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Dottorato di ricerca in Bioingegneria

Ciclo XXIX

Settore Concorsuale di afferenza: 09/G2

Settore Scientifico disciplinare: ING-INF/06

New segmentation models for the
radiologic characterization of

polycystic kidney disease patients
from MR and CT images

Presentata da: Dario Turco

Coordinatore Dottorato

Prof. Elisa Magosso

Controrelatori

Prof. Enrico Caiani

Dott. Giacomo Mori

Prof. Rita Stagni

Relatore

Prof. Cristiana Corsi

Correlatore

Dott. Riccardo Magistroni

Esame finale anno 2017



1



Relevant abbreviations

ADPKD: autosomal dominant polycystic kidney disease

MRI: magnetic resonance imaging

CT: computed tomography

TKV: total kidney volume

TCV: total cyst volume
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Abstract

Polycystic kidney disease (PKD) refers to a group of inherited disorders char-

acterized by the development and growth of renal cysts. Recent advances in

genomics have contributed to a better understanding of the pathogenesis of the

disease, suggesting new treatment strategies to inhibit or delay cyst formation

and expansion. The efficacy of these therapies is evaluated by estimation of

cystic burden measured by magnetic resonange imaging (MRI) as total kidney

volume (TKV). TKV is considered to be the best available biomarker of disease

progression and for this reason the development of imaging techniques that can

provide accurate and reliable quantitative information on the development of

renal cyst has become critical.

In this Thesis, different imaging approaches are proposed for a correct char-

acterization of the PKD patient by the estimation of renal and cyst volume

from magnetic resonance and computed tomography (CT) images. TKV esti-

mation method from MRI relies on a previously validated method developed for

axial images that has been adapted and validated to work on coronal images.

The choice of working on coronal images is motivated by the recommendation

provided by the Consortium of Renal Imaging Studies in Polycystic Kidney

Disease (CRISP) which are followed in several multicenter trials. The results

have been compared with the ones obtained from axial images and validated

with volume estimation obtained from manual tracing. The performace of the

semi-automated method in terms of misclassification of the PKD patient was
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also evaluated in comparison with other radiologic approaches currently used

for TKV assessment such as the ellipsoid method and the mid-slice method. A

novel method for TKV computation from CT images is proposed. This multi-

step approach is completely automated and includes preprocessing for data con-

ditioning, localization of the kidneys in the abdomen and the use of a level set

approach to identify the renal contour and so extrapolate the renal volume.

The segmented kidneys obtained with the developed methods where used to

initialize the segmentation of the cysts. In CT images the total cyst volume

(TCV) was obtained using a clustering approach based on the intensity of gray

levels. The same strategy was used for MR images with the addition of an

extra step to enable cyst counting. Every cyst agglomerate underwent a voting

mechanism based on the curvature of the object interface which allowed to dis-

tinguish the single cysts. Every cyst is indentified by its centroid that is used

for the initialization of a multi-phase level set. The results of this approach for

TCV computation was validated through comparison with TCV obtained by

manual segmentation.

Nowadays cystic burden is estimated as TKV using methods that rely on ge-

ometrical approximation. The proposed automated approaches allow fast and

accurate measurement of TKV but also TCV. TCV measurement provide a

more precise information on the stage of the disease, opening new paradigms

for diagnosis and monitoring of PKD progression.

The last chapter is dedicated to the research activity conducted in the area of

diffusion weighted imaging (DWI). DWI is an MRI method for studying Brow-

nian motion of water molecules in tissue, that has shown great potential in

differentiating pathological tissue but still has not been explored in ADPKD.
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Chapter 1

Introduction

Polycystic kidney disease is a group of inherited disorders identified by the de-

velopment and growth of cysts in both kidneys that cause progressive renal

function loss leading to end-stage renal failure. The most common is autoso-

mal dominant polycystic kidney disease (ADPKD). In recent years, advances

in studies on cystogenesis have led to novel targets for the treatment of PKD.

Imaging has become an important tool for diagnosis as for monitoring the evolu-

tion of the disease and different methods have been proposed during last years.

In this chapter are presented the clinical characteristics of ADPKD, the main

trials that are exploring the possibility of new clinical targets and the role of

imaging as an important tool for diagnosis and prognosis of the disease.

1.1 Autosomal dominant polycystic kidney dis-

ease

Autosomal polycystic kidney disease is an inherited, monogenic and multi-

systemic renal disorder. With an approximated incidence of 1:400 to 1:1000

[2] it is the most common genetic disease [3] and the fourth most common cause
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of end-stage renal disease (ESRD) [4]. ADPKD is characterized by the de-

velopment and the gradual expansion of cysts inside both kidneys (figure 1.1)

and is due to the mutation of one of two genes, PKD1 or PKD2. PKD1 is

Figure 1.1: T2-weighted images of kidneys in ADPKD patients.

located on chromosome 16p13.3 and encodes polycystin 1 (PC-1), an integral

membrane protein with 11 transmembrane domains and a large extracellular

structure involved in cell-cell and/or cell-matrix interactions; PKD2 is located

on chromosome 4q21 and encodes polycystin 2 (PC-2), a transmembrane gly-

coprotein that functions as a nonselective cation channel [5, 6]. Mutation in

PKD1 gene causes type 1 ADPKD while mutation in PKD2 gene causes type

2 ADPKD. Type 1 ADPKD is the most common and accounts for nearly 85%

of cases. It has been noticed that the disease is more severe in patients with

PKD1 genotype and that end-stage renal disease develop earlier then in those

with PKD2 genotype. ADPKD has a slow lifetime progression and generally

patients remain asymptomatic for decades. 50% of the offspring inherite the mu-

tated gene so, in case of absence of family history, early diagnosis of ADPKD is

difficult. These fluid-filled cysts, while expanding, compress the kidney vascula-

ture. The progression rate of the disease is related to the position and number

of cysts. The most common extrarenal manifestation is polycystic liver disease

which is characterized by the development and growth of hepatic cysts leading

to liver enlargement. Typical symptoms of polycystic liver disease are related

to the liver mass and include dyspnoea, early satiety, gastro- oesophageal re-
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flux, and mechanical low-back pain. Other ADPKD’s sympthoms can include

hypertension, intracranial aneurysms, mitral valve prolapse and acute pain that

can be associated with renal haemorrhage, passage of stones, and urinary tract

infections [7].

Clinical symptoms usually occur by late middle age and do not provide good

indications on the progression of the disease. Furthermore, in the early stage of

the disease there is a period of latency in which the renal function, quantified as

glomerular filtration rate (GFR) is stable. This is due to the ability of unaffected

nephrons for compensating the loss nephrons (figure 1.2) [1]. When most of

Figure 1.2: The natural history of autosomal dominant polycystic kidney dis-

ease as depicted by renal function decline as well as the onset of physical and

psychological symptoms [1].

parenchyma turns in cystic and fibrotic tissue, the compensation mechanism
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is overwhelmed, GFR decreases substantially and the remaining parenchyma

is irreversibly damaged. This has been noticed to happen when at least 50%

of functioning parenchyma has been destroyed [8]. For these reasons, GFR,

which is the conventional biomarker to evaluate renal function, is not considered

useful in PKD evaluation. In order to identify markers of disease progression

the Consortium for Radiologic Imaging Studies in Polycystic Kidney Disease

(CRISP) was created. According to CRISP, TKV provides an accurate measure

of cyst burden and its variation during time is correlated with the decline of

GFR. Changes in TKV can be detected in the early stages of the disease so

it represents an important biomarker for prognosis as for evaluation of disease

progression. Nowadays, cystic burden, measured as total kidney volume, is being

established as the best available biomarker of disease progression [9]. Recent

prospective longitudinal studies have shown as height-adjusted TKV (htTKV)

value of 600 cc/m in adults predicts the onset of renal insufficiency within 8

years. Monitoring cyst espansion has become important to predict outcome or

complication of possible therapies; therefore renal imaging plays a crucial role

in the diagnosis as in the assessment of the progression of ADPKD.

1.2 Clinical trials and outcomes

Since the identification of PKD1 and PKD2 genes as responsible for ADPKD,

a lot of different studies have been undertaken providing new insight into the

disease. These studies aim to explore novel therapeutic targets like high dose

niacinamide, tyrosine kinase inhibitors and others [10]. The main limitation

of these clinical studies is the need of long follow-up, because of the slow pro-

gression of the disease and the lack of early sensitive biomarkers. In the next

sections will be presented the most recent clinical trials grouped by therapeutic

targets.
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Blood pressure and the renin-angiotensin system

Hypertension occurs in a majority of the patients while their renal function is

still preserved. It is associated to kidney enlargement [11] and contributes to

patient morbidity and mortality. It is believed that cyst expansion lead to com-

pression of the vascular tree causing renal ischaemia and activation of the renin-

angiotensin aldosterone system (RAAS) [12] and so inhibitors of RAAS such as

angiotensin-converting enzyme (ACE), can affect the progression of the disease.

In the Halt Progression of Polycystic Kidney Disease (HALT-PKD) clinical

trial, ACE inhibition (ACEI) was compared with combined ACEI/angiotensin

receptor blockade. Data from HALT-PKD showed that low blow pressure tar-

get (<110/75 mm Hg) is associated with a slower enlargement of the kidneys

but there was no statistical significance between the estimated GFR and the

treatment.

Vasopressin V2 receptor antagonists

Cyclic adenosine-monophosphate (cAMP) activate cyst formation enabling chloride-

driven fluid secretion. Studies on animal models demonstrated the effectiveness

of vasopressin V2 receptor (V2R) antagonists in the treatment of ADPKD in an-

imal models [13]. Based on these results tolvaptan, a V2R antagonist was tested

in ADPKD. The Tolvaptan Efficacy and Safety in Management of Autosomal

Dominant Polycystic Kidney Disease and Its Outcomes (TEMPO) 3:4 trial [14]

was a 3-year prospective, randomized, double-blinded, controlled clinical trial

in adult patients (18-50 years of age) with ADPKD, an estimated creatinine

clearance >60 ml/min, a total kidney volume >750 ml and preserved GFR.

The administration of tolvaptan in the total TEMPO 3:4 trial population re-

duced the rate of change kidney volume and was associated with a slower decline

of kidney function over 36 months compared to patients on placebo. Adverse

events, including hirst, polyuria, nocturia, and polydipsia, were documented
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during the treatment and because of this 8% of patients in the treatment group

discontinued the trial drug.

Somatostatin analogs

Somatostatin is a peptide inhibitory hormone able to inhibit the generation of

intracellular cAMP. The ALADIN trial (A Long-Acting somatostatin on DIs-

ease progression in Nephropathy due to ADPKD) [15] was a prospective, ran-

domised, single-blind, placebo-controlled trial in patients with ADPKD and

estimated GFR between 40-15 ml/min/1.73m2. In this pilot study the poten-

tial of somatostatin analogue octreotide in inhibiting the growth of renal cysts

was evaluated. The administration of octreotide showed a reduction in the in-

crement of TKV and a slowdown in GFR decline, suggesting that somatostatin

analogues can be considered a viable option for long-term treatment of ADPKD.

Main limitation of this study was the small sample.

Other trials investigating the potential of somatostatin analogs are ALADIN 2

recruiting 98 patients and the DIPAK 1, involving 300 patients.

Mammalian target of rapamycin (mTOR) inhibitors

Studies on animal models have shown that a drug treatment based on sirolimus,

a mammalian target of rapamycin (mTOR) inhibitor can retard cyst expansion.

The results of clinical trials in ADPKD patients [16, 17, 18] have been discour-

aging. Considering the importance of mTOR activation in the pathogenesis of

ADPKD the lack of clinical efficacy is probably due to the inability to admin-

ister sufficient dosage to achieve biological efficacy [10]. A possible approach to

overcome mTOR inhibitor systemic toxicity, while achieving a sufficient level to

inhibit mTOR activity in the kidney, could be to target the drug specifically to

the kidney [19].
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1.3 The role of imaging for the diagnosis of ADPKD

Given the hereditary nature of the disease, genetic testing can be used for

ADPKD diagnosis but, due to genetic and allelic heterogeneity, large multi-

exon genes, duplication of PKD1, and a high level of unclassified variants it is

technical challenging [20]. Because of the high costs and low accuracy (about

80%), the use of genetic testing for diagnosis of ADPKD is limited to the eval-

uation of kidney donors or in presence of a negative family history.

Diagnosis of ADPKD is tipically based on imaging criteria according to age,

family history and number of cysts in individuals. The following diagnostic

criteria are used for patients suspected with PKD according to their age [21]:

• For patients aged 15-39 years the presence of 3 or more unilateral or bi-

lateral cysts has a sensitivity of 0.7 and specificity of 1, positive predictive

value of 1 and negative predictive value of 0.7.

• For patients aged 40-59 the presence of 2 or more unilateral or bilateral

cysts has a sensitivity of 1, specificity of 0.9, positive predictive value of

0.9 and negative predictive value of 1.

• For patients aged 60 years or older the presence of 4 or more cysts in each

kidney has a sensitivity of 1 and specificity of 1.

Cysts can be detected using ultrasonography (US), magnetic resonance imag-

ing (MRI) and computed tomography (CT). MRI and CT can provide high

resolution images and so have an high sensitivity in detecting even small renal

cysts (less than one centimeter in diameter). Due to low cost and no radiation

exposure, ultrasound is the modality of choice while MRI is generally used when

US is inconclusive.

Ravine’s criteria [22] (table 1.1) hass good sensitivity in diagnosis of type 1

ADPKD but showed lower performance in detecting type 2 ADPKD. A unified

criteria that allow to overcome this limitation is the one presented by Pei [23]

(table 1.2) that shows good sensitivity for both PKD1 and PKD2.

19



Number of cysts

Age (years) Positive family history Negative family history

<30 At least 2 in one or both kidneys At least 5

30-59 At least 2 in each kidney At least 5

>60 At least 3 in each kidney At least 58

Table 1.1: Ravine’s criteria for type 1 ADPKD diagnosis.

Age (years) Number of cysts

15-39 Total >3, uni- or bilateral

40-59 Total >4, at least 2 within each kidney

>60 Total >8, at least 4 within each kidney

Table 1.2: Pei’s criteria for ultrasonographic diagnosis of ADPKD in patients

with positive family history.

Furthermore, presence of liver cysts is tipically observed in 85% of patients

by the age of 30 and this information could be used for diagnosis validation

especially in absence of a positive family history of ADPKD [24].

In (table 1.3) are summerized the ultrasound diagnostic results for adults

with ADPKD obtained with Ravine’s and Pei’s criteria [25].

1.4 The role of imaging in assessing ADPKD

progression

Different studies have shown a link between the progression of cyst growth and

renal failure in PKD. It is belived that monitoring cyst volume is helpful for

assessing disease progression and evaluating the efficacy of new therapies. Ul-

trasonography is wildly used for diagnosis of ADPKD but not for the assessment

of disease progression because it is highly operator dependent and it has low
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Age range Subtype Criteria Sensitivity (%)

Adult ultrasound diagnostic

criteria (Ravine)

15–29 PKD1

≥ 1 cyst 96.2

≥ 2 cysts 96.2

≥ 2 cyst in one kidney,

≥ 1 cyst in the other
88.5

≥ 2, bilateral 84.6

≥ 4 bilateral 80.8

30–59 PKD1

≥ 1 cyst 100

≥ 2 cysts 100

≥ 2 cyst in one kidney,

≥ 1 cyst in the other
100

≥ 2, bilateral 100

≥ 4 bilateral 100

Adult unified criteria

for both PDK1&2 (Pei)

15–29

PKD1
≥ 1 cyst

99.1

PKD2 79.1

PKD1
≥ 2 cysts

98.1

PKD2 71.9

PKD1
≥ 3 cysts

94.3

PKD2 69.5

30–59

PKD1
≥ 2 cysts in each kidney

93.3-92.6

PKD2 75.8–88.8

PKD1
≥ 1 cyst

100

PKD2 96.7–100

PKD1
≥ 2 cysts

98.2–100

PKD2 94.9–100

PKD1
≥ 3 cysts

96.6–100

PKD2 94.9–95.6

Table 1.3: Ultrasound diagnostic results for adults with ADPKD obtained

with Ravine’s and Pei’s criteria
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resolution. The use of US is generally limited to image kidneys of small size.

Estimation of total kidney volume from US is generally obtained approximating

the kidney shape with an ellipsoid, using the following formula:

π/6 · length · width · depth

where length, width and depth correspond to the principal axes and are man-

ually selected by the operator. Different factors can influence accuracy and

reproducibility of this estimates such as the inter operator-variability in detect-

ing the different axes of the ellipsoid, respiratory motion and the non-uniform

distribution of cysts that makes the morphology of an ADPKD kidney irregular

and far to be considered comparable with an ellipsoid. As a result of these

limitations, kidney volume from US obtained applying the ellipsoid formula is

underestimated. A study [26] was conducted to evaluate the accuracy of ellip-

soid formula in calculating the renal volume from US, comparing the results

with the ones obtained using MRI images. The same underestimation occurred

applying the formula to MRI images exhibiting the intrinsic inadequacy of this

approach. Ultrasounds usually are not taken into consideration for the assess-

ment of disease progression. The first study based on renal volume estimation

on ADPKD patients was performed using CT images [27]. Other studies pro-

posed the use of CT for TKV computation suggesting the use of electron-beam

or spiral CT in order to increase accuracy in the measurement [28, 29, 30, 31].

Advantages in using CT images for renal volumetric analysis are related to

the high resolution of the images that can be also acquired faster than MRI.

Disadvantages of CT include ionizing radiation and exposure and, mainly due

to the low level of contrast of these images, the use of nephrotoxic contrast

agents. Because of these limitations the use of CT in the assessment of disease

progression is actually limited. Nowadays MRI is the modality of choice for

the assessment of ADPKD progression. The CRISP conducted a prospective,

longitudinal study of renal volume progression in patients with ADPKD using

T1-weighted and T2-weighted MRI images. Evidence of this study was that

kidney volume is the best biomarker for evaluating the rapid progression of the
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disease and that MRI is the best technique for its computation. Furthermore it

has to be considered that, being the renal enlargement due to cyst expansion,

kidney volume is a surrogate biomarker for cyst volume. Because of the high

image quality, MRI is the only technique that can allow cyst volume estimation

and cyst counting. Different methods have been proposed over the years for

kidney and cyst volume estimation in CT and MRI. They will be described in

the next chapters.

1.5 Aims of this Thesis

This thesis is focused on the development of new segmentation models for the

characterization of ADPKD patient through accurate estimation of renal and

cyst volumes. In addition, diffusion imaging analysis is proposed for an early

assessment of the disease progression.
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Chapter 2

Volumetric analysis in

ADPKD patients from MRI

Magnetic resonance is usually the imaging technique of choice in the evaluation

of the progression of ADPKD. It is able to image the kidney with an high level

of detail and high resolution and because of this it can facilitate the evaluation

of the renal volume but also of cyst volume. Furthermore the CRISP defined

MRI as the best technique for the volumetric evaluation for the assessment of the

rapid progression of the disease. In this chapter are reviewed the recent methods

that have been proposed in scientific literature for the volumetric analysis in

ADPKD patients from MRI images and will be presented novel approaches for

kidney and cyst volume computation.
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2.1 State-of-the-art methods

2.1.1 Kidney volume estimation

Mid-slice method

This method refers to the one proposed by Bae [32] for the estimation of kidney

volume and may be applicable to MR and CT images. First the mid-slice,

defined as the slice positioned in the middle of the image set, is selected. Then,

the renal area obtained with manual contouring of this slice is multiplied for

the number of slices and for a correction factor of 0.637 for the right kidney

and 0.624 for the left kidney. The results obtained by this method have shown

good correlation with volumes obtained with manual contouring and better

performance in comparison with ellipsoid method. The main limitation is the

assumption that a single slice can be representative of the whole kidney. Given

the high heterogeneity of polycystic kidneys, this method results to be not

suitable for an accurate estimation of kidney volume.

Kidney segmentation during follow-up

In 2015 Kline proposed an automatic method for TKV computation on follow-up

MRI [33]. It is based on the registration of the volume detected using stereology

on the baseline scan with the follow up scan. The registration is initialized using

the image position information obtained from the DICOM header and optimized

using inverse warp. The final result is refined using a geodesic active contour

model. Good agreement was obtained with manual segmentation results. This

method is an important instrument for an accurate estimation of TKV and can

require only few minutes for the computation despite 30-40 minutes required for

manual tracing or stereology approach. Nonetheless, since the aim is to compute

TKV from follow-up, baseline kidneys still have to be manually segmented.
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Kidney segmentation with a priori knowledge

In this study [34], the segmentation of the kidneys is achieved using a level

set approach. Constraints during the level set evolution are a spatial prior

probability map (SPPM) and a propagated shape constraint (PSC). SPPM is

obtained using the manual segmentation of the kidneys from a training set of 30

patients. Performance of this fully automated method are good when compared

to manual segmentation. Nevertheless, a priori knowledge is needed and, as

stated by the author, this method depends strongly from the training set.

2.1.2 Cyst volume estimation

Region-based thresholding

The first method for cyst segmentation was proposed in 2000 by Bae [35].

In each slice an expert radiologist chooses the threshold that allows to better

distinguish beetween cysts and parenchyma. Voxel counting is then used for

TCV estimation.

Mid-slice method

This method use the same approach used for TKV estimation [32]. First, the

mid-slice, defined as the slice positioned in the middle of the image set, is

selected. Then, cysts are manually detected and cyst mid-slice area is calculated

by pixel count. The cyst volume is obtained multipling the cyst mid-slice area

for the number of slices and using a correction coefficient of 0.637 and 0.608

for right and left kidney respectively. As for TKV estimation, the accuracy is

affected by how much the mid-slice is representative of the whole kidney.

Shape-detection method

The different steps involved in this method [36] include the use of:
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• rough segmentation of the original image through clustering ;

• filtered version of the original image for edge enhancement;

• shape detection level-set to identify a seed point of each cyst in combina-

tion with morphological operators;

• morphologic watershed algorithm.

The application of this method is limited to patients with relatively mild to

moderate ADPKD as stated in [36], and it is exceedingly complex as stated in

an another work from the same group [37].

Euclidean distance map method

To overcome the limitations of the previously presented method [36], the same

group proposed a slightly different approach [37].

The workflow of this algorithm includes:

• automatic or manual selection of a threshold;

• connected components analysis to label the cyst regions;

• the construction of an Euclidean distance map;

• watershed segmentation.

2.2 TKV from MRI

CRISP studies evidenced the correlation between renal volume increment and

renal function loss and considered MRI as the best tecnique for the computation

of TKV and suggested the use of coronal acquisitions.

In a previous work [38] a fast and nearly-automated technique for kidney seg-

mentation was developed. The method was applied to axial images and showed

to be able to provide accurate estimation of renal volumes from MRI data. It

was tested and validated on patients with ADPKD and normal renal function.
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CRISP guidelines recommend the use of coronal images for TKV and TCV

measurement. Furthermore, since axial and coronal acquisitions differ from the

numbers of acquired planes and resolution, the derived volumes computed ap-

plying the disk method to these scans could lead to different estimates.

The mentioned method [38] was applied to images from the coronal view [39].

The aim was to evaluate the differences, if any, between kidney volumes ob-

tained from axial and coronal acquisitions and to compare this approach with

the one proposed by the CRISP in [32], in which TKV is based on a limited

number of manual area measurements.

2.2.1 Materials and methods

Thirty patients (23 patients with normal renal function and 7 patients with

chronic kidney disease) underwent the MRI study. In all patients ADPKD

had been previously diagnosed with echographic investigation and based on

Ravine’s criteria [22]. MRI data were acquired using a 1.5T scanner (Intera

Achieva, Philips Medical System). The imaging protocol included unenhanced

sequences only. T2-weighted turbo-spin-echo sequences with selective fat sup-

pression (SPIR) respiratory triggered were used to acquire axial images. The

kidneys were also imaged posteroanterior in the coronal plane using spectral adi-

abatic inversion recovery with single shot fast spin echo (SPAIR-SSFSE) with

fat saturation. MRI acquisition parameters are presented in table 2.1.

Acquisition parameters Axial Coronal

Spatial resolution (mm) 1.30 x 1.30 to 1.58 x 1.58 0.98 x 0.98

Field of view (cm) 30 to 35 30 to 35

Slice thickness (mm) 5 mm 5 mm

Table 2.1: MRI acquisition parameters

The proposed software was developed to detect kidney contours in both
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coronal and axial MR acquisition. The following procedure was applied to both

left and right kidneys as shown in figure 2.1

• one point manual selection in the central slice of a volume (a);

• rough segmentation based on Otsu method and region-growing (b);

• morphological operation and curvature motion for final segmentation (c).

Figure 2.1: Description of the segmentation procedure (from left to right):

manual selection of two points in the right and left kidneys (red stars); kidney

areas obtained applying a threshold segmentation; kidney contours obtained

applying a region growing algorithm and refined by curvature motion.

Starting from the mid-slice, this procedure is iterated forward and backward

for each slice in the volume and the seed point automatically recalculated in

each plane. Non-kidney structures such as liver or spleen are automatically

excluded. In particular the software operates a double check on the left kidney

to exclude the spleen. This step is obtained by looking for homogeneous areas

in the upper side of the left kidney and comparing the left kidney area of the

current slice with the area of the previous one. In case of a larger area and

if wide areas of homogeneity are detected, a seed is automatically positioned

in the homogeneous area and the result of the application of a region growing

algorithm is subtracted to the previous detection (figure 2.2).

For each slice, the kidney area is calculated by counting the number of pixels

inside the detected region and considering the data resolution in the acquired

plane. Left and right kidney volumes were obtained by summing the products

of the corresponding area measurements and the spacing between slices. The
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Figure 2.2: Description of the spleen exclusion from segmentation: a. Segmen-

tation result (red contour) and automatically positioned seed (red stars); b.

Result obtained applying a region growing based segmentation in the spleen

region; c. Final kidney segmentation

software proposed above works indifferently on images from axial and coronal

MRI acquisitions to obtain kidney volumes (KVax and KVcor, respectively).

Left and right kidney volumes were also estimated by manual tracing of two

independent experts (KVmt) and applying the method described in [32] (KVap).

The coronal MR mid-slices of the right and left kidney were manually selected.

Mid-slice was defined as the slice whose image number corresponded to a half of

the sum of the first and last slice image numbers in the image set. The volume

was computed as the product of the mid-slice kidney area and the number of

slices covering the kidney and a multiplier derived from the linear best fit model

computed for the comparison, as indicated in [32].

2.2.2 Statistical analysis and results

For each patient, kidney volumes obtained from nearly-automated analysis from

axial and coronal acquisitions were compared. In addition, the latter ones were

also compared with the volume estimates derived by manually tracing of kid-
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ney contours and as described in [32]. Comparison was performed using linear

regression and Bland-Altman analyses. Paired t-test was applied to verify the

significance of the bias.

In addition, to assess the effects of the placement of a single seed point inside

the renal cavities kidney (which was the only user input in the analysis), the

repeatability of volume measurements was tested in fifteen randomly selected

patients in both acquisitions. One observer repeated the analysis twice, select-

ing two different seed points to compute intra- observer variability. A second

observer analyzed the MR data to compute inter-observer variability. The re-

peatability analysis was also performed to estimate inter-observer variability

between volumes derived by manual tracing. Variability measurements were

computed as the ratio between the absolute difference between the two volume

measurements and their mean value and expressed in percent of their mean.

Two examples of the detected contours in two patients from coronal and

axial acquisitions are shown in figure 2.3.

Examples of the segmentation result in one slice for one patient characterized

by few cysts and small kidneys and one patient with several cysts and huge

kidneys are shown in figure 2.4.

Median value for KVax estimated in 30 patients was equal to 1298 ml (668 ÷

1973 ml); KVcor resulted in 1298 ml (693-2029 ml) (NS). The same comparison

was performed considering right and left kidney volumes separately. Median

value for right KVax was equal to 673 ml (321-977 ml) and median value for

right KVcor resulted in 651 ml (337-972 ml) (NS). Median left KVax was equal

to 614 ml (347-850 ml) and median left KVcor resulted in 617 ml (350- 890 ml)

(NS). These ranges reflect the wide variability of the analyzed ADPKD patients.

Linear regression analysis between left KVax and left KVcor (figure 2.5,

left top panel, black dots) resulted in an excellent correlation coefficient and

regression slope near to 1 (left: KVcor=1.01KVax-2.00; r2=0.996).

Similar results were found for right KV (figure 2.5, right top panel, black
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Figure 2.3: Detected contours in two different patients from coronal and axial

acquisitions

dots; right: KVcor=1.00KVax+5.30; r2=0.996). Bland-Altman analysis (fig-

ure 2.5, bottom panels, black dots) showed a negligible bias between the volume

measurements from axial and coronal analysis (bias: -6.7 ml and -5 ml corre-

sponding to -0.9% and -0.7% for left and right KV, respectively). The 95% limits

of agreement were relatively narrow (SD: 35.1 ml and 31.5 ml for left and right

KV, respectively), providing additional support to the tight agreement between

the volume quantification based on axial and coronal acquisitions. Overall, the

mean percentage error for the volume assessment in the left and right kidneys

resulted in -0.9±6.5% and -0.7±5.5% respectively. In addition, mean absolute

percentage error was 5.1±4.0% and 4.0±3.7%.

Linear regression and Bland-Altman analyses (figure 2.6, black dots) between

the TKVax and TKVcor confirmed the excellent results obtained for single kid-

ney estimates (y=1.01x-0.78; r2=0.997; bias: -11.7 ml corresponding to -1.5%;

SD: 54.3 ml; mean percentage error: - 0.8±4.9%; mean absolute percentage er-
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Figure 2.4: Detected contours for one patient with several cysts and huge kid-

neys (left panels) and one patient characterized by few cysts and small kid-

neys (right panel).

ror: 4.0±2.8%). Paired t-test between volumes computed analyzing coronal and

axial images showed non- significant differences for left, right and total kidney

volumes (p¿0.2). Results of the comparison between volumes obtained applying

the method proposed in [32] and the nearly-automated method to coronal ac-

quisitions are shown in figure 2.5 (gray dots) for left and right kidney volumes

and in figure 2.6 (gray dots) for total kidney volumes.

Quantitative results are summarized in table 2.2.

On a subset of 15 patients, intra- and inter-observer variability in right

and left kidney volume measurements obtained applying the nearly-automated

method on coronal and axial acquisitions, were 1.8±1.5%, 2.3±1.9%, 1.8±3.1%,

2.5±2.9% and 2.1±2.5%, 1.9±2.3%, 1.8±3.2%, 2.6±4.3%, respectively (figure 2.7).
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Figure 2.5: Linear regression and Bland-Altman analysis of left (left panels)

and right (right panels) kidney volumes.

regression line r bias (ml, (%)) SD(ml) %error |%error|

left KVap vs KVcor y=1.00x+49.37 0.994 -50 (-6.8) 60.8 -10.1±14.1 13.7±10.5

right KVap vs KVcor y=0.95x+37.54 0.989 -3.7 (-0.5) 81.1 -2.5±10.6 8.7±6.5

total KVap vs KVcor y=0.98x+75.91 0.995 -53.7 (-7.3) 108.1 -5.8±10.8 9.8±7.3

Table 2.2: TRV results obtained from the analysis of coronal acquisition ap-

plying our highly-automated method (KVcor) and the method based on geo-

metric approximations proposed in (KVap).

On note, inter-observer variability computed between the two experts who man-

ually traced the kidney contours on coronal acquisition resulted in 2.6±1.5% and

2.3±1.4% for right and left kidney respectively.
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Figure 2.6: Linear regression and Bland-Altman analysis of total kidney vol-

umes.

2.2.3 Discussions

The results showed the method is not tight up to a specific imaging protocol

and works when using the CRISP-recommended acquisition protocol and the

routine abdominal protocol; therefore, the tool could be valuable in different

clinical scenarios when kidneys are imaged for different clinical reasons and the

need for renal volume computation is after the fact. The advantage of such
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Figure 2.7: Intra- and inter-observer variability in right and left kidney vol-

ume measurements on coronal and axial acquisitions

approach relies in the ability to include in our population also patients with

huge kidneys. The comparison with kidney volume measurements evaluated

using geometric modeling proposed by CRISP [32] showed not negligible bias

and large limits of agreement. Both methods perform well on wide range of

kidney size and with mild and moderate cystic burden as well as in those in which

parenchyma is largely replaced by cysts. However, when kidney shape is not

regular and the presence of exophytic cysts or regional morphological variations

deform renal contours, volume measurements result inaccurate if evaluated using

geometric modeling [32], leading to the large limits of agreement. Two examples

in two patients are reported in figure 2.8. In these two cases, the presence of

exophytic cysts, not visible in the central plane of the coronal acquisition, result

in not negligible errors in left kidney volume estimation applying the geometric

modeling based approach. No manual tracing of kidney contours is required for

the nearly-automated method and the only manual intervention is the selection

of two points inside a single slice of both kidneys whose position was proven

not to significantly affect volume estimates by the repeatability analysis. The

seeds selected by the user are just an indication of the region to detect and
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their position is optimized automatically studying the gray level intensities in a

region of interest around the selected points; therefore their initial positions do

not affect the final quantitative results. These results were confirmed by intra

and inter-observer variability values that resulted very small and negligible for

both acquisition views, minor than those computed for manual tracing and those

reported in literature applying manual tracing or stereology method [40].

In figure 2.9 is presented the interface developed for kidney segmentation based

on this method.

Figure 2.8: Example of the exophytic cysts (indicate by the arrows) erro-

neously excluded by the segmentation model.

2.3 Patient classification based on TKV

Total kidney volume variation is extensively used in clinical practice to evaluate

disease progression and for monitoring treatment efficacy [41]. Height-adjusted
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Figure 2.9: User interface for ADPK segmentation

TKV (HtTKV) in combination with age has been also proposed for patient clas-

sification which is important for selecting patients for clinical trials [42].

As already reported, different methods have been proposed for computation

of TKV in ADPKD patients from MRI. Some of them rely on geometric ap-

proximations [32], [42]; others are highly automated [38], [39] requiring a single

seed point selection in one mid MR slice to obtain the 3D kidney surfaces and

still others [33] and [34], use fully automated approaches. [33] was exclusively

proposed to monitor disease progression starting from patient kidney surfaces

obtained by manual contouring during first visit; while [34] was based on spatial

probability density maps and regional mapping with total variation regulariza-

tion and propagated shape constraints.

In the next section a study conducted to perform a quantitative comparison
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of the performance of the available methods for TKV computation is described.

Two methods based on geometric assumptions (mid-slice, ellipsoid) and a third

one on true contour detection were tested on forty ADPKD patients at differ-

ent disease stage using MRI. Ellipsoid method was also tested using ultrasound

images in a subset of fourteen patients. Their performance was compared ver-

sus TKVs derived from reference manual segmentation of MR images. Aim of

this study is to evaluate if differences in TKV can lead to different prognostic

classification [42].

2.3.1 Materials and methods

Forty patients were enrolled in this study. In all the patients ADPKD was

diagnosed based on the Ultrasonographic Unified Criteria [23] and MR images

were acquired following the acquisition protocol described in [43]. In a subset

of fourteen patients ultrasound images were available. Patients characteristics

are reported in table 2.3.

TKV was estimated using the ellipsoid method [42], the mid-slice approach [32]

and the highly-automated method described in the previous section.

Characteristics Value

Number of patients 40

Sex (M/F)(%) 56,4/43,6

Age at visit (years) Mean [range] 44 [21-66]

Creatinine (mg/dl) Mean [range] 1,37 [0,6-2,13]

GFR (CKD-EPI ml/min/1.73 m2) Mean [range] 73,8 [32-131]

Number of patients treated with one anti-hypertensive drug 8

Number of patients treated with two anti-hypertensive drugs 4

Number of patients treated with at least 3 anti-hypertensive drugs 5

Table 2.3: Patients characteristics.
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2.3.2 Statistical analysis and results

To evaluate the agreement between TKVs computed applying the reference

technique, based on manual segmentation of MR images, and the different ap-

proaches, regression and Bland-Altman analyses were performed. Intra-class

correlation coefficients (ICC) and absolute errors were also computed for each

technique. Dice coefficient was computed for the methods in which kidney sur-

faces were available. In 20 patients randomly selected, kidney volumes from

MRI were computed twice by two reviewers, blinded to their previous results.

Based on computed TKVs, patient classification was assessed [42] and results

were compared with classification obtained using TKV from manual tracing.

Median volumes characterizing our analysis are reported in table 2.4.

Manual

tracing

MRI (40 pa-

tients)

EL MRI (40

patients)

MS MRI

(40 pa-

tients)

AUTO MRI

(40 pa-

tients)

EL Echog-

raphy (14

patients)

Median

right KV

(ml)

645 [IQR:

446÷1118]

747 [IQR:

416÷1097]

627** [IQR:

407÷1069]

639 [IQR:

448÷1104]

426* [IQR:

258÷776]

Median

left KV

(ml)

657 [IQR:

502÷1539]

705 [IQR:

487÷1484]

673 [IQR:

476÷1589]

645 [IQR:

510÷1505]

462* [IQR:

342÷885]

Median

TKV (ml)

1383 [IQR:

916÷2673]

1444 [IQR:

905÷2714]

1300** [IQR:

887÷2559]

1358 [IQR:

943÷2593]

881* [IQR:

657÷1660]

Table 2.4: AUTO = highly-automated method, EL = ellipsoid method, IQR

= interquartile ranges (25%÷75%), KV = kidney volume, MS = mid-slice

method, *p<0.05 vs reference value by manual tracing, **p<0.01 vs reference

value by manual tracing.
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Kidney volume ICC 95 % CI [min ÷ max]

KVEL

(n=40)

Right 0.977 (p<0.001) 0.956 ÷ 0.988

Left 0.977 (p<0.001) 0.957 ÷ 0.988

Total 0.983 (p<0001) 0.967 ÷ 0.991

KVMS

(n=40)

Right 0.984 (p<0.001) 0.970 ÷ 0.992

Left 0.987 (p<0.001) 0.975 ÷ 0.993

Total 0.992 (p<0.001) 0.985 ÷ 0.996

KVAUTO

(n=40)

Right 0.999 (p<0.001) 0.998 ÷ 0.999

Left 0.997 (p<0.001) 0.995 ÷ 0.999

Total 0.999 (p<0.001) 0.997 ÷ 0.999

KVECHO

(n=40)

Right 0.862 (p<0.001) 0.635 ÷ 0.953

Left 0.864 (p<0.001) 0.550 ÷ 0.953

Total 0.843 (p<0.001) 0.592 ÷ 0.946

Table 2.5: 95% CI = 95% confidence intervals, ICC = Intra-class correlation

coefficients, KVAUTO = kidney volume by the highly-automated method,

KVecho= kidney volume by echography, KVEL = kidney volume by the el-

lipsoid method, KVMS = kidney volume by the mid-slice method.

Linear regression (figure 2.10, left panels) and Bland-Altman (figure 2.10,

right panels) analyses between kidney volumes estimates obtained applying the

three approaches based on MRI (MS, EL and AUTO) and echography versus

reference kidney volumes by manual tracing are shown in figure 2.10 for right,

left and total kidney volume respectively. The intra-class correlation coefficients

for TKV are reported in table 2.5.

We found a mean Dice coefficient of 0.98±0.02 and 0.97±0.02 for right and

left kidney respectively applying the highly automated method. Patient classifi-

cation according to the Mayo Clinic calculator [3] showed the following misclas-

sification: 5/40 (13%), 4/40 (10%), 1/40 (2.5%) using TKVs obtained applying

the ellipsoid, the mid-slice and the highly automated method, respectively. Im-
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portantly, in 14 patients in which echographic quantification was available, only

3 patients (21%) were correctly classified; in general, US-based classification

resulted in the assignment of the patient to a class associated to a lower kidney

growth rate.

Figure 2.10: Linear regression (left panels) and Bland-Altman analysis (right

panels) for right (top panels), left (mid panels) and both kidneys (bottom

panels) volumes applying the highly-automated (AUTO, red squares), ellip-

soid (EL, light blue diamonds) and mid-slice (MS, green triangles) methods

to MR images and the ellipsoid approximation to echographic images (dark

yellow diamonds).

42



2.3.3 Discussions

Different approaches for TKV computation were compared in the same group

of ADPKD patients at different disease stage characterized by a wide renal

volume range. The MRI-based methods resulted in excellent correlation coeffi-

cients and ICCs. However, Bland- Altman analysis showed underestimation of

different magnitude for the three techniques. Limits of agreement were highly

dependent from the applied method, showing the best agreement for the highly

automated technique (<5%); they were large for the EL method, resulting in

confidence intervals larger than 10%. Mean percentage errors confirmed these

results showing errors <1% for the highly automated technique. Importantly

both geometrical-based approaches show an increased volume underestimation

for both kidney volumes when kidney size increases. In addition, variability

analysis results exhibit that ellipsoid and mid-slice methods are highly operator-

dependent showing statistically different TKV estimates for both intra and inter-

observer variability. Overall, the best performance was obtained applying the

highly automated method. The results of this comparison are in line with the

ones previously presented [42, 39, 32]. Slight differences were found for variabil-

ity analysis that could be explained by considering the population selected for

this analysis is characterized by huge kidneys. In a previous study [44] sono-

graphic assessment of TKV by applying the ellipsoid method was compared

versus TKV derived from MRI. Results showed inaccurate ultrasound-based

TKV estimates and, differently from what we found, sonographic volumes were

greater than MRI-based TKV. However, authors state renal volume was exag-

gerated in the aggregate, but volume was also undermeasured in many kidneys.

The error was not related to kidney size or body habitus, suggesting that is

not caused by patient-specific factors, but much of the variability was related

to the sonographers. In addition, in this study, T1-weighted MR images were

used to derive TKV by stereology. A direct quantitative comparison with the

method presented in [34] was not possible since specific algorithm was not avail-

able. The method in [34] was tested on a population of smaller kidneys (TKV
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range: 177÷2634, mean TKV: 885±570) and validated versus manual tracing.

Compared to the highly automated method, linear regression coefficient and

ICC were slightly minor (r=0.97, ICC=0.97). Importantly computed bias was

between 25 and 30 ml (about 3.5%) but limits of agreement were huge (57 ml

vs 266 ml and 290 ml) compared to the ones obtained by the highly automated

method. Dice coefficient was also slightly lower (0.88±0.08) in [34]. Regarding

classification, a correct patient clustering is crucial to select patients who are

appropriate for clinical trials or, more importantly, likely to benefit from an ef-

fective treatment. Differently from [45], our results showed techniques based on

geometric models, both from echography and MRI, are not suitable for an ac-

curate patient stratification based on renal volume. Previous study [26] already

showed poor accuracy and reproducibility of ultrasound for TKV assessment

using the ellipsoid formula; however the use of TKV from echography applying

geometric models has been recently proposed as a prognostic index in ADPKD

population [46]. In [46], simultaneous ultrasound and magnetic resonance imag-

ing were used to determine whether ultrasound and kidney length predict future

chronic kidney disease stage 3 over 8 year follow-up. Results showed they are

equivalent for this purpose. This comparison is beyond the aim of this technical

note in which kidney length was not considered and the focus was on volumetric

information. However our preliminary results show an extremely low accuracy

of kidney estimation obtained from echographic exam and echo-derived mea-

surements lead to inaccurate patient stratification in the majority of patients.

Our study suggests that ultrasound prognostic estimation should be used with

extreme caution, and final clinical validation of this approach would require fur-

ther confirmation from independent studies. To conclude, approaches based on

image processing techniques [39, 38, 34] which already proved to provide good

results and could be ready for clinical testing, should be taken into account

for kidney volume quantification and monitoring. Importantly, differently from

ellipsoid and mid-slice methods, these approaches make available a 3D model of

the kidneys that could be very useful for further analysis including cyst detec-

tion, cyst volume computation and automatic classification of renal morphology
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(e.g. class 1 versus class 2 kidneys [42]).

2.4 TCV from MRI

TKV is widely considered as the best prognostic biomarker for the assessment of

renal function failure. However, kidney enlargement in ADPKD patients is due

to cyst expansion. The mechanisms beyond the formation and the growth of

cysts are still unknown but the estimation of cyst volume is a critical parameter

for the evaluation of the progression of the disease. The prognostic value of TKV

as surrogate biomarker for TCV can fail in predicting change in renal function,

as, for example, in patients with few large cysts or in patients with renal atrophy

secondary to ischemia or urinary tract obstruction [47]. As already stated, a

correct classification of an ADPKD patient is important for the evaluation of

therapy efficacy as for the enrollement of patients in clinical trials. In this

section a novel approach for fully automated cyst segmentation is presented.

2.4.1 Materials and methods

Algorithm for TCV assessment was tested in five patients. For all patients

ADPKD diagnostic was based on the Ultrasonographic Unified Criteria [23]

and MR images were acquired following the acquisition protocol described in

[43]. Segmentation of the kidneys was obtained using the validated method

described in [39] and used to mask the original data.

For each image in the MR dataset, the following procedure was designed.

The following procedure includes

• cyst detection

• seed detection

• cyst segmentation
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Cyst detection

A 3-class fuzzy c-means clustering was applied to every single image in order

to distinguish cystic from parenchymal regions. Fuzzy clustering resulted in a

powerful unsupervised method for the analysis of this kind of data, allowing to

obtain quick estimation of TCV. Later on in the manuscript, the results of TCV

estimation will be presented and discussed. An example of the clustering result

is shown in figure 2.11

(a) Original image with kidney seg-

mentation mask

(b) Cyst detection by 3-class cluster-

ing

Figure 2.11: Result from the clustering of a segmented kidney

Seed detection

This clustering results in the detection of different regions that can be associated

to a single or multiple cysts. Only regions with an area bigger than twice the
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slice thickness are taken in consideration for this kind of analysis since the aim

is to distinguish every single cyst and estimate its volume. The iterative voting

approach used for the detection of single cysts is based on the consideration that

cyst expansion occurs radially without a preferential direction and can be mod-

elled by a sphere. In a more general scenario cyst expansion is conditioned by

the presence of other cysts resulting in an agglomerate. These regions, detected

by the clustering approach previously described, are convex and often radially

symetric.

In this section will be described the iterative radial voting approach [48] used

to locate the centroid of each cyst.

Let I(x, y) be the original image where (x, y) are the spatial coordinates of a

point in the image domain, ∇I(x, y) the image gradient, ‖∇I(x, y)‖ the mag-

nitude of the image gradient and α(x, y) := (cos(θ(x, y)), sin(θ(x, y))) be the

voting direction at each point of the image for some angle θ(x, y) that varies

with the image location and is the angle of the gradient direction respect to x

axis. Defining a subset of pixels S := {(x, y)|‖∇I(x, y)‖ > Γg} where Γg is the

gradient threshold and considering that in the binary mask resulting from the

clustering, the background pixels are set to zero, for each point (x, y) ∈ S the

voting direction can be defined as the negative gradient direction:

α(x, y) := − ∇I(x, y)

‖∇I(x, y)‖
.

Being the centroid of a cyst far away from its boundary, in order to reduce

the number of calculations, for each point (x, y) ∈ S is defined a cone shape

voting area A(x, y; rmin, rmax,∆) dependent on the radial range rmin, rmax and

on the angular range ∆.

A(x, y; rmin, rmax,∆) := {(x ± r cosφ, y ± r sinφ) | rmin ≤ r ≤ rmax and

θ(x, y)−∆(x, y) ≤ φ ≤ θ(x, y) + ∆(x, y)}

In the center of the voting area is defined a 2D Gaussian kernel g(x, y, σ) as
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follow

g(x, y, σ) =
1√
2πσ

exp

(
− (x2 + y2)

2σ2

)
with variance σ2. The voting area so defined is illustrated in figure 2.12.

Figure 2.12: Cone shape voting area with Gaussian kernel positioned in its

center.

Each pixel of the object interface contributes to a vote image that has the

same size of the original image, is initialized to zero and defined as:

V (x, y; rmin, rmax,∆) =
∑

(u,v)∈A(x,y;rmin,rmax,∆)

{F (x, y)g(u, v, σ)}

where the feature image F (x, y) is the local external force at each pixel of

the original image. In this study, as external force, it has been choosen the

mean curvature k defined as:

k(x, y) = ∇ ·
(
∇I(x, y)

|∇I(x, y)|

)

In order to reduce the computational weight and so to increase efficiency,

differently by [49], here it has been used a single pass approach similarly to [48]

to locate the seeds for the next step. The centroids of the detected objects are

detected selecting the local maxima of the resulting voting image (V ).
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An example of the intermediate steps to achieve the detection of the centroid

on a synthetic image is shown in figure 2.13 (central panels).

Figure 2.13: Examples of the segmentation of touching objects on synthetic

images: test images (left panels); seed detection (central panels); result of seg-

mentation (right panels).

Cyst segmentation

The detected centroids are used as seeds for the segmentation of cysts that

has been obtained using a level set approach based on interactive model. The

mechanism involved in the interaction are a repulsion term for separating the

touching cysts and preventing the contours from overlapping and a competition

term for defining the boundaries and to determine the membership of each pixel.

Let be Ci(i = 1, ..., N) where N is the number of detected cysts (centroids) for

the considered clustered object. Each cysts is represented by its own level set
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energy function Ψi with Ci as the zero level set such as Ci = {(x, y)|Ψi(x, y) =

0}. In the multiphase level set approach each level set (Ψi) interacts with the

others through the repulsion and competion terms. The evolution of each curve

is obtained by the minimization of the energy function and can be expressed as

∂Ψi

∂t
= δ(Ψi){λo|I − ci|2 − λb|I − cb|2

N∏
j=1,j 6=i

H(Ψj) + . . .

µ∇g ∇Ψi

|∇Ψi|
+ γg∇ ·

( ∇Ψi

|∇Ψi||

)
+ ω

M∑
j=1,j 6=i

(1−H(Ψj))} (2.1)

where g is the edge indicator, H is the Heaviside function, δ the Dirac

function and λo, λb, µ are parameters of the equation.

Examples of the final segmentation through the multiphase level set ap-

proach of a synthetic image is shown in figure 2.13 (right panels).

Cyst counting

As previously mentioned, only regions with an area bigger than twice the slice

thickness underwent the based on the multiphase segmentation approach. Seed

detection is a crucial step and an erroneous in the detection of the centroid of

the regions can lead to over- or under- segmentation of the agglomerate of cysts.

The developed approach for cyst counting allows to detect the number of cysts

in the kidney using the position of the centroids of each segmented object.

The different 2D segmented objects are associated to a single 3D object (a cyst)

depending of the closeness of their centroids in the third dimension and the

percentage of overlap between them. The redundancy of these informations

along the third dimension allows also to overcome the limitation of the method

for seed detection.
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2.4.2 Statistical analysis and results

An example of the result of the previosly described workflow on an agglomerate

of cysts is shown in figure 2.14. Two expert radiologist manually traced the

Figure 2.14: Intermediate steps of the segmentation algorithm: original image

(top left); agglomerate of cysts detected through clustering (top right); detec-

tion of cyst centroids (bottom left); result of the segmentation (bottom right).

cysts in both kidneys of each of the five patients providing two estimations of

the volume of the cysts. Cyst volume obtained from the automatic method was

compared with the mean of the two manual estimated cyst volumes. Comparison

was performed using linear regression and Bland-Altman analyses, figure 2.15.

Linear regression resulted in an excellent correlation coefficient and regression

slope near to 1 (y=1.00x-0.89; r=0.987).

Bland-Altman analysis showed a moderate bias (bias: -0.26 ml corresponding
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Figure 2.15: Linear regression and Bland-Altman analyses of TCV

to -0.30%).

The 95% limits of agreement resulted in 6.03 ml, mean percentage error was

-1.1 ± 5.1% and mean absolute percentage error was 4.5±2.3%.

Residual parenchyma percentage was computed using the estimated CV from

the KV (table 2.6).
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Patient

ID

TKV

(ml)

TCV

ME1

(ml)

TCV

ME2

(ml)

Mean ± std

(ME1 vs ME2)

(ml)

TCV

AE

(ml)

Error

(%)

Residual

parenchyma

(%)

Cyst

(%)

Right

kidney

1 239.65 78,58 93,34 85.96 ± 10.44 78.90 -8.22 67.08 32.92

2 365,47 48,92 53,53 51.22 ± 3.26 52.01 1.53 85.77 14.23

3 350.57 117,44 135,64 126.54 ± 12.87 121.96 -3.62 65.21 34.79

4 208.59 29,82 31,45 30.60 ± 1.15 30.03 -1.97 85.60 14.40

5 447.91 137,44 159,38 148,41 ± 15.51 160.07 7.86 64.26 35.74

Left

kidney

1 230.94 36,11 37,53 36.82 ± 1.00 34.91 -5.18 84.88 15.12

2 486.73 76,30 94,02 85.16 ± 12.53 86.87 2.00 82.15 17.85

3 377.68 165,77 180,48 173.13 ± 10.40 164.65 -4.89 56.40 43.60

4 179.83 14,17 12,22 13.19 ± 1.38 12.57 -4.72 93.01 6.99

5 454.8 114,63 131,79 123.21 ± 12.13 129.65 5.23 71.49 28.51

Table 2.6: TCV and parenchyma estimation. ME1: Manual estimation #1;

ME2: Manual estimation #2; AE: Automatic estimation;
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Cyst counting allowed to obtain the volume of each cyst and so to quantify

the contribution of each single cyst to the total cyst volume. In table 2.7 is shown

the volume of the five biggest cysts for each kidney that has been analyzed.

An example of the segmented cystic burden is shown in figure 2.16.

Figure 2.16: Example of the segmented cyst volume (green), right kidney, pa-

tient 3.

In figure 2.17 are shown the three biggest cysts in each kidney volume.
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Patient

ID

TCV

AE

(ml)

Cyst #1

(ml, (%))

Cyst #2

(ml, (%))

Cyst #3

(ml, (%))

Cyst #4

(ml, (%))

Cyst #5

(ml, (%))

Right

kidney

1 78.90
15,41

(19.53)

12.04

(15.26)

8.49

(10.76)

4.76

(6.04)

3.51

(4.45)

2 52.01
7.67

(14.75)

6.50

(12.49)

5.93

(11.40)

4.88

(9.39)

3.26

(6.27)

3 121.96
50.36

(41.29)

12.81

(10.50)

10.89

(8.93)

10.53

(8.64)

9.70

(7.96)

4 30.03
12.26

(40.81)

1.62

(5.40)

1.01

(3.37)

1.01

(3.36)

0.70

(2.33)

5 160.07
23.93

(14.95)

21.71

(13.56)

20.17

(12.60)

13.18

(8.23)

7.16

(4.47)

Left

kidney

1 34.91
7.54

(21.61)

3.36

(9.64)

2.86

(8.18)

2.44

(6.98)

2.07

(5.93)

2 86.87
22.57

(25.98)

13.65

(15.72)

8.33

(9.59)

4.10

(4.73)

3.77

(4.34)

3 164.65
43.34

(26.32)

38.92

(23.64)

12.52

(7.60)

11.13

(6.76)

7.36

(4.47)

4 12.57
1.75

(13.93)

0.96

(7.64)

0.51

(4.03)

0.36

(2.88)

0.30

(2.42)

5 129.65
18.14

(13.99)

14.80

(11.41)

10.30

(7.94)

10.21

(7.88)

8.73

(6.74)

Table 2.7: Volume and TCV percentage of the five biggest cysts for each kid-

ney.
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Figure 2.17: 3D representation of the three biggest cysts (in volume descen-

dent order: red, green, blue) for left (left panels) and right (right panels) kid-

neys from patient 1 (top panels) to patient 5 (bottom panels).
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2.4.3 Discussions

Total kidney volume is the common biomarker for the assessment of the poly-

cystic disease. However TKV is computed in place of TCV since kidney en-

largerment is mainly due to cyst expansion. The results presented in this study

show as kidney with similar volume may have different residual parenchyma

percentage (e. g. right kidney patient 2 versus right kidney patient 3, table 2.6)

and so as TKV is not sufficient for assessing the progression of the disease.

Furthermore, it is interesting to note that in some cases the two biggest cysts

contribute to around half of TCV as shown in table 2.7 for right kidney of pa-

tient 3 and 4 and for left kidney of patient 3.

There are two phases of cystogenesis, an initial one gene-related and character-

ized by the development of cysts and a subsequent one, that is gene-independent

and characterized by cyst enlargement [50]. The higher severity of PKD1 in

comparison with PKD2 is due to number of cysts but not to the rate of cystic

growth. The method that has been presented in this section can be an important

instrument for the assessment of ADPKD progression as it provides quantita-

tive informations about the number of cysts but also their volume and position,

opening the possibility of new insight in the characterization of the ADPKD

patient as for the detection of new possible clinical targets in the disease.
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Chapter 3

Volumetric analysis in

ADPKD patients from CT

Despite the drawbacks related to the use of ionizing radiation, computed tomag-

raphy is wildly used in clinical practice because it allows to acquire images

faster than MRI and because of the widespread presence of CT scans in the

territory. Early studies based on volumetric analysis of polycystic kidneys were

performed on CT images but nowdays only few non manual approaches have

been proposed for the assessment of kidney volume in PKD and all of them are

based on contrast-enhanced CT images. In this chapter will be reviewed the

recent methods that have been proposed in literature for the volumetric analysis

in ADPKD patients from contrast-enhanced CT images and will be presented

novel approaches for the automated assessment of kidney and cyst volume in

ADPKD based on non-contrast-enhanced CT images.
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3.1 State-of-the-art methods

3.1.1 Kidney segmentation in CT

Multiclass Otsu’s thresholding approach

In a recent study [51], a new method for TKV/TCV estimation from CT was

proposed which differs from the manual approach.

Initially, kidneys are manually outlined by an expert radiology or, in case of

the absence of fat, segmented precisely to detect the area of interest. After this

initialization, the following workflow is used for this algorithm:

• generation of binary mask from outlined images;

• application of the binary mask to a filtered version of the original images

for image segmentation

• multiclass Otsu’s thresholding approach [52], to distinguish cystic and

parenchymal regions.

In the described method the authors used multislice CT in combination with

non-ionic contrast agent.

Random forests approach

In this study [53] random forests classifier was trained and tested on 55 contrast

enhanced CT images for kidney volume estimation. The different steps involved

in this procedure are:

• computation of the intensity weighted geodesic distance based on manual

segmentation of mid-slice;

• computation of a scalare feature value defining a box-feature based on

pixel intensities;
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• forest training and testing: different samples are selected 5 times so 44

samples are used for training and the remaining 11 for testing; training

is performed two times, with and without the geodesic distance volume

information.

3.2 Kidney and cyst volume estimation

The CRISP demonstrated that renal and cyst volume can be accurately and

reliably measured in ADPKD using MR imaging techniques [43]. MR acquisition

allows to overcome the limitation of CT such as the radiation exposure and the

administration of contrast medium that can be nephrotoxic in patients with

a decay in renal function [54]. In addition, MR images are able to provide

more soft tissue details when compared with CT and for all these reasons, MRI

is considered the best technique in clinical research. On the other hand, a CT

examination costs generally less, takes less time and have higher resolution than

MRI. Mainly because of the costs of an MRI system, small clinical centers, do

not have MR scanners and, in clinical practice, CT imaging in ADPKD is very

spread.

Despite the need and the continous progress made in the treatment of ADPKD

patients, no automatic methods have been proposed for the estimation of TKV

and TCV from CT images. As part of this Thesis, an automatic method for

renal volume analysis from CT images has been developed and will be presented

in the next sections. Importantly, no contrast medium was used during image

acquisition.

3.2.1 Materials and methods

Eight ADPKD patients were involved in this study. For all patients ADPKD di-

agnostic was based on the Ultrasonographic Unified Criteria [23]. Patient char-

acteristics are summerized in table 3.2. Images were acquired with a Siemens
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Characteristic Value

Number of patients 8

Sex (M/F) 4/4

Age at visit (years)

Mean ± SD

[range]

1797 ± 2171

[368 - 6794]

Total kidney volume (ml)

Mean ± SD[range]

3528 ± 4375

[670 - 13727]

Left kidney volume (ml)

Mean ± SD[range]

1731 ± 2212

[218 - 6933]

Right kidney volume (ml)

Mean ± SD[range]

1797 ± 2171

[368 - 6794]

Table 3.1: Patient Characteristics.

Scope scan at the ”Spedali Civili” of Brescia, Italy. Acquisition protocol is

presented in table 3.1.

Tube voltage 130 KV

Tube current 37 mA

Matrix size 512x512 px

Pixel dimension 0.70 mm

Slice thickness 1.5 mm

Table 3.2: MRI protocol.

The proposed method has been developed for the detection of renal volume

in ADPKD patients from CT images acquired without the use of contrast-

medium (figure 3.1). It is fully-automated and the detection of kidneys contour

is operated simultaneously for right and left kidneys. The workflow includes the

pre-processing step, and the renal contour segmentation.
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Figure 3.1: Original computed tomography image.

Kidney detection

CT images are characterized by low contrast (figure 3.1) which means that

different tissues are represented with a few levels of gray and this is even more

true in case of avoiding contrast agents. Because of that, different steps are

involved for the localization of the kidneys.

Histogram analysis of the whole volume is performed in order to detect the

range of pixel intensity in which the organs are included which is usually the

last peak (figure 3.2, a). This allow to mask out bones and other structures

that are not of interest and to facilitate the following unsupervised clustering

which is based on pixel intensity information (figure 3.2, b). The whole volume

is so clustered in four classes and the two ones with lower mean pixel intensity

are taken in consideration. These classes tipically provide a rough segmentation

of kidneys and cysts in the acquired volume. The distribution of the number

of pixels associated to these classes in each slice of the acquired volume is then

analyzed (figure 3.2, c). By selecting the maximum of this distribution, it can

be identified the image plane with the the biggest kidney area which is generally
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positioned around the middle of the whole renal volume. Once identified the

the image plane the information provided by the clustering is used to detect the

kidneys (figure 3.2, d).

Figure 3.2: Description of the workflow for kidney detection on two different

patients. (a) Histogram analyses of the 3d volume and detection of the pixel

range; (b) Result of the 3d cluster in a single slice; (c) Number of pixel distri-

bution associated to lowest pixel intensity; (d) Detection of the kidneys.

Renal contour segmentation

The information about the position of the kidneys is used for the initialization of

a level set based segmentation. Before performing the segmentation the volume

has been filtered using the non-local means approach. This kind of filter makes

use of the information of all pixels in the image allowing to denoise the region

while preserving its details. Multi-phase level set funtion is used for evolving a

curve in the area of interest. This kind of level set approach comes in handy in

presence of very large kidneys since it avoids to have overlapping areas. This

approach makes the method suitable for the segmentation of kidney of different

size and so of patient at different disease stage. Starting from the mid-slice

this kind of segmentation is operated forward and backward in the remaining

images. In each image, the level set is initialized based on the position of the
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kidneys detected in the previous image.

Figure 3.3: Example of the detection of the renal regions in one patient.

3.2.2 Cyst detection

Beeing available the renal contouring and considering that in CT pixel intensity

of cysts are lower respect to parenchyma, a three class clustering based on fuzzy

c-means approach is used to outline the cystic area (figure 3.4). Similary to

TKV, TCV is computed as the sum of the voxel count and considering the

image resolution.

Figure 3.4: Example of the detection of renal and cystic regions in one pa-

tient.

3.2.3 Results

In this study one radiological reader manually traced the kidneys of each pa-

tient. Kidney volumes from automated and manual tracing were computed
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multiplying the area of the renal contour of each image and the slice thickness.

The agreement between the two methods were evaluated using linear regression

analysis, Bland-Altman plots and dice similarity coefficient. Regression analysis

(figure 3.5, top panel) showed a strong correlation between manual and auto-

mated volume estimation (r2 = 0.99; y = 0.99x-16.9). Bland-Altman analysis

(figure 3.5, bottom panel) showed a low bias ( -23.2 ml; -1.33%) and limits

of agreements of 72.9 ml ( 4.2%). Absolute mean percentage error resulted in

6.2±4.8%. The reliability of this approach in terms of dice coefficient value was

0.91±0.03.

3.2.4 Discussion and conclusion

In this preliminary study it has been presented a novel fully automated method

for ADPKD kidney segmentation on non contrast enhanced CT and showed

how it is promising for facilitating kidney volume assessment. Cyst volume was

excluded from the statistical analysis because in some kidney the parechyma

was completely replaced by the cysts. TKV is recognized as the best biomarker

for the evaluation of the progression of ADPKD disease. It has been proposed

for ADPKD patient classification [42] and used for the evaluation of the pro-

gression of the disease in several clinical trials like [55, 15]. Despite the great

interest of clinicians in the avalability of a method for polycystic kidney seg-

mentation on CT, nowadays only two semi-automated approaches have been

proposed [51, 53]. Both these methods use minimal user interaction and have

been tested on contrast enhanced CT. Our method is no user dependent and

it has been developed on non contrast enhanced CT and so avoiding the use

of contrast medium. Further investigations will be necessary to properly assess

the robustness of our method on a larger dataset.
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Figure 3.5: Linear regression (top panel) and Bland-Altmann (bottom panel)

plots of the sixteen kidneys when compared to kidney volumes estimated from

manual segmentation.
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Chapter 4

Related projects

In this chapter two research projects focused on diffusion imaging in MRI are

described. This innovative imaging technique which is commonly used in cere-

bral imaging could have important implications in different clinical scenarios

including ADPKD and cancer patients.

The idea of investigating water motion can be exploited from different point

of views and at different levels. Diffusion weighted imaging (DWI), diffusion

tensor imaging (DTI) and intravoxel incoherent motion (IVIM) are three dif-

ferent approaches for providing different types of information for a functional

characterization of a tissue trough the analysis of molecular diffusion of water

and microcirculation of blood in the capillary network. Therefore in these two

projects, that are strongly linked with the main research project developed in

this Thesis, we investigate the potentiality of DWI, DTI and IVIM for providing

functional information allowing to improve diagnosis and prognosis of ADPKD

and cancer patients .
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4.1 Diffusion tensor imaging of the kidney

This preliminary study was conducted to assess the feasibility of diffusion tensor

imaging (DTI) for the characterization of cortex and medulla in an healthy

population, as a first attempt to understand if DTI could be a useful for the

evaluation of kidney function.

4.1.1 Diffusion tensor imaging

Diffusion-weighted imaging (DWI) is a non-invasive method for the analysis of

the Brownian motion of water molecules in the extracellular space. Using DWI

sequences, the apparent diffusion coefficient (ADC) can be measured. This

quantitative parameter reflects cell density and microcirculation of the tissue

allowing the evaluation of various abnormalities [56, 57, 58]. ADC is derived

from the equation

ADC = −ln(Si/S0)/b

where b is the b value, Si is the signal intensity of the image for a specific b

value and diffusion gradient direction and S0 is the signal intensity of the image

without diffusion weighting.

ADC analysis is based on the assumption of free-molecular diffusion resulting

in a too semplicistic model especially in the presence of organized structures in

the tissue where the molecolar diffusion follows preferential directions. In the

kidney, tubules, collecting ducts and vessels radially oriented towards the pelvis

are responsible for diffusion anisotropy [59, 60].

Diffusion tensor imaging (DTI) is a particular MRI technique that allows the

measurement of the degree of anisotropy and structural orientation in the tissue.

The three-dimensional mechanisms of diffusion are described by the diffusion

tensor. To quantify the degree of anisotropy, the diffusion model can be mod-

eled by an ellipsoid represented by a tensor [61]. Eigenvalues of the diffusion

tensor represent the principal diffusivities and are associated with three mutu-
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ally perpendicular principal directions (eigenvectors). The tensor is represented

by a 3 x 3 symmetric matrix:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


Being Dxy=Dyx, Dxz=Dzx and Dyz=Dzy, the tensor can be constructed using

six diffusion-weighted images acquired along different directions. The diffusion

tensor is calculated by solving the Stejskal-Tanner equation:

Sk = S0exp(−bgTkDgk)

where Sk is the signal intensity when a gradient pulse is applied in the direction

gk, S0 is the signal intensity measured with no diffusion-sensitizing gradient

and b is a factor describing the pulse sequence, gradient strength, and physi-

cal constants [62, 63]. The equation represents the signal attenuation due to

the application of a pulse gradient. In order to calculate the 6 independent

components in the 3x3 symmetric matrix D, at least 7 images are needed: 6

diffusion-weighted images from 6 gradient directions (providing 6 values for Sk

) plus one baseline image (giving S0). The previous equation can be expanded

as follow:

−
ln(Sk

S0
)

b
= (G2

xiDxx+G2
yiDyy+G2

ziDzz+2GxiGyiDxy+2GxiGziDxz2GyiGziDyz)

and solved as:

Y = Hd

where d is the column vector of D

d = [Dxx, Dyy, Dzz, Dxy, Dxz, Dyz]T
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H is a kx6 being k the number of gradient directions

H =


G2

xx G2
y1 G2

z1 2Gx1Gyi 2GxiGz1 2Gy1Gz1

G2
x2 G2

y2 G2
z2 2Gx2Gy2 2Gx2Gz2 2Gy2Gz2

...
...

...
...

...
...

G2
x6 G2

y6 G2
z6 2Gx6Gy6 2Gx6Gz6 2Gy6Gz6


and

Y =

(
ln(S0

S1
)

b
,
ln(S0

S2
)

b
, . . . ,

ln(S0

S6
)

b

)

Then, diffusion tensor can be obtained considering:

(H−1H)d = d = H−1Y

Several scalar measurements can be obtained computing eigenvectors (e1,e2,e3)

and eigenvalues (λ1,λ2, λ3) of the tensor from the diffusion tensor.

The mean diffusivity (MD) is a rotationally invariant measure of the magnitude

of diffusion.

MD =
λ1 + λ2 + λ3

3
=
Dxx +Dyy +Dzz

3

The fractional anisotropy (FA) is a normalized measure of the fraction of

the tensor’s magnitude due to anisotropic diffusion

FA =

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

2(λ2
1 + λ2

2 + λ2
3)

The radial diffusivity (RD) is a measure of the diffusivity along the directions

that are orthogonal to the principal one.

RD = (λ2 + λ3)/2

The volume ratio (VR) measures the ratio between the volume of the ellip-

soid and the volume of a sphere of radius MD

V R = 1− λ1λ2λ3

MD3
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4.1.2 Image analysis

Ten subjects with age 33±12 and normal renal function estimated by GFR

(mean 88 mL/min) with no history of renal disease, hypertension, diabetes or

other vascular diseases underwent MRI. MRI images were obtained with a 1.5-

T whole-body system (Signa HDxt; General Electric, Milwaukee, USA) and

a standard phased-array body coil. The sequence was a spin-echo single-shot

echo-planar imaging (SSEPI) acquired in the axial plane with breath hold. The

MRI protocol is shown in table 4.1.

Repetition Time 3000 ms

Echo Time 82 ms

Field of view 40 cm

Slice thickness 6 mm

Gap 0.5 mm

Matrix size 128x128 px

Number of slices 14

b values 0 and 500 s/mm2

Number of gradients 6

Table 4.1: MRI protocol

Regions of interest were manually defined in cortex and medulla of the kid-

neys of each patient and MD, FA, VR computed using the procedure previously

described. A p-value <0.05 was considered statistically significant.

4.1.3 Results

In tables 4.2 and 4.3 the mean values obtained for the computed DTI param-

eters, for cortex and medulla respectively, are presented.
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Parameter Right kidney Left kidney p-value

MD (x10−3mm2/s) 2.70±0.36 2.68±0.31 0.77

FA 0.34±0.10 0.4±0.16 0.13

VR 0.15±0.1 0.21±0.16 0.14

Table 4.2: DTI parameters from renal cortex

Parameter Right kidney Left kidney p-value

MD (x10−3mm2/s) 2.47±0.31 2.45±0.21 0.87

FA 0.36±0.09 0.47±0.14 0.01

VR 0.16±0.07 0.29±0.17 0.02

Table 4.3: DTI parameters from renal medulla

4.1.4 Discussion

Mean values of the DTI parameters are in line with those published in recent

studies [60]. The results show also a significative difference in FA (p=0.01) and

VR (p=0.02) in renal medulla, between left and right kidney. This difference

may be due to a functional or structural difference in the kidneys. Similar

difference was found in [64]. A larger study population is needed for confirming

and better investigate this matter.

4.2 Diffusion-weighted MRI in the assessment

of ADPKD disease

In this preliminary study we investigated the feasibility of functional parameters

derived from DWI analysis for providing therapeutic indication for patients

in the first stages of the disease or surgical indications and check for those

patients with end-stage chronical disease that are candidates for nephrectomy.

This is part of an ongoing collaboration between the University of Bologna
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and the Ospedale Sant’Orsola of Bologna (Italy) which involves bioingineers,

nefrologists, radiologists and pathologists.

4.2.1 Case of study

The first case of study was an ADPKD patient candidate for nephrectomy. For

this 42 years old female patient, the removal of the organ was required because

she was suffering a great deal of pain and the enlargement of the kidneys caused

an important burden in the abdomen.

4.2.2 In-vivo and ex-vivo analysis

Before surgery, morphological and functional MR images of the abdomen were

acquired.

Figure 4.1: Two images in coronal (left panel) and axial (right panel) views of

the kidneys.

T2-weighted and diffusion-weighted images (figure 4.1) were acquired.

After surgery, the volume of the explanted polycystic kidney (figure 4.2) was

estimated through Archimede’s principle and resulted in about 5000 ml. Ul-

trasound analysis was performed in order to investigate the possibility of the
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Figure 4.2: A picture of the explanted kidney.

Figure 4.3: Anatomical specimens of the explanted kidney before formaline

filling.

presence of residual parenchyma. Renal cyst fluid was aspired by the pathol-

ogist from those cysts positioned in the exterior part of the kidney and that

could be easily identified in the MR images. The kidney was then dissectioned

and several specimens extracted (figure 4.3).
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Figure 4.4: From left to right: S0, MD map, FA map

4.2.3 Results

Kidney volume was estimated via manual contour and using the semi-automatic

method described in the previous chapter and resulted in 5120 ml and 4962 ml,

variating from the empirical estimation of +2.5% and -0.76% respectively.

Mean diffusivity, fractional anisotropy and radial diffusivity were measured from

DWI data, highlighting the presence of normal parenchyma (figure 4.4). No nor-

mal parenchyma was detected using ultrasounds. Histological analysis showed

the presence of extended fibrosis but also 30% of normal tissue in the renal

specimens examined.

4.2.4 Discussion

Volume analysis allowed an in vivo validation of the semi-automated approach

for TKV computation. Surprisingly, histological examination confirmed the

presence of normal parenchimal tissue, which was not expected since morpho-

logical images showed that renal parenchyma was completely replaced by cysts.

Ultrasound appears to be not suitable for detecting any kind of parenchyma in

kidney with so many cysts. This study on a single patient represents a proof of

concept of the potential utility of using informations extracted from diffusion

tensor imaging for evaluating the presence of normal parenchyma. Actually,

histological analysis is the only technique available for this kind of analysis and
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the use of diffusion images may be aof value for providing additional functional

information applying a non invasive approach.

4.3 IVIM analysis of breast lesions

The expertise gained in the analysis of functional images was extended to the

study of breast lesions from intravoxel incoherent motion (IVIM) and dynamic

contrast-enhanced (DCE) MRI. In this study, perfusion and diffusion MRI met-

rics have been computed and analysed for the evaluation of breast lesions.

4.3.1 Introduction

Cancer is characterized by a high biological heterogeneity [65, 66, 67]. Such

heterogeneity has been confirmed in particular for breast cancer [68]. In this

contex, the avalability of biomarkers for quantitative analysis and differentiation

of lesions has become critical.

Conventional mammography is the most common modality for screening breast

cancer but has shown low sensitivity in particular in cases of dense breast

parenchyma [69]. In comparison with mammography, contrast-enhanced MRI

allows to study tissue perfusion by a quantitative analysis of pharmacokinetic

parameters showing high sensitivity but low specificity [70]. Recently, a lot of

interest has been put in DWI analysis for the differentiation between benign and

malign lesions. Furthermore, DWI acquisitions do not require the use of con-

trast medium and it has been seen that DWI parameters such as the apparent

diffusion coefficient (ADC) is able to differentiate breast lesions [71]. However,

the sensitivity and specificity among different studies can vary a lot [71, 72, 73]

also because of the choise of different maximum b-values that can lead to an

overestimation of ADC [74]. IVIM technique makes use of multi b-value DWI

and is able to provide separated information about perfusion and diffusion [75].

Nowadays only few studies have explored the capability of this technique in the
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differetiation of breast lesions but the preliminary results are promising. Aim of

this study was to evaluate the diagnostic potential of IVIM and DCE for breast

lesions.

4.3.2 Image analysis

ADC maps were obtained assuming the monoexponential model for diffusion-

weighted images at all b-values:

S(b) = S0exp(−bADC)

where b is the b-value and S0 and S(b) denote the signal intensity of diffusion-

weighted images acquired with b-value of zero and b respectively.

To compute the IVIM parameters was used the biexponetial model as de-

scribed by Bihan [75] :

S(b) = S0[(1− f)exp(−bD) + fexp(−b(D +D∗)]

where f is the perfusion fraction representing the microvasculare volume frac-

tion, D is the true coefficient representing the pure water molecular diffusion and

D∗ is the pseudodiffusion coefficient representing which reflects the perfusion-

related diffusion (incoherent microcirculation). Several calculation methods

have been proposed for the computation of these parameters and among them

there are [76, 77, 78]. In this study, considering the relatively few number of

b-values, it was used the segmented approach [76] which is also considered more

robust than the simultaneous full fitting [79, 80].

The segmented approach is based on the assumption that being D∗ greater then

D its effects on the signal decay at large b is negligible. D is determined from

data within on interval of high b-values (b >200 s/mm2) using the least squares

curve fit:

Shigh(b) = Shigh0(1− f)exp(−bD)
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where Shigh0 = S0(1−f). Then f is determined from S0 as f = (S0−Shigh0)/S0.

Finally D∗ is obtained from the monoexponential fit using the precalculated D

and f . The goodness of the fit was evaluated using the R2 value:

R2 = 1− SSE/TSS

where SSE is the sum of squared erros between the data and the fitting curve

and TSS is the sum of squared differences between the data and the mean of all

data values. Voxels with R2 value above 0.8 were excluded from the analysis.

For each detected lesion, and for each parametrical map, as in was computed:

Quantitative analysis of ADC, f , D, D∗ included: mean and standard de-

viation, median and quartiles, total numer of voxel included in the analysis,

total numer of voxel excluded from the analysis, skewness, kurtosis, contrast,

correlation, energy, homogeneity.

DCE analysis was performed constructing a time intensity curve (TIC) for

each detected lesion. Quantitative analysis included: wash-in slope, wash-out

slope, absolute percentage enhancement, time to maximum enhancement, con-

trast, correlation, energy, homogeneity.

In figure 4.5 is illustrated the interface developed for IVIM and DCE analysis

from MRI.
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Figure 4.5: Interface for IVIM and DCE analysis from MRI

79



Bibliography

[1] Zhiguo Mao, Jiehan Chong, and Albert CM Ong. Autosomal domi-

nant polycystic kidney disease: recent advances in clinical management.

F1000Research, 5, 2016.

[2] Peter C Harris and Vicente E Torres. Polycystic kidney disease. Annual

review of medicine, 60:321, 2009.

[3] Amirali Masoumi, Berenice Reed-Gitomer, Catherine Kelleher, Mir Reza

Bekheirnia, and Robert W Schrier. Developments in the management of

autosomal dominant polycystic kidney disease. Therapeutics and clinical

risk management, 4(2):393, 2008.

[4] Albert CM Ong, Olivier Devuyst, Bertrand Knebelmann, Gerd Walz, and

ERA-EDTA Working Group for Inherited. Autosomal dominant polycystic

kidney disease: the changing face of clinical management. The Lancet,

385(9981):1993–2002, 2015.
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