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Abstract
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Numerical Modelling of Point-Masses Sliding on 2D Complex Surfaces as a
Means to Investigate Rockslide Dynamics

by Katharina Maria ELSEN

The present work introduces a new Lagrangian method to solve the equations of
motion which model gravitational sliding of point masses on piecewise linear curves
and piecewise planar surfaces. This method shall be incorporated in the already
existing UBO-block model which can be used to model rockslide dynamics.

In the first case, the equations are solved for a curve, which is approximated by
means of a continuous piecewise defined curve Σ formed by straight segments. In
this special case, the solution can be computed analytically, dividing it into parts,
one being the motion along the single segments and another being the effect of the
transition between two segments.

This is possible as the equations consist of two types of terms: those containing
gravity acceleration g but not containing derivatives of second order, and those that
do contain second order derivatives, but not g. While the first terms determine the
motion along the piecewise linear/planar segments, the second ones are sufficient to
describe the transition between the elements.

In a second step, the method was generalized to the 2-dimensional case for which
a semi-analytical solution to the equations was derived. While the transition between
two planar elements can be computed exactly, the motion along planar segments
generally must be computed numerically.

The method was implemented in a modular way in modern Fortran making use
of typical HPC optimization methods. The goodness of the method is discussed by
comparing the solutions to the ones computed for smooth curves and surfaces using
the LSODE-solver for the time-integration. It is concluded that the new method sig-
nificantly reduces the computational costs while reaching fully comparable results.
The dependency of the solution on friction, grid resolution and initial position as well
as its sensitivity to grid regularity were investigated using Monte-Carlo simulations.

http://www.university.com
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Chapter 1

Introduction

There are several problems in which gravitational sliding plays a role, one of which
is the modelling of landslides. This is an issue that has received considerable at-
tention in the last decades where several numerical models have been devised and
implemented, since landslides are more and more considered one of the most diffuse
and dangerous geohazards in the world. Several classifications of landslides have
been given up to now, like those presented in Varnes, 1978, Cruden and Varnes, 1996
(modifications of the 1978 classification) or Hungr et al., 2001. These classifications
contain for example the type of movement (the most important ones being slides,
flows and falls), the involved material (e.g. earth, debris or rock), or the movement
velocity, where the latter is of great importance for the hazard evaluation and de-
pends on the type of landslide (debris avalanches can reach velocities of 100 m/s
while some translational slides are as slow as 0.3 m in 5 years) (c.f. Highland and
Bobrowsky, 2008). In figure 1.1 a classification of landslides, published by the U.S.
Geological Survey (c.f. USGS, 2016), is given.

Depending on the type, different models are applied to model landslide. These
contain models based on fluid-flow dynamics treating homogeneous fluids like those
presented in Bouchut, 2004; Lucas et al., 2011 or two-phase, multiphase fluids such
as in Abadie et al., 2010; Pudasaini, 2012; Bouchut et al., 2014 with equations solved
through conventional (finite difference, finite volume, finite element) or unconven-
tional (like smooth particle hydrodynamics, SPH) models (see e.g. Pastor et al.,
2007; Pirulli and Sorbino, 2008; Hungr and McDougall, 2009) that are more suitable
to treat the evolution of granular flows, debris flows and submarine turbid currents.

There are alternative numerical models based i) on the description of the land-
slide mass as an ensemble of very many interacting particles such as the distinct
element method DEM, first applied to granular flows by Cundall and Struck Cundall
and Strack, 1979 and later considerably enhanced and empowered (see Cheng et al.,
2003; O’Sullivan, 2011) or ii) on the representation of the landslide body as a set of
interacting blocks of irregular shape (UBO-block model, see Bortolucci, 2001; Tinti,
Bortolucci, and Vannini, 1997; Tinti, Bortolucci, and Armigliato, 1999) that can be
better used to handle more solid mass movements, such as rockslides and slumps.
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FIGURE 1.1: Classification of landslides published by the U.S. Geo-
logical Survey (c.f. USGS, 2016)
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In this latter approach the blocks can become deformed (stretched, compressed) up
to a given extent but they always keep their volume. Gravitational sliding strongly
depends on the underlying topography, and therefore the way the sliding surface is
treated in the models is an essential aspect of the landslide simulation codes. Gener-
ally speaking, the terrain is usually provided as a digital data set of points of which
one knows the position and the altitude and can be represented basically in one of the
following two ways: i) by using smooth functions to compute a higher order recon-
struction of the real terrain from the given topography dataset or ii) by approximating
the topography by a triangulation where the data-points are the vertices of the trian-
gles. The main difference between the two options is that in the former method the
resulting surface is smooth, usually admitting first and second derivatives, while tri-
angulated surfaces are non-smooth at the passages between triangles and, if required
by the model, impose specific techniques to calculate curvature-related quantities.

The foundation pillars of all landslide models are:

• the representation of the moving mass itself;

• the surface on which the mass is moving;

• the equations governing the motion of the mass;

• the numerical method used for solving the equations of motion.

The aim of the thesis is to derive and test a method for the modelling of point
masses sliding on 2-dimensional complex surfaces surfaces that can be incorporated
in the existing UBO-block model which was developed at the University of Bologna
over the past two decades. The method must – in absence of friction – conserve
the energy. This will be done for smooth surfaces as well as for piecewise planar
surfaces. Moreover, an approximation to the curvature dependent friction term for
non-smooth functions shall be found. In many landslide models this term is not
implemented due to the lack of second order partial derivatives of the triangulated
surface.

In the following chapter a short overview on selected landslide models and a more
detailed description of the UBO-block model are given. Furthermore, the equations
describing the gravitational sliding of a point mass on a surface under the influence
of friction, are derived. The remaining thesis is organized as follows: in chapter 3,
different methods for the reconstruction of smooth functions from given data sets are
presented and tested. In addition, the Livermore solver for ODEs (LSODE), a solver
that is suitable also for stiff ODEs is introduced and explained as a means to solve
the equations of motion on smooth surfaces.
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Chapter 4 concentrates on the solution of the equations in the 1-dimensional case.
A new, fully analytical method for solving the equations of motion on piecewise lin-
ear curves is derived. The results obtained in different test cases are compared to
the solutions computed on smooth functions using a specialized solver for stiff prob-
lems. Moreover, a detailed analysis of the new method is done, including different
convergence tests.

In chapter 5 the 1-dimensional method is generalized to 2 dimensions. The results
obtained by solving the equations of motion for a point moving on piecewise planar
surfaces are compared to the solutions obtained on smooth surfaces. Again, the new
method is analysed in terms of convergence and consistency.

Further tests are performed in chapter 6 using so called Monte Carlo simulations.
In particular the sensitivity of the solution on grid regularity, but also its dependency
on friction, grid resolution and initial position of the mass point will be investigated.

Chapter 7 describes how the newly developed method can be integrated in the
UBO-block model. Finally a summary of the results and an outlook on possible
future work are given in chapter 8.

The method was implemented in a modular way in modern Fortran, for the 1-
dimensional as well as for the 2-dimensional case. The code was optimized us-
ing typical HPC (high performance computing) techniques and parallelized for the
Monte-Carlo simulations.
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Chapter 2

Framework

2.1 Overview on selected landslide models

In the following, two landslide models are presented more in detail to give an overview
on already existing models. The first model is a not only suitable to model landslides
but can be used for different gravity driven shallow water purposes. Depending on the
kind of topography, two different versions of the model are available, one for small
curvatures and another one for more general topographies. The second model is a
very modern and complete, multi-dimensional two-phase model that was developed
to suit in particular the simulation of different types of debris flows.

2.1.1 Gravity driven shallow water models for arbitrary topog-
raphy

Throughout the work presented in Bouchut, 2004, two multi-dimensional models
for gravity driven shallow water flows in several space dimensions over a general
topography, are derived. One of the two models is valid for small slope variations (in
the sense of small curvature) while a second model is valid for arbitrary topographies.
The authors are particularly interested in the influence of the topography in the flow
equations. For both models a Coulomb friction term can be added.

For modelling flows in one dimensional the classical Saint-Venant system is
widely used. It is derived from the free surface incompressible Navier-Stokes equa-
tions in the regime of small slopes. A model that is suited to handle more general
slopes, but is still 1-dimensional, is the Savage-Hutter model. It is valid in the in
the regime of small slope variations and frequently used for the modelling of debris
avalanches. However, significantly less models are developed for the multidimen-
sional case.

The authors provide general equations that extend the Savage-Hutter theory to
several space dimensions and, moreover, give a generalization for a model without
small curvature assumption. Their models provide the following features from the
incompressible Navier-Stokes equations with free surface Bouchut, 2004:
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• The systems admit a conservative entropy equation, thus ensuring hyperbolic-
ity (important to describe shock formation and for numerical stability),

• the models preserve the steady state of a lake at rest,

• the models are invariant under rotation,

• the models imply intrinsically the transportation of vorticity by the flow.

2.1.2 A general two-phase debris flow model

This model presented by Pudasaini, 2012 includes many physical aspects, among
them enhanced viscous stress, virtual mass and generalized draw, making it one of
the most generalized two-phase flow models. While the fluid phase of the model
is characterized by its density ρ f , the viscosity η f , and isotropic stress distribution,
the solid phase is characterized by its density ρs, internal and basal friction angles
φ and δ , and anisotropic stress distribution, K (lateral earth pressure coefficient). In
combination with relative motion between phases, these characteristics lead to two
different mass and momentum balance equations for the solid and fluid phases.

In the following, u f and us denote the velocities of the fluid and solid phase while
αs and α f (= 1−αa) are their volume fractions. Furthermore, the following assump-
tions are made: surface tension is negligible, interfacial solid and fluid pressures are
identical to the fluid pressure, the solid and fluid components are incompressible, no
phase change occurs.

The mass balance equations are:

∂αs

∂ t
+∇ · (αsus) = 0,

∂α f

∂ t
+∇ · (α f u f ) = 0,

and the momentum equations (written in conservative form) are:

∂

∂ t
(αsρsus)+∇ · (αsρsus⊗us) = αsρsf−∇ ·αsTs + p∇αs +Ms,

∂

∂ t
(α f ρsu f )+∇ · (α f ρ f u f ⊗u f ) = α f ρ f f−α f ∇p+∇ ·α f τττ f +M f ,

where f is the body force density, −Ts is the negative Cauchy stress tensor, τττ f is the
extra stress for fluid, M is the internal force density (with Ms +M f = 0), p∇αs ac-
counts for the bouyant force and p the fluid pressure. The model contains constitutive
equations for Ms, Ts and τ f . In addition to the 3-dimensional model, a 2-dimensional
model using depth-averaging in z direction was derived in order to make the problem
more tractable.
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Numerical results indicated that the model is well suited to describe subaerial
two-phase debris flows, particle-laden and dispersive flows, sediment transport or
submarine debris flows.

2.2 The UBO-block landslide model: description of
the general idea

In contrast to the models described above, the UBO-block landslide-model, presented
for example in Bortolucci, 2001,
Tinti, Bortolucci, and Vannini, 1997 or Tinti, Bortolucci, and Armigliato, 1999,
is suitable for the modelling more solid mass movements, such as rockslides and
slumps. It is based on a discretization of the moving mass using a number of 3-
dimensional, contiguous blocks with quadrilateral base A and a given volume V that
has to be conserved. The base of the blocks can become distorted up to a given level
and as a consequence also the height of the block h is changing. Each block is rep-
resented by its barycentre x and four vertices x′ where neighbouring blocks always
share two vertices. The acceleration for each block is computed in its barycentre
from which the barycentre-velocity v is obtained. The vertex-velocities v′ in turn are
interpolated from those barycentre-velocities. The motion of each block is obtained
only by means of vertex-motion. These vertices move independently of each other
such that throughout the motion of the mass, the blocks can – up to a given level of
distortion – change their shape, but they cannot separate. Rolling and jumping of
blocks is not supported either. As a consequence, during a single time-integration
step, the motion of only a single vertex at a time has to be computed.

The sliding surface (on which the points motion is performed) is represented
by planar triangles while for the time-integration an explicit Euler method is used.
When moving from one triangle (of the surface) to another, the velocity of the point is
corrected based on the inclination of the current and the subsequent surface element.
The basic idea of the algorithm is described in Alg. 1. Let therefore Nk be the total
number of blocks and N j be the total number of vertices. The subscript k denotes
a certain block and barycentre while the subscript j denotes a certain vertex. A
certain time-step is denoted by an additional subscript i, respectively i− 1 for the
previous time-step. Accordingly, vi,k denotes the velocity of the barycentre of block
number k at time-step i and v′i, j the velocity of vertex j at the same time-step. The
barycentre and vertex positions are as well denoted by xi,k and x′i, j, respectively. The
acceleration of a certain block due to gravity (including friction) for a time-step i is
denoted by Gi,k and acceleration due to block-block interaction by Fi,k. The total
acceleration is given by ai,k = Gi,k +Fi,k. The time-step itself is denoted by4t.
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Algorithm 1 UBO-block Algorithm
1: for time = 1 : T do
2: for block = 1 : Nk do
3: Compute accelerations Gi−1,k
4: Compute pre-interaction barycentre velocity ui,k = vi−1,k +Gi−1,k4t
5: Compute post-interaction barycentre velocity vi,k = ui,k +Fi−1,k4t
6: From the barycentre velocities vi,k interpolate vertex velocities v′i, j
7: Compute the new vertex positions x′i, j = x′i−1, j +

1
2(v
′
i, j + v′i−1, j)4t {For a

better approximation of the transition point, the time-step 4t is split into sub-
steps; each time a vertex leaves a triangle, the direction of the velocity vector is
adjusted to the slope of the new triangle}

8: end for
9: end for

2.3 The UBO-block landslide model: Equation of mo-
tion

The equation of motion of a material point P moving on a surface S can be obtained
starting from the Newton law ma = Ftot , where m represents the mass of the point,
a is its acceleration, and Ftot is the sum of all the forces acting on the point, which
can be of two different kinds: active and reaction forces. The active forces, denoted
in the following by F, are known and they depend, in the most general case, on the
position x of the point, on its velocity v and possibly of the time t. The reaction
forces, denoted by ΦΦΦ are a priori unknown. Separating active and reaction forces,
the Newton law reads as follows:

ma = F+ΦΦΦ. (2.1)

Under the assumption that the surface S is an ideal constraint, the reaction force
ΦΦΦ is orthogonal to the surface. Denoting with n the unit vector normal to the surface
and with t the unit vector associated to the projection of F on the plane Π tangent to
the surface in the point P, it is easily seen that the three vectors appearing in Eq. (2.1)
belong to the plane identified by the orthogonal unit vectors t and n. Eq. (2.1) can
therefore be projected along the directions t and n providing the following two scalar
equations:

mat = Ft ,

man = Fn +Φn,
(2.2)
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where

at = a · t, an = a ·n, (a = ann+att),

Ft = F · t, Fn = F ·n, (F = Ftt+Fnn),

and
Φn = ΦΦΦ ·n (ΦΦΦ = Φnn) .

Being F · t the projection of F on the plane Π, and being n⊥Π, the vector F−(F · t) t
is by construction parallel to n. This leads to the following two vector relations

t ·n = 0, F− (F · t) t = λn (λ ∈ R) , (2.3)

that uniquely identify1 the unit vector t.
Once the unit vector t is obtained, Eq. (2.2)1 is an equation for the tangential

component at of the acceleration a. The normal component an can be obtained con-
sidering that the velocity v of the point is orthogonal to the unit vector n and then
proceeding as follows:

v ·n = 0 ⇒ d
dt

(v ·n) = 0

⇒ v · dn
dt

+n · dv
dt

= 0

⇒ an =−v · dn
dt

=−v · (∇nv) .

The equation of motion Eq. (2.1) can now be cast in the following pure form (i.e. in
which the unknown force ΦΦΦ does not appear):

a =
1
m
(F · t) t−v · (∇nv)n. (2.4)

Incidentally, we note that once the motion has been determined, the reaction force
can be obtained by means of Eq. (2.2)2:

Φn = man−Fn =−mv · (∇nv)−F ·n.

The explicit determination of the reaction force is useful when friction has to
be included in the equation of motion. Friction, in fact, can be modelled by means
of a force Fµ parallel to the velocity vector v, pointing in opposite direction, and

1When Eq. (2.3)1,2 are projected along the axis of a reference frame, they provide three scalar
equations for the two unknown components of t and the coefficient λ . More specifically, the first
relation provides one scalar equation; the second relation, being all the involved vectors co-planar,
provides two scalar equations.
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with magnitude proportional to the magnitude of the reaction force, |ΦΦΦ|, being the
proportionality coefficient µ known as friction coefficient:

Fµ =−µ |ΦΦΦ| v
|v| =−µ |−mv · (∇nv)−F ·n| v

|v| .

When friction is included in the list of forces acting on the material point, the
equation of motion Eq. (2.1) becomes:

ma = F+ |ΦΦΦ|+Fµ ,

and the pure equation Eq. (2.4) becomes:

a =
1
m
(F · t) t−v · (∇nv)n−µ

∣∣∣∣(−v · (∇nv)− 1
m

F ·n
)∣∣∣∣ v
|v| . (2.5)

Note that the equations of motion derived so far, Eq. (2.4) and Eq. (2.5), have
been written in a form independent from the reference frame, since no assumption
has been made on the observer.

2.3.1 Motion of a material point moving on a surface subject to
gravitational force

We shall now write Eq. (2.5) assuming that:

• the reference frame Oxyz from which the motion is observed has the z-axis
parallel to the vertical direction and pointing upwards (we denote with i1, i2
and i3 the unit vectors of the axis x, y and z, respectively);

• the only active force acting on the material point P (of mass m) is the gravita-
tional force:

F =−mgi3,

being g the gravity acceleration;

• the point is constrained to a surface described by the implicit equation ϕ(x,y,z)=
0, or by the explicit equation z = f (x,y), being ϕ(x,y,z) = z− f (x,y), where
fx/y, fxx/xy/yy and ϕx/y, ϕxx/xy/yy are the first and second order partial deriva-
tives of f and ϕ , respectively;

• friction cannot be neglected and the friction coefficient µ is constant.
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With the above assumptions, the unit normal vector to the surface is given by2

n =
∇ϕ

|∇ϕ| =
1√

ϕ2
x +ϕ2

y +ϕ2
z

(ϕxi1 +ϕyi2 +ϕzi3) .

Letting α , β , γ be the components of the vector t in the chosen reference frame
(t = αi1 +β i2 + γi3), we find:

t ·n = 0 ⇒ ϕxα +ϕyβ +ϕzγ = 0,

(−mgi3 · t) t+λn =−mgi3 ⇒

−mgγ (αi1 +β i2 + γi3)+
λ

|∇ϕ| (ϕxi1 +ϕyi2 +ϕzi3) =−mgi3.

Solving the system, it is easily seen that:

λ =−mg
ϕz

|∇ϕ| ,

αγ =− ϕxϕz

|∇ϕ|2
, βγ =− ϕyϕz

|∇ϕ|2
, γ

2 =
ϕ2

x +ϕ2
y

|∇ϕ|2
,

and then:

1
m
(F · t) t =− 1

m
λn−gi3

=−αγgi1−βγgi2− γ
2gi3

=
ϕxϕz

|∇ϕ|2
gi1 +

ϕyϕz

|∇ϕ|2
gi2−

ϕ2
x +ϕ2

y

|∇ϕ|2
gi3.

(2.6)

Finally, the components of the term v · (∇nv) are calculated as follows:

v · (∇nv) =
(

vx vy vz

)
· 1
|∇ϕ|

ϕxx ϕxy ϕxz

ϕxy ϕyy ϕyz

ϕxz ϕyz ϕzz


vx

vy

vz


=

ϕxxv2
x +ϕyyv2

y +ϕzzv2
z +2ϕxyvxvy +2ϕxzvxvz +2ϕyzvyvz

|∇ϕ| ,

2Interpreting the surface S as the zero-level set of a (continuous) function ϕ(x,y,z) defined on
the whole space, i.e. the set of points P(x,y,z) such that ϕ(x,y,z) = 0, the unit vector defined as
n = ∇ϕ/ |∇φ | points toward the semi-space where ϕ > 0. As a consequence, if ϕ(x,y,z) = z− f (x,y),
n points towards the semi-space above the surface.
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and then

v·(∇nv)n =

ϕx
(
ϕxxv2

x +ϕyyv2
y +ϕzzv2

z +2ϕxyvxvy +2ϕxzvxvz +2ϕyzvyvz
)

|∇ϕ|2
i1+

ϕy
(
ϕxxv2

x +ϕyyv2
y +ϕzzv2

z +2ϕxyvxvy +2ϕxzvxvz +2ϕyzvyvz
)

|∇ϕ|2
i2+

ϕz
(
ϕxxv2

x +ϕyyv2
y +ϕzzv2

z +2ϕxyvxvy +2ϕxzvxvz +2ϕyzvyvz
)

|∇ϕ|2
i3.

(2.7)

Noting that
F ·n =− ϕz

|∇ϕ|mg (2.8)

and combining Eq. (2.6), Eq. (2.7) and Eq. (2.8), the equation of motion (2.5) is
written in terms of its Cartesian components as follows:

v̇x =
ϕxϕz

|∇ϕ|2
g−

ϕx
(
ϕxxv2

x +ϕyyv2
y +ϕzzv2

z +2ϕxyvxvy +2ϕxzvxvz +2ϕyzvyvz
)

|∇ϕ|2

−µ

∣∣∣∣∣
(
−

ϕxxv2
x +ϕyyv2

y +ϕzzv2
z +2ϕxyvxvy +2ϕxzvxvz +2ϕyzvyvz

|∇ϕ| +
ϕz

|∇ϕ|g
)∣∣∣∣∣ vx

|v| ,

v̇y =
ϕyϕz

|∇ϕ|2
g−

ϕy
(
ϕxxv2

x +ϕyyv2
y +ϕzzv2

z +2ϕxyvxvy +2ϕxzvxvz +2ϕyzvyvz
)

|∇ϕ|2

−µ

∣∣∣∣∣
(
−

ϕxxv2
x +ϕyyv2

y +ϕzzv2
z +2ϕxyvxvy +2ϕxzvxvz +2ϕyzvyvz

|∇ϕ| +
ϕz

|∇ϕ|g
)∣∣∣∣∣ vy

|v| ,

v̇z =−
ϕ2

x +ϕ2
y

|∇ϕ|2
g−

ϕz
(
ϕxxv2

x +ϕyyv2
y +ϕzzv2

z +2ϕxyvxvy +2ϕxzvxvz +2ϕyzvyvz
)

|∇ϕ|2

−µ

∣∣∣∣∣
(
−

ϕxxv2
x +ϕyyv2

y +ϕzzv2
z +2ϕxyvxvy +2ϕxzvxvz +2ϕyzvyvz

|∇ϕ| +
ϕz

|∇ϕ|g
)∣∣∣∣∣ vz

|v| ,

(2.9)

where

v= vxi1+vyi2+vzi3 = vxi1+vyi2+(vxϕx + vyϕy) i3, |v|=
√

v2
x + v2

y +(vxϕx + vyϕy)
2.

Recalling that ϕ(x,y,z) = z− f (x,y), if the surface is given in explicit form z =
f (x,y), such that

ϕx =− fx, ϕy =− fy, ϕz = 1,

ϕxx =− fxx, ϕyy =− fyy, ϕxy =− fxy, ϕxz = ϕyz = ϕzz = 0,
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Eq. (2.9) can be rewritten as follows:

v̇x =−
fx

f 2
x + f 2

y +1
g−

fx
(

fxxv2
x + fyyv2

y +2 fxyvxvy
)

f 2
x + f 2

y +1
−µ |ΦΦΦ| vx

|v| ,

v̇y =−
fy

f 2
x + f 2

y +1
g−

fy
(

fxxv2
x + fyyv2

y +2 fxyvxvy
)

f 2
x + f 2

y +1
−µ |ΦΦΦ| vy

|v| ,

v̇z =−
f 2
x + f 2

y

f 2
x + f 2

y +1
g+

fxxv2
x + fyyv2

y +2 fxyvxvy

f 2
x + f 2

y +1
−µ |ΦΦΦ| vz

|v| .

(2.10)

where

ΦΦΦ =
fxxv2

x + fyyv2
y +2 fxyvxvy√

f 2
x + f 2

y +1
+

g√
f 2
x + f 2

y +1
,

|v|=
√

v2
x + v2

y +(vx fx + vy fy)
2.

Note that, in case of a motion on a planar surface described by the equation

z = f (x,y) = ax+by+d,

Eq. (2.10) is further simplified as follows:

v̇x =−
ag

a2 +b2 +1
−µ

vxg
√

a2 +b2 +1
√

v2
x + v2

y +(avx +bvy)
2
,

v̇y =−
bg

a2 +b2 +1
−µ

vyg
√

a2 +b2 +1
√

v2
x + v2

y +(avx +bvy)
2
,

v̇z =−
(
a2 +b2)g

a2 +b2 +1
−µ

(avx +bvy)g
√

a2 +b2 +1
√

v2
x + v2

y +(avx +bvy)
2
.

2.3.2 Change of reference frame

As already pointed out, Eq. (2.5) is independent from the reference frame in which
calculations are to be exploited. In the previous section, we have written the Cartesian
components of this equation for a specific reference frame, having one axis parallel
to the active force F, which was assumed to be constant, and with opposite direction.
In the following, we shall denote such reference frame as laboratory reference frame,
or original reference frame.

We propose now to write the component of the same equation expressed in a
different reference frame, obtained from the original one by means of a rigid body
rotation described by the rotation operator R. We shall denote this new reference
frame as rotated reference frame.
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We first recall that, if such new reference frame is defined by a basis of orthonor-
mal vectors ek (k = 1,2,3), whose components, expressed in the original reference
frame are the following

e1 = R11i1 +R21i2 +R31i3,

e2 = R12i1 +R22i2 +R32i3,

e3 = R13i1 +R23i2 +R33i3,

then the following relation holds:

ek = Rik, R =

R11 R12 R13

R21 R22 R23

R31 R32 R33.


and it is easily seen that Rhk represent the cosines of the angle Ψhke between ih and
ek:

Rhk = ih ·Rik = ih · ek = cosΨhk.

As is well known from linear algebra, if a vector u has components u1, u2 and u3 in
the original reference frame, i.e. u = u1i1 + u2i2 + u3i3, then its components u′1, u′2
and u′3 in the rotated reference frame are given by:u′1

u′2
u′3

= RT

u1

u2

u3

 ⇒
u′1 = R11u1 +R21u2 +R31u3,

u′2 = R12u1 +R22u2 +R32u3,

u′3 = R13u1 +R23u2 +R33u3,

such that u = u′1e1 +u′2e2 +u′3e3.

2.4 Non-conservation of total energy in the UBO-block
model

2.4.1 A frictionless test-case

A simple test with a single mass-point only was performed and compared to a refer-
ence solution. Therefore a smooth surface S, given by an explicit function f = f (x,y)
serves as test surface. As for real terrains, the surface is not known exactly but only
in terms of single data points (and therefore in particular is not smooth), the only way
to evaluate the goodness of the model is to provide a smooth surface which is then
triangulated. On the smooth surface the equations can be solved numerically, thus
obtaining a reference solution while for the UBO-block model the triangulation of
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the same surface is used as test surface. On the basis of the reference solution then
the quality of the approximated solution obtained using the UBO-block model can
be judged.

In the following, the solution of the UBO-Block landslide model, which uses a
discretization of the given smooth surface, will be called the UBO-block solution.
As an exact solution to the problem is not known, the numerical solution of the
underlying ODE-system solved on the smooth surface is considered the reference
solution. It turned out that in the UBO-block solution – in absence of friction, and
gravity being the only active force – total energy is not conserved while in contrast,
it is conserved in the reference solution. This problem was the starting point of the
present work and its causes are analysed in the following.

In the frictionless case Eq. (2.10) reduces to:

v̇x =−g
fx

1+ f 2
x + f 2

y
+

− fx

1+ f 2
x + f 2

y

(
v2

x fxx +2vxvy fxy + v2
y fyy
)
,

v̇y =−g
fy

1+ f 2
x + f 2

y
+

− fy

1+ f 2
x + f 2

y

(
v2

x fxx +2vxvy fxy + v2
y fyy
)
,

(2.11)

where z = f (x,y) is the sliding surface, along which a point mass is moving and fx/y

and fxx/xy/yy are the first and second order partial derivatives of f . In the following, v̇x

and v̇y will also be denoted by ax and ay, respectively. The test-surface is a paraboloid
given by:

f (x,y) =
2

∑
i, j = 0

i+ j ≤ 2

ai jxiy j,

where the parameters ai j are chosen as:

a20 = 0.00005, a02 = 0.01, a11 = 0, a10 =−0.1, a01 = 0, a00 = 50.

The function f is convex ∀x,y.
Eq. (2.11) is a second order ODE-system with respect to x = (x,y). To solve this

numerically it is convenient to rewrite it as a first order ODE-system:

ẏ(t) =
dy
dt

= F(y, t), y(t0) = y0,
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with y = (x,vx,y,vy), and:

F =



vx

− fx
g+
(
v2

x fxx +2vxvy fxy + v2
y fyy
)

1+ f 2
x + f 2

y

vy

− fy
g+
(
v2

x fxx +2vxvy fxy + v2
y fyy
)

1+ f 2
x + f 2

y


. (2.12a)

As the mass point is constrained to stay on the surface, the vertical components z and
vz are obtained by evaluating:

z = f (x,y),

vz = vx fx + vy fy.

The simulation starts at (t0 = 0) and is run until (T = 20s), the step-size is chosen
as (4t = 0.2s). The initial conditions are given with the initial position (x0,y0) =

(5,−85) and the initial velocity (vx0,vy0) = (0,0), which means:

y(t0) = (x0,vx,0,y0,vy,0) = (5,0,−85,0)

.
The sliding surface as well as the resulting trajectory of a point mass is shown in

Fig.(2.1).
While in the reference solution the total energy remains constant, there is a gain

of energy in the UBO-block solution. The problem is shown in Figs. 2.2-2.4. Fig. 2.2
and Fig. 2.3 depict the total energy plus its decomposition into kinetic and potential
energy for the discretized (UBO-block) respectively reference solution. The increase
of total energy until the end-time T of this simulation is about 0.67% of the total
energy which is better seen in Fig. 2.4, also showing that the total energy is constant
for the reference solution. Due to the law of conservation of energy, the total energy
in an isolated system must remain constant over time. As in the present model there
is no source or sink of energy the gain must originate from either numerical or model
errors.

It sticks out that the total energy does not increase linearly but stepwise. While
it is almost constant over wide intervals, there are two sudden rises at about t = 5
and t = 16. This behaviour is the key towards understanding the problem. Plotting
acceleration, its variation and total energy of the UBO-block solution in one figure,
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FIGURE 2.1: Sliding surface and reference trajectory for the test prob-
lem from two different angles.
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FIGURE 2.2: Total energy (black) and its decomposition into kinetic
(red) and potential energy (green) (right) of the UBO-block solution.
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FIGURE 2.3: Total energy (blue) and its decomposition into kinetic
(red) and potential energy (green) (right) of the reference solution.
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FIGURE 2.4: Comparison of the total energy for the UBO-block
(black) and the reference solution (blue).

one finds a correlation between them. Corresponding to the x-component of the
acceleration ax we will hereby denote by a′x the variation of ax (cf. Fig.2.5).

In regions in which the acceleration shows little variation, the total energy is al-
most constant. Instead, in regions of high variation it is increasing significantly. Plot-
ting ax and a′x for the sliding surface should clarify this, but, as in the
2-dimensional case the trajectory (in contrast to the 1-dimensional case) is a priori
unknown and can generally be obtained only by solving the differential equation, a
parabola given by f (x) = 0.5x2 will be used instead. This curve is similar to the slice
plane of the original surface (cut along the y-axis) such that the qualitative behaviour
will be comparable. As in the UBO-block solution the second order derivatives are
all zero, terms containing second derivatives will be neglected in the following:

ax(x) =−g
fx

1+ f 2
x
,

and therefore the first derivative of ax with respect to x which can be considered the
variation of the acceleration reads:

a′x(x) =−g
1− f 2

x
(1+ f 2

x )
2 .

The three functions, f , ax and a′x are plotted in Fig. 2.6 showing that the variation
of ax is increasing up the x = 0 and then decreasing again. This is additionally
illustrated by the green lines, denoting the direction of the acceleration ax in certain
points of the curve. When solving the ODE on smooth surfaces, the first (slope)
and second derivative of f (x) and therefore the acceleration of the point cannot be



20 Chapter 2. Framework

0 5 10 15 20

t

1192

1194

1196

1198

1200

1202

1204

E
to

t

Etot

ax

a′
x

−8

−4

0

4

8

12

16

a
x
,
a
′ x

FIGURE 2.5: Total energy, acceleration and variation of acceleration
(first derivative) for the UBO-block solution.

computed continuously as a time-discretization is unavoidable. As the shape of f
instead changes continuously, this leads to mistakes that directly depend on a′x. Even
though the UBO-block model uses a discretized surface, the problem is the same, as
the acceleration is updated only at the end of each time-step, even if meanwhile the
point passes through several different triangles.

For a convex function f (x) two cases have to be distinguished: the movement in
direction of increasing x and the movement in direction of decreasing x. In the first
case, the piecewise linear functions approximating the slope of the function overesti-
mate the real slope as long as f ′(x)< 0, whereas for f ′(x)≥ 0 the slope is underesti-
mated (as can easily be seen by the green lines in Fig.2.6). When moving in direction
of decreasing x the real slope is overestimated for f ′(x)≥ 0 and underestimated when
f ′(x)< 0.

This leads to an overestimation of the acceleration in case of increasing velocity,
and to an underestimation when the velocity is decreasing resulting in an continu-
ous overestimation of velocity which finally leads to the monotone increase of total
energy as seen above.

In case of a concave, monotonically decreasing sliding surface like f (x) =−x2+

a, x ∈ R+
0 , a ∈ R, one would find a continuous underestimation of the slope of the

sliding surface and therefore a decrease in the total energy. Accordingly, the total
energy will fluctuate for surfaces with varying convexity.
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FIGURE 2.6: Sliding surface (black), its approximation by linear
functions (green), tangential acceleration a(x) (red) and its variation
a′(x) (blue). Note, that4x in the global coordinate system stays con-
stant, which means, that in this case 4xs, the length of the curve and
therefore the area which is approximated by a linear function, be-
comes smaller in regions of higher variation of a(x). Nonetheless,

the error in the approximation is still much higher here.

2.4.2 Differences in the time-integration

This problem does not appear in the reference solution. While the integration scheme
of the UBO-block model is basically an explicit Euler-scheme, the Livermore Solver
for Ordinary Differential Equations (LSODE)
Hindmarsh and Radhakrishnan, 1993 – a solver particularly suited for stiff ODEs
– was used for the reference solution instead.

In order to evaluate the influence of the time-integration scheme on the solution
of the equation, an Euler-scheme was applied also to the reference problem, leading
to an increase of total energy as well, yet much higher than the one in the UBO-
block solution (cf. Fig.2.7) namely about 32%. Furthermore different Runge-Kutta
schemes of order two, three and four where implemented and used for the time inte-
gration of the reference problem. The solutions are displayed in Fig.(2.8) where the
error in total energy decreases with the order of the method. Using a fourth order
scheme finally leads to nearly constant total energy.

Compared to a fourth-order Runge-Kutta scheme, using LSODE the time-step
can be chosen at least twenty times larger for obtaining comparable results thus
reducing computational cost. The maximum time step under which the total en-
ergy remains approximately constant using the RK4-scheme is4t = 0.1 whereas for
LSODE4t = 2 is sufficient (cf. Fig.2.9).

The above results suggest that Eq. (2.12) is a stiff ODE system. Moreover, the
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FIGURE 2.7: Total energy and its decomposition computed for the
analytical solution using a Euler-forward scheme.
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FIGURE 2.8: Total energy using different Runge-Kutta time integra-
tion schemes and the UBO-block scheme (black).
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FIGURE 2.9: Total energy and its decomposition (black lines) com-
puted for the analytical solution using the LSODE-solver with step
size4t = 2 (dashed lines) and the UBO-block scheme with time step

4t = 0.2 (solid lines).
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observations show that the discretized problem is probably less stiff. This will be
discussed in the next section.

2.5 Stiffness of the governing equations

Roughly spoken one can say, that the stiffness of an equation describes the depen-
dency of the numerical solution on the step-size used for the discretization (here the
time-discretization). This means that in case of a stiff equation extremely small time
steps are required to obtain sufficiently good results, otherwise the numerical solution
becomes unstable. From a more physical point of view stiffness can be interpreted
as two or more phenomena taking place on very different time scales.

Mathematically, the stiffness of an equation can be determined by its eigenvalues.
For a linear system of ODEs:

y′ = Ay(x)+b(x)

the stiffness can be determined by calculating the eigenvalues of A and then comput-
ing the stiffness ratio σ .

Definition 1. Let λt , t = 1,2, . . . ,n be the eigenvalues of a matrix A. Then λ , λ ∈
{λt}t=1,...,n are defined as:

|Re(λ )| ≥ |Re(λt)| ≥ |Re(λ )|

and the stiffness ratio σ as

σ :=
|Re(λ )|
|Re(λ )| .

As A does not change in time, the eigenvalues are constant and therefore the
stiffness of the system does not change in time, too. For a non-linear system of
ODEs the stiffness can only be calculated locally. Given:

ẏ(t) = F(y, t),

the local stiffness of the system at t = tn is determined by the eigenvalues of its
Jacobian J(tn). As the Jacobian is changing in time, also the eigenvalues change and
therefore the stiffness. Note, that in the case of a linear system of equations, the
matrix A describing the system, coincides with its Jacobian.

Generally spoken, one can say that the larger σ , the stiffer is the system. More
precisely, a system is considered to be stiff for σ > 103. This would also mean, that
if |Re(λ )| = 0 σ is infinite. But: in the case that also |Re(λ )| is sufficiently small,
the system is not stiff at all.
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In the following the Jacobians and their corresponding eigenvalues for the refer-
ence and discretized problem are computed. The Jacobian matrix JF(a) of a function
F : Rn→ Rm in a given point a is defined as:

JF(a) :=
∂F
∂x

(a) :=
(

∂Fi

∂x j
(a)
)

i=1,...,m; j=1,...,n
=


∂F1

∂x1
(a)

∂F1

∂x2
(a) · · · ∂F1

∂xn
(a)

...
... . . . ...

∂Fm

∂x1
(a)

∂Fm

∂x2
(a) · · · ∂Fm

∂xn
(a)


Here we have m = n = 4 and a = (x,vx,y,vy). First the Jacobian for the reference
solution, using the analytically given sliding surface f , is computed. Substituting:

A := 1+ f 2
x + f 2

y ,

B := v2
x fxx +2vxvy fxy + v2

y fyy,

(2.12a) can be rewritten as:

F =


y2

− fx

A
(B+g)

y4

− fy

A
(B+g)

 ,

and the Jacobian of this problem can be written as:

JF(a) =


0 1 0 0

− d
dx

(
fx

A

)
(B+g) − fx

A

(
d

dvx
(B)+g

)
− d

dy

(
fx

A

)
(B+g) − fx

A

(
d

dvy
(B)+g

)
0 0 0 1

− d
dx

(
fy

A

)
(B+g) − fy

A

(
d

dvx
(B)+g

)
− d

dy

(
fy

A

)
(B+g) − fy

A

(
d

dvy
(B)+g

)

 ,

with:

d
dx

(
fx

A

)
=

2a20A−2 fx(2a20 fx +a11 fy)

A2 ,

d
dy

(
fx

A

)
=

a11A−2 fx(a11 fx +2a02 fy)

A2 ,

d
dx

(
fy

A

)
=

a11A−2 fy(2a20 fx +a11 fy)

A2 ,

d
dy

(
fy

A

)
=

2a02A−2 fy(a11 fx +2a02 fy)

A2 ,
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and:

d
dvx

(B) = 2(vx fxx +1),

d
dvy

(B) = 2(vy fyy +1).

Evaluating this numerically using a fourth order Runge-Kutta scheme and a step-size
4t = 0.2 gives a maximum stiffness-ratio σmax = 6.79 · 106, a minimum of σmin =

274.6 and an average of σm = 4.37 ·104. Therefore the system can be considered to
be stiff.

It has to be mentioned here that generally the stiffness strongly depends on the
second order partial derivatives of the surface. In the present case, all second order
partial derivatives are constant which has to be considered a particular case. For
surfaces with non-constant second order partial derivatives, the equations will mostly
be significantly stiffer than they are in the present case.

On the other hand, if f is described by a plane the matrix A becomes:

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

The eigenvalues of this matrix are all zero and so the system is non-stiff, but in-
deed only for the motion on single planes. For the transition between two planes the
stiffness-ratio cannot be computed as the derivatives are not defined in those points,
but, in contrast to smooth surfaces, the number of transitions and therefore change in
slope is finite. This explains why the two solutions, using the same time-integration
scheme with the same step-size show a different behaviour but it also explains the
stepwise increasing total energy. While in the reference problem the slope of the sur-
face and thus also the points acceleration are changing continuously, this is not the
case in the discretized problem where slope and acceleration only change at the tran-
sition point of two planes. This leads to a stronger increase in the total energy for the
reference problem if an inappropriate solver is used for the time-integration. Gener-
ally, in regions with stronger variations of the surface the stiffness ratio is larger and
the errors in the solution (visible in the gain of energy) are larger as well which is the
reason for the stepwise changes in the total energy.

Generally, two different approaches are conceivable now.

1. Reconstructing a smooth surface from the given data points and solving the
equations of motion numerically. This seems straightforward as in the example
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problem the energy was conserved using the lsode-solver.

2. Improving the UBO-block model such that the energy is conserved. The big
advantage of this method is that no surface needs to be reconstructed.

In the following sections, the two approaches will be compared and discussed
more in detail. Therefore the next chapter concentrates on the reconstruction of
smooth surfaces. In Chapters 4 and 5 an energy conserving method for the 1- and
2-dimensional case, using linearized curves and triangulated surfaces, respectively,
will be derived.
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Chapter 3

Smooth Reconstructed Surfaces as a
Basis for the Solution of the
Equations of Motion in 2D

In the first chapter it was shown that increasing the order of the time-integration
method can significantly improve the results of the computation in terms of conser-
vation of energy. Certainly, this holds only if the surface is a smooth function where
also the first and second partial derivatives can be computed (either analytically or
numerically) and are continuous. Moreover, eq. (2.11) is generally a stiff problem,
where the stiffness depends on the sliding surface (more concretely, the degree of
variation in the first and second derivatives). This makes it desirable to find a sur-
face reconstruction that is not only smooth but also provides smooth first and second
order partial derivatives.

Therefore this section concentrates on the reconstruction of sliding surfaces as
a basis for the numerical solution of the equations. Hereby the focus is on the so
called ”smooth surface reconstruction methods” which are frequently used also in
geophysical applications.

Note that however, even under these conditions, the problem remains stiff and
therefore requires an implicit time-integration scheme that can handle those sort of
problems. In case that the derivatives should not be sufficiently smooth, even a time
integration method like the Livermore-Solver (known also as LSODE-solver) cannot
longer guarantee a sufficiently good solution of the equations (in the frictionless case
also ensuring energy-conservation) or too small time-steps are needed to obtain good
results.

The reconstructed sliding surface will be denoted by s(x), x= (x,y) and will – as
already mentioned – be the result of a so called smooth surface reconstruction. Those
methods provide a surface, as well as first and second order partial derivatives, that
are given by globally defined (in contrast to piecewise-defined) analytical functions.
Therefore, when evaluating the functions, no surface segments (in which a given
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point x is located) needs to be identified but the desired results can be computed
directly.

Therefore, three different methods have been implemented and tested. They were
–based on a given test problem – analysed in terms of their ability to provide a smooth
reconstruction to given data points and in addition also the first and second deriva-
tives were investigated.

3.1 Smooth fitting surfaces

One possibility for the reconstruction of smooth surfaces is the use of so called radial
basis functions f . These depend only on the distance from the origin, which means
that for a function f the following must hold: f (x) = f (‖x‖) respectively for some
given origin x0: f (x,x0) = f (‖x− x0‖). For the reconstruction s(x) of a surface
S a linear combination of such functions can be used. Given a number n of points
xk = (xk,yk) with k = 1, . . . ,n and zk the corresponding observed (function) values,
this reads:

s(x) = p(x)+
n

∑
k=1

λk f (‖x−xk‖), (3.1)

where the λk are the parameters to be determined and p(x) is an optional polynomial
of degree m, usually included to model global trends in the data. The weights λk, and
the polynomial coefficients are then determined by the requirement

s(xk) = zk, k = 1, . . . ,n.

The space of polynomials of degree m in d variables has dimension M =
(m+d

d

)
.

Hence, if the polynomial p is present, it introduces additional degrees of freedom that
must be removed. Let pi : i = 1, ...,M be a basis for all polynomials in d dimensions
with degree at most m. To remove the additional degrees of freedom the following
conditions have to be satisfied:

n

∑
k=1

λk pi(xk) = 0, i = 1, . . . ,m.

In our case, the polynomial p is of degree zero and therefore just a constant parameter
that will be denoted by λ0. While the radial basis functions f are also called ansatz-
functions, s(x) is the so called reconstructing function. Let’s in the following use
the definition rk := (‖x−xk‖), or rk = [(x− xk)

2 +(y− yk)
2]1/2 when using it in the

Euclidean sense.
As it is described in (Billings et al. 2002, Interpolation of geophysical data using

continuous global surfaces), many surface-fitting methods are defined naturally as the
solution of certain variational problems. Therefore a penalty function J(s) is defined
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and then the function s(x) is chosen in the way to be the solution of the constrained
optimization problem:

minJ(s) subject to s(xk) = fk : k = 1, ...,n.

In the following, three different reconstructing functions and their derivatives are pre-
sented. As an example, the reconstructed surfaces are plotted for the first test-case.
The number of grid points per coordinate-direction is 21, so overall, 441 grid points
are used for the reconstruction. For the plotting, the double amount of grid points
per direction was chosen to show the behaviour of the function in between the recon-
structed points. In addition, the absolute errors between the reconstruction and the
original surface are shown as well as the parameters of the reconstructing function.
Then the motion of a point is simulated for different surfaces, reconstructed using
the Inverse-Multi-Quadratic reconstruction. The test-surfaces will all be constant in
y-direction.

3.2 The tension-spline

The first ansatz-function presented here is the so called tension-spline. In its original
formulation this reconstruction leads to overshoots in regions with rapid changes of
gradients. To eliminate this problem the so called tension parameter was introduced
by Smith and Wessel (1990). Another setting was introduced by Mitasova and Mitas
(1993) which is presented here.
Let’s for a moment go back to equation (3.1). The polynomial p(x) can be written
as p(x) = ∑

K
j=1 a jq j(x) where the q j are a basis for the space of polynomials and a j

are the corresponding coefficients. The penalty function J(s) was then chosen as:

J(s) =
∞

∑
k=0

∑
a:|a|=k

Ba

∫
R2

(
∂ |a|s

∂xax∂yay

)2

∂x∂y

with a=(ax,ay), and Ba = |a|!ϕ−2|a|/[ax!ay!(|a|−1)!] if a 6= 0 and Ba = 0 otherwise.
ϕ is the generalized tension parameter and controls the shape of the reconstructed
surface. Mitasova and Mitas (1993) showed that the following ansatz-function mini-
mizes J(s) subject to interpolating the data:

fk :=−
{[

ln
(

ϕrk

2

)2
]
+E1

[(
ϕrk

2

)2
]
+Ce

}
,

where ϕ is the so called Tension-parameter whose choice is important for the quality

of the reconstruction. For simplicity we will define vk :=
(

ϕrk

2

)2
. Generally one can



32 Chapter 3. Solution on Smooth Surfaces

say that the greater the tension is, the more local will the behaviour be (Interpolation
by Regularized Spline with Tension: I. Theory and Implementation, Mitasova and
Mitas, 1993). For small values of r and v this can be approximated by

fk ≈−
∞

∑
n=1

vn
k

n ·n!
(3.2)

which is found using a Taylor-expansion for E1(x):

E1(x)≈Ce + ln(|x|)+
∞

∑
n=1

vn

n ·n!
. (3.3)

Equation (3.3) can be used to compute E1(x) with floating point operations for real x
between 0 and 2.5. For x > 2.5, the result is inaccurate due to cancellation.
Using this approximation, the terms Ce and ln(|x|) (in our case x=v and due to its
definition it is always non-negative) cancel and we derive equation (3.2). For v = 0,
f can be continued to f (0) = 0.
For simplicity we first compute the partial derivatives of v and with r2

k = [(x−xk)
2+

(y− yk)
2] we get:

vk,x =
ϕ2

2
(x− xk),

vk,xx =
ϕ2

2
,

vk,xy = 0.

Therefore we find for the partial derivatives f k
x , f k

xx and f k
xy:

fk,x =
vk,x

vk

[
e−vk

(
1+

1
vk

)
−1
]
,

fk,xx =
e−vk(vk,xx− v2

k,x)− vk,xx

vk
+

e−vk(vk,xx−2v2
k,x)+ v2

k,x

v2
k

−
2v2

k,xe−vk

v3
k

,

fk,xy =
vk,xvk,y(vk− e−vk((vk +1)2 +1))

v3
k

.

The interior of the surface is reconstructed very well, with just a slight smoothing
around the transition area (x = 0). Also fx is smooth there, showing neither oscilla-
tion nor over-/undershoots, fy is constant apart from the direct vicinity of the bound-
ary (compare Figs. 3.1 and 3.2). As can be seen in Fig.(3.3) there are strong peaks
around (x = 0) in fxx and fyy representing the sudden change in slope thus leading to
a reconstruction that is very close to the original surface. (Note that the plots of the
derivatives are rotated counter-clockwise with respect to the reconstructed surface
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FIGURE 3.1: Reconstructed surface using the Tension Spline.

again to obtain a better visibility.) Fig. (3.4) shows the error ε between the recon-
struction and the piecewise-linear surface ε = z− zr. The biggest errors appear at the
boundary of the surface where significant ripples are visible also in the reconstructed
surface, moreover there are little errors also in the region of x = 0.

Altogether the Tension spline gives a very good reconstruction of the original
surface (in the interior), conserving the fast change in slope while having very smooth
first and second derivatives.
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FIGURE 3.2: First order partial derivatives (top: fx, bottom: fy) of the
reconstructed surface using the Tension Spline.
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FIGURE 3.3: Second order partial derivatives (top: fxx, middle: fxy

bottom: fyy) of the reconstructed surface using the Tension Spline.
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FIGURE 3.4: Tension spline: Difference to the original surface.

3.3 The thin-plate-spline

The second ansatz function is the thin-plate-spline which arises from the following
penalty function:

J(s) =
∫
R2

m+1

∑
i=0

(
m+1

i

)(
∂ m+1s

∂xi∂ym+1−i

)2

∂x∂y.
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FIGURE 3.5: Reconstructed surface using the Thin-Plate Spline.

The reconstructing function satisfying this is:

fk(r) := r2
k ln(rk),
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with lim
r→±0

ftp,k(r)→ 0. For the partial derivatives we find:

f k
x = (x− xk)(1+2ln(r)),

f k
xx = (2ln(rk)+1)+

2(x− xk)
2

r2 ,

f k
xy =

2(x− xk)(y− yk)

r2 ,

where f k
y and f k

yy follow analogously.
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FIGURE 3.6: First order partial derivatives (top: fx, bottom: fy) of the
reconstructed surface using the Tension Spline.

In contrast to the previous reconstruction one finds some sagging as the incli-
nation changes (x = 0) (compare Fig.(3.5)). The first partial derivative fx shows
some over- and undershooting as can be seen in Fig.(3.6) while the peak in the sec-
ond partial derivative fxx is much lower than in the previous reconstruction (compare
Fig.3.7) resulting in a less sudden change in slope. (Again the plots of the derivatives
are rotated counter-clockwise with respect to the reconstructed surface.)
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FIGURE 3.7: Second order partial derivatives (top: fxx, middle: fxy

bottom: fyy) of the reconstructed surface using the Tension Spline.

In figure (3.4) the absolute error between the reconstruction and piecewise-linear
surface is shown. It has a maximum of about 0.03 where this error is concentrated
around x = 0, that means in the region of changing curvature. For the rest of the
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surface, the error is approximately zero.
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FIGURE 3.8: Difference to the original surface.

3.4 The inverse multi-quadratic reconstruction

The third reconstruction investigated here is not obtained from penalty function but
uses a multi-quadratic approach for the ansatz-function. Therefore the reconstructing
function is defined as follows:

fk(r) :=
1√

1+ r2
k

.

Due to the definition of fimq,k, its function-values become smaller (going closer to
zero) with increasing distance of x to the origin xk and therefore the reconstruction
can be described as being more local in some sense than others (that will follow
later). We now find for the partial derivatives f k

x , f k
xx and f k

xy:

f k
x =− (x− xk)√

1+ r2
k

3 ,

f k
xx =

3(x− xk)
2− (1+ r2

k)√
(1+ r2

k)
5 ,

f k
xy =

3(x− xk)(y− yk)√
1+ r2

k

5 .

fy and fyy follow analogously.
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FIGURE 3.9: Reconstructed surface using the Inverse Multi-quadratic
spline.
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FIGURE 3.10: First order partial derivatives (top: fx, bottom: fy) of
the reconstructed surface using the inverse multi-quadratic spline.

The reconstructed function is now shown in Fig.(3.9). It is basically able to take
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on the desired shape but however shows some sacking in vicinity x = 0. While, be-
sides at the borders, fy is quite constant, there are strong oscillations in fx as can
be seen in Fig.(3.10). In Fig.(3.11) the three second-order partial derivatives are de-
picted where fxx shows a strong peak around x = 0 as well as significant oscillations
the closer one gets to that point. (Note that for a better visibility the plots of the
derivatives are rotated counter-clockwise with respect to the reconstructed surface.)

Figure (3.12) shows the error between the reconstruction and the original surface.
The maximum absolute error is about 0.04 while the average error is about 0.01. It is
the only reconstruction that shows errors to the original surface also in the originally
planar areas.
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FIGURE 3.11: Second order partial derivatives (top: fxx, middle:
fxy bottom: fyy) of the reconstructed surface using the inverse multi-

quadratic spline.
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FIGURE 3.12: Difference to the original surface.
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3.5 Time-integration using the Livermore solver

As pointed out in section 2.5, the equations of motion are generally a stiff problem
and therefore a solver suited for such problems has to be used in order to obtain rea-
sonable good results in the numerical solution. Among those solvers, the Livermore
Solver for Ordinary Differential Equations (LSODE) Hindmarsh and Radhakrishnan,
1993 is a frequently used and highly optimized package of Fortran subroutines de-
signed for the numerical solution of the initial value problem for a system of ordinary
differential equations of the form

dx
dt

= f (x, t),

with initial conditions x(t0)= x0. While many of the classical solvers are for non-stiff
ODEs only, LSODE is particularly well suited for stiff differential systems but can
be used for non-stiff problems as well. Moreover, it contains different mechanisms
that minimize computational costs.

Depending on the users needs, different options are available for the time-integration
using LSODE where most methods require a Jacobian-matrix (i.e. the matrix of the
partial derivatives), which can be either user-supplied or generated internally.

Adams-Moulton (AM) method: , best suited for non-stiff problems, no Jacobian
needed;

BDF (backward differentiation formula) method: , best suited for stiff problems,
Jacobian can be supplied as follows1:

• "Modified Newton iteration with user-supplied analytical Jacobian",

• "Modified Newton iteration with internally generated numerical Jaco-
bian",

• "Modified Jacobi-Newton iteration with internally generated numerical
Jacobian",

• "Modified Newton iteration with user-supplied banded Jacobian",

• "Modified Newton iteration with internally generated banded Jacobian".

Beyond that, the most important arguments of LSODE are the following2:

F: "The name of the user-supplied subroutine that computes the derivatives of the
dependent variables with respect to the independent variable";

NEQ: "The number of first-order ordinary differential equations (ODE’s) to be solved";

1compare Hindmarsh and Radhakrishnan, 1993
2compare Hindmarsh and Radhakrishnan, 1993
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Y: "A vector of length NEQ (or more) containing the dependent variables";

T: "The independent variable. On the first call to LSODE, T must give the initial
value of this variable";

RTOL: "The local relative error tolerance parameter for the solution";

ATOL: "The local absolute error tolerance parameter for the solution".

With the last two arguments, RTOL and ATOL, the following local error test is
performed at each iteration step:

|(local error in x(i))| ≤ RTOL · |(y(i))+ATOL(i)|

As for the reconstruction methods presented above, an analytically computed Ja-
cobian usually becomes too complex, the stiff method with the internally generated
full Jacobian was used for the numerical solution of the equations on the recon-
structed surfaces. The results of those computations will – for the 1-dimensional
case – be discussed in the next chapter where they are also compared to the solu-
tions on piecewise linear curves. Accordingly, the results for the 2-dimensional case
will be discussed and compared in the next chapter, dedicated to the solution of the
equations on piecewise-planar surfaces.
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Chapter 4

Analytical Solution of the 1D
Equations of Motion on
Piecewise-Linear Curves

4.1 Introduction and formulation of the problem

In this section a method for the analytical solution of the equations of motion on
C0-curves is derived and while the final goal is to simulate gravitational sliding on
real terrains (topographies and/or bathymetries), this will first be done for the 1-
dimensional problem i.e., a point mass sliding under the effect of gravity on curves
made of piecewise linear segments. But, just as well as in the case of triangulated
surfaces, the piecewise linear curves are non-smooth at the intersection point of the
segments. The aim is to present a technique providing the analytical solution of the
equations governing the point-mass motion on these curves. Once an analytical (here
also exact) solution – which obviously guarantees energy conservation in case of zero
friction – to this problem is found, the method is extended to the 2-dimensional case.

For a better illustration of our approach let us suppose that the terrain is given
by a curve C that is at least of class C2, and suppose further that we approximate C

by a continuous curve Σ formed by straight segments, that may have discontinuous
first derivative at the segment end points (or nodes). In order to overcome the non-
smoothness problem of the piecewise curve Σ, we imagine (as indicated in Fig. 4.1)
that in the neighbourhood of a node the curve is smoothed by a circular arc thus
implying a constant curvature in this region. Note that in the figure, the proportions
are strongly scaled in order to illustrate the idea. In the following, the sliding curve
is denoted by Σ. Two consecutive linear segments of Σ are denoted by σi and σi+1,
where each segment σi can be described by a function fi of x:

fi(x) = aix+bi with x ∈ Ai ⊂ R

where ai and bi are real coefficients, Ai is the range of x-values for the element σi
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FIGURE 4.1: Curve approximation using straight segments and cir-
cular sectors: Smooth curve C (dashed, magenta), discretized curve Σ

with linear segments σi and σi+1 (densely dotted, blue) and smoothed
curve Σ∗ (orange, dashed). The circular sector is denoted by dash-dot-
ted lines, r is the radius of the circular sector, α its angle and c the

centre

and the index i is increasing with x. As mentioned above we want to smooth the
discontinuities using a circular arc such that the derivatives at the beginning and end
of the arc coincide with those of the linear segments. This is achieved if the radius
r of the circular sector is normal to the linear segment itself in the point where they
meet (compare also Fig. 4.1). It easily follows that the angle defining the circular
sector is identical to the one enclosed by the two linear segments and so we found
a simple and general criterion for choosing the angle of the circular arc. This angle
will be denoted by α (see also Fig. 4.3). The smoothed curve will be denoted by Σ∗

and is a C1-function meaning that it is once continuously differentiable and therefore
also has a second derivative. Note that as we did not construct a C2-function, the
second derivative is still not continuous itself. In general this would be a problem,
however, in our case it is not as we will see later.

4.2 The solution for the piecewise linear curve Σ

4.2.1 The equations of motion

For the 1-dimensional case, i.e. the motion of a mass point on a curve C, the following
first order ODE system can be derived from Eq. (2.10):

ẏ(t) =
dy
dt

= F(y, t), y(t0) = y0, (4.1)
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where y = (x,vx) and

F =



vx

− fx
g+ v2

x fxx

1+ f 2
x
−µ sgn(vx)

g+ v2
x fxx

1+ f 2
x

vz

− f 2
x g+ v2

x fxx

1+ f 2
x

−µ sgn(vz)
g+ v2

x fxx

1+ f 2
x


. (4.2)

Furthermore, f = f (x) denotes the function describing the curve C, while fx = f ′(x)
and fxx = f ′′(x) are the corresponding first and second derivatives, that supposedly
exist everywhere along the curve C.

As we assumed that the point mass is constrained to move on the curve, we can
also obtain the height z and velocity vz by evaluating

z = f (x) vz = vx fx.

In the following the solution of (4.2) for the approximation Σ∗ of the real curve C is
described. While the solution we derive for Σ∗ will be an analytical one, it will also
be an approximation to the unknown solution on the corresponding C2-curve C. For
a better understanding of the following steps, it is helpful to rewrite F as follows:

F =



vx

−g
fx +µ sgn(vx)

1+ f 2
x

− v2
x fxx

fx +µ sgn(vx)

1+ f 2
x

vz

−g
f 2
x +µ sgn(vz)

1+ f 2
x

− v2
x fxx

1+µ sgn(vz)

1+ f 2
x


. (4.3)

While the left term of the rhs of equ. (4.3) contains g but does not depend on fxx and
therefore the curvature of f , the contrary is the case for the right term. Therefore,
the left term will in the following also be denoted as ”curvature-independent term”,
while the right term will be denoted as ”curvature-dependent term”. The main idea
behind the subsequent steps is the following: if we let the radius r of the arc segments
go to zero, also the length of the curve of those segments and therefore the time t
needed to pass through the segments go to zero. Hence, the terms including gravity
(those are at the same time the curvature-independent term) are become negligible.
On the contrary, this is not the case for all curvature-dependent term which is shown
in the following. As a consequence, in the transition area the problem reduces to
the solution of the curvature-dependent terms while along the linear segments the
curvature-dependent are zero (as the second derivatives are zero) and the problem
reduces to the solution of the curvature-independent terms.
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Proof. The lower half of the circle is given by the following function:

f (x) =−
√

r2− x2

restricted to the domain x ∈ [−r,r], where r is the radius of the circle (cf. fig. 4.2).
The first and second derivatives of f are:

f ′ =
x√

r2− x2
and f ′′ =

r2

(r2− x2)3/2 .

First it will be shown that the modulus of all curvature-independent terms of equ.
(4.2) is always bounded. Notice therefore that the parameters g and mu as well as the
velocities vx and vz are always bounded and will therefore not directly be considered
in the following.

For the first term −
fxg

1+ f 2
x

− f 2
x g

1+ f 2
x

 (4.4)

we find:

fx

1+ f 2
x
=

x√
r2− x2

r2

r2− x2

=
x
r

√
r2− x2

r
, (4.5)

where
√

r2− x2 = z and therefore

√
r2− x2

r
= cos(θ). Obviously, the values of

cos(θ) are in the range [−1,1]. On the other hand, for the given domain [−r,r]
we have −1 ≤ x

r
≤ 1. It follows that for all values in the defined domain equ. (4.5)
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is bounded by [−1,1]. Moreover one finds that:

f 2
x

1+ f 2
x
=

x2

r2− x2

r2

r2− x2

=
1
r2 x2, (4.6)

which is a parabola with parameter 1
r2 . As the domain is restricted to [−r,r] we find

that (4.6) has minimum value zero and maximum value one. As therefore both com-
ponents of (4.4) are bounded, also its modulus must be bounded. (More easily this is
seen from a physical point of view as acceleration due to gravity can never exceed g
(free fall).)

For the second term µ sgn(vx)
g

1+ f 2
x

µ sgn(vz)
g

1+ f 2
x

 . (4.7)

We find that
1

1+ f 2
x
=

1

1+
x2

r2− x2

= 1−
(x

r

)2
.

As in the given domain −1 ≤ x
r
≤ 1 it follows that 0 ≤

(x
r

)2
≤ 1 and therefore

0 ≤ 1−
(x

r

)2 ≤ 1. Thus, both components of term (4.7) and therefore also its mod-
ulus are bounded. (Physically this is seen as this friction term is proportional to
acceleration due to gravity which itself is bounded.)

It will now be shown that the curvature-dependent components are going to ±∞

for r→ 0.

For the third term the modulus is computed directly:∥∥∥∥∥∥∥

− fx fxx

1+ f 2
x

fxx

1+ f 2
x


∥∥∥∥∥∥∥=

(
fxx

1+ f 2
x

)2 (
f 2
x +1

)
,

where for the left term of the rhs we have:

fxx

1+ f 2
x
=

r2

(r2− x2)3/2

1+
x2

r2− x2

=
r2− x2

(r2− x2)3/2 =
1√

r2− x2
, (4.8)
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where for the domain [−r,r] the values of r2− x2 are in the range [0,r] and therefore

lim
r→0

1√
r2− x2

= ∞ and thus also lim
r→0

(
fxx

1+ f 2
x

)2

= ∞.

On the other hand

f 2
x +1 =

x2
√

r2− x2
+1 =

r2

r2− x2 (4.9)

is a family of curves that, in the given range, has a single minimum for x = 0 where
f (0) = 1, and two poles, one for x = −r and one for x = r with limx→±r = ∞. Ac-
cordingly, the values of (4.9) are in the range [1,∞] such that finally we find:

lim
r→0

(
fxx

1+ f 2
x

)2 (
f 2
x +1

)
= ∞.

For the last term 
fxx

1+ f 2
x

fxx

1+ f 2
x

 ,

we already know from (4.8) that the limit of the components is ∞.

As the curvature-dependent components are going to ∞ as r→ 0 while the cur-
vature-independent terms are bounded, the latter are negligible in that case.

For simplicity the curvature-independent and -dependent terms are written sepa-
rately and will be denoted by Fg and Fc, respectively, such that the solution of (4.1)
reduces to

ẏ(t) =
dy
dt

= Fg(y, t), y(t0) = y0,

for the linear segments σi, where

Fg =

 vx

−g
fx

1+ f 2
x
−µ sgn(vx)

g
1+ f 2

x

 (4.10)

and the subscript g, indicates gravity dependency. For the circular segments instead
the problem reduces to

ẏ(t) =
dy
dt

= Fc(y, t), y(t0) = y0,
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where

Fc =

 vx
− fx

1+ f 2
x

v2
x fxx−µ sgn(vx)

1
1+ f 2

x
v2

x fxx

 . (4.11)

and the subscript c denotes the curvature-dependency. In Eq. (4.11) one can dis-
tinguish a term that acts normal to the velocity vector and changes its direction but

not its modulus, namely
− fx

1+ f 2
x

v2
x fxx, and a friction term that acts tangential to the

direction of the velocity and changes the speed but does not influence the direction

of motion, that is −µ sgn(vx)
1

1+ f 2
x

v2
x fxx. This property is easily seen using also the

vertical acceleration az. Considering – for the 1-dimensional case – only curvature-
dependent components, Eq. (2.10) becomes:

v̇x =−
fx

1+ f 2
x

v2
x fxx − µ sgn(vx)

fxxv2
x

1+ f 2
x
,

v̇z =
1

1+ f 2
x

v2
x fxx − µ sgn(vx)

fx fxxv2
x

1+ f 2
x
. (4.12)

Denoting by an and at the left and right part of Eq. (4.12) we find:

an =

−
fx

1+ f 2
x

v2
x fxx

1
1+ f 2

x
v2

x fxx

=
v2

x fxx

1+ f 2
x

(
− fx

1

)
,

where the vector (− fx,1)
ᵀ and therefore an are normal to the curve and thus to the

direction of motion. For at instead we find:

at =

−µ sgn(vx)
fxxv2

x
1+ f 2

x

−µ sgn(vx)
fx fxxv2

x
1+ f 2

x

=
−µ sgn(vx) fxxv2

x
1+ f 2

x

(
1
fx

)
,

where (1, fx)
ᵀ and therefore also at are tangential to the surface and thus also to the

direction of motion.
Observe that Eq. 4.11 does not depend on gravity, and therefore would be suffi-

cient to describe the motion of the point mass on a curve lying on a horizontal plane.
Starting with Eq. 4.10 we will study the two types of motion (i.e gravity-de-

pendent and curvature-dependent) separately. Later on we will see how they can be
combined together. We anticipate that our strategy will be to compute the motion on
the piecewise curve Σ and to recognize that the motion along the straight segments
of Σ is fully governed by the gravity-dependent component of the equations, while in
the transition from one segment to the next, the governing contribution comes from
the curvature-dependent component.
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4.2.2 The motion on the straight segments of Σ

Along a straight segment with constant slope the second derivative of the profile
function fxx is identically zero and therefore the motion is fully determined by the
curvature-independent components.The acceleration ax,0 is given by:

ax,0 =−g
fx

1+ f 2
x
−µ sgn(vx,0)

g
1+ f 2

x
, (4.13)

which we get from 4.10. From the definition of Σ we find that for the certain linear
segment σi we have fx = ai and therefore:

ax,0 =−g
ai

1+a2
i
−µ sgn(vx,0)

g
1+a2

i
= const., (4.14)

There is no loss of generality if we assume that the mass of the point is unitary, i.e.
that m = 1. Since the driving acceleration ax,0 is constant (c.f. (4.14)), the solution
corresponding to the initial conditions (x(t0),vx(t0)) = (x0,vx,0) is:

x(t) = x0 + vx,0(t− t0)+
1
2

ax,0(t− t0)2,

and
vx(t) = vx,0 +ax,0(t− t0), (4.15)

allowing us to compute the exact position and velocity of the point for any time
instant of interest. Assuming we know the final position xt = x(t) we can also solve
for t:

t1,2 = t0 +
−vx,0±

√
v2

x,0−2ax,0(x0− xt)

ax,0
, (4.16)

Three cases are possible:

• Both values t1/2− t0 are positive, i.e. the mass-point will cross xt twice. This
is the case if the direction of motion changes, but outside the current triangle.
Starting with velocity vz > 0, the point moves upwards, crosses xt for the first
time at t = t1 and stops (i.e. vz = 0) somewhere outside the current segment
σi at time ts ∈ [t1, t2]. Then it continues in a downwards motion (i.e. vz < 0),
crossing xt for the second time at t = t2, re-entering element σi.

• One values of t1/2−t0 is positive, the other negative. Either the mass is moving
with negative vz from the beginning, or, the motion changes direction within
the current segment σi. In both cases, the negative value of t1/2− t0 (from a
theoretical point of view) accounts for going backwards in time which from a
physical point of view is impossible. The only valid value of t is the positive
one.
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• Both values t1/2− t0 are negative. The mass-point is moving with velocity
vz < 0 (downwards) and already passed by the point xt . It could return to that
point only moving backwards in time which is excluded.

Letting xl and xr be the left and right endpoint of a linear segment σi, Eq. (4.16) has
to be evaluated twice, once for each of the two endpoints. For xt = xl and xt = xr

altogether four values ti are found where, without loss of generality, it can be assumed
that t1/2 are the solutions for xt = xl and t3/4 the solutions for xt = xr, respectively.
The final time of intersection tint is given by:

tint = min(ti− t0|ti− t0 > 0), i = 1, . . . ,4,

i.e. the smallest positive solution of Eq. (4.16). Since it is trivial to derive the vertical
components of the motion vector (i.e. acceleration, velocity and position) from the
horizontal ones and to see that both acceleration and velocity are vectors parallel
to the segments, the above simple formula enable us to fully compute the motion
of the point mass along each linear segment, just adapting its initial velocity and
acceleration.

Special case: the motion stops In this model we consider only a constant friction
coefficient µ . From Eq.s (4.15) and (4.13) one finds that the motion of a point can
stop if either sgn(ax) 6= sgn(vx) or µ ≥ | fx|, or also both are the case. In this case
tstop, the time at which a point stops, is computed as follows:

vx(tstop) = 0 = vx,0 +ax,0tstop

⇒ tstop =−
vx,0

ax,0

If the point stops but µ < | fx| then the point reached a reversal point (point of maxi-
mal height). As the slope is steep enough to overcome friction, the point will continue
moving, but velocity will change its sign (the point then moves downwards). If in
contrast µ ≥ | fx| the slope is too slight and the point finally stops.

4.2.3 The motion in the transition region between the linear seg-
ments of Σ

Strictly speaking, in any node connecting two linear segments of the approximating
curve Σ the second derivative fxx does not exist and Eq. 4.2 cannot be applied. In
order to overcome this, we consider instead a smoothed version of the curve Σ that
we call Σ∗ that is obtained by using circular sectors. Accordingly, when the point
approaches the point of intersection of two linear segments it undergoes a circular
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FIGURE 4.3: Rotation of the velocity vector: angle of rotation of the
point equals the change of direction of the velocity vector

motion which enables us to incorporate centripetal acceleration and friction. We will
show that in the transition region the motion of the mass is dominated only by the Eq.
4.11 that is notably g-independent. Let’s suppose that this is true, and let’s consider
separately the contribution of the term without and with friction in this equation. In
Fig. 4.3 we show (strongly scaled up) how the direction of motion is changing during
the passage of the point through a circular sector with radius r, centre c and angle α .
Displayed are the discretized surface Σ and smoothed surface Σ∗, the circular sector
of angle α (dashed lines), the position of a point when entering the arc at time t1 and
on exit at time t2 (marked by green dots) and the corresponding velocities v1 and v2

(marked respectively by a solid and dash-dotted arrows). The translation of v1 into
the point of exit (dotted arrow) is given to indicate the rotation (α) of the velocity
vector. It can easily be shown that the angle of the circular arc equals the change of
direction of the velocity vector.
If only the frictionless terms are taken into account, there is no loss of kinetic energy,
and the magnitude of the velocity is expectedly conserved in the transition, and, as
the point is forced to stay on the curve Σ∗, it follows that v1 and v2 must both be
tangent to the curve. Therefore the angle enclosed by the two linear segments σi−1

and σi must be equal to the one enclosed by v1 and v2. It follows that the vector v2

can be obtained by a simple rotation of v1, i.e.:

v2 = Rαv1, (4.17)

where Rα is the well known rotation matrix and α denotes the angle of rotation. Note
that this does not depend on the radius and therefore the length of the arc but only on
α itself. This property is crucial and will be exploited later.
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4.2.4 Introducing friction

Let F be the friction force and ΦΦΦ the reaction of the surface exerted on the body.
From the motion equation:

ma = Fµ +ΦΦΦ,

in case of gravity-independent circular motion of a point with mass m and velocity v
along an arc of radius r, we have:

Fµ + |Φn|n = mv̇t+
mv2

r
n,

and:
Fµ =−sgn(v)µ |Φn| t, (4.18)

where t and n are unit vectors respectively tangential and normal to the curve. It
follows that:

−sgn(v)µ |Φn| t+ |Φn|n = mv̇t+
mv2

r
n,

and therefore we find:

− sgn(v)µ |Φn|= mv̇, and |Φn|=
mv2

r
,

⇒− sgn(v)µ
mv2

r
= mv̇.

Finally we end up with:

v̇ =−sgn(v)µ
v2

r
, (4.19)

Hence, if we want to understand how the speed of a point mass moving along a
(horizontal) circular path evolves in time, we need to solve equation (4.19). We
imagine for the moment that the point is moving inside the circle which hence is
a convex curve. As radius and friction coefficient are constant we substitute for
convenience µ

r with ξ . With v(0) = v0 and sgn(v) = sgn(v0) (as now the speed can
only decrease) we find:

v(t) =
v0

1+ sgn(v0)v0ξ t
. (4.20)

Note that v(t) has no singularity as |v0|, ξ and t are always positive and for t→∞ we
find that v→ 0. Obviously, for v0 = 0 also v(t) = 0 for all values of t. This can be
treated as a special case. We assume therefore in the following that v0 6= 0 in order
to ensure that sgn(v0) is always different from zero.

The goal of the following computations is to find the final velocity v f of a point
P after travelling through a particular circular arc with angle α . Therefore we first
need to find the function describing the angle through which a point passed through
for a certain time t. This function will be denoted by β (t).
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In a first step we convert the velocity v(t) into the angular velocity ω(t) by mul-
tiplying v(t) by the inverse of the radius. In the general case the following relation
holds ω = dβ/dt and thus we find β by integrating ω(t) in time:

β (t) =
∫ t

0
ω(t ′)dt ′ =

∫ t

0

v0

r(1+ sgn(v0)v0ξ t ′)
dt ′,

As (1+ sgn(v0)v0ξ t ′) = (1+ |v0|ξ t ′) > 0, the integral can be solved using the rule
of logarithmic integration:

β (t) =
∫ t

0

sgn(v0)

ξ r
sgn(v0)v0ξ

1+ sgn(v0)v0ξ t ′
dt ′ =

=
sgn(v0)

ξ r
ln(1+ sgn(v0)v0ξ t) =

=
sgn(v0)

ξ r
ln(1+ |v0|ξ t)

If t is a particular time that we are interested in, then obviously β (t) is the corre-
sponding angle. As (|(|v0)ξ t) > 0 it follows that also ln(1+ |(|v0)ξ t) > 0 and as
also ξ r > 0 one finds that β (t)> 0 if v0 > 0 and on the other hand β (t)< 0 if v0 < 0.
Inverting the function we find the time t needed by a point with initial velocity v0 to
move along a circular arc of angle β , defined by the radius r:

t(β ) =
e(sgn(v0)βξ r)−1

sgn(v0)v0ξ
. (4.21)

Inserting (4.21) into (4.20), and back-substituting ξ r with µ we find the final velocity
in dependency of the angle β :

v(β ) =
v0

esgn(v0)µβ
=

v0

eµ|β | , (4.22)

as β > 0 for positive initial velocities and β < 0 in the opposite case. This final
velocity will also be denoted by v f .

It follows that in case of circular motion with constant radius r and in absence
of additional tangential acceleration (e.g. due to gravity) the change of speed due
to friction is determined only by the initial velocity, the friction coefficient and the
angle of the circular arc, but – as well as the change of direction – it is independent of
the radius itself and also of time. This radius- and time-independence enables us to
reduce the influence of the curvature-dependent components to the point of change
of slope as no time-integration is needed for its computation. We can therefore also
assume that the change of direction and modulus of velocity in this point is an in-
stantaneous one.
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FIGURE 4.4: Velocity modification factor Γ for convex curves, plotted
as a function of the friction coefficient µ and the angle of the circular

arc α

We assume now a given angle α and friction coefficient µ . As the final velocity
only depends on the angle and friction coefficient we can also write:

Γ(α,µ) = eµ|α|, (4.23)

and call this the velocity modification factor. To get the final velocity we just mul-
tiply v0 by Γ. From (4.22) and (4.23) we can directly deduce that if either α or µ

equals zero, there is no change in the speed while for (αµ)� 0 the final velocity is
vanishingly zero. This can also be seen in Fig. (4.4) where the contour plot shows
the velocity modification factor as a function of the friction coefficient and the angle
of the circular arc. The change of velocity is denoted by4v where:

4v = v0− v f = v0(1− eµ|α|).

Looking at the friction-containing terms of (4.2):

−µ sgn(vx)

(
g+ v2

x fxx

1+ f 2
x

)
,

and

−µ sgn(vz)

(
g+ v2

x fxx

1+ f 2
x

)
,
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Let for the following be
Φ̃ = g+ v2

x fxx

. We will now compare the loss of velocity due to friction for a point moving on a
(monotonous) C2-curve and the piecewise linear segment approximating this curve,
respectively. A subscript c to Φ̃ will denote the value for C while a subscript l stands
for the linear segment. Altogether three cases are possible:

Case 1: The curve C is convex (comp. figure 4.5)⇒ fxx > 0. It immediately follows

x2

x1

Φ̃c > g

Φ̃l = g

FIGURE 4.5: Influence of friction for a convex curve

that also Φ̃c > 0, and moreover Φ̃c > g. On the linear segment instead, as
fxx = 0 we have Φ̃l = g and therefore Φ̃c > Φ̃l . Hence, in comparison with
the motion on the curve C, the point experiences a less strong loss of velocity
when moving along the linear segment. This is compensated by the velocity
modification factor that additionally decreases the velocity of the point in the
transition point between two segments.

Case 2a: The curve C is concave (comp. figure 4.6)⇒ fxx > 0 but still g >−v2
x fxx

and therefore Φ̃c > 0. On the linear segment instead, as fxx = 0 we still have

x2

x1 Φ̃c < g

Φ̃l = g

FIGURE 4.6: Influence of friction for a concave curve

Φ̃l = g and therefore Φ̃c < Φ̃l . In comparison with the motion on the curve C,
the point now experiences a stronger loss of velocity when moving along the
linear segment which will be compensated by a gain of velocity using again the
velocity modification factor which thus has to be adapted for concave curves.

Case 2b: The curve C is concave ⇒ fxx > 0 and g < −v2
x fxx and therefore Φ̃c <

0. It follows that Φ̃c increases the velocity which obviously is an unphysical
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behaviour Nonetheless, we will consider this case for the moment and discuss
possible solutions to the problem later on.

On the linear segment, as fxx = 0 we again have Φ̃l = g and therefore Φ̃c < Φ̃l .
In comparison with the motion on the curve C, where the velocity increases,
the point experiences a loss of velocity when moving along the linear segment
which will be compensated by a gain of velocity using again the velocity mod-
ification factor.

We will now adapt the velocity modification factor such that it holds also for
concave curves and therefore look again at equation (4.18):

Fµ =−sgn(v)µΦnt,

In order to obtain a gain of velocity instead of a loss the sign in (4.18) needs to be
changes such that we finally get:

v̇ = sgn(v)µ
v2

r
. (4.24)

Solving (4.24) and then following the procedure above we find that the following
velocity modification factor Γ′ for a point with initial velocity v0 moving on a circular
arc with given angle α and friction coefficient µ:

Γ
′(α,µ) = e−µ|α|,

and thus we can define a more general Γ as follows:

Γ(α,µ) = e±µ|α|,

where the positive sign accounts for convex and the negative sign for concave curves.
According to figure (4.4) the velocity modification factor for concave curves is dis-
played in figure (4.7) for different values of α and µ .

4.2.5 Friction: alternative strategies for concave curves

We just found that under certain circumstances, equation (4.2) allows a gain of veloc-
ity due to the friction containing terms which is an unphysical behaviour This could
be avoided making one of the two following assumptions:

• detachment from the surface is allowed. The point detaches from the surface
in the moment in which g =−v2

x fxx. Further motion is described by additional
equations that model the free motion through the air until the point finally
”lands” on the curve C;
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ted as a function of the friction coefficient µ and the angle of the

circular arc α

• point is fully constrained to the surface, i.e. the motion can be seen as bounded
from bottom and top. In this case ΦΦΦ must be replaced by |ΦΦΦ| in equ. (4.2).

In real world landslide simulations however, one will probably never find the case of a
mass detaching from the surface wherefore the two solutions proposed above are not
considered in the implementation of the problem. For testing the method developed
in the following, a possibly unphysical behaviour of the equations in some sections
of the test-surfaces is not problematic as the presented method works well also in
this case. Nonetheless, the two alternative methods shall briefly be described in the
following.

Detachment from the surface A very simple model for the motion of a point
that detaches from the surface is assumed here, where air resistance and friction are
neglected. In other words:

ax = 0, ay =−g;

and therefore:

vx = vx,0, vy = vy,0−gt.
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It follows that the position of the point is given by:

x = x0 + vx,0t, (4.25)

y = y0 + vy,0t− 1
2

gt2. (4.26)

The first step is to compute whether or not the point detaches from the surface. For a
smooth (C2) function this is the case iff throughout the motion the condition

g+ v2
x fxx = 0 (4.27)

becomes true.
This condition certainly fails for piecewise linear functions as the point can only

detach from the surface in the points of transition between two elements where in
turn fxx does not exist. From a physical point of view, the point should detach from
the surface at each transition point, provided that the curve is concave in this point.
If, in contrast, the solution on the piecewise linear curve shall be an approximation
to the solution on a corresponding smooth curve, a different condition for the detach-
ment from the surface has to be found that resembles condition (4.27). Therefore we
can use the net-velocity per segment after the velocity modification factor has been
applied.

Let v0 and v1 be the points velocity at the beginning and end of the segment σi

with endpoints xi and xi+1 and let v f r be the loss of velocity due to friction that the
point experiences when moving from xi to xi+1. v f r can be computed independently
as it does not depend on the points velocity. Recall therefore that

ax =−g
fx

1+ f 2
x
−µ sgn(vx)

g
1+ f 2

x
.

v f r can be computed after knowing the time of intersection tint with the respective
endpoint of σi:

v f r = µ sgn(vx)
g

1+ f 2
x

tint .

We then compute the velocity modification factor Γ and the resulting change of ve-
locity

4v = v1(1−Γ)

which represents the loss or gain of velocity at the point of intersection. Using this
the following approximation could be done: detachment from the surface is assumed
if the change of velocity resulting from the friction containing terms results in a loss
of speed, i.e.:

sgn(vx)(v f r +4v)< 0. (4.28)
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In a second step we need to find the intersection between the curve and the tra-
jectory of the point. If the curve is defined piecewise, those intersections have to be
computed element-wise until the correct element and point of intersection are found.
One possible way to the solution of the problem is shown in the following. It is con-
venient here to express the elements of C in parameter-form, i.e. an element σi is
defined by three parameters ai, bi and ci such that:

ax+by = c, (4.29)

where, knowing the two endpoints (xi,yi) and (xi+1,yi+1) of element σi, the param-
eters ai, bi and ci can be computed using the following relations:

a = yi− yi+1,

b = xi+1− xi,

c = xi+1yi− xiyi+1.

Inserting the equations for x and y, (4.25) and (4.26) respectively, in equation (4.29)
we get:

a(x0 + vx,0t)+b(y0 + vy,0t− 1
2

gt2) = c,

⇒ (ax0 +by0− c)+(avx,0 +bvy,0)t−
1
2

gt2 = 0,

which we have to solve for t to get the two intersections with the element σi:

t1/2 =
−(avx,0 +bvy,0)±

√
(avx,0 +bvy,0)2−2(ax0 +by0− c)g

2(ax0 +by0− c)
.

Plugging the two possible solutions for t into equation (4.25) we find two potential
points of intersection xint . If xint is located within the element σi, i.e. [xi ≤ xint ≤
xi+1], the point of intersection has been found, assuming that xint is not also the point
of detachment. Otherwise we have to proceed with the next element. Obviously,
starting from the point of detachment we only have to check the elements σi that lie
in the direction of the points ”flight”.

Friction: point fully constrained to the surface If the point is fully constrained
to the surface and thus ΦΦΦ is replaced by |ΦΦΦ|, the friction containing terms of equ.
(4.2) become

−µ sgn(vx)
g+ v2

x fxx

1+ f 2
x

⇒ −µ sgn(vx)

∣∣∣∣g+ v2
x fxx

1+ f 2
x

∣∣∣∣=−µ sgn(vx)

∣∣g+ v2
x fxx
∣∣

1+ f 2
x
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and

−µ sgn(vz)
g+ v2

x fxx

1+ f 2
x

⇒ −µ sgn(vz)

∣∣∣∣g+ v2
x fxx

1+ f 2
x

∣∣∣∣=−µ sgn(vz)

∣∣g+ v2
x fxx
∣∣

1+ f 2
x

,

where ∣∣g+ v2
x fxx
∣∣=
+g+ v2

x fxx, for g≥−v2
x fxx

−g− v2
x fxx, for g <−v2

x fxx.

For a C2-curve where the second derivative is defined everywhere, this approach is
easily applied by using the following rhs F̃ instead of (4.2):

F̃ =



vx

− fx
g+ v2

x fxx

1+ f 2
x
−µ sgn(vx)

∣∣g+ v2
x fxx
∣∣

1+ f 2
x

vz

− f 2
x g+ v2

x fxx

1+ f 2
x

−µ sgn(vz)

∣∣g+ v2
x fxx
∣∣

1+ f 2
x


.

For piecewise linear curves instead, a case distinction has to be done. This can be
done using the same approximation as in the previous paragraph. In a first step the
equations of motion are solved using the rhs F+ = F (comp. (4.2)). If condition
(4.28) is not fulfilled, i.e. the change in speed resulting from the friction term leads
to a gain of speed the equations of motion have to be recomputed for the respective
segment using the rhs F−:

F− =



vx

− fx
g+ v2

x fxx

1+ f 2
x
−µ sgn(vx)

−(g+ v2
x fxx)

1+ f 2
x

vz

− f 2
x g+ v2

x fxx

1+ f 2
x

−µ sgn(vz)
−(g+ v2

x fxx)

1+ f 2
x

.


.

4.2.6 Friction: further considerations

In this subsection we want to present two important features of the results derived
above. First we compare the theoretical change of velocity on a circular path to that
on a corresponding piecewise-linear discretization. We will show that the overall
change and therefore the final velocity after passing through a certain angle α is
equal in both cases, if the discretization conserves the angle.

Consider therefore a circle segment with angle α and a decomposition of α with

α = α1 +α2 + · · ·+αn =
n

∑
i=0

αi.
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TABLE 4.1: Relative arrival times tr for different values of µ and α

α µ = 0.05 µ = 0.1 µ = 0.15 µ = 0.2

π/2 ≡ 90.0◦ 0.785 0.784 0.782 0.779
π/4 ≡ 45.0◦ 0.947 0.947 0.947 0.946
π/10≡ 18.0◦ 0.992 0.992 0.992 0.991
π/20≡ 9.0◦ 0.998 0.998 0.998 0.998
π/40≡ 4.5◦ 0.999 0.999 0.999 0.999

Let v0 denote the initial velocity before entering the circle segment and v f the final
velocity on exit. Using equation (4.22) it is easy to find for the final velocity v f :

v f =
v0

exp(µ ∑
n
i=1 αi)

=
v0

∏
n
i=1 exp(µαi)

= v0

n

∏
i=1

Γi,

where Γi = Γ(µαi). It follows that the final velocity is also independent of a possible
decomposition of the angle α into sub-angles. So, in case of horizontal circular
motion the final velocity on a smooth circle is the same as on a discretized one if the
total angle α is conserved. Only the arrival times differ depending on the roughness
of the discretization as the discretized curve is slightly longer. The differences for
different rough to fine discretizations in dependency of the friction coefficient can be
seen in Table 4.1. They were computed using the following relation:

tr =
tC
tL

=
tanh(αµ

2 )

µ tan(α

2 )
, (4.30)

where tr is the ratio between the time tC needed on the smooth circle and tL which is
the time needed on the discretized curve. Computing the limit of tr for α → 0, one
finds that tr→ 1 meaning that tL→ tC. Note that also the ratio tr is radius-independent
again. In Table 4.1 the relative arrival times tr are shown for some values of α and
µ .

In the following, Eq. (4.30) is explained more in detail. Assume a curve that is
once approximated by two straight segments and once by a circular segment, where
the angle of the latter equals the one enclosed by the two linear segments (comp.
Fig. 4.3). What are the arrival times of two points each moving along the two curves,
starting at time t1 with initial velocity v0, arriving in the final position at t2? To
compute this, we first have to know the length of curve L for the piecewise linear
curve which can be computed from the angle α and the radius r. The situation is
shown in Fig. 4.8.
We need to know the length L of the linear segment. For simplicity let’s define:
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FIGURE 4.8: Computation of the relative arrival time

θ = α/2. Then we find:

sin(θ) =
s
r
⇒ s = r sin(θ),

cos(θ) =
s
L
⇒ L =

r sin(θ)
cos(θ)

= r tan(θ).

We know that the velocity of the point moving down the piecewise linear curve is
constant, except in the change of slope where the velocity decreases instantaneously
following Eq. 4.22. We denote the time needed to reach the point of changing
slope with tL1 and the one to reach the final position from there by tL2 . Together:
tL = tL1 + tL2 . The final time for the point moving along the circle segment is denoted
by tC. Using the above equations we find:

tL1 =
r tan(α

2 )

v0
,

tL2 = r tan(α

2 )
eµα

v0
,

tL =
r
v0

tan(α

2 )(1+ eµα) .

For the circular arc the time is:

tC =
r
v0

(
eµα −1

µ

)
,
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and hence the ratio between tL and tC is given by:

tr =
tC
tL

=
eµα −1

µ tan(α

2 )(1+ eµα)
=

tanh(αµ

2 )

µ tan(α

2 )
,

For the limit α → 0 we get:

lim
α→0

tr = lim
α→0

µ tanh(α

2 )

tan(α

2 )µ
=

0
0
,

meaning that we have to apply de l’Hopital’s rule:

lim
α→0

tr = lim
α→0

(
tanh(αµ

2 )
)′(

µ tan(α

2 )
)′ = lim

α→0

(
1− tanh2 (αµ

2

))
µ

2

µ
(
1+ tan2

(
α

2

)) 1
2

→ 1.

As in real applications we are generally dealing with relatively small angles, we
can certainly assume that the arrival times are approximately equal. As an example:
assume that we want to approximate a half circle by 10 linear segments (which is a
pretty rough discretization), the angle α is already π/10 and therefore the relative
time is about 0.992 (meaning that the time needed on the circle segment is 0.992
times the time needed on the piecewise linear approximation).

4.2.7 The solution strategy

In the previous subsections we have found that the solution of Eq. (4.2) can be com-
puted in parts, one for the single linear segments σi of Σ and one for its transition
points that are smoothed using an imaginary circular arc. In the latter case the prob-
lem can further be split into a normal component, thus changing the direction of
motion but not the speed, and a tangential component, which is changing the speed
but not the direction of motion. In the transition areas, the change of direction is com-
puted by a simple rotation of the velocity vector of the point mass that is independent
from the arc radius. Just as well, the effect of friction is independent of the arc radius,
and so the speed of the sliding mass is changed through the factor Γ. This allows us
to build the curve Σ∗ in such a way that smoothing arcs connecting adjacent linear
segments have an infinitesimally small radius, which means that the curves Σ∗ and Σ

practically coincide one with another. This enables us to use different equations in
different part of the curve. Along the straight segments the mass motion is governed
only by the curvature-independent contribution given by Eq. (4.10), while at the
transition nodes one simply rotates the velocity vector by means of Eq. (4.17) and
changes the speed magnitude by means of the modification factor Γ deduced above.
We observe that the computations along the geometrical elements of the curve are
quite simple and involve only elementary expressions. A missing element for the
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validation of this strategy regards the time taken by the mass to move along the curve
Σ and the curve Σ∗. To this purpose, one can compare the time taken by the mass
to go from the first end of the segment σi to the second end of the adjacent segment
σi+1 along the two curves. The difference is only due to the time taken in the transi-
tion region around the common end of the two segments, where in one case the mass
slides on the segments, whereas in the other it runs along the arc. Since the transition
region becomes smaller and smaller as the arc radius goes to zero, it is easy to see
that also the difference in time goes to zero, and therefore the splitting strategy we
have devised is correct.

The method is also briefly sketched in algorithm 2.

Algorithm 2 Algorithm for 1D analytical solution
1: logical :: inner {true if point does not leave current segment}
2: while (time < Tend) do {external loop, time-step: 4t}
3: inner=. f alse., 4̃t =4t {4̃t=remaining time}
4: while (inner==.false.) do
5: Compute acceleration ax
6: if (Stop conditions fulfilled) then
7: Stop simulation
8: else
9: Compute intersection time tint and point xint

10: if (4̃t ≤ tint) then
11: inner=.true.
12: xi = xi−1 + vx,i−14̃t +0.5ax,i−14̃t2

13: vx, i = vx,i−1 +ax,i−14̃t
14: else
15: xi = xint
16: vx, i = vx,i−1 +ax,i−1tint
17: Correct direction and modulus of velocity
18: 4̃t = 4̃t− tint
19: end if
20: end if
21: end while
22: end while

4.3 Results 1: Evaluation of the two different methods

This section is dedicated to the comparison of the solution of the equations on piece-
wise linear curves with the numerical solution obtained using smooth surface re-
construction methods in combination with the lsode-solver. The two methods are
evaluated using a set of four different test-cases, accounting for possibly critical char-
acteristics of real topographies such as sudden change in slope.
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4.3.1 Test-Cases

All test-cases are defined on the domain [−4,4]. They are constructed such as to rep-
resent different critical characteristics of real topographies such as a sudden change
in slope. While the first test-case is a piecewise-linear function and therefore con-
tains an instantaneous change in slope, the other test-functions are smooth. The tests
will be applied in the following to compare the results obtained on piecewise-linear
curves to those obtained on smooth reconstructed curves (using the methods pre-
sented in chapter 2) using LSODE for the time-integration.

Test-Case 1:

g1(x) =

−x if (x,y) ∈ [−4,0),

0 if (x,y) ∈ [0,4].

This is the only non-smooth function, representing an instantaneous change in
slope. During the reconstruction the corner in x = 0 must be smoothed while
the piecewise-linear parts should remain as linear as possible.
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FIGURE 4.9: Test-curve for case 1.

Test-Case 2: A kind of normalized arctan-function. Due to the definition of g2,x

the inclination of the function g2 before the change of slope is given by the
parameter ϕ , where the inclination afterwards is zero by definition. We will
present a case with g2,x ≈ −1 for x > 0 and g2,x ≈ 0 for x > 0. This test is in
some sense a smoothed version of test case 1. The first derivative is given by:

g2,x =
1
π

arctan(ϕx)−0.5,

which gives the following reconstructing function:

g2(x) =
1
π

xarctan(ϕx)− 1
(2πϕ)

log(ϕ2x2 +1)−0.5x,
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and second derivative:
g2,xx =

ϕ

π
· 1

1+ϕ2x2 .

Similar to the first test case, the slope is first negative and then becomes almost
zero after passing through x = 0 but this is done in a smooth way.
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FIGURE 4.10: Test-curve for case 2.

Test-Case 3: A parabola
g3(x) = ϕx2,

where ϕ is the scale-factor of g3. In contrast to the other test functions, g3

has constant second derivative and should be approximated better by the radial
basis functions than by the piecewise linear curve. It stands for a moderate
change in slope, having constant second derivative.
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FIGURE 4.11: Test-curve for case 3.

Test-Case 4: A basic arctan-function. The definition of this function is very similar
to test-case 2 but in contrast the slope for x > 0 is not close to zero but has
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the same absolute value as for x < 0, just with opposite sign. Again, it is
determined by the parameter ϕ . Compared to test-case 3 the change in slope is
more sudden.

g4,x = arctan(ϕx).

Therefore the following reconstructing function is found:

g4(x) = xarctan(ϕx)− log(ϕ2x2 +1)/(2ϕ)+ηy,

and second derivative:
g4,xx = ϕ

1
1+ϕ2x2 .
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FIGURE 4.12: Test-curve for case 4.

4.3.2 Comparison with the numerical results obtained on smooth
reconstructed curves

As also for smooth reconstructed curves the equations are still stiff, the results on
those curves were obtained using LSODE with a time-step of ∆t = 0.1 seconds for
the time-integration. The solution computed for the corresponding piecewise-linear
surface were stored at the same time-intervals. The initial conditions for all tests
were chosen as follows: x0 =−4.0, vx,0 = 0.0.

To also get information on the influence of the discretization, the simulations
were run on different coarse/fine grids, where for the coarse grid 6 points and 21 for
the fine grid were taken. For all test-cases, first of all the point’s movement along
the x-axis in time and then the trajectory are shown. Afterwards the components
of the energy are plotted. Finally the velocity in x-direction and the modulus of
the velocity along the trajectory are shown. The plots are done each for the coarse
and fine grid. The piecewise linear reconstructions are in the following denoted by
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”lin”, while ”rbf” (radial basis function, the basis of the used smooth reconstructed
curves/surface) denotes the smooth reconstructed curves.

Test-case 1

f (x) =

−x if (x) ∈ [−4,0),

0 if (x) ∈ [0,4].

This is the only test-case in which the control-surface is not a smooth function but
it is given by a piecewise-analytical function. Therefore the Inverse-Multi-Quadratic
reconstruction is compared to the piecewise-linear surface. Obviously, the two simu-
lations differ quite much on a coarse grid, also as there is no data point for x = 0 and
in addition, a smooth surface can – by definition – never fully interpolate the instan-
taneous change in inclination. The differences in the trajectory for the coarse grid
are explained by the fact that in this case the reconstructed surface shows a slight
sagging in between of two points of the disretization. As the initial positions are
exactly in between of two of these points, also the trajectory is different as in the
piecewise-linear case. Even the height of the surface is not equal due to that, leading
overall to a lower velocity especially at the beginning of the movement. Altogether,
this leads to a lower total energy. On the contrary, for the finer grid, the differences
almost disappear.
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FIGURE 4.13: Test-
Case 1: Trajectories
for the piecewise lin-
ear sliding curves for
a discretization with

6 grid points.
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FIGURE 4.14: Test-
Case 1: Trajectories
for the piecewise lin-
ear sliding curves for
a discretization with

21 grid points.
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FIGURE 4.15: Test-
Case 1: x-component
of the point’s position
in time during mo-
tion on a piecewise-
linear surface for a
discretization with 6

grid points.
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FIGURE 4.16: Test-
Case 1: x-component
of the point’s position
in time during mo-
tion on a piecewise-
linear surface for a
discretization with 21

grid points.
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FIGURE 4.17: Test-
Case 1: Kinetic, po-
tential and total en-
ergy for the simula-
tion on a piecewise-
linear surface for a
discretization with 6

grid points.
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FIGURE 4.18: Test-
Case 1: Kinetic, po-
tential and total en-
ergy for the simula-
tion on a piecewise-
linear surface for a
discretization with 21

grid points.
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FIGURE 4.19: Test-
Case 1: x-component
of the point’s velocity
in time during mo-
tion on a piecewise-
linear surface for a
discretization with 6

grid points.
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FIGURE 4.20: Test-
Case 1: x-component
of the point’s velocity
in time during mo-
tion on a piecewise-
linear surface for a
discretization with 21

grid points.
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FIGURE 4.21: Test-
Case 1: The modulus
of the point’s velocity
in time during mo-
tion on a piecewise-
linear surface for a
discretization with 6

grid points.

0 0.5 1 1.5 2
time [s]

0

2.5

5

7.5

10

v
[m
s−

1
]

modulus of the velocity

lin rbf

FIGURE 4.22: The
modulus of the
point’s velocity in
time during motion
on a piecewise-linear
surface for a dis-
cretization with 21

grid points.
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Test-case 2

f (x,y) =
1
π

xarctan(ϕx)− 1
(2πϕ)

log(ϕ2x2 +1)−0.5x.

The final time for this test was chosen to be 1.7s as this is the time at which the point
leaves the reconstructed surface.
Over all, this test case is very similar to the above presented, just it is smooth along
all the surface. Also the results are very similar to the ones above.
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FIGURE 4.23: Test-
Case 2: Trajectories
for the sliding curve
defined using a ”nor-
malized” arctan for a
discretization with 6

grid points.
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FIGURE 4.24: Test-
Case 2: Trajectories
for the sliding curve
defined using a ”nor-
malized” arctan for a
discretization with 21

grid points.

Test-case 3
f (x,y) = ϕx2.

This example is different from the previous two in a sense that the surface is generally
smoother, showing variations in the inclination along all the surface. Here the RBF-
reconstruction performs better then the piecewise-linear one. The reason for this can
be seen in Figs. 4.37 and 4.38 , where a zoom on the trajectory is shown. One can
see that the piecewise-linear segments are not on the surface and also they cannot
capture the minimum of the ”real” function which can be done a better by the RBF.
However, the differences in this example are not too extreme and both reconstructions
can perform well in the simulation.
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FIGURE 4.25: Test-
Case 2: x-component
of the point’s posi-
tion in time during
motion on a surface
defined using a ”nor-
malized” arctan for a
discretization with 6

grid points.

0 0.5 1 1.5 2
time [s]

-4

-2

0

2

4

x

Points position (x-component) in time

rbf linear ana

FIGURE 4.26: Test-
Case 2: x-component
of the point’s posi-
tion in time during
motion on a surface
defined using a ”nor-
malized” arctan for a
discretization with 21

grid points.
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FIGURE 4.27: Test-
Case 2: Kinetic, po-
tential and total en-
ergy for the simula-
tion on a surface de-
fined using a ”nor-
malized” arctan for a
discretization with 6

grid points.
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FIGURE 4.28: Test-
Case 2: Kinetic, po-
tential and total en-
ergy for the simula-
tion on a surface de-
fined using a ”nor-
malized” arctan for a
discretization with 21

grid points.
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FIGURE 4.29: Test-
Case 2: x-component
of the point’s velocity
in time during mo-
tion on a surface de-
fined using a ”nor-
malized” arctan for a
discretization with 6

grid points.
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FIGURE 4.30: Test-
Case 2: x-component
of the point’s velocity
in time during mo-
tion on a surface de-
fined using a ”nor-
malized” arctan for a
discretization with 21

grid points.
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FIGURE 4.31: Test-
Case 2: The modu-
lus of the point’s ve-
locity in time during
motion on a surface
defined using a ”nor-
malized” arctan for a
discretization with 6

grid points.
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FIGURE 4.32: Test-
Case 2: The modu-
lus of the point’s ve-
locity in time during
motion on a surface
defined using a ”nor-
malized” arctan for a
discretization with 21

grid points.
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FIGURE 4.33: Test-
Case 3: Trajectories
for the parabola for a
discretization with 6

grid points.
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FIGURE 4.34: Test-
Case 3: Trajectories
for the parabola for a
discretization with 21

grid points.
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FIGURE 4.35: Test-
Case 3: x-component
of the point in time
during motion on a
parabolic surface for
a discretization with

6 grid points.
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FIGURE 4.36: Test-
Case 3: x-component
of the point in time
during motion on a
parabolic surface for
a discretization with

21 grid points.
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FIGURE 4.37:
Test-Case 3: Zoom
on the trajectory of
the point in time
during motion on
a parabolic surface
for a discretization
with 6 grid points.
Zoomed area is

[−2,2]× [0,4].
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FIGURE 4.38: Test-
Case 3: Zoom on the
trajectory of the point
in time during motion
on a parabolic sur-
face for a discretiza-
tion with 21 grid
points. Zoomed area

is [−2,2]× [0,4].
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FIGURE 4.39: Test-
Case 3: Kinetic,
potential and to-
tal energy for the
simulation on a
parabolic surface for
a discretization with

6 grid points.
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FIGURE 4.40: Test-
Case 3: Kinetic, po-
tential and total en-
ergy for the simula-
tion on a parabolic
surface for a dis-
cretization with 21

grid points.
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FIGURE 4.41: Test-
Case 3: x-component
of the point’s
velocity in time
during motion on a
parabolic surface for
a discretization with

6 grid points.
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FIGURE 4.42: Test-
Case 3: x-component
of the point’s velocity
in time during motion
on a parabolic sur-
face for a discretiza-
tion with 21 grid

points.
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FIGURE 4.43: Test-
Case 3: The modulus
of the point’s
velocity in time
during motion on a
parabolic surface for
a discretization with

6 grid points.
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FIGURE 4.44: Test-
Case 3: The modulus
of the point’s velocity
in time during motion
on a parabolic sur-
face for a discretiza-
tion with 21 grid

points.
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Test-case 4
f (x,y) = xarctan(ϕx)− log(ϕ2x2 +1)/(2ϕ),

The sliding surface here is very similar to the one in test-case two, especially as also
here the first derivative changes very quickly in x = 0, whilst it is almost constant
elsewhere. This can also be seen in the results of the reconstruction, where the RBF-
reconstruction can capture the real behaviour less good than the piecewise-linear can,
at least on the coarse grid. For the finer grid the simulations show, as already before,
almost no difference.
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FIGURE 4.45: Test-
Case 4: Trajectory on
the sliding curve de-
fined using an arctan
for a discretization

with 6 grid points.
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FIGURE 4.46: Test-
Case 4: Trajectory on
the sliding curve de-
fined using an arctan
for a discretization
with 21 grid points.

4.3.3 Comparison between the solution on piecewise linear curves
and the numerical solution on smooth reconstructed sur-
faces

In cases where the inclination of the function is almost constant over a long interval
(which also means that the function itself is quite linear) and then changes rapidly
(but within a short interval), the piecewise-linear reconstruction is performing better
on coarse grids as they naturally imitate this behaviour. It lies in the nature of the
RBF-reconstructions, as they are designed to smooth a surface, that they are per-
forming less good for those cases. These differences however vanish with increasing
refinement of the grid.
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FIGURE 4.47: Test-
Case 4: x-component
of the point in time
during motion on a
surface defined us-
ing an arctan for a
discretization with 6

grid points.
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FIGURE 4.48: Test-
Case 4: x-component
of the point in time
during motion on a
surface defined us-
ing an arctan for a
discretization with 21

grid points.
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FIGURE 4.49: Test-
Case 4: Kinetic, po-
tential and total en-
ergy for the simula-
tion on a surface de-
fined using an arctan
for a discretization

with 6 grid points.
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FIGURE 4.50: Test-
Case 4: Kinetic, po-
tential and total en-
ergy for the simula-
tion on a surface de-
fined using an arctan
for a discretization
with 21 grid points.
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FIGURE 4.51: Test-
Case 4: x-component
of the point’s velocity
in time during motion
on a surface defined
using an arctan for a
discretization with 6

grid points.
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FIGURE 4.52: Test-
Case 4: x-component
of the point’s velocity
in time during motion
on a surface defined
using an arctan for a
discretization with 21

grid points.
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FIGURE 4.53: Test-
Case 4: The modulus
of the point’s velocity
in time during motion
on a surface defined
using an arctan for a
discretization with 6

grid points.
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FIGURE 4.54: Test-
Case 4: The modulus
of the point’s velocity
in time during motion
on a surface defined
using an arctan for a
discretization with 21

grid points
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Piecewise linear curve + exact time-
integration:

Smooth curve + numerical time-
integration:

• Careful choice of data-points for the
piecewise-linear approximation neces-
sary;

• identification of intersection-point & -
time and new triangle will be more dif-
ficult in 2F;

• might need grid refinement to recon-
struct local behaviour;

• simple time-integration;

• no restriction to step size.

• Smooth surface reconstruction (min C2)
needed;,

• requires solver for stiff systems (lsode,
computationally expensive);

• small time-step (depending of stiffness)
needed;

• might better take on the behaviour of
the real surface;

• no segment-identification necessary (in
2D triangle).

On the contrary, the RBF-reconstructions perform better on smooth data as they
can capture the behaviour of the underlying functions. In the third test case (parabola),
the function is not longer linear and the inclination is changing linearly. This is not
as good imitated by a piecewise-linear reconstruction. However, the parabola chosen
here is not a very extreme example such that also the piecewise-linear reconstruction
can still perform well.

The results also show, how important a careful choice of the discretization is.
Too rough grids in regions of strong variation will unavoidably lead to significant
errors in the solution. Instead, if the discretization of the curve is chosen with care,
both methods perform comparably good in terms of accuracy. The advantages and
disadvantages of the two methods are displayed in the table below.

As altogether the solution on piecewise linear curves is computationally much
less expensive, this is the method of choice in the following.

4.4 Results 2: Convergence tests and more complex
surfaces

This section is dedicated to convergence tests on one hand and the evaluation of the
goodness of the model on more complex curves on the other hand. In the following
different analytically given C2 curves (denoted as curves C before) are approximated
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by discretized piecewise curves of type Σ. The solutions obtained using the pre-
sented method (named ”UBO-block solution” ) were compared with the numerical
solution obtained on the analytical surfaces (called ”reference solution” ), using the
Livermore-Solver for stiff ODEs Hindmarsh and Radhakrishnan, 1993 for the time-
integration. The stiffness of the problem is also the reason for which at least conti-
nuity in the second derivative of C is required. The smoother the second derivative,
the better the reference solution will be.

Note that the reference solution is not necessarily the exact solution of the system,
as in general this is not known. We assume however that the reference solution is
sufficiently close to the unknown exact solution of the system on the curve C. The
difference between our solution and the reference solution will – for convenience –
be called the error, even though it is not an error in the usual sense. Instead it shall be
an expression for the differences between the solutions on the piecewise linear curves
and the reference solutions, measured as the Euclidean distances of the point-masses
on the two curves at each time-step.

A single time-step is denoted by a subscript i, and M is the total number of time-
steps, while the Euclidean distance is denoted by δxi (see below). The errors are
measured in the L2- and L∞-norm, where the first gives an average and the second
a maximal error, from which the corresponding estimated convergence rates can be
computed. The L2- and L∞-errors will be denoted by e2 and e∞, where for example
e2(TN) denotes the error in the L2-norm for a discretization of N linear segments,
the corresponding numerical convergence rates are denoted by µ2(TN) and µ∞(TN).
Note that the computation of the convergence rates depends on if the exact solution
is known or not and on the refinement steps. Usually, and this is what is also done
here, the refinement is done using a factor two. The following equations for µ2 and
µ∞ only hold if an exact/reference solution is known.

e2 =
1
M

√
M

∑
i=1

δx2
i , µ2(TN) = log2

(
e2(TN−1)

e2(TN)

)
,

e∞ = max
i=1,M

δxi, µ∞(TN) = log2

(
e∞(TN−1)

e∞(TN)

)
,

where:

δxi = ||xd
i −xr

i ||,

and the superscript d denotes the discretized and r the reference solution.

So, the L∞-error is the maximum distance between the reference solution and the
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solution on the piecewise linear curves, evaluated over all time steps, whereas the
L2-error gives the average distance between the two solutions, measured also over all
the simulated time. Using these two error-norms we will compute the convergence
rates for different test cases. Simulations were run with an increasing number of line
segments, defining the discretization Σ of the analytic curve C, where N (the number
of segments) was doubled in the consecutive simulations.

The two test cases presented in the following seemed the most significant for
us. First, in order to analyse the convergence of the method, a half circle curve was
chosen. This curve is symmetric by definition and can easily be discretized in a way
that all linear segments are of equal length (equidistant along the curve). Moreover,
as it has constant curvature, this discretization also ensures that the angles between
two consecutive segments are always equal. Finally, in case of frictionless motion
the exact solution is known (mathematical pendulum). For the second test case we
chose a more complex one, showing convex and concave segments as well as strong
changes in the first and second derivatives. In addition, we find a number of local
maxima and minima, allowing us to study also oscillations along the curve. All
distances are given in meters, times in seconds, velocities in m/s and accelerations
in m/s2.

4.4.1 Circular motion (convergence test)

In the following three examples the equations are solved on a half circle of unit radius
where the curve C is given by:

f (x) =
√

1− x2 +1, x ∈
[
cos
(

π +
π

32

)
,cos

(
2π− π

32

)]
.

The above restriction of the domain had to be chosen in order to avoid undefined
first derivatives in the smooth surface, as would be the case for x = cos(π) and
x = cos(2π). In these two points the tangents to the curve would be vertical, thus
requiring a free fall of the point. While this is not a problem in our method, it is not
supported in the numerical solution of the ODE-system which requires analytically
given derivatives. Using the domain given above, we can avoid these singularities in
the reference solution. The total length of the curve is therefore given by `C = 15

16π .
By `t the total length of the trajectory will be denoted. The initial conditions are
given by

(x0,z0) =
(

cos
(

π +
π

32

)
,sin

(
π +

π

32

))
(vx,0,vz,0) = (0,0).
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TABLE 4.2: Error and order of convergence for the solution to the full
equations on a half circle

N L2-error L2-order L∞-error L∞-order

16 3.28e-03 - 9.80e-03 -
32 8.87e-04 1.89 2.69e-03 1.86
64 2.11e-04 2.07 6.00e-04 2.16
128 5.17e-05 2.03 1.52e-04 1.98
256 1.54e-05 1.74 4.14e-05 1.88

TABLE 4.3: Errors (in percent %) relative to the total length `C of the
curve for the solution of the full equations on the half circle.

N L2-error (%) L∞-error (%)

16 0.1114 0.3327
32 0.0301 0.0910
64 0.0072 0.0203
128 0.0017 0.0052
256 0.0005 0.0014

Even though this is not exactly a half circle we will – for convenience – call it this
way throughout the following. In order to conserve the angle of the circular segment
on which the point mass is moving, we chose an ”outer discretization” of the arc.
This means that the linear segments of Σ are tangential to the analytical curve in
the given data-points and implies that Σ is longer than C, but has the advantage of
conserving the total angle. We use different discretizations TN by approximating the
half-circle by N equal tangential segments. We now go into detail with the different
test-setups.

a) Full equations In the first test we solve the full Eq. 4.2 for µ = 0.1. Fig.
4.55 (top) shows the position on the x-axis of the point-mass vs. time (left scale)
as well as the differences between the reference and the solutions on the piecewise
linear curve, measured as the L2-distances (right scale). The point oscillates along
the curve, steadily decreasing in speed, and stops after two and a half full periods,
corresponding to an approximate total length of `t ≈ 1.4π of the trajectory.

As can be seen also from the errors (dotted curves), the solutions on the piecewise
linear curve differ very little from the reference solution such that they are overlap-
ping in the figure. The errors and convergence-rates of the discretized towards the
reference solution are given in Table 4.2. Here it can be seen that the solutions on
the piecewise linear curve converge towards the reference solution with an order of
convergence of about two. The errors between the two solutions in relation to the
total length of the smooth curve in percent are given in Table 4.3.
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FIGURE 4.55: First Test Case: Motion along a half circle. Top: Full
equations; Middle: Frictionless motion; Bottom: Omitting curvature
dependent friction; x-components of the point trajectories on different
discretizations in time (left scale) and difference to the reference so-
lution (right scale, dotted lines) are shown. Notice that in all cases the

trajectories are overlapping and therefore indistinguishable
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TABLE 4.4: Convergence rates for frictionless motion on a half circle
in the first 20 full periods

N L2-error L2-order L∞-error L∞-order

16 2.61e-03 – 2.27e-01 –
32 6.09e-04 2.10 7.65e-02 2.10
64 1.30e-04 2.22 1.62e-02 2.24
128 2.20e-05 2.60 2.58e-03 2.65
256 1.41e-06 3.96 2.69e-04 3.26

TABLE 4.5: Errors (in percent %) relative to the total length `C of the
curve for the solution of the frictionless equations on the half circle

N L2-error (%) L∞-error (%)

16 8.86e-02 7.70e-00
32 2.06e-02 2.60e-00
64 4.41e-03 5.50e-01
128 7.50e-04 8.76e-02
256 5.00e-05 9.10e-03

b) Frictionless motion In this example we solve the equations for µ = 0, meaning
frictionless motion, in order to show how the two solutions evolve in time in case
that the motion is not decaying. It follows that theoretically the point should steadily
oscillate along the curve, always reaching the extrema cos(π +π/32) and cos(2π−
π/32) with velocity |v| = 0. The distance between the points on the two curves is
measured in the L2-norm at each time step. The simulation was run for 50s, which
corresponds to little more than 20 full periods. The errors in time are displayed in Fig.
4.55 (middle)). One can see that the errors are linearly increasing, though they are
not amplifying in time. This behaviour is explained through the different lengths of
the discretized curves which also lead to differing arrival times at the reversal points
cos(π +π/32) and cos(2π−π/32) of the curve. The result is a shift in time of the
solution on the piecewise linear curve compared to the reference solution which for
each single period is equal to all the others. With time this simply adds up to the final
error but cannot amplify. For lim

N→∞
`TN → `C and therefore the errors are going to

zero. The convergences rates measured in the L2- and L∞-norm are about 2 as can be
seen from Table 4.4, the corresponding relative errors are given in 4.5. In this case
also the exact solution (mathematical pendulum) is known and therefore the errors
and convergence rates of the solution on the piecewise linear curve towards the exact
solution can be computed as well as the error of the reference solution. The results
are shown in Tables 4.6 and 4.7. The error between the reference and exact solution
is comparable to the one for solution on the piecewise linear curve with N = 256
where the latter is even a little better. It follows that we cannot find better results for
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TABLE 4.6: Convergence rates for frictionless motion on a half circle
towards exact solution for first 50s

N L2-error L2-order L∞-error L∞-order

ref 4.48e-06 - 4.21e-04 -
16 2.61e-03 - 3.28e-01 -
32 6.13e-04 2.09 7.73e-02 2.09
64 1.35e-04 2.18 1.70e-02 2.18
128 2.66e-05 2.34 3.34e-03 2.34
256 3.99e-06 2.74 5.02e-04 2.74

TABLE 4.7: Errors (in percent %) relative to the total length `C of the
curve for the solution of the frictionless equations on the half circle

towards exact solution for first 50s

N L2-error (%) L∞-error (%)

ref 1.63e-06 2.61e-04
16 8.86e-04 1.11 e-01
32 1.81e-04 2.62e-02
64 4.58e-05 5.77e-03
128 9.03e-06 1.13e-03
256 1.35e-06 1.70e-04

even finer discretizations when comparing it to the reference solution as they would
start to diverge again.

c) Influence of the different friction components In the last example the impor-
tance of curvature-dependent friction component on the solution of the equations of
motion will be pointed out. While the curvature-independent component of the fric-
tion term is acting along the whole surface and hence it seems obvious to incorporate
it in the computations, the curvature-dependent component in case of a piecewise
linear surface – due to the missing second derivative – is not present, and can play a
role only in the moment of changing from one linear segment to another. Moreover,
in the point of change of slope, the second derivative, and hence curvature-dependent
components, are not defined. This difficulty might be a reason for curvature depen-
dent friction being neglected in some numerical landslide models, however, we will
show here that the results can become highly inaccurate if doing so.

In the following the reference solution of the full equations is compared to the
solution on the piecewise linear curve, not taking into account the curvature-depen-
dent component of the friction, that is by omitting to change the point velocity at
each node through the modification factor Γ. The result can be seen in Fig. 4.55
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(bottom), showing how strong the errors can increase in time if only gravity depen-
dent friction is considered. The reference solution is depicted by a solid, black line,
the solutions for different grid resolutions of the piecewise-linear curve are given by
dashed lines and the differences between the reference solution and the solutions on
piecewise-linear curves are given by dotted lines. It is seen immediately that the ref-
erence solution decays much faster than the solution on the piecewise linear curve.
While in the reference solution the motion stops after 5s, it takes 7.35s if curvature
dependent friction is not considered, meaning that the motion needs about 47% more
time to stop.

4.4.2 Parabola with additional roughness

This test is based on the test surface used in chapter 4.1 to illustrate the non-conservation
of total energy. The aim is to show that now the total energy can be conserved even
for a comparably rough surface. The 1-dimensional test-curve is depicted in Fig.
4.56. The underlying function is a parabola with the same spatial dimensions as the
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FIGURE 4.56: The sliding surface used for the problem.

test-surface from chapter 4.1 but roughness was added in order to theoretically make
the curve more ”complicated” for the model to treat, meaning: due to the additional
roughness, the function contains several significant changes in slope throughout the
whole curve. Not correcting the acceleration at each transition point would lead to
noticeable errors in the total energy but also small inaccuracies in the method or the
implementation are more likely to become visible than for a less rough curve. Fig.
4.57 shows the trajectory (i.e. x- and z-component) in time. Fig. 4.58 depicts the
velocity components vx and vz in time that show noticeable fluctuation caused by
the roughness of the surface. Fig. 4.59 finally shows the total energy as well as its
decomposition into kinetic and potential energy plotted in time. It can be seen that
despite the roughness of the curve and the resulting fluctuations in velocity, the to-
tal energy of the system is conserved (the error relative to the total energy is about
1.083 ·10−5%).
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FIGURE 4.57: The x- and z-components of the points position in time.
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FIGURE 4.58: The x-and z-components of the velocity for the points
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FIGURE 4.59: The kinetic, potential and total energy in time. Total
energy is conserved.
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FIGURE 4.60: Test case: High-order polynomial, full equations over
12.5s

4.4.3 High-order polynomial

One more test was done for a more complex surface given by a polynomial of degree
eight, where:

f (x) =
8

∑
i=0

cixi,

with coefficients ci and f : [0,9]→ [0,10]. The polynomial was constructed using a
second polynomial of degree eight, denoted by f̄ (x) with:

f̄ (x) =
8

∑
i=0

c̄ixi,

where the coefficients ci written in vector-form are:

c̄ = [−123.0,353.53,−369.96913,200.962114,−63.19811,

11.926022,−1.330871,0.080853156,−0.002058209].

Now the function is scaled (approximately) to the range [0,9]× [0,10] using dx = 1.3
and s = (9.0−dx)/9.24. The new coefficients c are obtained as follows:

c =
10c̄

f̄ (dx)
.
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FIGURE 4.61: Test case: High-order polynomial, frictionless motion
in the first 40s
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FIGURE 4.62: Test case: High-order polynomial, full equations (ref-
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on the piecewise linear curve). Differences in speed not plotted here
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FIGURE 4.63: Test case: High-order polynomial, full equations (ref-
erence solution) and omitting gravity dependent friction (solution on

the piecewise linear curve)

The final polynomial – scaled to the desired domain – then reads:

f (x) =
8

∑
i=0

ci(sx+dx)i.

This polynomial is displayed in Fig. 4.64. The total length of the curve is `C ≈
23.83562. The curve changes between concave and convex six times and has one
local minimum and maximum. Restricting to the domain in which f is defined, the
global minimum is located at x ≈ 7.3 and global maxima are located at x = 0 and
x = 9 and have the same value, such that the motion of a point mass in the friction-
less case covers the whole domain. Seen from left to right (increasing x) the curve
is characterized by a long bumpy slope, followed by a very steep rise, connected
through a valley of small radius, thus leading to strong centripetal acceleration.

As in the previous example, we will show the results for the full equations, for
frictionless motion and in case the influence of the curvature dependent friction is
neglected. The initial conditions are given by

(x0,z0) = (0.0, f (0.0))

(vx,0,vz,0) = (0,0).

The data-points are chosen equidistant in x-direction. While this is not the best choice
in terms of performance it is very general and simplifies the grid refinement. In order
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FIGURE 4.64: Sliding surface: polynomial of degree eight

to keep the discretization simple, we just connected the given data-points by linear
segments. The number of segments ranges from 64 to 1024 and was doubled in each
step. The corresponding discretizations are denoted by T64 with `T64 ≈ 23.80921
to T1024 with `T1024 ≈ 23.83545 where generally `T denotes the length of a certain
discretized curve. It follows that compared to the length of the reference curve the
relative error in total length ranges from 0.1108% to 0.007%. The results of the
computations are displayed in Figs. 4.60-4.63. All figures show on the top the x-
component of the point trajectories on different discretizations in time (left scale)
and the differences to the reference solution (right scale, dotted lines). On the bottom
the modulus of the velocity in time (left scale) and the differences to the reference
solutions are displayed (right scale, dotted lines).

a) Full equations As in the previous example, the first test for the polynomial
surface is the solution of the full equations with µ = 0.1. Results are shown in Fig.
4.60. The motion is followed until the point finally stops after about 12.5s. It can be
seen that the solutions on the piecewise linear curve are very close to the reference
solution and even the drop of velocity in the local minimum is very well captured.
The L2-error relative to the length of the curve `C varies between 0.0195% (T64) and
0.0012% (T1024), whereas the relative L∞ varies between 0.837% and 0.047%.

b) Frictionless motion Also in the frictionless case, displayed in Fig. 4.61 we find
that the solutions are converging if the discretized curve converges to the analytical
one. Only for very fine discretizations the error is increasing again, but, as also the
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reference solution is not exact we cannot finally tell if this is more due to an error in
the discretized or the reference solution.

Nonetheless, neither the larger errors for coarser discretizations nor the ones for
very fine discretizations are too important in the real world applications as the they
are only due to a time shift of the motion, meaning that the point is arriving slightly
later than it would on the reference surface. Much more important is the general be-
haviour of the motion, especially the velocities in certain points and these do coincide
very well when not considering the time-shift. As the errors are not really amplify-
ing, but just summing up (and showing this was the main aim of this test case), we
can take a look at only the first full period of motion where it can be seen best that
all the characteristic points, like the maximum height of the point or its maximal
velocity are really well captured by all the solutions on the piecewise linear curves.
Especially the errors in the velocity are very small and this is one of the most crucial
points for us.

The errors relative to the length of the curve `C vary between 0.3945% (T64) and
0.0029% (T1024) for the L2-error, and between 29.919% (T64) and 0.241% (T1024) for
the L∞-error.

c) Influence of the curvature and gravity dependent friction In this example we
want to point out the strong influence of curvature dependent friction illustrated in
Fig. 4.62, but also the influence of gravity dependent friction was investigated and
is shown in Fig. 4.63. This was done to visualize better the different effects of the
two friction components. Therefore we once computed the motion while omitting
curvature dependent friction (c) and once leaving out gravity dependent friction (d).
Again, in both cases the reference solution for the full equations is plotted next to
the solutions on the piecewise linear curves. The reference solutions for the ”in-
complete” equations are plotted too, but are totally overlapped by the curves of the
solutions on the piecewise linear curves. In this example we can clearly see, that the
two components account for totally different behaviours within the decaying of the
motion. While in both cases the run-times of the simulations are significantly longer,
leaving out curvature dependent friction leads to a quite slow decaying solution: it
stops after 56s which is about 4.2 times the time needed using the full equations.
Leaving out the tangential component instead does not, on a first glance, change the
behaviour of the motion too much. After about 15s, only 1.12 times the time of the
full equations, there is no more significant motion, but we still find tiny oscillations
in the motion that persist even after 70s. So, in order to get the correct behaviour
of the motion, we really need both components of the friction. Omitting one will
always lead to errors, even though these errors heavily depend on the kind of surface.
While on plane surfaces with few changes in curvature, curvature dependent friction
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TABLE 4.8: CPU-times for the discretized (left) and numerical solu-
tion (right) for different discretizations resp. accuracies

N L2-error L∞-error RT tola tolr 4t L2-error L∞-error RT

16 2.61e-03 3.28e-01 0.301 10−5 10−4 0.02 3.54e-03 5.49e-01 10.41
10−5 10−4 0.01 1.11e-03 2.11e-01 11.17

32 6.13e-04 7.73e-02 0.618 10−6 10−5 0.02 7.98e-04 8.45e-02 11.41
10−6 10−5 0.01 4.65e-04 6.69e-02 12.38

64 1.35e-04 1.70e-02 1.237 10−7 10−6 0.005 2.36e-04 2.10e-02 18.81
10−7 10−6 0.0025 1.01e-04 1.05e-02 23.79

128 2.66e-05 3.34e-03 2.471 10−8 10−7 0.0005 2.21e-05 2.11e-03 66.46
256 3.99e-06 5.02e-04 4.947 10−9 10−8 0.0001 4.48e-06 4.21e-04 258.72

obviously plays a minor role compared to gravity dependent friction, its importance
is increasing with the complexity of the surface.

All together, the above results show how important it is to capture the changes
in slope and curvature and to really solve the full equations. It also shown how well
the decoupling of the equations into curvature-and gravity-dependent components
works.

4.4.4 Runtime-comparison

Although a comparison of an exact method with a numerical one is not really fair to
do, we want in the following to give a comparison of the runtimes of the two methods
presented above. Both programs were mainly written in Fortran 90/95, but using also
some Fortran 2003-standard. The two programs are both structured in the same way,
sharing the same main-program and functions to compute for example the accelera-
tions. They only differ in their time-integration method. For the numerical solution
the highly optimized Fortran-routines written by A. Hindmarsh et al. Hindmarsh and
Radhakrishnan, 1993 where used unmodified.

As test-case we chose the half circle with no friction and a final time of 50.0s. As
the run-times for this example are too short to directly compare them, the simulation
was run 10,000 times in a row in order to achieve more reliable values. Within this
cycle only the time-integration is executed, where before each single cycle the initial
values were reset. All preliminary computations as well as allocations were done
outside the measured cycle.

The comparison was done as follows: using the errors for the solution on the
piecewise linear curve given in Table 4.6 we chose – for the numerical (reference)
solution – a combination of tolerances and step-size that minimize the run-time re-
sulting in errors as close as possible to the ones of the solution on the piecewise
linear curve (for the first three discretizations two values for the numerical solution
are given). The run times were measured five times and averaged. Table 4.8 gives the
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run-times (RT) in seconds (measured as CPU-time) for both solutions (for different
accuracies) as well as the chosen tolerances (absolute tola and relative tolr, for more
information see the LSODE documentation Hindmarsh and Radhakrishnan, 1993)
and time-steps (in seconds) for the numerical solution.

Even though these numbers should not be overrated, they highly suggest that
the new method is far more efficient than the numerical solution, given totally equal
results in terms of accuracy.

4.5 Conclusions

We presented a method with which the equations of motion on a discretized curve
formed by straight segments can be solved analytically using the approximation of
infinitely small circular sectors to smooth discontinuities. In particular, it provides
an efficient way for the computation of centripetal acceleration (most notably the
corresponding friction term) without needing any information on second derivatives.

The method allows the splitting of the equations into a gravity-dependent and
curvature-dependent component and to solve these parts independently of each other.
This was possible since we exploited the property that for horizontal (gravity-free)
circular motion the change of velocity depends neither on the radius of the circular
sector nor on the time needed to pass trough it, but only on the friction coefficient and
the angle of the circular segment. It also does not depend on a possible discretization
and/or splitting of the angle into sub-angles.

In the examples it was shown that the method works well, reaching about sec-
ond order of convergence. The results obtained on discretized curves by splitting the
equations of motion into its gravity-dependent and curvature-dependent components
are fully comparable to those obtained by solving the equations of motions numeri-
cally on corresponding smooth curves. Even though – mainly due to the differences
in the lengths of the curves – there are small phase shifts between the solutions, they
do not have a strong impact on the final results. This is explained by the fact that
there are only very small differences in the velocities of the two solutions, especially
if one would compare these not in time, but in space, meaning the velocities of the
two solutions measured in approximately the same position. It follows that the phase
shift only influences slightly the arrival time, but hardly the velocity and also final
position, that is the position where the mass stops in a damped motion.

Omitting curvature dependent friction instead can lead to completely different re-
sults and significantly changes the behaviour of the sliding body. It could be shown
in the examples that curvature dependent friction influences the motion more than
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grid refinement. In the second example we saw that the maximum error when omit-
ting curvature dependent friction was about 100 times larger than the maximum error
in the solution of the full equations.

A big advantage of the presented method is its low computational cost as no
approximations have to be made. All necessary computations can be done exactly,
which also leads to a high accuracy. A final remark is that, even though not men-
tioned in the results, the total energy is conserved in all cases in absence of friction.
This is a direct result of the exact solution and high accuracy in the computations,
since it is not directly imposed in the equations themselves.
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Chapter 5

Semi-Analytical Solution for the
2-Dimensional Problem

5.1 Introduction and Formulation of the Problem

In the previous section a method for the exact solution of the equations in the more
simple 1-dimensional case using discretized curves was presented. In the 2-dimensional
case, surfaces represented by planar triangles will be treated and thus the method
must be generalized. While the technique presented in the following is not restricted
to triangles but works with arbitrary planar polygons, in terrain models, triangles are
the most common structures however, which is why in the following we will mainly
talk about triangles and triangulations. The data describing these terrains are usually
given in the form of isolines from which one can extract/reconstruct a set of data
points (x,y,z). There are several methods that can be used to reduce the noise from
the raw data and to create data points that are regularly distributed in the x/y-plane;
three of those methods were already presented in chapter 3 , a larger collection is
found in Billings, Beatson, and Newsam, 2002a; Billings, Beatson, and Newsam,
2002b for example. From these data points in turn we create a triangulation which
then will be the basis for our computations.

The following notations will be used throughout the subsequent sections: Let S be
the original sliding surface, and let D ⊂ R2 be the domain over which S is defined.
Then S is described by a function f : D→ R. The discretized surface is denoted by
Π; single elements of Π are denoted by σi and can be described as a function of x
and y:

πi = fi(x,y) = aix+biy+di with (x,y) ∈ Ai ⊂ D

Unlike it is possible in 1D, single elements in 2D are not longer ordered in a certain
(unique) way, as the method is not restricted to structured discretizations. Instead
their order depends on the particular implementation of the discretization.
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5.2 The solution on arbitrarily triangulated surfaces

The key point of the method presented for the 1-dimensional case in the previous
chapter, is the separation of the motion into its curvature-independent and curvature-
dependent components. While the first are fully determining the motion of a mass-
point on a linear segment (or planar surface in the 2-dimensional case), the latter are
active only in the moment of transition from one curve- ore surface-element to an-
other. We already found that during this (instantaneous) transition, gravity-dependent
components do not play any role such that the separation of the components is feasi-
ble. This technique shall now be applied to the 2-dimensional case. However, while
in the 1D case acceleration along a linear segment is constant, in 2D this is gener-
ally not the case and therefore the motion can only be computed analytically in the
frictionless case. In general, the solution on planar elements has to be computed
numerically. A possible sliding surface and trajectory of a point, illustrating this
problem, are given in Figs. 5.1a and 5.1b.

The 2-dimensional problem – obtained from Eq. (2.10) – is given by the follow-
ing first order ODE system:

F =



vx

− fx
g+
(
v2

x fxx +2vxvy fxy + v2
y fyy
)

1+ f 2
x + f 2

y
− µvx

g+
(
v2

x fxx +2vxvy fxy + v2
y fyy
)

v
√

1+ f 2
x + f 2

y

vy

− fy
g+
(
v2

x fxx +2vxvy fxy + v2
y fyy
)

1+ f 2
x + f 2

y
− µvy

g+
(
v2

x fxx +2vxvy fxy + v2
y fyy
)

v
√

1+ f 2
x + f 2

y


,

(5.1)
where v =

√
v2

x + v2
y +(vx fx + vy fy)

2, f = f (x,y) is the given surface (in explicit
form) and fx/y and fxx/xy/yy are the corresponding first and second order partial
derivatives. vx and vy are the x- and y-components of the velocity vector.

As already discussed in the previous chapter, equation (5.1) becomes un-physical
as
(
g+ v2

x fxx +2vxvy fxy + v2
y fyy
)

becomes negative, but as in the 1-dimensional case,
detachment from the surface is extremely unlikely for real world landslides such that
this problem will be neglected in the following. Again, the un-physical behaviour
described by the equations for certain combinations of velocity and concavity is not
a problem for the solution of the equations itself.

Analogous to the 1-dimensional case, F, the solution of the 2-dimensional equa-
tions of motion is carried out in parts as again the gravity-independent terms are
negligible for the motion in the transition area between two planar segments, and all
curvature-dependent terms are zero if the surface is planar. Accordingly, for these
two independent problems, two rhs are defined that will be denoted by Fg and Fc,
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FIGURE 5.1: Sliding surface (discretized paraboloid) with close up
on trajectory.
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respectively.

Fg =



vx

− fxg
1+ f 2

x + f 2
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√
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,

Fc =
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
,

(5.2)
where vz = (vx fx + vy fy).

5.2.1 The motion on the planar segments of Π

In the following, the solution for the motion on the planar segments of the discretized
surface Π will be derived, meaning that only Fg will be considered as all second
order partial derivatives are zero. At first only the solution for the frictionless case is
derived which, as well as in the 1-dimensional case – can be computed analytically.

The frictionless case: µ = 0 In the frictionless case F further reduces to:

F̂g =


vx

− fx
g

1+ f 2
x + f 2

y

vy

− fy
g

1+ f 2
x + f 2

y

 .

It follows that a = (ax,ay) for a certain planar element πi, defined by the three pa-
rameters ai, bi and di, is given by:

ax =−g
fx

1+ f 2
x + f 2

y
=−g

ai

1+a2
i +b2

i
,

ay =−g
fy

1+ f 2
x + f 2

y
=−g

bi

1+a2
i +b2

i
.
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FIGURE 5.2: Intersection between parabolic trajectory and edge. The
auxiliary plane Pn through the edge of the triangle is shown in light
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Obviously, ax and ay, the accelerations in x and y, are constant and so the motion can
be described according to the 1D-case using the following two well known vector
equations:

x(t) = x0 +v0(t− t0)+
1
2

a0(t− t0)2,

and
v(t) = v0 +a0(t− t0), (5.3)

where x = (x,y) and v = (vx,vy). The vertical components z and vz directly follow as
the point is forced to stay on the surface:

z = f (x,y)

vz = vx fx + vy fy

As x0, v0 and a0 are constant, the resulting trajectory is described by a parabola in t.
This means that for every edge of a triangle two possible intersection points have to
be considered, while altogether four intersections are possible. The trajectory is given
by a parametric curve p(t) and the boundary is given by three nodes ni = (xi,yi,zi) ∈
R3. As in R3 edges cannot be given in coordinate-form, they are replaced by planes
perpendicular to the triangle, passing through those edges. This is illustrated in figure
5.2. These auxiliary planes Pn can generally be described by:

Ax+By+Cz+D = 0, (5.4)

with real parameters A, B, C and D, while the trajectory is given by:

p(t) = x0 +v0t +
1
2

a0t2. (5.5)
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To find the time t at which a particular trajectory and plane intersect, the components
of Eq. (5.5) are plugged into Eq. (5.4):

1
2
(Aaxi +Bayi +Cazi)t

2+

(Avxi +V vyi +Cvzi)t +

(Axi +Byi +Czi) +D = 0, (5.6)

which is easily solved for t.
The intersection time is denoted by tint ; evaluating p(t) in t = tint also gives the

intersection point xint . Just as well one finds the velocity in this point xint using Eq.
(5.3). As however there are three edges per triangle and solving Eq. (5.6) gives up
to two real solutions per edge, we first need to identify the correct intersection time
before being able to compute xint . Just as well as in the 1-dimensional case, we are
moving forward in time and are searching for the first possible intersection, hence,
tint must be the smallest positive real solution of Eq. (5.6).

The general case: µ > 0 In the general case acceleration is not longer constant
as the friction term depends on the velocity (not just on its direction as in the 1-
dimensional case). So, unless an analytical solution for the system is known, the
trajectory of the mass-point has to be computed numerically, that means the follow-
ing system of equations has to be solved:

ẏ =
dy
dt

= Fg(y),

where:

Fg =



vx

− g fx

1+ f 2
x + f 2

y
− µgvx

v
√

1+ f 2
x + f 2

y

vy
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1+ f 2
x + f 2

y
− µgvy

v
√

1+ f 2
x + f 2

y


. (5.7)

and v =
√

v2
x + v2

y +( fxvx + fyvy)2.

The above system can be integrated numerically using an explicit Runge-Kutta scheme.
As the second order partial derivatives and therefore the acceleration do not change
within single planer segments, no solver for stiff equations is required in this case.

Certainly, as the equations cannot be solved exactly, also the exact point and time
of transition between triangles cannot be computed analytically but only approxi-
mated. To obtain accurate results though, the following should be kept in mind:
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1. Choose step-size according to the resolution of the grid and the (approximated
maximal) velocity of the point;

⇒ avoid a too big number of time-steps which would make computations
unnecessarily time-consuming as well as too few steps thus leading to
incorrect numerical results;

2. After each time step check if the point is located in- or outside the current
surface element;

⇒ this is easily done using barycentric coordinates (compare A.1), a tech-
nique that is not only computationally cheap but also provides informa-
tion whether a point is located in the interior of the triangle or on the
boundary and in the latter case also if it is lying on an edge or coin-
cides with one of the three nodes (this method can be extended to general
convex sets (compare Warren et al., 2004) and thus is not restricted to
triangles);

3. Use bisection technique in order to optimize the computation of intersection
time and point.

The listing below explains the bisection technique, as it was used in the presented
method, more in detail:

1. Bisection is started when during time-integration the point is located outside
the triangle for the first time;

2. As long as any of the following three conditions is f alse, the time-integration
is continued from xi on (i.e. the last computed point xi+1 is ignored) using half
the step-size;

(a) the distance between the last two points of the time-integration is less
than a given εx, i.e. ||xi+1−xi||< εx,

(b) the relative change in velocity is less than a given εv,

i.e.
||vi+1−vi||
||vi+1||

< εv,

(c) xi+1 is located outside the triangle

3. If all three conditions are fulfilled, the bisection is stopped and intersection-
time and -point, tint and p(tint) respectively, are computed.

The interpolated point and time of transition can be found by intersecting the
position vector representing the trajectory with those of the three edge of the current
element. Let therefore p1 and p2 denote the last two positions of the point before
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the bisection was stopped, p1 being the point inside the triangle and p2 the point
outside. Let further v1 and v2 be the two vertices of a certain edge. Then the point of
intersection can be found by solving the following vector equation for λ1 and λ2:

p1 +λ1(p2−p1) = v1 +λ2(v2−v1). (5.8)

There is always a solution to this equation unless the two lines are parallel. The
point of intersection is found by either inserting λ1 in the lhs or λ2 in the rhs of the
equation.

As the point of intersection (in x and y) is the same when projecting the triangle
on the (x,y)-plane, it is sufficient for the solution of Eq. (5.8) to consider only the x-
and y-components. Altogether three possible intersection of the trajectory with the
triangle can be found, but only one of them is also a valid intersection in the sense
that

• the point of intersection lies on the boundary of the triangle and

• the point of intersection lies between p1 and p2.

This is the case if and only if both factors, λ1 and λ2, are in the range [0,1] and
is illustrated in figure 5.3 which shows one valid (S1) and two invalid intersections
(S2, S3). All three intersections are explained in the following where v1, v2 and v3

are the three vertices of the triangle:

S1: intersection between trajectory and edge e3 (given by v1 +λ2(v2−v1));
λ1,λ2 ∈ [0,1]

⇒⇒⇒ valid intersection

S2: intersection between trajectory and edge e1 (given by v2 +λ2(v3−v2));
λ1 < 0, λ2 ∈ [0,1]

⇒⇒⇒ no valid intersection, point would have to travel backwards in time

S3: intersection between trajectory and edge e2 (given by v3 +λ2(v1−v3));
λ1 ∈ [0,1], λ2 > 1

⇒⇒⇒ no valid intersection, point of intersection lies outside the triangle

The point of intersection is then found by evaluating one of the two following
equations:

p(tint) = p1 +λ1(p2 +p1),

p(tint) = v1 +λ2(v2 +v1).
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FIGURE 5.3: Possible intersections (S1, S2 and S3, marked by red
circles) of a linear trajectory (blue line) with a planar triangle (given

by black lines).

While theoretically both equations must give the same result, using the second one is
recommended in the final implementation as it directly ensures an intersection-point
on the edge of the triangle. This is of great importance within the code.

Knowing the point of intersection p(tint), also the intersection time is easily com-
puted by solving Eq. (5.9) for t, using linear interpolation (recall that from condition
(b) it follows that the velocity is approximately linear).

p(tint) = x0 +v0tint ⇒ tint =
p(tint)−x0

v0
. (5.9)

Note that due to the linear approximation of the motion in vicinity of the intersection-
point, only one intersection-time tint is computed (in contrast to the 1-dimensional
case) for a particular couple of points p1 and p2. tint is a valid intersection-time if it
is non-negative.

5.2.2 The motion in the transition region between two elements
of Π

For computing the transition between two neighbouring triangles it is again assumed
that gravity does not play a role. Moreover, it will be shown that the solution of
the curvature-dependent components only requires knowledge about the current and
the future element (i.e. before and after transition) of the surface. Recall that the
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FIGURE 5.4: The planes containing the two triangles T1 and T2 and
the angle α enclosed by them. The red lines indicate the vectors lying

in the planes, normal to the axis of rotation.

curvature-dependent equations Fc (c.f. Eq. (5.2))read:

Fc =



vx

− fx

(
v2

x fxx +2vxvy fxy + v2
y fyy
)

1+ f 2
x + f 2

y
− µvx

(v2
x fxx +2vxvy fxy + v2

y fyy
)

v
√

1+ f 2
x + f 2

y


vy

− fy

(
v2

x fxx +2vxvy fxy + v2
y fyy
)

1+ f 2
x + f 2

y
− µvy

(v2
x fxx +2vxvy fxy + v2

y fyy
)

v
√

1+ f 2
x + f 2

y




,

It can easily be verified that the left side of Fc act normal to the surface and therefore
only changes the direction of motion but does not influence the speed while the right
side acts tangential to the direction of motion and thus influences the speed but not
the direction of motion. From Eq. (2.9) we get:

v̇c,x =− fx
v2

x fxx + vxvy fxy + v2
y fyy

1+ f 2
x + f 2

y
− µvx

v2
x fxx + vxvy fxy + v2

y fyy

1+ f 2
x + f 2

y
,

v̇c,y =− fy
v2

x fxx + vxvy fxy + v2
y fyy

1+ f 2
x + f 2

y
− µvy

v2
x fxx + vxvy fxy + v2

y fyy

1+ f 2
x + f 2

y
,

v̇c,z =
v2

x fxx + vxvy fxy + v2
y fyy

1+ f 2
x + f 2

y
− µ( fxvx + fyvy)

v2
x fxx + vxvy fxy + v2

y fyy

1+ f 2
x + f 2

y
.

(5.10)

Denoting by an and at the left and right part of Eq. (5.10) we find:

an =

v̇c,x

v̇c,y

v̇c,z

=
v2

x fxx + vxvy fxy + v2
y fyy

1+ f 2
x + f 2

y

− fx

− fy

1

 ,
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where the vector (− fx,− fy,1)
ᵀ and therefore an is normal to the curve and thus to

the direction of motion. For at instead we find:

at =



−µvx
v2

x fxx + vxvy fxy + v2
y fyy

1+ f 2
x + f 2

y

−µvy
v2

x fxx + vxvy fxy + v2
y fyy

1+ f 2
x + f 2

y

−µ( fxvx + fyvy)
v2

x fxx + vxvy fxy + v2
y fyy

1+ f 2
x + f 2

y


=

v2
x fxx + vxvy fxy + v2

y fyy

1+ f 2
x + f 2

y

 vx

vy

fxvx + fyvy

 ,

where (vx,vy, fxvx+ fyvy)
ᵀ
= (vx,vy,vz)

ᵀ
= v and therefore also at is tangential to the

direction of motion.
Therefore Eq. (5.2) can again be split up into two components denoted by ac,n for

the normal and ac,t for the tangential component that on piecewise planar surfaces can
be solved independently of each other. Even though the trajectory in 2D is non-linear,
in a sufficiently small neighbourhood around a particular point (e.g. the intersection
between two planes), the motion is approximately linear which in turn means that the
same principles as in the 1-dimensional case can be applied.

To compute the direction of the velocity v1 after the transition, a 3D rotation of
the velocity vector v0 has to be performed, thus projecting it from the old to the
new surface. Let T1 and T2 be two planar triangles in 3D and let P1 and P2 be the
two planes in which the triangles are lying. Hence, the axis of rotation is the line in
which those two planes intersect and the angle of rotation is the angle enclosed by
them. This is indicated in figure 5.4.

Let nT1 and nT2 be the unit normal vectors to the triangles T1 and T2. Then the an-
gle of rotation α , and the (normalized) direction of the axis of rotation εεε = (εx,εy,εz),
are:

α = arcsin(|nT1×nT2|) and εεε =
nT1×nT2

|nT1×nT2 |
.

In R3 a rotation can uniquely be described by a quaternion q (for more information
see appendix B), where q = cos α

2 + εεε sin α

2 , or written in its components:

q0 = cos
α

2
,

q1 = εx sin
α

2
, q2 = εy sin

α

2
, q3 = εz sin

α

2
,
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leading to the following rotation matrix:

Rα =

q2
0 +q2

1−q3
2−q2

3 2(q1q2−q0q3) 2(q1q3 +q0q2)

2(q1q2 +q0q3) q2
0−q2

1 +q3
2−q2

3 2(q2q3−q0q1)

2(q1q3−q0q2) 2(q2q3 +q0q1) q2
0−q2

1−q3
2 +q2

3

 ,

and the velocity after the transition v2 is given by:

v2 = Rαv1.

That followed, the change in speed can be computed. In chapter 4 we showed that
in case of (gravity-independent) horizontal circular motion, where a point of given
initial velocity passes through a circular segment with angle γ , the change of speed
due to friction – given by the friction coefficient µ , is described by the so called
velocity modification factor Γ:

Γ = exp(−µγ),

where (independently of the direction of motion) γ > 0 and therefore Γ < 1.
Multiplying v (the modulus of v) by Γ gives the speed of the point after passing

through the circular segment where the angle γ is given in radians.
Recall that in the 1-dimensional case, the curve in vicinity of the transition point

is smoothed using a circular arc whose angle coincides with the angle enclosed by the
two linear segments of the curve(and therefore the trajectory) which in turn coincides
with the angle between the two velocity vectors. This is not longer the case in 2D.

Instead of smoothing the whole surface, only the trajectory that in an ε-neighbourhood
of the transition point is approximately linear is smoothed using a circular arc. The
two linear segments (before and after the transition from one triangle to another) of
the trajectory in this neighbourhood are represented by the two corresponding veloc-
ity vectors where v0 is the direction of velocity before the transition and v1 the one
after. Then the angle γ needed to compute Γ is exactly the one enclosed by v0 and v1

and can easily be computed via their scalar product:

cos(γ) =
v0 ·v1

‖v0‖‖v1‖
.

Note that in general the angles α (the angle built by the two triangles) and γ (angle
enclosed by the velocity vectors) are not equal.

As the factor Γ is independent of the radius r of the circular segment, we can
choose r to be infinitely small such that the length of the circular segment goes to
zero and thus the change of speed is performed instantaneously.
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This retrospectively also justifies the splitting of equ. 5.1 into its gravity-and
curvature-dependent terms as the gravity-dependent terms do not play a role within
an infinitely small period of time (in which the point passes through the circular
segment). On the other hand, as the surface is planar almost everywhere, and thus
curvature-dependent terms do not play a role most of the time but their effect is
restricted to the point of transition.

We find that the velocity modification factor together with and a simple rotation
of the velocity vector are sufficient to describe the transition of a point from one
planar element to another. In particular we do not need information on the curvature
of the surface even though it is part of the original equations. This not only offers a
very simple and fast way to compute the transition; in the results section we will also
see that the method provides a high accuracy. In the following section different test
cases are performed.

5.2.3 The solution strategy

For a better understanding we will briefly sketch an algorithm for solving the equa-
tions for the motion of one point on arbitrarily discretized surfaces. We assume that
a 2-dimensional discretization of the sliding surface is already given. A sketch of the
2D code is given in algorithm 3 where the interior of a triangle T is denoted by T o

and its boundary by ∂T .
The time-step used for the numerical integration is denoted by 4tn while the

actual time used for a particular Runge-Kutta time-integration step is denoted by
4tRK , the intersection time of the trajectory with the boundary of T is given by tint

while 4̃t denotes the remaining time of a single time-step 4tn in case the time-
integration is split into two or more sub-steps. The simulation is running until either
the point stops moving or would leave the discretized area. At each time, the point P
is associated with one of the triangles T of the discretization D of S.

For each triangle T , Eq. (5.7) is solved either numerically or analytically (in case
of constant acceleration); at the transition between two elements the direction and
modulus of the point’s velocity must be corrected using the rotation matrix R and
the modification factor Γ. As for each triangle we need to know the intersection-time
and -point, a splitting of the time-step into several, individual intermediate time-steps
(dtint) usually is required. The intersection time is defined as the time that is needed
by P to reach ∂T starting from its current position.



116 Chapter 5. Solution of the 2D equations

Algorithm 3 Algorithm for 1D analytical solution
1: logical :: inner {true if point does not leave current triangle}
2: while <time < Tend> do {external loop, time-step: 4t}
3: 4̃t =4t; inner=.true.
4: while (4̃t > 0) do
5: 4tRK = min(4̃t,4tn)
6: Y = [xi−1,vx,i−1,yi−1,vy,i−1]
7: call Runge-Kutta(F,Y,4tRK)
8: Xi = [Y1,Y3]; Vi = [Y2,Y4]
9: if (Xi ⊂ ∂T ) then

10: inner=. f alse.
11: 4̃t = 4̃t−4tRK
12: exit
13: else if (xi * T ) then
14: call Bisection(Xi−1,Xi,Vi−1,Vi)
15: if (Xi ⊂ ∂T ) then
16: inner=. f alse.
17: exit
18: else
19: if (xi * T ) then
20: inner=. f alse.
21: Compute point, velocity and time of intersection (Xint , Vint , tint)
22: Xi = Xint ; Vi = Vint ; ti = tint
23: exit
24: else if (xi ⊂ T o) then
25: inner=. f alse.
26: 4̃t = 4̃t−4tRK
27: exit
28: end if
29: end if
30: else
31: 4̃t = 4̃t−4tRK
32: end if
33: end while
34: if (inner==.true.) then 4̃t = 0
35: end if
36: end while
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5.3 Numerical results 1: Comparison to the numeri-
cal results obtained on smooth reconstructed sur-
faces

5.3.1 Test-cases:

All test-cases are constructed such as to represent different critical characteristics of
real topographies such as a sudden change in slope. While the first test-case is a
piecewise-planar function and therefore contains an instantaneous change in slope,
the other cases are smooth functions. Test case 1 was also used in chapter 2 to test
the different reconstruction methods concerning their ability to imitate a triangulated
surface.

Test-Case 1:

g1(x,y) =

−x+0.5y if (x,y) ∈ ([−4,0)× [−14,4]),

0.5y if (x,y) ∈ ([0,14]× [−14,4]).

This is the only non-smooth function, representing an instantaneous change in
slope. During the reconstruction the corner in x = 0 must be smoothed while
the piecewise-planar parts should remain as planar as possible.

Test-Case 2: A kind of normalized arctan-function in x that is constant in y. Due to
the definition of g2,x/y we can choose the inclination of the function g2 before
the change of slope, where the inclination afterwards is zero by definition. The
whole surface can in addition be inclined in y-direction. However, here we will
present a case with g2,x ≈−1 for x > 0 and g2,x ≈ 0 for x > 0 and no additional
inclination in y-direction. This test is in some sense a smoothed version of test
case 1. The two derivatives are given by:

g2,x =
1
π

arctan(ϕx)−0.5, g2,y = η ,

which gives the following reconstructing function:

g2(x,y) =
1
π

xarctan(ϕx)− 1
(2πϕ)

log(ϕ2x2 +1)−0.5x+ηy,

and second order partial derivatives:

g2,xx =
ϕ

π
· 1

1+ϕ2x2 , g2,xy = g2,yy = 0.
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FIGURE 5.5: Surface for test case 1 from two different angles.

Similar to the first test case, the slope in x-direction is first negative and then
becomes almost zero after passing through x = 0 but this is done in a smooth
way. Setting η different from zero one adds an additional slope in y-direction.
In the present case the parameters were chosen as follows: ϕ = 1, η = 0.5, and
the domain is given by the range [−4,14]× [−14,4]

Test-Case 3: A paraboloid

g3(x,y) = ϕx2 +η1y2 +η2y.

In contrast to the other test functions g3 has constant second derivatives and
should be approximated better by the radial basis functions. It stands for a
moderate change in slope, having constant second order partial derivatives.
The parameters were chosen ϕ = 1, η1 = 0.1 and η2 = 0.5. The domain is
[−4,4]× [−8,4].
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FIGURE 5.6: Surface for test case 2.

Test-Case 4: Based on an arctan-function in x-direction and a parabola in y-direction.
The definition of this function is a combination of the test-cases 2 and 3, but in
contrast the slope for x > 0 is not close to zero but has the same absolute value
as for x < 0, just with opposite sign. The slope becomes steeper for larger ab-
solute values of ϕ1 and the change of slope more sudden for larger values of
ϕ2. With the following parameters: ϕ1 = ϕ2 = 2 the change of slope is more
sudden then in case 3. The remaining parameters are set to: η1 = 0.1, η2 = 0.5.
The domain is again [−4,4]× [−8,4]

g4,x = ϕ1 arctan(ϕ2x), g4,y = 2η1y+η2.
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FIGURE 5.7: Surface for test case 3.

Therefore the following reconstructing function is found:

g4(x,y) = ϕ1(xarctan(ϕ2x)− log(ϕ2
2 x2 +1)/(2ϕ2))+η1y2 +η2y,

and second order partial derivatives:

g4,xx = ϕ1

(
ϕ2

1
1+ϕ2

2 x2

)
, g4,xy = 0, g4,yy = 2η1.
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FIGURE 5.8: Surface for test case 4.

5.3.2 Comparison of solutions computed on triangulated versus
smooth surfaces for the frictionless case

The solutions computed on smooth surfaces – obtained using smooth surface recon-
struction by means of radial basis functions – are in the following compared to the
solutions computed on piecewise planar surfaces in a qualitative way. Therefore, the
four test surfaces presented above will be used in the following.

In the previous sections two methods were presented for the solution of the equa-
tions on piecewise planar surfaces. A fully analytical one and a semi-analytical one.
While the first methods can be used to compute the solution of the equations of mo-
tion exactly in absence of friction, the second one approximates the solution along
the planar segments and only computes the change of speed in the transition point
between two elements analytically. Hence it can be used also in the case of non-zero
friction. In the case of zero friction, obviously both approaches can be used even
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though the first one is slightly more accurate and in particular provides an even bet-
ter conservation of energy as the point of transition and the respective velocity do not
have to be approximated. However, in order to judge the more general method (i.e.
including friction), the semi-analytical approach will be used also in the frictionless
case in the following as in the friction containing case the total energy cannot be
judged as no exact solution is known.

For every test case, surfaces with different levels of refinement are used, more
concrete, the number of grid points per coordinate direction are N = 11,21,41, so
the total number of grid points is Nt = 121,441,1681. Finer grids turned out not
to give better results for the solution on smooth reconstructed surfaces, which was
prone to too strong roughness in the second order partial derivatives. Tests with a
finer grid were also run for the piecewise planar surfaces, which – as can be expected
– turned out to give better results with an increasing number of grid points, also
beyond N = 41.

As reference, the solutions obtained on the original surfaces using the LSODE
solver, are used. In order to evaluate also the conservation of total energy, the tests
are run without friction, i.e. µ = 0. For the comparison of the total energy the
potential energy is assumed to be zero for the initial time step t0, as, given the x- and
y-coordinate of the point’s initial position the corresponding z-coordinate varies with
different reconstructions of the surface, thus leading to different potential energy if
the zero-level for the potential energy would be equal for all reconstructions. As –
due to the initial conditions – the kinetic energy at time t0 is zero, too, also the total
energy is zero at the initial time.

In the following test cases, the solutions on piecewise planar surfaces together
with the solutions on smooth reconstructed surfaces will also be denoted as ”ap-
proximated solutions” as they are assumed to approximate the exact solution on the
original smooth surface.

Results of test case 1: In contrast to the remaining three test cases, the solution
on the original surface is computed via the newly developed method instead of us-
ing the LSODE solver, due to the discontinuity in the first and second order partial
derivatives for x = 0. The so computed solution is exact.

The test-surface for the full domain and the trajectories of the point for the sur-
faces with N = 11 and N = 41 points are shown in figure 5.9. The two trajectories for
the smooth surfaces, obtained using the radial basis functions, are denoted by RBF
uning a yellow dash-dotted line for N = 11 and a magenta dashed line for N = 41.
The respective trajectories of the solutions on the piecewise planar surfaces (PP) are
denoted by a turquoise dash-dotted (N = 11) and a white dotted (N = 41) line.
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FIGURE 5.9: Test case 1: Surface and trajectories for friction coeffi-
cient µ = 0. Only the solutions for N = 11 and N = 21 as well as the

reference solution are plotted.

In the given domain, no big difference can be seen in the two trajectories on
the piecewise planar surface and the finer smooth surface. Only the solution on the
lower-resolution smooth surface differs slightly. The same is seen in figure 5.10 were
additionally the solutions for N = 21 are plotted. While the three solutions for the
piecewise planar surfaces are nearly identical, coinciding with the reference solution,
the solutions on the RBF surfaces seam to approximate the reference solution for an
increasing number of grid points (for a definite answer a stronger refinement must
have been computed). The overlapping solutions for the piecewise planer reconstruc-
tions are not surprising as this type of reconstruction obviously fits a piecewise planar
surface best. (Note however, that due to the choice of N, the reconstructed surfaces
do not coincide with the original one.)
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FIGURE 5.10: Test case 1: x- and y-coordinates of the trajectories for
friction coefficient µ = 0. The solutions for N = 11,21,41 as well as

the reference solution are shown.
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FIGURE 5.11: Test case 1: Absolute errors between the trajectories
and the reference solution for µ = 0, split in x- and y-coordinates
(top and middle). Euclidean distances between reference and approx-

imated solutions (bottom).
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The corresponding absolute errors between the approximated and the reference
solutions for the x- and y- coordinates (top and middle) as well as the L2-distances
(distance between a point on the reference solution and a point on the approximated
solution at a particular time t) are plotted in figure 5.11. Here it is seen more in detail
how well the solutions on the PP surfaces approximate the reference solution while
the errors for N = 11 and N = 21 for the solutions on the RBF are still significant.
Note in particular the error-peaks that appear in the point of change of slope.
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FIGURE 5.12: Test case 1: Total energy plotted for all solutions for
µ = 0.

The total energy is practically conserved for all six trajectories as can be seen in
figure 5.12.

Altogether, the semi-analytical time-integration method in combination with the
piecewise planer surfaces performs again significantly better than the LSODE solver
in combination with smooth reconstructed surfaces.

Results of test case 2: As already mentioned, the second test case is similar to the
first on, but is smooth everywhere. The results are presented in the following.

The trajectories for N = 11 and N = 41 as well as the reference solution on the
original surface are shown in figure 5.13. Altogether, the solutions are slightly closer
to each other than in the previous case which can also be seen in the following figures.

Figure 5.14 shows the x- and y-coordinates of the trajectories in time. The corre-
sponding absolute errors are shown in figure 5.15 (top and middle). On the bottom
of the same figure the distance (measured in the L2-norm) between the trajectories is
depicted. Compared to the first test case we find a very similar picture, but without
showing the error-peaks during change of slope.
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FIGURE 5.13: Test case 2: Surface and trajectories for friction coeffi-
cient µ = 0. Only the solutions for N = 11 and N = 21 as well as the

reference solution are plotted.
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FIGURE 5.14: Test case 2: x- and y-coordinates of the trajectories for
friction coefficient µ = 0. The solutions for N = 11,21,41 as well as

the reference solution are shown.
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FIGURE 5.15: Test case 2: Absolute errors between the trajectories
and the reference solution for µ = 0, split in x- and y-coordinates
(top and middle). Euclidean distances between reference and approx-

imated solutions (bottom).
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Still, the errors in the solutions on the RBF surface with N = 11 and N = 21
increasing significantly when the point moves through the region of changing slope.
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FIGURE 5.16: Test case 2: Total energy plotted for all solutions for
µ = 0.

The total energy is conserved again, with a slight gain in energy for the solutions
on the PP surfaces. For the solution on the PP surfaces as well as for the reference
solution, no gain of energy can be identified from the figure, even though there are
marginal changes in the total energy as well, as can be seen from the data (in the
range of 10e−8).

Altogether, the semi-analytical time-integration method in combination with the
piecewise planer surfaces performs again significantly better than the LSODE solver
in combination with smooth reconstructed surfaces.

Results of test case 3: In the following the results of the paraboloid test case are
presented. It is the test case in which we find the strongest difference between an
approximated and the reference solution. Part of the trajectories and the surface
are shown in figure 5.17. It is seen immediately that the yellow, dash-dotted curve
that represents the trajectory for the RBF surface with N = 11 grid points, differs
significantly from the remaining ones that leave the domain at approximately x =

(−3,−8) and therefore are not further plotted. The yellow trajectory instead changes
direction with respect to y twice and and leaves the domain at approximately x =

(3,−8).
The following figures are plotted for a final time tEnd = 3.5s, the time the refer-

ence point needs to leave the domain. Hence, the strongest differences between the
reference solution and the RBF solution for N = 11 is not depicted in the follow-
ing. Figure 5.18 shows the x- and y-coordinates of the trajectories in time. Here, the
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FIGURE 5.17: Test case 3: Surface and trajectories for friction coeffi-
cient µ = 0 from two different angles. Only the solutions for N = 11

and N = 21 as well as the reference solution are plotted.

green dashed curve represents the RBF solution for N = 11. It is easily seen that this
solution reaches is maximum in x later and in addition the maximum value is larger
than in the remaining curves. Moreover it is seen in the upper figure (x) that the PP
solution for N = 11 leaves the domain earlier than the reference solution (the curve
ends in a straight line after t ≈ 3 which means that after this time the solution does
not change any more as the point left the domain). In the lower figure of 5.18 one can
see the change in direction with respect to the y-coordinate for the blue dashed curve
which represents the RBF solution for N = 11. Together 5.18 shows how a small
difference between the reference and the approximated solution at the beginning of
the simulation can turn into a important one later.

The errors can be seen even better in figure 5.19 where the errors for the RBF
solution with N = 11 stand with respect to the remaining ones, but also for the PP
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FIGURE 5.18: Test case 3: x- and y-coordinates of the trajectories for
friction coefficient µ = 0. The solutions for N = 11,21,41 as well as

the reference solution are shown.

solution with N = 11 it can be seen again that a small error at the beginning can
turn into a significantly larger one later on. In general however, the errors are much
smaller than in the previous two test cases and the solution lie closer to each other.

Finally, the total energy for the approximated solutions and the reference solution
are depicted in figure 5.20. Again the energy is practically conserved for all solutions.
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FIGURE 5.19: Test case 3: Absolute errors between the trajectories
and the reference solution for µ = 0, split in x- and y-coordinates
(top and middle). Euclidean distances between reference and approx-

imated solutions (bottom).
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FIGURE 5.20: Test case 3: Total energy plotted for all solutions for
µ = 0.
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Results of test case 4: The last test case is a combination of the previous two and
is characterized by a quick change of slope in x-direction and a soft change in slope
in y-direction.

Figure 5.21 shows the surface and the approximated solutions for N = 11 and
N = 41, respectively, as well as the reference solution from two different angles. One
can see immediately that the solution obtained on the piecewise planar reconstruction
with N = 11 grid points differs significantly from all the other solutions.
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FIGURE 5.21: Test case 4: Surface and trajectories for friction coeffi-
cient µ = 0 from two different angles. Only the solutions for N = 11

and N = 21 as well as the reference solution are plotted.

This becomes even more evident in figure 5.22 were the x- and y-coordinates of
the trajectories are plotted, the approximated ones for all refinement levels as well as
the reference. The difference between the PP solution for N = 11 and the remaining
solutions is most evident in the upper figure (x-coordinate) but can be seen also in
the lower one (y-coordinate).
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FIGURE 5.22: Test case 4: x- and y-coordinates of the trajectories for
friction coefficient µ = 0. The solutions for N = 11,21,41 as well as

the reference solution are shown.

Figure 5.23, which shows the absolute errors in terms of x and y as well as the
Euclidean distances between the trajectories illustrates this even better, showing a
strong peak in the x- as well as in the y-error (top and middle figure). Moreover
there are significant errors for the PP surface and N = 21, and for the RBF surface
for N = 11, in both the x- and the y-error. The same picture is found looking at the
bottom figure (L2-distance). For the PP surface with N = 11 the strongest difference
to the reference solution is found while errors are still significant for the PP surface
with N = 21 and the RBF surface with N = 11.

The total energy is again conserved for all solutions even though there are marginal
changes in the PP based solutions.
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Altogether the smooth reconstructed surfaces in combination with the here pre-
sented semi-analytical time-integration method perform better in this test case. For
the final refinement step N = 41, the differences are, like in the previous two test
cases, negligible.
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FIGURE 5.23: Test case 4: Absolute errors between the trajectories
and the reference solution for µ = 0, split in x- and y-coordinates
(top and middle). Euclidean distances between reference and approx-

imated solutions (bottom).
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FIGURE 5.24: Test case 4: Total energy plotted for all solutions for
µ = 0.
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5.3.3 Comparison of solutions computed on triangulated versus
smooth surfaces under the influence of friction

The four test cases are repeated setting the friction coefficient µ = 0.15. The re-
sults are presented in the following. The solutions computed on smooth surfaces
– obtained using smooth surface reconstruction by means of radial basis functions
– are again compared to the solutions computed on piecewise planar surfaces in a
qualitative way.

As in the frictionless case, surfaces with three different levels of refinement are
used where the number of grid points is still N = 11,21,41.

Results of test case 1: The test-surface for the full domain and the trajectories
of the point for the surfaces with N = 11 and N = 41 points are shown in figure
5.25. The two trajectories for the smooth surfaces, obtained using the radial basis
functions, are denoted by RBF uning a yellow dash-dotted line for N = 11 and a
magenta dashed line for N = 41. The respective trajectories of the solutions on the
piecewise planar surfaces (PP) are denoted by a turquoise dash-dotted (N = 11) and
a white dotted (N = 41) line.

In comparison with the frictionless case, the trajectories leave the domain at
smaller values of x (trajectories are more bended towards x = 0) with a slightly larger
variation in between the trajectories themselves.
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FIGURE 5.25: Test case 1: x- and y-coordinates of the trajectories for
friction coefficient µ = 0.15. The solutions for N = 11,21,41 as well

as the reference solution are shown.

Overall, the results look very similar to the frictionless case. The solutions on
the piecewise planar surfaces perform significantly better than the ones one the RBF
surfaces if compared to the reference solution as can already be seen in figure 5.26.
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While the PP surface solutions appear to lie on one curve together with the reference
solution, there is a considerably larger variation in the curves belonging to the RBF
surfaces. This is even more evident in figure 5.27 where on the top and in the middle
the errors in x- and y-coordinate are depicted. The bottom picture shows – as in the
frictionless case – the distance between the approximated and the reference trajec-
tories, measured in the L2-norm. Altogether, the solutions on the piecewise planar
surfaces are significantly closer to the reference solution, even though the errors are
larger than for µ = 0 .
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FIGURE 5.26: Test case 1: x- and y-coordinates of the trajectories for
friction coefficient µ = 0.15. The solutions for N = 11,21,41 as well

as the reference solution are shown.
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FIGURE 5.27: Test case 1: Absolute errors between the trajectories
and the reference solution for µ = 0.15, split in x- and y-coordinates
(top and middle). Euclidean distances between reference and approx-

imated solutions (bottom).
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Results of test case 2: Like already in the frictionless case, the results of this sim-
ulation are very similar to test case 1 but there is a less strong variation between the
different trajectories.

x

−3
0

3
6

9
12

y

−12

−9

−6

−3

0

3

z

−6

−3

0

3

6
Smooth surface (reference)

RBF reconstruction N = 11

RBF reconstruction N = 41

PP surface N = 11

PP surface N = 41

FIGURE 5.28: Test case 2: Surface and trajectories for friction coef-
ficient µ = 0.15. Only the solutions for N = 11 and N = 21 as well as

the reference solution are plotted.

As can be seen in figure 5.29, the trajectories computed on the piecewise planar
surfaces seemingly overlap while there is a stronger variation in the solutions on the
smooth reconstructed surfaces.

Again, this is seen better in figure 5.30, in particular in the bottom picture that
depicts the Euclidean distance between the approximated and the reference solution.
The errors of the solutions computed on the piecewise planar surfaces are small and
the solution on the finest RBF surface is in a comparable range. The solutions com-
puted on the RBF surfaces with N = 11 and N = 21 instead are several times larger
such that overall also in this test, the solutions computed on the piecewise planar sur-
faces are clearly better than those computed on the smooth reconstructed surfaces.
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FIGURE 5.29: Test case 2: x- and y-coordinates of the trajectories for
friction coefficient µ = 0.15. The solutions for N = 11,21,41 as well

as the reference solution are shown.
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FIGURE 5.30: Test case 2: Absolute errors between the trajectories
and the reference solution for µ = 0.15, split in x- and y-coordinates
(top and middle). Euclidean distances between reference and approx-

imated solutions (bottom).



5.3. Results 1 145

Results of test case 3: In contrast to the frictionless cases and the first two cases
including friction, the motion in this test will stop and none of the the trajectories
leaves the domain. The motion can therefore be followed until the end (i.e. until the
motion finally stops). Figure 5.31 shows this from two different perspectives.
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FIGURE 5.31: Test case 3: Surface and trajectories for friction co-
efficient µ = 0.15 from two different angles. Only the solutions for

N = 11 and N = 21 as well as the reference solution are plotted.

The x- and y-coordinates of the different trajectories are seen more in detail in
figure 5.32. They suggest that both methods (the semi-analytical solution on the
PP surfaces and the solutions computed on the smooth reconstructed surfaces using
LSODE) perform comparably well in terms of accuracy.

This is confirmed in figure 5.33 which shows the different errors between the
approximated and the reference solutions. While the maximum error is in each case
stronger for the solution on the RBF surface with N = 11, there are considerable
errors as well for solutions on the PP surfaces for N = 11 and N = 21. For N = 41
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FIGURE 5.32: Test case 3: x- and y-coordinates of the trajectories for
friction coefficient µ = 0.15. The solutions for N = 11,21,41 as well

as the reference solution are shown.

the errors become comparable small for both methods even if the RBF based methods
performs slightly better.

Altogether, the results do not suggest that any of the two methods should be
preferred over the other here, as long as the surface reconstruction is sufficiently
accurate.
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FIGURE 5.33: Test case 3: Absolute errors between the trajectories
and the reference solution for µ = 0.15, split in x- and y-coordinates
(top and middle). Euclidean distances between reference and approx-

imated solutions (bottom).
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Results of test case 4: A very similar picture is seen also in the last test case. Again
the solutions for the coarser surface reconstructions perform less good than the ones
for the finer reconstructions. However, the solution computed on the piecewise planar
surface for N = 11 varies strongly from the remaining solutions as the motion stops
much earlier in time.
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FIGURE 5.34: Test case 4: Surface and trajectories for friction co-
efficient µ = 0.15 from two different angles. Only the solutions for

N = 11 and N = 21 as well as the reference solution are plotted.

This is seen particularly well in the following figures. Figure 5.35 illustrates the
much faster decay of the PP solution for N = 11 in x-direction as well as the stronger
deflection in negative y-direction (it is the only solution that slightly exists from the
given domain).

Finally figure 5.36 confirms that the best three solutions are those computed on
the smooth reconstructed surfaces for N = 21 and N = 41 and the one computed
on the finest picewise planar reconstruction (N = 41). The three worst solutions are
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FIGURE 5.35: Test case 4: x- and y-coordinates of the trajectories for
friction coefficient µ = 0.15. The solutions for N = 11,21,41 as well

as the reference solution are shown.

in this order the already discussed one one the coarsest piecewise planar solution,
followed by the solution on the coarsest RBF surface and the one one the piecewise
planar solution with N = 21.

Altogether the solutions computed on the RBF surfaces perform a little better in
this test case, even though for a sufficiently fine discretization the solutions of both
methods are comparable.
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5.3.4 Short evaluation of the two presented methods

The test cases performed in the previous two subsections showed that – like in the
1-dimensional case – both methods have their advantages and disadvantages. Both
perform well in terms of accuracy and both are able to conserve the total energy in the
frictionless case. For larger surfaces however, the usage of radial basis functions for
the reconstruction is manageable only if the surface is defined piecewise as otherwise
the function would become to heavy. Also other reconstruction methods, like bicubic
splines could be an alternative if a higher order reconstruction is favoured but also
these bust be defined piecewise.

In therms of computational speed the computations on piecewise planar surfaces
were significantly faster, in particular for finer grids.

As the semi-analytical solution on piecewise defined grids did not exhibit se-
rious disadvantages, performs equally well in terms of accuracy (compared to the
combination of RBF surfaces and the LSODE solver) and is much faster in terms
of computational time, this method is – like already in the 1-dimensional case – the
preferred one here.

5.4 Numerical results 2: Convergence test and more
complex surfaces

In the current section only the qualitative behaviour of the two methods was inves-
tigated and compared with each other. The following section is now dedicated to
a quantitative investigation of the method used to solve the equations of motion on
piecewise planar surfaces, using a semi-analytical time-integration scheme. It shall
be shown that the solution on piecewise planar surfaces really converges and that
it does this with a reasonable rate. Moreover a consistency test will be performed,
thus showing that the solution on piecewise planar surfaces not only converges, but
converges to the desired reference solution, i.e. it is physically meaningful.

5.4.1 Description of the test problem

Usually, in the numerical solution of time-dependent ODEs, only the time-step 4t
is varied but (by definition of an ODE) there is no spatial discretization. This is the
case if equation (5.1) is solved numerically (using e.g. the Livermore Solver for stiff
ODEs) on an analytically given, smooth surface f . If instead a discretized surface is
used for the solution of equation (5.1), there is more than one possible triangulation
of f such that, in some sense, also the spatial discretization is involved in the solu-
tion (even though not in the sense of a PDE). Therefore two different convergence
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tests are performed in the following. First we will check if, for a given discretization,
the solution of equation (5.1) is converging to some reference solution. Afterwards
it will be check if the solution is also consistent, respectively if refining both, the
time-step and the spatial discretization at the same time, the solutions are converg-
ing towards the reference solution on the corresponding analytical solution. If the
method is consistent, the solution on the discretized surface is converging towards
the solution on the analytical surface if the discretized surface converges to the ana-
lytical one. However, it is important to keep in mind that two different problems are
considered here. One is the solution of equation (5.1) on a discretized surface using
the method developed here, the second is the question if this method is producing
results comparable to the numerical solution on analytical surfaces using standard
solvers for (stiff) ODEs.

The test-surface f (x,y) is a paraboloid where

f (x,y) = x2 + y2.

The initial conditions in each test are given by (x,y,vx,vy) = (2,1,0,1).

5.4.2 Convergence test 1:

Here, the discretization is kept constant and only the step-size4t is varying. The test
is performed several times with a different spatial refinement each where N is giving
the number of data points per coordinate direction. The first simulation was run with
some step-size4t that can vary for different discretizations. In each of the following
simulations the step-size was divided by two. The finest resolution 4t/1024 was
used as reference solution. A standard four-stage Runge-Kutta (RK) scheme was
chosen for the numerical time-integration along the planar elements of the surface.
Table 5.1 shows the convergence rates for errors measured in the L2-norm for all
discretizations. The results for errors measured in L1- and L∞-norm vary little from
this. Little more than linear convergence can be achieved. In comparison, using the
same RK scheme to solve the system on an analytically given surface, third order of
convergence is achieved on the paraboloid. This result is not surprising as in the first
case the solution is neither smooth (trajectory) nor continuous (velocity).

5.4.3 Convergence test 2:

In order to verify if the method also converges towards the solution obtained on
smooth grids, we solve equation 5.1 on discretized surfaces, gradually refining both,
the time-step and the grid-width of the triangulation. By 4x and 4y we denote the
average diameter of a triangle measured along the x- and y-axis (grid-width). Starting
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step-size/N 512 1024 2048
4t/2 0.790 0.680 0.593
4t/4 1.134 0.758 0.724
4t/8 0.904 0.825 0.932
4t/16 0.929 0.974 1.126
4t/32 0.969 1.049 0.985
4t/64 1.019 1.037 1.014
4t/128 1.174 1.114 1.111
4t/256 0.960 1.192 1.184
4t/512 1.219 1.507 1.777

TABLE 5.1: L2 convergence rates for three different discretizations
(512, 1024, 2048 points) of the paraboloid.

N L1-error L1-order L2-error L2-order L∞-error L∞-order
64 1.33e-1 - 1.78e-1 - 4.10e-1 -
128 6.69e-02 0.99 8.24e-02 1.11 1.77e-01 1.21
256 4.33e-02 0.63 5.65e-02 0.55 1.27e-01 0.48
512 6.98e-03 2.63 9.47e-02 2.58 2.30e-02 2.46
1024 2.71e-03 1.36 3.46e-03 1.45 8.02e-03 1.52
2048 9.00e-04 1.59 1.13e-03 1.62 2.62e-03 1.61

TABLE 5.2: Errors and convergence rates for the consistency test

with N = 64, the number of points is doubled with each refinement step. Hence,4x
and 4y are each divided by two in every consecutive simulation. In order to adjust
the time-step4t accordingly, the Courant number C =4t

(
ux
4x +

uy
4y

)
is used. This

number usually is applicable only for PDEs, but in our case provides a meaningful
constraint to the choice of the time-step during the spatial refinement. Assuming
that for different triangulations the velocity of the point at a certain position on the
surface does not vary critically, in order to keep the Courant number constant, also
the number of time-steps must be doubled, meaning that the step-size 4t has to be
divided by two. The reference solution in this case is the numerical solution on the
corresponding analytical surface. For the time integration a four-stage Runge-Kutta
scheme was used in both cases. Table 5.2 shows the L1-, L2- and L∞-errors and the
corresponding orders of convergence. The different trajectories (denoted by D64,
D128, etc.) are shown in figure 5.37.

5.4.4 Comparison of results under rotation of the initial condi-
tions

One interesting question to ask is how the solution is changing if the initial con-
ditions are rotated by some angle δ . Therefore from the original initial conditions
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FIGURE 5.38: Backwards rotated trajectories for N = 64,128,256
(upper row) and N = 512,1024,2048 (lower row, each from left to

right) and θ = 0◦,30◦,60◦,90◦

(x0,y0,vx,0,vy,0) new initial conditions (x̃0, ỹ0, ṽx,0, ṽy,0) are computed, where:

(x̃0, ỹ0) =(x0 cosθ − y0 sinθ ,x0 sinθ + y0 cosθ).

(ṽx,0, ṽy,0) =(vx,0 cosθ − vy,0 sinθ ,vx,0 sinθ + vy,0 cosθ).

As the original (analytical) surface is axis-symmetric around the z-axis, a rotation of
the initial conditions around that point should not change the result but just rotate it
around the same angle. Instead, the discretized surface is not symmetric and therefore
more or less big changes (depending on the stage of refinement) are to expect. To
test this, the system was solved for different angles δ = 0◦,30◦,60◦,90◦ for N =

64, . . . ,2048, each with the finest time-resolution used in the previous test. After the
simulation, the trajectory is rotated backwards with the same angle θ . The results are
displayed in figures 5.38, showing in the upper row the solutions for N = 64,128,256
and in the lower one the solutions for N = 512,1024,2048, each from left to right.
The strongest differences between the solutions is found for θ = 60◦ but also for
θ = 30◦ differences are still significant. The solution for θ = 90◦ nearly coincides
with the original one. As one would expect, the biggest differences are found in the
solutions for the coarsest grid whereas they converge towards the 0◦-solution with an
increasing number of grid-points. From N = 512 on, differences are basically only
seen in the error plots but not in the trajectories itself.
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5.4.5 Frictionless circular motion in a horizontal plane:

The test-surface in this case is given by a paraboloid: f (x,y) = x2 + y2 with the
domain restricted to (x,y) ∈ [−4,4]× [−4,4]. In general, motion takes place in a
horizontal plane (meaning horizontal to the z-plane) if az as well as vz are zero. This
means the following must be fulfilled:

az = 0 ⇔ g( f 2
x + f 2

y ) = fxxv2
x +2 fxyvxvy + fyyv2

y

vz,0 = 0.

In case of the above paraboloid we have:

fx = 2x, fy = 2y,

fxx = 2, fyy = 2, fxy = 0,

and therefore:
2g(x2 + y2) = v2

x + v2
y

and with (x2 +y2) = z , (v2
x +v2

y +v2
z ) = v2 and vz = 0 the following condition for

horizontal circular motion on a paraboloid is found:

v2 = 2gz.

As the total energy must be conserved, it can directly be followed that also v2 must
be conserved. Therefore this test case is of special interest for two reasons:

• the analytical solution is known,

• the solution is periodic and therefore well suitable to test the accuracy of the
numerical method.

The initial conditions for this test are:

a) (x0,y0) = (1,0) ⇒ z0 = 1 ⇒ (vx,0,vy,0) = (0,
√

2g),

b) (x0,y0) = (
√

2,0) ⇒ z0 = 2 ⇒ (vx,0,vy,0) = (0,2
√

g),

c) (x0,y0) = (2,0) ⇒ z0 = 4 ⇒ (vx,0,vy,0) = (0,2
√

2g),

where g denotes the gravitational constant. All three simulations were run for a time
T = 1000s. The circumference of the slice plane of f (x,y) for a given height z is
given by L = 2πr, where r =

√
z from which it is followed that the time needed for a

single revolution is given by τ =
√

2
gπ resulting in a total number of 144 revolutions

of the point. All three simulation were run on grids with N = 64,128,256,512 grid
points per coordinate-direction. Tables 5.3-5.6 show the results of the three test cases
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z0 mean min max std

1.0078 1.0035 0.9737 1.0323 0.01074
2.0176 2.0168 2.0157 2.0177 0.00049
4.0070 3.9931 3.9931 4.0070 0.00965

TABLE 5.3: Results fot the test with N = 64 grid points.

z0 mean min max std

1.0019 1.0006 0.9839 1.0157 0.00542
2.0110 2.0141 2.0109 2.0174 0.00220
4.0017 4.0012 4.0007 4.0017 0.00025

TABLE 5.4: Results fot the test with N = 128 grid points.

for the four different grids from N = 64 to N = 512. Hereby z0 denotes the initial
height of the point on the triangulated surface. As the initial position of the point
is given in terms of x and y, the z-coordinate slightly differs from the value on the
analytical function. The initial velocities were therefore adjusted to the height on the
discretized surface.

Furthermore, ”mean” denotes the mean value of the points height throughout the
simulation whereas ”min” and ”max” denote the minimal and maximal height of the
point. The standard-deviation of the height is given by ”std”.

z0 mean min max std

1.0005 1.0000 0.9996 1.0004 0.00026
2.0104 2.0111 2.0104 2.0119 0.00051
4.0004 3.9985 3.9969 4.0010 0.00028

TABLE 5.5: Results fot the test with N = 256 grid points.
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z0 mean min max std

1.0001 0.9999 0.9996 1.0001 0.00016
2.0101 2.0102 2.0089 2.0114 0.00050
4.0001 3.9997 3.9993 4.0001 0.00029

TABLE 5.6: Results fot the test with N = 512 grid points.

5.5 Conclusions

In this chapter, the method presented in chapter 4 was extended to a semi-analytical
solution for the equations of motion in 2D. While the gravity-dependent part of the
equations was solved numerically using a fourth order explicit Runge-Kutta scheme,
the curvature-dependent part can – as in the 1-dimensional case – be solved ana-
lytically. Therefore a smoothing of the trajectory in vicinity of the transition point
between two triangles was used. Also in 2D, the method is very efficient, not least as
no implicit solver is necessary for the time-integration and no additional approxima-
tions (e.g. concerning the partial derivatives) need to be done.

In the examples it could be shown that the method works well, leading to results
fully comparable to the reference solution in terms of accuracy, even though the
convergence rates drop to first order. The total energy is conserved in all frictionless
tests. The high accuracy can particularly well be observed in the last test where even
after nearly 144 revolutions on a horizontal circular path (inside a paraboloid) the
total energy was conserved and errors in the point’s height were little.
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Chapter 6

Monte Carlo Simulation

Throughout the development-process of the model and the respective code, it quickly
turned out that the problem is not very stable. Small changes, e.g. in the initial
conditions, the sliding surface, or the model/program parameters lead to significant
changes in the final results. In order to get more information on the behaviour of the
problem, a Monte Carlo simulation for different realizations of the surface was done.
The results are presented in the following.

6.1 Monte Carlo simulations: theory

Monte Carlo Simulations are used in a wide range of applications (especially physics
and mathematics but also economics and biology) in order to obtain numerical results
to problems that are too complicated or even impossible to be solved analytically
(e.g simulation of systems with many degrees of freedom, such as fluids, disordered
materials or strongly coupled solids). Often those problems contain one or more

x

y

Initial

Conditions

range r

Outcomes

×××××

FIGURE 6.1: Sketch of the Monte Carlo approach for the problem of
a point moving in the (x,y)-plane

parameters p that are not known exactly but are supposed to lie in a certain range r
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of values. Modelling these parameters as random variables instead, and repeatedly
performing a certain simulation finally gives a range of possible outcomes of the
simulation and therefore more information than a single simulation could do. Of
course, the results have to be post-processed in an appropriate way. In figure 6.1 the
Monte Carlo approach is sketched for the problem of a point moving in the (x,y)-
plane. The initial conditions are in the range r, indicated by a dotted black circle,
where the parameter p is the initial position given by a tuple (x,y). The different
realizations of p are indicated by coloured crosses. The corresponding lines denote
the trajectories of a moving point while the endpoints are given by triangles in the
respective colours. The dash-dotted ellipse indicates the range of those endpoints.

Generally, the following approach is followed when computing a Monte Carlo
Simulation:

1. Define the domain of possible input values (the parameters p);

2. Choose a probability distribution function that best fits the parameters (e.g. a
Gaussian distribution);

3. Compute a set of random numbers within the given domain;

4. Run the simulation, replacing one by one the parameter by a random number
from the given set;

5. Evaluate and post-process the results using for example statistical methods
(e.g. computation of mean values, variance and standard deviation, distribution
of results, ... ).

6.2 Monte Carlo applied to the landslide simulation

One big uncertainty in the simulation of landslides is the sliding surface. It is not
only an approximation that in contrast to the real surface is approximated by planar
triangles (whereas the real surface could theoretically even be smooth) but also the
data points used to build the discretization are prone to measurement errors. Usually
these data points are not distributed regularly over the whole domain, but they are
given in the form of isolines. Then, different smoothing techniques – like the ones
presented in section 3.1 – are used to obtain a surface representation based on a more
regular grid, e.g. a Cartesian grid. Those new points though are basically chosen
randomly such that local and global extrema of the real surface might be neglected.
But, even small changes in the sliding surface may lead to significant changes in the
final results, such that under these aspects, the outcome of a single simulation is of
limited significance. In this context, a Monte Carlo simulation can provide valuable
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information concerning the influence of the discretization but can also give a better
and more detailed picture of the final result.

6.2.1 Randomization of the surface

In the following we will denote the data points by Pi = (xi,yi,zi), i= 1, ...,Np, where
the index i denotes the i-th data point and Np is the total number of data points.
There are two different kinds of surface randomization that will be considered in the
following, namely:

1. Randomization of elevation; this can be seen as adding roughness, the param-
eter p that is replaced by a random variable is the z-component of the data
points, i.e. p = z); the x/y-coordinates of the data points are not changed;

2. Randomization of x/y-coordinates; we now have two parameters p, namely p1

and p2 which are replaced by random variable⇒ p1 = x, p2 = y); in this case
also the elevation is recomputed. Generally the surface should not become
more rough but just different.

In the first case the random variables are denoted by εi, i = 1, ...,Np, where εi is in
the range εi = [εi,min,εi,max]. Accordingly, in the second case the random variables
for the x/y-coordinates are denoted by ξ and η with ξi = [ξi,min,ξi,max] and ηi =

[ηi,min,ηi,max]. In both cases the random variables are assumed to follow a Gaussian
distribution:

φG(x) =
1√

2σ2π
e−

(x−µ)2

2σ2

where µ and σ are the mean value and standard deviation of the distribution. If a ran-
dom variable X follows a Gaussian distribution with mean µ and standard deviation
σ , this is often denoted by

X ∼N (µ,σ2).

In figure 6.2 a Gaussian distribution for µ = 0 and σ = 0.01, a typical value used in
the test-cases later, is shown. For a Gaussian distribution the values are distributed
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FIGURE 6.3: Normal distribution with µ = 0 and σ = 0.01

as follows:

• 68.27% of the values are in the range [µ−σ ,µ +σ ],

• 95.45% of the values are in the range [µ−2σ ,µ +2σ ],

• 99.83% of the values are in the range [µ−3σ ,µ +3σ ],

and is illustrated also in Fig. 6.3.
In order not to confuse the friction coefficient µ with the mean value of the Gaus-

sian distribution, the parameters of the Gaussian will be denoted by µx, µy and µz and
σx, σy and σz in the following.

The different realizations of the surface are then given by adding random numbers
from the given range to the elevation value. Given a surface where NP is the total
number of points and letting NS be the total number of simulations, the points of the
randomized surfaces will be denoted by P̄k

i where the subscript i = 1, ...,NP denotes a
certain point of the surface and the superscript k = 1, ...,NS the number of the current
simulation. In case of adding roughness to the surface this would mean: for each
simulation we compute as many random numbers as there are data points and (in a
given order) add one random number to the z-coordinate of each data-point. This set
of random numbers is denoted by Ek = {εk

1 ,ε
k
2 , ...,ε

k
i , ...,ε

k
NP
}, k = 1, ...,NS where

Ek ∼N (µz = 0,σ2
z ) ∀k ∈ [1,NS] with the lower index (i) identifying the data point

and the upper (k) a particular simulation. Letting Pi be the i-th data point of the
original surface and εk

i the i-th random number in the k-th simulation we have:

P̄k
i = Pi + ε

k
i .

In the same way one can obtain the randomization of the x/y-coordinates, just that in
this case two sets of random numbers have to be computed.
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6.2.2 Implementation

The whole code was implemented in Fortran 2003 which however does not contain
an intrinsic function for the computation of normally but only uniformly distributed
random numbers. There are different methods to compute normally distributed ran-
dom numbers from uniformly distributed ones; here the ziggurat method was used
Marsaglia and Tsang, 2007. While the code for a single surface simulation cannot be
parallelized, this is very well possible for a Monte Carlo simulation. Hereby several
realizations of a simulation can be run in parallel. One has to make sure though,
that the created random numbers are thread safe, which means that the results of the
parallel code-execution must be equal to the serial ones. Therefore a module was
written that, computes thread safe normally distributed random numbers. The code
was parallelized using Open-MP.

In order to avoid too distorted grid cells (triangles) and in particular to prevent grid
cells from collapsing to a line, the following limitation was added in case if varied
(x,y)-coordinates. As long as a random number (for the x-coordinates) is larger than
4x/4, it is divided by two. The same was applied for the according random numbers
that are applied for the y-coordinates, where4x and4y are the diameter of a triangle
in x- and y-direction.

6.2.3 Evaluation of numerical results

In the following the techniques used for the evaluation of the Monte Carlo simula-
tions are presented. As reference solution we will consider the solution obtained on
the unmodified piecewise planar surface, using the semi-analytical time-integration.
It is certainly not meaningful to store and/or plot all trajectories of a single Monte
Carlo simulation. Instead, special methods for the post-processing and visualization
of the data are required. The three methods used throughout this work are presented
in the following.

Statistical Parameters: We will denote by xi(t) the x-coordinate of the point dur-
ing a certain simulation i at time t, the same applies to y, z, vx, vy and vz. In order to
evaluate the different solutions, mean values (x̄, ȳ, z̄, v̄x, v̄y, v̄z), standard deviation
(sx/y/z, svx/vy/vz), and extrema were computed for the components of the points posi-
tion and velocity for each time t. For the x-component of the position e.g. this can
be computed as follows:

x̄(t) =
1
Ns

Ns

∑
i=1

xi(t),

sx(t) =
√

Var(x(t)),
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where the variance Var(x(t)) is:

Var(x(t)) = E[(X−E[X ])2] =
1
Ns

Ns

∑
i=1

(xi(t)− x̄(t))2.

Where E is called the expected value. It is often more convenient though to compute
the variance using an alternative formulation:

Var(x(t)) = E[X2]− (E[X ])2 =
1
Ns

Ns

∑
i=1

[xi(t)]
2−
[

1
Ns

Ns

∑
i=1

xi(t)

]2

,

as it does not require storing the data in order to first compute the mean value x̄.

Convex hulls: For the 2-dimensional problems the endpoints of all trajectories are
plotted (endpoints are the final positions of the points, i.e. the position of a point
at t = TEnd). By ”reference-endpoint” the endpoint on the unmodified surface is
denoted. The areas in which the endpoints closest to the reference-endpoint are lying
are given for different percentages with respect to the total number of runs, that
means e.g. those 25% of the points that are closest to the reference-endpoint.

The areas itself were computed as follows:

1. Compute for all endpoints on randomized surfaces their euclidean distance to
the endpoint on the unmodified surface;

2. Order those distances from smallest to largest;

3. Get the indices of those k% endpoints that are closest to the initial endpoint;

4. Compute the convex hull of those points and plot it.

The definition of a convex hull is based on convex sets. Simply spoken, a convex
set is a region such that, for every pair of points within that region, every point on
their (straight) connecting line is also within that region. (Note that this applies to
Euclidean geometry only!) For a finite set of points, say X , the convex hull Conv(X)

is the smallest convex set containing all those points. Or, in a more mathematical
way:

Conv(X) =

{ |X |
∑
i=1

αixi

∣∣∣∣∣(∀i : αi ≥ 0)∧
|X |
∑
i=1

αi = 1

}
.

An illustration of a non-convex and a convex set as well as the corresponding convex
hull for a given set of points is given in figure 6.4. Fig. 6.4a shows a non-convex set
for the given points, the line connecting the two red points is not fully contained in
the set. Fig. 6.4b shows a convex set for the given points, but it is not the minimal
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(A) Non-convex set (B) Convex set (C) Convex hull

FIGURE 6.4: Non-convex and convex set as well as convex hull for a
given set of points.

set. Fig. 6.4c finally shows the convex hull for the given points. No smaller convex
set can be found.

Evaluation of visited triangles: The two methods presented above give informa-
tion that on one hand are easy to compare throughout different simulations (statistical
parameters) and on the other hand give a very good picture on the distribution of the
endpoints of a certain simulation. But neither do they provide information on the be-
haviour of the single trajectories of a simulation nor do they indicate the area of the
surface covered by the trajectories. Applied to real landslides this would correlate to
the area of the surface possibly influences by the moving mass.

This is treated using the last method which draws attention on the visited tri-
angles. Throughout a certain simulation, the visiting times (=number of times the
point passes through a certain triangle) for each triangle were counted and stored.
Afterwards the triangles of the discretization are coloured according to their visiting
times. In the following the matplotlib ”viridis” colormap is used, i.e. the lower the
value, the darker the colour (here purple) and the higher the value, the brighter the
colour (here yellow). For a better distinction, non-visited triangles are left white. In
this way we know not only which triangles have been visited, but also have informa-
tion on the frequency. Applied again to real landslides, these frequencies allow the
computation of the probability that a certain part of the surface will – at any time –
be covered by the sliding mass. In contrast, the convex hull of the endpoints contains
this information only for the final time.

In a similar way the average velocity and/or acceleration could be computed for
every triangle and be visualized using a vector field.
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6.3 Numerical results

6.3.1 1D test case: Adding roughness to a polynomial

The first Monte Carlo simulation was performed for the 1-dimensional problem, with
a test curve given by the 8-th order polynomial from section 4.4.3. Denoting by Nd

the number of data points of the discretized surface, and by Ns the number of sim-
ulations, Nd×Ns random numbers have to be computed. A certain random number
is denoted by rni, j, i = 1, . . .Ns, j = 1, . . .Nd . The simulation was run for 100.000
different realizations of the surface with σ = 0.01.

Figure 6.5 shows the results plotted versus time t. Note that the two upper rows
share a common axis (t). x, z, vx and vz denote the solutions on the unmodified
surface. Note that maxi x(t), mini x(t), and so on are the extrema of the solutions at
each time t, they are not possible trajectories in itself! On average the motion decays
faster than on the original test surface. Moreover one can observe that the standard
deviations of the velocity, σvx/y are larger than σx/y which in turn are larger than the
standard deviation of the normal distribution used to vary the surface. The strongest
values for σ are found when the point moves through the minimum of the surface,
which obviously is also the point in which its velocity reaches its highest values.

One interesting aspect in running a Monte Carlo simulation with respect to the
landslide-model is to find out more about the stability of the problem. In stable prob-
lems, small perturbations of the initial data lead to small changes in the final results.
In contrast, if small perturbations lead to strong differences in the final results, the
program in unstable. In the following, some test-cases for the landslide model and
its results will be presented and discussed. In the first test-case, additional definitions
and explanations are given that will also apply to the further test-cases presented in
this report. They will not be repeated later.

6.3.2 Valley with decreasing slope

The first test surface is a valley with decreasing slope, given by the following function
f : D→ R where D = [−4,44]× [−4,4] and

f (x,y) = e−0.3x +0.5y2.

The surface is shown in figure 6.6. The surface was discretized with nx = 201 and
ny = 601 grid points. The initial conditions of the point are:

x0 = (−3,−3),

v0 = (0,0.5).
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FIGURE 6.5: Result of the Monte Carlo simulation for an 8th order
polynomial
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FIGURE 6.6: Valley with decreasing slope

Altogether five different (combined) tests are run for this surface, two of them adding
roughness to the surface, and another three changing the (x,y)-coordinates of the
grid.

Test 1: adding roughness In the first test, roughness was be added to the surface.
For the randomization of the surface a normally distributed random variable with
µz = 0 and σz = 0.0025 was used. The friction coefficient is µ = 0.1. Altogether
1000 runs were computed for the simulation.

The results of the MC simulation are depicted below. In figure 6.7, the trajectory
(x vs. y) is plotted for the initial (not randomized) surface (=reference solution, blue
curve) as well as for the mean value of the remaining runs (magenta). The visited
triangles are coloured according to the colourbar on the right. In addition, the convex
hull of all endpoints is given as black dashed polygon. Figure 6.8 shows a zoom
on the endpoints and respective areas. The 25%-area is depicted in green, followed
by 50, 75, 95 and 99% in blue, cyan, red and magenta. The black dashed polygon
is again the convex hull for all endpoints. The endpoint of the reference solution is
marked with a blue cross, the averaged endpoint is marked with a magenta cross.

It immediately stands out that even though the trajectory on the original surface
and the mean trajectory of the Monte Carlo trajectories (those on the randomized
surfaces) are very close to each other, the endpoints are quite widespread (= large
standard deviation). While the differences in y-direction (perpendicular to the main
direction of the motion) are comparably small (y-components are in the range of
≈ [−0.29,+0.5]) those in x-direction are exactly the opposite (they are in the range
of ≈ [29.5,38.5]) which in turn means that the points’ velocities vary a lot from one
simulation to another. On the other hand we find that the 50%-area is still comparably
small. As can be expected, there is a concentration of endpoints around y = 0, that
means along the minimum of the surface (in y-direction).
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FIGURE 6.7: Reference (blue) and averaged (magenta) trajectories,
visited triangles (according to the colourbar on the right) and convex
hull of all endpoints (black) for the simulation run on the valley with

decreasing slope (with roughness added)
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FIGURE 6.8: Endpoints on the unmodified surface and average of all
endpoints (blue and magenta coloured crosses), and respective areas
indicating vicinity to the original endpoint for the simulations run on

the valley with decreasing slope (with added roughness)

The standard deviation of the position, velocity and acceleration are depicted in
the following. Figure 6.9 shows the standard deviation for the x- and y-coordinates,
marked by blue-dashed and red-solid lines, respectively. The thin black dashed and
dotted lines represent the respective x- and y-coordinates, but are scaled such as to
lie in the same range as σ(x/y). σ(x) is increasing monotonically with t, reaching a
maximum value of approximately 1.45; the black dashed line shows that x increases
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likewise. σ(y) instead undergoes an oscillation that reaches a maximum each time
x reaches a minimum (y = 0), the point in which the velocity has a local maximum.
The maximum σ(y) is approximately 0.3 and therefore several times smaller than
the maximum of σ(x). This corresponds to the results found in figures 6.7 and 6.8.
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FIGURE 6.9: Standard deviation of the x- and y-coordinates for the
simulation with σz = 0.0025 and µ = 0.1, run on the valley with de-

creasing slope (with added roughness)

Figure 6.10 shows the standard deviation for the components of the velocity, vx

and vy and – scaled to fit the range of σ(vx/vy)) – the velocities itself. In contrast
to σ(x/y), σ(vx) is generally larger than σ(vx). σ(vx) increases quickly at the be-
ginning, as also vx increases, and then drops as fast as well while vx reached its
maximum. σ(vx) raises slightly each time the point passes through y = 0 and then
drops again before finally it becomes zero as also vx becomes zero. The variations
in σ(vy) in contrast are – besides the beginning – significantly stronger, and reaches
a maximum as well, each time the point passes through y = 0. Obviously, it also
becomes zero when vy becomes zero.
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FIGURE 6.10: Standard deviation of the velocity components vx and
vy for the simulation with σz = 0.0025 and µ = 0.1, run on the valley

with decreasing slope (with added roughness)
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Finally, figure 6.11 shows the standard deviations σ(ax) and σ(ay). The trajec-
tory in x-direction is monotonous, moreover, at the beginning of the trajectory the
surface is much steeper as later on. This is reflected also in σ(ax) which reaches
a maximum around t = 1 and then stays in the range of about [0.1,0.2]. In y-
direction instead, the trajectory shows an oscillating behaviour that is mirrored by
σ(ay). σ(ay) also illustrates very well (in an indirect way) the roughness of the sur-
face, showing small-scale oscillations along the whole curve. They are however best
seen for large t as they are masked by the larger oscillations earlier on.
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FIGURE 6.11: Standard deviation of the acceleration components ax

and ay for the simulation with σz = 0.0025 and µ = 0.1, run on the
valley with decreasing slope (with added roughness)

Test 2: adding roughness + change of initial position In addition it is interesting
to see, how the solution changes, if the initial position of the point is changed. This
can of course be subject to a new Monte Carlo model, or even a combined problem,
but one can also compute the solutions for a few, slightly varying, initial positions
and get an idea on the influence on the final solution. This is done in the following,
where the varied initial conditions were chosen as follows:

x1
0 = (−3.05,−3.05),

x2
0 = (−3.05,−2.95),

x3
0 = (−2.95,−3.05),

x4
0 = (−2.95,−2.95).

The original starting point is denoted by x0
0; the initial velocity is kept the same,

meaning that for all the points we have v0 = (0,−0.5). Again, 1000 runs were com-
puted for each simulation. All remaining parameters were not changed with respect



172 Chapter 6. Monte Carlo Simulation

to the previous test. In figure 6.12, the solutions (trajectories) for the 5 different ini-
tial positions are displayed (colours according to the legend), in addition the convex
hull of the respective endpoints are shown (again in the according colours). The con-
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FIGURE 6.12: Reference solutions for the 5 different initial positions
including convex hulls of the respective endpoints for the simulations

run on the valley with decreasing slope and added roughness

vex hulls including the 50%-areas are shown in figure 6.13. As expected, the solution
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FIGURE 6.13: Convex hulls for the 5 different initial positions includ-
ing the 50%-areas for the simulations run on the valley with decreas-

ing slope

noticeably depends on the initial position of the point. We can see a clear shift along
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the x-axis in its final position, where a higher elevation at the initial time leads to a
shift to the right (point moves longer) and lower initial elevation leads to a shift to the
left (point stops earlier). An equivalent shift is found also in the convex hulls of the
endpoints where we also see some outlier endpoints for the case x0 = x4

0. Generally
however, the convex hulls are of very similar shape for all five initial positions. Note
that all variations are only due to the change in the initial position, as the surfaces are
the same throughout the simulations.

The standard deviations of position, velocity and acceleration are very similar to
the previous case and thus are not shown here. This is not surprising, as the surfaces
as well as the parameters are the same and only the initial position is slightly varied.

Test 3: changing (x,y)-coordinates For this test the standard deviation of the ran-
dom variable was chosen σx/y = 0.01, the friction coefficient is µ = 0.1. As in the
previous two tests, 1000 runs were computed for the simulation. Note that the stan-
dard deviation used in this test is not comparable to the one in the previous tests, as
they influence the surface in a very different way.

The results of the simulation are depicted below. In figure 6.14, the trajectory (x
vs. y) is plotted for the initial (not randomized) surface (=reference solution, blue
curve) as well as for the mean value of the remaining runs (magenta). Again, the
visited triangles are coloured according to the colourbar on the right. In addition, the
convex hull of all endpoints is given as black dashed polygon. Figure 6.15 shows
a zoom on the endpoints and respective areas. The 25%-area is depicted in green,
followed by 50, 75, 95 and 99% in blue, cyan, red and magenta. The black dashed
polygon is again the convex hull for all endpoints. The endpoint of the reference
solution is marked with a blue cross, the averaged endpoint is marked with a magenta
cross.

While in x-direction the endpoints are distributed similarly to the first test, (their
range is ≈ [26.5,38.5]), they are lying in a much smaller, curved band in y-direction.
The values in y-direction are in the range of ≈ [0.027,0.11]), where the width of the
band in which they lie is about 0.01.

The standard deviations for position, velocity and acceleration, are depicted in
the following three figures, 6.16, 6.17 and 6.18. Like in the first test case, position,
velocity and acceleration are plotted qualitatively to allow an easier comparison to
the data. It is easily seen that the qualitative behaviour of the standard deviations
is equivalent to test 1. However, as there is no artificial roughness in the surface,
there are also no additional small-scale oscillations in σ(ay). Moreover, in contrast
to test 1 again, σ(ay) decreases significantly for large t which mirrors the fact that all
endpoints are located in a small band while on the more rough surface, the endpoints
are spread wider in y-direction.
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FIGURE 6.14: Reference (blue) and averaged (magenta) trajectories,
visited triangles (according to the colourbar on the right) and convex
hull of all endpoints (black) for the simulation run on the valley with

decreasing slope (under change of (x,y)-coordinates)
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FIGURE 6.15: Endpoint on the unmodified surface and average of all
endpoints (blue and magenta coloured crosses), endpoints on the ran-
domized surfaces (yellow dots) and respective areas indicating vicin-
ity to the original endpoint for the simulations run on the valley with

decreasing slope (under change of (x,y)-coordinates)
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FIGURE 6.16: Standard deviation of the x- and y-coordinates for the
simulation with σx/y = 0.01 and µ = 0.1, run on the valley with de-

creasing slope (under variation of (x,y)-coord.)
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FIGURE 6.17: Standard deviation of vx and vy for the simulation with
σx/y = 0.01 and µ = 0.1, run on the valley with decreasing slope (un-

der variation of (x,y)-coord.)
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FIGURE 6.18: Standard deviation of ax and ay for the simulation with
σz = 0.01 and µ = 0.1, run on the valley with decreasing slope (under

variation of (x,y)-coord.)
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Test 4: changing (x,y)-coordinates + change of initial position For the variation
of initial positions, the coordinates are again chosen as follows:

x1
0 = (−3.05,−3.05),

x2
0 = (−3.05,−2.95),

x3
0 = (−2.95,−3.05),

x4
0 = (−2.95,−2.95).

The original starting point is denoted by x0
0; the initial velocity is kept the same

meaning for all the points we have v0 = (0,−0.5). All remaining parameters were
not changed with respect to test 3. The five averaged trajectories are shown in figure
6.19 together with the convex hulls of all endpoints. A picture similar to test 2 is
found. There is a noticeable dependency of the results on the initial conditions;
while at the beginning the trajectories practically overlap, the differences between
them increase significantly each time the point is in vicinity of a maximum turning
point of the trajectory. In between, the differences increase only slightly.
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FIGURE 6.19: Reference solutions for the 5 different initial positions
including convex hulls of the respective endpoints for the simulations

run on the valley with decreasing slope and added roughness

The shapes of the convex hulls are comparable again. Only for x0 = x2
0 there

are some outlier endpoints as can be seen in figure 6.20 (top picture). The bottom
picture depicts the same situation but with the 95%-are for the simulation with initial
condition x0 = x2

0 (magenta) in order to visualize better also the remaining convex
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TABLE 6.1: Initial height of the five initial positions and differences
in height of the varied initial positions with the height of the original

initial position.

x0 z0 di f f

x0
0 6.96047 –

x1
0 7.14834 −0.18787

x2
0 6.84834 +0.11213

x3
0 7.07575 −0.11528

x4
0 6.77575 +0.18472

hulls. The crosses depict the endpoints of the reference solutions, the dots repre-
sent the averaged endpoints. For both, the reference and the averaged solution, the
trajectories for the initial positions x2

0 and x3
0 lie much closer to the original initial

position x0
0 then the remaining two. This is explained by the initial height and there-

fore the potential energy of the points, the former is given in table 6.1 together with
the difference between the heights of x0

0 and the other initial positions.
The point with initial position x1

0 has greater initial height than the original point
x0

0 and stops significantly later (in terms of larger values of x). The point with initial
position x4

0 has an initial height that is lower with the same ratio as z1
0 is higher with

respect to z0
0. The point stops significantly earlier with respect to the original point,

but the distance to the original point at final time is about the same as for the point
with initial position x1

0. The same behaviour is true for the two remaining points,
just that the initial heights differ less strong from the original height and also the
final positions are much closer to the final position of the point with the original
(unmodified) initial position.
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FIGURE 6.20: Convex hulls for the 5 different initial positions includ-
ing the 50%-areas for the simulations run on the valley with decreas-
ing slope (top picture). The bottom picture depicts the same situation
but with the 95%-are for the simulation with initial condition x0 = x2

0
in order to visualize better also the remaining convex hulls.

Test 5: Changing (x,y)-coordinates + variation of standard deviation and fric-
tion The last test is dedicated to the variation of friction and standard deviation.
Also here, the (x,y)-coordinates are changed and the z-coordinate is corrected ac-
cording to the underlying function. The initial conditions are not changed, i.e.

x0 = (−3,−3),

v0 = (0,0.5).
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For the friction coefficient µ = 0.15 and µ = 0.2 are used in addition to µ = 0.1, for
the standard deviation σ = 0.02 is used in addition to σ = 0.01. Hence, in addition to
the already known test 3 for which µ = 0.1 and σ = 0.01, five different simulations
are presented in the following. In this series of test, test 3 will be also be called test
5.1 in order to avoid unnecessary repetition of information.

Test 5.2: µ = 0.1, σx/y = 0.02 Figure 6.21 shows the reference (blue) and av-
eraged (magenta) trajectory as well as the visited triangles and the convex hull of
the endpoints for µ = 0.1 and σx/y = 0.02. Compared to the test with σx/y = 0.01
a noticeable larger variation of the endpoints is indicated by the expanded convex
hull on one side and the number of visited triangles on the other hand. The latter is
significantly higher as for σx/y = 0.01, furthermore, the trajectories start to diverge
considerably early.

While for σx/y = 0.01 the x-components of the endpoints are in the approximate
range [26.5,38.5], this range is extended to approximately [16.5,47.5] for the larger
σx/y (compare figure 6.22, bottom). Figure 6.22 (bottom) reveals that the qualitative
distribution of the endpoints resembles the one for σx/y = 0.01, describing a bow that
is open towards negative y, while both cases, the point stops while moving in positive
y-direction. Moreover, also the relative sizes of the k% areas are very similar to the
ones for the smaller σ .
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FIGURE 6.21: Reference and averaged trajectories (blue and ma-
genta), convex hull for all endpoints and visited triangles for µ = 0.1,

σx/y = 0.02
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FIGURE 6.22: Zoom on the k% areas for µ = 0.1, σx/y = 0.02

Test 5.3: µ = 0.15, σ = 0.01 The results for µ = 0.15 and σ = 0.01 are depicted
below. Figure 6.23 shows the reference and averaged trajectories, the convex hull of
the endpoints and the visited triangles. While, due to the increased friction coeffi-
cient, the motion stops earlier (with respect to x and t), the variance within the tra-
jectories is comparable to the test with the same standard deviation σx/y but µ = 0.1.

The motion stops while the point is moving in negative y-direction, in the refer-
ence solution as well as in the averaged solution. The convex hull of all endpoints
and the according k% areas are depicted in figure 6.24. The endpoints are distributed
more loosely when compared to the test with σx/y = 0.01, but again form a bow
that now is open in positive y-direction. The ratios between the k%areas though are
similar, too.

The increased friction coefficient strongly influence the final position, though.
For µ = 0.1 the final position of the reference solution was (x,y) = (33.88,0.10)
while for µ = 0.15 the final position was (x,y) = (20.01,−0.14). In comparison,
the averaged final positions are (x,y) = (32.87,0.09) and (x,y) = (19.40,−0.14),
respectively.
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FIGURE 6.23: Reference and averaged trajectories (blue and ma-
genta), convex hull for all endpoints and visited triangles for µ = 0.15,

σx/y = 0.01
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FIGURE 6.24: Zoom on the k% areas for µ = 0.15, σx/y = 0.01

Test 5.4: µ = 0.15, σ = 0.02 For µ = 0.15 and σ = 0.02 the trajectories show
a strong variance that resembles the variance found in the case µ = 0.1, σ = 0.02
(compare figure 6.25). Likewise, the averaged trajectory ends earlier than the ref-
erence trajectory. The convex hull of the endpoints spreads over the whole domain,
caused by an outlier that left the domain at x =−4.

The 99% area is significantly smaller though, and covers an approximate range
of [11,22] in terms of x as can be seen in figure 6.26. The bow shape of the endpoints
is much less distinct than in the previous cases, where the majority of points is lying
in a line rather than along a bow. Therefore also the shapes and ratios of the k%
areas changed. Nonetheless, the 25% area is still comparably small with respect to
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the remaining areas.
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FIGURE 6.25: Reference and averaged trajectories (blue and ma-
genta), convex hull for all endpoints and visited triangles for µ = 0.15,

σx/y = 0.02
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FIGURE 6.26: Zoom on the k% areas for µ = 0.15, σx/y = 0.02 (top),
without full convex hull (bottom)

Test 5.5: µ = 0.2, σ = 0.01 The reference and averaged trajectories in figure 6.27
as well as the variance in the visited triangles and the elongation of the convex hull
resemble those for µ = 0.1 and µ = 0.15 under the same value of σx/y, just that the
motion stops earlier with respect to t and x.

The endpoints barely form a bow any more, only a slight opening in positive
y-direction is suggested by the shape of the k% areas.
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FIGURE 6.27: Reference and averaged trajectories (blue and ma-
genta), convex hull for all endpoints and visited triangles for µ = 0.2,

σx/y = 0.01
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FIGURE 6.28: Zoom on the k% areas for µ = 0.2, σx/y = 0.01

Test 5.6: µ = 0.2, σ = 0.02 Like for the previous two tests with σx/y = 0.02, the
variance between the trajectories is significantly larger than for σx/y = 0.01. The
convex hull spreads over almost the whole x-range as can be seen in figure 6.29. The
reference and averaged point stops while moving in positive y-direction.

The endpoints in the last test clearly form a bow again, having an opening in
positive y-direction is suggested by the shape of the k% areas.
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FIGURE 6.29: Reference and averaged trajectories (blue and ma-
genta), convex hull for all endpoints and visited triangles for µ = 0.2,

σx/y = 0.02
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FIGURE 6.30: Zoom on the k% areas for µ = 0.2, σx/y = 0.02

Direct comparison of the standard deviations for the results of test 5 In the fol-
lowing the standard deviations for position, velocity and acceleration of the previous
test are directly compared with each other. The x- and y-components are evaluated
separately. The standard deviations are plotted in t as long as not all runs of a certain
simulation stopped (test 5 (red curves) stops after little less than 7s). In the following
figures σ(x/y) denote the standard deviation of the trajectories with respect to the
reference trajectory. σx/y instead denotes the standard deviation used for the genera-
tion of the random variables.

Figure 6.31 shows on top the standard deviations of the x-coordinates and on the
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FIGURE 6.31: Standard deviation for the x- and y-coordinates of the
trajectories of the previous results

TABLE 6.2: Comparison of the endpoints of the reference and aver-
aged trajectories

µ | σx/y reference x average x rel. diff. x (%)

0.10 | 0.1 33.88 32.87 2.74

0.10 | 0.2 33.88 28.26 15.24

0.15 | 0.1 20.01 19.40 2.65

0.15 | 0.2 20.01 17.45 11.13

0.20 | 0.1 13.36 12.94 2.57

0.20 | 0.2 13.36 11.63 10.57

bottom those for the y-coordinates. In both cases it is easily seen that the standard de-
viation is larger for larger values of σx/y (grey, cyan and yellow lines). Moreover we
find that the standard deviation is larger for smaller friction coefficients µ as can be
seen also in table 6.2 which shows the relative differences between the x-components
of the reference and averaged endpoints. Therefore the differences between the ref-
erence and averaged solutions were divided by the x-range of the reference solution.
The values are significantly larger for σx/y = 0.02. For increasing values of the fric-
tion coefficient µ one finds a slight decrease in the relative difference. σ(x) increases
in accordance to the rate of change in x-direction (of the trajectory), i.e. the changes
are bigger at the beginning and less strong as the point reaches the final position. As
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already seen in test 1, sigma(y) undergoes oscillations that correspond to the oscil-
lations of the trajectory in y-direction. These oscillations are noticeably stronger for
larger values of σy and less strong for larger friction coefficients. The slightly lower
values for larger values of µ are explained by the lower velocities of the point.
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FIGURE 6.32: Standard deviation for vx and vy of the trajectories of
the previous results
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FIGURE 6.33: Standard deviation for ax and ay of the trajectories of
the previous results

Just as well, the standard deviations for the velocities and accelerations follow
those two rules. As can be seen in figures 6.32 and 6.33, σ(vx/y) and σ(ax/y) are
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larger for larger values of σx/y. Increasing the friction coefficient µ leads to lower
values of σ(vx/y) and σ(ax/y).

First conclusion: Despite the smoothness and simplicity of the present surface,
changing the standard deviation σx/y of the random variables leads to significant
changes in the outcome of the simulations. This is even more surprising as in this
test no roughness was added to the surface but only the (x,y)-coordinates of the grid
were varied. The z-coordinate was adjusted according to the underlying function.
Therefore, all realizations of the surface represent the same smooth surface. This
leads to the idea that the goodness of a simulation with respect to the reference so-
lution might depend on the regularity of the discretization. Even though this is true
in a general sense, throughout the simulations the solution on the most regular dis-
cretization was never the best one with respect to the reference.

This is not too surprising however, as the differences in regularity are marginal.
This is easily explained by the so called ”regression to the mean”. If the surface is dis-
cretized using a sufficiently large amount of normally distributed random variables,
all surface realizations will undergo an overall similar change in their coordinates.
(As measure for the regularity of a triangle the ratio between the longest side of a
triangle and its circumcircle was used.)

6.3.3 Valley with change of concavity

The next test-surface is composed (in negative x-direction) by an increasingly steep
slope (concave function), followed by a change of concavity into convexity, resulting
in a saddlepoint and finally ending in a convex area that quickly approaches a gradient
nearly zero (asymptotically). In y-direction the surface builds a valley, determined
by a simple parabola. As initial surface the following function f : D→ R with D =

[−40,8]× [−8,8] and

f (x,y) = 0.9arctan(1.5x))3 +0.1y2.

The surface is shown in figure 6.34.

Test 1: adding roughness + variation of friction Here, the results shall in addi-
tion be compared for three different values of the friction coefficient µ , two different
standard deviations σz and two different grid resolutions. In order to reduce the com-
putational time (in contrast to the first two tests), only 500 simulations were run for
each test combination. The parameters were chosen as follows: µ = 0.15, 0.175, 0.2,
σz = 0.005, 0.01 and (nx,ny) = (129,129), (257,65) (nx/y are the number of grid-
points in x- respectively y-direction), accounting for (nx−1)×(ny−1) = 16384 grid
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FIGURE 6.34: Test surface from different angles.

cells each. As the domain D is not squared but elongated, the non-symmetric resolu-
tion seems to be a better choice but we will go more into detail with this later.

In the first test we set σz = 0.005 and (nx,ny) = (129,129) and run 500 simula-
tions each for the three friction coefficients mentioned above. The results are shown
below; figure 6.35 shows the three trajectories and the averaged trajectory over all the
simulations (top: µ = 0.15, middle: µ = 0.175, bottom: µ = 0.2). It is easily seen
that for each value of µ the original and the averaged solution nearly coincide, not
just in terms of their shape but also concerning the endpoints. This indicates that on
average the randomization of the surface with σz = 0.005 has relatively little impact
on the final result.

Looking at different values of µ instead we find a totally different picture with
strongly differing solutions. While for µ = 0.15 the motion shows significant oscil-
lations in y-direction and stops in x≈−31.5, for µ = 0.175 oscillations are damped
after the point passed the saddlepoint while it stops moving in x ≈ −25. A totally
different picture is found for µ = 0.2 as the point stops moving in vicinity of the sad-
dlepoint at x≈ 6. As in the saddlepoint both partial derivatives fx and fy are zero, and
also around the saddlepoint these derivatives are very small, there is no significant
acceleration of the point and therefore the motion stops for too large values of µ .

The k−% areas for all three cases are depicted in figure 6.36. The 100% areas are
indicated by thick dashed lines, while the 95% areas are indicated by solid, the 75%
areas by dashed and the 50% areas by dash-dotted lines. 25% areas are indicated
by filled areas in the respective colours. We find (few) outliers stopping around the
saddlepoint in the first two cases µ = 0.15,0.175, but, while for µ = 0.15 there are
less than 1% of outliers, for µ = 0.175 this number is larger, even though still less
than 5%. However, it could be an indicator for the saddle point being a critical point
for this case. This assumption is supported by the fact that around the saddlepoint
we find a significant damping of oscillations, indicating a relatively low velocity of
the point in this position.
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FIGURE 6.35: Trajectories and the averaged trajectory over all the
simulations for σ = 0.005 and (nx,ny) = (129,129) (black: µ = 0.15,

blue: µ = 0.175, magenta: µ = 0.2)
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FIGURE 6.36: k−% areas for all three original and the averaged
trajectory over all the simulations for σ = 0.005 and (nx,ny) =
(129,129) (black: µ = 0.15, blue: µ = 0.175, magenta: µ = 0.2)

Figure 6.37 shows a zoom on the k−% areas for the three cases (left: µ = 0.15,
middle: µ = 0.175, right: µ = 0.2).
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FIGURE 6.37: Zoom on the k% areas (despite 100%) for (nx,ny) =
(129,129), σx/y = 0.005 and µ = 0.15 (left) µ = 0.175 (middle) and

µ = 0.2 (right)

Test 2: adding roughness + variation of grid resolution and friction coefficient
For the third test we change the resolution of the grid. Keeping the total number of
grid cells constant, the number of cells in x-direction is doubled while in y-direction
it is divided by two. This leads to more regular cells in the x/y-plane, but does not
consider the steepness of the surface in the different coordinate directions. (This will
quickly be discussed later.) The standard deviation is again σz = 0.005 and tests were
run for the already known friction coefficients. As in the previous two tests, figure
6.38 shows the trajectories for the three known friction coefficients. Compared to
the first test case we find a stronger variation of the endpoints, especially for µ =

0.175 the averaged endpoint differs significantly from the original one. The influence
though is less strong than in case two where we increased the standard deviation of
the randomization. This is confirmed by figure 6.39, indicating a smaller standard
deviation of the endpoints (note that the scale on the y-axis is different!). There is no
outlier for µ = 0.15 and they are fewer for µ = 0.2 (less than 1% compared to slightly
less than 5% in the previous case). Besides for µ = 0.175 the results concerning the
standard deviation of the endpoints as well as their outliers look similar to the first
case (compare also figures 6.40 and 6.41). Nonetheless, this case shows again the
instability of the problem. Increasing the number of cells in x-direction – the main
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FIGURE 6.38: Trajectories and the averaged trajectory over all the
simulations for (nx× ny) = (257× 65) and σ = 0.005 (black: µ =

0.15, blue: µ = 0.175, magenta: µ = 0.2)
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FIGURE 6.39: k% areas for all three cases (black: µ = 0.15, blue:
µ = 0.175, magenta: µ = 0.2) for (nx,ny) = (257,65) and σz = 0.005

direction of motion – generally leads to a slightly increased friction which in turn
is enough to stop a significant number of points in the saddlepoint. In other words,
missing just few information on the surface, but also adding few wrong information
can have a strong impact on the results! This however cannot be avoided as the real
surface is given by single data-points only. A Monte Carlo simulation cannot "repair"
this of course, but using the principle of "regression to the mean", it can tell us more
about the probability of a certain outcome.
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FIGURE 6.40: Zoom on the k% areas (despite 100%) for (nx,ny) =
(257,65), σz = 0.005 and µ = 0.15 (left) and µ = 0.2 (middle and

right)
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FIGURE 6.41: k% areas for µ = 0.175 (for (nx,ny) = (257,65),
σx/y = 0.005)

Test 3: adding roughness + change of grid resolution and distribution parameter
σz Finally we also look at the results for σz = 0.01, (nx,ny) = (257,65) and the
three known friction coefficients. Again, the trajectories are plotted in figure 6.42 and
the respective k%-areas are shown in figure 6.43. For this parameter configuration
we find the strongest differences between the original and the averaged endpoint-
values. This is most significant for µ = 0.175 again, but in this case we finally also
find at least one point for µ = 0.2 that does not stop in the saddlepoint. Apparently,
due to the larger standard deviation (used for the randomization of the surface) in
combination with the coarser resolution in y-direction (=less friction in this direction
than in the first two cases) in some cases (< 1%) a slope is formed that allows a
velocity that is just large enough to overcome the saddlepoint. On the other hand, the
number of outliers for µ = 0.175 that stop in vicinity of the saddlepoint increases a
lot. Therefore also the difference between the original and the averaged endpoint is
the largest for all the three cases. Overall, the standard deviation for the endpoint-
position is increased significantly compared to the other three cases as can be seen in
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figures 6.44 and 6.45.
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FIGURE 6.42: Trajectories and the averaged trajectory over all the
simulations (top: µ = 0.15, middle: µ = 0.175, bottom: µ = 0.2)
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FIGURE 6.43: Trajectories and the averaged trajectory over all the
simulations (top: µ = 0.15, middle: µ = 0.175, bottom: µ = 0.2)
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FIGURE 6.44: Zoom on the k% areas (despite 100%) for µ = 0.15
(left) and µ = 0.2 (right)
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FIGURE 6.45: Zoom on the k% areas (despite 100%) µ = 0.175

Test 4:changing (x,y)-coordinates + variation of friction and distribution pa-
rameter σ Keeping the other parameters constant, we only increase the standard
deviation in this test and set σx/y = 0.01. Again 500 simulations are run for each
of the three friction coefficients mentioned above. The results are depicted in the
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FIGURE 6.46: Trajectories (solid lines) and the averaged trajectories
(dashed lines) over all the simulations for (nx,ny) = (129,129) and

σ = 0.01 (black: µ = 0.15, blue: µ = 0.175, magenta: µ = 0.2)

figures that are described below. Figure 6.46 shows the three original and averaged
trajectories for µ = 0.15, µ = 0.175 and µ = 0.2. Compared to the previous results
with σ = 0.005 it immediately stands out that, while the shapes of the trajectories do
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FIGURE 6.47: k% areas for all three cases (black: µ = 0.15, blue:
µ = 0.175, magenta: µ = 0.2) for (nx,ny) = (129,129) and σx/y =

0.01

not differ strongly, the endpoints do so. The strongest effect is found for µ = 0.175,
confirming that in this case the saddlepoint is critical for the following motion. While
for µ = 0.15 the velocity at the saddlepoint in almost all cases stays large enough to
overcome this plateau and for µ = 0.2 the velocity is never enough, both cases are
possible for µ = 0.175 such that there is a large range of possible endpoints. Besides
that, the k% areas for all values of µ are larger than in the previous test.

Figure 6.47 depicts the k% areas for all three cases. Again, the 100% areas are
indicated by thick dashed lines, while the 95% areas are indicated by solid, the 75%
areas by dashed and the 50% areas by dash-dotted lines. 25% areas are indicated by
filled areas in the respective colours.
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FIGURE 6.48: k% areas for the first and last case (µ = 0.15 and µ =
0.2)

Figure 6.48 shows a zoom on the k−% areas for the first and last case (µ = 0.15
and µ = 0.2), figure 6.49 shows the k% areas for the second case (µ = 0.175). As
already mentioned, it is special as the endpoints are not concentrated in basically one
single area, but there is a second accumulation of points, located in the saddlepoint
of the surface. The latter accounts for about 17% of all endpoints and thus these
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endpoints cannot longer be considered as outliers. All together we find that increas-
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FIGURE 6.49: k% areas for the second case (µ = 0.175)

ing the standard deviation for the randomization (not surprisingly) also increases the
standard deviation of the results. The 25%-area nearly doubles its radius. Compared
to the first test case (Valley with decreasing slope) it is interesting to see that for
µ = 0.15 and µ = 0.175 nearly all points on the randomized surfaces stop earlier
than the point on the original surface. In contrast, for µ = 0.2 this is not the case.
Like in the first test case the mean value is very close to the original value, both
relatively centred within the point-cloud. This can be explained by the (generally)
increased friction due to the increased roughness in the randomized surfaces. We al-
ready mentioned that the saddlepoint is a critical point of this surface. If the velocity
of the point in the saddlepoint is barely enough to overcome it and go on moving,
every small perturbation of the surface that additionally increases the friction has
large effects on the continuing motion as it determines if the point stops or the ve-
locity is just enough to keep the point moving. If the friction coefficient instead is
already too large as to be enough to overcome the saddlepoint, or (which in principle
is equivalent) there is no such point (like in the "Valley with decreasing slope"), small
perturbations in the surface lead to small accelerations or decelerations of the point
but cannot critically change the point’s behaviour.
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6.3.4 High order 2D polynomial with additional bumps

The last test surface is more complex, based on a high order 2-dimensional polyno-
mial with additional bumps:

f (x,y) = 0.2
8

∑
i=0

ai(y+1.3)i +0.1
6

∑
j=0

b j(x+1.3) j +0.01cos(x/4)cos(y/2)

with parameters

ai = [ −122, 353.531, −369.969, 200.962, −63.1981,

11.9264, −1.3309, 0.0808532, −0.00205853], i = 0, . . . ,8

b j = [−3.01077, −0.32076, 6.97421, 0.61875, −4.83125,

−0.275, 1], j = 0, . . . ,6

Fig. 6.50 shows the resulting surface in the domain (x,y) ∈ [0,7]× [−2,2] from two
different angles. The slope decreases (non-monotonically) in x-direction ending in a
depression stretched out along y that itself consists of three minima. In y-direction
the surface forms a bumpy, flat valley that steeply raises at the boundary of the do-
main. The grid width of the original grid was chosen dx = dy = 0.04. During the
Monte Carlo simulation only the interior points of the grid are randomized such that
the domain remains constant. The reference solution is always the solution on the
original (non-randomized) surface.

In the following, three tests for different friction coefficient µ are shown. During
each test the standard deviation σx/y was varied using σx/y = 0.0002, 0.0004, 0.0008,
0.0016, 0.0032. Simulations were run with 500 different realizations of the surface
each. The initial conditions for all test cases are: x0 = (0.05,1.95) and v0 = (0,0).
To evaluate the results, the visiting times (=number of times the point passes through
a certain triangle) for each triangle were counted. Fig.s 6.51 to 6.53 show the do-
main [0,8]× [−2,2] where the triangles of the discretization are coloured according
to their visiting time. For a better distinction, non-visited triangles are left white.
The reference solution is indicated by a red line while the black dashed line is the
averaged trajectory.

Test 1: µ = 0.15 For σx/y = 0.0002 the trajectories vary little from the reference
solution which therefore matches the averaged solution. Until σx/y = 0.0008 the
reference and averaged trajectory basically coincide, even though single trajectories
start to diverge from the reference solution. For σx/y = 0.0016 and even more for
σx/y = 0.0032 we finally see a wide range of possible trajectories with three accu-
mulation points which are actually the three minima of the surface’s depression. In
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FIGURE 6.50: Surface shown from two different angles.
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the last case also the averaged trajectory is clearly different from the reference solu-
tion with its endpoint located in vicinity of the deepest point of the surface (global
minimum with respect to the given domain).

Test 2: µ = 0.20 Increasing the friction coefficient results in a shift of the reference
endpoint towards the global minimum and less strong variation in the trajectories.
The reference and averaged trajectory basically coincide until σx/y = 0.0016 and are
still very similar also for σx/y = 0.0032. Overall, the reference trajectory is relatively
similar to the averaged trajectory for the case µx/y = 0.15, σx/y = 0.0032 (cf. Fig.
6.51e).

Test 3: µ = 0.25 As in the previous case, the averaged and reference solution coin-
cide until σx/y = 0.0016 and still are similar for σx/y = 0.0032. The variation of the
trajectories slowly increases between σx/y = 0.0002 and σx/y = 0.0016 and rises sig-
nificantly for σx/y = 0.0032 even though it is still less strong than in the case µ = 0.2,
σ = 0.0032. The number of outliers however is higher than in test 2.

Altogether, also for these tests the strong variation of the trajectories is noticeable
where the variation increases with σx/y and decreases with µ . Especially for µ = 0.15
and σx/y = 0.0016, 0.0032 it sticks out that the trajectories cover the whole depres-
sion, a result that is not a priori expected from the reference solution. It clearly il-
lustrates the dependency of the motion on the surface. Certainly it is expectable that
for larger mass-blocks the variation is smaller than for a single mass point. Nonethe-
less, Monte Carlo simulations are likely to add valuable information also in case of
real landslide simulations as usually many parameters (like the surface or friction
coefficient) are not known exactly. In this way, a whole range of possible outcomes,
including their likelihood, can be computed instead of a single result. Thus, the most
probable scenario, but also extreme outcomes can be estimated, leading to a more
complete picture of the problem.
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FIGURE 6.51: Results of the Monte Carlo simulation for µ = 0.15
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FIGURE 6.52: Results of the Monte Carlo simulation for µ = 0.2
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FIGURE 6.53: Results of the Monte Carlo simulation for µ = 0.25
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6.4 Conclusion:

Overall, the presented test-cases clearly demonstrate the dependency of the solution
on the initial conditions and the sliding surface. It could be shown that even for very
simple and smooth surfaces (valley with decreasing slope), increasing the standard
deviation σx/y leads to significant changes in the final solution and the averaged tra-
jectory differs noticeably from the reference trajectory. This does not necessarily
imply that in real landslide simulations the solutions will differ that much, instead,
the volume and weight of real blocks compared to single points will act as a stabilizer,
on the other hand, the results clearly show that the problem in general is unstable and
thus, results have to be taken with care. The simulations should later be repeated
with the full program, including several blocks and interaction between blocks.

In chapter 3, different methods for the reconstruction of surfaces from a given set
of points were presented. As it could be shown that even for very simple, smooth
surfaces the reconstruction/grid plays a significant role, it seems recommended to
run simulations not only for different realizations of one reconstruction, but for dif-
ferent types of reconstructions as they usually do not reconstruct particular surface
characteristics in the same way.

One big advantage of the new method that was presented in previous chapters is its
efficiency. Together with an optimized implementation, several thousand full simula-
tions can be run in an appropriate amount of time, even on a home computer/laptop.
Not all the results of course are stored as this would require to much storage, instead
the statistics are computed "on the fly" (as it is already done now). In this way, in-
stead of getting a single result (from a single simulation) we get an averaged result
(from simulations on a wide range of possible realizations of the same surface) plus
a best/worst case scenario (extrema over all the simulations) and information on the
standard deviation.

It should in addition be checked, if the results of the simulations follow a certain
distribution (e.g. are they again distributed normally?). All together this will give a
much more complete picture for a certain problem.

Certainly, for real world simulations one should definitely consider using corre-
lated random numbers instead of uncorrelated ones when adding roughness to the
surface in order to avoid an unnatural level of roughness. It is definitely an inter-
esting observation that also changing the grid resolution, despite keeping the overall
amount of cells constant and actually thereby creating more regular cells, can sig-
nificantly change the results. While for adding roughness on might expect a larger
variety in the Monte Carlo simulations concerning the trajectories, the strong vari-
ation of the results when only slightly changing the distribution of the data-points
while keeping the underlying surface constant, are definitely surprising and should
be further investigated for real landslides.
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Chapter 7

Possible Application of the Results in
Real World Landslide Simulations

Up to now only a single mass point was considered in the computations. In this case,
the triangle in which the point is located, is unique and acceleration due to gravity
is computed easily. If instead, the moving mass is represented by a larger block, it
will generally spread over several triangles that all influence its acceleration which
therefore is more difficult to determine. It therefore seems appropriate to compute
the acceleration, taking into account the slopes of all triangles covered by the block.

This however leads to one problem: the method presented throughout this work
is based on the re-computation of the acceleration each time a point leaves a certain
triangle and moves to another one. For larger blocks, whose motion (not accelera-
tion) is computed using few points (e.g. the barycentre or the nodes of the block),
the acceleration due to gravity can be recomputed when one of those points leaves
its triangle, while there is no information on the rest of the block. It follows that
the acceleration theoretically can change significantly without being considered in
the computations. The discrepancy between the real and the considered change in
acceleration obviously depends on the size of the blocks with respect to the size of
the triangles building the surface.

For a single block this problem can be reduced using several representative points
laying inside the block. During time-integration all those points are moved (having
equal acceleration and velocity) and the acceleration is recomputed as soon as one
of the representatives leaves its current triangle. This is possible as the shape of the
whole blocks is unchanged during motion. This is displayed in fig. 7.1. The blue
rectangle indicates the initial position of the block, its barycentre in which the forces
are applied is given by a red dot and its representative points are shown in blue again.
The motion of the block is indicated by black arrows. Finally the new position of the
block and its representative points are shown in green, the barycentre instead is still
indicated by a red dot. On can see several representative points having reached the
border of their triangles while the barycentre did not yet reach the boundary of its
triangle.
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FIGURE 7.1: Motion of a single block using representative points

For more than one interacting block instead, this is not applied easily as also the
representative points should all move with a different velocity. In any case, in contrast
to the old model, the time-step used for the time-integration scheme can generally
not longer be constant. Assuming that the motion of each block is determined by the
motion of its four (possibly also more) vertices, the acceleration of each single block
should be recomputed as soon as any of the vertices leaves its triangle. This requires
kind of a double time-integration using a general time-step 4tg and an intermediate
time-step 4ti. For a certain vertex the time needed to reach the boundary of its
triangle is the intersection time 4tint The time-integration scheme can then look as
follows:

Step 1: Compute a full time-integration step for each vertex using4tg;

Step 2: Check if any of the vertices left its triangle;

Step 3a: If no: proceed with the next time-step (Step 1), no acceleration is recom-
puted;

Step 3b: If yes: compute the minimum of all intersection times over all vertices:

4ti = min(4tint)

Step 4: Recompute the current time-integration step with time-step4ti and proceed
with the next time-step (Step 1).

This routine is computationally more expensive than just recomputing the accelera-
tion at the end of a full time-step. As however the implementation performs very well
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in terms of computational time this will not be an issue. It can be further optimized
by a proper choice of the time-step that in the best case is adjusted to the velocity of
the blocks.
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Chapter 8

Summary and Future Work:

The main goal of the present work was to develop an efficient – and, in the frictionless
energy-conserving – method for solving the equations of motion given in Eq. (2.9)
on 1D and 2D curves and surfaces, respectively. Therefore two different approaches
were compared: solving the equations numerically on smooth reconstructed surfaces
and computing a (semi-)analytical solution on triangulated surfaces. As the problem
generally is stiff, special care has to be taken concerning the choice of the time-
integration method. While for smooth surfaces the LSODE package provides an
efficient solver, particularly suited for stiff problems, no standard solver is available
for piecewise planar (=non-smooth) surfaces.

Three different methods for the reconstruction of smooth surfaces using radial basis
functions where presented and compared to each other. It could be shown that they
all have specific advantages and disadvantages but generally perform well even in the
reconstruction of sharp changes in slope. Moreover, the Livermore Solver for ODEs
was presented.

For the 1-dimensional case a method with which the equations of motion on a dis-
cretized curve formed by straight segments can be solved fully analytically, using
the approximation of infinitely small circular sectors to smooth discontinuities, was
presented. It was shown that the gravity-containing terms of the equations of motion
are negligible compared to the curvature-dependent terms as the point moves through
one of those circular sectors of infinitely small radius. On the other hand, the curva-
ture-dependent terms vanish in the linear regions of the curve. Solving the mentioned
terms independently of each other leads to a very efficient way for the computation
of centripetal acceleration and the corresponding friction term, that does not require
any information on second derivatives.

In the examples it could be shown that the method works well, reaching about
second order of convergence. The results obtained on discretized curves by splitting
the equations of motion into its gravity-dependent and curvature-dependent compo-
nents are fully comparable to those obtained by solving the equations of motions
numerically on corresponding smooth curves.
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Omitting curvature-dependent friction terms instead can lead to completely dif-
ferent results and significantly changes the behaviour of the sliding body. It could be
shown in the examples that these terms influences the motion more than grid refine-
ment. In the second example we saw that the maximum error was about 100 times
larger than the maximum error in the solution of the full equations.

A big advantage of the presented method is its low computational cost as no
approximations have to be made. All necessary computations can be done exactly,
which also leads to a high accuracy. Moreover, the total energy is conserved in all
cases in absence of friction. This is a direct result of the exact solution and high
accuracy in the computations, since it is not directly imposed in the equations them-
selves.

Very similar results were obtained also for the 2-dimensional case in which the
piecewise-linear curves were replaced by piecewise planar surfaces. With only little
changes, the same technique as in 1D can be applied, even though, the implementa-
tion is significantly more complex.

To further examine the model, and the dependency of the solution of the equations on
the surface and the initial conditions, a Monte Carlo simulation was implemented and
used. The test that were run revealed a possibly strong dependency of both compo-
nents, in particular however of the surface. Tests were run either adding roughness to
the existing surface, or, just changing slightly the underlying grid (x-/y-components).
In the latter case, all realizations of the surface represent the same original function
(in contrast to adding roughness). But even in that case, the outcome of the simu-
lation may vary greatly. This does not necessarily imply that in real landslide sim-
ulations the solutions will differ that much, instead, the volume and weight of real
blocks compared to single points will act as a stabilizer, on the other hand, the results
clearly show that the problem in general is unstable and thus, results have to be taken
with care. The simulations should later be repeated with the full program, including
several blocks and interaction between blocks.

Finally it was discussed how the results can be applied to real world landslide prob-
lems. Future work could now be dedicated to the integration of the new method
in the full landslide model, i.e. including multiple blocks as well as block-block-
interaction.
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Appendix A

Implementation

A.1 Deciding if a point is located inside a specific tri-
angle

In this section we will discuss how one can decide if a point P is located inside a
specific triangle T or not. We will discuss here only the problem in a planar geometry
and therefore a triangle in the following is always a planar one. There are different
methods to solve this problem, however, using barycentric coordinates (respectively
convex-coordinates) is among the most efficient (in terms of computational effort)
techniques so far.
Each triangle in R3 (as well as in R2) can uniquely be defined by three vertices which
in the following are denoted by v1, v2 and v3. As we are working in R3 each of these
vertices is defined by three coordinates, meaning: vi = vi(x,y,z), i = 1,2,3. Let now
S be the point set containing exactly these three vertices:

S = {v1,v2,v3} ,

then the convex hull of S is forming exactly the triangle T :

T = Conv(S).

Remark 1. The convex hull Conv(S) of a point set S is the smallest convex set of
points containing S.

We know that a point v′ lying in the plane that is span by the point set S can be
expressed as a linear combination of three points v1, v2 and v3:

v′ = λ1v1 +λ3v3 +λ3v3 (A.1)

We now want to know, if that point is located inside a certain triangle that is defined
by those three points v1, v2 and v3 or not. We say that a point is located inside a
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triangle T if it lies either on the boundary of T or is contained in its interior. Other-
wise we say that it lies outside. This problem is equivalent to determining if a point
is contained in the convex hull of a set of three points.
By definition, a point v′ is contained in the convex hull Conv(S) if it can be expressed
as convex-combination of the elements of the point set S by which this convex hull
is defined:

v′ ∈ S ⇔ v′ =
n

∑
i=1

viαi, ∧ vi ∈ S,n ∈ N,
n

∑
i=1

αi = 1,αi ≥ 0.

Expressed via equation ((A.1)) this means that:

v′ ∈ T ⇔

λ1, λ2, λ3 ≥ 0

λ1 +λ2 +λ3 = 1

If exactly one of the λi is zero, the point is located on an edge of the triangle, if two
are equal to zero, meaning that one of them must be one, the point is located on a
vertex of the triangle. If at least one of the conditions is not fulfilled, the point is not
located inside the triangle.

We will now determine the equations that need to be solved within the landslide-
code. Assume that we are given the tree vertices vi = vi(x,y,z), i = 1,2,3 defining
the triangle T and a point P whose position is specified by v′ = v′(x,y,z). Then the
point v′ can be expressed as a linear combination of the vi as follows:

v′ = λ1v1 +λ2v2 +λ3v3.

This can be written component-wise as:

x′ = λ1x1 +λ2x2 +λ3x3, (A.2a)

y′ = λ1y1 +λ2y2 +λ3y3, , (A.2b)

z′ = λ1z1 +λ2z2 +λ3z3, . (A.2c)

Moreover, from (A.1) it follows that for a point contained in the convex hull of a
triangle the following must hold:

λ3 = 1−λ1−λ2.

These are four conditions for three invariants but we can, without restrictions, reduce
this problem to two dimensions by simply projecting all the point to the (x,y)-plane
and then abandon (A.2c). This works as, in contrast to a rotation, a projection is
invariant in the x- and y-components. Therefore it is enough to know whether the
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projection of the point onto the (x,y)-plane is contained in the convex hull of the
three vertices projected onto the same plane.
The remaining equations (A.2a) and (A.2b) of system (A.2) then become:

x′ = λ1x1 +λ2x2 +(1−λ1−λ2)x3

= λ1(x1− x3)+λ2(x2− x3)− x3,

y′ = λ1y1 +λ2y2 +(1−λ1−λ2)y3

= λ1(y1− y3)+λ2(y2− y3)− y3,

which can be written as(
(x1− x3) (x2− x3)

(y1− y3) (y2− y3)

)
·
(

λ1

λ2

)
=

(
(x′− x3)

(y′− y3)

)
(A.4)

Solving the system given in ((A.4)) gives the two parameters λ1 and λ2 while λ3

follows directly from (5). If now all the three parameters are positive, the point is
located inside the triangle, respectively on one its edges or nodes as it was already
described above.
Moreover, by enumerating the edges and vertices of the triangle in a certain way, we
immediately find the number of the node or vertex on which the point is located if
necessary. The enumeration is therefore done counter-clockwise and the edges are
enumerated in such a way that their indices correspond to the indices of the nodes
that are opposite to them. This can be seen in figure (A.1).

v1

v2

v3

e1

e2

e3

FIGURE A.1: Example of a triangle with the enumeration of its edges
and nodes.

Remember that the linear-combination to express the point P was written as v′ =
λ1v1 +λ2v2 +λ3v3. Thanks to our enumeration we immediately now from the pa-
rameters λi on which edge or node this point is located if so. In case that exactly one
parameter is zero, let’s say λ3 and the other two are positive, then the point must be
located on the edge e3 excluding its two vertices, because the node v1 and the other
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two parameters are in the range (0,1). If instead two of the parameters, e.g. λ2 and
λ3, are zero, then the point is located on a vertex. In this case it would be v1. This
can easily be shown:

Proof. Assume that λ3 = 0 and λ1,λ2 ∈ [0,1]. Knowing that λ1 + λ2 + λ3 = 1 it
follows that λ2 = 1−λ1. Therefore the equation for a point v′ reduces to:

v′ = λ1v1 +λ2v2,

and we find:

v′ = λ1v1 +(1−λ1)v2

⇔ v′ = λ1v1 +v2−λ1v2

⇔ v′ = v2 +λ1(v1−v2)

Equation (A.1) is a usual formulation for a line in the space. As λ1 ∈ [0,1] the point
v′ is always on the line bounded by v1 and v2. We can now distinguish two cases: if
both the remaining parameters λ1 and λ2 are positive, the point v′ is located on the
interior of the line which means that it can never coincide with one of its vertices. As
the line defined by the vertices v1 and v2 was defined as e3 we find that for λ3 = 0
the point v′ is located on edge e3 or in general: Iff only the parameter λi equals zero
then the point is located on edge ei, i = 1,2,3.
If instead one of the two parameters equals one then the point coincides with one of
the two vertices. E.g. for λ2 = 0 we find:

v′ = v2 +1(v1−v2) = v1.

Or in general: Iff the parameter λi equals one then the point is located on vertex vi,
i = 1,2,3.

A.2 Deciding if a point without initial velocity can move
into a triangle or not

Now we will discuss the trajectory of a point that at initial time is located either on a
common edge of two triangles or in a node that is shared by an arbitrary (but finite)
number of triangles.
For each triangle we know the acceleration (due to gravity, in the following denoted
by aG) acting on a point located in the triangle, the coordinates of its vertices vi, i =
1,2,3, the vector normal to the triangle T , pointing into the surface (n(T )) and the
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vectors normal to its edges ei, lying in the plane defined by the triangle T and pointing
into it (ni

E(T )). Here, the subscript E indicates that it is a normal to an edge, while
the superscript i indicates the number of the edge. The variable T always denotes a
particular triangle. If we are talking about more than one triangle, they are indicated
by Tj, where j is the number of the triangle. In accordance, the acceleration aG of
triangle Tj is indicated by aG(Tj).
For each edge we know its two vertices and triangles while for each node we know
all its adjacent edges and triangles.

A.2.1 A point located on an edge

In case of a point located on an edge but not coinciding with one of its vertices we
basically have to distinguish three cases. The two triangles adjacent to the edge can
either form a valley, or a ridge or a monotonous increasing/decreasing surface. In
figure (A.2) the last case is illustrated.
To decide whether a point can move from its initial position into a certain triangle or

Ta

Tf

x

z

y

P

FIGURE A.2: Possible situation of two neighbouring triangles with
different inclination in a 2-dimensional surface-triangulation. The in-
ward directed normal-vectors to the edges are drawn in black, and
the vectors indicating the acceleration (due to gravity) belonging to
a triangle are drawn in the corresponding colours (red for the upper
and green for the lower triangle). The initial position of the point is
indicated by P. The triangle into which P is allowed to move is indi-
cated by Ta(llowed), the triangle in which it cannot move is indicated by

Tf (orbidden).

not, we will use the acceleration aG and the normal vector of the edge. Before doing
that let’s define what it means that a vector is pointing into a triangle.
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Definition 2. Given a point p that is located on the boundary of a triangle T , we say
that a vector v is pointing into a triangle T if ∃ ε > 0 such that

p+ = p+ εv

is contained in the convex hull of T .

In addition we will define the positive and negative half-plane of a given plane
H.

Definition 3. Given a plane H and an edge e that is defining an infinite strait line in
that plane then this line is dividing the plane into two half-planes. Let now p be a
point on the line and v be a vector in the plane H. Then we will denote by H+

e (v)
(positive half-plane defined by e with respect to v) the closed half plane for which
the following condition is fulfilled ∀ t ∈ R+:

p+ = p+ tv

By H−(v) (negative half-plane defined by e with respect to v) instead we will define
the complement H\H+(v).
In other words: the positive half-plane with respect to v is that half plane into which
the vector v points while the negative half plane is that one out of which it is pointing.

Thus we find the following result:

Proposition 1. Let T be a (planar) triangle and let e denote one of its edges where
ni

E is the normal vector to this edge pointing into the triangle. By H+
e = H+

e (ni
E)

we denote the positive half-plane with respect to the normal vector of e. Then the
following is true:

• Also the triangle T is contained in H+
e

• Every vector v′ for which α =^(v′,ni
E)≤ 90◦ is pointing into H+

e . Or, in other
words: v′ is pointing into H+

e if

v′ ·ni
E ≥ 0.

• And in particular: Every vector that is pointing into H+
e is also pointing into

the triangle T .

Note that all these results are always true only with respect to one particular edge of
the triangle.
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Following these results we can decide very easily if a point P that is located on
the interior of an edge e that belongs to a triangle T can move into that triangle only
due to gravity or not.
If the only force acting on a point is gravity, then this point can only move downwards
(in the direction of the steepest gradient) or stay in its position (in absence of any
slope). This force is given by the acceleration aG. The point P located on an edge ei

can move into a triangle T if aG(T ) is pointing into T with respect to that edge ei. In
other words: P can move into T from edge ei if

aG(T ) ·ni
E(T )≥ 0.

Note that this criterion is only a necessary one. It is not sufficient to decide about
the direction of motion of the point. This also depends on the configuration of the
second triangle adjacent to the edge ei.
In order to investigate the different possible scenarios of the point’s motion we will
now compute the dot-product described above for the two triangles (denoted by T1

and T2) that are adjacent to one particular edge e. The normal vectors of e pointing
into T1 and T2 are denoted by nT 1

E and nT 2
E while the accelerations are denoted by aT 1

G

and aT 2
G . The following three cases are possible:

Case 1: (nE(T 1) ·aG(T 1))≥ 0 ∧ (nE(T 2) ·aG(T 2))≤ 0 (and vice versa)
⇒ The two triangles are building a surface with monotone slope. The point
will move into triangle T1 (and vice versa).

Case 2: (nE(T 1) ·aG(T 1))≥ 0 ∧ (nE(T 2) ·aG(T 2))≥ 0
⇒ The two triangles are building a ridge. The point is in unstable equilibrium
and will by definition move into the triangle with steeper slope. If the slopes
are equal the triangle is chosen randomly. If both triangles have zero slope the
point will not move.

Case 3: (nE(T 1) ·aG(T 1))≤ 0 ∧ (nE(T 2) ·aG(T 2))≤ 0
⇒ The two triangles are building a valley. The point will move downwards
along the edge if it is inclined and does not move if the edge is horizontal.

A.2.2 A point located on a node

If instead the point P is located on one of the three nodes of the triangle, many more
scenarios are possible. Moreover, the above criterion to determine the direction of
motion of a point is not longer applicable as a node is not providing enough infor-
mation to uniquely divide a plane into to half-planes. However, we can use two
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half-planes to uniquely describe a specific sub-plane that contains a particular trian-
gle and whose boundaries coincide with the two edges shared by a particular node of
the triangle.

Definition 4. Let T be a planar triangle, n be one particular node of T and e1 and e2

the two edges of T adjacent to n. By n1
E and n2

E we again denote the normal vectors
of e1 and e2. Let H be the plane in which T is lying. Then we call the intersection of
H+

e1
(n1

E) and H+
e1
(n2

E) the positive sub-plane S+T (n) of T with respect to n:

S+T (n) = H+
e1
(n1

E)
⋂

H+
e1
(n2

E).

The complement of S+T (n) is then called the negative sub-plane of T with respect to
n:

S−T (n) = H\S+T (n).

The above defined sub-plane is also shown in figure (A.3).

T

e1 e2

n1
E n2

E

H+
e2(n

2
E) H+

e1(n
1
E)

n

S+
T (n)

FIGURE A.3

This allows us to formulate a necessary and sufficient condition for a vector start-
ing from n to point into S+T (n).

Proposition 2. Let T be a triangle, n be one particular node of T and e1 and e2 the
two adjacent edges to n. The two normal vectors to e1 and e2 are denoted by n1

E and
n2

E . Then the following holds:
A vector v is pointing from n into S+T (n) if and only if it is pointing into H+

e1
(n1

E) and
H+

e1
(n2

E). In other words: a vector starting from node n is pointing into S+T (n) iff

v ·n1
E ≥ 0 ∧ v ·n2

E ≥ 0. (A.5)
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If for a triangle T condition ((A.5)) is fulfilled, where v = aG(T ), is called an
allowed triangle, otherwise it is called f orbidden. Among all the allowed triangles
we now need to find the triangle into which P will actually move.

Case 1: There is no allowed triangle: the point P is in a valley in a stable equilibrium
and will not move.

Case 2: There is exactly one allowed triangle: the way of motion is defined uniquely,
meaning that the point will start moving into that triangle.

Case 3: There is more than one allowed triangle: the point will start moving into
the triangle with steepest gradient. If the maximum is shared by two or more
triangles the point starts moving into one of them randomly.

Case 4: If none of the triangles has any slope (all triangles are parallel to the (x,y)-
plane), the point will not move.
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Appendix B

Quaternions

First described by W. R. Hamilton in 1843, quaternions are widely used e.g. in
three-dimensional computer graphics and allow a simple formulation of rotations,
especially avoiding the so called gimbal lock.
A quaternion is composed of a real part and a complex part where the latter has three
components, written in the style of complex numbers using i, j and k:

x = x0 + x1i+ x2 j+ x3k,

where x0, x1, x2 and x3 are real numbers and 1,i, j,k is a standard basis over R. Real
and complex part of x can also be written as:

ℜ x = x0,

ℑ x = x1i+ x2 j+ x3k.

Analogous to the complex numbers, generally every (non-real) quaternion x can be
written in polar coordinates:

x = |x|(cosφ + ε sinφ)

with a polar angle φ = arccos
(

ℜx
|x|

)
∈]0,π[ and ε =

ℑx
|x|sinφ

, where ε is called

a pure unit quaternion. For unit quaternions this reduces to φ = arccos(ℜx) and

ε =
ℑx

sinφ
.

Let now q be unit quaternion where q 6=±1, then every rotation R3 can be expressed
in polar form via an angle 0 < α < 2π and a pure unit quaternion ε:

q = cos
α

2
+ ε sin

α

2
,

where α is the axis of rotation and ε ∈ R3 is the axis of rotation.
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