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Abstract 

Parkinson’s disease (PD) is a common neurodegenerative disorder. Recent evidence points towards 

increased synchronous neuronal oscillations of the cortico-thalamic-basal ganglia circuits in the 

beta band (12–30 Hz) as the main pathophysiological abnormality associated with PD. Deep brain 

stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for improving PD 

motor symptoms. However, the current DBS systems have several limitations, mainly related to the 

fixed and continuous application of stimulation. Especially in the long-term, DBS can only partially 

control clinical fluctuations and can exacerbate undesirable adverse effects often reversible with a 

change of stimulation parameters. A new strategy called adaptive DBS (aDBS) allows for 

continuous adaptation of STN stimulation to the patient’s clinical state by directly harnessing the 

recordings of the STN pathological oscillatory activity or local field potentials (LFPs).  

At present, however, the lack of understanding of DBS and PD pathophysiological mechanisms, 

represents a challenge to the realization of aDBS devices. Despite the evidence that LFPs 

(especially beta oscillations) correlate with a wide spectrum of PD motor and non-motor symptoms, 

whether or not the statistical correlation is enough for controlling DBS remains unclear. 

With this project, we aimed to accelerate the clinical translational process by suggesting a pathway 

to the clinical practice. To do so, we developed an external portable LFPs-based aDBS device for 

clinical investigations in acute experimental sessions, which we validated in vitro and in vivo 

(Chapter 2). We then conducted a proof of concept study investigating the functioning of the device 

and comparing aDBS and conventional DBS (cDBS) and how they interacted with the concurrent 

pharmacological treatment (Chapter 3). Then, in a second proof of concept study, we monitored the 

clinical and neurophysiological fluctuations over a period of eight hours with and without aDBS. 

We thus investigated the preservation of LFPs-clinical state correlation and the aDBS management 

of motor fluctuations during daily activities (Chapter 4). Because in the clinical practice the DBS 

therapy is provided by means of implantable pulse generators (IPGs), we evaluated whether the 

proposed aDBS approach, based on real-time LFPs processing, fits the power constraints of 

implantable devices (Chapter 5). Finally, we contextualized our results and proposed an overview 

of the possible pathways toward the clinical practice (Chapter 6).   
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1 Introduction 

1.1 Parkinson’s disease 

Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused by the death of the 

cells in the substantia nigra (SN) (Lang & Lozano, 1998). After Alzheimer’s disease, PD is the 

second most common neurodegenerative disorder for diffusion. Globally there are almost 5 million 

people effected by PD (Muangpaisan et al., 2011), and a projection study reported that between 

2007 and 2030 the number of cases will double (Dorsey et al., 2007). The etiology of PD remains 

unclear. Both environmental and genetic factors contribute to the onset of the disease.  

Parkinson’s disease is mainly characterized by three cardinal symptoms: bradykinesia, rigidity and 

tremors (Lang & Lozano, 1998). However, it is a complex disease that presents a wide spectrum of 

motor and non-motor symptoms. Bradykinesia refers to a slowing of movement and a prolonged 

time between a movement’s initiation and completion. The term is sometimes used as a synonym of 

hypokinesia, and its more severe form akinesia, although bradykinesia emphasizes delayed 

execution time and akinesia delayed reaction time (Berardelli et al., 2011). Rigidity refers to an 

alteration of the tone of muscles even when the patient is in a relaxed condition. Tremor is a 

rhythmic movement, with a frequency ranging between 4 and 6 Hz, generally involves hands, and 

occurs when the patient is at rest. When motor symptoms appear, the SN has already lost 60–80% 

of dopaminergic neurons. 

At present, the neurodegenerative process of PD patients cannot be reversed or stopped, and 

existing treatments can only manage the disease and relieve the symptoms. The most effective 

treatment is the pharmacological treatment based on levodopa administration 

(L‑ dihydrophenylalanine). Levodopa can ameliorate motor symptoms, but has a few side effects. 

This treatment is valid in the short term, because, in the long term, motor fluctuations and 

dyskinesias occur in association with levodopa therapy (Del Sorbo & Albanese, 2008). 

Antiparkinsonian medication guarantees good motor control for an average interval of four to six 

years, after that the benefit induced by dopaminergic treatment starts wearing off after four to five 

hours. This window of time becomes progressively shorter with the progression of the disease, and 

the state of the patient begins to fluctuates (motor fluctuations) between the “on” time (when the 

medication attenuates symptoms) and “off” time (when the mediation has no effects). After months 

or years, the patients start to experience peak-dose levodopa dyskinesias, which consists of 

involuntary movements occurring during peak levels of dopamine concentration. The management 

of motor fluctuations at this stage of the disease requires a trade-off between the levodopa dose 
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needed to effectively improve motor symptoms and the dose that will avoid peak dose dyskinesias. 

The ideal therapy should therefore minimize “off” time and avoid peak dose dyskinesias during 

“on” time; however, the therapeutic window narrows over time. Finally, when the motor 

fluctuations cannot be adequately controlled by medication, surgery for deep brain stimulation 

(DBS) is considered. 

Deep brain stimulation is an invasive treatment based on high-frequency electrical stimulation of 

deep brain areas. It is considered for the clinical treatment of PD, dystonia and essential tremor 

(ET), and experimental studies are ongoing for its use in treating a wide range of other neurological 

disorders. The DBS electrodes are surgically implanted, and they deliver electrical stimulation 

generated by an implantable pulse generator (IPG). A more detailed description of the DBS is 

presented in the following sections.  

1.2 Functional anatomy and physiology of the basal ganglia 

The basal ganglia (BG) are a part of the motor system consisting of a group of subcortical nuclei 

including the subthalamic nucleus (STN), striatum (dorsal striatum: caudate nucleus, putamen; 

ventral striatum: nucleus accumbens), globus pallidus and subtantia nigra pars reticulata (SNr) 

(Albin et al., 1989). The globus pallidus is divided into the internal (GPi) and the external (GPe), 

and the SN is divided into the substantia nigra pars compacta (SNc), dopaminergic neurons, and 

SNr, along with neurons related to gamma-aminobutyric acid (GABA) receptors (i.e. GABAergic 

neurons) (Fig. 1.1).  
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Figure 1.1 The anatomy of basal ganglia (image source: JA Obeso et al.2014) 

As described by Fig. 1.2, the striatum represents the input point of the BG, while the outputs are the 

STN, GPi, GPe. The cortical excitatory signals first reach the striatum and then are propagated over 

the direct and the indirect pathway, respectively, toward the GPi and STN and GPe. More recent 

models also highlight the relevance of the hyperdirect pathway between the cortex and the STN. 

This classical model provides a heuristic explanation of cardinal PD symptoms as a result of a 

modified equilibrium between the direct and indirect pathways, and today, despite its 

oversimplification, this explanation still maintains its core validity (DeLong, 1990; Herrington et 

al., 2016). More recent models highlight also the relevance of the hyperdirect pathway between the 

cortex and the STN, and other more complex network mechanisms (not discussed here, for 

simplicity). The loss of dopamine neurons in the SNc results in a disruption of the striatal 

physiology. It is thought that in the normal state (Fig. 1.2a), dopamine inhibits the indirect pathway 

and excites the direct pathway. In the parkinsonian state (Fig. 1.2b), the striatal neurons of the direct 

pathway that express dopamine D1 receptors become less active as a consequence of dopamine 

depletion, whereas those that bear dopamine D2 receptor-bearing in the indirect pathway are more 

active. When this happens, the GPe is inhibited, and the STN is excited. The STN has an excitatory 

projection to the GPi, which results in the inhibition of thalamocortical and brainstem motor centers 

(Obeso et al., 2014). 
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Figure 1.2 Functional basal ganglia model (image source: Herrington et al.2016) 

 

Despite this anatomo-functional model, the mechanisms of the pathophysiology of BG leading to a 

parkinsonian state remains unclear. We here discuss the main theories, classified as proposed by 

Chiken and Nambu (2016).  

Firing rate model. The firing model is based on the above-mentioned classical model (Albin et al., 

1989; DeLong, 1990). The dopamine depletion results in excessive GPi and SNr firing (“firing 

rate”), which inhibits the thalamocortical output. Conversely, a reduced GPi firing rate would cause 

a lack of inhibition of the thalamo, resulting in involuntary or hyperkinetic movements. Such a 

model can, therefore, explain both hypokinetic and hyperkinetic disorders and has also found 

confirmation in PD animal models (Bergman et al., 1990).  

Firing pattern model. The excessive coupling between GPe and STN, caused by the loss of 

dopamine cells, can enhance oscillatory activity in the BG loop. This model is based on the 

assumption that oscillatory activity detected in the nuclei of the BG, STN, GPe, and GPi originates 

from abnormally increased synchronizations of single neurons that, in turn, lose the ability to 

adequately process motor information.  

Dynamic activity model. This model is based on the hypothesis that in normal state the desired 

motor program is realized through time-locked changes at the level of the GPi, resulting in GPi 

inhibition or excitation depending on the specific motor task. If the potential to modulate the GPi 

dynamically decreases then the BG results in a reduced or increased thalamocortical activity 

depending on the balancing between the indirect and direct pathways (Nambu et al., 2015).    
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1.3 Deep brain stimulation 

1.3.1 Deep brain stimulation mechanisms 

Although deep brain stimulation (DBS) has proven to be an effective treatment for hypokinetic and 

hyperkinetic movement disorders, the mechanisms by which it achieves results are still under 

debate. In PD, the prevalent sites of implant are the STN and the GPi, which provide the best motor 

outcomes. Here, we present the three cardinal hypotheses concerning DBS mechanisms, but a 

deeper discussion, including recent findings, is offered in the final chapter.    

Inhibition hypothesis. Because DBS and lesion therapy have been shown to induce similar 

improvements in the motor symptoms (Benabid et al., 1994), it has been suggested that the 

mechanism of action of DBS was the inhibition of the neurons around the electrode. A reduction of 

the output of the site of implant was found in human recordings (Dostrovsky et al., 2000; Welter et 

al., 2004) and in animal models (Benazzouz et al., 2000). Mechanisms that might explain the 

inhibitory effect of DBS include depolarization block, inactivation of voltage-gated currents, and 

activation of inhibitory afferents (Chicken & Nambu, 2016). 

Excitation hypothesis. Successive studies have shown that DBS also has an excitatory effect, 

resulting in increased activity of the downstream nuclei. In a parkinsonian monkey, the activity of 

the GPi was increased by means of STN stimulation (Hashimoto et al., 2003). This effect, despite 

sounding paradoxical, finds an explanation in that DBS, while inhibiting local cells body, excites 

efferent and afferent fibers. Modeling studies confirmed that axons are sensitive to DBS (McIntyre 

et al., 2004), and spikes are locked in time with stimulus.   

Informational lesion and prokinetic oscillation enhancement. These theories are grounded in the 

hypothesis that abnormal oscillatory activity diffused over the entire BG network can be disrupted 

(informational lesion) or substituted with a more physiological effect (prokinetic oscillation 

enhancement) by high-frequency stimulation, thus preventing the spread of the pathological 

rhythmic and information contents.  

1.4 Adaptive deep brain stimulation 

1.4.1 The concept and rationale of adaptive deep brain stimulation 

Despite the evidenced clinical outcomes of DBS, this treatment still suffers from adverse motor 

symptoms and suboptimal clinical fluctuations control. For instance, the adjustment of stimulation 

parameters can help to avoid motor symptoms induced by STN-DBS (Bronstein et al., 2011; Yu 

and Neimat, 2008; Frankemolle et al., 2010) stimulation-induced hemiballism (Limousin et al., 

http://topics.sciencedirect.com/topics/page/Subthalamic_nucleus
http://www.sciencedirect.com/science/article/pii/S0014488612003755#bb0015
http://www.sciencedirect.com/science/article/pii/S0014488612003755#bb0350
http://www.sciencedirect.com/science/article/pii/S0014488612003755#bb0350
http://www.sciencedirect.com/science/article/pii/S0014488612003755#bb0090
http://topics.sciencedirect.com/topics/page/Hemiballismus
http://www.sciencedirect.com/science/article/pii/S0014488612003755#bb0165
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1996; Limousin et al., 1998), and motor side effects such as dyskinesias (Hamani et al., 2005), 

speech and gait (Bronstein et al., 2011). Moreover, it was noted in a long-term follow-up study that 

the higher the number of follow-up visits for DBS parameters adjustment is, the more positive the 

DBS clinical outcomes are (Moro et al., 2006). For all these reasons, DBS needs further 

improvement. The recent research and technological innovations in the field of neurophysiology, 

neuroimaging, and neural engineering are providing new opportunities to explore the PD 

pathophysiology and DBS mechanisms, and they are moving toward a process of DBS therapy 

personalization. In the effort to cluster such innovations, we identify two main directions (Fig. 3): 

DBS space resolution improvement, which includes current steering (Barbe et al., 2014; Pollo et al., 

2014) and dual stimulation (Sims-Williams al., 2013); and DBS time resolution improvement, that 

is, adaptive deep brain stimulation (aDBS) (Priori et al., 2013) and coordinated reset (CR) 

(Adamchic et al., 2014). Data collection, mediated by an online database, constitutes a third 

direction, which provides useful information through data mining (Rossi et al., 2014). However, 

technological innovations may not find clinical application, and further steps, especially in the basic 

research, are needed to prove their effectiveness and feasibility. In this scenario, the idea of an 

“intelligent” DBS system, which can adapt stimulation parameters over time in relation to symptom 

fluctuations and adverse effects, has garnered much interest (Burgess et al., 2010; Rosin et al., 

2011; Santaniello et al., 2011; Winestone et al., 2012) and has been generally referred to as “aDBS” 

or “closed-loop DBS” (Fig.).  

 

Figure 1.3 Technological innovations 

 

http://www.sciencedirect.com/science/article/pii/S0014488612003755#bb0165
http://www.sciencedirect.com/science/article/pii/S0014488612003755#bb0160
http://www.sciencedirect.com/science/article/pii/S0014488612003755#bb0115
http://www.sciencedirect.com/science/article/pii/S0014488612003755#bb0015
http://www.sciencedirect.com/science/article/pii/S0014488612003755#bb0040
http://www.sciencedirect.com/science/article/pii/S0014488612003755#bb0275
http://www.sciencedirect.com/science/article/pii/S0014488612003755#bb0275
http://www.sciencedirect.com/science/article/pii/S0014488612003755#bb0295
http://www.sciencedirect.com/science/article/pii/S0014488612003755#bb0335
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An aDBS system should update stimulation parameters, based on a control variable or a set of 

control variables that reflect the patient’s clinical state. 

 

 

Figure 1.4 Adaptive DBS model (image source: Priori et al.2012) 

At present, the concept of aDBS is widely pursued in the literature, but concrete evidence about its 

applicability are still lacking and different approaches and strategies have been proposed to 

accelerate the translational process. To this end, several critical issues need to be overcome, firstly 

the choice of the control variable and the feedback algorithm, the technical constrains of 

implantable devices (size and power consumption) and the practical consequences, such as changes 

in the surgical procedures and the need for additional devices.    

Ideally, the optimal aDBS system should improve the clinic outcomes of conventional DBS without 

implying changes in the surgical procedures or adding more devices, unless they alleviate or 

overcome the discomfort of the patient. Moreover, because the PD clinical signs vary with the 

phenotypical features of the disease, the possibility that more than one optimal aDBS strategy exists 

cannot be ignored, well as the use of a more than one control variable or feedback algorithm.  

In the following sections, we review the current approaches classified on the basis of the control 

variable, its consequences from the perspective of technological design and surgical procedure, and 

its goodness as a biomarker for a specific PD clinical sign. 
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1.4.2 Control variables 

 

Figure 1.5 Proposed control variables for aDBS 

Surface EMG and accelerometers. Surface electromyography (sEMG) and accelerometers have 

been proposed to detect, predict, and control tremors in PD (Basu et al., 2013; Shoukla et al., 2012) 

and in ET patients (Basu et al., 2011; Shukla et al., 2013; Yamamoto et al., 2012). Algorithms 

based sEMG and accelerometer signals recorded at the symptomatic limb have performed very well 

in in tremor prediction, achieving an accuracy of 80% and a sensitivity of 100% (Basu et al., 2013). 

Surface EMG and accelerometer signals can be recorded by means of wearable devices, which 

implies wireless communication with the IPG to trigger or modulate stimulation. Current DBS 

systems already have telemetry links and, conveniently, the feedback algorithm can be executed on 

the wearable device, thus exploiting higher processing possibilities. This capability would not 

require changes in the design of the device and, as consequence, in the surgery procedures. 

However, wireless links in implantable devices are based on inductive coupling or 2.4 GHz RF 

protocols; in the first case an additional device aligned with the coil of the IPG would be needed, 

and in the second, current drawn from the battery would drastically increase. Moreover wearing 

external devices could be uncomfortable and unmanageable for the patient. While accelerometer 

signals are easily detectable, sEMG is effected by several sources noise (Clancy et al., 2002), and 

long-term consistency is influenced by factors such as electrode positioning, motion, and contact 
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impedances. Lastly, using sEMG and accelerometers does not allow one to track other cardinal 

symptoms, such as rigidity. 

Cortical neuro signals. Single- and multi-unit activity and electrocorticography (ECoG) have been 

widely investigated for neuroprostheses (Tsu et al., 2015) and epilepsy closed-loop devices (Vonck 

et al., 2015). Single- and multi-unit activity signals ensure high temporal and spatial resolution 

(Stavinsky et al., 2015) and are mainly recorded by means of micro-electrode arrays (MEAs), thus 

exhibiting low signal stability over time (Shenoy et al., 2014). Electrocorticography-based 

implantable devices for seizure detection are, instead, already commercially available for chronic 

applications (Sun et al., 2014). Multi-unit activity and ECoG have been studied in PD patients and 

PD animal models (monkey) to better understand the processing mechanisms of cortical-basal 

ganglia circuits and to develop closed-loop strategies (Rosin et al., .2011; de Hemptinee et al., 

2015).  

Reportedly, providing short train of DBS pulses (seven pulses at 130 Hz), in a 1-methil-4-phenyl-

1,2,3,6-tetrahyhydropyridine (MPTP) primate model of PD implanted in the GPi, 80 ms after an 

action potential is detected from the motor cortex (M1 area) can concurrently reduce akinesia and 

pallidal oscillations more than conventional DBS (Rosin et al., 2011). 

Recently, Hemptinne et al. (2015) showed that in ECoG signals recorded form M1 motor cortex of 

PD patients, the phase-amplitude coupling (PAC) between beta and gamma oscillations is 

significantly reduced for motor tasks, and rigidity improvements. 

From the physiological perspective, it is, therefore, reasonable to use cortical signals as a control 

variable, considering also that the distance from the stimulating area would prevent or decrease the 

stimulation artifact. However, sensing electrodes should be hypothetically distributed over a wide 

cortical area to cover function connections. Finally, employing new sensors implies introducing 

changes in the surgical procedures.  

Neurochemical signals. Stimulation can induce dopamine responses that can be quantified and 

potentially used as a control variable (Chang et al., 2013). The dopamine release can be measured 

through carbon fiber microelectrodes (CFMs) for in vivo fast-scan cyclic voltammetry. These 

electrodes have been implanted in the striatum of four anaesthetized rats to characterize the 

relationship between dopamine levels and stimulation parameters (Crahn et al., 2014). Interestingly, 

DBS determinates increased level of dopamine for a duration comparable to tremor-free periods 

(Graupe et al., 2014). Despite that neurochemical signal measurements have important implications 

in unveiling DBS mechanisms, their applicability in experimental and clinical in vivo protocols in 
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humans still faces technical issues (four adjunctive electrodes are necessary, and the lifetime of 

CFM is limited to a few months) (Chang et al., 2013). 

Basal ganglia (BG) local field potentials. The introduction of DBS therapy opened the possibility to 

investigate the neurophysiological mechanisms of BG by recording the neuronal activity of the 

target area from the DBS electrodes. The low-frequency oscillatory components of the electrical 

activity of the neuronal population around the electrode are called local field potentials (LFPs), 

representing the state of synchrony of a neural ensemble. 

Consistently with electroencephalography (EEG) oscillations, BG LFP oscillations, can be clustered 

into frequency bands: very low frequencies (LFs) (2–8 Hz), alpha frequencies (8–12 Hz), low beta 

frequencies (12–20 Hz), high beta frequencies (20–35 Hz), gamma frequencies (60–80 Hz), and very-

high frequencies (250–350 Hz). The temporal and frequency features of these oscillations have been 

shown to change in response to the patient's clinical state, during movement execution, and also with 

cognitive and behavioral stimuli (Foffani et al., 2005a; Kuhn et al., 2009; Marceglia et al., 2011). 

The beta oscillatory activity recorded from the STN of PD patients is, at present, the most studied and 

debated frequency band. Beta oscillations are, in fact, modulated by dopaminergic medication (Priori 

et al., 2004) and electrical stimulation (Eusebio et al., 2011; Giannicola et al., 2010), and they 

correlate with movement preparation and execution (Foffani et al., 2005a), akinesia (Kuhn et al., 

2009), and freezing of gait (Toledo et al., 2005). Parkinson’s disease motor and non-motor symptoms 

have also been correlated to other frequency bands: The LFs are associated with the occurrence of 

dyskinesias (Foffani et al., 2005b; Alonso-French, 2006), the alpha correlates with the gait speed 

(Thevathasan et al.), and the gamma has a prokinetic role (Florin et al., 2013). Because of the 

correlation with the major clinical signs of PD, the LFP has been proposed as control variable (Priori 

et al., 2013; Little et al., 2012).  

From a technological perspective, the implanted DBS electrodes are suitable for long-term 

recordings. Classical models of DBS microelectrodes (i.e. Model 3389, Medtronic, Minneapolis, 

USA) are fabricated with platinum-iridium (Pt-I) cylindrical contacts with a large surface, along with 

low and stable impedances. Therefore, an aDBS device, based on LFPs would not need any additional 

electrodes or external implants, thus leaving the technical procedure unchanged. On the other hand, 

they anyway require the modification of the electronic board of IPGs in order to add analog circuits 

for neuro-signal recordings that are technically feasible (Rouse et al., 2012). 
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sEMG and 

accelerometers 
Cortical 

neurosignals 

Basal 

ganglia 

LFPs 
Neurotransmitters 

Additional 

implant/equipment 
YES – External 

sensors are required.  
YES – Implanted 

cortical electrodes 

are required. 

NO – LFPs are 

recorded from 

the implanted 

DBS electrode. 

YES – At least 4 

additional CFMs are 

needed. 

Changes in the surgical 

procedures 

NO – The additional 

implant is external 

and does not effect 

the surgical 

procedure. 

YES – The surgery 

needs to include the 

implant of cortical 

electrodes. 

NO – No 

additional 

implant is needed 

during surgery. 

YES – The additional 

CFMs need to be 

implanted during surgery. 

Patient’s 

management/acceptability 

NO – It may be 

difficult to manage 

the recording sensors, 

and the external 

equipment may be 

uncomfortable. 

YES – All the 

equipment is 

implanted. 

YES – The 

patient receives 

the same system 

as for traditional 

DBS. 

NO – CFMs have a 

lifetime of only a few 

months and have to be 

replaced. 

Correlation with the 

clinical state 

YES or NO – 

Optimal correlation is 

present with the 

tremor, but no 

correlations with 

rigidity and 

bradykinesia. 

YES – ECoG 

phase-amplitude 

coupling and M1 

action potentials 

correlate with main 

PD symptoms and 

can be used to drive 

aDBS. 

YES – Multiple 

LFP oscillations 

are modulated by 

levodopa 

administration, 

DBS, 

movements, and 

non-motor tasks 

even years after 

electrode 

implant. 

YES - The duration of the 

tremor-free period is 

comparable to the 

duration of increased 

levels of stimulation-

induced dopamine release 

after DBS pulse trains. 

Personalization and 

adaptability 

NO – It cannot be 

used if patients do not 

show tremor. 

YES/NO – It may 

encode patient-

specific 

information. 

YES – The 

presence of 

multiple rhythms 

correlating with 

different patient’s 

characteristics 

may account for 

inter-subject 

variability. 

NOT YET TESTED 

Low battery consumption 

YES/NO – The 

processing can be 

done externally, but 

triggers should be 

sent via telemetry 

links. 

YES/NO – The 

IPG needs to 

include the sensing 

circuit and the 

feedback algorithm. 

YES/NO – The 

IPG needs to 

include the 

sensing circuit 

and the feedback 

algorithm. 

NO – The IPG needs to 

include the sensing circuit 

and the feedback 

algorithm. 

Table 1.1 Advantages and drawbacks of proposed control variables for adaptive deep brain 

stimulation (aDBS). 
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2 Design and implementation of an external portable 

device for clinical research of adaptive deep brain 

stimulation  

2.1 Introduction 

We designed, implemented and validated an external portable adaptive deep brain stimulation 

(aDBS) device based on LFP feedback, aiming to investigate neurophysiological and DBS 

mechanisms of action, and aDBS feasibility and efficacy. It was intended for use during 

perioperative experimental sessions in patients having DBS leads externalization. After the surgery 

for DBS electrodes implantation, they can be externalized and used both for recording and 

stimulating. Our goal was to design a device that was portable (to allow the patients to move as 

freely as possible), reprogrammable (to change and allocate new processing and closed-loop 

algorithms) and safe (to avoid unwanted risk for the patients). In this chapter, we discuss the 

requirements and the implementation of the aDBS device, and the validation tests in vitro and in 

vivo. No details are provided at this stage about the closed-loop strategy; here, we focused on the 

validation of its sensing and processing capability. Because an essential feature of the device is to 

change the stimulation parameters in response to a change in the input control variable, we tested its 

feature in vitro with a sample closed-loop algorithm. 

2.2 Design and implementation 

2.2.1 Requirements for sensing local field potentials during deep brain 

stimulation 

The sensing problem. The problem of recording local field potentials (LFPs) during deep brain 

stimulation (DBS) was addressed for the first time by Rossi and colleagues (Rossi et al., 2007), who 

developed a biopotential amplifier able to reject the stimulus artifact from the signal and isolate the 

LFP component. The DBS stimulus artifact consists of harmonics of 130 Hz (Stanslaski et al., 

2012), while the interested frequencies of LFPs, especially beta oscillations, are under 40 Hz. The 

strategy proposed by Rossi et al. (2007) is based on the frequency separation of the stimulation 

artifact by means of a low-pass analog filter following a low gain differential amplification stage. 

The same strategy has been used in other works (Denison et al., 2007; Zbrzeski et al., 2013). An 

alternative solution to the artifact removal problem is the digital subtraction of template matching 

(Hashimoto et al., 2002), but although it can extract LFP content offline it is not suitable for online 

processing. 
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The low differential gain avoids saturation effects caused by the high magnitude of the stimulation 

artifact compare to the LFPs. The low-pass filter suppresses the stimulation harmonics in order to fit 

the rail-to-rail voltage supply range. Rossi et al. (2007) developed a recording chain having a +/− 15 

V rail-to-rail voltage supply and used off-shields components for the instrument amplifier (INA111) 

and the filter cells (OPA602), the device was sourced by the power line. We here review the 

development requirements proposed by Rossi et al. (2007) to fit the technical constraints of a 

portable device with a lower rail-to-rail voltage supply, lower dimensions, and limited power 

sources.  

Requirements definition. The requirements definition was done on the basis of the previous works 

and LFPs recordings in vivo. In particular, we characterized the LFP signals and the artifact 

magnitude. 

The interested frequency band in LFPs was chosen between 2 and 40 Hz (Rossi et al., 2007), 

including LF, alpha and beta oscillations. The mean power of beta oscillations (+/− 2 Hz the beta 

peak) was reported to be between 1.1 𝜇𝑉𝑟𝑚𝑠 and 7.2 𝜇𝑉𝑟𝑚𝑠 (Yoshida et al., 2012). To confirm 

and expand the requirement, we repeated the measurement in a data sample from previous LFP 

recordings (Marceglia et al., 2006). The data were relative to PD patients recorded from the STN 

after 12 hr of medication withdrawal; for convenience, we hereafter refer to this medical condition 

as the “baseline” clinical state. Each LFP data sample was of a 30 s length, and was divided by the 

total acquisition gain and then filtered between 3 and 30 Hz without phase distortions. The power 

spectral density (PSD) was computed with the Welch method (“pwelch” function, Matlab) with 1 s 

non-overlapping Hanning windows. The windowing operation was done to avoid power leakage 

(Press et al., 1992), but then the result was multiplied for a correcting factor (0.375 for Hanning 

window) to account for the power reduction caused by the windowing. We obtained a peak spectral 

density ranging from 300 𝑛𝑉/√𝐻𝑧 to 1500 nV/√Hz, and a band power ranging between 1.2 and 7.7 

𝜇𝑉𝑟𝑚𝑠, which were consistent with the literature (Yoshida et al., 2012). 

The stimulation artifact was decomposed and characterized as in Rossi et al. (2007). The differential 

part of the artifact was called differential mode artifact voltage (DMAV) and common mode artifact 

voltage (CMAV). We assumed, conservatively, the maximum value of the CMAV to be 10.5 V. 

The DMAV was reported to have a maximum peak-to-peak value of 5 mV (Rossi et al., 2007); 

however, it was obtained in vivo by recording the artifact with a standard amplifier having a high 

corner frequency at 1 KHz, which cuts the high-frequency components of the stimulation artifact, 

thus resulting in a lower peak-to-peak amplitude. To derive a new measure, we used software 

(Matlab) to simulate a stimulus artifact as a train of Dirac’s Delta functions at 130 Hz, then we 
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applied a one-pole low-pass Butterworth filter with a 1 KHz cutoff frequency and 10 KHz, which is 

the intrinsic pole of operational amplifiers. In the latter case, the filtered output was 10 times bigger, 

so we fixed the DMAV at 50 mV instead of 5 mV peak to peak. The DMAV requirement was used 

to regulate the gain and the degree of the low-pass suppression, while the CMAV was used to 

define the common mode rejection ratio (CMRR), which, in general, is always required to be high 

(>100 dB) for bio-potential measures. 

2.2.2 Hardware for sensing local field potentials  

The analog front end for signal recording and stimulation artifact suppression was designed in three 

blocks: differential pre-amplification stage, analog low-pass filtering, final single-ended 

amplification stage. 

 

 

Figure 2.1 a) Schematic block of the analog front-end, b) Schematic representation of the 

differential pre-amplification stage 

The differential amplification stage has been implemented using a commercial instrumentation 

amplifier (Model INA118, Texas Instruments, USA) supplied at +/−5 V. 

To avoid the saturation of the instrumentation amplifier, a passive pre-filtering network was placed 

before the front-end. It provided fully differential high-pass filtering that blocks the DC component 

(Spinelli et al., 2003) and low-pass filtering to smooth the CMAV and the DMAV (−10 dB at 

130 Hz). The differential amplification was set at Gdiff = 46 dB, while the common mode rejection 

was guaranteed by high CCMR of the instrumentation amplifier (INA118). 

In the second stage, we used an eighth-order low-pass Butterworth filter (Model LTC1064-2, Linear 

Technology, USA) with cut-off frequency at 40 Hz to suppress the DMAV, providing −81 dB at 
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130 Hz. The low input noise (10 nV/√Hz) of the selected instrumentation amplifier (INA118) 

guarantees an input signal-to-noise ratio of bigger than 1.  

The final amplification stage includes a single-ended non-inverting amplifier with a fixed gain 

(G = 34 dB). The signal recording was performed with the MSP430FG4618 Mixed-Signal 

Microcontroller (MCU) (Texas Instruments, USA) powered at 3 V, which provided a 12 bit analog-

to-digital converter (ADC) with 1.5 V dynamic range, whose reference was external (+7.25 V). 

2.2.3 Requirements for processing  

As discussed earlier (see Section 1.4.2), the research on local field potentials (LFPs) was based in 

most of cases on the power analysis of the most physiologically relevant bands, low frequencies (4–

7 Hz), alpha (8–11), low beta (12–20 Hz), high beta (20–35 Hz), high gamma (60–80 Hz), and 

300 Hz (270–330 Hz), and their correlation with clinical signs. The occurrence and the duration of 

clinical signs have defined temporal features. Tracking the power changes of a certain frequency 

band is, therefore, a processing requirement. The choice of the temporal resolution for the time-

frequency analysis depends upon the observed phenomena. The de-synchronization of beta 

oscillations induced by levodopa administration have a different time scale (2–5 min; Priori et al., 

2004) than during self-paced movements (0.5/1 s; Foffani et al., 2005), and DBS-induced 

modulations may occur in 3 min (Rosa et al., 2010). The time resolution should be therefore 

programmable, as well as the band selection. Because most studies have selected a 5 Hz band 

around the peak, the desired frequency resolution should be lower than 5 Hz. 

2.2.4 Firmware implementation 

The firmware was implemented on a low-power MCU (MSP430FG4618). The signal was 

digitalized by the ADC peripheral of the MCU at a sampling frequency of 256 Hz. Every second, a 

256-point complex fast Fourier transform (FFT) was computed. The FFT was implemented with the 

Cooley-Tukey algorithm (Cooley & Tukey, 1965). The module of the FFT was calculated between 

5 Hz and 30 Hz, and each frequency bin was normalized for the total power within this band. The 

power of the selected band was calculated and then smoothed iteratively with an exponential 

forgetting factor. Both the band power and the forgetting factor were user selectable.  

Because we based our validation method (see Section 3.1.2) on levodopa-induced modulations of 

beta oscillations, and because of the above-mentioned time course of levodopa-induced 

modulations, we set the forgetting factor to 0.98, leading to a time constant of 50 s.  
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2.3 Validation 

2.3.1 Methods 

2.3.1.1 In vitro experimental set-up 

We configured a workbench experimental set-up to test the sensing and processing features of the 

device. The goal was to emulate the in vivo experimental conditions. To do so we used a DBS 

electrode (Model 3389 Medtronic, Minneapolis, USA) merged in saline solution (0.9% NaCl, 

Bieffe Medical, Italy). The reference for differential recording and for stimulation was simulated by 

two cylindrical Ag-AgCl electrodes (2 mm in diameter, 50 mm in length). The LFPs were 

simplified by a sinusoidal signal created by a waveform generator (Model 33220A, Agilent, USA) 

and input to the saline solution through two additional Ag-AgCl electrodes. To control the 

amplitude of the input signal at the DBS electrode, we used standard amplifier (gain 80 dB, 

passband 1–30 Hz, notch ON) (Model Grass ICP511, Astromed, USA), and we calculated the root 

mean square voltage online with the software Spike 2 (Cambridge Electronic Design, UK) after 

ADC conversion (CED 1401, Cambridge Electronic Design, UK). To control the sensing 

functioning and have a parallel control on the processing outcome, we externalized the signals 

before the ADC of the aDBS prototype, and we recorded them by means of the standard amplifier 

(gain x50, passband 1–100, notch OFF) (Fig. 2.2). The same experimental set-up was already 

validated and used in other works (Rossi et al., 2007; Stanslaski et al., 2012).  
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Figure 2.2 In vitro experimental setup. 

a) Schematic representation of the experimental setup used for testing the adaptive deep brain 

stimulation (aDBS) prototype in vitro. A plastic container with physiologic saline solution (9% 

NaCl) and with 4 Ag/AgCl electrodes (E1, E2, E3, E4), and a DBS electrode (E, Model 3389, 

Medtronic, USA). The waveform generator (Agilent 33220A) was connected to E1 and E3 to 

introduce sinusoidal waves. Monopolar cathodic DBS stimulation was delivered from contact 1 on 

E, and E2 serving as an anode, while E4 was used as a reference for recording. A standard 

amplifier measures the amplitude of the sinusoidal signal at the contacts of the DBS electrode. Data 

were acquired through a digitalization system (Micro1401) and processed by software. (b) Picture 

of the experimental setup in vitro. 

 

2.3.1.2 In vitro testing 

To evaluate the DBS stimulation artifact suppression, we connected the recording channel of the 

aDBS to contact 0 and 2, we collected 100 s of data both with DBS turned on and off with the 

cathode positioned on the contact 1; the waveform generator was switched off. The 100 s data were 

then divided into sweeps of 1 s, and on each sweep was performed an FFT obtaining 100 power 

spectral with 1 Hz resolution. We applied a two-way analysis of variance (ANOVA); one factor was 

the frequency (39 levels, from 2 Hz to 40 Hz; repeated measures), the other factor was the 

stimulation (on and off; independent measures) (Rossi et al., 2007). The same statistical test was 

then repeated for the power spectral normalized for the for the total power. The FFT output on the 

MCU was compared with the output of the FFT computed in Matlab.  
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To test the processing method previously described, and in particular, to test its ability track and 

distinguish levodopa-induced beta power changes, we provided as input to the saline solution real 

LFPs. This data sample came from a data set of a previous work (Marceglia et al., 2006). The 

amplitude of the LFPs at the DBS electrode was calibrated to match the real values.  

Finally, we used a sample feedback algorithm, based on a threshold ON-OFF logic, to test the 

ability of the device to change the stimulation parameters in response to beta power changes. The 

sample feedback algorithm was developed to change the stimulation amplitude from 3 to 0 when 

the control variable decreased under a certain value. This algorithm was tested on the real LFPs. We 

also studied the delay between the event detection (signal power crossing the threshold) and the 

amplitude update by applying to the saline solution a sinusoidal signal of 15 Hz. The amplitude was 

switched changed from 2 μVrms to 1 μVrms. 

2.3.1.3 In vivo testing 

At this stage, the objective of the testing in vivo was the validation of sensing and processing 

features of the prototype. The application of a specific feedback algorithm and the evaluation of its 

effectiveness fell outside of the scope of the following testing methods.  

We tested the aDBS prototype in one PD patient. The test took place two days after the surgery for 

the DBS electrode implant (Model 3389, Medtronic, USA), and it consisted of two phases.  

During the first, we assessed the stimulation contact, the stimulation parameters and the spectral 

features of the LFPs recorded at the baseline condition (overnight medication withdrawal).  

We choose the best contact to stimulate on the basis of the clinical outcomes of the surgery reported 

by the responsible neurologist. To select the neurophysiological parameters (peak frequency and 

frequency band), we recorded and analyzed LFP activity from both sides. As for the in vitro 

experiment, we recorded LFPs by means of standard amplifier for control (Model Grass ICP511, 

gain 80 dB, passband 1–100 Hz, notch ON), and recordings were done between all the contact pairs 

and using a skin Ag/AgCl electrode placed on the left shoulder as ground; the peak power of the 

LFP power was evaluated online (Spike 2, Cambridge Design, UK) and traced for each contact pair. 

By inferring the information about the best stimulation contacts and LFP recordings, we choose to 

stimulate from contact 1 and record from the contacts 0–2 of the right side. The simulation 

parameters were settled at 2.2 V, 130 Hz and 60 (amplitude, frequency, and pulse width). We 

selected the minimum voltage value that induced visible clinical effects, increased by 20%. 

Consistent with the literature (Ray et al., 2008; Kuhn et al., 2009), we selected a frequency band of 

5 Hz centered around the peak power. The device was programmed to extract and store the band 

power centered at 11 Hz +/− 2 Hz. Despite that this frequency band is the higher part of the alpha 



 
 

 
25 

 

band, it was reported that when the LFP activity is recorded with the patient in a resting condition it 

can then be associated with the beta band (Rossi et al., 2008). To discern whether the peak at 11 Hz 

was significant or not, we applied the method described in Rosa et al. (2011).  

During the second phase of the test, we ran the device programmed to store the band power values 

for all the testing times and switched ON the stimulation 250 s after starting the device. 

Because our goal was to test whether or not the prototype was able to the track levodopa-induced 

LFP power changes with the imposed transitory time (forgetting factor), we started the device when 

the patient was in the baseline condition and waited until the levodopa administration (occurring 

after 25 min) took effect. The patient’s condition transited from the OFFOFF (without medication 

and stimulation) to the OFFON (without medication and with stimulation) and finally to the ONON 

(with stimulation and medication). A neurologist monitored the clinical transitions of the patient. 

From the literature, it seems that all patients who manifest a significant power peak should undergo 

levodopa-induced modulation and the superimposition of the medicaton, and DBS should not have 

an additive effect on beta oscillatory activity (Giannicola et al., 2010).  

For the entire session, the LFPs were externalized from the aDBS prototype by connecting the 

analog output to the standard amplifier (see Section 3.1.2). We computed the time-frequency 

analysis of the raw data offline (Matlab) to check the temporal correspondence of the MCU real 

time analysis and the absence of the stimulation artifact in the analog pass band. Three data 

segments corresponding to the three clinical conditions were extracted from the raw data, and the 

normalized spectral power was computed for each condition with the Welch method (non-

overlapping 1 s Hanning windows).   

After the device was stopped, we downloaded the band power values stored during the entire test 

and applied a change point analysis to ensure that changes in the were not random, but related to 

clinical state transitions. We performed the change point analysis with a percentage time resolution 

of 3.3% (Rosa et al., 2010); this analysis lead to time windows of 126 s, consistent with the choice 

of the time constant (50 s). Fig. 2.3 shows the experimental set up in vivo. 
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Figure 2.3 In vivo experimental setup 

(a) Schematic representation of the experimental setup used for testing the adaptive deep brain 

stimulation (aDBS) prototype in vivo. The DBS electrode E (Model3389) externalization is 

connected with the aDBS prototype. Monopolar cathodic DBS is delivered from contact 1 

on E to the anode E1, and E2 serves as a reference. The local field potentials (LFPs) are 

recorded differentially from contacts 0-2 on E and E2, serving as reference. A standard 

amplifier measures the amplitude of the LFPs at the contacts of the DBS electrode. Data 

were acquired through a digitalization system (Micro1401) and processed by software 

(Matlab). (b) Picture of the experimental setup in vivo.  

 

2.4 Results 

2.4.1 In vitro results 

The pass band between 2 Hz and 40 Hz was artifact free, the stimulation did not introduce 

unwanted harmonics; however, the total mean spectral power was higher during DBS (two-way 

ANOVA; main factor frequency and main factor stimulation: p < 0.05, interaction factor p = 0.56). 

To confirm the results, we averaged the spectral power over the 100 sweeps and visually inspected 

the mean spectral power in the OFF and ON stimulation condition. The same statistical test was 

done on the power spectral normalized for the total power and showed that the operation of 

normalization compensated the effect of stimulation (main factor frequency: p < 0.05; main factor 

stimulation: p < 0.53; interaction factor p = 0.61). No difference was found between the FFT output 

obtained on the MCU and in Matlab (Fig. 2.4). 
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Figure 2.4 Comparison between online and offline fast Fourier transform (FFT) output. 

The visual inspection of the time frequency of the LFPs data confirmed that during the testing 

session with real LFPs, the DBS, when switched ON, did not alter the content of the spectral power 

in the band pass with unwanted harmonics (Fig. 2.5a). After 50 s (time constant) the value of the 

beta power extracted online approached the 36.8% of the transitory between the mean beta power 

values representing the OFFON and the OFFOFF states (Fig. 2.5b).    

When the beta power crossed an arbitrary predefined threshold value, the device switched off the 

stimulation output (Fig. 2.5c). The latency between the event detection and the voltage output 

update was 340 ms, the time needed to compute the processing of 1 s of data acquired at a 256 Hz 

sampling frequency (Fig. 2.6)  
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Figure 2.5 In vitro testing 

 (a) Spectral power time course of the local field potential (LFP) signal analogically externalized 

from adaptive deep brain stimulation (aDBS) before analog-to-digital converter (ADC) conversion. 

The spectral power time course in the pass band was computed offline in Matlab using the same 

algorithm running on the aDBS MCU. The spectral power values are normalized for the max and 

expressed in arbitrary units (AU). The MED OFF (without medication) and the MED ON (with 

medication) clinical states are separated by a dotted line. (b) Changes in the LFP signal power in 

the 10–16 Hz band memorized on the aDBS prototype. The selected transitory time was respected: 

the power of the selected band approached 36.8% of the total variation between the mean value in 

the MED OFF and MED ON condition. (c) Stimulation output changed from 3 V to 0 V when the 

band power crossed the threshold indicated by the blue dotted line. 
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Figure 2.6 Functioning of the switching algorithm 

Fig. 2.6. Functioning of the switching algorithm. An oscilloscope (Infiniivision X-series, Agilent 

Technologies, USA) was used to display the sinusoidal signal at 15 Hz (green) given as an input to 

the adaptive deep brain stimulation (aDBS) prototype and its stimulation voltage output (violet). 

The oscilloscope probe was placed on the electrode E1 and E3 to record the sinusoidal signal and 

on the electrode E4 and the stimulation contact of the DBS electrode (E) to record the stimulation 

(see Fig. 2.2a). The amplitude of the sinusoidal signal changed from 2 𝜇Vrms to 1 𝜇Vrms during 

the second epoch. The processing of each epoch takes place during the following epoch. On the 

bottom, the scheme represents the functioning of the algorithm. The normalized power spectral 

density (PSD) (arbitrary unit [AU]) as soon as the epoch is acquired. When the detected power 

crosses the threshold (red dotted line) the system changes the stimulation voltage. The time from 

epoch acquisition to stimulation update is 340 ms.  

 

2.4.2 In vivo results 

The power spectral in the three clinical conditions (OFFOFF, OFFON, ONON) was rebuilt offline 

showing that the analog front-end detected the beta peak when not modulated (Fig. 2.7a). 

The change point analysis, with confidence boundaries around 99% found the first change point at 

129 s after the device turned ON the stimulation, while the second was 63 s after the neurologist 

confirmed the ONON condition. The delays in the detection of the changes were consistent with the 

choice of the forgetting factor (150 s to reach the 95% of the total transition between changes). 
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Figure 2.7 Invivo testing 

 (a) Comparison between the power spectral density (PSD) in OFFOFF, OFFON, ONON states. (b) 

In vivo test model. After 250 s, the deep brain stimulation (DBS) was turned ON, and levodopa was 

administered after 1500 s. The individual patient’s metabolism influenced the duration of the test 

and justifies the difference in the durations of the three conditions. (b) Spectral power time course 

of the local field potential (LFP) signal analogically externalized from adaptive deep brain 

stimulation (aDBS) before analog-to-digital converter (ADC) conversion. The spectral power time 

course in the pass band was computed offline in Matlab using the same algorithm running on the 

aDBS MCU. The spectral power values are normalized for the max and expressed in arbitrary units 

(AU). The clinical states are separated by a dotted line. (c) Changes in the LFP signal power in the 

9–13 Hz band recorded on the aDBS prototype. The selected transitory time was respected: 

different gray tonalities indicate the change points computed offline through change point analysis. 
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3 Adaptive deep brain stimulation vs conventional deep 

brain stimulation: A proof of concept study 

3.1 Introduction 

Deep brain stimulation of the STN is nowadays an established and effective treatment for PD 

(Benabid et al., 2009; Castrioto et al., 2013; Deushl et al., 2006). However, conventional deep brain 

stimulation (cDBS) is limited in the long-term in that it can only partially control clinical 

fluctuations (Rodriguez-Oroz et al., 2012). Hence, as clinical fluctuations occur, stimulation can be 

unnecessary in certain periods and insufficient in others. Additionally, because the stimulation may 

contribute to the development of long-term complications (Rodriguez-Oroz et al., 2012), strategies 

that minimize stimulation application and intensity may also produce superior long-term outcomes. 

Reducing stimulation according to the effects of antiparkinsonian drug treatment and the 

corresponding clinical fluctuations can prevent transient summation of DBS and pharmacological 

therapy. Because specific clinical signs of PD are correlated with increased beta band LFP 

oscillations in the STN and, conversely, since beta band LFP power is reduced by levodopa (Ray et 

al., 2008; Kuhn et al., 2009) and correlates with motor improvements, we focused on designing an 

adaptive strategy based on beta power, aiming to reduce stimulation during pharmacological 

treatments to provide a proof of concept for the technical and clinical functioning. This chapter 

discusses how we defined the feedback algorithm, the method to parameterize it, its application in 

an experimental design, and the technical and the clinical results, with a focus on methodology 

rather than clinical results.  

3.2 Feedback algorithm design 

Levodopa-induced beta power modulations and their correlation with the patients’ clinical state 

have been widely reported (Priori et al., 2004; Kuhn et al., 2006; Kuhn et al., 2009; Ray et al., 

2008). Priori et al. (2004) studied the distinct frequency bands power changes under the effect of 

different pharmacological treatments: levodopa, apomorphine (a dopamine receptor agonist), and 

orphenadrine (an anticholinergic drug). Both levodopa and apomorphine (which act on the 

dopaminergic system) precipitated a power decrease in the beta band, while orphenadrine (which 

acts on the cholinergic system) induced a power increase. This study measured and tested the 

difference of logarithmic power before and after the pharmacological treatments, and no clinical 

correlations were reported. Similar results have been obtained by Kuhn et al. (2006), who reported 
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that after dopaminergic medication there is a decrease of band power centered on the peak found in 

the 8–35 Hz range, thus including alpha and beta oscillations, correlated with the motor 

improvement of the patient’s motor state. They found that the percentage change in the beta power 

[(beta power before medication – beta power after medication) / (beta power before medication) 

*100], correlated linearly with the percentage change of the clinical state measured on the Unified 

Parkinson’s Disease Rating Scale – Motion Scale (UPDRS III). The UPDRS III is a standard rating 

scale used by clinicians to evaluate the degree of the disease’s symptoms. The correlation was 

defined for a single levodopa administration cycle over a population of patients. Interestingly, the 

absolute UPDRS III score and the absolute beta power did not show any correlations. Based on 

these results, we inferred a feedback algorithm aimed to decrease the stimulation amplitude 

following levodopa-induced beta power fluctuations. 

We assumed as valid the linear correlation between the percentage power change and the 

percentage clinical change before and after levodopa administration, ideally expressed as follows:   

𝑈𝑃𝐷𝑅𝑆 𝑂𝐹𝐹−𝑈𝑃𝐷𝑅𝑆

𝑈𝑃𝐷𝑅𝑆 𝑂𝐹𝐹
= 𝑘1

𝑃𝛽𝑂𝐹𝐹 −𝑃𝛽

𝑃𝛽𝑂𝐹𝐹
+ 𝑘2 (1) 

where 𝑈𝑃𝐷𝑅𝑆 𝑂𝐹𝐹 is the clinical score at the “baseline” condition, 𝑈𝑃𝐷𝑅𝑆 is the actual clinical 

score, 𝑃𝛽𝑂𝐹𝐹 is the power of the band centered on the peak (it may include also alpha oscillations), 

𝑃𝛽 is the power of the band centered on the peak, and 𝑘1 and 𝑘2 are generic constants which define 

the linearity rule. This equation does not imply any causal relationships but assumes the beta power 

as a descriptor of the actual patient’s clinical state.  

We then assumed, as a rule of thumb, that a given clinical score is associate with a determined 

stimulation amplitude, and that a percentage change in the clinical score requires a correspondent 

percentage change in the stimulation amplitude:   

 𝑉𝑂𝐹𝐹−𝑉

𝑉𝑂𝐹𝐹
= 𝑘3

𝑈𝑃𝐷𝑅𝑆 𝑂𝐹𝐹 −𝑈𝑃𝐷𝑅𝑆

𝑈𝑃𝐷𝑅𝑆 𝑂𝐹𝐹
+ 𝑘4  (2) 

where 𝑉𝑂𝐹𝐹 is the stimulation voltage needed to treat the “baseline” clinical state, 𝑉 is the actual 

stimulation amplitude, and 𝑘3 and 𝑘4 are generic constants. By substituting the terms 𝐾𝑎 =  𝑘3𝑘1 

and 𝐾𝑏 =  𝑘3𝑘2 + 𝑘4, (3)  in (1) and (2), (3) is obtained.  

𝑉 = 𝐾𝑎
𝑃𝛽𝑂𝐹𝐹 − 𝑃𝛽

𝑃𝛽𝑂𝐹𝐹
∗ 𝑉𝑂𝐹𝐹 + (1 − 𝐾𝑏) ∗ 𝑉𝑂𝐹𝐹  (3) 
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3.2.1 Parametrization method 

Parametrization definition. To be applied, (3) needs to be parametrized for patient-specific 

characteristics. Because the derivation of the adaptive rule started from a linear correlation 

determined in a population of patients, when moving to the single patient the parameter, 𝑃𝛽𝑂𝐹𝐹 is a 

constant, so the stimulation amplitude (and the clinical state) becomes a function of 𝑃𝛽 and not of 

the percentage change. To determine that the parameters of the adaptive rule are 𝑃𝛽𝑂𝐹𝐹, 𝑉𝑂𝐹𝐹, 

𝐾𝑎, 𝐾𝑏, it is necessary to empirically associate the values of at least two clinical scores, the 

correspondent beta power values, and stimulation voltage (see Fig. 3.1). 

 

Figure 3.1 Schematic representation of the parametrization problem 

The 𝑆𝑐𝑜𝑟𝑒1 corresponds to the baseline condition, 𝑈𝑃𝐷𝑅𝑆 𝑂𝐹𝐹, meaning that the 𝑉1 is actually 

𝑉𝑂𝐹𝐹 and 𝑃𝛽
1 is 𝑃𝛽𝑂𝐹𝐹. The remaining parameters are 𝐾𝑎 and 𝐾𝑏, which determine, respectively, the 

gain and the offset and can be calculated if 𝑉2 and 𝑃𝛽
2 are known. We defined an empirical process 

to determine 𝑉2 𝑎𝑛𝑑 𝑃𝛽
2. 

Empirical parameterization method. In the clinical practice, the titration of the stimulation 

parameters is today an empirical process performed by a neurologist during follow-up visits. 

Various workflows have been proposed to optimize the stimulation parameters (i.e. Volkmann et 

al., 2002) and mainly focus on the adjustment of the amplitude, even if the frequency seems to have 

a relevant role in symptoms management (Fasano et al., 2014). The pulse width is generally kept as 

low as possible (lower to 60 us) (Fasano et al., 2014). The effective voltage amplitude to treat the 
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patient at the baseline condition is chosen on the base of the neurologist’s selection criteria. The 

𝑉𝑂𝐹𝐹 is thus set equal to the effective voltage amplitude. Under the baseline condition, the LFPs of 

the patient are recorded and the beta band power is extracted. To drive a change in the clinical state, 

a dopaminergic pharmacological treatment is administered, and, after its effect is revealed by a 

neurologist, the beta band power is calculated and associated with the parameter 𝑃𝛽
2, an arbitrary 𝑉2 

value lower than 𝑉1. A specific realization of the parametrization method is described in Section 

3.3.3. 

3.3 Proof of concept study  

3.3.1 Methods 

3.3.1.1 Patient recruitment 

We enrolled patients with advanced PD who underwent neurosurgery for STN DBS electrode 

implantation. Patient recruitment was based on clinical and neurophysiological assessments. We 

included all patients who did not experience any surgical complications. The neurophysiological 

inclusion criterion was the presence of a significant peak in beta band (12–35 Hz) following the 

method proposed in (Rosa et al., 2010).  

3.3.1.2 Study design 

After DBS surgery, the electrode leads were externalized to enable recording of LFPs before the 

electrodes were connected to the IPG a few days later. The experimental protocol included three 

sessions (one per day) that took place from day 5 through day 7, after the electrode implantation 

surgery. During the first session, experimenters collected LFP recordings to identify beta band 

frequencies and to adjust the adaptive deep brain stimulation (aDBS) algorithm accordingly for 

each patient (see “parametrization”). During the second and the third sessions, we administered the 

two DBS treatments to patients through the external dual prototype (one treatment per day). The 

stimulation lasted at least two hours.  

Patients were randomly assigned to first receive either cDBS or aDBS. We used computer-

generated randomization assignment according to the order of recruitment so that a comparable 

numbers of patients were treated with aDBS and cDBS. The randomization sequence was generated 

by the experimenter (the same person as for the aDBS setup). The patient and the neurologist 

directly involved in the scoring were blinded to the DBS type; only the experimenter was aware of 

the type of stimulation.  
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3.3.1.3 Experimental procedure 

The external prototype was placed in a pouch worn by the patient at the waist level, which allowed 

the patient to move freely. The device was connected to the electrode selected for the best recording 

and stimulation.  

Both aDBS and cDBS were delivered unilaterally in the hemisphere in which the recorded LFPs 

showed the highest beta band peak. Accordingly, we recorded the feedback signal for the aDBS 

from the electrode contact pair that exhibited the highest beta peak and used the contact located 

between these contacts for stimulation (the same for aDBS and cDBS sessions). At the time of the 

experiment, levodopa was the only pharmacological treatment administered to the patients who 

arrived at the surgery after three to four weeks of washout from all their antiparkinsonian 

medication, according to the current clinical procedure. 

 

Figure 3.2 Experimental sessions 

After beta band identification, we selected the best recording and stimulation configuration for 

optimal aDBS. We determined the hemisphere and electrode contact pairs (0-2; 0-3; 1-3) that 

exhibited the highest beta peak. If a patient manifested a similar beta peak from both STN signals, 

we chose the side contralateral to that associated with disease onset in that patient. The stimulation 

contact was located between the two contacts selected for recording. We then identified the 

effective stimulation amplitude for each patient. To this end, we delivered a monopolar stimulation 
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using the prototype in cDBS mode at 130 Hz with a 60 μs pulse and progressively increased the 

intensity by 0.5 V every 3–4 min until the first stimulation-induced adverse effects appeared. The 

effective stimulation amplitude was defined as the lowest stimulation intensity that induced at least 

a 60% improvement in upper limb rigidity on the side contralateral to the stimulation site, without 

adverse effects.  

Then, to establish the reference beta band power values 𝑃𝛽𝑂𝐹𝐹 and 𝑃𝛽
2, we connected the prototype 

through the input and output channels to the previously selected electrodes and programmed it to do 

as follows: record LFPs for about 20 min (baseline clinical condition) before switching on the 

stimulation at the effective amplitude, to record LFPs for a further 20 min (stimON/medOFF 

condition) and to continue to record LFPs while administering levodopa (the patient’s usual 

antiparkinsonian medication with the treatment dose increased by 50%) and waiting for the drug to 

achieve its clinical effect (stimON/medON). We then analyzed LFP beta activity offline to extract 

the reference values of beta band power in the stimOFF/medOFF and stimON/medON, 

respectively, 𝑃𝛽𝑂𝐹𝐹 and 𝑃𝛽
2. Hereafter we refer to the 𝑃𝛽

2 value as 𝑃𝛽𝑂𝑁. 

We used the specific beta band boundaries, the effective stimulation amplitude, and the reference 

values of beta band power for each patient to set up a personalized aDBS algorithm. Because our 

aim was to reduce the stimulation voltage to a value close to zero, we set 𝑉2 = 0. Under these 

conditions, and by substituting in (3) the terms “𝑃𝛽𝑂𝐹𝐹  − 𝑃𝛽” with “𝑃𝛽𝑂𝐹𝐹  − 𝑃𝛽𝑂𝑁 −  𝑃𝛽 + 𝑃𝛽𝑂𝑁,” 

(3) is reduced to (4): 

𝑉 =
𝑃𝛽−𝑃𝛽𝑂𝑁

𝑃𝛽𝑂𝐹𝐹−𝑃𝛽𝑂𝑁
𝑉𝑂𝐹𝐹  (4) 

 

This adaptive rule is applied only for values of 𝑃𝛽𝑂𝑁 < 𝑃𝛽 < 𝑃𝛽𝑂𝐹𝐹, for 𝑃𝛽 > 𝑃𝛽𝑂𝐹𝐹  𝑡ℎ𝑎𝑛 𝑉 = 

𝑉𝑂𝐹𝐹, 𝑃𝛽 < 𝑃𝛽𝑂𝑁 𝑡ℎ𝑎𝑛 𝑉 = 0. 

In the aDBS mode, the device was therefore programmed to deliver a 130 Hz stimulation with a 

60 µs pulse and an amplitude that linearly changed, according to beta power recorded, between 0 V 

and the effective stimulation amplitude calculated for each patient. Conversely, in the cDBS mode, 

the device delivered a 130 Hz stimulation with a 60 µs pulse at the effective stimulation amplitude. 

Thus, in the aDBS mode, the stimulation amplitude could not exceed the effective stimulation 

amplitude delivered continuously in the cDBS mode. The prototype recorded the stimulation 

amplitude delivered during the aDBS session. 

 

 



 
 

 
37 

 

 

3.3.1.4 Technical and clinical outcomes 

The technical outcomes encompass the functioning of the aDBS device and its energy efficiency. 

The former included the assessment of the efficacy of DBS stimulation alone, in both modalities 

(aDBS and cDBS). To make this assessment, we calculated the UPDRS III improvement in the 

stimON/medOFF condition with the stimOFF/medOFF condition. It also included the assessment of 

its ability of the aDBS device algorithm to follow beta changes by comparing the stimulation 

amplitude delivered during OFF and ON Med. 

The energy efficiency of the prototype in the aDBS and cDBS modes was evaluated using the total 

electrical energy delivered (TEED) per unit (Koss et al., 2011) with a reference impedance of 

0.5 kΩ. 

The clinical outcomes were the aDBS clinical effect compared to cDBS evaluated through the 

UPDRS III and the UDysRS scores when the patient had both DBS and medication 

(stimON/medON condition). 

3.3.1.5 Statistical analysis 

We first verified that clinical scale scores (UPDRS III and the Unified Dyskinesia Rating Scale 

[UDysRS III-IV]) were normally distributed through the single-sample Shapiro-Wilk test 

(p > 0.05); therefore parametric statistical analyses were performed.  

We then calculated the stimulation-induced improvements for the UPDRS III clinical scale in the 

stimON/medON condition compared to the baseline condition (stimOFF/medOFF), and we 

compared the UDysRS scores during cDBS and aDBS in stimON/medON. We used a repeated 

measures one-way ANOVA for both the UPDRS III and the UDysRS scores. 

To verify the effectiveness of the device delivering dual-mode stimulation (aDBS and cDBS), we 

compared the UPDRS III at the baseline and at the stimON/medOFF condition (one-way ANOVA). 

As an adjunctive analysis on the effect of DBS alone (stimON/medOFF condition), we examined 

the change in UPDRS III items on the side contralateral to stimulation.  

Then, to study the other secondary outcomes (functioning of the aDBS algorithm), we used a 

repeated measures one-way ANOVA to compare the mean amplitude delivered by the device 

during the OFF and ON Med periods. 

We used a repeated measures one-way ANOVA to compare TEED in the aDBS and cDBS modes. 

Power saving was calculated as the mean percentage of change in TEED in the aDBS compared to 

the cDBS modes.  
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Statistical analyses were performed using the Matlab software (The MathWorks, Natick, USA). 

Differences were considered significant at p < 0.05. Throughout the text, values are given as mean 

± standard deviation (SD). 

3.4 Results  

We found that 14 patients out of 17 met the neurophysiological inclusion criterion displaying beta 

activity. Fourteen PD patients (nine men and five women; age 56.4 ± 8.4 years, disease duration 

12.6 ± 5.3 years) were enrolled. Of them, four withdrew from the study: three patients left the study 

during the second experimental session because of intolerability to medication withdrawal, and 

Patient 3 left the study during the third experimental session because of fatigue. Ten patients 

completed all of the experimental sessions: four patients first received aDBS and six patients first 

received cDBS. Consistent with recent findings (Quinn et al., 2015), we observed that the 100% of 

AR patients and the 62.5% of TD patients showed beta band oscillations. Moreover, women are 

more likely to show beta activity than men (100% vs 70%), and no significant differences were 

found for age and disease duration. 

3.4.1 Technical results 

The stimulation voltage changed according to the changes in beta power. The beta band power 

decreased when patients completed the transition from the med OFF to the med ON state. 

Accordingly, the stimulation amplitude linearly decreased from the med OFF to the med ON state 

(Fig. 3.3b). The stimulation amplitude significantly decreased from the med OFF to the med ON 

conditions in all cases (med OFF vs med ON: 2.1 ± 1.2 V vs 0.8 ± 0.9 V; p = 0.007). The mean 

TEED with aDBS (44.6 ± 47.9 µW) was significantly less than with cDBS (158.7 ± 69.7 µW; 

p = 0.0005) (Fig. 3.3) with an average power saving value of 73.6 ± 22.9% in aDBS compared with 

cDBS. 
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Figure 3.3 (a) Stimulation amplitude course in one patient, (b) total electrical energy delivered 

(TEED) comparison  

3.4.2 Clinical results 

We first assessed the ability of the device to deliver an effective stimulation during both aDBS and 

cDBS without levodopa, according to the decrease of UPDRS III score: the UPDRS III score 

significantly decreased from the stimOFF/medOFF condition to stimON/medOFF condition during 

cDBS (36.6 ± 16.2 vs 30.8 ± 14.3; p = 0.03) and during aDBS (37 ± 16.8 vs 33.1 ± 16.4; p = 0.002) 

sessions (Fig. 3.4). 

The clinical scores were not significantly different between the two treatment days at the baseline 

(stimOFF/medOFF) (UPDRS III: aDBS vs cDBS: 37 ± 16.8 vs 36.6 ± 16.2; p > 0.05).  

When the patient was under the effect of both levodopa and DBS, we observed a similar 

improvement in global motor symptoms due to aDBS and cDBS combined with levodopa, but 

aDBS had a remarkable lowering effect on dyskinesias compared to cDBS. In fact, comparing the 

stimulation-induced effect, the one-way ANOVA showed that aDBS and cDBS induced similar 

improvements in UPDRS III score when combined with levodopa in stimON/medON conditions 

(UPDRS III, aDBS vs cDBS: −46.1 ± 10.5% vs −40.1 ± 17.5%; p > 0.05, Fig. 3.5a).  

Conversely, aDBS and cDBS differentially modulated in terms of the UDysRS score. During the 

aDBS session, patients experienced significantly less dyskinesias, compared with in the cDBS 

session, in the stimON/medON conditions (aDBS vs cDBS: 11.6 ± 69 vs 15.0 ± 8.7; p = 0.01, Fig. 

3.5b) 
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Figure 3.4 UPDRS III score under conventional deep brain stimulation (cDBS) and adaptive DBS 

(aDBS) 

 

Figure 3.5. (a) UPDRS III score percentage improvement, adaptive deep brain stimulation (aDBS) 

vs conventional DBS (cDBS); (b) UDysRS score improvement, aDBS vs cDBS. 
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4 Exploring local field potential-based adaptive deep 

brain stimulation feasibility: Eight hours of 

monitoring 

4.1 Rationale for the study and objectives 

The proof of concept study reported in the previous chapter showed that under defined and 

controlled circumstances, adaptive deep brain stimulation (aDBS) is as effective as cDBS and 

avoids unwanted side effects such as dyskinesias. The same results may be not valid during a longer 

period of time and during a common daily medication administration (not increased of the 50%). In 

particular, to our knowledge, no one has explored the correlation of beta oscillations with the 

patient clinical state during daily activities and for a long period of time. All the studies that 

investigated LFP response to levodopa have been restricted to a single administration (Priori et al., 

2004; Ray et al., 2008; Kuhn et al., 2009). A lack of correlation would prevent the feasibility of 

LFP-based aDBS. We therefore designed a two-day experimental session. During the first day, we 

monitored the beta band power changes and the clinical state of the patient; during the second day, 

we also applied aDBS to test whether or not it was possible to follow clinical fluctuations, to 

explore clinical results and to propose future steps to improve the methodology.   

4.2 Methods 

4.2.1 Patients’ inclusion criteria 

All patients effected by PD who had undergone to DBS electrode implant in the STN with respect 

to the surgery eligibility criteria (L.I.M.P.E.) not showing complications after surgery were included 

as candidates for the study. The experimental protocol took place after the surgery for electrode 

placement and the surgery for the implant of the pulse generator. Deep brain stimulation electrodes 

were externalized to allow for stimulation and recording. Patients not showing significant LFP 

activity in the beta band were excluded (see Section 4.2.3). Each patient underwent to two 

experimental sessions the fifth and the sixth day after the surgery for the electrode implant to ensure 

impedance stability (Rosa et al. 2010). Each experimental session lasted seven to eight hours and 

began after 12 hr of medication withdrawal.  
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4.2.2 Experimental protocol 

The experimental protocol was composed of two sessions (i.e. two days) (Fig. 4.1). 

 

Figure 4.1 Experimental protocol 

First session 

Local field potential recordings at rest, contact selection, and band definition. We recorded the 

LFPs at rest from both the hemispheres in bipolar configuration from the contact pairs (0-1,0-3, 1-3) 

of the externalized DBS electrodes (Model 3389, Medtronic). An Ag-AgCl surface electrode was 

positioned on the right shoulder as a reference. The LFPs were recorded with an instrumental 

amplifier (Model Grass ICP511, gain 80 dB, passband 3–30 Hz, notch ON) and digitalized (CED 

Micro-1401, Cambridge Design, UK). The LFPs were sampled at 256 Hz and their PSDs were 

visualized online by means of the software Spike 2 (Spike 2, Cambridge Design, UK), using a 

Hanning window of 1 s averaged over 50 s to 60 s. Based on intra-surgery stimulation tests we 

choose the contact pair allowing for stimulation at an effective contact and showing a detectable 

beta peak. The band was selected at +/−2 Hz around the peak frequency (Ray et al., 2008; Kuhn et 

al., 2009). Electrode impedances were acquired at 30 Hz using an impedance meter (Model EZM 4; 

Grass, USA). 

Neurophysiological monitoring. The external portable device (see Chapter 2) was connected to the 

selected contact and shoulder reference to record LFPs during the day for up to eight hours. The 

device stored in not volatile memory a value of the power of the selected band every 2 s. In 

addition, the 2.4 GHz RF interface was programmed to send the module of the FFT between 5 Hz 

and 30 Hz every second. The RF link on the device board covered a short range, allowing us to 

track the LFP data during daily activity occurring in the hospital room and not outside. The device 
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was connected to the belt and allocated in a pouch, thus allowing the patient to carry out daily 

activities. A wearable accelerometer was placed on the arm contralateral to the stimulation to 

collect kinematic data. The LFPs and acceleration data were stored in real time on the PC by means 

of a custom script written in Matlab for reading data arriving at a USB access point (Fig. 4.2).   

 

Figure 4.2 Data collection 

Pharmacological treatment and clinical monitoring. The clinicians subministered to the patient a 

levodopa therapy similar to the regular treatment the patient had before the operation, but decreased 

the dose to accomplish the state of the patient improved by the “stun” effect of the surgery for the 

DBS electrode implant. If the patient was used to taking dopamine agonists, these were substituted 

with levodopa therapy when possible. In cases that such a substitution was not possible, the patient 

was included in the study anyway under the hypothesis that the dopamine agonist has the same 

effect as levodopa on LFPs spectral content (Priori et al., 2004). The clinical state of the patients 

were monitored by an unblinded neurologist who annotated on a clinical diary the time and the 

dosage of the levodopa therapy and the state of the patient. The clinical state of the patients were 

evaluated in the OFF condition, during the peak dose (Med ON) and at the end of the dose before 

the successive pharmacological assumption (Med OFF), with constant delays when possible. For 

each evaluation, the neurologist gave scores on the following rating scales: UPDRS III and 

UDysRS. At least two pharmacological cycles for each patient have been monitored (Fig. 4.1). A 

clinical diary was also filled by the patient every 30 min as qualitative support in the clinical 

monitoring process, but its contents do not appear in the following the analysis.  
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Second session 

Tuning the stimulation threshold. With the use of our external device, the stimulation voltage was 

increased in steps of 0.5 V until the appearance of side effects. At each step, a neurologist evaluated 

the contralateral motor improvement. The voltage threshold was chosen as the value which 

provided the greatest clinical effects without exacerbating side effects. 

Setting and Testing aDBS. The aDBS device was programmed as described in Section 3.3. The 

stimulation voltage changed linearly between the threshold voltage value and zero. The beta band 

analysis was performed in real time as described in Chapter 2, and the stimulation voltage was 

adapted proportionally on the basis of the power range given by the value of the beta power in Med 

OFF condition (at rest) and the value in Med ON condition.  

Neurophysiological and clinical monitoring. The neurophysiological and clinical monitoring were 

done following the same methods used during the first session.  

Results obtained during the two days of the experimental session were excluded if the offline 

analysis of rest LFPs failed to show a significant oscillation.  

4.2.3 Signal processing and statistical analysis  

Local field potentials analysis  

Local field potentials of nine patients were recorded from the 18 STNs five days after the implant of 

DBS electrodes. The patients were 12 hr without medication at the time of the recordings. The LFPs 

were recorded through the Grass amplifier (bandwidth 1–100 Hz, gain 80 db, notch ON) and 

sampled at 256 Hz. Signals were filtered offline between 2 and 50 Hz in forward and backward 

directions (“filtfilt” Matlab) to avoid any phase distortions. The minimum common length of the 

data for all patients was 50 s. To separate the background noise to the oscillation component, we 

applied the coarse-grained FFT analysis as proposed in (He et al., 2010; He et al., 2014). This 

method centers on the hypothesis that the background noise is a “scale free” process having a power 

spectrum following the rule 1/𝑓𝛼 . Under this assumption, the background neural noise is not given 

by the averaging of transient, non-stationary oscillations, but is the result of arrhythmic activity on a 

fractal domain.   

The coarse-grained FFT analysis, therefore, provides three spectral estimations, Praw (power 

spectrum of the raw data), Posc (power spectrum of the oscillatory), and Pfractal (power spectrum 
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of the "scale-free" background noise). A peak in the Praw component was considered independent 

of the background noise when a separation of the confidence interval (95%) occurred. 

To test the independence between impedances of the recording electrodes and the amplitude of the 

alpha or beta peak we calculated the Pearson coefficient.  

Local field potentials and clinical state correlation 

Only the neurophysiological data of patients showing a significant beta oscillation were included in 

this study. For these patients, the band power time course was analyzed offline. The band power 

was interpolated to have a value every second and then smoothed at an average of 10 min average. 

In correspondence of the clinical evaluations, the mean value of the band power was extracted. The 

absolute values of the band power and the percentage change with respect to the OFF Med state 

(band power OFF Med – band power current state / band power OFF Med state) were then linearly 

correlated to the absolute UPDRS III percentage changes from the OFF Med state (UPDRSIII OFF 

Med – UPDRSIII OFF current state/ UPDRSIII OFF OFF Med state) (here OFF Med refers to the 

first OFF Med state obtained after 12 hr of medication withdrawal). We tested the normality 

distribution of the data with the single sample Shapiro-Will test (p < 0.05), and we then applied 

parametrical statistics.  

Clinical data 

We collected the total UPDRS III and the UDysRS (part 3 and 4) five times during the whole 

experimental session: once at baseline, twice when the patient was in peak dose (Med ON), and 

twice when the effect of medication ended (Med OFF). We used these data to compare the clinical 

outcomes in the two days, and establish whether aDBS was effective. 

We used the percentage value at each time point for further analyses (V%t). We verified 

distribution normality through the single-sample Shapiro-Wilk test (p>0.05), to allow the use of 

parametric statistics. 

Three main factors could influence the values of clinical data: the day of the session (Day 1, no 

aDBS; Day 2, with aDBS); the medication condition (Peak dose, Med ON vs End dose, Med OFF); 

and the medication session (session 1, first morning dose; session 2, second daily dose). For this 

reason, we first run a three-way Analysis of Variance (ANOVA) with factors “therapy” (2 levels, 

Day 1 and Day 2), “condition” (2 levels, Med ON and Med OFF), and “session” (2 levels, Session 1 

and Session 2). When the three-way ANOVA showed a significant effect (p<0.05) for the factors 

“therapy” and “condition”, we proceeded applying a two-way ANOVA, splitting the dataset in two, 
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one grouping the Peak dose (Med ON) values and the other one grouping the End dose (Med OFF) 

values. In each group, we run a two-way ANOVA with factors “therapy” (2 levels, Day 1 and Day 

2), and “session” (2 levels, Session 1 and Session 2). A post-hoc Tukey’s HSD test was then 

applied (p<0.05). Values in the text are given as mean +/- SD. 

To be sure that the devices functioned correctly, we correlated the mean stimulation values at each 

clinical evaluation. Because the stimulation voltage was proportional to the beta power percentual 

change, we here correlated the clinical percent change with the stimulation value normalized for the 

specific threshold value of each patient and the multiplied by 100 to enable comparisons between 

patients. The energy efficiency of the prototype in the aDBS and cDBS modes was evaluated using 

the TEED per unit with a reference impedance of 0.5 kΩ. All the statistical analysis was computed 

in Matlab. 

 

4.3 Results 

4.3.1 Local field potentials analysis 

In a total of nine patients, we found distinct oscillatory activity in all nine (Fig. 4.3), and only one 

out of 9 was tremor dominant and showed a peak in the alpha band at 11 Hz (Fig. 4.3). The power 

of the peaks was not correlated with the value of the impedances (c = 0.15, p = 0.69) confirming 

previous findings (Rosa et al.2010). The mean peak power for these patients was 0.75 𝜇𝑉/√𝐻𝑧, 

consistently with data reported in Chapter 2.  

 

Figure 4.3 Power spectrum of raw local field potential LFPs data (red) and background noise 

(black) plus 95% confidence intervals (green and dot black lines respectively)  
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4.3.2 Local field potentials and clinical state correlation 

During both the first experimental session (no DBS) and during the second experimental session 

(aDBS), the band power correlated with the clinical motor state of the patients (r = 0.59, p < 0.001, 

no DBS; r = 0.58 p = 0.001, aDBS) (Fig. 4.4). For the first session, patient 5 was excluded from the 

correlation calculation because of an operative error at the end of the experimental session which 

caused the deletion of the band power values. For patient 2, we had only four clinical evaluations 

with the relative band power value because the fifth was done when there was no more memory 

space. Patient 8 was not included because the beta peak was not consistent between Day1 and Day2 

at rest state.   

 

Figure 4.4 %UPDRSIIIUPDRS III change to- %Beta Power change correlation 

 

The time-frequency spectrum collected over the RF was rebuilt offline and smoothed with a 10 min 

average window to improve the signal-to-noise ratio. Because of the short range RF link (4–5 m), 

some data are missed and interpolated offline. Only one patient out of six showed low-frequency 

oscillatory activity (Fig. 4.5), which alternated the beta oscillations in ON Med conditions. This 

behavior of low frequency has been recognized to correlate with levodopa-induced dyskinesias 

(Alonso-French et al., 2006).  
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Figure 4.5 Time-frequency - Patient 4 

4.3.3 Clinical data 

aDBS was effective in improving UPDRS III motor scores by almost 35% when the patient was 

OFF medication. In fact, the three-way ANOVA run on UPDRS III percentage changes from 

baseline showed that both the “therapy” (Day 1 vs Day 2) and the “condition” (Med OFF vs Med 

ON) had a significant effect (p=0.038 and p<0.001 respectively). This result allowed us to break up 

the data into two groups, Med OFF and Med ON. In the Med OFF condition, when the patient was 

at the end of the levodopa dose effect, only during Day 2, with aDBS ON, the patients experienced 

a significant improvement from baseline (two-way ANOVA factor “therapy” p=0.033, Day 1 vs 

Day 2: -9.8 +/- 25.8% vs -32.9 +/- 24.7%). There was no difference between the two sessions (two-

way ANOVA factor “session” p=0.55), nor between the two sessions in the two days (two-way 

ANOVA factor interaction “session” x “therapy” p= 0.67). Conversely, when patients were on peak 

dose (Med ON), the effect of levodopa was predominant on that of aDBS, and, in the two days, the 

UPDRS III improvement was similar (two-way ANOVA factor “therapy” p=0.43, Day 1 vs Day 2: 

-48.5 +/- 18.8% vs -55.1 +/- 22.0%). Again, there was no difference between the two sessions (two-

way ANOVA factor “session” p=0.60), nor between the two sessions in the two days (two-way 

ANOVA factor interaction “session” x “therapy” p= 0.72). 

The UDysRS remained unchanged in all conditions (three-way ANOVA factor “therapy” p=0.80, 

factor “condition” p=0.11, factor “session” p=0.40). 

The stimulation voltage correlated linearly with the percentage UPDRS III change (r = −0.51, 

p = 0.0004) (Fig. 4.6), and the correlation is negative because of the formulation of the adaptive 

rule. Assuming cDBS with a voltage equal to the max value of aDBS we would have reduced the 

TEED by 70%. 
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Figure 4.6 % UPDRS III change in Day 1 and Day2 in Med ON and Med OFF state  

 

Figure 4.7 Stimulation Amplitude value - to % UPDRS III change 
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5 Low Power Algorithm design 

5.1 System Requirements 

Implantable and wearable medical devices often require the processing of biological signals in real 

time for diagnostic or therapeutic purposes. Mathematical operations needed to process the incoming 

information are often expensive in terms of computational and power consumption. Implantable 

devices, more than wearable, have very restrictive constraints in terms of size and power budget. The 

battery types commercially available are classified as primary (not- rechargeable) or secondary 

battery (rechargeable). The first type can provide up to 6000 mA/h and the second type 200 mA/h, 

allowing more than 20,000 recharging cycles (Quallion LLC, USA). The lifetime of conventional 

implantable devices for DBS depends on the stimulation parameters settings (amplitude, frequency 

and pulse width) (Volkmann et al., 2002), and the power consumption of the other parts of the systems 

have a lower effect on the battery life. Based on typical values used in the clinical practice, the average 

power consumption is 250 µW (Avestruz et al., 2008). However, to include the possibility to acquire 

and process the signal, it is necessary to add the consumption for recording (analog front end), 

digitalization (i.e. ADC) and digital signal processing. In this chapter, we focus on the current and 

power needed for digital signal processing, in particular for executing one real-FFT of 1024 samples 

every second.     

5.2 Methods 

5.2.1 Low-power algorithm design workflow 

The design of a low-power algorithm requires a parallel analysis of the mathematical and 

computational complexity of the problem and of the specifications of the digital platform 

(Raghunathan et al., 2011). A few steps are needed to bridge the gap between the offline algorithm 

design and its implementation; here we propose the workflow model shown in Fig. 5.1.   
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Figure 5.1 Low-power algorithm design workflow 

5.2.2 Optimum algorithm and complexity reduction 

Signals collected during experimental sessions have been used to design the optimum algorithm and 

its complexity reduction (see Section 5.4.2). The basic operation of the project-specific application 

requires the implementation of a real FFT of 1024 samples each second. 

5.2.3 Benchmarking hardware architectures 

5.2.3.1 Number of instructions 

A few algorithms are available to implement the FFT in a discrete domain: radix-2, radix-4, split 

radix, fast Harley transform, and FFT (Balducci et al., 1997). The number of arithmetical operations 

changes with the type of algorithm; therefore, for simplicity, here we analyzed only the case of the 

radix-2 algorithm (Cooley & Tukey, 1965). 

The radix-2 algorithm can be implemented in two way: decimation in time (DIT) and decimation in 

frequency (DIF); for illustrative purposes, we here discuss the radix-2 DIT, but the methods are 

expandable for all the derivations. The scheme in Fig. 5.2 represents the radix-2 DIT 

implementation for eight complex samples (N = 8). 
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Figure 5.2 Radix 2 DIT fast Fourier transform (FFT) (Proakis & Manolakis 2007) 

The basic operation is called a “Butterfly” operation (Fig. 5.3). Each butterfly is done N/2 times for 

log2(N) stages. Each butterfly consists of one complex multiplication and two complex sums. 

Because each complex multiplication can be decomposed into four real multiplications and two 

additions, and a complex sum in two real additions, each butterfly results in a total of four 

multiplications and eight additions. Furthermore, to arithmetical, each butterfly requires also eight 

fetches operations (Table 5.1) (R. Meyer & K. Schwarz, 1990). 

 

Figure 5.3 Butterfly operation (Proakis & Manolakis 2007) 

 

 

Table 5.1 Number of instructions for one complex butterfly 
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N complex numbers can be represented by two vectors of N samples, one for the real part and one 

for the imaginary part. The factors “W” are named twiddle factors and are complex numbers 

representing the exponential terms of the discrete Fourier transform (DFT). The completion of one 

butterfly requires four load and four store operations for data and two load operations for twiddle 

factors (optional).  

The total number of instructions per butterfly is therefore 18, and if N = 1024 then the number of 

instructions for a complex radix-2 DIT FFT is 92,160. For instance, if each instruction is computed 

in one cycle, then for a clock frequency of 1 MHz, the operation is concluded in 0.09 s. Given the 

number of arithmetical operations and the type of instructions, the type of processor strongly 

impacts on the time and the power consumed for the computation (R. Meyer & K. Schwarz, 1990). 

5.2.3.2 Number of architectural resources and field-programmable gate arrays’ 

performances 

The choice of the hardware to implement the algorithm is mainly constrained by the power 

consumption. 

Digital signal processors (DSPs) are the best choice in terms of computational efficiency, but their 

current consumption is too high for implantable devices; on the other hand, ultra-low power 

microcontrollers are not suitable for real-time processing applications. However, the recent spread 

of the wearable and automotive sectors has pushed the industries to develop new solutions for low-

power processing. An example is the ultra-low power microcontroller MSP430FR5994 (Texas 

Instrument, Dallas, Texas, USA). This particular microcontroller includes a peripheral called low-

energy accelerator (LEA) for signal processing, which can perform typical processing operations 

(FIR, FFT) without calling the central processing unit (CPU), thus achieving lower power 

consumption and computational time.  

Custom solutions such as application-specific integrated circuits (ASICs) ensure high performance 

with concurrent low power consumption and low area; however, their development implies high 

costs, long time, and high complexity and risk. A trade-off solution is presented by field-

programmable gate arrays (FPGAs), which, in contrast, are reconfigurable, low cost, easier and 

faster to develop. These devices are in fact programmable with hardware description languages 

(HDLs) such as Verilog (VHDL). FPGAs consist of logic blocks including look-up tables (LUTs) 

connected to a multiplexer and to a flip flop; each LUT has four inputs, which configure Boolean 

functions. An FPGA has a routing architecture made of lines and switches in order to connect more 

LUTs or logic blocks and to create more complex functions. Compare to ASICs, the area and the 
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power consumption of FPGAs are higher. Here, we rely upon a review of the solution commercially 

available as proposed by De La Piedra and colleagues (De La Piedra et al., 2012), based on 

resources and static power consumption (Table 5.2, Table 5.3, and Table 5.4). 

 

Table 5.2 Xilinx field-programmable gate arrays (FPGAs) (De La Piedra et al., 2012) 

 

Table 5.3 Altera field-programmable gate arrays (FPGAs) (De La Piedra et al., 2012) 

 

Table 5.4 Actel field-programmable gate arrays (FPGAs) (De La Piedra et al., 2012) 

Only Actel focuses on low-power FPGAs with the class IGLOO. In particular, the device family of 

the IGLOO NANO achieves the lowest static-power consumption and size. 

A real FFT with 1024 samples requires storage of 1024 twiddle factors (512 for the real part and 

512 for the imaginary part) with 16-bit representation. Therefore, a total non-volatile memory space 

of 16,384 bits would be needed. An alternative, a CORDIC unit can be used to generate the twiddle 

factors (Francois Philipp & Manfred Glesner, 2013). In this work, the authors benchmarked the 

dynamic power consumption for a feature extraction process based on 512 samples (16-bit fixed 
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point) complex FFT implemented on the IGLOO FPGA (AGL1005), on a Xilinx Spartan6 

(XC6SLX9, with and without using DSP resources) and a TI MSP430F1611 MCU. Based on a duty 

cycle and static power (standby mode current at 3 V for the MCU), the average power consumption 

is on the order of 𝑚𝑊 for the Spartan 6 (with and without DSP) and for the MCU, and of 𝜇𝑊 for 

the IGLOO (Francois Philipp & Manfred Glesner, 2013). They showed that the dynamic power 

consumption is similar if using the two FPGA types, lower if DSP blocks were used and higher if 

CPU. The advantage of the IGLOO FPGA over the Spartan 6 is the low static power (see Table 5.2 

and Table 5.4 for the comparison). Thanks to this feature, the IGLOO FPGA is suitable for long-

term applications that require performing the FFT with a certain duty cycle, and the platform can 

stay in sleep mode most of the time.  

Francois Philipp and Manfred Glesner (2013) used an IGLOO FPGA having a static power of about 

50 𝜇𝑊, other FPGAs of the same family have lower static power, but also fewer resources (gate 

and logic cells), and the authors declared that 75% of the total number of logic cells were used for 

three parallel multiply and accumulate (MAC) units.  

An ASIC realization of a low-power FFT hardware accelerator was presented by Kwong and 

Chandrakasan (2011), consuming 616 𝑛𝐽 for a 512 point FFT, compared to the FPGA (2514 𝑛𝐽) 

(Francois Philipp & Manfred Glesner, 2013), the energy was reduced by a factor of 4.  

Excluding the ASIC results, the energy consumption of 2514 𝑛𝐽 for FFT computation and average 

power consumption of 50 𝜇𝑊 (best case) were considered as benchmark values for MCU 

comparison. In Section 5.2.3.3, we provide a theoretical calculation of the two values (in terms of 

task-related energy and average power consumption), with a 512-sample FFT (16-bit fixed-point 

FFT) is performed each second on the MCU TI MSP430FR994.  

5.2.3.3 Microcontroller units’ performances 

As abovementioned, the MSP430FR994 MCU includes a low-energy accelerator (LEA) for signal 

processing. This peripheral shared with the CPU 8 Kbytes of RAM memory to load the data vector 

and could be called by the CPU. In addition to conventional RAM space, this class of MCU also 

has non-volatile ferroelectric random access memory (FRAM) which can be written with a lower 

current than typical flash memory. More importantly, the MSP430FR994 has several low-power 

operating modes, distinguished for the clock resources and peripherals available. As rule of thumb, 

the lower the clock rate, the lower the power consumption.   

The clock sources for the system are five in total (see Fig. 5.4): 

- two external:  
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o  low-frequency oscillator (32 KHz) (LFXTCLK) 

o  high-frequency oscillator (4–24 MHz) (HFXTCLK) 

- three internal: 

o  very low power-low frequency (10 KHz) (VLOCLK) 

o  digitally controlled (1–16 MHz) (DCOCLK) 

o  low-power oscillator (5MHz) (MDOCLK) 

  

 

Figure 5.4 b 

 

As well as for the FPGA application, the mechanism to reduce the power consumption consists in 

keeping the MCU in the low-power mode (LPM) and the wake up the CPU and enter the active 

mode (AM) only when needed.  

Here, the calculation of the average power was computed using the following approach. 

A minimum requirement was to have at least a timer to wake up the MCU every second by means 

of an interrupt routine. The timer needs to have a clock source. The LPM with the minimum power 

consumption having at least one clock source active was selected. Under this condition, the MCU 

was supposed to consume 1.2 µA at 3 V and 25 C° when sourced by the external low-frequency 

oscillator.  

The CPU clock was set at 8 MHz, so in AM the MCU consumed 1280 µA at 3 V. To calculate the 

average power consumption was therefore necessary to understand the number of cycles needed to 

complete a 512-point complex FFT. This calculation required a step from the instruction number to 

the cycle number through an understanding of the hardware architecture, which computed the 

calculations. In general, in the DSP processors the number of cycles per instruction are specified; in 

this case, a DSP library, which includes a list of processing functions (i.e. FFT) included also two 

functions to calculate the number of cycles occurred during the execution of a selected part of the 

code. The data sheet illustrating the DSP library also provided the numerical equations to obtain the 

cycles number of the main functions. 
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Based on these equations, a 512-point complex FFT was supposed to be performed in 11,136 cycles 

and, as consequence, for 8 MHz it should take about 1.4 ms. Then, the average current consumption 

was computed as follows: 

𝐼𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =  𝐼𝐴𝑀 ∗ 𝑇𝐴𝑀 + 𝐼𝐿𝑃𝑀 ∗ 𝑇𝐿𝑃𝑀 + 𝐼𝑃𝐸𝑅 ∗ 𝑇𝑃𝐸𝑅 + 𝐼𝐷 ∗ 𝑇𝐷 

where 

 𝐼𝐴𝑀 is the current consumption in AM, 

𝑇𝐴𝑀 is the time the AM is on in one second, 

𝐼𝐿𝑃𝑀 is the current consumption in LPM, 

𝑇𝐿𝑃𝑀 is the time the LMP is on in one second, 

𝐼𝑃𝐸𝑅 is the current consumption related to a particular peripheral, 

𝑇𝑃𝐸𝑅 is the time the peripheral is on in one second, 

𝐼𝐷 is the current consumption for data writing and reading, and 

𝑇𝐷 is the time for data writing and reading operation in one second. 

From the datasheet the MCU, in AM consumes 1280 µA running at 8 MHz, in LPM3 1.2 µA when 

sourced from the external low-frequency crystal. Assuming 𝑇𝐴𝑀 equal to 1.4 ms (time to complete 

the FFT), then the contribution of the two terms (AM and LPM) was 3 µA (𝐼𝐴𝑀_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 1.8 µA, 

𝐼𝐿𝑃𝑀_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  1.2 µA). 

The timer used to trigger the AM to perform the FFT every second consume 5 µA running at 1 

MHz, but in this case, it is sourced at 32,765 KHz. Thus its consumption can be assumed to be 

around 0.1 µA. The operation of data writing is limited to the shared RAM between the LEA and 

the CPU, which is for 1024 bytes negligible. Assuming a voltage supply of 3 V, the energy required 

to compute the FFT was about 5 µJ, which doubles the FPGA performance, but the average power 

consumption is decreased by a factor of 5 (9.3 𝜇𝑊 vs. 50 𝜇𝑊).  

5.2.3.4 5.2.3.4 Firmware development and current measurement 

To validate the theoretical calculation reported in the previous paragraph, we implemented a 

firmware and tested the current consumption with a tool provided by Texas Instruments, named 

EnergyTrace Technology, with an ammeter directly on the board. To separate the power required 

for the FFT, two firmware versions were developed. The first one simply runs the MCU in LPM. 

The second uses a timer to wake up the MCU every second and perform a real FFT on 1024 

samples with a 16b-it fixed point representation. The FFT has been implemented by means of the 
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function provided by the DSP library for the MSP430FR5994. Both the software calculation and the 

ammeter measurement confirmed the theoretically predicted current and power consumption. 

5.3 Application-specific algorithm design: Real-time local field 

potentials spectral analysis 

5.3.1 Real-time frequency analysis 

As presented in Chapter 2, the control variable used by the control policy rule is the beta power 

extracted by means of Fourier analysis. The signal was acquired in buffers of a one-second length 

and smoothed with an exponential moving average without overlapping. This method allows the 

device to track beta power changes over time (see Chapter 1), but because of the low signal-to-noise 

ratio and the non-stationary nature of local field potentials (LFPs), the variance of the power 

estimation negatively impacts the stimulation voltage control. Increasing the size of the moving 

average can reduce the variance, but it also introduces additional delays and diminishes the signal-

to-noise ratio because of numerical approximations. Implementing long averages in real time 

implies two drawbacks: the first is the memorization of long buffers, which is inconvenient in terms 

of memory space and data management; the second is the use of iterative means, which may require 

unavailable decimal precision.  

The multitaper method is a non-parametrical processing method that allows the reducing of the 

variance working on a single data buffer without averaging or overlapping. The superiority of 

multitaper spectral analysis compared to a common spectrogram, in reducing the variance in power 

estimation, is widely documented (Thomson et al., 1982; Babadi et al., 2014); however, the 

computational cost is higher than that of FFT. This method is based on the multiplication of the data 

segment for a certain number of orthogonal tapers. Each tapered data set is then transformed into 

the frequency domain, and the results are averaged. The higher the number of tapers, the lower the 

variance of the estimation for effect of the average. The number of papers is, however, constrained 

by the window length and the frequency resolution.  

𝑁𝑡 ≪ 2𝑇𝑊 − 1 

Where 𝑁𝑡 is the number of tapers, 𝑇 the length of the window and 𝑊 the half-band width.  

5.3.2 Technical constraints and complexity reduction 

Because in our studies we always observed the beta power in the 5 Hz band (peak frequency +/− 2 

Hz), to be conservative, the half-band width product has to be lower than 1.5 Hz.  
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Technically, the maximum window size is 4 s (2048 samples at 512 Hz), because in our external 

device the harmonics of the artifact at 130 Hz were completely suppressed, we were able to reduce 

the sampling frequency to 256 Hz. If, for reasons of space and power consumption (as in 

implantable devices), it is not possible to implement an analogue low-pass filter with a sufficient 

number of poles (Stanslaski et al., 2012), then the residual harmonics equal or greater than 130 Hz 

would appear in the spectrum for sampling frequency lower than 260 Hz. For this reason, we here 

assumed as a requirement a sampling frequency of 512 Hz, the lower power of two greater than 

260 Hz.   

As stated in Francois Philipp and Manfred Glesner (2013) a 512-sample FFT with a 16-bit fixed 

points data type employs the 75% of architectural resources of modern ultra-low power FPGAs, and 

the MSP430FR5994 is optimized for an FFT size of up to 2048 samples. Using a 4 s time window 

and 1.5 half-band width allow to use up to 12 tapers, however, it results in processing each data 

window with a fixed delay of 4 s, using 4 Kbytes of non-volatile memory for each taper and 

increasing the time the MCU is in AM. We, therefore, fixed the window length at 2 s and used three 

tapers.  

The spectral analysis was tested on a data sample recorded from a PD patient who underwent one 

levodopa medication cycle. The data sample was recorded with an instrumental amplifier 

(x200,000, bandpass 1–100, notch ON), and the differential gain was set to the maximum to 

maximize the signal-to-noise ratio in order to separate the effect of the electric noise and the 

processing technique on the power estimation. In Fig. 5.5 and Fig. 5.6, we reported that the time-

frequency plot obtained with a spectrogram with rectangular windows of 2 s overlapped 50% of the 

time, and the time-frequency plot obtained with the multitaper method with 2 s time windows 

overlapped by 50% and with three tapers; we smoothed both the data with a forgetting factor equal 

to 0.98. The time axes start from 100 s to exclude from the plot the transitory time caused by the 

forgetting factor processing.  

To test how the multitaper methods improved the analysis over the simple spectrogram, we 

extracted values of the beta power in the band +/−2 Hz around the beta peak for all the time course, 

we then isolated a 100 s segment in the OFF Med condition and a 100 s in the ON Med condition. 

For both the segments, the variance and the coefficient of variation were lower. The OFF Med and 

the ON Med segment were compared in both methods (Student t-test). The processing methods 

differed between the two segments, but with the multitaper method, the level of significance was 

higher (𝑝𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚 > 𝑝𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑝𝑒𝑟). 
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Figure 5.5 Spectrogram (periodogram) 

 

Figure 5.6 Spectrogram (multitaper method) 

5.3.3 Algorithm implementation and power consumption 

Compared to the spectrogram, the multitaper method requires additional processing: data tapering, a 

number of FFT equal to the number of tapers and averaging FFT modules.  

As mentioned above, the average current consumption for a real FFT of 1024 samples performed 

every second is 3.1 µ𝐴. To compare the spectrogram to the multitaper current requirement, we here 

focused on the FFT operation and considered the module calculation on a second analysis. For the 

above-selected parameters (T = 2 s, W = 1.5 Hz, tapers = 3), the multi-tapers analysis requires 3*N 

multiplication and three real FFTs of 1024 samples. Because 3N multiplications of 16-bit fixed-

point datatypes take 0.58 𝑚𝑠, the total time the MCU stays in AM is 4.8 𝑚𝑠, resulting in an average 

current consumption of 7.3 µ𝐴. The module of the three FFT realizations needs to be calculated and 

averaged. 

The computation of the FFT module implies square roots, multiplications, and sums; however, it 

can be simplified by calculating it for only the frequencies of interest. Following the 

abovementioned approach, we calculated the number of cycles for the calculation of the module for 

a 5 Hz band with a 0.5 Hz frequency resolution for both spectrogram and multitaper method (1.6 µ𝐴 

vs 2.5 µ𝐴). The total current consumption for the multitaper method is therefore about 9.8 µ𝐴.    
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An alternative solution to the MSP430FR5994 is the latest generation of MCUs, such as the Cortex 

M4 CPU. The Cortex M4 microprocessor differently from the previous versions have DSP 

instructions and a floating point unit (FPU). These additional features allow one to perform 

processing operations faster and with greater precision. To theoretically calculate the current 

consumption, we applied the same method used for the MSP430FR4994 to the STM32L4KC, 

which is an MCU of the family of STM32L4 (ST Microelectronics, Geneva, Swiss) with a Cortex 

M4 CPU. Despite the average current of this MCU, for the same multitaper algorithm, it resulted in 

about double the MSP430; it is still suitable for implantable devices sourced by secondary batteries, 

and because it can process 32-bit and floating point data types, it is suitable for neural signals 

having a low signal-to-noise ratio.     
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6  Discussion 

6.1 Technological considerations and further steps 

We developed an external portable LFP-based aDBS prototype intended for use in PD patients with 

externalized DBS leads. The system portability allowed us to test aDBS in ecologic conditions (i.e. 

during daily activity in perioperative experimental sessions). Before, starting the experimental 

protocols, we validated the device in vitro and in vivo.  

The main objectives of the validation procedures were to test the sensing and the processing 

functionalities. During in vitro tests, we proved that the device, despite the concurrent presence of 

stimulation artifact, estimated the power change of a sinusoidal signal, which varied in the 

amplitude of 1 µVrms. We also proved its functioning in tracking LFP spectral power changes 

during stimulation in a PD patient. The aDBS prototype extracted the beta band power in real time 

with the firmware and the expected tracking lag. The internal parameters were personalized 

according to the specific LFP spectral features of the patient with 1 Hz resolution (peak and 

frequency band). To verify that the beta power time course was associated with the patient’s clinical 

conditions and not with random changes, we applied the change point analysis, and controlled that 

the change points detected were relative to levodopa or DBS. The outputs of the change point 

analysis confirmed the relationship between the beta power modulations and the different clinical 

states.  

One drawback of the external aDBS device is that it is a single-channel device, for both recording 

and stimulating. This feature requires the use of two devices if a bilateral setting is needed. 

Moreover, the pass band of the analog front end cuts the LFPs between 2 and 40 Hz, and although 

beta band activity represents the primary choice for the control variable, it can prevent the 

possibility of recording higher frequencies such as gamma oscillations. The coupling between beta 

oscillations phase and gamma oscillations amplitude (i.e. the PAC) has been recently reported as 

possible pathophysiological mechanism of the parkinsonian state, thus being a potential candidate 

as a control variable (de Hemptinne et al., 2015; Connolly et al., 2015). Moreover, in this project, 

we focused on spectral power estimation, but higher-order analysis may prove to extract most 

robust control variables, thus requiring more processing resources.  

Other groups have investigated aDBS or new stimulation protocols with fixed platforms, ensuring 

greater processing possibilities (Rosin et al., 2011; Hauptmann et al., 2009; Little et al., 2013), but 

limiting the testing to patients unable to move. In fact, the power consumption and the space 

constraints have a negative impact on the processing possibilities, especially for implantable 
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devices that which require and hardware and firmware co-design (Rouse et al., 2012). The main 

drawback of implementing feature extraction processing in hardware is the lack of flexibility, even 

though they may be required to reduce power consumption. The implantable device presented by 

Rouse et al (2012) presents analog filters to isolate oscillations with a frequency resolution of 5 Hz 

and with a tunable band. This solution allows real-time measurement of the rectified voltage of the 

interested frequency band. Moreover, systems on chip (SoC) with digital filter banks for power 

extraction have been proposed for seizure detection devices (Verma et al., 2010). In the case of PD, 

the open questions about physiological and DBS mechanisms lead to the choice of designing 

implantable devices with explorative purposes having processing flexibility as one of the main 

requirements. Although, it was focused on FFT computation, in Chapter 5 we showed that modern 

microcontrollers can be preferred to FPGA implementations, and the ASIC solution should be 

adopted only if the entity of the calculations surpasses the MCU possibilities. It is, therefore, 

desirable that future implantable devices for neurological disorders should not be limited to 

hardware processing but include flexible reprogrammable platforms.  

The development of an external portable device provides a trade-off solution that can preserve the 

flexibility and power computation while allowing the neurologist to design experimental protocols 

where the patient can perform motor tasks relevant for the clinical evaluations (i.e. walking).  

This approach, despite being limited to perioperative experimental sessions, can therefore promote 

the understanding of PD pathophysiological mechanisms and can be extended to other neurological 

disorders (e.g. Gilles de la Tourette syndrome [Priori et al., 2013]) treated with DBS.  

6.2 Experimental and clinical considerations  

The results of our proof of concept study comparing aDBS and cDBS showed that in the presence 

of levodopa stimulation, aDBS induces similar global motor improvement with less dyskinesias 

than cDBS. Additionally, aDBS was safely delivered and consumed less power than cDBS.  

In our single case study (Rosa et al., 2015), we tested the portable prototype used in this study and 

reported that aDBS was safe and well tolerated and that it induced better control of dyskinesias than 

cDBS.  

For all our parkinsonian patients, the aDBS algorithm was able to “follow” the patient’s beta 

modulations, which we assume were related to clinical motor fluctuations. The beta reduction 

induced by levodopa decreased the stimulation voltage, resulting in aDBS amplitude lower than 

during cDBS. Our findings demonstrated several advantages in reducing stimulation through an 

aDBS approach. First, we obtained a 73.6% decrease of the energy delivered to the patient. Second, 

aDBS was more effective in reducing dyskinesias than cDBS. Our results support the idea that 
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aDBS could help clinicians limit the severity of side effects induced by the transient sum of DBS 

stimulation and pharmacological therapy. Moreover, although a reduction of the levodopa dose is 

observed for up to 10 years after DBS, antiparkinsonian treatment generally increases over time in 

patients who receive DBS (Rodriguez Oroz et al., 2012). Consequently, DBS-induced control of 

motor fluctuations tends to worsen after a number of years of DBS (Shupback et al., 2005; Zibetti et 

al., 2011). However, considering that in our experimental setup levodopa-induced dyskinesias were 

elicited by a supraliminal dose, it is difficult to draw a definite conclusion to direct improvement of 

dyskinesias.  

The improvements in the UPDRS III score elicited by aDBS were similar to those seen with cDBS, 

both when DBS was delivered alone and when concurrent levodopa treatment was administered. 

The aDBS and cDBS-induced improvements in UPDRS III scores were lower than those reported 

by other researchers in follow-up DBS studies (Deushl et al., 2006). As we choose a low maximum 

stimulation value (20% over the threshold for eliciting the 60% improvement in rigidity), this 

discrepancy can be partially explained. Aside from clinical aspects, altered by a “stunning” effect 

associated with the surgery, which can elicit a pseudo-subthalamotomic effect (Mann et al., 2009) 

that improves the motor symptoms, the aDBS proved to work properly across patients. The beta 

band power and then the stimulation voltage decreased significantly under the effect of 

dopaminergic medication, which acted as a driver of clinical and neurophysiological change. Based 

on a linear association of stimulation parameters to an observed range of variation of beta power 

values, we avoided a concurrent electrical and pharmacological treatment. 

Because the adaptive rule that we used drew on the hypothesis that beta-clinical state correlation 

across patients is also valid intra-patient, we extended the period of observation to about eight 

hours. In this prolonged study, a direct comparison with cDBS was not possible because of the 

scheduling of the surgeries did not allow us to have three entire days for testing. Each experimental 

day took about 10 hours from initial settings to final clinical evaluation. We therefore focused on 

confirming the correlation of beta oscillations, stimulation amplitude, and clinical state. We found 

that the statistical correlation was preserved, and, in OFF state, the patients experienced a 

significant improvement of the clinical state compare to the baseline condition, while the ON state 

was free of side effects such as dyskinesias.         

The parametrization methods proposed in Chapter 3 may lead, however, to overstimulation or 

understimulation when not correctly matching the (linear) correlation between the power of beta 

and the clinical state. Future research will need to overcome this issue and optimize the adaptive 

rule by means of long-term monitoring sessions.  
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The availability of concurrent physiological (beta power) and clinical (UPDRS III) data over a long 

period (one week) is feasible only in chronic conditions with implantable devices with sensing 

possibilities. A wearable device such as bracelet with accelerometer and gyroscope (Malcom et al., 

2015) proved to be able to infer the UPDRS III scores without the need of neurophysiologist. If the 

correlation between beta power and clinical state is confirmed also intra-patient, the validity of beta 

oscillations can definitely be considered a valuable biomarker of the parkinsonian state, although its 

causal role remains unproven.    

6.3 The role of beta oscillations and deep brain stimulation 

mechanisms 

How deep brain stimulation (DBS) acts on the neurophysiological mechanisms of PD is still under 

investigation and widely debated. Here, we focused on physiological mechanisms, even if 

neurochemical effects are thought to play an important role in exacerbating DBS therapeutic effects 

(McIntyre et al., 2015). 

Recording and stimulating different points of the cortico-basal ganglia network has unveiled new 

evidence about the role of beta oscillations and the DBS interaction with neural rhythms.  

Beta oscillations are recurrent over the motor networks, and in PD patient was found in the STN 

(Brown et al., 2001; Kuhn et al., 2004; Priori et al., 2002; 2004 William et al., 2002), in the GPi 

(Brown et al., 2001; Priori et al., 2002; Cassidy et al., 2002) and in the cortex (Whitmer et al., 2012; 

de Hemptinne et al., 2013). Because it was consistently reported that beta oscillations can be 

modulated by levodopa medication (Brown et al., 2001; Cassidy et al., 2002; Priori et al., 2004; Kühn 

et al., 2006, 2009; Weinberger et al., 2006; Hammond et al., 2007; Ray et al., 2008; Alonso-French 

et al., 2006), and by voluntary and involuntary movements (Cassidy et al., 2002; Priori et al., 2002; 

Kühn et al., 2004; Doyle et al., 2005; Joundi et al., 2012; Oswal et al., 2013; Foffani et al., 2005; 

Silberstein et al., 2005; Bronte-Stewart et al., 2009) it is considered a fingerprint of PD, directly 

involved in the physiological mechanisms of motor impairments. Different hypotheses have been 

formulated to interpret the role of beta oscillations in the cortico-basal ganglia network. The leading 

hypothesis is that neurons in the STN are excessively synchronized on the beta rhythm, thus 

preventing a physiological processing of the information (Brown & Williams, 2005). 

As abovementioned, it is a common knowledge that beta oscillations are present in the cortex and 

deep regions. However, the heterogeneity of the analysis methods to detect beta oscillations creates 

difficulty in comparing results between different groups. The problem is here faced by means of 

processing techniques, working on the statistical and temporal structure of the data. The question is 

http://link.springer.com/article/10.1007%2Fs11065-015-9308-7#CR27
http://link.springer.com/article/10.1007%2Fs11065-015-9308-7#CR130
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reduced to the problem of separating the peak oscillation from the background neural noise. The 

methods proposed until now are two: fitting the background noise with an opportune noise model 

(pink or red noise) or considering the oscillations overcoming a certain threshold (Rosa et al., 2011, 

and the one we used for the first study). The first case is limited by the a priori choice of the exponent 

of the power law (−1 for the pink noise, and −2 for the red noise); the background noise may follow 

a different profile, thus biasing the results. Even if the exponent is calculated by regression methods, 

the presence of very low-frequency oscillations, different from the background neural noise, 

introduce some errors in the results. The second method, calculating the mean and the SD of the 

power in a predefined band (12–35 Hz, in our study) and fixing a threshold at the mean + 1.97SD. 

This method is, however, biased by the beta oscillation itself, which contributes to the value of the 

threshold. To overcome these limitations, we used a coarse-grained analysis method to separate the 

oscillatory component of the signal from the “scale-free background noise activity.” Compared with 

He et al. (2010), we analyzed data for a shorter duration and acquired it with a narrower analog pass-

band. In the future, more structural analysis on longer recordings may help in providing a standardized 

method for LFP analysis and for clarifying the role of different frequencies. For instance, we found 

that in a single patient having two peaks in the alpha/beta band, only the lower peak at the lower 

frequency was recognized as an oscillatory activity, and it was modulated by levodopa medication. 

Findings like this may definitely shift the frequencies of interest from the beta band as 12–35 Hz to 

the alpha/low beta band, at 8–20 Hz. A recent study, for instance, reported that across patients, the 

band most strongly correlated with motor improvement is between 10–14 Hz (Neumann et al., 2016).            

Recent evidence highlights the idea that beta oscillations may not be causally linked to cortico-basal 

ganglia network abnormalities, but rather that these are epiphenomena. Local field potential recording 

in the STNs of epileptic patients (Vyes et al., 2015) and dystonic patients (Wang et al., 2016) showed 

statistically similar spectral profiles, with no difference in beta amplitude, and even in STN PAC 

movement mechanisms (Wang et al., 2016). Moreover, similar to previous work on tremor 

oscillations (4–8 Hz) that confirmed a bidirectional relationship between peripheral (sEMG) and local 

(STN) oscillations (Tass et al., 2012), a recent study proposed cortico-muscular coherence (CMC) as 

a biomarker of PD.. The exact role of beta oscillations remains an open question, as well as that of 

DBS mechanisms.     

Several studies, albeit controversial, shown that high-frequency STN-DBS can suppress beta 

oscillation in the target area (Wingeiger et al., 2006; Eusebio et al., 2011; Giannicola et al., 2011; 

Whitmer et al., 2012). Wingeiger and et al. (2006) observed a decrease in the beta power after 

stimulation with a more evident desynchronization in the signals recorded in the dorsal area of STN. 
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Conversely, Whitmer et al. (2012) showed that the central part of the STN was more sensitive to a 

gradient of stimulation than the dorsal. In other studies, however, it was not possible to observe DBS-

induced modulations in all patients (Giannicola et al., 2011) or even none (Rossi et al., 2008). 

Recent evidence has shown that stimulation at 60 Hz instead of conventional 130 Hz contributes to 

the improvement of bradykinesias while promoting low-frequency activity (Blumenfeld et al., 2015). 

These results imply that a frequency other than the amplitude has a role in the network modulation 

(Fasano & Lozano, 2014).  

Recent evidence has also shown that DBS can reduce the PAC between the phase of beta oscillations 

and amplitude of broadband gamma oscillations (50–200 Hz) recorded from the primary motor cortex 

(M1) of PD patients (de Hemptinee et al., 2015), with concurrent improvement of the clinical state. 

This study also suggests that PAC suppression is independent of concurrent beta suppression at the 

cortical level. Moreover, previous studies have demonstrated that the PAC between high-frequency 

oscillations (HFO, >200 Hz) revealed in STN recordings is reduced under dopaminergic treatment 

(Azcarate et al., 2010; Ozkurt et al., 2011). It has also been hypothesized that high-frequency activity, 

involved in movements preparation and execution mechanisms (Foffani et al., 2003), is unable to 

undergo to physiological amplitude modulations if excessively coupled with beta oscillations.    

The relevance of the electrode position, the stimulation frequency, and the involvement of gamma 

and HFOs suggests that desynchronization of beta activity may not completely explain DBS 

mechanisms, and, ultimately, demands deeper understanding of PD pathophysiology.   

Aside from advancements in basic research, empirical approaches may promote the acceleration of 

aDBS clinical research, following different pathways (see Fig. 6.2).  
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Figure 6.1 Pathways for local field potentials (LFPs)-based adaptive deep brain stimulation 

(aDBS) clinical translation 

Rosin et al. (2011) (Pathway 4, Fig. 6.2) provided the first proof of functioning of aDBS. They used 

as a control variable the spikes recorded from M1 motor cortex area in an MPTP animal model 

(macaque) and stimulated with short pulse trains (seven pulses at 130 Hz) the GPi at 80 ms after the 

occurrence of an action potential. They obtained a reduction of akinesia and concurrent suppression 

pallidal discharge rate. Such paradigms based on the cortico-basal ganglia network functional 

anatomy are, nowadays, feasible only on animal models but play a fundamental role in unveiling 

the pathophysiological mechanisms of PD and, potentially, of other neurological disorders. 

A more empirical proof of functioning has been provided by Little et al. (2013). The adaptive 

paradigm applied in this study is grounded on the “informational lesion” hypothesis, mediated by 

DBS-induced beta-oscillation desynchronization. In other words, the hyper-synchronization of 

neural oscillations in the beta frequencies is thought of as the cause of a processing impairment at 

the level of the STN; and DBS, by disrupting the abnormal activity, restores or improves the 

physiological role of the STN. To test this hypothesis, Little et al. (2013) applied a threshold at the 

mean value of the beta power (obtained from a previous recording of the patient in the same 

condition); when the system detected a beta power greater than the threshold the DBS was turned 

ON and conversely was turned OFF if it was lower. With this methodology, they obtained an 
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improvement of the patient motor state greater than cDBS in a stimulation session of a few minutes. 

This result needs, therefore, to be confirmed in a longer study with a more detailed analysis of the 

physiological significance of the choice of the threshold and the technical feasibility (Pathway 4, 

Fig. 6.2).  

To help physicians in demystifying the role of beta oscillations, different computational models 

have been proposed to explain pathophysiological and DBS mechanisms (Holt et al., 2017). These 

models can suggest closed-loop paradigms and provide a workbench for back-testing. Tass et al. 

(2003), by modeling a neural population as a network of phase oscillators, theoretical supposed that 

a coordinated-reset DBS should have a weakening effect on local synaptic strength, thus promoting 

a structural reorganization of the neural ensemble and, ultimately, a desynchronization effect on 

abnormal oscillations. Intriguingly a recent application of such paradigm to PD patients seems to 

confirm their assumptions (Adamchic et al., 2014).   

Despite, the early focus on beta oscillations amplitude, modeling (Park et al. 2012) and empirical 

studies (Moll et al., 2017) point toward the relevance of the phase. The computational model of 

Park et al. (2012), moving from the assumption of an exaggerated coupling between GPe and STN 

as cause of beta oscillations abnormalities, shown that the GPe output is sensitive to the STN input 

phase and that dopaminergic medication exacerbates its effect by changing STN the firing pattern of 

the STN. This result in part support the observations of Rosin et al. (2011), who shown that firing 

pattern more than firing rate have a key role in PD pathophysiology. If the amplitude of beta 

oscillations provides an information about the level of synchrony and thus the intensity required for 

stimulation, the phase may provide the information about the timing. Beside the empirical 

approaches, the computational modeling will promote the development of new paradigms with the 

final goal of mimicking the network mechanisms and having a closed-loop system which, rather 

than answers to the network, dynamically interacts with it.     

In this project we assumed the worst case scenario, in which it represents only an epiphenomenon of 

the parkinsonian state (Pathway 1, Fig. 6.2). Under this hypothesis, we therefore focused on 

investigating the validity of beta power as a valuable biomarker of the patients’ clinical state. In fact, 

the absence of convincing evidence about the causal link between beta oscillations and motor 

symptoms does not imply that beta power cannot be used as a control variable, as long as its 

correlation is confirmed between subjects. 

By means of an external portable aDBS device we opened the possibility to study aDBS strategies 

during perioperative sessions in freely moving PD patients. In particular, following this framework 
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we suggested that the aDBS methodology may help clinicians in the management of motor 

fluctuations while avoiding side effects such as dyskinesias.  

The same approach can be extended to more sophisticated algorithms and all patients who undergoes 

to DBS electrode implant, thus providing a unique framework, which ultimately prompts the research 

in this sector. Moreover, our technical, neurophysiological and clinical results encourage the pursuit 

of the research in chronic conditions, which would definitely allow for long-term neurophysiological 

and clinical monitoring and a better investigation of DBS mechanisms.  
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