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Abstract 

 

 

 

Global warming is becoming a major threat for human and wildlife on Earth and scientists 

agree in considering anthropogenic greenhouse gasses emission as the main factor contributing 

to atmosphere and sea temperature increase. Arundo donax L. is the most promising species for 

second generation biofuel production in Mediterranean areas but up to now little was known 

about its genetics. In this study, we first explored the whole transcriptome of young shoot of 

Arundo donax under simulated drought stress through NGS technology. This allowed us to 

understand the general molecular mechanisms of early plant responses to osmotic stimulus. 

Through comparative analyses with major Poaceae species, we identified a set of 53 orthologs 

that can be considered as a core of evolutionary conserved genes important to mediate water 

stress responses in the family. Leveraging on the availability of this transcriptome, we developed 

a set of of reliable reference genes with high stability across different stress and/or tissues, to 

enable further functional studies in this species. We selected a candidate, named AdDWD1, that 

have the potential to play an important role in stress response by targeted protein degradation. 

Our results indicate that AdDWD1 is upregulated under osmotic and salt response in A. donax 

and its overexpression in Arabidopsis brought to a significant decrease in germination under salt 

and a growth retardation in ABA-containing media. Overexpression of AdDWD1 caused 

downregulation of DREB2A and SOS3, while it did not affect other stress-related genes, 

pinpointing a possible pathway-specific regulatory role of the gene.  Taken together, these results 

suggest a strong relation of AdDWD1 with salt and osmotic stress response and an important role 

in the signalling pathway during early stress stages. 

 

 

 

 

Keywords: Arundo donax, abiotic stress, salt, osmotic, RNa-seq, qRT-PCR, overexpression, 

reference gene, Arabidopsis, WD40, DWD, AdDWD1, fossil fuel, biomass, unigene, ABA, 

RefFinder, geNorm, NormFinder, cloning, expression pattern, transcriptome, Poaceae.  
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Chapter 1.  

Overview and project background. 

 

 

 

1.1 Introduction 

Global warming is becoming a major treat for human and in general for every kind of life on 

Earth. Scientists agree in consider anthropogenic greenhouse gasses (GHG) emission as the main 

contribution to the atmosphere and sea temperature raising (Peck et al., 2016). Several political 

actions were adopted worldwide to reduce the impact of human activities on the environment and 

reduction of the equivalent CO2 emission is one of the key parameters to measure the progresses on 

this issue. Recently, the conference held in Paris by United Nations Framework Convention on 

Climate Change (UNFCCC) ended up with an international agreement in which every country 

proposed the intention to keep the global average temperature below 2 °C above pre-industrial level 

and possibly below 1.5 °C. Even though the ―Paris agreement‖ is the most important document on 

climate change until now, several countries have made effort to pursue limitation of GHG emission 

from the early 2000. Especially, European Union put much effort in climate policy with the so 

called 20-20-20 programme that aims to reduce of 20% the overall European CO2 emission and 

increase of 20% both renewable energy and efficiency by 2020. This goals was recently further 

moved up to 40% of emission cut and 27% of renewable energy consumption and efficiency before 

2030. 

One branch of the CO2 reduction policy focus on road transportation and especially aims to 

mix the fossil fuels with those coming from processing plant biomasses (e.g. bioethanol). At the 

beginning, thanks to advantageous incentives, the selected crops were chosen to give a high yield 

and easy to digest raw products (such as oil rich seeds) so that species like corn, sugar cane and 

soybean were used extensively for biofuel conversion (so called first generation biofuels), 

competing for good quality lands against food-crops (Naik et al., 2010). It was easily argued that 

the climate benefits (if any) could not justify these losses, however this step allowed us to further 

develop the technologies for crop conversion into fuels. Second generation biofuel refers largely to 

lignocellulosic materials such as food crop straw or dedicated non-food crops (Figure 1.1). Because 
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food crops have mainly been selected to produce more and bigger seeds/fruits, we can expect that 

straw amount would be relatively low and its usage could be only a side input of the total biomass 

(Doebley et al., 2006). Moreover, it has been demonstrated that straw removal worsens soil quality 

by depletion of organic carbon that will require the addition of fertilizer in a long-term plantation 

(Lal, 2009). Dedicated non-food crops are the most promising way for biofuel conversion even if 

some drawback still need to be solved. There are two main problems: first the biomass yield needs 

to be improved for an easier digestion without loss of quantity and second, in some cases they are 

still competitor for land with food-crop. In the last decades in Europe and US, dozens of species 

were evaluated for their yield, chemical composition and environmental requirement, finally 

selecting four species with high potential: miscanthus (Miscanthus spp.), reed canarygrass (Phalaris 

arundinacea), giant reed (Arundo donax) and switchgrass (Panicum virgatum) (Lewandowski et al., 

2003). The selection of these plants in Europe were made also based on different climates that make 

more suitable one species respect to another: for example reed canary grass can be used in northern 

countries thanks to its C3 photosynthetic pathway that improve biomass quantity and quality in cold 

climate; miscanthus and switchgrass are adapt to central Europe because they can reach high 

biomass yield with high nutrient and water usage efficiency (C4 pathway) and high persistence; 

giant reed is suitable for southern region where it is already present and perform well also under 

drought stress (Lewandowski et al., 2003). 

 

Figure 1.1. Biomass as renewable feed stock for biorefineries. From: Naik, S. N., Goud, V. V., Rout, P. K. & Dalai, A. K. 

Production of first and second generation biofuels: A comprehensive review. Renew. Sustain. Energy Rev. 14, 578–597 

(2010). 
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1.2 Arundo donax L. as an important crop for biofuel production 

In recent years, much effort was made to find the best biofuel crop. The characteristics of 

the ideal species are: 

- High biomass production; 

- High biomass quality (e.g. high lignin and low water and hash content in dry matter); 

- Low input requirements (especially fertilization and water);  

- Capability to cope with stress conditions and resistance to natural pests; 

- Low cropping cost (e.g. minimum tillage) and easy to stock; 

- Genetic variability for ecotype selection and improvement. 

As expected these requirements are extremely difficult to find in one species so that the selected 

one will be a trade-off between benefits and drawbacks. Interestingly, A. donax meets most of the 

feature to be a good candidate as biofuel crop. First of all, it as a high production of biomass that 

can reach 40 to 50 t ha
-1

 yr
-1

 in favourable conditions. This is surprising because A. donax has C3 

photosynthetic pathway that is normally considered less productive in terms of biomass yield 

compared to C4 species that can fix atmosphere carbon dioxide more efficiently, particularly under 

high temperature and light conditions (Byrt et al., 2011). In A. donax, experimental evidences 

showed that the photosynthetic pathways is not saturated by the light and in this way the growth can 

be continuous, having a photosynthetic rate of 37 µmol m
−2

 s
−1

 (Rossa et al., 1998). Thanks to this 

adaptation, giant reed can reach 8-10 meter height and its growing rate can be very high during 

specific climate conditions (up to 5 cm d
-1

) (Perdue, 1958). The stems continuously grow for the 

whole vegetative season from a fibrous rhizome that lays close to the soil surface and from which 

roots arise and deeply penetrate the soil. The hollow culms (1-5 cm of diameter) are often branched 

from the second year and an elongated 30–70 cm long, 5-7 cm broad leaf insist on each node. The 

biomass consists in stems and leaves that are usually collected during fall or winter and its quality 

(water content, N, K, S and hash) greatly depends on the field management (e.g. abundant 

fertilization implies higher final nitrogen content) although, in general, A. donax shows higher water 

content compare to other species at harvesting time (Lewandowski et al., 2003) making the 

conversion process less efficient. 

Arundo donax is highly resistant to drought, salt (Sánchez et al., 2015) and heavy metals 

(chromium, cadmium, arsenic, nickel) in soil (Kausar et al., 2012; Mirza et al., 2010; Papazoglou et 

al., 2005; Sagehashi et al., 2011) but it is sensitive to cold, especially freezing event in late spring 

during sprout emergence. Moreover, it can grow in every kind of soil, can be irrigated with 

wastewater or salty water (Sánchez et al., 2015) and only few pests are reported in literature: the 
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galling wasp (Tetramesa romana), the shoot-fly Cryptonevra sp., and an aphid, Melanaphis donacis 

(Minogue and Wright, 2016). These features make it a perfect candidate to be cultivated on 

marginal or contaminated lands, where food crop cannot be planted. Abiotic and biotic resistance is 

one of the key factors for crop selection because it allows to produce biomass without any or little 

maintenance costs (irrigation, pesticides) and with obvious environmental benefits.  

The main hindrance to its extensive use is probably the lack of sexual reproduction. A. donax 

produces no viable seeds due to the failure of megaspore division and therefore propagation via 

vegetative reproduction (through fragmented stems or rhizomes) is required for field planting, 

making the first cropping year more expensive than other species (Mariani et al., 2010). More 

important, the incapability of producing viable seeds of the plant is a limiting factor on genetic 

selection and improvement of the species. The absence on sexual reproduction is also demonstrated 

by several studies that show a low if absent genetic intraspecific variability by genetic 

fingerprinting (see paragraph 1.4). 

 

1.3 Problems related to extensive A. donax cultivation. 

 

As the attention for giant reed increases, some issues arise for its use in open field 

cultivation. Two are the main concerns related to this plant: a) the elevated invasiveness and b) 

possible air pollution caused by extensive field. The first point is related to the ability of A. donax to 

spread quickly in suitable conditions by vegetative propagation that can occur by rhizome or stem 

fragmentation. Even though the plant did not originate from Europe, it is considered a naturalized 

species of the Mediterranean basin because its presence is testified since antiquity. In north America 

instead, it was intentionally introduced. A. donax reached California from the Mediterranean in the 

1820's,  in the Los Angeles area, where it was introduced as an erosion-control agent in drainage 

canals or thatching for roofs of sheds, barns, and other buildings (Bell, 1997). The most vulnerable 

ecosystem has been the riparian habitat along rivers where giant reed could spread easily during 

flood events and strongly competes with native plant species (e.g. willow, cottonwood), 

consequently reducing food and nesting sites for animals (Bell, 1997). Two different studies on the 

genetic variability of giant reed in US showed moderate (Khudamrongsawat et al., 2004) or low 

genetic diversity (Ahmad et al., 2008) in the collected samples using isozyme + RAPD and SRAP + 

TE markers respectively. These results are in accordance with those of related invasive clonal 

species such as Alternanthera philoxeroides (Li and Ye, 2006), Eichhornia crassipes (Li et al., 

2006) and Fallopia japonica (Hollingsworth and Bailey, 2000). More recently though, 
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microsatellites brought the discovery of multiple introduction in north America of different clones 

of A. donax and suggested Spain as the most probable location from which the predominant clones 

was imported (Tarin et al., 2013). For managing its invasiveness, many methods were proposed, 

from classical herbicide to mechanical removal of rhizome but they imply high costs especially in 

heavily affected areas therefore making biological control the most suitable long-term control agent. 

On the other hand, an assessment of the risk of cultivating A. donax in open field was made in 

Australia on the basis of SA Weed Risk Management System (SAWRMS) resulting, as expected, in 

an elevated danger along riparian habitat and a very low risk in terrestrial fields (Virtue et al., 

2010). This can lead to the conclusion that giant reed can be safely cultivated in specific areas even 

where it is not native. 

Isoprene (2-methyl-1,3-butadiene) is a non-methane volatile organic compound (NMVOC) 

emitted by anthropogenic and natural sources and have an impact on the oxidative photochemistry 

of the tropospheric system (Monson, 2002). Legislative actions have reduced human NMVOC 

emission but isoprene is still increasing in some areas due to urban and suburban forests where it 

has consequences at local and a regional level (Monson et al., 2007). Isoprene oxidation in the low 

atmosphere can produce derived  compounds such as ozone (O3), organic nitrates and organic acids 

which are noxious to human health (Fuentes et al., 2000). Many plants can emit isoprene from 

leaves and this appears to have a protective role from abiotic stress, especially high temperature 

(Sharkey et al., 2008) and from reactive oxygen species (ROS). Not all the plants, though, emit 

isoprene but its distribution along taxonomy suggests independent origins with several episodes of 

loss and gain of function (Harley et al., 2004). Evidence in Arundineae tribe show similar results, 

with Arundo donax and Phramites australis being strong emitters, while Molinia caerulea and 

Hakonechloa macra are respectively low and no emitters (Ahrar et al., 2015). Worth to notice, a 

case study on the effect of a giant reed plantation on quality air demonstrated that the cultivation 

site can affect regional troposphere therefore suggesting to considering also air impact (together 

with other common factors like energy density, growth rate, fertilizer and water requirements and 

ecological impacts) for the field selection (Porter et al., 2012). 

 

1.4 Arundinoideae classification and phylogenies. 

 

Arundo donax L. belongs to the Poaceae family, one of the largest plant family worldwide 

comprising some of the most important food crop like maize, wheat, rice, barley, and millet but also 

bamboo used as building material and several species cultivated for staple forage. This family is 
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mostly dominant in harsh habitat like savannah and prairie, however Poaceaes are present almost 

everywhere and they are adapted to extraordinary different environmental conditions (from rain 

forest to dry desert to cold climate) making them one of the most evolutionary successful plant 

family. Giant reed belongs to Arundinoideae subfamily which counts about 40 species and to 

Arundineae tribe in which Arundo is present together with Amphipogon and Monachather genus. It 

is interesting to notice that, differently from most of the PACMAD (Panicoideae, Arundinoideae, 

Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae) clade, this subfamily counts only 

C3 photosynthesis species. The growing interest on this species enhanced the effort to resolve its 

origin in order to obtain more information also about possible ecotypes that meet the criteria of a 

biofuel crop. Although Arundo donax has been extensively cultivated from ancient time by human 

in Asia, southern Europe, north Africa and middle East, its origin is still not clear. The first 

extensive report of this plant was done by Perdue (1958) that clearly explained many of its aspects 

such as biology, morphology, ecology, distribution and usage. Also, the taxonomy review in 

Perdue‘s paper insert giant reed in Festucae tribe with other 5 species, named A. pliniana Turra 

(now plinii, native of Mediterranean countries), A. formosana Hack. (native of Formosa island) and 

A. conspicua Forst., A. fulvida J. Bueh. and A. richardi Endl. which are native of New Zealand. 

After Arundo taxa was classified in a Mediterranean flower encyclopaedia (Polunin and Huxley; 

1987), Danin begun to deeply study the European species describing also a new one, named A. 

hellenica (Danin et al., 2002). Again, Danin (Danin, 2004), aware of the confusion in the Arundo 

genus tried to give a first clear classification in the Mediterranean region based on phenotypic 

observation finally dividing A. plinii in 3 species: Arundo plinii s. str. Turra, Arundo mediterranea 

Danin, Arundo collina Tenore (before called A. hellenica). As explained in his paper, more research 

and a wider collection of plants was still needed to resolve the Arundo genus phylogeny. In the 

following decade, due to the interest in giant reed several studies were accomplished to definitely 

resolve the taxa. Molecular analysis of intra- and interspecific variation in Arundo genus from 

Mediterranean region with AFLP (Amplified Fragment Length Polymorphism) and ISSR (Inter-

Simple Sequence Repeats) supported the presence of a monophyletic origin of giant reed without 

hybridization event with other species (A. plinii, A. formosana, A. micrantha) and a marked 

difference with Asian species (Mariani et al., 2010). The same paper, elucidate clearly seed 

formation in three Arundo species demonstrating that in giant reed, unlike the other two fertile 

species, the megaspore development produces a proliferation of undifferentiated cells eventually 

ending in ovule collapse. Other similar studies were conducted on giant reed in US and Australia 

with different findings: a low variability in US (Ahmad et al., 2008; Khudamrongsawat et al., 2004) 

and a higher one in Australia probably due to multiple introductions or the use of different 
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molecular markers (Inter Simple Sequence Repeats, ISSR) (Haddadchi et al., 2013). In 2012, two 

studies set up a new and definitive (until now) Arundo nomenclature by reconsidering the name A. 

micrantha Lam. in substitution of A. mauritanica Desf. and A. mediterranea Danin (Hardion et al., 

2012b) and systematics through morphology and AFLP (Amplified Fragment Length 

Polymorphism) markers that revealed a division of A. plinii s.l. in A. plinii s. str. (locus classicus in 

Bologna, Italy), A. donaciformis (present in south France and Liguria, Italy) and A. micrantha 

(Hardion et al., 2012a). Recently, the origin of giant reed was extensively studied by Hardion 

(Hardion et al., 2014) on a wide-range herbarium specimens collection in order to shed light on the 

evolutionary history of the plant. The results obtained by morphometric analysis and 5 plastid DNA 

intergenic spacers (trnT-trnL, trnCF-rpoB, psaA-ORF170, rbcL-psaI, trnS(GCU)-psbD) confirm a 

genetic uniformity of A. donax in Europe and move the origin to Middle East countries from where 

it was imported to the Mediterranean basin in antiquity (Figure 1.2). 

 

 

Figure 1.2. A. donax origin. (A) Geographical distribution of plastid DNA haplotypes and morphotypes. White circles, 

A. donax morphotype T1; grey circles, A. donax morphotype T2; black circles, A. formosana morphotype; *, seed 

occurrence. Coloured rings correspond to plastid DNA haplotypes (Fig. 1). (B) UPGMA tree based on morphological 

data. (C) Ecological niche modelling of A. donax calibrated on 1221 Mediterranean occurrences (black dots) and 

projected on sub-tropical Eurasia using MaxEnt. From: Origin of the invasive Arundo donax (Poaceae): a trans-Asian 

expedition in herbaria. Ann Bot. 2014;114(3):455-462. doi:10.1093/aob/mcu143. 

 

1.5 Next Generation Sequencing for transcriptome analysis. 

Thanks to the advent of new generation sequencing (NGS), it is now possible to obtain huge 

quantities of data faster and with much lower cost compare to the classic Sanger sequencing. These 

new technologies are also highly adaptable to different research studies, from whole genome or 

transcriptome sequencing to detection of microbial diversity in a given matter. It is also noteworthy 
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that some NGS setup can be applied to every biological form without any previous knowledge (da 

Fonseca et al., 2016). This is of an extraordinary importance because it allowed to exponentially 

increase the availability of genomic data in all the disciplines of biological field. Before the advent 

of NGS sequencing, efforts brought to publish the first genome of the model plant species 

Arabidopsis thaliana in 2000 (―The Arabidopsis Genome Initiative‖). Later on, other economic 

important species like rice (2002), papaya (2008) and maize (2009) were sequenced, became a their 

own a model for related plants (Unamba et al., 2015). Even though it was important to have some 

model species, the biological features of all the others (some of which extremely important for food 

or energy production) were far to be discovered and this gap is now being filled thanks to these 

high-throughput technologies. Nevertheless, genome investigation by NGS has still some 

shortcomings that impose limits to its usage such as higher error rate (~0.1–15%) and shorter read 

length (35–700 bp), which make more difficult downstream steps such as data evaluation and 

analysis (Goodwin et al., 2016). Moreover, genomic sequence of non-model species is hindered by 

other factors like genome duplication, heterozygosity, ploidy level and repetitive sequence 

composition  that can only be overcome by the use of multiple approaches (Unamba et al., 2015).  

Gene identification and expression analysis have always been one of the key feature of 

molecular and evolutionary biology. To assess these tasks, the most widely used techniques were 

Northern blotting in which specific bands of RNA are hybridized with 
32

P-labeled DNA to be 

subsequently detected on a photographic film (Alwine et al., 1977) and quantitative real-time PCR 

(qRT-PCR) which monitors the amplification of a specific target sequence with fluorescent 

technology (Valasek and Repa, 2005). Recently, qRT-PCR has become an invaluable tool for many 

scientist in gene expression analysis thanks to its high accuracy and simplicity. Its major drawback 

is the necessity of gene sequence information in order to design the PCR primers. In this context, 

RNA sequencing (RNA-seq) through NGS technologies brought a rapid generation of large 

expression datasets for gene discovery and expression analysis in non-model species (Marguerat 

and Bähler, 2010). Unlike microarray technique that requires a reference genome, RNA-seq can 

detect the whole transcriptome in a precise moment and/or tissue obtaining a de novo assembly. In 

recent year, also crops for energy production received great attention and transcriptome data from 

many species are now available, for example Sorghum bicolor (Dugas et al., 2011),Camelina sativa 

(Kagale et al., 2016), , sugarcane (Cardoso-Silva et al., 2014), miscanthus (Swaminathan et al., 

2012), reed canary grass (Baillie et al., 2017). In 2014, the first whole transcriptome of four tissues 

(leaf, culm, bud and root) of A. donax was released giving a boost to the knowledge of this plant 

and possibly to its improvement for biofuel production (Sablok et al., 2014). Thanks to this effort, it 

was possible to identify several genes related to lignin, cellulose, starch, lipid metabolism but also 
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others related to abiotic stresses that are interesting targets for further characterization. The amount 

of data retrieved from this and other studies will be essential for new gene discoveries opening the 

way to thousands of possibilities for breeders and genetic engineers to improve plant species. 

This four-year work aimed to further improve our knowledge about Arundo donax species, 

especially the aspects related to abiotic stress response. The mechanisms behind the capability of 

giant reed to cope with long drought period were the specific objectives of this thesis. We have first 

carried out experiments that dig into the molecular mechanisms undergoing the response to osmotic 

stress through the analysis of the whole transcriptome and then we have functionally explored one 

specific gene that has never been characterized even in other model species such as Arabidopsis or 

rice. 
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2.1 Introduction 

 

Among the different sources of renewable energy, biomass is interesting because it has a 

nearly neutral carbon balance and the ethanol produced by its fermentation can be blended with 

petrol-derived fuels giving an important contribution in reducing transport-related CO2 emissions 

(Acres, 2007). So-called second generation bioethanol (i.e., the one not produced from edible parts 

of crops) can be obtained from food crop straw, but the yields of such biomass source are expected 
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to be low, as food crops were intentionally selected to maximize photosynthate allocation to edible 

parts (Doebley, Gaut, & Smith, 2006). In alternative, plant species specifically dedicated to energy 

production (called bioenergy crops) are normally better biomass producers than food crops, 

resulting in higher ethanol yields per unit of cultivated area. Arundo donax has been identified 

among bioenergy crops as the most promising species for the Mediterranean area (Lewandowski et 

al. 2003). A. donax, commonly called giant reed, is a perennial C3, polyploid, bamboo-like grass of 

the Poaceae family. It favors well-drained soils with abundant moisture, where it can form dense 

stands up to 6–10 m high with yields of up to 40 tons per hectare each year (comparable, or even 

exceeding, those of some C4 species) (Byrt et al, 2011). The origins of the giant reed are still 

debated, but the latest evidences from plastid DNA sequencing and morphometric parameters data 

collected from 127 herbarium specimens support a Middle-East origin of A. donax (Hardion et al, 

2014). Despite the production of panicle-like flowers, no viable seeds from Mediterranean ecotypes 

have been reported so far (Balogh et al, 2012). Natural propagation exclusively occurs vegetatively 

by rooting of rhizome and stem fragments originating as a consequence of flooding, followed by a 

slow colonization through rhizome expansion (Di Tomaso et al, 2003). Consistently, genetic 

diversity in A. donax has been reported to be low, but, possibly due to somatic mutation, detectable 

(Haddadchi et al, 2013). Possibly because of its high ploidy, the low intraspecific diversity of A. 

donax does not seem to be associated to fitness tradeoffs, as indicated by its high resistance to biotic 

and abiotic stresses (Mariani et al, 2010). If on one hand this resistance causes the high invasiveness 

of this plant, on the other hand it makes A. donax an excellent bioenergy crop, which can grow with 

very low management input (e.g., pesticides, fertilization, irrigation) even in marginal lands or in 

fields irrigated with waste or salty water (Mavrogianopoulos et al, 2002). 

The recent advent of Next Generation Sequencing (NGS) has made the development of 

genomic resources progressively simpler and cheaper (Liu et al. 2012). RNA sequencing (RNA-

Seq) is to date by far the most powerful tool for the rapid and inexpensive development of genetic 

resources for any species of interest. In addition, RNA-Seq allows at once the quantitative 

determination of the expression levels of virtually all transcribed genes in a specific organ, thus 

providing an extremely powerful tool for the identification of transcripts differentially expressed in 

response to the abiotic and biotic stresses which negatively impact crop growth and productivity 

(Martin, Fei, Giovannoni, & Rose, 2013). 

It is widely accepted that global warming will increase the duration and frequency of 

drought periods over the 21th century (Dai 2012). Many countries already started to develop 

mitigation strategies to avoid this major threat, which could potentially offset the productivity gains 
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expected from advances in both agricultural and crop breeding techniques (Shanker et al. 2014). 

Drought is one of the extreme environmental conditions that curtail agricultural crop productivity 

(Bruce, Edmeades, and Barker 2002). The first response of plants to water limitation is usually 

avoidance, a strategy that aims at maintaining a neutral balance between water gained from the root 

system and lost by transpiration through the stomata. In case of short-term or relatively mild water 

stress, avoidance can maintain performance and prevent negative effects on plant growth. From a 

physiological point of view, this is usually achieved by increasing the osmotic potential of root 

cells, increasing root growth as well as reducing water loss by modulation of stomatal conductance 

(Verslues et al, 2003). These physiological adjustments are the consequence of complex cellular 

changes like: (1) the reprogramming of the cellular metabolism, which shifts to polysaccharide 

degradation and aminoacid biosynthesis to allow for the accumulation of solutes with an osmotic 

function (e.g., glycine–betaine, proline, mannitol, etc.), (2) the production of abscisic acid (ABA, a 

phytohormone mainly associated to seed dormancy and water stress, which causes a reduction of 

stomatal conductance through closure of stomata) and other phytohormones, and (3) an increased 

synthesis of proteins for cellular protection/detoxification (late-embryogenesis-abundant, LEA; 

chaperones and heat stress-proteins necessary for proper protein folding), (4) extensive modulation 

of ribosomal activity to support active cell growth and division in the root system (Verslues et al, 

2003 and Claeys and Inzé 2013). When avoidance strategies are not sufficient alone to prevent the 

onset of water stress, either because of the excessive length or magnitude of the water deficit, 

tolerance responses become progressively more relevant to limit the damages caused by the reduced 

availability of water. The same physiological and molecular changes are, however, often shared 

between the two types of responses, so that a clear-cut distinction between them is not always 

possible. The medium to long-term adjustments associated to tolerance encompass the development 

of, e.g., thicker epicuticular waxes to limit water evaporation through epidermal cells, the further 

decrease of the shoot/root biomass ratio and the allocation of resources to long-term survival organs 

(e.g., tubers or rhizomes), the enhancement of antioxidant capacity to detoxify the reactive oxygen 

species (ROS) consequent to photosynthetic limitation, the thickening of xylematic cell walls to 

prevent collapsing of vasculature, etc. (Verslues et al, 2003 and Claeys and Inzé 2013). 

This complex series of cellular responses to water limitation obviously requires also a 

profound reprogramming of gene expression. Our understanding of the genetic bases of drought 

resistance largely benefitted from forward and genetic screens in model or crop species (e.g. 

Arabidopsis thaliana, rice, maize, wheat; reviewed by Claeys and Inzé 2013). In addition, several 

studies devoted to the dissection of the transcriptional responses to drought stress or water deficit 

conditions have been carried out for the most common cereal crop species (e.g. rice, Wang et al. 
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2011; maize, Kakumanu et al. 2012; foxtail millet, Qi et al. 2013; sorghum, Dugas et al. 2011). 

More recently also Poaceae species used exclusively or partly as energy crops (switchgrass, Xie et 

al. 2013; miscanthus Lewandowski et al., 2000; sugarcane, Kido et al. 2012) have been object of 

transcriptomics studies which could provide a robust comparative basis in poorly characterized 

species like A. donax. Unfortunately, the high spatio-temporal complexity of the physiological 

adaptations to drought and the large number of variables used in different experimental protocols 

for the application of water stress (methods for induction of water deprivation, combination with 

other stresses, length of treatment, type of plant materials and their developmental stages) limit the 

depth of result comparisons across studies (Deyholos, 2010). Polyethylene glycol (PEG) is a high-

molecular weight polymer which can be used to induce controlled water deficits in plants by 

modifying the osmotic potential of water in hydroponic growth media without being absorbed by 

the root system (Lagerwerff et al., 1961), thus providing an ideal method for water deprivation in 

RNA-Seq experiments addressing short-term responses of plants to water stress. 

Arundo donax is one of the most promising biomass resources for biofuel development but, 

up to now, little is known at the molecular level on this species‘ ability to cope with abiotic stresses 

in general and in particular with water limitation. Leveraging on the recent obtainment of the first 

reference transcriptome of A. donax by RNA-Seq (Sablok et al. 2014) and on the existing 

knowledge of the genetics of drought responses in plants, in this study we report the 

characterization of early transcriptional responses to two levels of PEG-induced water deficit in 

cohorts of young giant reed cuttings. In particular, we addressed the main questions: (1) How 

many/which genes are differentially expressed during the early phases of water stress in A. donax? 

(2) What are the main biological functions involved? (3) Which are the transcription factors 

associated to such transcriptional reprogramming? (4) Are the transcriptional responses of A. donax 

conserved/comparable to those of other monocot species, and in particular of rice? The set of about 

3000 early-responsive genes to water stress identified in this study are promising reporters of the 

physiological status of A. donax plantations for the improvement of its management and for a 

deeper understanding of its biology. 

 

2.2  Results and Discussion 

 

Despite the ability of A. donax to withstand prolonged periods of drought, its productivity 

under water limitation is negatively affected (Lewandowski, Scurlock, Lindvall, & Christou, 2003). 
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Especially during the first year of establishment, A. donax growth can be severely retarded and 

plants damaged for lack of soil moisture (Perdue 1958). An in-depth understanding of the 

mechanisms involved in water limitation responses in this species is, therefore, an important pre-

requisite to improve its management, but till now no characterization of the transcriptional 

variations of A. donax tissues associated to water deprivation is available. To fill this gap of 

knowledge, we carried out by RNA-Seq a comprehensive identification of early transcriptional 

responses of shoots and roots to two different levels of PEG-induced water limitation in A. donax 

(details of the experimental design can be found in Materials and Methods and in Supplementary 

File 2.1). 

Following assembly, we obtained 111,749 transcripts covering 45,821 components. Given 

the high ploidy of A. donax, we chose to use a relatively high Kmer coverage during assembly 

(min-kmer_cov = 5) to minimize the formation of transcripts with retained introns (Gruenheit, et al. 

2012). The observed N50 of the assembled transcriptome is 1826 bp, in line with our previous N50 

reports (Sablok et al. 2014), indicating that a good coverage of the transcriptome has been achieved. 

To eliminate redundant transcripts, we further clustered the transcripts using the CD-HIT software 

resulting in a total of 80,962 transcripts. The non-redundant transcript set was further assembled 

into unigenes with MIRA to remove spurious transcripts, resulting in a final set of 80,335 unigenes 

with an N50 of 1570 bp. Summary statistics results for transcriptome assembly are provided in 

(Table 2.1). 

 

Assembly 
*
 Summary Statistics 

Total trinity transcripts: 111749 

Total trinity components: 45821 

Contig N50 1826 

MIRA Unigenes 80355 

Total length of sequence: 75960964 bp 

N50 stats: 1570 bp 

GC %: 47.70% 

Table 2.1. Summary statistics of the sequencing reads and the corresponding assemblies. Summary statistics of A. 

donax whole drought transcriptome obtained by Trinity and MIRA. *Trinity assembly: K 25, Kmer coverage 5 
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Identification of differentially expressed genes (DEGs) by RNA-Seq 

As a first step in the characterization of A. donax transcriptional responses to water stress, 

we carried out the identification of the unigenes whose expression level significantly changed upon 

PEG-treatments. A total of 3034 genes showed differential expression in at least one of the two 

stress conditions (mild water stress vs. control, severe stress vs. control and severe vs. mild stress), 

with roughly the same number of genes being differentially expressed in shoots and roots (1684 and 

1712 DEGs, respectively). Validation of expression levels for ten selected DEG candidates was 

carried out by real-time qRT-PCR, (Supplementary File 2.2). The high congruence between RNA-

Seq and real time PCR results (coefficient of determination R
2
= 0.94), indicates the reliability of 

RNA-Seq quantification of gene expression. Therefore, the selected genes could also constitute 

useful markers of early water deficit in A. donax. DEG identified in biological replicates clustered 

together in both organs, indicating good reproducibility of treatments. In addition, the heat maps 

qualitatively indicated the closer similarity of control and mild water stress between each other as 

compared to severe water stress (Supplementary File 2.3).  

A detailed assessment of the number and the identity of the DEGs between conditions for 

each organ confirmed this observation: in shoots, only 98 genes were differentially expressed 

between control condition and mild water stress, versus 1572 between control and severe water 

stress, and 831 between mild and severe water stress. A similar trend, but less marked, 

characterized also root DEGs (Figure 2.1a), indicating the successful induction of varying degrees 

of water stress as a function of PEG concentration (Lagerwerff et al., 1961). 
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Figure 2.1. Summary of DEGs in shoots and roots of A. donax upon drought stress. a) Number of genes up-/down- 

regulated by drought stress under different conditions (MC: mild water stress vs control, SC: severe water stress vs 

control; SM:  severe water stress vs mild water stress.) in root and shoot. b. Total number of DEGs in common between 

root and shoot. c. Number of regulated genes between different conditions. Grey bar: down-regulated genes; black 

bar: up-regulated genes. 

 

By comparing the 362 DEGs in common between organs, we further observed a general 

conservation of expression patterns, with 166 of the genes being regulated in the same way in shoot 

and root and only two genes displaying opposite regulation (Figure 2.1b). In addition, the overall 

direction of expression variation resulted to be conserved between organs, with the large majority of 

DEGs being up- rather than down-regulated (Figure 2.1c). A closer analysis of the absolute 

numbers of DEGs in the two organs, however, highlighted a relatively large difference in gene up-

regulation upon mild stress in roots as compared to shoots (300 DEGs in root vs 98 in shoot; Figure 

2.1a). Given the application of the PEG directly to the root system and the sampling of only one 

time point, it is possible that, at least in part, these differences could stem from a faster onset of the 

water stress in roots compared to shoots. These results, however, are also in line with a 

transcriptionally higher responsivity of the root system compared to shoots, as previously reported, 

e.g., in the case of poplar (Cohen, 2010), which could indicate tissue-specific responses. 
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Functional classification of transcriptional responses to water stress in A. donax 

 

To identify organ-specific differences, stress-related genes were identified based on curated 

homology searches against genes experimentally characterized in previous studies. The majority of 

stress-related genes belonged to categories ―salt,‖ ―oxidative,‖ ―dehydration,‖ and ―osmotic.‖ This 

is expected, as water limitation is known to cause reduced turgor and integrity of membranes, 

increase of intracellular ionic and non-ionic solute concentrations and enhanced production of 

reactive oxygen species (ROS) that cross-trigger responses to high-salinity, oxidative and osmotic 

stresses (Huang 2012) (Figure 2.2; Supplementary File 2.4). Worth of note, the two differentially 

expressed categories encompassing the largest differences in number of genes between organs are 

―dehydration‖ and ―osmotic‖. Both categories are more abundant in shoot than root, but the highest 

shoot/root ratio (eight times) is found for dehydration-related genes (Figure 2.2).

 

Figure 2.2. Distribution of stress-related functional categories of DEGs. Stress-related functional categories are 

identified by annotation of A. donax putative homologs in of Arabidopsis genes from ASPRGDB. Data are sorted by 

number of shoot DEGs. Black bar: root DEGs; grey bar: shoot DEGs. 

 

We next carried out a homology-based annotation specifically for all the 3034 DEGs 

identified upon PEG treatments, identifying at the same time the GO terms associated to this 

dataset. (Supplementary File 2.5). Based on BLASTN searches using a 70 % identity and 50 % 
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query coverage cutoff, we identified a total of 214 differentially expressed A. donax unigenes in 

shoots and 642 in roots, which were not present in the reference transcriptome assembly 

(Supplementary 2.4) (Sablok et al, 2014), thus contributing to ongoing gene discovery and 

functional annotation in this poorly characterized species. 

To determine the gene functional classes which were chiefly involved in the response to 

water stress, we carried out an analysis of over/under-representation of GO terms associated to 

DEGs. A total of three contrasts were carried out: mild water stress vs. control (MC), severe water 

stress vs. control (SC) and severe water stress vs. mild water stress (SM). We further selected the 

most significantly enriched GOs using REVIGO (Supek et al, 2011) (Supplementary 2.6) and 

analyzed the number of GO terms in common between contrasts to pinpoint differences and 

similarities between organs and conditions (Fig. 3: shoot/SC; root/SC; root/SM for both (1) 

molecular function and (2) biological process terms). 

 

The seven molecular function and nine biological process GOs consistently over-represented 

in SC shoot and root contrasts, respectively (see, e.g., GO:0003700 sequence-specific DNA binding 

transcription factor activity, GO:0030528 transcription regulator activity; GO:0004722 protein 

serine/threonine phosphatase activity, Supplementary File 2.6; Figure 2.3), delineated an ongoing 

reprogramming of cellular transcription and post translational protein modification related to 

drought recovery and osmotic adjustment in both organs, in line with the severity of the water stress 

applied (Verslues et al,2006). In particular, the changes observed in proline metabolism in plants 

(GO:0004657 proline dehydrogenase activity, GO:0006562 proline catabolic process) are a well-

known response to a multiplicity of abiotic stresses, including drought (Verbruggen & Hermans, 

2008). The majority of GO terms were, however, specific for shoot and root, providing compelling 

evidence of qualitative and quantitative differences in the responses of these organs to water 

deprivation: despite the highest responsivity of the root transcriptome observed above, in fact, the 

transcriptional response in the shoot involved 2-3 times more functions than in root (Figure 2.3). 

Also, the GO terms differed significantly in the different organs: in root several DEGs were 

associated to functions related to polysaccharide catabolism (e.g. GO:0000272, polysaccharide 

catabolic process; GO:0016161, beta-amylase activity), indicating extensive osmotic adjustment to 

reduce the water potential and limit cellular damage (Verslues et al,2006). The enrichment of terms 

related to biotic stress (e.g. GO:0009816, defense response to bacterium incompatible interaction; 

GO:0009607, response to biotic stimulus been reported, e.g., in sorghum tissue treated with PEG or 

ABA (Dugas et al. 2011), thus supporting the conservation of the cross talk between biotic and 
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abiotic stress responses in Poaceae. Also, enrichment of gene functions related to translation was 

observed (e.g., GO:0003735, structural constituent of ribosome; GO:0006412, translation), possibly 

as a response to the extensive transcriptional reprogramming observed in roots and/or to root cell 

growth and division. The extension of the root apparatus is indeed a common response in plants to 

water stress which maximizes the chance of reaching the moisture available in deeper layers of soil 

(Verslues et al, 2006). Worth of note, in root the only biological function specific to the milder PEG 

treatment (SM contrast, GO:0009685 gibberellin metabolic process; Figure 2.3b) indicates a 

possible involvement of gibberellins (GA) in the control of this trait through root growth. Based on 

the comparison of emmer wheat susceptible and resistant varieties, GA signaling and biosynthesis 

genes have been associated to resistance to drought in roots (Krugman et al, 2011). These results are 

consistent with a role of GA in the maintenance of root growth as part of the developmental 

decrease of the shoot/root biomass ratio usually observed in plants growing under water stress 

(Colebrook et al, 2014). It is thus possible that the enrichment of functions related to GA observed 

also in A. donax could contribute to the onset of the developmental changes triggered by mild water 

stress to increase accessibility of roots to soil with higher moisture. 

 

Figure 2.3. Venn diagram of significantly enriched GOs. The GO terms which were overrepresented under different 

conditions have been slimmed by REVIGO, and compared by category: a molecular function; b biological process. MC 

mild water stress vs. control, SC severe water stress vs control; SM severe water stress vs. mild water stress. 

 

Compared to root, in shoot the pattern of GO terms enrichment in response to water 

limitation was dominated by functions related to signal transduction and protein modification 

associated to phosphorylation (Supplementary File 2.6; Figure 2.3). This result mirrors the dramatic 
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increase in post-translational phosphorylation levels observed in wheat leaves under drought stress 

(Zhang et al. 2014). Interestingly, several other functional classes specifically enriched in A. donax 

shoot transcriptome corresponded to those of proteins undergoing phosphorylation in wheat (e.g., 

GO:0009405pathogenesis, GO:0008643carbohydrate transport, GO:0005509calcium ion binding, 

GO:0015291secondary active transmembrane transporter activity), indicating that a synergistic 

effect between transcriptional and post-translation reprogramming may take place in Poaceae shoots 

during water stress (Zhang et al. 2014). 

Taken together, the identified DEGs indicate major differences between organs in the 

transcriptional responses to water stress: Roots experienced a seemingly more severe/earlier stress, 

whereas in shoots the transcriptional response was still mainly at the level of signal transduction. 

Time course analyses will be required to precisely define the relative contribution of stress 

induction kinetics versus organ-specificity to the patterns of differential expression observed in this 

study. Given the relevance that the root system plays in both acclimation and adaptation of plants to 

water stress (Lynch et al 2014), several of the early-responsive genes identified could constitute 

suitable markers for the detection of early water stress in A. donax. 

 

Metabolic pathways related to water stress in A. donax. 

The set of 3034 DEGs was mapped onto KEGG pathways in Arabidopsis thaliana and 

Oryza sativa, highlighting the involvement of several drought-related pathways (Figure 2.4). ‗Plant 

hormone signal transduction‘ (ko04075), comprising 11 DEGs in roots and 12 DEGs in shoots, was 

overrepresented. In this pathway, for both shoots and roots, the transcripts of several hormone-

responsive proteins involved in regulation and signal transduction were up-regulated. Plant 

hormones play crucial roles in a diverse set of developmental processes, as well as in the response 

to biotic and abiotic stresses (Bari and Jones, 2009). For example, MYC2 is known to function as 

an activator in ABA signaling and its overexpression in Arabidopsis confers increased tolerance to 

drought (Abe et al, 2003). As discussed in more detail below, also ABA-activated SnRK2 is 

required for dehydration stress signaling in Arabidopsis (Yoshida et al, 2002). Previous studies also 

suggested that in rice OsJAZ1 could connect the jasmonate and drought stress signaling cascades by 

functionally interacting with OsbHLH148 and OsCOI1 (Seo et al, 2011). Taken together these 

results confirm the pivotal role played in water stress response by the differential regulation of 

genes involved in hormone signal transduction (Huang et al, 2012). 
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Figure 2.4. Distribution KEGG Pathways for DEGs in shoot and root. Data are sorted by number of root DEGs mapping 

to KEGG pathways. Black bar root DEGs; gray bar shoot DEGs 

 

Two other important pathways, including ‗Phenylalanine metabolism‘ (ko00360) and 

‗Plant-pathogen interaction‘ (ko04626), were also found in our study to be regulated by water stress 

(Figure 2.4). CYP73A (trans-cinnamate 4-monooxygenase), 4-coumarate--CoA ligase and 

peroxidase, associated with 'phenylalanine metabolism', were all highly accumulated in response to 

water stress, in agreement to the relevance of this pathway in plant responses to drought 

(Gholizadeh A et al, 2011). Additionally, transcripts from CALM (calmodulin), CML (calcium-

binding protein: CaM-like protein), MYC2, RBOH (respiratory burst oxidase), PR1 (pathogenesis-

related protein 1) and JAZ members of the 'Plant-pathogen interaction' pathway, were also induced 

by water stress. All these genes have been reported to be involved in response to several stresses. 

For example, as calcium is one of the most important signaling molecules in plants, the expression 

of CALM and CMLs is well regulated due to different environmental requirements in Arabidopsis 

(Fuchs et al. 2011). Finally, RBOH genes are also commonly expressed in many plants in response 

to biotic and abiotic stresses (Marino et al., 2012). 

Other examples of relevant pathways which are known to be involved in responses to abiotic 

stresses in general or specifically to drought were ‗Starch and sucrose metabolism‘ (ko00500), 
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‗Arginine and proline metabolism‘ (ko00330), and ‗MAPK signaling pathway‘ (ko04010) (Huang 

et al, 2012, Mohammadkhani and Heidari, 2008 and Yoshiba Y et al, 1997). 

Strikingly, the biggest difference observed between root and shoot was related to ribosomal 

DEGs (ko03010 ribosome; Figure 2.4), thus identifying reprogramming of ribosomal translation as 

one of the largest responses of the root system during the early stages of water stress in A. donax. 

As noted above, it is likely that such large effect to translation could represent the early phases of 

the modulation of shoot/root resource allocation preluding to root cell growth and division, a typical 

avoidance responses of the root system during the early phases of water stress. Given the high 

number of ribosomal subunit genes and the complexity of their regulation as a function of water 

stress intensity/duration as well as species- and even genotype-dependent variation (Benešová et al, 

2012), the detailed dissection of ribosome-related pathway reprogramming will be relevant for the 

elucidation of root-specific responses to early water stress in A. donax. 

 

Identification of transcription factors responsive to water stress in A. donax 

Transcription factors (TF) have been identified among the most promising targets for the 

improvement of plant performance under drought stress. Mining of DEGs for putative TFs and their 

interactors led to the identification of 238 A. donax unigenes, corresponding to 136 high confidence 

rice homologs previously identified as drought-responsive genes from 37 TF families (Priya & Jain 

2013; Supplementary File 2.7). Because of the altered water potential under salt stress (Huang 

2012), the majority of the genes (108) are also responsive to salinity. A total of 18 genes, are, 

however, specifically responding to drought (Supplementary File 2.7). The most represented A. 

donax differentially expressed families, constituting alone the majority of the genes, were those of 

NAC, WRKY, AP2-EREBP, bHLH, bZIP and AUX/IAA, which are known to mediate water stress 

responses in plants (Hadiarto & Tran 2011). The majority of these families were also among the 

most represented in drought-stressed rice (Wang et al. 2011). A. donax unigenes from the NAC 

family are the most common among differentially expressed TF genes (36 in total), matching a total 

of 14 different rice loci. Six of them (Os03g60080/SNAC1; Os01g66120/SNAC2/OsNAC6; 

Os11g08210/OsNAC5; Os11g03300/OsNAC10; Os08g06140; Os05g34830) have been previously 

identified as drought-responsive (Nuruzzaman M et al. 2013). Four of them have been characterized 

in depth through functional analyses, confirming their pivotal role in water stress-related 

trasncriptional reprogramming in rice. In particular, all of them have been demonstrated to be ABA-

responsive (Hu et al. 2006; Hu et al. 2008; Sperotto et al. 2009; Jeong et al. 2010.), in agreement 

with the activation of the ABA signal translation cascade observed above. 
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A total of 67 out of the 150 rice homologs to differentially expressed A. donax TF unigenes 

(45%) were consistently found to be differentially expressed also in rice (Ray et al. 2011; 

Supplementary File 2.7.). Not all the TF families, however, were equally represented in both A. 

donax organs, indicating that part of the differences observed between shoot and root transcriptional 

responses may be mediated by members of these groups. In root among the families encompassing 

more than 5 differentially expressed unigenes, we found twice as many AP2-EREBP, AUX/IAA 

and MYB unigenes than in shoot. AP2-EREBP is a superfamily of transcription factors composed 

by the ERF, AP2 and RAV families (Riechmann & Meyerowitz 1998; Rashid et al. 2012) (Figure 

2.5). 

   

Figure 2.5. Distribution of transcription factors responsive to water stress in A. donax. Data are sorted by number of 

root DEGs. Only categories with more than 3 DEGs identified as transcription factors are shown. Black bar root DEGs; 

gray bar shoot DEGs 

 

AP2/EREBP TFs are involved in many fundamental biological processes, ranging from 

development to response to biotic and abiotic stresses (Nakano et al. 2006). Five of the A. donax 

unigenes, homologous to rice genes Os02g51670 (DREB2B), Os09g20350 (DREBF1), 

Os04g55520 (DREB2F) and Os06g03670 (OsDREB1C/CBF), belong to the DREB subfamily of 

ERF TFs, which are known to control expression of several genes in response to dehydration and 

low temperature (Sakuma Y et al. 2002). All the four rice homologs have been directly involved in 

the responses to water stress, thus confirming their relevance towards this stress also in A. donax 

(Matsukura et al. 2010; Wang et al. 2008; Dubouzet et al. 2003; Moumeni A et al. 2011). Other A. 

donax unigenes from the AP2/EREBP super-family were homologs of 4 rice ERF genes 
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(Os03g09170; Os08g31580; Os06g10780; Os05g41780). Unlike DREB genes, ERF TFs have been 

associated mainly to biotic stress responses mediated by ethylene (Ohme-Takagi & Shinshi, 1995). 

It is, therefore, likely that the A. donax ERF TFs identified in this study are at least in part 

responsible for the enrichment of GO terms related to biotic stresses observed above, possibly with 

the participation of members of the NAC and WRKY families (Narsai et al. 2013). 

The second TF family with most unigenes in roots compared to shoot was that of 

AUX/IAA. About ten times more A. donax unigenes from this family were differentially expressed 

in root upon water stress compared to shoot (Figure 2.5). AUX-IAA proteins interact with TFs of 

the ARF (Auxin-Responsive Factors) family, repressing root growth as consequence of the increase 

of the intracellular levels of the auxin plant hormone indoleacetic acid (IAA; Overvoorde et al. 

2010). Since A. donax is a perennial plant whose large rhizomes serve as a long-term survival 

organ, the AUX-IAA genes specifically induced in roots are interesting candidates to dissect the 

coordination of A. donax root and shoot growth under water deprivation. 

MYB and MYB-related transcription factors also were more represented in roots as 

compared to shoots (Figure 2.5). Two of the A. donax MYB unigenes were homologs to rice 

Os12g37690, which had been previously associated to differences among drought-sensitive and 

drought-tolerant rice cultivars (Degenkolbe et al. 2009). The gene is also upregulated in response to 

oxidative stress during the early response of japonica rice to chilling (Yun et al. 2010). 

Interestingly, another A. donax unigene was homolog to Os12g37970, a rice MYB TF involved in 

the coordinate regulation of cellulose and lignin biosynthesis (Ambavaram et al. 2011), indicating 

that it could contribute to alter the structure of cell walls in response to water stress.  

Among the largest TF families displaying a higher number of differentially expressed 

unigenes in A. donax shoots compared to roots we found the bZIP, C2H2 and GRAS families 

(Figure 2.5). Strikingly, nine of the 21 differentially identified bZIP unigenes were homologous to 

rice Os02g52780. This rice gene, also called OsbZIP23 (Nijhawan et al. 2008), has been 

functionally demonstrated to have a relevant role among rice bZIP genes in conferring ABA-

dependent drought and salinity tolerance (Xiang et al. 2008). Somehow unexpectedly, none of the 

rice genes homologs to differentially expressed A. donax unigenes (LOC_Os07g39470, 

LOC_Os01g62460, LOC_Os01g71970, LOC_Os07g36170, LOC_Os11g47870) have been 

functionally characterized, leaving open their specific role in drought responses. Two of them 

(Os01g71970 and Os07g36170), however, had already been identified among the few GRAS TFs 

differentially expressed in rice upon drought stress (Ray et al. 2011). More recently, additional 

evidences for the involvement of members of the GRAS family in the responses to water 
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deprivation have been reported for rice (Xu et al. 2015). Consistently with our results in A. donax, 

expression of OsGRAS23 was significantly induced in rice leaves following treatments with PEG, 

dehydration, salt, gibberellins and jasmonic acid. In particular, transgenic rice overexpressing 

OsGRAS23 (LOC_Os04g50060) was more resistant to drought and tolerant to oxidative stress 

compared with wild-type, thanks to the upregulation of genes involved in anti-oxidant functions 

(Xu et al. 2015). Taken together, these results indicate that GRAS genes in general and in particular 

those identified in A. donax represent interesting candidates for increasing water stress tolerance in 

monocots. Also, the majority of the rice homologs of differentially expressed A. donax unigenes 

from the C2H2 family (LOC_Os03g55540, LOC_Os03g13600, LOC_Os03g60570, 

LOC_Os09g38340) were have been previously identified as drought responsive (Ray et al. 2011), 

indicating their conserved role in Poaceae. Two among them and an additional C2H2 gene not 

previously identified (LOC_Os03g10140, LOC_Os09g38340, LOC_Os09g38790) are known to 

control the vegetative to floral phase transition in monocots (Colasanti et al. 2006; Higgins et al. 

2010), indicating that responsiveness of C2H2 genes to water deprivation may be relictual in A. 

donax: while other species from the Arundo genus are fertile and could benefit from accelerating 

seed setting as a drought-escape strategy, A. donax is fully sterile (Hardion et al. 2015) and no clear 

selective advantage seems to be associated to this trait. Therefore, loss of function mutations of 

C2H2 or other flowering time TFs could be interesting candidates to extend the vegetative phase 

and, thus, biomass accumulation in A. donax (Sablok et al. 2014). 

 

Characterization of co-regulated gene expression network in A. donax 

We compared the distribution of both differentially and non-differentially expressed A. 

donax genes with the 15 drought-responsive modules of rice orthologs recently identified (Zhang et 

al, 2012). Only Module 7 and Module 14 were over-represented in both shoots and roots, while 

Module 10 was over-represented only in shoots (Table 2.2). 

Rice 

module 

Rice 

genes 

Putative 

orthologs 

in A. 

donax 

Putative 

orthologs in 

A. donax 

shoot DEGs 

(p value) 

Putative 

orthologs in 

A. donax 

root DEGs   

(p value) 

Putative module 

function 

Module 1 303 149 2 8  

Module 2 213 155 5 4  

Module 3 141 61 1 0  

Module 4 134 35 2 3  

Module 5 117 71 2 2  



- 34 - 

 

Module 6 90 29 4 0  

Module 7 77 46 
22 

(4.89E−15) 

12 

(3.66E−07) 

Hormonal signal 

transduction 

Module 8 48 18 0 0  

Module 9 47 16 3 2  

Module 

10 
47 27 8 (3.22E−4) 0 

Post-translational 

protein modification 

Module 

11 
46 11 0 0  

Module 

12 
42 11 0 0  

Module 

13 
38 13 0 0  

Module 

14 
28 17 6 (5.42E−4) 

8 

(3.53E−07) 
Stomatal closure 

Module 

15 
21 11 1 0  

Table 2.2. Comparison between A. donax water stress response genes and rice drought response network. A total of 

56 (in shoot) and 39 (in root) A. donax DEGs for which rice orthologs could be identified are mapped onto the 15 co-

expression modules previously identified in rice (Zhang et al, 2012). Significance levels for over- and under-

representation as compared to rice (p-value) are provided. There are 1392 rice genes in the 15 modules. Based on 

Blastp reciprocal best hits method, a total of 56 and 39 differentially expressed genes were identified as putative 

orthologs of rice genes in shoot and root of A. donax, respectively. 

 

Module 10 had been identified as a post-translational drought-related signaling/regulation 

cascade (genes involved in protein amino acid phosphorylation processes), further confirming the 

results from GO enrichments discussed above. The functions of Module 7 and Module 14, however, 

were not reported. Based on the functional mining of rice and A. donax orthologs in each module 

(Supplementary File 2.8), we found that Module 7 might be related to hormonal signal transduction, 

since these genes are mapped on JAZ, CML, PTC2_3, and ABF, which all belong to the ‗Plant 

hormone signal transduction‘ pathway. The observation that PSY (phytoene synthase), which 

controls metabolic flux through the pathway supplying carotenoid precursors for ABA biosynthesis, 

is also part of this module further strengthens the identification of Module 7 as likely ABA-related 

co-expression module. Additionally, promoters of genes from Module 7 in rice were found to be 

enriched in S-BOX motif, which is the ABI4 binding site. ABI4 is known to be an important link 

between ABA hormone and glucose signaling pathway, and it has been proposed that in some 

species carbohydrate metabolism might be the initial response to drought (Acevedo-Hernández, 

León and Herrera-Estrella, 2005;). Thus, genes belonging to Module 7 likely play a conserved role 
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in Poaceae in the ABA-mediated modulation of carbohydrate metabolism in response to water 

stress, as observed also in some dicotyledonous species (Pinheiro et al, 2011). Meanwhile, Module 

14 comprises several genes related to the ABA hormone: PP2C, which upon inhibition by ABA, is 

a fundamental trigger in stress-related ABA signaling cascade (Umezawa et al, 2010); raffinose 

synthase [EC:2.4.1.82], which is involved in the biosynthesis of raffinose, an osmoprotectant 

associated to drought tolerance (Taji et al, 2002). Taken together, these results support the view that 

Module 14 is likely involved in a plant hormone transduction pathway related to ABA, necessary 

for the early onset of stomatal closure. Recent physiological analyses indicate that A. donax can fix 

CO2 at soil water contents close to wilting point, thanks to its ability to effectively control stomatal 

regulation in relation to soil water content (Cosentino et al, 2016). The association in our 

transcriptomics data of Module 7 and 14 to ABA-related pathways confirms and further extends this 

observation, indicating that in A. donax such regulation can be activated as early as 1 h after the 

onset of PEG-induced water stress and that it may contribute to the high adaptability of this species 

to resource-poor habitats and marginal soils (Lewandowski et al, 2003). Despite the incomplete 

understanding of the functions of the genes comprised in these clusters, selected members of both 

Module 7 and 14 could constitute, on one hand, suitable markers to dissect early stress responses 

and, on the other hand, promising targets to modulate drought tolerance in A. donax. 

Interestingly, in the afore-mentioned study, only Modules 4, 7 and 14 are significantly 

associated to rice early responses to drought, where an experimental design similar to ours (3 hours 

treatment, two tissues) has been used (Zhang et al, 2012). This match supports the conservation of 

early drought response networks between A. donax and rice, two species associated to water-rich 

environments. A closer examination of the genes belonging to the latter three modules extends the 

possible conservation of drought-related regulatory networks even further: Among the 53 drought 

response genes in common among A. donax, rice, sorghum and foxtail (see next paragraph), 13.2% 

of genes (7 genes) are from Module 14. Considering that there are only 28 genes in Module 14, 

much less than the others, especially this module seems to capture a particularly important drought-

related mechanism across Poaceae species. 

 

Identification of a core set of Poaceae genes differentially regulated upon water stress 

The comparison of transcriptomes across different species can provide information about 

conservation of gene functions over evolutionary time. We, therefore, identified the subsets of water 

stress-related DEGs in common between A. donax, foxtail, sorghum, and rice. When the A. donax 

DEGs were compared with drought-responsive genes reported in previous studies (Qi et al. 2013; 
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Dugas et al. 2011; Zhang et al. 2012), a total of 343, 496 and 143 putative orthologs were identified 

from foxtail, sorghum and rice, respectively (Figure 2.6; Supplementary File 2.9). In total 53 groups 

of putative orthologs present in all species were identified, which constitute a core of evolutionarily 

conserved genes associated to early responses to water deprivation. 

 

Figure 2.6. Drought response genes comparison across A. donax, rice, foxtail, and sorghum. The Venn diagram 

represents putative orthologs of A. donax stress-responsive genes identified by OrthoMCL in at least two species 

 

Some of these genes are involved in the quality control and targeted degradation of proteins. 

Possibly the most striking example among them is a putative ortholog of Arabidopsis AT5G51070 

gene, which codes for the ClpD subunit of the plastidial Hsp100/Clp complex, a caseinolytic 

protease (Clp) necessary for chloroplast biogenesis and protein homeostasis (Supplementary File 

2.9) (Bruch et al. 2012). This gene, also known as Early Responsive to Dehydration 1 (ERD1), is an 

ATP-dependent molecular chaperone that likely directs unfolded polypeptides to the Clp complex 

for degradation (Colombo et al. 2014), suggesting that also in A. donax it could help eliminate 

damaged/misfolded proteins and aid proteome reprogramming upon water stress. This observation 

is supported by the fact that in rice the ClpD protein has been reported to be preferentially 

upregulated along with several other proteases in response to conditions of active drought signaling 

but water availability, which in shoots mimicks the early water stress of our study (Mirzaei et al. 

2014). 

Several of the other conserved DEGs participate in the biosynthesis of different metabolites, 

ranging from sugars to hormones, lipids and flavonoids (Supplementary File 2.9). Among the most 

interesting A. donax candidates involved in sugar metabolism there is a putative raffinose synthase 
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protein homolog to Arabidopsis AT5G40390, the only isoform reported to be responsive to a wide 

array of abiotic stresses, including water deficit (Egert et al. 2013). Knockout mutants of 

AT5G40390 have reduced amounts of verbascose, sucrose and mannitol, but, surprisingly, their 

shoots are slightly less susceptible to prolonged drought than WT (Anderson et al. 2001). The 

Arundo homolog of this gene, however, is upregulated in roots, indicating that significant regulatory 

differences exist between species and suggesting that in the latter species this gene could contribute 

to short-term osmotic adjustment in roots. 

In agreement with previous studies, also a certain number of membrane transporters are 

among the conserved genes involved in the early response to water stress (Supplementary File 2.9). 

For instance, a homolog of Arabidopsis gene AT3G20300 is upregulated in both shoots and roots. 

In Arabidopsis, this poorly characterized gene belongs to the monosaccharide transporter-like 

(MST-like) superfamily and codes for a predicted polyol/cyclitol/monosaccharide-H+-symporter of 

the mitochondrion, indicating that in A. donax its ortholog could be involved in the response to 

water deprivation by redistributing small organic solutes between cytosol and mitochondria. 

Another transporter which was upregulated in both shoots and roots is the homolog of Arabidopsis 

gene AT1G15520, coding for ABCG40, a plasma membrane ABA uptake transporter. In 

Arabidopsis, stomata of abcg40 mutants respond more slowly to ABA and are less drought tolerant 

than WT plants (Kang et al. 2010). Interestingly, the putative ortholog of AT1G78390, nine-cis-

epoxycarotenoid dioxygenase 9, a key enzyme in ABA biosynthesis (Lefebvre et al. 2006), is 

strongly upregulated in both A. donax shoots and roots during the early responses to water stress. 

Taken together, these results are in line with the established role of ABA as the main plant hormone 

in the early responses to water stress (Huang 2012). The identification of several differentially 

expressed ABA-responsive kinases and phosphatases allowed also the definition of a conserved 

core of signalling genes shared between A. donax and the other Poaceae considered. The putative 

ortholog of Arabidopsis AT4G33950 gene is strongly upregulated in water-stressed A. donax 

shoots. This gene is a member of SNF1-related protein kinases (SnRK2) responsive to both ionic 

and non-ionic osmotic stresses. Among the SnRK2 paralogs, AT4G33950 (also called SnRK2.6) is 

the most important for overall stomatal control (Virlouvet and Fromm 2015). In Arabidopsis, loss 

of function mutations of this gene completely abolishes ABA-mediated stomatal responses, leaving 

unaffected the ABA-independent reactions and resulting in increased drought susceptibility 

(Mustilli et al. 2002). Given the proposed involvement of this gene in the early phases of ABA 

perception before the development of reactive oxygen species associated to cell damage (Mustilli et 

al. 2002), the ortholog of AT4G33950 could constitute an interesting candidate to modulate the 

responsiveness to water stress responses in A. donax and be used as a sensitive marker for shoot 
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drought stress. Two additional kinases are specifically upregulated in A. donax leaves subjected to 

water stress. The first one, homologous to gene AT1G70520, encodes a cystein-rich receptor-like 

protein kinase which in Arabidopsis has been shown to respond only weakly to ABA and other 

hormone treatments, but to be upregulated shortly after ozone treatment (Wrzaczek et al. 2010). The 

second one is a poorly characterized protein kinase homolog to AT1G56130, one of the four 

paralogous loci present as tandem duplications in the Arabidopsis genome. Possibly due to 

redundancy, very limited functional information is available about this small gene family. However, 

the early response and high levels of upregulation in water-stressed shoots of A. donax makes it an 

interesting candidate deserving further characterization. In addition to protein kinases, also a 

phosphatase homologous to Arabidopsis AT2G29380 gene, also called Highly ABA-Induced1 

(HAI1), is among the conserved Poaceae DEGs. Like several other water-stress clade A protein 

phosphatase 2Cs (PP2Cs), HAI1 acts as a negative regulator of osmoregulatory solute accumulation. 

Unlike the majority of its closest paralogs, however, the HAI1 protein is largely insensitive to 

inhibition by members of the ABA receptors family (Bhaskara et al. 2012). The concomitant 

expression of A. donax homologs of HAI1 and SnRK2.6 (the latter acting downstream of the other 

ABA-receptor repressible PP2Cs; Soon et al, 2012) raises the interesting possibility that HAI1 may 

act antagonistically to SnRK2.6 to prevent excessive osmoregulatory solute accumulation. This 

hypothesis is supported by the fact that Arabidopsis hai1 mutants accumulate higher amounts of 

proline and other osmoregulatory solutes than wild type plants (Bhaskara et al. 2012). Strikingly, 

among the conserved early water stress DEGs, the only transcription factor is a homolog of ATHB7 

(Arabidopsis gene AT2G46680), a member of class I plant-specific homeodomain-leucine zipper 

family (Johannesson et al. 2001). In Arabidopsis, ATHB7 and its paralog ATHB12 modulate 

abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene 

activities (Valdés et al. 2012). Despite direct regulation of HAI1 has not been tested, several other 

clades A PP2Cs are under positive transcriptional regulation by ATHB7 / ATHB12, which at the 

same time repress transcription of genes from the PYR/PYL family of ABA receptors (Valdés et al. 

2012). As, both in Arabidopsis and rice, paralogs with different tissue specific and developmental 

expression patterns have been implicated in different aspects of ABA-mediated growth responses to 

water stress (Harris et al. 2011), the characterization of Arundo‘s homeodomain-leucine zipper 

family members seems to be a promising starting point to dissect the details of abscisic acid 

signalling modulation and stomatal control in this species. 
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2.3 Conclusion 

 

The lack of information available about the molecular mechanisms involved in stress 

responses in A. donax is currently a major constraint for the further development of this semi-wild 

species into a fully-fledged bioenergy crop. To fill at least in part this gap, we hereby provided the 

first characterization of A. donax shoot and root transcriptomes in response to water stress, one of 

the factors of highest concern for its productivity. Given the commonality of the responses to water 

limitation and other stresses, in addition to providing a general overview of the early transcriptional 

responses to simulated drought, our results shed also light at the molecular level on the general 

mechanisms of stress response and adaptation in A. donax. Upon functional validation, thus, many 

of the unigenes identified in the present study have the potential to be used for the development of 

novel A. donax varieties with improved productivity and stress tolerance. In addition, the inventory 

of early-responsive genes to water stress provided in this study could constitute useful markers of 

the physiological status of A. donax plantations to deepen our understanding of its productivity 

under water limitation. 

 

2.4 Material and Methods 

 

Plant material and application of water limitation stress 

In the present study, we applied a water stress by treating cohorts of A. donax cuttings 

(collected in Sesto Fiorentino, Florence, Italy 43°49'01.8"N 11°11'57.0"E) with two different 

concentrations of polyethylene glycol 6000 (PEG; 10% and 20% w/w, referred to as mild and 

severe water stress conditions, corresponding to osmotic potentials of -1.54 bars and -5.04 bars, 

respectively; Michel & Kaufmann 1973). Briefly, A. donax cuttings were let rooting in tap water, 

then transferred to 1% Hoagland solution and grown in a growth chamber with day-length of 16 hrs, 

light intensity of 150 µmol of photons m
-2

 s
-1

, 24°C and 60% RH. At the three-leaves stage, two 

cohorts of cuttings were transferred to 1% Hoagland solution containing either 10% or 20% PEG, 

while a third cohort used as control was transferred to 1% Hoagland solution without PEG. After 1 

hr the tissue above the third leaf and roots were separately collected from each cohort, quickly 

rinsed in distilled water and snap-frozen in liquid nitrogen. A total of 18 samples (three biological 

replicates from both shoot and root for each of the three conditions) were sampled. 
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Next generation RNA sequencing 

Frozen root and the shoot tissues were grounded in liquid nitrogen with pre-cooled mortars 

and pestles. RNA isolation was carried out using the Spectrum Plant Total RNA Extraction Kit 

(Sigma) and Rneasy® Plant Mini Kit, respectively, for shoots and roots according to the 

manufacturer‘s instructions. The quantity and the quality of the isolated RNA was evaluated using 

agarose gel electrophoresis and spectrophotometric measurements. Additionally, the isolated RNA 

was subjected to quality checks using the RNA 6000 Pico kit and the Agilent Bioanalyser 2100 

(Agilent). Paired-end RNA-Seq libraries were prepared using the TruSeq RNA Sample Prep V2 kit 

(Illumina, San Diego, CA), pooled in equimolar ratio and sequenced on an Illumina HiSeq2000 

sequencer (CIBIO NGS Facility, Povo (TN), Italy). 

A minimum of 694 million reads were obtained from each of the 18 libraries sequenced 

(Supplementary 2.1). RNA-Seq data are available in the ArrayExpress database 

(www.ebi.ac.uk/arrayexpress) under accession number [ArrayExpress:E-MTAB-3769]. Assessment 

of read quality metrics was carried out using the FastQC software (available at 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) after which stringent quality filtering, 

removal of reads containing Ns and de-duplication was carried out as previously described (Sablok 

et al, 2014). For transcript reconstruction, we concatenated all read pairs passing the quality checks 

and assembled them using the Trinity software with-group-pair-distance=500 and −min-cov=5 to 

limit intron retention in reconstructed transcripts (Grabherr et al, 2011). After discarding transcripts 

shorter than 200 bp, transcript redundancy was reduced using CD-HIT-EST with 95 % identity and 

a word size of 8 (Li and Godzik, 2006). The resulting non-redundant transcript dataset was further 

assembled into unigenes using the Overlap-Layout-Consensus assembler MIRA (parameters: job = 

denovo, est, accurate, 454 using the notraceinfo option) (Chevreux et al, 2004). All final A. donax 

unigenes are available for homology searches and download through a dedicated web Blast server 

(http://ecogenomics.fmach.it/arundo/) (Priyam et al, 2015).  

 

Water stress transcriptome annotation  

Following the assembly, transcriptome curation was carried out by perfoming BLASTx 

searchers with E-value threshold 1E
-5

 against NCBI non-redundant (www.ncbi.nlm.nih.gov), 

UniProt (www.uniprot.org) and TrEMBL (Bairoch A, and Apweiler R., 2000) plant databases. 

Additionally, we also curated the unigenes using the FastAnnotator program, which integrates the 

functionality of BLAST2GO, PRIAM, domain identification and Gene Ontology classification 

http://www.ncbi.nlm.nih.gov/
http://www.uniprot.org/
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(Chen et al. 2011). We further slimmed the obtained Gene Ontology (GO) categories using the 

PlantGO Slim categories available from the Gene Ontology consortium (www.geneontology.org) 

by collapsing the small child categories into broader classification of gene ontologies. Protein 

domains of transcriptome unigenes were identified using InterPro (https://www.ebi.ac.uk/interpro/). 

To identify the putative homologs of stress responsive genes characterized so far in Arabidopsis 

thaliana, BLASTx searches were performed with an E-value threshold of 1E
-5

 against the 

ASPRGDB database (Subhomoi Borkotoky et al, 2013), retaining only hits with query sequence 

coverage and identity higher than 50%. Additionally, we mined functionally relevant genes 

involved in drought stress by creating a customized, manually curated database from Sorghum 

bicolor, Zea mays, Arabidopsis thaliana, and Oryza sativa. 

 

Identification and functional classification of differentially expressed genes  

To identity genes which are differentially expressed upon water stress, reads from each of 

the 18 libraries were individually mapped on the unigene assembly and fragments per kilobase of 

exon per million fragments mapped (FPKM) values were estimated as a measure of the expression 

using RSEM (Bo and Li, 2011). For the identification of differentially expressed genes, we used 

EdgeR (R version: 3.0.1, edgeR version: 3.4.2; Robinson et al, 2010), implementing the 

Generalized Linear Model (GLM) (Smyth and Verbyla, 1996) approach. For the normalization of 

the read count, we applied the trimmed mean of M-values (TMM) normalization method (Robinson 

and Oshlack, 2010). Additionally contrasts were made to identify the set of differentially expressed 

genes between mild and severe water stress among the induced treatments. A false discovery rate 

(FDR) cutoff of 0.001 and a log-fold change (LogFC) threshold of 2 was implemented to filter the 

statistically significant up- and down-regulated genes between the treatment and the control. The 

genes with logFC>=2 and logFC<=-2 with a FDR cutoff of FDR=0.001 between two treatment 

conditions were determined to be up-regulated and down-regulated, respectively. All the 

statistically significant up- and down-regulated differentially expressed genes were custom 

annotated against the functionally identified drought- responsive genes in model grass clade. To 

select the most interesting candidates for functional studies, genes were first ranked all DEGs 

according to absolute difference of FPKM values and logFC between control and each of the stress 

conditions. To further select genes with the highest consistency in DE among biological replicates, 

only genes with CV < 0.7 and |logFC| >= 2 were retained, and the top 20 genes from either top- or 

down-regulated lists were highlighted in the results. For the identification of transcription factors 

responsive to water stress in A. donax we mined the Stress Responsive Transcriptio Factor Database 

http://www.geneontology.org/
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of rice (SRTFDB; Priya et al, 2013) by Blastn searches with an E-value cutoff of 1e-5. For the 

identification of the subsets of water stress-related DEGs in common between A. donax, foxtail, 

sorghum and rice, OrthoMCL software V5 was used with default settings (Li et al, 2003). For the 

comparative study between A. donax and rice co-regulation network, we identificated putative 

orthologs between the A. donax and rice with Blastp Reciprocal Best hits method (RBH, E-value 1e
-

6
; Moreno-Hagelsieb and Latimer, 2008). 

 

GO enrichment 

Blast2GO was also used for a GO functional enrichment analysis of certain genes, by 

performing Fisher's exact test with a robust FDR (<0.05) correction to obtain an adjusted p-value 

between certain test gene groups and the whole transcriptome annotation. To provide a more 

comprehensive interpretation and of GO data we have used the freely available web-based software 

REVIGO (Supek et al, 2011). We uploaded the lists of over-represented GO ID along with the p-

value from the result of the fisher‘s exact test. The analysis was run by selecting the small size of 

the resulting list, with the numbers associated to GO categories p-values, with the Oryza sativa 

database, and the SimRel as the semantic similarity measure. The GO terms which were over-

represented under different conditions were slimmed by REVIGO (Supplementary File 2.6). The 

number of over-represented terms in common between conditions was displayed as Venn diagram 

(Figure 2.3: a. molecular function; b. biological process. MC: mild water stress vs control, SC: 

severe water stress vs control; SM: severe water stress vs mild water stress). 

 

Pathway enrichment  

To identify functionally relevant patterns associated to water stress in shoot and root DEGs, 

we created a unigene dataset for each organ discarding genes with FPKM ≤1. Each dataset was 

subsequently used as background to identify over- and under-represented GO categories among 

DEGs using the fischer‘s test with a p-value cut-off of 0.05. In addition, pathway enrichment 

analysis of DEGs were carried out with the KOBAS software (Xie et al, 2011) using BLASTx 

searches against the Oryza sativa var. japonica proteins. 

 

Real-time validation of selected DEG candidates using qRT-PCR: 

Each RNA sample was treated with DNase I (Sigma-Aldrich) and 1 µg of total RNA was 

reversed transcribed using the SuperScript® III Reverse Transcriptase (Life Technologies), 
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according to the manufacturer‘s instructions. Real time qRT-PCR was performed for a total of 10 

DEGs with Platinum® SYBR® Green qPCR SuperMix-UDG and carried out in the Bio-Rad C1000 

Thermal Cycler detection system according to the manufacturer‘s instructions. All the genes were 

normalized with putative A. donax actin protein with highest homology to sorghum AC1 gene 

(GenBank accession no. P53504). Each PCR reaction (12,5 μL) contained 11 μL real-time PCR 

Mix, 0.25 μM of each primer and 1 µl of a 1:5 dilution of cDNA. The thermal cycling conditions 

were 50 °C for 2 min, 95 °C for 2 min, followed by 40 cycles of 15 s at 95 °C and 30 s at 60 °C. All 

reactions were performed in triplicate and fold change measurements calculated with the 2
−ΔΔCT

 

method (Livak & Schmittgen, 2001). Sequences of primers used for real time PCR are provided in 

Supplementary File 2.2. 
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3.1 Introduction 

Abiotic stresses are among the main hazards for plant growth and survival. Especially 

drought and high salinity are responsible for productivity and quality loss of crop plants worldwide. 

Therefore, the improvement of crop species is a key factor to guarantee an adequate yield also in 

light of the climate change (Tester and Langridge, 2010). To cope with drought and salt stresses, 

plants activate molecular, chemical and physiological responses that allow them to survive or adapt 

to new environmental conditions (Osakabe et al., 2014; Tuteja and Sopory, 2008). At molecular 

level the early response to these stresses through regulation of the cell osmotic potential is 

particularly important to avoid permanent damages of the plant cells (Adamec, 1984). In the last 

decades, many genes have been found to have a role in defence mechanisms which involved several 

different pathways. The main pathways that have been recognized to participate in drought and/or 

salinity response include ABA-dependent, Salt Overly Sensitive (SOS) and dehydration-responsive 
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element-binding protein (DREB) mediated pathways (Ji et al., 2013; Yoshida et al., 2014). In 

particular, some genes are considered to be key regulators in the respective pathways: AREB/ABFs 

(ABRE- binding protein/ABRE-binding factors) in ABA-dependent, DREB2A (Dehydration-

responsive element-binding protein 2A) in ABA-independent (Yoshida et al., 2014) and SOS1-3 in 

SOS pathway. 

WD40 proteins contain 4 to 8 repeats of 44-60 amino acid typically ending with 

Tryptophan-Aspartate dipeptide (WD) and have been found in many organisms, from bacteria to 

animals and plants (Stirnimann et al., 2010). Structurally, these proteins consist of a four-stranded 

anti-parallel β-sheet that forms each of the seven blades composing the β-propeller fold that is 

usually considered to facilitate protein-protein interaction. To date, in plants 237, 200 and 225 

potential WD40 genes have been identified in Arabidopsis (van Nocker and Ludwig, 2003), rice 

(Ouyang et al., 2012) and foxtail millet (Mishra et al., 2014), respectively. The high number of 

these genes indicates an important role in the plant system. Despite many progresses have been 

already made towards elucidation of WD40 gene functions, many members of this large family 

remain uncharacterized. WD40 proteins have been found to function in cytoplasm and nucleoplasm 

and they play important roles in several biological processes like signal transduction, regulation of 

cell division, chromatin modification, transcription regulation, plant immunity and 

photomorphogenesis (Miller et al., 2015; Schroeder et al., 2016; van Nocker and Ludwig, 2003). 

DWD (DDB1 binding WD40) proteins are a subgroup of the WD40 superfamily recognizable from 

a peculiar 16 amino acid sequence at the end of one repeat consisting of several highly conserved 

residues: Asp/Glu7, Trp/Tyr13, Asp/Glu14, Arg/Lys14 (Lee et al., 2008). Several DWD genes have 

been implicated in abiotic stress response or environmental adaptation. For example, in Arabidopsis 

HTD1 (heat stress tolerant DWD1) protein is involved in modulation of the thermotolerance 

process (Kim et al., 2014) while ABD1 (ABA-hypersensitive DCAF1) targets ABI5 (ABA-

insensitive 5) for degradation, therefore regulating ABA-mediated stress response (Seo et al., 2014); 

in rice five WD40 genes (SRWD1-5) have been characterized to be responsive to salt stress (Huang 

et al., 2008); in foxtail millet SiWD40 is induced by various abiotic stresses and may be subjected 

to regulation by DRE (dehydration-responsive elements) genes (Mishra et al., 2012a); in Triticum 

aestivum TaWD40D is involved either in ABA-dependent (through ABI2 regulation) and ABA-

independent stress response pathway (Kong et al., 2014). The cullin-based E3 ligases are complexes 

that serve as a scaffold for assembling the ubiquitination machinery. It as been demonstrated that 

Cullin 4 utilizes damaged DNA binding 1 (DDB1) protein as an adaptor to assemble the E3 ligase 

complex (Lee and Kim, 2011). Strong evidence also suggests that DWD proteins bind to the DDB1 
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adaptor by means of the WDxR motif (Angers et al., 2006) as substrate receptor, thus committing 

the whole complex for degradation via the 26S proteasome. 

Arundo donax L. (also known as giant reed) is a perennial bamboo-like species of the 

Poaceae family with the potential to play a key role in bioenergy production (Pilu et al., 2012). Its 

capability to cope with environmental stresses such as drought and salt and its high yield (up to 40 

t/ha of dry biomass per year) make it a suitable candidate as non-food energy crop. The 

agronomical and biological features of A. donax have been extensively studied (Mantineo et al., 

2009; Nassi o Di Nasso et al., 2010; Pilu et al., 2013b) either for its exploitation in the 

Mediterranean region where it is native (Hardion et al., 2015) or for its eradication where it is 

allochthonous (e.g. United States and Australia) (Quinn and Holt, 2007). Until recent years the only 

genetic studies carried out on A. donax comprise phylogenesis (Hardion et al., 2015, 2012) and 

genetic variation (Pilu et al., 2013a). Recently, though, with the advent of new generation 

sequencing platforms, it became possible to quickly and cheaply produce extensive genetic 

resources for virtually any living species, which could support deeper and more specific trait-related 

analyses. Thus, the whole giant reed transcriptome was released first in 2014 for four organs 

(Sablok et al., 2014) and subsequently also for young shoots subjected to osmotic stress (Fu et al., 

2016). This precious data not only already shed novel light on the genetic response of giant reed to 

external stimuli, but they are also an important step to select possible key regulator genes from this 

non-model species for further characterization.  

In this study, we select from the A. donax water-stressed transcriptome a putative DWD gene 

involved in osmotic stress response. Quantitative real-time PCR demonstrated a high upregulation 

both in root and shoot of young giant reed plants grown in hydroponic solution and subjected to 

osmotic and salt stress. Moreover, the heterologous overexpression of AdDWD1 shows that 

Arabidopsis seedlings are more sensitive than wild type plants when grown in salt and ABA 

enriched media. Analysis of 7 known stress-related genes belonging to ABA-dependent, 

independent and SOS pathways have been checked in transgenic lines, showing a downregulation 

of DREB2A and SOS3 transcripts . Our results suggest that AdDWD1 may act as negative regulator 

of the ABA-independent pathway or may interfere with the function of the CUL4-DDB1 complex. 

 

3.2 Material and Methods 

 

Plant growth and abiotic stress treatments. 
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Cohorts of A. donax cuttings (Sesto Fiorentino, Florence, Italy 43°49'01.8"N 11°11'57.0"E) 

were grown in a growth chamber with day-length of 16 hrs, light intensity of 150 µmol of photons 

m
-2

 s
-1

, 24°C and 60% relative humidity in tap water until 2-leaves stage. The cuttings were then 

moved to hydroponic solution (renewed every 3 days) and harvested at the 3-leaves stage. The 

hydroponic solution contained: KNO3 (6mM), Ca(NO3)2*4H2O (3.5 mM), NH4H2PO4 (1mM), 

MgSO4*7H2O (2mM), H3BO3 (46.3 µM), MnSO4*H2O (12.6 µM), ZnSO4*7H2O (0.8 µM), 

CuSO4*5H2O (3 µM), H24Mo7N6O24*4H2O (1 µM), Fe-EDTA (0.0817 mM). For stress treatments, 

plants were moved from hydroponic solution to fresh solution containing 15% PEG 6000 (osmotic 

stress), 150 mM NaCl (salt stress), 500 µM CdSO4 (heavy metal stress) or exposed at 4°C in the 

basic hydroponic solution (cold stress). Sample collection was carried out after 0h (control), 30 min, 

1h 30min, 3h, 6h, 11h and 24h. Three biological replicates for each condition were taken, dividing 

the root and the shoot, snap- frozen in liquid nitrogen and stored at -80 °C until RNA extraction. 

Five replicas of water loss assay were carried out with 15 leaves each detached from three weeks 

old plants, let air-dry on the growth-chamber shelf and weighted at time 0, 30 min, 45 min and 

every hour until 8 time-points were collected. Dry weight was measured after dessication of the 

samples for 24 hours in oven at 60 °C.  

 

Phylogenetic tree reconstruction. 

Protein sequences of rice, sorghum, maize, purple false brome, foxtail millet and 

switchgrass species were retrieved from Phytozome and reciprocal BLAST hit were used to detect 

putative orthologs. The Gblocks software (http://molevol.cmima.csic.es/castresana/Gblocks.html) 

was used to remove from the sequences highly variable regions and CLUSTLW was employed for 

sequences alignment. The final alignment encompassed a total of 21 amino acid sequences. All 

positions with less than 80% site coverage were eliminated so that fewer than 20% alignment gaps, 

missing data, and ambiguous bases were allowed at any position. There were a total of 337 

positions in the final dataset. Phylogenetic reconstruction was carried out with the Maximum 

Likelihood (ML) algorithm implemented in MEGA7 (Kumar et al., 2016). A total of 1000 bootstrap 

replicates were used to assess reliability of the topology of the resulting tree. 

 

Cloning of AdDWD1 and creation of transgenic lines. 

The gene was selected from the transcriptome analysis of Arundo donax under water stress 

(Fu et al., 2016) and amplified from shoot cDNA with Phusion High-Fidelity DNA. The product 

has been run on 1% agarose gel, cut and purified with NucleoSpin® Gel and PCR Clean-up 

(Macherey-Nagel). After quantification, the isolated fragment was cloned using pENTR™/D-

http://molevol.cmima.csic.es/castresana/Gblocks.html
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TOPO® Cloning Kit in E. coli competent cells by electroporation, following the manufacturer‘s 

instructions. The donor vector was recombined with destination vector pk7WG2 by GATEWAY™ 

conversion technology (Invitrogen). Transgenic Arabidopsis plants carrying the construct under the 

control of cauliflower mosaic virus 35S promoter (35S::AdDWD1 ) were then obtain by floral dip 

method (Clough and Bent, 1999) in a Agrobacterium tumefaciens solution and selected on plates 

with specific antibiotic. The Arabidopsis homolog (At1g78080) was used to create a construct 

carrying GUS gene fused with its promoter (1853 bases) in similar way: the region, obtained from 

TAIR database, was amplified and used in pENTR™/D-TOPO® Cloning system with pkGWFS7 

plasmid as destination vector. Arabidopsis plants were then brought to T2 generation for subsequent 

analysis. Cloning primers are listed in Supplementary Material (Supplementary File 3.5). 

 

RNA extraction, qRT-PCR and gene expression analysis. 

About 100 mg of tissues was used for total RNA isolation with Spectrum Plant Total RNA 

Extraction Kit (Sigma) and Rneasy® Plant Mini Kit (Qiagen) for Arundo donax shoot and roots 

respectively. For stress-related gene experiment, RNA from Arabidopsis seedlings was obtained by 

TRIzol® reagent (Thermo Fisher) following the manufacturer‘s protocol. RNA was treated with 

DNase I (Sigma-Aldrich) and 1 µL was run on 1% agarose gel for integrity control. The quality of 

the RNA was also assessed by spectrophotometer and an absorption of OD260/OD280 between 1.9 

and 2.2 was considered as parameter for high quality RNA. Single strand cDNA was reversed 

transcribed from 1 µg of RNA primed with oligodT primers in a reaction mixture of total 20 µL 

using SuperScript® III Reverse Transcriptase (Life Technologies). Total 10 µL PCR mixture 

containing 0,5 µL of 5-time diluted cDNA template, 1 µL Buffer 10X, 1 µL dNTPs (1 mM), 250 

nM of each primer and 0.2 µL of Taq polymerase was used to check specific amplification and 

product length on electrophoresis run with 2% agarose gel. PCR run was set as follow: 5 min at 

95°C, 30 cycles of 40s at 94 °C, 30s at 60 °C and 20s at 72 °C, with 5 min final extension at 72 °C. 

Mixture of qRT-PCR contained 1 µL of 5-fold diluted cDNA, 200 nM of each primer and 6.25 µL 

of Platinum® SYBR® Green qPCR SuperMix-UDG (Invitrogen) in a 12.5 µL total volume. Run 

for qRT-PCR in Bio-Rad C1000 Thermal Cycler was set as: 2 min at 50 °C, 2 min at 95 °C, 40 

cycles of 15s at 95 °C and 30s at 60 °C. Moreover, a melt curve was created by constantly rising the 

temperature from 65 °C to 90 °C to control PCR product specificity. Each sample has been run in 

three technical replicas and every plate has one No Template Control (NTC) well for each primer 

pair used. Primers are listed in Supplementary File 3.5. 

 

Stress assays. 
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Salt assay with 35S::AdDWD1 overexpressing line was made by sowing 77 seeds of each 

genotype of Arabidopsis (wild type, OE1 and OE2) on MS plate, MS plate + 175mM of NaCl or 

MS plate + 0,5 µM ABA. Seed germination of three independent experiments (total 231 seeds per 

line) was recorded until the 5
th

 day after three days of stratification in dark at 4°C. Growing 

chamber conditions were the same as reported above for giant reed propagation. For stress-related 

genes experiments, one-week-old seedlings grown in hydroponic solution were moved either to a 

fresh solution with 150 mM of salt (treatment) or without (control) for 4 hours before collection of 

10-14 plants for each of the three biological replicas. The hydroponic medium contained: KNO3 

(5,1 mM), Ca(NO3)2 * 4H2O (1,01 mM), NH4H2PO4 (0,13 mM), MgSO4 * 7H2O (0,498 mM), 

NaOH (8,89 µM), H3BO3 (9,68 µM), MnCl2 * 4H2O (2,03 µM), ZnSO4 * 7H2O (0,314 µM), CuSO4 

* 5H2O (0,21 µM), MoO3 (0,139 µM), Co(NO3)2 * 6H2O ( 0,086 µM), NH4NO3 (29,3 µM), 

NaFe(III)EDTA (22,4 µM). 

 

3.3 Results 

 

Cloning, sequence analysis and phylogenetic tree. 

After a screening of the differentially expressed genes from recently published Arundo 

donax L. transcriptome (Fu et al., 2016), Unigene032775 was selected to be characterized for its 

function under abiotic stress conditions in the model plant Arabidopsis thaliana. In fact, a primary 

evaluation of its transcript showed an interesting upregulated pattern both in root and shoot but a 

research in published papers and open database (GeneBank, Uniprot, Phytozome) gives very little 

information about it making it a good candidate to be studied. After PCR amplification and 

confirmation by sequencing, the isolated transcript resulted 1711 bases long. The longest CDS it 

encoded a 476 amino acid protein with an estimated molecular mass of 52,64 kDa and pI 5,55 A. 

The overxpression construct 35S::AdDWD1 was transformed in Arabidopsis plant and 25 T2 

generation lines were checked for transgene expression levels (Supplementary. File 3.1). The two 

homozygous T3 lines with highest transgene expression (from now indicated as OE1 and OE2) 

were used for further gene characterization. 

The closest homologue of  AdDWD1 in Arabidopsis thaliana was identified by BLASTp-

based homology searches against the curated TAIR Arabidopsis proteome 

(https://www.arabidopsis.org/Blast/index.jsp). The best hit (65% identities, 80% positives, E value 

= e-163, Supplementary File 3.6) was At1g78070, a member of the transducin/WD40 repeat-like 

superfamily. A domain search carried out with the SMART software (http://smart.embl.de/) 

https://www.arabidopsis.org/Blast/index.jsp
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confirmed the presence of three WD40 domains in AdDWD1 and its ortholog (Figure 3.1A). 

However, the presence of a typical DWD-box at the end of the second repeat (residues position 

362-377), which make this protein a candidate DCAF (Figure 3.1B) (Biedermann and Hellmann, 

2011). Although SMART software recognizes only three WD-40 repeats, it is known that often one 

or more WD40 repeats remain undetected even if the correct domain is assign to the protein 

(Stirnimann et al., 2010). For this reason, we employed also other two online tools: the WDSP 

software (Wang et al., 2013), that predicts 7 repeats from position 154 to 463 and WRDD (Wang et 

al., 2016), that predicts 6 repeats (Supplementary File 3.2). 

To understand the evolutionary history of  AdDWD1, the transcriptome of giant reed, rice, 

sorghum, maize, purple false brome, foxtail millet and switchgrass were compared by Reciprocal 

BLAST Hit method (RBH), with which we selected the 21 most closely related sequences, all 

containing the DWD-box. As expected by the low level of curation of the database, the Phytozome 

annotation of these sequences varied among species: ―WD40 repeat‖ for sorghum, maize and foxtail 

millet proteins, ―nucleoside-triphosphatase activity‖ for Brachypodium distachyon and no 

annotation for Panicum virgatum. Phylogenetic reconstruction shows a relatively well resolved and 

supported topology (Figure 3.1C). AdDWD1 forms a monophyletic clade with rice Os03g26870.1, 

purple false brome protein Bradi1g60960.2, sorghum Sb01g033820.1, maize GRMZM2G078806 

and two switchgrass proteins Pavir.Ia03143.1.p and Pavir.Ib01829.1.p (Clade A1; Fig. 5). The 

phylogenetic positioning between A. donax and the other monocot species included in the analysis 

are consistent in all the clades identified and reflect the known phylogeny of the Poaceae (Soreng et 

al., 2015). Worth of note, all orthologs of AdDWD1 are present in single copy in all species with the 

exception of P. virgatum, where two paralogues were identified, and of foxtail millet, where no 

homologue was detected. Despite not supported by high bootstrap values, the closest homologue of 

AdDWD1 is A. donax Unigene053546 (Clade A2), while the paralogous A. donax genes 

Unigene_064478 and Unigene064479 belong to Clade B (Fig. 5). 
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Figure 3.1. Gene features. A) SMART domain prediction of AdDWD1 shows a low complexity region (pink bar) and 

three WD40 repeats (green arrows). B) Amino acid sequence of AdDWD1 with SMART WD40 repeats underlined and 

the 16 amino acid of DWD motif in bold style. C) Maximum Likelihood unrooted phylogenetic tree of AdDWD1 and its 

homologues from fully-sequenced monocot species. The tree is drawn to scale, with branch lengths measured as 

number of substitutions per site. Bootstrap values above 50 are shown at the nodes.

 

Expression pattern of AdDWD1. 

We examined AdDWD1 expression pattern under different stress conditions and in two 

separate tissues: root and shoot. Figure 3.2 shows that osmotic and salt stresses induce the highest 

upregulation of this transcript, especially in roots, where the fold-change compared to time 0 is 

above 400 times and about 300, respectively. As expected, a delay in shoot response is visible from 

the graph, mainly when osmotic stress was applied. Interestingly, the kinetic of the expression is 

faster in salt stress where the highest level is reached after 1 hour 30 minutes of treatment, while 

under osmotic stress the maximum level is reached at 3 hours in root and at 11 hours in shoot. In the 

treatment with heavy metal and cold, AdDWD1 was observed to be upregulated only in root, even 

though the expression value is much lower compared with the other two stresses. On the other hand, 

in shoot there is a downregulation of the gene in the early stages, with a recover of the expression 

level from 3 hours on.  

To investigate the expression under normal condition in adult plants, semi-quantitative RT-

PCR has been used to quantify the presence of AdDWD1. As reported in Fig2 I, the expression 
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levels after 34 cycles of PCR are higher in developed leaves (L1, L4), lower in not emerged leaf 

(L0), stem (node NO, internode, IN) and bud (MS) and almost absent in the sheath (GS). Moreover, 

when compared to the reference gene GAPDH it is evident that absolute quantity of the transcript in 

the lack of stress is low even in the most highly expressing tissues. 

 

Figure 3.2. Expression pattern of AdDWD1 gene under abiotic stress conditions: osmotic root (A) and shoot (B), salt 

root (C) and shoot (D), heavy metal root (E) and shoot (F), cold root (G) and shoot (H). Graph (I) is the expression 

pattern in different tissues: L0, Apical not opened leaf; L1, first fully open leaf from top; L4, fourth leaf from top 

(middle part); MS, meristem shoot (bud); NO, node of the fourth leaf; IN, internode between 4th and 3th leaf; GS, 

green sheath; RO, root; NTC, no template control.
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AdDWD1 reduces germination and growth under stress in overexpressing lines.  

The involvement of AdDWD1 in drought and salt stresses indicated by the expression 

analyses does not provide information on its actual mechanism of action. We, therefore, carried out 

the physiological characterization of Arabidopsis AdDWD1 overexpressing lines. Germination 

assay in normal (MS) and stressed conditions showed high difference in stress response between 

wild type (WT) plants and 35S::AdDWD1 lines (OE1 and OE2) (Figure 3.3). When 175 mM of 

NaCl was added to the medium, the percentage of OE lines germination was significantly lower 

than that of WT (max 38% versus 70% at 5 days after stratification, respectively; Figure 3.3B, D). 

Moreover, when the seeds were placed on agar supplemented with 0,5 µM ABA, we noticed a 

sensitive repression in cotyledon emergence from the third day on (about 40% of the WT against 

20% of the OE lines at the fifth day; Figure 3.3C, E). In the light of this results, root growth of 

young seedlings was also checked with salt and ABA additions but no significant differences with 

WT plants were detected (Supplementary File 3.3). Also, a water loss assay carried out on detached 

leaves showed a higher tendency of OE lines to loose water than WT leaves. This became 

significant at 3 hours and increase up to 6 hours after leaf detachment (Figure 3.3F). On the other 

hand, when adult plants were exposed to air drying no differences in survival rate were notice 

between WT and OE (Supplementary File 3.4). 

 

Figure 3.3. Physiological studies of OE1 and OE2. Germination assay in MS (A), MS supplemented with 175 mM of 

NaCl (B) and 0,5 μM ABA (C). The graph shows the percentage of germination rate under salt (D) and cotyledon 
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emergence under ABA (E) at 5 days for wild type and two 35S::AdDWD1 lines. Experiments were conducted in 

triplicates. Water loss (F) was calculated by the formula W0-Wt/W0 where W is normalized by final dry weight. One, 

two or three asterisks indicate P value minor to 0,5, 0,01 and 0,001 respectively. Significance was calculated with 2-

way ANOVA with Dunnet correction for multiple comparisons. The experiment consisted of five replicas. 

 

The effect of AdDWD1 overexpression was also studied by checking seven different stress-

related genes: dehydration inducible genes DREB2A (Dehydration-responsive element-binding 

protein 2A ) and RD29A, salt responsive genes SOS1, SOS3 and P5CS and ABA responsive genes 

ABI1 and COR15A (also drought responsive). Results show that under salt stress, the selected genes 

are mainly upregulated in WT and overexpressing lines except for SOS3. Only the DREB2A and 

SOS3 genes expression levels showed a statistically significant reduction of expression in both OE 

lines compared to WT (Figure 3.4). 

 

Figure 3.4. qRT-PCR of target stress-related genes. One week old seedlings were exposed to 150 mM NaCl for 4 h. 

Transcript levels of stress-responsive genes were detected with gene-specific primers and Actin II was used as 

reference in 2(-Delta Delta C(T)) method. Errors bars represent standard deviation among three biological replicas 

with significant difference marked with asterisks and calculated by one-way ANOVA corrected with Sidak test for 

multiple comparisons (***P < 0,001). 
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Expression pattern of AdDWD1 Arabidopsis homolog. 

AdDWD1 Arabidopsis closest homolog (At1g78070) retrieved from TAIR database was 

used in a GUS staining assay. A 1853 bp region before the starting codon was fused with a GUS 

reporter gene and expression was checked under the microscope for different organs. The level of 

GUS staining is reported for a strong and a weak line of transformed Arabidopsis in Figure 3.5. The 

staining in the tissues varies depending on the developmental stage of the plant; in fact a strong 

staining was detected in one week old seedling with particular emphasis on the cotyledon, leaf 

vascular tissue, trichomes and main root (Figure 3.4, A and B) and on the primary root of 

germinated seeds, excluded the root tip (G,H). In adult organs, such as flowers or siliques the 

staining was very little if absent (Figure 3.5 C, D, F, G). 

 

Figure 3.5. Two GUS reporter lines of the At1g78070 promoter. A-B) Seedling; C-D) Floral organ; E-F) Siliques; G-H) 

Seed after primary root emergence. 
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3.4 Discussion 

 

AdDWD1 is a DWD protein. 

DWD proteins (also known as WDXR) constitute a subgroup of the WD40 superfamily in 

which the key features is a 16 residues sequence at the end of one repeat with typical closing quartet 

WDXR (He et al., 2006). The proteins having this pattern are demonstrated to link with CUL4-

DDB1 complex with particular importance of the Arg at the 16
th

 position that is essential for 

binding DDB1 (Lee et al., 2008). AdDWD1 shows the required pattern to be a DWD protein (Figure 

3.1B), leads to the hypothesis that this protein participates to protein-protein interaction in the 

CUL4-DDB1 system. The phylogenetic reconstruction of closely related homologs in Poaceae 

(Figure 3.1C) reliably identified the orthologs of AdDWD1, indicating the evolutionary 

conservation of this gene across the 107 to 129  million years since the estimate origin of the family 

(Prasad et al., 2011). The observation that in the majority of the analysed taxa the protein is present 

in single copy, further suggests its functional specialization. None of the orthologous proteins have 

been characterized in depth, so AdDWD1 is the first representative of this subclade of DWD 

proteins. By contrast to clade A1, where orthologs from all the species except S. italica are present, 

in clade A2 gene loss happened in O. Sativa, B. distachyon and Z. mays, suggesting that 

subfunctionalization of genes in this clade happened early after the gene duplication at the base of 

clade A1 and A2. The lineage-specific gene loss observed in S. italica further indicate that in this 

species the function of AdDWD1 may have been compensated by neofunctionalization of the clade 

A2 paralogue, Si030175m. 

 

AdDWD1 is involved in Arundo donax osmotic and salt response. 

In the transcriptome released for Arundo donax under water stress, the AdDWD1 transcript 

(referred to Unigene32775) was upregulated by about 3-fold and 5-fold times after one hour 

treatment in shoot and root, respectively (Fu et al., 2016). The high responsiveness of AdDWD1 to 

osmotic-related stresses (PEG and salt) was confirmed in this study, while the gene transcriptionally 

reacts much less in the response to the other non-osmotic related stress we tested (cadmium and 

cold). (Figure 3.2).  The involvement of AdDWD1 in the early stages of osmotic stress response 

may possibly require the ubiquitin system, which under stress serves for misfolded protein cleavage 

(Stone, 2014). Several WD40 and DWD proteins are known to be directly involved in abiotic 

stresses and greatly upregulated during these events (Kong et al., 2014; Luo et al., 2016; Mishra et 

al., 2014), implying a direct function in defence mechanisms. Worth of note, the general 
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transcriptional response greatly differed in the two tissues used in this study; in fact, roots reacted 

faster and stronger, while shoots had a delayed response, if any, in non-osmotic stresses. The 

reaction responses elicited by the abiotic stresses tested in this study are known to be partly 

overlapping and share part of the regulatory networks controlling them in time and space. PEG, salt 

and cold stresses cause all water stress, either by decrease of extracellular water potential (PEG and 

salt) or by membrane permeabilization caused by decrease fluidity, resulting in increased water loss 

from the apoplastic compartment. In turn, water stress causes photosynthetic limitation and 

photodamages consequent to reactive oxygens species (ROS) production (Choudhury et al., 2016). 

In-vivo time-resolved analysis of transcription suggests that AdDWD1 is primarily involved in the 

early stage of salt stress sensing/response, as activation of its transcription is observed in both root 

and shoot as early as 1h 30min after stress application and upregulation in the root is the highest 

among all types of stress tested. The upregulation in response to heavy metal and cold is most likely 

the result of the secondary osmotic and oxidative stresses. The responsiveness of AdDWD1 to 

osmotic stress is also confirmed by the strong, but slower transcriptional response observed in the 

roots and the very delayed activation in the shoots, where water stress is effectively buffered by root 

pressure in grasses (Prieto et al., 2012).  

The low abundance of the AdDWD1 transcript in the majority of unstressed A. donax tissues 

and organs indicates that its expression is tightly controlled, a feature shared by many stress-

responsive genes. The highest gene expression was detected in mature leaves and roots (Figure 

3.2I). indicating that in organs not actively growing the AdDWD1 protein may take part in the 

constitutive process of protein turnover and/or degradation. respect to stem (node and internode) or 

bud tissues. 

 

Arabidopsis lines 35S::AdDWD1 have reduced fitness under stress during germination. 

The physiological analyses carried out in transgenic Arabidopsis overexpressing AdDWD1 

further support the greater involvement of the gene in salt as compared to drought stress. In recent 

years, much effort was done in understanding the biological role of WD40 protein finding a large 

spectre of functions in the plant system such as meristem organization, organ development and 

apoptosis (van Nocker and Ludwig, 2003). It is also known that in plants, some DWD genes are 

directly involved in abiotic response and specifically in drought. Loss of function mutations DWD 

genes often lead to increased sensitivity to stress (Lee et al., 2010, 2011), while overexpression is 

often associated to increased tolerance (Kong et al., 2014). However, the overexpression of a 

foreign gene can also lead to developmental problems especially in the early stages (e.g. Guleria et 

al., 2014; Zhang and Schroeder, 2010). Our physiological study on overexpressing lines 
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35S::AdDWD1 shows no differences in growth under normal condition but severe drawbacks in 

response to stress, especially at the germination stage. In fact, seedling root emergence and growth 

were greatly reduced under salt and ABA stress and detached leaves of adult plants lost water faster 

than the WT (Figure 3.3). It is also relevant to notice that the GUS-promoter lines of Arabidopsis 

homologue are expressed especially during seed germination (Figure 3.5G, 3.5H) and seedling 

stage (Figure 3.5A, 3.5B), that is consistent with a responsive pattern of OE lines at very early 

stages. It is however possible that lineage-specific differences among monocots and dicots may 

exist, as suggested by the preferential expression of AdDWD1 in fully developed leaves of A. 

donax. A possible explanation of these results can be made by considering that some WD40 protein 

can act also as negative regulator in stresses (Stone, 2014), suppressing other responsive pathways. 

This is supported by the finding of a lower expression of stress-related genes such as DREB2A and 

SOS3 that are involved in the ABA-independent pathway (Yoshida et al., 2014) to cope with 

osmotic and salt stress, respectively (Figure 3.4). In Arabidopsis for example, negative regulators of 

DREB2A are the DREB2A-INTERACTING PROTEIN1 (DRIP1) and DRIP2 (Qin et al., 2008). It is 

demonstrated that DRIP1 and DRIP2 inactivate DREB2A protein under non-stress condition and 

the double mutant drip1 drip2 has an increased expression of many stress-responsive genes induced 

by dehydration, especially those regulated by DREB2A. Also, Arabidopsis SOS3 gene have a 

negative regulator for its expression; in fact transcription factor AtMyb73 is highly upregulated only 

under salt stress and its knockout mutant has improved salt tolerance (Kim et al., 2013). 

On the other hand, it is possible that AdDWD1 may interfere in overexpressing Arabidopsis 

lines with formation of the CUL4-DDB1-WD40 complex. Considering the high similarity with the 

homolog at the DWD box that binds to DDB1 (He et al., 2006), we can hypothesize that the CUL4-

DDB1 can form a complex with AdDWD1 protein but this is not able to complete the conjunction 

with the specific target protein. This may eventually lead to an interruption of the response pathway 

with decrease stress tolerance of the plant. Further studies to characterize AdDWD1 targets will be 

required to elucidate its precise functional role and mechanism of action in vivo. 

 

3.5 Conclusions 

 

WD40-repeats proteins are abundant in plants and with high functional differentiation 

(Mishra et al., 2012b) making them a difficult and interesting target for functional characterization. 

In this work, we have characterized an A. donax gene, which is greatly upregulated in roots and to a 

lower extent shoots during osmotic stresses (PEG and Salt), while cold and metal treatments 
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induced expression change only in roots. Moreover, 35S::AdDWD1 Arabidopsis transgenic lines 

show a lower germination in response to salt and ABA during the germination stage, probably due 

to the inability of the giant reed protein to bind the target in the CUL4-DDB1-WD40-Target 

complex. Taken together, these results imply a direct involvement of AdDWD1 primarily in salt and 

possibly osmotic stress response, and secondarily in water limitation stress through an ABA-

dependent pathway. Its role as possible repressor of salt and osmotic responses in non-stressed 

condition, however, will require the further elucidation of the protein(s) it likely targets for 

degradation by the ubiquitin pathway. 
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4.1 Introduction 

 

Reverse transcription real-time quantitative polymerase chain reaction (qRT-PCR) is a well-

established and widely used technology for gene expression analyses in many biological fields. Its 

precision and sensitivity allow to accurately measure the transcriptional variations of a gene among 

different samples, giving precious information on its function through the characterization of its 

characteristic tissue- or stress-specific expression pattern. Two methods are used in qRT-PCR 

experiments: absolute and relative quantification. The absolute quantification identifies the exact 

copy number of transcribed RNA in a given sample. This method relies on a pre-built calibration 

curve that associates for each primer combination (specific for the gene of interest) known 

concentrations of cDNA template standards with the fluorescence data produced during 

amplification. Fitting the real-time PCR data from unknown samples to the calibration curve, thus, 
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provides the extrapolated absolute number of copies of target gene (Leong et al., 2007). Relative 

quantification compares the gene of interest with an internal reference gene to obtain the expression 

variation (Ginzinger, 2002). This method requires a gene (or multiple genes) with stable expression 

levels as calibrator to be compared with the gene of interest in order to eliminate possible sources of 

errors/differences in sample preparation (e.g. RNA extraction, quantification, reverse transcription). 

Between the two methods, relative quantification is widely used to assess quantitative difference of 

expression of target genes in test conditions with respect to a control condition (Pfaffl, 2001). 

Despite many advantages, the most critical aspect of relative quantification is the choice of the 

internal control, that, ideally, should be expressed at constant level in every condition and tissue/cell 

type (Bustin et al., 2009). In literature, it has sometimes been implicitly assumed that the most 

common housekeeping genes can be safely used as references in different conditions and/or species 

without previous validation (Kozera and Rapacz, 2013). The inherent lack of perfectly stable genes 

in all tissues and conditions, however, very likely violates this assumption. Thus, preparation of any 

new qRT-PCR experiment should also include the experimental choice and validation of the best 

internal controls (Guénin et al., 2009). In plants, several tested candidate genes play a role in basic 

cellular structure and basic metabolism, like 18S rRNA (18S ribosomal RNA), 28S rRNA (28S 

ribosomal RNA), ACT (Actin), EF-1α (Elongation Factor-1α), GAPDH (glyceraldehyde-3-

phosphate dehydrogenase gene), TUB- α (α-tubulin), TLF (translation factor), RPII 

(RNApolymerase II). Nevertheless, their basic functions do not exclude possible variability among 

many conditions or growing stage, so that they need to be proven adequate case by case (Kozera 

and Rapacz, 2013).  

Until recent years only few commonly used plant reference genes were available due to 

limited sequence information for the majority of non-model species. With the advent of next 

generation sequencing, however, large-scale transcriptome analysis can provide tens to hundreds of 

possible reference genes for virtually any species of interest at accessible costs. RNA-Seq 

technology allows to simultaneously detect virtually all the expressed transcripts of a plant sample, 

providing at the same time also estimates of their expression levels (Yim et al., 2015). The choice of 

the best reference, though, is not straightforward and to help in this task many algorithms have been 

released; among all the most widely used are geNorm (Vandesompele et al., 2002), NormFinder 

(Andersen et al., 2004), BestKeeper (Pfaffl et al., 2004), RefFinder (Xie et al., 2012) and Delta Ct 

(Silver et al., 2006; Vandesompele et al., 2002). While most of these tools are equivalent from 

many points of view, not all of them have been implemented to take into account the same 

parameters of qRT-PCR. For example, RefFinder algorithm is an online tool that calculates a rank 

for the other four algorithms but it does not consider the efficiency of each primer pair, assuming it 
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a priori approximately 100% (De Spiegelaere et al., 2015). Similarly, delta Ct is based on pairwise 

comparison of raw Cq values among candidates without efficiency correction, which in case of 

variable amplification efficiencies could lead to biased results. 

Arundo donax L. (commonly known as giant reed) is a fast-growing grass that belongs to 

the Poaceae family and recently became a target species for biofuel production. Its rusticity, 

together with the high biomass production (up to 40 tons/ha) and low input requirements, make it 

one of the best options as non-food energy crop, especially in the Mediterranean area where it is 

native (Hardion et al., 2014). Several research studies characterized the major agronomic features of 

this crop, focusing mainly on the sustainability of its cultivation in different conditions or 

environments (Dragoni et al., 2015; Mann et al., 2012; Mantineo et al., 2009; Nassi o Di Nasso et 

al., 2010), especially in marginal lands (Nassi o Di Nasso et al., 2013). Thanks to its high resistance 

to abiotic stress, A. donax became also an important species in remediation of soil contaminated by 

heavy metals (Papazoglou et al., 2005). With the recent development of transcriptomics resources 

for this non-model species (Fu et al., 2016; Sablok et al., 2014; Barrero et al., 2015) a large number 

of gene sequences is now available for functional characterization. To date, however, no validated 

set of reference genes specific for expression studies in A. donax is available.  

To fill this important gap in the functional genomics toolbox of A. donax, in this study 8 

candidate reference genes were selected and ranked using plant material subjected to three different 

stresses: osmotic, heavy metal and heat shock. Among these candidates, six have been previously 

used as controls while two other genes were newly selected candidates, which have been obtained 

from transcriptome analyses of giant reed and sorghum, respectively. Finally, to validate the former 

results in a real case, we compared the consistence of expression patterns/levels of A. donax 

DREB2A (Dehydration-Responsive Element Binding Protein 2) (Sakuma, 2006), a well-known 

drought-related gene, using the two best and the two worst reference genes. 

 

4.2 Results 

 

Gene selection and amplification specificity. 

In this study, we selected 8 candidate housekeeping genes form different sources. Four of 

them, namely TLF (translation factor), Act2 (Actin2), Tub α (Alpha tubulin) and EF-1 α 

(Elongation factor 1-alpha), have been already used in qRT-PCR experiments in foxtail millet 

(Kumar et al., 2013)(Kumar; 2013), the species with a sequenced genome which is most closely 
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related to Arundo donax (Sablok et al., 2014). For all these genes, A. donax homologs used for 

primer design shared a nucleotide similarity greater than 91% to foxtail millet references. Foxtail 

millet published primers were slightly adapted to giant reed with exception of TLF for which 

completely new primers were designed (Table 4.1, Supplementary File 4.1). By mining the 

sorghum transcriptome (Shakoor et al., 2014), we extracted two more candidates: the commonly 

used GAPDH (glyceraldehyde-3-phosphate dehydrogenase 2) and RPN6 (26S proteasome non-

ATPase regulatory subunit 11). A. donax homologs share respectively 91% and 92% of sequence 

similarity to their closest sorghum homologs (Supplementary File 4.1). The other gene from 

sorghum had been used in a previous study (Fu et al., 2016) as reference species to extrapolate an 

Actin gene (AC1) from Arundo (89% similarity). Finally, one new gene pDUF221 has also been 

considered as candidate gene for relative expression quantification through dissection of water-

stressed giant reed transcriptome (Fu et al., 2016). RPN6 and pDUF221 genes have been selected 

after analysis of their coefficient of variation in different organs and stress conditions, resulting 

respectively 9.38% and 8.01%. Each primer pair gave the expected length and specificity of the 

amplification when checked with agarose gel 2% and melt curve (Supplementary File 4.1). 

Moreover, for all primer pairs, amplification efficiency resulted to be between 92.85% and 104.03% 

and correlation coefficient (R
2
) between 0.987 and 0.998 (Table 4.1) (Supplementary File 4.6). 

 

Gene 

symbol 

Gene Name Arundo 

Accession 

Primer Pair (5'-3') Product 

size (bp) 

E (%) R2 Tm 

(°C) 

Ref 

AC1 Actin Unigene036290 
F: TCTTGGCTTGCATTCTTGGG 

93 100,72 0,998 81,5 
(Fu et al., 

2016) R: TGGATTGCGAAGGCTGAGTAC 

Act2 Actin 2 Unigene057037 
F: CGCATACGTGGCACTTGACT 

126 92,85 0,987 83,5 
(Kumar et 

al., 2013) R: GGGCATCTGAACCTCTCTGC 

EF-1α 
Elongation 

factor 1-alpha 
Unigene076509 

F: TGACTGTGCTGTGCTCATCA 
133 97,13 0,996 83 

(Kumar et 

al., 2013) R: GTTGCAGCAGCAGATCATCT 

GAPDH 

Glyceraldehyde 

3-phosphate 

dehydrogenase 

Unigene069707 

F: TGACAAGGAGAAGGCTGCTG 

167 103,83 0,997 82,5 
(Shakoor et 

al., 2014) R: GAGCAAGGCAGTTTGTGGTG 

pDUF221 

Probable 

membrane 

protein DUF221-

related Calcium-

dependent 

channel 

Unigene070087 

F: GACAAAGGAGTCAGCCGTCA 

91 99,94 0,998 81 
(Fu et al., 

2016) 

R: AACGTGCTTCGGACTTGGAT 

RPN6 

26S proteasome 

non-ATPase 

regulatory 

subunit 11 

Unigene067565 

F: CACACGACTAGCAGCTTTCAAG 

78 104,03 0,993 80 
(Shakoor et 

al., 2014) R: TTCAAACGTCGGGAAGGTTG 

TLF Translation Unigene076539 F: GACTTCATGGGTGGTGCTGA 110 100,32 0,998 80 (Kumar et 
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Factor R: TGTTTGTTGGGGGACTTGCT al., 2013) 

TUB α Tubulin alpha Unigene068813 
F: TACCAGCCACCCTCAGTTGT 

121 96,24 0,996 85 
(Kumar et 

al., 2013) R: AGTCGAACTTGTGGTCAATGC 

DREB2A* 

Dehydration-

Responsive 

Element Binding 

Protein 2 

Unigene057213 

F: TCCAGCAGGTAGATCATCTCC 

98 98.59 0.999 78 
(Fu et al., 

2016) 
R: AGCAGGTTCGGTAATAGGCA 

Table 4.1. Candidate reference genes and their primer sequences used in this study, listed by alphabetical order. 

Underlined primers/bases are newly design specific for giant reed. E (%) is primer efficiency calculated with standard 

curves and formula E= 10^ (-1/slope) *100; R
2
 is the correlation coefficient; Tm is the melt curve temperature. Asterisc 

(*) indicates the validation gene. 

 

Gene expression profile of candidate reference genes. 

Gene expression profile was evaluated for the 8 A. donax candidate reference genes by 

quantitative real-time PCR. To assess the transcriptional variation of each gene, cycle threshold 

(Cq) value was considered among all the samples (2 A. donax tissues for 3 stress conditions, each 

with 5 time points plus 1 pre-stress control) (Supplementary File 4.2). The highest Cq value was 

detected for the AC1 gene (lowest expression: 28.58 cycles), while the lowest Cq value was 

measured for GAPDH (highest expression: 16.16 cycles). Mean expression values per gene varied 

from 25.27 of pDUF221 to 18.84 of GAPDH. To provide a more informative stability index, we 

calculated also the difference between 75
th

 and 25
th

 percentile (ΔP), which is inversely proportional 

to the spread of the data (Mar et al., 2009). Based on this criterion, RPN6 (ΔP= 0.82) is the most 

stable gene, followed by Act2 (1.07), GAPDH (1.01), TUB α (1.27), pDUF221 (1.31), TLF (1.32), 

EF-1α (1.48) and AC1 (P= 1.87) (boxes in Figure 4.1). This stability ranking among genes is also 

confirmed by the coefficient of variation (CV) that ranges from 2.5% of RPN6 to 6.24% of AC1 

(Supplementary File 4.3). Comparison of the expression profile of each gene from 0 (control) to 24 

h after stress application (Supplementary File 4.7) showed that GAPDH was always the most 

expressed gene in every condition/tissue. The lowest expression levels were mainly associated to 

pDUF221, except for heat shock stress. Only for this stress, in shoot RPN6 has higher Cq at 3h and 

6h and, in root, RPN6 and AC1 have higher Cq values for the whole time course (Supplementary 

File 4.7). 



- 72 - 

 

 

Figure 4.1. Cq values for 8 candidate genes. Boxes extend from the 25th to 75th percentiles, whiskers represent the 

maximum and minimum values, the line across the box represent the median value. 

 

Overall stress analysis.  

All treatments, divided according to tissue, were included in an overall analysis to 

understand which candidate gene is the most stable across samples. For shoot tissue, the results are 

heterogeneous, with a prevalence of EF-1α and RPN6 in the top 3 genes for all the algorithms 

(Table 4.2). In this case, geNorm indicates TLF and TUB α as the most stable genes, while they are 

ranked as 6
th

 and 4
th

 by NormFinder and as last and 5
th

 by BestKeeper. The least stable genes are 

instead consistently AC1 and pDUF221 with the only exception of BestKeeper that identifies, as 

said, TLF as worst ranking gene. Also, in root EF-1α and RPN6 genes are always in the top 3 

positions (with just the intrusion of Act2 ranked first by BestKeeper), while pDUF221 and AC1 are 

relegated strictly to the last two ranks by all algorithms. Taking in to account both shoot and root 

organs, RPN6 is the candidate gene with the best scores in the three algorithms followed by EF-1α 

(first, second and 6
th

) (Supplementary File 4.4). Overall intergroup and intragroup analyses were 

also carried out for all samples with NormFinder. This analysis graphically shows the variation of 

each gene with respect to four subgroups: control, osmotic, heavy metal and heat shock stresses 

(Supplementary File 4.8A, B). Analysis of the best combination of two genes is consistent with 

single stability value in root, where EF-1α+RPN6 (combination value of 0.105) is the best pair of 
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genes. More surprisingly, in shoot the best pair of genes suggested is RPN6 (second, S = 0.188) and 

TLF (6
th

, S= 0.320) with a combination value of 0.091. To notice that also geNorm algorithm 

includes TLF in the best pair of primers together with TUB α. Taking together shoot and roots, 

NormFinder suggests the combination between RPN6 and GADPH (the latter classified at the 6
th

 

position as single gene) (Supplementary File 4.8C) These differences with respect to the results of 

the gene by gene analyses are due to the fact that NormFinder tends to enhance intergroup stability 

by balancing over/under expression of the two genes to be the closest as possible to 0 in each 

subgroup.  

Rank 

Shoot Root 

GeNorm NormFinder BestKeeper GeNorm NormFinder BestKeeper 

Gene Value Gene Value Gene Value Gene Value Gene Value Gene Value 

1 
TLF 
TUB α 

0.421 EF-1α 0.132 RPN6 1,00±0,25 
EF-1α 
RPN6 

0.353 RPN6 0.111 Act2 2,05±0,45 

2 EF-1α 0.480 RPN6 0.188 GAPDH 2,00±0,39 TLF 0.409 EF-1α 0.129 EF-1α 2,40±0,48 

3 RPN6 0.559 TUB α 0.232 EF-1α 2,15±0,46 TUB α 0.477 TLF 0.234 RPN6 2,02±0,49 

4 GAPDH 0.626 Act2 0.234 Act2 2,70±0,61 GAPDH 0.571 TUB α 0.270 TLF 2,65±0,60 

5 Act2 0.655 GAPDH 0.245 TUB α 2,69±0,62 Act2 0.636 Act2 0.306 GAPDH 3,44±0,63 

6 AC1 0.700 TLF 0.320 pDUF221 2,69±0,69 pDUF221 0.840 GAPDH 0.421 TUB α 2,76±0,64 

7 pDUF221 0.792 AC1 0.470 AC1 3,08±0,72 AC1 1.012 pDUF221 0.783 pDUF221 3,13±0,78 

8     pDUF221 0.568 TLF 3,32±0,77     AC1 0.819 AC1 5,82±1,41 

Table 4.2. Overall stress results for different algorithms divided in shoot and root. Column “value” corresponds to M 

in geNorm, S in NormFinder and CV±SD in BestKeeper. 

 

Water/Osmotic stress analysis.  

Water stress was induced by adding 15% of PEG to the hydroponic solution which 

decreases the osmotic pressure of the media, consequently inducing osmotic and water limitation 

stress in the plants (Nicholas and Money, 1989) without toxic effects in the short term (Lawlor, 

1970). Reference gene analyses under simulated drought condition in A. donax shoot show a high 

and shared rank for RPN6 (first in NormFinder and BestKeeper, second in geNorm) followed by 

EF-1α gene (first in geNorm, 4
th

 in NormFinder and third in BestKeeper) (table 4.3). In roots, RPN6 

is confirmed as the most stable gene followed by GAPDH that has the best value in geNorm (shared 

with RPN6) and BestKeeper. Using both organ‘s samples, RPN6 and GADPH are the best two 

genes (Supplementary File 4.4), resulting in the top 3 ranks provided by all programs. The lowest 

stability values result from the AC1 and pDUF221 genes for all algorithms and tissues with 

exception of BestKeeper that ranks pDUF221 4
th

 in root and TLF and EF-1α as last in the shoot + 

root analysis. 
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Rank 

Shoot Root 

GeNorm NormFinder BestKeeper GeNorm NormFinder BestKeeper 

Gene Value Gene Value Gene Value Gene Value Gene Value Gene Value 

1 
TLF 
EF-1α 

0.293 RPN6 0.119 RPN6 1,16±0,29 
RPN6 
GAPDH 

0.266 RPN6 0.072 GAPDH 1,73±0,32 

2 RPN6 0.345 TUB α 0.141 GAPDH 1,51±0,30 EF-1α 0.308 EF-1α 0.113 RPN6 1,37±0,33 

3 TUB α 0.377 TLF 0.208 EF-1α 1,87±0,40 TLF 0.392 GAPDH 0.203 EF-1α 2,22±0,44 

4 GAPDH 0.436 EF-1α 0.310 TUB α 1,73±0,41 Act2 0.457 TLF 0.257 pDUF221 1,87±0,47 

5 Act2 0.485 GAPDH 0.359 TLF 1,75±0,42 TUB α 0.504 Act2 0.261 Act2 2,53±0,56 

6 AC1 0.527 Act2 0.365 Act2 2,02±0,47 pDUF221 0.605 TUB α 0.264 TLF 2,58±0,57 

7 pDUF221 0.656 AC1 0.603 AC1 2,50±0,59 AC1 0.705 AC1 0.665 TUB α 3,45±0,78 

8     pDUF221 0.726 pDUF221 2,61±0,68     pDUF221 0.676 AC1 4,75±1,09 

Table 4.3. Osmotic stress results for different algorithms divided in shoot and root. Column “value” corresponds to 

M in geNorm, S in NormFinder and CV±SD in BestKeeper. 

 

Heavy metal stress analysis. 

A. donax is considered a suitable plant for phytoremediation of contaminated soil. Among 

the heavy metals that can affect soil quality and reduce plant productivity, cadmium (Cd) is one of 

the most toxic (Benavides et al., 2005). The giant reed seems, however, to cope with it without 

physiological adaptation, which is an important feature for phytoremediation (Papazoglou et al., 

2007, 2005). When subjected to cadmium toxicity stress, reference gene performances are more 

heterogeneous respect to osmotic stress: in shoot, RPN6 and TUB α rank in the top3 for all the 

programs, but in root TLF is among the best 3 followed by EF-1α (first, second and 4
th

) (Table 4.4). 

On the other hand, the least stable gene in shoot is pDUF221, in root is AC1 and in the full set of 

heavy metal stressed samples are GADPH and AC1 (Table 4.4). To notice that BestKeeper indicates 

as most stable candidate pDUF221, which is instead ranked 4
th

 by geNorm and last by NormFinder. 

Interestingly, analysis of shoot and root together put pDUF221 always in the top 3 positions, 

indicating that this gene is the most suitable across different organs for heavy metal stress 

treatments, but less valuable if organs are taken separately (Supplementary File 4.4). Other general 

candidate genes to be used in studies encompassing both root and shoot could alternatively be the 

common Act2 (ranked 4
th

, second and first) and TLF (ranked third, first and third). 
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Rank 

Shoot Root 

GeNorm NormFinder BestKeeper GeNorm NormFinder BestKeeper 

Gene Value Gene Value Gene Value Gene Value Gene Value Gene Value 

1 
RPN6 
GAPDH 

0.303 TUB α 0.150 RPN6 1,18±0,29 
EF-1α 
RPN6 

0.331 TLF 0.117 pDUF221 0,90±0,23 

2 TUB α 0.320 RPN6 0.260 GAPDH 2,12±0,41 TLF 0.360 EF-1α 0.139 TLF 1,48±0,33 

3 AC1 0.358 AC1 0.311 TUB α 2,26±0,51 Act2 0.388 Act2 0.160 RPN6 1,51±0,36 

4 Act2 0.392 TLF 0.324 pDUF221 2,10±0,55 pDUF221 0.448 RPN6 0.162 EF-1α 2,01±0,40 

5 EF-1α 0.450 Act2 0.348 Act2 2,49±0,55 TUB α 0.492 GAPDH 0.272 Act2 1,93±0,43 

6 TLF 0.489 EF-1α 0.391 EF-1α 2,59±0,55 AC1 0.559 TUB α 0.273 GAPDH 2,76±0,49 

7 pDUF221 0.518 GAPDH 0.449 AC1 2,60±0,58 GAPDH 0.627 AC1 0.483 TUB α 2,74±0,62 

8     pDUF221 0.737 TLF 3,02±0,68     pDUF221 0.789 AC1 3,35±0,78 

Table 4.4. Heavy metal stress results for different algorithms divided in shoot and root. Column “value” corresponds 

to M in geNorm, S in NormFinder and CV±SD in BestKeeper. 

 

Heat shock stress analysis. 

Heat shock is an important factor that affects plant physiology and growth (Bita and Gerats, 

2013). The capability of A. donax to survive in warm environments is a particular and interesting 

trait of this plant, which can be relevant to forecast its productivity as heat spells become more 

frequent. Gene stability in heat condition (42 °C) sees the RPN6 gene as the most stable reference 

gene in shoot (third, first and first for geNorm, NormFinder and BestKeeper respectively), root 

(first, first and second) and also considering both organs together (always first) (Table 4.5). Other 

suitable reference genes for this stress condition are EF-1α (first, second, second) and TUB α 

(second, third, 4
th

) in shoot, EF-1α (first, second, first) and Act2 (third, third and 4
th

) in root and 

TLF (first, second, 4
th

) in overall heat shock (Supplementary File 4.4). Again, the genes with overall 

lower ranking across algorithms are pDUF221 and AC1 in all the conditions. 

Rank 

Shoot Root 

GeNorm NormFinder BestKeeper GeNorm NormFinder BestKeeper 

Gene Value Gene Value Gene Value Gene Value Gene Value Gene Value 

1 
TLF 
EF-1α 

0.315 RPN6 0.133 RPN6 0,95±0,24 
EF-1α 
RPN6 

0.360 RPN6 0.118 EF-1α 1,92±0,39 

2 TUB α 0.367 EF-1α 0.190 EF-1α 1,72±0,37 TLF 0.411 EF-1α 0.131 RPN6 1,88±0,46 

3 RPN6 0.398 TUB α 0.282 GAPDH 2,18±0,42 Act2 0.488 Act2 0.219 GAPDH 2,54±0,48 

4 GAPDH 0.544 TLF 0.312 TUB α 2,11±0,48 GAPDH 0.542 TLF 0.239 Act2 2,28±0,50 

5 Act2 0.599 GAPDH 0.439 Act2 2,17±0,48 TUB α 0.598 TUB α 0.292 TLF 2,48±0,57 

6 AC1 0.662 Act2 0.445 AC1 2,15±0,51 pDUF221 0.807 GAPDH 0.352 pDUF221 2,69±0,65 

7 pDUF221 0.745 AC1 0.484 TLF 2,42±0,56 AC1 1.019 AC1 0.849 TUB α 3,23±0,76 

8     pDUF221 0.496 pDUF221 3,56±0,90     pDUF221 0.851 AC1 5,51±1,41 

Table 4.5. Heat Shock results for different algorithms. Column “value” corresponds to M in geNorm, S in NormFinder 

and CV±SD in BestKeeper. 
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geNorm best reference gene number. 

geNorm excel add-in is a useful tool for calculation of the best number of genes that should 

be used together in a relative qRT-PCR experiment. Therefore, it has been used in this study to 

predict the optimal number of reference genes to use in each stress experiment (osmotic, heavy 

metal and heat shock). As expected, the number of references depends on the experimental settings: 

considering shoot and root together geNorm indicates 3 genes as the most suitable for single 

stresses and 4 genes considering all stresses (Figure 4.2A). If root and shoot are considered 

separately, all the values for single stress drop below the suggested threshold of 0.15 (Figure 4.3B-

C). Nevertheless, in shoot, by grouping the three stresses, the value is just above to the threshold 

limit when 2 genes are used while it lays on the threshold with 3. 

 

Figure 4.2. geNorm pairwise variation (Vn/Vn+1) root and shoot combined (A), only shoot (B) and only root (C) for 

different treatments (PEG, cadmium, heat shock) and comprising all of them together. 
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Reference gene validation. 

To demonstrate the reliability of the newly analysed reference genes in A. donax, a 

quantitative real time experiment on known DREB2A (Dehydration-Responsive Element Binding 

Protein 2) gene was made. DREB2A is one of the key genes in plants triggering the response to both 

drought and heat shock. We compared the expression profile of DREB2A in shoot under osmotic 

stress against two stable genes (RPN6 and EF-1 α), their combination (RPN6+EF-1 α) and the least 

stable genes (AC1 and pDUF221) based on table 4.3. Fold change of DREB2A was calculated with 

the comparative Ct method (Pfaffl, 2001). The expression pattern among RPN6, EF-1α and their 

combination is consistent with a 2-fold increase of DREB2A expression at 6h and 11h and about 4-

fold increase at 24h (Fig. 4). On the other hand, the pattern obtained using AC1 as reference 

displays an upwards-shifted trend, with a 2-fold increase since the beginning and a 6-fold increase 

from 6h on. When pDUF221 is used as reference, the expression pattern decrease at 3h, 6h, and 11h 

to finally grow again at 24h. 

 

Figure 4.3. Fold change of DREB2A (Dehydration-Responsive Element-Binding protein 2) in shoot under osmotic 

stress. Two most stable genes (RPN6 and EF-1α), their combination (left of the vertical dotted line) and the least 

stable genes AC1 and pDUF221 (right of dotted line) are considered. 
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4.3 Discussion 

 

Real Time PCR is a powerful technique for gene expression profiling and functional 

characterization of genes. Its accuracy, however, is critically dependent from the choice of reference 

genes whose expression is strictly proportional to the total mRNA amount in the samples to be 

compared (Guénin et al., 2009). Therefore, ideal reference genes should have the same expression 

levels (measured in terms of Cq value) among different conditions, tissues, developmental stages 

and crop varieties (Bustin et al., 2009). In reality, though, gene stability depends greatly on the 

plant-environment system so that different stress conditions, organs or cultivars can bring 

undesirable variations in expression of reference genes selected without specific validation, possibly 

leading also to erroneous quantification (Kozera and Rapacz, 2013). For this reason, a full set of 

possible reference genes should be developed and systematically tested for each species whenever 

the experimental conditions change. In this study, 8 candidate reference genes were selected for 

Arundo donax L., an emerging non-food energy crop (Angelini et al., 2009): AC1 (Actin), 

pDUF221 (Probable membrane protein DUF221-related Calcium-dependent channel), TLF 

(Translation Factor), Act2 (Actin 2), TUB α (Tubulin alpha), EF-1α (Elongation factor 1-alpha), 

RPN6 (26S proteasome non-ATPase regulatory subunit 11) and GAPDH (Glyceraldehyde 3-

phosphate dehydrogenase). The aim was to evaluate the overall performance of these genes as 

references for qRT- PCR, but also to provide a detailed indication on which gene is better fit for 

different organ/stress combinations. The three kinds of abiotic stress applied (osmotic, heavy metal 

and heat shock) are among the most interesting ones to characterize the functional bases of A. donax 

tolerance to adverse environmental conditions. Three algorithms were applied to the Cq values to 

measure the stability of the candidate genes: geNorm, NormFinder and BestKeeper. Our results 

show overall consistence among algorithms on the selection of the reference genes, which indicates 

the good performance of the methods. We also divided the analysis in stress and organ subsets to 

identify for each condition the best reference genes. In general, from our study, gene RPN6 is 

always among the top 3 genes in both organs under osmotic stress, heat shock and overall analysis 

that make it a highly suitable reference (Table 4.2). Nevertheless, under heavy metal stress, in root 

and with complete dataset it presents slightly more variability especially when NormFinder and 

BestKeeper algorithms are used. On the other hand, geNorm classifies RPN6 as the best one also in 

root, making the choice difficult in this context. These results are very interesting, giving the fact 

that until now, to our knowledge, this gene was considered as possible reference in quantitative RT-

PCR only in Arabidopsis thaliana (Kim et al., 2014; Lee et al., 2008, 2011) but, to our knowledge, 



- 79 - 

 

never in monocot species. Its putative ortholog in Arabidopsis thaliana (AT1G29150) encodes a 

protein constituting a lid subunit of the 26S proteasome, which is involved in the ubiquitin-

proteasome system (UPS) for degradation of misfolded proteins and stress response (Stone, 2014). 

Other subunits of this large protease complex have been previously suggested as potential source of 

new and more stable reference genes in Arabidopsis (Czechowski et al., 2005). Worth of notice, in 

Arabidopsis RPN6 is classified as cadmium responsive gene (Sarry et al., 2006), that could explain 

the variation we observed in response to this stress even though it still remains more stable than 

some other commonly used reference gene such as EF-1α or AC1 (Table 4.4, Supplementary File 

4.4). This fact is possibly due to the high resistance of giant reed to cadmium treatment as 

demonstrated by (Papazoglou et al., 2007). If shoot and root are considered separately, a useful 

reference gene across different stresses can be the commonly used EF-1α that ranked always in the 

top three positions. From our analysis, this gene often scores better when the organs are taken 

separately, especially in osmotic and heat shock stresses (Table 4.3 and Table 4.5), suggesting 

tissue-specific variability. This makes EF-1α a good reference gene if experimental design does not 

involve the quantitative comparison among different organs. This is particularly interesting when 

compared with the related Setaria italica (L.) P. Beauvois (foxtail millet) gene that was suggested 

as best internal control under drought and salt condition (Kumar et al., 2013). Here, we confirm the 

good stability of gene EF-1α also in giant reed, but mainly when it is used in single tissues. Taking 

both tissues together, the Act2 gene has better performances in each stress condition, especially 

under heavy metal treatment (Supplementary File 4.4). GAPDH is, instead, suitable in osmotic 

stress, where it results the best among commonly used control genes (Table 4.3). This is supported 

also by literature where it has been shown that GAPDH is one of the best references in plants under 

drought and salt stress, but not in other conditions (Guo et al., 2014; Lin et al., 2014; Yang et al., 

2015). 

Finally, we suggest to avoid using two of the candidate genes tested due to their instability: 

pDUF221 (a result somehow expected, as it was selected from transcript analysis of osmotic stress 

only) and AC1. As for the number of reference genes to use, geNorm analysis show some 

interesting traits based on the different employed dataset. In particular, to be notice that the full 

dataset (all the treatments + both organs) drop below the 0.15 threshold only with 4 reference genes, 

while in roots it estimates the need of only 2 genes (Figure 4.2A, 2C). This is significant because it 

implies a differentiation between organs that become difficult to fill in the case of an organ-

comparative study. Another point to be notice is the trend of all stresses in shoot (Figure 4.2B) 

which sees a small change in the values from 2 to 3 references. Based on these results, and 
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considering that 0.15 is an arbitrary value (Vandesompele et al., 2002), we can suggest that the 

inclusion of the third gene gives no significant improvements. 

DREB2A (Dehydration-Responsive Element Binding Protein 2) is a well-known gene, 

associated with drought, salt and heat response, that encodes a transcription factor. The DREB2A 

protein interacts with a cis-acting dehydration-responsive element sequence and activates a 

downstream cascade of drought and heat-responsive genes, thus providing a better tolerance of 

plants to these stresses (Brulle et al., 2014; Matsukura et al., 2010; Sakuma, 2006). To demonstrate 

the reliability of the reference genes in this study we have examined the behaviour of DREB2A 

under different reference candidates: the best two (RPN6 and EF-1α) singularly and together and 

the worse two (AC1 and pDUF221) (Table 4.3). As expected in shoot under osmotic stress, the use 

of references such as RPN6, EF-1α and RPN6+ EF-1α gave a stable expression profile of DREB2A, 

while the choice of genes with higher variability resulted in both a different pattern and fold change 

in its expression (Figure 4.4). 

In summary, this study provides a wide view of the reference genes that can be used or 

avoided in Arundo donax under specific abiotic stresses, making an important step forward towards 

reliable and accurate gene expression quantification in this plant. Moreover, thanks to analysis of 

related species transcriptomes, a new stable gene (RPN6) has been successfully used for relative 

quantification, showing that a deeper comparative analysis of plant transcriptomes can unveil 

additional candidates for a more precise and reliable quantitative real time PCR. 

 

4.4 Material and Methods 

 

Plant materials and stress treatments. 

Cohorts of A. donax cuttings (Sesto Fiorentino, Florence, Italy 43°49'01.8"N 11°11'57.0"E) 

were used in this study. The plant growing condition and procedure for stress treatment were the 

same as those used previously (Fu et al. 2016). For stress treatments, plants at the 5-leaf stage were 

transferred from hydroponic solution to fresh one supplemented with 15% PEG 6000 (osmotic 

stress), 500 µM CdSO4 (heavy metal stress) or prewarmed at 42°C (heat stress). The entire shoots 

and root system were independently collected before and after stress treatments for 1h 30min, 3h, 

6h, 11h and 24h, immediately frozen in liquid nitrogen, and then stored at -80°C till use. Three 

biological replicates were applied for all the treatments at every sampling time point. 
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Gene selection and primer design. 

Among the sequenced genomes deposited in Phytozome, Sorghum bicolor and foxtail millet 

(Setaria italica L.) are the two phylogenetically species most closely related to A. donax (Sablok et 

al., 2014). A.donax homologs of four common housekeeping genes from foxtail millet TLF 

(transcription factor), Act 2 (Actin 2), Tub α (Tubulin alpha), and EF-1 α (Elongation Factor 1 

alpha)(Kumar et al., 2013) were selected by BLASTN searches against the giant reed reference and 

water-stress transcriptomes (Sablok et al.; 2014; Fu Y. et al; 2016). Analogously, 2 additional genes 

were identified in the A. donax transcriptomes based on sorghum database (GAPDH and RPN6 

(Shakoor et al., 2014)). Finally, the last 2 genes were selected directly from the giant reed 

transcriptome (AC1 and pDUF221; (Fu et al., 2016)) based on their low coefficient of variation 

(CV) across organs/water stress conditions. Primers were designed with Primer3Plus software 

(http://primer3plus.com/cgi-bin/dev/primer3plus.cgi) using the following parameters: length 18-25 

(optimum 20), product size 75-200bp, melting temperature 59-64°C (optimum 60°C); GC content 

30-70% (optimum 50%). Primer pairs with free energy (dG) of dimer formation lower than -5 

kcal/mol according to the PerlPrimer v1.1.21 software (http://perlprimer.sourceforge.net/) were 

discarded. 

 

Total RNA isolation and cDNA synthesis. 

Total RNA was isolated with the Spectrum Plant Total RNA Extraction Kit (Sigma) for 

shoots and the Rneasy® Plant Mini Kit (Qiagen) for roots, respectively. To assure complete 

absence of genomic DNA contaminations, extracted total RNA was treated with DNase I (Sigma-

Aldrich) and checked on 1% agarose gel for integrity control. Concentration and quality of each 

sample were measured spectrophotometrically through the OD260/OD280 absorption ratio. First 

strand cDNA was reversed transcribed from 1 µg of total RNA primed with oligo-dT in a total 

reaction mixture of 20 µL using SuperScript® III Reverse Transcriptase (Life Technologies) 

according to the manufacture's instruction. 

 

PCR and Quantitative Real Time PCR. 

To assess the amplification specificity of each primer pair prior to qPCR analysis, PCR 

amplification was performed in a total volume of 10 µL containing 1 µl of 6-fold diluted cDNA, 1 

µL 10x PCR Buffer, 1 µL dNTPs (1 mM), 1 µL of each primer (final concentration of 200 nM) ,0.1 

http://primer3plus.com/cgi-bin/dev/primer3plus.cgi
http://perlprimer.sourceforge.net/
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µL of Taq polymerase (Sigma) and 4.9 ul of H2O; The PCR programme was as follows: 8 min at 

95°C, 33 cycles of 40s at 94 °C, 30s at 60 °C and 20s at 72 °C, with 5 min final extension at 72 °C. 

The PCR products were run on 2% agarose gel to check single amplification (Supplementary File 

4.5A). The qPCR reaction was conducted by mixing 1 µL of 10-fold diluted cDNA (5 ng of starting 

RNA), 200 nM of each primer and 6.25 µL of Platinum® SYBR® Green qPCR SuperMix-UDG 

(Invitrogen) in a 12.5 µL total volume. The programme for qRT-PCR in Bio-Rad C1000 Thermal 

Cycler was set as: 2 min at 50 °C, 2 min at 95 °C, 40 cycles of 15s at 95 °C and 30s at 60 °C (59 °C 

for validation of DREB2A gene). The melting curve was obtained from amplified template for every 

gene by constantly rising the temperature from 65 °C to 90 °C (Supplementary File 4.5B). A 

standard curve of qPCR reaction was generated from five points (four points for pDUF221gene and 

validation gene DREB2A) of a 6-fold dilution series (10-fold dilution for pDUF221 and TLF). The 

slope (S) of the standard curve was used to calculate the amplification efficiency (E) of each primer 

pair as follows: E = 10 
(-1/S)

 (Supplementary File 4.6). Three technical replicates were used for each 

sample and every plate contained one No Template Control (NTC) well for each primer pair used. 

In order to compare different plates, in Bio-Rad CFX Manager software the baseline threshold was 

set at 329.82 and one control sample was used in every plate to check for Cq congruency. 

 

geNorm, NormFinder and BestKeeper analyses. 

The tests were conducted in different groups of data that comprise overall samples and 

single stress samples (osmotic, heavy metal and heat shock) divided in organs (shoot and roots). 

This is necessary because the reference gene may vary depending on the experimental settings 

(Bustin et al., 2009). Three different Excel-based algorithms have been applied for data analysis. 

geNorm v3.5 (Vandesompele et al., 2002) and NormFinder v0.953 (Andersen et al., 2004) require 

relative input data, so the Cq values were converted with the formula 2
-ΔCt

 where ΔCt is the 

difference of each Cq value minus the lowest Cq value (highest expression level). BestKeeper 

(Pfaffl et al., 2004) instead, uses raw Cq values. geNorm calculates stability value (M) based on the 

average pairwise comparison with a stepwise exclusion of the highest M value (least stable gene). 

Further, geNorm calculates the number of genes needed for a reliable normalization considering the 

pairwise variation (Vn/Vn+1) between sequential normalization factors, NFn and NFn+1. This number 

is optimal when the addition of one more reference does not give a significant contribution to the 

normalization factor (NFn+1) or, as suggested, the value drops below 0.15. NormFinder uses an 

ANOVA-based algorithm to estimate intra- and inter- group variation for a given set of 

experiments, providing a rank where the most stable gene is the one with lowest stability (S) value. 
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Moreover, NormFinder gives the best gene pair combination that minimizes the expression 

differences among subgroups, if subgroups are set. BestKeeper, differently from the other 

algorithms, does not provide a direct rank list but calculates standard deviation (SD [± Cq]) and 

coefficient of variation (CV [%Cq]) for each gene. We sorted the CV values to rank the genes from 

most stable (lowest CV value) to least stable (highest CV value). 

 

4.5 References 

 

Adamec, L., 1984. The effect of plasmolysis and deplasmolysis on the permeability of plant membranes. Biol. Plant. 26, 

128–131. doi:10.1007/BF02902278 

Ahmad, R., Liow, P.-S., Spencer, D.F., Jasieniuk, M., 2008. Molecular evidence for a single genetic clone of invasive 

Arundo donax in the United States. Aquat. Bot. 88, 113–120. doi:10.1016/j.aquabot.2007.08.015 

Ahrar, M., Doneva, D., Koleva, D., Romano, A., Rodeghiero, M., Tsonev, T., Biasioli, F., Stefanova, M., Peeva, V., 

Wohlfahrt, G., Loreto, F., Varotto, C., Velikova, V., 2015. Isoprene emission in the monocot Arundineae tribe in 

relation to functional and structural organization of the photosynthetic apparatus. Environ. Exp. Bot. 119, 87–95. 

doi:10.1016/j.envexpbot.2015.04.010 

Alwine, J.C., Kemp, D.J., Stark, G.R., 1977. Method for detection of specific RNAs in agarose gels by transfer to 

diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc. Natl. Acad. Sci. U. S. A. 74, 5350–4. 

doi:10.1073/pnas.74.12.5350 

Andersen, C.L., Ledet-Jensen, J., Orntoft, T., 2004. Normalization of real-time quantitative RT-PCR data: a mode-

based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer 

data sets. Cancer Res. 64, 5245–5250. 

Angelini, L.G., Ceccarini, L., Nassi o Di Nasso, N., Bonari, E., 2009. Comparison of Arundo donax L. and Miscanthus 

x giganteus in a long-term field experiment in Central Italy: Analysis of productive characteristics and energy 

balance. Biomass and Bioenergy 33, 635–643. doi:10.1016/j.biombioe.2008.10.005 

Angers, S., Li, T., Yi, X., MacCoss, M.J., Moon, R.T., Zheng, N., 2006. Molecular architecture and assembly of the 

DDB1-CUL4A ubiquitin ligase machinery. Nature 443, 590–593. doi:10.1038/nature05175 

Baillie, R., Drayton, M., Pembleton, L., Kaur, S., Culvenor, R., Smith, K., Spangenberg, G., Forster, J., Cogan, N., 

2017. Generation and Characterisation of a Reference Transcriptome for Phalaris (Phalaris aquatica L.). 

Agronomy 7, 14. doi:10.3390/agronomy7010014 

Bell, G.P., 1997. Ecology and Management of Arundo donax, and Approaches to Riparian Habitat Restoration in 

Southern California., in: Brock, J. (Ed.), Plant Invasions Studies from North America and Europe. Backhuys, pp. 

103–113. 

Benavides, M.P., Gallego, S.M., Tomaro, M.L., 2005. Cadmium toxicity in plants. Brazilian J. Plant Physiol. 17, 21–34. 

doi:10.1590/S1677-04202005000100004 

Biedermann, S., Hellmann, H., 2011. WD40 and CUL4-based E3 ligases: lubricating all aspects of life. Trends Plant 

Sci. 16, 38–46. doi:10.1016/j.tplants.2010.09.007 

Bita, C.E., Gerats, T., 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and 

production of heat stress-tolerant crops. Front. Plant Sci. 4, 273. doi:10.3389/fpls.2013.00273 

Brulle, F., Bernard, F., Vandenbulcke, F., Cuny, D., Dumez, S., 2014. Identification of suitable qPCR reference genes 

in leaves of Brassica oleracea under abiotic stresses. Ecotoxicology 23, 459–471. doi:10.1007/s10646-014-1209-7 

Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., 

Shipley, G.L., Vandesompele, J., Wittwer, C.T., 2009. The MIQE Guidelines: Minimum Information for 

Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 55, 611–622. 

doi:10.1373/clinchem.2008.112797 



- 84 - 

 

Byrt, C.S., Grof, C.P.L., Furbank, R.T., 2011. C4 plants as biofuel feedstocks: optimising biomass production and 

feedstock quality from a lignocellulosic perspective. J. Integr. Plant Biol. 53, 120–35. doi:10.1111/j.1744-

7909.2010.01023.x 

Cardoso-Silva, C.B., Costa, E.A., Mancini, M.C., Balsalobre, T.W.A., Costa Canesin, L.E., Pinto, L.R., Carneiro, M.S., 

Garcia, A.A.F., De Souza, A.P., Vicentini, R., 2014. De novo assembly and transcriptome analysis of contrasting 

sugarcane varieties. PLoS One 9. doi:10.1371/journal.pone.0088462 

Clough, S.J., Bent, A.F., 1999. Floral dip : a simplified method for Agrobacterium-mediated transformation of 

Arabidopsis thaliana 16, 735–743. 

Czechowski, T., Stitt, M., Altmann, T., Udvardi, M.K., 2005. Genome-wide identification and testing of superior 

reference genes for transcript normalization. Society 139, 5–17. doi:10.1104/pp.105.063743.1 

da Fonseca, R.R., Albrechtsen, A., Themudo, G.E., Ramos-Madrigal, J., Sibbesen, J.A., Maretty, L., Zepeda-Mendoza, 

M.L., Campos, P.F., Heller, R., Pereira, R.J., 2016. Next-generation biology: Sequencing and data analysis 

approaches for non-model organisms. Mar. Genomics 30, 1–11. doi:10.1016/j.margen.2016.04.012 

Danin, A., 2004. Arundo ( Gramineae ) in the Mediterranean reconsidered 34204, 361–369. doi:10.3372/wi.34.34204 

Danin, A., Raus, T., Scholz, H., 2002. Contribution to the Flora of Greece: A New Species of Arundo (Poaceae). 

Willdenowia 32, 191–194. 

De Spiegelaere, W., Dern-Wieloch, J., Weigel, R., Schumacher, V., Schorle, H., Nettersheim, D., Bergmann, M., 

Brehm, R., Kliesch, S., Vandekerckhove, L., Fink, C., 2015. Reference gene validation for RT-qPCR, a note on 

different available software packages. PLoS One 10, 1–13. doi:10.1371/journal.pone.0122515 

Divi, U.K., Zhou, X.R., Wang, P., Butlin, J., Zhang, D.M., Liu, Q., Vanhercke, T., Petrie, J.R., Talbot, M., White, R.G., 

Taylor, J.M., Larkin, P., Singh, S.P., 2016. Deep sequencing of the fruit transcriptome and lipid accumulation in a 

non-seed tissue of Chinese tallow, a potential biofuel crop. Plant Cell Physiol. 57, 125–137. 

doi:10.1093/pcp/pcv181 

Doebley, J., Gaut, B., Smith, B., 2006. The molecular genetics of crop domestication. Cell 1309–1321. 

Dragoni, F., Ragaglini, G., Corneli, E., o di Nasso, N.N., Tozzini, C., Cattani, S., Bonari, E., 2015. Giant reed (Arundo 

donax L.) for biogas production: Land use saving and nitrogen utilisation efficiency compared with arable crops. 

Ital. J. Agron. 10, 192–201. doi:10.4081/ija.2015.664 

Dugas, D. V, Monaco, M.K., Olsen, A., Klein, R.R., Kumari, S., Ware, D., Klein, P.E., 2011. Functional annotation of 

the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genomics 12, 514. 

doi:10.1186/1471-2164-12-514 

Fu, Y., Poli, M., Sablok, G., Wang, B., Liang, Y., La Porta, N., Velikova, V., Loreto, F., Li, M., Varotto, C., 2016. 

Dissection of early transcriptional responses to water stress in Arundo donax L. by unigene-based RNA-seq. 

Biotechnol. Biofuels 9, 54. doi:10.1186/s13068-016-0471-8 

Fuentes, J.D., Lerdau, M., Atkinson, R., Baldocchi, D., Bottenheim, J.W., Ciccioli, P., Lamb, B., Geron, C., Gu, L., 

Guenther, A., Sharkey, T.D., Stockwell, W., 2000. Biogenic Hydrocarbons in the Atmospheric Boundary Layer: 

A Review. Bull. Am. Meteorol. Soc. 81, 1537–1575. doi:10.1175/1520-

0477(2000)081<1537:BHITAB>2.3.CO;2 

Ginzinger, D.G., 2002. Gene quantification using real-time quantitative PCR: An emerging technology hits the 

mainstream. Exp. Hematol. 30, 503–512. doi:10.1016/S0301-472X(02)00806-8 

Goodwin, S., McPherson, J.D., McCombie, W.R., 2016. Coming of age: ten years of next-generation sequencing 

technologies. Nat Rev Genet 17, 333–351. doi:10.1038/nrg.2016.49 

Guénin, S., Mauriat, M., Pelloux, J., Van Wuytswinkel, O., Bellini, C., Gutierrez, L., 2009. Normalization of qRT-PCR 

data: The necessity of adopting a systematic, experimental conditions-specific, validation of references. J. Exp. 

Bot. 60, 487–493. doi:10.1093/jxb/ern305 

Guleria, P., Masand, S., Yadav, S.K., 2014. Overexpression of SrUGT85C2 from Stevia reduced growth and yield of 

transgenic Arabidopsis by influencing plastidial MEP pathway. Gene 539, 250–257. 

doi:10.1016/j.gene.2014.01.071 

Guo, J., Ling, H., Wu, Q., Xu, L., Que, Y., 2014. The choice of reference genes for assessing gene expression in 

sugarcane under salinity and drought stresses. Sci. Rep. 4, 7042. doi:10.1038/srep07042 

Haddadchi, A., Gross, C.L., Fatemi, M., 2013. The expansion of sterile Arundo donax (Poaceae) in southeastern 

Australia is accompanied by genotypic variation. Aquat. Bot. 104, 153–161. doi:10.1016/j.aquabot.2012.07.006 



- 85 - 

 

Hardion, L., Verlaque, R., Baumel, A., Juin, M., Vila, B., 2012a. Revised systematics of Mediterranean Arundo ( 

Poaceae ) based on AFLP fingerprints and morphology, in: Taxon. pp. 1217–1226. 

Hardion, L., Verlaque, R., Callmander, M.M.W., Vila, B., 2012b. Arundo micrantha Lam.(Poaceae), the correct name 

for Arundo mauritanica Desf. and Arundo mediterranea Danin. Candollea 67, 131–135. 

Hardion, L., Verlaque, R., Rosato, M., Rosselló, J. a., Vila, B., 2015. Impact of polyploidy on fertility variation of 

Mediterranean Arundo L. (Poaceae). C. R. Biol. doi:10.1016/j.crvi.2015.03.013 

Hardion, L., Verlaque, R., Saltonstall, K., Leriche, A., Vila, B., 2014. Origin of the invasive Arundo donax (Poaceae): a 

trans-Asian expedition in herbaria. Ann. Bot. mcu143-. doi:10.1093/aob/mcu143 

Harley, P., Vasconcellos, P., Vierling, L., Pinheiro, C.C.D.S., Greenberg, J., Guenther, A., Klinger, L., De Almeida, 

S.S., Neill, D., Baker, T., Phillips, O., Malhi, Y., 2004. Variation in potential for isoprene emissions among 

Neotropical forest sites. Glob. Chang. Biol. 10, 630–650. doi:10.1111/j.1529-8817.2003.00760.x 

He, Y.J., McCall, C.M., Hu, J., Zeng, Y., Xiong, Y., 2006. DDB1 functions as a linker to recruit receptor WD40 

proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev. 20, 2949–2954. doi:10.1101/gad.1483206 

Hollingsworth, M.L., Bailey, J.P., 2000. Evidence for massive clonal growth in the invasive weed Fallopia japonica 

(Japanese Knotweed). Bot. J. Linn. Soc. 133, 463–472. doi:10.1006/bojl.2000.0359 

Huang, J., Wang, M.-M., Bao, Y.-M., Sun, S.-J., Pan, L.-J., Zhang, H.-S., 2008. SRWD: a novel WD40 protein 

subfamily regulated by salt stress in rice (OryzasativaL.). Gene 424, 71–9. doi:10.1016/j.gene.2008.07.027 

Janda, L., Tichý, P., Spížek, J., Petříček, M., 1996. A deduced Thermomonospora curvata protein containing 

serine/threonine protein kinase and WD-repeat domains. J. Bacteriol. 178, 1487–1489. 

Ji, H., Pardo, J.M., Batelli, G., Van Oosten, M.J., Bressan, R.A., Li, X., 2013. The salt overly sensitive (SOS) pathway: 

Established and emerging roles. Mol. Plant 6, 275–286. doi:10.1093/mp/sst017 

Kagale, S., Nixon, J., Khedikar, Y., Pasha, A., Provart, N.J., Clarke, W.E., Bollina, V., Robinson, S.J., Coutu, C., 

Hegedus, D.D., Sharpe, A.G., Parkin, I.A.P., 2016. The developmental transcriptome atlas of the biofuel crop 

Camelina sativa. Plant J. 879–894. doi:10.1111/tpj.13302 

Kausar, S., Mahmood, Q., Raja, I.A., Khan, A., Sultan, S., Gilani, M.A., Shujaat, S., 2012. Potential of Arundo donax 

to treat chromium contamination. Ecol. Eng. 42, 256–259. doi:10.1016/j.ecoleng.2012.02.019 

Khudamrongsawat, J., Tayyar, R., Holt, J.S., 2004. Genetic diversity of giant reed (Arundo donax) in the Santa Ana 

River, California. Weed Sci. doi:10.1614/WS-03-120R1 

Kim, J.H., Nguyen, N.H., Jeong, C.Y., Nguyen, N.T., Hong, S.W., Lee, H., 2013. Loss of the R2R3 MYB, AtMyb73, 

causes hyper-induction of the SOS1 and SOS3 genes in response to high salinity in Arabidopsis. J. Plant Physiol. 

170, 1461–1465. doi:10.1016/j.jplph.2013.05.011 

Kim, S., Lee, J., Seo, K., Ryu, B., Sung, Y., Chung, T., Deng, X.W., Lee, J., 2014. Characterization of a Novel DWD 

Protein that Participates in Heat Stress Response in Arabidopsis. Mol. Cells 37, 833–840. 

doi:10.14348/molcells.2014.0224 

Kong, D., Li, M., Dong, Z., Ji, H., Li, X., 2014. Identification of TaWD40D, a wheat WD40 repeat-containing protein 

that is associated with plant tolerance to abiotic stresses. Plant Cell Rep. 34, 395–410. doi:10.1007/s00299-014-

1717-1 

Kozera, B., Rapacz, M., 2013. Reference genes in real-time PCR. J. Appl. Genet. 54, 391–406. doi:10.1007/s13353-

013-0173-x 

Kumar, K., Muthamilarasan, M., Prasad, M., 2013. Reference genes for quantitative real-time PCR analysis in the 

model plant foxtail millet (Setaria               italica L.) subjected to abiotic stress conditions. Plant Cell, Tissue 

Organ Cult. 115, 13–22. doi:10.1007/s11240-013-0335-x 

Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger 

datasets. Mol. Biol. Evol. 33, msw054. doi:10.1093/molbev/msw054 

Lal, R., 2009. Soil quality impacts of residue removal for bioethanol production. Soil Tillage Res. 102, 233–241. 

doi:10.1016/j.still.2008.07.003 

Lawlor, D.W., 1970. Absorption of Polyethylene Glycols by Plants and Their Effects on Plant Growth. New Phytol. 

doi:10.1111/j.1469-8137.1970.tb02446.x 

Lee, J.-H., Terzaghi, W., Gusmaroli, G., Charron, J.-B.F., Yoon, H.-J., Chen, H., He, Y.J., Xiong, Y., Deng, X.W., 

2008. Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-

RING E3 ubiquitin ligases. Plant Cell 20, 152–67. doi:10.1105/tpc.107.055418 



- 86 - 

 

Lee, J.-H., Yoon, H.-J., Terzaghi, W., Martinez, C., Dai, M., Li, J., Byun, M.-O., Deng, X.W., 2010. DWA1 and 

DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators 

in ABA signal transduction. Plant Cell 22, 1716–32. doi:10.1105/tpc.109.073783 

Lee, J.H., Terzaghi, W., Deng, X.W., 2011. DWA3, an Arabidopsis DWD protein, acts as a negative regulator in ABA 

signal transduction. Plant Sci. 180, 352–357. doi:10.1016/j.plantsci.2010.10.008 

Leong, D.T., Gupta, A., Bai, H.F., Wan, G., Yoong, L.F., Too, H.P., Chew, F.T., Hutmacher, D.W., 2007. Absolute 

quantification of gene expression in biomaterials research using real-time PCR. Biomaterials 28, 203–210. 

doi:10.1016/j.biomaterials.2006.09.011 

Lewandowski, I., Scurlock, J.M.O.O., Lindvall, E., Christou, M., 2003. The development and current status of perennial 

rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy 25, 335–361. 

doi:10.1016/S0961-9534(03)00030-8 

Li, J., Ye, W.H., 2006. Genetic diversity of alligator weed ecotypes is not the reason for their different responses to 

biological control. Aquat. Bot. 85, 155–158. doi:10.1016/j.aquabot.2006.02.006 

Li, W., Wang, B., Wang, J., 2006. Lack of genetic variation of an invasive clonal plant Eichhornia crassipes in China 

revealed by RAPD and ISSR markers. Aquat. Bot. 84, 176–180. doi:10.1016/j.aquabot.2005.09.008 

Lin, Y., Zhang, C., Lan, H., Gao, S., Liu, H., Liu, J., Cao, M., Pan, G., Rong, T., Zhang, S., 2014. Validation of 

potential reference genes for qPCR in maize across abiotic stresses, hormone treatments, and tissue types. PLoS 

One 9. doi:10.1371/journal.pone.0095445 

Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 

2(-Delta Delta C(T)) Method. Methods 25, 402–8. doi:10.1006/meth.2001.1262 

Luo, Q., Zhao, Z., Li, D.K., Zhang, Y., Xie, L.F., Peng, M.F., Yuan, S., Yang, Y., 2016. Overexpression of NaKR3 

enhances salt tolerance in Arabidopsis. Genet. Mol. Res. 15, 1–11. doi:10.4238/gmr.15016378 

Mann, J.J., Barney, J.N., Kyser, G.B., DiTomaso, J.M., 2012. Miscanthus  ×  giganteus and Arundo donax shoot and 

rhizome tolerance of extreme moisture stress. GCB Bioenergy n/a-n/a. doi:10.1111/gcbb.12039 

Mantineo, M., D‘Agosta, G.M., Copani, V., Patanè, C., Cosentino, S.L., 2009. Biomass yield and energy balance of 

three perennial crops for energy use in the semi-arid Mediterranean environment. F. Crop. Res. 114, 204–213. 

doi:10.1016/j.fcr.2009.07.020 

Mar, J.C., Kimura, Y., Schroder, K., Irvine, K.M., Hayashizaki, Y., Suzuki, H., Hume, D., Quackenbush, J., 2009. 

Data-driven normalization strategies for high-throughput quantitative RT-PCR. BMC Bioinformatics 10, 110. 

doi:10.1186/1471-2105-10-110 

Marguerat, S., Bähler, J., 2010. RNA-seq: from technology to biology. Cell. Mol. Life Sci. 67, 569–79. 

doi:10.1007/s00018-009-0180-6 

Mariani, C., Cabrini, R., Danin,  a., Piffanelli, P., Fricano,  a., Gomarasca, S., Dicandilo, M., Grassi, F., Soave, C., 

2010. Origin, diffusion and reproduction of the giant reed (Arundo donax L.): a promising weedy energy crop. 

Ann. Appl. Biol. 157, 191–202. doi:10.1111/j.1744-7348.2010.00419.x 

Matsukura, S., Mizoi, J., Yoshida, T., Todaka, D., Ito, Y., Maruyama, K., Shinozaki, K., Yamaguchi-Shinozaki, K., 

2010. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the 

expression of abiotic stress-responsive genes. Mol. Genet. Genomics 283, 185–196. doi:10.1007/s00438-009-

0506-y 

Miller, J.C., Chezem, W.R., Clay, N.K., 2015. Ternary WD40 Repeat-Containing Protein Complexes: Evolution, 

Composition and Roles in Plant Immunity. Front. Plant Sci. 6, 1108. doi:10.3389/fpls.2015.01108 

Minogue, P., Wright, S., 2016. Biology , Control and Invasive Potential of Giant Reed 2–6. 

Mirza, N., Mahmood, Q., Pervez, A., Ahmad, R., Farooq, R., Shah, M.M., Azim, M.R., 2010. Phytoremediation 

potential of Arundo donax in arsenic-contaminated synthetic wastewater. Bioresour. Technol. 101, 5815–9. 

doi:10.1016/j.biortech.2010.03.012 

Mishra, A.K., Muthamilarasan, M., Khan, Y., Parida, S.K., Prasad, M., 2014. Genome-wide investigation and 

expression analyses of WD40 protein family in the model plant foxtail millet (Setaria italica L.). PLoS One 9, 

e86852. doi:10.1371/journal.pone.0086852 

Mishra, A.K., Puranik, S., Bahadur, R.P., Prasad, M., 2012a. The DNA-binding activity of an AP2 protein is involved 

in transcriptional regulation of a stress-responsive gene, SiWD40, in foxtail millet. Genomics 100, 252–63. 

doi:10.1016/j.ygeno.2012.06.012 



- 87 - 

 

Mishra, A.K., Puranik, S., Prasad, M., 2012b. Structure and regulatory networks of WD40 protein in plants. J. Plant 

Biochem. Biotechnol. 21, 32–39. doi:10.1007/s13562-012-0134-1 

Monson, R.K., 2002. Volatile organic compound emissions from terrestrial ecosystems: A primary biological control 

over atmospheric chemistry. Isr. J. Chem. 42, 29–42. doi:10.1560/0jjc-xqaa-jx0g-fxjg 

Monson, R.K., Trahan, N., Rosenstiel, T.N., Veres, P., Moore, D., Wilkinson, M., Norby, R.J., Volder, A., Tjoelker, 

M.G., Briske, D.D., Karnosky, D.F., Fall, R., 2007. Isoprene emission from terrestrial ecosystems in response to 

global change: minding the gap between models and observations. Philos. Trans. A. Math. Phys. Eng. Sci. 365, 

1677–95. doi:10.1098/rsta.2007.2038 

Naik, S.N., Goud, V. V., Rout, P.K., Dalai, A.K., 2010. Production of first and second generation biofuels: A 

comprehensive review. Renew. Sustain. Energy Rev. 14, 578–597. doi:10.1016/j.rser.2009.10.003 

Nassi o Di Nasso, N., Angelini, L.G., Bonari, E., 2010. Influence of fertilisation and harvest time on fuel quality of 

giant reed (Arundo donax L.) in central Italy. Eur. J. Agron. 32, 219–227. doi:10.1016/j.eja.2009.12.001 

Nassi o Di Nasso, N., Roncucci, N., Bonari, E., 2013. Seasonal Dynamics of Aboveground and Belowground Biomass 

and Nutrient Accumulation and Remobilization in Giant Reed (Arundo donax L.): A Three-Year Study on 

Marginal Land. BioEnergy Res. doi:10.1007/s12155-012-9289-9 

Neer, E.J., Schmidt, C.J., Nambudripad, R., Smith, T.F., 1994. The ancient regulatory-protein family of WD-repeat 

proteins. Nature. doi:10.1038/371297a0 

Nicholas, P., Money, N.P., 1989. Osmotic Pressure of Aqueous Polyethylene Glycols : Relationship between Molecular 

Weight and Vapor Pressure Deficit. Plant Physiol. 91, 766–9. 

Osakabe, Y., Osakabe, K., Shinozaki, K., Tran, L.-S.P., 2014. Response of plants to water stress. Front. Plant Sci. 5, 86. 

doi:10.3389/fpls.2014.00086 

Ouyang, Y., Huang, X., Lu, Z., Yao, J., 2012. Genomic survey, expression profile and co-expression network analysis 

of OsWD40 family in rice. BMC Genomics 13, 100. doi:10.1186/1471-2164-13-100 

Papazoglou, E.G., Karantounias, G.A., Vemmos, S.N., Bouranis, D.L., 2005. Photosynthesis and growth responses of 

giant reed (Arundo donax L.) to the heavy metals Cd and Ni. Environ. Int. 31, 243–9. 

doi:10.1016/j.envint.2004.09.022 

Papazoglou, E.G., Serelis, K.G., Bouranis, D.L., 2007. Impact of high cadmium and nickel soil concentration on 

selected physiological parameters of Arundo donax L. Eur. J. Soil Biol. 43, 207–215. 

doi:10.1016/j.ejsobi.2007.02.003 

Peck, S.C., Teisberg, T.J., Peck, S.С., Teisberg, T.J., 2016. CETA : A Model for Carbon Emissions Trajectory 

Assessment Published by : International Association for Energy Economics Stable URL : 

http://www.jstor.org/stable/41322454 Accessed : 15-04-2016 05 : 36 UTC CETA : A Model for Carbon 

Emissions Trajectory Assessment * 13, 55–77. 

Perdue, R.E., 1958. Arundo donax—Source of musical reeds and industrial cellulose. Econ. Bot. 12, 368–404. 

doi:10.1007/BF02860024 

Pfaffl, M.W., 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 

e45. doi:10.1093/nar/29.9.e45 

Pfaffl, M.W., Tichopad, A., Prgomet, C., Neuvians, T.P., 2004. Determination of stable housekeeping genes, 

differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise 

correlations. Biotechnol. Lett. 26, 509–515. doi:10.1023/B:BILE.0000019559.84305.47 

Pilu, R., Bucci, A., Badone, F.C., Landoni, M., 2012. Giant reed (Arundo donax L.): A weed plant or a promising 

energy crop? AFRICAN J. Biotechnol. 11, 9163–9174. doi:10.5897/AJB11.4182 

Pilu, R., Cassani, E., Landoni, M., Badone, F.C., Passera, A., Cantaluppi, E., Corno, L., Adani, F., 2013a. Genetic 

characterization of an Italian Giant Reed (Arundo donax L.) clones collection: exploiting clonal selection. 

Euphytica. doi:10.1007/s10681-013-1022-z 

Pilu, R., Manca, A., Landoni, M., Agrarie, S., 2013b. Arundo donax as an energy crop: pros and cons of the utilization 

of this perennial plant. Maydica. 

Porter, W.C., Barsanti, K.C., Baughman, E.C., Rosenstiel, T.N., 2012. Considering the air quality impacts of bioenergy 

crop production: a case study involving Arundo donax. Environ. Sci. Technol. 46, 9777–84. 

doi:10.1021/es3013084 

Qin, F., Sakuma, Y., Tran, L.-S.P., Maruyama, K., Kidokoro, S., Fujita, Y., Fujita, M., Umezawa, T., Sawano, Y., 



- 88 - 

 

Miyazono, K.-I., Tanokura, M., Shinozaki, K., Yamaguchi-Shinozaki, K., 2008. Arabidopsis DREB2A-

interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene 

expression. Plant Cell 20, 1693–1707. doi:10.1105/tpc.107.057380 

Quinn, L.D., Holt, J.S., 2007. Ecological correlates of invasion by Arundo donax in three southern California riparian 

habitats. Biol. Invasions 10, 591–601. doi:10.1007/s10530-007-9155-4 

Rossa, B., Tuffers,  a V, Naidoo, G., von Willert, D.J., 1998. Arundo donax L. (Poaceae) - a C3 species with unusually 

high photosynthetic capacity. Bot. Acta 111, 216–221. doi:10.1111/j.1438-8677.1998.tb00698.x 

Sablok, G., Fu, Y., Bobbio, V., Laura, M., Rotino, G.L., Bagnaresi, P., Allavena, A., Velikova, V., Viola, R., Loreto, F., 

Li, M., Varotto, C., 2014. Fuelling genetic and metabolic exploration of C 3 bioenergy crops through the first 

reference transcriptome of Arundo donax L. Plant Biotechnol. J. n/a-n/a. doi:10.1111/pbi.12159 

Sagehashi, M., Liu, C., Fujii, T., Fujita, H., Sakai, Y., Hu, H.-Y., Sakoda, A., 2011. Cadmium Removal by the 

Hydroponic Culture of Giant Reed (Arundo donax) and Its Concentration in the Plant. J. Water Environ. Technol. 

9, 121–127. doi:10.2965/jwet.2011.121 

Sakuma, Y., 2006. Functional Analysis of an Arabidopsis Transcription Factor, DREB2A, Involved in Drought-

Responsive Gene Expression. Plant Cell 18, 1292–1309. doi:10.1105/tpc.105.035881.1 

Sánchez, E., Scordia, D., Lino, G., Arias, C., Cosentino, S.L., Nogués, S., 2015. Salinity and Water Stress Effects on 

Biomass Production in Different Arundo donax L. Clones. BioEnergy Res. doi:10.1007/s12155-015-9652-8 

Sarry, J.E., Kuhn, L., Ducruix, C., Lafaye, A., Junot, C., Hugouvieux, V., Jourdain, A., Bastien, O., Fievet, J.B., 

Vailhen, D., Amekraz, B., Moulin, C., Ezan, E., Garin, J., Bourguignon, J., 2006. The early responses of 

Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. 

Proteomics 6, 2180–2198. doi:10.1002/pmic.200500543 

Schroeder, D.F., Gahrtz, M., Maxwell, B.B., Cook, R.K., Kan, J.M., Alonso, J.M., Ecker, J.R., Chory, J., 2016. De-

Etiolated 1 and Damaged DNA Binding Protein 1 Interact to Regulate <em>Arabidopsis</em> 

Photomorphogenesis. Curr. Biol. 12, 1462–1472. doi:10.1016/S0960-9822(02)01106-5 

Seo, K.-I., Lee, J.-H., Nezames, C.D., Zhong, S., Song, E., Byun, M.-O., Deng, X.W., 2014. ABD1 Is an Arabidopsis 

DCAF Substrate Receptor for CUL4-DDB1-Based E3 Ligases That Acts as a Negative Regulator of Abscisic 

Acid Signaling. Plant Cell 26, 695–711. doi:10.1105/tpc.113.119974 

Shakoor, N., Nair, R., Crasta, O., Morris, G., Feltus, A., Kresovich, S., 2014. A Sorghum bicolor expression atlas 

reveals dynamic genotype-specific expression profiles for vegetative tissues of grain, sweet and bioenergy 

sorghums. BMC Plant Biol. 14, 35. doi:10.1186/1471-2229-14-35 

Sharkey, T.D., Wiberley, A.E., Donohue, A.R., 2008. Isoprene emission from plants: why and how. Ann. Bot. 101, 5–

18. doi:10.1093/aob/mcm240 

Silver, N., Best, S., Jiang, J., Thein, S.L., 2006. Selection of housekeeping genes for gene expression studies in human 

reticulocytes using real-time PCR. BMC Mol. Biol. 7, 33. doi:10.1186/1471-2199-7-33 

Stirnimann, C.U., Petsalaki, E., Russell, R.B., Müller, C.W., 2010. WD40 proteins propel cellular networks. Trends 

Biochem. Sci. 35, 565–574. doi:10.1016/j.tibs.2010.04.003 

Stone, S.L., 2014. The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Front. Plant Sci. 5, 

135. doi:10.3389/fpls.2014.00135 

Swaminathan, K., Chae, W.B., Mitros, T., Varala, K., Xie, L., Barling, A., Glowacka, K., Hall, M., Jezowski, S., Ming, 

R., Hudson, M., Juvik, J.A., Rokhsar, D.S., Moose, S.P., 2012. A framework genetic map for Miscanthus sinensis 

from RNAseq-based markers shows recent tetraploidy. BMC Genomics 13, 142. doi:10.1186/1471-2164-13-142 

Tarin, D., Pepper, A.E., Goolsby, J.A., Moran, P.J., Arquieta, A.C., Kirk, A.E., Manhart, J.R., 2013. Microsatellites 

Uncover Multiple Introductions of Clonal Giant Reed ( Arundo donax ). Invasive Plant Sci. Manag. 6, 328–338. 

doi:10.1614/IPSM-D-12-00085.1 

Tester, M., Langridge, P., 2010. Breeding Technologies to Increase Crop Production in a Changing World. Science (80-

. ). 327, 818–822. doi:10.1126/science.1183700 

Tuteja, N., Sopory, S.K., 2008. Chemical signaling under abiotic stress environment in plants. Plant Signal. Behav. 3, 

525–536. doi:10.4161/psb.3.8.6186 

Unamba, C.I.N., Nag, A., Sharma, R.K., 2015. Next Generation Sequencing Technologies: The Doorway to the 

Unexplored Genomics of Non-Model Plants. Front. Plant Sci. 6, 1074. doi:10.3389/fpls.2015.01074 

Valasek, M.A., Repa, J.J., 2005. The power of real-time PCR. AJP Adv. Physiol. Educ. 29, 151–159. 



- 89 - 

 

doi:10.1152/advan.00019.2005. 

van Nocker, S., Ludwig, P., 2003. The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in 

structure and function. BMC Genomics 4, 50. doi:10.1186/1471-2164-4-50 

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F., 2002. Accurate 

normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. 

Genome Biol. 3, RESEARCH0034. doi:10.1186/gb-2002-3-7-research0034 

Virtue, J., Reynolds, T., Malone, J., 2010. Managing the weed risk of cultivated Arundo donax L., in: Seventeenth 

Australasian Weeds Conference. 

Wang, C., Dong, X., Han, L., Su, X.D., Zhang, Z., Li, J., Song, J., 2016. Identification of WD40 repeats by secondary 

structure-aided profile-profile alignment. J. Theor. Biol. 398, 122–129. doi:10.1016/j.jtbi.2016.03.025 

Wang, Y., Jiang, F., Zhuo, Z., Wu, X.H., Wu, Y.D., 2013. A Method for WD40 Repeat Detection and Secondary 

Structure Prediction. PLoS One 8, 1–13. doi:10.1371/journal.pone.0065705 

Xie, F., Xiao, P., Chen, D., Xu, L., Zhang, B., 2012. miRDeepFinder: A miRNA analysis tool for deep sequencing of 

plant small RNAs. Plant Mol. Biol. 80, 75–84. doi:10.1007/s11103-012-9885-2 

Yang, Z., Chen, Y., Hu, B., Tan, Z., Huang, B., 2015. Identification and validation of reference genes for quantification 

of target gene expression with quantitative real-time PCR for tall fescue under four abiotic stresses. PLoS One 10, 

1–15. doi:10.1371/journal.pone.0119569 

Yim, A.K.-Y., Wong, J.W.-H., Ku, Y.-S., Qin, H., Chan, T.-F., Lam, H.-M., 2015. Using RNA-Seq Data to Evaluate 

Reference Genes Suitable for Gene Expression Studies in Soybean. PLoS One 10, e0136343. 

doi:10.1371/journal.pone.0136343 

Yoshida, T., Mogami, J., Yamaguchi-Shinozaki, K., 2014. ABA-dependent and ABA-independent signaling in response 

to osmotic stress in plants. Curr. Opin. Plant Biol. 21, 133–139. doi:10.1016/j.pbi.2014.07.009 

Zhang, Y., Schroeder, D.F., 2010. Effect of overexpression of Arabidopsis Damaged DNA-binding protein 1A on De-

etiolated 1. Planta 231, 337–348. doi:10.1007/s00425-009-1056-6 

 

  



- 90 - 

 

Chapter 5.  

General conclusion and discussion 

 

Global warming is becoming a predominant issue for worldwide countries that have to face 

the consequences of weather anomalies such as prolonged drought period, heavy storms or floods 

just to cite some. Therefore, a constant effort to reduce the anthropogenic GHG emissions is 

ongoing through the implementation of multiple actions that insist on the CO2 sources. An 

important sector scientists are giving attention to is the production of renewable energy with low or 

no CO2 emission in the atmosphere. The production of fuel from plant biomasses (so called biofuel) 

is the most promising approach to reduce the GHG emission deriving from road transportation. In 

Europe, several species have been considered as suitable energy crop and A. donax appears as the 

best choice for the Mediterranean area. With this work, we explored the response of the plant to 

drought stress trhough the analysis of the whole transcriptome that not only enhance our general 

knowledge about the molecular mechanisms of stress response in this species but also gives the 

opportunity to identify and characterize in depth candidate genes whose function is still unknown. 

This was the case of AdDWD1 gene which was literally unknown in Arundo and in its closely 

related species (rice, maize or sorghum) and only little was known in the model plant Arabidopsis. 

In this study, AdDWD1 was caracterized both in Arundo or close related species (rice, maize or 

sorghum) and in the model plant Arabidopsis as an heterologous system. The selection of this gene 

was based on the preliminary general information about the importance of the WD40 family in 

plants and specifically on the role of DWD subfamily group on stress response. The results reported 

here showed a high involvement of AdDWD1 during simalted drought and salt stresses making it a 

good candidate for further studies also in other species. Moreover, due to the importance of 

quantitative real-time PCR in molecular biology we validated a set of reliable genes to be used as 

reference in relative quantification approach. They will likely constitute a valuable resource for 

further studies on abiotic stress in A. donax. 

In conclusion, this work sheds light for the first time into the genetic response of A. donax to 

osmotic stress, developing valuable tools and information for the improvement of the species for 

biofuel production. Our results could be the foundation for further studies addressig the unique 

genetics basis of adapative and yield-related traits of giant reed, towards the full exploitation of this 

semi-domesticated plant as a crop.  
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Chapter 7.  

Supplementary material. 

 

 

 

7.1 Arundo donax L. transcriptome under osmotic stress. 

Library name Number of Sequencing 

Reads* 

Treatment/Condition Organ 

Ad_Control_1 47792849 Untreated control Shoot 

Ad_Control_2 35432010 Untreated control Shoot 

Ad_Control_3 32186149 Untreated control Shoot 

Ad_PEG10%_1 38952041 10% PEG Shoot 

Ad_PEG10%_2 34331086 10% PEG Shoot 

Ad_PEG10%_3 30234460 10% PEG Shoot 

Ad_PEG20%_1 32648859 20% PEG Shoot 

Ad_PEG20%_2 34100100 20% PEG Shoot 

Ad_PEG20%_3 38857109 20% PEG Shoot 

Ad_Control_1 41912793 Untreated control Root 

Ad_Control_2 35027592 Untreated control Root 

Ad_Control_3 35234162 Untreated control Root 

Ad_PEG10%_1 42457897 10% PEG Root 

Ad_PEG10%_2 42854988 10% PEG Root 

Ad_PEG10%_3 43240510 10% PEG Root 

Ad_PEG20%_1 40387040 20% PEG Root 

Ad_PEG20%_2 42169350 20% PEG Root 

Ad_PEG20%_3 46354173 20% PEG Root 

Note: * 2x100 PE 

Supplementary File 2.1. Experimental design and number of reads per library. 
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Organ/Regulation Gene ID Primer Forward Primer Reverse 

Shoot_up 
Arundo_WS_Unigene028474 AACCTCCCTCATTTCCTCGAAC TTTTGCGCTGATACGTGTGG 

Arundo_WS_Unigene065161 AACCATCGTTGCTTCGCTTG TGGCTAACCAACAACAACCG 

Shoot_down 
Arundo_WS_Unigene045711 ACTGACAGGCTGAGTTCGAC AGCACAGCTGGCATTCAGAT 

Arundo_WS_Unigene074110 GTCTCTTCTTTGTGCCATCTGC AGCAGCGATCTCCTTTATCTGG 

Root_up 

Arundo_WS_Unigene011476 GCAGCACGACTACTACTTTCAC ATGGCATGCAACAGCAATCC 

Arundo_WS_Unigene053771 AATCGTGGCGTTGTATCGTG TTGGCGACCAAATTCATGCC 

Arundo_WS_Unigene020231 GATGAAATGGGGATGGGTGAAC TGCTTTTGCCAGCATTGTCC 

Arundo_WS_Unigene023719 ACAAGGGAACAGGTTCAGGTC CGCCAACGAAATGCCAAAAG 

Root_down 
Arundo_WS_Unigene042884 AGGGAAAGCTTGACACGATG ATGGTACCATTGCGTCTTGG 

Arundo_WS_Unigene077521 GCTCGTCGAACTTCTTGGTG ACCTTGCTAGTGACCGTATCAG 

All AdoACT TCTTGGCTTGCATTCTTGGG TGGATTGCGAAGGCTGAGTAC 

Supplementary File 2.2. Validation of 10 A. donax DEGs by Real Time qrt-PCR. 

y = 1,0333x - 0,339 

R² = 0,9387 
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Supplementary File 2.3. Visualization of differentially expressed genes. Heat maps visualization of the differentially 

expressed genes between three conditions for shoots (a) and roots (b) using Euclidean distances between TMM 

normalized expression values. Expression levels for genes in each cDNA library were measured as fragments per 

kilobase per million reads (FPKM), and color-coded from green (lowly expressed) to red (highly expressed). 

Hierarchical clustering level at individual libraries is represented by the dendrogram for shoots (c) and roots (d), and 

color-coded from green (weak correlation) to red (strong correlation). 

 

Additional file 4_ 

Table S3.xlsx
 

Supplementary File 2.4. Stress-related A. donax DEGs. See online version at 

http://www.biotechnologyforbiofuels.com/content/9/1/54. 
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Additional file 5_ 

Table S4.xlsx
 

Supplementary File 2.5. Functional annotation, fold change values and statistical significance of DEGs. See online 

version at http://www.biotechnologyforbiofuels.com/content/9/1/54. 

Additional file 6_ 

Tables S5.xlsx
 

Supplementary File 2.6. Slimmed GO terms overrepresented under different conditions. See online version at 

http://www.biotechnologyforbiofuels.com/content/9/1/54. 

Additional file 7_ 

Table S6.xlsx
 

Supplementary File 2.7. Transcription factors responsive to water stress in A. donax. See online version at 

http://www.biotechnologyforbiofuels.com/content/9/1/54. 

Additional file 8_ 

Table S7.xlsx
 

Supplementary File 2.8. Comparison of co-regulated expression modules responsive to water stress in A. donax and 

rice. See online version at http://www.biotechnologyforbiofuels.com/content/9/1/54. 

Additional file 9_ 

Table S8.xlsx
 

Supplementary File 2.9. Drought responsive orthologs identified among A. donax, foxtail, sorghum and rice. See 

online version at http://www.biotechnologyforbiofuels.com/content/9/1/54. 

7.2 Characterization of a stress-related Arundo gene. 

 

Supplementary File 3.1. T2 lines of 35S::AdWD40-1 Arabidopsis plants. WT, wild type Arabidopsis, ecotype Columbia; 

NTC, no template control. 

http://www.biotechnologyforbiofuels.com/content/9/1/54
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Supplementary File 3.2. WD40 repeats predicted from online software WDSP (A) 

(http://wu.scbb.pkusz.edu.cn/wdsp/index.jsp) and WRDD (B) (http://protein.cau.edu.cn/wdrr).

http://wu.scbb.pkusz.edu.cn/wdsp/index.jsp
http://protein.cau.edu.cn/wdrr
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Supplementary File 3.3. Root growth of WT and two overexpressing lines OE1 and OE2. Plants have been germinated 

for 4 days in standard half strength MS medium and transfer on vertical plates containing MS (A), MS + 100 mM NaCl 

(B) or MS + 20 µM ABA (C). Graphs illustrate the growth length compare to controls.
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Supplementary File 3.4. Air exposed Arabidopsis WT and OE lines behave similar. Plants were grown 18 days, 

exposed to air for 20 hours and then recovered for 48 hours. Experiment consist of 6 independent replicas.
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  Primer name Primer sequence 5'-3' Amplicon lenght Reference 

Arundo donax 

cloning 

Ad_Uni032775_2F CACCAGCTCGCAACTAGTCCAGTCGG 
1322 

  Ad_Uni032775_2R CGGCTCATCACTCGATCACC 

Arabidopsis 

thaliana 

promoter cloning 

At_WD40_prom_F CACCGAGATTTGGTTCCTTTAATTTGGACAC 
1853 

  At_WD40_prom_R CTTTAAACCTTTGGCAATAATCAAAATCG 

qRT-PCR 

Ad_AC1_F* TCTTGGCTTGCATTCTTGGG 
93 Fu et al.; 2016 

Ad_AC1_R* TGGATTGCGAAGGCTGAGTAC 

Ad_GAPDH_F* TGACAAGGAGAAGGCTGCTG 
167 

  Ad_GAPDH_R* GAGCAAGGCAGTTTGTGGT 

Ad_Uni032775_rt_F TAGCGCATTTTCAGCTGAGG 
139 

  Ad_Uni032775_rt_R ACCAATTGGCTGGCAACATC 

At_Actin2_F  CAAGGCCGAGTATGATGAGG 
228  Seo et al.; 

2014 At_Actin2_R  GAAACGCAGACGTAAGTAAAAAC 

ABI1_RT_F AGAGTGTGCCTTTGTATGGTTTTA 
206 

Kong et al.; 
2014 

ABI1_RT_R CATCCTCTCTCTACAATAGTTCGCT 

AtSOS1_RT_F GCAAACACTTTGATATTTATCCTCAG 
89 

Luo et al.; 

2016 
AtSOS1_RT_R CATGAATTCCCTTGGTAGGC 

AtSOS3_RT_F CATTCACGGTAGAAGAAGTGGA 
230 

Kong et al.; 

2014 
AtSOS3_RT_R GCTTGGATGGAAGACACCTAA 

COR15A_RT_For GATACATTGGGTAAAGAAGCTGAGA 
199 

Lim et al.; 
2015 

COR15A_RT_Rev ACATGAAGAGAGAGGATATGGATCA 

DREB2A_RT_For CTACAAAGCCTCAACTACGGAATAC 
175 

Lim et al.; 

2015 
DREB2A_RT_Rev AAACTCGGATAGAGAATCAACAGTC 

P5CS_RT_For GAAGGATTACTTACAACGAGATGGA 
155 

Lim et al.; 

2015 
P5CS_RT_Rev CTCTCCTCAAGTCTCAACCAAATAC 

RD29A_RT_2F GGAAGTGAAAGGAGGAGGAGGAA 
134 

Kong et al.; 
2014 

RD29A_RT_2R CACCACCAAACCAGCCAGATG 

Supplementary File 3.5. List of primers. Asterisks indicate the genes used as reference in real-time qPCR. 
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Supplementary File 3.6. Pairwise alignment of AdWD40-1 and its Arabidopsis homolog At1g78070. Shading made with 

BLOSUM62 matrix. DWD box is marked in red. 

 

7.3 Arundo donax qRT-PCR reference gene selection for abiotic stress. 

 

Gene Plant resource 
Original 

accession num. 

Arundo 

donax best hit 

Score 

(bits)  

E 

Value 
Identities  

Arundo primers F/R 

(5’-3’) 

AC1 
Sorghum bicolor Sb01g010030 Unigene036290 749 0.0 587/655 (89%) 

TCTTGGCTTGCATTC
TTGGG 

Actin 
TGGATTGCGAAGGCT

GAGTAC 

Act2  
Setaria italica Si026509m Unigene057037 698 0.0 

496/544 (91%), 

347/399 (86%) 

CGCATACGTGGCACT

TGACT 

Actin2 
GGGCATCTGAACCTC
TCTGC 

EF-1α  Setaria italica Si022039m Unigene076509 1049 0.0 643/681 (94%) 
TGACTGTGCTGTGCT

CATCA 

Elongation factor 1-alpha 
     

GTTGCAGCAGCAGAT
CATCT 

GAPDH Sorghum bicolor Sb07g002220 Unigene069707 1289 0.0 923/1014 (91%) 
TGACAAGGAGAAGG

CTGCTG 

Glyceraldehyde-3-phosphate dehydrogenase 2     
GAGCAAGGCAGTTTG

TGGTG 

RPN6 Sorghum bicolor Sb06g017780 Unigene067565 1855 0.0 
1212/1304 

(92%) 

CACACGACTAGCAGC

TTTCAAG 

26S proteasome non-ATPase regulatory subunit 11     
TTCAAACGTCGGGAA

GGTTG 

pDUF221 Arundo donax   Unigene070087     
GACAAAGGAGTCAG
CCGTCA 

Probable membrane protein DUF221-related Calcium-dependent 

channel 
   

AACGTGCTTCGGACT
TGGAT 

TLF Setaria italica Si000298m Unigene076539 3640 0.0 
2358/2532 
(93%) 

GACTTCATGGGTGGT
GCTGA 
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Translatio

n factor 
TGTTTGTTGGGGGAC

TTGCT 

TUB α 
Setaria italica Si029822m Unigene068813 829 0.0 

490/514 (95%), 

440/498 (88%) 

TACCAGCCACCCTCA

GTTGT 

Alpha 

tubulin 
AGTCGAACTTGTGGT

CAATGC 

DREB2A

* 
Setaria italica Si022619m Unigene057213 416 e-115 327/366 (89%) 

TCCAGCAGGTAGATC
ATCTCC 

Dehydration-Responsive Element Binding Protein 

2     

AGCAGGTTCGGTAAT

AGGCA 

Supplementary File 4.1. Locus details, identities and original primers. The modified single bases or new primers are 

underlined. Asterisc (*) indicates the validation gene. 

 

 pDUF221 TLF AC1 Act2 TUB α EF-1α RPN6 GAPDH 

Control_shoot_1 26,84 24,18 23,00 22,49 22,81 22,02 25,04 19,53 

Control_shoot_2 26,85 23,55 22,87 22,96 23,14 21,62 25,20 20,01 

Control_shoot_3 27,99 24,20 23,27 23,71 23,76 22,14 25,65 20,08 

Control_root_1 25,18 22,55 21,45 21,26 21,62 19,76 23,39 18,60 

Control_root_2 25,20 21,44 21,85 20,93 21,37 19,02 23,20 18,23 

Control_root_3 25,72 21,79 21,59 21,31 21,43 19,27 23,21 18,30 

Drought_shoot_1h30'_1 26,19 22,68 22,40 22,27 21,96 20,51 24,00 19,09 

Drought_shoot_1h30'_2 26,38 23,46 22,86 22,76 23,19 21,19 24,42 19,20 

Drought_shoot_1h30'_3 26,41 23,76 23,58 23,33 23,53 21,53 24,72 19,79 

Drought_shoot_3h_1 25,77 24,01 23,55 23,07 23,48 21,56 24,31 19,55 

Drought_shoot_3h_2 25,58 24,06 23,44 23,59 23,60 21,86 24,79 20,11 

Drought_shoot_3h_3 25,83 23,15 22,58 22,90 23,10 20,71 24,27 19,12 

Drought_shoot_6h_1 25,25 23,96 23,42 23,56 22,93 21,51 24,97 19,85 

Drought_shoot_6h_2 24,73 23,29 24,03 23,30 22,93 21,65 24,77 19,55 

Drought_shoot_6h_3 25,14 24,15 24,56 23,95 23,57 22,09 24,83 20,06 

Drought_shoot_11h_1 25,02 24,05 24,39 23,75 23,92 21,38 24,99 19,47 

Drought_shoot_11h_2 24,58 24,22 24,01 23,22 23,35 21,31 24,82 19,35 

Drought_shoot_11h_3 24,94 24,45 24,99 23,66 23,90 21,92 25,01 19,71 

Drought_shoot_24h_1 26,14 24,93 24,90 22,93 24,59 22,90 25,28 19,30 

Drought_shoot_24h_2 26,11 24,65 23,68 22,36 23,56 22,23 25,13 19,31 

Drought_shoot_24h_3 25,62 24,26 23,36 21,95 23,21 21,76 24,83 19,08 

Drought_root_1h30'_1 25,68 22,65 22,15 21,96 22,62 19,65 24,03 19,11 

Drought_root_1h30'_2 25,56 22,18 21,90 21,52 22,04 19,35 23,80 18,69 

Drought_root_1h30'_3 25,58 21,96 21,66 21,74 21,81 19,62 23,53 18,57 
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Drought_root_3h_1 24,98 22,64 24,15 22,24 23,45 19,48 23,87 18,84 

Drought_root_3h_2 25,59 22,78 23,38 22,24 23,21 19,42 23,93 18,66 

Drought_root_3h_3 26,05 23,41 23,74 23,01 23,75 20,75 24,55 19,24 

Drought_root_6h_1 24,80 23,06 23,41 22,93 23,14 20,24 23,72 19,07 

Drought_root_6h_2 25,16 22,94 24,94 22,96 23,89 20,50 24,14 18,59 

Drought_root_6h_3 24,68 23,40 25,14 22,82 24,09 20,77 24,32 19,38 

Drought_root_11h_1 23,83 21,47 24,27 22,36 23,36 20,04 24,03 18,49 

Drought_root_11h_2 24,17 21,58 24,18 22,25 23,14 19,86 23,68 18,76 

Drought_root_11h_3 24,39 22,31 23,91 22,34 23,40 20,28 24,18 19,42 

Drought_root_24h_1 24,59 21,38 22,39 21,55 22,12 19,42 23,53 18,15 

Drought_root_24h_2 25,10 21,77 22,13 21,86 22,21 19,19 23,26 18,25 

Drought_root_24h_3 24,83 21,82 22,31 23,38 22,12 19,51 23,48 18,27 

Cadmium_shoot_1h30'_1 26,26 22,10 22,11 21,71 21,72 21,02 24,87 19,14 

Cadmium_shoot_1h30'_2 26,32 21,71 21,85 21,43 21,97 20,21 24,78 19,21 

Cadmium_shoot_1h30'_3 26,75 21,94 21,76 21,75 22,12 20,34 24,79 19,55 

Cadmium_shoot_3h_1 26,96 23,16 23,20 22,82 23,25 21,44 25,41 20,40 

Cadmium_shoot_3h_2 26,54 22,86 23,28 22,61 22,77 21,73 25,29 19,80 

Cadmium_shoot_3h_3 26,61 22,57 22,97 22,42 22,35 21,58 25,08 19,48 

Cadmium_shoot_6h_1 25,44 21,95 22,94 22,72 22,37 20,65 24,79 19,78 

Cadmium_shoot_6h_2 25,52 21,24 21,66 21,96 21,56 19,56 24,16 18,84 

Cadmium_shoot_6h_3 25,53 22,31 23,20 22,98 22,48 21,58 25,20 19,87 

Cadmium_shoot_11h_1 25,55 22,08 21,59 21,98 21,56 20,69 24,33 18,11 

Cadmium_shoot_11h_2 25,51 22,43 22,24 22,24 21,90 21,29 24,71 19,36 

Cadmium_shoot_11h_3 25,51 22,01 22,17 21,91 21,75 21,10 24,90 19,13 

Cadmium_shoot_24h_1 26,21 22,16 21,82 21,12 21,92 21,19 24,78 19,01 

Cadmium_shoot_24h_2 26,23 22,30 21,70 21,04 22,21 21,15 24,59 19,05 

Cadmium_shoot_24h_3 26,85 23,66 22,21 22,08 22,85 22,39 25,27 19,65 

Cadmium_root_1h30'_1 26,05 21,92 22,44 22,25 22,37 19,32 23,66 17,29 

Cadmium_root_1h30'_2 25,58 22,13 22,94 22,53 22,32 19,62 23,61 17,62 

Cadmium_root_1h30'_3 25,50 21,96 23,57 22,25 23,19 20,20 24,11 17,83 

Cadmium_root_3h_1 25,51 22,60 24,15 22,68 23,19 20,92 24,42 18,31 

Cadmium_root_3h_2 25,40 22,26 22,84 21,74 22,12 19,52 23,52 17,79 

Cadmium_root_3h_3 25,63 22,76 24,33 22,17 23,48 19,88 23,99 18,31 
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Cadmium_root_6h_1 25,36 22,57 23,58 22,40 22,81 20,09 24,36 17,94 

Cadmium_root_6h_2 25,50 22,06 22,80 21,75 21,96 19,28 23,71 17,14 

Cadmium_root_6h_3 25,60 22,15 23,53 22,74 22,80 19,50 24,12 18,03 

Cadmium_root_11h_1 25,87 22,17 23,68 22,36 23,15 19,92 23,45 17,06 

Cadmium_root_11h_2 25,77 23,26 25,07 23,08 24,28 20,45 24,36 18,12 

Cadmium_root_11h_3 25,62 22,05 23,44 21,92 22,94 19,05 23,12 16,16 

Cadmium_root_24h_1 26,09 21,83 23,20 22,18 22,90 19,29 23,56 17,24 

Cadmium_root_24h_2 26,17 22,68 24,40 22,03 23,22 19,96 23,47 17,49 

Cadmium_root_24h_3 25,97 22,21 23,94 21,87 23,11 19,59 23,19 17,25 

HeatShock_shoot_1h30'_1 25,79 23,96 24,55 21,93 24,18 21,99 25,12 18,53 

HeatShock_shoot_1h30'_2 25,42 23,40 23,58 21,12 23,32 21,27 24,26 17,82 

HeatShock_shoot_1h30'_3 25,65 23,66 24,24 22,08 24,04 21,83 24,92 18,26 

HeatShock_shoot_3h_1 24,17 22,88 24,69 22,20 23,11 21,34 24,69 18,64 

HeatShock_shoot_3h_2 24,29 23,22 24,24 22,13 23,05 21,20 24,76 18,78 

HeatShock_shoot_3h_3 24,54 23,23 24,58 22,36 23,23 21,43 24,95 18,88 

HeatShock_shoot_6h_1 24,09 21,85 23,67 22,61 22,15 20,88 24,33 19,09 

HeatShock_shoot_6h_2 24,28 22,21 23,93 22,91 22,20 20,91 24,68 19,28 

HeatShock_shoot_6h_3 24,68 22,89 23,86 22,99 22,38 21,17 24,68 19,65 

HeatShock_shoot_11h_1 24,77 22,51 23,21 22,35 22,49 20,73 24,66 19,20 

HeatShock_shoot_11h_2 24,79 22,27 22,99 22,09 22,11 20,65 24,49 19,19 

HeatShock_shoot_11h_3 24,78 22,61 23,15 22,46 22,52 21,05 24,66 19,34 

HeatShock_shoot_24h_1 25,78 23,27 23,14 21,41 23,01 21,45 24,82 19,05 

HeatShock_shoot_24h_2 26,08 23,79 23,43 21,63 23,21 21,82 24,80 19,31 

HeatShock_shoot_24h_3 26,25 23,57 23,24 21,56 22,76 21,51 24,64 19,06 

HeatShock_root_1h30'_1 24,86 22,48 25,88 23,12 23,30 19,91 24,72 17,83 

HeatShock_root_1h30'_2 24,62 22,48 26,22 21,85 24,37 20,17 24,57 17,84 

HeatShock_root_1h30'_3 24,52 22,74 26,07 21,47 23,58 20,40 24,54 17,90 

HeatShock_root_3h_1 24,07 23,71 26,05 22,12 23,47 20,90 24,67 18,80 

HeatShock_root_3h_2 23,57 23,56 26,81 21,96 23,84 20,40 24,67 18,90 

HeatShock_root_3h_3 23,55 23,74 27,08 21,66 24,28 20,49 24,53 18,80 

HeatShock_root_6h_1 23,22 24,20 28,58 23,02 24,55 21,40 25,25 20,10 

HeatShock_root_6h_2 23,32 23,40 26,73 22,18 24,31 20,68 24,79 19,50 

HeatShock_root_6h_3 23,80 23,07 26,82 22,30 24,50 20,50 24,78 18,95 
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HeatShock_root_11h_1 24,16 24,06 26,58 22,46 24,17 20,78 25,30 19,48 

HeatShock_root_11h_2 23,26 23,31 26,43 22,13 23,53 20,09 24,87 19,14 

HeatShock_root_11h_3 24,19 23,41 24,84 21,69 23,06 20,31 25,08 18,93 

HeatShock_root_24h_1 23,32 23,20 25,63 21,33 23,09 20,33 24,23 19,10 

HeatShock_root_24h_2 23,48 23,55 25,53 21,19 23,30 20,46 24,53 19,30 

HeatShock_root_24h_3 23,32 23,08 25,23 21,33 23,06 20,29 24,20 19,15 

Supplementary File 4.2. Raw Cq values for each sample and gene. 

 

  pDUF221 TLF AC1 Act2 TUB α EF-1α RPN6 GAPDH 

Average 25,276 22,822 23,703 22,278 22,939 20,616 24,398 18,840 

SD 0,962625 0,836003 1,478618 0,697158 0,815829 0,898593 0,61424 0,796856 

CV 3,81% 3,66% 6,24% 3,13% 3,56% 4,36% 2,52% 4,23% 

Median 25,50 22,71 23,49 22,24 23,08 20,65 24,55 19,05 

25% Percentile 24,63 22,14 22,64 21,75 22,21 19,89 23,99 18,27 

75% Percentile 25,95 23,45 24,51 22,82 23,48 21,37 24,81 19,38 

Percentile Difference 1,31 1,32 1,87 1,07 1,27 1,48 0,82 1,10 

Supplementary File 4.3. Cq details. SD = standard deviation, CV (coefficient of variation). 

 

Rank 

All Osmotic 

GeNorm NormFinder BestKeeper GeNorm NormFinder BestKeeper 

Gene Value Gene Value Gene Value Gene Value Gene Value Gene Value 

1 
EF-1α 

RPN6 
0.493 RPN6 0.134 RPN6 2,03±0,49 

TLF 

EF-1α 
0.407 RPN6 0.062 GAPDH 2,48±0,47 

2 GAPDH 0.493 EF-1α 0.145 Act2 2,43±0,54 RPN6 0.474 GAPDH 0.209 RPN6 2,33±0,57 

3 TLF 0.581 TLF 0.210 GAPDH 3,34±0,63 GADPH 0.513 TUB α 0.291 TUB α 2,77±0,64 

4 Act2 0.646 TUB α 0.229 TUB α 2,80±0,64 Act2 0.563 Act2 0.311 pDUF221 2,54±0,65 

5 TUB α 0.711 Act2 0.231 TLF 3,17±0,73 TUB α 0.593 TLF 0.345 Act2 2,94±0,66 

6 
pDUF22

1 0.752 GAPDH 0.246 EF-1α 3,65±0,75 AC1 0.666 EF-1α 0.348 AC1 3,65±0,85 

7 AC1 0.885 AC1 0.595 pDUF221 3,08±0,78 pDUF221 0.758 AC1 0.579 TLF 3,83±0,89 

8     pDUF221 0.646 AC1 4,74±1,13     pDUF221 0.648 EF-1α 4,61±0,95 

 

Rank 

Heavy metal Heat shock 

GeNorm NormFinder BestKeeper GeNorm NormFinder BestKeeper 

Gene Value Gene Value Gene Value Gene Value Gene Value Gene Value 

1 
EF-1α 

RPN6 
0.404 TLF 0.234 Act2 2,19±0,49 

TLF 

RPN6 
0.488 RPN6 0.167 RPN6 1,39±0,34 

2 
pDUF22

1 0.586 Act2 0.275 pDUF221 1,94±0,50 EF-1α 0.527 TLF 0.196 GAPDH 2,44±0,46 

3 TLF 0.615 pDUF221 0.306 TLF 2,30±0,52 GADPH 0.599 Act2 0.332 Act2 2,36±0,52 
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7 AC1 0.832 GAPDH 0.624 EF-1α 4,14±0,85 AC1 1.081 pDUF221 0.936 pDUF221 3,64±0,90 

8     AC1 0.677 GAPDH 4,83±0,90     AC1 1.186 AC1 5,84±1,44 

Supplementary File 4.4. GeNorm, NormFinder and BestKeeper ranks computed with shoot and root together for all 

the single stress and their combination (referred as all). 
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Supplementary File 4.5. Size of the gene visualized on 2% agarose gel (A) and melting curves of 8 candidate genes 

(B). Validation gene indicated by “*”.
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Supplementary File 4.6. Standard curves for 8 candidate genes. Curves are made with a serial 6-fold dilution. Blue 

squares indicate the three technical replicas for each dilution step. Validation gene indicated by “*”.
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Supplementary File 4.7. Expression profile of 8 candidate genes divided by stress and tissues: Osmotic stress in shoot 

(A) and root (B); Heavy metal stress in shoot (C) and root (D); Heat shock stress in shoot (E) and root (F).

y = -3,3562x + 22,908 
R² = 0,9988 

0
5

10
15
20
25
30
35

-4 -3 -2 -1 0
C

yc
le

 t
h

re
sh

o
ld

 

Log10 dilution 

DREB2A* 



- 109 - 

 

 

Supplementary File 4.8. NormFinder intergroup variation. Dataset was divided in shoot (A), root (B), shoot + root (C) 

and input in Normfinder algorithm with four subgroups: control plus three stresses (osmotic, heavy metal and heat 

shock). Bars rapresent the intergroup variation respect the average and vertical lines the mean of intragroup variation, 

asterisc (*) indicates the best combination of two genes. 
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