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”C’è una forza motrice più forte del vapore, dell’elettricità e dell’energia atomica:

la volontà.”

”There is a driving force more powerful than steam, electricity and nuclear power:

the will.”

”Hay una fuerza motriz más poderosa que el vapor, la electricidad y la enerǵıa

atómica: la voluntad.”

Albert Einstein
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Abstract

This thesis argues the attitude control problem of nanosatellites, which has been a

challenging issue over the years for the scientific community and still constitutes an

active area of research. The interest is increasing as more than 70% of future satellite

launches are nanosatellites. Therefore, new challenges appear with the miniaturisa-

tion of the subsystems and improvements must be reached. In this framework, the

aim of this thesis is to develop novel control approaches for three-axis stabilisation

of nanosatellites equipped with magnetorquers and reaction wheels, to improve the

performance of the existent control strategies and demonstrate the stability of the

system. In particular this thesis is focused on the development of non-linear control

techniques to stabilise full-actuated nanosatellites, and in the case of underactua-

tion, in which the number of control variables is less than the degrees of freedom of

the system.The main contributions are, for the first control strategy proposed, to

demonstrate global asymptotic stability derived from control laws that stabilise the

system in a target frame, a fixed direction of the orbit frame. Simulation results

show good performance, also in presence of disturbances, and a theoretical selection

of the magnetic control gain is given. The second control approach presents instead,

a novel stable control methodology for three-axis stabilisation in underactuated con-

ditions. The control scheme consists of the dynamical implementation of an attitude

manoeuvre planning by means of a switching control logic. A detailed numerical

analysis of the control law gains and the e↵ect on the convergence time, total inte-

grated and maximum torque is presented demonstrating the good performance and

robustness also in the presence of disturbances.

iii



iv



Acknowledgements

My research at the University of Bologna has been influenced by a number of great

professors, colleagues and friends.

Firstly, I would like to thank my thesis supervisor, Prof. Fabrizio Giulietti, for

his trust and advice over the years, his support was essential for all the projects

that I was involved in, throughout the period at the Flight Mechanics Laboratory. I

would like to thank my colleague, Prof. Emanuele de Angelis for introducing me in

the attitude control field, his support during the initial part of the PhD track was

really helpful, and to Prof. Giulio Avanzini for his useful advises.

I would like to thank my supervisor during my research period at Coventry

University, Prof. Nadjim Horri for his always useful support and the way he has to

develop my thinking.

Throughout these 4 years, I had the opportunity to participate into di↵erent

space related projects and I am honoured to thank all BEXUS (Balloon Experiment

University Students) team within the BEXUS programme of the European Space

Agency (ESA) education o�ce for all that I learnt from this hands-on experience,

not only from a technical point of view but also human. I am thankful to my team

A5–Unibo, I am really proud of what we reached with commitment working together

for the final goal to launch our experiment to the stratosphere.

I would like to thank my colleagues of the Imagine mission. It was an amazing

experience to work with all of you from 11 universities and 8 di↵erent countries. I am

so proud of us, who demonstrated to the National Institute of Aeronautics (NIA) and

the National Aeronautics and Space Administration (NASA) that an international

v



team with di↵erent cultures, backgrounds and di↵erent skills can develop such a

feasible, low-cost and innovative concept for a mission to the Mars system. I am

glad to have had the opportunity to apply my knowledge to the AOCS (Attitude

and Orbit control System) of the mission and I would like to thank the RASC-AL

team for all the lessons learned, all their support and for the awards received, that

are the perfect reward for all the work developed.

Last but not least, to my family, my boyfriend and my friends in Madrid, Forl̀ı

and Coventry, who have always supported me in spite of the distance.

Thank you to all of you that have walked with me throughout these four years and

have contributed to making all these days of hard work an unforgettable experience.

Nani Serrano Castillo

vi



Contents

Abstract iii

Acknowledgements v

List of Figures xiv

Nomenclature xv

1 Introduction 1

1.1 Attitude control in Low Earth Orbit . . . . . . . . . . . . . . . . . . 1

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Mathematical model and description of the satellite in LEO envi-

ronment 7

2.1 Attitude representation . . . . . . . . . . . . . . . . . . . . . . . . . . 7

vii



2.1.1 Reference frames . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Attitude Parametrization and Kinematics . . . . . . . . . . . 9

2.2 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 External disturbances . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1.1 Gravity gradient torque . . . . . . . . . . . . . . . . 17

2.2.1.2 Aerodynamic torque . . . . . . . . . . . . . . . . . . 18

2.2.1.3 Solar radiation pressure . . . . . . . . . . . . . . . . 18

2.2.1.4 Magnetic field and residual magnetic dipole . . . . . 19

2.2.2 Actuators for attitude control of small and nanosatellites in

LEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2.1 Thrusters . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2.2 Mechanical control . . . . . . . . . . . . . . . . . . . 21

2.2.2.3 Control moment gyros (CMGs) . . . . . . . . . . . . 23

2.2.2.4 Magnetorquers . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Momentum management . . . . . . . . . . . . . . . . . . . . . 26

3 Three axis stabilisation for nanosatellites 27

3.1 Spin and three axis Stabilisation . . . . . . . . . . . . . . . . . . . . . 27

viii



3.1.1 Three-axis stabilisation configurations . . . . . . . . . . . . . 28

3.2 Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Underactuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 CASE 1 - Magnetic and mechanical attitude control strategy for

three-axis stabilisation in the orbit frame 39

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Problem statement and solution . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.2 Momentum management and attitude stabilisation . . . . . . 44

4.2.3 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.4 Choice of the control gain . . . . . . . . . . . . . . . . . . . . 49

4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 CASE 2 - Slew manoeuvre and three-axis attitude stabilisation of

an underactuated nanosatellite 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Problem statement and methods . . . . . . . . . . . . . . . . . . . . . 61

ix



5.2.1 Overview of the two-step kinematic steering technique for at-

titude acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.2 Mathematical model of the underactuated satellite - kinemat-

ics and dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.3 Switching control approach . . . . . . . . . . . . . . . . . . . . 66

5.2.4 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 Epsilon selection . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.2 Switching behaviour . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.3 Zero total angular momentum . . . . . . . . . . . . . . . . . . 76

5.3.4 Non-zero total angular momentum including disturbances . . . 78

5.3.5 Actuators saturation e↵ects . . . . . . . . . . . . . . . . . . . 80

5.3.6 Comparison between controllers . . . . . . . . . . . . . . . . . 81

6 Conclusions 87

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Publications 91

x



A Case 1: Proof of Lemma 1 93

B Gains Study 95

C Case 2: Stability proof - Multiple Lyapunov Approach 101

Bibliography 107

xi



xii



List of Figures

2.1 Body-axis reference frame . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Earth-Centred Inertial reference frame . . . . . . . . . . . . . . . . . 9

2.3 Small satellite equipped with three RWs and three MTs . . . . . . . . 10

4.1 Wheel angular momenta and spacecraft momentum error . . . . . . . 54

4.2 Spacecraft attitude quaternions . . . . . . . . . . . . . . . . . . . . . 54

4.3 Magnetorquers e↵orts . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Wheel e↵orts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Multiple Lyapunov functions . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 One common Lyapunov function for all switching sequences . . . . . 73

5.3 Switching behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Epsilon influence in the switching behaviour . . . . . . . . . . . . . . 77

xiii



5.5 Attitude representation for the zero momentum case . . . . . . . . . . 78

5.6 q4 - Zero momentum VS non-zero momentum case . . . . . . . . . . 79

5.7 q4 - Zero momentum case, saturation Vs non-saturation . . . . . . . 81

5.8 Attitude representation in quaternions for the case 2.1 - Non-zero

momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.9 Attitude quaternions Horri et al. Vs Switching law - Zero Momentum 83

5.10 q4 (Horri et al. Vs Switching law) zero momentum case . . . . . . . . 84

5.11 Wheels torque - Horri et al. Vs Switching law - zero momentum . . . 84

B.1 Convergence time Case 2.2B . . . . . . . . . . . . . . . . . . . . . . . 96

B.2 Integrated torque Case 2.1B . . . . . . . . . . . . . . . . . . . . . . . 97

B.3 Integrated torque Case 2.2B . . . . . . . . . . . . . . . . . . . . . . . 97

B.4 Integrated torque Case 2.3B . . . . . . . . . . . . . . . . . . . . . . . 98

B.5 Maximum Torque Case 2.1B . . . . . . . . . . . . . . . . . . . . . . . 99

xiv



Nomenclature

Symbols

b Geomagnetic field vector expressed in FB, T
b̂ Underactuated direction
CD Spacecraft drag coe�cient
e,� Euler axis and Euler angle
ê
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3

Spacecraft principal axes of inertia
FB Body-fixed frame
FI Inertial frame
FO Local-vertical/local-horizontal orbit frame
FT Target frame
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Chapter 1

Introduction

1.1 Attitude control in Low Earth Orbit

The attitude control of a spacecraft is the control of its orientation in space and

the rotational motion about the centre of mass. The attitude and orbit are often

interdependent concepts but their study has been separated over the years. Attitude

in turn, is divided into determination, prediction and control [1].

• Attitude determination: Compute the orientation involving di↵erent sensors.

These can be magnetometers, Sun Sensors, Earth Sensors, Star-Trackers and

GPS, which can be combined to achieve the required accuracies of the mission.

The most common used sensors are sun sensors and magnetometers.

• Attitude prediction: The process of forecasting the future orientation using

the previous attitude information, algorithms and dynamical models which

include the applied and environmental torques.

• Attitude control: Is the process to keep the orientation or reach a new desired

orientation. Using the actuators available to stabilise the attitude, correcting

1



1.1. ATTITUDE CONTROL IN LOW EARTH ORBIT 2

the internal and external perturbations respect to a desired target attitude.

This thesis will be focused on the attitude control problem of small and nanosatel-

lites orbiting in Low Earth Orbit (LEO).

Over the years, the number of space missions has increased whereas mission

architectures have been reduced in size and mass. Important International space

agencies such as the National Aeronautics and Space Administration (NASA) and

the European Space Agency (ESA), started increasing programmes based on smaller

satellites with simpler architectures, which was possible due to the encouraging

development of Micro-Electro-Mechanical Sensors (MEMS) and Commercial O↵-

The-Shelf components (COTS). Electrical power, fuel consumption, and payload

mass and dimension were reduced as well as new attitude and orbit determination

and control Systems.

In 1999 the CubeSat Standard was defined with the aim to provide design guide-

lines for the interface between the launch vehicle and the spacecraft, which allow

developers to pool together for launch, reducing costs, and creating opportunities

[2]. Since then, CubeSats have been built not only by universities but also by com-

mercial companies and international space agencies, due to their simplicity in design,

architecture, and objective, and the possibility to purchase smaller space-qualified

subsystems at a↵ordable prices.

This new trend represents a challenge in the miniaturization of all of traditional

subsystems. Data-handling and power systems technologies are quite advanced but

the open issues in attitude control performance are yet present. These are focused

on dynamic control and control accuracies which are related to other satellite sub-

systems as the communication, data-handling, thermal and power.
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Di↵erent attitude determination and control strategies have been developed.

Typical constraints posed on small satellites in terms of mass, volume, and avail-

able power usually resulted in a pointing accuracy that has to compete with bigger

platforms. It is essential to enhance such strategies both relying on hardware im-

provement and novel results in control theory.

Attitude control methods can be classified in active and passive:

• Passive control: They do not need any input or feedback, they take advantage

of natural physical e↵ects.

– Spin stabilised systems.

– Dual-spin stabilised systems.

– Stabilisation by gravity gradient.

– Stabilisation by bias-momentum stabilised systems.

– Stabilisation by magnetic moments

• Active control: They operate by taking an error signal an require a continuous

actuation from control devices.

The attitude control system of a satellite depends on the type mission, stability

and pointing requirements, power and mass constraints, orbit characteristics, and

total mass.

Most satellites, the International Space Station, and the Hubble Space Telescope

are all in Low Earth Orbit (LEO). As main features, these orbits are from 200 �
2000km having a mean orbital velocity of 7.8km/s. This type of orbit is one of the
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most convenient for Earth observation and to study the space environment e↵ect in

humans as the time to reach the orbit is relatively short.

An important feature of this orbit is the presence of some atmospheric drag

which over time will slow down the satellite whose orbit slowly decay. This allows

the influence of gravity to pull the object towards the Earth. Other fact is related

to how quickly a satellite in LEO goes around the Earth.

The market of nanosatellites is increasing for commercial and educational pur-

poses for satellites to LEO due to the simpleness and cheapness of the missions [3]

although the number of launches has been reduced since 2014 due to delays in mis-

sion phases, 2017 will probably be a record year as these delayed nanosatellites will

be probably launched throughout the year.

LEO satellites o↵er not high coverage and dwell time over a certain region.

However, they o↵er very good bandwidth for communications and represent a good

platform for remote sensing if the attitude and orbit control system (AOCS) can

reach the pointing requirements. Regarding the accuracy obtained by these control

systems, there are still many open issues.

The purpose of this thesis is to give a contribution on the enhancement of the

AOCS, by focusing on three-axis stabilisation strategies for nanosatellites, to im-

prove the existent approaches in terms of performance and stability.

1.2 Outline of the thesis

This thesis is divided in two main parts, the first three chapters give an overview of

AOCS for nanosatellites in LEO, highlighting the problem of three-axis control. The
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second part corresponds with my personal contributions to the scientific community

followed by the conclusions.

In Chapter 1 an introduction to attitude control for small satellites in low Earth

Orbit is given.

Chapter 2 describes the mathematical model of the satellite, the parameters

needed for attitude representation followed by an overview of the disturbances in

LEO environment and a description of the most common AOCS actuators.

Chapter 3 gives a brief summary of three-axis attitude control for this class of

satellites and a description of the underactuation problem.

Two results are presented in the following chapters, namely Case 1 and Case 2:

In chapter 4, a three-axis control of a spacecraft using both magnetic and mechan-

ical actuation is presented. Three reaction wheels are used to control the spacecraft

attitude, and three magnetic torque rods are used for continuous autonomous mo-

mentum dumping. A proof of global asymptotic stability is derived for control laws

that stabilise the cascade system in the target frame, a fixed direction of the orbit

frame. Good performance, also in presence of disturbances, is shown in simulations

and a theoretical selection of the magnetic control gain is given.

In Chapter 5, a novel stable control methodology for three-axis stabilisation of a

nanosatellite in underactuated conditions is developed in which just two independent

torque components are given by two reaction wheels. The control approach proposed

tracks angular velocities by means of a switching control logic. A detailed numerical

analysis of the control law gains and their e↵ect on the convergence time, total

integrated and maximum torque is presented. Numerical simulations of existing
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and proposed control laws are given to show attitude asymptotic stabilisation of

the satellite using the proposed switching control law. Robustness in presence of

disturbances is shown followed by the description of the enhancements respect to a

previous controller.

Main conclusions and the possible future work end the thesis.



Chapter 2

Mathematical model and
description of the satellite in LEO
environment

In this chapter, the attitude control system of the satellite will be described, in-

cluding the elements used analytically to represent the attitude. Actuators and the

mathematical model will be presented as well as the disturbances in LEO environ-

ment.

2.1 Attitude representation

2.1.1 Reference frames

In order to represent the motion of an Earth-orbiting rigid satellite and the space

environment e↵ects the following reference frames are introduced.

1. A local-vertical/local-horizontal orbital frame, named FO. The origin of this

7



2.1. ATTITUDE REPRESENTATION 8

Figure 2.1: Body-axis reference frame

frame coincides with the centre of mass of the satellite. It rotates relative to

the ECI frame, with a rate of !orb
O or orbital angular velocity, depending on the

radius of the orbit. The xo axis points in the direction of motion tangentially

to the orbit. For a circular orbit, xo is parallel to the direction of the orbital

velocity. The Z-axis of the frame points towards the centre of the Earth, and

the yo axis completes the right hand system.

2. A body-fixed frame FB. Its origin is placed in the center mass of the satellite.

The nadir side of the satellite is in the zb direction, and the other two axes, xb

and yb, are coincident with xo and yo of the orbit frame when the satellite has

an attitude of zero degrees in roll, pitch and yaw.

3. The Earth-Centred Inertial (ECI) FI , whose origin is at the Earth’s centre,

the xI axis is the vernal equinox direction, the zI axis coincides with Earth

rotation axis and it is northward directed, and the yI completes an orthogonal

right-handed frame. For Earth orbiting spacecraft problems FI is an inertial

frame.
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Figure 2.2: Earth-Centred Inertial reference frame

4. A target frame, FT , which denotes the spacecraft desired attitude. Also, for

the purposes of this thesis, the target frame, FT , is constant with respect to

the orbital frame, FO.

2.1.2 Attitude Parametrization and Kinematics

This section highlights di↵erent representations of a satellite attitude.

• Euler angles

Any rotation is expressed as a sequence of elementary rotations.

A rotation is an angle  about the z-axis, the second rotation is an angle ✓

about the y-axis, and the third rotation is an angle � about the x-axis. For

notational brevity, let us arrange these angles in a three-dimensional vector

called the Euler angle vector E, defined by

E := [�, ✓, ]T
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Figure 2.3: Small satellite equipped with three RWs and three MTs

The final direction cosine matrix can be expressed as multiplication of the

successive rotations.

Rijk(�, ✓, ) := Ri(�)Rj(✓)Rk( )

In this thesis, the “yaw” angle  around the local vertical zO is given by the

angular distance between the yO-axis and the projection of yB on the orbit

plane, whereas the “roll” angle � is represented by the elevation of yB with

respect to the orbit plane. The sequence of fundamental rotations is completed



2.1. ATTITUDE REPRESENTATION 11

by a “pitch” rotation ✓ around the unit vector ê
2

, parallel to yB, as represented

in Fig. 2.3.

The attitude of the spacecraft with respect to FO can be described by di↵erent

sequences, for a 3-1-2 Euler angle sequence, the matrix is

T BO =

0

@
cos cos✓ � sin�sin sin✓ cos✓sin + cos sin�sin✓ �cos�sin✓

�cos�sin cos�cos sin�
cos sin✓ + cos✓sin�sin sin sin✓ � cos cos✓sin� cos�cos✓

1

A

(2.1)

The evolution of Euler Angles is a function of the angular speed of the space-

craft relative to FO, given by !rel = ! � T BO !orb
O , where !orb

O = (0, n, 0)T is

the angular speed of FO with respect to an inertial frame FI , with components

expressed in FO [4].

The kinematics of Euler Angles (yaw, roll, and pitch) written as a function of

the angular speed of the spacecraft relative to FO,

!rel
1

= �̇ cos ✓ �  ̇ cos� sin ✓ (2.2)

!rel
2

= ✓̇ +  ̇ sin� (2.3)

!rel
3

= �̇ sin ✓ +  ̇ cos� cos ✓ (2.4)

which in terms of absolute angular velocity vector of the satellite ! = !rel +

T BO !orb
O :

!
1

= �̇ cos ✓ �  ̇ cos� sin ✓ + n (cos ✓ sin + sin� sin ✓ cos ) (2.5)

!
2

= ✓̇ +  ̇ sin�+ n cos� cos (2.6)

!
3

= �̇ sin ✓ +  ̇ cos� cos ✓ + n (sin ✓ sin � sin� cos ✓ cos ) (2.7)
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For this type of attitude representation by a sequence of elementary rotations,

a notable characteristic is that singular configurations occur [5]. Both classical

yaw-pitch-roll (3-2-1) and precession-nutation-spin (3-1-3) sequences will ap-

proach singular configurations. All parametrizations of the form (i, j, i), that

there exists a singularity at the home position, [�, ✓, ] = [0, 0, 0]. The singu-

larities found in the various Euler angle representations are said to arise from

gimbal-lock which may be understood in several ways. Intuitively, it arises

from the indistinguishably of changes in the first and third Euler angles when

the second Euler angle is at some critical value.

Practical applicability of a certain control law and the search closed-loop stabil-

ity proofs motivate the recommendation of this unusual Euler angle sequence

in the description of spacecraft attitude kinematics if Euler Angles are chosen

for attitude parametrization.

• Euler Axis-Angle (e,�)

Euler axis-angle represents a nominal rotation which takes a rotating reference

frame (e.g., a body-fixed frame) to a target reference frame by means of the

minimum angular path. It is often used for commanding slew manoeuvres [6].

The Euler axis is represented by e and the Euler angle by �. The kinematics

of both are described by

ė =
1

2


e⇥ � cot

�

2
e⇥ e⇥

�
! = E(�)! (2.8)

�̇ = eT ! (2.9)

where ”cot” is the cotangent of the angle, ex is the skew-symmetric matrix

and ! is the angular velocity.

In some cases, there exist a direction about which rotations are not allowed,

being the nominal Euler transformation not attainable. Nonetheless, rotations
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about non-nominal axes, on the plane orthogonal to the forbidden direction,

can be performed [7].

The non-nominal Euler axis ĝ is represented as

ĝ = (b̂⇥ ê)/kb̂⇥ êk (2.10)

and it is also called the admissible rotation eigenaxis.

• Quaternions

Quaternions are a very e�cient way to represent the attitude. Having four

parameters and being free of singularities [8]. Although they have no physical

representation, its geometric meaning can be trivially recovered. The quater-

nion algebra allows to easily compose rotations.

A quaternion can be represented by q = [cos(�) + eisin(�)] where q =

[q
1

, q
2

, q
3

, q
4

]T = [q̄T , q
4

]T q̄T is the quaternion vector and ei the components

of the Euler Axis

q
1

= e
1

sin(�/2)

q
2

= e
2

sin(�/2)

q
3

= e
3

sin(�/2)

q
4

= cos(�/2)

The kinematics can be represented by

q̇ = W (q)! (2.11)

W (q) = 1/2 (q
4

I
3

+ q̄⇥ � q̄T )T (2.12)
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being q̄⇥ the skew-symmetric matrix.

This expression can also be represented by

q̇ =
1

2
(q

0

! + qx!) (2.13)

q̇
0

= �1

2
qT ! (2.14)

Quaternions present several advantages over Euler angles, above all the ab-

sence of inherent geometric singularity. Moreover, the linear equation which

determine their evolution as a function of angular velocity components is less

computationally expensive than that derived for the Eulers angles.

The four parameters are not independent and must satisfy the constraint

q2
1

+ q2
2

+ q2
3

+ q2
4

= 1 (2.15)

Quaternions will be the attitude representation selected for the control ap-

proaches described in this thesis.

• Gibbs Vector

Attitude representation in terms of quaternions has a non-minimality which

can be solved for by use of the Gibbs vector,

rp = (rp1, rp2, rp3)
T = atan(↵̂/2) (2.16)

Gibbs parameters, also known as Rodrigues parameters, and are strictly re-

lated to quaternions. Being a minimal parametrization of attitudes. They

present a singularity.

The singular configuration of the Gibbs vector is for any eigenaxis rotation

with ↵ = ±⇡, in which case their values diverge towards infinity. To solve



2.2. MATHEMATICAL MODEL 15

for this problem, the Modified Rodrigues parameters (MRP) were recently

introduced, defined as

p = (p
1

, p
2

, p
3

)T = atan(↵̂/4) (2.17)

The singularity in the attitude representation is still present, and placed at

half of a rotation (that is, ↵ = ±⇡). Nonetheless, an advantage is that they

do not diverge. All these features make the numerical integration of MRPs

less critical with respect to both the quaternions case and the Gibbs vector.

2.2 Mathematical model

A satellite platform will be considered a rigid body in the space and its attitude

changes according to the fundamental equations for rotational dynamics,

I !̇ + ḣ+ ! ⇥ (I ! + h) = M (2.18)

where ! = (!
1

,!
2

,!
3

)T is the absolute angular velocity vector of the satellite

with respect to FI , I = diag (I
1

, I
2

, I
3

) which is the spacecraft inertia matrix. The

term h = (h
1

, h
2

, h
3

)T is the angular momentum vector relative to FB of any rota-

tional momentum exchange devices such as, RWs, CMG’s or thrusters.

Eq.(2.18) shows that the magnitude of angular momentum in a system can only

be changed by applying external torques, because the change due to the term ! ⇥
(I ! + h) can only change the direction, not the magnitude.
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Eq.(2.19), represents the total momentum vector M = (M
1

,M
2

,M
3

)T , which

includes external disturbances, M (d), and magnetic control, M (c) = m ⇥ b, being

m = (m
1

,m
2

,m
3

)T the magnetic dipole moment vector. See section 2.2.1.4.

M = M (c) +M (d) (2.19)

In the most general case, the relative angular momentum of a rotational device

such as a reaction wheel, h = Iw⌦, where Iw is the moment of inertia of the wheel

about its spin axis â, and ⌦ is the wheel spin rate with respect to the spacecraft.

Therefore, one obtains

ḣi = gi � Iw !̇T âi (2.20)

where gi is the torque applied to the wheel about its spin axis by its electric motor.

In the ideal case when the wheel assembly is not a↵ected by friction, gi represents

the control input.

Regarding orbital parameters considered for this thesis, a circular LEO of radius

rc, period Torb, and orbit rate n = 2⇡/Torb.

2.2.1 External disturbances

As AOCS subsystem must ensure the correct orientation in space, it has to coun-

teract the perturbations in the form of disturbance torques and forces that modify

the nominal trajectory and attitude of satellite [9].

For a LEO orbit, the most important environmental disturbances are:

• Gravity Gradient
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• Solar radiation pressure

• Atmospheric Drag

• Magnetic field and residual dipole

2.2.1.1 Gravity gradient torque

A non-symmetrical object in orbit is subject to a gravitational torque because of

the variation in Earth’s gravitational force over the object. This gravity-gradient

torque results from the inverse square gravitational force field. It is constant for

Earth-oriented; cyclic for inertially oriented. When one of the principal axis is

aligned with the local vertical, the cg is always on that principal axis, and therefore

there is no gravity gradient torque. It increases with the angle between the local

vertical and the spacecrafts principal axes, always trying to align the minimum

principal axis with the local vertical. An expression for the gravity gradient torque

for a spacecraft with the minimum principal axis in its Z direction is given by

M (gg) = 3n2 [ô
3

⇥ (Iô
3

)] (2.21)

where ô
3

is the unit vector parallel to the local vertical, n the orbit rate and I the

inertia matrix.

Gravity gradient can be used as a passive form of stabilisation, as well as a

simple momentum desaturation technique. However, for stabilisation, it is highly

susceptible to other environmental disturbances.



2.2. MATHEMATICAL MODEL 18

2.2.1.2 Aerodynamic torque

The interaction of the upper atmosphere molecules with the external surface of the

satellite introduce. The aerodynamic torque is the dominant disturbance torque

below approximately 400 km. It is possible to assume that the incident particles

entire energy is absorbed on collision. This is modelled as an elastic impact without

reflection.

Aerodynamic torque is thus equal to

M (a) = rcp ⇥ F (a)

where rcp is the position of the centre of pressure with respect to the centre of mass

of the satellite, and F (a) = (1/2)⇢V 2

t ACD is the aerodynamic force produced by the

rarefied air with density ⇢ ⇡ 3.614 ·10�14 kg/m3, at the considered orbit altitude. In

the expression of F (a), A is the cross-sectional area, Vt is the velocity with respect

to the air, assumed equal to the orbital speed, and CD is a drag coe�cient. It can

be calculated as the vector sum of the individual torques given by the cross product

of the vector joining the spacecraft centre of mass to the centre of pressure of each

geometric shape times the force acting on the component.

2.2.1.3 Solar radiation pressure

The solar radiation has momentum, and therefore it exerts pressure on those objects

it strikes. The radiation incident on a spacecraft’s surface produces a force which

results in a torque about the spacecraft’s centre of mass. It is cyclic for Earth-

oriented satellites and constant for Sun-Oriented ones.
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The major factors determining the radiation torque on a spacecraft are the inten-

sity and spectral distribution of the incident radiation, the geometry of the surface

and its optical properties, and the orientation of the Sun vector.

Sources of electromagnetic radiation pressure can be the solar illumination, the

reflection of the radiation by the Earth and its atmosphere and the radiation emitted

from the Earth and its atmosphere.

The torque produced can be represented as

Ts =
Fs

c
As(1 + q)(cps � cg)cos(i) (2.22)

where Fs is the solar constant 1367 W/m2, c is the speed of light, 3 · 108m/s.,

As the surface area of the satellite facing the sun, q is the reflectance factor, i is the

angle of incidence to the sun, cps is the location of the centre of solar pressure, and

cg is the centre of gravity.

2.2.1.4 Magnetic field and residual magnetic dipole

The Earths liquid core generates the Earths magnetic field. Some features are that it

is complex, asymmetric and not aligned with Earths spin axis, and varies both with

gravitational movement of the dipole and changes in solar particle flux. However,

for the use in the AOCS design process, it is usually su�cient to model the Earth’s

magnetic field as a dipole and to determine the maximum possible value of the

magnetic torque for a satellite orbit.

On-board electrical systems and circuits can generate a dipole moment mrm

which can produce residual magnetic torque M (rm). When the residual moment

of a satellite is not aligned with the Earth’s Magnetic field, the torque generated
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attempts to align the magnet to the local field. The residual dipole moment is

relatively negligible when magnetic coils are active, when they are switched o↵, it

produces a significant contribution to the disturbance torque that is described by

M (rm) = mrm ⇥ b (2.23)

The primary sources of magnetic disturbance torques are: (1) Spacecrafts magnetic

moments (2) Eddy currents (3) Hysteresis These residual moments can range from

0.1 to 20 Am2 depending on the satellite size and whether any on-board compensa-

tion is provided.

The components of the geomagnetic field in the model are provided in the local-

vertical/local-horizontal orbit frame, FO, by means of the International Geomagnetic

Reference Field (IGRF) model [10]. This model represents the set of gaussian coef-

ficients for use in the analytical models describing the Earth’s magnetic field and is

updated every five years.

2.2.2 Actuators for attitude control of small and nanosatel-
lites in LEO

Actuators will provide the satellite with the torque needed to detumble the satellite

after the release from the launch vehicle, to perform slew manoeuvres, to point a tar-

get direction or to keep a desired attitude [9]. In the case for small and nanosatellites

it is still a challenge as although the inertia is low, which means less torque required

than bigger satellites to perform the same manoeuvre. Reliability and quality of

smaller actuators that can fit in these satellites are still being developed.

The most common attitude actuators for nanosatellites in LEO are summarized

this section 2.2.2. They are divided into momentum-exchange devices which con-
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serve angular momentum in the spacecraft: reaction/momentum wheels and con-

trol moment gyros. And the external torque actuators, which change the angular

momentum of the spacecraft when they are activated, such as magnetorquers and

thrusters (cold-gas, hot-gas and electric)

Some pico-satellites are launched without any attitude control system. But nor-

mally missions require attitude control methods. In LEO, both active or passive

methods are used. Spin-stabilisation and a gravity gradient are two examples of

simple and e↵ective means of attaining a certain attitude but the most common

actuators for small-class satellites are the momentum exchange devices, suitable for

more precise control. [11].

2.2.2.1 Thrusters

Thrusters are possibly the most frequently flown attitude actuator. They are used

for orbital manoeuvres, rapid slews, and in many cases, some subset of the thrusters

used is for attitude control and managing angular momentum. They generate a

force by expelling propellant at high-velocity from their exit nozzles and provide a

torque proportional. Types and other features are described in Table 2.1.

2.2.2.2 Mechanical control

Mechanical control is given by rotating masses within the satellite body. These are

angular exchange devices in which the angular momentum is transferred between

di↵erent parts of the satellite. See Table 2.2 and Table 2.3

For fast, accurate maneuvers attitude reaction wheels can be chosen, since they
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Table 2.1: Thrusters
Thrusters Description

Types

• Hot-gas propulsion systems include thrusters that chemically
alter the propellant to extract the energy needed for rapid
mass expulsion.

Monopropellant: The propellant is catalysed o break
down chemically.

Bi-propellant: In which a fuel is mixed with an oxidizer
to achieve combustion just prior to expulsion.

• Cold-gas systems include thrusters whose propellant is not
altered chemically during propulsion. The energy may come
from phase change of the propellant, or simply from the pre-
pressurising the propellant in its tank.

• Electrical propulsion: It is accomplished by using magnetic or
electrostatic fields to eject plasma o magnetic fluid to achieve
a reaction force on the spacecraft.

Advantages They are able to provide large, instantaneous control torques at
any time in the orbit.

Disadvantages They use expendable propellant. They can disrupt orbit determina-
tion activities, and the expelled matter can impinge on the surface
of the spacecraft, possibly heating or contaminating surfaces.
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Table 2.2: Wheels
Wheels Description

Types • Reaction Wheels: They are essentially torque motors with
high-inertia rotors. They can spin in either direction and
provide one axis of control for each wheel. They store mo-
mentum. Nominal velocity is zero.

• Momentum wheels are reaction wheels with a nominal spin
rate not zero to provide a nearly constant angular momen-
tum. This momentum provides gyroscopic sti↵ness to two
axes, and the motor torque may be controlled to change point-
ing around the spin axis. In sizing wheels we must always
consider two performance quantities: angular momentum ca-
pacity, and torque authority.

Advantages Provides smooth changes in torque, allowing very accurate pointing
of spacecraft.

Disadvantages Some wheels can cause vibrations, or jitter, at high speeds, but
this can often be mitigated with vibration isolators of changes in
structural design.

permit a smooth and continuous control with the minimum possible parasitic dis-

turbances. The levels achievable are typically ranging from 0.01 to 2 Nm.

2.2.2.3 Control moment gyros (CMGs)

These are single-or double-gimbaled wheels spinning at constant speed and therefore

providing momentum bias sti↵ness when not actuating. By turning the gimbal

axis, it can be obtained high-output torque whose size depends on the speed of the

rotor the gimbal rate of rotation. They can be achieved with levels about 200 Nm.

However, such devices are very heavy and are rarely used in the system attitude

control of satellites ordinary size.
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Table 2.3: CMG’s
CMG’s Description

Advantages For high torque applications in which fine control is needed, control
moment gyros maybe used instead of reaction wheels.
Control systems with two or more CMGs can produce large torques
about all three orthogonal axes of the spacecraft, thus we most
often use them where agile (i.e. high angular rate) manoeuvres are
required.

Disadvantages The use of CMGs requires complex control laws and careful mo-
mentum management to avoid wheel saturation. Also, because the
CMGs torque is created by twisting what is essentially a sti↵ gy-
roscope perpendicular to its Spin axis, the bearings of the wheel
su↵er a great deal of wear and tear, causing most CMGs to have
shorter lifetimes than other actuators.
Because CMGs combine a short life with high cost, weight, and
power needs, they are generally used only on very large spacecraft
and only when necessary to achieve the mission goals.

Normally three reaction wheels are used to control the spacecraft, arranged with

wheels aligned with the principal axes of the vehicle; is common also add a fourth

reaction wheel for redundancy.

2.2.2.4 Magnetorquers

Magnetorquers (MTs) consist of current-driven coils (electromagnets) rigidly placed

designed to generate a magnetic dipole moment. When three orthogonal torquers

are mounted to a spacecraft, they can create a magnetic dipole at any direction.

A MT produces a torque which lies on a plane which is perpendicular to the

Earths magnetic field vector b due to the interaction between the local geomagnetic

field and the coils. The control torque is constrained to belong to that plane. Thus,
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Table 2.4: Magnetorquers
MT’s Description

Advantages Electromagnets have the advantage of no moving parts, requiring
only a magnetometer for sensing and wire coiled around a metallic
rod in each axis. Low cost, simplicity and e↵ectiveness. Magnetic
control systems provide a continuous and smooth control pair.

Disadvantages Because they use the Earths natural magnetic field, and this field
reduces in strength with the cube of distance from Earths centre,
magnetic torquers are less e↵ective at higher orbits. The moment
levels reached by magnetorquers are small (on the order of 1-10
mNm), usually do not allow rapid manoeuvres.

the system is not capable to provide three independent control torques at each time

instant. See section 3.3.

MTs are mostly used to compensate for spacecraft residual magnetic field or at-

titude drift from minor disturbance torques and to desaturate momentum exchange

devices. Although they require more time than other actuators such as thrusters,

they are commonly used due to their low cost, simplicity and e↵ectiveness. In table

2.4, advantages and disadvantages of this actuators are presented.

Other way a satellite can control its magnetic moment is the use of gymballed

permanent magnets. For three-axis control, the permanent magnet must be capable

of rotating in three axes Or equivalently, three permanent magnets must be mounted

on rotation-control motors with mutually non-parallel axes.
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2.2.3 Momentum management

Momentum management is the process to remove the momentum stored in the

satellite by the momentum exchange devices. This build-up is caused by the en-

vironmental external torques which can be cyclic or secular. Cyclic disturbances,

that vary over the course of an orbit but have a mean of zero may be managed just

through storage. However, secular torques which are those that have a non-zero

mean, will cause a gradual increase in angular momentum [12].

Reaction wheels, which work nominally zero angular momentum, can be used

primarily to absorb cyclical disturbing moments. However, the storing capacity is

limited and reaction wheels can saturate reaching the maximum angular velocity.

The process to remove the momentum can be periodic, as traditionally, or continuous

as recent results of new control strategies show [13]. In chapter 4 the control law

strategy proposes a continuous momentum dumping.

As design requirements, the average disturbance torque for 0.25 or 0.5 orbit

determines the minimum, capacity of the wheels. To determine it, cyclic and secular

disturbances in the spacecrafts environment must be distinguished. The size of

the reaction wheels are such that to be able to store the full cyclic component of

momentum without the need of momentum downloading.



Chapter 3

Three axis stabilisation for
nanosatellites

3.1 Spin and three axis Stabilisation

Once a satellite is released from a rocket or from other platforms such as the space

station (ISS) [14, 3] and is placed into a stable orbit, attitude must be also stabilised.

Two techniques to achieve this goal will be described, namely, spin and three-axis

stabilisation.

Spin stabilisation

The entire satellite rotates around an axis, spinning and keeping the satellite

attitude in space under control. The spinning spacecraft resists perturbing forces

due to the gyroscope e↵ect. An advantage is the simplicity to keep the pointing to a

target direction. However, instruments or antennae must ”de-spin” to point certain

directions and as a consequence some constraints are introduced, such as the limited

use of large solar arrays.

27
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Spin stabilisation was used for recent small and nanosatellite missions [15]. See

table 3.1.

On the other hand, three-axis stabilisation allows the satellite to point a certain

direction without spinning. In order to do so, satellites use di↵erent actuators to

keep the satellite pointing to the desired orientation. While attitude determination

sensors detect any variation of the satellite out of the proper orientation, the spinning

wheels speed up or slow down to return the satellite to its correct position. Thrusters

can also be used to keep the satellite within a range of allowed positions. An

advantage of three-axis stabilisation is that in order to fulfil the instruments pointing

requirements, ”de-spin” manoeuvres are not needed.

3.1.1 Three-axis stabilisation configurations

Di↵erent momentum based ACS configurations are used for three-axis stabilised

satellites [16]. Some recent small and nanosatellite missions [15] are described in

table 3.2. The most common configurations are:

• Single momentum wheel.

• Pitch momentum wheel/thruster.

• Single-gimbal momentum wheel.

• Pitch momentum wheel/yaw reaction wheel.

• Double-gimbal momentum wheel.

• Three reaction wheels.
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Table 3.1: Small and nanosatellites Spin Stabilised
Nanosatellites Description

HIT-Sat(2009) Institute of
Technology and Hokkaido
University, Hokkaido,
Japan

HIT-Sat (3 kg) is a CubeSat. The spacecraft is spin-
stabilised, pointing into the sun direction. The ACS
(Attitude Control Subsystem) consists of three magnetic
torquers (MTQ, total mass of 90 gram) as actuators,
a magnetometer (Honeywell HMC2003), a sun sensor
(FOV 45) and a gyroscope (range of 200/s). A spe-
cial separation system was developed for spacecraft de-
ployment. After the separation, the initial attitude of
the satellite is acquired thorough three control phases:
de-spin, spin-up and sun acquisition (spin about the y-
axis). The purpose of the attitude control is to stabilise
the spin axis to the sun within a margin of about 10.

ANUSat(2009), Anna Uni-
versity of Chennai, Madras,
India, and ISRO

Spin-stabilisation is provided by a pair of of magnetic
torquers as actuators. Attitude sensing is provided by a
3-axis magnetometer and a twin slit sun sensor (75deg
range with 0.5deg resolution). Passive thermal control is
employed. The spacecraft is spin stabilised with the spin
axis orientation towards orbit normal with a pointing
accuracy of 3deg. The nominal spin rate is around 4
rpm. The spacecraft mass is 38 kg.

SNOE(1998), small satellite
student project of the Uni-
versity of Colorado (CU) at
Boulder

The satellite is spin stabilised at a spin rate of 5 rpm
with the spin axis normal to the orbit plane. Attitude
knowledge is provided by horizon crossing indicators,
and magnetometers; attitude control is done with torque
rods and nutation dampers. Mass=115kg

ELFIN (planned for Novem-
ber 2017)is a 3U CubeSat
mission under development
by the Earth, planetary,
and Space Sciences depart-
ment at UCLA (University
of California Los Angeles).

Spin-stabilised 3U CubeSat at 20 rpm.Two torquer coils,
comprised of aluminium wire on plastic spools, pro-
vide spin and precession capability to ELFIN. Periodic
(daily/weekly) scheduled manoeuvres are executed with
these coils using on-board control laws and a magnetore-
sistive magnetometer.
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MicroMAS (2014)(Mas-
sachusetts Institute of
Technology/Lincoln Labo-
ratory), MIT/SSL (Space
Systems Laboratory) and
the University of Mas-
sachusetts at Amherst.

The ADCS (Attitude Determination and Control Sub-
system) uses the x reaction wheel primarily to cancel out
the angular momentum of payload scanner assembly. It
operates in a dual-spin configuration with the payload
spinning at a rate of 0.8 Hz (50 rpm) while the bus
maintains a stable, nadir-pointing configuration. Mass:
4,5kg

UWE (2005) University
of Wrzburg and Fach-
hochschule Weingarten,
Germany.

The attitude of the satellite is passively controlled by
means of permanent magnets (in two axis). The axis
of no magnet control is selected as the spin axis of the
satellite.

Single Momentum Wheel System

Passive three-axis stabilisation of a satellite can be provided by a single momen-

tum wheel with the two axes in the orbit plane being held in their position by the

gyroscopic e↵ect of the momentum wheel. Active attitude control about the third

axis, which is orthogonal to the orbit plane, is obtained by increasing or decreasing

the momentum wheel speed through torquing. A damper must also be included in

this system.

Pitch Momentum Wheel/Thruster System

Three-axis active attitude control can be achieved using thrusters for pitch and

combined roll/yaw control, and a single momentum wheel mounted along the pitch

axis. The wheel spin varies its rate to maintain a constant attitude when a torque

acts on the satellite. A momentum unloading system (such as a set of thursters),

is needed to desaturate the momentum wheel by reducing its speed to the nominal

operating value. As shown in section 2.2.3.
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Table 3.2: Small and nanosatellites 3 axis stabilised
ESEO (ESA’s Education
Satellite Program, Univer-
sity of Bologna, Sitael)

The spacecraft is 3-axis stabilised. The actuator sys-
tem features 3 redundant orthogonal magnetic coils
for attitude acquisition manoeuvres and coarse atti-
tude pointing. An assembly of 4 redundant momentum-
biased/reaction wheels is used for fine pointing.

PSSCT-2 (2011) and
AeroCube-4 (2012)

It has three reaction wheels supplemented by three mag-
netorquers for attitude control. The reaction wheels and
torque rods were built by the Aerospace Corporation.
They demonstrated closed-loop 3-axis attitude control.
It had a goal of less than a degree of pointing preci-
sion. Aerospace has reported that PSSCT-2 achieved 5
degrees of pointing accuracy and AeroCube-4 demon-
strated 3 degrees of pointing accuracy. The reduced
accuracy in AeroCube-4 was attributed to the loss of
an axis of knowledge of the magnetic field and corrup-
tion of the microelectrical mechanical inertial measure-
ment unit (IMU) by helium absorption. Aerospace has
planned missions to demonstrate 1 degree and 0.5 degree
pointing accuracy on AeroCube-5 and AeroCube-OCSD
respectively.

CanX-4 and CanX-5 (2014)
(BRITE) University of
Toronto

It provides 3-axis stabilisation; the sensors consist of 6
coarse/fine sun sensors, a 3-axis magnetometer, and 3
rate gyros. The combination of these sensor sets yields
a pointing accuracy of better than 1. Attitude actuation
is provided with 3 orthogonally-mounted reaction wheels
(for fine pointing) and 3 magnetorquer coils (for detum-
bling and momentum dumping). ADCS must be able to
slew each satellite such that their propulsion thrusters
can deliver the correct impulse in the direction required
and with an accuracy of 1. Mass = 15kg

Qb-X1 and Qb-X2 (2010)
(Naval Research Labora-
tory)

These CubeSats, use an International Geomagnetic Ref-
erence Field (IGRF) model for rate-damping using mag-
netorquers. They have a three-reaction wheel and mag-
netorquer IMI-100 ADCS unit. The controller consists
of a combination of passive attitude stabilisation and ac-
tive rate damping control, using natural gravity gradient
torques, aerodynamic drag, and limited use of reaction
wheels.
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Single-Gimbal Momentum Wheel System

A controller is used to shape the roll error signal and drive the gimbal angle.

Rotating the gimbal from null produces a component of angular momentum along

the z-axis.

Pitch Momentum Wheel/Yaw Reaction Wheel System

It is an alternative to the single-gimbal momentum wheel system, in which a large

momentum wheel is placed along the pitch axis (to provide gyroscopic sti↵ness) and

a small reaction wheel is aligned along the yaw or z-axis. The roll error signal is

used to vary the speed of the yaw wheel.

Double-Gimbal Momentum Wheel System

The actuator of this system is a momentum wheel mounted in two-degree-of-

freedom gimbals. Except that this system incorporates nutation and orbit rate

decoupling, the dynamic behaviour is similar to the one-wheel system with thrusters

A signal from a yaw sensor which decouples roll and yaw motion, can also drive this

system.

Three Reaction Wheel System

In general, three reaction wheels are required for three axis control, since each

produces a torque in a single direction. Considering the most basic form, the system

has three reaction wheels aligned along the three principal axis of inertia, to control

pitch, yaw and roll.

Reaction wheels control each axis varying the speed in response to the attitude

error measured about that axis.The roll and yaw channels are coupled through
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vehicle dynamics and there is, consequently, a continuous transfer of momentum

between the roll and yaw wheels.

As the wheels absorb disturbance torques, the angular momentum changes slowly

with time while the attitude remains fixed. When the wheel reaches saturation, the

angular momentum is adjusted by other actuators such as gas jets or magnetorquers.

The momentum storage capacity must be su�cient to store both secular and short-

duration torques and can be reduced by optimizing the desaturation system. See

section 2.2.3.

Advantages of a three-axis stabilised reaction wheel system are:

• Capability of carrying out slew or attitude reorientation manoeuvres about a

commanded axis.

• Capability of continuous high-accuracy pointing control.

• Large-angle slewing manoeuvres without fuel consumption.

• Compensation for cyclic torques without fuel consumption.

3.2 Redundancy

For 3-axis control at least three wheels with orthogonal spin axes are required.

Often a fourth wheel is carried in case one of the primary wheels fails. If wheels are

not orthogonal, additional torque maybe necessary to compensate for non-optimal

geometry. Redundancy of the fourth wheel may have additional benefits, such as

being able to avoid any wheel speed passing through zero (which can cost attitude
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error transients) Or even as power storage, as driving a spinning wheel toward zero

speed will provide power to the spacecraft.

Although redundancy guarantee a reduction in mission failures, further strategies

shall be considered in case of failure as control laws strategies in case of underactu-

ation. See section 3.3 and Chapter 5.

3.3 Underactuation

There is a heightened interest within several International Space Agencies such as

NASA and ESA, for the research of attitude control systems having less than three

functional actuators. This interest is raising due to a number of recent wheel fail-

ures for some satellite missions and the miniaturization of the AOCS subsystem in

nanosatellites which in terms of power and mass could require the use of less than

three orthogonal actuators or non redundancies. Some recent mission failures are

described in Table 3.3.

The interest in underactuation derives from the need to solve the problem of

having a system in which less control variables than the degrees of freedom of the

system itself are available. In the case of AOCS of satellites, underactuated control

is a scenario where fewer than three actuators are used to provide three axis control.

This condition can be reached due to a failure of any actuator, as explained

forehead, or because of an inherent physical property of the system, as for magnetic

control. See section 2.2.2.4.

In order to both maintain three-axis attitude control and extend the productivity

of the spacecraft that su↵er RW in-flight failures [17], di↵erent actuator configura-
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tions have been proposed as well as improvements on the attitude control algorithms.

An underactuated satellite is a class of a so called non-holonomic system due

to the presence of a constraint of this type on the kinematic model. This is when

it cannot be integrated to derive a relation between the state variables and the

derivatives. When having a non-holonomic constrain, three variables are needed to

model the system and the constraint becomes part of the dynamics. [18]. In general,

all control laws proposed in the literature for non-holonomic systems are nonlinear

singular and time invariant (nonlinear singular) or continuous and time varying

(time varying). Conventional smooth control laws cannot stabilise an underactuated

satellite modelled as a nonlinear system, therefore, only non-smooth (discontinuous

or time varying) control laws can be utilized for the stability of non-holonomic

systems. As shown in [19] by Brockett.

Crouch [20], investigated and presented for the first time necessary and su�cient

conditions for the controllability of a rigid body in the case of one, two or three

independent control torques. He established that, for an arbitrary bias momentum,

the stabilisation of the rigid body is impossible (without prior detumbling) using

momentum exchange devices (reaction wheels). In the same paper, but in the case

of gas jet actuators (thrusters), it was demonstrated that stabilisation is possible

for a small time, in the general non-restricted case. This result gave a new interest

in underactuated control.

In [21], Byrnes and Isidori excluded the existence of a smooth (static or dynamic)

state variable feedback law locally asymptotically stabilising a rigid spacecraft, ac-

tuated by three thruster jets, one of which has failed, with two controls. They gave

a further result on the instability (in the sense of Lyapunov, see Appendix C) of

rigid spacecraft for certain feedback laws, and they were able to construct a feedback
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law locally asymptotically driving the closed-loop trajectories to a motion about the

third principal axis.

Following these conclusions several researchers came up with di↵erent results on

how to achieve three-axis stabilisation under certain constrains described in Section

5.1.
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Table 3.3: Missions with Wheel failures
Mission Description

FUSE (1999) Launched in Circular low Earth orbit (LEO), approximately
725 km in altitude, with an inclination of 25 degrees and with
an orbital period around 100 minutes.

Zero-momentum, three-axis stabilised spacecraft. FUSE em-
ployed a RW-based ACS (four RWs).

In November2001, the Yaw RW on FUSE su↵ered dramati-
cally increased drag and ceased spinning, but science opera-
tions continued with the redundant skew RW controlling yaw.
In December 2001, the pitch RW also su↵ered a similar fail-
ure. Therefore, 2.5 years after launch, mechanical failures of
two out of four RWs reduced the satellite to two-axis control.
In July 2007, the skew wheel, failed and e↵orts to restart it
were unsuccessful and the mission was terminated.

TIMED (2001) Mass: (600kg), Orbit: 625-kilometer circular orbit with an
inclination of 74.1 degrees.
On 15 February 2007, The RW-1 unit on the TIMED space-
craft exhibited an increase in running friction and it was au-
tonomously removed from the attitude control loop. It was
decided to re-design the baseline attitude controller to imple-
ment a 2-RW/magnetic torque-rod hybrid control approach.

CASSINI (1997) A set of four RWs are mounted in the spacecraft. In 20012002,
RW-3 exhibited signs of bearing cage instability. Therefore,
RW-4 on its platform was aligned with RW-3. Starting in July
of 2003 and since then it was controlled using RW-1, RW-
2, and RW-4. Cassini is currently using the two remaining
functional RWs (i.e., RW-2 and RW-4) and four thrusters for
attitude control.
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DAWN(2007) In June 2010 RW-4 was damaged, to preserve the three
wheels the backup RCS thrusters were activated for at-
titude control. An e↵ort was initiated in September
2010 to develop a hybrid control mode that would use
only two RWs in a mixed-actuator mode together with
thrusters to provide full three-axis attitude control.

Mars Odyssey (2001) On 8 June 2012, the RW-1 experienced an anomaly.
An increase in wheel bearing friction prevented RW-1
from producing the control torque commanded by the
AOCS of the spacecraft, which in turn allowed an atti-
tude error. A contingency 2-RW hybrid controller was
developed (with thrusters) to maintain three-axis con-
trol of the spacecraft in the event of a second wheel
anomaly/failure.

KEPLER (2009) The spacecraft has four RW actuators to generate at-
titude control torques to slew, point, and precisely sta-
bilise the vehicle. In July 2012, Keplers RW-2 friction in-
creased beyond the control laws torque command; anal-
ysis showed friction torque of approximately 140 mN-m,
up from a nominal friction torque of 20 mN-m. 2-RW
(plus thrusters) hybrid attitude controller for the Kepler
spacecraft.

RADARSAT-1 (1995) Upon the failure of primary and redundant pitch axis
wheels, the attitude control system of the satellite was
redesigned (and subsequently uploaded while on orbit)
to use the remaining wheels and magnetic actuation to-
gether. [22].



Chapter 4

CASE 1 - Magnetic and
mechanical attitude control
strategy for three-axis
stabilisation in the orbit frame

4.1 Introduction

This chapter addresses an attitude control strategy for nanosatellites in Low Earth

Orbit using both magnetic and mechanical actuation. The system includes three

magnetorquers (MTs) and three reaction wheels (RW) as actuators to perform si-

multaneous attitude control and momentum-management. Control laws drive a rigid

nanosatellite towards attitude stabilisation in the orbit frame.

In order to achieve three axis stabilisation, di↵erent types of actuators can be

selected for AOCS in LEO orbit (See section 2.2.2). While reaction wheels are com-

monly used to obtain a high precision pointing and fast manoeuvrability, they may

su↵er from saturation limitations as well as static friction when approaching zero

angular velocity. Thus, reaction wheels need a secondary attitude control system

39
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for momentum unloading to desaturate them (Section 2.2.3). In Low Earth orbits

(LEO) magnetorquers are a good option for momentum unloading as they provide a

cheap, reliable and e↵ective external torque [23]. They can also be a feasible option

for attitude control in fully magnetic actuated satellites, or in case of any failure in

the main attitude control system.

At least three reaction wheels, or three magnetorquers placed orthogonally, are

needed for three-axis control. However, for the case of magnetic control, the inherent

underactuation (Section 2.2.2.4) requires specific attitude control strategies for fully

magnetic actuation [24, 25] as at any given time instant, the produced torque lies

in the orthogonal plane to the instantaneous geomagnetic field leading to the non-

controllability of the direction parallel to the local geomagnetic field vector. Until

recent years, only approximate solutions to the magnetic attitude control problem

were available, [26] and several open issues are related with global formulations.

The torque created due to the interaction of the magnetorquers with the ge-

omagnetic field is not constant. Due to the rotation of the satellite around the

Earth, models are almost periodically time-varying. Periodicity assumptions for the

magnetic field, have been exploited in the attitude regulation problem [26, 27, 25].

However, time-varying nature of the magnetic field will be considered in this thesis.

The time-varying problem has also been recently studied in [28]. In which a B-dot-

like control law that detumbles a spacecraft with magnetic actuators is presented.

In this case, a rigorous mathematical proof of global asymptotic convergence from

arbitrary initial tumbling conditions to zero angular velocity is developed. In this

framework, it was proved that in the presence of a time-varying magnetic field, the

time derivative of the kinetic energy is strictly decreasing. In [29], with the same

assumptions about the magnetic field, a continuous magnetic torque command is

proposed, which leads a three-inertial spacecraft to a desired spin condition around
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a principal axis of inertia that is aligned towards a target direction, fixed in the

inertial reference frame. In [30] a number of di↵erent approaches to the above de-

scribed design problem are compared. In particular, the results obtained using linear

time-invariant control laws are compared with the ones provided by periodic optimal

state feedback control.

In recent years the use of magnetic and mechanical actuators simultaneously as

control strategy has been heightened (See section 3.1). The combined use of the two

actuation systems leads to power savings (depending on orbit inclination, control

scheme and gains) and less stringent requirements on wheel control torques [31, 22].

Di↵erent approaches have been considered throughout the years for AOCS to proof

stabilisation respect to di↵erent reference frames.

In a recent paper [32], attitude stabilisation with respect to an inertial frame is

performed by means of a set of three MWs and three MTs in a similar configura-

tion than the one represented for the case study. In which the mechanical system

provided attitude stabilisation and the magnetic torque is only used for momentum

dumping of the wheel set. It proposes a new controller which makes the attitude

dynamics completely independent of the momentum dumping, as a cascade system,

and induces global asymptotic stability of the satellite.

Stabilisation respect to the orbital frame is a being studied to exploit the char-

acteristics of that frame [33]. For certain mission requirements it might be advanta-

geous to stabilise respect to it. (i.e. Pointing an instrument towards a fixed-target

direction in the orbit frame). In [33], periodicity assumptions of the magnetic field

are considered to stabilise a satellite in the orbit frame, thus this study is a step

forward.

This control approach is the extension of a recent result [13] in which the analysis
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of simultaneous attitude control and continuous momentum-wheel management of

a spacecraft by means of magnetic actuators and one MW is performed. A proof of

almost global asymptotic stability is derived for control laws that drive a rigid satel-

lite towards attitude stabilisation. Other recent results on continuous momentum

management [34] show the advantage of this technique respect to the periodic one.

That result shows a globally stabilising nonlinear feedback control law that enables

the tracking of an arbitrary time-varying reference attitude. A redundant cluster of

four or more reaction wheels is used to control the spacecraft attitude, and three

magnetic torque rods are used for purposes of continuous autonomous momentum

dumping.

The continuous momentum dumping strategy using three MTs is considered in

this thesis and three-axis stabilisation respect to the orbit frame is demonstrated

considering a cluster of three RWs for attitude control. The dynamics of the satellite

are represented as a cascade system and the time-varying nature of the magnetic

field (not periodicity assumptions) is considered.

The main contribution is the good performance of the control approach which

demonstrates continuous momentum management by the magnetorquers and atti-

tude control stabilisation in the orbit frame by the reaction wheels. The theoretical

selection of the proper gain and the proof of global asymptotic stability are derived

for a satellite pointing an orbital-fixed target direction and robustness to external

disturbances and model uncertainties of the proposed control laws are demonstrated

by numerical simulations.
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4.2 Problem statement and solution

4.2.1 Mathematical Model

For the purpose of this study, spacecraft model in (2.18) can be conveniently re-

shaped by expressing absolute angular velocity in the form

! = !BT + !TO + !OI (4.1)

where !BT is the angular velocity between body and target frame, !TO is the

angular velocity between target and orbital frame, and !OI is the angular velocity

between orbital and inertial frame.

Let describe spacecraft attitude with respect to FT in terms of quaternion coor-

dinates,

q̇ = W (q)!BT (4.2)

where q = (q
1

, q
2

, q
3

, q
4

)T = (q̄T , q
4

)T is the quaternion vector,W (q) = 1/2 (q
4

I
3

+

q̄⇥�q̄T )T , and ( · )⇥ denotes a skew-symmetric matrix. Since FT is fixed with respect

to FO, one has !TO = 0 and !OI = TBT n̂, provided that

TBT = (q2

4

� q̄T q̄)I
3

+ 2q̄ q̄T + 2q̄ q̄⇥ (4.3)

be the coordinate transformation matrix allowing for vector rotations from FT

to FB, and n is the orbital rate. As a result,

! = !BT + TBT n (4.4)
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and

I!̇ = I!̇BT � I!⇥
BTTBT (4.5)

Thus, the dynamics model expressed in Eq. (2.18) becomes

I!̇BT = M � ḣ� (!BT + TBT n) ⇥ [I (!BT + TBT n) + h] + I!⇥
BTTBT n (4.6)

4.2.2 Momentum management and attitude stabilisation

Following the concepts introduced in Ref.[13], this section addresses the simulta-

neous acquisition of an arbitrary attitude in FO, and satellite angular momentum

management by means of magnetic and mechanic actuators. The scope of this

section is to prove that the combined use of a time-varying linear control law for

the magnetorquers and a quaternion feedback control law for attitude control [35],

stabilises spacecraft attitude pointing to a target direction fixed in the orbit frame.

Let �̂ = TBO (0, 1, 0)T be the unit vector parallel to the direction of the yO-axis,

which is fixed in both the orbit and inertial frames. Two desired angular momentum

vectors, Hd and hd, are introduced in the inertial and in the body-fixed frames,

respectively. The first vector, defined as Hd = Hd �̂, where Hd = ||I !d|| and
!d = TBT n, implies that the angular momentum is pointing the desired inertially-

fixed direction parallel to the orbit normal. The second vector, hd = 0, implies

the three-axis stabilisation. After defining the angular momentum error variable,

⇣ = Hd � h� I !, the model expressed by Eq. (4.6) assumes the form

I!̇BT = M (c) � ḣ� !BT ⇥Hd + !BT ⇥ ⇣ + TBT n⇥ ⇣ + I !BT ⇥ TBT n (4.7)

provided that M (c) is the magnetic control law

M (c) = �k⇣(I3 � b̂ b̂
T
)⇣ (4.8)
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where k⇣ > 0 is the control gain, I
3

is a 3x3 unit matrix, and b̂ = b/||b||.
Albeit the body axis would be the natural reference system for representing the

control moment vector, M (c), the formulation of the magnetic attitude stabilisation

problem turns out to be remarkably simple if the attitude dynamics is represented

with respect to the inertial frame. Let Z = TT
BI⇣ be error variable as expressed in

the inertial frame, the control moment vector, as well as the error dynamics, is given

by

M (c) = Ż = �k⇣

h
TT

BI

⇣
I
3

� b̂ b̂
T
⌘
TBI

i
Z (4.9)

where TBI is the coordinate transformation matrix between FI and FB. The

control law drives the spacecraft total angular momentum including wheels to a

parallel direction to the orbital normal. The controller selected for this attitude

control approach is the quaternion feedback control law [35] , which uses the feed-

back of the unit quaternion and the measured angular velocities to provide global

asymptotic stability. The significance of this control law compared with the Euler

axis control laws is the performance when large-angle manoeuvres. The aim of the

control law is to bring the spacecraft to the desired target attitude starting from

any initial attitude.

The time derivative of the total angular momentum of the satellite in the body-

fixed, thus ḣ, is the feedback of quaternion and the angular velocity given by

ḣ = k!!BT + kqq (4.10)

with kq > 0 and k! > 0.
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4.2.3 Stability analysis

In what follows the proof of asymptotic convergence of proposed control laws is

provided.

No external disturbance M (d) is considered in the stability analysis, so that the

external torque acting on the spacecraft coincides with the magnetic control torque,

namely M (c) = m ⇥ b, where m is the magnetic dipole moment vector generated

by the MTs and b = T BO bO is the local geomagnetic field vector expressed in terms

of body-frame components.

In this proof of closed-loop stability of the control law it will be initially assumed

that I ⌘ I⇤ = diag(I
1

, I
2

, I
3

), that is, ê
1

, ê
2

, and ê
3

are principal axes of inertia,

and I
2

6= I
1

, I
3

. The presence of o↵-diagonal terms in I and uncertainties on the

elements of I will be dealt within the results section 4.3, in order to assess control

law robustness.

By substituting in (4.6) the momentum management and attitude control law,

and by rewriting Eq. (2.18), one obtains

I!̇BT =� k⇣

h
TT

BI

⇣
I
3

� b̂ b̂
T
⌘
TBI

i
Z � k!!BT � kqq � !BT ⇥Hd+

+ !BT ⇥ ⇣ � I�1Hd ⇥ ⇣ � I(I�1Hd ⇥ !BT )
(4.11)

˙̄q =
1

2

�
q
4

I
3

+ q̄⇥� !BT (4.12)

Ż = �k⇣

h
TT

BI

⇣
I
3

� b̂ b̂
T
⌘
TBI

i
Z (4.13)
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Lemma 4.2.1 Consider the nonlinear time-varying system defined by Eqs. (4.11)-

(4.13). The origin
�
!T

BT , q̄
T , ⇣TT IB

�T
= 0 is globally uniform asymptotically stable

(GUAS).

Proof:.

Considering the Lemma 4.2.1, a stability analysis of the attitude approach is

given. Formally, the desirable stabilisation properties for the whole system are

presented in a recent result [36], that demonstrates the global uniform stability of

cascade non-autonomous non linear time-varying systems.

Let x = [xT
1

,xT
2

]T be the state variables of the system made of Eqs. (4.11)-(4.13)

where x
1

=
�
!T

BT q̄T
�T

and x
2

= T BI ⇣, matches the standard structure for non

linear time varying cascaded systems

8
<

:

ẋ
1

= f
1

(t,x
1

) + g(t,x)x
2

ẋ
2

= f
2

(t,x
2

, u)
(4.14)

where

f
1

(t,x
1

) =


I�1[�k!I3 +Hx

d � I[(I�1Hd)x] �I�1kq

1/2(q
4

+ qx
r ) 0

� 
!BT

q

�
(4.15)

and

g(t,x) = I�1

h
�k⇣ TT

BI

⇣
I
3

� b̂ b̂
T
⌘
TBI + !⇥

BT + I�1H⇥
d

i
(4.16)

Being f
1

(t,x
1

) continuously di↵erentiable in (t,x
1

) and as g(t,x) continuous in

its arguments. Su�cient conditions are given to guarantee that if f
1

(t,x
1

) is GUAS

and ẋ
2

= f
2

(t,x
2

, u) is GES then the cascade is GUAS

Globally uniform stability of the cascade system is provided by Theorem 1 in

[36], if the A1-A3 assumptions are satisfied.
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Assumption 1 : The system ẋ
1

= f
1

(t,x
1

) is globally uniformly stable with a

positive definite and proper Lyapunov function V (t,x
1

).

Let

V =
1

2
!BTI!BT + kq

⇥
qTq + (q

4

� 1)2
⇤

(4.17)

be a Lyapunov candidate. Its time derivative is

V̇ =!T
BT

⇥
k! � I[(I�1Hd)

x
⇤
!BT + !T

BT [�
⇣
I
3

� b̂ b̂
T
⌘
(k⇣)+

+ (I�1Hd)
x]⇣ + kqq!

T
BT � kqq!

T
BT

(4.18)

and being [�I[(I�1Hd)x] a skew-symmetric matrix, the Lyapunov candidate sat-

isfies the conditions 1-3 of Corollary 1, see Appendix A, to guarantee that Eq. (4.17)

is a proper function of the proposed system.

Assumption 2 : The input vector g(t,x)

kg(t,x)k<=k✓
1

(k⇣k)k+ k✓
2

(k⇣k)kkx
1

k (4.19)

Assumption 3 : The control law (4.13) is globally exponentially stable, uniformly

in t (GES).

Stability proof of the control law in Eq. (4.9) was demonstrated in a recent paper

[37], and it is included in Appendix A.

Considering the Theorem 2 in [36], under the assumptions A1-A3, of theorem

1; assuming additionally that the system f
1

(t,x
1

) is globally asymptotically stable

uniformly in t (GUAS), and having demonstrated that ẋ
2

is GES [36], it can be

concluded the cascaded system, Eq. (4.14) is GUAS.
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4.2.4 Choice of the control gain

A reasonable choice for the control gain, k⇣ , that allows for reaching the desired

spinning condition in quasi–minimum time, can be derived by following an approach

similar to that derived in Ref.[28] for the detumbling manoeuvre. A few di↵erences

need to be taken into account:

1. The whole system is represented in terms of angular momentum dynamics.

2. A value of the desired final angular rate !̄BT = 0 is expected at the end of the

manoeuvre, which in turn requires the following.

3. The whole procedure is rephrased in terms of closed loop dynamics of the

component of the error Z perpendicular to the Earth’s magnetic field, defined

as Z? = �k⇣ (I3� b̂ b̂
T
)Z. The magnetic field is expressed in terms of inertial

frame. The gain is then sized assuming that the error signal is a first order

perturbation of the desired final condition.

The time derivative of Z? is given by

dZ?

dt
= (I

3

� b̂ b̂
T
) [�k⇣ (I

3

� b̂ b̂
T
)Z]

�
2

4d b̂
dt

b̂
T
+ b̂

 
d b̂

dt

!T
3

5Z (4.20)

2

4d b̂b
dt

b̂
T
+ b̂

 
d b̂

dt
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3

5 = TIO

2

4d b̂o
dt

b̂
T

o + b̂o

 
d b̂o
dt

!T
3

5TT
IO

�⌦̃IO(b̂b) + (b̂b)⌦̃IO = TT
IOBTIO � C

(4.21)
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Equation (4.20) can thus be recast in the form

dZ?

dt
⇠= �k⇣ AZ � TIO BTT

IO Z + CZ (4.22)

where A = (I
3

� b̂b̂
T
) is the projection operator, and the last two terms, namely

B = (1/kbOk2)

ḃOb

T
O + bOḃ

T

O � 2

kbOk2 (ḃ
T

ObO)bOb
T
O

�
(4.23)

and

C = ⌦̃IO(b̂b̂
T
)� (b̂b̂

T
)⌦̃IO (4.24)

are related to the rotation rate of the Earth magnetic field vector with respect

to FI . Only the first term in Eq. (4.22) (named the active term) is directly related

to the control torque and it a↵ects the magnitude of Z?, whereas the other terms,

the gyroscopic and the rotational terms, only a↵ect the direction of Z? in the body

frame. Z

As explained in more detail in Ref. [28], high values of k⇣ cause the magnitude

of the transverse component Z? to rapidly vanish and, as a consequence, also the

available control moment becomes small. The only possibility to further decrease

kZk relies on the residual angle between b and Z induced by the (slow) rotation

of b with respect to the orbit frame, FO, which allows for a residual controllability.

Moreover, a small value of the gain causes a slow closed–loop dynamics, with long

convergence time before the desired attitude is reached.

A compromise can be obtained by imposing that the order of magnitude of the

active term is equivalent to that of the rotational and gyroscopic ones in Eq. (4.22):

O (kk⇣ AZk) = O �kTIO BTT
IO Z � CZk�  O (kBZk) +O (kCZk) (4.25)

The order of the active term, AZ, and of the first rotational term, BZ, can

be derived from the discussion presented in Ref.[28]. Given the definition of norm
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for a linear operator, kMk = maxv2Rn (kMvk/kvk) = max
1in(|�Mi |), where

�Mi , i = 1, 2, . . . , n are the eigenvalues of M , one gets that kAZk = O(Z) and

kBZk = O(2⌦ sin ⇠m).

The procedure described for the determination of O(kCZk) can be adopted here.

This means that kCZk = O(2⌦) Provided that ⌦ ⌧ !̄d, the third term in Eq. (4.20)

is negligible and it can be dropped.

The remaining ones are required to satisfy

k⇣maxA = maxB +maxC (4.26)

k⇣ = 2⌦ (1 + sin ⇠m) (4.27)

This criterion provides an upper bound for the control gain, where higher values are

expected to cancel the component of Z perpendicular to b̂ too soon.

4.3 Simulation Results

A series of Montecarlo simulations have been performed in order to assess robust-

ness of the control strategy proposed. A non-linear model for spacecraft attitude

dynamics has been considered for the simulations (Eq.(2.18)) .

In table 4.2 the initial conditions and gains used for a sample maneuver are

shown. Whilst table 4.1 shows relevant spacecraft data, orbit and environmental

parameters applied to a LEO microsatellite [38] 1 equipped with three mutually

1This is the case of European Student Earth Orbiter (ESEO), a LEO microsatellite mission that
is being developed, integrated, and tested by European university students as an ESA Education
O�ce project. In this platform, three-axis pointing with respect to the orbit frame is required for
Earth observation and the attitude control system is equipped with a set of magnetorquers and an
assembly of 4 redundant momentum-biased/reaction wheels is used for fine pointing.
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orthogonal magnetorquers, in the case of having three reaction wheels such that, no

friction is considered for the wheel assembly.

The three most relevant sources of external disturbance torque in LEO are in-

cluded in the model used for the simulations discussed, namely gravity gradient,

aerodynamic, solar radiation pressure and residual magnetic torques. Environmen-

tal disturbances are applied to the spacecraft model and o↵-diagonal terms are

present in the spacecraft inertia matrix. To demonstrate robustness in the presence

of these terms, the spacecraft principal axes are o↵set from the spacecraft body axes

by considering the matrix Ĩ 6= I. See table 4.1.

The initial phase in which the satellite is magnetically detumbled after orbit

injection is not analized in this thesis as not relevant to the aim of the present study

and let assume that after the initial detumbling phase [39, 28], the spacecraft lies

in a random attitude initial condition (see Table 4.2). During the maneuver it is

expected that angular momentum is dissipated by MTs.

The gain for the magnetic control law is k⇣ = 0.004 it is the upper bounded value

of the gain described in 4.2.4, whereas the gains for the quaternion control law of

the wheel are k! = 0.1 and kq = 0.008. The motivation of the choice of the control

gains for the quaternion feedback control law is described in Appendix B.

Time histories of angular momenta of the wheels are reported in Fig. 4.1, as well

as the spacecraft angular momentum error approaching to zero. Attitude expressed

in quaternion is shown in Fig. 4.2 and the quaternion error is also converging to

zero.

Figure 4.3 shows that the MTs initially saturate when the errors are large. At

the same time, quaternion feedback control law distributes the angular momentum
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between spacecraft and RWs, driving the body frame to three-axis stabilisation with

respect to the orbit frame in less than 0.07 orbit.

In order to see the performance in a more real scenario, white noise is added to

each Euler angle and angular velocity measurement, with standard deviation 1.07

deg and 0.01 deg/s, respectively, to simulating the e↵ects of sensor noise.

In steady state conditions, the error variables remain bounded in the presence

of disturbances. Quaternion and spacecraft angular rates with respect to the target

frame oscillate with a pointing accuracy of 0.002 and 0.006 deg/s, on each axis

in terms of standard deviation. Statistical analysis is performed over 10 orbits in

steady-state conditions.

The control law simulations demonstrate the feasibility of the proposed approach

and, in particular, illustrate the ability of the controllers to drive the spacecraft to

attitude stabilisation as it was derived in the stability analysis.

Robustness of the closed loop system is also shown with respect to external

disturbance torque, measurement noise, and model uncertainty.

The control law approach simulations perform well and attitude control and

continuous momentum management are achieved for the cascade system which is

stabilised in orbit frame.
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Figure 4.1: Wheel angular momenta and spacecraft momentum error

Figure 4.2: Spacecraft attitude quaternions
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Figure 4.3: Magnetorquers e↵orts

Figure 4.4: Wheel e↵orts
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Table 4.1: Spacecraft, orbit and environment data

Parameter Symbol Value Units
Spacecraft data
Principal moments of inertia J

1

, J
2

, J
3

2.023, 2.060, 0.865 kg m2

Inertia matrix with o↵set J
1

, J
2

, J
3

1.9384, 2.0861, 0.8939 kg m2

J
12

= J
21

0.0134 kg m2

J
23

= J
32

-0.0286 kg m2

J
31

= J
13

-0.0016 kg m2

Wheels moment of inertia Jw 4.20 ⇥ 10�4 kg m2

Maximum magnetic dipole(per axis) m
max

3.5 A m2

Maximum wheel torque(per axis) g
max

0.01 N m
Dimensions l

1

, l
2

, l
3

0.3, 0.6, 0.3 m

Environment data
Drag coe�cient CD 2.2

Air density ⇢ 6.39 · 10�13 kg/m3

Residual magnetic dipole mrm (0.1, 0.1, 0.1)T Am2

Orbit data
Radius rc 6 905 km
Period Torb 5710 s
Inclination i 98 deg

Table 4.2: Gains and initial conditions for a sample manoeuvre.

Parameter Symbol Value

Gains
Magnetic Control Law k⇣ 0.004
Quaternion feedback k! 0.1

kq 0.008

Sample manoeuvre

Initial Conditions
!T0 (0, 0.0297, 0)T rad/s
QT0 (�0.38, 0.88, 0.21, 0.037)T



Chapter 5

CASE 2 - Slew manoeuvre and
three-axis attitude stabilisation of
an underactuated nanosatellite

5.1 Introduction

The aim of the research described in this chapter is to develop a stable control

methodology for three axis stabilisation of a spacecraft in underactuated conditions

due to a failure of a reaction wheel. The control scheme will consist of a dynamical

implementation of an attitude manoeuvre planning by means of a sequence of 2

admissible rotations, where a rotation is considered to be admissible if it takes place

around an axis which lies on the plane where the actuator system can deliver a

control torque with the aim of driving an underactuated satellite towards a desired

target attitude. Simulations will be performed to validate the control scheme and a

proof of asymptotic stability will be described forward.

The problem of the underactuation described in Section 3.3 covers a very broad

spectrum. Di↵erent solutions to deal with the scenario where fewer than three actu-

57
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ators for three axis attitude control have been proposed over the last two decades.

A preventive solution to deal with this particular scenario is to include redundant

actuators in the satellite. However, the increase in the mass of the satellite might

not be a feasible solution and the enhancements in attitude control algorithms may

represent the most cost-e↵ective solution to improve the overall system quality. [40].

Although recent studies show a limited need for the development of new, or

improvement of existing, analytical (modelling and simulation) tools for ACS, the

performance of large-angle spacecraft attitude slew manoeuvres (for communications

or power purposes) continues to be a common stressing challenge for 2-RW attitude

control [17].

In this framework, di↵erent strategies have been applied for the detumbling

problem [41, 19, 42], attitude stabilisation [43, 44, 45, 46, 47, 48, 49] and attitude

tracking or manoeuvring [41, 50, 51, 52, 53, 54] of a spacecraft.

The problem of three axis stabilisation with actuated angular velocities as virtual

inputs for !
3

(0) = 0 was studied by [43, 55]. Morin proposed a continuous time-

varying feedback control law for asymptotic stabilisation while Kim proposed a set

of control laws including kinematics and dynamics and achieving global asymptotic

stabilisation for the closed-loop nonlinear system.

Concerning the underactuated attitude control using two reaction wheels, Krish-

nan [48, 56] proposed a control strategy to stabilise a rigid satellite using two mo-

mentum wheels under the restriction of zero-momentum, which means that the total

angular momentum of the whole system is zero. He showed that if the uncontrolled

principal axis is not an axis of symmetry, then the complete dynamics are small

time locally controllable. However, the satellite cannot be asymptotic stabilised
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to any equilibrium attitude using smooth feedback and discontinuous feedback was

constructed to accomplish a sequence of manoeuvres.

A new parametrisation technique was used by Tsiotras in [57] who proposed

an approach to deal with the stabilisation problem with two pairs of thrusters for

axis-symmetrical underactuated spacecraft. More details are further published in

[58]. He proposed a time-invariant feedback control law to asymptotically stabilise

and control attitude. He also developed reduced e↵ort control laws [59], optimal

and time optimal [60, 61]and with bounded inputs in [41]and a survey of all of these

techniques was shown in [41]

Di↵erent control techniques have been developed and applied for the underactu-

ation problem. Continuous feedbacks which are functions of the state only, cannot

locally asymptotically stabilise rigid body models with two controls. If the feedback

is also a function of time, this impossibility no longer holds and time-varying asymp-

totically stabilising feedbacks have been proposed. In [43], exponential convergence

is obtained by considering time-varying feedbacks which are only continuous. In

[45], Han et al. developed time-varying nonlinear controllers for underactuated at-

titude control with two reaction wheels. Seol et al. [62] proposed a momentum

transfer control of a rigid spacecraft with two momentum wheel actuators using

the feedback linearisation technique in which the equations of motion are trans-

formed to a general linearised form and a guarantee of internal dynamics stability

is shown. Open-loop control laws have been designed for a two-wheeled satellite. In

[63] Alamir deals with the open-loop attitude control of a satellite actuated by two

reaction wheels when the kinetic momentum is not necessarily equal to zero and

Ge [64] transforms the problem of reorientation into an optimal control problem

considering a genetic algorithm to derive the control laws of the two flywheels angle

velocity inputs and demonstrating that is an e↵ective approach. Hall [65] proposed a



5.1. INTRODUCTION 60

time-invariant, piecewise-smooth quaternion feedback regulator based on generalised

inverse method to a↵ect three-axis stabilisation of the error quaternion kinematics

of an underactuated rigid satellite with arbitrary matrix and two bounded body-

fixed torques. In [66] stability by smooth feedback of the angular velocity of a rigid

body is discussed showing how to asymptotically stabilise the system with a single

control. Then it is shown that a single control aligned with a principal axis cannot

asymptotically stabilise the system and some results on stabilisation by means of

scalar feedback control are presented.

Research on underactuated attitude control indicates that model uncertainties

and disturbances, especially those applied on the underactuated axis, greatly influ-

ence the accuracy of underactuated attitude control and in general, the stability.

In [47, 67], the angular momentum of the system is not zero but small and the

behaviour of the controlled system is investigated. When this happens, the system

converges to either a limit cycle or an equilibrium point which is not the desired

point; however, in both cases, the error in attitude remains small. Horri and Hodgart

[47] proposed a time-invariant control law for the stabilisation and control of attitude

and attitude rate of a nearly symmetric rigid satellite using two momentum wheels.

Some control approaches show robustness to disturbances. This is the case of

Han and Pechev [44], they derived a control law and a set of control gains that

guarantee stability and disturbance attenuation properties through a dissipation

analysis. Three axis attitude stabilisation and control is delivered using only two

control inputs supplied by two parallel CMGs. More recently, in [68] they proposed

an approach using the principle of non-linear H1 design to improve the pointing

accuracy and robustness of one popular underactuated attitude control design, which

was presented by Tsiotras et al. stabilising the underactuated attitude system.
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In this thesis the tracking of the angular velocity will be considered. A similar

strategy is shown in [18], in which the three axis attitude control problem with just

two reaction wheels is addressed, and two approaches are proposed and compared.

One does not require angular velocity measurements and is based on the assump-

tion of a perfect zero momentum, while the second approach consists of tracking

the desired angular velocity trajectories. The full-state feedback is a nonlinear sin-

gular controller and inverse optimization theory is applied to enhance the nonlinear

singular controller showing more e�ciency. The resulting switched inverse optimal

controller allows for a significant enhancement of settling time, for a prescribed level

of the integrated torque.

The new control approach developed in this thesis has interesting similarities with

of the one proposed in [47] by Horri et al. who showed that attitude is precisely

and rapidly restored, without transient oscillations, using a nonlinear time invariant

and discontinuous control law, combined with the idea of using a sequence of two

rotations [69] to achieve the desired attitude by means of a switching control law.

5.2 Problem statement and methods

In this section, the switching control law will be described in detail. Firstly the

two-step kinematic manoeuvre is presented followed by the mathematical model of

the underactuated satellite. The control approach will be described further as well

as the stability proof and the results obtained in the validation process through

numerical simulations.
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5.2.1 Overview of the two-step kinematic steering technique
for attitude acquisition

A detailed description of a set of kinematic planning techniques for slew manoeu-

vres of underactuated spacecraft based on a sequence of N admissible rotations is

presented in Reference [69].

An admissible rotation is a rotation that take place around an axis ĝ which lies

on the plane perpendicular to the underactuated or torqueless direction b̂. The

problem cannot be solved for N = 1, but it admits an exact solution for N = 2.

In this case, it is possible to select for the first rotation an arbitrary axis ĝ
1

on the

plane � ? b̂.

The first rotation angle �̂
1

is identified by enforcing the condition that the vec-

tor part ✏ of the quaternion error E = (✏T , ✏
4

)T after the first rotation becomes

perpendicular to b̂. The direction ĝ
2

= ✏/k✏k is selected as the axis for the second

admissible rotation, the amplitude of which is simply given by �̂
2

= cos�1(✏
4

). A so-

lution for minimum angular travel �̂
1

+ �̂
2

can be analytically identified. For N > 2

a numerical optimisation technique needs to be adopted.

It is assumed that the initial attitude FB0 coincides with the fixed frame, FI ,

where ê
3

= b̂ is the torqueless direction. The desired attitude is represented by the

quaternion P = (pT , p
4

)T , where p = (p
1

, p
2

, p
3

)T = ê sin(�/2) and p
4

= cos(�/2),

which is associated to the nominal Euler eigenaxis rotation � around the eigenaxis

ê, which rotates FB0 onto the target attitude, identified by the reference frame, FT .

Letting � be the angle between b̂ ⌘ ê
3

= (0, 0, 1) and the nominal eigenaxis ê,

it is possible to choose without loss of generality the first axis of the body frame, ê
1

along the direction of the projection of ê on the plane �, with ê
2

completing a right-
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handed frame. In this way, the nominal eigenaxis is given by ê = (sin�, 0, cos�)T

and the target attitude is described by the quaternion

P = (sin� sin(�/2), 0, cos� sin(�/2), cos(�/2))T

The attitude after the first rotation �̂
1

around ĝ
1

is associated to the quaternion

Q = (qT , q
4

)T , with q = (q
1

, q
2

, q
3

)T = ĝ
1

sin(�̂
1

/2) and q
4

= cos(�̂
1

/2), where

ĝ
1

= (cos↵, sin↵, 0)T , provided ↵ is the angle between ĝ
1

and ê
1

. Thus, Q =

(cos↵ sin(�̂
1

/2), sin↵ sin(�̂
1

/2), 0, cos(�̂
1

/2))T .

Denoting with Q? = (�qT , q
4

)T the conjugate quaternion, such that QQ? =

Q?Q = (0, 0, 0, 1)T , the quaternion error vector E = Q?P can be obtained by

application of the quaternion multiplication rule, where

✏ = q
4

p� p
4

q � q ⇥ p , ✏
4

= q
4

p
4

+ qTp (5.1)

The condition b̂
T
✏ = 0 is enforced by choosing �̂

1

such that

cos(�̂
1

/2) cos�+ sin� sin↵
1

sin(�̂
1

/2) = 0 (5.2)

that is

tan(�̂
1

/2) = � cos�/(sin↵
1

sin�) (5.3)

In the present application, rather than pursuing the solution minimising the total

angular travel �̂
1

+ �̂
2

derived in [69], one can note that for ↵
1

= ⇡/2 the angle �̂
1

is

minimised, that is, the amplitude of the rotation that drives the Euler eigenaxis onto

the plane of admissible rotations. In this case, the direction of ĝ
1

is perpendicular

to both ê and b̂ unit vectors, that is, it can be easily expressed in the form

ĝ
1

= (b̂⇥ ê)/kb̂⇥ êk (5.4)

without the need for any trigonometric calculation.
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5.2.2 Mathematical model of the underactuated satellite -
kinematics and dynamics

A satellite platform equipped with three identical reaction wheels is considered. In

the case of a failure of the yaw-wheel, just two control torques are available and the

spacecraft become underactuaded (See section 3.3).

In general, spacecraft dynamics is described by the following equation of motion

I !̇ + ḣ+ ! ⇥ (I ! + h) = M

it is Eq.(2.18) presented in Section 2.2 where ! = (!
1

,!
2

,!
3

)T is the absolute

angular velocity vector with respect FI , I is the spacecraft inertia matrix, h =

(h
1

, h
2

, h
3

)T is the angular momentum vector, and M = (M
1

,M
2

,M
3

)T is the ex-

ternal torque vector.

As a result, in the absence of external disturbance torques, the dynamics equation

reduces to

I!̇ = �! ⇥ (I! + h) + u (5.5)

where the control torque is u = �ḣ. Which can also be expressed as

ḣw,i = Iw⌦̇i = gi � Iw!̇
T âi, i = 1, 2, 3 (5.6)

The quantity hw,i = Jw⌦i represents the relative angular momentum vector of

the i-th reaction wheel, spinning at a relative angular rate ⌦i around the control axis

âi, under the action of an electrical motor torque gi, and J is the satellite inertia

matrix. The vector hw =
P

3

i=1

Jw⌦iâi is the total internal angular momentum. It

is assumed that principal axes of inertia are parallel to wheel spin axes, êi = âi,

i = 1, 2, 3.
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Without loss of generality, it is assumed that an actuator has failed on the Z

axis h
3

= 0,the underactuated axis is b̂ = ê
3

. As a consequence, only two RW’s are

available, with spin axes parallel to ê
1

and ê
2

, respectively. When one RW fails,

the coupling e↵ects of the remaining two reaction wheels can influence the angular

velocity and attitude of the unactuated axis.

In case of having an underactuated satellite, the spacecraft is known to only be

controllable by two wheels in the case of a zero total angular momentum mode,

which implies zero initial momentum [48].

I! + h = 0 (5.7)

Under this assumption, the torques generated by the available RW can be treated

to control the angular velocity being considered as virtual control inputs.

Euler’s rotational equation for the underactuated satellite with two wheels is

simply given by

I!̇ = u (5.8)

I
1

!̇
1

= M
1

(5.9)

I
2

!̇
1

= M
2

(5.10)

I
3

!̇
3

= 0 (5.11)

where Mi = �ḣi are the control torques on each axis. Since the total angular

momentum of the spacecraft is zero, it can be concluded that the angular momentum

on the Z-axis is zero, i.e. !
3

= 0.
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Let considered the quaternion parametrization (See 2.1.2) to describe the atti-

tude of the spacecraft as q = [q
1

, q
2

, q
3

, q
4

]T = [qTv , q4]
T

Kinematics are then described as the well-known kinematic di↵erential equations

(see [4] chap. (5.5.3) )

q̇v =
1

2
(q

4

! � ! ⇥ q) (5.12)

q̇
4

= �1

2
(!q) (5.13)

where ! is the angular rate. After substituting the zero-momentum condition !
3

=

0, the kinematic model of the satellite reduces to

q̇
1

=
1

2
q
4

!
1

� 1

2
q
3

!
2

q̇
2

=
1

2
q
3

!
1

+
1

2
q
4

!
2

q̇
3

= �1

2
q
2

!
1

+
1

2
q
1

!
2

q̇
4

= �1

2
q
1

!
1

� 1

2
q
2

!
2

(5.14)

Quaternion representation is adopted to avoid any singularities due to the atti-

tude parameterization.

5.2.3 Switching control approach

The control strategy is derived from the principles of the kinematic planning tech-

nique described in [69] and it can be seen as as a new approach with interesting

similarities with of the control law proposed in [47].

In this case, a switching scheme will be considered, based on the definition of

two di↵erent desired angular velocity vectors, !desi with i = 1, 2..
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The threshold of the switching logic from !des1 to !des2 is determined by a critical

value for the dot product êT b̂, namely, ✏des

êT b̂ � ✏des (5.15)

êT b̂ < ✏des (5.16)

The Euler axis can be represented as e =
qv

||qv||
thus depends on the attitude and

b = (0 0 1) respect to the body frame, namely, the underactuated direction.

The dot product êT b̂ represents a measure of the angular distance between the

Euler axis and the undeactuated direction. The switching times depend on whether

the Euler axis, at that time instant is su�ciently close to the plane of admissible

rotations or not.

The approach consists of a switching logic from two di↵erent desired tracking

velocities. The first desired angular velocity corresponds to

!des1 = �kw(e
T b)

e⇥ b

||e⇥ b|| (5.17)

the aim of !des1 is to bring the Euler Axis ê to the plane perpendicular to

the underactuated direction b̂ when êT b̂ > ✏des. Once the controller reaches the

threshold êT b̂ = ✏des, the control law switches and the !des2 expressed as

!des2 = �kw (I� b bT ) e (5.18)

Which is equivalent to

!des2 = �kw (I� b bT )
qv

||qv||
(5.19)

being qv the vector part of the quaternion, performing the turn around the non-

nominal Euler Axis.
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The !des1 is used to stabilise the attitude on the actuated axes (ê
1

and ê
2

), and

!des2 is used to complete the stabilisation of the unactuated axis (ê
3

).

Considering the zero-total angular momentum condition which implies that !
3

=

0 for the unactuated axis condition, this law will be able to compensate the momen-

tum of the satellite in the unactuated axis with the available reaction wheels in the

other two axes. Although the zero-momentum condition is not rigorously conserved

under the standard numerical integration (Runge-Kutta), for stability analysis it

will be considered that condition instead.

The control law is constructed based on quaternion modeling. This parametriza-

tion is more attractive than others (See section 2.1.2) as quaternions are available

on-board.

By substituting into the desired tracking angular velocities equations with the

quaternions the following expressions are obtained for the case of !des1

!
1

= kw
1

||qv||
q
2

q
3

q2
1

+ q2
2

(5.20)

!
2

= �kw
1

||qv||
q
1

q
3

q2
1

+ q2
2

(5.21)

!
3

= 0 (5.22)

By substituting the virtual angular velocities wdes1 and wdes2 in Eq. (5.14), the

closed-loop dynamics on the unactuated axis can be derived and are given by

q̇
3

= �1

2
kwq3 (5.23)

then q
3

= q
30

e(�kw/2)t, which means that the attitude component about the

unactuated axis converge exponentially to zero.
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Moreover, by substituting in 5.14,

q̇
4

= �1

2
q
1

!
1

� 1

2
q
2

!
2

= 0 (5.24)

Eq. 5.24 shows that q
4

is constant. Then, considering q2
1

+q2
2

+q2
3

+q2
4

= 1, it follows

that

q2
1

+ q2
2

+ q2
3

= C (5.25)

As q
4

remains constant, and q
3

decreases exponentially, the sum q2
1

+ q2
2

shall

increase with the same rate without diverging, as q2
1

+ q2
2

= 1 � q2
4

� q2
3

. It can be

concluded that the sum is bounded. Singularities are avoided because the numerator

exponentially converge to zero faster than the denominator as demonstrated in [18].

Regarding the second desired angular velocity of the switching controller, !des2

(Eq. 5.18) can be represented in terms of quaternion components as

!
1

= �k�q1 (5.26)

!
2

= �k�q2 (5.27)

!
3

= 0 (5.28)

By substituting in the kinematics equation one obtains that q̇
3

= 0 while

q̇
4

= �1

2
q
1

!
1

� 1

2
q
2

!
2

=
1

2
k�(q

2

1

+ q2
2

) � 0 (5.29)

which is an increasing and monotonic function of time. Therefore, q
4

is increasing

and bounded converging when time goes to infinite. This implies the convergence

also in q̇
4

which implies that q2
1

+ q2
2

converge to zero when time goes to infinity.
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5.2.4 Stability analysis

Stability is demonstrated using first, the Multiple Lyapunov Functions (MLF) ap-

proach and deriving from these an expression of a common Lyapunov Function for

all the switching sequence.

For the control approach proposed, the following result holds.

Lemma 5.2.1 The switching control law defined by Eqs.5.17 and 5.17 globally asymp-

totic stabilise the equilibrium q = (0, 0, 0, 1) of the system.

Proof:

Lyapunov stability of switched systems via multiple Lyapunov functions (MLF)

can also be used to demonstrate the stability of the nonlinear switching control

approach proposed in this thesis (Branicky[70, 71]).

Let be

ẋ = f(x, u), u = ui, i 2 A (5.30)

the system with ui as control parameter i : [1, 2], thus, the switching signal which

is assumed to be a piecewise continuous (from the right) function of time, implying

that only a finite number of switches between the two controllers is allowed on any

finite-time interval.

8
<

:

i = 1, êT b̂ � ✏des

i = 2, êT b̂ < ✏des

(5.31)
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Lemma 5.2.1 is demonstrated by showing the existence of multiple Lyapunov

functions for the system to be controlled, which can be done by picking Vi = V [q(t)]

for all i = 1, 2.

Let define a Lyapunov function for each switching state, namely V
1

and V
2

. For

i = 1 so that êT b̂ � ✏des, and the desired angular velocity is (5.17), a Lyapunov

candidate can be

V
1

= q2
3

(5.32)

and for i = 2 thus when êT b̂ < ✏des, the Lyapunov function is

V
2

= q2
1

+ q2
2

+ q2
3

= 1� q2
4

(5.33)

Considering the theorems C.0.1 and C.0.2

V
1

and V
2

are both Lyapunov-Like functions and satisfy the Corollary C.0.1.1

During time periods when a mode is inactive, the total energy might be a↵ected

by the active mode such that at the next time the inactive mode is activated, the

energy exceeds the level attained during it last period of activity. The key idea is

to proof for this control approach, and with the Lyapunov functions proposed, that

the total energy does not increase, or if it does, the increasing is bounded.

When !des1 is activated, V1

= q2
3

is monotonically decreasing (exponentially), and

when !des2 is activated, V2

= q2
1

+q2
2

+q2
3

. The term q2
3

decreases and as demonstrated

in Eq. 5.29 and considering that q2
1

+ q2
2

+ q2
3

+ q2
4

= 1, q2
1

+ q2
2

converges to zero

when time goes to infinity (see Figure. 5.1).

Stability in the sense of Lyapunov is then demonstrated by Theorem C.0.1, and

global asymptotic stability by C.0.2 as there exists a function � > 0 that satisfies
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Figure 5.1: Multiple Lyapunov functions

this condition (See Appendix.C)

Vp(tj)(x(tj+1

))� Vp(ti)(x(ti+1

))  ��||x(ti+1

)||2 (5.34)

Just one Lyapunov function is enough to demonstrate the stability of the whole

system. The following Lyapunov function VT = V
1

+ V
2

,

VT = q2
1

+ q2
2

+ 2q2
3

(5.35)

derived from the previous expressions of V
1

and V
2

, fulfil all the requirements to be

a common Lyapunov function for all the switching sequence (See Appendix C and

figure 5.2).

5.3 Simulation Results

In this section, the e↵ectiveness of the control approach is presented showing the

results obtained by the numerical simulations in Matlab/Simulink environment.
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Figure 5.2: One common Lyapunov function for all switching sequences

ESEO [38] satellite main features will be used in the simulations to validate the

control approach. Spacecraft data and environment is shown in table 4.1.

A satellite in the course of its nominal operation might be required to perform

fast slew manoeuvres. The manoeuvres considered for the simulations are called

rest-to-rest, in which the initial and final angular velocity of the satellite is zero.

Reaction wheels will also be considered at rest, thus the angular momentum of each

reaction wheel is zero. The output control torque of the reaction wheel is bounded

by the saturation value, which is the maximum torque a wheel can provide, although

some simulations with the non-saturation limit have also been performed.

The performance of the switching controller is shown in two simulation scenarios:

one is without in-orbit disturbances and where initial angular velocity is zero (Zero

momentum), and the other one is with in-orbit disturbances and the initial angular
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velocity is not zero but small (Non-Zero-Momentum).

Except for initial angular velocity and disturbances, the other parameters are

the same for all simulations (See Table 4.1). Initial condition values are summarized

in Table 5.1.

Three parameters will be considered to compare the performance of the control

laws, namely, settling time, maximum torque and integrated torque. This is a value

that represents the total amount of torque that wheels require performing a certain

manoeuvre. The expression for the integrated torque is,

Ut =

Z T

0

||g||dt (5.36)

where g = (g
1

, g
2

, g
3

) is the torque provided by the wheels and T is the time con-

sidered for the manoeuvre. In this case, g
3

= 0 as the third wheel is not available.

In both cases, convergence time, integrated torque and maximum torque per axis

have been shown and considered as design parameters to evaluate the performance

of the control law.

Table 5.1: Manoeuvre studied

Sample manoeuvre

CASE 2.1: Initial Conditions
!

0

(0, 0, 0)T rad/s
q
0

(0.1, 0.1, 0.1, 0.9849)T

Gains chosen (rad/s)

Discontinuous Horri et al. control law
g = 0.33
k = 0.02

Switching control law
k! = 0.15
k� = 0.06
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Montecarlo Analysis has been chosen as computational algorithm. Simulations

have been performed for the same set of random initial conditions in order to assess

the performance and to select the control gains.

5.3.1 Epsilon selection

A thousand random values for the initial quaternion have been considered for this

set of simulations. The goal was the selection of a ✏des for the best performance.

The study was based in testing the influence of ✏des while keeping the same k� and

k!, ratio. The results show that in terms of settling time, there is a minimum

for a certain ratio. That minimum is reduced as the value of the ratio is reduced.

The integrated torque increases while increasing ✏des, thus, the minimum settling

time can be considered as an upper bound for each ratio. The value chosen for

the following simulations is upper bounded by ✏des = 0.37, the epsilon chosen is:

✏des=0.05 after a trade o↵ between integrated torque and settling time.

5.3.2 Switching behaviour

The switching controller will be considered as the following system

ẋ = f(x, u), u = ui, i 2 A (5.37)

where x 2 Rn is the state, u the control input, ui, i 2 A are the candidate controllers

and i : [1, 2] 2 A are the switching signals.

Let u
1

be !des1 and u
2

be !des2.

The control law switches from u
1

to u
2

and vice versa. The first switching

corresponds with u
1

, and it is the longer respect to the successive switchings until
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Figure 5.3: Switching behaviour

the convergence. Figure 5.3 shows the switching behaviour represented by a phase

diagramme of q
3

and q
0

and the influence of ✏des in the switching behaviour.

5.3.3 Zero total angular momentum

The first simulation is carried out under the conditions that there is no environmental

disturbances and the initial angular velocity is zero (Case 2.1, 2.2). This corresponds

with the quite ideal assumption that the total angular momentum of the whole

satellite is zero, (See section 3.3).

Simulation results for the Case 2.1 are shown in Fig. 5.5, in which this controller

can render a stable closed-loop system with both the underactuated and the actuated

axes asymptotically stabilised from a non-zero initial attitude to the equilibrium
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Figure 5.5: Attitude representation for the zero momentum case

q = (0 0 0 1) within 0.02 orbits. Saturation limits of the wheels will not be considered

for this case .

5.3.4 Non-zero total angular momentum including distur-
bances

The second set of simulations are carried out considering a more realistic scenario,

also for the case 2.1.

Considering a no-zero initial angular velocity (!
0

= (0.001 0.001 0.001) rad/s)

and in-orbit disturbances. These are: gravity gradient, solar radiation pressure,

atmospheric drag, and residual magnetic dipole. Uncertainties in the inertia ma-

trix have also been included and a non-zero initial angular velocity to validate the

robustness of the control law.
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In order to compare settling times, simulations are stopped when the attitude q
4

term reaches a value such that the total error is 10�4.

If the simulation lasts for a longer time, higher pointing accuracy is achieved.

The attitude can converge to a small area around zero with time. This switching ap-

proach shows a good performance in terms of pointing accuracy against disturbances

and uncertainties.

The control law performs well in the case of non-zero-momentum, as the attitude

converges (See Fig. 5.6). The e↵ect of the non-zero momentum (discontinuous line)

is seen in the settling time. Time needed to converge is a 12.99% higher respect

to the zero-momentum case (continuous line) and the total integrated torque is 3%

higher.
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5.3.5 Actuators saturation e↵ects

For the initial set of simulations, the saturation of the wheels was not considered

validating the control law in a non-limited approach. In order to visualise the

maximum torque that would be required.

Saturation limits are now included. In Fig 5.7, it is shown a comparison of

q4 values for the zero momentum case. The continuous line represents the non-

saturated case, while the discontinuous one represents q4 in the case in which a

limit of hw = 0.01 is considered, which corresponds with the maximum wheel torque

(per axis) for the ESEO nanosatellite (See Table 4.1) performing the manoeuvre

(Case 2.1). This value has been chosen as saturation value for the simulations,

which is the maximum torque a single wheel can provide.

The problem has been studied for di↵erent manoeuvres, both for zero-momentum

and small non-zero momentum. The saturation limit is reached by the wheels in all

cases.

For the zero momentum case, simulations show that settling time increases

respect to the non-saturated case, for this manoeuvres the increase represents a

10, 74%, while total integrated torque decreases an 11.12% for the zero-momentum

case. Results show that settling time increases respect to the non-saturated case,

for this manoeuvre the increase represents a 5.1%, while total integrated torque de-

creases an 11.43%. It can be concluded that the controller performs well also when

actuators saturate.
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Figure 5.7: q4 - Zero momentum case, saturation Vs non-saturation

5.3.6 Comparison between controllers

The discontinuous controller in [47] is compared with the switching control approach

proposed. Horri et al. control law is expressed by

!d1 = �kq
1

+ g
q
2

q
3

q2
1

+ q2
2

(5.38)

!d2 = �kq
2

� g
q
1

q
3

q2
1

+ q2
2

(5.39)

!
3

= 0 (5.40)

It comes out that the analytical representation in terms of quaternion, for both

controllers di↵ers in the switching, that the novel approach proposes, between the

two terms of 5.38 and 5.39. The results of the numerical simulations show that

the advantage of using this approach, is such that for the same total integrated
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torque, the settling time and maximum torque per axis are lower for a set of initial

conditions of the switching control law.

Di↵erent simulations have been performed for the two initial conditions shown in

Table 5.1. Continuous lines in all the figures of this section represent the Switching

controller whereas the discontinuous lines represent the Horri et al. approach.

Figure 5.8 (Case 2.1) shows the attitude profiles in terms of quaternion repre-

sentation of an underactuated satellite using the discontinuous control law in [47]

and the switching control law proposed in Eq.(5.17) and Eq.(5.18) for the case of

non-zero momentum. Figure 5.9 shows attitude convergence for the zero momentum

case.

It can be seen from the plots that attitude about all the axes were stabilized to

equilibrium position faster using the switching control law.

Gains chosen for both controllers are such that the total integrated torque is the

same. The settling time and maximum torques obtained are in Table 5.2.

It can be concluded that for the same integrated torque the settling time is a

35.2% higher for the Horri et al. (See q4 plot in Fig. 5.10) controller and also the

values of the maximum torque are higher (See Fig. 5.11). Thus, a better performance

is shown by the switching controller proposed in this thesis.
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Table 5.2: Controllers comparison

Parameter Horri Switching control Units

Integrated torque 0.71 0.71 Nms

Settling time 205 133 s

Maximum torque (0.158 0.043 0.0000) (0.061 0.016 0) Nm
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Chapter 6

Conclusions

In this thesis two di↵erent cases involving spacecraft three–axis attitude stabilisation

have been presented.

In the Case 1, the combined use of magnetic and mechanical control laws is

proposed to achieve the attitude stabilisation in the orbit frame by means of three

mutually orthogonal magnetic actuators providing continuous momentum dumping

and a set of three orthogonal reaction wheels for attitude control. A formal proof of

convergence is also provided, highlighting the role of the variability of the magnetic

field along the orbit plays an important role in the proof of asymptotic stability of

the system toward the equilibrium point.

In particular, global exponential stability is proven for the closed-loop system

where angular momentum management is obtained by means of magnetic actua-

tion. The system stability proof for the whole cascade, represents the additional

contribution of the present thesis. The results hold for many practical applications

regarding small-scale spacecraft.

Simulation results are presented in order to demonstrate the e↵ectiveness of the
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control laws and validate the theoretical results. As a further contribution, the

control laws are shown to perform well in the presence of external disturbances,

spacecraft inertia matrix uncertainties, and control implementation issues such as

actuator saturation, control quantization, and measurement noise.

Case 2 addresses the problem of three–axis stabilisation within underactuated

conditions. Although most spacecraft are equipped with redundant reaction or

momentum wheels, research on underactuated attitude control is advantageous as

failures of both primary and secondary reaction wheels are possible throughout

a mission. Di↵erent solutions have been proposed over the years, such as using

thrusters to mitigate the issue, including more redundant actuators, etc. However,

these solutions present some disadvantages. The use of thrusters would involve

undesired fuel consumption and including more actuators might not be feasible in

terms of mass budget. As an alternative, in this thesis, full 3-axis control can still

be achieved, using the two remaining reaction wheels from a standard orthogonal

3-wheel configuration using the switching control approach proposed.

As proved mathematically, the control law proposed stabilises the underactu-

ated system in terms of Lyapunov. The numerical simulations show that the control

law performs well in terms of settling time and pointing accuracy, in the case of

ideal zero-momentum and including in-orbit disturbances and model uncertainties.

This results an important improvement as main problem with existing underactu-

ated attitude control designs is their limited capabilities against disturbances while

performing slew manoeuvres.

The control law proposed is compared with the previous result of Horri et. al

showing a better performance in terms of settling time and maximum torque. [47]

For both Case 1 and Case 2, good performance and stability is proven to reach
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three-axis stabilisation. These control approaches are potential candidates to be

used for satellite missions scenarios as the ones described in this thesis.

6.1 Future Work

Hybrid systems, that included both magnetic and mechanical actuation are given

encouraging results to the AOCS open issues as demonstrated in Case 1.

Further investigations on the switching control law are planned. In Case 2,

the switching control approach might be enhanced considering the contribution of

three magnetic torques, that could provide a better performance if included in the

AOCS subsystem. One interesting aspect is to more deeply investigate the system

uncertainties. Another work could be on the suitability for large angle manoeuvre

problem. In addition, the evaluation of control e↵orts and a study on the improve-

ment using specific control methods to mitigate the e↵ect of uncertainties such as

adaptive control and are also of interest for the future.
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Appendix A

Case 1: Proof of Lemma 1

Global exponential stability of the origin Z = 0 for the nominal system

Ż = �
h
T T

BI

⇣
I
3

� b̂ b̂
T
⌘
T BI

i
(k⇣ Z) (A.1)

is provided by the following corollary.

Corollary A.0.0.1 Consider a nonlinear non–autonomous dynamic system ẋ =

f(t,x), where f : Rn⇥R ! Rn is piecewise continuous in t and Lipschitz in x. Let

x = 0 be an equilibrium point for the system at t = 0. Also assumimg that a strictly

positive definite Lyapunov–like function V (x) > 0 exists, where (i) V : Rn ! R is a

smooth scalar function of the state x only and (ii) its gradient vanishes at the origin

only, that is, rxV = 0 at x = 0 and rxV 6= 0 elsewhere. If the Lyapunov–like

function V (x) and its time derivative V̇ (t,x) satisfy the conditions:

1. k
1

||x||c  V (x)  k
2

||x||c k
1

> 0, k
2

> 0, c > 0;

2. V̇ is negative semi–definite, that is, V̇ (t,x)  0;
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3. V̇ is uniformly continuous;

4. the iso-surfaces S of V (x) in the state space Rn do not contain any integral

curves x(t) of the vector field f other than the constant ones (x(t) = xe, 8t);

then the state converges to one of the (at least locally) stable equilibria. If the origin

is the only equilibrium, it is globally exponentially stable.

Proof: Since the Lyapunov candidate function V only depends on the state x one

has:

V̇ (t,x) = lim
�t!0

V (x(t+ �t))� V (x(t))

�t
= rxV f(t,x) (A.2)

Since the iso-surfaces S of V (x(t)) do not contain any integral curves of f , the right

hand term cannot be zero if an equilibrium point is not reached. Thus, for all t > 0

the quantity

V (x(t+ �t))� V (x(t)) =

Z t+�t

t

rxV f(⌧,x(⌧,x)) d⌧ < 0 (A.3)

is a finite negative term, and there exists a 0 < � < 1 such that

V (x(t+ �t))� V (x(t)) < ��V (x(t)). (A.4)

From this point onwards the proof follows that of Theorem 8.5 in [72].

By choosing the Lyapunov candidate V (Z) = 1/2ZT Z, system (A.1) satisfies

Conditions 1, 2, and 3, with V̇ (t,Z) = �kh Z
T
h
T T

BI

⇣
I
3

� b̂ b̂
T
⌘
T BI

i
Z. In case

of torque–free motion, the nominal system (A.1) reduces to Ż = 0, with the result

that Z remains fixed in the inertial frame. Conversely, the Earth magnetic field is

time–varying, so that the trajectory Z(t) = kZk b̂(t) cannot be a solution for the

nominal system (A.1). Thus, also Condition 4 is satisfied and the origin Z = 0 is

exponentially stable.



Appendix B

Gains Study

A gains-selection study has been performed to identify the e↵ect of the values of the

gains in the settling time, integrated torque and maximum torque.

The following figures represent the isolines which show the same value of a certain

parameter in the plane of the k� and k!.

Three manoeuvres have been analysed:

Table B.1: Manoeuvres studied

Sample manoeuvre

CASE 2.1B: Initial Conditions
!

0

(0, 0, 0)T rad/s
q
0

(0.1, 0.1, 0.1, 0.9849)T

CASE 2.2B: Initial Conditions
!

0

(0, 0, 0)T rad/s
q
0

(0.5, 0.5, 0.1, 0.7)T

CASE 2.3B: Initial Conditions
!

0

(0, 0, 0)T rad/s
q
0

(0.1, 0.1, 0.5, 0.8544)T
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Figure B.1: Convergence time Case 2.2B

In terms of convergence time, graphs for each of the three cases show that in-

creases in k� and k!, reduce the settling time. For small values of k�, k! has a

negligible influence and vice versa.

The integrated torque shows di↵erent behaviour depending on the manoeuvre

performed. For the Case 2.1B (Fig. B.2 from zero to k� = 0.1 and k! = 0.35 the

integrated torque increases almost linearly. For values over k� = 0.1, the increase of

k! over k! = 0.2 does not produce an increase in the integrated torque. For small

values of k!instead, an increase in k� does not a↵ect to the integrated torque. In

Fig. B.3 it can be seen for the case 2.2B that for small values of k�, an increase

in k!, does not produce a great change in the integrated torque and vice versa. In

case 2.3B, the integrated torque remains almost constant while increasing k! for a

certain value of k� and increases as k� increases.
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Figure B.2: Integrated torque Case 2.1B
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Figure B.3: Integrated torque Case 2.2B
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Figure B.4: Integrated torque Case 2.3B

The maximum torque has an almost constant behaviour. For a certain value of

k!, the maximum torque does not vary increasing k� as seen in Fig. B.5.

In conclusion, these figures can be used for the gains selection depending on

mission requirements and result useful in trade-o↵ studies to choose the best the

performance of the switching control law.
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Appendix C

Case 2: Stability proof - Multiple
Lyapunov Approach

Classical Lyapunov stability theory shows that stability depends on the existence

and/or construction of an appropriate (continuous and di↵erentiable) Lyapunov

function which may not exist or, when it does, may be di�cult to construct. [73].

In general, the stability of subsystems do not imply the stability of the switched

system under arbitrary switching, and a switched system may be stable for a switch-

ing signal even if all subsystems are unstable. To deal with the problem of arbitrary

switching when all subsystems are stable, the stability is reached if a common Lya-

punov function is found.

For hybrid systems, it might be not obvious to demonstrate the stability by

one Lyapunov function. Yet, the intrinsic discontinuous nature of a hybrid system

strongly suggests using Multiple Lyapunov Functions (MLFs) concatenated together

to produce a non–traditional (piecewise continuous and piecewise di↵erentiable)

Lyapunov function.
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In this framework results from [71, 70, 73] will be used to demonstrate the sta-

bility of the control approach described in Chapter 5.

A switched system can be modelled in general as

ẋ(t) = fi(x(t)), i 2 {1, ...,M} (C.1)

where x(t) 2 Rn is the state and i the switching signal. Let define a controller

switching as a system with single dynamics and multiple controllers, which results

in a switching system.

ẋ = f(x, u), u = ui, i 2 A (C.2)

where x 2 Rn is the state, u the control input, ui, i 2 A are the candidate controllers

and i : [0,1) with A as switching signal.

The controller proposed in Chapter 5 is classified as state-dependent, which

means that ui = ui(x).

Considering the following assumptions

Assumption 4 Each fi is globally Lipschitz continuous.

Assumption 5 There are finite switches in finite time.

and defining a switching sequence

S = xo; (i
0

, t
0

), (i
1

, t
1

)...(in, tn) (C.3)

for in 2 M with its associated projection sequences. The switching sequence

completely describes the trajectory of the system according to the following rule
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(ik, jk) which means that the system evolves according to ẋ(t) = fik(x(t), t) for

tk  t < tk+1

.

Considering the Theorem 8.14 in [70] Stability is demonstrated by the following

theorem

Theorem C.0.1 Suppose there exists i = 2 candidate Lyapunov functions Vi =

V (q, i) and vector fields as Equation (C.1) with f(0, i) = 0, for each i 2 M . More-

over, V : Rn ⇥K ! R
+

is continuous. Let S be the switching sequences associated.

If for each S 2 S and for all i, Vi is Lyapunov-like function for fi xs( · ) over S, i

and the Vi satisfy the sequence non-increasing condition for xs( · ), then the system

is stable in the sense of Lyapunov.

where the sequence non-increasing condition for a trajectory x( · ) is satisfied if

Vij+1(x(tj+1

)) < Vij(x(tj)) (C.4)

if there are candidate Lyapunov functions Vi corresponding to fi for all i, where

ti,k denotes the k� th time that vector field fi is switched in, which in other words,

means that Vi decreases on each interval when the i-th subsystem is active.

The definition considered for Lyapunov-Like function is shown in Corollary

C.0.1.1.

Corollary C.0.1.1 Consider a nonlinear system f i(x) = Aix, briefly define a

family of Lyapunov-Like functions (Vi, i = 1, ...,M) each associated with the vector

field f(x, i) = f i(x). A Lyapunov-Like function for the system ẋ = f i(x) point is

a real-valued function Vi(x) defined over the region ⌦i which satisfies the conditions:

1. Positive definiteness Vi(x) > 0 and Vi(x) = 0 at the equilibrium point.
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2. V̇ is negative semi–definite, that is, V̇ (t,x)  0;

Using Multiple Lyapunov-Like Functions to form a single non-traditional Lya-

punov function o↵ers much greater freedom and infinitely more possibilities for

demonstrating stability, for constructing a non-traditional Lyapunov function, and

for achieving the stabilization of the hybrid system which we now restrict to the

special (autonomous) form where

ẋ(t) = f(x(t), p(t)) = fp(t)((x(t)) (C.5)

where p(t) 2 {1, ...M} And being p(t) piecewise continuous, implying that there

are only a finite number of switches per unit time [73].

Following the Theorem 3.2 in [73], given the M-switched non linear system in

(C.5), supposing that each fi has an associated Lyapunov-like function V , in the

region ⌦i, each with equilibrium point x = 0 and suppose that
S

i ⌦i = Rn. Let

p(t) be the switching sequence such that p(t) can take on the value i only if x(t)

2 ⌦i and in addition

Vi(x(ti,k)) < Vi(x(ti,k�1

)) (C.6)

where ti,k denotes the k � th time that vector field fi is switched in. Then (C.5) is

stable.

Global asymptotic stability of the system C.5 is given by Theorem 3.1 in [73]

and the following is applied to Case 2 in Chapter 5.

Theorem C.0.2 For i < j, ti < tj be switching times for which p(ti) = p(tj) and

suppose there exists � > 0 such that

Vp(tj)(x(tj+1

))� Vp(ti)(x(ti+1

))  ��||x(ti+1

)||2 (C.7)
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it follows that system (C.5), with fp(t)(x) = Ap(t)x and switching function p(t),

is globally asymptotically stable (GAS).
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