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There is no end. There is not 
beginning. There is only the 
infinite passion of life. 

Federico Fellini 
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Introduction -  Pancreas

Introduction 
1 The Pancreas 

1.1 Organogenesis of the pancreas 
Foregut endoderm is composed of two regions, the ventral part that gives origin to the thyroid 

gland, lungs, liver and the ventral part of the pancreas. Meanwhile, the dorsal region gives origin to 

the intestine and the dorsal part of the pancreas. Thus, during embryogenesis, the pancreas 

develops from the two buds originating from the endodermal lining of the duodenum, which take 

the names of pancreatic dorsal and ventral anlagen due to their localization. The ventral pancreas 

and the common bile duct are carried behind the duodenum and into the dorsal mesentery when 

the duodenum rotates to the right 

forming a C-shaped loop. The ventral 

pancreas soon makes contact and 

fuses with the dorsal pancreas. The 

ventral bud forms the uncinate 

process and the inferior part of the 

head of the pancreas. The remaining 

part of the gland is derived from the 

dorsal bud (figure 1). Both the dorsal 

pancreas and the ventral pancreas 

possess a large duct. After the fusion, 

the main duct of the ventral bud 

makes an anastomotic connection 

with the duct of the dorsal bud. The 

portion of the dorsal pancreatic duct 

between the anastomotic connection 

a n d t h e d u o d e n u m n o r m a l l y 

regresses, leaving the main duct 

(duct of Wirsung) the definitive 
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Figure 1.  Pancreatic Organogenesis. Oliver-Krasinski et 
al.,2008.
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outlet from the pancreas into the duodenum that takes the name of main pancreatic duct. When 

that proximal part of the dorsal pancreatic duct persists. It takes the name of accessory 

pancreatic duct (of Santorini). The pancreatic duct, together with the bile duct, enters the 

duodenum at the site of the major papilla (ampulla of Vater); the entrance of the accessory duct 

is named the minor papilla. In about 10% of all cases, the duct system fails to fuse and the 

original double system persists. The system of all these ducts, draining into the main pancreatic 

duct, enters in contact with the last portion of the biliary tree in the immediate proximity of the 

duodenum, giving rise to the hepatopancreatic common duct at the site of the major papilla. 

The adult pancreas present salmon pink in color and a firm, lobulated smooth surface. The main 

portion of the pancreas is divided into four parts: head, neck, body and tail. In adult, it measures 

between 12 and 15 cm in length and it is shaped shaped like a flattened ‘tongue’ of tissue, thicker 

at its medial end (head) and thinner towards the lateral end (tail). The adult pancreas is the largest 

of the digestive glands and performs a range of both endocrine and exocrine function. The main 

part of the gland is exocrine and secretes a group of enzymes involved in the digestion of lipids, 

carbohydrates, and proteins. The exocrine portion consists of a large number of acini, which are 

connected to a secretory duct system. It is a branched ductal and acinar gland, surrounded and 

incompletely lobulated by delicate loose connective tissue [1-3]. The endocrine portion of the 

pancreas consists of islets of Langerhans, cluster of hormone-producing cells scattered among 
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Figure 2. Human pancreatic islet. Efrat et al., 2012.
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the exocrine tissue (figure 2). The human adult pancreas may contain more than a million islets, 

usually most numerous in the tail. The islets of Langerhans represent only the 1-2% of the total 

mass of the pancreas and most of them measure 50-200 µm in diameter. Like other endocrine 

tissues, human islets are are highly vascularized, as endocrine cells secrete their hormones in a 

network of capillaries to exert systemic effect. Islets typically consist of five types of secretory 

endocrine cells, namely insulin-producing beta cells, glucagon-producing alpha cells, somatostatin 

producing delta cells, ghrelin-producing epsilon cells and pancreatic polypeptide-producing (PP) 

cells [ 4]. Recently, notable cytoarchitectural differences between mouse and human islets have 

been reported. Beta cells are the main cellular component of islets in most species, representing 

60% to 80% of islet cells in rodents and 50% to 70% in humans. In islets from mice and other 

rodents, beta cells are located predominantly in the central core while alpha and delta cells in the 

periphery forming a mantle. In human and monkey islets, alpha cells are not localized in the 

periphery but are rather dispersed throughout the islet. Beta cells are intermingled   with other islet 

cells in primates (both humans and monkeys), and this has been suggested to increase beta cell 

function, as primate beta cells respond to low concentrations of glucose (1 mM) to which normal 

mouse islets are blind [5,6]. 

1.2 Molecular regulation 

Foregut endoderm is composed of two regions, the ventral endoderm and the dorsal endoderm. 

During embryogenesis, dorsal endoderm is in contact with the notochord and ventral pancreas is 

close to the cardiac mesoderm. Sonic Hedgehog (Shh) is highly expressed throughout the gut, 

where it mediates interactions between the gut endoderm and the surrounding mesoderm. 

However, during mouse development at stage e8.5, there is a region of the epithelium where Shh 

is specifically absent: the Pdx1+/Ptf1α+ pre-pancreatic endoderm [7,8]. Knockout experiments 

showed that the entire pancreas originates from Pdx1+ progenitor cells [9]. The concerted action of 

both the transcription factors Pdx1 and Ptf1α is necessary for the initiation of the pancreatic 

program. One of the earliest events is the repression of Sonic Hedgehog (Shh) by the notochord 

through pro-pancreatic factors like activin B and FGF2. This in turn promotes Pdx1 expression in 

adjacent pancreatic endoderm. Thus, Shh repression and activation of Pdx1 and Ptf1a are key 

events of pancreatic specification. Shh could be chemically inhibited in vitro by the steroid alkaloid 

cyclopamine stimulating the pancreatic differentiation, as the Pdx1 expression is no longer 
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restricted throughout the posterior foregut [10]. In the ventral portion of the pre-pancreatic region, 

signals deriving from the cardiogenic mesenchyme (chiefly of the FGF family), repress firstly Shh 

and subsequently induce liver formation, whereas a low concentration of these signals leads to a 

default differentiation into the ventral pancreas. After the patterning signals from the mesenchyme 

[11] and the notochord [12], blood vessels impart inductive instructions to the developing endoderm 

[13]. The early endoderm and the pre-pancreatic region, indeed, express VEGF and could thus 

attract and induce maturation of nearby vessels [14]. The dorsal bud emerges in the proximity of 

the dorsal aorta, whereas the ventral bud appears close to the vitelline veins. Thus, blood vessels 

and factors derived from the endothelium represent major morphogenetic agents in pancreatic 

specification [15]. The pathway controlling cell specification from Ngn3+/Hes1-/Ptf1α- endocrine 

committed progenitors is still a field of active investigation [16]. Several transcription factors have 

been identified with a pivotal role in the steps leading to cell differentiation. Animals lacking Nkx2.2 

[17] and Nkx6.1 [18], two members of the NK family of homeodomain proteins, have defects in cell 

formation. Nkx2.2 is expressed in the early pancreatic epithelium and then becomes restricted to 

Ngn3+ progenitors. Later on, it can be found in endocrine cells with the exception of delta cells 

[19]. Nkx2.2 null mutants develop with no detectable beta cells, a major reduction in alpha cells, 

minor effects on PP-cells and no effects on delta cells [17]. Thus, Nkx2.2 seems to be a marker of 

multipotent progenitors early in pancreatic commitment and with a subsequent role in α, β and PP 

lineages. Similarly, Nkx6.1 is expressed in the committed pancreatic endoderm and its expression 

is subsequently restricted to beta cells [20], supporting a role in multipotent and endocrine-

committed progenitors [18]. Nkx6.2 seems to have a partial redundancy with Nkx6.1, and Nkx6.1/

Nkx6.2 double mutants cause a 92% reduction in the generation of beta cells [21]. The central role 

of another transcription factor, the insulin-promoter binding BETA2/NeuroD, is evidenced by the 

fact that the murine knockout model develops a pancreas with a dramatic reduction in the number 

of beta cells, impaired islet morphogenesis and additional abnormalities in the exocrine pancreas 

[22]. Pax6 is another transcription factor with a major role in multipotent endocrine-committed 

progenitors and alpha cell commitment, since knockout mice exhibit an almost complete absence 

of alpha cells and a significant reduction and abnormal distribution of all other hormone-producing 

cells within the islet [23,24]. Rfx6 is a transcription factor downstream of Ngn3 involved in the 

commitment of progenitors for all endocrine cells except polypeptide-producing PP cells [25]. 

Pax4, a member of the Pax family, appears shortly after endocrine specification, co-localizing with 
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Figure 3. Pancreatic endocrine commitment and differentiation pathway. 
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Ngn3 [26] and probably representing one of its targets [27,28]. Pax4 acts downstream of Ngn3, 

Nkx2.2, and Nkx6.1 as a major switch in the definition of β/δ cell progenitors, inhibiting Arx and the 

lineage selection towards α/PP cells [29-31]. Pax4 is subsequently a hallmark of the commitment 

to the beta lineage, since it is repressed in delta cells. The knockout of this gene results in a total 

absence of beta cells but not alpha cells [32]; its expression reaches its maximum between e13.5 

and e15.5 in the mouse, coinciding with an extraordinary wave of endocrine cell differentiation 

known as secondary transition [32,33]. Endocrine committed progenitors and immature beta cells 

express MafB, and as they mature and turn on Pdx1 at high levels, they switch off MafB and start 

MafA production [34]. MafA has been identified as specific to cell differentiation: it acts in the 

lineage reactivation of Pdx1 [34] and it is a critical regulator of the insulin gene in the mature cell. 

MafA is dispensable for the differentiation of insulin expressing cells during development, but its 

role is crucial for the functional regulation of glucose-mediated insulin secretion in mature beta cell 

[35].  

1.3 Beta-cells function 
 
Under normal conditions, increased plasma 

glucose levels stimulate the beta cell production 

of insulin and downregulate the alpha cell 

production of glucagon. On the other hand, 

glucose levels stimulate the production of 

glucagon to avoid hypoglycemia and ensure 

normoglycaemia [36]. Insulin, a 51-aminoacid 

peptide, is the key hormone responsible for 

maintaining glucose homeostasis (Figure 4). It 

keeps blood glucose levels limits by regulating 

the uptake of glucose by muscle and fat cells as well as regulating the hepatic glucose output. The 

most important function of beta cells is, therefore, to convert small fluctuations of glucose in blood 

glucose concentration (typically from 4.5 to 8 mM in man) into large changes in insulin secretion 

within minutes. Within beta cells, newly synthesized insulin is first produced as the prohormone 

proinsulin and converted into mature insulin through the action of prohormone convertases (PC1, 
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PC2, encoded by Pcsk1 and Pcsk2, respectively) during trafficking through the secretory pathway. 

Active insulin is then stored in dense core granules (5–10000 per cell), each containing 300000 or 

more molecules of insulin. The tightly regulated release of only a fraction of the granules through 

exocytosis (∼2% per hour at maximal glucose concentrations) is sufficient to achieve regulation of 

blood glucose levels within the above narrow physiological range. This tight control is necessary 

not only to prevent hyperglycemia but equally to suppress the potentially lethal hypoglycemia 

which would accompany over-secretion of insulin. Glucose uptake from the extracellular 

environment is mediated by glucose transporters of different types (GLUT2 in the mouse, GLUT1, 

2 and 3 in humans) [37]. Central to glucose sensing by beta cells is the stimulation of glycolytic and 

oxidative metabolism of the sugar mediated from GK. In brief, glucose is taken up by beta cells via 

glucose transporters, where it is metabolized in glycolysis and Krebs cycle, resulting in an increase 

in the cytoplasmic ratio of ATP to ADP. This lead to the closure of ATP-sensitive K + (KATP) 
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Figure 5.  Overview of canonical signalling mechanisms involved in β-cell glucose sensing, and 
responses to secretory potentiators or inhibitors. Rutter et al., 2015
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channels. The unbalanced influx of positively charged ions, notably Na+, then leads to plasma 

membrane depolarization, the firing of action potentials and the opening of voltage-gated Ca++ 

channels [38]. This, in turn, prompts the activation of secretory granule-associated small 

Nethylmaleimide-sensitive factor receptor (SNARE) proteins and granule fusion with the plasma 

membrane. Nonetheless, the above description summarizes the essentials of the ‘canonical’ 

pathway for glucose-stimulated insulin secretion. In addition, a constellation of further intracellular 

signaling events, independent of KATP channel closure, is also likely to be essential for normal 

glucose sensing [39]. A range of physiologically important secretory ‘potentiators’ also exists. 

These enhance insulin release only at permissive (i.e. stimulatory; usually above 6 mM) glucose 

concentrations. The latter group includes the incretin hormones glucagon-like peptide-1 (GLP-1) 

and glucose-dependent insulinotropic peptide (GIP), as well as cholecystokinin (CCK), peptide YY 

(PYY) and oxyntomodulin, released from the gut in response to food transit. GLP-1, for example, 

reduces blood glucose through inhibition of glucagon secretion from pancreatic alpha cells. 

Moreover, GLP-1 is also involved in the refreshment of the intracytoplasmatic insulin depots 

through enhancement of cAMP-mediated proinsulin gene transcription and mRNA stabilization. To 

accomplish this task, GLP-1 stimulates Pdx-1 gene synthesis and its binding to insulin gene 

promoter. Pdx-1 gene synthesis is also responsible for the anti-apoptotic properties of GLP-1R 

agonists on beta cells. These gut-derived factors that enhance glucose-stimulated insulin secretion 

from islet beta cells are responsible for the augmentation of insulin release in response to food 

intake versus an identical change in glycemia imposed by intravenous injection of the sugar [40]. 

An important feature of glucose-stimulated insulin secretions is its ‘phasicity’. Multiple waves of 

action potentials occur in the islets exposed to an increased glucose concentration. In this 

mechanism, there are two phases of insulin release. The first step is rapid and is characterized by 

the release of insulin stored in the granules. The second phase is prolonged and sees the 

synthesis and release of insulin until the blood glucose levels remain high. After lowering blood 

glucose to normal levels, the insulin granules are regenerated, ready for the next rapid phase. An 

oral administration of glucose induces a faster and prolonged secretion of insulin compared to 

intravenous administration because incretins are released into the bloodstream and alert the beta 

cells the imminent influx of glucose  [39]. 
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2 Diabetes  

2.1 Type 1 Diabetes 

Type 1 diabetes mellitus (T1DM) is thought to be precipitated by an immune-associated, if not a 

directly immune-mediated destruction of insulin-producing pancreatic beta-cells. Polydipsia, 

polyphagia, and polyuria along with hyperglycemia remain diagnostic hallmarks. Although T1DM 

can be diagnosed at any age, it is one of the most common chronic diseases of childhood, and it is 

slightly more common in boys and men than females. T1DM is believed to be autoimmune in 

nature and triggered by several factors like seasons of autumn and winter, viral/bacterial infections 

and environmental pollutants. Peaks in presentation occur between 5-7 years of age and at or near 

puberty. The prevalence is 0,1-0,5% in the general population, and the incidence is 30-50/100.000 

persons. Moreover, it is increasing at an alarming rate of 3% every year.  

The diagnosis has historically included fasting blood glucose higher than 126 mg/dL that is the 

standard value, and any blood glucose of 200 mg/dL or higher. In 2009, the American Diabetes 

Association had also included glycated hemoglobin. Despite the effort to standardize the diagnosis, 

particularly among adults diagnosis of type 1 versus type 2 can be challenging. A key 

distinguishing feature between type 1 and type 2 diabetes is the presence of autoantibodies 

against beta cells. More than 90% of individuals with a recent diagnosis of T1DM have one or more 

of the following autoantibodies at disease onset: those reactive to insulin (IAA), glutamic acid 

decarboxylase (GADA), insulinoma-associated autoantigen 2 (IA2A), zinc transporter 8 (ZnT8A) 

and also other. Development of type 1 diabetes-associated autoimmunity may occur months or 

years before the onset of symptoms. Autoantibodies screening can help the identification of people 

with an increased risk for T1DM.  

Type 1 diabetes is clearly a polygenic disorder, with a nearly at least of 40 loci known to affect 

disease susceptibility. For example, the HLA region of chromosome 6 provides perhaps one-half of 

the genetic susceptibility, and among HLA types, HLA class II shows the strongest association with 

T1DM. Most of the loci associated with risk of T1DM are thought to involve immune responses, 

supporting the idea that the genetic influences include mechanisms that collectively contribute to 

aberrant immune responsiveness, including the development and maintenance of tolerance 

[ 41,42]. 
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2.2 Histopathogenesis 

In natural tissue, cells carry out the majority of their life process on a network of proteins and 

polysaccharides know as extracellular matrix (ECM). In addition to its primary functions, the 

structural function, ECM is responsible for the transmission of chemical and mechanical signals 

mediating fundamental aspects of the cellular physiology such as adhesion, migration, 

proliferation, differentiation, and death [4]. 

While the cellular structure of the pancreas is well described, its ECM has only recently gained 

attention and has been shown to contribute to pancreas development. Broadly, the ECM is 

composed of basement membranes (BM), tight networks of specialized glycoproteins that act to 

separate tissue compartments but that also direct cellular processes, and the looser interstitial 

matrix (IM) typical of the stroma of most organs. In the pancreas, BMs predominate, occurring 

around each acinar cell of the exocrine pancreas, surrounding blood vessels and ducts, and 

encasing each pancreatic islet. The IM, which confers tensile strength and elasticity to tissues 

mainly due to the peri-islet BM and surrounding large ducts and blood vessels. Laminin and 

collagen type IV, networks are the major components of all BMs, both self-assemble into 

superstructures that are interconnected by heparin sulfate proteoglycan and by the nidogens. Of all 

BM components, laminin is considered to be the biologically active component, collagen type IV, by 

contrast, is essential for structural integrity. Peri-islet BM collagen is composed of type IV, again, 

perlecan, nidgen-1 and -2, and different laminin isoforms. However, endothelial BMs of blood 

vessels within pancreatic islets are rich in laminin α4 and α5. Moreover, the IM underlying the peri-

islet BM is composed of the fibrillar collagen type I and III, collagen type VI, fibronectin, fibrillin2, 

and matrilin-2 [43,44]. 

The tissue environmental is known to decisive effects on Treg behavior and immune regulation. In 

fact, from transplant studies, it is known that the islet ECM plays critical roles also in islet survival 

and function. However, it is unknown how the immune response and the islet ECM interaction 

during autoimmune insulitis contribute to the pathogenesis of T1D [45]. Autoreactive T cells in T1D 

develops in the pancreatic lymphonodes and subsequently migrate in the pancreas where they first 

must extravasate from the postcapillary venules (PCVs) that surround the islets. Subsequently, 

they have to migrate through the thin IM and finally penetrate the peri-islet BM before they given 
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access to the insulin-producing beta cells. Immunofluorescence studies have revealed a global 

loss of peri-islet IM and BM components only at sites of leukocyte infiltration into the islet  [44].  

The presence of a chronic inflammatory infiltrate that affects pancreatic islets at symptomatic onset 

of T1DM is one of the dogmas. Another dogma is that in patients with longstanding disease, the 

pancreas do not present any more insulin-producing cells and the remaining beta cells are not able 

of regeneration. Both of these concepts have been debated in the last few years. Recent data 

suggest that although most patients with longstanding type 1 diabetes have few beta cells if any, 

there is evidence for beta cell regeneration. Thus there has been considerable interest in 

understanding the mechanisms that regulate replication of beta cells with the goal of discovering 

new therapeutic targets to promote their regeneration. Many reports support the idea that the 

endocrine pancreas is a plastic organ, especially regarding the ability of the beta cell mass to 

change according to the metabolic demand of insulin in conditions such as pregnancy and obesity. 

Glucose and insulin are potent stimulators of beta cell growth and function both in vivo and in vitro. 

Replication of beta cells is the predominant mechanism that ensures the rapid expansion of beta 

cell mass early in life; however, the regenerative capacity of beta cells rapidly declines with 

advancing age. Also during pregnancy, beta cell mass expands to adapt the organism to increasing 

insulin demand [46-48].  

2.3 Therapies 

Despite the advances in type 1 diabetes research and therapy, researchers and clinicians are 

disappointed by a perceived lack of progress. The discovery of insulin in 1921-22 was clearly the 

most important event in the history of type 1 diabetes therapies; however, exogenous insulin 

replacement does not always provide the metabolic regulation necessary to avoid complication 

associated with TD1M. As a result diabetes management in modern countries often includes the 

use of insulin analogs and mechanical technologies like insulin pump.  

The first pancreatic transplantation was tempted by Kelly and co-worker in 1966 [49]; afterward 

other 25.000 transplantations have been conducted worldwide. Rapid control of hyperglycemia 

with consequential discontinuation of the exogenous insulin supplementation was noted in 

successful cases. However, the major drawbacks were significant morbidity related to major 

surgery and requirement of life-long immunosuppression, which had its side effects including 
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recurrence of diabetes. These drawbacks led the scientists to work on different paths. Another 

approach studied and developed by Ricordi and other scientists is the islet extraction and 

transplantation [50]. However, these protocols could not succeed in rendering insulin-free survival 

for more than 5 years [51]. Other modalities of encapsulation, immune modulation, and delivery 

techniques are still being developed. However, success is still far away. 

Long-term restoration of immune tolerance is paramount to the survival of residual endogenous or 

implanted islets. Two types of approaches have been evaluated or implemented to achieve this 

goal. The first type aims to eliminate parts of the immune system, such as T and B cells. This kind 

of approach is quite useful for as long as it is applied, but patients became susceptible to infections 

and cancers. Moreover, autoimmunity usually resurges after the interruption of the treatment.  

Considering the safety and efficacy of current diabetes care, this is not a viable long-term solution 

for the majority of T1D subjects. The second type of approach aims to specifically eliminate or 

tame the immune cells responsible for the beta cell destruction by exploiting their beta cell antigen 

specificity. Clearly, we need a combined approach, in one hand control and interact with the 

immune system to avoid a relapse, on the other hand, a source of insulin able to respond to 

different levels of glucose [52].  

2.4 Stem Cells Therapies 

The need for an unlimited supply of a substitute for insulin-secreting beta cells led to research on 

the suitability of stem or progenitor cells to generate insulin-secreting cells in vitro. The main 

objective of these cell-based therapies was the down-regulation of the immune system and the 

abrogation or at least halt the process of autoimmune destruction of these cells. The other aim was 

to generate stem cells (SCs) and differentiate them into functional insulin-secreting beta-like cells 

to treat T1DM. 

SCs obtained from several sources have been tested for their beta cell regenerative potential and 

for the ability to restore immune homeostasis or promote longitudinal islet graft survival. This 

includes, among other, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), bone 

marrow (BM)-derived hematopoietic stem cells (HSCs), umbilical cord blood (UCB)-derived 

mesenchymal stromal cells (MSCs), Adipose tissue Derived MSCs (ADSCs) and pancreas derived 

multipotent precursor cells, as well as pancreatic beta cell progenitors that reside in the ductal 

epithelium and exocrine tissue. The so called “adult stem cells” occur in fetal and post-natal 
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tissues, although they are restricted to lineages defined by a germ layer (ectoderm, mesoderm, or 

endoderm). Specific stem cells for liver and pancreas comprise multiple subpopulations of biliary 

tree stem cells (hBTSCs), found in peribiliary glands (PBGs) throughout the biliary tree. Adult 

pancreatic SCs can also be another source for pancreatic beta cells. 

Impressive progress has been reported in inducing differentiation of human ES [53,54] and iPS 

cells [55] in vitro into insulin-producing cells, using protocols which attempt to mimic pancreas 

organogenesis, based on knowledge gained in mice. By employing combinations of hormones, 

cytokines, and small molecules, these protocols direct pluripotent stem cells first into definitive 

endoderm, then into gut tube cells, pancreatic endoderm [56], endocrine pancreas progenitors, and 

finally into hormone-expressing cells. However, the differentiation efficiency decreases significantly 

with each step, and the low numbers of insulin-producing cells generated produce more than one 

hormone and are not glucose-responsive. These protocols probably lack crucial signals that 

operate during normal pancreas development in vivo, thus hindering the generation of functional 

beta cells in vitro  [57].  

For successful transplantation of stem cells, they have to be prepared and transplanted in a way 

that supports long-term function of the graft and ensure the safety of the host. The main goal of 

tissue engineering is to generate functional tissue. Though we can now generate many cell types 

from human pluripotent stem cells, these cell types are often immature and do not reach the 

functionality of tissue in vitro. After the tentativeness of initial approaches, which yielded 

questionable results, current efforts are focused on refining culture conditions designed to more 

accurately mimic pancreatic development. The lack of appropriate tissue structure is likely part of 

the under-performance of stem cell-derived products. All stem type and organs in the human body 

are organized in specific structures composed of multiple cell types. Interactions between different 

cell types and vascularization, as well as the 3D arrangement of the cells, can play a major role in 

tissue reconstruction [58].  
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3 Stem and Progenitors Cells 

3.1 Classification

Stem cells are generically defined as undifferentiated cells able of self-renewal through replication 

as well as differentiation into specific cell lineages. More specifically scientists have identified four 

criteria to define cells as Stem Cells (SCs). The first is self-renewing, the capability to undergo 

multiple and sequential division. The second is the ability to generate daughter cells differentiate 

into multiple cell type. The third criteria is the possibility to functional repopulate a damaged tissue. 

The last is the contribution to the normal and physiological tissue cell-turnover among life. 

Scientists have also classified SCs by their developmental potential. Totipotent stem cells are able 

to generate both embryonic and extra-embryonic tissues, and may, therefore, produce a whole 

organism, a property retained by the early progeny of the zygote up to the morula at the 8-cell 

stage. Pluripotent cells are capable of forming tissues from all the three embryonic germ layers 

(endoderm, mesoderm, and ectoderm) but not to give rise to extra-embryonic tissues. They are the 

cells of the Inner Cell Mass (ICM) and embryonic germ cells. Multipotent cells can yield a more 

restricted subset of cell lineages. The historically most significant example is the hematopoietic 

stem cells (HSC), from which originate all blood cells. Finally, unipotent cells produce a single 

terminally differentiated cell type in the adult organism and are essential for restoring tissues 

subject to a constant turn-over. The classical example is given from epidermal stem cells.  

Stem cells are also classified as embryonic or adult, depending on the developmental stage from 

which they were obtained. After the first studies in the mouse model [59], Thomson in 1998 has 

isolated the first human ESCs, cells capable of indefinite proliferation in vitro, with a highly 

undifferentiated state and a normal karyotype [60]. The high proliferative activity is due to the 

action of telomerase, a riboprotein that preserves telomere length during DNA replications, thereby 

allowing these cells to reach a number of cell divisions considerably higher than that established by 

Hayflick for somatic cells.  

The analysis of ESCs gene expression profile has revealed the expression of three transcription 

factors, OCT4, SOX2, and NANOG; Subsequent studies have defined them such as master-

regulators genes of stem cell phenotype. 

OCT4 (octamer-binding transcription factor 4) is a transcription factor of the Pou proteins family, 

which a highly conserved DNA binding domain (150-160 amino acids). Embryonic expression of 
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Oct4 appears to be initiated at 8-cell stage, and it is expressed in all cells at 16- and 32-cell stage. 

Subsequently, it is down-regulate in differentiation and development phases and finally, it is found 

in germ cells. Oct4 has not been studied extensively after birth, but it has been shown to be 

expressed in adult in at least some multipotent stem cells and many types of human cancer. 

SOX2 (SRY-box related protein) is a transcription factor belonging to the Sox family, which includes 

approximately 20 proteins sharing a highly conserved DNA binding domain composed of about 80 

amino acids. Zygotic Sox2 expression begins at the morula stage where it is preferentially localized 

to the inner cells of the morula, which will give rise to the ICM. As the ICM develops, Sox2 is 

express only in the epiblast and interestingly Sox2 expression is initiated after that of Oct4, but 

Sox2 becomes restricted to the cells that will ultimately give rise to the ICM before Oct4. After birth, 

Sox2 expression has been reported in numerous tissues and stem cells. Hence, Sox2 appears to 

be essential for tissue regeneration and survival later in life. It is now generally recognized that 

transcription factors do not work in isolation, but regulate transcription as part of large protein 

complexed [61,62]. 

NANOG (Nanog homeobox protein) is a protein of 305 amino acids and has a conserved 

homeodomain able to bind localized DNA at cells nuclear level. The role of this factor is confirmed 

by the fact that its presence is less need of leukemia inhibitory factor (LIF) to maintain the 

pluripotency of the crop, while its lack of expression involves the spontaneous differentiation of the 

cells [63].  

These factors play a key role during the entire embryonic development of mammals and they are 

critical for the regulation of auto-maintenance and pluripotency of ESCs. The inactivation of these 

genes during embryonic development leads to the death of the embryo, while due to the loss of 

ESCs stem cell phenotype and the subsequent differentiation [61,62]. 

The ESCs high differentiation potential makes them extremely promising as a therapeutic tool, but 

at the same time extremely dangerous, so their use is mostly tied for research. In fact, ESCs 

represent an excellent model for the study of developmental biology and replication processes and 

cell differentiation. It should also be noted that the isolation of ESCs involves the suppression of 

embryos from which cells are derived. This has raised a number of ethical questions, which have 

limited and still restrict their use. In order to overcome both ethics and technical related problem, 

research has worked to produce pluripotent cells of different origin in vitro. In 2006, Takahashi and 

Yamanaka reprogrammed for the first time murine fibroblasts into pluripotent stem cells, using 
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retroviral vectors to introduce and express genes coding for four cell specific transcription factors 

(OCT4, SOX2, Klf4, and C-MYC). These cells have been called induced pluripotent stem cells 

(iPSCs) and show morphological, proliferative and differentiation properties very similar to those of 

ESCs [64]. The following year, in the same way, has been reprogrammed human fibroblasts and 

the first human iPSCs were obtained. The use of these cells does not pose any ethical limitation 

and appears promising in the field of cell therapy for the possibility of obtain patient-specific stem 

cell populations. These cells could be recognized as self from the patient immunity system and not 

rejected. At the moment, the lack of knowledge about the long-term stability of reprogramming 

severely limits their use in vivo and pushes towards the search for new methods of reprogramming 

or trans-differentiation. 

3.2 Adult Stem Cells

True multi or pluripotent stem cells persist in postnatal life and they are called Adult Stem Cells 

(ASCs). These cells are maintained in relative quiescence within specific niches throughout the 

body. Although the baseline state of adult stem cells is relative quiescence, they are rapidly 

mobilized in response to stress or tissue injury. Multipotent stem cells effectively maintain 

homeostasis of adult tissues throughout life [65]. Over the past years, a series of reports has been 

published suggesting that the previous dogma of tissue specificity associated with adult stem cells 

may not be correct. The presumed ability of tissue-specific stem cells to acquire the fate of cell 

types different from the tissue of origin has been termed adult stem cell plasticity. The prototypical 

adult stem cell is the HSC, first theorized to exist in 1961 by Till and colleagues [66] and definitively 

isolated in mouse in 1988 [67]. These cells are multipotent in that they retain the ability to 

differentiate into all cell types of the hematopoietic system. Another group of adult stem cells is the 

Mesenchymal Stem Cells (MSCs), a term first coined from Caplan in 1991 [68]. MSCs exhibit 

fibroblastic morphology and in accord to the International Society for Cellular are defined as plastic 

adherent multipotent cells that can differentiate in vitro into mesodermal lineages such as 

osteoblasts, adipocytes and chondrocytes (figure 6) [69]. They also express the cell surface 

markers as CD44, CD73, CD90, CD105, whereas they present minimal or no expression of the 

hematopoietic markers CD11b, CD14, CD19, CD34, CD45, CD79a and of the histocompatibility 

antigens HLA-DR-DP-DQ. Since the late 1980s when the technology for isolating, culture and 
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expanding MSCs was perfected and then became practicable in the early 1990s, their use for 

clinically relevant therapies has evolved. Indeed, two very different theories have been proposed 

and explored. The original theory was that expanded MSCs, because of their multipotency, could 

be applied to replace injured, damaged, or diseased mesenchymal tissues. Although this theory 

was pursued for almost three decades and continues to be explored, no product or treatment is 

currently available. In defense of this pursuit, newer logics and scaffolds now being experimentally 

tested hold realistic promise for eventual success and clinical use to replace cadaveric products 

now used routinely. The documentation that MSCs (perhaps all MSCs) are derived from 

perivascular cells, pericytes [70], now explains how MSCs can be isolated from almost every tissue 

in the body [71]. Moreover, the fact that MSCs possess the capacity to secrete immunomodulatory 

and trophic mediators strongly argues that their natural and normal in vivo function is as Medicinal 

Signaling Cells (MSCs) for sites of injury or inflammation [72]. 

To date, there are very few examples of proven stem cell therapies: bone marrow transplantation 

(BMT), regeneration of skin with epidermal stem cells and regeneration of cornea with gimbal stem 
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cells. The most famous and well studied is bone BMT. The first successful transplant of HSCs 

between an unrelated donor and recipient was performed in 1969, 14 years later the first trials 

where all patients led to the deaths. Donnell Thomas spent 14 years learning why donors had to be 

matched to recipients during transplants [73]. The second was approved in the corneal resurfacing 

with populations that contain limbal stem cells [74] and skin regeneration with populations that 

contain epidermal stem cells. There is also strong preclinical evidence and case reports for bone 

regeneration using bone marrow stromal cells (BM-MSCs). A number of therapies have been 

envisioned for the treatment of diverse disorders and diseases, such as diseases of the central 

nervous system, graft versus host diseases, cardiovascular diseases, pulmonary diseases and 

many other, using primary BM-MSCs. It is now clear that these cells do not transdifferentiate into 

cells outside of the mesodermal lineage (bone, cartilage, hematopoiesis supportive stroma and 

marrow adipocytes). However, it is thought, but as yet unproven, that they may exert paracrine, 

immunomodulatory and immunoregulatory 

effects on endogenous tissues upon systemic 

infusion or direct injection. It is not clear that 

these cells display these properties in vivo, 

and if so, by what mechanisms. Upon 

intravenous injection, these cells accumulate 

in the lungs and are then rapidly removed from 

the body. Thus, they neither transdifferentiate 

nor engraft, making the putative paracrine/

immunomodulatory feature a property of the 

population as a whole, and not of the stem cell 

subset within it [75]. 

3.3 Tissue Engineering

Tissue Engineering was defined for the first time in 1993 from Longer and Vacanti as an 

interdisciplinary field that applies the principles of engineering and the life sciences toward the 

development of biological substitutes that restore, maintain, or improve tissue function  [76]. Since 

that time, researchers have been able to fabricate increasingly complex tissue/organ constructs, 
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and some such bioengineered products are used clinically today as the standard treatment for a 

variety of conditions. The three original pillars of tissue engineering proposed by Langer and 

Vacanti remain relevant today: first isolated cells, second tissue inducing substances, and third 

matrices. Cells constitute the fundamental unit of tissues and exhibit a broad spectrum of functional 

diversity. Two main possible categories of cellular components are stem/progenitor cells and 

mature differentiated cells. In the next section, we will analyze specific cells for pancreatic 

differentiation. Previously we have already discussed about factors able to induce and improve 

pancreatic differentiation, what we miss now is the matrix. To deeply understand we need to start 

from the in vivo architecture of organs and tissues. In this contest, we will concentrate our attention 

in epithelial cells organization in vivo. Epithelial cells are connected to each other by intercellular 

junctions and are located within a specialized ECM, which is known as the basement membrane.  

Connective tissues, in contrast to the epithelium, contain an abundance of ECM and different 

population of stromal cells, including fibroblasts, immune cells, and adipocytes. Epithelium and 

connective tissue are functionally interdependent units within organs. In addition to the cellular 

inputs, culture formats can be varied independently in order to answer specific biological questions  

[77]. The addition of basement membrane proteins to the medium in 2D cultures is sufficient to 

induce tissue-specific differentiation of diverse epithelial cells, including mammary, kidney, and 

lung. Most experiments rely on a commercial basement membrane protein source, such as 

Matrigel [78]. In 2D culture system, it is not completely modeled these cell–cell and cell–ECM 

interactions. These observations led to the development of diverse assays in which single cells are 

plated on top of Matrigel, with additional Matrigel in the medium [79]. Finally, researchers have also 

embedded epithelial cells within an ECM gel and observed that cells, in this case, are enables the 

cells to self-assemble into tissues and to both interpret and remodel the ECM [80]. 
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4 Different Sources of Fetal and Adult Stem Cells 

4.1 Pancreatic progenitors 
Stem/progenitor for liver, biliary tree, and pancreas exist at early stages of development in the 

definite ventral endoderm forming the foregut. In humans, they persist postnatally as part of a 

network and studies had evidenced their contributions to hepatic and pancreatic organogenesis 

throughout life [81]. Multiple stem cell niches continue in specific anatomical locations within the 

human biliary tree and pancreatic ducts. In the human extra hepatic biliary tree, the stem/

progenitor niches have been identified as the peribiliary glands (PBGs). PBGs contain niches of 

cells, collectively termed biliary tree stem cells (BTSCs), with phenotypic traits of endodermal 

stem/progenitors. BTSCs present the expression of transcription factors (SOX17, PDX1, and 

SOX9), surface markers (epithelial cell adhesion molecule [EpCAM] and LGR5) and cytoplasmic 

markers, and the capacity of proliferation, self-renewal, and multipotency [81-83]. A subpopulation 

(nearly 10%) of PBG cells appears to be primitive stem cells. These cells also co-express several 

pluripotency markers (e.g., OCT4, SOX2, and NANOG) and can self-renew or differentiate into 
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functional hepatocytes, cholangiocytes, and pancreatic islets [82]. The biliary tree, the pancreatic 

duct and their associated gland PBGs and pancreatic duct glands (PDGs) demonstrate striking 

similarities histologically. More detailed analysis of the phenotypic traits implicate two separate but 

overlapping maturational lineages identified by gradients in gene expression. One is the proximal 

(PBGs) to distal (PDGs) axis of maturation from the duodenum and extending into the pancreatic 

ducts (figure 8). The other is a radial axis of maturation starting at the fibromuscular (FM) layers 

within duct walls and extending to cells at the ducts’ lumens. The anatomical distribution of PDGs 

along the pancreatic ducts of larger caliber has similarities with the distribution of PBGs along the 

biliary tree. PDGs occurs in association with the main pancreatic duct and its immediate branches 

and are abundant in proximity to the hepato-pancreatic ampulla. Wang and co-worker provided 

evidence of the proximal to distal maturational lineage axis starting in PBGs in the hepato-

pancreatic common duct near to the duodenum, transitioning to pancreatic ducts, thence to PDGs 

and finally to mature pancreatic islet cells. Cells expressing markers of pluripotency (OCT4, 

NANOG, and SOX2), self-replicative ability (SALL4) and hepato-pancreatic endodermal 

commitment (SOX 9, SOX 17, PDX1 and LGR5) are present in the PBGs of the hepato-pancreatic 

common duct. Moreover, these cells do not express NGN3 and only few cells express Insulin, but 

on the other hand, they strongly express the proliferative marker Ki67. By contrast cells in the 

PDGs had no co-expression of pluripotency genes; none expression of NANOG or SALL4; fewer 

than 5% present a cytoplasmatic expression of either OCT4A or SOX2, and this expression was 

cytoplasmatic; Moreover, all express PDX1, most expressed NGN3 and insulin (figure 9) [82,84]. 
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Very recent study have also highlighted that PDGs represent niches consisting of a heterogeneous 

population of Sox9+ and Lgr5+ cells. Lgr5 is a marker in multiple organs of adult stem cells and 

progenitors of extensive proliferative potential. These phenotypic traits of Sox9+ cells within adult 

PDGs are consistent with those of pancreatic committed progenitor cells. Moreover, insulin+ cells 

are also located within human PDGs, but there was no overlap in expression of insulin and various 

progenitor markers [85]. 

The radial-axis maturational lineage consists of stem cells in the PBGs deep within the walls of the 

hepato-pancreatic common duct and near the FM layers. The PBGs near these FM layers 

contained cells that did not express EpCAM, NGN3, insulin or any other islet hormone but co-

expressed, within the nuclei, the pluripotent genes, SALL4 and the endodermal commitment genes 

(SOX 17, PDX1 and LGR5). Proceeding towards the luminal surface of the duct, the expression 

the pluripotent genes and SOX17 faded and, in parallel, there was maintenance of PDX1 along 

with appearance of and then increasing expression of EpCAM and insulin [84]. 

Cells from PBGs could also be isolated and cultured in vitro in serum-free Kubota’s Medium (KM). 

This medium has been shown previously to select for early endodermal stem/progenitors, and with 

minor modifications works well also for mesenchymal stem/progenitors. The human biliary tree 

stem cells (hBTSCs) formed in vitro colonies that expanded readily on plastic generating colonies 

of growing cells of two main types. Type 1 colonies were composed of cells with an undulating, 

swirling morphology. Cells initially did not express EpCAM, but with time in culture, they acquired 

its expression at the edges of the colonies in parallel with a slight increase in cell size and of 

marker indicating sight differentiation. Type 2 colonies were comprised instead of cells that express 

EpCAM immediately on every cell and formed “carpet” like colonies of tightly packed, uniformly 

cuboidal shaped cells [82,84]. hBTSCs in culture retained expression of pluripotency markers such 

as OCT4, SOX2, and NANOG, whereas they did not display markers of endocrine committed 

progenitor such as NGN3 or of mature pancreatic islet cells like insulin. Wang and co-worker also 

show that embedding hBTSCs in a 3-dimensional hydrogel it is possible to obtain in vitro a 

conversion of them to neoislet-like spheroids. These spheroids could be then induced towards an 

islet fate using a hormonally defined medium tailor-made, named HDM-P. In any case, the 

differentiation was still partial only slight increase of C-peptide was observed. To verify more in 

deep the functional differentiation in an in vivo setting, neoislets were transplanted into 
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streptozotocin treated mice. This treatment ameliorated the mice condition and corroborated the 

interpretation of the authors that hBTSCs are precursors to pancreatic committed progenitors [84].  

I In perspective, all this evidence makes human BTSCs a candidate source of stem/progenitors for 

regenerative medicine. Encouraging preliminary data from an ongoing phase 1/2 clinical trial 

indicated the safety of human BTSCs administration for the treatment of advanced liver cirrhosis 

[86]. A very recent study has also demonstrated the possibility to expand hBTSCs adding 5% of 

fetal bovine serum and supplement containing pituitary gland extract to obtain a sufficient cell 

number for regenerative applications. In the same studies, researchers had analyzed and 

suggested for the first time the product of Hepatocyte Grow Factor and its role in inducing 

apoptosis in leukocytes exposed to co-culture with hBTSC. These studies enforce the significance 

of the HGF-mediated immune modulation possessed by hBTSC, suggesting that the secretion of 

HGF might enhance the therapeutic potential of hBTSC [87]. 

There are hints, but no proof, that the network of niches begins with the Brunner’s glands, 

submucosal glands found in the duodenum and located between the major papilla, the 

entranceway to the hepato-pancreatic duct, and the minor papilla, the port connecting the 

duodenum to the dorsal pancreatic duct.  The Brunner’s glands are not found elsewhere within the 

intestinal tract. Indeed, they are used to define the transition from the duodenum to the beginning 

of the small intestine. Ongoing studies may determine their possible relevance to the stem cell and 

progenitor cell niche network in the biliary tree, liver, and pancreas [88]. 

4.2 Pancreatic Islet derived Mesenchymal Stromal/Stem Cells 

Cells with a fibroblasts morphology from pancreatic islets were isolated from different researchers 

from 2004. Since then they have attracted attention for two principal reasons, first for the possibility 

to differentiate into islet-like cells [89], second because they could potentially provide a more 

suitable feeder layer for pancreatic islet co-culture ex-vivo compared with other cells tested before 

[90].  

Human pancreatic islet cell equivalents in culture started to generate spindle-shaped cells. PI-

MSCs as BM-MSCs show the multipotent ability to differentiate into the classical mesodermal 

lineages and the expression of classical mesenchymal markers (CD44, CD90, CD73, CD105) and 

the absence of hematopoietic markers (CD14, CD34, CD45) [90-92]. This essential 
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characterization satisfied the minimal criteria fixed by the International Society for Cellular Therapy 

to define a cell population as mesenchymal stromal cells [69].  

In the beginning, it was proposed that these mesenchymal cells originated from beta cells 

undergoing to an epithelial to mesenchymal transition [93]. This transition would allow the 

expansion of this cells in the presence of serum whereas, following serum removal, the cells could 

regain an endocrine phenotype with synthesis and release of insulin [93-95]. In contrast, following 

reports from several laboratories have published studies based on genetic lineage tracing in mice 

that highlight the possibility that beta cells could undergo an epithelial to mesenchymal transition, 

thus suggesting that this cells may originate from preexisting mesenchymal cells in vivo [96-98]. 

The appearance in islet cell cultures of cells positive for both nestin and C-peptide or for both 

nestin and Ipf-1 would argue for a conversion of b-cells from an epithelial to a mesenchymal 

phenotype. Similarly, positivity for Ki67 of cells expressing Ipf-1 would suggest that cells of 

epithelial origin can proliferate at least for a given time. But after the first week in culture, almost all 

cells were positive for nestin, a-SMA, and vimentin, but resulted negative for C-peptide and Ipf-1. 

However, taking into account all these results, an alternative explanation could be that even if there 

was an initial transition of beta cells to a mesenchymal phenotype at early times in culture, these 

cells may die off and be taken over by a population of mesenchymal cells that continue to 

proliferate and to persist at the later passages in culture [91].  

Moreover, PI-MSCs show the expression of HLA-ABC but are absent for HLA-DR, a major 

histocompatibility complex class II cell surface receptor. This suggests the ability of this cells to 

escape the immune system, a very interesting property of MSCs. The ability to suppress 

lymphocyte proliferation in vitro was analyzed, and PI-MSCs have shown the capacity to inhibit 

both CD4+ and CD8+ T lymphocyte in a dose manner [90]. 

Very important, different researchers try to differentiate PI-MSCs into islet-like cells with different 

differentiation protocols. Gallo and co-workers also study the effect of cyclopamine in the inhibition 

of Hedgehog pathway in PI-MSCs showing it inhibition in a dose manner [91]. They have one 

common characteristic that is the formation of clusters that improve differentiation efficiency 

[89,99]. Davani and co-worker have also demonstrated that partially differentiated hIPC clusters, 

when implanted under the kidney capsules of mice, continued to differentiate in vivo into hormone-

producing cells. However, they noted that not all hIPC preparations yielded insulin-secreting cells 

in vivo and that in some animals no hormone-expressing cells were found. This suggested that the 
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implanted cells were not always irreversibly committed to further differentiation and may even de-

differentiate to a mesenchymal phenotype [99]. 

4.3 Placenta 

The term placenta is a discoid-shaped organ with a diameter of 15–20 cm and a thickness of 2–3 

cm. It is composed of a fetal portion (the chorion) and a maternal portion (the decidua). Fetal 

component all originate from the blastocyst consists of the chorionic plate, fetal membranes, and 

umbilical cord. The umbilical cord extends from the amnion toward the fetus. Generally, it contains 

two umbilical arteries and one umbilical vein embedded within a gelatinous, proteoglycan-rich 

matrix called Wharton’s jelly (figure 10), which prevents the compression, torsion, and bending of 

the umbilical vessels. Meanwhile, the fetal membranes contain the fetus throughout the pregnancy 

and eventually undergo programmed rupture during the first stage of labour. They consist of the 

maternal-facing, chorion, and fetal-facing, amnion. The chorion contains the reticular layer, a 

basement membrane, and the trophoblast cell region, which at term firmly adheres to the maternal 

decidua. The amnion is a thin, avascular membrane contiguous, over the umbilical cord, with the 

fetal skin. It comprises five distinct layers. The innermost layer is the amniotic epithelium, which is 

in direct contact with the amniotic fluid on one side and a basement membrane on the other. The 
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other layers consist of the compact 

layer, the fibroblast layer, and the 

spongy or intermediate layer. The 

human amniotic epithelium (hAE) is 

an uninterrupted, single layer of flat, 

cuboidal and columnar epithelial cells 

in contact with amniotic fluid. It is 

attached to a distinct basal lamina 

that is, in turn, connected to the 

amniotic mesoderm (AM). In the 

amniotic mesoderm closest to the 

epithelium, an acellular compact layer 

is distinguishable, composed of collagens I and III and fibronectin. Deeper in the AM, a network of 

dispersed fibroblast-like mesenchymal cells and rare macrophages are observed. Very recently, it 

has been reported that the mesenchymal layer of amnion indeed contains two subfractions, one 

having a mesenchymal phenotype, which is referred to throughout this review as amniotic 

mesenchymal stromal cells, and the second containing monocyte-like cells (figure 11). The 

primary functions of the placenta can be categorized under the headings of transport and 

metabolism, protection and endocrine. The placenta acts to provide oxygen, water, carbohydrates, 

amino acids, lipids, vitamins, minerals and other nutrients to the fetus, while removing carbon 

dioxide and other waste products. It metabolizes many substances and can release metabolic 

products and hormones into maternal and/or fetal circulations to affect pregnancy, metabolism, 

fetal growth, parturition and other functions. Other essential functions of the placenta are the ability 

to act as a barrier against many pathogens and viruses and to induce tolerance, avoiding an 

immunological reaction of the mother against of the fetus. The placenta is, therefore, a physical 

and functional connection between the mother and the fetus. Through it, the fetal growth and all its 

functions are finely controlled with the maximum efficiency.  The biological and embryological 

features of the placenta and extra-embryonic tissues also make it a potential stem cell and 

progenitor source for scientific researchers [100-102].   
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4.4 hAECs 

The amniotic cavity starts already to form as early as 7-8 days post fertilization in the human 

embryo. The embryonic ectoderm (epiblast) given rise to all fetal tissue, but also to amniotic 

ectoderm. In human, the amniotic ectoderm is the first structure that is readily distinguishable from 

the epiblast shortly after implantation, well before the onset of gastrulation [103]. This suggests the 

possibility that hAECs could have escaped the lineage differentiation that accompanies 

gastrulation, preserving some or all of the epiblast characteristics such as pluripotency [104]. Due 

to this reason, in the last decade, hAECs have attracted great interest for clinical application. 

hAECs are isolated in vitro quite easily with enzymatic digestion. In literature, it is possible to find 

different isolation protocols and recently also in according to the current Good Manufacturing 

Procedures (GMP) (figure 12) [105]. When freshly isolated from human term amnios, hAECs have 

been shown to express stem cell surface marker proteins, such as SSEA-3, SSEA-4, TRA 1-60, 

TRA 1-81, Thy-1, and c-kit, but not hematopoietic stem cell markers, for example, CD34 [106]. 

Moreover, both freshly isolated and cultured hAECs express molecular markers typical of 

pluripotent human ES cells, i.e. OCT4, SOX2, and NANOG. Miki and colleagues tried to culture 

hAECs in the presence of EGF obtaining spheroid bodies. Expression of OCT4 and NANOG 

mRNA increased during spheroid formation and after five days of culture authors reported higher 

expression of OCT4 and NANOG in the middle fraction of cells rather than in the adherent fraction 

(figure 13) [106]. Work with whole-mount immunofluorescence analysis of freshly isolated term 

human amnion revealed that only cells in the amniotic epithelium and not in amniotic mesenchyme 

presented markers of pluripotent such as SSEA-3, SSEA-4, TRA 1-60 and TRA 1-80 [107]. 
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Figure 12. Human amnios. Human amnion before (top) and after (bottom) hAEC isolation. 
Stromal cells are still dispersed in the stroma after digestion. Image modified from Gramignoli et 
al, 2016.
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Telomerase is usually limited to immortal cells, such as malignant cells, but also ESCs and germ 

cells. Unlike ESCs, freshly isolated hAECs do not present it. Furthermore, it has been reported that 

hAECs are not tumorigenic indeed they do not form teratomas in vivo when transplanted into 

immunodeficient mice. [106,108]. If from one side this finding gives strong advantage to hAECs 

compared to ES cells regarding their potential use in regenerative medicine, on the other side it 

could suggest that hAECs lack the capability to differentiate in vivo. Evidence for long-term self-

renewal is still not available for hAECs, which may be due to the absence of telomerase that limits 

their ability to divide in culture and, subsequently, their self-renewal. In fact, hAECs have been 

claimed to be clonogenic by Ilancheran and co-workers [108], which was however not confirmed by 

the study of Bilic et al. [109]. Another very interesting characteristic of hAECs is their tri-lineages 

differentiation ability in vitro. Different researchers showed that hAECs could be induced through 

mesodermal (myocytic, cardiomyocytic, osteocytic and adipocytic), endodermal (pancreatic, 

hepatic, pulmonary and alveolar epithelium) and ectodermal differentiation (neural) [108,110,111]. 

Focus on endodermal differentiation Marongiu and co-worker have investigated the differentiation 

of hAECs in vitro and after transplantation into the livers of severe combined immunodeficient 

(SCID)/beige mice. Following the idea that liver microenvironment may be crucial for hepatic 

induction, they co-cultured hAECs with Mouse Hepatocytes (mHeps) improving their differentiation. 

In their work hAECs shown to express mature hepatocytes markers along with metabolically active 

and inducible CYP3A enzymes. Avoiding a so difficult and inconvenient protocol, they tested if 

hepatocyte conditioned media might pro-vide a similar inductive influence in a protocol more easily 

standardizable. Unfortunately, no strong hepatic inductive effect in gene expression was observed 

with human hepatocyte-conditioned media suggesting that interaction with neighboring cells 

enhances the hepatic commitment of hAECs. In the same work, they also showed how Activin A, 

one of the Shh inhibitors during embryogenesis, is not efficient to induce the first stage of the 

differentiation in common with the pancreatic differentiation, the endodermal commitment [112]. 

The two main factors were used to induce hAECs through pancreatic differentiation in a 2D 

system: Activin which, as previously discussed, aims to induce endodermal commitment [113] and 

Nicotinamide [108,114,115]. Also, other approaches were used as the ectopic expression of mPdx1 

[116] and 3-dimensional culture [117]. Final hAECs were also transplanted after pancreatic 

induction in streptozotocin-induced diabetic SCID Mice [118]. All this data support the idea that 
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hAECs could be induced and differentiated through 

different commitments from all the three germ lineages. 

Therapies, aimed at reducing tissue inflammation and 

scarring to promote host tissue repair, are another 

important potential application of stem cells. Studies in 

murine models of lung and liver fibrosis have shown 

that primary hAECs reduce inflammation and fibrosis 

and induce tissue remodeling and repair. Another key 

feature is that primary hAECs appear to be amenable 

to allogenic transplantation. Successful transplantation 

across histocompatibility barriers is probably facilitated 

by low HLA Class IA antigen expression and absence 

of HLA Class II antigens in hAECs. Moreover, they do 

not express the co-stimulatory molecules CD80 (B7-1), 

CD 86 (B7-2), CD40, with and without of one of the 

most potent pro-inflammatory cytokine, INF-γ [119]. 

MHC molecules are responsible for the presentation of 

non-self antigens to receptors of T lymphocytes, and every individual expresses a particular set of 

MHC molecules. The primary cause of rejection in transplant is that different MHC molecules are 

recognized as foreign antigens by the immune system. The reduced presence of leukocyte 

antigens thus prevents recognition of the AECS on the part of the immune system. Some studies 

show that following the differentiation in the sense liver or pancreas in vitro increases the 

expression of HLA class IA and II molecules appear on a small percentage of cells [108]. The 

differentiation may, therefore, result in an alteration of the cells immunomodulatory features, which 

must be carefully assessed pest differentiation. Primary hAECs have also been shown to exert 

potent immunosuppressive properties inhibiting T cell proliferation, although the mechanisms 

remain unclear [111]. More recent investigations into their immunomodulatory properties have 

shown that hAECs inhibit cells of the innate and adaptive immune system, as shown by the 

inhibition of neutrophil and macrophage migration by secrete factors [107,120] and reduction of 

both T and B cell proliferation in vitro [121,122].  A very recent interesting study in vivo has 

demonstrated this effect also in a model of mouse autoimmune encephalomyelitis [123]. 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Aim of the study

The great aim of education is 
not knowledge but action.  

Herbert Spencer 
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Aim of the study

Aim of the study 
Pancreatic islet beta cells are endocrine cells that produce the hormone insulin and that control the 

metabolism of glucose. An autoimmune attack can cause a loss of beta cells, leading to a disease 

termed Type 1 Diabetes (T1D). There is no definitive cure for T1D. Treatment with exogenous 

insulin is a life-saving intervention, for patients with T1D, but it can cause serious adverse effects-

including life-theatening hypoglycemic events. Over time, severe complications can arise in T1D 

patients. Frequently, these complications cannot be managed effectively. Since the discovery of 

insulin, many steps have been taken towards a safer and more effective treatment for T1D. 

Transplantation of cadaveric pancreas and isolated islets showed that beta cell replacement could 

treat T1D and prevent complications very effectively, but both strategies have important limitations. 

Stem cell-based strategies represent a promising way of research for the replenishment and 

preservation of beta cells. Stem cell strategies recently entered the initial stages of clinical testing. 

Certain types of stem and progenitor cells can be harnessed to generate insulin-producing cells for 

beta cell replenishment. Other types of stem/progenitor cells can be utilized to inhibit autoimmune 

mechanisms and rejection of transplanted beta cells. Moreover, certain cell types can exert trophic 

effects on beta cells. In this study, we investigated multiple stem and progenitor cells to better 

define their potential as cell therapies for T1D. In the first part of the study, we analyzed the 

potential of human amniotic epithelial cells (hAECs). hAECs can be recovered in large numbers 

from otherwise discarded placental tissues. These cells are endowed with stemness characteristics 

and they can inhibit immune attacks. Moreover, their use does not pose ethical problems. We 

observed that hAECs can be stimulated to partially commit toward pancreatic islet endocrine 

phenotypes. We developed an in vitro model to generate 3D islet-like structures. We aimed at 

testing whether organization into 3D organoids was able to boost beta cell maturation. 

Subsequently, we tested the ability of differentiated hAECs to secrete c-peptide (a peptide cleaved 

from proinsulin) in response to different glucose concentrations. We then evaluated the 

immunomodulatory properties of hAECs in 2D and 3D culture systems, before and after pancreatic 

endocrine differentiation. In the second part of the study we investigated the pancreatic 

differentiation potential of adult human endodermal progenitor cells from different anatomical sites. 

We studied cells isolated from human Brunner’s Glands (BGs), Biliary Tree (BT) and Main 
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Pancreatic Duct (MPD). Endodermal progenitor cells were differentiated in a traditional 2D culture 

system and a co-culture system with Pancreas derived Mesenchymal Stromal/Stem Cells (PI-

MSCs). This model proved useful to stimulate differentiation. Therefore, in the last part of the study, 

we combined hAECs and PI-MSCs in an attempt to boost endocrine maturation and obtain islet-

like organoids.
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Aim of the study

Above all, don’t fear difficult 
moments. The best comes 
from them. 

Rita Levi Montalcini 
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Materials and Methods

Materials and Methods 
Isolation and culture of hAECs

Term placenta was obtained by caesarean section from healthy donor mothers after written 

informed consent and according to the policy of the Local Ethical Committee (Policlinico S.Orsola-

Malpighi, prot n.1645/2014, rif. 35/2014/U/Tess). After sample collection, fetal membranes were 

separated from the chorionic plate and washed in Phosphate Buffered Saline (PBS, Lonza, 

Walkersville, MD, USA) added with 1% Penicillin-Streptomycin solution (Lonza, Walkersville, MD, 

USA). The human amniotic membrane was mechanically peeled off the chorion, the other fetal 

membrane. Amniotic membrane was then washed with abundant PBS (Lonza, Walkersville, MD, 

USA) in order to remove blood from the membrane. After that membrane was minced into small 

pieces (2 cm2 approximately) and incubated for two cycles of 30 minutes at 37°C with 10/15 mL of 

1X trypsin-EDTA (Lonza, Walkersville, MD, USA). After digestion, the trypsin activity was inhibited 

with 2,5 mL of heat-inactivated Fetal Bovine Serum (FBS, Lonza, Walkersville, MD, USA). The cell 

solution was then centrifuged for 10 minutes at 1500 rpm and the cell pellet was resuspended in 

the culture medium. Single cell suspension was tested for viability with erythrosin b (Sigma-Aldrich 

Co., St. Louis, MO, USA). Only samples with > 90% viability were used for further assays. Finally, 

cells were seeded at 60.000 - 100.000 cells/cm2 and incubated at 37°C, 5% CO2. Cells were 

cultivated in a Serum Rich Medium (SRM), Dulbecco’s Modified Eagle’s Medium - high glucose 

(DMEM, Lonza, Walkersville, MD, USA) added with the 10% FBS and 10ng/mL Epithelial Grow 

Factor (EGF, Sigma-Aldrich Co., St. Louis, MO, USA) or in Q286, a Serum Free Medium (SFM, 

PAA Laboratories GmbH, Pasching, Austria) added with 10 ng/mL Epithelial Grow Factor (EGF, 

Sigma-Aldrich Co., St. Louis, MO, USA). 

In order to evaluate the cell proliferation potential in the two media, at first passage hAECs were 

plated at 60,000 cells/cm2 in 24-well plates and cell growth was assessed using Alamar Blue assay 

(Invitrogen, Carlsbad, CA, USA). Alamar Blue 10% was added to the basal medium and incubated 

for 4 hours. Finally, fluorescence was measured using Victor Multilabel Counter (Perkin Elmer, 

Boston, MA, USA). The same procedure was repeated on days  3, 5, 8, 10, 12, and 15. Data are 

plotted as the percentage of Alamar reduction analyzed at specific time points. 
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Immunophenotypic characterization

The immunophenotypic characterization of hAECs was performed through flow cytometric analysis 

on primary cultures. Cells were detached with Trypsin-EDTA, fixed for 10 minutes with IntraPep Kit 

(Beckman-Coulter, Brea CA, USA) and incubated with antibodies for 30 minutes at 4°C (1 µg/mL). 

The antibodies used were: anti-CD105-FITC (Beckman-Coulter, Brea CA, USA), anti-

panCytokeratin-PE (Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-SSEA-4-APC (R&D 

Systems, Minneapolis, MN, USA), anti-OCT4 primary antibody (Santa Cruz Biotechnology, Santa 

Cruz, CA, USA), and secondary anti-mouse IgG-FITC (Beckman-Coulter, Brea CA, USA). To 

reveal Oct-4 and SSEA-4 cells were also permeabilized with the IntraPrep Kit (Beckman-Coulter, 

Brea CA, USA). Cells were finally washed and analyzed on a flow cytometer (Navios FC, Beckman 

Coulter). Acquired data were elaborated with Kaluza FC Analysis software.  

Three-dimensional (3D) cultures

hAECs 3D culture was performed at first passage seeding the cells at 60.000 cells/cm2 in a 

complete medium added with 2.5% reduced growth factor basement membrane extract (BME) 

from Engelbreth-Holm-Swarm (EHS) mouse sarcoma (Trevigen, Gaithersburg, MD, USA). 

Resuspended cells were seeded on a thick layer of 100% reduced growth factor BME measuring 

approximately 1 mm in thickness. Multicellular spheroids formed after 5–6 days, partially 

embedded in the gelled layer of basement membrane. Cell culture medium was changed every 3 

days. In order to evaluate cell proliferation potential in the two media cell spheroids growth was 

assessed using Alamar Blue assay (Invitrogen, Carlsbad, CA, USA). Alamar Blue 10% was added 

to the basal medium and incubated for 8 hours. Finally, fluorescence was measured using Victor 

Multilabel Counter (Perkin Elmer, Boston, MA, USA). The same procedure was repeated on days 

5, 8, 13, and 15. Data are plotted as the percentage of Alamar reduction analyzed at specific time 

points. 

RNA isolation and expression

Total RNA extraction from samples in 2D culture was performed using the PureLink RNA Mini Kit 

(Invitrogen, Carlsbad, CA, USA) and from samples in 3D culture system using TRIzol (Invitrogen, 
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Carlsbad, CA, USA) according to the manufacturer’s instruction. RNA concentrations were 

measured by absorbance at 260 nm with a NanoDrop instrument and 2 µg of each sample were 

used as a template for a Cloned AMV First-Strand cDNA Synthesis Kit (Invitrogen, Carlsbad, CA, 

USA). For the 2D culture system, Real Time PCR assays were performed in a StepOne System 

(Applied Biosystems, Foster City, CA, USA) with KAPA SYBR FAST Master Mix (KAPA 

BIOSYSTEMS, Woburn, MA, USA). For the 3D system, the cDNA was subjected to 40 cycles of 

PCR with EconoTaq® PLUS GREEN 2X Master Mix (Lucigen Corporation, USA). The mRNA 

expression of the following genes was investigated: KI67, OCT-4, SOX2, NANOG and β-ACTIN 

(control). The PCR products were visualized on a 1.5% agarose gel stained with ethidium bromide. 

Primers are shown in Table 1. 

In vitro pancreatic stepwise differentiation

Prior to differentiation, hAECs were allowed to grow for 5 days in SRM and SFM until the sufficient 

spheroid size was reached. Pancreatic induction of 3D cultured cells was performed using a 

stepwise protocol divided into three stages. Stage 1: hAEC spheroids were pre-differentiated for 4 

days with 100 ng/mL Activin A (Sigma-Aldrich Co., St. Louis, MO, USA); Stage 2: SRM and SFM 

were supplemented with 100 ng/mL Activin A and Nicotinamide (NAM, 10mM, Sigma-Aldrich Co., 

St. Louis, MO, USA) for 4 additional days; and Stage 3: Terminal differentiation was performed 

Table 1. PCR Primers
GENES PRIMERS SEQUENCES Real-Time PCR SEQUENCES RT-PCR

KI67
F TCC TAA TAC GCC TCT CAA AAG 

R GAT TTC TGA ACC TGA CTC TTG 

OCT 4
F AGA GAA AGC GAA CCA GTA TC GGTGAAGCTGGAGAAGGAGAAGCTG

R TTA CAG AAC CAC ACT CGG CAAGGGCCGCAGCTTACACATGTTC

SOX2
F CAG ACT TCA CAT GTC CCA G ACCAGCTCGCAGACCTACAT

R CTC CCA TTT CCC TCG TTT TGGAGTGGGAGGAAGAGGTA

NANOG
F AGA AAT ACC TCA GCC TCC AG AAGGCCTCAGCACCTACCTA

R CGT CAC ACC ATT GCT ATT CTT ACATTAAGGCCTTCCCCAGC

β-ACTIN
F CCT TCT ACA ATG AGC TGC G GGACTTCGAGCAAGAGATGG

R CCT GGA TAG CAA CGT ACA TG AGCACTGTGTTGGCGTACAG
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switching the medium to SRM and SFM with NAM (10 mM) and Retinoic Acid (RA, 2 µM, Sigma-

Aldrich Co., St. Louis, MO, USA) for 10 days. The glucose concentration of SFM was ⩾15 mM. 

&  

Immunofluorescence analysis and confocal microscopy

3D hAEC spheroids were fixed with 2% Paraformaldehyde (PFA, Sigma-Aldrich Co., St. Louis, 

MO, USA) for 20 minutes at room temperature. After washing 2 times for 10 minutes in PBS, 

spheroids were permeabilized in 0.5% Triton X-100 (Sigma-Aldrich Co., St. Louis, MO, USA) in 

PBS for 10 minutes and then rinsed again 2 times for 10 minutes in PBS. Antigen blocking was 

performed for 1 hour at room temperature in blocking solution: 5% normal goat serum (Vector 

Laboratories, Burlingame, CA, USA), 0.2% Triton x-100, 0.1% Bovine Serum Albumin (BSA, 

Sigma-Aldrich Co., St. Louis, MO, USA). Primary and secondary antibodies were diluted in freshly 

prepared blocking solution. For anti-phalloidin, the antibody was incubated for 1 hour at room 

temperature. The other primary antibodies were incubated at 8°C overnight and secondary 

antibodies for 40–50 minutes at room temperature. The following primary antibodies and dilutions 

were used: FITC-Phalloidin 1:500 (#P5282, Sigma-Aldrich Co., St. Louis, MO, USA); mouse anti-

insulin 1:100 (ab46707, Abcam, Cambridge, UK); rabbit anti-glucagon (ab8055, Abcam, 

Cambridge, UK); rabbit anti-C-peptide 1:100 (#4593, Cell Signaling Technology, Beverly, MA, 

USA); rabbit anti-CK19 1:100 (PA5-16726, Thermo Scientific, Waltham, MA, USA); mouse anti-

laminin 1:100 (MA1-21194, Thermo Scientific, Waltham, MA, USA). Secondary antibodies were: 

DyLight 594 goat anti-mouse 1:200 (Jackson Immunoresearch Labs, West Grove, PA, USA); Alexa 

Fluor 488 goat anti-rabbit 1:400 (Molecular Probes); CF 488 goat anti-mouse 1:400 (Biotium, 

Fremont, CA, USA); DyLight 594 goat anti-rabbit 1:200 (Thermo Scientific, Waltham, MA, USA). 

Nuclei counterstaining was performed with Fluoroshield+DAPI (Sigma-Aldrich Co., St. Louis, MO, 

USA). Imaging was performed by confocal microscopy (Leica TCS SP2, Leica Microsystems, 

Mannheim, Germany) and images were processed using Leica Confocal Software. 

Stop	Induc+on	Start	Induc+on	

Ac+vin	A	 Ac+vin	A	
NAM	

NAM	
Re+noic	Acid	

Stage	1	 Stage	2	 Stage	3	

Figure 1. Step-wise differentiation protocol
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Transmission electron microscopy (TEM)

Pancreatic induced hAECs cultured in 3D matrices and undifferentiated control cells were gently 

washed with Tyrode’s buffer, pH 7.3, and centrifuged at 10,000 x g for 5 minutes at 10°C. The 

resulting pellets were fixed overnight with 2.5% Glutaraldehyde (Electron Microscopy Sciences, 

Hatfield, PA, USA) in Tyrode’s buffer, postfixed for 2 hours in 1% Osmium Tetroxide (Electron 

Microscopy Sciences, Hatfield, PA, USA), dehydrated, and embedded in Spurr resin (Electron 

Microscopy Sciences, Hatfield, PA, USA). Since cells were not homogeneously distributed within 

matrices, semi-thin sections were routinely stained with Toluidine Blue and observed with a Zeiss 

Axiophot light microscope (Carl Zeiss, Jena, Germany) to locate cells in each cut layer. Ultrathin 

sections were performed on areas selected for the presence of spheroids and observed with a Jeol 

2010 electron microscope (Jeol, Tokyo, Japan) at 200 kV after staining with Uranyl Acetate and 

Lead Citrate (Electron Microscopy Sciences, Hatfield, PA, USA). 

Glucose-stimulated release and expression of C-peptide

To confirm the synthesis of insulin, C-peptide release from differentiated and undifferentiated hAEC 

spheroids was measured in hypoglycemic and hyperglycemic conditions. First, cells were 

incubated in Krebs-Ringer solution with bicarbonate and HEPES (KRBH; 129 mM NaCl, 4.8 mM 

KCl, 2.5 mM CaCl2, 1.2 mM KH2PO4, 1.2 mM MgSO4, 5 mM NaHCO3, 10 mM HEPES, 0.1% (wt/

vol) BSA (Sigma-Aldrich Co., St. Louis, MO, USA) for 70 minutes as a preliminary washing step. 

Next, spheroids were incubated in KRBH with 2mM D-Glucose (Sigma-Aldrich Co., St. Louis, MO, 

USA) for 1 hour and then switched to hyperglycemic stimulation condition consisting of KRBH with 

20 mM D-Glucose and 30 mM KCl for 1 hour. C-peptide levels in supernatant from basal (2 mM D-

Glucose) and stimulation condition (20 mMDGlucose + 30 mM KCl) were measured using the 

Human Ultrasensitive C-peptide enzyme-linked immunosorbent assay (ELISA) Kit (Mercodia, 

Uppsala, Sweden) and normalized to total amount of cellular DNA using CyQUANT Cell 

Proliferation Assays Kit (Invitrogen, Carlsbad, CA, USA). The fold stimulation was calculated as the 

ratio of the C-peptide concentration in supernatant from hyperglycemic condition to the C-peptide 

concentration from hypoglycemic condition. Glucose-stimulated spheroids were immediately 

assayed for the presence of C-peptide with immunofluorescence analysis. 
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Pancreatic Islet Mesenchymal Stromal/Stem Cells (PI-
MSCs)

PI-MSC isolation and culture

Cadaveric pancreas and duodenums were obtained through Organ Procurement Organization. 

After samples collection, pancreatic islets were isolated in according to the Ricordi's method at the 

facility of the Diabetes Research Institute of Miami. The viability and the purity of pancreatic islets 

were analyzed through Trypan blue exclusion and Dithizone staining. Pancreatic islets were then 

transferred in the lab, 2000 equ were seeded in a T25 culture flask in DMEM Low Glucose (Lonza, 

Walkersville, MD, USA) and incubated at 37°C 5% CO2. Medium was changed every 3-4 days,  

after 10 days the confluence were reached and cells were expanded. For all the experiments cells 

were expanded at least five passages and also cryopreserved to be sure that no endocrine cells 

are present in culture. 

In order to evaluate cell proliferation potential in the two media, at passage five PI-MSCs were 

plated at 5.000 cells/cm2 in 24-well plates and cell growth was assessed using Alamar Blue assay 

(Invitrogen, Carlsbad, CA, USA). Alamar Blue 10% was added to the basal medium and incubated 

for 4 hours. Finally, fluorescence was measured using Victor Multilabel Counter (Perkin Elmer, 

Boston, MA, USA). The same procedure was repeated on days 2, 3, 5, and 7. Data were plotted as 

the percentage of Alamar reduction analyzed at specific time points. 

Immunophenotypic characterization

PI-MSCs were analyzed to investigate their immunophenotypic profile by flow cytometry (FACS 

Navio FC, Beckman-Coulter, Fullerton, CA, USA) and data obtained analyzed by Kaluza FC 

Analysis software. The antibodies used were for stromal markers anti-CD44-FITC, anti-CD73-PE, 

anti-CD90-phycoerythrin-cyanine 5 (PC5) and anti-CD105-PE (Beckman-Coulter, Brea CA, USA),  

for hematopoietic markers anti-anti-CD34-FITC and anti-CD45-allophycocyanin (APC); for 

epithelial marker anti-panCytokeratin-PE (Santa Cruz Biotechnology, Santa Cruz, CA, USA) and 

finally HLA-DR. 
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In vitro differentiation

At passage 5 PI-MSCs were tested for their ability to differentiate into the three classical 

mesenchymal lineages: osteogenic, adipogenic and chondrogenic lineages. Control cells 

were cultured in standard medium, DMEM 10% FBS. 

Adipogenic differentiation

For adipogenic differentiation, PI-MSCs were cultured on 24-well plates (40,000 cells/well) with 

adipogenic medium (hMSC, Mesenchymal Stem Cell Adipogenic Differentiation Medium, Lonza, 

Walkersville, MD, USA). The medium was changed twice a week for three weeks. At the end of the 

induction, differentiation was assessed using Oil Red O staining. Cells fixed in 10% formalin at 

room temperature for 15 minutes were washed in distilled water and incubated with Oil Red O 

solution. Subsequently, the cell monolayer was washed three times with demineralized H2O. 

Osteogenic differentiation

For osteogenic differentiation, PI-MSCss were cultured on 24-well plates (15,000 cells/well) with 

osteogenic medium (StemPro Osteogenesis Differentiation Kit Gibco, Invitrogen, Carlsbad, CA, 

USA). The medium was changed twice a week for two weeks. At the end, differentiation was 

assessed using Alizarin Red stain (AR-S, Sigma-Aldrich Co., St. Louis, MO, USA). Cells fixed in 

10% formalin at room temperature for 15 minutes were washed in distilled water and incubated 

with AR-S (40mM, pH 4.1). The monolayer was then washed three times with dH2O. 

Chondrogenic differentiation

To induce chondrogenic differentiation, aliquots of 250,000 cells were pelleted in polypropylene 

conical tubes in chondrogenic medium (StemPro Chondrogenesis Differentiation Kit, Gibco, 

Invitrogen, Carlsbad, CA, USA). This medium was replaced twice a week for 3 weeks. Pellets were 

formalin-fixed, embedded in paraffin, examined morphologically with hematoxylin eosin staining 

and assessed using Alcian Blue stain. 
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Immunomodulation assay

Immunomodulation assay on hAECs

In order to investigate the immunomodulatory properties of hAECs on activated Peripheral Blood 

Mononuclear Cells (PBMCs), hAECs were plated in 6-well plates at a density of 50,000 cells/cm2 

and allowed to stabilize in culture for 1 day. PBMCs were isolated by density gradient 

centrifugation (Ficoll-Paque, Sigma-Aldrich Co., St. Louis, MO, USA) from healthy donors and co-

cultured on hAECs monolayers at a ratio of 2:1 in RPMI with 10% FBS (Lonza, Walkersville, MD, 

USA). PBMCs were activated by the addition of Phytohemagglutinin (PHA, 5 µg/mL, Sigma-Aldrich 

Co., St. Louis, MO, USA) and incubated for 72 hours at 37°C, 5% CO2. PBMCs without PHA 

stimulation were used as negative control and PBMCs stimulated by PHA in the absence of hAECs 

as positive control. The immunomodulatory ability of hAECs was quantified by different assay. In 

order to study the ability of hAECs to inhibit the PBMCs proliferation was analyzed the BrdU 

incorporation by activated PBMCs. After 72 hours of co-cultures between hAECs and PBMCs, the 

latter were recovered, 100 µl were seeded in triplicate in a 96-well plate and then BrdU 

incorporation levels were quantified using a colorimetric immunoassay, according to the 

manufacturer’s instructions (Cell Proliferation ELISA, BrdU colorimetric kit, Roche, Basel, 

Switzerland).  After the 72 hours, PBMCs recovered were also fixed (with 70% ethanol at 4°C) and 

stained with Propidium Iodide (Beckman-Coulter, Brea CA, USA) at room temperature for 10 

minutes to analyze the cell cycle phase distribution of PBMCs after co-culture with hAECs. In order 

to study one of the possible mediators of this effect, the HLA-G expression by hAECs was 

analyzed. hAECs cultured with and without activated PBMCs were fixed with intraPep kit 

(Beckman-Coulter, Brea CA, USA) and the HLA-G expression (ab7904, Abcam, Cambridge, UK) 

was measured through flow cytometric analysis. Finally, also T-Reg sub-population was analyzed. 

PBMCs were fixed as above and analyzed with the T-REG Analysis kit (Beckman-Coulter, Brea 

CA, USA) for the three markers CD4, CD25, FOXP3. 

Three dimensional immunomodulation assay

The immunomodulatory activity of hAECs was also analyzed after stepwise pancreatic-endocrine 

differentiation in 3D culture. PBMCs were isolated as previously described and plated after one day 
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of pre-activation on hAECs spheroids at the end of pancreatic differentiation protocol (hAECs/

PBMCs ratio 1:2). PBMCs were activated by the addition of PHA (5 µg/mL) and hAECs spheroids/

PBMCs co-cultures were incubated for 72 h at 37°C, 5% CO2. The negative control consisted of 

PBMCs without PHA stimulation and the positive control was PBMCs with PHA in the absence of 

hAECs spheroids. Finally, PBMCs were resuspended, recovered, and plated in 96-wells plate for 

BrdU incorporation analysis. BrdU incorporation was evaluated using a colorimetric immunoassay, 

according to the manufacturer’s instructions (Cell Proliferation ELISA, BrdU). 

Immunomodulation assay on PI-MSCs

In order to investigate also the immunomodulatory properties of PI-MSCs, they were plated in 6-

well plates at a density of 10,000 cells/cm2 and allowed to stabilize in culture for 1 day. PBMCs 

were isolated and co-cultured on PI-MSCs monolayers at a ratio of 10:1 in RPMI with 10% FBS 

(Lonza, Walkersville, MD, USA). PBMCs were activated by addition of PHA (1 µg/mL) and 

incubated for 5 days at 37°C, 5% CO2. The negative control was PBMCs without PHA stimulation 

and the positive control consisted of PBMCs stimulated by PHA in the absence of PI-MSCs. The 

immunomodulatory ability of PI-MSCs was quantified by different assays. In order to study the 

capability of PI-MSCs to inhibit the PBMCs proliferation was analyzed the BrdU incorporation by 

activated PBMCs and their cell cycle. Furthermore, to investigate one of the possible mediators of 

this effect, the HLA-G expression by PI-MSCs was analyzed as previously described.  

Endodermal cells isolation and culture
Main Pancreatic Duct and Biliary tree cells isolation and 
culture

Pancreas was obtained from cadaveric donors through Organ Procurement Organization. Main 

pancreatic duct (MPD) was removed from the pancreas during islet isolation in the facility of the 

Diabetes Research Institute, Miami. The tissue was conserved in RMPI (Lonza, Walkersville, MD, 

USA) 10% FBS (Lonza, Walkersville, MD, USA) added with Trypsin inhibitor (Sigma-Aldrich Co., 

St. Louis, MO, USA) in order to avoid tissue auto-digestion from the exocrine part of the pancreas 

until the isolation procedure was performed. Then tissue was transferred to the lab and all the 
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exocrine parts were removed. Duodenum was maintained in ice-cold UW or Kubota Medium with 

1% Antibiotics during shipment and processed within 24 hours. The organ usually appears 

surgically closed in the cranial and caudal side. The biliary tree was separated from the duodenum 

going to cut to ampulla of Vater without perforate the duodenum inner side to avoid contamination. 

Both the tissue were then minced in small piece and digested with collagenase II 2 mg/mL 

(Invitrogen, Carlsbad, CA, USA) in a 37°C water bath for 10 minutes, shaking the tubes every 5 

minutes. The suspension was flowed through a 100 µm strainer, both the strained flow-through cell 

suspensions and the undigested tissue over of the strainer was saved. The undigested portion 

over of the strainer was collected and the collagenase digestion and strainer steps were repeated 

until most tissue was dissolved. Normally five cycles are necessary. Then cells were centrifuged, 

washed in PBS and the final pellet was resuspended in complete medium. Complete medium was 

Kubota Medium (KM, table 1) 10% FBS, for MPD cells were also added 20 µg/mL of Trypsin 

inhibitor (Sigma-Aldrich Co., St. Louis, MO, USA) were added. Cells were cultured on 6-well plates 

coated with collagen IV (Sigma-Aldrich Co., St. Louis, MO, USA) for 4-6 days before further 

analyses.  

Table 2. Kubota Medium (KM)
Component Concentration or 

quantity
Seller Catalog number

RPMI 1640 500 mL Gibco 11875-093

BSA 0,5 g Sigma-Aldrich A8806-5G fatty acid free

Niancinamide 270 mg Sigma-Aldrich N0636

Insulin 2,5 mg Sigma-Aldrich I5500

Transferrin 10 µg/mL Ado, Bovine, Sigma T1283

Selenium 0,5 mL (3.1-10M ) Sigma-Aldrich 211176

Free Fatty Acids 38 µL (7,6 Equ/L)

L-Glutamine 5 mL (2 mM) Gibco 25030-081

Antibiotics 5 mL Gibco 15240-062 AAS

Hydrocortizone 500 µL (10E-7 M) Sigma-Aldrich H0888

beta-mercaptoethanol 1,75 µL (5E-5 M) Sigma-Aldrich M6250

Zinc Sulfate 
heptahydrate

0,5 mL (10E-10 M) Specpure JMC156

High Density Lipoprotein 10 µg/mL Sigma-Aldrich L8039
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Cells from Brunner’s glands isolation and culture

Duodenum was obtained from cadaveric donors through Organ Procurement Organization. Tissue 

was maintained in ice-cold UW or KM with 1% Antibiotics during shipment and processed within 24 

hours. The organ usually appears surgically closed in the cranial and caudal side. 5 mm slit was 

cut at the cranial side of the duodenum and the organ was squeezed pushing with the clamp in 

order to remove the mucus and the content of the lumen. The organ was positioned vertically, 

cranial side up, and filled with PBS 5% Antibiotics (100-150 mL) by pipetting through the slit. If 

there is a leak, the opening was clamped at the ampulla of Vater. Then the washing solution was 

removed by flipping the organ, squeezing and pouring the content on a discard becker. This wash 

step was repeated 2 more times. The organ was positioned vertically, cranial side up, filled with 

Sodium Deoxycholate 1% solution in PBS (SDC, Sigma-Aldrich Co., St. Louis, MO, USA)) and 

incubate at room temperature for 3 minutes. Then the detergent solution was removed by flipping 

the organ and pouring the content on a discard becker. The organ was filled with PBS 2% 

Antibiotics by pipetting through the slit. The washing solution was removed by flipping the organ 

and pouring the content on a discard becker. This wash step was repeated 2 more times. The 

duodenum was cut open and flattens out using sterile tweezers, the mucosa was exposed and the 

ampulla of Vater identified. A rectangle of tissue that goes from approximately 2,5 cm cranially to 

the minor ampulla, to 2,5 cm caudally to the ampulla, and from side to side of the duodenum was 

collected. The mucosa was than scraped off and removed using a flat sterile scalpel. The tissue 

was finally washed vigorously in a becker with abundant PBS 2% Antibiotics for three times. The 

tissue was minced into small pieces and digested in a pre-warmed Collagenase II 2 mg/mL 

(Invitrogen, Carlsbad, CA, USA) solution per every 1 mL of tissues. Three cycles of 15 minutes of 

digestion in the 37°C water bath were performed, shaking the tubes every 5 minutes. At the end of 

every cycle, the suspension was flowed through the strainers. The undigested portion over of the 

strainer was collected and Collagenase digestion cycle was repeated. The strained flow-through 

cell suspension was centrifuge for 5 minutes at 1500 rpm. All the cell pellets were then 

resuspended and collect together in KM added with 2% antibiotic. Cells were finally counted and 

plated in 6-well plates coated with collagen IV (Sigma-Aldrich Co., St. Louis, MO, USA), in KM 

supplemented with 10% FBS. Cells were culture for 3-4 days in KM 10% FBS and subsequently 

the medium was replaced with fresh serum-free Kubota medium or induction medium. 
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Materials and Methods

Transwell culture

Freshly isolated endodermal cells were seeded on the bottom side of a transwell with a porosity of 

0,4 um (Corning, NY, USA) coated with collagen IV (Sigma-Aldrich Co., St. Louis, MO, USA). Cells 

were allowed to stabilize for one night, the day after transwells were flipped and cells cultured and 

induced for 5 days. At day 5 of induction PI-MSCs were seeded on the top side of the transwell at a 

density of 10.000 cells/cm2. A schematic representation is show in figure 1. 

Pancreatic differentiation

After three/four days of culture cells were induced through pancreatic differentiation. Control cells 

were cultured in serum-free KM and induced cells in HDMP+ medium (Table 2). Cells were 

induced for five days with one medium changed. In the second part of the induction after five days 

PI-MSCs were seeded at 10.000 cells/cm2 on endodermal cells and maintained in culture for other 

two days. 
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Figure 2. Pancreatic differentiation and transwell protocol



Materials and Methods

Real Time PCR

At the end of the differentiation protocols the RNA was extracted with Total RNA Purification Kit 

(Norgen, Thorold, ON, Canada). The RNA was then quantified with Nanodrop and the same 

amount was used for the retrotranscription. The cDNAs were then amplified with TaqMan Fast 

Universal PCR Master Mix (Life Technologies) and Real-Time PCR assays were performed in a 

StepOne System (Applied Biosystems, Foster City, CA, USA). RNA isolated from pancreatic islets 

was used as positive control and all the gene expression was normalized to not induced cells. The 

gene analyzed and the corresponding primers are shown in Table 3. 

Table 2. HDM-P+
Component Concentration

KM without hydrocortison (KM-h)

Glucose 22mM

B27 2%

Retinoic Acid 10 μM

Cyclopamine 2,5 μM

Exendin 4 50 ng/mL

Ascorbic Acid 10ng/mL

Table 3. Primer

Primer # number Amplicon Assay 
location Exon Ref seq

INS Hs00355773_
m1 126 252 2-3 NM_000207.2

GLG Hs00174967_
m1 98 791 5-6 NM_002054.4

PDX 1 Hs00236830_
m1 73 517 1-2 NM_000209.3

NKX 6.1 Hs00232355_
m1 93 677 1-2 NM_006168.2

Pax 6 Hs01088114_m
1        86 1078 7-8 NM_000280.4
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Materials and Methods

C-peptide quantification

Supernatants were collected and stored at -20°C at different times during the pancreatic 

differentiation. At the end of the induction was also performed a static incubation assay. Cells were 

firstly washed three times with PBS and after incubated with DMEM Low glucose (2.5 mM) for 1 h. 

The supernatant was collected and stored at -20°C. Cells were washed again three times with 

PBS. A second incubation with DMEM high glucose (20 mM) for 1 hour was performed and the 

supernatant was collected. Cells washed three times PBS. Finally a last incubation with DMEM 

Low glucose (2.5 mM) for 1 hours was performed and the supernatant was collected. Samples 

collected were analyzed for c-peptide quantification with cobas c-peptide kit. 

Co-culture system  
2D co-culture system

hAECs were isolated as previously described and at passage 1 were cultured in ultra low 

attachment (ULA) T25 flask at a density of 750.000 cells/mL for 72 hours. In the meantime PI-

MSCs were seeded at a density of 10.000 cells/cm2 in DMEM L. 10% FBS and left to stabilize in 

culture for one night. The day after PI-MSCs were treated for 1 hour with mitomycin C 20 µg/mL 

(Sigma-Aldrich Co., St. Louis, MO, USA) to arrest their proliferation. Finally, hAECs were seeded 

diluted 1:10 on top of PI-MSCs and allowed to adhere for one night before further analysis.   

Immunofluorescence

Cells were fixed for 10 minutes in 2% Paraformaldehyde at room temperature. After three washes 

with PBS, cells were permeabilized for 10 minutes with PBS 1% Triton (Triton X-100, Sigma-

Aldrich, Co., St. Louis, MO, USA), then incubated in blocking solution 1X PBS 1% BSA (Sigma-

Aldrich, Co., St. Louis, MO, USA) for 30 minutes. Cortical actin was stained using FITC-Phalloidin 

(1:250, Sigma-Aldrich, Co., St. Louis, MO, USA) diluted in blocking solution incubating for 1 hours 

at room temperature. After three washes in 1X PBS coverslips were mounted using ProLong Gold 

Antifade Mountant with Dapi (Thermo Fisher Scientific, Monza, MB, Italy) 
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Spheroids creation and characterization

hAECs were cultured in ultra low attachment T25 flasks at a density of 750.000 cells/mL for 3 days 

in DMEM H. Glucose with 10% FBS and EGF 10ng/mL. After 72 hours PI-MSCs were added in a 

ratio of 1:4 and maintained in culture for further analysis. 

Cell spheroids were also sorted with a tag less proprietary cell sorter Celector® (Stem Sel ltd, 

Bologna, Italy). Celector® is based on a field-flow fractionation (FFF) derived technique. FFF is a 

chromatographic-like, soft-impact separation method that performs partition according to chemical-

physical properties, such as mass, size, charge, density, shape, and rigidity. Separation is 

achieved within a capillary channel by the combined action of the laminar flow (mobile phase) and 

a field applied perpendicularly to the flow. Cells with different physical properties are driven by the 

applied field in a specific position across the channel thickness thus they are eluted at a well 

defined velocity. Different field types can be used in FFF. In this study was used a proprietary 

method based on a novel modification of the Gravitational-FFF process exploiting the Earth’s 

gravity field for separation. The fractionation process is based on the differences in cell features 

that are dynamically acquired during flow-assisted fractionation under the combined action of the 

flow stream, the gravitational field, and the hydrodynamic lift forces (Non Equilibrium Earth Gravity 

Assisted- Dynamic Fractionation, NEEGA-DF) [124]. After fractionation is completed, cells can 
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Figure 3. Scheme of the fractionation process. Roda B et al., 2009. 



Materials and Methods
return to the adherent state, and the native physical features are fully restored. This allows high 

cell recovery and full maintenance of cell viability and differentiation features [125-127]. The 

NEEGA-DF method is implemented in a prototype named Celector®. The instrumental set-

up is mainly composed of a mobile phase reservoir, an injection valve, pumps for fluids 

delivery, the separative channel, an optical system for real-time monitoring of the eluted 

cells and a fraction collector. In this study, 100 µl of spheroid suspension were injected into 

Celector® with a continuous mobile phase flow at 1 mL/minute flow rate. Sterile filtered PBS added 

with 0.1% BSA, 100 U/mL penicillin, and 100 µg/mL streptomycin was employed as mobile phase. 

The fractionation process can be real-time monitored by the optical system since channel wall are 

made of transparent plastic materials and the cell distribution over elution time can be obtained 

(fractogram) Three fractions of eluted cells were collected at different time points. F1 cell fraction 

was collected from 0 to 2 minutes, F2 from 2 to 4 minutes, and F3 from 4 to 10 minutes. After the 

fractionation process, cells were plated in a 24-well plate and monitored for the following days. The 

same process was performed with hAECs spheroids alone and with mixed spheroids (hAECs/PI-

MSCs). 
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Materials and Methods

Statistical analysis

Data are presented as means standard deviation and were analyzed by one and two-way 

ANOVA or t-test using Graph Pad Prism software. The significance threshold was p<0.05.  
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Results and Discussion

When the telescope ends, the 
microscope begins.  
Which of the two have the 
grander view? 

Victor Hugo 
Les Miserables 
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Results and Discussion

Results and Discussion 
human Amniotic Epithelial Cells (hAECs) 

Isolation and culture

Human placenta is obtained in accordance to the local ethical committee. Immediately after 

delivery, the placenta is transferred and processed in the laboratory. As shown in figure 1-a, it is 

possible to separate the two fetal membranes (amnion and chorion) by a simple mechanical 

traction. Before the enzymatic digestion, two cell populations are present in the amniotic 

membrane, the epithelial component and the stromal component disperse in the extracellular 

matrix (figure 1-b). The enzymatic digestion of the tissue with trypsin enables  the detachment and 

collection of amniotic epithelial cells, and the removal of the stromal component, as confirmed by 

microscope visualization (figure 1-c). Therefore, the isolated cells are termed human Amniotic 
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Figure 1. Cells isolation. (a) Separation of the two membranes from the placenta. (b) 
Amniotic membrane before the enzymatic digestion, 4X. (c) The amniotic membrane after 
the enzymatic digestion, 10X. (d) a monolayers of hAECs, 10X.



Results and Discussion
Epithelial Cells (hAECs). They were seeded in a range of 60.000-100.000 cells/cm2, normally in 

DMEM H. Glucose added with 10% FBS and EGF 10 ng/mL, and incubated at 37°C with 5% of 

CO2. hAECs were expanded in culture, and in 4-6 days a confluent monolayer is obtained with the 

classical epithelial cobblestone-shaped morphology (figure 1-d). 

Cells were cultured in Serum Rich Medium (SRM), DMEM H. Glucose 10% FBS + EGF 10 ng/mL 

but also in a Serum Free Medium (SFM), Q286 + EGF 10 ng/mL. Q286 is a further developed 

DMEM enriched with selected serum components and growth enhancers, tailor made for epithelial 

cells. We have decided to test a serum-free medium for its importance in clinical applications in 

terms of reproducibility, standardization, and absence of ethical problems related to the use of 

animal origin component. hAECs can be isolated and cultured in SRM and also in SFM as shown 

in figure 2. Moreover, cells obtained do not show morphologic differences. To evaluate the culture 

medium influence on hAEC growth kinetic and proliferation ability, we performed a cell growth 

assay for 15 days. The resulting representative growth curves show no significant differences 

between SRM and SFM, only a slight decrease in SFM (figure 3).  
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Figure 2. Light microscopy images of hAECs. On the left hAECs cultured in SRM and on the 
right hAECs cultured in SFM, 4X Magnification.
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Figure 3. hAECs proliferation.  
In vitro expansion of hAECs in 
SRM and SFM culture media. 
Cells were isolated and seeded  
at passage 1 at 60,000 cells/
cm2, and cell proliferation was 
analyzed for 15 days. Data are 
plotted as the percentage of 
alamar reduction analyzed at 
specific time points. 



Results and Discussion

Immunophenotypic and molecular characterization

In order to analyze the immunophenotypic profile and the stemness characteristic of hAECs in the 

two different media, a cytofluorimetric analysis was performed. Figure 4 shows the expression of 

two stemness markers Oct4A (SRM 99.1 ± 0,2% and SFM 99,3 ± 0,3%) and SSEA-4 (SRM 97.3 ± 

0,4% and SFM 98,9 ± 0,2%) that are expressed in both culture conditions. It is also possible to 

appreciate the expression of a classical epithelial marker, Pan-Cytokeratin (SRM 99.9 ± 0,1% and 

SFM 99,9 ± 0,1), and the low expression of a classical stromal marker, CD105 (SRM 94.5 ± 0,5% 

and SFM 93,7 ± 0,6). These data proved the preservation of the hAEC immunophenotype and 

stemness characteristics in SFM. 

To further evaluate the SFM impact on hAECs characteristics, the mRNA expression of a 

proliferative marker, Ki67, and of three classical stemness markers NANOG, SOX2, and OCT4A, 

was analyzed. Ki67 expression shows a not significant decrease in SFM, which is confirmed by the 

observation of a mild reduction proliferative capacity in vitro (figure 5). However, the gene 

expression levels of stemness markers were clearly and significantly higher in SFM than in SRM, 

namely 70-fold for NANOG, 36-fold for SOX2, and 12-fold increase for OCT4a mRNA. This 

suggests that SFM could preserve hAECs in a more undifferentiated status.  
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Figure 4 Cytofluorimetric characterization. Expression of the two stemness marker OCT4 and 
SSEA-4. High expression of the epithelial marker PanCK and low expression of the stromal 
marker CD105. Unstained controls are presented as filled black histograms, the specific cell 
markers as white histograms. Modified from Okere et al., 2015.



Results and Discussion
All these data confirm firstly the possibility to 

isolate and expand hAECs in a standard 

culture medium without the addition of the fetal 

bovine serum. Second SFM seems not to 

affect the classical characteristics of the 

hAECs. This allows their application for future 

cell therapies. 
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Figure 5. Gene expression. Gene 
expression levels for Ki67, NANOG, 
SOX2, and OCT4a. mRNAs contents of 
hAECs cultured in SFM (black bars) are 
expressed as the fold increase against 
control cells cultured in SRM (white bars). 
Means ± SD; n = 5. *P <0.05; **P <0.01. 
Modified from Okere et al., 2015.



Results and Discussion

3D Culture

In order to test the possibility to induce hAECs through the pancreatic endocrine lineage, we have 

decided to create a 3D culture system. This allows us to recreate in vitro a more similar 

environment to the in vivo one. After the first passage in culture, cells were seeded on a thick bed 

consisting of 100% gelled basement membrane extract (BME) and cultured for different days. After 

seven days it is possible to observe the formation of multicellular structures that increase over time 

and reach a definitive architecture after two weeks. In figure 6 it is shown how SFM was more 

efficient in maintaining a stable spheroid morphology after two weeks in culture, while the serum 

rich condition caused the development of irregular and larger cell clusters.  

To evaluate the viability and the growth of hAECs in a 3D culture model, we have performed a cell 

growth assay for 15 days. The resulting curve does not show a growth but only a stabilization of 

the hAEC spheroids in culture. Moreover, they do not show significant differences between SRM 

and SFM (figure 7).  
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Figure 6. Three dimensional culture. On the top of the image cluster formation in serum rich 
medium at different time point. On the bottom it is possible to observe the cluster formation in 
serum free medium. Scale bars = 20 µm. Modified from Okere et al., 2015.

0 5 10 15 20
0

200

400

Time (Days) 

%
 o

f a
la

m
ar

 r
ed

uc
tio

n hAEC spheroids SRM
hAEC spheroids SFM

Figure 7. hAEC spheroids 
growth kinetics. In vitro culture of 
hAEC spheroids in SRM and SFM 
culture media. Cells were isolated 
and seeded at passage 1 at 60,000 
cells/cm2 on 100% gelled BME, and 
cell proliferation was analyzed for 
15 days. Data are plotted as the 
percentage of alamar reduction 
analyzed at specific time points. 



Results and Discussion
To visualize the internal structure of hAEC spheroids, an immunofluorescence for phalloidin, a 

marker for f-actin distribution, was performed. In figure 8 it is possible to observe a representative 

image that shows a dense core and a well structured spheroid. 

Finally, the mRNA expression of stem cell factors, OCT4, SOX2, and NANOG was checked to 

determinate their expression in the 3D culture system. Figure 9 shows a representative image of 

an RT-PCR that highlight the maintenance of their expression in 3D culture. 
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Figure 9. RT-PCR in 3D cultures. Representative image of a RT-PCR 
for stemness genes OCT4, SOX2 and NANOG in hAECs cultured in a 
3D system. β-ACTIN was used as control.

Figure 8. hAECs spheroids structure. Representative image of a cytoskeleton structures 
evidenced by immunofluorescence assay a) Nuclei counterstained with DAPI (blue). b) 
Phalloidin staining (green) c) Merge micrograph.



Results and Discussion

Pancreatic differentiation of hAECs

After the spheroid formation, hAECs were induced for 20 days through the pancreatic endocrine 

lineage as describe in the materials and methods section. 

&  

To determine whether the stepwise differentiation protocol efficiently induced hAEC spheroids into 

hormone-producing cells in both the two culture media SFM and SRM, we performed an 

immunofluorescence analysis and determined the presence of pancreatic hormones glucagon and 

insulin (figure 10-A). Basal expression of glucagon was present in undifferentiated control cells 

(data not shown), but glucagon immunoreactivity became more intense upon differentiation. 

Instead, basal expression of insulin was absent from undifferentiated hAECs. After 20 days of 

pancreatic induction in both the conditions, spheroids became insulin-positive. Confocal 

micrographs revealed the external localization of insulin-positive cells within the spheroids. In 

particular, merged images of immunofluorescence and phase-contrast micrographs showed the 

membrane-related position of insulin, while exclusively hAECs localized in the central area of the 

spheroids expressed glucagon. The peripheral arrangement of insulin is consistent with the 

exocytosis mechanism for the release of insulin granules in response to high glucose levels. To 

assess the endogenous production of insulin and verify whether induced hAECs formed mature 

secretory granules we used transmission electron microscopy (TEM) (figure 10-B). TEM 

ultrastructural analysis of induced hAECs (versus undifferentiated control cells) revealed the high 

complexity of the cytoplasm and the presence of several vesicles, consistent with intense protein 

synthesis. In particular, cells contained numerous secretory granules with a bright halo surrounding 

an electrondense core, which is peculiar to mature insulin containing granules.  

Finally, we decided to concentrate our attention to cells cultured only in SFM due to the aim of 

clinical application. To further confirm the endogenous nature of the detected insulin, C-peptide 

secretion assay was performed in SFM hAECs differentiated and non-differentiated spheroids 

(control group) (figure 11-a). Basal secretion of C-peptide was measured in control group at 2 mM 

D-glucose and 20 mM D-glucose concentrations (0.227 ± 0.027 pmol/ng DNA and 0.244 ± 0.033 
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Figure 10. Pancreatic-endocrine induced hAECs express insulin. (A) Confocal 
immunofluorescence analysis of hormone- expressing cells. Insulin and glucagon staining of 
hAEC spheroids in SFM (a–d and f-j). Phase-contrast micrograph (i-h) shows the structure of 
hAEC spheroid. Merge micrograph (e and k) highlights the strict perimembrane localization of 
insulin. Nuclei are counterstained with DAPI (d). Scale bars = 40 µm. (B) Electron micrograph of 
control hAECs showing normal cytoplasmatic ultrastructure (a) and pancreatic-endocrine induced 
hAEC spheroid cultured in SRM (b) and in SFM (c) showing granules with crystalline electron-
dense cores, reminiscent of beta cell granules (black arrows). Scale bars = 1 µm. Modified from 
Okere et al., 2015.



Results and Discussion
pmol/ng DNA, respectively). Pancreatic 

endocrine differentiated spheroids secreted 

higher levels (P <0.02) of C-peptide in 20 mM 

D-Glucose condition (0.697 ± 0.036 pmol/ng 

DNA), than differentiated spheroids in 2 mM D-

glucose condition (0.427 ± 0.050 pmol/ng 

DNA). Subsequently, immunofluorescence 

analysis performed on differentiated hAEC 

spheroids revealed a clear and widespread 

presence of C-peptide positive cells (figure 

11-b). These data further support the success 

of the differentiation protocol and show the 

acquisition of a glucose-stimulated insulin 

release mechanism from hAEC spheroids. 
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Figure 11. Pancreatic differentiation and c-
peptide release. (A) C-peptide release by 
hAEC spheroids in SFM in response to 
hypoglycemic (2 mM D-Glucose) and 
hyperglycemic (20 mM D-Glucose) conditions. 
C-peptide levels were measured by ELISA and 
normalized to total DNA content. (B) Confocal 
immunofluorescence analysis of hAEC 
spheroids. Differentiated cells exposed to 20 
mM D-Glucose show a widespread C-peptide 
(c) expression. Laminin (b) staining highlights 
its enveloping function at the spheroids 
perimeter. Merge micrograph is shown (d). 
Nuclei are counterstained with DAPI (a). Scale 
bar = 20 µm. Okere et al., 2015.



Results and Discussion - Pancreatic Islets Mesenchymal Stromal Cells

Pancreatic Islets Mesenchymal Stromal cells (PI-MSCs)
Isolation and culture

Pancreatic Islets (PI) were isolated from cadaveric donor pancreas following the Ricordi method. 

After the isolation procedure, pancreatic islets (PI) purity was analyzed with trypan blue, and 

viability was analyzed with dithizone staining respectively (data not shown). PI were then seeded in 

DMEM L. Glucose with 10% FBS in tissue cultured treated plate. Whitin a week, PI cells adhere to 

plastic plates (figure 12-a).  

During the following week cells with fibroblastic morphology grow out of pancreatic islets structures 

(figure 12-b). Within two weeks in culture, cell cultures reached the confluence and could be 

expanded in vitro for different passages (figure 12-c). Isolated PI-MSCs isolated were expanded 

for at least for 5 passages. Culture-expansion in DMEM L glucose + 10% FBS and 

cryopreservation determine the loss of islet endocrine cells, and the emerging mesenchymal 

population results homogeneous, without endocrine or exocrine contaminants.   
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Figure 12. PI-MSCs isolation: a) Pancreatic islets after three days of culture. b) MSCs growing 
from pancreatic islets after one week. c) PI-MSCs at passage five.
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Results and Discussion - Pancreatic Islets Mesenchymal Stromal Cells
At passage 5 a cell growth assay was performed for 7 days. PI-MSCs showed a higher 

proliferation rate compare to hAECs (figure 13).  

An immunophenotypic cytofluorimetric analysis of isolated cells was conducted to confirm their 

mesenchymal origin. The immunophenotypic characterization (figure 14) shows the absence or 

the low expression of two hemopoietic markers CD34 and CD45 and one classical epithelial 

marker, PanCitokeratin. Instead, PI-MSCs show a high expression of specific mesenchymal 

markers as CD44, CD73, CD90 and CD105. This characterization confirms the mesenchymal 

nature of the isolated cells. Moreover, PI-MSCs do not express the HLA-DR, a major 

histocompatibility complex (MHC) class II cell surface receptor. This suggests the ability of PI-

MSCs to escape the immune system, an important characteristic for clinical application. 

Mesenchymal differentiation

In order to further confirm the mesenchymal origin and the multi-differentiation potential of the PI-

MSCs, the differentiation through the three classical mesodermal lineages was stimulated. 

Adipogenic, osteogenic and chondrogenic differentiation ability was tested with in vitro protocols. 

Adipogenic differentiation was analyzed via Oil Red O staining, a dye that stains neutral 

triglycerides and lipids. Only a few Pi-MSCs matured into cells containing multiple lipid-rich 
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Figure 14. Pi-MSCs immunophenotypic characterization. Cytofluorimetric analysis of the 
expression of hemopoietic markers (CD34 and CD45). of mesenchymal markers (CD44, CD73, 
CD90 and CD105), HLA-DR and epithelial marker Pan-CK. Unstained controls are presented as 
filled black histograms , the specific cell markers as white histograms.



Results and Discussion - Pancreatic Islets Mesenchymal Stromal Cells
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Figure 15. Mesenchymal lineages differentiation. a) Oil red O staining on control and induced 
cells after adipogenic differentiation. 10X Magnification. b) Alizarin Red staining on control and 
induced cells after osteogenic differentiation. c) hematoxylin eosin staining on control and 
induced cells after chondrogenic differentiation. d) Alcian blue staining on control and induced 
cells after chondrogenic differentiation. 
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Results and Discussion - Pancreatic Islets Mesenchymal Stromal Cells
vacuoles in the cytoplasm, vacuoles that increased in size and number during the three weeks of 

induction and were intensely stained red with Oil Red O (figure 15-a). Osteogenic differentiation 

was tested after two weeks of induction with Alizarin Red staining, a staining for calcium 

accumulation. Intense red staining was observed in induced cells indicating extracellular 

mineralization, a key step toward the formation of calcified matrix. Uninduced cells do not show 

Alizarin Red positive deposits (figure 15-b). Chondrogenic differentiation was performed in a pellet 

culture system in order to create a 3D structure. Figure 15-c shows the formation of a cell pellet, 

stained with hematoxylin eosin, more compact and well structured in induced cells. The 

chondrogenic differentiation was further documented by Alcian Blue staining (figure 15-d). 

Differentiated cells were embedded in an abundant extracellular matrix that proved highly positive 

for the presence of a proteoglycan component as evidenced by Alcian Blue staining in the induced 

cells, but not in the control cells.  
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Results and Discussion - Immunomodulation

Immunomodulation assay
Immunomodulation assay on hAECs

For clinical applications, immunomodulatory properties are pivotal to avoid rejection after the 

transplant. In this contest, the capability of hAECs to interact with the immune system was 

analyzed. A co-culture of hAECs cultured in SRM and SFM with PHA-activated PBMCs was 

performed. PBMCs were activated with PHA in order to recreate an inflammatory condition. In 

figure 16-a it is shown how after 3 days of co-culture hAECs are able to inhibit the proliferation of 

the activated PBMCs. In particular, a significantly lower BrdU incorporation of activated PBMCs 

was observed when co-cultured with hAECs (SRM 15,0 ± 11,9% and SFM 17,1 ± 10,4%) 

compared to the one cultured in standard conditions (100 ± 9,7%), p<0,0001. hAECs are also able 

to arrest PBMC in the G0-G1 phase decreasing the number of cells in the S-G2M (figure 16-b). 

Non-activated PBMCs were all in G0-G1 phase (96,4 ± 6,3%), while activated PBMCs in the 

absence of hAECs significantly decreased in the G0-G1 phase (68,7 ± 3,3%) and increased in the 
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Figure 16. hAECS immunomodulation. (a) PBMCs BrdU incorporation, p<0,0001. (b) PBMCs 
cell cycle analysis, P <0.005. (c) hAECs HLA-G expression alone (black bars) and after co-
culture with active PBMCs (white bars), p< 0,0001  (d) Treg subpopulation pre and after co-
culture with hAECs, p<0,01 only in SFM. All data are expressed as means ± SD.



Results and Discussion - Immunomodulation
S-G2M phase (30,7 ± 2,5%), P <0.0001. After co-culture with hAECs in SRM and SFM, we 

observed a significant increase of PBMCs in G0-G1 (SRM 83,0 ± 4,1% and SFM 82,7 ± 4,9%) and 

an equally reduction of PBMCs in the S-G2M phase (SRM 15,9 ± 2,6% and SFM 15,7 ± 2,9%), P 

<0.005. Following this observation, we may assume that hAECs cultured in either SRM or SFM, 

similarly reduce the proliferation of stimulated PBMCs. In order to study possible mechanisms of 

these properties, we have analyzed the HLA-G expression and T lymphocyte subpopulations. In 

figure 16-c it is shown how the hAECs’ HLA-G expression increase after the co-culture in SRM 

from 33,3 ± 8,5% to 91,3 ± 7,2% and in SFM from 41,5% ± 16% to 95,4% ± 4,4%, p< 0,0001. 

Finally, it is also possible to observe an increase of the Treg subpopulation analyzed as CD4, 

CD25, and  FOXP3 positive PBMCs (figure 16-d). The percent value increase from 0,4 ± 0,5% in 

the negative control (PBMCs) and to 4,8 ± 5,6% in the positive control (PBMCs + PHA). It 

increases more after the co-culture in both SRM (28,9 ± 20,2%) and in SFM (37,5 ± 15,7%), 

p<0,01 only for SFM. 

3D immunomodulation assay

The hAECs immunomodulatory properties were analyzed not only in 2D but also in the 3D culture 

system. In figure 17 it is shown a representative experiment of the same hAECs sample, cultured 

in SRM in both the culture system. This experiment shows how hAEC spheroids are able to inhibit 

the activated PBMCs proliferation. The percent of BrdU incorporation decrease in SRM from 100% 

in positive control (PBMCs + PHA) to 19,3 ± 5% in 2D and 12,3 ± 0,4% in 3D culture. In SFM the 

incorporation decrease from 100% to 19,2 ± 4,1% in 2D and 43,5 ± 0,6% in 3D culture. 
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Figure 17. 2D and 3D hAECs immunomodulation. Comparative experiment of PBMCs BrdU 
incorporation after co-culture with hAECs in SRM cultured in 2D and in 3D system. Data are 
expressed as a percentage of BrdU incorporation. Means ± SD.
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Results and Discussion - Immunomodulation
Proved this, we studied if the immunomodulation properties of the hAEC spheroids are also 

maintained after the pancreatic differentiation (Figure 18). PBMCs do not incorporate BrdU (1.2 ± 

3.2%), while PHA-activated PBMCs regularly 

incorporate high levels of BrdU (100 ± 4.1%). 

Moreover, BrdU incorpora t ion leve ls 

significantly decreased after co-culture with 

induced (SRM 21,4 ± 16,3% and SFM 8.1 ± 

5.7%) or non-induced (SRM 23 ± 11,7% and 

SFM 8.5 ± 4.4%) hAEC spheroids (P<0.0001). 

To conclude, no significant differences in 

inhibition activity on PBMCs proliferation were 

observed between differentiated and non-

differentiated hAECs spheroids.  

Immunomodulation assay on PI-MSCs

Moreover, the immunomodulation properties of MSCs isolated from pancreatic islet were tested 

(figure 19).  In figure 19-a it is shown how after five days of co-culture PI-MSCs are able to inhibit 

the proliferation of the PBMCs activated with PHA. In particular, activated PBMCs show a 

significantly lower BrdU incorporation when co-cultured with PI-MSCs (19,0 ± 1,7%) compared to 

the one cultured under standard conditions (100 ± 2%). PI-MSCs are also able to arrest PBMCs in 

the G0-G1 phase decreasing the number of cells in the S-G2M phase (figure 19-b). Non-activated 

PBMCs were all in GO-G1 phase, while activated PBMCs in the absence of PI-Non-activated 
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Figure 18. 3D immunomodulation after 
pancreatic differentiation. Co-culture of PHA-
activated PBMCs with control and differentiated 
hAEC spheroids in SRM and SFM led to 
significant reduction in PBMC proliferation 
assayed by BrdU incorporation levels. Data are 
expressed as a percen tage o f BrdU 
incorporation. Means ± SD; P <0.0001. 
Modified from Okere et al., 2015.
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Figure 19. PI-MSCs immunomodulation. a) PBMCs BrdU incorporation. (b) PBMCs cell cycle 
analysis. Data are expressed as means ± SD. (c) PI-MSCs HLA-G basal expression (filled black 
histograms) and after co-culture with active PBMCs (white histograms).
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PBMCs were all in GO-G1 phase, while activated PBMCs in the absence of PI-MSCs significantly 

decreased in the G0-G1 phase to 77,6% and increased in the S-G2M phase 22.4%. After co-

culture with PI-MSCs, we observed a significant increase of PBMCs in G0-G1 phase to 86,6% and 

an equally reduction of PBMCs in the S-G2M phase, 13,4%. Finally, HLA-G expression was 

analyzed and in figure 19-c it is shown an HLA-G increase from 25,8 to 83,3% after co-culture 

with PI-MSCs. 
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Results and Discussion - Endodermal cells 

Isolation of endodermal cells  

Main Pancreatic Duct

The main pancreatic duct was obtained from cadaveric donor pancreas through Organ 

Procurement Organization. The tissue was conserved in RPMI with 10% FBS and trypsin inhibitor 

until further manipulation to avoid autodigestion from the exocrine component. Once in the 

laboratory all the pancreas, exocrine and endocrine components, was removed to prevent 

endocrine contamination in culture. Tissue was then minced and digested with collagenase II. 

Isolated cells were grown in Kubota Medium (KM) with 10% FBS and trypsin inhibitors in collagen 

IV coated plates for several days (figure 20). Collage IV is one the component of the pancreas 

ECM in vivo, and it could boost the pancreatic differentiation in vitro. After few days in culture, it 

was possible to appreciate the formation of “carpet” like colonies of tightly packed, uniformly 

cuboidal shaped cells. 
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Figure 20. Representative images of the Main Pancreatic Duct. On the left isolation of the 
main pancreatic duct and on the right a representative light microscopy image of the MPD 
“carpet” like colonies in vitro.



Results and Discussion - Endodermal cells 

Biliary tree

The duodenum was obtained from cadaveric donors pancreas and conserved in RPMI 10% until 

further manipulation. Once in the laboratory the hepatopancreatic duct was identified in the internal 

part of the duodenum and cut paying attention to avoid any incisions on the inner membrane that 

could cause contaminations. Tissue was then minced and digested with collagenase II. Cells, as 

obtained, were cultured in KM 10% FBS for different days on collagen IV coated plates (figure 21). 

After few days in culture, two type of colonies were observed in culture. Type 1 formed “carpet” like 

colonies of tightly packed, uniformly cuboidal shaped cells. Type 2 colonies are composed of cells 

with an undulation, swirling morphology.  
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Hepatopancrea*c	duct	

Figure 21. Representative images of the Biliary Tree. On the left an image of the 
procedure for the separation of the biliary tree from the duodenum. On the right a light 
microscopy image of BT cells in culture.



Results and Discussion - Endodermal cells 

Brunner’s glands

Once in the laboratory, the duodenum was emptied and then washed to remove all the internal 

mucous. After that, the mucosa was decellularized and peeled to get access to the submucosa 

where are located the Brunner’s glands. Subsequently, the tissue was minced and digested with 

collagenase II. Cells, as obtained, were cultured in KM 10% FBS for different days in collagen IV 

coated plates (figure 22). After few days in culture, it is possible to appreciate the formation of 

colonies with cells of endodermal swirling morphology.  
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Figure 22. Representative images of Brunner’s glands. On the left a representative image 
of the procedure for cells isolation from the duodenum. On the right a light microscopy image 
of BG cells in culture.



Results and Discussion - Endodermal cells 

Pancreatic differentiation

After the establishment of cells cultured from all the three endodermal origin and PI-MSCs were 

induced to mature towards the pancreatic endocrine lineage as previously described (See 

Materials and Methods section). Briefly, control cells were maintained in serum-free KM, while 

induced cells were cultured in HDM-P+. Cells from endodermal origin were treated for five days 

with one medium change, while PI-MSCs were induced only for two days. Cells were induced with 

the combination of different factors. One of the most important is the cyclopamine, a steroid 

alkaloid, able to inhibit Sonic Hedgehog and consequently induce the expression of PDX1. Another 

important factor is Exendin 4, a GLP1  agonist that binding GLP1 receptor could increase insulin 

secretion. After the induction, RNA extraction was performed and the expression of specific 

pancreatic genes was analyzed. Pancreatic islets were used as positive control, and all data were 

shown as fold increase compared to uninduced cells. In figure 23 it is possible to observe an 

increasing trend of different genes involved in the pancreatic differentiation.  
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Figure 23. Gene expression analysis. RNA expression of Insulin (INS), Glucagon (GCG), 
PDX1, Nkx 6.1 and PAX6 in MPD, BT, BG and PI-MSCs. Data are shown as fold increase 
compared to not induced cells. Pancreatic islets are used as positive control.
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Results and Discussion - Endodermal cells 

Co-culture and Transwell protocol

Once confirmed the capability of these cells to express specific pancreatic genes to enhance the 

efficiency of differentiation, we investigated whether the co-culture of endodermal cells with 

pancreatic islets stromal cells could improve the differentiation yield. To recreate the in vivo 

conditions, we combined endodermal cells, stromal cells, and extracellular matrix component, 

(collagen IV) in vitro.  

Furthermore, we have cultured cells in a transwell system with the aim of analyze gene expression 

of the two populations. The porosity of the transwell membrane was 0,4 µm that do not allow cells 

to permeate but only contacts between them. The mRNA expression of MPD cells was analyzed 

and figure 24 shows after this co-culture strategy the up-regulation of all the pancreatic genes, 

Insulin, Glucagon and also the intermediate genes PDX1, Nkx6.1, and PAX6. 
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Figure 24. Gene expression PCR MPD cultured in a Transwell system. On the left, MPD 
gene expression level for Insulin Glucagon PDX1, Nkx 6.1 and PAX6. Cells were cultured in the 
transwell system and the gene expression is shown as fold increase compared to uninduced 
cells. On the left the same data are compared to the one of MPD cultured in the classic 2D 
system.



Results and Discussion - Endodermal cells 

C-peptide quantification

To complete the characterization of induced cells, we analyzed the beta cell-specific function of 

glucose-responsive c-peptide release in the supernatant. Figure 25 shows the spontaneous 

release of c-peptide in the medium during the differentiation protocols. The c-peptide release was 

markedly increased after the co-culture with PI-MSCs in both the cells population. This support the 

idea that the environment is crucial to enhance the pancreatic differentiation. 

In order to verify the terminal maturation of the differentiated cells a static incubation was 

performed. Cells were subsequently incubated with different concentration of glucose 2,5 and 20 

mM respectively lower and higher concentration. By the data of static incubation analysis we 

observed in same case (notably BGs+PI-MSCs and BT+PI-MSCs) the development of functional 

glucose responsive beta-like cells (Figure 26) . 
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Figure 25. C-peptide release. a) MPD c-peptide release during differentiation protocol, after 3 
and 5 days and at the end for induction. b) BT c-peptide release during differentiation protocol, 
after 3 and 5 days and at the end for induction. Data are presented as ng C-peptide/day.



Results and Discussion - Endodermal cells 
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Figure 26. Static Incubation. C-peptide releases after incubation with different glucose 
concentration. Low glucose 2,5 mM and 20 mM for high glucose. Data are presented as ng/mL.



Results and Discussion - hAECs and PI-MSCs

hAECs and PI-MSCs

Co-Culture system

Endodermal cells are a fascinating model for pancreatic endocrine differentiation studies, but their 

use is not sustainable for clinical application. This led us to establish a co-culture system of hAECs 

and PI-MSC in order to improve hAEC pancreatic endocrine differentiation and generate islet-like 

spheroids. First of all, we had co-culture together the two cell populations (figure 27). Pi-MSCs 

were seeded in culture and treated with mitomycin C to create a cell feeders layers. The days after 

hAECs cultured in ultra low attachment plates for 72 hours were seeded on the top of the PI-MSCs 

layers. Cells were then cultured for different days in DMEM high glucose added with 10% FBS and 

EGF 10 ng/mL. hAECs created compact colonies and PI-MSCs constitute as a barrier around 

(figure 27-a). A phalloidin immunofluorescence was performed in order to study the cytoskeleton 
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Figure 27. hAECs and PI-MSCs co-culture. (a) Light microscope image of co-culture 
system. (b) Immunofluorescence for phalloidin of co-culture system. (c) Immunofluorescence 
for phalloidin of hAECs. (d) Immunofluorescence for phalloidin of PI-MSCs. 



Results and Discussion - hAECs and PI-MSCs
cells conformation. hAECs and PI-MSCs show a different peculiar cytoskeleton structure. In 

hAECs, the F-actin filament is distributed predominantly at the plasma membrane while PI-MSCs 

showed a dense network of F-actin bundles with tight, parallel stress fibers (figure 27-c and d). 

This classical and peculiar conformation is also preserved in the co-culture system (figure 27-b) 

Creation of cell spheroids in Ultra Low Attachment

In order to recreate a complete pancreatic islet, with both epithelial and stromal component, was 

tested the possibility to combine the two cell populations in a three-dimensional system. hAECs 

were firstly cultured in ultra-low attachment T25 flasks designed to avoid the cell contact with the 

plastic and boost the cell auto aggregation. As shown in figure 28-a hAECs were seeded in a 

single cell suspension, and after 48-72 hours it is possible to appreciate a spheroid formation 
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Figure 28. Cluster formation.  (a) light microscopy image of hAECs in Ultra Low Attachment 
flask at time 0. 10X magnification. (b) light microscopy image of hAECs in Ultra Low Attachment 
flask after 48 h. 10X Magnification. (c) light microscopy image of hAECs cluster after one day of 
co-culture with PI-MSCs in Ultra Low Attachment flask. 10X Magnification. (d) light microscopy 
image of hAECs/PI-MSCs after three days after re-plating in tissue culture flask. 4X 
Magnification.



Results and Discussion - hAECs and PI-MSCs
(figure 28-b). hAECs are epithelial cells which need to grow in a mutual contact. Consequently, an 

ultra low attachment system is not the ideal one, intact it led the formation of irregular and 

uncompacted spheroids. After 72 hours PI-MSCs were added in a ratio of 1:4 at the cell culture. 

The day after, it is possible to observe the presence of very compact and well structured spheroids 

(figure 28- c,e) with a diameter size in a range of 50-100 µm. To assay the viability and to test if 

spheroids were miscellaneous, they were transferred again in a tissue treated culture plate. In 

figure 28-d it is shown how spheroids are able to adhere to the plastic once in culture and after 

few days is possible to appreciate the presence of both hAECs and PI-MSCs. 

Spheroid separation

For clinical application, it is critical the standardization of every steps of cell preparation process. In 

particular, to improve the chance of engraftment after transplantation, it is pivotal the dimension of 

islet-like spheroids. Significantly larger spheroids do not allow gas exchanges and re-

vascularization processes that are crucial for the insulin release into the bloodstream. For this 

reason, we applied a tag-less sorter (Celector) to collect spheroids with dimension suitable for 

transplantation. In figure 29 it is shown a representative fractogram of an hAEC spheroids 

injection. The fractogram shows a main band distribution (figure 29-b). In this study, three different 

fractions were collected, F1 from 0 to 2 minutes, F2 from 2 to 4 minutes and F3 from 4 to 10 

minutes. Cells were then collected and plated in culture. As is possible to observe in figure 29-c, in 

F1 are present only spheroids with a diameter of 50-100 µm for the most part. F2 is characterized 

by spheroids with a lower dimension (diameter <50 µm) and single cells alike. Finally, in F3 only 

single cells or very small aggregate of four/five cells are present. The same process was 

performed with hAEC spheroids and also mixed spheroids (hAECs/PI-MSCs) (figure 29-d).  
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Figure 29. hAEC spheroids fractionation. a) images of cells during fractionation process. b) 
Representative fractogram with F1, F2 and F3 as collected fractions. c) light microscopy images 
of hAEC spheroids after the fractionation process. 10X magnification. d) light microscopy images 
of mixed hAEC/Pi-MSCs spheroids after the fractionation process. 10X magnification.



Conclusion

I tell young people: Do not think 
of yourself, think of others. 
Think of the future that awaits 
you, think about what you can 
do and do not fear anything. 

Rita Levi Montalcini 
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Conclusion

Type 1 diabetes (T1D) is an autoimmune disease that affects insulin-producing beta cells in the 

pancreas. In patients affected by T1D, the immune system mistakenly attacks beta cells, and the 

loss of these cells determines a loss of the ability to control the metabolism of carbohydrates, 

leading to glucose accumulation in the blood and toxicity to multiple organs. Chronic exogenous 

insulin administration is a life-saving intervention and represents the standard of care for T1D 

patients. Over time, complications occur in a large subset of patients. The most severe cases of 

T1D are poorly managed with insulin administration. These cases can be treated with 

transplantation of pancreas or pancreatic islets from cadaveric donors. Transplantation strategies 

can control complications and even revert the symptoms of diabetes. A large number of patients 

could benefit from transplantation, but unfortunately several factors limit the widespread application 

of transplants. First and foremost, there is shortage of cadaveric pancreata. Moreover, engraftment 

and long-term function are suboptimal. Furthermore, patients need to be treated with 

immunosuppression, with severe side effects, and autoimmunity can recur even in the presence of 

immunosuppression. Nevertheless, pancreas and islet transplantation served as proofs of concept 

that beta cell replacement can treat T1D very effectively. In recent years, multiple stem cell-based 

strategies have been developed for patients with T1D. Certain types of stem and progenitor cells 

can be expanded to large numbers, and can be stimulated to mature into insulin-producing β-like 

cells. Other types of stem cells have the ability to modulate the immune system, a feature that 

could be exploited to facilitate beta cell survival and inhibit recurrence of autoimmunity. 

In this contest, we have concentrated our attention on human Amniotic Epithelial Cells (hAECs). 

The amniotic epithelium develops from epiblast before the gastrulation process. hAECs could have 

escaped the trilaminar lineage commitment, maintaining characteristics similar to the embryonic 

stem cells. hAECs could also be isolated in a clinically revenant number for application in cell 

therapies. Their isolation and use does not pose ethical concern. hAECs are endowed with the 

potential to commit toward multiple cell types. Moreover, hAECs (along with the amniotic 

membrane) possess anti-inflammatory and immunomodulatory properties [119,121,123]. These 

features are of great interest for the design of cell based strategies for T1D.  

In the first part of this study, we have demonstrated the possibility to isolate and culture hAECs 

both in Serum Rich Medium (SRM) and in Q282 medium, a Serum Free Medium (SFM). Q286 is a 
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further developed DMEM enriched with selected serum components and growth enhancers, tailor 

made for epithelial cells. We have studied Q286 because of the advantages for clinical applications 

in terms of reproducibility, standardization, and for the absence of ethical concerns. hAECs 

characteristics, as reported in literature [106,107], seem not to be affected by the culture in a SFM. 

Cell morphology, proliferation, immunophenotypic profile and stemness markers are all maintained. 

Interestingly, AECs cultured in SFM show an increased expression of stemness markers that 

characterize embryonic stem cells (OCT4, SOX2, NANOG). The second part of the study was 

concentrated on the development of a cell culture model and a protocol to enhance the pancreatic 

endocrine differentiation. We hypothesized that the assembly of hAECs in 3D structures could be 

important to facilitate differentiation. The organization in 3D structures enables the establishment of 

additional cell-cell and cell-matrix contacts and closer interactions among cells. It can determine 

the acquisition of polarization and patterning features, ultimately affecting fate determination due to 

differences in the microenvironment. Therefore, cells were cultured on a thick layer of 100% 

reduced growth factor BME, that allow the formation of multicellular structures. hAECs were then 

inducted along endocrine pancreatic lineage with a step-wise protocol adapted from previous 

reports [53,54,113]. In our step-wise protocol only three induction molecules were employed. In the 

first step, Activin A is added to the medium to impart the commitment of hAECs towards definitive 

endoderm [56]. In the second step, Nicotinamide (NAM) and Activin A are additioned to the 

medium, to promote the pancreatic-endocrine differentiation [128]. In the final step, Retinoic Acid 

(RA) and NAM are added to induce the maturation of insulin-producing cells [129]. At the end of 

the induction protocols, insulin and C-peptide (a peptide cleaved from proinsulin) were analyzed. 

To test the complete maturation of hAECs into beta-like cells, we tested C-peptide release by 

sequentially culturing cells in media with different concentrations of glucose. hAEC cultured as 3D 

spheroids showed potential to differentiate towards pancreatic endocrine cell types and to give rise 

to functional beta-like cells that release C-peptide in a glucose-responsive way. As previously 

discussed, beta cell replenishment alone would be insufficient for T1D patients: there is an unmet 

need to effectively inhibit the immune system in order to facilitate transplant survival and to avoid 

recurrence of autoimmunity. For these reasons, we have analyzed the immunomodulatory 

properties of hAECs. These cells are able to inhibit the proliferation of peripheral blood 

mononuclear cells (PBMCs) activated with phytohemagglutinin (PHA) in vitro. We have observed 

that HLA-G increases when hAECs are co-cultured with activated PBMCs. HLA-G is a potent 
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immunoregulatory molecule involved in the inhibition of immune cells in the placenta environment. 

Moreover, we have shown the increase of T-regulatory (T-reg) cells increase in co-culture. Not 

stopping at this we have also demonstrated how hAECs spheroids in 3D culture are able to inhibit 

PBMCs proliferation before and after pancreatic differentiation. Furthermore, we have shown that 

hAECs spheroids in 3D culture conditions are able to inhibit PBMCs proliferation before and after 

pancreatic differentiation. This is of great interest for the development of strategies for T1D. 

The efficiency of differentiation towards beta-like cells was not satisfactory. This stimulated us to 

redesign the differentiation protocol based on knowledge recently acquired in the field of pancreas 

progenitor cells. Until few years ago, the vast majority of investigators did not believe in the 

existence of progenitor cells in the adult pancreas. More recently, multiple studies have reported 

their existence, and described putative niches inside and close to the organ. Stem/progenitor cells 

were found in the pancreatic duct glands (PDGs), located mainly in the main pancreatic duct, and 

in the peribiliary glands (PBGs), which are located along the biliary tree [130,131]. Tracing back the 

embryological development of pancreas and liver, we hypothesized that more ancestral progenitor 

could be present in the Brunner’s Glands (BGs). BGs are mainly located in the submucosa of the 

proximal duodenum, more specifically in the region of the ampulla of Vater where biliary three, liver 

and pancreas developed [88]. We established cultures of endodermal cells from adult human 

MPD, BT, and BD. Isolation was based on culture selection with Kubota Medium (KM). KM has 

been shown previously to select for early endodermal stem/progenitors [82,84]. Cells were cultured 

on Collagen IV coated plates. We have also isolated Mesenchymal Stromal Cells from adult 

human Pancreatic Islets (PI-MSCs). In order to confirm the mesenchymal origin was performed a 

characterization in accordance with the minimal criteria of the international society of cellular 

therapy [69]. Also PI-MSCs showed the capacity to modulate immune cells, as they inhibit PBMCs 

proliferation and express the HLA-G after co-culture in vitro. 

Cells were stimulated to differentiate towards pancreatic endocrine cell types by using a 

Hormonally Defined Medium for Pancreatic differentiation (HDM-P+), a medium able to stimulate 

pancreatic islet commitment in endodermal cells isolates from Biliary Tree [84]. We established co-

cultures of endodermal progenitor cells and PI-MSCs in an attempt to improve the efficiency of islet 

differentiation. Our results suggest that the cell populations that we isolated from adult tissues have 

the potential to commit towards islet cell fates, but the efficiency of differentiation differs 

significantly among them. When endodermal cells were co-cultured with PI-MSCs we observed a 
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marked increase of C-peptide release, and in some cases (notably BGs+PI-MSCs and BT+PI-

MSCs) we observed the development of functional glucose responsive beta-like cells. The co-

culture protocol proved useful to further stimulate beta cell differentiation. Such protocol enables 

studies on the mechanisms of islet cell differentiation.  

In the last portion of the study, we established a co-culture system of hAECs and PI-MSC in order 

to improve hAEC pancreatic endocrine differentiation and generate islet-like spheroids. We 

observed that the two cell populations can be co-cultured in 2D system with no signs of loss of 

viability. We subsequently designed a three dimensional co-culture method that could enhance the 

differentiation process and that could yield transplantable islet-like clusters. We started by culturing 

hAECs in ultra low attachment plates (ULA), which are designed to avoid the cell contact with the 

plastic facilitating self-aggregation. After 2-3 days in culture, hAECs did not develop compact 

aggregates. The addition of PI-MSCs in co-culture yielded compact and well structured 

aggregates. To improve the chance of engraftment after transplantation, the diameter of islet-like 

spheroids should be lower than 300 µm: spheroids with a larger diameter do not allow gas 

exchanges and re-vascularization processes, crucial for the release of insulin into the bloodstream. 

Moreover, clusters of dead cells or debris of the same size range would be deleterious for the 

engraftment yield. Therefore, in order to select viable aggregates with dimensions and features 

suitable for transplantation we have tested a proprietary tag less sorting device, the Celector. This 

device allows to sort and collect cell samples without any manipulation. Cells are separated due to 

their physical interaction with a flow of liquid in the presence of gravity. The instrument does not 

employ antibodies and does not interact with samples in any way. With this tool we were able to 

sort spheroids with diameters between 50 and 100 µm. After the collection, spheroids could be 

cultured again in plastic plates and we observed viable cells from both populations in culture. 

Future steps will be aimed at testing the pancreatic differentiation protocol in these 3D cell cultures 

and will test combination with MSCs from other high-yield sources.  
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