48.57 
(4.49) 

0.00 0.51 0.11 0.61  0.02 0.52 -0.08 0.42  -0.46 0.09 -0.33 0.25 -0.47 0.19 0.31 0.65 
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Table 5. Mean (standard deviation) and additive, dominant, and epistatic effects of PLIN1 JN860199:g.173G>A and PLIN2 U461317:g.98G>A 40 

polymorphisms associated to carcass traits. 41 

1 The numbers 1 and 2 refers to PLIN1 and PLIN2, respectively, with the additive effects expressed as A-G; P (>0): Posterior probability of a 42 

value being positive. In bold, probabilities above 0.90 or below 0.10. 43 

 44 

45 

  Additive (a) and dominant (d) effects1   

  PLIN1,g.173G>A  PLIN2, g.98G>A  Epistatic effects1
 

Trait 
Mean 
(SD) 

a1 P(>0) d1 P(>0)  a2 P(>0) d2 P(>0)  a1a1 P(>0) a1d2 P(>0) d1a2 P(>0) d1d2 P(>0) 

Carcass weight, kg 
93.69 
 (9.28) 

-0.20 0.36 0.41 0.70  0.58 0.86 
-

0.95 
0.11  1.09 0.94 0.19 0.57 -0.07 0.47 -0.50 0.38 

Carcass backfat, mm 
22.59  
(3.68) 

-0.09 0.33 0.02 0.52  -0.15 0.24 0.10 0.65  0.32 0.88 0.41 0.85 0.19 0.69 -0.21 0.36 

Carcass loin, mm 
45.25 
 (7.23) 

0.23 0.69 -0.19 0.39  0.28 0.73 -0.52 0.22  0.58 0.83 0.69 0.78 -0.74 0.22 -0.70 0.31 

Carcass lean, % 
43.77 
 (4.96) 

0.08 0.62 -0.01 0.50  0.23 0.80 -0.47 0.11  -0.17 0.32 -0.20 0.36 -0.14 0.41 0.20 0.59 

Carcass length, cm 
86.58 
 (2.96) 

-0.62 0.04 0.81 >0.99  0.42 0.99 
-

0.82 
<0.01  0.92 0.98 -0.22 0.24 -0.45 0.11 -0.14 0.39 

Lean weight, kg 
40.73  
(5.29) 

0.07 0.85 0.19 0.98  0.41 >0.99 -0.72 <0.01  0.30 >0.99 -0.11 0.20 -0.37 <0.01 -0.06 0.38 

Ham weight, kg 
12.09 
 (1.16) 

0.00 0.51 -0.04 0.34  0.10 0.94 -0.05 0.28  0.09 0.86 0.20 0.95 -0.04 0.39 -0.10 0.28 
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Table 6. Mean (standard deviation) and additive, dominant, and epistatic effects for PLIN1 JN860199:g.173G>A and PLIN2 U461317:g.98G>A 46 

polymorphisms associated to meat quality traits 47 

1 IMF: intramuscular fat; SFA: saturated fatty acids (C14:0+C16:0+C18:0); MUFA: monounsaturated fatty acids (16:1+C18:1+C20:1); PUFA: 48 

polyunsaturated fatty acids (C18:2+C18:3+C20:2+C20:4) in muscle gluteus medius 49 

2 The numbers 1 and 2 refers to PLIN1 and PLIN2, respectively, with the additive effects expressed as A-G; P (>0): Posterior probability of a 50 

value being positive. In bold, probabilities above 0.90 or below 0.10.51 

  Additive (a) and dominant (d) effects2   

  PLIN1,g.173G>A  PLIN2, g.98G>A  Epistatic effects2 

Trait1 
Mean 
(SD) 

a1 P(>0) d1 P(>0)  a2 P(>0) d2 P(>0)  a1a1 P(>0) a1d2 P(>0) d1a2 P(>0) d1d2 P(>0) 

 pH24 LM  
5.71 

 (0.25) 
0.00 0.58 0.01 0.61  -0.01 0.23 0.02 0.86  -0.01 0.24 0.03 0.90 0.00 0.47 -0.03 0.20 

pH24 SM 
5.72 

 (0.25) 
0.01 0.79 0.00 0.52  0.00 0.43 0.03 0.92  -0.02 0.12 0.00 0.57 0.01 0.61 -0.03 0.22 

IMF, %  
4.50 

 (1.66) 
0.10 0.85 -0.07 0.32  0.04 0.67 0.06 0.67  -0.16 0.11 0.05 0.59 0.11 0.70 0.18 0.73 

SFA, % 
34.99 
 (3.68) 

0.01 0.53 0.01 0.53  -0.24 0.04 0.07 0.66  -0.15 0.19 -0.22 0.19 -0.08 0.40 -0.08 0.41 

 MUFA, % 
50.54 
 (3.11) 

0.20 0.94 -0.05 0.40  0.30 0.99 -0.17 0.17  0.04 0.59 -0.15 0.29 -0.06 0.42 0.74 0.98 

PUFA, %  
14.47 
 (2.75) 

-0.20 0.06 0.04 0.59  -0.06 0.32 0.10 0.73  0.12 0.77 0.40 0.95 0.15 0.71 -0.60 0.05 

pH24 LM  
5.71 

 (0.25) 
0.00 0.58 0.01 0.61  -0.01 0.23 0.02 0.86  -0.01 0.24 0.03 0.90 0.00 0.47 -0.03 0.20 
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Supplementary information 52 

Supplementary Table S1. Primers used for single nucleotide polymorphism discovery 53 

in PLIN1 gene. 54 

 55 

Primer Sequence (5’-3’) Gene regions Product size 

(bp) 

Ta 
1 

P1 F 
GTCAAATAACCATAGCAACCAAC 
R ATTCCCAGAAGACCCTAACC 

partial promoter; exon 1;  
partial intron 1 

253 61 

P2 F AGGGAACTGATGGTGAGAGG 
R TCCGCAAGAAGGAGTGAGG 

partial intron 1; exon 2,  
partial intron 2 

306 60 

P3 F AGAGCCAAGGTTGTGACCAG 
R CAGGCAGTGAACGAGCAAG 

partial intron 2; exon 3,  
partial intron 3 

415 61 

P4 F ATCTGCACGCCTGACTCC 
R TGGTGGCCTCTTGGTAATTC 

partial intron 4; exon 5; 
partial intron 5 

375 60 

P5 F CGGGATGACCACTTTCTAACC 
R GCTCAGGGCAGACACTCAC 

partial intron 5; exon 6 289 60 

P6 F AGGTGCTGTGAAGTCAGTGG 
R TGTTCCAGGGTGAGGTGAAG 

partial intron 6; exon 7;  
partial intron 7 

368 61 

P7 F GGATAGTGAGGAGGGGAAGG 
R CAGGAGACTGGGGAAGGAG 

partial intron 7; exon 8;  
3’downstream genomic 
region 

431 63 

1 Annealing temperature 56 

57 
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Supplementary Table S2. Quantitative trait loci (QTL) co-localizing with the porcine 58 

PLIN2 mapping position1. 59 

1 Source: animal genome gbrowse (http://www.animalgenome.org/cgi-60 

bin/gbrowse/pig/), accessed on 22-11-201461 

QTL trait QTL (cM) Reference 

PLIN2 (SSC1q2.3-2.7; 227.3 Mb on SSC assembly 10.2) 

  Abdominal fat 107.6 Geldermann et al. (2010) 

  Adipocyte diameter 94.3-122.6 Geldermann et al. (2003) 

  Average daily gain  3.0-140.5 Liu et al. (2007) 

  Average daily gain 42.36-134.76 Onteru et al. (2013) 

  Average daily gain 49.4-79.4 Ruckert and Bennewitz (2010) 

  Average daily gain 73-140.5 Harmegnies et al. 2006 

  Average daily gain 100.8-118.5 Mohrmann et al. (2006) 

  Average daily gain 127.1-140.5 Evans et al. (2004) 

  Backfat thickness 80.0-110.5 Liu et al. (2007) 

  Body weight at birth 16.4-132 Guo et al (2008) 

  Daily feed intake 78.7-79.4 Kim et al. (2000) 

  Ham weight 94.3-122.6 Geldermann et al. (2003) 

  Lean meat percentage 94.3-122.6 Geldermann et al. (2003) 

  pH48 hours post mortem (loin) 102.9-119.5 Thomsen et al. (2004) 

http://www.animalgenome.org/cgi-bin/QTLdb/SS/qtrait?trait_ID=207
http://www.animalgenome.org/cgi-bin/QTLdb/SS/qtrait?trait_ID=207
http://www.animalgenome.org/cgi-bin/QTLdb/SS/qtrait?trait_ID=207
http://www.animalgenome.org/cgi-bin/QTLdb/SS/qtrait?trait_ID=207
http://www.animalgenome.org/cgi-bin/QTLdb/SS/qtrait?trait_ID=207
http://www.animalgenome.org/cgi-bin/QTLdb/SS/qtrait?trait_ID=153
http://www.animalgenome.org/cgi-bin/QTLdb/SS/qtrait?trait_ID=153
http://www.animalgenome.org/cgi-bin/QTLdb/SS/qtrait?trait_ID=320
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Chapter 5: Investigation of Perilipin 5 gene and its role for porcine 

meat quality. 
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Summary 

The improvement of pig meat quality by means of selection represents one of the main goals 

of pork producers, processors and researchers. Although many efforts have been done to 

obtain better meat characteristics following consumers preference, the growing request of 

animal products with healthy fatty acid composition is raising the necessity of a deeper 

knowledge of the main players controlling fatty acids storage in muscle and backfat. Perilipin 

(PLIN) 5, and more in general the whole Perilipin family, seems to play a crucial role in the 

regulation of lipids deposition in muscle and carcass fat depots. The Perilipin genes can be 

considered important candidates for the genetic selection in livestock addressed towards 

the qualitative improvement of the products. This gene family codes for proteins coating 

intracellular lipid droplets surface and despite the number of researches focused on PLINs in 

human and mouse is increasing, the knowledge of these genes in pig is still poor and quite 

incomplete. This is the first study on PLIN5 in pigs: the present research is aimed at 

investigating in Italian Large White and Italian Duroc pigs the PLIN5 associations with meat 

and carcass quality traits. PLIN5 protein was localised through immunofluorescence, 

resulting to be widely expressed inside Semimembranosus muscle (SM) myofibers. Then, the 

SNP rs327694326 (NC_010444.3:g.74806942 C>T) was identified in both considered pig 

breeds by sequencing the 3’UTR and downstream region of PLIN5 gene. Using High 

Resolution Melt analysis 512 Italian Large White and 300 Italian Duroc pigs were genotyped 

for this SNP. The two breeds showed different allelic frequencies, with a very low frequency 

for C allele in Duroc pigs. In Large White pigs this SNP resulted to be associated with backfat 

contents of docosatetraenoic fatty acid and with the ratio between the amounts of C18 tri-

unsaturated fatty acids and C18 di-unsaturated fatty acids. Furthermore, since PLINs are 

known to regulate lipases activity, we tested if the studied rs327694326 SNP on PLIN5 

downstream region was associated to differences in Hormone sensitive lipase (LIPE) gene 

expression levels. In SM of Italian Large White pigs, C allele was associated with significantly 

lower LIPE mRNA levels than T allele, suggesting that variations in PLIN5 sequence may be 

linked to a still poorly known molecular process regulating intracellular LIPE activity. 
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Implications 

This is the first study in pigs investigating PLIN5 gene, and the results of the association study 

suggest that variations in its sequence may be related to a still unclear regulative function 

exerted by PLIN5 on LIPE gene activity. This study provides results that, if confirmed, could 

improve at least in part the knowledge of one of the regulative pathways linking PLIN5 and 

lipases activity, indicating that SNPs in PLIN5 may be useful markers for selection breeding 

programs addressing the improvement of meat quality. 

 

Introduction 

For many years pig selection breeding programs focused mainly on the increase of carcass 

muscle deposition, determining a consistent reduction in intramuscular fat and backfat 

deposition and a worsening in pork meat quality (Wood, 1990; Wood et al., 2008). During 

the last decade, the improvement of meat quality has been an objective of pork industry, 

and several researches have demonstrated that a selection for increased intramuscular fat 

and meat quality is possible (Schwab et al., 2009; Jeong et al., 2015). On the other hand, 

meat quality traits have been found to be correlated with intramuscular and backfat fatty 

acid composition (Wood et al., 2008), suggesting that selection for meat and carcass traits 

may also determine changes in pork fatty acid composition. This issue, along with the 

increasing interest towards healthier pig products, has raised the need to have a better 

knowledge of the key molecular regulators at the basis of body lipid storage and utilisation. 

The Perilipin family (Perilipin 1 to 5) is one of the most promising gene families likely 

involved in controlling lipids deposition in muscle and carcass. Perilipin 5 (PLIN5) gene, and 

more in general the whole Perilipin family, has been investigated mainly in human and 

mouse, and recent studies have found in mice and rats that Plin5 protein probably regulates 

intracellular fatty acid fluxes and oxidation (Wang et al., 2011; Laurens et al., 2016). 

Different Authors (Brasaemle, 2007; Laurens et al., 2016) reported that this regulation may 

be mediated by coordinating the access of lipases to lipid droplets surface. In particular, 

PLIN5 was indicated as an essential player interacting with, among others, Hormone 

sensitive lipase (LIPE). LIPE gene maps in a QTL region linked to sensory quality in porcine 

meat (Pena et al., 2013), and its protein expression was found associated with intramuscular 

fat content in porcine Semimembranosus muscle (Zappaterra et al., 2016). The literature 
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suggests that LIPE may play an important role in pig meat and carcass traits, and the 

investigation of the physiological and molecular patterns regulating its activity can provide 

new tools for an improved genetic selection in livestock species. Despite these promising 

results, it is still unclear how PLIN5 interacts with lipases and PLIN5 gene has not yet been 

analysed in pigs. This research is aimed at investigating in Italian Large White and Italian 

Duroc pigs: i) PLIN5 protein localisation in Semimembranosus muscle (SM), ii) associations 

between PLIN5 SNP and carcass traits, fat deposition and backfat fatty acid composition, iii) 

PLIN5 gene expression levels in SM samples of the two pig breeds. Furthermore, considering 

the results obtained for LIPE in a previous study (Zappaterra et al., 2016), we decided to test 

if the identified PLIN5 gene variability could be associated with variations in PLIN5 and LIPE 

transcription levels. 

 

Material and methods 

Utilised population 

The samples used in the present study were chosen among 949 Italian Large White (ILW) 

pigs and 484 Italian Duroc (IDU) pigs, two breeds considered in this research for their 

importance in selection schemes addressed to obtain high quality seasoned products. The 

sampled animals are pure breed gilts and castrated males included in the Italian sib test 

genetic evaluation scheme performed by ANAS (Associazione Nazionale Allevatori Suini, 

ANAS; www.anas.it), reared in the same environmental conditions at the genetic test 

station, fed the same diet quasi ad libitum (60% of the pigs was able to ingest the entire 

supplied ration). At about 150 kg of live weight the animals were transported to a 

commercial abattoir located at about 25 km from the test station in accordance with Council 

Rule (EC) No. 1/2005 regarding the protection of animals during transport and related 

operations. At the slaughterhouse, the pigs were electrically stunned and bled in a supine 

position in agreement with Council Regulation (EC) No. 1099/2009 regarding the protection 

of animals at the time of slaughter. All slaughter procedures were monitored by the 

veterinary team appointed by the Italian Ministry of Health. After slaughtering, for each 

individual two samples of backfat and skeletal muscle tissue (obtained from SM) were 

collected: one aliquot of each tissue was stored at -20°C and the leftover aliquots were 

frozen in liquid nitrogen and stored at -80°C. For the immunohistochemical analysis, 10 
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samples of SM, 5 taken from ILW and 5 from IDU were included in Tissue-Tek® O.C.T. 

Compound (Sakura Finetek Europe, Zoeterwoude, The Netherlands).  

 

Measured phenotypes 

Carcass traits. ANAS and the slaughterhouse technicians provided us with the measure of 

the main carcass phenotypic traits: the carcass weight expressed in kg (carcass weight), the 

percentage of lean mass over the total carcass weight measured with Fat-O-Meter (lean %), 

the backfat thickness measured with Fat-O-Meter at 8 cm off the midline of the carcass 

between the third and fourth last ribs. Furthermore, the pH measured one hour after 

slaughter (pH1) and at 24 hours post-mortem (pH24), the objective colour measurements of 

International Commission on Illumination (CIE, 1976) L*, a* and b* were measured on 

Semimembranosus muscle. 

 

Determination of backfat fatty acid composition in ILW pigs. ILW backfat tissue samples 

stored at -20°C were used to obtain backfat fatty acid (FA) composition. FA composition has 

been detected by direct trans-esterification, following the protocol reported by Murrieta et 

al. (2003). For each sample, 50 mg of frozen backfat was used for the total lipid extraction 

and then, in each tube, 0.5 mg of C19:0 methyl ester in hexane was added as internal 

standard. Gas chromatography was performed on GC- 2010 Plus High-end Gas 

Chromatograph (Shimadzu Corporation, Tokyo, Japan), using SPTM- 2560 Capillary GC 

Column (Sigma- Aldrich, Merck, Darmstadt, Germany). Backfat FA composition was 

expressed as the ratio between each individual FA or FA family and the total backfat FAs. 

 

Immunohistochemical analysis for the detection of PLIN5 antigens 

Immunofluorescence reaction. Semimembranosus muscle samples of 5 ILW and 5 IDU 

individuals were randomly chosen among the 949 ILW and 484 IDU pigs and were analysed 

(Table 1). Immediately after collection, muscle samples were cut into 1 × 1 cm pieces, 

parallel to the muscle fiber direction, rapidly frozen in liquid nitrogen-cooled isopentane and 

embedded in Tissue-Tek®. Serial cross-sections (10 μm thick) were cut on a cryostat 

microtome at −20°C and mounted on poly-l-lysine coated glass slides (Sigma-Aldrich, St. 

Louis, MO, USA). Immunofluorescence was performed using the procedure described 

previously by Gandolfi et al. (2011). The sections were fixed for 10 min in 4% 
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paraformaldehyde in phosphate buffer saline (PBS, 0.1 M, pH 7.2), rinsed in PBS and 

incubated in 5% normal donkey serum (NDS) for 30 min at room temperature (RT) to reduce 

the non-specific binding of the secondary antibodies. The sections were then incubated at 

4°C in a humid chamber for 24 h in a mixture of 3% NDS and the primary antibodies rabbit 

anti-PLIN5 (Cat. NB110-60509, Novus Biologicals, Littleton, Colorado, USA) diluted 1:2000. 

The next day, after washing in PBS, the sections were incubated for 1 hour at room 

temperature in a PBS mixture containing 3% of NDS and the secondary antibody donkey 

anti-rabbit IgG Alexa Fluor 488-conjugated antibody (Invitrogen, Thermo Fisher Scientific 

Inc., Waltham, MA, USA) diluted 1:1300. After washing in PBS, the sections were mounted 

with buffered glycerol, pH 8.6. The specificity of the secondary antibodies was tested by 

performing the staining in the absence of primary antibodies as control. The specificity of 

primary antibodies was tested by Western blot. 

 

Morphometrical analysis. The sections were examined on a Zeiss Axioplan microscope 

equipped with the appropriate filter cubes to discriminate different fluorochromes. The 

images were recorded with a Polaroid DMC digital camera (Polaroid, Cambridge, Mass., 

U.S.A.) and the DMCV 2 software images were further processed using Corel Photo Paint and 

Corel Draw software programs (Corel, Milan, Italy). Morphometrical analyses were carried 

out considering for each sample the cross-sectional area (CSA, measured in μm2) of 100 

myofibers with a 20x objective lens using KS 300 image analysis software (Kontron 

Elektronic, Munich, Germany). For each sample the total CSA defined by PLIN5 negative 

myofibers was measured by outlining the profiles on the monitor screen using a computer 

mouse. The relative percentage of PLIN5 immunoreactive (PLIN5-IR) myofibers was 

calculated considering the total area of the 100 myofibers measured for each pig from which 

the total area of the PLIN5 negative myofibers was deducted. 

 

Statistical analysis. Data are reported as mean and SD. Differences were tested by Wilcoxon 

test, using Stats package on R environment version 3.3.2 (R Core Team, 2016). Nominal P 

value ≤ 0.05 was considered as the threshold for significance. 

 

Validation of PLIN5 antibody specificity through Western blot. Western blot was performed 

to assure the specificity of the primary antibodies used for PLIN5 immunostaining. About 300 
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mg of SM sample stored at −80 °C was homogenized on ice in 900 μl of T-PER Tissue Protein 

Extraction (Thermo Fisher Scientific Inc., Waltham, Massachusetts, USA) following the 

protocol reported in Zappaterra et al. (2016). About 20–60 μg of the total protein was 

separated in a 12% SDS-polyacrylamide gel and blotted into a nitrocellulose membrane (GE 

Healthcare/Amersham, Uppsala, Sweden). After blocking in 5% non-fat milk-Tris-buffered 

saline (TBS), membranes were incubated overnight with 1:4000 dilution of Rabbit anti-PLIN5. 

After washing, membranes were incubated for 1 h with 1:1000 dilution of horseradish 

peroxidase-conjugated anti-rabbit IgG (Santa Cruz Biotechnology, Dallas, Texas, USA). The 

membrane blots were developed with diaminobenzidin (DAB, Santa Cruz Biotechnology, 

Dallas, Texas, USA). The observed molecular weight was then compared using UniProt 

database (The UniProt Consortium, 2017) with PLIN5 weights in other species.  

 

PLIN5 SNP detection and association study 

SNP detection. Porcine PLIN5 gene sequence obtained from Ensembl database (last 

accession on 13th of March 2017; http://www.ensembl.org/index.html) was compared with 

sequences in GenBank database (https://www.ncbi.nlm.nih.gov/genbank/). The PLIN5 3’UTR 

and downstream gene regions of fifteen ILW samples randomly chosen were sequenced 

using ABI PRISM 3100 Genetic Analyzer (Applied Biosystems). A primer pair was designed for 

the sequencing using Primer3web software version 4.0.0 (http://primer3.ut.ee/; 

Supplementary Table S1). PCR were performed in a total volume of 20 μl containing 4 μl of 

5x standard buffer, 1.5 mM MgCl2, 0.5 μM of each primer, 160 μM dNTP, 1 U of GoTaq® G2 

DNA Polymerase (Promega Corporation, Madison, USA) and 20–50 ng of template DNA. 

Cycling conditions were: initial denaturation at 95°C for 5 min, 35 cycles consisting of one 

step at 95°C for 30 s, the annealing temperature of 64°C for 30 s, and the third step at 72°C 

for 30 s, followed by a final extension step of 72°C for 5 min. The PCR products were 

sequenced on both strands using the BigDye v. 3.1 Cycle Sequencing kit (Applied Biosystems, 

Thermo Fisher Scientific Inc., Waltham, MA, USA) and before sequencing the obtained 

products were purified using ethanol/sodium acetate precipitation. The fifteen ILW samples 

were then sequenced on the four-capillary system ABI PRISM 3100-Avant Genetic Analyzer 

(Applied Biosystems). The nucleotide sequences obtained from sequencing and obtained 

and those retrieved from databases were compared by multiple alignments performed with 

MEGA software version 6.06 (Tamura et al., 2013). 

http://www.ensembl.org/index.html
https://www.ncbi.nlm.nih.gov/genbank/
http://primer3.ut.ee/
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SNP genotyping. 512 ILW samples out of the total 949 individuals and 300 IDU pigs out of the 

484 were genotyped for the SNP identified through sequencing. Samples were genotyped 

using High Resolution Melt (HRM) analysis on Rotor Gene 6000 (Corbett Life Science, 

Concorde, New South Wales). Primers were designed using Primer3web software version 

4.0.0 (Supplementary Table 1), and the amplification procedure was performed in 35 cycles 

constituted of a denaturation step at 95°C for 20 s, the annealing step at 63°C for 15 s and 

the extension at 72°C for 10 s. A HRM analysis was performed after amplification by 

increasing the temperature of 0.1°C each 1 s, starting from 65°C until 90°C. The fluorescence 

was read at each temperature increase. 

 

Statistical analysis. Allelic frequencies of the identified SNP were calculated in ILW and IDU 

samples. Deviations from Hardy-Weinberg equilibrium were evaluated by a χ2 test. The 

association study between the SNP and the measured traits was performed using TM, a 

Bayesian statistics based software (Legarra et al., 2011). Different models were used 

depending on the considered traits: for backfat fatty acid composition traits, the associations 

were analysed using backfat thickness, animal’s age (days of life) and carcass weight as 

covariates, slaughter batch as random effect (27 slaughter batches), and the effects of sex 

(castrated males or female) and animal (using a pedigree with 1,724 individuals) were taken 

into account. For the association study between the SNP and the phenotypic measures, the 

same model was performed, considering among the covariates the interaction between 

carcass weight and animal’s age instead of backfat thickness. For each trait, the estimated 

means and differences between genotypes were assessed on Rabbit program (Blasco, 2012) 

using the same model performed in TM. 

 

Gene expression study 

Sampling. For the comparison of PLIN5 gene expression between breeds, 30 ILW and 30 IDU 

were chosen avoiding as much as possible full and half sibs and balancing the two groups for 

sex (Table 1). Then, with the aim of deepening the understanding of the results obtained 

from the association study, both PLIN5 and LIPE gene expressions were tested on samples 

displaying different genotypes for the studied SNP. Taking into account the higher frequency 
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of T allele in the studied populations, 30 TT, 20 CT and 19 CC samples were considered 

among ILW pigs; for IDU samples 13 TT, 18 CT and 3 CC were studied. 

 

Total RNA extraction and preparation. Semimembranosus muscle samples were withdrawn 

at the slaughterhouse and immediately frozen at −80 °C. Total RNA was then extracted using 

TRIZOL reagent (Invitrogen Corporation, Carlsbad, California), the quality and integrity of the 

RNAs were both checked and RNA was retrotranscribed to cDNA as described in Davoli et al. 

(2011). Primers were designed using Primer3web software version 4.0.0 (Supplementary 

Table 1). The quantitative Real-Time PCR (qRT-PCR) standard curve method was used to 

analyse the genes expression. qRT-PCR was performed on Rotor Gene™ 6000 (Corbett Life 

Science, Concorde, New South Wales) as described in Zappaterra et al. (2016), and beta-2-

microglobulin (B2M), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 

activation protein, zeta (YWHAZ) and hypoxanthine phosphoribosyltransferase 

1 (HPRT1) have been chosen as normalising genes. The protocols used for the amplification 

reactions and standard curves creation are the same described in Zappaterra et al. (2016). 

 

Statistical analysis. Differences in gene expression levels were tested by two-tailed Student's 

t test. Gene expressions were compared: i) between breeds, to test PLIN5 gene expression 

variations; ii) within breed between different genotypes in order to find possible associations 

of the analysed SNP with PLIN5 and LIPE expression levels. Additionally, with the purpose of 

identifying the strength of the relationship between PLIN5 and LIPE transcriptions, a 

Pearson’s correlation analysis was performed between the mRNA levels of these two genes 

using cor.test of stats package in R environment version 3.3.2 (R Core Team, 2016). For this 

analysis were considered the samples analysed for the comparisons of PLIN5 and LIPE gene 

expressions between the SNP different genotypes (69 ILW and 34 IDU individuals). Nominal 

P value ≤ 0.05 was considered as the threshold for significance. 

 

Results 

PLIN5 protein localisation in Semimembranosus muscle 

This is the first study that investigates PLIN5 protein localisation in porcine SM. The 

specificity of the antibody was confirmed by Western-blot, as a unique band was identified 
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(Figure 1A). PLIN5 molecular weight was found to be approximately 50 kDa, a weight that is 

similar to that of PLIN5 in mouse (Q8BVZ1 in UniProt database) and in human (Q00G26 in 

UniProt database). All porcine SM samples showed to be positive to PLIN5 antigens. PLIN5 

protein was widely expressed in SM: almost all the myofibers were PLIN5-IR, with isolated 

(Figure 1B) or grouped in pairs (Figure 1C) PLIN5 negative myofibers.PLIN5-IR myofibers 

showed a broad fluorescence pattern comprising the whole sarcoplasma, and a strong 

intensity staining was found in particular at the sarcolemma and perimysial collagen levels 

(Figure 1B and C). 

This high prevalence of PLIN5 positive myofibers is also visible in Table 2, where the results 

of the morphometrical analysis for both ILW and IDU samples are reported. The CSA of 

PLIN5 staining myofibers, the prevalence of PLIN5-IR myofibers expressed as percentage and 

the average sizes of PLIN5 positive and negative myofibers were calculated in both ILW and 

IDU samples (Table 2). No significant difference for the morphometrical measures between 

the two breeds was detected: all the samples showed PLIN5 staining CSA percentages above 

87%, with peaks of the 100% of immunoreactivity in some sections. 

 

SNP genotyping and allele frequencies 

The results of the sequencing performed on ILW DNA samples for PLIN5 3’UTR and 

downstream region showed a unique SNP lying in PLIN5 gene downstream region. 

Comparing the identified variation with those reported in Ensembl database we noticed that 

the same SNP was already reported among the nucleotide variants associated with PLIN5 

and PLIN4 genes (variant ID: rs327694326, HGVS name NC_010444.3:g.74806942T>C). The 

SNP rs327694326 deviated from Hardy-Weinberg equilibrium in ILW samples (P < 0.0001) 

with the C allele showing a lower frequency than the T allele in ILW samples (0.14 for the C 

allele against 0.86 observed for the T allele; Table 3). In IDU samples the C allele was quite 

infrequent, displaying an allele frequency of 0.04 and an expected number of CC animals 

that was too low to test Hardy-Weinberg equilibrium in this population (expected number of 

CC animals < 5). Due to the very low frequency of the C allele in IDU samples, the 

subsequent association study was conducted exclusively in ILW samples.  

 

Association study with backfat fatty acid composition and carcass traits 
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In ILW individuals, several associations between the rs327694326 SNP and backfat fatty acid 

composition were identified (Table 4). A dominant effect was found for trans-9, cis-12 

octadecenoic acid and for the ratio between the amounts of C18 tri-unsaturated fatty acids 

and C18 di-unsaturated fatty acids, while the SNP showed an additive effect on 

docosatetraenoic acid. On the whole, CT genotype showed a dominant effect on both CC 

and TT for trans-9, cis-12 octadecenoic and for the ratio between C18 tri-unsaturated and 

C18 di-unsaturated fatty acids. For docosatetraenoic fatty acid TT homozygotes showed the 

highest estimated means (Table 4). Oleic, cis-vaccenic, linolenic, eicosadienoic, 

docosahexaenoic, monounsaturated fatty acids, long chain and omega 3 fatty acids were 

reported in Table 4 as the observed P(>0) were near to the considered thresholds of 0.90 

and 0.10. Consistent associations were also found with carcass traits (Table 5): in this case 

too, the CT genotype presented a dominant effect on the majority of the considered traits: 

lean %, backfat thickness, drip loss, pH24, CIE L* and CIE b*. However, an additive effect was 

observed for CIE a* meat colour parameter. 

 

Gene expression study 

Initially, a comparison between PLIN5 gene expression in ILW and IDU samples was 

performed as the primary aim of the present study was to investigate this gene in the two 

pig breeds. The observed results highlighted a higher transcription level of this Perilipin in 

ILW samples than in IDU (P = 0.005; Figure 2A). Furthermore, based on the results of the 

association study, we also tested if rs327694326 was associated with changes in PLIN5 and 

LIPE gene expressions. These two genes were quantified and compared across samples 

displaying different genotypes for the studied SNP. ILW individuals showing TT genotype 

presented higher LIPE mRNA levels than CT (P = 0.02) and CC pigs (P < 0.0001) (Figure 2B). 

The homozygotes for the T allele showed also increased levels of PLIN5 expression, with a 

trending towards significance for the comparison between TT and CC ILW samples (P = 0.06). 

Conversely, in IDU samples the highest PLIN5 and LIPE transcriptional levels were found in 

CT pigs (P = 0.01 for PLIN5 gene expressions in CT vs. TT, and P = 0.08 for LIPE levels in CT vs. 

TT; Figure 2C). Anyway, due to the low frequency of the C allele in IDU, the expression levels 

detected in the 3 CC subjects were not compared with the mRNA levels detected in CT and 

TT IDU samples. Additionally, a correlation analysis between PLIN5 and LIPE expression 

levels was performed and the results are reported in Table 6. The two breeds presented 



211 
 

significant correlations between PLIN5 and LIPE expressions, and IDU samples showed a 

higher correlation compared to ILW (r = 0.597 in IDU and r = 0.371 in ILW pigs). 

 

Discussion 

The wide expression of PLIN5 protein detected in SM myofibers of both ILW and IDU pigs is 

consistent with the literature, which reports PLIN5 to be highly expressed in oxidative 

tissues, such as type I skeletal muscle fibers, cardiac muscle and liver (Dalen et al., 2007; 

MacPherson et al., 2012). Ruusunen and Puolanne (2004) and Lefaucheur et al. (2010) 

observed that, despite being classified as a white skeletal muscle, porcine SM is mainly 

composed of type IIA myofibers, which confer to this muscle a higher oxidative capacity and 

a red appearance when compared to glycolytic (type IIB) muscle fibers. Hence, the 

prevalence of PLIN5-IR myofibers detected in the present research is in accordance with the 

SM oxidative capacity reported by Ruusunen and Puolanne (2004) and Lefaucheur et al. 

(2010). Furthermore, the broad fluorescence pattern comprising the whole sarcoplasma 

reported here confirms the evidences already noticed in other animal species, where PLIN5 

protein was found to be localised both on intracellular lipid droplets surface (Yamaguchi et 

al., 2006), on mitochondria (Bosma et al., 2012) and also as a free form in cytosol (Wolins et 

al., 2006). The two considered pig breeds showed no difference in the number and area of 

PLIN5-IR myofibers, but displayed distinct PLIN5 gene expression levels, with a higher 

transcription level in ILW samples. The difference detected for PLIN5 expression levels 

between ILW and IDU may be related to the different adipogenic potential of the two breeds 

and to the lower capacity of Large White breed to store intramuscular fat respect to Duroc 

(Wood et al., 2004; Jung et al., 2015). The tight relation between PLIN5 and lipases was 

evidenced by the correlation linking PLIN5 and LIPE transcription levels, identified in both 

breeds with a higher correlation coefficient in IDU pigs. Current literature lacks dedicated 

studies about PLIN5 and LIPE transcription patterns in livestock species. However, the PLIN5 

and LIPE co-expression found in the present research may be consistent with the 

observations of Wang et al. (2009), who noticed through fluorescence microscopy that 

cultured cells displaying lipid droplets with higher rates of PLIN5 coated proteins showed 

also the largest amount of LIPE localised on their surfaces. Though the co-expression 

between PLIN5 and LIPE identified in the present work seems to contradict the generally-

accepted view that PLIN5 limits lipolysis (MacPherson and Peters, 2015; Wang et al., 2015), 
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it must not be forgotten that the information about PLIN5 mode of actions are still 

contradictory: while some studies identify this protein as a player limiting lipid droplets 

hydrolysis (Laurens et al., 2016), others report that its overexpression bears to increased fat 

oxidation (Bosma et al., 2012). The controversy around PLIN5 role in skeletal muscle can 

partly be solved by the fact that PLIN5 protein amount and gene expression are not the only 

ways by which lipases activity is controlled, but more steps and more processes might be 

needed to activate lipolysis. Bosma et al. (2012) and Pollak et al. (2015) reported that the 

phosphorylation of PLIN5 protein particular sites, such as the PAT-1 domain, and the 

phosphorylation of LIPE are among the hypothesised regulative mechanisms for the control 

of lipase activity. The results of the present study suggest that there could also be a 

molecular control affecting the interaction of PLIN5 with lipases. Indeed, in both breeds the 

different genotypes for the SNP rs327694326 showed changes in PLIN5 and LIPE trancription 

levels (in IDU due to the low frequency of the CC genotype it was possible to compare only 

the expression levels for the CT and TT samples). Furthermore, in ILW samples the same SNP 

was associated with carcass and backfat fatty acid composition. Except for CIE a* and 

backfat content of docosatetraenoic acid for which we detected an additive effect, in most 

of the cases the ILW individuals displaying the CT genotype presented a dominant effect on 

the associated traits. A dominant effect was also observed by Gol et al. (2016) for two SNPs 

identified on the sequence of two other members of the Perilipins family: PLIN1 and PLIN2. 

The two mutations (for PLIN1 JN860199:g.173G>A and for PLIN2 GU461317:g.98G>A) were 

studied in pigs belonging to a Spanish Duroc line and showed dominant effects on body 

weight at different ages, on average daily gain and on lean weight (Gol et al., 2016). In the 

present study, the dominant effect of CT genotypes is particularly enhanced for drip loss and 

pH at 24 hours post-mortem. The same dominant effect observed for the heterozygote in 

the present study was also identified for PLIN1 JN860199:g.173G>A and PLIN2 

GU461317:g.98G>A SNPs in an Italian Duroc pig population: for the considered carcass traits 

the GA individuals showed estimated means diverging substantially from both homozygotes 

(unpublished data). 

In the present investigation, the SNP rs327694326 was associated with both backfat 

thickness and fatty acid composition. This result is consistent with literature, where changes 

in backfat thickness are known to be directly correlated with backfat fatty acid composition, 

in particular with oleic acid content (Wood et al., 2008). 
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The complete understanding of the effects associated to rs327694326 remains to be 

elucidated and further studies are needed to deepen PLIN5 knowledge in pig. Anyway, the 

changes in PLIN5 and LIPE expression levels detected between samples with different 

genotypes may suggest that the studied SNP may be a marker of other causal mutations in 

PLIN5 sequence affecting PLIN5 and LIPE gene expression. On the whole PLIN5 seems to 

affect pig meat quality, and the results indicate that SNPs in PLIN5 sequence may be useful 

markers for selection breeding programs addressed towards improving pork quality. 
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Table 1. The considered Italian Large White and Italian Duroc samples utilised for the 

detection of PLIN5 antigens through immunohistochemical analysis, for the genotyping of 

rs327694326 SNP and for the comparison between breeds of PLIN5 gene expressions. 

 

Immunohistochemical 

analysis  

 

Genotyping 

 Gene expression study 

 

ILW1 IDU2  ILW1 IDU2  ILW1 IDU2 

Total 5 5  512 300  30 30 

Sows 3 3  339 203  20 10 

Barrows 2 2  173 97  18 12 

Days of 

slaughter 2 2  27 19  16 10 

Litters 5 5  270 148  28 25 

1 Italian Large White pigs. 

2 Italian Duroc pigs. 
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Table 2. Immunostaining results for Perilipin 5 (PLIN5) protein and average fiber size in pig 

Semimembranosus muscle in Italian Large White and Italian Duroc samples. Samples 

belonging to the two breeds have been compared using Wilcoxon test, and the relative P-

values were reported. 

 

 Immunostaining results  

 ILW1  IDU2  

 Mean SD  Mean SD P-value 

PLIN5 staining total CSA3 

(μm2) 715,261.66 100,166.11  708,011.97 84,280.84 0.931 

PLIN5 staining CSA 

percentage (%) 92.94 5.13  94.96 1.92 0.931 

Average PLIN5-positive 

myofiber size (μm2) 7,673.47 776.34  7,459.79 909.47 0.931 

Average PLIN5-negative 

myofiber size (μm2) 6,677.67 2,967.15  6,156.80 2,607.23 0.792 

1 Italian Large White pigs. 

2 Italian Duroc pigs. 

3 CSA stands for cross-sectional area. 
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Table 3. Genotyping results and rs327694326 allele frequencies in Italian Large White and 

Italian Duroc samples.  

  TT  CT  CC  

Allele 

frequencies 

HWE1  N N %  N %  N %  T C 

ILW2 512 395 0.77  92 0.18  25 0.05  0.86 0.14 P<0.0001 

IDU3 300 278 0.93  19 0.06  3 0.01  0.96 0.04 - 

For Italian Duroc pigs the C allele frequency was too low to calculate the deviance from Hardy-

Weinberg equilibrium 

1 Hardy-Weinberg equilibrium. 

2 Italian Large White pigs. 

3 Italian Duroc pigs. 
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Table 4. Additive and dominant effects of rs327694326 SNP on backfat fatty acid composition, with the means and differences of the estimated 

marginal posterior distribution for the genotypes in Italian Large White pigs.  

 

Additive (a) and dominant (d) effects 

 

Estimated means 

 Estimated differences between genotypes 

Backfat fatty 

acids1 

  TT-CT  CT-CC  TT-CC 

a P(>0) d P(>0)  TT CT CC  Mean P(>0)  Mean P(>0)  Mean P(>0) 

C18:1, cis-92 0.001 0.64 0.002 0.85  38.41 38.66 38.39  -0.25 0.07  0.27 0.79  0.02 0.52 

C18:1, cis-113 -0.00002 0.48 0.0003 0.83  2.18 2.22 2.20  -0.03 0.10  0.03 0.69  -0.008 0.44 

C18:2, trans-9, 

cis-124 -0.000004 0.30 -0.00002 0.05  0.021 0.019 0.022  0.002 0.98  -0.002 0.09  -0.0004 0.38 

C18:3, Ω35 -0.00014 0.20 -0.00029 0.12  0.77 0.76 0.80  0.012 0.74  -0.04 0.15  -0.028 0.20 

C18:3/C18:26 -0.00001 0.14 -0.00002 0.10  0.049 0.048 0.051  0.0006 0.67  -0.003 0.10  -0.002 0.14 

C20:1, cis-117 -0.00002 0.47 0.00036 0.89  0.80 0.83 0.81  -0.040 0.04  0.028 0.73  -0.012 0.38 

C20:2, Ω68 0.0001 0.71 0.00015 0.88  0.77 0.79 0.77  -0.014 0.08  0.013 0.75  -0.001 0.48 

C22:4, Ω69 0.00002 0.95 0.00002 0.85  0.093 0.092 0.088  0.0004 0.58  0.0037 0.87  0.0041 0.91 

C22:6, Ω310 -0.00001 0.30 -0.00001 0.15  0.013 0.012 0.011  0.0007 0.80  0.0012 0.77  0.0019 0.90 

LCFA11 0.0010 0.80 0.0018 0.86  73.26 73.41 73.15  -0.15 0.13  0.26 0.84  0.11 0.68 

MUFA12 0.0005 0.61 0.003 0.89  43.61 43.94 43.61  -0.33 0.05  0.33 0.81  -0.001 0.50 

PUFA Ω313 -0.00014 0.22 -0.00031 0.11  0.84 0.82 0.87  0.014 0.77  -0.043 0.14  -0.028 0.20 

1 All the fatty acids or fatty acid categories are expressed as percentage on the total fatty acids amount. 

2 Oleic acid; 3 Cis-vaccenic acid; 4 Trans-9, cis-12 octadecenoic acid; 5 Linolenic acid; 6 the ratio between C18 tri-unsaturated and C18 di-unsaturated fatty 

acids; 7 Eicosenoic acid; 8 Eicosadienoic acid; 9 Docosatetraenoic acid; 10 Docosahexaenoic acid; 11 Long chain fatty acids; 12 Monounsaturated fatty acids; 13 

Polyunsaturated fatty acids omega3. 
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P (>0): Posterior probability of a value being positive. In bold, probabilities above (or equal to) 0.90 or below 0.10. 
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Table 5. Additive and dominant effects of rs327694326 SNP on FCR and carcass phenotypes, with the means and differences of the estimated 

marginal posterior distribution for the genotypes in Italian Large White pigs.  

 

Additive (a) and dominant (d) effects 

 

Estimated means 

 Estimated differences between genotypes 

Traits 

  TT-CT  CT-CC  TT-CC 

a P(>0) d P(>0)  TT CT CC  Mean P(>0)  Mean P(>0)  Mean P(>0) 

Lean1 (%) -0.002 0.20 -0.005 0.07  48.50 48.09 48.97  0.41 0.91  -0.89 0.06  -0.48 0.18 

Backfat 

thickness2 0.003 0.71 0.009 0.90  28.29 29.02 27.67  -0.73 0.10  1.35 0.90  0.62 0.74 

Drip loss3 0.008 0.81 0.04 >0.99  52.59 56.14 51.04  -3.55 <0.01  5.09 0.99  1.54 0.79 

pH24
4 0.0002 0.77 0.001 >0.99  5.96 6.05 5.92  -0.09 0.01  0.14 0.98  0.04 0.77 

CIE L* -0.005 0.11 -0.009 0.07  33.18 32.86 34.27  0.31 0.73  -1.41 0.07  -1.09 0.10 

CIE a* 0.003 0.91 0.003 0.86  9.17 9.22 8.69  -0.05 0.42  0.53 0.88  0.48 0.88 

CIE b* -0.002 0.09 -0.004 0.03  3.64 3.45 4.01  0.19 0.88  -0.56 0.03  -0.37 0.08 

1 The percentage of lean mass measured with Fat-O-Meter. 

2 Backfat thickness measured with Fat-O-Meter at 8 cm off the midline of the carcass between the third and fourth last ribs. 

3 Drip loss measured with Filter Paper Press method 

4 pH measured at 24 hours post-mortem. 

CIE stands for International Commission on Illumination. 

P (>0): Posterior probability of a value being positive. In bold, probabilities above (or equal to) 0.90 or below 0.10. 
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Table 6. The Pearson’s correlation results between PLIN5 and LIPE expressions in Italian 

Large White and Italian Duroc samples. 

 PLIN5 gene expression 

 

n1 r2 P value 

LIPE gene expression    

ILW3 69 0.371 0.003 

IDU4 34 0.597 0.0002 

1 The number of the considered samples 

2 the Pearson’s correlation coefficient.  

3 Italian Large White pigs. 

4 Italian Duroc pigs. 
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Figures 

Figure 1. Western blot results confirming the specificity of primary antibody rabbit anti-

PLIN5 (A). Cross-sections from Semimembranosus muscle in Italian Duroc (B) and Italian 

Large White (C) pigs stained by PLIN5. The images show that the majority of muscle fibers 

are PLIN5 immunoreactive, while some isolated or coupled fibers appear unlabeled 

(asterisks). 
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Figure 2. Gene expression results and Student’s t test P values of the comparisons between 

PLIN5 levels in the two breeds (A) and between PLIN5 and LIPE expressions for the different 

genotypes of rs327694326 SNP in Italian Large White (B) and Italian Duroc pigs (C). 
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Supplementary Table S1. Primers used for the sequencing, the genotyping and the gene 

expression study. 

Primer name (sequence ID) Primer sequence (5’-3’) 

TM 

(°C) 

Size 

(bp) 

Sequencing (ENSSSCG00000013513.2) 

PLIN5 -FOR 

PLIN5 -REV 

5’- TTGGGGCTCTGAAAAGTGAG -3’ 

5’- GCAGTTGTGGTTCAGATCCTG -3’ 64°C 600 

Genotyping(ENSSSCG00000013513.2) 

PLIN5 -FOR 

 

5’- CCAGGCTAGGGGTGGAATC -3’ 

63°C 119 PLIN5 -REV 5’- AAGAATCCAGCATCGCCATG -3’ 

PLIN5 (ENSSSCG00000013513.2)    

PLIN5 -E-FOR 

PLIN5 -E-REV 

5’- GCGGTCTCCGATGCTTATAG -3’ 

5’- CCCTGTTGTCTCCTCTGCTC -3’ 64°C 476 

PLIN5 -I-FOR 

PLIN5 -I-REV 

5’- GTGGAGCTCAAACGATCCAT -3’ 

5’- TCAGTCATGGGCAGGAAGT -3’ 67°C 89 

LIPE (AY686758.1)    

LIPE -E-FOR 

LIPE -E-REV 

5’- CCGAGACGAGATTAGCACCA -3’ 

5’- CCTAGCGAACATGACCGAGT -3’ 66°C 247 

LIPE -I-FOR 

LIPE -I-REV 

5’- AAGTCTACAGTGTGAGGGCC -3’ 

5’- CGATGGGAGCTGAGTAGAGG -3’ 70°C 96 

Normalising genes 

HPRT1 (AK346023.1) 

HPRT1-E-FOR 

HPRT1-E-REV 

5’- GCCCCAGCGTCGTGATTA -3’ 

5’- AGAGGGCTACGATGTGATGG -3’ 64°C 183 

HPRT1-I-FOR 

HPRT1-I-REV 

5’- CCCAGCGTCGTGATTAGTGA -3’ 

5’- CCTTTTCCAAATCCTCGGCA -3’ 66°C 88 

YWHAZ (AK344707.1)    

YWHAZ-E-FOR 

YWHAZ -E-REV 

5’- TGGAGCACTTACAAGGCGTA -3’ 

5’- ACCGTTTCTGCCCTTATCCA -3’ 64°C 168 

YWHAZ -I-FOR 

YWHAZ -I-REV 

5’- AAGGCGTAGTGGAAGTGGAT -3’ 

5’- GCTGTAGTCAAAGGTGTGCA -3’ 66°C 98 

B2M (AK239552.1)    

B2M-E-FOR 

B2M-E-REV 

5’- AAACGGGGAGAAGATGAACG -3’ 

5’- ACATCTACCTGCTCAGACAGT -3’ 63°C 377 
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B2M-I-FOR 

B2M-I-REV 

5’- CCTTCTGGTCCACACTGAGT -3’ 

5’- TCCCACTTAACTATCTTGGGCT -3’ 66°C 99 

For all the considered genes in the table are reported the used primer, the annealing temperature 

expressed in °C and the size in base pairs (bp). 

Each primer name is composed by the gene name, “I” for internal primer or “E” for external primer, 

“FOR” for the left primer and “REV” for the right primer. 

1TM (°C) Annealing temperature. 
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Summary 

Intramuscular fat (IMF) content has a prominent role in meat quality, affecting sensory 

attributes such as flavour and texture. In the present research, we studied in samples of 

porcine Semimembranosus muscle four genes related to lipid metabolism and whose gene 

expressions have been associated to IMF deposition: FASN, SCD, LIPE and LPL. We analysed 

both mRNA and protein expressions in two groups of Italian Large White pigs divergent for 

Semimembranosus IMF deposition, with the aim of comparing the levels of four genes and 

enzymes between the two groups and identifying possible coexpression links. The obtained 

results suggest a prominent role of LIPE enzyme in IMF hydrolysis, as the samples with low 

IMF deposition show a significantly higher amount of this lipase. Finally, a poorly known 

correlation was found between LIPE and FASN enzymes only in female individuals. These 

results provide new information for the understanding of IMF deposition. 

 

Introduction 

During the last decades, pig selection has aimed at satisfying the request of the pork industry 

mainly focused on the increase of muscle deposition and carcass lean cut amount, resulted 

in a reduction in fat storage and adipogenesis (Wood, 1990). This selective pressure has also 

led to a progressive lowering in the total lipid content of muscle, in particular in some breeds 

selected for their predisposition to lean mass deposition (Wood and Warriss, 1992). In Large 

White breed the selection lowered noticeably the marbling percentage, passing from an 

average of 2-4% of intramuscular fat (IMF) in Large White pigs bred in 1960’s (Wood, 1990) 

to less than 1% in Longissimus muscle of the modern Large White pigs (Wood et al., 2008). 

IMF is composed of lipid droplets stored within myofibers cytoplasm and adipocytes located 

between the fiber fasciculi, consequently IMF amount is strongly related to the number of 

intramuscular adipocytes (Zheng and Mei, 2009). It is known that sensory attributes such as 

flavour and juiciness are influenced by IMF content (Wood, 1990; Fernandez et al., 1999).  

The number of Genome Wide Association studies aimed at identifying SNPs and genes 

affecting IMF deposition and composition in different pig breeds (Ma et al., 2013; Muñoz et 

al., 2013; Nonneman et al., 2013; Kim et al., 2015; Davoli et al., 2016) is increasing, however 

little is known about the relative enzyme quantity of the putative genes involved in IMF 
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deposition in pig muscle tissue. Therefore, in the present study we considered four genes 

involved in lipid metabolism and whose mRNA levels in literature are reported to be linked 

to IMF deposition in different pig breeds (Zhao et al., 2009; Wang et al., 2012). Two of the 

selected enzymes are involved in synthesis and desaturation of fatty acids (fatty acid 

synthase, FASN; stearoyl-CoA desaturase (delta 9 desaturase), SCD) and the two remaining 

enzymes are involved in fatty acids catabolism (hormone sensitive lipase, LIPE; lipoprotein 

lipase, LPL). FASN gene is located on Sus scrofa chromosome 12 (Muñoz et al., 2003), and 

the coded protein plays an essential role in long-chain fatty acid synthesis, starting from 

acetyl CoA and using malonyl-CoA as a 2 carbon donor and NADPH as reducing equivalent 

(Wakil, 1989; Menendez et al., 2009). In pigs both SCD and LPL genes are localised on 

chromosome 14 (Gu et al., 1992; Ren et al., 2003). SCD catalyses the desaturation of 

palmitoyl-CoA and stearoyl-CoA at the position Δ9 producing de novo palmitoleoyl-CoA and 

oleoyl-CoA, while LPL has the dual function of hydrolysing the circulating chylomicron 

triglycerides to diglycerides and of ligand/bridging factor for receptor mediated lipoprotein 

uptake. On the other hand, LIPE hydrolyses the triglycerides stored in muscle to diglycerides, 

then to monoglycerides and at the end to free fatty acids. LIPE gene has been assigned to 

porcine chromosome 6, and its position coincides with a Quantitative Trait Locus (QTL) 

region linked to sensory quality in porcine meat (Pena et al., 2013). In the present study, we 

analysed both the protein quantifications and the transcription profiles of these four genes 

in the Semimembranosus muscle of two groups of Italian Large White (ILW) pigs divergent 

for IMF deposition, with the aims: i) of testing whether the mRNA and enzyme levels of 

FASN, LIPE, SCD and LPL differed between two groups of pigs divergent for IMF (LOW IMF 

group vs. HIGH IMF group), ii) of identifying common trends in the expression levels of the 

four studied genes and proteins, suggesting coexpression links. 

The focus both on gene and protein levels of the analysed enzymes could be useful to 

highlight a possible involvement of FASN, LIPE, SCD and LPL proteins on IMF deposition in pig 

meat.  

Materials and methods 

Protein expression study 
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Sampling. For the present study, a set of 155 pigs was selected among a population of 950 Italian Large 

White (ILW) pigs. As reported in Davoli et al. (2016), using the Soxhlet extraction method the whole 

sample of 950 ILW pigs has been characterised for IMF content, reported as percentage (grams of IMF 

on 100 grams of pig Semimembranosus muscle). The 155 individuals used for the quantitation of FASN, 

SCD, LIPE and LPL enzymes in Semimembranosus muscle have been selected among the 950 ILW pigs 

based on their extreme and divergent IMF phenotype (Table 1) and divided in two groups differing for 

IMF content (LOW IMF group and HIGH IMF group). The LOW IMF group consists of 77 pigs presenting 

IMF values lower than the average IMF level of the 950 pigs (total population) minus one standard 

deviation unit. Furthermore, the HIGH IMF group consists of individuals with IMF contents higher than 

the average IMF value of the total population plus 3.5 standard deviation units. The two IMF divergent 

groups have been chosen avoiding as much as possible full and half sibs, in order to prevent the family 

effect on protein and gene quantitation results. Additionally, since sex and batch may influence protein 

and gene expressions the two groups were balanced for these two factors. The pigs are pure breed 

animals included in the Italian sib test genetic evaluation scheme performed by ANAS (Associazione 

Nazionale Allevatori Suini, ANAS; www.anas.it), reared in the same environmental conditions at the 

genetic test station with a quasi ad libitum feeding level (60% of the pigs was able to ingest the entire 

supplied ration). The sib test program calculates the estimated genetic value of each candidate boar 

testing three of its full sibs, two females and one castrated male. For this reason, the considered 

sample of 155 individuals is composed of two thirds of sows and one third of castrated males (Table 1), 

with the purpose of maintaining the proportions of the total population and of using a representative 

sample of the 950 pigs population. At the end of the test, the animals were transported to a 

commercial abattoir located about 25 km from the test station in accordance with Council Rule (EC) 

No. 1/2005 regarding the protection of animals during transport and related operations and, amending 

Directives 64/432/EEC and 93/119/EC and Regulation (EC) No. 1255/97. At the slaughterhouse, the 

pigs were electrically stunned and bled in a supine position in agreement with Council Regulation (EC) 

No. 1099/2009 regarding the protection of animals at the time of slaughter. All slaughter procedures 

were monitored by the veterinary team appointed by the Italian Ministry of Health. Moreover, for all 

the pigs, ANAS provided us with the Estimated Breeding Values (EBVs): Average Daily Gain (ADG, 

calculated from 30 to 155 kg of live weight with quasi ad libitum feeding level, expressed in grams), 

Backfat Thickness (BFT, recorded post mortem at the level of Gluteus medius muscle, expressed in 

mm), Lean Cuts (LC, the sum of neck and loin weight, expressed in kg), Feed Conversion Ratio (FCR, 

obtained from feed intake recorded daily and body weight measured bimonthly, expressed in units), 
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and Ham Weight (HW, expressed in kg). The listed EBVs have been calculated by ANAS according to the 

statistical model reported by Russo et al. (2000). Moreover, the slaughterhouse technicians provided us 

with the phenotypic measures of the carcass weight expressed in kg (carcass weight), the percentage 

of lean cuts over the total carcass weight (%lean), and the backfat and loin thickness measured at 8 cm 

off the midline of the carcass at the level placed between the third and fourth last ribs measured with 

Fat-O-Meter (FOM). 

 

Protein extraction and total protein quantitation. At the slaughterhouse, Semimembranosus 

muscle tissue was quickly frozen in Liquid Nitrogen (LN2) and then stored at -80°C for 

subsequent total protein extraction. Approximately 300 mg of tissue sample were 

homogenized on ice in 900 µl of T-PER Tissue Protein Extraction (Thermo Fisher Scientific 

Inc., Waltham, Massachusetts, USA), to which 1x protease and phosphatase inhibitors 

(PhosSTOP™, Roche, Hoffmann-La Roche, Basel, Switzerland) were added. Tissue lysates 

were then centrifuged at 15,000 x g for 20 min at 4°C to remove lipids and insoluble debris. 

For LPL, before the quantitation of the total proteins and the quantification of LPL enzyme, 

the extracted proteins were concentrated through a filtering step, using Amicon® Ultra-4 

filters (Merck Millipore, Darmstadt, Germany). This additional step was needed to obtain LPL 

quantitation within the sensitivity range of the commercial ELISA kit used for the 

quantitation of this protein. 

The total extracted proteins were quantified using the BCA reagent (Thermo Fisher Scientific 

Inc., Waltham, Massachusetts, USA) and the optical density of each sample was determined 

using a microplate optical reader. 

Quantification of intramuscular FASN, LIPE, SCD and LPL enzymes. FASN, LIPE, SCD and LPL 

were quantitatively detected using ELISA kits produced by Cusabio (Cusabio Biotech, Wuhan, 

China), according to manufacturer’s instructions. Briefly, 100 µl of blank, standards or 

samples were added to well, covered, incubated for 2 hours at 37°C and the liquid of each 

well was removed without washing. Then 100 µl of biotin antibody working solution was 

added to each well, incubated for 1 hour at 37°C and then washed three times with wash 

buffer (200 µl). At each well, 100 µl of HRP avidin working solution were added, the well 

covered, incubated for 1 hour at 37°C and washed three times with wash buffer (200 µl). 

Finally, TMB substrate (90 µl) was then added to each well, covered, dark incubated for 30 



233 
 

minutes at 37°C and stopped with 50 µl of stop solution. The optical density of each well was 

determined within 5 minutes using a microplate reader at 450 nm.  

For all the samples, the relative quantification of each enzyme was calculated, through the 

ratio between the enzyme absolute quantitation and the total extracted protein amount. 

 

Gene expression study 

Sampling. The gene expression study was carried out on a smaller sample, composed of 47 ILW pigs 

chosen among the overall group of 155 animals. These selected pigs, which were extreme and 

divergent for IMF phenotype (Table 1), were the progeny of 36 boars and 44 sows. Both Subset 1 (for 

the low IMF pigs) and Subset 2 (for the high IMF individuals) have been chosen avoiding as much as 

possible full and half sibs. 

 

RNA source, total RNA extraction and cDNA preparation. Semimembranosus muscle samples were 

withdrawn at the slaughterhouse and immediately frozen at -80°C. Total RNA was then extracted using 

TRIZOL reagent (Invitrogen Corporation, Carlsbad, California), the quality and integrity of the RNAs 

were both checked and RNA was retrotranscribed to cDNA as described in Davoli et al. (2011). 

 

Gene expression quantitation. The quantitative Real-Time PCR (qRT-PCR) standard curve method 

(Pfaffl, 2004) was used to analyse the four genes expression. qRT-PCR was performed on Rotor GeneTM 

6000 (Corbett Life Science, Concorde, New South Wales) using 5 µl of SYBR® Premix Ex TaqTM (TAKARA 

Bio INC, Olsu, Shiga, Japan), 5 pmol of each primer, 2 µl of cDNA template diluted 1:10 and make up to 

the total volume of 10 µl with water. Rotor GeneTM 6000 protocol was optimised using specific 

annealing temperatures for each primer couple (Supplementary Table S1). Six genes were tested to be 

used as normalising genes (polymerase (RNA) II (DNA directed) polypeptide A, 220kDa, POLR2A; beta-

2-microglobulin, B2M; tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, 

zeta, YWHAZ; hypoxanthine phosphoribosyltransferase 1, HPRT1; TATA box binding protein, TBP; 

peptidylprolyl isomerase A (cyclophilin A), PPIA) and using NormFinder (Andersen et al., 2004) were 

identified the three most stable ones to be used as normalising genes (B2M, YWHAZ, and HPRT1). For 

the normalising and the 4 studied genes a specific standard curve was obtained, amplifying 11 serial 

dilutions (from 109 to 50 molecules/µl) of a known concentration sample of cDNA amplicon, obtained 

with a PCR with the external primer pairs (Supplementary Table S1). The PCR efficiency was calculated 
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as E = 10 exp (-1/slope), with a range between -2.7 and -4.3, indicating a good PCR efficiency results. All 

the PCR products were checked on a polyacrylamide gel and washed from primer dimers with the 

QIAquick® PCR Purification Kit (QIAGEN, Venlo, Netherlands). The absence of unspecific amplicons 

during qRT-PCR on Rotor GeneTM 6000 was tested using the melt step after the cycling. The variation 

coefficient (CV = Standard Deviation of the Crossing Points/Average of the Crossing Points) of the 

replicated analysis for each samples (three in two different qRT PCRs) was accepted for CV < 0.2. 

 

Statistical analysis. All the statistical analyses were carried out using SAS software, version 

9.4 (SAS Inst. Inc., Cary, NC). To decide what statistical approach to use, we performed a 

general linear model (GLM) where we tested the fixed effects of sex, batch and group (LOW 

and HIGH IMF groups) on the studied gene and protein levels. As sex and batch did not affect 

the gene and protein levels, we decided to take into account only the group effect, 

comparing the protein and gene levels between the divergent groups of pigs. PROC 

NPAR1WAY command of SAS (the Wilcoxon test) was used to compare the protein levels 

between the groups of pigs divergent for IMF deposition (as protein values were not 

normally distributed), and the PROC TTEST of SAS (Student’s t test) was utilised to compare 

the gene expression data between groups (as gene expression values were normally 

distributed). The PROC CORR SAS command was considered to calculate the correlations 

between the different gene and protein expressions. 

 

Results 

The main results are reported in Figure 1, Figure 2 and in Table 2, where for the two IMF 

divergent groups the protein and gene expression quantifications are showed. In particular 

we investigated both the mRNA and protein levels of FASN, LIPE, SCD and LPL genes, which 

have been already described in literature to be likely involved in IMF deposition. However, 

to date, the association of these genes with IMF deposition was reported mainly on the basis 

of their mRNA levels while in the present research both the mRNA and protein amounts 

were considered. For the quantification of these four enzymes in the two groups of ILW pigs 

extreme for IMF, we used commercially available ELISA kits. Owing to some problems in SCD 

and LPL protein quantitation and in order to avoid uncertain data, we decided to present 

and compare only the most reliable quantification values, maintaining however the 
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divergence between the two groups for IMF value and balancing the samples for sex 

(Supplementary Table S2).  

The means ± the standard errors of the quantified enzymes in the LOW IMF and HIGH IMF 

groups are represented in Figure 1. It is worth noting that LIPE is the only enzyme showing a 

higher amount in samples with LOW IMF deposition (P<0.05) (Figure 1 C), while SCD protein 

presents a trend (P<0.1) and on average a higher enzyme expression in the HIGH IMF group 

(Figure 1 A). The transcription levels obtained for the four considered genes are reported in 

Figure 2: the two groups (LOW and HIGH IMF) show differences in the mRNA levels for FASN, 

LPL and SCD genes. In Table 2 are indicated the means ± the standard deviations of the gene 

and enzyme expressions in the LOW and HIGH IMF groups, in the LOW and HIGH IMF sows 

and castrated males, and in the two sexes. In the same table are reported the significant 

comparisons between groups. In order to identify links between gene transcription levels 

and enzyme expressions, the correlations between the mRNA and the protein levels were 

performed, and the results reported in Table 3. The lack of correlation between the mRNA 

level of each gene and the expression of its coded protein clearly stands out. Furthermore, 

we calculated the correlations between each one of the analysed mRNA and protein 

expressions and all the other available quantitation data, in order to look for the presence of 

some possible coexpressions (Table 3). This approach revealed the presence of two 

significant correlations between the mRNA of LIPE gene and the amount of LPL and SCD 

proteins. Furthermore, FASN gene resulted highly correlated to SCD and LPL gene 

expressions, while for the enzymes a single positive correlation between LIPE and FASN was 

identified (Table 3). In particular, this positive and high correlation between LIPE and FASN 

enzymes showed to be strongly linked to sex, as only sows presented a highly significant 

correlation coefficient, not observed in castrated males (Table 4). Furthermore, in order to 

find some possible links between gene and protein expressions and carcass traits, a 

correlation analysis considering gene and enzymes expression levels towards EBVs and 

phenotypic measures of carcass traits was carried out (Supplementary Table S3). The results 

in Supplementary Table S3 show low correlations between the gene and protein expression 

data and the EBVs or phenotypic measures, but all the associations we found are consistent 

with the roles of the studied genes and enzymes. For example, FASN is negatively correlated 

to ADG and HW EBVs, and to carcass weight measure, in agreement with the lipogenic role 

of this enzyme. Moreover, IMF content resulted to be positively associated with FASN, SCD 
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and LPL gene expression levels, and among the tested enzymes only LIPE showed a negative 

correlation with IMF deposition (Supplementary Table S3). 

Discussion 

The primary aim of the study was to investigate the expression levels of FASN, LIPE, SCD and 

LPL enzymes between two groups of ILW pigs divergent for IMF deposition, in order to look 

for the involvement of these proteins in porcine IMF deposition. The results suggest a 

prominent role of LIPE enzyme in IMF hydrolysis: indeed, low IMF pigs have a significantly 

higher amount of LIPE enzyme as compared to the high IMF group (Figure 1 C and Table 2). 

This result agrees with the role of LIPE, which hydrolyses to free fatty acids the triglycerides 

stored in adipose tissue. According to this result, we also found a negative correlation 

between IMF deposition and LIPE enzyme amount (Supplementary Table S3). The different 

LIPE relative quantitation between high and low IMF individuals is also maintained between 

IMF divergent pigs of the same sex, indicating the importance of LIPE activity in IMF 

deposition for both castrated male and female individuals (Table 2). To date, in different 

animal species several authors have found associations between LIPE gene or enzyme 

expressions and the carcass traits (Zhao et al., 2010 in pigs; Ying et al., 2013 in mice; Zhang 

et al., 2014 in yaks). In particular, Zhao et al. (2009) found a divergent expression of LIPE 

gene and protein between 12 Wujin pigs with high IMF deposition and 12 Landrace pigs with 

low IMF deposition. Due to the different diet compositions and the use of two samples 

coming from distinct pig breeds, the diverging LIPE mRNA levels found by the authors 

between the two breeds may be affected by the different characteristics of the diets. 

However, on the basis of the results of the present study, it is possible to suggest a diet 

independent role of LIPE on IMF deposition, as LIPE enzyme showed different expressions 

between IMF divergent pigs, although they were reared in the same environmental 

conditions. 

On the other hand, in pigs with a more pronounced IMF deposition a higher level of SCD 

protein was found, but the difference between the SCD enzyme expressions in LOW IMF and 

HIGH IMF groups showed only a trend towards significance (P < 0.1) (Figure 1). This result 

suggests that SCD enzyme could have an important role in IMF metabolism and is in 

agreement with the data reported by Wu et al. (2013), who detected an overexpression of 

SCD gene in high IMF Jinhua pigs as compared to Landrace pigs. 



237 
 

In addition, we tested also the linear correlation between the genes and the relative protein 

expressions (Table 3), finding that no one of the enzyme amounts significantly covaried with 

the relative gene transcription level. This result indicates that post-transcriptional regulation 

for these genes may play an essential role in the modulation of their enzyme synthesis and 

activity. However, despite this result, it is worth noting that FASN, LPL and SCD maintained 

on average a higher expression of both mRNA and protein levels in high IMF pigs as 

compared to the low IMF group (Figure 1 and 2) suggesting the existence of a conserved 

trend between the transcription and translation levels of these three genes. 

Furthermore, the strong correlation found between LIPE and FASN (Table 3) was further 

investigated through an additional correlation analysis performed in castrated males and in 

sows (Table 4). Based on the results obtained, in muscle tissue we can suppose the 

activation of distinct biological pathways controlling IMF adipogenesis between female and 

male individuals. Mukherjee et al. (2014) found that in rat white adipose tissue the quantity 

of LIPE enzyme varies together with the expression of Caveolin1 (CAV1): in particular, CAV1 

showed to be stimulated by estrogen (the primary female sex hormone) and suppressed by 

androgen (typically the male sex hormone). On the other side, CAV1 is coexpressed with 

FASN and interacts with this enzyme in human prostate cancer (Di Vizio et al., 2008). CAV1 is 

an important target in sex hormone dependent regulation of several metabolic pathways, 

particularly in cancer and diabetes (Mukherjee et al., 2014). Considering the results reported 

in literature, it is possible to hypothesise that the strong correlation we found in sows 

between LIPE and FASN proteins may be the effect of an estrogen activated pathway, 

possibly linking these two enzymes through the mediation of CAV1. Anyway, further studies 

are needed to prove in pigs this hypothesis. 

In Table 3, also the correlation between FASN and SCD gene expressions stands out. The 

expressions of these two genes have already been found to covary in Longissimus dorsi 

muscle between pigs with divergent muscle lipid deposition (Wang et al., 2015). 

Nevertheless this coexpression was not detected at the protein level (Table 3).  

Moreover, the correlations found between the EBVs or carcass traits and the gene and 

protein expression levels agree with the known roles of the studied genes: FASN and SCD are 

both enzymes involved in the synthesis and desaturation of fatty acids, and in fact showed 
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negative correlations with the EBV of Average Daily Gain and more generally to lean mass 

deposition, causing a worsening in Feed Conversion Ratio EBV (Supplementary Table 3). 

 

Conclusions 

The study of FASN, LIPE, LPL and SCD gene and protein expression levels allowed obtaining a 

more comprehensive view of their involvement in pig intramuscular fat deposition. The 

results suggest for LIPE and SCD enzyme a role in muscle fat deposition and indicate that 

these two genes may be involved in similar regulatory pathways and respond to similar 

transcription cues. Anyway, future studies are needed to better understand the role of LIPE 

gene and its coded protein in pork quality. Finally, in female individuals a poorly known 

correlation between LIPE and FASN enzymes was found, suggesting the need of dedicated 

studies aimed at identifying and elucidating the pathways involved. 
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Table 1. Composition and intramuscular fat (IMF) mean value of the two divergent and 

extreme groups of pigs considered for the enzymes quantification (top half of the table) and 

for mRNA expression study (bottom half of the table). 

PROTEIN QUANTITATION STUDY 

 
LOW IMF Group (IMF <1.50%) HIGH IMF Group (IMF > 3.50%) Total 

Castrated males 21 28 49 

Sows 56 50 106 

Total 77 78 155 

IMF means (%)± st. dev.  0.838±0.131 4.663 ± 1.030  

GENE EXPRESSION STUDY 

 Subset 1 (IMF <1.50%) Subset 2 (IMF > 3.50%) Total 

Castrated males 11 10 21 

Sows 14 12 26 

Total 25 22 47 

IMF means(%) ± st. dev.  0.738±0.093 5.718±1.130  
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Table 2. The means and the standard deviations of the considered groups of pigs for the studied genes and enzymes. 

 

FASN LIPE SCD LPL 

Gene 

expression 

Enzyme 

(ng/mg Prot) 

Gene 

expression 

Enzyme (u/mg 

Prot) 

Gene 

expression 

Enzyme 

(ng/mg Prot) 
Gene expression Enzyme 

(ng/mg Prot) 

LOW IMF 

group 
0.03±0.02a 0.045±0.068 0.04±0.02 0.123±0.168g 0.008±0.007 0.047±0.036 0.07±0.03f 35.28±73.28 

HIGH IMF 

group 
0.07±0.08a 0.048±0.085 0.04±0.02 0.069±0.101g 0.014±0.014 0.066±0.051 0.19±0.06f 61.51±123.34 

LOW IMF 

sows 
0.02±0.03b 0.051±0.076 0.05±0.03 0.126±0.159d 0.01±0.01 0.048±0.038 0.06±0.02e 42.65±84.30 

LOW IMF 

castrated 

males 

0.04±0.06 0.032±0.043 0.03±0.02 0.12±0.19c 0.01±0.01 0.046±0.032 0.08±0.03 26.76±59.16 

HIGH IMF 

sows 
0.07±0.09b 0.046±0.087 0.05±0.02 0.078±0.12d 0.01±0.01 0.062±0.061 0.21±0.07e 42.08±87.017 

HIGH IMF 

castrated 

males 

0.08±0.05 0.050±0.085 0.04±0.02 0.055±0.063c 0.02±0.02 0.069±0.037 0.16±0.06 82.69±152.99 

Sows 0.04±0.07 0.049±0.081 0.05±0.02 0.10±0.14 0.01±0.01 0.054±0.049 0.14±0.09 42.35±84.77 

Castrated 

males 
0.06±0.06 0.043±0.071 0.04±0.02 0.081±0.13 0.01±0.01 0.059±0.037 0.12±0.06 56.77±121.08 

Samples are grouped by intramuscular (IMF) deposition and/or by sex. Gene expression data were compared between groups using Student’s t test, and 

enzyme amounts were compared between groups using Wilcoxon test. 
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Superscript letters indicate the significant differences; groups with the same superscript letter are statistically different. The P values of the comparisons are: 

P<0.05 (a, b, c, d); P<0.01 (e, f); P=0.001 (g). 
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Table 3. Significant correlations between gene and protein relative quantitation. 

 
FASN gene 

expression 

FASN 

enzyme 

(ng/mg Prot) 

SCD gene 

expression 

SCD enzyme 

(ng/mg Prot) 

LPL gene 

expression 

LPL enzyme 

(ng/mg Prot) 

LIPE gene 

expression 

LIPE enzyme 

(u/mg Prot) 

FASN gene 

expression 
1 - 

r=0.808 

P<.0001 
- 

r=0.560 

P<.0001 
- - - 

FASN enzyme 

(ng/mg Prot) 
- 1 - - - - - 

r=0.727 

P<.0001 

SCD gene 

expression 

r=0.808 

P<.0001 
- 1 - - - - - 

SCD enzyme 

(ng/mg Prot) 
- - - 1 - - 

r=0.4709 

P<.01 
- 

LPL gene 

expression 

r=0.560 

P<.0001 
- - - 1 - - - 

LPL enzyme 

(ng/mg Prot) 
- - - - - 1 

r=0.527 

P=.001 
- 

LIPE gene 

expression 
- - - 

r=0.4709 

P<.01 
- 

r=0.527 

P=.001 
1 - 

LIPE enzyme 

(u/mg Prot) 
- 

r=0.727 

P<.0001 
- - - - - 1 

- is reported for not significant values. 
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Table 4. Correlation analysis between the relative quantitation of LIPE and FASN enzymes in 

groups of samples divergent for IMF deposition and sex. 

 LOW IMF group HIGH IMF group Sows Castrated males 

FASN enzyme 

(ng/mg Prot) 

with 

LIPE enzyme (u/mg 

Prot) 

r=0.741 

P<.0001 

N=56 

r=0.833 

P<.0001 

N=62 

r=0.911 

P<.0001 

N=76 

r=0.263 

P=0.096 

N=40 

N stands for the number of samples considered for each considered groups of pigs.  
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Figures 

Figure 1. Relative quantitation of the studied enzymes in the LOW and HIGH IMF groups. 

Mean values are shown and error bars represent the standard errors. 

Section A: relative quantitation of FASN and SCD enzymes in the low IMF and high IMF 

groups; section B: relative quantitation of LPL enzyme in the low IMF and high IMF groups; 

section C: relative quantitation of LPL enzyme in the low IMF and high IMF groups. 

 

Significant differences between the two divergent groups are expressed with *** for P<0.001. § is 

used to indicate differences with P value<0.10. 
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Figure 2. Relative quantitation of the gene expressions in Subset 1 (LOW IMF) and Subset 2 

(HIGH IMF). Mean values are shown and error bars represent the standard errors. 

 

 

Significant differences between the two divergent groups are expressed with * for P<0.05 and ** for 

P<0.01. § is used to indicate differences with P value<0.1. 
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Supplementary Table S1. Primer used for the expression study in pig Semimembranosus 

muscle tissue. 

Primer name Primer sequence (5’-3’) TM (°C) Size (bp) 

FASN 

FASN-E-FOR 

FASN-E-REV 

5’- CCAGCATCACCATAGACACG -3’ 

5’- CTCCTTGGAACCGTCTGTGT -3’ 
59°C 317 

FASN-I-FOR 

FASN-I-REV 

5’- ATGCCGAAGGGACCGGCTAT -3’ 

5’- CATTGAGGATGGTGGCGTAT -3’ 
67°C 93 

LIPE    

LIPE -E-FOR 

LIPE -E-REV 

5’- CCGAGACGAGATTAGCACCA -3’ 

5’- CCTAGCGAACATGACCGAGT -3’ 
66°C 247 

LIPE -I-FOR 

LIPE -I-REV 

5’- AAGTCTACAGTGTGAGGGCC -3’ 

5’- CGATGGGAGCTGAGTAGAGG -3’ 
70°C 96 

LPL    

LPL -E-FOR 

LPL -E-REV 

5’- GCCCTGTAACTTCTACCCCA -3’ 

5’- CCTCTTGTATAGGGCAGCCA -3’ 
66°C 350 

LPL -I-FOR 

LPL -I-REV 

5’- CTGCTCCTAGTGGCTCTGAG -3’ 

5’- CTCCTGAAATTCTGTCGGCG -3’ 
67°C 85 

SCD    

SCD -E-FOR 

SCD -E-REV 

5’- TCGCCACCTTTCTTCGTTAC -3’ 

5’- CTTCCGGTCATAAGCCAGAC -3’ 
66°C 266 

SCD -I-FOR 

SCD -I-REV 

5’- CCGGGAGAATATCCTGGTTT -3’ 

5’- GGTAGTTGTGGAAGCCCTCA -3’ 
66°C 56 

Normalising genes 

HPRT1 

HPRT1-E-FOR 

HPRT1-E-REV 

5’- GCCCCAGCGTCGTGATTA -3’ 

5’- AGAGGGCTACGATGTGATGG -3’ 
64°C 183 

HPRT1-I-FOR 

HPRT1-I-REV 

5’- CCCAGCGTCGTGATTAGTGA -3’ 

5’- CCTTTTCCAAATCCTCGGCA -3’ 
66°C 88 

YWHAZ    

YWHAZ-E-FOR 

YWHAZ -E-REV 

5’- TGGAGCACTTACAAGGCGTA -3’ 

5’- ACCGTTTCTGCCCTTATCCA -3’ 
64°C 168 

YWHAZ -I-FOR 

YWHAZ -I-REV 

5’- AAGGCGTAGTGGAAGTGGAT -3’ 

5’- GCTGTAGTCAAAGGTGTGCA -3’ 
66°C 98 

B2M    

B2M-E-FOR 

B2M-E-REV 

5’- AAACGGGGAGAAGATGAACG -3’ 

5’- ACATCTACCTGCTCAGACAGT -3’ 
63°C 377 

B2M-I-FOR 

B2M-I-REV 

5’- CCTTCTGGTCCACACTGAGT -3’ 

5’- TCCCACTTAACTATCTTGGGCT -3’ 
66°C 99 

POLR2A    

POLR2A-E-FOR 

POLR2A-E-REV 

5’- CACCCACAGCACCCATCC -3’ 

5’- CCCTCCACATTCTGCTG -3’ 
61°C 573 

POLR2A-I-FOR 

POLR2A-I-REV 

5’- GGGACTCCATTGCTGATTCT -3’ 

5’- GCCTTCTCGATGACCTC -3’ 
66°C 92 
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For all the considered genes in the table are reported the used primer, the annealing temperature 

expressed in °C and the size in base pairs (bp). 

Each primer name is composed by the gene name, “I” for internal primer or “E” for external primer, 

“FOR” for the left primer and “REV” for the right primer. 

1TM (°C) Annealing temperature. 
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Supplementary Table S2. The samples used for the statistical analyses of the enzymes 

quantitation. 

FASN enzyme 

 
LOW IMF Group (IMF <1.50%) HIGH IMF Group (IMF > 3.50%) Total 

Castrated males 19 26 45 

Sows 44 39 83 

Total 63 65 128 

LIPE enzyme 

 
LOW IMF Group (IMF <1.50%) HIGH IMF Group (IMF > 3.50%) Total 

Castrated males 18 25 43 

Sows 46 43 89 

Total 64 68 132 

SCD enzyme 

 
LOW IMF Group (IMF <1.50%) HIGH IMF Group (IMF > 3.50%) Total 

Castrated males 18 23 41 

Sows 33 24 57 

Total 51 47 98 

LPL enzyme 

 
LOW IMF Group (IMF <1.50%) HIGH IMF Group (IMF > 3.50%) Total 

Castrated males 19 22 41 

Sows 22 24 46 

Total 41 46 87 
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Supplementary Table S3. Correlations between gene and protein expressions and the Estimated Breeding Values (EBVs) or carcass traits. 

 

 

FASN SCD LPL LIPE 

 
Expression1 Enzyme 

(ng/mg Prot) 
Expression1 Enzyme 

(ng/mg Prot) 
Expression1 Enzyme 

(ng/mg Prot) 
Expression1 Enzyme 

(u/mg Prot) 

EBVs          

 
ADG - 

r=-0.189 

P=0.032 

r=0.295 

P=0.046 

r=-0.243 

P=0.016 
- - - - 

 BFT - - - - - - - - 

 LC - - - - - - - - 

 
HW - 

r=-0.226 

P=0.010 
- - - - - 

r=-0.179 

P=0.040 

 
FCR - - - 

r=0.262 

P=0.009 
- - 

r=0.247 

P=0.094 
- 

Traits          

 
IMF r=0.330 

P=0.023 
- 

r=0.313 

P=0.034 

r=0.169 

P=0.096 

r=0.310 

P=0.034 
- - 

r=-0.202 

P=0.020 

 Carcass 

weight 
- 

r=-0.255 

P=0.005 
- - - - - 

r=-0.226 

P=0.011 

 
%lean - - - - - - 

r=-0.318 

P=0.046 
- 

 
Backfat - - - - - - 

r=0.310 

P=0.052 
- 

 
Loin - - - - - - 

r=-0.299 

P=0.061 
- 
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1 The gene expressions are reported as relative values obtained as ratios between the molecules/µl of the target gene mRNA and the molecules/µl of the 

normalising genes mRNA. All the EBVs and traits reported in the above table are explained in Materials and Methods section.
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Summary 

Colostrum differs from milk and is the first secretion of mammary gland produced in late 

pregnancy and during the hours immediately preceding and succeeding parturition. This 

secretion represents an essential vehicle of passive immunity, prebiotic compounds and 

growth factors involved in intestinal development. Its composition has been investigated 

mainly in human and cow, but very little is known about pig colostrum metabolome and 

how it varies between pig breeds and different farrowing parity. Thus, the aim of the 

present research is to provide new information about pig colostrum composition and the 

associations between some metabolites, the breed of the sow and the survival and growth 

rates of their litters. Colostrum samples were gathered from 58 parturitions of sows 

belonging to three different breeds chosen for their importance in the Italian heavy pig 

production: 31 Large White, 15 Landrace and 12 Duroc respectively. Farrowing was not 

induced, and colostrum samples were collected after the first birth and before the last piglet 

was born, defatted and centrifuged in a 10kDa cut-off membrane. The eluted was analysed 

using 1H-NMR spectroscopy. The Principal Components Analysis (PCA) was assessed on the 

obtained spectra. In addition, using a Stepwise Regression and a Linear Regression analyses 

the metabolites named after the signals assignment were tested for their associations with 

piglets’ performances. 25 metabolites were identified, comprehending monosaccharides, 

disaccharides (such as lactose), organic acids (lactate, citrate, acetate and formate), 

peptides (such as creatine) and others compounds, including nucleotides. PCA results 

evidence a clustering due to breed and season effects. Lactose was the main compound 

determining the assignment of the samples into different clusters according to the sow 

breed. The amount of dimethylamine identified in colostrum was associated with the 

piglets’ mortality at three days after birth (P = 0.004). This is the first study characterizing 

swine colostrum metabolome using the 1H-NMR spectroscopy technology and the results 

obtained will contribute to improve the knowledge on colostrum deeper composition and 

variability. Furthermore, this work may help understanding the compounds that influence 

piglets’ survival and growth in addition to the best- known immunoglobulin colostrum 

fraction. 

 



  

Introduction 

The pre-weaning litter environment has been proven to affect the pigs development and 

performances during later life (Vallet et al., 2016) and in particular colostrum intake, 

coupled with birth weight, was found to influence piglets’ growth and mortality (Devillers et 

al., 2011; Ferrari et al., 2014; Decaluwé et al., 2014b). Colostrum provides new-borns with 

energy and passive immunity (Noblet et al., 1997; Rooke and Bland, 2002): in particular, 

most of the literature concerns the effects of the different immunoglobulins on piglets’ 

health and survival capacities (Vallet et al., 2013, 2015; Ogawa et al., 2016). Studies 

assessed on human and bovine colostrum suggested important roles in new-borns’ health 

also for other bioactive molecules, such as nucleotides, oligosaccharides, organic acids and 

peptides (Gopal and Gill, 2000; Schlimme et al., 2000; Korhonen, 2013; He et al., 2014), but 

little is still known about the presence of these metabolites in sows’ colostrum and their 

association with piglets’ performances. Furthermore, to date little or no information about 

pig breed influence on colostrum composition is available and most of the knowledge about 

metabolites composition of swine colostrum was produced on samples gathered after 

farrowing induction, fact that may alter colostrum composition (Foisnet et al., 2011). In this 

study, 58 colostrum samples were collected during a natural parturition with the aims i) to 

analyse through a NMR-based metabolomics approach the colostrum compounds with a 

maximum 10 kDa molecular weight in three pig breeds, ii) to evaluate which factors mostly 

affect the colostrum composition, iii) to test the associations between the identified 

metabolites, the sow maternal attitude, and the piglets’ survival and growth rates. 

 

Materials and Methods 

The procedures complied with Italian law pertaining to experimental animals and were 

approved by the Ethic-Scientific Committee for Experiments on Animals of the University of 

Bologna, Italy. 

Animals and sampling 



  

Fifty-eight colostrum samples were collected from 58 different farrowing of pure breed 

sows: 12 Duroc (D), 15 Landrace (L) and 31 Large White (LW). All sows were raised in the 

same farm and were not treated with antibiotics and medical products during gestation. 

Farrowing was not induced, and the colostrum sampling was carried out during natural 

parturition, after the birth of the first piglet and before the parturition of the last, across all 

teats. All samples were immediately frozen at -20 °C and then stored at -80 °C until the 

samples preparation for NMR analysis. 

For each sow, parity and data related with the reproductive performances were recorded: 

the number of piglets alive and the litter body weight (LBW) were recorded at birth and at 

day 3, cleansed from the weight of the piglets dead. The litter weight gain (BWG) was then 

calculated for the period from birth to day 3. Furthermore, the number of weaners per litter 

was recorded as well as the occurrence of diarrhoea during suckling (1= presence of 

diarrhoea events from piglets’ birth until weaning, 0= absence of diarrhoea event). 

Colostrum preparation for 1H-NMR analysis 

Colostrum was de-frozen, carefully mixed by inversion, and 15 ml of each colostrum sample 

were diluted 1:1 with pure water. To each diluted sample, 0.02% of sodium azide was 

added, to inhibit bacterial growth during the sample preparation. Then the sample was 

defatted through a centrifugation at 4 °C for 30 minutes at 1500 x g. The aqueous phase was 

transferred to a clean falcon avoiding the outer layer of fat, and centrifuged again; this 

procedure was repeated three times. 5 ml of the obtained aqueous phase were then 

transferred in Amicon Ultra 10 kDa membrane centrifugal filters (Merck Millipore, Merck 

KGaA, Darmstadt, Germany) and filtered by centrifugation at room temperature for 90 

minutes at 5500 x g. This step was needed to eliminate immunoglobulins and other proteins 

with high molecular weight. The eluted sample was then weighted and lyophilized.  

1H-NMR measurements 

At the time of sample processing, for each gram of lyophilized sample 250 μl distilled water 

was added. Eighty µl of thawed sample was centrifuged at 14,000 × g for 5 min (Scilogex 

D3024 High Speed Micro-Centrifuge, Rocky Hill, CT, USA) and then added to 720 μl of 

distilled water and 100 μl of a D2O solution of 3-(trimethylsilyl)-propioniate-2,2,3,3-d4 

(TMSP) (Cambridge Isotope Laboratories Inc, Tewksbury, MA, USA) with a final 



  

concentration of 6.25 mM. 1H-NMR spectra were recorded at 298 K with an AVANCE 

spectrometer (Bruker BioSpin, Karlsruhe, Germany) operating at a frequency of 600.13 MHz, 

equipped with an autosampler with 60 holders. The HOD residual signal was suppressed by 

applying the NOESYGPPR1D sequence (a standard pulse sequence included in the Bruker 

library) incorporating the first increment of the NOESY pulse sequence and a spoil gradient. 

The HOD residual signal was suppressed by applying the first increment of the NOESY pulse 

sequence and a spoil gradient. Each spectrum was acquired using 32 K data points over a 

7211.54 Hz spectral width (12 ppm) and adding 256 transients. A recycle delay of 5 s and a 

90° pulse of 11.4 μs were set up. Acquisition time (2.27 s) and recycle delay were adjusted 

to be 5 times longer than the longitudinal relaxation time of the protons under 

investigation, which has been not longer than 1.4 s. The data were Fourier transformed and 

phase and baseline corrections were automatically performed using TopSpin version 3.0 

(Bruker BioSpin, Karlsruhe, Germany). Signals were assigned through a combination of 

literature assignments and by the use of a multimedia library included in Chenomx NMR 

suite 8.2 professional software (Chenomx, Edmonton, Alberta, Canada). 

 

Data analysis 

The collected data were aggregated to create homogenous classes. The farrowing parity 

(from 1 to 3 were classified as 1, parity order > 4 were considered as 2), the parturition 

season (from 1 to 4). The seasons were assigned as follows: 1= parturition between the 1st 

of December and the 28th of February; 2= between the 1st of March and the 31st of May; 3= 

between the 1st of June and the 31st of August; 4= between the 1st of September and the 

30th of November. Among the studied animals, 6 sows gave birth during season 1, 19 during 

season 2, 21 during season 3 and 12 during season 4.  

Statistical analyses on spectra data were performed using R computational language (ver. 

3.1.2) and MATLAB (ver R2014b, MathWorks Inc.). Each NMR spectrum was processed by 

means of scripts developed in-house as follows: spectra baseline was adjusted by employing 

the signals identification algorithm named “baseline.peakDetection” from R (version 3.1.2) 

package “Baseline” (https://cran.r project.org/web/packages/baseline/index.html). 

Chemical shift referencing was performed by setting the TMSP signal to 0.00 ppm. The 

following spectral regions were removed prior to data analysis: the regions including only 



  

noise (the spectrum edges between 11.00 and 8.65 ppm and between 0.15 and -1.00 ppm), 

the NMR signal which is strongly affected by the residual solvent signals (water, between 

4.90 and 4.50 ppm) and the glycerol’s signals from 3.82 and 3.76 ppm, from 3.69 and 3.63 

ppm and from 3.60 and 3.54 ppm. Spectra were then normalized by means of probabilistic 

quotient normalization method (PQN) (Dieterle et al., 2006) and binned. The first operation 

is aimed at removing possible dilution effects. The second one avoids the effect of signals 

misalignments among different spectra due to variations in chemical shift of signals 

belonging to some titratable acids. The binning operation is performed by subdividing the 

spectra into 369 bins, each integrating 120 data points (0.0219 ppm each). In order to focus 

on the real information contained in the spectra, bins that an average higher value than 

noise were selected. In this way, a total of 201 bins were kept.  

The spectra obtained were then analysed through an unsupervised multivariate approach 

using Principal Component Analysis (PCA). The PCA was conducted on the 201 bins matrix to 

identify the outlier samples, and test the existence variables contributing to samples 

clustering. The multivariate models were calculated and the results were visualized on both 

scores and loadings’ plot. This multivariate analysis is the predominant linear dimensionality 

reduction technique used when dealing with scientific dataset and it is defined as an 

unsupervised method as it does not use class labels for discriminating between groups. 

After reducing the dimensionality of the dataset, it produces new linear combinations of the 

originals variables which can be plotted in a score plot (Bailey et al., 2003). In order to 

determine the spectral regions encompassing most of the discriminative information, bins 

with a loading value greater than 1% of the overall standard deviation of all loading values 

were selected. The identified metabolites included in the significant bins emerged from the 

loadings’ plot and additional metabolites relevant for their biological function were selected 

and grouped in a new dataset named C-dataset. The C-dataset was used to conduct an 

analysis of variance (ANOVA) with the aim to confirm if the amounts of the identified 

compounds were influenced by the effects of breed and farrowing season identified with 

the PCA and parity order. The model utilized for this analysis was: 

y = β0 + βp*b + βp*s + βp*o + E 

Where: 



  

β0 was the intercept; 

βp was the corresponding regression coefficient; 

y was the amount of each identified metabolite; 

b was the sow breed (LW; D; LA); 

s was the farrowing season (1; 2; 3; 4); 

o was the parity order (1; 2); 

E was the error. 

This first part was conducted to test if sows breed influences colostrum profile, and if in 

addition to breed there are other “environmental” variables affecting colostrum quality (in 

this case the farrowing season and the parity order were tested). 

Then, a stepwise regression analysis was used to select, among the metabolites included in 

the C-dataset and sows’ reproductive performances, the variables that had to be included 

with the breed, the farrowing season and the parity order in the final GLM model for the 

identification of the metabolites related to piglets’ performances. This statistical analysis 

involves starting with no variables in the model and adding gradually each metabolite and 

sow reproductive parameter (the litter weight and the number of alive piglets at birth) to 

evaluate which one of the colostrum identified compounds and sows’ reproductive abilities 

most influenced the piglets’ survival and growth. The results obtained from the stepwise 

regression analysis were then confirmed through General Regression Analysis (GLM), 

considering as y variables the BWG, the number of weaned piglets, the number of dead 

piglets from birth until day 3 or the number of piglets dead from day 3 to weaning; as 

independent variables were considered the sows breed, the farrowing season, the parity 

order of the sow and the significant factors identified through the stepwise regression 

analysis. The utilized GLM model was: 

y = β0+ βp*b + βp*s + βp*o + βp*p + βp*q + βp*r +…+ E  

 

Where: 



  

y was BWG, the number of weaned piglets, the number of piglets dead from the birth day 

until day 3 or the number of dead from day 3 to weaning; 

β0 was the intercept; 

βp was the corresponding regression coefficient; 

b was the sow breed (LW; D; LA); 

s was the farrowing season (1; 2; 3; 4); 

o was the parity order (1; 2); 

p; q; r were the significant metabolites identified through the stepwise regression analysis; 

E was the error. 

Finally, all the variables that did not show an effect on the dependent variables were 

removed from the model and only the significant effects were maintained. 

The prcomp function of R environment was used to perform the PCA analysis on bins matrix 

(R Core Team, 2015). The ANOVA analysis, the stepwise regression analysis and the 

regression model were carried out on SAS software using PROC REG and PROC GLM 

respectively (SAS® 9.4, SAS Inst. Inc., Cary, NC). 

 

Results 

Dataset description 

In Table 1 the complete dataset is detailed Duroc sows had on average a lower number of 

piglets at birth (8.92 ± 2.28) respect to Landrace (12.60 ± 1.72) and Large White (11.90 ± 

2.26), while the newborns of Landrace and Large White breeds presented a lower weight at 

birth (1.38 ± 0.15 kg and 1.43 ± 0.16 kg, respectively) compared to Duroc piglets (on average 

1.59 ± 0.23 kg). 

 

Colostrum spectra 

In Figure 1 a NMR molecular profile of sow colostrum is represented. The 1H spectrum is 

mainly dominated by the carbohydrate signals overlapping in the midfield region between 



  

3.49 and 4.49 ppm (Figure 1B). Those belong to lactose and nucleotides sugars such as UDP-

glucose and UDP-galactose and nucleotide as UMP. In this area, also signals from creatine 

and its products arise (3.04-3.05 ppm). Amino acids mainly fall in the upfield region, 

between 0.99 and 3.49 ppm, together with signals from organic acids (Figure 1A). In this 

part of the spectrum fall also signals from threonine (1.33 ppm) and alanine (1.49 ppm), 

lactic acid (1.33 ppm), acetic acid (1.92 ppm), succinic acid (2.41 ppm) and citric acid (2.54 

and 2.67 ppm). Finally, in the downfield region (Figure 1C) signals of different phenolic 

compounds can be observed, but in this case, only formic acid was assigned (8.4 ppm), 

together with signals from the nucleotide sugars UDP-glucose and UDP-galactose (5.5-6 

ppm, 7.9-8 ppm) and UMP (8.1 ppm, 5.98-5.99 ppm, 4.42 ppm) as listed in table 2. The 25 

compounds have been identified through a combination of literature assignments (Wu et 

al., 2016) and by the use of a multimedia library included in Chenomx NMR suite 8.2 

professional software (Chenomx, Edmonton, Alberta, Canada). 

 

Factors affecting colostrum composition  

After alignment, normalization and binning, the dataset contained a total of 58 colostrum 

spectra characterized by 201 bins and PCA was applied on it to investigate differences on 

the metabolome between groups. For sow’s parity order, in the total colostrum spectra no 

PCA clustering was identified (data not showed). While Figure 2A and B shows that samples 

clustered on PC1-PC2 due to the effects of the sow breeds (Figure 2A) and on PC2-PC3 due 

to the farrowing seasons (Figure 2B). The PC1 explained the 81% of the total variance and 

separated the colostrum spectra of D and LW, while PC2 (10% of the variance) discriminated 

the L colostrum composition from the ones of LW and D sows. The PC2-PC3 plot highlighted 

the season effect, in particular along PC2 the differences in the colostrum spectra due to 

seasons 1 and 4 (winter-autumn) against season 2 and 3 (spring-summer). The weighting of 

each variable (bin) is represented by the loadings plot in Figure 2C and 2D in which are 

displayed the loadings from PC1 and PC2 respectively as a bar plot, where each bar 

corresponds to a single spectral variable (bin). The main bins accounting for the spectral 

differentiation and their relative chemical shift were listed in the Supplementary Table S1 

(SS1). As emerging from SS1 table, most of the signals included in these discriminant bins 



  

were assigned to the corresponding metabolites. The C-dataset, which was used for the 

following statistical analyses, resulted to be composed of 25 metabolites, listed in Table 2.  

The parity, breed and season effects on colostrum composition were then confirmed 

through the ANOVA analysis on the identified metabolites described in the C-dataset, and 

the results are reported in Table 3. For sow’s parity order, not significant data are obtained. 

Parity order showed only trends nearing statistical significance for succinate (P = 0.097), 

creatine phosphate (P = 0.091), creatinine (P = 0.061) and UDP-glucose (P = 0.061) (data not 

show). Breed and season resulted to be the major factors affecting the assigned 

compounds. Indeed, the amounts of alanine (P = 0.004; P = 0.004), citrate (P < 0.0001; P = 

0.006), succinate (P < 0.0001; P = 0.024), dimethylamine (P = 0.030; P = 0.0001), creatine (P 

<0.0005; P < 0.0005), creatine phosphate (P = 0.003; P < 0.0001), cis-aconitate (P = 0.030; P 

< 0.0001), taurine (P = 0.002; P = 0.001), glycolate (P < 0.0001; P = 0.001) and UMP (P = 

0.001; P = 0.009) were affected by both breed and the season of the farrowing respectively. 

Season affects significantly (P < 0.0001) the amount of acetate, creatinine and formate, 

where a higher level was registered for all the metabolites during the cold months. On the 

other hand, the amounts of o-acetylcholine (P < 0.0001), sn-glycerophosphocholine (P = 

0.036), UDP-n-acetylglucosamine (P = 0.001), lactose (P < 0.0001), myo-inositol (P = 0.001) 

and UDP-glucose (P < 0.0001) were affected only by sow breed. In particular, the colostrum 

of L samples showed upper signals for UDP-Glucosio, UDP-galactosio and sn-

glycerophosphocholine compared to the other two breeds, while LW colostrum was 

characterized by a major quantity of lactose, taurine, myo-inositol and glycolate. 

 

Factors affecting litter performances 

The stepwise regression analysis revealed that, in addition to the influence of sows’ 

reproductive performances (the litter weight and the number of alive piglets at birth) some 

peculiar metabolites can contribute to piglets’ survival and growth parameters (Table 4). In 

particular, the litter weight at birth and the concentration of acetate significantly entered in 

the model for BWG (P < 0.0001 and P = 0.003, respectively); the higher number of alive 

piglets at birth and the increased concentration of colostrum cis-aconitate resulted to be 

important variables affecting positively the number of weaned piglets (P < 0.0001 and P = 



  

0.019, respectively), while dimethylamine (P = 0.0002) and taurine (P = 0.013) entered as 

variables in the model for the number of dead piglets per litter at day 3. There was no 

influence of farrowing season and parity order on BWG, the number of weaned pigs or the 

number of dead piglets at day 3. 

The outcomes of the stepwise regression analysis were then tested with the GLM, and the 

results reported in Table 5. Both the higher average piglets’ weight at birth (P < 0.0001) and 

the colostrum acetate concentration (P = 0.003) affected positively BWG (Table 5). The 

number of dead piglets at day 3 was mainly influenced by the concentration of 

dimethylamine (P = 0.001) and taurine (P = 0.027) in colostrum and partially by the litter size 

at birth (P < 0.1). In addition, the litter size at birth (P = 0.001) and a lower level of cis-

aconitate in colostrum (P = 0.010) and the sow breed showed a trend (P = 0.021) were 

significantly associated with the number of weaned piglets. 

 

Discussion 

This is the first study based on 1H-NMR metabolomics approach describing in three pig 

breeds the colostrum metabolome profile, the factors underlying its composition and the 

associations between colostrum metabolites and litter's fitness during suckling. 

The three breeds showed different reproductive abilities in accordance with literature 

(Blasco et al., 1995; Sonderman and Luebbe, 2008), with L and LW sows exhibiting a higher 

average number of piglets alive at birth compared to D sows. These differences between 

breeds are also visible at the colostrum composition level (Simmen et al., 1990): considering 

the whole spectrum, the three breeds display clustering tendency, with the colostrum 

lactose amount explaining most of the colostrum composition differences between breeds. 

In particular, L and LW breed samples presented higher values of lactose. Lactose rate in 

cow milk is commonly associated with the health status of mammary gland, as higher 

lactose concentrations are positively correlated to healthier mammary glands and low 

amounts of this compound indicate the existence of intrammamary infections (Park et al., 

2007). Considering the data available for the present work, it is not possible to support the 

same consideration in lactating sows, due to the absence of reference value for sow milk. 



  

Furthermore, differences on UDP-n-acetylglucosamine. UDP-glucose and UDP-galactose 

were observed between breeds. UDP-sugars are intermediate products in cellular protein 

glycosylation and in the synthesis of lactose and other sugars, and are known to have also 

autocrine/paracrine signalling functions (Lazarowski and Harden, 2015). UDP-sugars are 

detected by the purinergic receptor P2Y14, a G Protein Coupled Receptor, found in many 

epithelia and in immune and inflammatory cells (Lazarowski and Harden, 2015). In weaned 

pigs, P2Y14 is expressed in the gastro-intestinal tract, particularly in the pyloric area 

(Colombo et al., 2014). We are not aware of the entity of the gastrointestinal expression of 

this receptor in piglets included in the present study; however it can be hypothesized that 

the presence of UDP-sugars may be involved in the activation/maturation of the neonate 

pig gastrointestinal immunity. 

The breed effect on colostrum composition is not exclusively confined to sugars profile, 

which for sure are the most abundant metabolites between the identified, but also to other 

compounds, including alanine, citrate, succinate, creatine phosphate, creatinine, 

dimethylamine, cis-aconitate, myo-inositol and o-acetilcholine. Furthermore, the obtained 

colostrum spectra were affected also by the farrowing season: the samples gathered during 

winter and autumn exhibited differences in colostrum compositions respect to colostrum 

secreted during spring and summer. These differences could be ascribed to the 

environmental conditions affecting sows’ performances: compounds such as acetate, which 

showed to be more abundant during cold seasons, may reflect the nutritional state of sows 

during cold months. Acetate in sows, typically fed high fibre diets in gestation, is the main 

product of hindgut fermentations; acetate is also a precursor for mammary synthesis of fat 

milk. Thus the season effect may reflect a reduced presence of fibre in diet during the 

warmer seasons or a different mammary usage of acetate in favour of the more efficient 

use of glucose (Linzel et al., 1969). Indeed, during cold seasons, the higher feed intake 

makes available larger amounts of energy and nourishing compounds respect to the lower 

daily feed intake characterizing sows living at higher environmental temperatures (Gourdine 

et al., 2006). In addition, farrowing season affected also the creatine pathway: in particular, 

creatine and creatine-phosphate amounts during the period ranging from September to 

February were significantly lower than in spring and summer; on the contrary creatinine was 

higher during the same period. Creatine is an important nutrient for the newborn (Brosnan 



  

and Brosnan, 2007), thus variations in creatine content of colostrum may have nutritional 

relevance. In mice, it has been shown that milk creatine is extracted from the circulating 

plasma by the mammary gland, which conversely has little or no capacity to synthesize 

creatine (Lamarre et al., 2010). No research data is available for sow colostrum, but it can be 

assumed that also in this case variations in colostrum may reflect variations in blood 

creatine concentration. Here the variations in the ratio creatine and creatine-phosphate to 

creatinine may have resulted from a higher degradation of the first two compounds into 

creatinine, but there is no evidence that this reaction occurs in the mammary gland. The 

increasing amount of creatinine level is in general associated with a higher mobilization of 

stored proteins and indirectly with fat and lean levels in the body mass (Van Niekerk et al., 

1963). A recent study of Decaluwé et al. (2014a) associated an increased amount of blood 

creatinine on 1st day of lactation with lower feeding levels in sows during late gestation 

period. However, we could not control feed intake in the days before farrowing and do not 

know if it changed with season. Thus further research is necessary to explain variations of 

creatine and related compounds in colostrum. 

Some of the identified compounds were associated with litter weight gain during the first 

three days of life and to piglets’ survival rates at day 3 and at weaning. In particular, we 

suppose that the positive effect of acetate on BWG was linked to the role of this compound 

in de novo synthesis of lipids and glucose (den Besten et al., 2013) and adipogenesis 

stimulation (Hong et al., 2005). Additionally, taurine colostrum concentration showed a 

positive correlation with piglets’ survival rate at three days of life. Taurine was already 

proven to play a critical role in neonatal development, including the development of central 

nervous system and other tissues (Bryson et al., 2001; Aerts and Van Assche, 2002). Due to 

the essential role of this compound in neonatal period, it can be easily understood why a 

higher concentration of taurine in sows’ colostrum exerted positive effects on piglets’ 

survival during first days of life, independently from sows’ breed. As regards the number of 

dead piglets at three days of life, this performance was associated with the concentration of 

dimethylamine secreted in colostrum. Dimethylamine is a biogenic amine, synthesised by 

bacterial action, known for its mutagenic, irritative and barrier-disrupting properties (Galli et 

al., 1993; Fluhr et al., 2005). The irritative effect of this compound can explain the significant 

negative association found in the present research between the colostrum dimethylamine 



  

amount and the piglets’ survival capacity. The observed increase in dimethylamine secretion 

could be a direct effect of the higher occurrence of bacteria fermentations in animal feeds 

(Juszkiewicz et al., 1980), then ingested by sows and secreted in colostrum and milk.  

Similarly to dimethylamine, also cis-aconitate was negatively associated to piglets’ survival 

capacity from birth to weaning. As cis-aconitate is an intermediate compound synthesized 

by several enteric bacteria, comprising Salmonella enterica (Lewis and Escalante-Semerena, 

2006) and Escherichia coli (Shimizu, 2013), the increased amount of this tricarboxylic acid in 

colostrum may be a marker of the presence of pathogenic bacteria strains infecting 

maternal gut and mammary gland. Maternal microbiome is proved to affect newborn 

digestive tract, and pathogenic strains can easily pass from sow’s gut to piglets’ enteric 

tract. Thus, the increase of cis-aconitate in colostrum secretion might be the first sign of gut 

dysbiosis, which may then affect also piglets’ microbiome and digestive tract homeostasis. 

In conclusion, this study demonstrates that colostrum metabolome is greatly affected by 

breed and, in particular, Duroc sows showed colostrum compositions unlike any other. This 

result agrees with the generally accepted view that the differences among Duroc and white 

coated pig breeds may originate from distinct genetic origins, and consequently suggests 

that further genetic studies may help explaining the variations found among breeds in 

colostrum compositions. From the observation of the results obtained it can be suggested 

that the different temperatures occurring during the year affect sows’ metabolism and, in 

turn, can also affect colostrum composition. Among the identified metabolites, acetate and 

taurine showed their positive effects on piglets’ performances and survival rate, while 

dimethylamine and cis-aconitate exerted a negative influence on new-borns capacity to 

survive. This research represents a preliminary step towards the knowledge of pig colostrum 

composition and it is one of the first studies focusing on the associations between different 

swine colostrum compositions and litter performances using the 1H-NMR technique. Further 

investigations are needed to extend the identification of the different compounds in swine 

colostrum and to elucidate their effects on new-borns. Furthermore, the possible 

interaction between sows' feeding and microbiota in the modulation of colostrum 

metabolome deserves further investigations. 
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Table 1. Mean and standard deviation of the measured parameters for each breed and for 

the total population. 

  1 D  2 L 3 LW Total 

Number of sows 12 15 31 58 

Order of parturition 2.750 4.067 4.161 3.845 

Number of piglets born alive per litter 

    Mean 8.917 12.600 11.903 11.466 

SD 2.275 1.724 2.256 2.494 

4Average LBW at birth, kg 

    Mean 14.033 17.207 16.890 16.381 

SD 3.679 2.081 2.828 3.060 

Average piglet’s weight at birth, kg 

    Mean 1.588 1.376 1.432 1.450 

SD 0.226 0.153 0.155 0.184 

Number of alive piglets per litter at 3 

days 

    Mean 8.250 12.133 10.871 10.655 

SD 1.865 1.767 2.291 2.453 

Number of dead piglets per litter at 3 

days 

    Mean 1.600 1.750 1.583 1.619 

SD 1.342 0.500 0.996 0.974 

4Average LBW at 3 days, kg  

    Mean 16.400 21.167 19.758 19.428 

SD 3.993 3.059 4.264 4.211 

Average piglet’s weight at 3 days, kg 

    Mean 2.001 1.761 1.826 1.846 

SD 0.275 0.240 0.213 0.244 

5BWG, kg 

    Mean 3.085 4.453 4.103 3.983 

SD 0.864 1.461 1.771 1.598 

Number of weaned piglets  

    Mean 7.333 11.133 10.032 9.759 



  

SD 1.875 1.552 2.316 2.423 

Incidence of diarrhoea  

    Mean 3 1 4 8 

1 D stands for Duroc. 

2 L stands for Landrace. 

3 LW stands for Large White. 

4LBW stands for litter Body Weight. 

5 BWG stands for the average litter Body Weight Gain from birth to day 3. 



  

Table 2. Assignment table of the identified metabolites present in the 1H-NMR spectra of 

colostrum at pH 7.420 and considered in the C-dataset. Chemical shift values are referenced 

to TMSP proton signals at 0.00 ppm. Chemical shift values are referenced to TMSP proton 

signals at 0.00 ppm. Glycerol (3.568, 3.661 and 3.793 ppm has not been listed as it has not 

been included in the PC analysis) 

 

Assigned 

number 

 

1H chemical shift (ppm) a  Compound 

1  1.332 (d) Lactate 

2  1.486 (d) Alanine* 

3  1.923 (s) Acetate 

4  2.028 (s) N-Acetylglutamate* 

5  2.063 (s) N-Acetylglucosamine* 

6  2.089 (s) - 5.552(dd) - 5.967 (d) - 7.944 (d) - 

8.287 (d) 
UDP-N-Acetylglucosamine 

7  2.147 (s) -3.222 (s) O-Acetylcholine 

8  2.408 (s) Succinate* 

9  2.539 (d) - 2.667 (d) Citrate 

10  2.720 (s) Dimethylamine 

11  3.039 (s) Creatine 

12  3.046 (s) Creatine phosphate 

13  3.050 (s) Creatinine 

14  3.119 (d) - 5.712 (m) cis-Aconitate 

15  3.204 (s) Choline 

16  3.231(s) - 4.330 (m) sn-Glycerophosphocholine 

17  3.272(t) - 3.532 (dd) - 4.073 (t) Myo-Inositol 

18  3.259 (t) - 3.428 (t) Taurine 

19  3.302 (t) -3.684:3.906 (m), 3.980 (d) 4.461 (d) - 

4.679 (d) - 5.243 (d) 
Lactose 

20  3.480 (s) - 4.142:4.278 (m) -5.607 (dd) -5.967 

(m) -7.940 (d) 
UDP-glucose 

21  3.935 (s) Glycolate 

22  4.142:4.278 (m) - 4.379 (m) - 5.664 (dd)- 5.990 

(m) - 7.942 - 7.995(d) 
UDP-Galactose 



  

23  5.917 (d) - 7.879 (d) Uridine 

24  8.406 (s) Formate 

25  4.423 (t) - 5.990 (m) - 8.102 (d) UMP 

a d, doublet; dd, doublet of doublets; m, multiplet; s, singlet; t, tripleTable 3. Effects of sow breed 

and season on identified colostrum metabolites. 

* These compounds were included in the C- dataset for their specific biological role. 



  

Table 3. Effects of sow breed and season on identified colostrum metabolites 1 

Metabolite Breed1 SEM P-value Season2 SEM P-value 

 

D L LW 

  

1 2 3 4 

  Acetate 9.57 11.17 9.90 0.91 0.673 13.59 7.55 5.95 13.77 0.89 <0.0001 

Lactate 5.38 6.70 8.88 1.85 0.456 4.93 10.18 8.71 4.13 1.81 0.137 

Alanine 1.77 2.20 2.44 0.17 0.004 1.65 2.50 2.51 1.88 0.17 0.004 

Citrate 209 301 257 13 <0.0001 246 286 265 228 12 0.006 

Succinate3 2.21 3.26 3.50 0.19 <0.0001 2.59 3.26 3.55 2.55 0.21 0.024 

Dimethylamine 2.86 4.44 4.51 0.49 0.029 2.30 5.19 5.39 2.85 0.48 0.0001 

Creatine 39.8 59.9 58.7 3.4 <0.0005 40.9 59.0 64.7 46.6 3.3 <0.0005 

Creatine Phosphate 3.40 7.99 8.01 0.88 0.003 1.90 8.50 10.78 4.69 0.86 <0.0001 

Creatinine 13.6 16.7 16.5 1.1 0.400 19.9 11.8 11.6 19.2 1.1 <0.0001 

Cis-Aconitate 1.41 1.93 1.74 0.14 0.030 1.10 2.14 2.28 1.26 0.14 <0.0001 

O-Acetylcholine 77.1 196.9 156.6 13.9 <0.0001 101.7 148.4 171.7 152.3 13.6 0.093 

sn-Glycerophosphocholine 446 543 414 38 0.018 430 457 507 477 37 0.816 

Choline 7.82 10.62 9.91 1.19 0.455 8.86 11.64 9.43 7.87 1.16 0.340 

N-Acetilglutamate 6.35 9.90 14.03 3.77 0.134 7.94 9.69 8.53 14.21 3.69 0.683 

N-Acetilglucosamine 10.9 15.4 11.7 1.6 0.072 10.6 14.0 13.8 12.3 1.6 0.621 

UDP-N-Acetilglucosamine 22.4 34.4 33.9 2.2 0.001 26.2 33.4 33.8 27.4 2.1 0.072 

Lactose 458 579 811 30 <0.0001 535 644 667 619 30 0.168 

Taurine 1.57 4.10 6.05 0.87 0.002 0.98 6.23 6.19 2.21 0.85 0.001 



  

Myo-Inositol 63.53 76.95 82.86 3.76 0.001 62.58 73.17 81.13 80.91 3.68 0.070 

UDP-Glucose 6.07 9.78 6.23 0.54 <0.0001 6.08 7.30 8.09 7.97 0.54 0.280 

Glycolate 28.1 39.8 45.8 2.4 <0.0001 28.4 41.8 45.9 35.6 2.3 0.001 

Uridine 3.14 3.72 3.23 0.38 0.551 3.05 3.55 3.49 3.37 0.38 0.936 

UDP-Galactose 32.6 74.0 42.5 4.0 <0.0001 39.3 54.2 61.4 44.0 3.9 0.006 

Formate 4.49 4.43 4.03 0.35 0.380 6.27 3.04 2.29 5.67 0.34 <0.0001 

UMP 13.30 24.20 21.60 1.70 0.001 21.82 16.04 16.84 24.08 1.91 0.009 

Mean of the identified metabolites are expressed as absolute area 2 

1 The Breed is assigned as D for Duroc, L for Landrace and LW for Large White. 3 

2 The seasons were assigned as follows: 1= if the parturition was included in the period between the 1st of December and the 28th of February; 2= between 4 

the 1st of March and the 31st of May; 3= between the 1st of June and the 31st of August; 4= between the 1st of September and the 30th of November. 5 

3Succinate is the only metabolite showing an effect of the parity order (P value = 0.039), in particular with a parity order less than 4 succinate has a mean of 6 

2.77, while the same metabolite with a parity order more than or equal to 4 has a mean of 3.20, a SEM of 0.15. 7 



  

Table 4. Results of the stepwise regression analysis. 

Variables Coefficient SE coefficient F value P-value 

Model for BWG1 (R2 = 0.4286; C(p) = 0.8735) 

Intercept 0.715 0.533 1.79 0.186 

Acetate 0.10433 0.03348 9.71 0.0029 

Average piglet’s 

weight at birth 
0.00846 0.00164 26.63 <.0001 

Model for the number of weaned piglets (R2 = 0.4343; C(p) = 2.0849) 

Intercept 4.801 1.385 12.01 0.001 

Cis- Aconitate -0.90181 0.37157 5.89 0.0185 

The number of alive 

piglets at birth 
0.58395 0.09863 35.05 <.0001 

Model for the number of piglets dead per litter at day 3 (R2 = 0.2304; C(p) = 29.1881) 

Intercept -0.333 0.27 1.44 0.2352 

Dimethylamine 0.33082 0.08318 15.82 0.0002 

Taurine -0.11423 0.04432 6.64 0.0127 

1BWG stands for the litter Body Weight Gain from birth to day 3. 



  

Table 5. Results of the GLM analysis with the significant variables affecting litter body 

weight gain at day 3, the number of dead piglets at day 3 and the number of weaned pigs.  

Variables Coefficient SE  P-value 

GLM for BWG1 

Acetate2 0.104 0.033 0.003 

Average piglet’s weight 

at birth 
0.008 0.002 <.0001 

GLM for Number of dead piglets at day 3 

Intercept -1.219 0.557 0.033 

Dimethylamine2 0.296 0.084 0.001 

Taurine2 -0.100 0.044 0.027 

Number of alive piglets 

at birth  
0.084 0.046 0.074 

GLM for Number of weaned pigs 

Breed:  0.46 0.021 

LW3 9.92   

L4 10.59   

D5 8.31   

Cis-Aconitate2 -0.952 0.354 0.010 

Number of alive piglets 

at birth  

0.413 0.111 0.001 

1BWG stands for litter Body Weight Gain from birth to day 3 of life. 

2Metabolites concentrations were considered in area arbitrary unit. 

3LW stands for Large White. 

 4L stands for Landrace. 

5D stands for Duroc. 



  

Figures 

Figure 1. Typical 1H-NMR spectrum of aqueous extract of colostrum. 1H-NMR spectrum 

registered on a colostrum sample. The spectrum has been split into three parts for the sake 

of clarity. Some resonances have been assigned by using Chenomx software and listed in 

table 2: A) Aliphatic or upfield region; B) Carbohydrate or midfield region, characterized by 

the presence of signals belonging to sugars and glycerol and C) Aromatic region or downfield 

region. 
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Figure 2. Score plots of PCA on 1H-NMR binned spectra of colostrum obtained from different sow 

breed: A) PC1 vs PC2 and B) PC2 vs PC3. The first two PCs represent the 91% of the total variance. 

C-D) Loadings bar-plot for spectral bins along PC 1 and 2 respectively. Downfield (C1 and D1) and 

upfield (C2 and D2) regions of C and D loadings bar-plot were expanded on the vertical scale to 

appreciate the presence of small bar plot. 
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Supplementary Table S1. The main bins accounting for the spectral differentiation and their relative 

chemical shift. 

 Bin Number ppm Interval Metabolite1 Metabolite Name 

PC1 10-11 8.134-8.071 25 UMP 

 15 7.980-7.936 20 and 22 
UDP- glucose, UDP- 

galactose. 

 27-29 6.026-5.939 6, 22 and 23 

UDP-N-

Acetylglucosamine, 

UDP- galactose and 

Uridine 

 39-41 5.675-5.588 22 UDP- galactose 

 43-45 5.587-5.500 6 
UDP-N-

Acetylglucosamine 

 49 5.412-5.368 NA  

 54-56 5.280-5.192 19 Lactose 

 58-60 5.192-5.083 NA  

 67-70 4.507-4.397 19,20 and 22 
Lactose, UDP- glucose 

and UDP- galactose 

 72-75 4.396-4.288 22 UDP- galactose 

 77-84 4.287-4.090 18 and 22 
Myo-Inositol and UDP- 

galactose 

 86-108 4.090-3.475 17,18,19 and 20 

Taurine, Myo-Inositol, 

Lactose and UDP- 

glucose 

 110-112 3.475-3.388 NA  

 114-123 3.387-3.146 7,16,17,18 and 19 

O-Acetylcholine, sn-

Glycerophosphocholine, 

Taurine, Myo-Inositol 

and Lactose 

 127-128 3.080-3.0149 11,12 and 13 

Creatine, Creatinine 

phosphate and 

Creatinine 

 135 2.839-2.795 NA  

 137-139 2.795-2.770 10 Dimethylamine 

 141-143 2.707-2.619 9 Citrate 

 146-147 2.578-2.510 9 Citrate 

 165 2.114-2.071 NA  

 167-168 2.070-2.005 NA  

 174-176 1.851-1.763 NA  

 184-185 1.367-1.3021 1 Lactate 

 198 0.973-0.929 NA  

PC2 2 8.485-8.441 24 Formate 

 7 8.221-8.178 NA  

 9-11 8.156-8.068 25 UMP 
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 13-16 8.024-7.914 6,20 and 22 

UDP-N-

Acetylglucosamine, 

UDP- glucose and UDP- 

galactose 

 27-29 6.026-5.939 6,22 and 23 

UDP-N-

Acetylglucosamine, 

UDP- galactose and 

Uridine 

 33-34 5.895-5.807 NA  

 39-46 5.674-5478 6 and 22 

UDP-N-

Acetylglucosamine and 

UDP- galactose 

 53-56 5.302-5.192 19 Lactose 

 59 5.170-5214 NA  

 64 4.973-4.929 NA  

 68-73 4.485-4.331 22 UDP- galactose 

 75-122 4.331-3.168 
7,16,17,18,19,20,21 

and 22 

O-Acetylcholine, sn-

Glycerophosphocholine, 

Taurine, Myo-Inositol, 

Lactose, UDP- glucose, 

Glycolate and UDP- 

galactose 

 124-125 3.168-3.102 14 and 15 
cis-Aconitate and 

Choline 

 127-128 3.080-3.014 11,12 and 13 

Creatine, Creatinine 

phosphate and 

Creatinine 

 130 3.014-2.971 NA  

 135 2.839-2.795 NA  

 137-139 2.795-2.770 10 Dimethylamine 

 141-143 2.707-2.619 9 Citrate 

 146-148 2.578-2.488 9 Citrate 

 163 2.1587-2.114 NA  

 165 2.114-2.071 NA  

 167-168 2.070-2.005 NA  

 171-172 1.9612-1.895 3 Acetate 

 174-176 1.851-1.763 NA  

 184-189 1.367-1.193 1 Lactate 

 194 1.127-1.083 NA  

 198-199 0.973-0.907 NA  
I Metabolite assigned number referred to Table 2. 
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Summary 

White Striping and Wooden Breast (WS/WB) are abnormalities increasingly occurring in the fillets 

of high breast yield and growth rate chicken hybrids. These defects lead to consistent economic 

losses for poultry meat industry, as affected broiler fillets present an impaired visual appearance 

that negatively affects consumers’ acceptability. Previous studies have highlighted in affected 

fillets a severely damaged muscle, showing profound inflammation, fibrosis and lipidosis. The 

present study investigated the differentially expressed genes and pathways linked to the 

compositional changes observed in WS/WB breast muscles, in order to outline a more complete 

framework of the gene networks related to the occurrence of this complex pathological picture. 

The biochemical composition was performed on 20 Pectoralis major samples obtained from high 

breast yield and growth rate broilers (10 affected vs. 10 normal) and 12 out of the 20 samples 

were used for the microarray gene expression profiling (6 affected vs. 6 normal). The obtained 

results indicate strong changes in muscle mineral composition, coupled to an increased deposition 

of fat. In addition, 204 differentially expressed genes (DEG) were found: 102 up-regulated and 102 

down-regulated in affected breasts. The gene expression pathways found more altered in WS/WB 

muscles are those related to muscle development, polysaccharide metabolic processes, 

proteoglycans synthesis, inflammation and calcium signaling pathway. On the whole, the findings 

suggest that a multifactorial and complex etiology is associated with the occurrence of WS/WB 

muscle abnormalities, contributing to further define the transcription patterns associated to these 

myopathies. 

 

Introduction 

In the past few decades, genetic selection for high breast yield and growth rate hybrids led to a 

dramatic increase in the incidence of several muscle myopathies and abnormalities (Dransfield 

and Sosnicki, 1999; Sandercock et al., 2009; Petracci and Cavani, 2012). Recently, it was found that 

up to 40% of broiler hybrids raised under commercial conditions were affected by white-striping 

(WS) with in some of those cases also the contextual occurrence of wooden breast (WB) (Lorenzi 

et al., 2014). As a consequence of the impaired visual appearance and consumers’ acceptability 

severe WS and WB fillets are downgraded leading to considerable economic losses for poultry 

meat industry (Kuttappan et al., 2012; Petracci et al., 2015). Furthermore, these myopathies exert 



288 
 

a detrimental effect on quality traits and, as a result of the altered composition and reduced 

protein functionality (i.e. ability to hold/bind water, gel formation), may negatively affect both 

nutritional value and technological traits of meat (Mudalal et al., 2014; 2015). The emerging issue 

of WS/WB chicken fillets has to date no solution, as, despite the increasing number of studies 

aimed at investigating this defect, the knowledge concerning WS/WB occurrence is still 

incomplete and no certainty has been reached about the causes of this myopathy. Nevertheless, 

WS incidence is probably related to the animal genetics as its occurrence showed a heritability 

ranging from 0.338 (Bailey et al., 2015) to 0.65 (Alnahhas et al., 2016) depending on the studies. 

The studies that have already been assessed on WS and WB affected breast muscles of high breast 

yield broilers identified through the biochemical and histological analysis an acutely inflamed and 

damaged muscle, with the presence of lipidosis and fibrosis (Mazzoni et al., 2015; Soglia et al., 

2016). 

Considering this scenario, the present study was aimed to compare the genomic transcription 

profile of WS/WB abnormal (ABN) Pectoralis major muscles respect to the normal ones (NORM) 

and obtain additional information about the gene networks possibly leading to the phenotypes 

typically related to WS/WB abnormalities. 

 

Materials and Methods 

 

Sample Selection and Preparation 

Twenty boneless and skinless Pectoralis major muscles were selected from the same flock of Ross 

708 broilers (males, weighting around 3.7 kg) in the deboning area of a commercial processing 

plant within 2 hours post-mortem. Birds belonging to this flock were farmed and slaughtered 

under commercial conditions according to Italian and European law for broiler chicken production. 

At slaughterhouse the birds were electrically stunned in agreement with the Council Regulation 

(EC) No 1099/2009 on the protection of animals at the time of killing. All slaughter procedures 

were monitored by the Veterinary team appointed by the Italian Ministry of Health. Fillets were 

selected evaluating the presence/absence of muscle abnormalities and classified as NORM and 

ABN according to the criteria proposed by Kuttappan et al. (2012) and Sihvo et al. (2014). In 
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particular, 10 NORM fillets without any hardened area and white striations and 10 ABN samples 

exhibiting diffused hardened areas and pale-bulging caudal end coupled with superficially white-

striations in the cranial part were packaged and transported to the laboratory under refrigerated 

conditions (0-2°C). At the slaughterhouse, for the gene expression analysis, pieces of the 12 fillets 

showing the most extreme WS/WB phenotype among the 20 samples have been chosen (6 NORM 

and 6 ABN, the), immediately frozen in liquid nitrogen and then stored at -80°C until RNA 

extraction. RNA was extracted using TRIZOL reagent (Invitrogen Corporation, Carlsbad, California), 

as described in Davoli et al. (2011). 

 

Quality and Technological Traits 

At 24 hours post-mortem, fillets were individually weighted and colour was measured in triplicate 

on the ventral surface using a Chroma Meter CR-400 (Minolta Corp., Milan, Italy). Furthermore, 

the morphometric measurements (length, width and height, expressed in mm) were assessed with 

an electronic calliper as previously described by Mudalal et al. (2015) and ultimate pH evaluated 

according to the procedure described by Jeacocke (1977). Then, a parallelepiped sample (8 x 4 x 3 

cm weighting approximately 80 g) was cut from the cranial part of each fillet and used to assess 

drip loss (percentage of weight lost as a consequence of refrigerated storage), cooking loss (after 

45 min heating treatment at 80°C in a water bath) and Allo-Kramer shear force by using the 

procedures described in Petracci et al. (2013). Another sample (8 x 4 x 2 cm, weighting 

approximately 60 g) was excised from the middle section of the fillet, labelled and tumbled with 

20% (wt/wt) sodium chloride (6%) and sodium tripolyphosphate (1.8%) marinade solution. Then, 

marinade uptake, cooking loss (after 25 min heating treatment at 80°C in a water bath), 

processing yield and Allo-Kramer shear force were assessed (Petracci et al., 2013). 

 

Composition of Breast Fillets 

Proximate (moisture, protein, fat, ash and collagen) and mineral composition of ABN and NORM 

fillets was determined on each Pectoralis major muscle applying standard methods. In particular, 

moisture and ash contents were calculated as the percentage of weight lost after drying 5 g of 

sample in oven (105°C for 16 hours) and incineration in muffle furnace (at 525°C), respectively 
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(AOAC, 1990). Crude proteins were determined according to Kjeldahl method by using copper 

sulphate as catalyst whereas total lipid amount was estimated by diethyl ether extraction 

performed with Soxhlet apparatus (AOAC, 1990). In addition, the colorimetric method proposed 

by Kolar (1990) was applied in order to determine hydroxyproline content and calculate the total 

amount of collagen (considering 7.5 as conversion factor). Inductively Coupled Plasma-Optic 

Emission Spectrometry technique (ICP-OES) was used in order to quantify minerals (Mg, K, P, Na 

and Ca) following the procedure suggested by the Environmental Protection Agency (EPA, 1996; 

2007). Blanks were run to check for chemicals purity and reference materials (CRM GBW 09101, 

human hair control, Shanghai Institute of Nuclear Research Academia Sinica; CRM 201505 and 

201605 Trace Element Whole Blood, Seronorm, Billingsad, Norway) were used to verify the 

accuracy. Finally, minerals content in tissues was calculated and expressed as mg 100 g-1 breast 

muscle. 

 

SDS-PAGE Analysis of Muscle Proteins 

One-dimensional SDS-PAGE analysis was carried out in order to evaluate the myofibrillar and 

sarcoplasmic proteins profile of ABN and NORM fillets following the procedure described by Liu et 

al. (2014) and removing the interfering substances such as salts, detergents, denaturants or 

organic solvents by READYPREP 2-D cleanup kit (Bio-Rad). Before loading, protein concentration 

was determined according to the Bradford assay (Bradford, 1976) and runs performed following 

the procedure described by Soglia et al. (2016). A molecular weight marker (Precision plus 

Standard protein, all blue pre-stained, Bio-Rad) was loaded on the first well of each gel and used 

to calculate the molecular weight of the separated bands. Each band was identified based on 

purified sarcoplasmic and myofibrillar proteins identified by mass spectrometry from literature 

(Zapata et al., 2012; Li et al., 2015) and the concentration expressed as relative abundance (%). 

 

Statistical analysis of meat quality evaluation 

Differences on meat quality and technological traits, composition as well as myofibrillar and 

sarcoplasmic protein profiles for ABN and NORM samples were tested by two-tailed Student's t 
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test. Statistical analyses were performed with SAS version 9.4 (SAS 9.4, Cary, NC. SAS Institute Inc.) 

and the nominal P value ≤0.05 was considered as significance threshold. 

 

Microarray Expression Profiling 

Each extracted RNA was checked for integrity and quality using an Agilent BioAnalyzer 2100, retro 

transcribed, amplified, labelled and applied to Affymetrix GeneChip Chicken Gene 1.1 ST v1 

expression array by an outsource company (Cogentech Microarray Unit, Milan, Italy). All analytic 

procedures performed on microarray data were carried out using Partek Genomics Suite software, 

version 6.6 Copyright 2014 (Partek Inc., St. Louis, MO, USA). Gene expression profiles from the six 

ABN biological replicates were compared to the six NORM biological ones in order to identify 

differentially expressed genes (DEGs) indicated with the genes fold changes (FC) values between 

ABN an NORM broiler. FC filtering criteria combined with statistical T-test with FDR applied for 

multiple testing corrections were used to identify DEGs between the two conditions. The 

expression data obtained have been submitted to NCBI GEO database with the accession number 

GSE79276. 

 

Validation by Quantitative Real Time-PCR 

The results of the array expression analysis were validated by quantitative real-time PCR (qPCR). 

After DNAse treatment (TURBO DNA-freeTM, Ambion, Applied Biosystems), 1 μg of total RNA was 

reverse transcribed using the iScript cDNA Synthesis kit (Bio-Rad) according to the manufacturers’ 

instructions. QPCR was performed on Rotor GeneTM 6000 (Corbett Life Science, Concorde, New 

South Wales) using 5 µl of SYBR® Premix Ex TaqTM (TAKARA Bio INC, Olsu, Shiga, Japan), 5 pmol of 

each primer, 2 µl of cDNA template diluted 1:10 and then was made up to the total volume of 10 

µl with water. Rotor GeneTM 6000 protocol was optimised using specific annealing temperatures 

for each primer couple (Supplementary Table S1). The samples were first used to assess the 

expression level of three candidate-normalizing genes: glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), ribosomal protein L32 (RPL32), tyrosine 3-monooxygenase/tryptophan 

5-monooxygenase activation protein, zeta (YWHAZ). Primers and PCR conditions used are 

reported in Supplementary Table S1. The expression levels of these three genes were evaluated 
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using NormFinder and GAPDH and YWHAZ, the two most stably expressed normalizing genes, 

used as reference genes. For each gene selected for validating the results of the expression array, 

an external primer pair to obtain the amplicon for the standard curve and an internal primer pair 

for the qPCR (Supplementary Table S1) were designed. For the validation of the microarray results, 

five genes have been chosen (crystallin alpha B (CRYAB), myoglobin (MB), glucosamine (UDP-N-

acetyl)-2-epimerase/N-acetylmannosamine kinase (GNE), utrophin (UTRN), prostaglandin F 

receptor (PTGFR)). 

Threshold cycles obtained for the samples were converted by Rotor Gene 6000 to mRNA 

molecules/µl using for each gene the relative standard curve (Pfaffl, 2004; Zambonelli et al., 2016). 

Moreover, the average mRNA molecules/µl for each sample was normalized dividing the gene 

mRNA molecules/µl by the geometric average of GAPDH and YWHAZ mRNA molecules/µl in the 

given sample, as described in Zambonelli et al. (2016). Differences on the expression level 

calculated for ABN and NORM samples were tested by two-tailed Student's t test. Statistical 

analyses were performed with SAS version 9.4 (SAS 9.4, Cary, NC. SAS Institute Inc.) and the 

nominal P value ≤0.05 was considered as significance threshold. 

Furthermore, in addition to the genes found differentially expressed, also ATPase 

sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 (ATP2A2) gene expression was tested 

through qPCR, and its absolute expression normalized using GAPDH and YWHAZ as normalizing 

genes. 

 

Functional Characterization 

Functional annotation, classification and annotation clustering of selected gene sets were carried 

out by DAVID Tools 6.7 (Huang et al., 2009a,b) using Biological Processes, Molecular Function gene 

ontology categories and KEGG pathways. A threshold for significance of P < 0.05 was considered to 

choose the significant functional categories.  

The precise identification of the regulated snoRNAs was obtained by BLAST analysis 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch) using blastn algorithm and 

standard parameters. 
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In order to identify the codified name and the putative target genes of the differentially expressed 

micro-RNAs the miRBase website (http://www.mirbase.org/) was consulted in order to check the 

predicted chicken target genes resulting by the inspection of the correspondences obtained using 

miRDB (http://mirdb.org/miRDB/index.html) and TargetScan (http://www.targetscan.org/) 

databases available in miRBase. 

 

Results 

Quality and Technological Traits 

The effects of muscle abnormalities on fillet weight and dimensions are displayed in Table 1. 

Overall, ABN samples exhibited higher (P < 0.001) weight coupled with increased length, width and 

middle height. As for raw meat quality (Table 2), ABN fillets were paler and revealed higher 

redness and ultimate pH values. Additionally, both raw and marinated ABN samples exhibited 

higher cooking losses (P < 0.001) and lower marinade uptake (P < 0.001). Besides, if compared 

with NORM group, a sharp increase in shear force value was measured in raw and marinated ABN 

fillets (P < 0.001). 

 

Chemical and Mineral Composition 

The occurrence of WS/WB abnormalities exerted a relevant impact on proximate and minerals 

compositions of the affected muscles (Table 3). In particular, ABN fillets exhibited higher (P < 

0.001) moisture, fat and collagen contents coupled with reduced ash and proteins (P < 0.001) 

levels. As for mineral composition, no differences were found in potassium content whereas ABN 

samples had lower magnesium and phosphorus levels. Besides, an increased amount of sodium (P 

< 0.001) and calcium was observed in ABN fillets. 

 

Identification of Differentially Expressed Proteins 
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With regard to myofibrillar proteins pattern (Table 4), nine bands having molecular weight from 16 

to 220 kDa were identified. In detail, lower relative abundance of slow-twitch light chain myosin 

(LC1, 27.5 kDa) coupled with higher amount of 70 kDa MHC fragment were found in ABN samples. 

As for sarcoplasmic protein pattern (Table 5), eleven bands, having molecular weight ranging from 

25 to 114 kDa, were detected and almost all the enzymes involved in glucose metabolism differed 

between ABN and NORM groups. In particular, if compared with normal, ABN fillets exhibited 

lower amount of phosphoglycerate mutase (PGAM, 25 kDa), creatine kinase (KCRM, 43 kDa), 

phosphoglucose isomerase (GPI, 58 kDa) and pyruvate kinase (KPYM, 68 kDa) together with higher 

relative abundance of lactate dehydrogenase (LDH, 34 kDa), glyceraldehyde dehydrogenase (G3P, 

36 kDa), aldolase (ALDO, 39 kDa) and glycogen phosphorylase (PYGL, 90 kDa). Besides, ABN 

samples exhibited higher Calcium-Transporting ATPase Sarcoplasmic Reticulum Type Slow Twitch 

Skeletal Muscle Isoform (AT2A2, 114 kDa, coded by ATP2A2 gene). 

 

Profiling of Differentially Expressed Genes 

Comparing the gene expression profiles obtained for ABN vs. NORM samples, 207 differentially 

expressed genes (DEG) were found: 103 up-regulated and 104 down-regulated in ABN chickens 

(Supplementary Table S2). The overexpressed gene poly(A) binding protein, cytoplasmic 1 

(PABPC1) (NM_001031597) was found twice on the list of DEG whereas the uncharacterized under 

expressed gene CD218879 was found three times among the probes included in the microarray 

then the number of unique DEG is 102 for the up-regulated and 102 also for the down-regulated. 

In both cases, the trend of expression was the same for the doublets or triplets of gene probe and 

the fold changes detected are identical or similar. Among the more expressed genes in ABN 

samples only three were currently not identified both in chickens and human genome. For the less 

expressed genes in ABN chickens, the situation found was more complex because we identified 

fifteen uncharacterized genes as described before but we found represented in this group also 

some short noncoding RNAs. In particular, we observed the presence of four small nucleolar RNAs 

(snoRNA, GGN5, GGN50, GGN73, GGN98) and of five micro-RNAs (miRNA; MIR196B, MIR205, 

MIR1600, MIR1716, MIR1805). 

The differentially expressed genes mapped on all chicken chromosomes from 1 to 28 and one was 

mapped each on chromosome 30, mitochondrion genome (tRNA-Asn gene) and on the unassigned 
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linkage group LGE64. Furthermore, six genes are currently not located on the chicken genome 

sequence and four of them are not characterized yet. The intensity of the differential expression 

for the less expressed genes in ABN chickens varied between -1.07 and -2.71 FC with five genes 

showing a FC below -2. Among the overexpressed genes, the range of FCs was between 1.16 and 

9.87 with 12 genes showing FC values between 2 and 3 and three genes showed higher values 

(nuclear factor, interleukin 3 regulated (NFIL3) 3.24, myoglobin (MB) 5.17, cysteine and glycine-

rich protein 3 (cardiac LIM protein) (CSRP3) 9.87. In general, the moderate level of differences in 

expression can suggest the simultaneous involvement of several genes needed for the definition 

of the abnormal Pectoralis major muscle phenotypes. 

 

Validation by qPCR 

In order to confirm the results obtained with microarray, we selected five genes (CRYAB, MB, GNE, 

UTRN, PTGFR) that were analysed by qPCR and the data obtained were compared with the 

expression profiles obtained using microarrays (Figure 1A). The expression level of all validated 

genes was in agreement between the two analyses showing a very good correlation (R2 = 0.91, 

Figure 1B). Moreover, we tested by qPCR also the expression level of ATP2A2 mRNA, a gene not 

present among the probes of the utilized microarray as the protein coded by this gene was found 

differentially expressed between ABN and NORM samples using SDS-PAGE analysis (Table 2). The 

results of the qPCR experiment for the ATP2A2 gene confirmed the difference of expression 

detected by SDS-PAGE analysis. According to this result, we also considered ATP2A2 for the 

functional characterization of the differentially expressed genes. 

 

Functional Characterization of the Differentially Expressed Coding Genes 

A functional classification was carried out using DAVID tools (Table 6). The significant annotation 

clusters represented are related to several categories of the Biological Processes section according 

to the Gene Ontology classification such as developmental processes (in particular, muscle organ 

development), polysaccharide metabolic processes, response to reactive oxygen species and 

immune response, regulation of cell cycle, mRNA export from nucleus, blood vessels 

morphogenesis, intracellular transport, sensory perception of light stimulus. Interestingly, the 
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unique KEGG pathway represented was the calcium signalling pathway. By analysing this regulated 

pathway, we observed that five DEG, all overexpressed, were involved in the calcium homeostasis 

within the cells. Furthermore, two down-regulated genes, 5-hydroxytryptamine (serotonin) 

receptor 4 (HTR4) and tachykinin receptor 2 (TACR2), were also included in the calcium signalling 

pathway as reported by DAVID analysis. 

 

Functional Characterization of the Differentially Expressed Noncoding Genes 

Among the less expressed genes detected in ABN samples, the presence of nine noncoding RNAs is 

remarkable. 

The first type of this category of genes is snoRNAs that are noncoding transcripts active within the 

nucleolus of the cells and that guide molecules for site specific modifications of other RNAs. By 

BLAST analysis (Table 7), we found that the four detected DE snoRNAs belong to the H/ACA box 

family and are involved in the pseudouridynilation of rRNAs and snRNAs changing an uridine to 

the pseudouridine isomer (Zhang et al., 2009; Holley and Topkara, 2011) which plays a key role in 

the activation of ribosome function. Furthermore, other functions are demonstrated for the 

snoRNAs such as the implication in post-transcriptional or in directing alternative splicing 

regarding specific mRNAs coding for proteins (Makarova et al., 2013). These short RNA molecules 

can be also the precursors of other small regulative RNAs like miRNAs and sdRNAs (sno-derived 

RNAs). All these findings are quite recent and validated only in few experiments. If these 

regulatory mechanisms will be confirmed, a specific role in regulating the muscle development 

could be found. 

The second group of noncoding regulated transcripts includes five miRNAs that have been 

precisely identified by searching on miRBase. Furthermore, on the same database we searched for 

the putative target genes using as entry the DE chicken miRNAs and the overexpressed coding 

genes, according to miRNA repressive mechanism of regulation, as indication of a direct regulation 

(Table 8). Four out of five miRNAs have been indicated as putative regulators of eight genes 

(ankyrin repeat domain 31 (ANKRD31), family with sequence similarity 64, member A (FAM64A), 

PQ-loop repeat-containing protein 2-like (LOC425021), N-myristoyltransferase 2 (NMT2), 

phospholamban (PLN), plexin A1 (PLXNA1), paired related homeobox 2 (PRRX2), WD repeat and 

FYVE domain containing 3 (WDFY3)). 
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Discussion 

WS and WB are abnormalities of chicken breast skeletal muscle observed quite frequently in most 

of modern broiler hybrids (Petracci et al., 2015). In the present study, the gene expression and the 

meat quality traits of affected chickens Pectoralis major muscles were investigated, in order to 

evaluate the effects exerted by these pathologic conditions on the gene transcription levels and 

the fillets biochemical composition. On the whole, the results outlined the presence of a severely 

damaged Pectoralis major muscle, with ABN samples showing consistent changes in the 

expression level of genes related to muscle development, reactive oxygen species metabolism, 

oxidative stress and signal transduction, blood vessel morphogenesis and polysaccharide 

metabolism. Considering the data reported in the present study, together with the results 

identified in literature (Kuttappan et al., 2013; Sihvo et al., 2014, Mazzoni et al., 2015; Mutryn et 

al., 2015; Soglia et al., 2016), a consistent impairment of normal muscle metabolism is evident for 

WS/WB defects and these abnormalities appear to be linked to a complex pathogenesis. 

The complex pathological framework characterizing WS/WB defects has made extremely difficult 

to date the identification of the underlying causes at the basis of the alterations. Despite the 

literature about WS and WB defects agrees on the large number of histological, biochemical and 

metabolic alterations accompanying the occurrence of these breast muscle abnormalities, there is 

no consensus on the causes leading to the insurgence of this complex pathological framework. The 

results obtained from the present research have been evaluated and discussed in the light of the 

knowledge reported to date in literature on WS and WB topics, aiming to outline an overall view 

of the pathological changes affecting Pectoralis major muscle showing in addition the gene 

networks and the biological evidences related to the occurrence of the WS/WB tissue alterations. 

Furthermore, the overall analysis of the variations obtained to date at the genetic, biochemical 

biological and histological levels allows defining some possible hypotheses on the mechanisms 

determining the onset of these myopathies. 

 

Oxidative Stress 

In the present research, the microarray data showed an overall increase in the expression level of 

genes involved in the response against the accumulation of hydrogen peroxide and reactive 
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oxygen species in ABN fillets, in agreement with the presence of an oxidative stress possibly linked 

to a muscle hypoxic condition. In particular, ABN samples presented increased expression levels of 

crystallin alpha B (CRYAB), adenosine deaminase (ADA), MB genes and a decreased activity of 

reactive oxygen species modulator 1 (ROMO1) gene, that are all involved in the response to 

reactive oxygen species (Table 6 and Supplementary Table 2). These results agree with Mutryn et 

al. (2015) that identified a set of DE genes involved in myofibers reaction to oxidative stress in 

muscle samples of high breast yield chickens affected by WS/WB. The cause of this oxidative stress 

is not clear, although past studies can help defining some possible causes. One of the possible 

hypotheses reported in literature indicates an inadequate breast muscle vascularisation as a 

possible key factor in WS/WB occurrence (Mutryn et al., 2015). It is worth to note that in 1999, 

Dransfield and Sosnicki reported an increased proportion of glycolytic fibers with enlarged 

diameter in chicken lines selected for high growth rate and breast yield (Dransfield and Sosnicki, 

1999). Moreover, Hoving-Bolink et al. (2000) showed an intense reduction in both vascularization 

and capillary to fiber ratio in chicken hybrids selected for high growth rate and breast yield 

compared to unselected chicken lines. Based on these results genetic selection in these chicken 

lines determined in muscles an inadequate blood vessel growth with the consequent impairment 

in oxygen supply and in the metabolic waste products displacement from breast myofibers. In 

agreement with Mutryn et al. (2015), also the present results indicated that an excessive 

accumulation of reactive oxygen species (ROS) within the muscle tissue of ABN samples might be 

involved in initiating the inflammatory mechanism typically associated with WS and/or WB muscle 

abnormalities. 

 

Inflammation and Myofibers Degeneration 

The profound alterations and the inflammatory status observed in previous researches were 

confirmed in the present study where an increased transcription of genes coding for proteins 

involved in biological processes related to tissue alteration was detected. More precisely, we have 

found that immunoglobulin superfamily, member 10 gene (IGSF10), heat shock 105kDa/110kDa 

protein 1 (HSPH1) and heat shock 60kDa protein 1 (Chaperonin) (HSPD1) were overexpressed in 

ABN samples (Supplementary Table S2), supporting the presence of the tissue inflammation. 

Moreover, the overexpression in ABNs of ADAM family metallopeptidase with thrombospondin 

type 1 motif 12 (ADAMTS12) and ADAM metallopeptidase with thrombospondin type 1 motif 19 

(ADAMTS19; Supplementary Table S2) genes suggested the existence of a muscle tissue 
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inflammation, as ADAMTS12 in particular is already known to be involved in the activation of 

inflammatory responses (Moncada-Pazos et al., 2012). Similarly, the higher transcription levels of 

nuclear factor, interleukin 3 regulated (NFIL3) and snail family zinc finger 2 (SNAI2; Supplementary 

Table S2), as genes encoding for hindering-cell death molecules (Keniry et al., 2014), could reveal 

the attempt to limit apoptotic processes and necrosis of the cells. Thus, the onset of a complex 

biological reaction aimed at contrasting the inflammatory process with the activation of anti-

inflammatory responses was observed in ABN samples. These inflammatory and necrotic 

processes were previously found in WS and WB breast muscles (Kuttappan et al., 2013; Sihvo et 

al., 2014; Mutryn et al., 2015) and association to degenerative processes of muscular nerve 

growth was hypothesized. Indeed, the microarray analysis evidenced in WS/WB broilers reduced 

transcription levels of the genes deafness autosomal recessive 31 (DFNB31), syntaxin 3 (STX3), 

neurogenin 1 (NEUROG1), SLIT and NTRK-like family member 6 (SLITRK6), wingless-type MMTV 

integration site family member 7A (WNT7A), and EPH receptor A2 (EPHA2), involved in neuron 

genesis and differentiation as indicated by DAVID analysis. 

Another differentially expressed gene found in the present study is interleukin 1 beta (IL1B), which 

encodes for a member of the interleukin 1 cytokine family. This protein exerts a central role as 

mediator of the inflammatory response and is involved in a variety of cellular activities (including 

cell proliferation, differentiation and apoptosis). Although the findings of the present study 

outlined an inflammatory process affecting ABN samples, a down-regulated transcription of IL1B 

gene was found (Supplementary Table S2). Despite the majority of the literature reports in 

muscles affected by inflammation an increased expression level of the IL1B gene (Dinarello, 1998; 

Li et al., 2008), in some cases this gene was found down-regulated during some chronic 

pathological situations (Karli et al., 2014). Moreover it is possible to hypothesize that the reduced 

transcription level of IL1B identified within the WS/WB samples could be linked to the low level of 

vascularization of the ABN samples as IL1B was also found to play a relevant role in the angiogenic 

processes promoting the emergence of new capillaries from pre-existing blood vessels (Dinarello, 

1996; Voronov et al., 2003). Furthermore, as interleukin 1 has a pyrogenic role and its involvement 

in the pain sensation during inflammation has been evidenced, the down-regulation of IL1B 

transcription might be responsible for the lack of symptoms in chickens affected by WB/WS 

abnormalities during the broiler farming period. 

Some genes identified as differentially expressed have been reported in literature associated to 

the development of myopathies. The over-expression of PLN observed in ABN samples 
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(Supplementary Table S2) was related in mice muscles to an altered phenotype similar to the 

centronuclear myopathy identified in human muscles (Fajardo et al., 2015). Centronuclear 

myopathy is a congenital myopathy characterized by centrally located nuclei, peculiarity that was 

already described in WS/WB affected muscles (Sihvo et al., 2014; Soglia et al., 2016). 

Moreover, ATP2A2 gene and protein was found overexpressed in ABN samples. Soglia et al. (2016) 

reported that an impaired activity of AT2A2 protein might be involved in the WS/WB phenotype 

with a loss of adhesion among myocytes and the presence of abundant connective tissue replacing 

the muscle cells. This phenomenon is for some instances similar to a human pathology, Darier-

White disease (Savignac et al., 2011) that is characterized by a loss of adhesion between epidermal 

cells and keratinization then leading to apoptosis of the same cells. The causative mutation of the 

human disease was found in one of the transcripts of ATP2A2 gene. 

 

Myofibers Regeneration 

In the present study, several genes involved in muscle development and cell differentiation were 

found differentially expressed within the ABN cases (Table 7). In particular, the over-expression of 

CSRP3 and PTGFR as well as the down-regulation of P2RY1 gene identified in the present research, 

could be associated respectively to muscle fibers synthesis (Kong et al., 1997; Jansen and Pavlath, 

2008) and myogenesis (Krasowska et al., 2014). 

The cascade pathway of PTGFR, PLN, GNAQ, PLCB2, and PLCD1 has been also related to 

mechanisms aimed at regenerating damaged muscle. The combined activity of these five DEG 

triggers several downstream metabolic pathways that increase muscle cells volume (Hindi et al., 

2013; Horsley and Pavlath, 2003; 2004) and contribute to the regeneration of myofibers upon 

injury, suggesting a possible role of these genes in trying to repair the effect of severe Pectoralis 

major myopathies such as WB and WS. 

Additionally, ABN fillets showed an increased mRNA level of the gene FAM64A. The expression of 

this gene was reported to be associated with rapidly proliferating tissues during mouse 

embryogenesis (Archangelo et al., 2008). Based on this previous finding, FAM64A over-expression 

may be associated to the regeneration processes taking place in the damaged breasts, and its up-

regulation could be determined by gga-miR-196-5p that identifies FAM64 a as a specific target 

gene (Table 8). Similarly, also increased mRNA levels of PLXNA1 and PRRX2 genes, up-regulated in 

ABN samples, have been related to proliferating foetal fibroblasts and developing tissue (White et 
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al., 2003; Hota and Buck, 2012). As suggested for FAM64A, we hypothesize that PLXNA1 and 

PRRX2 expression changes may be respectively linked to the regulation exerted by gga-miR-205a 

and gga-miR-1600. Anyway, these hypotheses will need further studies to be proven. 

On the whole, the results obtained from the microarray, with DE genes from pathways linked to 

muscle differentiation and development, can be interpreted as the evidences of an activation of 

muscle cells regenerative processes in response to the degenerative status. These tissue 

regenerative processes (nuclear rowing and cell multi-nucleation) have been evidenced within the 

WS/WB muscles in previous histological observations (Kuttappan et al., 2013; Sihvo et al., 2014, 

Soglia et al., 2016). Furthermore, a remarkable increase in the amount of AT2A2 (Table 5) coupled 

with an over-expression of ATP2A2 gene and MB gene, was detected in ABN samples similar to 

what was observed by Mutryn et al. (2015) in muscles affected by WB abnormality. These Authors 

supposed that the higher expression of ATP2A2 and MB might be the result of a shift from type IIb 

towards slow twitch type I fibers in abnormal breast muscles. This reorganization of the tissue 

might be explained considering that similar regenerative mechanisms, exhibiting an overall 

increase in slow-twitch fibers and the apoptosis of the fast-twitch ones, were previously observed 

in mice dystrophic muscles (Massa et al., 1997). In addition, the up-regulation in the transcription 

of acetyl-CoA acyltransferase 2 (ACAA2) gene, encoding for a protein exerting a relevant role in 

the metabolic pathway leading to mitochondrial beta oxidation of fatty acids, might support the 

hypothesized shift of ABN muscles towards oxidative metabolism. 

 

Impaired Muscle Ion Homeostasis 

ABN samples showed relevant changes in their chemical composition, with an overall modification 

in mineral content (Table 3). In particular, the increased sodium content may be related to the 

more elevated transcription of solute carrier family 9, subfamily A (NHE7, cation proton antiporter 

7) member 7 (SLC9A7) gene, as it encodes a sodium and potassium/ proton antiporter (Kagami et 

al., 2008). 

Additionally, also increased levels of calcium were identified in ABN samples (Table 3), supporting 

the existence of the intracellular calcium buildup already hypothesized by Mutryn et al. (2015) on 

the basis of the altered transcription levels identified for genes involved in calcium homeostasis. In 

agreement with this hypothesis, several genes linked to intracellular ion homeostasis were found 

differentially expressed in the present study (Figure 2), in particular the up-regulation of genes 

linked to the activation of G protein–coupled purinergic receptors was observed in cascade in ABN 
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samples. The over-expression of PTGFR coupled with the increase in guanine nucleotide binding 

protein (G protein) alpha 11 (GNAQ) and G protein-coupled receptor 1 (GPR1) might be related to 

the up-regulation of phospholipase C beta 2 (PLCB2) and phospholipase C delta 1 (PLCD1) genes 

(Figure 3), involved in the processes leading to the increase of Ca++ in the cells. According to 

Bucheimer and Linden (2004), the G protein–coupled receptors activate β phospholipase enzymes 

resulting in an increased intracellular Ca++ concentration and altered ions homeostasis. Within this 

framework, the reduced expression of calcium homeostasis modulator 3 gene (CALHM3; 

Supplementary Table S2), the higher synthesis of AT2A2 protein and the increased transcription of 

its relative gene ATP2A2 and PLN gene can produce in ABN samples an overall alteration in 

calcium signalling pathway, contributing to the inflammatory processes. ATP2A2 over-expression 

was noticed also by Mutryn et al. (2015) in breast muscles affected by WB abnormality. 

Between the differentially expressed miRNAs, gga-miR-1600 may be the putative regulator of PLN 

gene expression (Table 8), suggesting that for calcium signalling pathway a higher level of 

regulation might be responsible of relevant changes in the molecular mechanisms involved in the 

origin of the WB/WS myopathy. 

Anyway, on the basis of the whole literature produced to date, it is not possible a certain 

assumption about the causes leading to this overall impairment in muscle ion homeostasis. The 

differential expression of genes related to the purinergic receptors pathways that we found in ABN 

samples may be one of the primary causes of the inflammation or, most likely, one of the effects 

of muscle tissue structural changes related to WS/WB abnormalities and the results of the 

activation of the purinergic receptors from the ATP released in the extracellular matrix spaces 

from damaged fibers (Bucheimer and Linden, 2004; Eltzschig et al., 2012). 

 

Altered Glucose Metabolism, Lipidosis, Fibrosis and Proteoglycans Synthesis 

The SDS-PAGE results revealed an intensified glycolytic activity in ABN samples, with higher 

amount of glycolytic enzymes such as lactate dehydrogenase (LDH), glyceraldehyde 

dehydrogenase (G3P), aldolase (ALDO) and glycogen phosphorylase (PYGL). Among the glycolytic 

enzymes, the magnesium-dependent enzymes phosphoglycerate mutase (PGAM), 

phosphoglucose isomerase (GPI) and pyruvate kinase (KPYM) were less expressed in ABN samples. 

The inadequate level of disposable magnesium in affected muscles (Table 3) could be linked to the 

lower translation of these magnesium-dependent enzymes in affected samples. A general 
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modification of the glycolytic enzymes expression was evident in ABN Pectoralis major muscles. 

Despite the increased synthesis of LDH enzyme in ABN samples, a higher ultimate pH in the 

affected breast muscles was observed (Table 2), suggesting that there was not an increase in the 

transformation of pyruvate into lactate, as normally expected in hypoxic conditions. In addition to 

the modifications in glycolytic enzymes synthesis, we found by microarray analysis that in ABN 

samples the genes GNE, glycogen branching enzyme (GBE1), UDP-glucose 6-dehydrogenase 

(UGDH), and protein phosphatase 1, catalytic subunit, beta isozyme (PPP1CB), involved in 

polysaccharide metabolic processes were overexpressed (Supplementary Table S2). GNE enzyme 

plays an essential role in hexosamine pathway, in particular for the biosynthesis of N-

acetylneuraminic acid, a precursor of sialic acids. This evidence might suggest an alternative 

utilization of fructose 6-phosphate, produced by PGI enzyme during glycolysis. Indeed fructose 6-

phosphate can undertake the glycolysis pathway or can be used as the initial substrate of the 

hexosamine and hexuronic acid pathways, resulting in collagen, proteoglycans and 

glycosaminoglycans synthesis. This shift towards hexosamine pathway was also described by Du et 

al. (2000) as a consequence of the accumulation of ROS species, which otherwise exerted an 

inhibitory effect on glycolysis. On the other hand, UGDH converts UDP-glucose to UDP-

glucuronate and thereby participates in the biosynthesis of glycosaminoglycans such as 

hyaluronan (a common component of the extracellular matrix). The over-expressions of UGDH, 

GNE, GBE1, PPP1CB and interphotoreceptor matrix proteoglycan 2 (IMPG2) genes identified in the 

present research, together with the observed fibrosis described on the same samples by Soglia et 

al. (2016), could explain the increased presence of collagen and proteoglycans in the areas 

affected by WS/WB lesions. These findings agree with the evidences reported in literature for WS 

and/or WB abnormalities (Kuttappan et al., 2013; Sihvo et al., 2014; Mutryn et al., 2015; Velleman 

and Clark, 2015). 

Additionally, the increased collagen and fat contents observed in ABN samples (Table 3) were in 

agreement with previous findings (Kuttappan et al., 2013; Mudalal et al., 2014; Soglia et al., 2016). 

A similar situation was described by Lopes–Ferreira et al. (2001), who noticed in hypoxic 

conditions the development of both fibrosis and lipidosis within the skeletal muscle, with a 

replacement of the lost fibers with the collagen synthesis and lipid deposition. 
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The present results, combined with the existing knowledge, allowed to draw a scheme (Figure 4) 

describing a possible progression of the biological processes cascade hypothesized to be involved 

in the development of WS/WB myopathies. 

On the whole, the findings of the present study show at the gene level that a complex etiology is 

associated with the occurrence of WS and WB muscle abnormalities. In WS/WB breast muscles, 

there is evidence of differentially expressed genes related to several functional categories: muscle 

development, polysaccharide metabolic processes, glucose metabolism, proteoglycans synthesis, 

inflammation, and calcium signaling pathway. By combining the functional roles for the 

differentially expressed genes, we hypothesized a network of biological changes that are acting 

simultaneously and are responsible of the phenotypic evidences of these myopathies. 

Although the cause of these myopathies is still unclear, the majority of the results reported in 

literature suggests that selection criteria more and more addressed towards fast growing and high 

breast yield broilers could be involved in the occurrence of the breast oxidative stress that triggers 

the cascade of WS/WB related muscle alterations. The data obtained in the present research can 

be useful for the clarification of the WS/WB pathogenesis and further studies have to be planned 

to disentangle the complex etiology behind these myopathies. 
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Table 1. Effect of breast abnormalities on weight, dimension and texture of raw chicken fillets 

1 NORM = without any abnormalities; ABN = with both white striping and wooden breast abnormalities. 2 

H1 measured at the thickest point in the cranial part; 3 H2 measured at half distance of the breast length; 4 

H3 measured as the vertical distance far from the end of the caudal part by 

1 cm in a dorsal direction. 

SEM = standard error of mean. 

 

  

Trait 

Breast meat category1 

SEM P value 

NORM ABN 

Weight (g) 218.27 301.51 11.262 <0.0001 

Top height (H1) 2 (mm) 37.82 44.31 0.959 0.0001 

Middle height (H2) 3 (mm) 23.43 34.52 1.478 <0.0001 

Bottom height (H3) 4 (mm) 7.60 12.70 0.808 0.0003 

Length (mm) 185.03 194.10 2.815 0.1088 

Length (mm/g) 85.42 64.76 2.738 <0.0001 

Width (mm) 73.95 77.01 1.173 <0.0001 

Width (mm/g) 34.37 25.64 1.279 0.0001 
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Table 2. Effect of breast abnormalities on quality traits of chicken meat 

1 NORM = without any abnormalities; ABN = with both white striping and wooden breast abnormalities. 

*** = P < 0.001; * = P < 0.05; NS = not significant. 

SEM = standard error of mean. 

  

Trait 

Breast meat category1 

SEM P value 
NORM ABN 

Raw meat     

pHu 5.87 6.06 0.03 0.0039 

CIE-L* 54.50 52.52 0.51 0.0486 

CIE-a* 0.82 1.41 0.16 0.0568 

CIE-b* 3.92 3.62 0.21 0.4800 

Drip loss (%) 1.07 1.06 0.06 0.9166 

Cooking loss (%) 21.45 34.04 1.73 <0.0001 

Allo-Kramer shear force (kg/g) 4.26 7.54 0.68 0.0110 

Marinated meat     

Uptake (%) 18.33 7.44 1.34 <0.0001 

Cooking loss (%) 14.53 21.94 1.12 0.0001 

Yield (%) 101.12 83.83 2.12 <0.0001 

Allo-Kramer shear force (kg/g) 2.13 4.08 0.28 <0.0001 
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Table 3. Effect of breast abnormalities on chemical composition of chicken meat 

1 NORM = without any abnormalities; ABN = with both white striping and wooden breast abnormalities. 

SEM = standard error of mean. 

 

  

Trait 

Breast meat category1 

SEM P value 

NORM ABN 

Moisture (%) 74.64 76.82 0.39 0.0014 

Fat (%) 0.79 1.79 0.17 0.0007 

Ash (%) 1.46 1.19 0.06 0.0138 

Collagen (%) 1.16 1.35 0.04 0.0163 

Protein (%) 23.37 18.45 0.69 <0.0001 

Magnesium, Mg (mg/100g) 35.99 32.59 0.80 0.0272 

Potassium, K (mg/100g) 359.31 362.96 6.59 0.7927 

Phosphorus, P (mg/100g) 222.63 207.30 3.70 0.0326 

Sodium, Na (mg/100g) 37.82 75.06 5.76 0.0001 

Calcium, Ca (mg/100g) 7.81 11.32 0.69 0.0059 
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Table 4. Effect of breast abnormalities on myofibrillar proteins composition of chicken meat 

Protein (1) Mol. Wt. 
Breast meat category1 

SEM P value 
NORM ABN 

LC3 16 kDa 12.41 15.68 1.07 0.1290 

LC2 19 kDa 3.58 3.50 0.40 0.9208 

LC1 27.5 kDa 13.71 8.01 1.09 0.0043 

30 kDa troponin 

T fragment 
29 kDa 4.00 4.96 0.29 0.1019 

troponin T 34 kDa 4.81 4.67 0.30 0.8200 

actin 42 kDa 33.81 36.88 1.77 0.4062 

desmin 53 kDa 5.25 6.29 0.40 0.2022 

70 kDa MHC 

fragment. 
70 kDa 4.77 6.91 0.47 0.0161 

MHC 220 kDa 16.19 13.12 1.77 0.4062 

1 NORM = without any abnormalities; ABN = with both white striping and wooden breast abnormalities. 

SEM = standard error of mean. 

(1) MHC = Myosin heavy chain; LC = Myosin light chain. 
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Table 5. Effect of breast abnormalities on sarcoplasmic proteins composition of chicken meat 

Protein (1) Mol. Wt. 
Breast meat category1 

SEM P value 
NORM ABN 

PGAM 25 kDa 7.44 5.54 0.33 0.0010 

TPIS 26.4 kDa 7.16 6.50 0.24 0.1771 

CA 31.8 kDa 9.42 8.27 0.58 0.3388 

LDH 34 kDa 18.76 22.85 0.85 0.0104 

G3P 36 kDa 10.33 13.26 0.62 0.0116 

ALDO 39 kDa 7.06 10.42 0.62 0.0025 

KCRM 43 kDa 11.23 9.89 0.32 0.0327 

GPI 58 kDa 8.31 4.86 0.67 0.0053 

KPYM 68 kDa 6.06 4.17 0.36 0.0037 

PYGL 90 kDa 13.28 15.79 0.60 0.0301 

AT2A2 114 kDa 0.00 1.86 0.35 0.0029 

1 NORM = without any abnormalities; ABN = with both white striping and wooden breast abnormalities. 

SEM = standard error of mean. 

(1) Abbreviations obtained from www.uniprot.org: PGAM = Phophoglycerate mutase; TPIS = 

Triosephosphate isomerase 1; CA = carbonic anhydrase; LDH = Lactate dehydrogenase; G3P = 

Glyceraldehyde dehydrogenase; ALDO = Aldolase; KCRM = Creatine kinase; GPI = Phosphoglucose 

isomerase; KPYM = Pyruvate kinase; PYGL = Glycogen phosphorylase; AT2A2 = Calcium-Transporting 

ATPase Sarcoplasmic Reticulum Type Slow Twitch Skeletal Muscle Isoform. 
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Table 6. DAVID functional clustering obtained considering all the differentially expressed genes 

Category Term Count P Value Genes 

Annotation Cluster 1 Enrichment Score: 1.63       

GOTERM_BP_ALL 
GO:0032502~developmental 

process 
43 2.39E-03 

CHERP, PLXNA1, AGFG1, FHL1, UTRN, UGDH, ROMO1, PRRX2, MYT1, ADA, HEMGN, 

DFNB31, IGSF10, MUSK, BHLHA15, RASGRP1, PPL, IL1B, AP3D1, PLCD1, DOPEY2, 

ODF1, MB, APC, STX3, CRYAB, NEUROG1, SNAI2, DBH, CSRP3, UBP1, PPP1CB, 

EPHA2, SMTN, ATP2A2, GNAQ, PLN, USP22, HSPD1, GADD45B, SLITRK6, WNT7A, 

TMOD1 

GOTERM_BP_ALL 
GO:0007275~multicellular 

organismal development 
38 8.33E-03 

CHERP, PLXNA1, AGFG1, FHL1, UTRN, UGDH, PRRX2, MYT1, ADA, HEMGN, DFNB31, 

IGSF10, MUSK, PPL, IL1B, PLCD1, DOPEY2, ODF1, MB, APC, STX3, CRYAB, NEUROG1, 

SNAI2, DBH, CSRP3, UBP1, PPP1CB, EPHA2, SMTN, ATP2A2, GNAQ, PLN, HSPD1, 

USP22, GADD45B, SLITRK6, WNT7A 

GOTERM_BP_ALL GO:0030154~cell differentiation 24 1.65E-02 

STX3, AGFG1, FHL1, UTRN, NEUROG1, MYT1, CSRP3, ADA, EPHA2, HEMGN, IGSF10, 

DFNB31, MUSK, GNAQ, BHLHA15, PPL, RASGRP1, ODF1, SLITRK6, GADD45B, 

WNT7A, TMOD1, APC, MB 

GOTERM_BP_ALL 
GO:0048869~cellular 

developmental process 
24 2.55E-02 

STX3, AGFG1, FHL1, UTRN, NEUROG1, MYT1, CSRP3, ADA, EPHA2, HEMGN, IGSF10, 

DFNB31, MUSK, GNAQ, BHLHA15, PPL, RASGRP1, ODF1, SLITRK6, GADD45B, 

WNT7A, TMOD1, APC, MB 

GOTERM_BP_ALL 
GO:0048856~anatomical 

structure development 
32 3.22E-02 

CHERP, AGFG1, FHL1, UTRN, UGDH, PRRX2, MYT1, ADA, DFNB31, IGSF10, MUSK, 

PPL, IL1B, PLCD1, MB, APC, STX3, CRYAB, NEUROG1, SNAI2, DBH, CSRP3, UBP1, 

EPHA2, SMTN, ATP2A2, GNAQ, PLN, HSPD1, SLITRK6, WNT7A, TMOD1 

GOTERM_BP_ALL 
GO:0032501~multicellular 

organismal process 
48 4.83E-02 

CHERP, PLXNA1, AGFG1, TACR2, FHL1, UTRN, UGDH, CNGB1, PRRX2, MYT1, ADA, 

KIFC3, HEMGN, DFNB31, IGSF10, MUSK, RAX2, PPL, P2RY1, IMPG2, IL1B, PLCD1, 

DOPEY2, ODF1, PPAP2A, PLCB2, MB, APC, STX3, CRYAB, KRT12, NEUROG1, SNAI2, 

DBH, CSRP3, UBP1, PPP1CB, EPHA2, SMTN, EPS8, ATP2A2, GNAQ, PLN, USP22, 
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HSPD1, GADD45B, SLITRK6, WNT7A 

Annotation Cluster 2 Enrichment Score: 1.18       

GOTERM_BP_ALL 
GO:0007517~muscle organ 

development 
7 1.12E-02 MUSK, SMTN, CRYAB, FHL1, PLN, UTRN, CSRP3 

Annotation Cluster 3 Enrichment Score: 1.07       

GOTERM_BP_ALL 
GO:0005976~polysaccharide 

metabolic process 
5 1.70E-02 GBE1, GNE, UGDH, PPP1CB, CHST1 

GOTERM_BP_ALL 
GO:0006066~alcohol metabolic 

process 
9 3.69E-02 GPD1L, ACAA2, GBE1, GNE, CRYAB, UGDH, DBH, PPP1CB, CHST1 

GOTERM_BP_ALL 
GO:0005996~monosaccharide 

metabolic process 
6 4.74E-02 GBE1, GNE, CRYAB, UGDH, PPP1CB, CHST1 

Annotation Cluster 4 Enrichment Score: 1.04       

GOTERM_BP_ALL 
GO:0048514~blood vessel 

morphogenesis 
6 3.96E-02 IL1B, PLCD1, PRRX2, DBH, CSRP3, UBP1 

Annotation Cluster 5 Enrichment Score: 1.01       

GOTERM_BP_ALL 
GO:0000302~response to 

reactive oxygen species 
4 2.88E-02 CRYAB, ROMO1, ADA, MB 

Annotation Cluster 6 Enrichment Score: 0.98       

GOTERM_BP_ALL 
GO:0051726~regulation of cell 

cycle 
8 2.78E-02 SKP2, IL1B, NEUROG1, USP22, OBFC2A, GADD45B, PPP1CB, APC 
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Annotation Cluster 7 Enrichment Score: 0.95       

KEGG_PATHWAY 
hsa04020:Calcium signaling 

pathway 
8 1.03E-03 GNAQ, ATP2A2, TACR2, PLN, HTR4, PLCD1, PTGFR, PLCB2 

GOTERM_MF_ALL 
GO:0004629~phospholipase C 

activity 
3 2.89E-02 GNAQ, PLCD1, PLCB2 

Annotation Cluster 8 Enrichment Score: 0.94       

GOTERM_BP_ALL 
GO:0006406~mRNA export 

from nucleus 
3 3.44E-02 ZC3H3, AGFG1, SMG7 

GOTERM_BP_ALL 
GO:0006913~nucleocytoplasmic 

transport 
5 4.99E-02 ZC3H3, AGFG1, SMG7, SPTBN1, TOB1 

Annotation Cluster 9 Enrichment Score: 0.93       

GOTERM_BP_ALL 
GO:0046907~intracellular 

transport 
14 5.44E-03 

ZC3H3, SYNRG, STX3, AGFG1, AP1G1, SMG7, ATP2A2, BHLHA15, RANBP3, SPTBN1, 

AP3D1, GOSR2, DOPEY2, TOB1 

GOTERM_BP_ALL 
GO:0051649~establishment of 

localization in cell 
15 1.85E-02 

ZC3H3, SYNRG, STX3, AGFG1, AP1G1, SMG7, ATP2A2, BHLHA15, RANBP3, AP3D1, 

SPTBN1, GOSR2, DOPEY2, WNT7A, TOB1 

GOTERM_BP_ALL 
GO:0051641~cellular 

localization 
15 3.51E-02 

ZC3H3, SYNRG, STX3, AGFG1, AP1G1, SMG7, ATP2A2, BHLHA15, RANBP3, AP3D1, 

SPTBN1, GOSR2, DOPEY2, WNT7A, TOB1 

Annotation Cluster 10 Enrichment Score: 0.74       

GOTERM_BP_ALL 

GO:0002824~positive 

regulation of adaptive immune 

response based on somatic 

recombination of immune 

receptors built from 

3 2.88E-02 IL1B, HSPD1, ADA 
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immunoglobulin superfamily 

domains 

GOTERM_BP_ALL 
GO:0050870~positive 

regulation of T cell activation 
4 2.98E-02 AP3D1, IL1B, HSPD1, ADA 

GOTERM_BP_ALL 

GO:0002821~positive 

regulation of adaptive immune 

response 

3 3.06E-02 IL1B, HSPD1, ADA 

Annotation Cluster 11 Enrichment Score: 0.69       

GOTERM_BP_ALL 
GO:0002026~regulation of the 

force of heart contraction 
3 8.61E-03 ATP2A2, PLN, CSRP3 

GOTERM_BP_ALL 
GO:0008016~regulation of 

heart contraction 
4 3.09E-02 ATP2A2, PLN, CSRP3, ADA 

Annotation Cluster 12 Enrichment Score: 0.65       

GOTERM_BP_ALL 
GO:0050953~sensory 

perception of light stimulus 
6 4.30E-02 DFNB31, RAX2, IMPG2, KRT12, CNGB1, KIFC3 

GOTERM_BP_ALL GO:0007601~visual perception 6 4.30E-02 DFNB31, RAX2, IMPG2, KRT12, CNGB1, KIFC3 

Annotation Cluster 13 Enrichment Score: 0.60       

GOTERM_BP_ALL 
GO:0051726~regulation of cell 

cycle 
8 2.78E-02 SKP2, IL1B, NEUROG1, USP22, OBFC2A, GADD45B, PPP1CB, APC 

GOTERM_BP_ALL 
GO:0043085~positive 

regulation of catalytic activity 
10 4.14E-02 PSMB4, GNAQ, P2RY1, BIRC7, IL1B, HSPD1, PPAP2A, GADD45B, PPP1CB, PLCB2 
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Annotation Cluster 14 Enrichment Score: 0.55       

GOTERM_BP_ALL 
GO:0003012~muscle system 

process 
6 1.68E-02 SMTN, TACR2, CRYAB, UTRN, IL1B, MB 
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Table 7. Identification of the type of the regulated small nucleolar RNAs 

Name GG GB GG nt GG Name HS GB HS nt HS Coverage (%) Identity (%) Full name 

GGN5 EU240224 135 SNORA55 NR_002983 137 99 81 small nucleolar RNA, H/ACA box 55 

GGN50 EU240266 132 SNORA22 NR_002961 134 99 82 small nucleolar RNA, H/ACA box 22 

GGN73 EU240289 137 SNORA46 NR_002978 135 57 84 small nucleolar RNA, H/ACA box 46 

GGN98 EU240313 129 SNORA28 NR_002964 126 38 84 small nucleolar RNA, H/ACA box 28 

GG = Gallus gallus 

HS = Homo sapiens 
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Table 8. Predicted overexpressed target genes found in miRBase for the differentially expressed 

miRNAs 

gga-miR-196-5p gga-miR-205a gga-miR-1600 gga-miR-1716 gga-miR-1805-3p 

FAM64A LOC425021 ANKRD31 - WDFY3 

 NMT2 PLN 

   PLXNA1 PRRX2 
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Figures 

Figure 1. Validation by qPCR of five differentially expressed genes obtained by microarray analysis. 

(A) Fold changes values obtained from microarrays, (black bars) and from qPCR data (white bars), 

for the five tested genes; (B) scatterplot showing the good correlation between the fold changes 

values calculated with the two experimental methods. 
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Figure 2. KEGG table representing the calcium signalling pathway. The differentially expressed 

genes found are indicated with black circles. 
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Figure 3. A putative mechanism explaining some of the changes occurring in abnormal muscle 

samples deduced from the activities of the differentially expressed genes involved in calcium 

signalling pathway. 
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Figure 4. A schematic representation of one of the possible aetiologies at the basis of white 

striping and wooden breast abnormalities. 
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Supplementary Table S1. Primers and PCR conditions used for the validation performed using qPCR. 

Gene (symbol)   Primer Forward Primer reverse 
Amplicon 

(nt) 

Annealing 

temp. (°C) 

Mg 

(mM) 

Normalizing genes 

glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) 

EXT GTCTGGAGAAACCAGCCAAG AACTGAGCGGTGGTGAAGAG 344 67 3 

INT TGACAGCCATTCCTCCAC TGGACCATCAAGTCCACAAC 126 66 - 

ribosomal protein L32 (RPL32) 
EXT AACAGAGTTCGCAGGAGGTT TTGGTGATCTTGATGGCGAG 245 66 3 

INT(*) ATGGGAGCAACAAGAAGACG TTGGAAGACACGTTGTGAGC 139 66 - 

tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein, zeta 

(YWHAZ) 

EXT TTGATCCCCAATGCTTCGC CCGATGTCCACAATGTCAAGT 379 66 2 

INT(*) TTGCTGCTGGAGATGACAAG CTTCTTGATACGCCTGTTG 60 66 - 

Differentially expressed genes 

ATPase, Ca++ transporting, cardiac muscle, 

slow twitch 2 (ATP2A2) 

EXT GTGCCCCTGAAGGTGTAATC CTTTGGTAGAAACGTCCTCATC 408 65 1.5 

INT GTTGGAAACGCCAAAATACC CGCAGTGTGTCTCTACCAGTTC 92 66 - 

crystallin, alpha B (CRYAB) 
EXT CGCCTGAGGAGCTAAAAGTG CTGGCATCCAATGAGAAGTG 331 65 1.5 

INT GGAGTTCAGCAGGAAATACAGG CAGGACACCATCCAGAGAGAG 82 66 - 

glucosamine (UDP-N-acetyl)-2-

epimerase/N-acetylmannosamine kinase 

(GNE) 

EXT TTCGGGTGATGAGGAAGAAG GTCCCCAGGTTGATGACAGG 175 66 2 

INT TCCCATTTGACCAGTTCATTC ATGCTCCCACTTCTCTGACC 87 66 - 

myoglobin (MB) EXT GGCAACAAGTCCTCACCATC TTGACTGGGATTTTGTGCTTC 276 66 3 
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INT CCATCTGGGGAAAAGTGGAG TCCAAAGTCTCAGGGTGGTC 80 66 - 

prostaglandin F receptor (FP) (PTGFR) 
EXT TGAGTCACCCGTAAGTTCCA AGTGCATCTTCTGGAGTAGC 222 63 3 

INT AAATCTACAGCCGCTCAGC GCCCGTCTATGAGCATTGC 85 66 - 

utrophin (UTRN) 
EXT GTAGGGATGCCGCAGATTT GCAGGAAGTCCCTCTTTTCC 374 66 2 

INT CCAGCGGATAGTGAAGCAA CCTGAATGGCAGCTTTTGA 88 66 - 

(*) These primer pairs are from Bagés et al., 2015. 

EXT: primer pairs used for the amplification of a larger PCR product 

INT: primer pairs used for the creation of the standard curve and for the qPCR analysis 



Supplementary Table S2. List of the differentially expressed genes obtained by microarray 

analysis. 

Supplementary data is available at PSA Journal online. 
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General conclusions 

 

The studies reported in the present thesis were addressed towards the application of OMICs 

tehnologies (mainly genomics, functional genomics and transcriptomics) to deepen the knowledge 

of the chromosomal regions, transcripts and candidate genes affecting complex traits in livestock 

species. The main topic of the research was to investigate the genetic causes determining 

variations in porcine fat traits. To achieve this objective, different strategies have been used: 

OMICs technologies showed to be a useful tool for the detection of markers and transcripts 

related to phenotypic variations in porcine backfat. The results of Genome-Wide Association study 

(GWAS) identified more than thirty different genomic regions associated with backfat composition 

and thickness. About half of these regions were consistent with (or directly related to) QTLs found 

in previous studies, and six regions were new and not yet described in QTLdb. Among the 

identified genomic loci, one region located on porcine chromosome 8 showed the strongest 

associations with backfat fatty acid composition. This region harbours the gene ELOVL elongase 6. 

Through this approach, it was possible to strengthen the hypothesis that ELOVL6 plays an 

important role in determining pig backfat fatty acid composition, affecting in particular the 

content of medium and long chain fatty acids. Furthermore, a transcriptome analysis on backfat 

tissue was performed, and revealed 86 differentially expressed transcripts, 72 more highly 

expressed in animals with increased fat deposition and 14 up-regulated in lean individuals. Almost 

80% of the detected transcripts corresponded to non-annotated isoforms. The results of the 

transcriptome analysis also indicated Perilipin 2 (PLIN2) as a candidate gene for backfat deposition: 

three new transcripts of PLIN2 gene have been detected in our study, and one of them showed to 

be expressed two times more in fat than in lean pigs. This outcome suggests that PLIN2 is strongly 

involved in the metabolic cascade related to subcutaneous fat tissue deposition. For the study of 

some candidate genes obtained from OMICs approaches, the GWAS and transcriptome 

information was integrated with focused association and expression studies. In particular, 

Perilipins were further investigated in order to deepen the information about these genes, poorly 

studied in pigs, but known in other species to be very important for the modulation of intracellular 

fat storage. The results obtained on this gene family can contribute to the knowledge of perilipin 

proteins role in the control of pig fat traits and to better comprehend their connections with other 

genes involved in lipid metabolism. 
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Mutations on PLIN1 and PLIN2 gene sequences have been studied in Spanish Duroc pigs, and the 

obtained associations highlighted an additive effect on backfat thickness at different ages for the 

SNP GU461317:g.98G>A located in PLIN2 3’ untranslated region. On the whole, these evidences 

confirmed the important role that PLIN2 plays in adipocytes metabolism, suggesting that this gene 

may be one of the main actors controlling adipose tissue energy storage. On the other hand, the 

research on porcine PLIN5 confirmed the strong relationship existing between PLIN5 and lipases: a 

SNP located in PLIN5 gene downstream region was studied and resulted to be associated with 

changes in LIPE gene expression. These results may be of particular interest considering that in 

another study we found LIPE protein related to changes in pig Semimembranosus intramuscular 

fat content. If confirmed, the results imply that mutations in PLIN5 gene sequence may affect 

lipases gene activity and indirectly the intracellular content of stored lipids. The association found 

between the SNP lying in the downstream region of PLIN5 gene and the transcription levels of LIPE 

gene was observed in both Italian Duroc and Italian Large White pigs, while PLIN5 gene expression 

levels differed between the two breeds. On the whole, samples belonging to Italian Duroc and 

Italian Large White breeds presented differences in the expression levels of several genes involved 

in energy and fat metabolism: in particular, PLIN5 and ACLY showed transcription levels differing 

between Italian Duroc and Italian Large White Semimembranosus muscle, and FASN, ACLY and 

ACACA genes had distinct transcription levels in backfat samples. Therefore, our results confirm 

the evidences obtained in other studies: adipogenesis and fat metabolism differ among distinct 

breeds, suggesting that there may be breed-specific genetic and metabolic backgrounds affecting 

fatness. The different metabolic aptitude between breeds to deposit lean and fat tissues can be 

used for the understanding of the molecular pathways leading to a switch in the use of energy 

from adipogenesis towards muscle deposition. On the whole, the application of genomics and 

transcriptomics to the study of pig fat traits has proved to be an important tool for increasing the 

knowledge of the fat-related genes and can help improving livestock performances and animal 

products quality.  

OMICs technologies were also used to investigate colostrum composition in a preliminary study. 

This explorative research demonstrated that colostrum metabolome is affected by breed, with 

Duroc sows showing colostrum compositions unlike any other. This evidence represents a 

preliminary result and suggests that variations in colostrum composition could have a genetic 

basis. The comprehension of the genetic determinism affecting this secretion would provide genes 

and markers extremely important for the deciphering of the genetic background of pig maternal 
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traits. However, further studies to investigate whether breed could affect also colostrum fat 

composition are in progress. 

Furthermore, in addition to transcriptomics, a gene expression profiling was also assessed using 

microarray technology to investigate the onset of white striping wooden breast myopathies in 

chickens. The results returned 204 differentially expressed genes, mainly belonging to pathways 

associated with muscle development, polysaccharide metabolic processes, proteoglycans 

synthesis, inflammation and calcium signaling pathway. These data suggest that the considered 

myopathies have a complex multifactorial etiology; anyway the microarray analysis highlighted 

that one possible explanation for the occurrence of this pathology may be an insufficient 

vascularization of breast muscle, likely consequent to abnormal activities of angiogenic processes 

and genes (such as IL1B). 

On the whole, the application of genomics, transcriptomics and metabolomics showed to be an 

effective tool to identify genetic variations associated to complex traits in different livestock 

species, and to detect genes and markers involved in phenotypic variations. The combined 

approach of OMICs technologies and single gene studies can be considered a useful strategy to 

overcome the limits of traditional genetic selection in livestock, permitting a deeper deciphering of 

genetics of polygenic and low heritable traits. Nevertheless, further studies are needed to achieve 

a deeper comprehension of the molecular pathways leading to the different productive 

performances in livestock species, since new information could provide tools useful for a more 

effective genetic selection. 

 

 


