
ALMA MATER STUDIORUM
UNIVERSITÀ DEGLI STUDI DI BOLOGNA

Dottorato di Ricerca in Ingegneria Elettronica,
Telecomunicazioni e Tecnologie dell’Informazione

Dipartimento di Ingegneria dell’Energia Elettrica e
dell’Informazione “Guglielmo Marconi”

Ciclo XXIX
Settore concorsuale: 09/F2 - TELECOMUNICAZIONI

Settore scientifico disciplinare: ING-INF/03 - TELECOMUNICAZIONI

VIRTUALIZED NETWORK
INFRASTRUCTURES:

PERFORMANCE ANALYSIS,
DESIGN AND IMPLEMENTATION

Presentata da:
CHIARA CONTOLI

Coordinatore Dottorato:
Chiar.mo Prof. Ing.

ALESSANDRO
VANELLI-CORALLI

Relatore:
Chiar.mo Prof. Ing.

FRANCO CALLEGATI
Correlatore:

Chiar.mo Prof. Ing.
WALTER CERRONI

ESAME FINALE 2017

INDEX TERMS

Software Defined Networking

Network Function Virtualization

Service Function Chaining

OpenStack Performance

Intent Driven Networking

“The only source of knowledge is experience”

Contents

Summary vii

1 Introduction 1
1.1 Internet Ossification . 1
1.2 A modern approach to networking 2

1.2.1 Software Defined Networking 2
1.2.2 Network Function Virtualization 5

1.3 Motivation . 7
1.4 Thesis Contributions . 8

2 Performance of Network Virtualization
in Cloud Infrastructures 11
2.1 Main concepts of cloud

Network Virtualization . 13
2.2 OpenStack Virtual Network

Infrastructure . 15
2.3 Experimental Testbed . 20

2.3.1 Single-tenant cloud computing scenario 21
2.3.2 Multi-tenant NFV scenario

with dedicated network functions 22
2.3.3 Multi-tenant NFV scenario

with shared network functions 25
2.4 OpenStack performance:

numerical results . 27
2.4.1 Benchmark performance 27
2.4.2 Single-tenant cloud computing scenario 28
2.4.3 Multi-tenant NFV scenario

with dedicated network functions 30
2.4.4 Multi-tenant NFV scenario

with shared network functions 33
2.5 Conclusion . 37

v

3 SDN Control plane
design for Dynamic NFV 39
3.1 Dynamic chaining of Virtual

Network Functions in edge-networks 40
3.1.1 Reference network scenario 41
3.1.2 Case studies: Layer 2 and Layer 3 topologies 42
3.1.3 Design logic for Layer 2 & Layer 3 topology 45
3.1.4 Proof of concept . 49

3.2 Coordinating dynamic SDN control 52
3.2.1 The Finite State Machine approach 52
3.2.2 Applying stateful SDN control

to a Layer-2 NFV Topology 56
3.2.3 Preliminary experimental results 59
3.2.4 How can Telco industry and Service Providers benefit

from stateful approach? 63
3.2.5 A SDN use case for Service Provider Networks 64
3.2.6 Moving implementation to production-level

environment: the Ericsson Cloud Lab 67
3.2.7 Proof of concept: VNF chaining for QoS

enforcement & dynamic traffic steering 69
3.2.8 Experimental results on Ericsson

Cloud Lab environment 74
3.3 Conclusion . 77

4 Towards Network Management and Orchestration 79
4.1 An Intent-based Approach

to Virtualized Infrastructure Management 81
4.2 Reference NFV architecture 81
4.3 Intent-based NBI for dynamic

Service Function Chaining . 84
4.4 Implementation of the VIM

on the ONOS platform . 87
4.5 Validation of the PoC . 90
4.6 Experimental results . 91
4.7 Conclusion . 93

5 Conclusions 95
5.1 Summary of Contributions . 95
5.2 Future Work . 98

Acknowledgments 113

vi

Summary

In recent decades, there has been a tremendous evolution in the traffic on
the Internet and enterprises networks. Networks assisted since the beginning
to two phenomena: on the one hand, the birth of a multitude of applica-
tions, each posing different requirements; on the other hand, the explosion
of personal mobile networking, with an ever increasing demand of devices
that require connectivity. These trends resulted in increased network com-
plexity, leading to difficult management and high costs. At the same time,
evolution in the Information Technology (IT) field led to the birth of cloud
computing and growth of virtualization technologies, opening new opportu-
nities not only for companies but for individuals (be it PC or mobile users),
as well as Service and Infrastructure Providers. Emerging technologies such
as Software Defined Networking (SDN) and Network Functions Virtualiza-
tion (NFV) seems to be promising solutions to today’s network problems.
Neither standardized solutions, nor how to properly combine their usage to
achieve flexible and proactive control management have been discovered yet.

This Ph.D. thesis focuses on the exploration of three plane of functional-
ity in which software-defined (computer) networks can be divided: the data,
the control and the management plane. SDN aims at introducing network
programmability by separating the control from the data plane, besides sim-
plifying network management and the development and deployment of new
networking features. Whereas NFV aims at introducing network flexibility
by implementing network functionality in software, leveraging IT virtualiza-
tion techniques, so that can now run on general-purpose hardware. Such
flexibility allows for an efficient provision of the network functionality, that
can be instantiated, moved or disposed in an on-demand fashion, thus also
leading to the benefit of reduced costs and reduced power consumption.

The work presented here is the outcome of part of the research activities
carried out by the Network research group at the Department of Electri-
cal, Electronics and Information Engineering “G. Marconi” (DEI), NetLAB
(Network Laboratory) at the University of Bologna, Italy. In particular,
the activities performed by the Network Research Group have been partially

vii

funded by EIT ICT Labs (now EIT Digital): Activity 2013 “Smart Network
at the Edge”, task T1303A - Enable Efficient and Seamless Network-Cloud
Integration, Activity 2015 “SDN at the Edges” - Action Line on Future
Networking Solutions and, in this latter action line, Activity “CC4BA - Cer-
tification Centre for Business Acceleration of SDN and NFV”.

In this thesis we present insights on several aspects of network virtualiza-
tion, starting from virtual network performance of cloud computing infras-
tructures, and introducing the Service Function Chaining (SFC) mechanism,
discussing its analysis, design and implementation. In particular, the original
contribution of this dissertation concerns (i) performance evaluation of the
OpenStack cloud platform (the data plane); (ii) the design and implementa-
tion of a stateful SDN controller for dynamic SFC (the control plane); (iii)
design, implementation and performance analysis of a proposed Intent-based
approach for dynamic SFC (the management plane).

viii

Chapter 1

Introduction

1.1 Internet Ossification

Internet and enterprises networks in past decades have experienced two dif-
ferent trends: i) an ever increasing birth of different applications; ii) an
ever increasing demand of connectivity by devices, be it mobile or personal.
Applications range from e-mail exchange, file transfer, browsing hyper-text
contents (the very early Internet applications), to buying on-line, videocon-
ferencing, online video gaming, watching movies, downloading music and
others multimedia contents, etc., which are now the dominant applications
that have caused a significant evolution in the traffic of both Internet and
enterprises networks. Such applications pose different requirements to the
network in terms of delay, jitter and loss tolerance besides throughput de-
mand; these are also known as Quality of Service (QoS) parameters. For
example, e-mail can tolerate high value of delay, jitter and loss, and demands
low throughput, while applications such as videoconferencing and Voice over
IP (VoIP) can tolerate low value of delay, jitter and loss and demand medi-
um/high and low value of throughput, respectively. Keeping an acceptable
level of performance is not the only challenge a network has to deal with;
other challenges, for example, are security, host mobility, (dynamic) assign-
ment of (private) addresses that all together made the network evolve in such
a way that deploying a new service in todays networks is difficult.

To cope with such challenges, networks have been enhanced with several
functions, such as Intrusion Detection Systems (IDS), Deep Packet Inspector
(DPI), Firewalls, Network Address Translator (NAT), packet filtering, Wide
Area Network Accelerator (WANA), load balancer, traffic shaper, just to
name a few. Such functions are usually implemented on closed, proprietary
and expensive hardware by a plurality of vendors, and are also known as

1

middle-boxes. As surveyed by Sherry et al. in 2012 [1], on a study of 57
enterprise networks, the number of middle-boxes deployed is comparable to
the number of routers in a network. Moreover, large networks in window
time of 5 years have spent over a million of dollars on middle-boxes, while
small to medium networks have spent between $5,000-$50,000. Last, but
not least, the multiplicity of vendors equipment requires high-skilled teams
with the necessary expertise to be capable of managing all the heterogeneous
devices composing the network. An additional obstacle comes from the fact
that updates for such devices comes with hardware upgrade, thus leading to
the so called vendor lock-in effect. This effect, so far, resulted in deploying
new hardware to get new features, making todays networks expensive and
difficult to manage.

1.2 A modern approach to networking

Promising solutions seem to come from emerging paradigms such as Soft-
ware Defined Networking (SDN), Network Function Virtualization (NFV)
and advances made in the Information Technologies (IT) field.

1.2.1 Software Defined Networking

A comparison between traditional and SDN approach is given in Fig. 1.11.
Historically, control plane and data plane have always been co-located, to-
gether with provided features, on the same specialized hardware as shown in
Fig. 1.1a. With such approach, proper control routing protocols (e.g., Open
Shortest Path First, Boarder Gateway Protocol) run in a distributed fashion
to discover, compute adjacency and learn the complete network topology. In-
stead, the SDN paradigm refers to an architecture that decouple the control
plane from the data plane, thus moving the intelligence of the network to a
(logically) centralized entity known as controller, as can be seen in Fig. 1.1b.
With this approach, devices are just devoted to simply forwarding packets,
while the control logic is moved to a Network Operating System (NOS) and
applications running on top of it. To achieve this separation, two interfaces
are provided: i) the North Bound Interface (NBI), ii) the South Bound In-
terface (SBI).

The NBI is located between the NOS and the applications and its goal is
twofold: on the one hand, it provides an API (Application Programming In-
terface) to applications developers; on the other one, it provides abstractions
to hide lower level details (e.g., how the forwarding devices are programmed).

1Source: S.Seetharaman, OpenFlow/SDN tutorial, OFC/NFOEC 2012

2

Specialized	 Packet	
Forwarding	 Hardware	

Opera6ng	
System	

Feature	 Feature	

Specialized	 Packet	
Forwarding	 Hardware	

Opera6ng	
System	

Feature	 Feature	

Specialized	 Packet	
Forwarding	 Hardware	

Opera6ng	
System	

Feature	 Feature	

Specialized	 Packet	
Forwarding	 Hardware	

Opera6ng	
System	

Feature	 Feature	

Specialized	 Packet	
Forwarding	 Hardware	

Opera6ng	
System	

Feature	 Feature	

(a) Traditional network paradigm.

Specialized	 Packet	
Forwarding	 Hardware	

Network	 Opera7ng	 System	

Feature	 Feature	

OpenFlow	

Specialized	 Packet	
Forwarding	 Hardware	

OpenFlow	

Specialized	 Packet	
Forwarding	 Hardware	

OpenFlow	

OpenFlow	

OpenFlow	

(b) SDN network paradigm.

Figure 1.1: The SDN network innovation.

3

The SBI is instead located between the NOS and the infrastructure composed
of forwarding devices, with a twofold goal analogous to the one offered by the
NBI: on the one hand, it provides an open interface that allow to program
forwarding tables; on the other one, since southbound protocol can be seen as
plug-in between the NOS and the infrastructure, it makes the NOS protocol
agnostic.

The most adopted southbound interface is OpenFlow [2], which provides
a protocol for the interaction between the NOS and underlying (OpenFlow
enabled) devices (as can also be seen in Fig. 1.1b). OpenFlow provides an
abstraction of a pipeline of flow tables; flow tables are composed of entries
characterized by:

• a matching rule;

• actions to be executed on matching packets;

• counters to keep track of flows/packets statistics.

Identifying SDN with OpenFlow would not be correct, especially because
SDN is not a new concept. As well surveyed by Kreutz et al. in [3], SDN has
a long history that comes from programmable networks, such as active net-
works, programmable ATM networks and prior attempt to separate control
and data plane, such as NCP (Network Control Platform) and RCP (Routing
Control Platform), which find roots in the 80s and 90s. Besides OpenFlow,
other more recent approaches for data plane programmability comes from
ForCES (Forwarding and Control Element Separation) and POF (Protocol
Oblivious Forwarding). In such SDN survey, authors also clarify the fact
that also the concept of NOS is not new; in fact, traditional network devices
are equipped with proprietary operating systems (e.g., Cisco IOS, JunOS, to
name a few) that allow to manage and configure devices using device-specific
commands. The problem is that network designers have to deal with the lack
of abstractions for device details, and deal with complicated distributed algo-
rithms. Instead, in SDN approach the NOS is usually implemented by control
platforms (e.g., NOX, ONOS, OpenDaylight, OpenContrail, to name a few)
in a software fashion that runs on commodity hardware. Control platforms
differs in architecture and design elements, besides in services, components
and interfaces (and the way those are) provided.

Therefore, main advantages introduced by the SDN approach can be sum-
marized as follow:

• simplifying network management;

• simplifying network policy programmability;

4

• reducing complexity when it comes to give birth to new protocols and
network applications.

To recap, such advantages are brought both by the abstractions provided
by NOS to network developers and external applications willing to interact
with the control platform, and by the open programmable interface that
provides an abstraction for the forwarding mechanism, which is vendor in-
dependent and so do not require to know vendor-specific implementations,
thus also leading to increased network programmability.

1.2.2 Network Function Virtualization

A complementary technology to SDN is NFV, and a comparison with tradi-
tional approach is given in Fig. 1.2. As can be seen in Fig. 1.2a, traditional ap-
proach consider proprietary hardware devices (middle-boxes) deployed along
the path between source and destination. Operators typically apply an or-
dered set of network functions, i.e. a service chain, to a given traffic class
or to a given user (or class of users). In the case of functions implemented
by middle-boxes this requires vendor-specific configuration and management
tasks, i.e., reconfiguring switches, routers, network connectivity, etc. The
increased complexity and costs due to high capitol investments and network
management encouraged telecommunication network operators, infrastruc-
ture providers (IPs) and enterprises to seek for alternative approaches. With
the complicity of advances in virtualization technologies made in the IT fields,
and the high capacity of standard server, NFV came to birth. As shown in
Fig. 1.2b, network functions are now virtualized in software that can run on
standard server hardware. So, NFV decouples the network functionality from
underlying proprietary hardware, opening new opportunities for companies,
Service and Infrastructure Providers.

As the European Telecommunications Standard Institute (ETSI) says in
its first white paper [4], NFV takes advantage of two enabling technologies:

• cloud computing;

• industry standard high volume servers.

In particular, the cloud computing provides matured hardware virtualization
mechanisms through hypervisors, as well as software Ethernet switches that
allow traffic to flow between Virtual Machines (VMs) and physical interfaces.
The adoption of such mechanism for Network Functions (NFs) leverage the
cloud computing paradigm, that is, the service on-demand model; with this
model, NFs could be instantiated, removed or migrated to any location in the

5

(a) Traditional network devices deployment: hardware middle-boxes.

(b) NFV network devices deployment: commodity hardware.

Figure 1.2: The NFV innovation.

network, without the need of deploying new hardware. Such model is also
fostered by cloud computing infrastructure, that allow to virtualize compute,
storage as well as network resources thus creating an unprecedented degree
of flexibility. Moreover, cloud computing infrastructure should be capable of
providing orchestration and management mechanisms that allow to automate
VMs instantiation and deal with, for example, VMs allocation and recovery
due to failure.
High volume servers adoption allow to take advantage of the economies of
scale and of general purpose hardware that could replace middle-boxes to
implement virtual network appliances. In fact, if we look again at Fig. 1.1b,
according to the SDN vision the underlying infrastructure can be composed
both of traditional proprietary solution running on specialized hardware and
commodity white box solution2.

Therefore, main advantages introduced by NFV approach can be sum-
marized as follow:

• increasing flexibility and efficient provisioning of network functions;

2http://www.opencompute.org/projects/networking/

6

• reducing equipment costs and power consuption;

• reducing time-to-market by allowing software and hardware to evolve
independently;

• supporting hardware resource sharing among multiple (concurrent) soft-
ware instances, providing proper isolation mechanisms.

1.3 Motivation

SDN and NFV are independent of each other; NFV can be implemented
without SDN being in place and vice-versa, but can leverage mutual ben-
efits. Combining their usage can bring advantages to the telecommunica-
tions industry in terms of Operational Costs (Opex) and Capital Expendi-
ture (Capex) reduction; nevertheless, this evolution does not come without
challenges. In this thesis, we focus in particular on performance trade-off
and management concerns, considering scenario of future telecommunication
network infrastructures that are of interest for network operators, service and
infrastructure providers.

Such evolution will likely take place at network edges, where most of
network functionalities are located. The vision is that future edge networks
will take the shape of a data centers (interconnected by a stateless optical
core network) where NFs will be provisioned. Several service providers (e.g.,
AT&T, SK Telecom to cite a few) are leading both research and development
in this direction, aiming at providing to their customers solutions that take
full advantage of combination among SDN, NFV and elasticity of commodity
clouds so that they are able to bring data centers economies and cloud agility
to Telco Central Office3.
If this will be the case, in spite of improved standard hardware performance,
it is worth investigating if virtualized networks will provide performance com-
parable to those achieved with current physical networks. Therefore, perfor-
mance of underlying platform should be known in order to achieve a bet-
ter planning about how properly dimension networks and virtual appliances
placement.

Both industry and academia are encouraged to contribute to help the
process of convergence between IT and network standardization. Therefore,
several effort is put in the definition of reference SDN-NFV architectures
that combines several functional blocks that need to be properly managed
and orchestrated. For example, Verizon service provider published the first

3http://opencord.org/

7

version of its SDN-NFV architecture as a network infrastructure planning
in February 2016 [5]. From an operational efficiency point of view, dynamic
traffic steering and Service Function Chaining (SFC) are one of the main
goals of SDN-NFV architectures.
Without doubt, dynamic traffic steering and SFC are correlated; SFC is
about chaining NFs that can be deployed on the same physical node or across
multiple ones; in fact, being capable of dynamically steering traffic towards
required NFs is a key factor. Therefore, combining SDN and NFV aspects
requires investigation from i) control plane and ii) management & orchestra-
tion perspective. Orchestration can be seen as a subset of the management
in the context of combining NFV and SDN.

Control plane investigation is needed to understand how control plane can
achieve proper traffic steering taking into account the fact that it has to deal
with a multiplicity of users, and the fact that service chain can change over
time. Management & orchestration, considering as a reference architecture
the one proposed by ETSI [6], is a broad topic, but one of the most critical
interface is the one between the cloud orchestration systems and SDN con-
trollers4. The orchestrator component in the ETSI architecture is defined as
a functional block that has several responsibilities. According to the Open
Networking Foundation (ONF), such critical interface could benefit of the so
called Intent-based approach; recently, ONF published a technical report in
which definitions and principles of Intent NBI approach is given [7] but how
to implement such interface is left open.

1.4 Thesis Contributions

How to properly combine SDN and NFV usage to achieve flexible and proac-
tive control management, nor standardized solutions have been discovered
yet. In order to help answer to this question and to help addresses perfor-
mance, and management & orchestration concerns described in the previous
section, we performed a study that cross all the three planes of functionality
a SDN-NFV network can be divided in: i) data plane; ii) control plane; iii)
management plane. In this thesis we make the following contributions:

• Performance Analysis: such contribution is given at all planes, and
can be summarized as follow:

- data plane: in order to explore performance concerns of underlying
platform, we lead a deep investigation of performance evaluation

4http://www.opennetworking.org/?p=1633&option=com_wordpress&Itemid=155

8

of one of the most widely adopted cloud platform: OpenStack.
We focus in particular on performance of its virtual network in-
frastructure, as well as on performance of simple NFV use cases
scenario deployment (Chapter 2).

- control plane: we investigate the performance of a stateful ap-
proach to dynamic traffic steering aimed at achieving fully dy-
namic SFC; such evaluation is led both on an OpenStack deploy-
ment at the University of Bologna, and on a real production en-
vironment (Chapter 3).

- management: we investigate the performance of our proposed In-
tent NBI approach aimed at providing a vendor-independent, tech-
nology agnostic technique for controlling dynamic SFC on top of
a SDN infrastructure (Chapter 3).

• Design:

- control plane: we propose the design of a stateful SDN control
plane as a general approach to service chain reconfiguration; in
particular, we leverage the abstraction provided by a Mealy ma-
chine, that allow us to model the controller behavior to achieve
fully dynamic and adaptive SFC (Chapter 3).

- management: we propose the design of vendor-independent, tech-
nology agnostic Intent-based NBI approach that could be put in
place between an orchestrator and a SDN controller platform; our
approach allow to dynamically handle a SFC on top of SDN in-
frastructure (Chapter 4).

• Implementation:

- control plane: we implemented the stateful finite state machine
on the Ryu framework; in order to prove the feasibility of our ap-
proach, we developed a proof-of-concept (PoC) both on an Open-
Stack deployment at the University of Bologna and on a real like
production environment (Chapter 3).

- management: to show the feasibility of our approach, we imple-
mented such Intent NBI as an application running on top of the
ONOS control platform; whereas the first validation of our PoC
is performed on top of an OpenFlow network infrastructure emu-
lated with Mininet (Chapter 4).

9

10

Chapter 2

Performance of Network
Virtualization
in Cloud Infrastructures

Despite the original vision of the Internet as a set of networks interconnected
by distributed layer 3 routing nodes, nowadays IP datagrams are not simply
forwarded to their final destination based on IP header and next-hop infor-
mation. A number of so called middle-boxes process IP traffic performing
cross layer tasks such as address translation, packet inspection and filtering,
QoS management, and load balancing. They represent a significant frac-
tion of network operators’ capital and operational expenses. Moreover, they
are closed systems, and the deployment of new communication services is
strongly dependent on the product capabilities, causing the so-called “ven-
dor lock-in” and Internet “ossification” phenomena [8]. A possible solution
to this problem is the adoption of virtualized middle-boxes based on open
software and hardware solutions. Network virtualization brings great advan-
tages in terms of flexible network management, performed at the software
level, and possible coexistence of multiple customers sharing the same phys-
ical infrastructure (i.e., multitenancy). Network virtualization solutions are
already widely deployed at different protocol layers, including Virtual Local
Area Networks (VLANs), multilayer Virtual Private Network (VPN) tunnels
over public wide-area interconnections, and Overlay Networks [9].

Today the combination of emerging technologies such as Network Func-
tion Virtualization (NFV) and Software Defined Networking (SDN) promises
to bring innovation one step further. SDN provides a more flexible and pro-
grammatic control of network devices and fosters new forms of virtualization
that will definitely change the shape of future network architectures [10],
while NFV defines standards to deploy software-based building blocks im-

11

plementing highly flexible network service chains capable of adapting to the
rapidly changing user requirements [11].

As a consequence, it is possible to imagine a medium-term evolution of
the network architectures where middle- boxes will turn into virtual machines
(VMs) implementing network functions within cloud computing infrastruc-
tures, and telco central offices will be replaced by data centers located at the
edge of the network [12, 13, 14]. Network operators will take advantage of
the increased flexibility and reduced deployment costs typical of the cloud-
based approach, paving the way to the upcoming software-centric evolution
of telecommunications [15]. However, a number of challenges must be dealt
with, in terms of system integration, data center management, and packet
processing performance. For instance, if VLANs are used in the physical
switches and in the virtual LANs within the cloud infrastructure, a suitable
integration is necessary, and the coexistence of different IP virtual networks
dedicated to multiple tenants must be seamlessly guaranteed with proper
isolation.

Then a few questions are naturally raised: Will cloud computing plat-
forms be actually capable of satisfying the requirements of complex commu-
nication environments such as the operators edge networks? Will data centers
be able to effectively replace the existing telco infrastructures at the edge?
Will virtualized networks provide performance comparable to those achieved
with current physical networks, or will they pose significant limitations? In-
deed the answer to this question will be a function of the cloud management
platform considered. In this work the focus is on OpenStack, which is among
the state-of-the-art Linux-based virtualization and cloud management tools.
Developed by the open-source software community, OpenStack implements
the Infrastructure-as-a-Service (IaaS) paradigm in a multitenant context [16].

To the best of our knowledge, not much work has been reported about
the actual performance limits of network virtualization in OpenStack cloud
infrastructures under the NFV scenario. Some authors assessed the perfor-
mance of Linux-based virtual switching [17, 18], while others investigated
network performance in public cloud services [19]. Solutions for low-latency
SDN implementation on high-performance cloud platforms have also been
developed [20]. However, none of the above works specifically deals with
NFV scenarios on OpenStack platform. Although some mechanisms for ef-
fectively placing virtual network functions within an OpenStack cloud have
been presented [21], a detailed analysis of their network performance has not
been provided yet.

This chapter aims at providing insights on how the OpenStack platform
implements multitenant network virtualization, focusing in particular on the
performance issues, trying to fill a gap that is starting to get the attention

12

also from the OpenStack developer community [22]. The objective is to
identify performance bottlenecks in the cloud implementation of the NFV
paradigms. An ad hoc set of experiments were designed to evaluate the
OpenStack performance under critical load conditions, in both single tenant
and multitenant scenarios. The results reported in this work extend the
preliminary assessment published in [23, 24].

In the following, we briefly introduce in section 2.1 the main concepts of
network virtualization, discussing examples of virtualization techniques; we
dive into the OpenStack virtual network architecture explanation (section
2.2), focusing our attention on the main components of the infrastructure
and its network elements; then we present the experimental test-bed setup
that we have deployed to assess OpenStack performance, investigating several
use case scenarios (section 2.3). Finally, we discuss the numerical results and
draw some conclusions (sections 2.4 and 3.3, respectively).

2.1 Main concepts of cloud

Network Virtualization

Generally speaking network virtualization is not a new concept. Virtual
LANs, Virtual Private Networks, and Overlay Networks are examples of vir-
tualization techniques already widely used in networking, mostly to achieve
isolation of traffic flows and/or of whole network sections, either for secu-
rity or for functional purposes such as traffic engineering and performance
optimization [9].

Upon considering cloud computing infrastructures the concept of network
virtualization evolves even further. It is not just that some functionalities
can be configured in physical devices to obtain some additional functional-
ity in virtual form. In cloud infrastructures whole parts of the network are
virtual, implemented with software devices and/or functions running within
the servers. This new “softwarized” network implementation scenario allows
novel network control and management paradigms. In particular, the syner-
gies between NFV and SDN offer programmatic capabilities that allow easily
defining and flexibly managing multiple virtual network slices at levels not
achievable before [8].

In cloud networking the typical scenario is a set of VMs dedicated to a
given tenant, able to communicate with each other as if connected to the same
Local Area Network (LAN), independently of the physical server/servers they
are running on. The VMs and LAN of different tenants have to be isolated
and should communicate with the outside world only through layer 3 routing

13

and filtering devices. From such requirements stem two major issues to be
addressed in cloud networking: (i) integration of any set of virtual networks
defined in the data center physical switches with the specific virtual network
technologies adopted by the hosting servers and (ii) isolation among virtual
networks that must be logically separated because of being dedicated to
different purposes or different customers. Moreover these problems should
be solved with performance optimization in mind, for instance, aiming at
keeping VMs with intensive exchange of data colocated in the same server,
keeping local traffic inside the host and thus reducing the need for external
network resources and minimizing the communication latency.

The solution to these issues is usually fully supported by the VM man-
ager (i.e., the Hypervisor) running on the hosting servers. Layer 3 routing
functions can be executed by taking advantage of lightweight virtualization
tools, such as Linux containers or network namespaces, resulting in isolated
virtual networks with dedicated network stacks (e.g., IP routing tables and
netfilter flow states) [25]. Similarly layer 2 switching is typically implemented
by means of kernel-level virtual bridges/switches interconnecting a VM’s vir-
tual interface to a host’s physical interface. Moreover the VMs placement
algorithms may be designed to take networking issues into account thus op-
timizing the networking in the cloud together with computation effectiveness
[26]. Finally it is worth mentioning that whatever network virtualization
technology is adopted within a data center, it should be compatible with
SDN-based implementation of the control plane (e.g., OpenFlow) for im-
proved manageability and programmability [27].

For the purposes of this work the implementation of layer 2 connectivity in
the cloud environment is of particular relevance. Many Hypervisors running
on Linux systems implement the LANs inside the servers using Linux Bridge,
the native kernel bridging module [28]. This solution is straightforward and
is natively integrated with the powerful Linux packet filtering and traffic con-
ditioning kernel functions. The overall performance of this solution should
be at a reasonable level when the system is not overloaded [29]. The Linux
Bridge basically works as a transparent bridge with MAC learning, providing
the same functionality as a standard Ethernet switch in terms of packet for-
warding. But such standard behavior is not compatible with SDN and is not
flexible enough when aspects such as multitenant traffic isolation, transparent
VM mobility, and fine-grained forwarding programmability are critical. The
Linux-based bridging alternative is Open vSwitch (OVS), a software switch-
ing facility specifically designed for virtualized environments and capable of
reaching kernel-level performance [30]. OVS is also OpenFlow-enabled and
therefore fully compatible and integrated with SDN solutions.

14

2.2 OpenStack Virtual Network

Infrastructure

OpenStack provides cloud managers with a web-based dashboard as well as
a powerful and flexible Application Programmable Interface (API) to con-
trol a set of physical hosting servers executing different kinds of Hypervisors
1 and to manage the required storage facilities and virtual network infras-
tructures. The OpenStack dashboard also allows instantiating computing
and networking resources within the data center infrastructure with a high
level of transparency. As illustrated in Fig. 2.1, a typical OpenStack cloud
is composed of a number of physical nodes and networks:

• controller node: manages the cloud platform;

• network node: hosts the networking services for the various tenants of
the cloud and provides external connectivity;

• compute nodes : as many hosts as needed in the cluster to execute the
VMs;

• storage nodes : to store data and VM images;

• management network : the physical networking infrastructure used by
the controller node to manage the OpenStack cloud services running
on the other nodes;

• instance/tunnel network (or data network): the physical network in-
frastructure connecting the network node and the compute nodes, to
deploy virtual tenant networks and allow inter-VM traffic exchange
and VM connectivity to the cloud networking services running in the
network node;

• external network : the physical infrastructure enabling connectivity out-
side the data center.

OpenStack has a component specifically dedicated to network service
management: this component, formerly known as Quantum, was renamed
as Neutron in the Havana release. Neutron decouples the network abstrac-
tions from the actual implementation and provides administrators and users

1In general, OpenStack is designed to manage a number of computers, hosting applica-
tion servers: these application servers can be executed by fully fledged VMs, lightweight
containers, or bare-metal hosts; in this work we focus on the most challenging case of
application servers running on VMs

15

Figure 2.1: Main components of an OpenStack cloud setup.

with a flexible interface for virtual network management. The Neutron server
is centralized and typically runs in the controller node. It stores all network-
related information and implements the virtual network infrastructure in
a distributed and coordinated way. This allows Neutron to transparently
manage multitenant networks across multiple compute nodes, and to pro-
vide transparent VM mobility within the data center.

Neutron’s main network abstractions are:

• network, a virtual layer 2 segment;

• subnet, a layer 3 IP address space used in a network;

• port, an attachment point to a network and to one or more subnets on
that network;

• router, a virtual appliance that performs routing between subnets and
address translation;

• DHCP server, a virtual appliance in charge of IP address distribution;

• security group, a set of filtering rules implementing a cloud-level fire-
wall.

A cloud customer wishing to implement a virtual infrastructure in the
cloud is considered an OpenStack tenant and can use the OpenStack dash-
board to instantiate computing and networking resources, typically creating
a new network and the necessary subnets, optionally spawning the related
DHCP servers, then starting as many VM instances as required based on
a given set of available images, and specifying the subnet (or subnets) to
which the VM is connected. Neutron takes care of creating a port on each

16

specified subnet (and its underlying network) and of connecting the VM to
that port, while the DHCP service on that network (resident in the net-
work node) assigns a fixed IP address to it. Other virtual appliances (e.g.,
routers providing global connectivity) can be implemented directly in the
cloud platform, by means of containers and network namespaces typically
defined in the network node. The different tenant networks are isolated by
means of VLANs and network namespaces, whereas the security groups pro-
tect the VMs from external attacks or unauthorized access. When some VM
instances offer services that must be reachable by external users, the cloud
provider defines a pool of floating IP addresses on the external network and
configures the network node with VM-specific forwarding rules based on those
floating addresses.

OpenStack implements the virtual network infrastructure (VNI) exploit-
ing multiple virtual bridges connecting virtual and/or physical interfaces that
may reside in different network namespaces. To better understand such a
complex system, a graphical tool was developed to display all the network
elements used by OpenStack [31]. Two examples, showing the internal state
of a network node connected to three virtual subnets and a compute node
running two VMs, are displayed in Figs. 2.2 and 2.3, respectively.

Each node runs an OVS-based integration bridge named br-int and, con-
nected to it, an additional OVS bridge for each data center physical network
attached to the node. So the network node (Fig. 2.2) includes br-tun for
the instance/tunnel network and br-ex for the external network. Three OVS
bridges (red boxes) are interconnected by patch port pairs (orange boxes).
br-ex is directly attached to the external network physical interface (eth0),
whereas a GRE tunnel is established on the instance/tunnel network physical
interface (eth1) to connect br-tun with its counterpart in the compute node.
A number of br-int ports (light-green boxes) are connected to four virtual
router interfaces and three DHCP servers. An additional physical interface
(eth2) connects the network node to the management network.
A compute node (Fig. 2.3) includes br-tun only. Two Linux Bridges (blue
boxes) are attached to the VM tap interfaces (green boxes) and connected
by virtual Ethernet pairs (light-blue boxes) to br-int.

Layer 2 virtualization and multi-tenant isolation on the physical network
can be implemented using either VLANs or layer-2-in-layer-3/4 tunneling
solutions, such as Virtual eXtensible LAN (VXLAN) or Generic Routing
Encapsulation (GRE), that allow to extend the local virtual networks also
to remote data centers [30]. The examples shown in Figs. 2.2 and 2.3 re-
fer to the case of tenant isolation implemented with GRE tunnels on the
instance/tunnel network. Whatever virtualization technology is used in the
physical network, its virtual networks must be mapped into the VLANs used

17

Figure 2.2: Network elements in an OpenStack network node connected to
three virtual subnets.

18

Figure 2.3: Network elements in an OpenStack compute node running two
VMs.

19

internally by Neutron to achieve isolation. This is performed by taking ad-
vantage of the programmable features available in OVS through the insertion
of appropriate OpenFlow mapping rules in br-int and br-tun.

Virtual bridges are interconnected by means of either virtual Ethernet
(veth) pairs or patch port pairs, consisting of two virtual interfaces that act
as the endpoints of a pipe: anything entering one endpoint always comes out
on the other side.

From the networking point of view the creation of a new VM instance
involves the following steps:

• the OpenStack scheduler component running in the controller node
chooses the compute node that will host the VM;

• a tap interface is created for each VM network interface to connect it
to the Linux kernel;

• a Linux Bridge dedicated to each VM network interface is created (in
Fig. 2.3 two of them are shown) and the corresponding tap interface is
attached to it;

• a veth pair connecting the new Linux Bridge to the integration bridge
is created.

The veth pair clearly emulates the Ethernet cable that would connect the
two bridges in real life. Nonetheless, why the new Linux Bridge is needed is
not intuitive, as the VM’s tap interface could be directly attached to br-int.
In short, the reason is that the anti-spoofing rules currently implemented by
Neutron adopt the native Linux kernel filtering functions (netfilter) applied
to bridged tap interfaces, which work only under Linux Bridges. Therefore,
the Linux Bridge is required as an intermediate element to interconnect the
VM to the integration bridge. The security rules are applied in the Linux
bridge on the tap interface that connects the kernel-level bridge to the virtual
Ethernet port of the VM running in user-space.

2.3 Experimental Testbed

The previous section makes clear the complexity of the OpenStack virtual
network infrastructure. To understand optimal design strategies in terms
on network performance it is of great importance to analyze it under criti-
cal traffic conditions and assess the maximum sustainable packet rate under
different application scenarios. The goal is to isolate as much as possible
the level of performance of the main OpenStack network components and

20

determine where the bottlenecks are located, speculating on possible im-
provements. To this purpose, a test-bed including a controller node, one or
two compute nodes (depending on the specific experiment), and a network
node was deployed and used to obtain the results presented in the following.
In the test-bed each compute node runs KVM, the native Linux VM Hyper-
visor, and is equipped with 8 GB of RAM and a quad-core processor enabled
to hyper-threading, resulting in 8 virtual CPUs.

The test-bed was configured to implement three possible use cases:

1. a typical single-tenant cloud computing scenario;

2. a multi-tenant NFV scenario with dedicated network functions;

3. a multi-tenant NFV scenario with shared network functions.

For each use case multiple experiments were executed as reported in the
following. In the various experiments typically a traffic source sends packets
at increasing rate to a destination that measures the received packet rate
and throughput. To this purpose the RUDE & CRUDE tool was used,
both for traffic generation and measurement [32]. In some cases, the Iperf3
tool was also added to generate background traffic at a fixed data rate [33].
All physical interfaces involved in the experiments were Gigabit Ethernet
network cards.

2.3.1 Single-tenant cloud computing scenario

This is the typical configuration where a single tenant runs one or multiple
VMs that exchange traffic with one another in the cloud or with an external
host, as shown in Fig. 2.4. This is a rather trivial case of limited general
interest but is useful to assess some basic concepts and pave the way to
the deeper analysis developed in the second part of this section. In the
experiments reported, as mentioned above, the virtualization Hypervisor was
always KVM. A scenario with Openstack running the cloud environment
and a scenario without OpenStack were considered to assess some general
comparison and allow a first isolation of the performance degradation due
to the individual building blocks, in particular Linux Bridge and OVS. The
experiments report the following cases:

1. OpenStack scenario, which adopts the standard OpenStack cloud plat-
form, as described in the previous section, with two VMs respectively
acting as sender and receiver. In particular, the following setups were
tested:

21

Figure 2.4: Reference logical architecture of a single-tenant virtual infras-
tructure with 5 hosts: 4 hosts are implemented as VMs in the cloud and
are interconnected via the OpenStack layer-2 virtual infrastructure; the 5th
host is implemented by a physical machine placed outside the cloud, but still
connected to the same logical LAN.

(1.1) a single compute node executing two co-located VMs;

(1.2) two distinct compute nodes, each executing a VM.

2. Non-OpenStack scenario, which adopts physical hosts running Linux-
Ubuntu Server and KVM hypervisor, using either OVS or Linux Bridge
as a virtual switch. The following setups were tested:

(2.1) one physical host executing two co-located VMs, acting as sender
and receiver and directly connected to the same Linux Bridge;

(2.2) same setup as the previous one, but with an OVS bridge instead
of a Linux Bridge;

(2.3) two physical hosts: one executing the sender VM connected to
an internal OVS, the other natively acting as the receiver.

2.3.2 Multi-tenant NFV scenario
with dedicated network functions

The multi-tenant scenario we want to analyze is inspired by a simple NFV
case-study, as illustrated in Fig. 2.5: each tenant’s service chain consists of
a customer-controlled VM followed by a dedicated deep packet inspection
(DPI) virtual appliance, and a conventional gateway (router) connecting the
customer LAN to the public Internet. The DPI is deployed by the service
operator as a separate VM with two network interfaces, running a traffic
monitoring application based on the nDPI library [34]. It is assumed that

22

Figure 2.5: Multi-tenant NFV scenario with dedicated network functions
tested on the OpenStack platform.

the DPI analyzes the traffic profile of the customers (source and destination
IP addresses and ports, application protocol, etc.) to guarantee the matching
with the customer service level agreement (SLA), a practice that is rather
common among Internet service providers to enforce network security and
traffic policing. The virtualization approach executing the DPI in a VM
makes it possible to easily configure and adapt the inspection function to
the specific tenant characteristics. For this reason every tenant has its own
DPI with dedicated configuration. On the other hand the gateway has to
implement a standard functionality and is shared among customers. It is
implemented as a virtual router for packet forwarding and NAT operations.

The implementation of the test scenarios has been done following the
OpenStack architecture. The compute nodes of the cluster run the VMs,
while the network node runs the virtual router within a dedicated network
namespace. All layer-2 connections are implemented by a virtual switch (with
proper VLAN isolation) distributed in both the compute and network nodes.
Figure 2.6 shows the view of the cluster setup provided by the OpenStack
dashboard, in the case of 4 tenants simultaneously active, which is the one
considered for the numerical results presented in the following. Each slice
includes a VM connected to an internal network (InVMneti) and a second
VM performing DPI and packet forwarding between InVMneti and DPIneti.
Connectivity with the public Internet is provided for all by the virtual router
in the bottom-left corner of the figure. The choice of 4 tenants was made to
provide meaningful results with an acceptable degree of complexity, without
lack of generality. As results shows this is enough to put the hardware re-
sources of the compute node under stress and therefore evaluate performance
limits and critical issues.

It is very important to outline that the VM setup shown in Fig. 2.5 is
not commonly seen in a traditional cloud computing environment. The VMs
usually behave as single hosts connected as end-points to one or more virtual
networks, with one single network interface and no pass-through forwarding
duties. In NFV the virtual network functions (VNFs) often perform actions

23

Figure 2.6: The OpenStack dashboard shows the tenants virtual networks
(slices).

24

that require packet forwarding. Network Address Translators (NATs), Deep
Packet Inspectors (DPIs), etc. all belong to this category. If such VNFs
are hosted in VMs the result is that VMs in the OpenStack infrastructure
must be allowed to perform packet forwarding which goes against the typical
rules implemented for security reasons in OpenStack. For instance when a
new VM is instantiated it is attached to a Linux bridge to which are applied
filtering rules with the goal to avoid that the VM sends packet with MAC
and IP addresses that are not the ones allocated to the VM itself. Clearly
this is an anti-spoofing rule that makes perfect sense in a normal networking
environment but impairs the forwarding of packets originated by another
VM as is the case of the NFV scenario. In the scenario considered here,
it was therefore necessary to permanently modify the filtering rules in the
Linux bridges, by allowing, within each tenant slice, packets coming from or
directed to the customer VM’s IP address to pass through the Linux Bridges
attached to the DPI virtual appliance. Similarly the virtual router is usually
connected just to one LAN. Therefore its NAT function is configured for a
single pool of addresses. This was also modified and adapted to serve the
whole set of internal networks used in the multi-tenant setup.

2.3.3 Multi-tenant NFV scenario
with shared network functions

We finally extend our analysis to a set of multi-tenant scenarios assuming dif-
ferent levels of shared VNFs, as illustrated in Fig. 2.7. We start with a single
VNF, i.e. the virtual router connecting all tenants to the external network
(Fig. 2.7a). Then we progressively add a shared DPI (Fig. 2.7b), a shared
firewall/NAT function (Fig. 2.7c) and a shared traffic shaper (Fig. 2.7d).
The rationale behind this last group of setups is to evaluate how a NFV
deployment on top of an OpenStack compute node performs under a real-
istic multi-tenant scenario where traffic flows must be processed by a chain
of multiple VNFs. The complexity of the virtual network path inside the
compute node for the VNF chaining of Fig. 2.7d is displayed in Fig. 2.8.
The peculiar nature of NFV traffic flows is clearly shown in the figure, where
packets are being forwarded multiple times across br-int as they enter and
exit the multiple VNFs running in the compute node. The red dashed line
shows the path followed by the packets traversing the VNF chain displayed
in Fig. 2.7d.

25

(a) Single VNF.

(b) Two VNFs chaining.

(c) Three VNFs chaining.

(d) Four VNFs chaining.

Figure 2.7: Multi-tenant NFV scenario with shared network functions tested
on the OpenStack platform.

26

Figure 2.8: A view of the OpenStack compute node with the tenant VM
and the VNFs installed including the building blocks of the Virtual Network
Infrastructure.

2.4 OpenStack performance:

numerical results

2.4.1 Benchmark performance

Before presenting and discussing the performance of the study scenarios de-
scribed above, it is important to set some benchmark as a reference for com-
parison. This was done by considering a back-to-back (B2B) connection
between two physical hosts, with the same hardware configuration used in
the cluster of the cloud platform.

The former host acts as traffic generator while the latter acts as traffic
sink. The aim is to verify and assess the maximum throughput and sustain-
able packet rate of the hardware platform used for the experiments. Packet
flows ranging from 103 to 105 packets per second (pps), both for 64 and
1500-byte IP packet sizes were generated.

For 1500-byte packets, the throughput saturates to about 970 Mbps at 80
Kpps. Given that the measurement does not consider the Ethernet overhead,
this limit is clearly very close to the 1 Gbps which is the physical limit of the
Ethernet interface. For 64-byte packets, the results are different since the
maximum measured throughput is about 150 Mbps. Therefore the limiting

27

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

Th
ro

ug
hp

ut
 re

ce
iv

ed
 [M

bp
s]

Traffic generated [Kpps]

Ideal - 1500 byte
B2B - 1500 byte

B2B - 64 byte

Figure 2.9: Throughput vs. generated packet rate in the B2B setup for 64
and 1500-byte packets. Comparison with ideal 1500-byte packet throughput.

factor is not the Ethernet bandwidth, but the maximum sustainable packet
processing rate of the computer node. These results are shown in Fig. 2.9.

This latter limitation, related to the processing capabilities of the hosts,
is not very relevant to the scopes of this work. Indeed it is always possible,
in a real operation environment, to deploy more powerful and better dimen-
sioned hardware. This was not possible in this set of experiments where the
cloud cluster was an existing research infrastructure which could not be mod-
ified at will. Nonetheless the objective here is to understand the limitations
that emerge as a consequence of the networking architecture, resulting from
the deployment of the VNFs in the cloud, and not of the specific hardware
configuration. For these reasons as well as for the sake of brevity, the numer-
ical results presented in the following mostly focus on the case of 1500-byte
packet length, which will stress the network more than the hosts in terms of
performance.

2.4.2 Single-tenant cloud computing scenario

The first series of results is related to the single-tenant scenario described in
section 2.3.1. Figure 2.10 shows the comparison of OpenStack setups (1.1)
and (1.2) with the B2B case. The figure shows that the different networking
configurations play a crucial role on performance. Setup (1.1) with the two
VMs co-located in the same compute node clearly is more demanding since
the compute node has to process the workload of all the components shown
in Fig. 2.3, i.e. packet generation and reception in two VMs and layer 2
switching in two Linux Bridges and two OVS bridges (as a matter of fact

28

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

Tr
af

fic
 re

ce
iv

ed
 [K

pp
s]

Traffic generated [Kpps]

B2B
2 VMs in 2 compute nodes
2 VMs in 1 compute node

Figure 2.10: Received vs. generated packet rate in the OpenStack scenario
setups (1.1) and (1.2), with 1500-bytes packets.

the packets are either outgoing and incoming at the same time within the
same physical machine). The performance starts deviating from the B2B
case at around 20 Kpps, with a saturating effect starting at 30 Kpps. This is
the maximum packet processing capability of the compute node, regardless
the physical networking capacity, which is not fully exploited in this partic-
ular scenario where the traffic flow does not leave the physical host. Setup
(1.2) splits the workload over two physical machines and the benefit is evi-
dent. The performance is almost ideal, with a very little penalty due to the
virtualization overhead.

These very simple experiments lead to an important conclusion that mo-
tivates the more complex experiments that follow: the standard OpenStack
virtual network implementation can show significant performance limitations.
For this reason the first objective was to investigate where the possible bot-
tleneck is, by evaluating the performance of the virtual network components
in isolation. This cannot be done with OpenStack in action, therefore ad-
hoc virtual networking scenarios were implemented deploying just parts of
the typical OpenStack infrastructure. These are called Non-OpenStack sce-
narios in the following.

Setups (2.1) and (2.2) compare Linux Bridge, OVS and B2B, as shown
in Figure 2.11. The graphs show interesting and important results that can
be summarized as follows:

• the introduction of some virtual network component (thus introducing
the processing load of the physical hosts in the equation) is always a
cause of performance degradation but with very different degrees of
magnitude depending on the virtual network component;

29

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

Tr
af

fic
 re

ce
iv

ed
 [K

pp
s]

Traffic generated [Kpps]

B2B
2 VMs with OVS

2 VMs with LB

Figure 2.11: Received vs. generated packet rate in the Non-OpenStack sce-
nario setups (2.1) and (2.2), with 1500-bytes packets.

• OVS introduces a rather limited performance degradation at very high
packet rate with a loss of some percent;

• Linux Bridge introduces a significant performance degradation starting
well before the OVS case and leading to a loss in throughput as high
as 50%.

The conclusion of these experiments is that the presence of additional Linux
Bridges in the compute nodes is one of the main reasons of the OpenStack
performance degradation. Results obtained from testing setup (2.3) are dis-
played in Fig. 2.12 confirming that with OVS it is possible to reach perfor-
mance comparable with the baseline.

2.4.3 Multi-tenant NFV scenario
with dedicated network functions

The second series of experiments was performed with reference to the multi-
tenant NFV scenario with dedicated network functions described in section
2.3.2. The case study considers that different numbers of tenants are hosted
in the same compute node, sending data to a destination outside the local
LAN, therefore beyond the virtual gateway. Figure 2.13 shows the packet rate
actually received at the destination for each tenant, for different numbers of
simultaneously active tenants with 1500 byte IP packet size. In all cases the
tenants generate the same amount of traffic, resulting in as many overlapping
curves as the number of active tenants. All curves grow linearly as long as
the generated traffic is sustainable, and then they saturate. The saturation

30

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

Tr
af

fic
 re

ce
iv

ed
 [K

pp
s]

Traffic generated [Kpps]

B2B
OVS with Sender VM only

Figure 2.12: Received vs. generated packet rate in the Non-OpenStack sce-
nario setup (2.3), with 1500-bytes packets.

is caused by the physical bandwidth limit imposed by the Gigabit Ethernet
interfaces involved in the data transfer. In fact, the curves become flat as
soon as the packet rate reaches about 80 Kpps for 1 tenant, about 40 Kpps
for 2 tenants, about 27 Kpps for 3 tenants, and about 20 Kpps for 4 tenants,
i.e. when the total packet rate is slightly more than 80 Kpps, corresponding
to 1 Gbps.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

Tr
af

fic
 re

ce
iv

ed
 p

er
 te

na
nt

 [K
pp

s]

Traffic generated per tenant [Kpps]

Single Tenant
2 Tenants - T1
2 Tenants - T2
3 Tenants - T1
3 Tenants - T2
3 Tenants - T3
4 Tenants - T1
4 Tenants - T2
4 Tenants - T3
4 Tenants - T4

Figure 2.13: Received vs. generated packet rate for each tenant (T1, T2, T3
and T4), for different numbers of active tenants, with 1500-byte IP packet
size.

In this case it is worth investigating what happens for small packets,
therefore putting more pressure on the processing capabilities of the com-
pute node. Figure 2.14 reports the 64-byte packet size case. As discussed

31

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

Tr
af

fic
 re

ce
iv

ed
 p

er
 te

na
nt

 [K
pp

s]

Traffic generated per tenant [Kpps]

Single Tenant
2 Tenants - T1
2 Tenants - T2
3 Tenants - T1
3 Tenants - T2
3 Tenants - T3
4 Tenants - T1
4 Tenants - T2
4 Tenants - T3
4 Tenants - T4

Figure 2.14: Received vs. generated packet rate for each tenant (T1, T2, T3
and T4), for different numbers of active tenants, with 64-byte IP packet size.

previously in this case the performance saturation is not caused by the physi-
cal bandwidth limit, but by the inability of the hardware platform to cope with
the packet processing workload.2 As could be easily expected from the results
presented in Fig. 2.9, the virtual network is not able to use the whole phys-
ical capacity. Even in the case of just one tenant, a total bit rate of about
77 Mbps, well below 1 Gbps, is measured. Moreover this penalty increases
with the number of tenants (i.e., with the complexity of the virtual system).
With two tenants the curve saturates at a total of approximately 150 Kpps
(75 × 2), with three tenants at a total of approximately 135 Kpps (45 × 3),
and with four tenants at a total of approximately 120 Kpps (30 × 4). This
is to say that an increase of one unit in the number of tenants results in a
decrease of about 10% in the usable overall network capacity and in a similar
penalty per tenant.

Given the results of the previous section, it is likely that the Linux bridges
are responsible for most of this performance degradation. In Fig. 2.15 a
comparison is presented between the total throughput obtained under normal
OpenStack operations and the corresponding total throughput measured in
a custom configuration where the Linux Bridges attached to each VM are
bypassed. To implement the latter scenario, the OpenStack virtual network
configuration running in the compute node was modified by connecting each
VM’s tap interface directly to the OVS integration bridge. The curves show
that the presence of Linux Bridges in normal OpenStack mode is indeed

2In fact the single compute node has to process the workload of all the components
involved, including packet generation and DPI in the VMs of each tenant, as well as layer-2
packet processing and switching in three Linux Bridges per tenant and two OVS bridges.

32

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400

To
ta

l t
hr

ou
gh

pu
t r

ec
ei

ve
d

[M
bp

s]

Total traffic generated [Kpps]

3 Tenants (LB bypass)
4 Tenants (LB bypass)

2 Tenants
3 Tenants
4 Tenants

Figure 2.15: Total throughput measured vs. total packet rate generated by 2
to 4 tenants for 64-byte packet size. Comparison between normal OpenStack
mode and Linux Bridge bypass with 3 and 4 tenants.

causing performance degradation, especially when the workload is high (i.e.,
with 4 tenants). It is interesting to note also that the penalty related to the
number of tenants is mitigated by the bypass, but not fully solved.

2.4.4 Multi-tenant NFV scenario
with shared network functions

The third series of experiments was performed with reference to the multi-
tenant NFV scenario with shared network functions described in section 2.3.3.
In each experiment, four tenants are equally generating increasing amounts
of traffic, ranging from 1 to 100 Kpps. Figures 2.16 and 2.17 show the packet
rate actually received at the destination from tenant T1 as a function of the
packet rate generated by T1, for different levels of VNF chaining, with 1500
and 64-byte IP packet size respectively. The VNFs and sink involved in the
chain are: DPI (deep packet inspection), FW (firewall/NAT), TS (traffic
shaper), VR (virtual router) and DEST (destination/sink). The measure-
ments demonstrate that, for the 1500-byte case, adding a single shared VNF
(even one that executes heavy packet processing, such as the DPI) does not
significantly impact the forwarding performance of the OpenStack compute
node for a packet rate below 50 Kpps.3 Then the throughput slowly degrades.
In contrast, when 64-byte packets are generated, even a single VNF can cause

3Note that the physical capacity is saturated by the flows simultaneously generated
from four tenants at around 20 Kpps, similarly to what happens in the dedicated VNF
case of Fig. 2.13.

33

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

Tr
af

fic
 re

ce
iv

ed
 [K

pp
s]

Traffic generated [Kpps]

T1-VR-DEST
T1-DPI-VR-DEST

T1-DPI-FW-VR-DEST
T1-DPI-FW-TS-VR-DEST

Figure 2.16: Received vs. generated packet rate for one tenant (T1) when
four tenants are active, with 1500-byte IP packet size and different levels of
VNF chaining as per Fig. 2.7.

heavy performance losses above 25 Kpps, when the packet rate reaches the
sustainability limit of the forwarding capacity of our compute node. Inde-
pendently of the packet size, adding another VNF with heavy packet pro-
cessing (the firewall/NAT is configured with 40, 000 matching rules) causes
the performance to rapidly degrade. This is confirmed when a fourth VNF
is added to the chain, although for the 1500-byte case the measured packet
rate is the one that saturates the maximum bandwidth made available by the
traffic shaper. Very similar performance, which we do not show here, were
measured also for the other three tenants.

To further investigate the effect of VNF chaining, we considered the case
when traffic generated by tenant T1 is not subject to VNF chaining (as in
Fig. 2.7a), whereas flows originated from T2, T3 and T4 are processed by
four VNFs (as in Fig. 2.7d). The results presented in Figs. 2.18 and 2.19
demonstrate that, owing to the traffic shaping function applied to the other
tenants, the throughput of T1 can reach values not very far from the case
when it is the only active tenant, especially for packet rates below 35 Kpps.
Therefore, a smart choice of the VNF chaining and a careful planning of the
cloud platform resources could improve the performance of a given class of
priority customers. In the same situation, we measured the TCP throughput
achievable by the four tenants. As shown in Fig. 2.20, we can reach the same
conclusions as in the UDP case.

34

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

Tr
af

fic
 re

ce
iv

ed
 [K

pp
s]

Traffic generated [Kpps]

T1-VR-DEST
T1-DPI-VR-DEST

T1-DPI-FW-VR-DEST
T1-DPI-FW-TS-VR-DEST

Figure 2.17: Received vs. generated packet rate for one tenant (T1) when
four tenants are active, with 64-byte IP packet size and different levels of
VNF chaining as per Fig. 2.7.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70 80 90 100

Th
ro

ug
hp

ut
 re

ce
iv

ed
 [M

bp
s]

Traffic generated [Kpps]

T1-VR-DEST single tenant
T1-VR-DEST
T2-DPI-FW-TS-VR-DEST
T3-DPI-FW-TS-VR-DEST
T4-DPI-FW-TS-VR-DEST

Figure 2.18: Received throughput vs. generated packet rate for each tenant
(T1, T2, T3 and T4) when T1 does not traverse the VNF chain of Fig. 2.7d,
with 1500-byte IP packet size. Comparison with the single tenant case.

35

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

Th
ro

ug
hp

ut
 re

ce
iv

ed
 [M

bp
s]

Traffic generated [Kpps]

T1-VR-DEST single tenant
T1-VR-DEST
T2-DPI-FW-TS-VR-DEST
T3-DPI-FW-TS-VR-DEST
T4-DPI-FW-TS-VR-DEST

Figure 2.19: Received throughput vs. generated packet rate for each tenant
(T1, T2, T3 and T4) when T1 does not traverse the VNF chain of Fig. 2.7d,
with 64-byte IP packet size. Comparison with the single tenant case.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120

TC
P

 th
ro

ug
hp

ut
 re

ce
iv

ed
 [M

bp
s]

Time [s]

T1-VR-DEST single tenant
T1-VR-DEST

T2-DPI-FW-TS-VR-DEST
T3-DPI-FW-TS-VR-DEST
T4-DPI-FW-TS-VR-DEST

Figure 2.20: Received TCP throughput for each tenant (T1, T2, T3 and T4)
when T1 does not traverse the VNF chain of Fig. 2.7d. Comparison with the
single tenant case.

36

2.5 Conclusion

Network Function Virtualization will completely reshape the approach of
telco operators to provide existing as well as novel network services, tak-
ing advantage of the increased flexibility and reduced deployment costs of
the cloud computing paradigm. In this work, the problem of evaluating
complexity and performance, in terms of sustainable packet rate, of virtual
networking in cloud computing infrastructures dedicated to NFV deploy-
ment was addressed. An OpenStack-based cloud platform was considered
and deeply analyzed to fully understand the architecture of its virtual net-
work infrastructure. To this end, an ad-hoc visual tool was also developed
that graphically plots the different functional blocks (and related intercon-
nections) put in place by Neutron, the OpenStack networking service.

The analysis brought the focus of the performance investigation on the
two basic software switching elements natively adopted by OpenStack, namely
Linux Bridge and Open vSwitch. Their performance was first analyzed in a
single-tenant cloud computing scenario, by running experiments on a stan-
dard OpenStack setup as well as in ad-hoc stand-alone configurations built
with the specific purpose to observe them in isolation. The results prove that
the Linux Bridge is the critical bottleneck of the architecture, while Open
vSwitch shows an almost optimal behavior.

The analysis was then extended to more complex scenarios, assuming a
data center hosting multiple tenants deploying NFV environments. The case
studies considered first a simple dedicated deep packet inspection function,
followed by conventional address translation and routing, and then a more
realistic virtual network function chaining shared among a set of customers
with increased levels of complexity. Results about sustainable packet rate and
throughput performance of the virtual network infrastructure were presented
and discussed.

The main outcome of this work is that an open-source cloud computing
platform such OpenStack can be effectively adopted to deploy NFV in net-
work edge data centers replacing legacy telco central offices. However, this
solution poses some limitations to the network performance which are not
simply related to the hosting hardware maximum capacity, but also to the
virtual network architecture implemented by OpenStack. Nevertheless, our
study demonstrates that some of these limitations can be mitigated with a
careful re-design of the virtual network infrastructure and an optimal plan-
ning of the virtual network functions. In any case, such limitations must
be carefully taken into account for any engineering activity in the virtual
networking arena.

After this deep investigation of the data plane performance, and a former

37

study of how to implement a NFV use case on the OpenStack platform, we
moved our attention on the control plane of the network. In particular,we
focused on the Service Function Chaining mechanism, which is considered
one of the crucial network capability from an operational efficiency point of
view for a telecommunication operator. Design and evaluation aspects on
implementing dynamic NFV are investigated and discussed in chapter 3.

38

Chapter 3

SDN Control plane
design for Dynamic NFV

The Service Function Chaining is defined as an ordered set of Service Func-
tions (SFs) that are chained together and that are in charge of analyze,
classify, condition, and secure data traffic. Such functions have been tradi-
tionally implemented by means of vendor-dependent middle-boxes; but since
NFV is gaining a lot of interest as a flexible and cost-effective solution for re-
placing such hardware-based middle-boxes with software appliances running
on general purpose hardware in the cloud [8], a shift of paradigm is expected,
and will most likely take place at the network edges, where most of the these
functions are located [12].

This chapter will first investigate the issues of implementing chains of
network functions in a “softwarized” environment and, in particular, the
complexity of the SDN control plane within a cloud-based edge network im-
plementing NFV (section 3.1). Then, we investigate design methodology for
implementing the SDN control plane capable of steering specific data flows
toward the required VNF locations and achieving fully dynamic service chain-
ing section (section 3.2). Such methodology was formerly implemented on
the OpenStack platform to provide a practical example of the feasibility and
degree of complexity of the proposed approach. Then, the work was further
elaborated in a joint collaboration with Telecom Italia - Strategy and Inno-
vation, Italy, and Ericsson Telecomunicazioni S.p.A, Italy, whose goal was
to provide a proof of concept (PoC) demonstrating the added value that dy-
namic software-defined networking control, coordinated with a flexible cloud
management approach, brings to telco operators and service providers.

39

3.1 Dynamic chaining of Virtual

Network Functions in edge-networks

Future computing, storage, and connectivity services will be provided by
software-defined infrastructures built according to the cloud paradigm, where
network functions can be virtualized and executed on top of general-purpose
hardware [35]. One of the biggest advantages brought by NFV will be the
possibility for network operators to dynamically and flexibly select and apply
the specific edge network functions needed for a given class of user data
traffic at a given time. Also, owing to the software nature of these functions,
infrastructure providers will be able to place specific instances where they
are actually needed, and to dynamically migrate, duplicate, or delete them
according to the emerging requirements. This approach will allow Telco
operators to successfully combine a flexible enforcement of user’s Quality of
Service (QoS) with an efficient communication resource utilization.

Such flexibility in deploying virtual edge network functions independently
of the underlying hardware must be coupled with as much elasticity in con-
trolling the user data traffic independently of the specific forwarding plane
adopted. Indeed, the capability of steering specific data flows towards the
required virtual appliance locations is a key factor to achieve fully dynamic
service chaining. Even before the advent of NFV, Software Defined Net-
working (SDN) solutions, such as OpenFlow [2], have been considered as a
viable option to flexibly steer traffic towards the required middle-boxes, pos-
ing design challenges and integration issues with existing infrastructures [36],
[37]. Other key aspects include a correct data-plane design to achieve full
network programmability [38], as well as high-performance implementation
of the Virtual Network Functions (VNFs) [39]. Previous work also discussed
the challenges behind a control plane that is able to dynamically manage the
VNF state taking into account the related SDN forwarding state [40].

In the following subsections, we intend to describe the actions to be pro-
grammed into OpenFlow switches in order to achieve dynamic service chain-
ing for two representative case studies, namely Layer 2 (L2) and Layer 3
(L3) edge network function implementations (subsection 3.1.3). The refer-
ence scenario and both case studies are first described in subsections 3.1.1
and 3.1.2. The section concludes with a proof-of-concept implementation
with the Mininet emulation platform (which was used to provide a practi-
cal example of the feasibility and degree of complexity of such approaches,
subsection 3.1.4).

40

Figure 3.1: Reference network scenario with NFV chaining at the edge and
dynamic traffic steering.

3.1.1 Reference network scenario

The reference network scenario assumed here is illustrated in Fig. 3.1.
Borrowing the main idea from [12], a future Telco infrastructure is envi-
sioned such that the complexity is mostly shifted towards the edge. A high-
performance, flat, optical core network provides stateless broadband connec-
tivity to a number of edge networks, where most of the functions required
to compose the offered service are provisioned in form of software appli-
ances capable of multi-tenancy isolation (e.g., virtual machines, lightweight
containers, etc.) executed on top of standard, general purpose computing
hardware. Therefore, future edge networks are assumed to take the shape
of data centers, where VNFs can be easily deployed, cloned, migrated, de-
stroyed as a sort of on-demand utility service, i.e. according to the general
cloud computing paradigm.

However, differently from the typical cloud computing or storage services,
these cloud-based edge networks have the peculiar aspect that many VNFs
must be applied to crossing traffic originating and terminating outside of the
data center. Furthermore, in order to adapt to emerging network conditions
and owing to the flexibility of software appliances, type, number, and location
of VNFs traversed by a given user data flow may change in time.

In principle, the choice of the most appropriate VNFs could be the result

41

of the execution of other VNFs. For instance, a traffic classification function
could be used to determine what kind of traffic conditioning function (e.g.,
shaping or priority scheduling) should be applied to a given user data flow to
improve the QoS. Although this example recalls traditional solutions for QoS
enforcing, the added value of implementing it through NFV is given by the
much higher flexibility of managing software-based virtual appliances rather
than deploying hardware-based middle-boxes.

Therefore, the edge network data center infrastructure must be flexible
enough to allow dynamic and conditional VNF chaining. This also means
that there are two aspects that matter: space chaining and time chaining
diversity. Considering the example in Fig. 3.1, two different user data flows
f1 and f2 at time t0, in this case coming from the same user end-point,
must first cross the same VNF, then must be forwarded to two different
local functions, and finally sent to some remote edge networks where, after
crossing additional VNFs, they eventually reach their respective destinations.
In this case, since f1 and f2 are simultaneously active, the programmable
network must provide space chaining diversity. Similarly, assuming that flow
f2 is subject to different service chains at two different times t0 and t1, the
programmable network must also implement time chaining diversity.

A viable approach to enable the required flexibility in both space and
time chaining diversity is to use OpenFlow to properly steer traffic flows. A
logically centralized SDN controller is in charge of programming and coordi-
nating the edge networks and make sure that each user data flow crosses the
required VNFs in the required order. Furthermore, any VNF chain provi-
sioning and change should be compliant with standard user access protocols.
The complexity of achieving this goal with an OpenFlow implementation
is discussed in the following sections, with reference to two practical case
studies of VNF chain deploying.

3.1.2 Case studies: Layer 2 and Layer 3 topologies

The example chosen is that of an operator providing connectivity services
to two users exchanging traffic with a remote host via an edge router. The
user end-points are assumed to be implemented as virtual machines (VMU1
and VMU2) running applications inside a cloud computing platform, which
is directly attached to, or even deployed within, the edge network data cen-
ter. This approach follows the idea of a shared data center infrastructure
integrating both cloud and NFV services for multi-tenant customers, as en-
visioned in the OpenStack implementation described in [24]. However, the
study does not lose generality if other scenarios with physical connectivity
to user premises are considered.

42

The two end users have two different types of Service Level Agreement
(SLA):

1. VMU1 is a priority user and requires a WAN acceleration service when
needed, but in case of adequate bandwidth available, the traffic of this
user follows traditional routing rules;

2. VMU2 is provided with a best effort service, so it follows traditional
routing, unless higher priority users enter (or are already in) the net-
work; in this case, traffic belonging to VMU2 goes through a shaping
function, thus limiting its bandwidth usage.

According to the NFV paradigm, the edge node forwarding packets to
the remote host (H1) is implemented as a Virtual Router (VR). Other VNFs
provisioned as dedicated virtual machines include: a traffic analyzer based on
Deep Packet Inspection (DPI), a Wide Area Network Accelerator (WANA),
and Linux kernel’s Traffic Control (TC) tools to implement traffic shaping.
Given that the various VNFs are available in the edge network data center,
the issue now is to properly steer the traffic flows to make them traverse the
chain of VNFs that implement the correct SLAs for each user. Basically,
traffic flows originated at VMU2 should be forwarded according to normal
IP routing when there is no bandwidth contention, and redirected to the
TC when traffic flows from VMU1 are contending for the output bandwidth.
Similarly, traffic flows from VMU1 should be forwarded according to normal
IP routing when there is no bandwidth contention, and redirected to the
WANA when other best effort traffic is contending for the output bandwidth.

Therefore traffic steering policies must be implemented in a dynamic way,
adjusted to the ongoing traffic flows. This is managed by means of the SDN-
based control plane that will program the forwarding plane according to
the required VNF chaining. Given the flexibility and cross-layer operations
allowed by the SDN approach, a first question to answer is at which logical
network layer the steering actions should be implemented. The following two
alternatives are considered:

1. L2 topology, shown in Fig. 3.2, in which network functions are im-
plemented as L2 virtual appliances connected to a single broadcast
domain;

2. L3 topology, shown in Fig. 3.3, in which network functions are imple-
mented as L3 virtual appliances connected to two different broadcast
domains, which requires the Gateway (GW) as an additional function.

43

Figure 3.2: Layer 2 edge network topology.

Figure 3.3: Layer 3 edge network topology.

44

Owing to the features of the SDN control plane, the two approaches
provide identical results but have different pros and cons. Generally speaking,
the L2 topology is completely transparent to the end user, who assumes to be
directly connected to the edge router: in this case, the provider must deploy
the required VNF chaining while keeping the same L2 connectivity on the
user side. On the other hand, in the L3 topology the user always sees an
intermediate gateway (GW): the provider must then maintain transparent
L3 connectivity when deploying the required VNFs. Therefore, the dynamic
traffic steering and the SDN controller must be designed taking into account
these transparency requirements.

3.1.3 Design logic for Layer 2 & Layer 3 topology

In this subsection we discuss how and under which logic we designed the
SDN controller for each of the two topologies previously introduced, which
have been emulated using Mininet 2.1 [41], with POX 0.2.0 as an OpenFlow
(OF) 1.0 controller. We adopt a hybrid approach by using switches capable
of handling traffic as in legacy network devices, but also capable of taking
advantage of OF features, as proposed in recent works [42]. Each scenario
requires its own custom topology and custom controller, because they face
different issues and different actions when dealing with traffic steering.

When planning the controller logic, we identified some rules which do
not require flow by flow processing: in particular, whenever a packet must
be forwarded from one of the VNFs to either VMUs or VR, it can follow
legacy forwarding rules. For this reason, we decided to install these rules
during the handshake phase between the switch and the controller. In par-
ticular, on switch S1 all IP packets destined to network 10.10.10.0/24 will be
processed according the NORMAL action, which means the standard L2/L3
processing. Same thing on switch S2 for all IP packets coming from network
10.10.10.0/24.

So initially, both switches start with the above mentioned rules, while the
others are added incrementally after PacketIn events, based on the type of
flow generated by VMUs and according to the following logic:

• ARP and ICMP messages are processed according to the NORMAL
action, in order to enforce and check basic connectivity;

• TCP and UDP messages are processed dynamically, i.e. they are
treated according to specific OF rules that change based on network
traffic conditions, as well as the SLA of each VMU.

45

An example of L3 dynamic traffic steering and VNF chaining is shown
in Fig. 3.4, where flows f1 and f2 are generated by VMU1 and VMU2 re-
spectively. In order to apply traffic steering, we cannot simply play with
the output(port) action. During phase (1), identified by the green line in
Fig. 3.4a, as soon as the first packet of f1 reaches S1, the packet is sent to
the controller generating a PacketIn event. The controller then installs a rule
specific for the two end-points (VMU1 and H1). Not only it tells the switch to
forward packets out of the port to which the DPI is connected to, but it also
tells the switch to change datalink layer destination address with the MAC
address assigned to DPI’s interface. At the same time, the controller installs
the following rule on S2 switch: packets originated from H1 and destined to
VMU1, coming from VR’s port, not only will be forwarded out of the port to
which DPI is connected to, but also their destination MAC address will be
replaced with the one assigned to DPI’s interface. In this way, we are able to
steer bidirectional f1 traffic towards the DPI, and we also reduce the amount
of messages sent to the controller, thus decreasing the controller load.

After the DPI classification completes, confirming the compliance of f1 to
VMU1’s SLA, according to our scenario VMU1 enters phase (2), identified
by the blue line in Fig. 3.4a. By using flow mod() messages with higher
priority compared to rules installed during phase (1), the controller installs
the following rules:

• on switch S1, traffic originated from VMU1 and destined to H1 is pro-
cessed according to NORMAL action, so that it follows traditional
routing;

• on switch S2, traffic going in the opposite direction coming from VR’s
port is also processed according to NORMAL action.

In this way, traffic stops going to DPI and goes directly to the gateway
thanks to the higher rule priority. This configuration holds until best effort f2
traffic, originated from VMU2, enters the network; as soon as VMU2’s traffic
reaches switch S1, the controller installs equivalent rules as those described
for VMU1 during phase (1). Phase (3) starts and VMU2’s traffic is forwarded
to the DPI as depicted in Fig. 3.4a by the dashed red line (flow f2), while
the other flow (f1) continues going through GW. After DPI classifies f2 as
best-effort traffic, phase (4) begins and new rules (with higher priority) are
installed on both switches according to the following logic:

• on switch S1, traffic originated from VMU1 and destined to H1 will be
forwarded to the port connected to WANA, changing the destination
MAC address accordingly; a similar policy applies for traffic originated
from VMU2 and destined to H1, that will be forwarded to TC instead.

46

(a) Transitional phases.

(b) Final phase.

Figure 3.4: Traffic steering in Layer 3 topology: (a) transitional VNF chain-
ing in phases (1), (2) and (3); (b) final VNF chaining in phase (4).

47

(a) Transitional phases.

(b) Final phase.

Figure 3.5: Traffic steering in Layer 2 topology: (a) transitional VNF chain-
ing in phases (1), (2) and (3); (b) final VNF chaining in phase (4).

48

• on switch S2, traffic going in the opposite direction coming from VR’s
port will be forwarded to WANA, changing the destination MAC ad-
dress accordingly; a similar policy applies for traffic directed to VMU2,
that will be forwarded to TC instead.

In this way, the final service chain is the one shown in Fig. 3.4b phase (4)
with the blue dashed line and red dashed line, representing flows f1 and f2,
respectively.

In the L2 topology case, some of the VNFs use an internal bridge to con-
nect the input port to the output port (e.g., WANA and TC). This configu-
ration creates topology loops and, if proper countermeasures are not taken,
the network could end up flooded by broadcast storms. This issue cannot
be addressed by means of the legacy Spanning Tree Protocol (STP), since
it would disable one of the ports of the bridged VNFs preventing the pack-
ets to correctly flow through them. Therefore, this task is delegated to the
controller by installing appropriate rules during the handshake phase. ARP,
ICMP, TCP and UDP messages are treated using the same logic as for L3
topology, but this time the controller does not have to deal with MAC ad-
dress change actions, given the single L2 broadcast domain. The four phases
of the L2 dynamic service chaining are depicted in Fig. 3.5. It is worth to
note that, whenever a new flow enters the network, the controller instructs
the switch to forward its packets to the VR and to simultaneously mirror
them to the DPI interface, as this is the typical L2 DPI configuration.

3.1.4 Proof of concept

As a proof of concept, we run several Mininet emulations for both topolo-
gies in order to prove the feasibility of the dynamic service chaining. The
emulations have been implemented by measuring the throughput received
at the destination H1, and on relevant nodes, such as DPI, TC and WANA
(the throughput was measured also on GW for the L3 topology). On a time
window of about 600 seconds, we generated two distinct TCP flows at differ-
ent time instants, including a transitional period when the flows contend for
the bandwidth, thus producing the series of traffic steering phases already
described in the previous section.

Figure 3.6 shows the measured throughput at DPI, GW, TC and WANA
nodes for the L3 scenario during the emulation, highlighting all the phases
described above. In fact, at the beginning VMU1’s traffic (f1) is captured by
the DPI entering phase (1); after correct classification, flow f1 enters phase
(2), and is captured by GW, taking advantage of all the bandwidth available
(100 Mbps, as configured in the Mininet emulator). After about 150s from

49

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Time (s)

DPI-f1
DPI-f2
GW-f1
TC-f2

WANA-f1

Figure 3.6: L3 topology: throughput measured at DPI, GW, WANA and
TC.

50

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Time (s)

H1-f1
H1-f2

Figure 3.7: L2 topology: throughput measured at H1.

the beginning, VMU2’s traffic (f2) enters the network, generating bandwidth
contention, phase (3), until the second classification occurs; this determines
a new change in the service chain: from now on, f1 is sent to WANA, while
f2 is sent to TC.

As far as L2 scenario is concerned, we decided to show the throughput
measured at the destination H1, which is equivalent (in terms of highlighted
phases) to the one shown for L3 scenario. As reported in Fig. 3.7, at the
beginning f1 experiences all the bandwidth available during phases (1) and
(2); contention occurs during phase (3) when f2 enters the network, ending
in phase (4) when both flows follow different chains according to their SLAs.

The main outcome of this empirical study is that, with a careful analysis of
the practical issues posed by a given NFV deployment and a smart definition
of the set of actions to be programmed in the network, considering both
legacy forwarding and flexible traffic steering, it is possible to simplify the
SDN controller design and successfully achieve dynamic service chaining.

51

3.2 Coordinating dynamic SDN control

As we said, virtualization brings the immediate advantage of making deploy-
ment independent of the underlying hardware, simplifying service planning
and implementation, given that to date the most typical approach to ser-
vice chaining is based on static forwarding rules unaware of user needs. The
service chain dedicated to a given customer (or set of customers) may be dy-
namic, changing over a rather small time scale, driven by external commands
and/or by the changing network conditions.

Our goal is to provide a general conceptual framework to implement such
concept. The VNFs are deployed in a cloud environment and the service
chain is created, modified, and maintained by properly adapting the under-
lining virtual network by means of a Software Defined Networking (SDN)
approach. Even before the advent of NFV, SDN has been considered as
a viable option to flexibly steer traffic across physical middleboxes, posing
significant challenges for deployment and integration with existing infras-
tructures [37, 43]. However, the proposed solutions did not take into account
the additional requirements of virtualized middleboxes in terms of mobility
and flexibility. Different attempts have been made to formalize SDN control
plane design. Some authors proposed an SDN programming model aimed
at defining network-wide forwarding behaviors by applying high-level algo-
rithms targeted to performance challenges [44]. Another solution consisted
in taking advantage of operating system mechanisms and principles, showing
how they could be applied in the SDN context [45]. Further works were more
focused on modeling the SDN data plane, e.g., by means of multiple level
pipeline and finite state machines [46], or through a stateful flow processing
inside the forwarding device itself [47]. However, none of the aforementioned
works directly tackles the issue of an SDN control plane design for dynamic
VNF service chaining in a cloud network platform.

In the following subsections, the controller design methodology will be
discussed (subsection3.2.1) together with a case study example; then a former
implementation of such example is provided on the OpenStack cloud platform
(subsection 3.2.2). Some preliminary results about methodology adoption is
given in subsection 3.2.3.

3.2.1 The Finite State Machine approach

To devise a general approach to service chain reconfiguration, the behavior
of the SDN control plane is modeled here by means of a Mealy Machine [48]
abstraction, in particular a Finite State Machine (FSM). The controller sets
up and manages the forwarding rules for data flows. Flow f represents a

52

traffic stream at some logical level. Therefore service chains may be applied
to application-related flows, user-related flows, and/or aggregated flows. The
SDN controller runs a thread for each f , which installs in the network a set of
forwarding rules that will lead to a specific behavior to implement a specific
service chain.

An example of FSM state diagram is shown in Fig. 3.8. State transitions
depend on current state and input received, whereas each transition generates
an action on f . We apply the following formal definitions:

• state s is from a finite set (in the example, s ∈ {Init, C, E, N, D},
where s0 = Init is the initial state);

• input i is from a finite set
(e.g., i ∈ {PKT IN, SLA C, SLA NC, CONG, NO CONG});

• actions A(f, s, i) are defined according to the SDN technology used for
traffic steering;

• state transition T is a function that maps a pair (s, i)
to a pair (s′, A(f, s, i)).

The set of input i can be composed of events (e.g., PKT IN represents
a packet arrived at the controller) and output coming from other entities,
such as DPI or traffic monitor (e.g., SLA C and SLA NC represent output
coming from DPI, meaning that a traffic is compliant or not to the SLA,
respectively; while CONG and NO CONG represent output coming from a
traffic monitor, meaning that the network is congested or not, respectively).

To make the remainder of the discussion easier to follow and more con-
crete, a specific example will be considered, i.e. the situation of a network
operator willing to apply the NFV principles in a multi-tenant scenario to
dynamically enforce QoS and satisfy users’ Service Level Agreement (SLA) in
case of potential network congestion. However, the modeling and operational
approach is general and can be applied to other situations.

In this specific scenario the set of states is defined as in Fig. 3.8:

1. Init, Initial, in which the controller can install general, flow-independent
forwarding rules in the network nodes; this is the state from which a
new thread departs whenever a new flow f arrives;

2. C, Classification, in which the new flow f is analyzed and classified to
determine its SLA;

3. E, Enforcement, in which QoS is strictly enforced on flow f , according
to its SLA;

53

Figure 3.8: Example of a state diagram of the FSM representing the controller
thread processing a flow.

4. N, Non-enforcement, in which QoS is not strictly enforced on f , because
the network is not in a potential congested state and more resources
can be given to f ;

5. D, Drop, in which flow f is subject to policing actions (e.g., packets
are dropped) because it is not compliant with the SLA.

When a new flow f arrives, i.e., a PKT IN input is received, the controller
spawns a new thread that enters state C, while action A(f, Init ,PKT IN) en-
ables the steering of f to a VNF chain that implements flow classification.
Depending on the result (an input to the FSM), f can be either policed, if
not compliant (SLA NC), or treated according to QoS requirements (SLA C).
The idea in the latter case is to follow a conservative approach at first in-
stance, which means enforcing the SLA with a proper steering action and
moving to state E. However, if the network is not congested and more than
enough resources are available, flow f can be processed by a simpler service
chain that does not strictly enforce QoS, and the thread can move to state
N. We assume that a separate entity, in charge of monitoring the state of
the network, interacts with the controller through a northbound interface to
notify whether (CONG) or not (NO CONG) a potential congestion arises,
allowing the thread to adaptively switch between states N and E.

As already said, any state transition implies a steering action A(f, s, i)
to be performed on flow f . Although the specific operations depend on the
particular SDN technology adopted, we can define an additional set of general
parameters as follows:

• NT = {SW1, SW2, . . . , SWNSW
}, the set of switches in the network

topology;

54

• SWj = {p1, p2, . . . , pNp,j
}, the set of ports on the j-th switch;

• U = {u1, u2, . . . , uNu}, the set of users;

• NF = {F1, F2, . . . , FNF
}, the set of VNFs;

• Ch(f, s) = {Fl1 , Fl2 , . . . , Fln(f,s)
}, the service chain of n(f, s) VNFs to

be applied to flow f in state s.

Then each action can be expressed as a composition of atomic tasks. We
can define a few general ones:

(SWj, pm) = get port(uk)

(SWj, pm) = get in port(Fl, d) (3.1)

(SWj, pm) = get out port(Fl, d)

where SWj ∈ NT , pm ∈ SWj, uk ∈ U , Fl ∈ NF , and d ∈ {inbound, outbound}.
These tasks provide an abstraction to obtain topology information, since

they are used to discover the switch SWj and port pm a given user uk or VNF
Fl is connected to. For VNFs, it is assumed in general that traffic flows can
enter and exit through different ports, and that in many cases (e.g., NAT)
this depends on the direction of the packet, either inbound or outbound.

The result of tasks (3.1) is essential to perform another atomic task:

flow mod(SWj, cmd , opts ,match, fwdlist) (3.2)

which represents the act of executing a command cmd (e.g., add or delete
a forwarding rule) on switch SWj, possibly specifying optional parameters
opts (e.g., priority or timers), providing the flow matching rule match and
the specific forwarding operation list fwdlist to be applied to the matching
flow.

With the help of the aforementioned abstractions, the proposed FSM is
able to capture the sequence of operations that each controller thread must
execute on the respective flow, regardless of the underlying network infras-
tructure and chosen SDN technology. Therefore, the SDN controller can be
designed according to the proposed general FSM model, whereas the specific
actions to be applied to the forwarding nodes and the specific southbound
interface protocol to be used can be programmed as separate, technology-
dependent “drivers”. This includes, for instance, also the possibility to tag
packets forwarded across multiple switches in order to keep the network aware
of the current VNF context and chain segment [37, 43].

55

3.2.2 Applying stateful SDN control
to a Layer-2 NFV Topology

In this subsection we illustrate how we applied the previously described de-
sign methodology to a practical case of NFV deployment on OpenStack1

platform. To keep VNFs transparent to the users, we configured the topol-
ogy depicted in Fig. 3.9, consisting of two layer-2 SDN edge networks inter-
connected by a legacy core network. Following the proposed approach, we
define:

NT = {SW1, SW2}
U = {BU,RU,DEST}

NF = {DPI,TC,WANA1,WANA2,VR1,VR2}

The two switches are compliant with OpenFlow and programmed by a suit-
able SDN controller. The two users generate traffic flows fBU and fRU towards
the same destination server with different SLAs: when QoS is enforced, BU
and RU are subject to WAN acceleration and traffic shaping, respectively.
We describe in detail which steering actions and service chaining are applied
to fBU in SW1, proving that our approach is general enough to easily derive
the corresponding actions and chaining to be applied to fRU and in SW2.

We first define to which service chain the flow is subject given the current
state. Ch(fBU, Init) = Ch(fBU,D) = nil: no chain is applied; Ch(fBU,C) =
{DPI & VR1}: traffic is sent to VR1 and mirrored to DPI for classification
(the chaining order does not matter); Ch(fBU,E) = {WANA1,VR1}: traffic
is sent first to WANA1 and then to VR1 (the order matters); Ch(fBU,N) =
{VR1}: traffic is sent directly to VR1. A pseudo-code description (using
POX-like2 notation) of the steps that need to be taken, during state transi-
tions or in a given state, is provided in the following.

Figure 3.10 shows an example of flow-independent rules to be installed
during the startup phase (Init state). The controller sends flow mod mes-
sages to each switch attached to VNFs with multiple ports to install ARP
broadcast dropping rules: this is needed to avoid that VNFs working in
layer-2 mode generate broadcast storms by replicating ARP requests.

Figure 3.11 describes the actions taken on fBU at the source edge network
during the transition from Init to C. With get match(f) (line 8) we refer to
a function that returns the exact matching rule for outbound packets of flow
f , while get match(f ′) (line 16) returns the dual matching rule for inbound
packets. After getting port information (lines 1-3), the OpenFlow actions to

1https://www.openstack.org/
2http://www.noxrepo.org/pox/about-pox/

56

Figure 3.9: Case study NFV topology. Each layer-2 SDN edge network is
implemented by an OpenFlow switch, whose numbered ports are connected
to users and VNFs as displayed.

be performed on outbound packets are specified, i.e., sending a copy of each
packet to the DPI (line 4), inserting the VLAN tag used by OpenStack on
the physical network for tenant isolation (line 5), and sending the packet to
VR1 (line 6). The matching rule and its expiration timer tout and priority h
are specified (lines 7-8). Then the flow mod message for outbound packets
is sent to the switch (line 9). Finally, a dual flow matching rule for inbound
packets is computed and installed (lines 10-17). Note that the procedure
has been simplified considering the setup in Fig. 3.9, where the source edge
network consists of a single switch (SW1), but it can be extended to a general
multi-switch case. It can be also easily extended to express the actions to
perform at the destination edge network switch (SW2).

When the controller thread is in state C, the flow is being analyzed by
the DPI to verify SLA compliance. If the classification reveals that fBU is
not compliant with its SLA, the controller is notified through the northbound
interface and the relevant thread moves to state D, forcing the switch to drop
BU’s packets, as specified in Fig. 3.12. In this case, the rule priority is higher

57

Initialization

1: for all Fl in {TC,WANA1,WANA2} do
2: (swin, pin) = get in port(Fl, outbound)
3: (swout, pout) = get out port(Fl, outbound)
4: fwdlist = append(“drop”)
5: for all (sw, p) in {(swin, pin), (swout, pout)} do
6: match = “ofp match(in port = p, dl type = ARP TYPE, dl dst =

ETHER BCAST)”
7: flow mod(sw,ADD, nil,match, fwdlist)
8: end for
9: end for

Figure 3.10: Initialization of flow-independent rules.

(line 3) than that of the rule inserted by action A(fBU, Init ,PKT IN): as a
consequence, the packet dropping action is immediately applied, while the
previous temporary rule expires after tout without any further intervention
from the controller.

Otherwise, if fBU is found compliant by the DPI, the controller thread
moves to state E. Figure 3.13 describes the steps that need to be taken to
perform the required traffic steering: outbound packets must be first sent to
WANA1 (lines 1-6) and then to VR1, after inserting the required VLAN tag
(lines 7-12); inbound packets must be processed in the reverse order (lines
13-23).

In case the network is not congested, it is possible to avoid the strict en-
forcement of QoS functions and send packets directly to the edge router VR1,
thus reducing the processing burden on VNFs and potential latency on user
data traffic due to service chaining. Transition T (E ,NO CONG) brings the
controller thread to state N, and the related steering action A(fBU,E ,NO CONG)
can be expressed similarly to Fig. 3.11. Indeed, after removing lines 2, 4, 12,
and 15 (not needed because packets must not be sent to the DPI), only line
7 must be changed, setting the rule options to opts = “priority=h + 2” for
immediate deployment of the new steering action. Not specifying an expira-
tion time makes the new rules permanent. However, as soon as a potential
network congestion is reported, the thread moves back to state E with tran-
sition T (N ,CONG). The corresponding steering action A(fBU,N ,CONG)
is similar to A(fBU,E ,NO CONG), except for the fact that the flow mod
command that must be specified is DELETE instead of ADD. This way, the
QoS-enforcing service chaining is immediately restored. According to the
notifications received from a network resource monitoring system, the con-

58

T (Init ,PKT IN) = (C , A(fBU, Init ,PKT IN))

1: (sw, pin) = get port(BU)
2: (sw, pout,0) = get in port(DPI, outbound)
3: (sw, pout,1) = get in port(VR1, outbound)
4: fwdlist = append(“ofp action output(port=pout,0)”)
5: fwdlist = append(“ofp action vlan vid(vlan id = internal vid)”)
6: fwdlist = append(“ofp action output(port=pout,1)”)
7: opts = “hto=tout, priority=h”
8: match = “ofp match(in port=pin,get match(fBU))”
9: flow mod(sw,ADD, opts ,match, fwdlist)

10: (sw, pin) = get out port(VR1, inbound)
11: (sw, pout,0) = get port(BU)
12: (sw, pout,1) = get in port(DPI, inbound)
13: fwdlist = append(“ofp action strip vlan vid()”)
14: fwdlist = append(“ofp action output(port=pout,0)”)
15: fwdlist = append(“ofp action output(port=pout,1)”)
16: match = “ofp match(in port=pin,get match(f ′

BU))”
17: flow mod(sw,ADD, opts ,match, fwdlist)

Figure 3.11: Actions taken on fBU during state transition from Init to C.

troller thread can switch back and forth between states E and N adapting
the VNF chaining to the current network conditions.

The steering actions presented above for BU traffic can be replicated also
for RU flows. In this case, the service chain in state E is different, i.e.,
Ch(fRU,E) = {TC,VR1}, and this is reflected in A(fRU,C , SLA C), which
is exactly the same as Fig. 3.13 after replacing BU with RU and WANA1

with TC.

3.2.3 Preliminary experimental results

As a proof of concept of our controller design approach, we deployed the
topology shown in Fig. 3.9 on a real cloud computing platform based on
OpenStack. BU, RU, DPI, WANA1 and TC are all implemented as virtual
machines (VMs) running inside a Compute Node and connected to an inter-
nal OpenFlow-compliant Open vSwitch bridge, whereas VR1 is a container-
based virtual router running in the Network Node, as in a typical OpenStack
configuration [18]. The destination edge network is outside the OpenStack
cluster, although DEST, WANA2 and VR2 are also implemented as VMs con-

59

T (C , SLA NC) = (D , A(fBU,C , SLA NC))

1: (sw, pin) = get port(BU)
2: fwdlist = append(“drop”)
3: opts = “priority=h + 1”
4: match = “ofp match(in port=pin,get match(fBU))”
5: flow mod(sw,ADD, opts ,match, fwdlist)

Figure 3.12: Actions taken on fBU during state transition from C to D.

Table 3.1: State transition times of the two flows measured in Fig. 3.14 .

Flow State transition Time (s)

fBU Init → C 10.62

C → E 71.36

E → N 73.46

N → E 168.43

flow terminated 404.11

fRU Init → C 106.45

C → E 167.36

flow terminated 416.74

nected to an Open vSwitch bridge. As a concrete implementation of VNFs,
we use Traffic Squeezer3 as a WAN accelerator, and the nDPI library4 as
DPI.

We designed a POX-based OpenFlow controller according to our method-
ology, and measured the throughput of two flows generated by BU and RU
on relevant ports of SW1, as shown in Fig. 3.14a and 3.14b. fBU and fRU

were distinct UDP flows generated with iperf at 100 Mbit/s each. The fig-
ures highlight how the flow throughput is affected by the dynamic chaining,
whereas the corresponding state transition times are reported in Table 3.1.
At the beginning, fBU is processed in state C (traffic sent to DPI and VR).
After SLA compliance is determined, the state moves to E for a very short
time (traffic peak sent to WANA1 at around 70 s), and then quickly switches
to N (traffic sent to VR1 only) due to almost immediate NO CONG notifi-
cation. As soon as fRU enters the network, it experiences state C chaining.
Then the corresponding state moves to E, but network congestion is imme-

3http://sourceforge.net/projects/trafficsqueezer/
4http://www.ntop.org/products/ndpi/

60

T (C , SLA C) = (E , A(fBU,C , SLA C))

1: (sw, pin) = get port(BU)
2: (sw, pout) = get in port(WANA1, outbound)
3: fwdlist = append(“ofp action output(port=pout)”)
4: opts = “priority=h + 1”
5: match = “ofp match(in port=pin,get match(fBU))”
6: flow mod(sw,ADD, opts ,match, fwdlist)
7: (sw, pin) = get out port(WANA1, outbound)
8: (sw, pout) = get in port(VR1, outbound)
9: fwdlist = append(“ofp action vlan vid(vlan id = internal vid)”)

10: fwdlist = append(“ofp action output(port=pout)”)
11: match = “ofp match(in port=pin,get match(fBU))”
12: flow mod(sw,ADD, opts ,match, fwdlist)
13: (sw, pin) = get out port(VR1, inbound)
14: (sw, pout) = get in port(WANA1, inbound)
15: fwdlist = append(“ofp action strip vlan vid()”)
16: fwdlist = append(“ofp action output(port=pout)”)
17: match = “ofp match(in port=pin,get match(f ′

BU))”
18: flow mod(sw,ADD, opts ,match, fwdlist)
19: (sw, pin) = get out port(WANA1, inbound)
20: (sw, pout) = get port(BU)
21: fwdlist = append(“ofp action output(port=pout)”)
22: match = “ofp match(in port=pin,get match(f ′

BU))”
23: flow mod(sw,ADD, opts ,match, fwdlist)

Figure 3.13: Actions taken on fBU during state transition from C to E.

diately detected, causing also fBU to move back to E. At this time, QoS is
enforced on both flows: fBU traffic is compressed by WANA1, while fRU traf-
fic is shaped by TC, with throughput measured at VR1 of around 2.2 Mbit/s
and 10 Mbit/s, respectively.

We also led additional tests in order to evaluate the latency introduced
by VNFs. We measured maximum, minimum, and average values of round
trip time (RTT) and jitter experienced by UDP flows generated by RU. Mean
values obtained from 20 experiments in states C and E are reported in Table
3.2. We did not find significant differences, mainly because in our setup VNFs
are placed on the same server. We expect different results in case of more
distributed VNF environments.

This work not only proves the feasibility of the proposed design methodol-

61

 1

 10

 100

 1000

 0 50 100 150 200 250 300 350 400 450

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Time (s)

DPI-in (p3)
WANA1-in (p4)

WANA1-out (p5)
TC-in (p6)

TC-out (p7)

(a) Throughput measured at each VNF port.

 1

 10

 100

 1000

 0 50 100 150 200 250 300 350 400 450

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Time (s)

VR1-in (p8)

(b) Throughput measured at VR1 input port.

Figure 3.14: Throughput measured during the proof-of-concept experiment,
showing correct traffic steering at controller state changes and final flow
composition towards the destination.

62

Table 3.2: Latency and jitter under different chaining states.

State Max Min Average

RTT (ms) C 14,840 1,525 3,972

E 10,382 2,006 3,313

Jitter (ms) C 0,322 0,080 0,125

E 0,491 0,067 0,152

ogy, but also shows a possible approach to orchestrate the mutual dependence
of different flows competing for the same network resources. This benefit is
further motivated and proved in the following subsections, where we highlight
the added value that dynamic software-defined networking control, coordi-
nated with a flexible cloud management approach, brings to telco operators
and service providers. In particular, we report some of the experimental
achievements obtained in the framework of Activity “SDN at the Edges”,
funded in 2015 by the EIT-Digital5 initiative under the “Future Networking
Solutions” Action Line.

3.2.4 How can Telco industry and Service Providers
benefit from stateful approach?

Telco industry and service providers are experiencing a rediscovered interest
in SDN and NFV paradigms: on the one hand, SDN foster a more flexible
communication resource programmability; on the other hand, NFV fosters
the adoption of virtualization and a “cloud-like” utility-based approach ap-
plied to networking, resulting in more elastic and efficient resource manage-
ment. This interest is most probably motivated by the novelty of the overall
context, specifically concerning techno-economic sustainability. Therefore,
the main goal of the joint collaboration with Telecom Italia - Strategy and
Innovation and Ericsson Telecomunicazioni S.p.A., was to investigate how
to create the technical conditions for accelerating the practical deployment
of SDN and NFV solutions in order to produce concrete socio-economic im-
pacts. Specifically, one of the main arguments has been that a federation
of interconnected test-beds/field trials on SDN and NFV would allow the
development of a distributed experimental environment where it is possible
to test (and, possibly in the future, to certify) open source software solu-
tions in specific networking application use cases, at the same time attract-
ing service providers, small to medium-sized enterprises (SMEs), and early

5http://www.eitdigital.eu/

63

adopters/users of newly enabled ICT services.
The use case described in subsection 3.2.5 leverages on Ericsson’s cloud

management and orchestration platform [49] and our stateful SDN framework
described in the previous subsections (3.2.1, 3.2.2, [50]). The innovative as-
pect of the use case considered in the PoC is the added value that a dynamic
SDN control, coordinated with a flexible cloud management approach, brings
to telco operators and service providers deploying NFV solutions. In partic-
ular, the PoC demonstrates how telco services based on NFV can be made
self-adaptive to the network conditions and/or to users’ changing require-
ments.

3.2.5 A SDN use case for Service Provider Networks

The general use case scenario refers to an NFV deployment in a cloud-based
telco edge environment similar to the one discussed in [12]. The full life cycle
of a telco service to be deployed in a virtualized environment is considered,
from the setup of a service level agreement (SLA) with the operator, to the
deployment of the virtual network functions (VNFs) required to implement
the service, up to the operations performed to ensure SLA compliance. While
for the scope of this work a generic SLA could be considered, in the PoC
presented later an SLA related to bandwidth availability is assumed.

The goal and the original contribution of this work is to demonstrate full
automation in both the cloud deployment of a given set of VNFs and the
capability to react to changes in the overall network conditions, safeguarding
the SLA.

Typically, a given VNF forwarding graph [51] is implemented by properly
chaining a number of VNFs required to deploy a given service, and steering
the relevant traffic flows accordingly. Following the cloud paradigm, the
VNFs are hosted in virtual machines (VMs) and shared among a set of users
for scalability and efficiency reasons. A VM may host from one to several
VNFs, depending on the associated workload. The two extreme cases are:

• When a VM hosts all the VNFs required for the service implementation

• When each VNF is hosted by a separate VM

The former case is the least challenging from the connectivity point of
view, as shown in Fig. 3.15a: since the VNF forwarding graph is mostly
implemented inside a single VM, traffic steering is limited to sending flows
to the VM and does not need complex forwarding rules in the cloud virtual
network infrastructure. However, this choice provides limited elasticity in re-
source management. The latter case is more suitable for a telco cloud-based

64

NFV deployment, where the placement of VMs (and consequently of VNFs) is
adaptively distributed across a number of computing nodes with the purpose
of optimizing performance and scalability. However, even in an intermediate
case, such as the one shown in Fig. 3.15b, the distributed approach requires
steering traffic along a data path that traverses multiple VMs in the proper
order and/or combination, according to the forwarding graph. Therefore, the
implementation of the forwarding graph must rely on more complex forward-
ing rules to be applied in the cloud virtual network infrastructure by means
of a proper reconfiguration mechanism, possibly automated. This is where a
dynamic SDN approach plays a crucial role.

The use case presented here tackles the most challenging situation of
distributed VNFs, with- out lack of generality. The VM images (VMIs)
preconfigured with the installed VNFs are the basic bricks of the service im-
plementation, while traffic steering is the glue to implement the forwarding
graph. The most interesting feature is that the forwarding graph can be
pruned, enhanced, and/or modified by starting/stopping VMs and/or mod-
ifying the traffic steering rules, with a degree of flexibility and within a time
frame that are absolutely impossible to achieve using legacy deployments
based on physical middle-boxes and vendor-locked equipment. The demon-
stration of these capabilities in a production-like environment is the core
objective of this work, and this goal is achieved by implementing automated
traffic steering and VNF forwarding graph management. The basic concepts
behind the use case presented here are in line with some of the PoCs pro-
posed within the European Telecommunications Standards Institute (ETSI)
NFV framework.6 In particular, PoC #28 and PoC #33 address similar is-
sues. These PoCs were developed approximately at the same time as the
activity reported. The findings of the PoCs are not yet publicly available.
Therefore, this work can be considered complementary to the ETSI NFV use
case analysis.

The nontrivial functional elements adopted in the considered use case
include the following:

• A production-level cloud computing infrastructure (i.e., the Ericsson
Cloud Lab described in the next subsection), equipped with a manage-
ment and orchestration platform and an inventory of pre-defined VMIs
to be picked up for deployment.

• An SDN controller, used to program the forwarding rules in the cloud
network infrastructure in order to achieve proper traffic steering. The
controller is designed according to our original stateful model that we

6http://www.etsi.org/technolo-gies-clusters/technologies/nfv/nfv-poc/

65

(a) VNFs deployed as software entities running in a single VM hosted
by a compute node in the cloud; the requested forwarding graph can
mostly be implemented inside the VM.

(b) VNFs deployed as software entities running in different VMs hosted
by different compute nodes. The requested forwarding graph must be
implemented in the cloud virtual network infrastructure.

Figure 3.15: Schematic graph example of alternative implementations of the
VNF forwarding graph.

66

developed at the University of Bologna, and that was previously de-
scribed (subsection 3.2.1).

• A separate entity capable of monitoring the network conditions and
interacting with the SDN controller through a northbound interface.
This monitor notifies the controller with any change in network condi-
tions that is meaningful for the traffic flow maintenance. We assume
the presence of such monitoring tools since they are typical components
of network management solutions.

3.2.6 Moving implementation to production-level
environment: the Ericsson Cloud Lab

The Ericsson Cloud Lab [52] is an open and multi-vendor testing environment
based on NFV and SDN technologies, where telco operators can join Ericsson
to perform PoC experiments and field trials for new use cases and cloud
services. The Ericsson Cloud Lab is a strategic infrastructure conceived and
implemented with the scope to:

• Foster in-company competence build-up;

• Show specific and concrete “proof” points related to the cloud benefits;

• Implement customer demos for specific products;

• Demonstrate how issues and concerns can be managed to mitigate the
risks.

To support the fulfillment of such a scope, the Cloud Lab implements
activities ranging from:

• Validation and certification on customer-specific stack/solution;

• Fully customized PoC on customer premises;

• Deep dive on customer-specific requests;

• Standard customer demo.

Figure 3.16 shows the Ericsson Cloud Lab, which follows the ETSI NFV
architecture. It exploits a heterogeneous environment mixing hardware from
the major vendors of data center servers. The virtualization hypervisors
are also mixed, with KVM running aside VMware, and different virtualized
infrastructure managers (VIMs) are available. The whole infrastructure is

67

managed by the proprietary Ericsson Cloud Manager (ECM) [49] on top of
the VIM platforms. In the PoC presented here the VIM platform adopted is
OpenStack [53].

Figure 3.16: The Ericsson Cloud Lab NFV architecture.

The Cloud Lab allows the implementation of a workflow managing the
full life cycle of a specific service and the set of VNFs used to implement it.
In general terms, the operational workflow implemented in the use case here
presented can be summarized as follows:

1. Service creation: Create a new VNF and make it available in the cor-
rect format for future utilization (pack a VMI with the NFV properly
installed and configured).

2. Site and VIM onboarding : Let ECM be aware of the geographical site
and VIMs to be considered as targets for the management activity.

3. VNF/network service onboarding : Deploy a new VNF (or a new re-
lease of a VNF) into ECM, including creation of an offer in the service
catalog, import of VMIs, and so on.

4. Instantiation and configuration: Create or provision a new instance of
the VNF including initial configuration (not customer-related).

5. Runtime management : Handle fault, configuration, accounting, perfor-
mance, and security (FCAPS) operations and, in general, any change
to the VNF.

68

6. Decommissioning : This is the disposal or retirement of a VNF instance,
including all ancillary activities (e.g., secure destruction of VNF-related
data).

The specific setup of the Ericsson Cloud Lab for the use case considered
here is shown in Fig. 3.17. The virtualization infrastructure is running Open-
Stack Juno release and the KVM Hypervisor. The ECM hosts the inventory
of VMIs with pre-installed VNFs and is responsible for the deployment of
the logical building blocks necessary for the use case. The VNFs available in
the inventory are:

• Deep Packet Inspection utility (based on the nDPI library7) that is
used to classify incoming traffic flows

• WAN Accelerator (WANA), a compression utility (based on Traffic
Squeezer8) that reduces the size of data packets to reduce transmission
and waiting time along the WAN path, with an effect similar to an
overall increase of bandwidth on the link

• Traffic Conditioner (TC), a traffic shaping function (implemented with
tools available in the Linux kernel9) that limits the bit rate of a given
set of flows by enforcing the incoming traffic SLA profile

An additional VMI (SDNc) is deployed to host the SDN controller (based
on Ryu OpenFlow controller10) in charge of reconfiguring the underlying
network infrastructure according to the different VNF forwarding graphs
required by the users. This choice makes it possible to virtualize the network
infrastructure and enables multiple potential service providers to coexist and
separately control their slice of network resources. It is worth mentioning
that each VNF listed above is not an Ericsson application, which emphasizes
the multi-vendor capabilities of the ECM and the Ericsson Cloud Lab.

3.2.7 Proof of concept: VNF chaining for QoS
enforcement & dynamic traffic steering

The PoC presented here focuses on VNF chaining for quality of service (QoS)
enforcement, and assumes two classes of users sharing an access network
segment with different SLAs concerning bandwidth availability:

7http://www.ntop.org/products/deep-packet-inspection/ndpi/
8http://www.trafficsqueezer.org/
9http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html

10https://osrg.github.io/ryu/

69

Figure 3.17: Use case Ericsson Cloud Lab setup.

• BU is a business (priority) user : In the case of adequate bandwidth
availability, BU traffic follows traditional forwarding rules, but when
the available bandwidth drops below a given threshold, the BU traffic
is forwarded through a WAN acceleration service.

• RU is a residential (best effort) user : The RU traffic follows tradi-
tional forwarding rules until it starts competing with a BU for network
resources; in this case, traffic from the RU is policed by a shaping
function, thus limiting its bandwidth usage to a given value.

The access network is based on an SDN control plane designed to:

• Dynamically handle multiple simultaneous flows according to current
network conditions

• Provide that some flows follow different forwarding graphs at different
times

• Steer specific data flows toward the required VNF locations, thus achiev-
ing full dynamic service chaining

To this purpose, for each traffic flow, the SDN controller configures a set
of forwarding rules that determine the specific behavior to be implemented
in the forwarding graph.

70

As we said in section 3.2.1, as a general approach to the dynamic traffic
steering configuration according to current network conditions, the behavior
of the SDN control plane is modeled by means of a FSM where a pre-defined
set of forwarding rules is associated with each state. The FSM state tran-
sitions may be triggered by either a change in network conditions, detected
and notified by a network monitor, or an external command directly sent
by the operator or user. This kind of communication reaches the controller
through its northbound interface by means of an application programming
interface (API) written for the purpose.

For the definition of the set of states, we refer to subsection 3.2.1, here
we just remind that:

• Init is the initialization state.

• C is the classification state.

• E is the enforcement state.

• N is the non-enforcement state.

• D is the drop state.

When a new flow f arrives, a PacketIn message is received at the con-
troller, which spawns a new thread and enters state C, steering f to the
VNF in charge of flow classification. Depending on the classification result
and current network conditions, the FSM state changes, and flow f can be:

• Not accepted in the network (D state)

• Forwarded with no actions (N state)

• Treated according to what is required by the SLA to enforce the correct
QoS (E state)

If the new flow is classified as SLA-compliant, a conservative approach
would require it to be moved from state C to state E, thus enforcing the
SLA for any new flow admitted in the network. Then, if network conditions
are favorable, the new flow can move to state N, where packets can be for-
warded directly to the network gateway without further processing by VNFs
enforcing the negotiated SLA. Otherwise, in the case of critical conditions,
all previously admitted flows move to the E state. As soon as the potential
risk of congestion is solved (e.g., some flows terminate), active flows can pro-
gressively move back to state N. This is how the dynamic VNF chaining is
accomplished, with proper traffic steering actions governed by cooperation

71

among the SDN controller, the network monitoring system, and the VNF
itself implementing the flow classification function.

The data plane virtual network topology implemented in the Ericsson
Cloud Lab for the PoC described above is shown in Fig. 3.18a. Two virtual
data centers (VDC1 and VDC2) are assumed to be in place. VDC1 hosts
BU and RU instances, and thus represents their access network, whereas
VDC2 hosts the destination to which all flows generated by the BU and RU
are directed (DEST acts as a sink for PoC purposes). It is assumed that
each VNF is implemented as a layer 3 virtual appliance connected to two
separate broadcast domains (i.e., virtual networks VNi,1 and VNi,2 for VDCi.
Then a layer 3 virtual router (VRi) is used to interconnect VDCi to the
external network. The provider maintains layer 3 connectivity to the user
while deploying the required VNFs. This approach is typical of access/edge
network operator deployments. Thus, the dynamic traffic steering and the
SDN controller must be designed taking into account these transparency
requirements.

(a) Proof of concept data plane virtual network topology.

(b) C state, classification of traffic flows.

Figure 3.18: Proof of concept data plane virtual network topology and traffic
flow steering in the C operating state.

In Fig. 3.18b traffic steering in the C state is shown. When a BU or
an RU initiates a new flow directed to DEST, the flow is forwarded from
VDC1 to VDC2 through gateways VR1 and VR2, but only after the SDN

72

(a) N state, no QoS enforcement.

(b) E state, QoS enforcement with VNF chaining.

Figure 3.19: Traffic flow steering in the N and E operating states.

controller configures the VDC1 internal network to force the flow through
the DPI. This VNF is in charge of classifying the flow, and detecting its QoS
class and compliance with the respective SLA. Following the classification,
the DPI communicates with the controller via the northbound interface (not
shown in the figure) the set of information required to identify the flow (e.g.,
medium access control [MAC] and IP addresses, protocol, TCP/UDP ports)
and its classification (whether BU or RU). No manual intervention is required
as long as the DPI is made aware of any new user and related SLA at service
setup. As a result of the classification, or if network conditions change, the
SDN controller changes the flow state.

When network conditions are such that the SLAs are not at risk, the
controller configures the active flows into state N, resulting in normal for-
warding through the access LAN and the gateway as shown in Fig. 3.19a.
Otherwise, if a potential congestion risk is detected by the network monitor
(not shown), the controller moves the flows to state E and injects new for-
warding rules to the network. With the aim to enforce SLA compliance for
both BU and RU, their flows are forwarded to WANA1 for improved QoS
and to TC for bandwidth usage control, as depicted in Fig. 3.19b. The BU
flow is also steered to WANA2 in VDC2 because compressed traffic should be
restored to the original format before reaching DEST. This peculiar behavior
has been included in the PoC to show how the stateful controller design is

73

able to support interdependence between multiple VNF instances.

3.2.8 Experimental results on Ericsson
Cloud Lab environment

The data plane virtual topology shown in Fig. 3.18a was deployed on the
Ericsson Cloud Lab environment, following the procedure and instantiating
the VMIs as described earlier. The logic to enforce the SLAs described earlier
was programmed within the SDN controller. However, to simplify network
reconfiguration in the PoC, but without any loss of generality, the service
orchestration phase was implemented in a simpler and less conservative way:

• As long as a new flow is classified as RU, and if network conditions are
not critical, the flow enters state N.

• As soon as a BU flow is detected, network conditions are considered
critical, and all flows enter state E.

As a proof of the correct behavior of the dynamic traffic steering config-
ured by the SDN controller according to the aforementioned orchestration
logic, the throughput of four user flows (three generated by RU and one by
BU) was measured on relevant ports of OpenStack’s virtual switch that im-
plements the virtual networks instantiated in VDC1. Each flow consisted of
a distinct TCP stream generated using the iperf tool11 with the following
time pattern:12

• Flow 1 from RU started at time T1.

• Flow 2 from RU started at time T2 = T1 + 30 s.

• Flow 3 from RU started at time T3 = T1 + 60 s.

• Flow 4 from BU started at time T4 = T1 + 90 s.

• All flows were terminated at time T5 = T1 + 200 s.

Figure 3.21 shows the total throughput measured on the virtual switch
ports connected to BU and RU when 3.21a a static network configuration is
used, and 3.21b the SDN-based dynamic traffic steering is used to enforce

11https://iperf.fr/
12This time pattern was chosen to provide maximum readability to the results presented

in the following (see comments to Figure 3.20 for instance). However the system discussed
can cope with general arrival patterns.

74

Figure 3.20: Measured throughput across the VNFs with dynamic traffic
steering.

QoS. It is apparent how, without dynamic traffic steering, the avail- able bit
rate is completely used by RU flows until flow 4 from BU starts at T4 ∼100
s; then the four flows equally share the available bit rate, with BU using only
about one fourth of the capacity. However, when dynamic traffic steering is
enabled, after a small interval when flow 4 is in state C (between ∼100 s and
∼110 s), the controller moves all flows to state E and the QoS enforcement
takes place: the total throughput of the three RU flows is limited to 100
Mb/s, whereas the BU flow throughput is not penalized.

Figure 3.20 highlights how the flows traverse the different VNFs when the
dynamic traffic steering is applied. At the beginning, the three RU flows and
the BU flow are processed by the DPI (state C). For each flow, the traffic
steering to the DPI stops as soon as the classification is complete, which
happens before the next flow starts. This results in four spikes interleaved
by sudden drops of the throughput curve measured at the input of the DPI.
After SLA compliance is determined for the three RU flows, since no BU

75

(a)

(b)

Figure 3.21: Measured total throughput for RU and BU: a) without dynamic
traffic steering; and b) with dynamic traffic steering.

76

flow is active yet, the RU flows are sent directly to VR1 and the QoS is
not enforced13 (state N). However, after the BU flow is classified and its
compliance to the priority SLA is detected (approximately at time T1 + 110
s), the QoS is enforced by properly steering all flows to the relevant VNFs
(state E): the three RU flows are then sent to the shaping function TC, which
limits their total bit rate to 100 Mb/s, whereas the BU flow is processed by
the WANA1 (and WANA2) functions, as proved by the throughput measured
at the output of the respective VNFs.

It is worth noting that, despite the bandwidth limitation applied to RU
flows, the BU flow is not able to fully take advantage of the remaining ca-
pacity: this is due to the limited amount of computing resources in the
OpenStack compute nodes used for the experiments, and the increased pro-
cessing burden on the OpenStack virtual network infrastructure caused by
the dynamic traffic steering [24]. The detailed evaluation of the trade-off
between the performance improvement gained using dynamic traffic steering
and the possible performance degradation due to cloud processing overload is
beyond the scope of this work and is currently under investigation. Indeed, it
is highly dependent on the hardware configuration and, at least to a certain
degree, can be overcome by hardware improvement.

3.3 Conclusion

In this chapter several activities have been reported, each with its own pri-
mary goal but associated with the issue of implementing chain of virtual
network functions; such issue has been investigated step-by-step.

Initially, two possible SDN scenario alternatives have been considered,
namely Layer 2 and layer 3 approaches; since both are viable solutions, we
wanted to study the complexity of the SDN control plane, focusing in par-
ticular on the actions to be programmed into OpenFlow switches in order
to achieve dynamic service chaining. The Mininet emulation platform has
been used to provide a former practical example of the feasibility and de-
gree of complexity of the two approaches: in spite of the fact that the two
approaches provide identical results, each scenario requires not only its own
custom topology but it requires its own custom controller, as well. This
is due to the fact that they face different issues and different actions when
dealing with traffic steering.

Then, after a careful analysis of the practical issues posed by a given NFV
deployment, and a smart definition of the set of actions to be programmed
in the network, we extended our study by investigating the design of general

13For readability reasons, we do not show in Fig. 3.21 the throughput measured at VR1.

77

traffic steering policies. To this purpose, we decided to leverage the Mealy
Finite State Machine as a general approach to service chain reconfiguration
and to model the behavior of the SDN control plane. The feasibility of such
approach has been proved through the implementation of a proof-of-concept
on the OpenStack platform, which highlighted also a possible approach to
orchestrate the mutual dependence of different flows competing for the same
network resources. Given the flexibility and cost-effectiveness of the solution
of replacing hardware-based, vendor-dependent middle-boxes with software
appliances, and in order to adapt to emerging network conditions, it is es-
sential take into account that type, number and location of VNFs traversed
by a given user data flow may change in time. One of the primary goal
was to show that this approach allows space and time diversity in service
chaining, with a higher degree of dynamism and flexibility with respect to
conventional hardware based architectures. We believe that, considering both
legacy forwarding and flexible traffic steering, it is possible to simplify the
SDN controller design and successfully achieve dynamic service chaining.

Last, but not least, another important goal of the activity reported in
this chapter was to investigate how to create the technical conditions for ac-
celerating the adoption of SDN and NFV in order to produce concrete socio-
economic impacts. In general, it is argued that the ongoing “softwarization”
of telecommunications (which goes beyond the adoption of SDN and NFV
in core networks, also reaching terminals and clouds) will allow virtualizing
all network and service functions and executing them in horizontal software
platforms fully decoupled from the physical infrastructure.

In this direction, section 3.2 reports the outcome of an experimental PoC
aimed at demonstrating the capability of a software-controlled network to
self-adapt by dynamically reconfiguring the VNF forwarding graph in order
to guarantee the agreed SLAs to the user.

78

Chapter 4

Towards Network Management
and Orchestration

Historically, network management is defined as being the plane devoted to
monitoring, repairing and configuring network devices. This is usually done
through Command Line Interface (CLI), that uses protocol such as SSH,
Telnet and SNMP [54] to configure and maintain devices. With SDN, the
management plane is defined as a set of applications that leverage the func-
tions offered by the North Bound Interface to implement the network control
and operation logic [3]. This vision is in line with the definition given by
the IETF (Internet Engineering Task Force), which defines the management
plane as the collection of functions (applications) responsible for monitoring,
configuring, and maintaining one or more network devices or parts of network
devices [55].

NFV requires to be managed as well; this is why the ETSI Industry
Specification Group (ISG) defined the NFV Management and Orchestration
(MANO) framework [6], which is composed of three functional blocks (figure
4.1):

1. NFV Orchestrator;

2. VNF Manager;

3. Virtualized Infrastructure Manager (VIM).

According to IETF, those entities could be management plane function-
alities; the NFV architecture hints the need for cooperation and coordination
among several functional blocks, thus, the orchestration can be seen as a sub-
set of the management in the context of combining NFV and SDN (since the
architecture might include both SDN resources and SDN controllers, which

79

could be located in different part of the ETSI MANO framework, as it is
briefly discussed in section 4.2). Therefore, there is the need of defining new
standards and well defined interfaces among the different functional blocks
that are in place in figure 4.1. One of the most critical interface is the one
between the control platform and the NFV orchestrator. Such interface is of-
ten defined as the Northbound Interface (NBI), i.e., the interface exposed by
the the SDN controller to the applications or to an higher level orchestrator.

Figure 4.1: ETSI NFV architecture.

A standard for the NBI is not available yet, but its definition and princi-
ples have recently been clarified by the Open Networking Foundation (ONF)
[7]. The proposed approach is to adopt a so-called intent-based interface
that allows to declare service policies rather than specify networking mech-
anisms, i.e., the focus is on what should be achieved rather than on how it
should be achieved. This is only one aspect of the more general problem
of finding suitable service model descriptions for NFV environments [56].
In section 4.1, we present an intent-based approach to the definition of the
NBI between the VIM and the higher management and orchestration lay-
ers defined in the ETSI MANO framework. In particular we focus on the

80

network infrastructure programmability functions of the VIM, assuming a
general network scenario where multiple SDN domains are interconnected by
non-SDN domains.

4.1 An Intent-based Approach

to Virtualized Infrastructure Management

Deploying a given SFC in traditional infrastructures requires time-consuming
configuration and management tasks on vendor-specific appliances, often re-
sulting in static packet processing and forwarding rules, unaware of changing
user needs and network conditions. On the contrary, by adopting a “soft-
warized” infrastructure the SFC deployment paradigm can be completely
changed. We have already demonstrated in practice (section 3.2) that the
SFC dedicated to a given customer (or set of customers) can be dynami-
cally controlled and modified over a relatively small time scale, according to
external commands or by reacting to changing service conditions.

Key to an effective implementation of these concepts is a proper north-
bound interface (NBI) through which high-level orchestration and manage-
ment entities are allowed to control the underlying NFV and SDN plat-
forms and implement the dynamic SFC features. In this section we present a
proof of concept (PoC) implementation of a vendor-independent, technology-
agnostic, intent-based NBI for controlling dynamic service function chaining
on top of a SDN infrastructure. The NBI and the overall PoC architecture
are compliant with both the ETSI MANO framework specifications and the
aforementioned NBI description by ONF. The PoC was designed to provide
adaptive quality of service (QoS) enforcement to a multi-tenant NFV sce-
nario. In particular, here we focus on performance and scalability aspects of
the proposed NBI, demonstrating the feasibility of our approach.

4.2 Reference NFV architecture

The NFV architecture considered in this work, sketched in Fig. 4.2, is in line
with the ETSI MANO framework [6]. The resources needed to deploy the
VNFs are located in several SDN domains, where the specific control and
management platform includes:

• a Virtualized Infrastructure Manager (VIM) in charge of controlling
and managing the compute, storage, and network resources in a given
domain;

81

SDN
Domain

SDN
Domain

SDN
Domain

SDN
Controller

SDN
Controller

SDN
Controller

VNF

VNF

VNF

VNF

VNF

VNF

VNF

VNF

VNF Manager (VNFM) and NFV Orchestrator (NFVO)

VIM
VIM

VIM

Technology-specific SBI

Network Controller NBI (Nf-Vi)

Tunnel

Physical Connection

WAN
Infrastructure

Manager

VIM Intent-based NBI (Or-Vi)

Non-SDN
Domain

Figure 4.2: Reference NFV architecture.

• an SDN controller programmed to properly steer traffic flows across the
VNFs, according to a specified SFC.

The VIM/controller couple can represent:

• an instance of the same VIM/controller distributed across different do-
mains;

• a stand-alone VIM/controller federated with the other ones;

• a stand-alone VIM/controller completely unaware of the other ones.

It is important to outline that this reference architecture considers also
the possibility that SDN domains are interconnected through non-SDN do-
mains. This assumption stems from the fact that it appears reasonable that
a network operator will deploy SDN technologies mainly within data center
infrastructures where the VNF resources will be located—e.g., in the opera-
tors’ points of presence or central offices— rather than in backbone networks.
In this case, traffic flows that must traverse a number of SDN domains, ac-
cording to a given SFC, can be properly routed by adopting some form of
tunneling or overlay network technology across the non-SDN domains, such
as Generic Routing Encapsulation (GRE) [57], Virtual eXtensible Local Area
Network (VXLAN) [58], or the emerging Network Service Header (NSH) [59],
to name a few.

The overarching VNF Manager (VNFM) and NFV Orchestrator (NFVO)
are responsible for programming the underlying VIMs/controllers in order to
implement and maintain the required SFC in a consistent and effective way,

82

both intra- and inter-domain. The interfaces located between the VNFM/N-
FVO and the VIM are called Vi-Vnfm and Or-Vi in the ETSI MANO specifi-
cations. The former is related to VNF management tasks, whereas the latter
is dedicated to orchestration tasks. The MANO specifications make clear
that the Or-Vi is “[. . .] used for exchanges between the NFV Orchestrator
and the VIM”.

Nonetheless, the ETSI specifications leave the implementation details
completely open. This is where we contribute with our approach, by show-
ing with a suitable PoC the effectiveness of an intent-based implementation
of the NBI provided by the VIM to the orchestration module. The intent-
based approach focuses on what should be done and not on how it should
be done, and aims at decoupling the abstracted service descriptions issued
by applications and orchestrators from the technology-specific control and
management directives that each VIM/controller must send to its respec-
tive devices through the southbound interface (SBI) [56]. This would give
different domains the freedom to choose different SDN technologies to con-
trol traffic flows and different cloud computing platforms to manage VNF
instances, as long as the common NBI is exposed.

Our approach is also in line with the ONF description of the Intent-based
NBI [7], even though it does not make use of the Boulder module [60], as it
is still immature and unstable. Given that a general purpose intent syntax
and framework is not available yet, we decided to take advantage of SDN
controller-dependent intent interfaces. More specifically, we choose the Open
Network Operating System (ONOS) platform for our PoC [61]. However, the
use of ONOS standalone interface does not provide the required abstraction
levels for a general and technology-independent NBI. While the ONOS Intent
Framework [62] does allow users to directly specify a high-level policy, it also
requires some knowledge of low-level details, such as IP addresses and switch
port numbers of hosts and devices to be interconnected. This is needed in
order to perform operations such as flow rules being installed on OpenFlow
switches or tunnel links being provisioned.

On the other hand, the NBI implementation used in our PoC allows the
user to specify high-level service policies without the need to know any net-
work detail: these details are grabbed and handled by our domain-specific
solution, and the high-level policies are resolved and mapped into suitable
ONOS intents, which will then be compiled and translated into proper flow
rules. Although in principle our approach can be applied to any SDN control
plane technology, in our PoC we opted for the ONOS platform instead of
OpenDaylight (ODL) [63] because we estimated an ODL-based solution to
be more complex in terms of implementation: indeed, it would have required
to set up a working environment composed by the Network Intent Compo-

83

sition module [64] and the Service Function Chaining module [65], as well
as the development of an additional application to deal with the NBI for
management purposes.

4.3 Intent-based NBI for dynamic

Service Function Chaining

As already mentioned, the definition of an open, vendor-agnostic, and in-
teroperable NBI will foster improved interactions between high-level applica-
tions and orchestration services and the underlying NFV and SDN platforms.
The powerful abstraction level offered by the intent-based approach allows
the specification of policies rather than mechanisms through the NBI. There-
fore, an intent-based NBI represents a key feature in a multi-domain NFV
scenario such as the one assumed here.

When a given service request is received, the NFV Management and Or-
chestration framework must convert that request into a suitable service graph
and pass it to the relevant VIMs in charge of any domain involved in the SFC
composition. Then each VIM must:

• verify the availability and location of the VNFs required in its own
domain, instantiating new ones if needed;

• interact with the relevant SDN controller to program traffic steering
rules and deploy a suitable network forwarding path in the SDN do-
main.

In order to provide an abstracted yet flexible definition of the requested
service graph, without knowledge of the technology-specific details (such as
devices, ports, addresses, etc.), the NBI exposed by the VIMs should allow to
specify not only the sequence but also the nature of the different VNFs to be
traversed, which is strictly related to the service component they implement.
For instance, consider the case of a customer requesting connectivity to a
given remote content or service. Assume that, according to the service level
agreement (SLA), the network operator must provide bidirectional WAN
acceleration as well as intrusion detection (IDS) features. In addition, the
operator should apply deep packet inspection (DPI) and traffic shaping to
monitor and police customer-generated traffic. Both customer requirements
and operator needs must be expressed as intents and passed to the NFV
orchestrator, resulting in the SFC illustrated in Fig. 4.3. Therefore, the NBI
should allow an abstracted representation of the topological characteristics
of each VNF, specifying the different ways VNFs can be inserted in a SFC.

84

Edge
Router

Customer

DPI/IDS

Traffic
Shaper

WAN
Accel.

WAN
Accel.

Edge
Router

Edge
Router

Customer

DPI/IDS

WAN
Accel.

WAN
Accel.

Edge
Router

Content/
Service

Content/
Service

Figure 4.3: Example of SFC representing both customer requirements and
operator needs. Top: upstream traffic. Bottom: downstream traffic.

In this work the following topological abstractions are considered:

• A VNF can be terminating or forwarding a given traffic flow. In the
example, DPI/IDS is terminating the flow, whereas traffic shaper and
WAN accelerator are forwarding it.

• A forwarding VNF can be port symmetric or port asymmetric, depend-
ing on whether or not it can be traversed by a given traffic flow regard-
less of which port is used as input or output. In the example, the WAN
accelerator is port asymmetric, because it compresses or decompresses
traffic based on the input port used. The traffic shaper can be consid-
ered port symmetric, if we assume that the shaping function is applied
to any output of the VNF.

• A VNF can be path symmetric or path asymmetric, depending on
whether or not it must be traversed by a given flow in both upstream
and downstream directions. In the example, according to the ser-
vice requirements, WAN accelerator and DPI/IDS are path symmetric,
whereas the traffic shaper is path asymmetric.

In order to implement the topological abstractions described above, we
define a sort of ETSI MANO deployment template [6], adopting the well-
known JSON format. An in-depth discussion of the formal specification of
our proposed intent-based NBI is out of the scope of this work and is left for
future works.

85

With reference to the example in Fig. 4.3, let us assume the following
VNF identifiers:

• DPI_IDS for the DPI/IDS;

• WA_1 for the WAN accelerator located at the customer edge network;

• WA_2 for the WAN accelerator located at the content/service edge net-
work;

• TS for the traffic shaper.

Then the resulting SFC can be expressed as follows:

{

"src": "Customer",

"dst": "Content/Service",

"vnfList": [DPI_IDS, WA_1, TS, WA_2]

"dupList": [DPI_IDS]

}

where src and dst represent the endpoint nodes of the SFC, vnfList is an
ordered list of VNFs to be traversed, dupList is a (possibly empty) list of
VNFs towards which the traffic flow must be duplicated, and each VNF is
described in terms of its topological abstractions as follows:

DPI_IDS ::= {

"name": "DPI_IDS",

"terminating": "true",

"port_sym": "null",

"path_sym": "true"

}

WA_1 ::= {

"name": "WA_1",

"terminating": "false",

"port_sym": "false",

"path_sym": "true"

}

TS ::= {

"name": "TS",

"terminating": "false",

"port_sym": "true",

"path_sym": "false"

86

}

WA_2 ::= {

"name": "WA_2",

"terminal": "false",

"port_sym": "false",

"path_sym": "true"

}

The NBI, which can be implemented through the mechanism of a Repre-
sentational State Transfer (REST) Application Programming Interface (API),
must provide the following set of operations:

• add a new SFC

• update an existing SFC

• delete an existing SFC.

These actions are basically in line with the operations foreseen by the
ETSI MANO specifications with reference to the Or-Vi interface.

It is worth highlighting that the NBI description given above can be con-
sidered based on intents. VNFs and SFCs are indeed specified in a high-level,
policy-oriented format without any knowledge of the technology-specific de-
tails. A non-intent-based description of the SFC shown in Fig. 4.3, e.g. using
the OpenFlow expressiveness to steer traffic flows and compose the network
forwarding path, would require the application or the orchestrator to specify
multiple flow rules in each forwarding device for each traffic direction, and
include explicit actions to mirror traffic to DPI_IDS, involving technology-
dependent details such as IP and MAC addresses, device identifiers and port
numbers.

4.4 Implementation of the VIM

on the ONOS platform

To demonstrate the capabilities of our Intent-based NBI, we built a PoC
implementation of the VIM according to our reference architecture. We
adopted the ONOS platform (version 1.7) as the SDN domain controller for
our first PoC [61], although the approach is more general and will be extended
to other controllers in the future. ONOS provides a set of built-in intents that
can be used to program the SDN domain and deploy the required network

87

forwarding paths. However, the ONOS intent-based interface requires some
knowledge of the data-plane technical details, while in our approach we prefer
to expose only high-level abstractions to the orchestrator. Therefore, one
of the main functions of our VIM is to implement new, more general and
abstracted intents that can be expressed according to the NBI specifications
given in section 4.3. Then the VIM takes advantage of the network topology
features offered by ONOS to discover VNF location and connectivity details,
and eventually it is able to compose native ONOS intents and build more
complex network forwarding paths as per the SFC specification.

The VIM was developed as an application running on top of the ONOS
platform. It is offered as an ONOS service called ChainService, which pro-
vides the capability of dynamically handling the SFC through the abstracted
NBI. To achieve extensibility and modularity, the ChainService implemen-
tation is delegated to a module called ChainManager, which is in charge of
executing all the required steps to translate the high-level SFC specifications
into ONOS native intents. An interaction diagram of the ChainService com-
ponents is given in Fig. 4.4. The input to the ChainManager can be given
through either the ONOS Command Line Interface (CLI) or a REST API.
The latter is preferable because it allows remote applications to use standard
protocols (e.g., HTTP) to access resources and configure services. In our
implementation, the REST API provides the following service endpoints:

POST /chaining/{action}/{direction}

DELETE /chaining/flush

In the former endpoint, the action variable indicates the operation that
the user wants to perform on a specified SFC (add, update, or delete),
whereas in case of an update the direction variable (forth, back, or both) de-
fines whether the modified SFC specification refers to the existing forwardng
path from source to destination, the opposite way, or both directions. So the
basic operations of this endpoint are as follows:

• If the add action is given, this will result in defining a new SFC, based
on the JSON specification included in the message body. This means
that a forwarding path will be created for traffic flowing from source
to destination (say SrcToDst), and another one in the opposite direc-
tion (DstToSrc). Note that DstToSrc does not necessarily replicate
SrcToDst in reverse order, since it must follow the topological abstrac-
tions defined by the NBI.

• If the update action is given, then the direction is taken into account and
the forward path, backward path, or both paths of the specified existing

88

Figure 4.4: Interaction diagram for SFC deployment by VIM. A system
administrator creates a new SFC, resulting in bidirectional forwarding paths
being installed. A traffic monitoring agent dynamically updates the SFC
by changing the forwarding path in one direction only. Both use a REST
interface.

SFC are changed. In fact, a user may be interested in changing only
a segment of the forwarding path and only in one direction, to reduce
the latency and limiting the impact that a path change can have on
the traffic flows.

• If the delete action is given, then both forwarding paths of the specified
existing SFC are removed.

ChainService provides also the flush operation through another endpoint,
thus offering the possibility of deleting in a single step the forwarding paths
of all the SFCs previously created.

89

 1

 10

 100

 1000

 0 60 120 180 240 300 360

B
itr

at
e

(M
bi

t/s
)

Time (s)

DPI-IDS input
WA-1 output

TS output

Figure 4.5: Bitrate measured at relevant VNF ports.

4.5 Validation of the PoC

The first validation of our PoC implementation was performed on top of
an OpenFlow network infrastructure emulated with Mininet [66]. The con-
sidered network topology was spread across three different SDN domains,
where each domain was emulated by a separate Mininet instance running on
a dedicated virtual machine. The three SDN domains were interconnected
through an IP-based network that emulated the non-SDN domain shown in
Fig. 4.2. A single ONOS platform was configured as a distributed SDN con-
troller across the three domains. Endpoint nodes and VNFs composing a
given SFC can be part of the same domain or can be located across different
domains. This means that the traffic steering rules needed to deploy a given
SFC forwarding path must be capable of reaching both co-located VNFs
and distributed ones. To this purpose, static GRE tunnels were established
between the edge nodes of each pair of SDN domains.

To demonstrate that our approach works, the bitrate of two flows gen-
erated by different customers was measured at the ports of some relevant
VNFs. Figure 4.5 shows the bitrate measured at the input of DPI_IDS and
at the outputs of WA_1 and TS. Two UDP flows were generated with iperf at

90

100 Mbit/s each. At the beginning of the test, the orchestrator specified the
same SFC for both customers through the NBI:

"vnfList": [DPI_IDS, WA_1, WA_2]

"dupList": [DPI_IDS]

The rate measured at the input of DPI_IDS was equal to the sum of
the two flows (200 Mbit/s), whereas the rate at the output of WA_1 was
cut to 100 Mbit/s, as this was the maximum speed of the VNF interface.
Then, at around t = 70s, the DPI detected that one of the two customers
was sending high priority traffic, while the other one was sending best effort
traffic. Therefore, the orchestrator dynamically updated the SFCs as follows:

"vnfList": [WA_1, WA_2], "dupList": []

for high priority traffic and

"vnfList": [TS], "dupList": []

for the best effort flow. This resulted in the former flow still crossing WA_1 at
100 Mbit/s, while the latter flow was correctly shaped by TS at 10 Mbit/s.

4.6 Experimental results

To assess the NBI response time and scalability, we measured the latency ex-
perienced by an add, update, delete or flush action for an increasing number
of SFCs. To get statistically valid measurements, we performed 20 differ-
ent runs for each point and computed the average response time value with
95% confidence intervals, as shown in Figs. 4.6 and 4.7. Clearly, the trend
shows that the higher the number of SFCs on which each action must be
performed, the higher the load on the VIM and the number of operations to
be executed by the SDN platform, resulting in an increased response time.
Nonetheless, the latency of each single action does not exceed 2s, showing the
correct functionality of the NBI and the scalability potentials of the proposed
approach.

The update and delete actions show higher response times than add and
flush, due to the additional time required by the VIM and the ONOS intent
framework to search for the intents related to the specified SFC to be updated
or deleted. In particular, a delete takes typically longer than a flush, because
in the former case ChainManager is instructed to remove the SFCs one by
one, whereas with the flush action ChainManager proceeds directly with
removing all the forwarding paths. However, the wider confidence intervals
obtained with more than 100 SFCs denote the extremely variable response
time measured when the VIM was overloaded.

91

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200

N
B

I
R

e
sp

o
n

se
 T

im
e

 (
s)

Number of SFCs

update
add

Figure 4.6: Average NBI response time and 95% confidence interval when
SFC add and update actions are performed, as a function of the number of
SFCs.

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200

N
B

I
R

e
sp

o
n

se
 T

im
e

 (
s)

Number of SFCs

delete
flush

Figure 4.7: Average NBI response time and 95% confidence interval when
SFC delete and flush actions are performed, as a function of the number of
SFCs.

92

4.7 Conclusion

In this chapter we presented an intent-based approach to the definition of
the NBI between the VIM and the higher management and orchestration
layers defined in the ETSI MANO framework. In particular we focused on
the network infrastructure programmability functions of the VIM, assuming
a general network scenario where multiple SDN domains are interconnected
by non-SDN domains. In line with recent ONF specifications, we defined
a high-level, vendor-independent, intent-based NBI which provides seman-
tic expressing “what” should be done in term of service function chaining,
and not “how” it should be done, thus hiding the implementation details to
the high-level orchestrator and making the service requests agnostic to the
specific technology adopted by each SDN domain. We reported on a proof-
of-concept implementation of the VIM and its NBI on top of the ONOS
SDN platform. We tested it on an emulated multi-domain SDN infrastruc-
ture, where we were able to successfully create, update, delete and flush the
forwarding paths according to the intent specified via the NBI. We also mea-
sured the responsiveness of our VIM implementation under increasing load,
proving the correct functionality of the NBI and the scalability potentials
of the proposed approach. This solution represents an interesting starting
point to create more complex and general interactions between the NFV
management and orchestration layers and the VIM.

93

94

Chapter 5

Conclusions

Software Defined Networking (SDN) and Network Function Virtualization
(NFV) seem to be promising solutions that, properly combined together,
can bring several benefits and open opportunities to several players, such as
network operators, service and infrastructure providers and enterprise net-
works. To overcome todays network high costs and manageability concerns,
players could take advantages of flexibility introduced by both SDN and
NFV, and leverage well matured virtualization technologies already in use in
data centers networks.

In this thesis, we mainly focused on scenarios that are of interest for
telecommunications operators networks, which are trying to evaluate the
impact that such technologies can have on their business, and how they can
profitably migrate to more flexible and agile networks. In this evolution
process, software will play an unprecedented dominant role, but network
“softwarization” process also brings several challenges.

5.1 Summary of Contributions

In this dissertation, we focused on performance and management concerns,
with particular attention to the service function chaining network capability.
Such focus has been explored at all different network operational planes:

• data plane: since Telco Central Offices will likely be replaced by cloud
data centers located at the edge, we decided to provide some insights on
how an open-source cloud computing platform such as OpenStack im-
plements multi-tenant network virtualization and how it can be used to
deploy NFV, focusing in particular on packet forwarding performance
issues.

95

The main goal of this work was to identify performance bottlenecks
in the cloud implementation of the NFV paradigms, and try to an-
swer few questions that naturally rise when dealing with system inte-
gration, data center management, and packet processing performance:
Will cloud computing platforms be actually capable of satisfying the
requirements of complex communication environments such as the op-
erators edge networks? Will data centers be able to effectively replace
the existing Telco infrastructures at the edge? Will virtualized net-
works provide performance comparable to those achieved with current
physical networks, or will they pose significant limitations?
As we said, the answer to those questions is a function of the cloud man-
agement platform considered; therefore, an ad hoc set of experiments
were designed to evaluate the OpenStack performance under critical
load conditions, in both single tenant and multi-tenant scenarios. It
is worth investigating if virtualized networks will provide performance
comparable to those achieved with current physical networks. There-
fore, performance of underlying platform should be known in order to
achieve a better planning about how properly dimension networks and
virtual appliances placement.

Performance analysis of the two basic software switching elements na-
tively adopted by OpenStack, namely Linux Bridge and Open vSwitch,
prove that the Linux Bridge is the critical bottleneck of the architec-
ture, while Open vSwitch showed an almost optimal behavior. The
main outcome of this work is that an open-source cloud computing
platform such as OpenStack can be effectively adopted to deploy NFV.
However, this solution poses some limitations to the network perfor-
mance which are not simply related to the hosting hardware maximum
capacity but also to the virtual network architecture implemented by
OpenStack. These limitations can be mitigated with a careful redesign
of the virtual network infrastructure and an optimal planning of the
virtual network functions.

We successfully accomplished the main goal of this work, even if we
believe that, in order to fully answer all previous questions, further and
deeper investigation would be required. To the best of our knowledge,
at the time of such investigation, not much work was reported about
the actual performance limits of network virtualization in OpenStack
cloud infrastructures under the NFV scenario.

• control plane: future edge network data center infrastructure must
be flexible enough to allow dynamic and conditional Virtual Network

96

Functions (VNFs) chaining; thus, properly steer the traffic flows to
make them traverse the chain of VNFs that implement the correct
Service Level Agreements (SLAs) for each user will be key.

The main goal of this work was, first, investigate the issues of imple-
menting chains of network functions in a “softwarized” environment
and, in particular, the complexity of the SDN control plane within a
cloud-based edge network implementing NFV. At the beginning, the
focus was mainly on describing the actions to be programmed into
OpenFlow switches in order to achieve dynamic service chaining for two
representative case studies, namely Layer 2 and Layer 3 edge network
function implementations. Then, we investigated a design methodology
for implementing a SDN control plane capable of steering specific data
flows toward the required VNF locations and achieving fully dynamic
service chaining.
Initially, we adopted the Mininet emulation platform to provide a for-
mer practical example of the feasibility and degree of complexity of the
two case studies. Whereas later on, we decided to propose a stateful
approach by adopting a Mealy Finite State Machine to model con-
trol plane behavior to implement fully dynamic and adaptive service
chaining. The feasibility of such approach was proved through the im-
plementation of a proof-of-concept (PoC) on the Ericsson Cloud Lab
environment, which was based on an OpenStack deployment.

The outcome of this work is twofold: on the one hand, we showed that
our approach allows space and time diversity in service chaining, with a
higher degree of dynamism and flexibility with respect to conventional
hardware based architectures. We believe that, considering both legacy
forwarding and flexible traffic steering, it is possible to simplify the SDN
controller design and successfully achieve dynamic service chaining. On
the other one, the stateful approach proved to be feasible in a real
life production environment: a software-controlled network is indeed
capable to self-adapt by dynamically reconfiguring the VNF forwarding
graph in order to guarantee the agreed SLAs to the user. Last, but not
least, investigate how to create the technical conditions for accelerating
the adoption of SDN and NFV in order to produce concrete socio-
economic impacts is key.

We successfully accomplished the main goal of this work, and we believe
that our stateful approach could be adopted to develop and analyze the
performance and scalability of more complex cloud network scenario.To
the best of our knowledge, at the time of such investigation, this was
the first attempt that leverages a finite state machine as approach to

97

design and implement the control plane behavior.

• management plane: northbound interface in SDN-NFV architecture
is a topic yet to be explored, since a well defined, common interface
does not exist.

The main goal of this work was to propose an intent-based approach to
the definition of the North Bound Interface (NBI) between the Virtu-
alized Infrastructure Manager (VIM) and the higher management and
orchestration layers defined in the ETSI Management and Orchestra-
tion (MANO) framework. The focus was, in particular, on the network
infrastructure programmability functions of the VIM, assuming a gen-
eral network scenario where multiple SDN domains are interconnected
by non-SDN domains.
To this purpose, we decided to leverage the well known JSON format
as a possible implementation of the interface between the VIM and
high level orchestrator. To show the feasibility of such approach, we
designed a PoC aimed at providing adaptive quality of service (QoS)
enforcement to a multi-tenant NFV scenario. The focus was mainly on
performance and scalability aspects of the proposed NBI.

The main outcome of our first validation is that such approach proved
to be successful, since we are capable of creating, updating, deleting
and flushing the forwarding paths according to the intent specified via
the NBI. Moreover, the measured responsiveness of our implementation
shows promising scalability potentials.

This is an early stage proposal of a possibile way of how to implement a
vendor-agnostic, technology-independent intent NBI between the SDN
control platform and higher level orchestrator. Such interface was de-
signed specifically to orchestrate dynamic service chaining of VNFs, but
the approach is general enough to be adopted also in non-OpenFlow
infrastructure (e.g., Internet of Things domain).

5.2 Future Work

In spite of successful accomplishments, we believe many interesting aspects
of the overall work are left open as a follow up. Few examples of such inter-
esting aspects in the field of data, control and management plane are given
in the following.
Data plane: virtual network infrastructure implemented by OpenStack,
together with the hosting hardware maximum capacity, can pose some lim-
itations to the network performance. Obviously, scaling up the system and

98

distributing the virtual network functions among several compute nodes will
definitely improve the overall performance. However, in this case the role of
the physical network infrastructure becomes critical, and an accurate analysis
is required in order to isolate the contributions of virtual and physical com-
ponents. We plan to extend our study in this direction in our future work,
after properly upgrading our experimental test-bed, in order to provide useful
insights on how to proper dimension networks and virtual appliances place-
ment.

Control plane: suitable methodologies that simplify SDN controller design
are yet to be explored. We believe that our stateful SDN approach could
be extended to develop and analyze more complex cloud network scenario,
where VNF instances can be dynamically created, moved, and terminated to
cope with the current workload.

Management plane: how to implement well defined interfaces between
SDN control platform and higher orchestration layer is still unclear, as it is
still unclear which could be a standard testing methodology or any reference
performance parameters to be used. We believe that our intent North Bound
Interface approach can be improved and extended to support other applica-
tion requirements, besides other complex communication scenario, such as,
for example, inter-domain communication. Moreover, we intend to: i) extend
the implementation of our proposed Virtualized Infrastructure Manager to
further investigate the performance of our proposed approach; ii) investigate
the comparison of our approach with possible existing alternative approches.

99

100

List of Tables

3.1 State transition times of the two flows measured in Fig. 3.14 . 60
3.2 Latency and jitter under different chaining states. 63

101

102

List of Figures

1.1 The SDN network innovation. 3
1.2 The NFV innovation. 6

2.1 Main components of an OpenStack cloud setup. 16
2.2 Network elements in an OpenStack network node connected

to three virtual subnets. 18
2.3 Network elements in an OpenStack compute node running two

VMs. 19
2.4 Reference logical architecture of a single-tenant virtual infras-

tructure with 5 hosts: 4 hosts are implemented as VMs in the
cloud and are interconnected via the OpenStack layer-2 vir-
tual infrastructure; the 5th host is implemented by a physical
machine placed outside the cloud, but still connected to the
same logical LAN. 22

2.5 Multi-tenant NFV scenario with dedicated network functions
tested on the OpenStack platform. 23

2.6 The OpenStack dashboard shows the tenants virtual networks
(slices). 24

2.7 Multi-tenant NFV scenario with shared network functions tested
on the OpenStack platform. 26

2.8 A view of the OpenStack compute node with the tenant VM
and the VNFs installed including the building blocks of the
Virtual Network Infrastructure. 27

2.9 Throughput vs. generated packet rate in the B2B setup for
64 and 1500-byte packets. Comparison with ideal 1500-byte
packet throughput. 28

2.10 Received vs. generated packet rate in the OpenStack scenario
setups (1.1) and (1.2), with 1500-bytes packets. 29

2.11 Received vs. generated packet rate in the Non-OpenStack
scenario setups (2.1) and (2.2), with 1500-bytes packets. . . . 30

2.12 Received vs. generated packet rate in the Non-OpenStack
scenario setup (2.3), with 1500-bytes packets. 31

103

2.13 Received vs. generated packet rate for each tenant (T1, T2,
T3 and T4), for different numbers of active tenants, with 1500-
byte IP packet size. 31

2.14 Received vs. generated packet rate for each tenant (T1, T2,
T3 and T4), for different numbers of active tenants, with 64-
byte IP packet size. 32

2.15 Total throughput measured vs. total packet rate generated by
2 to 4 tenants for 64-byte packet size. Comparison between
normal OpenStack mode and Linux Bridge bypass with 3 and
4 tenants. 33

2.16 Received vs. generated packet rate for one tenant (T1) when
four tenants are active, with 1500-byte IP packet size and
different levels of VNF chaining as per Fig. 2.7. 34

2.17 Received vs. generated packet rate for one tenant (T1) when
four tenants are active, with 64-byte IP packet size and differ-
ent levels of VNF chaining as per Fig. 2.7. 35

2.18 Received throughput vs. generated packet rate for each tenant
(T1, T2, T3 and T4) when T1 does not traverse the VNF chain
of Fig. 2.7d, with 1500-byte IP packet size. Comparison with
the single tenant case. 35

2.19 Received throughput vs. generated packet rate for each tenant
(T1, T2, T3 and T4) when T1 does not traverse the VNF chain
of Fig. 2.7d, with 64-byte IP packet size. Comparison with the
single tenant case. 36

2.20 Received TCP throughput for each tenant (T1, T2, T3 and
T4) when T1 does not traverse the VNF chain of Fig. 2.7d.
Comparison with the single tenant case. 36

3.1 Reference network scenario with NFV chaining at the edge
and dynamic traffic steering. 41

3.2 Layer 2 edge network topology. 44
3.3 Layer 3 edge network topology. 44
3.4 Traffic steering in Layer 3 topology: (a) transitional VNF

chaining in phases (1), (2) and (3); (b) final VNF chaining
in phase (4). 47

3.5 Traffic steering in Layer 2 topology: (a) transitional VNF
chaining in phases (1), (2) and (3); (b) final VNF chaining
in phase (4). 48

3.6 L3 topology: throughput measured at DPI, GW, WANA and
TC. 50

3.7 L2 topology: throughput measured at H1. 51

104

3.8 Example of a state diagram of the FSM representing the con-
troller thread processing a flow. 54

3.9 Case study NFV topology. Each layer-2 SDN edge network is
implemented by an OpenFlow switch, whose numbered ports
are connected to users and VNFs as displayed. 57

3.10 Initialization of flow-independent rules. 58
3.11 Actions taken on fBU during state transition from Init to C. . 59
3.12 Actions taken on fBU during state transition from C to D. . . 60
3.13 Actions taken on fBU during state transition from C to E. . . 61
3.14 Throughput measured during the proof-of-concept experiment,

showing correct traffic steering at controller state changes and
final flow composition towards the destination. 62

3.15 Schematic graph example of alternative implementations of
the VNF forwarding graph. 66

3.16 The Ericsson Cloud Lab NFV architecture. 68
3.17 Use case Ericsson Cloud Lab setup. 70
3.18 Proof of concept data plane virtual network topology and traf-

fic flow steering in the C operating state. 72
3.19 Traffic flow steering in the N and E operating states. 73
3.20 Measured throughput across the VNFs with dynamic traffic

steering. 75
3.21 Measured total throughput for RU and BU: a) without dy-

namic traffic steering; and b) with dynamic traffic steering. . . 76

4.1 ETSI NFV architecture. 80
4.2 Reference NFV architecture. 82
4.3 Example of SFC representing both customer requirements and

operator needs. Top: upstream traffic. Bottom: downstream
traffic. 85

4.4 Interaction diagram for SFC deployment by VIM. A system
administrator creates a new SFC, resulting in bidirectional
forwarding paths being installed. A traffic monitoring agent
dynamically updates the SFC by changing the forwarding path
in one direction only. Both use a REST interface. 89

4.5 Bitrate measured at relevant VNF ports. 90
4.6 Average NBI response time and 95% confidence interval when

SFC add and update actions are performed, as a function of
the number of SFCs. 92

4.7 Average NBI response time and 95% confidence interval when
SFC delete and flush actions are performed, as a function of
the number of SFCs. 92

105

106

Bibliography

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network pro-
cessing as a cloud service,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 13–24, 2012.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” ACM SIGCOMM Computer Communication Re-
view, vol. 38, no. 2, pp. 69–74, 2008.

[3] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[4] “Etsi nfv white paper #1.” https://github.com/mininet/mininet/wiki/
Mininet-VM-Images.

[5] “Verizon sdn-nfv reference architecture.” http://innovation.
verizon.com/content/dam/vic/PDF/Verizon SDN-NFV Reference
Architecture.pdf.

[6] T. E. T. S. Institute, “Network Functions Virtualization
(NFV); Management and Orchestration,” http://www.etsi.org/
technologies-clusters/technologies/nfv, ETSI GS NFV-MAN 001
V1.1.1, December 2014.

[7] The Open Networking Foundation, “Intent NBI - Definition
and Principles,” https://www.opennetworking.org/sdn-resources/
technical-library, ONF TR-523, October 2016.

[8] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function vir-
tualization: Challenges and opportunities for innovations,” IEEE Com-
munications Magazine, vol. 53, no. 2, pp. 90–97, 2015.

107

[9] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualiza-
tion,” Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.

[10] O. Committee et al., “Software-defined networking: The new norm for
networks,” Open Networking Foundation, 2012.

[11] G. ETSI, “Network functions virtualisation (nfv): Architectural frame-
work,” ETSI GS NFV, vol. 2, no. 2, p. V1, 2013.

[12] A. Manzalini, R. Minerva, F. Callegati, W. Cerroni, and A. Campi,
“Clouds of virtual machines in edge networks,” IEEE Communications
Magazine, vol. 51, no. 7, pp. 63–70, 2013.

[13] J. Soares, C. Gonçalves, B. Parreira, P. Tavares, J. Carapinha, J. P.
Barraca, R. L. Aguiar, and S. Sargento, “Toward a telco cloud environ-
ment for service functions,” IEEE Communications Magazine, vol. 53,
no. 2, pp. 98–106, 2015.

[14] A. Al-Shabibi and L. Peterson, “Cord: Central office re-architected as a
datacenter,” OpenStack Summit, 2015.

[15] K. Pretz, “Software already defines our lives–but the impact of sdn will
go beyond networking alone,” IEEE. The Institute, vol. 38, no. 4, p. 8,
2014.

[16] “Openstack project website,” http://www.openstack.org.

[17] F. Sans and E. Gamess, “Analytical performance evaluation of different
switch solutions,” Journal of Computer Networks and Communications,
vol. 2013, 2013.

[18] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Performance
characteristics of virtual switching,” in Cloud Networking (CloudNet),
2014 IEEE 3rd International Conference on. IEEE, 2014, pp. 120–125.

[19] R. Shea, F. Wang, H. Wang, and J. Liu, “A deep investigation into
network performance in virtual machine based cloud environments,”
in IEEE INFOCOM 2014-IEEE Conference on Computer Communi-
cations. IEEE, 2014, pp. 1285–1293.

[20] P. Rad, R. V. Boppana, P. Lama, G. Berman, and M. Jamshidi, “Low-
latency software defined network for high performance clouds,” in Sys-
tem of Systems Engineering Conference (SoSE), 2015 10th. IEEE,
2015, pp. 486–491.

108

[21] S. Oechsner and A. Ripke, “Flexible support of vnf placement functions
in openstack,” in Network Softwarization (NetSoft), 2015 1st IEEE Con-
ference on. IEEE, 2015, pp. 1–6.

[22] M. Banikazemi et al., “Openstack networking: It’s time to talk perfor-
mance OpenStack Summit 2015, vancouver, canada,,” May 2015.

[23] F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea, “Performance
of network virtualization in cloud computing infrastructures: The open-
stack case,” in Cloud Networking (CloudNet), 2014 IEEE 3rd Interna-
tional Conference on. IEEE, 2014, pp. 132–137.

[24] ——, “Performance of multi-tenant virtual networks in openstack-based
cloud infrastructures,” in 2014 IEEE Globecom Workshops (GC Wk-
shps). IEEE, 2014, pp. 81–85.

[25] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in Proceedings of the 8th international conference on Emerging network-
ing experiments and technologies. ACM, 2012, pp. 253–264.

[26] P. Bellavista, F. Callegati, W. Cerroni, C. Contoli, A. Corradi, L. Fos-
chini, A. Pernafini, and G. Santandrea, “Virtual network function em-
bedding in real cloud environments,” Computer Networks, vol. 93, pp.
506–517, 2015.

[27] “The linux foundation, linux bridge,” http://www.linuxfoundation.org/
collaborate/workgroups/networking/bridge, November 2009.

[28] J. Yu, “Performance evaluation on linux bridge,” in Telecommunications
System Management Conference, 2004.

[29] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
“Extending networking into the virtualization layer.” in Hotnets, 2009.

[30] R. Jain and S. Paul, “Network virtualization and software defined net-
working for cloud computing: a survey,” IEEE Communications Maga-
zine, vol. 51, no. 11, pp. 24–31, 2013.

[31] G. Santandrea, “Show my network state project website, 2014,” https:
//sites.google.com/site/showmynetworkstate.

[32] “Rude & crude: Real-time udp data emitter & collector for rude.” http:
//sourceforge.net/projects/rude/.

109

[33] “iperf3: A tcp, udp, and sctp network bandwidth measurement tool.”
https://github.com/esnet/iperf.

[34] “ndpi: Open and extensible lgplv3 deep packet inspection library.” http:
//www.ntop.org/products/ndpi/.

[35] N. ISG, “Network functions virtualisation (nfv)-network operator per-
spectives on industry progress,?” ETSI, Tech. Rep, Tech. Rep., 2013.

[36] G. Gibb, H. Zeng, and N. McKeown, “Initial thoughts on custom net-
work processing via waypoint services,” in WISH-3rd Workshop on In-
frastructures for Software/Hardware co-design, CGO, 2011.

[37] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-
fying middlebox policy enforcement using sdn,” ACM SIGCOMM com-
puter communication review, vol. 43, no. 4, pp. 27–38, 2013.

[38] F. Risso, A. Manzalini, and M. Nemirovsky, “Some controversial opin-
ions on software-defined data plane services,” in Future Networks and
Services (SDN4FNS), 2013 IEEE SDN for. IEEE, 2013, pp. 1–7.

[39] J. Hwang, K. Ramakrishnan, and T. Wood, “Netvm: high performance
and flexible networking using virtualization on commodity platforms,”
IEEE Transactions on Network and Service Management, vol. 12, no. 1,
pp. 34–47, 2015.

[40] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl,
J. Khalid, S. Das, and A. Akella, “Opennf: Enabling innovation in
network function control,” ACM SIGCOMM Computer Communication
Review, vol. 44, no. 4, pp. 163–174, 2015.

[41] “Mininet vm images.” https://github.com/mininet/mininet/wiki/
Mininet-VM-Images.

[42] F. López-Rodŕıguez and D. R. Campelo, “A robust sdn network archi-
tecture for service providers,” in 2014 IEEE Global Communications
Conference. IEEE, 2014, pp. 1903–1908.

[43] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, “Flowtags: en-
forcing network-wide policies in the presence of dynamic middlebox ac-
tions,” in Proceedings of the second ACM SIGCOMM workshop on Hot
topics in software defined networking. ACM, 2013, pp. 19–24.

110

[44] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple: sim-
plifying sdn programming using algorithmic policies,” ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4, pp. 87–98, 2013.

[45] M. Monaco, O. Michel, and E. Keller, “Applying operating system prin-
ciples to sdn controller design,” in Proceedings of the Twelfth ACM
Workshop on Hot Topics in Networks. ACM, 2013, p. 2.

[46] J. Yao, Z. Wang, X. Yin, X. Shiyz, and J. Wu, “Formal modeling and
systematic black-box testing of sdn data plane,” in 2014 IEEE 22nd
International Conference on Network Protocols. IEEE, 2014, pp. 179–
190.

[47] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “Openstate:
programming platform-independent stateful openflow applications in-
side the switch,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 2, pp. 44–51, 2014.

[48] G. H. Mealy, “A method for synthesizing sequential circuits,” Bell Sys-
tem Technical Journal, vol. 34, no. 5, pp. 1045–1079, 1955.

[49] “Ericsson cloud manager,” http://www.ericsson.com/ourportfolio/
products/cloud-manager?nav=productcategory008, June 2016.

[50] F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea, “Sdn con-
troller design for dynamic chaining of virtual network functions,” in 2015
Fourth European Workshop on Software Defined Networks. IEEE, 2015,
pp. 25–30.

[51] ETSI Industry Specification Group (ISG) NFV, “Etsi gs nfv 001 v1.1.1:
Network function virtualization. use cases,” October 2013.

[52] “Ericsson opens a cloud lab in italy for faster co-creation and innova-
tion;,” http://www.ericsson.com/news/1923781, June 2015.

[53] “Openstack: Open source software for creating private and public
clouds;,” http://www.openstack.org, June 2016.

[54] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin, “Simple network
management protocol (snmp),” Tech. Rep., 1990.

[55] Internet Engineering Task Force, https://tools.ietf.org/html/rfc7426.

111

[56] J. Garay, J. Matias, J. Unzilla, and E. Jacob, “Service description in
the nfv revolution: Trends, challenges and a way forward,” IEEE Com-
munications Magazine, vol. 54, no. 3, pp. 68–74, 2016.

[57] D. Farinacci et al., “Genericrouting encapsulation (gre),” http://www.
rfc-editor.org/info/rfc2784, IETF RFC 2784, March 2000.

[58] M. Mahalingam et al., “Virtual extensible local area network (vxlan): A
framework for overlaying virtualized layer 2 networks over layer 3 net-
works,” http://www.rfc-editor.org/info/rfc7348, IETF RFC 7348, Au-
gust 2014.

[59] P. Quinn and U. Elzur, “Network service header,” https://datatracker.
ietf.org/doc/draft-ietf-sfc-nsh, IETF Internet-Draft draft-ietf-sfc-nsh-
10, September 2016.

[60] “Project boulder: Intent nbi,” http://opensourcesdn.org/projects/
project-boulder-intent-northbound-interface-nbi/.

[61] ONOS: Open Network Operating System, http://onosproject.org.

[62] ONOS Intent Framework, https://wiki.onosproject.org/display/ONOS/
Intent+Framework.

[63] The OpenDaylight Platform, https://www.opendaylight.org/.

[64] “OpenDaylight Network Intent Composition Project,” https://wiki.
opendaylight.org/view/Network Intent Composition:Main.

[65] “OpenDaylight Service Function Chaining Project,” https://wiki.
opendaylight.org/view/ServiceFunctionChaining:Main.

[66] “Mininet,” http://mininet.org.

112

Acknowledgments

First of all, I would like to express my enormous gratitude to my PhD advisor,
Franco Callegati, and co-advisor, Walter Cerroni: thank you so much for this
wonderful opportunity,and the trust, teaching, advices, support and funding
you gave me during all PhD. Without you, such wonderful 3 years could not
have been possible. I would also like to thank you not only from a professional
point of view but also from a personal one: thank you both for being the
such wonderful people you are, I feel really lucky.

I would like to thank my thesis committee: Flavio Esposito, PhD, and
Stuart Clayman, PhD, for their precious comments that encouraged me to
enhance my thesis.

A special thanks goes to those who shared with me these 3 years (or at
least an important part of it) on the field, sharing happiness, hard work,
anxiety, and unforgettable business trip that distinguish a PhD student life:
again, Franco Callegati and Walter Cerroni, Giuliano Santandrea, Francesco
Foresta, Giuseppe Portaluri e Francesco Lucrezia.

I also would like to thank the Esposito-Schwetye family: thanks for the
great experience, I felt like if I were a member of your wonderful family.
Thanks to my lab mates of the NetLab at Bologna: Gianluca Davoli, Federico
Tonini, Bahare Khorsandi and Andrea Melis.

Last, but for sure not least, I would like to thank all my family, mamma
Carla, babbone Secondo and my sister Daniela: thanks for your support and
the enthusiasm you always showed me. Thanks to my boyfriend Andrea Bessi
and to his family: Roberta, Adriano and Lucianina; thanks to my best friend
Meris Michelacci and to my friends Andrea Arnoffi and Federico Foschini.

113

