
Alma Mater Studiorum – Università di BolognaAlma Mater Studiorum – Università di Bologna

DOTTORATO DI RICERCA IN

Ingegneria Elettronica, delle Comunicazioni e tecnologie
dell’informazione

Ciclo XXIX°

Settore Concorsuale di afferenza:
Area 09 (Ingegneria Industriale e dell’Informazione) – 09/E3 Elettronica

Settore Scientifico disciplinare:
Area 09 (Ingegneria Industriale e dell’Informazione) – ING-INF/01 Elettronica

OPTIMIZATION TECHNIQUES FOR PARALLEL
PROGRAMMING OF EMBEDDED MANY-CORE

COMPUTING PLATFORMS

Presentata da: Dott. Giuseppe Tagliavini

Coordinatore Dottorato Relatore

Prof. Alessandro Vanelli Coralli Prof. Luca Benini

Correlatori

Dott. Andrea Marongiu

Esame finale anno 2017

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Dipartimento di Ingegneria

dell’Energia Elettrica e dell’Informazione

Tesi di Dottorato

OPTIMIZATION TECHNIQUES

FOR PARALLEL PROGRAMMING

OF EMBEDDED MANY-CORE

COMPUTING PLATFORMS

Relatore: Candidato:

Chiar.mo Prof. Luca Benini Dott. Giuseppe Tagliavini

Correlatore:

Dott. Andrea Marongiu

Anno Accademico 2015-2016

I dedicate all the work and efforts of last years to my

grandfather Domenico, who prematurely passed away

leaving me without my personal superhero.

Wherever you are now, one day I will be there with you.

iii

iv

Contents

Introduction 3

I Background . 3

I.I The roadmap to many-core architectures 3

I.II Programming models for parallel platforms 9

II Thesis contributions . 12

1 Overview of embedded many-core platforms 19

1 Platform template . 19

2 STMicroelectronics STHORM 21

3 Kalray MPPA-256 . 23

4 PULP . 26

2 Enabling fine-grained OpenMP tasking on many-core ac-

celerators 29

1 Introduction . 29

2 Related work . 31

3 Design of an embedded tasking runtime 32

3.1 Work queue . 33

3.2 Runtime layer . 34

4 Task schedulers . 38

v

5 Untied tasks . 39

6 Experimental results . 44

6.1 Applications with a linear generation pattern . . . 45

6.2 Applications with a recursive generation pattern . . 46

6.3 Applications with mixed patterns 48

6.4 Impact of cutoff on linear and recursive applications 49

6.5 Real applications 50

6.6 Comparison with other tasking models 51

7 Conclusion . 53

3 Extending the OpenCL model for efficient execution of

graph-based workloads on many-core accelerators 54

1 Introduction . 54

2 OpenVX programming model 58

3 Extended OpenCL run-time 62

4 Optimization framework for many core accelerators 65

4.1 Data access patterns 66

4.2 Graph partitioning 71

4.3 Node scheduling . 72

4.4 Tile size propagation 74

4.5 Buffer allocation and sizing 75

4.6 Run-time graph . 77

4.7 Nested graphs . 78

4.8 User-defined nodes 80

5 Experimental results . 80

5.1 Comparison with OpenCL 85

5.2 Execution efficiency 88

5.3 Comparison with similar tools 89

vi

6 Related Work . 92

7 Conclusion . 95

4 An OpenVX environment to optimize embedded vision

applications on parametric parallel accelerators 96

1 Introduction . 96

2 Alternative tools . 98

3 ADRENALINE internals 98

3.1 Virtual platform 99

3.2 OpenVX run-time 103

4 Experimental results . 104

4.1 Comparison with a real platform 104

4.2 Application partitioning 106

4.3 Architectural configuration 107

5 Conclusion . 109

5 Providing lightweight OpenVX support for resource-constrained

mW-scale parallel accelerators 110

1 Introduction . 110

2 Background . 114

2.1 Platform template 114

2.2 OpenVX advanced features 116

2.3 OpenVX execution model and RTE 119

3 Code Generation-based RTE 122

3.1 Extension for static graph support 124

3.2 milliVX framework 133

4 Experimental results . 135

4.1 Setup . 136

vii

4.2 Memory footprint 138

4.3 Execution time . 140

4.4 Energy efficiency 141

4.5 Bandwidth reduction 142

5 Related work . 143

6 Conclusion . 146

6 A new frontier: supporting approximate computing on

mW-scale parallel accelerators 148

1 Introduction . 148

2 Related work . 152

3 Hardware Architecture . 155

3.1 PULP with hybrid L1 memory 156

3.2 TCDM Reliability Extensions 157

4 Software Stack . 161

4.1 Programming Model 161

4.2 Runtime Extensions 164

4.3 Compile-time Optimizations 165

5 Experimental Evaluation 169

5.1 Simulation Setup and Methodology 171

5.2 Software Stack and Benchmark Suite 172

5.3 Energy Consumption 173

5.4 SoC Area . 179

5.5 Application accuracy 181

5.6 Comparison with other approaches 183

6 Conclusion . 185

Conclusion 187

viii

List of Publications 189

Acknowledgments 193

ix

List of Figures

1 Trend of processor frequency over time (Data source: http://cpudb.stanford.edu). 5

2 Two cores computing two elements in parallel. 6

3 Thesis organization. 12

1.1 Reference architectural template for many-core computing

platforms. 20

1.2 STHORM architecture. 22

1.3 STHORM evaluation board. 23

1.4 MPPA-256 block diagram (Source: Kalray Corporation). . 24

1.5 MPPA-256 compute cluster (Source: Kalray Corporation). 25

1.6 PULP cluster architecture. 27

2.1 Design of tasking support. 33

2.2 Design of task scheduling loop. 35

2.3 Example of tied and untied task scheduling. 38

2.4 untied task suspension with task contexts and per-task

stacks. 40

2.5 Speedup of the LINEAR benchmark (no cutoff). 45

2.6 Speedup of the RECURSIVE benchmark (no cutoff). . . . 46

2.7 Structure of the MIXED benchmark. 48

2.8 Speedup of the MIXED benchmark. 48

x

2.9 Speedup of the LINEAR benchmark (with cutoff). 50

2.10 Speedup of the RECURSIVE benchmark (with cutoff). . . 51

2.11 Speedup of BOTS. 52

2.12 Comparison to other tasking models (LINEAR). 52

2.13 Comparison to other tasking models (RECURSIVE). . . . 53

3.1 Edge detector (DAG). 62

3.2 OpenCL mapping for STHORM (source: STMicroelec-

tronics). 63

3.3 Execution of a single kernel on CLE run-time. 65

3.4 Structure of a tiling descriptor. 67

3.5 Image tiling schema for a single kernel. 68

3.6 Classes of image processing kernels. 69

3.7 Application graph partitioning. 72

3.8 Node scheduling algorithm. 73

3.9 Scheduling order for edge detector. 74

3.10 Example of tile size propagation. 75

3.11 Buffer allocation for edge detector. 76

3.12 Buffer sizing algorithm. 77

3.13 Example of CLE run-time schedule. 77

3.14 OpenVX graph of Canny benchmark with tiling annotations. 83

3.15 Speed-up of OVX CLE w.r.t. standard OpenCL approach. 85

3.16 Bandwidth reduction using OVX CLE. 86

3.17 Bandwidth required by applications for both OVX CLE

and OpenCL. 87

3.18 Breakdown analysis of accelerator efficiency. 88

3.19 Efficiency of Edge detector and Retina preprocessing with

memory bridge at 400 MHz (simulation). 89

xi

4.1 Speed-up of OpenVX compared to OpenCL (ADRENALINE).105

4.2 Speed-up of OpenVX compared to OpenCL (STHORM

board). 105

4.3 Mapping of Canny and FAST9. 107

4.4 Canny edge detector. 107

4.5 Evaluation of Canny edge detector. 108

5.1 Heterogeneous architecture model. 114

5.2 Example of an OpenVX graph and its expansion after tiling.120

5.3 Developer workflow using our approach. 124

5.4 Control function generation (pseudo-code). 126

5.5 Control function code. 128

5.6 Graph representation. 129

5.7 Example of graph modifications. 131

5.8 Code footprint (GB-RTE vs CG-RTE). 138

5.9 Total memory savings (CG-RTE vs GB-RTE). 139

5.10 Execution time (GB-RTE vs CG-RTE). 140

5.11 Energy efficiency of the STM32-L476 host compared to

the PULP accelerator. 141

5.12 Frame memory bandwidth. 142

6.1 PULP architecture with hybrid L1 memory. 155

6.2 Breakdown analysis of the PULP SoC area. 156

6.3 Hybrid TCDM organization. 159

6.4 Reconfigured address space for a word level access in the

split memory area. 160

6.5 Evolution of variables in different program regions. 162

6.6 A sparse matrix computation with a tolerant directive. . . 163

xii

6.7 Layout of the PULP chip used for memory reliability and

power characterization. 171

6.8 Normalized energy consumption of the TCDM (average

energy reduction is reported in percentage). 174

6.9 Normalized components of the energy consumption. 176

6.10 Normalized energy consumption of the full SoC. 177

6.11 Normalized energy consumption for two solutions (SCM

with tiling VS hybrid memory with our approach). 180

6.12 Energy consumption and area compared to Split-VS. . . . 183

xiii

List of Tables

3.1 OpenVX framework objects. 58

3.2 OpenVX data objects. 58

3.3 Details on OpenVX benchmarks. 81

3.4 Comparison with KernelGenius 90

4.1 Computed speed-up. 108

4.2 Effect of DMA latency on execution time. 109

5.1 OpenVX program phases. 119

6.1 Probability of bit-flip errors in 6T-SRAM. 157

6.2 Memory layout changing the 6T-SRAM voltage domains. . 158

6.3 Energy consumption (pJ) of a 32-bit read/write access. . . 166

6.4 Characterization of the benchmark suite. 170

6.5 Leakage energy (pJ per cycle) of SCM and 6T-SRAM cuts. 172

6.6 Total number of core cycles (in millions). 178

6.7 Area and energy/area values. 179

6.8 Mean squared error for zeroing and flip-bit error. 183

6.9 Normalized energy-area product (NEAP). 185

xiv

Abstract

Nowadays multi- and many-core computing platforms are widely adopted

as a viable solution to accelerate compute-intensive workloads at differ-

ent scales, from low-cost devices to HPC nodes. It is well established

that heterogeneous platforms including a general-purpose host processor

and a parallel programmable accelerator have the potential to dramat-

ically increase the peak performance/Watt of computing architectures.

However the adoption of these platforms further complicates application

development, whereas it is widely acknowledged that software develop-

ment is a critical activity for the platform design, as it affects develop-

ment cost and time-to-market. The introduction of parallel architectures

raises the need for programming paradigms capable of effectively lever-

aging an increasing number of processors, from two to thousands. In

this scenario the study of optimization techniques to program parallel

accelerators is paramount for two main objectives: first, improving per-

formance and energy efficiency of the platform, which are key metrics for

both embedded and HPC systems; second, enforcing software engineer-

ing practices with the aim to guarantee code quality and reduce software

costs. This thesis presents a set of techniques that have been studied

and designed to achieve these objectives overcoming the current state-of-

the-art. As a first contribution, we discuss the use of OpenMP tasking

as a general-purpose programming model to support the execution of

diverse workloads, and we introduce a set of runtime-level techniques

to support fine-grain tasks on high-end many-core accelerators (devices

2

with a power consumption greater than 10W). Then we focus our atten-

tion on embedded computer vision (CV), with the aim to show how to

achieve best performance by exploiting the characteristics of a specific

application domain. In this context we introduce an extension of the

OpenCL programming model to support execution of graph-based work-

loads, which are common in CV applications, and we design a runtime

tailored for many-core accelerators with a power envelope in the range

2-5 W. To enhance the programmability of this approach, we take into

account the use of Domain Specific Languages (DSLs), and we design a

runtime based on a standard API for embedded CV, namely OpenVX.

However experimental results show that a standard OpenVX runtime

has severe limitations when applied to mW-scale parallel accelerators, in

particular when we impose strict constraints on local memory size and off-

chip bandwidth. To overcome these limitations, we extend the OpenVX

programming model to support offline code generation, and we design a

lightweight OpenVX runtime tailored for resource-constrained mW-scale

parallel accelerators. To further reduce the power consumption of parallel

accelerators beyond the current technological limits, we describe an ap-

proach based on the principles of approximate computing, which implies

modification to the program semantics and proper hardware support at

the architectural level.

Introduction

I Background

I.I The roadmap to many-core architectures

Following the trend predicted by Moore’s law [1] in 1965, the number of

transistors in an integrated circuit doubles at each generation of semi-

conductor technologies, approximately every two years. The feature size

of MOS transistors, corresponding to the minimum length of the channel

between drain and source terminals, is scaled by around 30% (i.e., by

a factor S '
√

2) in a new generation, so that the area is accordingly

scaled by 0.5 (1/S2). This effect also reduces the delay by 30% (0.7×)

and therefore increases operating frequency by about 40% (1.4×). Den-

nard scaling [2] is another important law first enunciated in 1974, and

it states that power consumption stays proportional to area by scaling

down both voltage and current with transistor size. Dennard scaling can

be easy explained from the formula to compute the power consumption

of a generic CMOS device,

P = αCV 2
ddf + VddIsc + VddIleak

4 I Background

where α is the transistor activity rate, C the load capacitance of tran-

sistors, Vdd is the operating voltage, f is the operating frequency of the

chip, Ileak is the leakage current and Isc is the short-circuit current. The

assumption of Dennard scaling is that Isc and Ileak are not significant for

the total power balance, and the corresponding terms can be neglected.

In this case the load capacitance is related only to area, when the size of

the transistors shrunk and the voltage is reduced circuits could operate

at higher frequencies at the same power level. For three decades (roughly

from 1975 to 2005) Moore’s law and Dennard scaling were the panacea of

computing architectures, since they guaranteed that every two years cir-

cuits became 40% faster while total costs did not increase. Moreover, the

same software targeting previous generations could be executed on new

architectures taking automatic advantage of the improved speed without

any code refactoring.

Dennard scaling broke down around 2005, with the introduction of

feature sizes below 65 nm. With new technology nodes, scaling rules

could no longer be sustained because of the exponential growth of leak-

age current. As transistors get smaller, power density increases because

both leakage current and threshold voltage do not scale with size. This

created an effect called power wall [3] that has limited practical pro-

cessor frequency to around 4 GHz since 2006, as depicted in Figure 1.

In the last years several techniques have been introduced to lessen the

contribution of leakage current, such as the switching process used for

3D FinFET transistors [4], initially introduced on the market in 22 nm

Haswell processors by Intel. However no further scaling of the operating

voltage is possible at the current frequencies, and so its value is remained

constant for several generations of mainstream processors (at around 1

I Background 5

Figure 1: Trend of processor frequency over time (Data source:
http://cpudb.stanford.edu).

V). In Post-Dennard scaling era, the increasing number of transistors yet

provided by Moore’s law leads to an equivalent power increase of S2 = 2

(for a fixed die area). To meet the constraints of a target thermal de-

sign power (TDP), that is the maximum amount of heat generated by a

computing system, two guidelines emerged from academic and industrial

research: (i) organizing transistors in different and more energy efficient

ways or (ii) switching off a subset of transistors to reduce instant power

consumption. The introduction of multi-core processors is a solution

adopting the first principle.

A multi-core processor is a computing system with two or more actual

processing units (cores), with the capability to run multiple instructions

at the same time. Basically, a multi-core processor implements multipro-

cessing on a single physical package. The main idea of this approach is

to use the increasing transistor count to add more computing cores to

6 I Background

Figure 2: Two cores computing two elements in parallel.

a processor rather than use transistors to further increase sophistication

of processor logic that accelerates a single instruction stream. In order

to reduce power consumption, each core is slower on a single instruction

stream than old-style monolithic cores (e.g., 25% slower), but concurrent

execution on multiple cores provides a potential speed-up (e.g., having 2

cores that are 25% slower, the speedup would be 0.75×2 = 1.5). Figure 2

depicts the case of two cores performing the same computation on differ-

ent elements in parallel. This specific configuration is typical of modern

CPUs, where fetch/decode logic, execution units and execution contexts

are replicated per core.

The multi-core design also mitigates two additional technical prob-

lems emerged in computer architectures, that are known as memory wall

and instruction-level parallelism (ILP) wall. The memory wall is a lim-

iting effect of computing speed due to the disparity of speed between

CPU and off-chip memory, because of the limited communication band-

width beyond chip boundaries. Until 2005, CPU speed improved at an

annual rate of 55% while the improvement of memory speed was stuck

to 10%. Given these trends, research studies [5] forecasted that memory

I Background 7

latency would become a limiting factor in achieving better performance,

and this was confirmed on market products by Intel in 2005 [6]. Multi-

core architectures address the memory wall by implementing deep and

distributed cache hierarchies, which reduce the average requests on the

memory subsystem and hide the access latency. The ILP wall [7] is

an effect of diminishing returns on instruction-level parallelism, due to

the increasing difficulty of extracting additional parallelism from a single

instruction stream. At the ILP wall each increment in the clock rate

has a corresponding clock-per-instruction (CPI) increase, and accord-

ingly more instructions cannot be fetched and decoded per clock cycle.

In addition, poor data locality further limits ILP and adversely affects

memory bandwidth. Multi-core architectures address the ILP wall by

increasing granularity of parallelism at thread level, introducing thread-

level parallelism (TLP). This choice has serious implications on software

programming, which are addressed in the next section.

The term many-core architectures is typically used to describe multi-

core architectures with an especially high number of cores, from tens

to hundreds. Today these platforms are considered a viable solution

to accelerate compute-intensive workloads at different scales, from low-

cost devices to HPC nodes. Nevertheless, the ever-increasing on-chip

power density leads to an emerging scenario in which the ongoing many-

core evolution is again limited by the power wall. Applying the second

guideline discussed to reduce TDP, only a small fraction of a chip is

powered at the same time. The term dark silicon is exactly used to define

the amount of silicon of an integrated circuit that cannot be powered-

on at the nominal operating voltage to fulfill TDP constraints. The

main consequence of dark silicon is a technology-imposed utilization wall

8 I Background

[8] that limits the fraction of the chip we can use at full speed at one

time. The heterogeneous architecture design, where a large number of

different accelerators can be build on the same chip and can be woken

up only when needed and for the specific task that was design for, is

one of the most promising solutions to bypass the utilization wall [9].

Heterogeneous architectures including general-purpose host processors

and programmable many-core accelerators are already available on the

market, including: general purpose architectures like AMD APUs, which

integrate multiple x86 cores with a general-purpose GPU on the same

die [10]; mobile-centric products, like Samsung Exynos [11]; architectures

for signal-processing, like Texas Instrument Keystone II [12] and NVidia

X1 [13]; large many-core accelerators like Kalray MPPA 256 [14], PEZY-

SC [15], ST Microelectronics STHORM [16] and Parallella Epiphany-

V [17].

In this thesis we focus our attention on a significant class of embedded

parallel accelerators, which are clustered accelerators sharing on-chip fast

memory and communicating via low-latency, high-throughput on-chip in-

terconnections. These devices differ from GPGPUs in two main traits.

First, cores are not restricted to run the same instruction on different

data, in an effort to improve execution efficiency of branch-rich compu-

tations and to support a more flexible workload distribution. Second,

embedded many-core accelerators do not rely on massive multithread-

ing to hide memory latency, but they rely instead on DMA engines and

double buffering, which give more control on the bandwidth vs. latency

tradeoff, but require more programming effort. Our target devices are

described in further detail in Chapter 1.

I Background 9

I.II Programming models for parallel platforms

Parallel accelerators have the potential to dramatically increase the peak

performance/Watt of embedded computing architectures, however their

adoption further complicates application programming, whereas it is wi-

dely acknowledged that software development is a critical activity for the

platform design, as it affects development cost and time-to-market [18].

The introduction of parallel architectures raises the need for program-

ming paradigms capable of effectively leveraging an increasing number

of processors, from two to thousands. According to software engineering

principles, programming models should expose high-level constructs for

outlining the available parallelism in applications, without the need for

programmers to handle performance scalability issues by expertising on

low-level hardware details [19]. In the next paragraphs we briefly intro-

duce the programming models that have been mostly adopted in this

context.

OpenCL [20] is a standard which introduces platform and execution

models that are particularly suitable for heterogeneous platforms includ-

ing many-core accelerators, and it has been widely adopted by industry

in the last years. OpenCL offers a conjunction of task parallel program-

ming model, with a run-to-completion approach, and data parallelism,

supported by global synchronization mechanisms. An OpenCL appli-

cation runs on the host processor and distributes kernels on computing

devices, and programmers must write separate code for the host and the

accelerator. In the OpenCL platform model, each device is composed

by one or more compute units, each one composed of one or more pro-

cessing elements and a local memory. Kernels are programmed in the

10 I Background

OpenCL C language, which is based on the C99 standard. Host applica-

tions are written in C/C++ language, and invoke standard application

programming interface (API) calls to orchestrate the distribution and

execution of kernels on devices, using a mechanism based on command

queues. The execution of a kernel invoked on a device by a command

on a single processing element is called a work-item, while a collection

of related work-items that execute on a single compute unit is called

a work-group. Using OpenCL model, program execution is explicitly or-

chestrated by the host code, including data transfers and synchronization

points. The last version of the standard (OpenCL 2.0) also enables dy-

namic parallelism on device side, but most programming environments do

not support it yet. OpenCL offers a conjunction of task parallelism (with

a run-to-completion approach) and data parallelism, supported by global

synchronization mechanisms. In addition, OpenCL defines a memory ab-

straction model that is common to all computing devices implementing

the standard. There are four virtual memory regions (global, constant,

local, private), which are mapped to actual memory hierarchies of target

devices. An host-side API defines how data is stored and also enables the

orchestration of data transfers. The most common critic to OpenCL is

due to the fact that it offers a very low-level programming style, and ex-

isting applications must be rewritten entirely to comply to programming

practices that could be tedious and error-prone.

OpenMP [21] is a programming model for shared memory multipro-

cessing architectures. It is mainly based on preprocessing directives for

C/C++ and Fortran, which are resolved at compile time by means of

source-to-source code transformations into low-level calls to a target-

specific runtime. OpenMP was initially used for multi-core CPUs, but

I Background 11

latest versions of the standard provide specific mechanisms to execute

code on parallel accelerators. A similar approach is used by OpenACC

[22], another annotation-based programming model which has been widely

adopted in recent years. The use of directives does no alter exiting se-

quential code, which enables rapid and maintainable code development

thanks to an incremental parallelization style coding. OpenMP provides

a rich set of constructs which enable to exploit parallelism at different lev-

els, but their usage is often limited to applications exhibiting work units

which are coarse-grained enough to amortize these overheads. While this

is often the case for general-purpose systems and associated workloads,

things are different when considering the embedded computing systems

which are the main target of this dissertation.

To enhance the programmability of accelerators, programmers often

take into account the use of Domain Specific Languages (DSLs). The

adoption of a DSL enables hardware vendors to implement and optimize

low-level domain-specific primitives. OpenVX [23] is a cross-platform C-

based API which aims at enabling hardware vendors to implement and

optimize low-level image processing and computer vision (CV) primitives.

In the context of image processing, applications can be easily structured

as a set of vision kernels (i.e. basic features or algorithms) that interact

on the basis of input/output data dependencies. Relying on this consid-

eration, OpenVX promotes a graph-oriented programming model, based

on Directed Acyclic Graphs (DAGs) of kernel instances.

12 II Thesis contributions

Figure 3: Thesis organization.

II Thesis contributions

Considering the depicted scenario, the study of optimization techniques

to program parallel accelerators is paramount for two main objectives:

first, improving both performance and energy efficiency of parallel plat-

forms, which are key metrics for embedded computing systems; second,

enforcing software engineering practices with the aim to guarantee code

quality and reduce software costs. This thesis presents a set of techniques

and designs that have been studied to achieve these objectives. In the

dissertation we consider a range of devices with a more and more strin-

gent power budget, since the emergence of new application areas (e.g.,

Internet-of-Things applications) makes a common requirement that de-

vices combine complex processing capability with ultra-low-power oper-

ation. The next paragraphs summarize the major contributions of this

thesis, and Figure 3 depicts an overview of the chapters in terms of target

power envelope (x-axis) and programming model classification (y-axis).

II Thesis contributions 13

Enabling fine-grained OpenMP tasking on many-core acceler-

ators (Chapter 2). As a first contribution, we discuss the use of

OpenMP tasking as a general-purpose programming model to support

the execution of diverse workloads, and we introduce a set of runtime-

level techniques to support fine-grain tasks on many-core accelerators.

The tasking abstraction provides a powerful conceptual framework to

exploit irregular parallelism in embedded applications, but its practical

implementation requires sophisticated runtime support, which typically

implies important space and time overheads. The applicability of this

approach is often limited to applications exhibiting work units which are

coarse-grained enough to amortize these overheads. While this is often

the case for general-purpose systems and associated workloads, things

are different when considering embedded computing systems. Minimiz-

ing runtime overheads is thus a primary challenge to enable the ben-

efits of tasking on these systems. We designed an optimized runtime

environment supporting the OpenMP tasking model on an embedded

shared-memory cluster [24] [25], validating our work on Kalray MPPA.

Experimental results on compute-intensive applications show that this

approach can achieve the maximum speed-up with an average task gran-

ularity of 7500 cycles, while previous approaches require about 100000

cycles to achieve the same performance level.

Extending the OpenCL model for efficient execution of graph-

based workloads on many-core accelerators (Chapter 3). Data

transfers and memory management are major challenges in programming

a heterogeneous platform. OpenMP provides programmers a convenient

way to express code parallelism, but the standard does not address these

14 II Thesis contributions

issues. To overcome this limitation we explored the use of OpenCL, that

defines a unified memory abstraction model and provides a standard API

to handle data transfers. Our preliminary experiments highlighted that

a common issue of using OpenCL in the context of embedded parallel

accelerators is related to the mandatory use of the global memory space

to share intermediate data. Global memory is available to any work-

item for both read and write, and must be fully accessible (and cacheble)

by the host CPU, so it is usually mapped on off-chip memory (e.g. a

DDR). When increasing the number of interacting kernels, the off-chip

memory bandwidth required to fulfill data requests originated by work-

items is much higher than the available one. Moreover, data must be

transferred into local memory (on-chip) prior to computation to take

advantage of low-latency accesses, and this has to be done explicitly;

consequently, code modularity and execution efficiency become conflict-

ing constraints. We focused our attention on embedded computer vision

(CV) benchmarks, since this class of applications is particularly sensi-

tive to memory effects [26]. In this context we introduced an OpenCL

extension to support graph-based workloads, which are common in a

large class of applications (including the CV domain), and we designed

a runtime tailored for multi- and many-core accelerators [27]. This run-

time extends the OpenCL semantics by enabling the creation of low-level

graphs which contains nodes of different types (data allocations, DMA

transfers and processing kernels), with the aim to allow the separation

of concerns between algorithm code and data management. To enhance

the programmability of this approach, we took into account the use of

Domain Specific Languages (DSLs) as a programming front-end and we

designed a runtime based on a standard API for embedded CV, namely

II Thesis contributions 15

OpenVX [28]. Experiments performed on STHORM showed that our

solution provides huge benefits in terms of speed-up compared to the ex-

ecution of standard OpenCL code. This approach achieves up to 9.6×

speed-up w.r.t. OpenCL, mainly due to a drastic bandwidth reduction.

This also implies an higher execution efficiency, having more than 95%

of the accelerator time spent in active processing.

An OpenVX environment to optimize embedded vision applica-

tions on parametric parallel accelerators (Chapter 4). OpenVX

has been introduced with the aim to raise significantly the level of ab-

straction at which CV applications should be coded. Based on a standard

plain C API, it is easy to use and fully transparent to architectural de-

tails. The details of the hardware platform are hidden in the underlying

run-time environment (RTE) layer. This approach enables the portability

of vision applications across different heterogeneous platforms, delegat-

ing the performance tuning to hardware vendors, who provide an efficient

RTE with architecture-specific optimizations. In this context we designed

ADRENALINE [29], a framework for fast prototyping and optimization

of OpenVX applications on heterogeneous platforms. ADRENALINE

consists of an optimized OpenVX runtime, based on streamlined support

for a generic heterogeneous platform, and a virtual platform modeling

the hardware architecture, using a template which can be easily con-

figured along several axes (e.g., core type, memory timings). The run-

time system includes several optimizations for the efficient exploitation

of the explicitly managed memory hierarchy, mainly tiling and double-

buffering. A low-level application graph is automatically generated by the

high-level OpenVX code, which implies a consistent reduction of source

16 II Thesis contributions

code complexity (25% reduction of source code lines). In addition, this

tool can support several end users: (i) researchers and SDK vendors can

explore various platform-specific optimizations, scheduling policies and

algorithms for the implementation of the OpenVX support layer; (ii) ap-

plication developers can explore different partitioning solutions (host vs

accelerator, parallelization) for different applications; (iii) platform en-

gineers can quickly evaluate different architectural configurations for a

target CV application.

Providing lightweight OpenVX support for resource-constrained

mW-scale parallel accelerators (Chapter 5). The typical power

envelope of commercial parallel accelerators is in the range 2–15 W. For

applications with a more constrained power budget, which are more and

more common in the IoT domain, we take into account a new class of

ultra-lower-power heterogeneous platforms, which include a microcon-

troller unit (MCU) coupled to a mW-scale parallel accelerator. A key

trait of these platforms is the strongly limited amount of available on-

chip memory, which requires dedicated memory management techniques

to enable the efficient execution of CV graphs of arbitrary large size, also

considering a limited off-chip bandwidth. Experimental results show that

a standard OpenVX runtime has severe limitations when applied to on

this class of devices, since the scarce amount of on-chip memory can be

insufficient to contain data and code. To overcome these limitations, we

extended the OpenVX programming model to support offline code gener-

ation, and we designed a lightweight OpenVX runtime (milliVX) tailored

for MCU hosts. This approach takes advantage of the static structure

extracted by an OpenVX program to optimize the execution stage in

II Thesis contributions 17

terms of memory footprint and execution time, but at the same time it

fully preserves the dynamic features of the original OpenVX standard,

namely graph updates and node callbacks [30]. To assess our approach

we designed a reference implementation for the OpenVX extension and

the milliVX specification. This approach achieves 68% memory footprint

reduction and 3× execution speed-up compared to a baseline implemen-

tation. At the same time, memory bandwidth used for data transfers is

reduced by 10% and energy efficiency is improved by 2×.

A new frontier: supporting approximate computing on mW-

scale parallel accelerators (Chapter 6). To further reduce the power

consumption of parallel accelerators beyond the current technological lim-

its, we introduce an approach based on the principles of approximate

computing, which implies modification to the program semantics and

proper hardware support at the architectural level [31]. We designed

a hybrid memory system for the L1 scratchpad, including both Stan-

dard Cell Memory (SCM) and six-transistor Static RAM (6T-SRAM).

Although 6T-SRAM provides a much better storage density than SCM,

its minimum operating voltage is much higher (0.8 V as opposed to 0.5

V for the considered technology node). Accessing 6T-SRAM below 0.8

V results in a flip-bit error with a certain probability, but the operat-

ing voltage of 6T-SRAM can be safely lowered whenever data located

in this region are not accessed. In addition, to leverage approximation

tolerance in applications in a controlled manner we provide a transparent

mechanism to split multi-byte data into multiple banks at the architec-

ture level (tolerant memory region). The most significant bits (MSB)

of a word are stored in the SCM, while the least significant bits (LSB)

18 II Thesis contributions

are stored in the 6T-SRAM. This allows to access 6T-SRAM cells at

low voltage for error-tolerant computations, bounding the error to the

LSB. Our results demonstrate that this approach provides much better

precision than just dropping the LSB. At the programming model level,

we provide constructs for specifying regions of code and data that are

tolerant to approximation in a C program. A compiler pass places data

into different memory areas according to error tolerance, activating the

tolerant memory region and inserting voltage switch points for 6T-SRAM

when it is safe. A greedy allocation algorithm uses a heuristic to min-

imize the power consumption due to data accesses when other policies

are not possible. Using cycle accurate simulation models of the target

platform annotated with power numbers extracted from a silicon imple-

mentation, we demonstrate that this architecture can reduce by 25% on

average the energy consumption, very close to the savings achievable by

an ideal platform including SCM cells only.

Chapter 1

Overview of embedded

many-core platforms

1 Platform template

Figure 1.1 shows a block diagram of the architectural template for em-

bedded many-core computing platforms that is the main reference for

this thesis. It consists of a general-purpose host processor coupled with

a clustered many-core accelerator (CMA) inside an embedded system-

on-chip (SoC) platform. The multi-cluster design is a common solution

applied to overcome scalability limitations in modern many-core acceler-

ators, such as STMicroelectronics STHORM [16], Kalray MMPA-256 [14]

and PULP [32]. Clusters are typically interconnected via a network-on-

chip (NoC).

The processing elements (PEs) inside a cluster are fully independent

reduced instruction set computing (RISC) cores, supporting both single-

instruction/multiple-data (SIMD) and multiple-instruction/multiple-data

(MIMD) parallelism. Each PE is equipped with a private instruction

20 1 Platform template

Host

DDR mem

controller

Cluster0 ClusterN

L2 mem

…

CMA

PE0 PE1 PEn…

L1 mem

DMA

controller

L3 mem

SoC

Figure 1.1: Reference architectural template for many-core computing
platforms.

cache. To avoid memory coherency overhead and increase energy effi-

ciency, the PEs do not have private data caches. All PEs share a L1

memory (L1 mem) acting as a scratchpad. L1 memory is typically im-

plemented with a set of SRAM banks to which processors are connected

through a low-latency, high-bandwidth data interconnect. Communica-

tion between the cores and the L1 memory is based on a fast intercon-

nect, implementing a word-level interleaving scheme to reduce the access

contention to L1 banks. Multiple concurrent reads at the same address

happen in the same clock cycle (broadcast). A conflict takes place only

when multiple processors try to access different addresses within the same

bank. In this case the requests are sequentialized on the single bank port.

To minimize the probability of conflicts the interconnection implements

address interleaving at the word-level and the number of banks is M

times the number of cores (M = 2 by default). Processors can synchro-

nize by means of standard atomic operations (e.g., test-and-set), which

read the content of the target memory location and updates it.

The architectural template also includes a L2 scratchpad memory at

SoC level and an external L3 (e.g., using DDR or Flash technology)

accessible by means of a memory controller. Both host cores and PEs

2 STMicroelectronics STHORM 21

can access the whole memory space, that is modeled as a partitioned

global address space (PGAS). Since the L1 memory has a small size, the

software must explicitly orchestrate data transfers from other memory

levels to L1 to ensure that the most frequently referenced data at any

time are kept close to the processors. A direct memory access (DMA)

unit enables communication with other clusters, L2 memory and external

peripherals.

2 STMicroelectronics STHORM

STHORM accelerator by STMicroelectronics, previously known as P2012

[16], is a many-core computing accelerator fabricated in 28 nm bulk

CMOS technology. Its design is based on clusters interconnected by an

asynchronous network-on-chip (Figure 1.2). The accelerator fabric also

includes a fabric controller (FC) core, intended to manage fabric-level

run-time and interaction with the host processor.

Each cluster features 16+1 cores, 16 PEs to perform general-purpose

computation and a cluster controller (CC) to handle cluster-level run-

time. All the cores (FC, CC, PEs) are dual-issue STxP70 processors, sup-

porting multiple-programs multiple-data (MPMD) instruction streams.

This means that each core can execute independent programs on inde-

pendent data. Moreover, each cluster contains a multi-banked one-cycle

access L1 scratchpad memory, connected by a multi-level logarithmic in-

terconnect, and a dual-channel DMA engine that can handle both linear

and rectangular transfers. A L2 scratchpad memory is shared by all clus-

ters. The architecture has no data cache, as it is designed to minimize

SoC size and energy consumption.

22 2 STMicroelectronics STHORM

IOs

64-bit G-ANoC-L3

 L 2

(1MB)

64-bit G-ANoC-L2

STxP70-V4B

32-KB TCDM

FABRIC

CONTROLLER

2D SNoC links
(master + slave)

DMA

NoC

IF

NoC

IF

CC

cluster

0

CCI
GALS

I/F

CC

cluster

1

CCI
GALS

I/F

CC

cluster

2

CCI
GALS

I/F

CC

cluster

3

CCI
GALS

I/F

Shared

Tightly-Coupled

Data Memory (TCDM)

STxP70

B
A

N
K

N

STxP70

NI

I$ I$

B
A

N
K

0DMA 0

DMA 1

LOW-LATENCY INTERCONNECT

Figure 1.2: STHORM architecture.

The STHORM evaluation board (Figure 1.3) is based on ZedBoard

open-hardware design [33]. It includes a Xilinx Zynq 7020 chip, featuring

an ARM Cortex A9 dual core host processor operating at 667 MHz plus

FPGA programmable logic, and a STHORM chip clocked at 430 MHz.

The ARM subsystem on the Zynq is connected to an AMBA AXI inter-

connection matrix, through which it accesses the DRAM controller. The

latter is connected to the on-board DDR3 (500 MB), which is the third

memory level in the system (L3) for both ARM and STHORM cores.

To allow transactions generated inside the STHORM chip to reach the

L3 memory, and transactions generated inside the ARM system to reach

internal STHORM L1 and L2 memories, part of the FPGA area is used

to implement an access bridge. The FPGA bridge is clocked very conser-

vatively at 40 MHz; consequently, the main memory bandwidth available

to the STHORM chip is limited to 250 MB/s for the read channel and

3 Kalray MPPA-256 23

ZYNQ

S

M

S
T

H
O

R
M

S

o
C

S
N

o
C

S
N

o
C

G
P

IO
s

ARM

A9

ARM

A9

L1 L1

snoop
L2

DRAM

ctrl

A
X

I
in
te
r
c
o
n
n
e
c
t

L2 ctrl
GIC

GPIO

DRAM

IO

periph

IO periph

STHORM BOARD

RAB

RAB

SNoC

2AXI

AXI2

SNoC

FPGA

FPGA bridge

Figure 1.3: STHORM evaluation board.

125 MB/s for the write channel, with an access latency of about 450 cy-

cles. Compared with ARM processor on the Zynq, which access DDR3

through a bus at 533 MHz, STHORM chip is severely penalized. Clearly,

in a full production SoC scenario host and accelerator share the same sil-

icon die, and consequently the accelerator gets a much larger share of the

main memory bandwidth (e.g.. 1/2 instead of 1/12 as in the evaluation

board). Hence, the evaluation board represents a very challenging and

interesting scenario for any software optimization focusing on reducing

main memory bandwidth needs.

3 Kalray MPPA-256

The Kalray MPPA-256 [14] is a single-chip many-core processor manu-

factured in 28 nm CMOS technology for compute intensive embedded

applications, and it is based on MPPA (Multi-Purpose Processor Array)

24 3 Kalray MPPA-256

Figure 1.4: MPPA-256 block diagram (Source: Kalray Corporation).

technology by Kalray. This product features 256 processors on a sin-

gle die, and it is composed of an array of 16 clusters connected through

a high-speed NoC. Figure 1.4 depicts the cluster-based structure of a

MPPA-256 chip.

Each compute cluster is composed of 16 identical cores, plus a sys-

tem core (with private FPU and MMU) and a shared memory (2 MB).

The cluster is equipped with Dynamic Voltage and Frequency Scaling

(DVFS) and Dynamic Power Switch off (DPS) support plus a DMA.

Processors communicate through shared memory. Specifically, the cores

are connected to a multi-bank memory enabling low latency access or

3 Kalray MPPA-256 25

Figure 1.5: MPPA-256 compute cluster (Source: Kalray Corporation).

bank private access depending on the configuration. The cluster also fea-

tures one Debug Support Unit (DSU). Figure 1.5 shows the structure of

a MPPA-256 cluster.

The core architecture within MPPA clusters is a 32-bit Very Long

Instruction Word (VLIW) processor including: a Branch/Control Unit;

two Arithmetic Logic Units; a Load/Store Unit (LSU), including simpli-

fied ALU; a Multiply-Accumulate (MAC) / FPU, including a simplified

ALU; a Standard IEEE 754-2008 FPU with advanced Fused Multiply-

Add (FMA) and dot product operators; a Memory Management Unit

(MMU). This architecture enables to execute up to five 32bit RISC like

integer operations every clock cycle. In addition, every core is equipped

with private instruction and data L1 caches.

Multiple clusters are interconnected through a NoC, providing a full

duplex bandwidth up to 3.2 GB/s between each adjacent cluster. The

NoC implements a Quality of Service (QoS) mechanism, thus guarantee-

ing predictable latencies for all data transfers.

26 4 PULP

The MPPA-256 processor communicates with external devices through

I/O subsystems located at the periphery of the NoC. The I/O subsystems

implement various standard interfaces: two DDR3 channels (64-bit with

optional ECC, up to 12,8GB/s); two PCIe Gen3 X8; two Ethernet con-

trollers; a universal Static Memory Controller; two banks of 64 General

Purpose I/Os. Moreover, the NoC eXpress interfaces (NoCX) provides

an aggregate bandwidth of 40 Gb/s, and enables the possibility to scale

the number of cores by connecting multiple processors on the same board,

or alternatively to couple an external FPGA used as a co-processor or

interface bridge.

The I/O subsystems are controlled through a quad-core processor.

The cores are based on the same VLIW architecture adopted within

MPPA clusters. These processors operate as controllers for the MPPA

clusters. Any program is started on the I/O cores, which are then re-

sponsible to properly offloading computation to the clusters.

The MPPA 256 processor can also be optionally connected to a market

standard host processor, like in Kalray EMB01 board which includes a

x86 host (AMD E-series processor).

4 PULP

Currently ultra-low-power (ULP) embedded systems are largely based

on microcontrollers featuring simple, cache-less cores (e.g., Cortex M0

or M4), coupled to a simple support for power management and a stan-

dard set of peripherals. The parallel processing ultra-low-power plat-

form (PULP) [32] [34] aims at providing a significant boost to the peak

performance that ULP systems can achieve by coupling the multi-core

4 PULP 27

...

...

...

Figure 1.6: PULP cluster architecture.

paradigm to the most advanced fully-depleted silicon-on-insulator (FD-

SOI) design technology and associated techniques for energy efficiency,

mostly near-threshold computing and body biasing [35].

PULP is a scalable, many-core computing fabric, organized as a set

of clusters. Figure 1.6 shows the main building blocks of single-cluster

PULP SoC. Multiple clusters can be interconnected at the top level to

share L2 memory and peripherals for off-chip communication. A cluster

includes a parametric number of processing elements (PEs) consisting of

an optimized microarchitecture based on the OpenRISC ISA [36], each

equipped with a private instruction cache. To avoid memory coherency

overhead and increase energy efficiency the PEs do not have private data

caches, but they share a L1 multi-banked tightly coupled data mem-

ory (TCDM). The TCDM is configured as a shared scratchpad memory,

featuring as many R/W ports as the number of memory banks. This al-

lows concurrent access to memory locations mapped on different banks,

28 4 PULP

via a one-cycle-latency logarithmic interconnect implementing word-level

interleaving to reduce contention. The whole memory space (L1, L2,

memory-mapped peripherals) is visible to all the cores of the cluster.

A lightweight DMA enables fast and flexible communication with other

clusters, the L2 memory and external peripherals [37]. The DMA unit

guarantees a fixed programming latency (10 cycles), featuring up to 16

outstanding transactions and multiple physical control ports (one per

core, with the aim to limit port contention). The DMA unit has also a

direct connection to the TCDM, using dedicated ports on the intercon-

nect. This eliminates the need for data buffering in the DMA engine,

which is very expensive in terms of area and power. The arbitration

and protocol adaptation necessary for the processors to communicate to

the TCDM and peripheral interconnect is implemented by the DEMUX

block connected to the data interface of each PE.

To enable the SoC to achieve high energy efficiency, each cluster can

provide on-demand shutdown of cores by means of fine-grain partitioning

into regions with separate clock trees and isolated wells. The polarization

of the P-well and N-well of each domain can be selected using a set of body

biasing multiplexers, choosing between two couples of global voltages

(forward or reverse body biasing). In contrast with other approaches

such as DVFS and power gating, this architecture has minimum overhead

in terms of area (less than 1%) and does not require level shifters and

power grid isolation.

Chapter 2

Enabling fine-grained

OpenMP tasking on

many-core accelerators

1 Introduction

In this chapter we describe the design of an optimized runtime environ-

ment supporting the OpenMP tasking model on embedded many-core ac-

celerators. OpenMP historically relied on a fork/join parallel execution

model guided by directives. The program starts with a single thread of ex-

ecution (called master); when a parallel construct is encountered, n−1

additional threads (n can be specified with the num_threads clause) are

recruited into a parallel team. Several work-sharing constructs are pro-

vided to specify how the parallel workload is distributed among threads.

Since the specification version 3.0, on top of the fork-join model OpenMP

provides support for task-based parallelism, which is our focus.

30 1 Introduction

When a thread encounters a task construct, a new task region is gen-

erated from the code contained within the task. Additional data-sharing

clauses specify an associated data environment, while the execution of

the new task can be assigned to one of the threads in the team, based

on additional task scheduling clauses that specify i) dependencies among

tasks; ii) (conditional) immediate or deferred execution; iii) task type,

between tied and untied (referred to the thread that first encounters

them).

Tied tasks are the default in OpenMP, as they attempt to establish

a trade-off between ease of programming and scheduling flexibility (and

thus, performance) [38]. If a tied task is suspended, it can later only

be resumed by the same thread that originally started it. Untied tasks

are not bound to any thread and so in case they are suspended they can

later be resumed by any thread in the team. Using untied tasks has the

potential for significantly increasing the achievable parallelism, but comes

at the cost of a higher programming effort (the programmer is responsible

for avoiding issues such as deadlock, thread-private memory, etc.). All

tasks bound to a given parallel region are guaranteed to have completed

at the implicit barrier at the end of the parallel region, as well as at

any other explicit barrier construct. Synchronization over a subset of

explicit tasks can be specified with the taskwait construct, which forces

the encountering task to wait for all its first-level descendants to complete

before proceeding.

The tasking abstraction provides a powerful conceptual framework to

exploit irregular parallelism in embedded applications, but its practical

implementation requires sophisticated runtime support, which typically

implies important space and time overheads. The applicability of this

2 Related work 31

approach is often limited to applications exhibiting work units which are

coarse-grained enough to amortize these overheads. While this is often

the case for general-purpose systems and associated workloads, things are

different when considering embedded computing systems. Minimizing

runtime overheads is thus a primary challenge to enable the benefits of

tasking on these systems.

2 Related work

Tasking model is a well known paradigm in the domain of general-purpose

computing and in last decade it has been successfully adopted to program

multi-core architectures. Cilk [39], Intel TBB [40], Wool [41], Apple

GCD [42] and the current OpenMP specification [21] are notable exam-

ples of task-based programming models. While OpenMP has recently

gained much attention also in the embedded domain [43] [44] [45], not

much work has been done on demonstrating the benefits of tasking for

fine-grained embedded workloads or for proposing lightweight and effi-

cient tasking implementations for embedded multi-core platforms. The

main limitation of most tasking-enabled runtimes is the lack of efficient

support for untied tasks and nested parallel patterns, which are the ones

for which task-based parallelism is most beneficial. Our work addresses

these shortcomings and proposes a lightweight tasking runtime capable

of enabling near-ideal speedups for recursive parallel patterns employing

very fine-grained tasks.

32 3 Design of an embedded tasking runtime

3 Design of an embedded tasking runtime

The task construct can be used to dynamically generate units of parallel

work that can be executed by every thread in a parallel team. When

a thread encounters the task construct, it prepares a task descriptor

containing a pointer to the code to be executed, plus a data environ-

ment inherited from the enclosing structured block. shared data items

point to the variables with the same name in the enclosing region. New

storage is created for private and firstprivate data items, and the latter

are initialized with the value of the original variables at the moment of

task creation. The execution of the task can be immediate or deferred

until later by inserting the descriptor in a work queue from which any

thread in the team can extract it. This decision can be taken at run-

time depending on resource availability and/or on the scheduling policy

implemented (scheduling policies are discussed in detail in Section 4).

However, a programmer can enforce a particular task to be immediately

executed by using the if clause. When the conditional expression eval-

uates to false the encountering thread suspends the current task region

and switches to the new task. To provide work-unit based synchroniza-

tion, the taskwait directive forces the current thread to wait for the

completion of every tasks generated from the current task region. Task

scheduling points (TSP) specify places in a program where the encounter-

ing thread may suspend execution of the current task and start execution

of a new task or resume a previously suspended task.

Figure 2.1 shows our layered approach to designing the primitives for

the tasking constructs. These constructs are depicted in the top layer

blocks (in black). To manage OpenMP tasks we rely on a main work

queue where units of work can be pushed to and popped from (bottom

3 Design of an embedded tasking runtime 33

TASK SCHEDULING

POINT

#pragma omp

taskwait

CREATE_TASK REGISTER_TASK

OpenMP tasking API

HAVE_CHILDRENTRYFETCH_TASK NOTIFY_END

POP_AND_EXEC

#pragma omp

task

CREATE_AND_PUSH

#pragma omp

task if(FALSE)

CREATE_AND_PUSH WAIT

Figure 2.1: Design of tasking support.

layer block). The gap between OpenMP directives and the work queue is

bridged by an intermediate runtime layer (gray blocks), which operates on

the queue through a set of basic primitives (white blocks) to implement

the semantics of the tasking constructs.

3.1 Work queue

Our design relies on a centralized queue with breadth-first, LIFO schedul-

ing. Tasks are tracked through descriptors which identify their associated

task regions and which are stored in the work queue. The two basic op-

erations on the queue are task insertion and extraction. Inserting a task

has two effects: i) creating a new descriptor for it, and ii) registering it as

a child of the executing task (its parent). We formalize these semantics

as a primitive that we call CREATE_TASK.

Extracting a task from the work queue retrieves its descriptor for

execution. To this aim we consider a TRYFETCH_TASK primitive, which

returns the task descriptor in case of successful extraction, or a NULL

pointer if the work queue is empty. Task extraction should only return

34 3 Design of an embedded tasking runtime

the descriptor to the caller, not detach it from the work queue until the

task has completed execution. This is necessary for correctly supporting

synchronization (taskwait construct). We thus designed a separate NO-

TIFY_END primitive to dispose of the descriptor, which acts as an epilogue

to task execution.

Note that since the TRYFETCH_TASK primitive does not remove the

task descriptor from the work queue, it is necessary to mark it as run-

ning to avoid multiple extractions of the same descriptor. Thus, the CRE-

ATE_TASK inserts a waiting task in the work queue and the TRYFETCH_TASK

changes its status to running. NOTIFY_END marks it as ended. To sup-

port undeferred tasks (e.g., whose if condition is evaluated to false) we

introduce a REGISTER_TASK primitive which inserts a descriptor marked

as running. Finally, the HAVE_CHILDREN primitive allows to determine if

a task has children not yet assigned to a thread (i.e., in the waiting state).

As we will explain in the next section, this is necessary to implement task

switching capability in presence of a taskwait.

3.2 Runtime layer

Let us consider the simple example of the task construct in the code

snippet of Figure 2.2. The parallel directive creates a team of worker

threads, then only one of them executes the single block. This thread

acts as a work producer, since it is the only one encountering the task

construct. The control flow for the rest of the threads falls through the

parallel region to the implied barrier at its end.

An important of the tasking execution model is related to TSPs. Par-

allel threads are allowed to switch from one task to another:

1. at task constructs;

3 Design of an embedded tasking runtime 35

Figure 2.2: Design of task scheduling loop.

2. at implicit and explicit barriers;

3. at the end of the current task;

4. at taskwait constructs.

The first point prevents system oversubscription in cases where a

thread is required to generate a very high number of tasks (e.g., the

task directive is nested inside a loop with a huge number of iterations).

36 3 Design of an embedded tasking runtime

Placing a TSP on a task construct allows the producer thread to switch

to executing some of the tasks already in the queue. Task creation is

resumed once the queue has been depleted to a certain level.

To keep the implementation of task scheduling as simple as possi-

ble we deal with this issue in the following manner. Upon encountering

a task directive, threads calls the CREATE_AND_PUSH runtime function,

depicted on the left part of Figure 2.2. Here, the caller first checks for

the number of tasks already in the queue. If this number exceeds a given

threshold the thread does not insert the task in the queue, but it immedi-

ately executes it instead. Note that this can not be implemented through

a simple jump to the task block code. Executing a task without creating

a descriptor and connecting it to the others will in fact result in ignoring

its existence, which may lead to incorrect functioning of the taskwait

directive due to bad internal representation of the task hierarchy. Thus

we create and insert in the queue a descriptor for a running task through

the REGISTER_TASK primitive. Similarly, we signal task execution ter-

mination through a call to NOTIFY_END. This same solution is adopted

when an undeferred task is explicitly generated by the user through the

if(FALSE) clause. In all the other cases, a call to CREATE_AND_PUSH will

result in regular creation of a team descriptor and insertion in the queue

(CREATE_TASK). After that, the producer thread signals the presence of

work in the queue by releasing a barrier lock on which consumer threads

wait.

This brings us to the second TSP. As explained before, threads not

executing the single block are trapped on the barrier implied at the end

of the region. This is implemented through a call to the POP_AND_EXEC

3 Design of an embedded tasking runtime 37

function (central part of Figure 2.2 Here, threads first check for the pres-

ence of tasks in the queue. If there are tasks available the encountering

thread initiates an execution sequence. First, the task descriptor is ex-

tracted from the queue with the TRYFETCH_TASK primitive. Then, the

associated task code is executed. Finally, notification of task completion

is signaled through the NOTIFY_END primitive. If the queue is empty, the

encountering thread busy waits on the barrier lock (note that this lock

is initialized as busy at system startup). When the lock is released by

a producer pushing a task in the queue, the current thread checks for

the presence of tasks in the queue and for the number of threads waiting

on the lock (annotated in a counter). If all threads are on the lock and

there are no tasks in the queue, this indicates that the end of the parallel

region has been reached. Otherwise, there may still be work left to do,

so the thread jumps back to the scheduling loop. Note that upon task

termination we execute again an iteration of the scheduling loop, thus

implementing the third TSP.

Finally, a TSP is also implied at a taskwait construct. However, in

this specific case the specification only allows to switch execution to a

task that was directly created by the current one to prevent deadlocks.

We implement this semantics in the WAIT runtime function. Each task

keeps track of its children. The HAVE_CHILDREN primitive allows to fetch

the descriptor of a child task in the waiting state. If a valid task descriptor

is returned, the thread can be rescheduled on that task. Otherwise, all

the children are in the running state and the thread will have to stay

idle waiting for their completion. In this case, the last terminating child

notifies the parent through the NOTIFY_END primitive.

38 4 Task schedulers

#pragma omp parallel \\
num_threads(2)

{

…

#pragma omp task
for (i=1; i<=3 i++)

#pragma omp task
{ … }

#pragma omp task
{ … }

…

}

for (i=1; i<=3 i++)

#pragmgg a ompmm task

p g p

T1

{ … } T2

{ … }

p g p

T
1i

T
11

T1 T
12

T1 T
13

T1

T2 idle

thread 0

thread 1

T
11

T1 T
12

T1

T
13

T1T2

thread 0

thread 1

tied

untied

Figure 2.3: Example of tied and untied task scheduling.

4 Task schedulers

The two most widespread scheduling approaches for task-based program-

ming models are breadth-first scheduling (BFS) and work-first scheduling

(WFS). Upon encountering a task creation point: i) BFS will push the

new task in a queue and continue execution of the parent task; ii) WFS

will suspend the parent task and start execution of the new task. BFS

tends to be more demanding in terms of memory, as it creates all tasks be-

fore starting their execution (and thus all tasks coexist simultaneously).

This is an undesirable property – in general – and in particular for the

resource-constrained systems that we target in this work, which makes

WFS a better candidate. WFS also has the nice property of following the

execution path of the original sequential program, which tends to result

in better data locality [46]. However, since tied tasks are the default in

OpenMP, RTE implementations typically use BFS.

Figure 2.3 shows the behavior of WFS if used in combination with tied

and untied tasks. If all the tasks are generated from a parent task T 0,

5 Untied tasks 39

untied tasks will be distributed among threads in a balanced manner

thanks to the capability of the system to resume a suspended task on

a different thread. If tied tasks are used, at each creation point the

parent task will be suspended and the hosting thread will be rescheduled

to execute the child task. The suspended parent, however, cannot be

resumed on a different thread, which will lead to a sequential execution.

5 Untied tasks

The key extension required to support untied tasks is the capability of

allowing to resume a suspended task on a different thread than the one

that started and suspended it. To achieve this goal we rely on lightweight

co-routines [47]. Co-routines rely on cooperative tasks which publicly

expose their code and memory state (register file, stack), so that differ-

ent threads can take control of the execution after restoring the memory

state. Every time that a thread suspends or resumes a suspended cooper-

ative task a context switch is performed. We place the required metadata

to support task contexts (TC) in the shared TCDM, which ensures fast

context switch (any thread can access the shared stacks with the same

latency of just 1 cycle) and we use inline assembly to minimize the cost

of the routines to save and restore architectural state.

Figure 2.4 shows how task suspension works in our approach for un-

tied tasks (WFS is assumed). Initially the thread on which the code

shown in figure is executing uses its own private stack (in gray). When

the outermost task region (T 0) is encountered the context of the cur-

rent task is saved in the TC (including the current SP), then the thread

is rescheduled to executing the new task T 0. The SP of the thread is

40 5 Untied tasks

int i;

…

#pragma omp task \\

{ untied

float a;

int b;

#pragma omp task \\

{ untied

int c;

int d;

do_work(c, d)

}

...

do_work(a, b)

}

…

c

d

thread

STACK

task 0

STACK

a

b

i

task 1

STACK

thread 0 thread 1

a

b

c

d

a

b

SUSPEND

T0
RESUME

T0

i i

T0

T1

T1

T0

T0

Figure 2.4: untied task suspension with task contexts and per-task stacks.

updated to the stack of T 0 (in blue) and the new task is started. When

the creation point of the innermost task T 1 is reached an identical pro-

cedure is followed. The context of T 0 is saved in its TC, which is pushed

back in the queue, then thread 0 is pointed to the stack of T 1 (in red).

Now the suspended T 0 can be pulled out of and restarted by thread 1.

On top of this basic mechanism, a number of other design choices were

made to minimize the cost of our runtime support.

Task hierarchy Supporting nested tasks requires to keep in the run-

time a tree data structure that represents the task hierarchy. A parent

task has a link to its children and vice versa, to facilitate exchange of

information about execution status. For example, a parent task needs

to be informed about execution completion of its children to support

taskwait. When a parent task completes execution its children become

orphans, and should not care to inform the parent. The fastest solution

to handle parent task termination in terms of bookkeeping would be not

5 Untied tasks 41

to delete the descriptor, but just to maintain the task in a zombie status

until all children have completed. This operation would require a simple

update to the descriptor, which can be executed in very short time. How-

ever, this solution brings to a memory occupation that is not acceptable

for our constrained platform. Thus, we opt for a costlier removal of the

descriptor from the tree. As a consequence, all child tasks must receive

an update from the parent to avoid dangling pointers to a deallocated

descriptor.

Taskwait construct Task level synchronization is widely used in recursive-

based parallel patters. Here typically a fixed number of tasks is created at

every recursion level, and their execution is synchronized with a taskwait

directive. When a parent task encounters a taskwait it should wait until

all the children (first-level descendants) have completed, but typically for

performance the thread hosting the parent task is allowed to switch to

executing one of the children tasks. In the baseline implementation this

feature is implemented by just traversing the list of children tasks in the

tree data structure, and inspecting their status to verify that it is set to

WAITING.

We changed this mechanism to rely on two queues per task, to directly

reference children in the WAITING and RUNNING states, respectively.

Upon creation, a task is inserted in the WAITING queue. Every time

that a task starts to execute, the runtime moves this task from the WAIT-

ING queue to the RUNNING queue, and vice versa in case of suspension.

Decoupling waiting and running tasks requires a costlier bookkeep-

ing upon task insertion and extraction, but allows faster support for

taskwait, as it is no longer required to search the tree for WAITING

42 5 Untied tasks

tasks. In the baseline implementation this benefit was not evident, as the

taskwait is virtually useless for flat parallel patterns. On the contrary,

in recursive parallel patterns it is extensively used, and this design choice

pays off.

Task dependencies The runtime design rely on a centralized queue

where all tasks in the WAITING state are ready for extraction and execu-

tion. Suspended tasks are also pushed back in this queue. We found that

in presence of recursive parallel patterns it is important to distinguish

between suspended tasks that could be resumed at any time, and tasks

that are suspended due to a scheduling constraint that needs to be un-

blocked. A typical example is, again, tasks suspended upon a taskwait

(or due to a data dependence). As already mentioned, recursive paral-

lelism extensively relies on such form of synchronization, thus hosting

this type of suspended tasks in the central queue used to lead to a sit-

uation where we would repeatedly pop from there a task just to realize

that the scheduling constraint was still unsatisfied. We would then have

to push back the task in the queue and retry. Checking the status of the

task before extracting it does not entirely solve the problem, as it requires

time-consuming search operations. To deal with this problem we changed

the implementation so as to not re-insert in the queue suspended tasks

with a unresolved dependence. Such tasks are kept floating instead, and

it is up to the task that will eventually resolve the dependence to push

them back into the queue. This modification requires some additional

checks to deal with the above mentioned case, but greatly improves the

performance of recursive parallel programs.

5 Untied tasks 43

Allocation of runtime metadata To minimize the overhead for dy-

namic resource allocation (memory, locks, task descriptors, ..) we have

extensively used pools of pre-allocated resources. This is significantly

faster than malloc-like primitives and does not require lock-protected

operations, as we adopt thread-private resources. The downside of this

approach is memory occupation. Since our architectural target relies on a

shared cluster memory with limited size, we have to wisely use the avail-

able space. A reasonable design solution would be to dedicate roughly

5-10% of this memory to hosting tasking support data structures. If we

consider the Kalray MPPA-256 platform used for experiments, the basic

task descriptor has a size of 174 bytes, while the extension to support

untied tasks require another 98 bytes for the contexts, plus the stacks.

Private thread stacks are configured to be 1 KB (a common choice for

embedded systems), while task stacks are by default 1/4 of that size.

Clearly all those values are parameters in our design, and can be changed

depending on specific application requirements.

Cutoff mechanisms With 10% of the cluster’s shared memory allo-

cated to task descriptors, the runtime can host simultaneously 750 pre-

allocated tied tasks or 400 untied tasks. If the queue of available task de-

scriptors is depleted during the program execution, a mechanism (known

in literature as cutoff [48]) is triggered. When this condition is met, the

creation of new task descriptors must be suspended to avoid that runtime

resources saturate when task production rate is greater than execution

rate. Our runtime supports two different cutoff variants: yield and work-

first. In the first case, the producer task is stopped and pushed at the end

of the READY queue, with the aim to re-schedule the core to executing

44 6 Experimental results

pending tasks instead of generating new ones. Using the second variant,

the producer task starts working in work-first mode by executing the new

tasks in-place via a standard function call: in this case task descriptors

are not required, as the synchronization is enforced by serializing tasks

on the same thread. Cutoff mechanisms are introduced to avoid an un-

bounded consumption of runtime resources, but recursive applications

can cause additional problems. Using untied tasks, task stacks typically

end up to be oversized to fit the worst case (i.e., the maximum recursion

level reached in cutoff state) to the detriment of runtime memory foot-

print. To avoid this case we introduced a specific optimization for untied

tasks using work-first policy, which forces the producer task to swap its

current stack with a special one that is the only one sized for worst-case

recursive execution.

6 Experimental results

As already pointed out, supporting the untied execution model is usually

subject to large overheads. While such overheads can be tolerated by

large applications exploiting coarse-grained tasks, this is usually not the

case for embedded applications, which rely on fine-grained workloads.

To study this effect, our plots show speedup (parallel execution on 16

cores versus sequential execution) on the y axis, comparing the original

Kalray runtime (based on a standard OpenMP implementation) to tied

and untied tasks in our runtime (the ”OPT tied” and ”OPT untied” se-

ries). For all the experiments except the one in Section 6.5 we use a set

of microbenchmarks in which tasks only consist of ALU operations (e.g.,

6 Experimental results 45

Figure 2.5: Speedup of the LINEAR benchmark (no cutoff).

add on local registers) and no load/store operations, which allows to ex-

plore the maximum achievable speedups. The number of ALU operations

within the tasks can be controlled via a parameter, which allows to study

the achievable speedup for various task granularities, which we report on

the x axis of each plot (task granularity is expressed in duration in clock

cycles, roughly equivalent to the number of ALU operations that each

task contains).

6.1 Applications with a linear generation pattern

Figure 6.1 shows results for the LINEAR microbenchmark, a simple loop

from which 512 tasks are created (one per loop iteration). Focusing on

the results for the Kalray SDK (”KALRAY” line), ideal speedups can

be achieved only for tasks larger than 100 KCycles. For smaller tasks

the maximum achievable speedup is 3×. In this fine-grain task area,

46 6 Experimental results

Figure 2.6: Speedup of the RECURSIVE benchmark (no cutoff).

OPT tasks can consistently achieve 4× higher speedup. Since in the

LINEAR microbenchmarks there is no task nesting, there is no significant

difference between tied (”OPT tied” line) and untied (”OPT untied” line)

tasks. We thus explore a new configuration where tasks are recursively

created to appreciate the difference.

6.2 Applications with a recursive generation pat-

tern

Figure 6.2 shows the efficiency of our runtime for the recursive paral-

lel pattern, considering tied and untied tasks. The RECURSIVE mi-

crobenchmark builds a binary tree of depth N = 9 (512 tasks) recursively.

This is similar to a classical Fibonacci algorithm, where each of the two

recursive calls is enclosed in a task directive. A taskwait directive is

6 Experimental results 47

placed after the creation of the two tasks. The first result that we ob-

serve is that only untied tasks can achieve the maximum speedup. Tied

tasks have a maximum speedup of 8. This effect is due to the behavior of

taskwait in presence of tied tasks. If a tied task is stuck on a taskwait

and there are no children tasks in the WAITING state (e.g., few tasks gen-

erated at each recursion level, like in the binary tree), that task is bound

to wait until the children have finished. Using a binary tree, this leads to

exactly half of the threads getting stuck, which explains the maximum

speedup observed in this configuration. This problem is circumvented by

untied tasks, which can reschedule the threads hosting the stuck tasks

to other ready tasks. Similar considerations to what we discussed in the

previous section hold for the comparison between KALRAY tasks and

OPT tied tasks (Kalray implementation only supports tied tasks, so a

comparison to untied is not directly feasible).

In general, it is possible to see that RECURSIVE implies much higher

overhead than LINEAR. This is justified by a significantly increased con-

tention for shared data structures (queues, trees, etc.), as in this pat-

tern multiple threads are concurrently creating tasks. Even if we have

struggled to make the lock-protected operations to operate on shared

data structures as short as possible, their serialization over multiple re-

questor is evident. As a result, it takes an order of magnitude coarser

tasks (around 100K) than in the LINEAR case to achieve nearly-ideal

speedups. This is a typical situation where cutoff policies can help in

significantly reducing the runtime overheads. We explore the adoption

of cutoff policies in Section 6.4.

48 6 Experimental results

Figure 2.7: Structure of the MIXED benchmark.

Figure 2.8: Speedup of the MIXED benchmark.

6.3 Applications with mixed patterns

The advantage of using untied task is particularly evident for applications

presenting a mixed structure which includes both LINEAR and RECUR-

SIVE task creation patterns. The MIXED microbenchmark depicted in

Figure 2.7 is aimed at studying the behavior of such applications. A

root task generates 7 tasks in a LINEAR manner, each one spawning a

single child with a long execution time and then performing a taskwait,

and another two tasks from within RECURSIVE binary trees of depth

5. Figure 2.8 shows the results for this benchmark. Using tied tasks, 14

6 Experimental results 49

threads are allocated to execute the linear part of the application, 7 of

which are blocked by the taskwait directive. The ideal speedup of the

application is 2×, which OPT tied tasks reach for granularities of around

10000 cycles. Using untied tasks only 7 threads are allocated to the LIN-

EAR part, which brings the ideal speedup to 9×. The maximum speedup

achieved by OPT untied tasks is 8× due to a limitation of the tracing

(performance monitoring) of the Kalray platform. The root task of the

hierarchy is the one performing time measurement and we were forced to

declare this as a tied task to gather coherent clock values (allowing this

task to migrate to other cores results in incoherent measurement). This

limits the maximum achievable speedup to 8×, which OPT untied tasks

achieve for granularities above 10000 cycles. Overall, untied tasks enable

4× faster execution than tied tasks for application featuring mixed task

creation patterns.

Note that this result holds for any runtime implementation. Our

solution makes this result visible for smaller tasks compared to other

OpenMP tasking implementations. The Kalray implementation never

surpasses a speedup of 1× in the considered range of task granularities

(up to one million cycles) for this experiment.

6.4 Impact of cutoff on linear and recursive appli-

cations

We repeated the experiments with LINEAR and RECURSIVE microbench-

marks considering a higher number of tasks (2048). This configuration

saturates the runtime data structures and activates cutoff mode. Fig-

ure 2.9 and Figure 2.10 show the results for this experiment.

50 6 Experimental results

Figure 2.9: Speedup of the LINEAR benchmark (with cutoff).

Focusing on the LINEAR pattern, the adoption of cutoff greatly mit-

igates overhead effects, and we can achieve nearly-ideal speedups for an

order of magnitude smaller tasks compared to Kalray tasks. It also has

to be noted that cutoff mode is not properly supported for LINEAR

patterns in the original Kalray runtime. Enabling cutoff mode in this

configuration simply seems to disable parallelism completely.

Focusing on the RECURSIVE pattern the use of cutoff policies proves

extremely beneficial, with nearly-ideal speedups for very fine-grained

tasks (in the order of thousand cycles).

6.5 Real applications

To assess the performance of out runtime on real applications, we execute

the benchmarks from the Barcelona OpenMP Task Suite (BOTS), which

includes a wide set of real-life applications parallelized with OpenMP

6 Experimental results 51

Figure 2.10: Speedup of the RECURSIVE benchmark (with cutoff).

tasks. Figure 2.11 shows the speedup of applications for different config-

urations, comparing the Kalray SDK (KALRAY) with different configu-

rations of our runtime, using tied tasks (OPT tied), untied tasks (OPT

untied) and untied tasks with cutoff (OPT untied CO). On average, our

runtime has a 12× speedup compared to 8× for Kalray SDK. The ben-

efits of cutoff are minimal, since the bottleneck is limited parallelism in

the application rather than runtime overhead. The marginal improve-

ments, where present, are usually due to better memory usage (tasks in

cutoff use less memory for the runtime, which is used for application data

instead).

6.6 Comparison with other tasking models

For completeness, we compare our implementation to other representa-

tive commercial and academic ones, targeted at general purpose and

52 6 Experimental results

Figure 2.11: Speedup of BOTS.

Figure 2.12: Comparison to other tasking models (LINEAR).

high performance computing systems: the GNU OpenMP implemen-

tation (GCC 4.9.2); the Intel OpenMP implementation (ICC 15.0.2);

the OpenMP runtime of the Barcelona Supercomputing Center (Mer-

curium 15.06 running on Nanos++); the CILK+ programming model

(ICC 15.0.2; the WOOL tasking model (GCC 4.9.2). The LINEAR and

RECURSIVE microbenchmarks have been used for this experiment, con-

sidering untied tasks and a BFS policy. As a target platform for these

experiments we used a compute server equipped with two Intel Haswell

with 8 cores @ 2.40 GHz. Figure 2.12 and Figure 2.13 show that our

7 Conclusion 53

Figure 2.13: Comparison to other tasking models (RECURSIVE).

implementation allows to achieve near-ideal speedups for one order of

magnitude smaller tasks compared to the others for the LINEAR case,

and outperforms other OpenMP implementations for the RECURSIVE

case.

7 Conclusion

Task-based parallelism has the potential to provide efficient exploitation

of many-core accelerators, offering flexible support to the fine-grained

and irregular parallelism found in embedded applications. In this chapter

we have presented an optimized implementation of the OpenMP tasking

model for embedded parallel accelerators. The proposed design enables

support for untied tasks and recursive parallel patterns for the targeted

class of computing systems. When compared to OpenMP implemen-

tation for embedded computing systems, our design achieves near-ideal

speedups for one order of magnitude smaller tasks.

Chapter 3

Extending the OpenCL model

for efficient execution of

graph-based workloads on

many-core accelerators

1 Introduction

As introduced in Section I.II of this thesis, the OpenCL standard intro-

duces platform and execution models which are particularly suitable for

heterogeneous platforms. Data transfers and memory management are

major challenges in programming a heterogeneous platform, and OpenCL

defines a unified memory abstraction model and provides a standard

API to handle data transfers. Nevertheless, a common issue of using

OpenCL on embedded systems is related to the mandatory use of global

memory space to share intermediate data between kernels. When in-

creasing the number of interacting kernels, the main memory bandwidth

1 Introduction 55

required to fulfill data requests originated by PEs is much higher than

the available one, causing a bottleneck. In addition, unlike accelerators

for desktop computing environments (e.g. Intel Many Integrated Core

architecture [49]), SoCs have unified host and global memory spaces, and

have a common data path connecting host processor and accelerator with

L3 memory [50]. As a direct consequence, applications experience high

contention for off-chip memory access, that may severely limit the final

speed-up. For instance, we consider a platform with an accelerator and a

DDR3-1600 memory (6400 MB/s per channel). If we reasonably assume

that the accelerator has half of the available bandwidth (3200 MB/s),

and our application need to process a 1920 × 1080 video source at 60

fps, then a single image access uses 123.12 MB/s. Hence, after accessing

26 image buffers in one frame time the available bandwidth is saturated,

but this could not be enough for a complex application that instantiates

many kernels and requires many intermediate results.

Overall DMA is difficult to use, but it can be managed quite easily

with additional assumptions on data layout, for instance considering im-

ages and limiting the DMA to perform single frame copies. However this

approach cannot be generalized, because (i) there is not enough internal

memory even to keep a single image, and (ii) the memory bandwidth

is easily saturated in presence of multiple kernels. DMA can be used

for tiled transfers, using the async work group copy function to handle

asynchronous copies between global and local memory and vice versa. In

this case programmers need to interleave DMA and computation and this

gets much more complicated. For basic kernels, the lines of code used for

DMA orchestration and subsequent workload distribution are over 50%

of the total [51]. Considering applications composed by multiple kernels,

56 1 Introduction

this normally implies multiple tile sizes, because each kernel may require

a different tile. In this case, the process to manage this orchestration by

hand becomes totally unmanageable, and programmers need tools. This

is exactly what our approach provides. Other programming paradigms

have been proposed to implement image processing applications on em-

bedded systems, based on data-flow graphs [52] [53] or functional mod-

els [54]. Overall, these solutions tackle the issue of memory bandwidth

using a tiling-based approach, but in most cases the related execution

models are not suitable to build complex applications which include ir-

regular algorithms and data access patterns.

In this chapter we introduce a framework that implements a set of

optimizations specifically targeted to accelerate the execution of graph-

based image processing applications on many-core accelerators. The evo-

lution of imaging sensors and the growing requirements of applications

are pushing hardware platform developers to incorporate advanced image

processing capabilities into a wide range of embedded systems, ranging

from smartphones to wearable devices. In particular, we focus our atten-

tion on three main classes of computationally intensive image process-

ing tasks: Embedded Computer Vision (ECV) [55], brain-inspired visual

processing [56], and computational photography [57]. Considering the

actual market trend toward HD formats and real-time video analysis,

these algorithms require hardware acceleration. In parallel embedded

accelerators, the cores are simpler w.r.t. common multi-core architec-

tures and offer a good trade-off between highly parallel computation and

power consumption, so they are a promising target for running image

processing workloads. The framework front-end is based on the OpenVX

standard [23]. OpenVX is a cross-platform API which aims at enabling

1 Introduction 57

hardware vendors to implement and optimize low-level image processing

primitives, with a strong focus on mobile and embedded systems. In

our framework, data accesses are performed on local buffers in the L1

scratchpad memory of the reference architecture, that is what we call a

localized execution. To satisfy this condition, we have taken into account

all the data access patterns that can be found in the OpenVX standard-

defined kernels (e.g., local and statistical operators), and that are the

most common in image processing algorithms, and then we have defined

a set of techniques to support automatic image tiling. Coupling tiling

with double-buffering, we achieve a good overlap between data commu-

nication and kernel execution on the accelerator, that guarantees a higher

efficiency in terms of PEs usage.

The novelty of this approach derives from three main contributions:

(i) the introduction of a low-level OpenCL extension, that can be effec-

tively used to support efficient execution of graph-structured workloads

with explicit DMA transfers; (ii) the automatic mapping of an OpenVX

program to a list of host kernels and OpenCL low-level graphs; (iii) an

algorithm for computing optimal tile sizes for the kernels, taking into

account on-chip memory size limitations, while minimizing main mem-

ory utilization. Our framework supports applications of any complexity

level, with no limitations related to data access patterns. An OpenCL

low-level graph is used on the accelerator side, with the aim to achieve

better timing performance yet minimizing the required bandwidth. The

use of host kernels is limited to irregular access patterns, and the over-

all orchestration is provided by the framework without any hint by the

programmer.

58 2 OpenVX programming model

Context Container for all object instances
Kernel Vision kernel implementation, used to create nodes
Graph DAG of nodes implicitly connected by data usage
Node Instance of a kernel inside a specific graphs
Parameter Reference to a data object used as node parameter

Table 3.1: OpenVX framework objects.

Scalar Scalar type (integer, floating point, enum)
Array Array of scalar or structured types
Image Image (including one or ore data planes)
Matrix MxN matrix
Convolution MxN matrix with an associated scaling factor
Distribution 1D or 2D histogram
Pyramid Set of images with a fixed scale ratio
LUT Lookup table
Remap Map of source points to destination points
Threshold Set of thresholding values
Delay Time-delayed set of images or arrays

Table 3.2: OpenVX data objects.

2 OpenVX programming model

OpenVX [23] is a cross-platform C-based API which aims at enabling

hardware vendors to implement and optimize low-level image process-

ing and CV primitives. The final OpenVX 1.0 framework specification

is available as an open, royalty-free standard ratified by the Khronos

Group. Most image processing applications can be easily structured as

a set of vision kernels (i.e. basic features or algorithms) that interact

on the basis of input/output data dependencies. Considering this usage

scenario, OpenVX promotes a graph-oriented execution model, based on

Directed Acyclic Graphs (DAGs) of kernel instances.

2 OpenVX programming model 59

The standard introduces the software abstractions that are manda-

tory for an OpenVX execution environment, defining framework objects

(Table 3.1) and data objects (Table 3.2). Framework objects are model

entities, while data objects are input/output parameters which are pro-

cessed at execution time. The first step of an OpenVX program is

the creation of a valid context by calling vxCreateContext, followed

by the declaration of the data objects which are required as node param-

eters. Data objects are created via vxCreate<Object> or retrieved via

vxGet<Object>. To enforce consistency, access to data objects is reg-

ulated by an acquire/release protocol, via vxAccess<Object> and vx-

Commit<Object> functions. Data objects exist at the context level, they

have transparent reference counts and are not destroyed until their ref-

erence count is zero. Ina any case, data objects are forcibly destroyed at

context destruction.

A key feature is the possibility to declare virtual data objects. These

objects are not guaranteed to reside in main memory on a permanent ba-

sis, and they may have null size and undefined format (VX_DF_IMAGE_VIRT)

at declaration time. Basically, virtual data are used to set a dependency

between adjacent kernel nodes, and are not associated with any memory

area accessible by read/write operations.

OpenVX graphs are composed of one or more nodes that are added

by calling node creation functions (in the form vxCreate<Kernel>Node).

Nodes are linked together via data dependencies, without specifying any

explicit ordering. The OpenVX standard defines a library of predefined

vision kernels which can be used to create nodes, but it also supports

the definition of user defined kernels. The standard defines 41 predefined

kernels, which are fully supported in our implementation.

60 2 OpenVX programming model

Graphs must be verified calling vxVerifyGraph before execution,

with the aim to guarantee some mandatory properties:

• Input and output requirements must be compliant to the node in-

terface (data direction, data type, required vs optional flag).

• No cycles are allowed in the graph.

• Only a single writer node to any data object is allowed.

• Writes have higher priorities than reads.

During the verification stage, a validator callback is called for each

node parameter to verify the above-mentioned properties. This is a func-

tion defined at kernel level, and it is also responsible to set dimension and

format of virtual data with the aim to respect all functional constraints.

Graphs can be processed as many times as needed after their verifi-

cation. Changes are possible but require a further verification. A graph

can be processed in two modes: (i) synchronous blocking mode, which

blocks the program execution until the graph processing is completed;

(ii) asynchronous single-issue mode, which is non blocking and enables

the parallel execution of multiple graphs.

To introduce OpenVX programming, we consider a basic edge detec-

tor. The OpenVX code for this application is shown in Listing 3.1. In

this example, all the referenced kernels are contained in the OpenVX

standard. Note that an OpenVX program is much more abstract and

concise than an OpenCL program, and at the same time the underly-

ing OpenCL run-time used in our approach is completely hidden to the

programmer. Moreover, we require no additional information from the

programmer to guide the accelerator tuning.

2 OpenVX programming model 61

1 vx_context ctx = vxCreateContext ();

2 vx_graph graph = vxCreateGraph ();

3 vx_image imgs[] = {

4 vxCreateImage(ctx , width , height , VX_DF_IMAGE_RGB),

5 vxCreateVirtualImage(graph , 0, 0, VX_DF_IMAGE_U8),

6 vxCreateVirtualImage(graph , 0, 0, VX_DF_IMAGE_VIRT),

7 vxCreateVirtualImage(graph , 0, 0, VX_DF_IMAGE_VIRT),

8 vxCreateVirtualImage(graph , 0, 0, VX_DF_IMAGE_VIRT),

9 vxCreateImage(ctx , width , height , VX_DF_IMAGE_U8),

10 };

11 vx_node nodes[] = {

12 vxColorConvertNode(graph , imgs[0], imgs [1]),

13 vxSobel3x3Node(graph , imgs[1], imgs[2], imgs [3]),

14 vxMagnitudeNode(graph , imgs[2], imgs[3], imgs [4]),

15 vxThresholdNode(graph , imgs[4], thresh , imgs [5]),

16 };

17 status = vxVerifyGraph(graph);

18 while (/* input images? */) {

19 /* capture data into imgs [0] */

20 status = vxProcessGraph(graph);

21 /* use data from imgs [5] */

22 }

23 vxReleaseContext(ctx);

Listing 3.1: Edge detector (C code with OpenVX API calls).

The program follows these steps:

• A context is initially created (line 1) and then released at the end

(line 23).

• A graph is created (line 2).

• Images are defined (lines 4-9), some of them as virtual (lines 5-8).

• A set of nodes is created and added to the graph as instances of

vision kernels (lines 12-15).

62 3 Extended OpenCL run-time

Figure 3.1: Edge detector (DAG).

• The vxVerifyGraph function (line 17) checks the graph consistency

and propagates constraints on virtual images; for instance, the for-

mat of the virtual images defined in lines 6-7 is set to VX_DF_IMAGE_S16,

as required by Sobel kernel validators after a VX_DF_IMAGE_U8 in-

put image.

• The vxProcessGraph function (line 19) executes the graph in syn-

chronous blocking mode inside a loop, that is a typical program-

ming pattern to process an incoming stream of input images.

Figure 3.1 shows the DAG derived by this program, outlining input and

output images of the program.

3 Extended OpenCL run-time

In most cases (see [16], [58], [59] and [60]) the programming environments

for many-core accelerators support OpenCL 1.1 [61]. Figure 3.2 shows

the comparison between the OpenCL logical model and the STHORM

architecture.

In this scenario, data must be transferred into shared local memory

prior to computation in order to take advantage of low-latency accesses,

and it has to be done explicitly using OpenCL built-in functions for

asynchronous work-group copy. STHORM cores are hardware mono-

threaded, hence the best performance is achieved by exactly matching

any OpenCL ND-Range with the STHORM architectural parameters to

3 Extended OpenCL run-time 63

Figure 3.2: OpenCL mapping for STHORM (source: STMicroelectron-
ics).

avoid expensive context switches: that is, programmers should use as

many work-groups as the number of clusters, and as many work-items as

the number of processing elements in a cluster.

We introduce an extended OpenCL run-time (referred as CLE), which

enables the creation of low-level graphs containing nodes of different

types:

• CreateBuffer – a node that allocates a buffer at the specified mem-

ory level (L1, L3) associated with a numerical identifier.

• CopyBuffer – a node that enqueues a DMA transfer to copy data

from a source buffer to a destination buffer, specifying their numer-

ical identifiers.

• ExecKernel – a node that enqueues the execution of an OpenCL

kernel.

• ReleaseBuffer – a node that releases the specified buffer.

• EndGraph – a node that triggers the end of the graph execution.

64 3 Extended OpenCL run-time

For each node, the programmer has to specify the actual kernel pa-

rameters and a set of dependencies: if there is a dependency edge be-

tween node A and node B, node A must terminate its execution before

node B can start. OpenCL kernels intended for CLE graphs directly ac-

cess buffer parameters (identified by global access modifier in the kernel

source code) without managing data transfers and local buffers in the

kernel body.

The memory management is totally explicit, including the allocation

of the stack area used by cores to execute. The cleGraphSetBuffer

primitive associates a standard OpenCL buffer to a graph using a nu-

merical identifier, which can be used by CLE functions to address in-

put/output data provided by the host using L3 memory space. Using

clEnqueueGraph, a CLE graph is pushed in OpenCL command queues

for execution. Each graph is executed on a single cluster, while other clus-

ters can serve different requests (different graphs or standard OpenCL

tasks). When the EndGraph node terminates, a notification is sent back

to the host side, and the concerned cluster is made available. An example

of a CLE graph that includes a single kernel is depicted in Figure 3.3. In

real applications, images do not fit entirely in L1 memory. In the con-

text of our framework, CLE graphs contain multiple kernel nodes, and

the same set of nodes is executed multiple times on complementary data

subsets. This mechanism is explained in greater detail in Section 4.6.

4 Optimization framework for many core accelerators 65

Figure 3.3: Execution of a single kernel on CLE run-time.

4 Optimization framework for many core

accelerators

Our main goal is the maximization of execution efficiency of the acceler-

ator, which is defined as the amount of time that PEs spend to execute

kernel code over the total execution time. This goal implies to minimize

the total waiting time due to memory transfers to/from L3 memory. For

this purpose, virtual images are not allocated in L3 memory, but they

are partly allocated in a set of L1 buffers managed by the framework.

After the verification steps required by OpenVX semantics, we integrate

a set of algorithms for graph partitioning and scheduling, that provide

buffer allocation, buffer sizing and CLE graphs creation. The verifica-

tion stage of an OpenVX graph is performed at run-time, that gives the

capabilities of changing the application graph with an adaptive approach

and supporting dynamic hardware resources. To limit the time of on-line

66 4 Optimization framework for many core accelerators

partition and scheduling phases, we have privileged the use of heuristics

algorithms, but different policies can be easily plugged in.

Overall, nodes can be executed by the host processor or by the acceler-

ator. On the host side, the kernels are implemented as plain C functions,

using the OpenVX API to access data objects (see Section 3). Our im-

plementation for host kernels is based on the reference implementation

provided by Khronos. On the accelerator side, we provide a set of CLE

kernels which follow the guidelines introduced in Section 3. All the boil-

erplate code to enable localized execution is managed by the run-time on

the basis of kernel data structures and graph verification steps.

All the presented algorithms are focused on single-cluster optimiza-

tion. The framework supports the execution of OpenVX programs on

multi-cluster accelerators by applying two methodologies: (i) the use of

different clusters to compute different input sets, and (ii) the partition of

an input set into multiple parts that can be computed independently. The

second approach can use the function vxCreateImageFromROI to create

a new image object referencing a rectangular region of another image. In

both cases, to take effective advantage from the multi-cluster execution

OpenVX programmers must orchestrate a global execution schema us-

ing asynchronous single-issue mode, and then synchronize the execution

status with the vxVerifyGraph API.

4.1 Data access patterns

In an OpenVX run-time targeting the host processor of an embedded

platform, such as the reference implementation provided by Khronos, im-

ages normally reside in main memory. In our framework, images which

represent an input/output for the graph are partitioned into smaller

4 Optimization framework for many core accelerators 67

Figure 3.4: Structure of a tiling descriptor.

blocks, called tiles, to fit in L1 buffers. Using this approach, virtual

images representing an intermediate result are not allocated to L3 mem-

ory, at least whenever it is possible without breaking other constraints.

The allowed size for tiles strictly depends on the data access patterns

used by kernels.

To describe these patterns, we associate a tiling descriptor to each

input/output port of OpenVX kernels. For input data, this structure

specifies the minimum set of points necessary to compute an output value,

in terms of both computing area and neighboring area. For the sake of

illustration, we consider the common case of a single point per output

value, but in some cases the input set could contain more adjacent points

(e.g., scaling operator), and this condition is managed by the framework.

Figure 3.4 describes the structure of a tiling descriptor. W and H are

the dimensions of the computing area, that is the set of points used to

compute a single output value; for output tiles, these values represent

the minimum number of output points generated by a single iteration. x

and y values describe the neighboring area, that is the set of additional

points contributing to the computation of a single output value, but that

68 4 Optimization framework for many core accelerators

Figure 3.5: Image tiling schema for a single kernel.

may belong to other computing or neighboring areas.

The distinction between computing and neighboring area is really im-

portant, since it has a major impact on data partitioning. The partition

of input images into tiles is correct when the juxtaposition of the output

tile produces a complete output image, equivalent to execute the graph

in one step, that is when the tiles have the same size of the images. In

this context, x and y values exactly correspond to the horizontal/vertical

overlap between adjacent tiles which is required to compute all the points

in the output tile. Taking into account a single kernel, the size of output

tiles is implied by input tiles, and output tiles do not require any overlap

(see Figure 3.5).

Referring to the literature on image processing functions [62], we have

identified five different classes of operators (see Figure 3.6), which cover

100% of the OpenVX standard defined kernels:

A) Point operators (e.g. color conversion, threshold) compute the value

of each output point from the corresponding input point. These op-

erators do not require any tile overlap by construction (W = 1, H =

1, ∀ix[i] = 0).

4 Optimization framework for many core accelerators 69

Figure 3.6: Classes of image processing kernels.

B) Local neighbor operators (e.g. linear operators, morphological oper-

ators) compute the value of a point in the output image that corre-

sponds to the input tile. Local neighbor operators require a complete

handling of the tile overlap, based on the parameters of the kernel

neighboring area (W = 1, H = 1,∃ix[i] >= 1).

C) Recursive neighbor operators (e.g. integral image) are similar to the

previous ones, but in addition they also consider the previously com-

puted values in the output tile. The managing of tiling is equivalent

to local neighbor operators, but we also need to save state data be-

tween tiles (in common cases the borders of previous output tiles).

D) Global operators (e.g. DFT) compute the value of a point in the out-

put image using the whole input image. In this case it is impossible

to apply tiling to input data.

E) Geometric operators (e.g. affine transforms) compute the value of

70 4 Optimization framework for many core accelerators

a point in the output image using a non-rectangular input area. In

the most general case, we cannot apply a classical input tiling due to

the generic shape of the neighboring area. For some transformations

we can specify a tile defining a bounding box, even if this causes an

overhead in terms of data that are transferred and not used, and we

can derive an equivalent local neighbor operator.

F) Statistical operators (e.g. mean, histogram) compute statistical func-

tions of image points. Tiling can be activated on input images, and

we can use a persistent buffer to implement a reduction pattern“walk-

ing” through the tiles.

To handle the computation of recursive neighbor operators, the frame-

work supports the use of state buffers. Each kernel implementation must

specify the amount of bytes needed to maintain its state across tiles, as

a constant value or as a linear combination of the tile border size. After

computing the final tile size (this will be explained in detail in Section

4.4), the framework allocates state buffers of the proper size and provide

to the kernel function a pointer to the memory area (in case of borders, a

single pointer for each border state). Henceforward, each node is respon-

sible to handle the content of its state buffer. To satisfy their goal, state

buffers are persistent for a specific node over multiple tile executions. For

instance, we have used the state buffers to implement the integral image

kernel. In this case the area sum of the borders is propagated to the ad-

jacent tiles using a state buffer with a number of elements exactly equal

to the border size. The first PE is responsible to update the content of

the buffer corresponding to left and bottom state.

State buffers are also used to handle reduction patterns when execut-

ing statistical operators. For example, the mean kernel can use different

4 Optimization framework for many core accelerators 71

accumulator variables (sum of values, number of points) for each execut-

ing core, and after the last tile a single core is responsible to compute the

reduction and perform a division. At the current stage of development,

the framework provides a pointer to the state buffer and some flags (first

tile/last tile), and the vendor which provides an accelerated kernel must

implement the reduction patterns directly in the kernel code. Overall,

the tiling approach is totally transparent to the OpenVX final user.

4.2 Graph partitioning

There are applications for which the resultant graph cannot be executed

allocating all the intermediate tiles in L1 buffers, basically for two rea-

sons: (i) the graph contains a kernel of classes D, E, or F, or (ii) the

buffer sizing algorithm fails to fit all buffers in L1 memory (see Section

4.5). In these cases. the graph is automatically partitioned into multiple

sub-graphs, each one corresponding to a CLE graph, and the interme-

diate images that connect different graphs are saved into L3 memory.

Hence, the execution of an OpenVX graph is divided into multiple stages

at run-time level, and the tiling is applied at each stage independently.

This process is totally transparent to the programmer.

To support graph partitioning, a memory boundary is added after a

kernel of class F, as it presents a cumulative output which is not compat-

ible with a tiling approach. Kernels of classes D and E do not support

any tiling scheme, consequently they are executed on the host processor

and memory boundaries are forced before and after. Additional memory

boundaries are added to switch the memory domain of image parame-

ters, in particular: (i) a boundary from L3 to L1 is required in input for

kernels of class A,B,C or F, (ii) a boundary from L1 to L3 is required in

72 4 Optimization framework for many core accelerators

I K1 K5K2

K3

V1

V2

V3

V4

O

K4 V5

L3 L1 L3 L1 L3

Figure 3.7: Application graph partitioning.

output for graph final results, and (iii) all input/output parameters of a

node must reside in the same memory domain.

For instance, in the application graph depicted in Figure 3.7 we sup-

pose that K3 is a statistical kernel (e.g., a histogram). Tiling cannot

be used on its output image V4, because each input tile contributes to

sparse data in the result set (the histogram bins). Consequently, a mem-

ory boundary is added to its output, and this includes all the images read

by K5. In this example K5 is a kernel of classes A, B or C, so a mem-

ory boundary is inserted to switch back its input images to L1 domain.

Finally, I and O must reside on L3 domain.

4.3 Node scheduling

For each sub-graph extracted at the partitioning stage, a node scheduling

must be determined. The current version of the framework forces the

processing of a graph on a single cluster, and allocates all the processing

elements to a single running node. Consequently, the node scheduling

algorithm selects a single node at each iteration, and its final schedule is

an ordered list.

Experimental results on STHORM show that the contention for L1

4 Optimization framework for many core accelerators 73

1: while active set is not empty do
2: – Select from the active set the kernel with more

input dependencies;

3: – Append the selected kernel to the schedule list;

4: – Remove the selected kernel from the active set,

and add it to the visited set;

5: if active set is empty then
6: – Compute a new active set, including all the

nodes that are not in the visited set and are con-

nected to graph input data or to visited nodes;

7: end if
8: end while

Figure 3.8: Node scheduling algorithm.

memory is very limited when all the cores are active, due to the low-

latency of the logarithmic interconnect and the address interleaving across

a large number of memory banks. In this scenario, having all the PEs

executing the same kernel guarantees that precedence constraints bound

to active kernel can be satisfied faster, and the time gaps in the schedule

are minimized. At the same time, the number of output buffers that

are currently active is the lowest schedulable, accordingly to the policy

described in Section 4.5.

To compute the schedule, the algorithm in Figure 3.8 considers an

active set of nodes, that initially contains all the kernels connected to

the input data (head nodes). In the example of Listing 3.1, we have a

single active node at each iteration, and the resulting schedule is trivial

(Figure 3.9).

74 4 Optimization framework for many core accelerators

ColorConvert −→ Sobel3x3 −→Magnitude −→ Threshold

Figure 3.9: Scheduling order for edge detector.

4.4 Tile size propagation

To respect all the constraints imposed by node access patterns, the final

tile size for each image must be determined taking into account the effect

of redundant re-computation. To provide data to kernels which follow in

the schedule, a kernel could be required to compute the same values mul-

tiple times for adjacent tiles. The final tile size for all images is computed

into two passes: (i) the first pass analyzes the graph forward, simulating

an execution (based on computed scheduling) and simultaneously collect-

ing the tiling constraints for each kernel; (ii) the second pass performs

a backward analysis, starting from the last simulated node, and sets the

buffer final overlap according to all collected constraints. For instance,

considering the code of Listing 3.1 and an output tile size of 160x120, we

get the results depicted in Figure 3.10. The Sobel 3x3 kernel specifies

a neighboring area of one point (W = 1, H = 1, ∀ix[i] = 1), while other

kernels are simple point operators (W = 1, H = 1, ∀ix[i] = 0). On the

backward pass, the connection between Color Convert and Sobel 3x3

adds a constraint on the intermediate tile B1; in practice, a tile with

no overlap and a tile with a fixed overlap deal with the same image.

To satisfy this inter-kernel constraint, tile B0 is enlarged of the absolute

difference between overlapping areas and the color conversion kernel is

called multiple times to re-compute the points on the borders (exactly

4 Optimization framework for many core accelerators 75

Figure 3.10: Example of tile size propagation.

once per including tile).

When applied, redundant re-computation enforces data locality for

intermediate buffers at the cost of transferring and computing the tile

borders multiple times, but we have observed with the experiments that

this aspect does not affect the general benefits of data locality.

4.5 Buffer allocation and sizing

The buffer allocation policy specifies the maximum number of buffers

that are allocated in L1 memory and their association to input/output

kernel image parameters. The visit order used by the scheduling algo-

rithm guarantees that allocated buffers are used as soon as possible, and

nodes that release more data references are executed first, so that we can

promote buffer reuse to save L1 memory space.

1. The number of L1 buffers that are initially allocated is equal to the

number of input images to the graph.

2. When a kernel is added to the schedule list, we allocate output

images to buffers. If there is a buffer that is no longer used, we

reuse it, otherwise we increment the buffer count; Due to the double

buffering policy, buffers that have been use for inputs cannot be

reused for outputs.

3. Using a reference counter, we verify whether images are used by

76 4 Optimization framework for many core accelerators

1: – The first buffer is allocated for RGB graph input;

2: – The second buffer is allocated for Color Convert

output;

3: – The first buffer enters the free list;

4: – Sobel 3x3 can reuse the first buffer for its first

output, then allocates a third buffer for its second

output;

5: – The second buffer enters the free list;

6: – Magnitude can reuse the second buffer;

7: – First and third buffers enter the free list;

8: – Threshold can reuse the third buffer for its out-

put (the first buffer has been initially allocated

to graph input, so it cannot be reused for graph out-

put);

Figure 3.11: Buffer allocation for edge detector.

other nodes; if there is no further reference, we can reuse it, hence

we add the buffer to the free list. Buffers associated with graph

outputs can not be reused, so they are never added to the free list.

In addition, a buffer usage data structure is allocated for each element

in the associative map, saving information for next steps. The graph in

the example (Listing 3.1) requires three buffers, adding a single buffer to

fulfill data requirements of virtual images (Figure 3.11).

The buffer sizing algorithm computes the maximum size for allocated

buffers in L1 memory. The heuristic algorithm that is currently used is

depicted in Figure 3.12. This approach differs from the typical buffer

sizing problem for data-flow graphs presented in [63]. Fixing a point on

the time axis, each buffer contains a tile of a specific image, but the buffer

is unique and the referred image changes due to the buffer reuse policy.

4 Optimization framework for many core accelerators 77

1: – Set the size of each buffer equal to its upper

bound (maximum image size);

2: – Compute the total memory footprint of the buffers;

3: while total memory footprint > available L1 quota do
4: if iteration is even then
5: – Halve the width of each buffer when the result

is greater than minimum tile width;

6: else
7: – Halve the height of each buffer when the re-

sult is greater than minimum tile height;

8: end if
9: if No changes to buffer size then

10: – Infeasible (backtracking);

11: end if
12: end while

Figure 3.12: Buffer sizing algorithm.

4.6 Run-time graph

The generation algorithm for CLE graphs interprets all the decision made

in previous steps to build a CLE graph for sub-graph to be executed on

the accelerator. In addition to preceding constraint and buffer policies,

this algorithm applies double buffering to achieve a good overlap between

data transfer and kernel execution. Figure 3.13 depicts the execution

Figure 3.13: Example of CLE run-time schedule.

78 4 Optimization framework for many core accelerators

schema of an OpenVX application equivalent to Listing 3.1. When con-

sidering a target architecture without a cluster controller processor, the

same tasks could be performed by a thread running on the host side

without any loss of generality.

The Cluster Controller (CC) initializes the execution environment

(a), in particular the allocation of the L1 buffers, and then program the

DMA engine to transfer the first two input tiles tiles from L3 memory

to L1 buffers (1). When the first transfer is completed (2), the CC is

notified, and then the computation of the kernels is triggered (3). The

CC is notified one more time when the second transfer is completed (4),

but it does not take any immediate action at this time (c), because the

PEs are still executing the kernels for the first tile. When the input

buffer is no more occupied by any intermediate results, the CC (d) is

notified (5), and a new input data transfer is triggered (6). When the

last kernel terminates its execution, the CC is notified again (7), and the

DMA engine is programmed to transfer an output tile from L1 buffer

to L3 memory (8); in the most general case, each kernel can produce

an output image, and so this block could be triggered at the end of any

kernel. If a DMA input transfer is completed, that is our case, a new

tile computation is triggered (9); however, the next kernel execution is

triggered when both events have occurred.

4.7 Nested graphs

Our framework supports the definition of nested graphs. Each OpenVX

kernel can be associated to a child graph, and the execution of an associ-

ated node implies its processing. A nested graph can be created at node

execution or initialization time. When created at execution time, nested

4 Optimization framework for many core accelerators 79

graphs do not require any additional API support w.r.t. standard graphs.

The creation of framework and data objects is performed inside the ker-

nel function, and this enables the dynamic execution of different graphs

based on parameter run-time values. Nested graphs which are created at

initialization time require two additional features, initialization callbacks

and graph parameters.

Initialization callbacks are kernel specific functions which are auto-

matically called at node creation time. They can be used to create and

validate a nested graph, in this case the node execution just includes the

graph processing. This solution is less dynamic than the previous one

but at the same time it is much more efficient, since graph creation and

validation are performed once in the application time-line, regardless of

the number of graph executions. Graph parameters are a reference to

a specific node parameter within the graph. These parameters are cre-

ated with a specific API call (vxAddParameterToGraph), and they can

be modified between executions (vxSetGraphParameterByIndex). Us-

ing graph parameters no knowledge of the internal structure is required

to set node parameters, and this approach is used to support nested

graphs. A graph can be created in the initialization callback using exclu-

sively virtual data types, and then a set of graph parameters is defined

representing inputs and outputs at graph level. As a further step, graph

parameters are associated to actual parameters already defined in the

context of the external graph node, which are passed to the initialization

callback. After the type match between actual parameters and virtual

data, the graph can be verified and its processing is finally demanded to

node execution.

Since the use of nested graphs implies to call a set of OpenVX API

80 5 Experimental results

functions, this feature is limited to the kernels that are executed by the

host. In turn, nested graphs can be executed (in part or totally) on the

accelerator, and this methodology can be also applied recursively. Over-

all, nested graphs are a viable solution to implement OpenVX kernels

that provide higher level features, also facilitating their reuse as software

components from a software engineering perspective.

4.8 User-defined nodes

OpenVX enables a programmer to specify custom nodes, and our frame-

work supports this feature. On the host side, programmers have to spec-

ify the validator callbacks used at verification stage, and a data descriptor

specifying image parameters, tiling behavior and state requirements. For

the kernels that are intended to execute on the host side, a C function

implementing the kernel must be provided. On the accelerator side, pro-

grammers must implement a CLE kernel that accesses image parameters

directly in global memory space, without using any intermediate local

buffer (as described in Section 4). The benchmarks defined in Section 5

reference several user-defined kernel.

5 Experimental results

We have implemented the full framework described in the previous sec-

tion to target the STHORM evaluation board (see Section 2). The frame-

work supports the data access patterns described in Section 4.1, enabling

the execution of all the kernels included in the OpenVX standard. In ad-

dition, we have implemented a library of user-defined kernels.

To assess the benefits of our approach on real applications, we have

5 Experimental results 81

Benchmark Nodes Accelerator Images
(acc./host) sub-graphs (in/out/virtual)

Random graph 10 / 0 1 1 / 1 / 10
Edge detector 4 / 0 1 1 / 1 / 4
Object detection 4 / 0 1 2 / 1 / 3
Super resolution 8 / 0 1 3 / 1 / 5
FAST9 4 / 0 1 1 / 1 / 3
Disparity 5 / 0 1 2 / 1 / 6
Pyramid 6 / 1 1 1 / 1 / 4
Canny 4 / 1 1 1 / 1 / 5
Optical 4 / 4 4 1 / 1 / 2
Diparity S4 20 / 0 1 2 / 1 / 28
Retina preproc. 165 / 0 8 1 / 4 / 120

Table 3.3: Details on OpenVX benchmarks.

selected a set of benchmarks representing the main fields of image pro-

cessing domain, with the addition of a single synthetic benchmark:

• Random graph is a synthetic benchmark which includes 10 morpho-

logical nodes, exposing a wider branching schema compared to real

applications with the specific aim to stress allocation and schedul-

ing algorithms;

• Edge detector is a basic edge detector including 4 kernels (RGB to

gray-scale conversion, Sobel 3x3 filter, magnitude and threshold-

ing);

• Object detection is an algorithm to detect objects that have been

abandoned/removed in a set of adjacent video frames, and it is

based on NCC background subtraction and morphological opera-

tors (as described in [64]);

• Super resolution represents the recombination phase typical of a

computational photography algorithm, which is used to increase

82 5 Experimental results

the quality of an image using multiple overlapping pictures of a

scene [65];

• FAST9 implements the FAST9 corner detection algorithm [66];

• Disparity computes the stereo-matching disparity between left and

right images;

• Pyramid creates a set of 4 images which are derived from the input

one, weighted using a 5x5 Gaussian kernel and then scaled down;

• Canny implements a standard Canny edge detector [67];

• Optical is an implementation of the Lucas-Kanade algorithm [68],

used to measure optical flow field for a set of keypoints on two

adjacent video frames;

• Disparity S4 is an extension of Disparity, using four shifted versions

of the right image to support a wider range for disparity.

• Retina preprocessing implements the retina preprocessing filter de-

scribed in [56].

Table 3.3 reports some implementation details about these benchmarks.

It specifies the number of nodes executed by accelerator and host, the

number of sub-graphs executed on the accelerator and the number of

involved images (organized by type). Pyramid, Canny and Optical are

implemented as a single host node including a nested graph which is

executed multiple times. In this case, the values reported in Table 3.3

are related to the cumulative executions of the inner graph.

As an example, Figure 3.14 depicts the OpenVX graph of Canny

benchmark. The nested graph contains five nodes, which are Sobel 3x3

5 Experimental results 83

S NM

P

ETI

1

2

N 3

4

5

80x60

82x62

82x62

82x62

82x62

84x64

CANNY

O

I O

Figure 3.14: OpenVX graph of Canny benchmark with tiling annotations.

(S), elementwise norm (N), phase (P), non-maxima suppression (NM)

and edge tracing (ET). The last node (ET) is executed by the host,

while the other ones are scheduled on the accelerator. ET scans the

full image and inserts into a stack data structure the coordinates of the

points that are over a high threshold (with a YES status), and then the

points between low and high thresholds (with a MAYBE status). Then,

it traverses this stack and evaluates the MAYBE points considering the

status of their neighborhood. Having a low number of edge points w.r.t.

the full image size, this kernel allows to limit the memory bandwidth

in the final algorithm stage, and it is computed by the host due to its

irregular access pattern. The images are annotated with the tile size

computed by our algorithm (see Section 4.4), that is not the same for

all nodes. Tile 5 is the output of the accelerator sub-graph, and its

size (80×60) is an exact multiple of the full output image (640×480).

Tiles 1-5 are two points wider (82×62) to support the application of

non-maxima suppression kernel, which requires a 3×3 window. Tile I

is even wider (84×64), with the aim of providing proper input to Sobel

kernel in accordance with its output size. The host kernel (ET) reads

84 5 Experimental results

the full graph output to produce the final image O , directly accessing L3

memory through Cortex-A9 cache hierarchy. This type of result cannot

be obtained by fusing kernels and optimally tiling the generated loop, as

in the most general case tiling requirements of different kernels are not

homogeneous. Overall, the use of OpenVX graphs enables a global level

of optimization which is not possible under a single-function paradigm.

Retina preprocessing is a brain-inspired visual processing algorithm

described in [56]. It is composed by 24 building blocks, which can be

represented with an OpenVX graph including both standard and user-

defined nodes. The final graph size is much larger than typical OpenVX

applications, but we have included it to give an idea of how our ap-

proach scales very well also to future applications that will emerge when

OpenVX will start to be heavily utilized in industry. In our implementa-

tion, some of these blocks (complementary, sum, subtraction) are directly

mapped on OpenVX nodes, while the other ones have been implemented

as the composition of multiple nodes. In particular, we have defined

two functions to describe specific building blocks (retina_opponency

and LGN_opponency), and another one (LGN) to instantiate a sequence

of identical blocks that are recurring in the last algorithm stage. Each

function call adds a set of nodes to the OpenVX graph, and overall they

are invoked multiple times to build the full application. This example

demonstrates a major benefit of our approach, that is the support to

composability. Our framework provides an extendable set of software

components which can be assembled in various combinations to satisfy

specific functional requirements. This is a key feature to implement com-

plex applications, nevertheless it is often disattended by many tools.

Using our approach, the orchestration of multiple kernel nodes and

5 Experimental results 85

6.73

3.86 3.46 3.12

5.04

9.61

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Speed-up w.r.t. OpenCL

Figure 3.15: Speed-up of OVX CLE w.r.t. standard OpenCL approach.

accelerator sub-graphs is totally transparent to the programmer. In Op-

tical, a single host kernel executes a nested graph multiple times. In

Retina preprocessing, the presence of statistical kernels used for image

normalization (mean and standard deviation) induces the partition of

the OpenVX graph into eight sub-graphs at CLE run-time level. In this

specific case, all the referenced kernels are member of classes A, B and

C (see Figure 3.6), and our framework orchestrates the execution on the

accelerator to get the maximum speed-up.

All tests are performed with an input image size of 640×480 pixels.

This setup is sufficient to already see the effects of memory bandwidth,

due to the limited main memory bandwidth available for the STHORM

accelerator on the evaluation board.

5.1 Comparison with OpenCL

Figure 3.15 shows the speed-up of the OpenVX accelerated versions w.r.t.

the same applications implemented on the standard OpenCL 1.1 run-time

86 5 Experimental results

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Bandwidth reduction w.r.t. OpenCL

Figure 3.16: Bandwidth reduction using OVX CLE.

provided by STHORM software environment. “OVX CLE” denotes the

version executed using our framework. Each OpenCL application is built

using a library of image processing kernels, with the aim to mimic the

component-like approach promoted by OpenVX.

Figure 3.16 depicts the L3 bandwidth reduction, which is computed

as the ratio between the amount of data transferred by the two imple-

mentations (OVX CLE/OpenCL). Since each OpenCL kernel copies its

outputs to L3 memory in order to pass data to the next one, the trend

of the speed-up is closely related to the L3 bandwidth reduction. This

is particularly evident for Optical, which is composed by a single kernel

(Scharr 3×3) executed multiple times. In this case we get no advantage

from bandwidth reduction, and the related speed-up is very close to one.

This is an expected result, because the baseline OpenCL implementation

exploits parallelism as effectively as our run-time if main memory effects

are not important.

Figure 3.17 reports the bandwidth requirements of the benchmarks

5 Experimental results 87

34

307

36

8
24 44

8
15 18

359

22

290
922

71
38

71
307

31
15

199

1391
779

1

10

100

1000

10000

M
B

/s

Required bandwidth

OVX CLE OpenCL Available BW

Figure 3.17: Bandwidth required by applications for both OVX CLE and
OpenCL.

for both OVX CLE and OpenCL. These values have been computed as

a ratio between the total transferred bytes and the related computa-

tion time required by benchmarks. This is an upper-bound case, which

suppose a total overlap between data transfer and computation. The

bandwidth required by an the OpenCL application exceeds the available

one in four cases (Edge detector, Disparity, Retina preprocessing,

Disparity S4), limiting the speed-up of the OpenCL solution. In OVX

CLE benchmarks, the bandwidth threshold is exceeded twice for a lim-

ited amount (Edge detector, Retina preprocessing), and this effect

impacts on execution efficiency (see next section).

All the measures do not include the initialization time for OpenVX

and OpenCL contexts. In OVX CLE, the algorithms which verify the

graph are polynomial and the computational complexity is O(n∗e), where

n and e are the number of nodes and edges in the CLE graph. These

algorithms are executed on the host side and they have not shown any

relevant impact into the execution of the selected benchmarks.

88 5 Experimental results

0

10

20

30

40

50

60

70

80

90

100

Accelerator Efficiency

Wait time

Executing time

Figure 3.18: Breakdown analysis of accelerator efficiency.

5.2 Execution efficiency

Figure 3.18 depicts the execution efficiency related to benchmarks’ ex-

ecution on the accelerator, that is computed as the percentage of total

graph execution time. In execution time, cores are actually executing

kernel instructions, while the wait time is the time required for transfers

and not overlapped to the execution time.

Edge detector and Retina preprocessing are characterized by a sig-

nificant level of inefficiency. In both cases the wait time is high, and

the execution on the accelerator is dominated by data transfer times (see

Figure 3.17). In Edge detector this is due to the low computational inten-

sity of the algorithms. In Retina preprocessing this effect is related to the

high number of statistical kernels that imply multiple splits in the graph,

and the traffic to/from L3 memory is increased w.r.t. an application with

the same number of nodes and a single run-time graph. These outcomes

are not limitations of our framework, since in both cases it guarantees

the maximum overlap for data transfers and computation, but they are

due to the limited accelerator bandwidth of the STHORM evaluation

5 Experimental results 89

Edge detector Retina preproc.

0

10

20

30

40

50

60

70

80

90

100
Accelerator Efficiency

Wait time

Executing time

Figure 3.19: Efficiency of Edge detector and Retina preprocessing with
memory bridge at 400 MHz (simulation).

board. As explained in Section 2, this is a worst case scenario compared

to a fully integrated SoC, where the accelerator will have a much greater

share of L3 bandwidth. Nevertheless, we can simulate a more realistic

scenario using the simulation tool in the STHORM SDK. Figure 3.19 re-

ports the efficiency of Edge detector and Retina preprocessing when the

L3 memory interface is clocked at 400 MHz. As expected, the wait time

is drastically reduced in both cases. This approach is equivalent to move

up the reference line in Figure 3.17.

5.3 Comparison with similar tools

KernelGenius [69] is a tool that enables the high-level description of vision

kernels using a custom programming language. Starting from an applica-

tion described as a set of vision kernels, KernelGenius aims at generating

an optimized OpenCL kernel for the STHORM platform, with a totally

transparent management of the DMA data transfers. The structure of

the tiling problem for a single kernel is analogous to the formulation we

are using in our work, but there is no support for most data patterns

90 5 Experimental results

Benchmark KernelGenius (ms) OVX CLE (ms)
Sobel 3×3 22.2 20.42
Convolution 5×5 30.1 25.58
Erode/Dilate 5 25.6 12.84
FAST9 5.4 5.9
Canny 182.0 58.2

Table 3.4: Comparison with KernelGenius

(classes C, D, E and F of Figure 3.6). Table ?? reports a comparison

between OVX CLE and KernelGenius for a subset of our benchmarks

that are compatible with KernelGenius current limitations.

Halide [54] is a tool specifically designed to describe image processing

pipelines, with a strong focus on computational photography. To imple-

ment an algorithm with Halide, the programmer must specify a func-

tional description using a domain-specific language embedded in Python

or C++. Halide defines a model based on stencil pipelines, with the aim

to find a trade-off between locality, exploitation of parallelism and redun-

dant re-computation. Compared with our approach, Halide presents the

following limitations:

• Irregular algorithms and data patterns are not supported by the

language.

• Composability of software modules is limited, as programmers can

just express single algorithms or independent pipelines.

• Schedule and tile size are always explicit, there is no default to

implicitly select the best choice for a specific target.

Halide targets high-end platforms such as Intel multi-cores and high

performance GPGPUs, while OVX CLE is focused on many-core accel-

erators for the embedded market. Since Halide and OVX CLE do not

5 Experimental results 91

include a common target platform, a comparison based on benchmark

timings cannot be reported.

HIPAcc [70] is a framework for image processing that includes a do-

main specific language embedded in C++ and a source-to-source com-

piler. Its model of computation includes a reduction pattern, which can

be used to compute statistical and recursive neighbor operators. Host

code can be used to implement other unsupported patterns, so the cover-

age is equivalent to our solution. HIPAcc supports multiple architectural

targets, generating the image processing code through a visit of the Ab-

stract Syntax Tree (AST) using the compiler front-end. This approach is

different from the one promoted by OpenVX, which is based on run-time

steps. Some relevant differences are:

• An OpenVX graph can be modified at run-time based on external

parameters, while HIPAcc code has to be completely re-compiled.

• An OpenVX framework can transparently support load balancing

using dynamic resource management, while in HIPAcc this feature

is not target agnostic and must be guided by the programmer .

• The validation step in OpenVX programs requires an initial over-

head, but it simplifies debugging and enables additional features

(such as nested levels of execution, which are not supported by

HIPAcc).

Both Halide and HIPAcc include OpenCL in their target list, but

the generated code is not intended to run on a many-core accelerator.

Future extensions of these works would enable us to compare them with

our OpenVX framework.

92 6 Related Work

6 Related Work

The role of OpenVX for performance optimization has been introduced

in [71]. The authors are active actors of the standardization process,

and they discuss how OpenVX run-times could provide both kernel and

system level optimizations. In the context of embedded vision system, in

the last years many FPGA-based solutions has been presented (e.g., [72]

and [73], and [74]). We can also find several examples of domain-specific

architectures. CHARM [75] and AXR-CMP [76] propose a framework

for composable accelerators assembled from accelerator building blocks

with dedicated DMA engines, while NeuFlow [53] is a special-purpose

data-flow processor tailored for vision algorithms. Both FPGA and

domain-specific architectures have emerged to satisfy demands for power-

efficient and high-performance multiprocessing. Our solution is based

on a general-purpose accelerator, using a programming model which

takes into account the specific needs of CV domain but still promot-

ing a general-purpose programming paradigm. Darkroom [77] is a tool

that synthesizes hardware descriptions for ASIC or FPGA, or optimized

CPU code using an optimally scheduled pipeline. The tiling approach

is similar to our solution, but there are some limitations. They consider

just two access patterns (point-wise and stencil), that are the only to be

compatible with the pipeline execution.

OpenCV [78] is an open-source and cross-platform library featuring

high-level APIs for Computer Vision. OpenCV is the de-facto standard

in desktop computing environment, its mainstream version is optimized

for multi-core processors but it is not suitable for acceleration on embed-

ded many-core systems. Some vendors provide accelerated versions of

OpenCV which have been optimized for their hardware (e.g. OpenCV for

6 Related Work 93

Texas Instruments embedded platforms [79] or OpenCV for Tegra [80]).

As an alternative to OpenCV, Qualcomm provides a specific library for

ECV which includes the most frequently used vision processing function.

This library is called FastCV [81], and it is optimized for ARM-based

processors and tuned to take advantage of Qualcomm’s Snapdragon pro-

cessors. As a matter of fact, OpenCV needs a lower-level middleware

for accelerating image processing primitives. This is precisely the goal

of OpenVX, which aims at providing a standardized set of accelerated

primitives, thereby enabling platform agnostic acceleration.

OpenCL [82] is a very widespread programming environment for both

many-core accelerators and GPGPUs, and it is supported for an increas-

ing number of heterogeneous architectures; for instance, Altera supports

OpenCL on its FPGA architecture [83]. The OpenCL memory model is

too constrained for SoC solutions, hence many extensions have been pro-

posed by vendors. For instance, AMD provides a zero-copy mechanism to

share data between host and GPU in Fusion APU products, also enabling

the access to GPU local memory by host side through a unified north-

bridge with full cache coherence [84]. In a many-core accelerator we need

even more control on data allocation, because cores are not working in

lock-step. In addition, we need the possibility to map the logical global

space at different levels of the memory hierarchy, to efficiently maintain

state between kernels.

Graph-structured program abstractions have been studied for years

in the context of streaming languages (e.g. StreamIt [52]). In these

approaches, static graph analysis enables stream compilers to simultane-

ously optimize data locality by interleaving computation and communica-

tion between nodes. However, most research has focused on 1D streams,

94 6 Related Work

while image processing kernels can be modeled as programs on 2D and

3D streams. The model of computation required by image processing is

also more constrained than general streams, because it is characterized

by specific data access patterns. Some good results have been achieved

with special-purpose data-flow processors targeted for vision algorithms

(e.g. NeuFlow [53]). Our model takes into account the specific char-

acteristics of image processing domain, but we target a general-purpose

accelerator.

Stencil kernels are a class of algorithms applied to multi-dimensional

arrays, in which an output point is updated with weighted contribu-

tions from a subset of neighbor input points (called window or stencil).

Our definition of tiles is equivalent to a 2D stencil. Many optimization

techniques have been proposed to execute stencil kernels on multi-core

platforms [85], but an effective solution for many-core accelerators exe-

cuting heterogeneous vision kernels has not been proposed yet. Such a

solution has to consider all the data access pattern specific of this do-

main, handling the possible overlapping of input windows and providing

a solution for the access patterns that are not properly describable in

terms of stencil computation.

Many previous works have proposed specific optimizations for ar-

chitectures with explicitly managed scratchpad memories, such as Cell

BE [86–88]. In this chapter we propose a totally transparent approach

for the well-defined scope of image processing applications. We do not

introduce any new programming model which programmers should learn

in addition to the standard OpenVX API, and overall we also manage

all the cases in which the localized execution is not directly possible.

7 Conclusion 95

7 Conclusion

In this chapter we have presented a framework which aims at improv-

ing the execution efficiency of image processing algorithms on many-core

accelerators. The proposed solution applies a set of algorithmic steps

to map an OpenVX application into an OpenCL low-level graph. Ex-

perimental results on the STHORM platform show that our approach

provides huge benefits in terms of speed-up, considering both a sequen-

tial version and an accelerated OpenCL version, and also in terms of

execution efficiency and bandwidth reduction.

Chapter 4

An OpenVX environment to

optimize embedded vision

applications on parametric

parallel accelerators

1 Introduction

To increase the productivity of application designers, it is important that

the programming model exposes high-level constructs for the exploitation

of parallel and heterogeneous resources. In this way, experts of the ap-

plication can focus on its partitioning and deployment, without the need

for expertise on the hardware details. This is particularly true in the CV

domain, where the expertise of application designers is typically on the

algorithms. OpenVX [23] has been introduced as a cross-platform stan-

dard for imaging and vision application domains, with the aim to raise

significantly the level of abstraction at which CV applications should be

1 Introduction 97

coded. Using OpenVX, the details of the hardware platform are hidden

in the underlying run-time environment (RTE) layer. This approach en-

ables the portability of vision applications across different heterogeneous

platforms, delegating the performance tuning to hardware vendors, who

provide an efficient RTE with architecture-specific optimizations. The

work presented in the previous chapter moves in this direction, but it

still lacks generality on architectural aspects.

In this chapter we introduce ADRENALINE, a framework for fast

prototyping and optimization of OpenVX applications on heterogeneous

SoCs with many-core accelerators. ADRENALINE consists of an opti-

mized OpenVX run-time system, based on streamlined OpenCL support

for a generic heterogeneous SoC template like the one introduced in Sec-

tion 1. The tool comes with a virtual platform modeling the target

architecture template, which can be easily configured along several axes.

The run-time system includes several optimizations for the efficient ex-

ploitation of the explicitly managed memory hierarchy adopted in the

targeted SoCs, but it can be easily extended to consider other optimiza-

tion opportunities. Similarly, the virtual platform can be expanded to

model additional architectural blocks in a simple manner. Finally, we

provide relevant use cases for our tool, showing how it can support the

needs of several users:

• Researchers and/or SDK vendors can explore various platform-

specific optimizations, scheduling policies and algorithms for the

implementation of the OpenVX support layer.

• Application developers can explore different partitioning solutions

(host vs accelerator, parallelization) for different applications;

98 2 Alternative tools

• Platform engineers can quickly evaluate different architectural con-

figurations for a target CV application;

2 Alternative tools

In the previous chapter we have introduced several tools that represent

an alternative to OpenVX, mainly KernelGenius [69], Halide [54] and

HIPAcc [70]. Even if these tools enforce good software engineering prac-

tices and successfully reduce the time-to-market of vision-based applica-

tions, they are not intended to improve performance and energy efficiency

of embedded many-core accelerator. Moreover, they do no provide the

full set of tuning capabilities that are offered by ADRENALINE.

Considering market products, Cadence IVP processor [89] exploits a

comparable approach. It is based on the proprietary Xtensa CPU/DSP

technology, which allows to configure and build application-specific pro-

cessors coupled with DSP accelerators, with a software toolchain that

supports OpenVX. This solution targets a configurable technology, but

the flexibility of configuration is more restricted than ADRENALINE

one. Due to its totally open-source approach, ADRENALINE is defini-

tily a better solution for researchers.

3 ADRENALINE internals

ADRENALINE comes with a virtual platform modeling the generic ar-

chitectural template described in Section 1 and an OpenVX run-time op-

timized for this target. This tool has been developed following two main

objectives, application benchmarking/profiling and architecture tuning.

3 ADRENALINE internals 99

3.1 Virtual platform

The virtual platform is written in Python and C++. Python is used for

the architecture instantiation and configuration, and also for the high-

level execution management. C++ is used for implementing the models

in an efficient manner, so that only binary code is called during normal

execution.

A key functionality is the possibility of describing a block as a com-

binatory network. For instance, it is used to describe the interconnec-

tion between the cores and the TCDM. A library of basic components is

available, but custom blocks can also be implemented and assembled. At

run-time, any request that arrives at the block boundary is enqueued and

stays inside the block until it is elected to an output boundary. For that

at each cycle, a resolution cycle is executed in the network. At each reso-

lution cycle, all the enqueued requests are handled from the compoenents

at the input boundaries and propagated to the output boundaries, and

are at the same time affected by each component that they go through.

Some components will just select one request amongst all the ones that

has been propagated to this component (e.g. the logarithmic trees), oth-

ers will apply a remapping. When the resolution cycle ends and a new

one is started, all the requests that are still enqueued in the network

starts again from the beginning, as the resolution policies might have

been updated since the last cycle.

In the following paragraphs we report some additional details about

the most relevant blocks.

OpenRISC core. It is modeled with an Instruction Set Simulator

(ISS) for the OpenRISC ISA [36], extended with timing modeling to con-

sider the various sources of pipeline stalls. Adopting the same interface,

100 3 ADRENALINE internals

an ISS for a different architecture can be plugged.

Memories. The memory blocks use a simple timing model, with a

fixed latency for each reported access.

L1 interconnect. This block has an important impact on data ac-

cesses. The timings of an application can really differ depending on how

the data buffers are accessed from memories. In our model, each tar-

get memory bank can accept one request per cycle, as provided by the

architectural template.

Other interconnects. In the interconnect model a single request is

never split, it traverses all the interfaces to the final target not allowing

fine-grained arbitration. However there is a bandwidth model which is

applied on each request, with the aim to report realistic timings.

DMA. The DMA sends a single synchronous request to the intercon-

nect for each line to be transferred. The interconnect reports a latency

for the whole transfer. As the DMA is able to fully stream several in-

put requests while writing output requests, another input request can be

scheduled after the latency of the first input request.

Shared instruction cache. The shared instruction cache model is

made of an interconnect model and a set of cache banks. Each cache

bank is a classic cache model that is able to report the latency to a

request, depending on the fact it is a hit or a miss. The interconnect

model is quite similar to the memory interconnect model with a support

for multicast and a model of the L0 prefetch buffer. The L0 prefetch

buffer is modeled as a classic cache with a single entry, so that only the

misses are propagated to the L1 interconnect.

The current version supports the simulation of a single cluster and a

single-core host. The host used for experiments is an OpenRISC core,

3 ADRENALINE internals 101

with the aim to have comparable metrics for results. To instantiate a

fully heterogeneous system, the host could be configured as an ARM

or a x86 core. The OpenRISC core has a simple pipeline which allows

modeling all the following sources of stalls. When an instruction finishes

or when the core goes to running model, an event is enqueued at the

time the instruction must be executed. Once the event is scheduled,

the ISS is called to execute the instruction model. This execution can

trigger accesses in the platform (for instruction fetching or data accesses)

which report timing to be taken into account for the calculation of the

instruction cost. The instruction is executed in one call to the ISS, and

this call reports to the platform the cost of the instruction that has been

estimated. The platform uses this information to enqueue the event for

the next instruction at the appropriate timing. Other details of the core

model include:

• Instruction cache. The instruction cache model is external to the

ISS, as we can model more complex beaviors inside the virtual

platform. The ISS is calling this model each time it needs to fetch

a new instruction, through a synchronous request. The ISS stalls

the core by the extra amount of cycles compared to the normal case

where the instruction is fetched in one cycle.

• Data dependency. A few instructions have a latency above 1 cycle.

This means the destination register is not available for a number of

cycles correponding to the latency minus one. This status does not

stall the pipeline unless an instruction uses the register before it

is available, in which case the pipeline is stalled for the remaining

number of cycles. To model this behavior, the ISS maintains a

scoreboard that tells at which time each register is available. Any

102 3 ADRENALINE internals

instruction with a latency can update this scoreboard, and any

instruction with input registers can check this scoreboard. The

most important example is the load instruction that has a latency

of 2 cycles, and leads to an important error when it is not modeled

in a scenario where the compiler is not able to hide the latency with

other instructions. Other instructions like hardware floating-point

unit instructions has also an associated latency.

• Load/store latency. The pipeline during a load or a store is not

stalled for accesses with the minimal latency as it is the case for

accesses to the local shared memory without any contention. How-

ever, if the access has an extra-latency for any reason, like a con-

tention or the fact it is a remote memory, the pipeline is stalled

for the corresponding amount of extra cycles. The ISS models this

behavior by just accounting the extra-cycle to the instruction cost

in order to simulate the stall behavior.

ADRENALINE provides the following tunable parameters: number

of cores; hardware FPU enabled/disabled; available memory at L1, L2

and L3 levels; DMA bandwidth/latency. Moreover, the virtual platform

can be extended by defining new modules. A module is a Python class

which declares the input and output ports that can be connected to other

modules to specify the connections between the architectural blocks (e.g.,

a router to a memory). Then each Python class has a corresponding C++

class that implements the block model. When the platform is started,

each C++ class receives all the configuration from the Python class (how

ports are connected, property values), so that only C++ code is running

during simulation. Overall, writing a new module requires a limited

effort to write the Python class, as it mainly contains declarations. Then

3 ADRENALINE internals 103

the difficulty of writing the C++ model usually depends on the timing

behavior complexity of the block.

3.2 OpenVX run-time

The OpenVX runtime provided in ADRENALINE is a generalization of

the implementation for STHORM described in the previous chapter. An

extension to OpenCL is used as low-level runtime, but it hides all the

low-level details of OpenCL host code and automatically handles data

partitioning that would otherwise be required explicitly in the kernel

code. To provide more flexibility in kernel specification, we map all the

supported access patterns (see Section 4.1) into three kernel classes:

• CLE_KERNEL_NORMAL is used for point and local neighbor operators.

Tiling is used on both input and output images.

• CLE_KERNEL_STAT is used for statistical operators. Tiling can be

activated just on input images, and we can use a persistent buffer

to implement a reduction pattern ”walking” through the tiles.

• CLE_KERNEL_HOST is used when it is impossible to apply tiling to

input data, and this implies the kernel is executed by the host

processor. This is true for global operators, and also in case of

many geometrical operators we cannot apply a classical input tiling

due to the irregular shape of the neighboring area.

A CLE_KERNEL_HOST kernel is executed by the host processor. This

could be the best solution for global operators, and also in case of many

geometrical operators we cannot apply a classical input tiling due to the

irregular shape of the neighboring area. More in general, this option can

104 4 Experimental results

be used to force kernel execution on the host side, that could increase

overall performance in some specific cases (see Section 4).

The use of state buffer has been introduced in Section 4.1 to handle

the computation of recursive neighbor operators. In the ADRENALINE

runtime we further generalize these policies, with the aim to provide more

flexibility to kernel programmers:

• CLE_STATE_NONE: no state is required;

• CLE_STATE_SCALAR: an amount of state proportional to a scalar.

• CLE_STATE_BORDER: an amount of state proportional to the border

size.

• CLE_STATE_TILE: an amount of state proportional to the whole tile

size.

4 Experimental results

In this section we illustrate some use cases for ADRENALINE, and we

show a comparison with a real platform.

4.1 Comparison with a real platform

To validate the virtual platform, we have compared ADRENALINE with

a STHORM-based board. Figure 4.1 shows the speed-up of the OpenVX

accelerated versions compared to their OpenCL implementation using

ADRENALINE. In these tests we have considered a configuration for

the virtual platform that resembles STHORM: 16 cores with hardware

floating point support, 256 KB L1 memory, 2 MB L2 memory, 500 MB

4 Experimental results 105

3.43

2.77

5.32

2.67

0.99

2.98

Sobel FAST9 Disparity Pyramid Optical Canny

0

1

2

3

4

5

6

Speed-up OpenVX (ADRENALINE)

Figure 4.1: Speed-up of OpenVX compared to OpenCL
(ADRENALINE).

3.86

5.64

3.12

Sobel FAST9 Disparity Pyramid Optical Canny

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Speed-up OpenVX (STHORM)

Figure 4.2: Speed-up of OpenVX compared to OpenCL (STHORM
board).

L3 memory, 250MB/s for DMA bandwidth, 450 cycles for DMA la-

tency. Figure 4.2 reports the speed-up values measured on the STHORM

platform. The comparison with Figure 4.1 shows that the speed-up

trend is coherent, with an average margin of 6%. This implies that

ADRENALINE models the bandwidth effects on a real embedded sys-

tem with very good accuracy, even when the bandwidth is a severely

constrained resource.

106 4 Experimental results

4.2 Application partitioning

As an example of partitioning optimization, we have considered a single

application graph containing both a Canny edge detector and a FAST9

corner detector.

Figure 4.4 shows the graph representation of a Canny edge detector.

This algorithm applies a Gaussian filter to de-noise the input image, and

then apply a Sobel operator to find horizontal and vertical gradients.

Starting from gradients, it computes the edges in terms of magnitude

and phase. Finally, it performs non-maxima suppression to thin the

edges and hysteresis thresholding to remove loosely connected points.

FAST9 corner detector [66] extracts corners by evaluating pixels on

the Bresenham circle around a candidate point. If N contiguous pixels

are brighter or darker than the central point by at least a threshold value

then this point is considered to be a corner candidate. For each detection,

its strength is computed and finally a non-maxima suppression step is

applied to reduce the final points. The OpenVX standard library provides

a specific node for FAST9 algorithm (vxFastCornersNode), which reads

an input image and outputs an array of corner coordinates. This version

differs from the one used in the previous sections, which is split into

multiple kernels to run on the accelerator but provides as output a full

image.

Figure 4.3 shows the timings resulting from the different mappings of

FAST node w.r.t. Canny edge detector. For these specific implementa-

tions, the best solution is the one executing Canny on the accelerator and

FAST9 on the host side. This is a non trivial result that fully highlights

the benefits of this kind of analysis.

4 Experimental results 107

385

233

76

912

0

100

200

300

400

500

600

700

800

900

1000

HOST+ HOST ACC+ACC ACC+HOST HOST+ACC

T
im

e
 (

m
il

li
o

n
 c

y
cl

e
s)

Solution

Canny+FAST9 mapping solutions

Figure 4.3: Mapping of Canny and FAST9.

Sobel3x3Gaussian3x3

nm

gauss

gradXgradY

Magnitude Phase

mag phase

Non-maxima

input

Hyst threshoutput

Figure 4.4: Canny edge detector.

4.3 Architectural configuration

To evaluate different platform parameters, we have executed Canny edge

detector measuring the execution time when the number of cores is set

to increasing values. Figure 4.5 depicts the execution time in cycles.

The bar on the left represents the time required to execute the whole

application on the host using the reference implementation provided by

Khronos. For this application, the lack of optimizations and the overhead

due to OpenVX data access functions make more profitable the execution

108 4 Experimental results

371

234

118

62
34 24 19

0

50

100

150

200

250

300

350

400

HOST 1 2 4 8 12 16

T
im

e
 (

M
 i
ll

io
n

 c
y
cl

e
s)

Number of cores

Canny edge detector

Figure 4.5: Evaluation of Canny edge detector.

Cores Speed-up
1 1.00
2 1.98
4 3.79
8 6.97
12 9.70
16 12.00

Table 4.1: Computed speed-up.

on the accelerator, even in case of a single core (1.58x).

Table 4.1 reports the speed-ups obtained using different configurations

of the many-core accelerator. The efficiency decreases with the number

of cores, and using this table a designer can choose a valid trade-off.

Table 4.2 reports the effect of DMA latency on execution time, with a

bandwidth set at 8 bytes/cycle. In this case our optimization approach

based on localized execution and double buffering hides the variations

of platform parameters related to DDR connection. In the most general

case, this conditions can be verified for any application using our tool.

5 Conclusion 109

Latency (cycles) Execution time (Mcycles)
100 61.75
200 61.98
400 62.70

Table 4.2: Effect of DMA latency on execution time.

5 Conclusion

In this chapter we have introduced ADRENALINE, a framework for fast

prototyping and optimization of OpenVX applications that includes an

OpenVX run-time and a virtual platform. The use cases proposed in

Section 4 show how ADRENALINE can be used to highlight optimization

opportunities for a wide range of end users, from hardware designers to

CV researchers.

Chapter 5

Providing lightweight

OpenVX support for

resource-constrained

mW-scale parallel accelerators

1 Introduction

Market forecasts [90] [91] report that there will be more than 25 billion

Internet-of-Things (IoT) devices by 2020. A key enabler for the IoT is

the development of next-generation smart sensors, that combine stan-

dard analog/digital transducers and communication interfaces with pow-

erful data-processing capabilities. At the beginning of its story, the IoT

paradigm was characterized by the critical role of cloud infrastructures

as providers of computational power, and its terminal constituent devices

were relatively unsophisticated. With the advent of smart sensors this

trend is evolving rapidly [92] towards the edge computing paradigm, that

1 Introduction 111

moves the execution environment of applications away from centralized

nodes and to the logical extremes of a network. This is made possible by

recent designs for IoT devices, which combine complex processing capa-

bility with ultra-low-power operation. Sophisticated data manipulation is

thus enabled at the edges of the cloud, significantly reducing the amount

of data to be sent through bandwidth-limited communication interfaces

(e.g., serial peripheral interface). In a nutshell, a strong requirement for

smart sensors is the compliance with a limited power budget combined

with high performance demands and high energy efficiency.

To deliver the required performance/watt targets, the most promis-

ing platforms available on the market are focusing on a class of het-

erogeneous systems including a microcontroller unit (MCU) coupled to

a programmable, mW-scale parallel accelerator [89] [93] [94] [95] [96].

The adoption of ultra-low-power parallel accelerators as a co-processor

provides hundred-fold increase in OPS/W [97] compared to state-of-the-

art microcontrollers. The advent of such devices, combined with the

widespread diffusion of miniaturized cameras [98], is becoming the key

enabler for building sensor nodes capable of running computer vision

(CV) workloads, which will be at the heart of tomorrow’s most ambi-

tious frontier of the IoT (smart cities, the internet of vehicles [99]).

Similar to what has happened to high-end heterogeneous systems,

programmability will become a key issue in this domain as well. The

adoption of mainstream programming paradigms is an appealing solution,

but it is complicated by the constrained nature of IoT designs (power,

memory, etc.). On the other hand, OpenVX [23] represents the state-of-

the-art for embedded vision programming, as witnessed by its widespread

adoption in commercial products. In the most common case, an OpenVX

112 1 Introduction

framework relies on a graph-based RTE, assuming that a data structure

describing the graph is allocated in the accelerator memory [29]. A key

trait of mW-scale accelerators is the strongly limited amount of available

on-chip memory, which requires dedicated memory management tech-

niques to enable the efficient execution of graphs of arbitrary large size.

To this aim OpenVX supports data tiling [100], a well-known technique

that exploits spatial locality in a program by partitioning large data

structures into smaller chunks that are brought in and out of the tar-

get memory via DMA transfers. When tiling is applied, the number of

nodes in the graph data structure becomes much larger than the num-

ber of application kernels, due to the tiles and to computation artifacts

generated by their presence (e.g., image borders, corners or inner tiles,

double-buffering). Consequently, the scarce amount of on-chip memory

can be insufficient to contain both application and RTE data and code.

In this chapter we propose a novel approach to provide OpenVX sup-

port in mW-scale parallel accelerators. Experiencing with real-life ap-

plications, we realized that standard data management techniques (e.g.,

tiling and double buffering) are not enough to guarantee the stringent

memory constraints that have been outlined for this category of devices,

and we had to re-think the way such execution model could be supported.

Our proposal leverages a new API to support static management of appli-

cation graphs. An OpenVX graph can be created, verified and executed

on the developer workstation using the standard OpenVX execution flow,

which guarantees full portability on any platform an OpenVX framework

is available for. Once a program has been developed and tested follow-

ing this standard flow, the proposed API extension allows to save the

1 Introduction 113

resulting graph into a static representation as a platform-dependent bi-

nary file. The OpenVX runtime data structure management is replaced

by a control-code generation approach, which reduces the total RTE

footprint (code + data) to a few Kilobytes. This approach drastically

reduces also the platform energy consumption, by replacing costly and

frequent accesses to the runtime data with cheaper control instructions

(ALU operations). It also makes effective usage of low-bandwidth data

channels by means of software techniques aimed at maximizing the com-

putation locality (thus minimizing the request for external bandwidth).

The control-code generation is complemented by a minimal RTE design

for the target platform, called milliVX, which includes a small subset of

the OpenVX specification to read a generated binary and offload its exe-

cution to the accelerator. It is important to underline that our approach

takes advantage of the static structure extracted by an OpenVX program

to optimize the execution stage in terms of memory footprint and execu-

tion time, but at the same time it fully preserves the dynamic features of

the original OpenVX standard, namely graph updates and node callbacks.

Graph updates are dynamic modifications to the graph data structure,

generating a different graph that requires a further verification stage be-

fore its execution. Node callbacks are used to control the graph execution

flow by calling functions upon termination of a particular node. milliVX

provides low-cost yet full-fledged support to those features.

To assess our approach, we provide a reference implementation for

the OpenVX extension and the milliVX specification using a publicly

available research tool [29] for OpenVX development on ultra-low-power

parallel accelerators [96]. Experimental results show that our approach

114 2 Background

Figure 5.1: Heterogeneous architecture model.

achieves 68% memory footprint reduction and about 3× execution speed-

up compared to a baseline. Moreover, the data memory bandwidth to-

wards off-chip memory is further reduced by 10% and energy efficiency

is improved by 2×.

2 Background

2.1 Platform template

Today the market offers several products that can be included in the

class of mW-scale parallel accelerator, mostly in the segment of licens-

able IP cores [89] [93] [94], but also hardware platforms from research

institutions are available [95] [96]. The size, performance, and power

consumption of these solutions greatly depend on the core configuration,

2 Background 115

synthesis flags, physical-IP libraries, technology node, and other vari-

ables. Overall, these accelerators are characterized by a common design.

An architecture provides a set of homogeneous PEs, that are CPUs or

general-purpose DSPs, commonly supporting a VLIW instruction set or

a vector extension. Each architecture also includes an L1 code memory,

an L1 data memory and a DMA engine to enable data transfers with

greater memory levels. Peripherals (e.g., SPI) and greater memory levels

(e.g., L2 or DDR) are accessible via off-chip communication channels.

Figure 5.1 shows the generalized architecture model considered in the

rest of this work. It consists of a MCU host coupled with a multi-core

mW-scale accelerator. The host is the main control unit of the full sys-

tem, and it has the option to offload computation-intensive workloads

to the accelerator. The link between MCU and accelerator uses the SPI

protocol, a common interface for off-the-shelf MCUs which fully satisfies

mW-scale power constraints. External sensors and communication chan-

nels are managed by the MCU, while data to/from the accelerator are

stored in the external memory.

The accelerator is a parallel platform featuring a number n of PEs,

that are fully independent cores supporting MIMD parallelism, in ac-

cordance with the template introduced in Section 1. In addition, the

external memory is intended to store input/output data. A typical ex-

ample of such IP could be a generic flash memory or a more specific frame

buffer where various sensors place sampled data. It is accessible through

the SPI, which provides a low-bandwidth, long-latency serial IO channel.

116 2 Background

2.2 OpenVX advanced features

To recap what hast been introduced in Section 2, Listing 5.1 shows the

typical structure of an OpenVX application:

• an execution context is created (line 1);

• a graph instance is created (line 2);

• each image is defined with a call to vxCreateImage (lines 3-4) or

vxCreateVirtualImage (5-6), specifying size and type (e.g., RGB

or grayscale);

• each kernel is added to the graph as a node with a call to

vx<KernelName>Node (lines 8-9), specifying a list of one or more

input images, a list of scalar parameters (e.g., a threshold) and a

list of output images;

• the vxVerifyGraph function (line 13) checks the graph consistency;

• the vxProcessGraph function (line 15) executes the graph on the

target device, using a specific framework.

1 vx_context ctx = vxCreateContext ();

2 vx_graph graph = vxCreateGraph ();

3 vx_image img0 = vxCreateImage(ctx , <width >,

4 <height >, <type >),

5 vx_image vimg0 = vxCreateVirtualImage(ctx , <width >,

6 <height >, <type >),

7 ...

8 vx_node node0 = vx<KernelName >Node(graph ,

9 <input0 >,...,

10 <param0 >, ...,

11 <output0 >, ...);

12 ...

13 status = vxVerifyGraph(graph);

2 Background 117

14 ...

15 status = vxProcessGraph(graph);

Listing 5.1: OpenVX program template.

OpenVX includes advanced features that allow for more dynamic behav-

ior, such as graph updates and node callbacks.

Graph updates are dynamic modifications to a graph data structure

following its first execution. This can be accomplished by nesting graph

creation constructs (vx<KernelName>Node and vxRemoveNode, which re-

moves a node from its parent graph) within conditional control flow in

the program. When the original execution path is altered due to control

flow, then the OpenVX standard requires a further verification stage be-

fore executing a modified graph. Listing 5.2 shows the typical structure

of an OpenVX application using graph updates, extending the code of

Listing 5.1 with additional lines. The graph is executed multiple times in

a loop structure, and when an application specific condition is met (e.g.,

environment conditions are changing) the graph is modified accordingly

(e.g., a set of nodes implementing a specific algorithm is replaced with a

different one). An else clause or additional if blocks can apply alter-

native or additional modifications.

12 ...

13 status = vxVerifyGraph(graph);

14 while(<running_condition >)

15 {

16 status = vxProcessGraph(graph);

17 ...

18 if(<graph_update_required_condition >)

19 {

20 vx<KernelName >Node(graph , ...);

21 ...

22 vxRemoveNode(<node_var >);

23 ...

118 2 Background

24 status = vxVerifyGraph(graph);

25 }

26 else

27 ...

28 }

Listing 5.2: Graph modifications

Node callbacks represent a mechanism to control the graph execu-

tion flow on the host side by specifying a function to be called after the

execution of a particular node. Node callbacks are set through the vx-

AssignNodeCallback function with two parameters, the graph node and

the callback function. Callbacks are intended to provide simple early

exit conditions, based on the return value of the passed function. If

VX_ACTION_CONTINUE is returned, the graph execution on the target de-

vice will continue. If VX_ACTION_ABANDON is returned, execution is un-

specified for all nodes whose execution must follow the callback owner.

In practice, the execution of the graph on the device may be aborted due

to application constraints (e.g., a deadline was missed or an intermediate

result was sufficient to take some decisions). Listing 5.3 shows the typical

usage of a node callback.

12 ...

13 vxAssignNodeCallback(<node_var >, func);

14 status = vxVerifyGraph(graph);

15 status = vxProcessGraph(graph);

16 ...

17 }

18

19 vx_nodecomplete_f func(vx_node n)

20 {

21 ...

22 if(<exit_condition >)

23 return VX_ACTION_ABANDON;

24 return VX_ACTION_CONTINUE;

25 }

2 Background 119

Listing 5.3: Node callback

2.3 OpenVX execution model and RTE

OpenVX was conceived for heterogeneous systems including a host pro-

cessor and a parallel accelerator, however, it can be compiled and ex-

ecuted on any machine. Typically, programmers develop and test their

vision applications on a development platform (e.g., an x86 workstation).

Once the application code is debugged and tuned, it can be executed as-

is on the target OpenVX installation for heterogeneous systems. When

deployed to a heterogeneous system, an OpenVX graph is created and

verified on the host, while graph execution is offloaded to the accelerator.

Generally, OpenVX relies on a graph-based runtime environment (GB-

RTE), which leverages a graph interpreter running on the accelerator

side, that is a small software layer capable of reading an OpenVX graph

description and orchestrating the execution of the corresponding kernels.

Since local memory in mW-scale parallel accelerator is a scarce resource,

it is important to design the OpenVX RTE with minimal memory foot-

print (RTE code and metadata). Table 1 reports the contributions to the

memory footprint associated to the three main operations in an OpenVX

program. The main contribution to RTE metadata footprint is the graph

data structure, whose size depends on the application.

Stage Code footprint RTE metadata
Creation API support Graph
Verification API support Graph
Execution Interpreter Graph

Table 5.1: OpenVX program phases.

120 2 Background

Figure 5.2: Example of an OpenVX graph and its expansion after tiling.

Data tiling is a common optimization for scratchpad-based architec-

tures, used to enable high-locality computation on the fast L1 memory

via explicit DMA transfers. The OpenVX standard incorporates tiling as

the main technique to manage diverse memory hierarchies with a single

program source. This technique is essential to execute a full graph with

any image size on the target accelerators, but at the same time tiling

policies affect the size of an OpenVX graph.

Figure 5.2 shows an example of how data tiling increases the size of a

graph. Two node types are shown, DMA transfers and executable kernels.

Points where the graph interpreter is invoked are also highlighted.

After tiling, the graph includes a number of nodes much larger than

the number of application kernels, because the graph structure is repli-

cated to consider different configurations (e.g., image borders, corners or

inner tiles) and different target buffers (e.g., double-buffering) for each

sub-graph generated by applying the tiling policies. In addition, nodes

to program DMA transfers are added to the graph.

To further complicate the scenario, there are applications for which no

tiling scheme is feasible, as they contain kernels that cannot be processed

in parts (e.g., histograms) or because the tiling algorithm can’t fit all the

buffers in the SCM. In these cases the graph is automatically partitioned

by the RTE into multiple sub-graphs during the verification stage. Inside

each sub-graph tiling is applied and intermediate results at the sub-graph

2 Background 121

frontier are saved on a temporary buffer out of the small L1 SCM (e.g.,

the L2 memory). An estimation of the graph footprint inflation due to

data tiling can be achieved with this formula:

a ∗Nintiles ∗Nnodes + b ∗Ntiles + c (5.1)

The terms are:

• a is the average size of a kernel node.

• Nintiles is the number of input tiles.

• Nnodes is the number of nodes in the application graph.

• b is the average size of a transfer node.

• Ntiles is the total number of tiles (input + output).

• c is the total size of additional helper nodes.

Concerning the code footprint, the graph interpreter represents the

main contribution. The graph interpreter is invoked each time a node

is completed, marking the output dependencies as satisfied and looking

for the next node to execute. A node is ready for execution when all

its input dependencies are satisfied; to support a generic topology, a full

graph visit is performed at each interpreter call, and this implies a full

iteration on the node set. As a consequence, the graph expansion due to

tiling does not have an impact on the code footprint for the interpreter.

However, it does have an impact on the time overhead (and associated

energy) for executing the interpreter more often.

122 3 Code Generation-based RTE

3 Code Generation-based RTE

Applying Formula 5.1 to existing GB-RTE OpenVX implementations for

multi- and many-core accelerators [29], the size required to represent a

kernel node can be computed as the total memory requirement of actual

kernel parameters plus a number of words (4 bytes) equal to the output

dependencies. The size required to represent a DMA transfer node is a

fixed amount (40 bytes) plus a number of words (4 bytes) equal to the

output dependencies. Additional helper nodes (start, end) require from

96 to 128 bytes. As a quantification, applying this formula to the Sobel

filter used in Section 4, which has 3 kernels and 64 input tiles, the final

graph size is 29.68 KB.

Our alternative to GB-RTE is to replace the graph data structure and

its management (i.e., the graph interpreter) with control-code generation

(CG-RTE). This has the potential to reduce the total RTE footprint

(metadata) and to reduce the management overheads. The binary foot-

print of the generated code can be computed using this formula:

(a ∗Nimages + b ∗Nnodes + c) ∗ d (5.2)

The terms are:

• a is the number of C lines required per each input or output tile,

and its average value is 8.

• Nimages is the number of defined images.

• b is the number of C lines required for each node. It can be com-

puted as the average of pi+2, where pi is the number of parameters

required by node i.

3 Code Generation-based RTE 123

• Nnodes is the number of nodes in the application graph.

• c is a constant number of C lines, and its value is 35.

• d characterizes the average density of assembly instructions per C

line on the target platform. An average value valid for the experi-

ments of Section 4 is 11.9.

Applying this formula to the same Sobel filter considered for GB-

RTE, the final graph size is 25.88 KB, that is a 15% reduction in code

size also for a very small graph. In practical case, Nintiles is much greater

than (Nimages, and so the result of Formula 5.1 is greater than the result

of Formula 5.2

Figure 5.3 describes the main steps of our approach. The program

source is compiled on the developer workstation, and linked with a stan-

dard OpenVX RTE (libopenvx.so) and a node implementation (libXYZ.so)

targeting the workstation environment. Testing and debug are performed

on the developer workstation. These initial steps are totally equivalent

to the standard OpenVX workflow.

In addition to that, to deploy the program on the target architec-

ture we require the call to vxProcessGraph to be replaced with a call

to vxSaveGraph. With this new function, the source is processed by a

cross-compiling toolchain to generate two binaries: (i) a program for the

target host, obtained by the original program linking a lightweight run-

time called milliVX (libmillivx.a); (ii) a program for the target accelera-

tor, obtained by linking a static version of the program graph generated

via a code-generation approach to the kernel library implementation for

the target accelerator (libXYZ.a). Dynamic features of OpenVX are pre-

served by this approach, since a proper support for graph updates and

124 3 Code Generation-based RTE

Figure 5.3: Developer workflow using our approach.

callbacks is provided by the milliVX RTE.

3.1 Extension for static graph support

Using the API extension, a call to vxSaveGraph produces a binary file,

using a compilation toolchain to generate a sequence of intermediate

artifacts:

1. graph control function – A C function is created for each OpenVX

graph, including the code required to orchestrate the kernel execu-

tions and the DMA transfers specific of the graph instance.

2. entry point function – A C function is created as an entry point

for the execution of the OpenVX application. It orchestrates the

execution of multiple sub-graphs deriving from a single application.

3. intermediate linked object – An object file is generated by linking

the single artifacts (i.e., control functions, entry point function, and

kernel functions).

3 Code Generation-based RTE 125

Code generation, compiling and linking steps are executed transpar-

ently by vxSaveGraph. This solution is based on a set of standard fea-

tures common to modern compilation toolchains. In our implementation,

we use the LLVM [101] toolchain libraries (libClang and libLLVM) to

generate C code and translate it into LLVM intermediate representation

(IR) artifacts.

Graph control function

A graph control function includes the capabilities provided by the union

of a graph data structure and a graph interpreter from the GB-RTE. This

approach enables the use of different algorithms for data tiling and kernel

scheduling. Basically we reuse the algorithms provided by the verification

stage of the baseline GB-RTE with minimum modifications, with the aim

to perform a fair comparison limited to the execution phase. The code of

a graph control function is generated on the basis of a common template,

which is described by Algorithm 1.

Lines 1-6 contain the initialization phase of the algorithm. The lo-

cal buffers are allocated in SCM, the first set of input DMA transfers is

performed and the second one is programmed targeting a set of shadow

buffers. The double-buffering technique enables the overlap between data

transfer and computation. The loop in lines 7-15 drives the computation

on all input sets, using data tiling. Line 8 updates the data structures

containing the actual parameters for the kernel executed at iteration i,

and it involves a limited number of fields changing between adjacent it-

erations. In lines 10-13, the algorithm flow awaits the completion of the

required input transfers (input set i+1) and the output transfers related

126 3 Code Generation-based RTE

1: – Allocate memory for SCM buffers
2: – Program the first set of input DMA transfers
3: – Initialize the data structures containing the kernel function

parameters
4: – Wait the first set of input DMA transfers
5: – Program the second set of input DMA transfers
6: – Initialize to 0 the double-buffering state
7: for input tile set i do
8: – Update kernel parameters for the current set i
9: – Execute kernels (respecting the scheduling order)

10: – Wait the previous set i− 1 of output DMA transfers
11: – Program the current set i of output DMA transfers
12: – Wait the next set i+ 1 of input DMA transfers
13: – Program the future set i+ 2 of input DMA transfers
14: – Update the double-buffering state for set i+ i
15: end for
16: – Wait the last set of output DMA transfers;

Figure 5.4: Control function generation (pseudo-code).

to the buffers to be reused (output set i− 1). The resulting code imple-

ments the control logic of the graph for which it has been generated, and

does not require complex data structures since all the instance-specific

constants are encapsulated. Moreover, for each node there is a single

copy of the data structures containing the kernel actual parameters, and

the required fields are updated when executing different tiles. This re-

quires a limited amount of stack memory area, just proportional to the

number of nodes in the longest graph schedule. In practice, the average

stack requirement for the standard OpenVX kernels is limited to 64 bytes

per graph node.

Figure 5.5 shows an example of generated code, corresponding to

the graph depicted in Figure 5.2. The regions are colored to high-

light the same steps described in the code generation template. All

3 Code Generation-based RTE 127

the uppercase identifiers are constant values, computed at code gen-

eration time on the basis of graph analysis results (e.g., considering a

80×80 tiling schema with overlapping borders IMG0_TILE_WIDTH could

be 82). Consequently the resulting code is highly optimized for a spe-

cific instance, as the compiler can apply constant value optimization

passes. Region 1 includes the code to allocate the required space in

the SCM, and each single buffer is computed in terms of offset. Re-

gion 2 includes the first set of DMA transfers, one for each input im-

age. The dma_memcpy_2d function program the DMA to perform a 2D

transfer from the external memory to the SCM (EXT2LOC) specifying

the full size of data (IMG0_TILE0_SIZE), the stride between adjacent

lines (IMG0_STRIDE) and the line width (IMG0_TILE0_WIDTH). Region 3

contains the instructions to initialize the kernel-specific parameters, in-

cluding width and height of the tile to compute. Region 4 includes a

cumulative wait instruction for the DMA transfers of region 2. Region

5 includes the second set of DMA transfers, one for each input image.

Region 6 initializes the variable buffer_index, used to maintain the

double-buffering state. The subsequent regions (7-13) contain the code

of the tiling loop, whose iterations correspond to distinct set of tiles as

provided by the tiling algorithm. Regions 7 includes the code to initialize

the parameters that change at every iteration (e.g., buffer location), so

that in Region 8 all the kernels are invoked in the exact order provided

by the scheduler algorithm. Regions 9-12 include the management code

for the DMA transfers: (9) await the previous set of output transfers to

guarantee the availability of the corresponding output buffers, (10) pro-

gram the output DMA transfers for the last computed result, (11) await

the input transfers of data required by the next cycle and (12) schedule

128 3 Code Generation-based RTE

Figure 5.5: Control function code.

the next set of input transfers. Region 13 updates the double-buffering

state. Finally, region 14 waits for the remaining DMA output transfers

programmed in the last iteration of the tiling loop.

Figure 5.6 shows a graph representation of the control function code,

which can be compared to the graph-based approach depicted in Fig-

ure 5.2. Multiple calls to the graph interpreter are replaced with two

application-specific control code blocks, and the tiling policy is enforced

using a loop.

3 Code Generation-based RTE 129

Figure 5.6: Graph representation.

Entry point function

An entry point function orchestrates the execution of the multiple sub-

graphs derived by the tiling policies. In addition, the entry point function

manages graph updates and node callbacks.

In practical cases, graph updates affect a limited portion of an OpenVX

graph, otherwise it would be more convenient to create a totally new

graph instance. Starting from this assumption, we extended the OpenVX

context to be aware of modifications to the graph structure applied after

one or more executions. When a single node or a connected subset is

removed and replaced with another node or connected subset, our al-

gorithm generates additional sub-graphs. All alternative paths in the

original OpenVX graph must be explored and verified to generate all the

code variants. For instance, Listing 5.2 is modified as depicted in Listing

5.4.

130 3 Code Generation-based RTE

12 ...

13 status = vxVerifyGraph(graph);

14 #ifdef CODE_GENERATION

15 while(<running_condition >)

16 #endif

17 {

18 #ifndef CODE_GENERATION

19 status = vxProcessGraph(graph);

20 #endif

21 ...

22 #ifndef CODE_GENERATION

23 if(<graph_update_required_condition >)

24 #end

25 {

26 vx<KernelName >Node(graph , ...);

27 ...

28 vxRemoveNode(<node_var >);

29 ...

30 status = vxVerifyGraph(graph);

31 }

32 #ifndef CODE_GENERATION

33 else

34 #end

35 ...

36 #ifdef CODE_GENERATION

37 vxSaveGraph(graph , <filename >, <options >);

38 #endif

39 }

Listing 5.4: Graph modifications

A call to vxSaveGraph following all the modifications creates the addi-

tional graph control functions corresponding to the new sub-graphs and

generates a new entry point function introducing control flow variables.

These are integer variables that are passed as an input parameter to the

entry point function. The actual value of a control flow variable dis-

criminates what version of the related sub-graph must be executed. This

3 Code Generation-based RTE 131

vxRemoveNode(n1);
n2 = vxT2Node(…);
n3 = vxT3Node(…);

void entry_point_function(int cfv1) {
graph_control_function1(…);
if(cfv1)

graph_control_function2(…);
else

graph_control_function3(…);
}

Figure 5.7: Example of graph modifications.

behavior is equivalent to having more variants of the same graph, and

each control flow variable select a specific variant. Figure 5.7 shows an

example of graph modification. Node n1 is removed, and nodes n2 and

n3 are added. Consequently, two alternative sub-graphs are generated,

the common sub-graph 1 and the alternative ones 2 and 3. The gener-

ated code for the entry point functions enables to switch between 2 and 3

on the basis of the control flow variable cfv1 (the next section describes

how to practically use this mechanism in the milliVX framework). When

the algorithm fails in generating alternative sub-graphs (i.e., sub-graph

deriving from distinct graph updates intersect), the framework generates

totally distinct graphs. In this case a warning is generated to inform the

programmer that graph modifications were too pervasive and subgraph

generation was not possible, since this condition could increase the final

binary size. This particular condition is related to complex polymorphic

132 3 Code Generation-based RTE

behaviors that are not common of OpenVX applications, but neverthe-

less this corner case is correctly supported by our framework. Overall,

this methodology totally preserves the semantics of the original program

and ensures full code portability.

In our execution model, the support to callbacks is provided by means

of a communication protocol between the host and the accelerator. A

notification is fired to the host in the entry point function exactly after

the execution of the sub-graph that includes the involved node, and the

execution is suspended waiting for a message back from the host. The

response message contains a Boolean value representing the continuation

status; if false, the execution of the current binary on the accelerator

is aborted. Since the node abstraction is not available in the milliVX

RTE, a numerical identifier is returned for each callback. The described

behavior is fully compliant with the OpenVX standard, which specifies

that callbacks are not guaranteed to be called immediately after the node

completes.

Intermediate linked object

An intermediate linked object is the final step in the binary generation

flow. It is compiled by the toolchain back-end for the target architecture

into a single binary file, applying link-time optimization (LTO) passes,

such as basic inlining and dead-code elimination. In addition, we designed

a new LTO pass to maximize the execution performance yet limiting the

binary size. This pass forces the inlining of a kernel function keri when

(i) it is invoked once (whatever its size) or (ii) it is invoked n times and

3 Code Generation-based RTE 133

this property holds:

(n− 1)×memsize(keri) < α
n∑

j=1

memsize(kerj) (5.3)

The parameter α is the percentage of the total kernel footprint (supposing

no other inlining) that we could not exceed to inline the current kernel.

3.2 milliVX framework

In the context of our target mW-scale architecture, milliVX is a lightweight

framework available to the MCU host to load a program binary corre-

sponding to an OpenVX static graph and then offload its computation

to the parallel accelerator. The milliVX API specification includes the

following functions:

• mvxCreateContext – Create a lightweight context for the RTE.

The implementation details are strictly dependent on the target

platform.

• mvxCreateImageReference – Create a reference to an image loca-

tion, providing a pointer. The address value is required to enable

the graph binary to access input/output images. An image refer-

ence must be instantiated for each concrete image in the original

OpenVX program. Virtual images just represent dependencies, and

the generated code already handles these dependencies internally.

• mvxLoadGraph – Load a graph into the accelerator L2 memory,

in the format provided by vxSaveGraph. This function returns a

handle to the loaded graph.

134 3 Code Generation-based RTE

• mvxProcessGraph – Start the execution of the graph on the ac-

celerator. The required parameters are the graph handle returned

by mvxLoadGraph, the graph input/output image references and the

control flow variables. The control variables are set by the program

logic with the aim to execute a specific graph variant.

• mvxAssignNodeCallback – Set a function callback. The required

parameters are the callback identifier (provided by the extended

OpenVX RTE) and the function to execute. The function could be

the same provided in a standard OpenVX RTE, with the only dif-

ference that API function must be replaced with their equivalent in

milliVX ; in most cases, the access to a framework object is replaced

with a direct memory access. The communication protocol between

the host and the accelerator, used to manage the callback behav-

ior, is handled by the milliVX RTE. The communication internals

are based on platform-specific mechanisms (e.g., shared memory

or communication channels), and also the synchronization can be

achieved using alternative mechanisms (e.g., a software interrupt

or a polling thread).

The structure of a milliVX program is much simpler than an equiva-

lent OpenVX program. Creation and verification stages are performed by

the extended RTE producing a static graph, and milliVX only handles

the execution stage. A milliVX program can be automatically derived

from the corresponding OpenVX code. Pointers to input/output images

are provided as global external variables keeping the original names, and

these symbols must be resolved at link time. The actual parameters for

control flow variables when invoking mvxProcessGraph is derived by a

static control flow analysis of the source code. Listing 5.5 shows the

4 Experimental results 135

structure of a milliVX application using callbacks.

14 mvx_context ctx = mvxCreateContext ();

15 mvx_graph graph = mvxLoadGraph(<binary_location >);

16 mvx_image img0 = mvxCreateImageReference(ctx ,<ptr >);

17 mvxAssignNodeCallback(<callback_id >, func);

18 ...

19 status = mvxProcessGraph(graph , <image_references >,

20 <control_flow_variables >);

21 }

22

23 mvx_nodecomplete_f func(int callback_id)

24 {

25 ...

26 if(<exit_condition >)

27 return MVX_ACTION_ABANDON;

28 return MVX_ACTION_CONTINUE;

29 }

Listing 5.5: milliVX callback support

4 Experimental results

This section describes a set of experiments performed to compare our

approach to a standard dynamic graph-based framework. First, we mea-

sure the impact of code and runtime data footprint when comparing

CG-RTE and GB-RTE. Second, we show how CG-RTE enables perfor-

mance speedups due to link-time optimizations enabled by the approach.

Third, we discuss how the reduced memory accesses due to graph re-

moval enable important energy savings for CG-RTE. Finally, we discuss

the impact of tiling on reducing the bandwidth pressure on the slow SPI

channel.

136 4 Experimental results

4.1 Setup

The benchmarks used for experiments include a set of representative CV

kernels for constrained embedded systems:

• Sobel is a gradient-based edge detector (nodes: Sobel 3×3, gradient

magnitude, thresholding);

• FAST9 implements FAST9 algorithm [66] (nodes: FAST9, find

maxima, non-maxima suppression);

• Pyramid creates a set of scaled and blurred images (nodes: Gaus-

sian blur, half scale, ... repeated 3 times);

• Canny implements an edge detector algorithm (nodes: Sobel M×N,

element-wise norm, phase, non-maxima suppression, edge tracking

by hysteresis);

• Harris implements a corner detector algorithm (nodes: Sobel M×N,

Harris score computation, Euclidean non-maxima suppression, cor-

ner lister);

• NCC is an algorithm to detect abandoned/removed objects in a set

of adjacent video frames [64] (nodes: NCC filter, erode);

• Disparity computes the stereo-matching disparity between two im-

ages (nodes: subtraction, multiplication, integral image, area sum,

disparity computation).

• CNN is a convolutional neural network [102] including four lay-

ers made of 48 total nodes (node types: convolution, add, max-

pooling).

4 Experimental results 137

The reference image size used for experiments is VGA, typical of

ultra-low cost imagers.

As a reference platform for our experiments we use accurate simu-

lation models for a heterogeneous system coupling a MCU host with a

PULP multi-core accelerator, based on the open source tool ADRENALINE

[29]. In our target platform, we include an external frame memory (FM)

intended to store input/output images, while L2 is dedicated to code and

run-time data. FM is an off-chip component, as its size could scale up

to several MBs depending on the target image format. The system is

configured as follows:

• Host: STM32-L476 MCU [103] – number of cores = 1 (ARM Cor-

tex M4), core frequency = 26 MHz

• External memory: memory size = 1 MB, access latency = 50

cycles, bandwidth = 0.125 bytes/cycle

• PULP v3 cluster: [96] number of cores = 4 (OpenRisc OR10N),

core frequency = 200MHz, SCM size = 64 KB, L2 size = 128 KB,

L2 access latency = 5 cycles, L2 bandwidth = 4 bytes/cycle

The power consumption of a PULP cluster in 28 nm FDSOI tech-

nology [104] (running at 200 MHz, with a voltage supply of 0.7 V) is

9mW. The power consumption of the SoC periphery, IO pads and sup-

port circuits is around 2mW. The bandwidth and latency to the external

memory are modeled after those of a SPI interface providing 100 Mbit/s

transfers @ 100 MHz. For realistic performance and power consumption

measurement, the simulation platform has been augmented with a per-

formance monitoring unit that is used to measure active and idle cycles

138 4 Experimental results

Figure 5.8: Code footprint (GB-RTE vs CG-RTE).

for cores, DMA, interconnects and external memory access. Power num-

bers for the host + SPI are pre-characterized with real measures on a

STM32-L476 MCU. Leakage and dynamic power numbers for the PULP

accelerator are extracted from a post-layout back-annotated timing and

power analysis (PULP v3 chip @ 200 MHz). To compile the benchmarks,

we used the ARM Sourcery Linux GNU toolchain (version 4.8.2) for the

ARM Cortex-M target and the OR10N LLVM/Clang toolchain (based

on LLVM 3.7) for PULP.

4.2 Memory footprint

Figure 5.8 compares the code footprints on GB-RTE and CG-RTE, high-

lighting the percentage savings of the second solution. Both RTEs allo-

cate code and runtime data structures on the L2 on-chip memory. Com-

mon includes a set of low-level primitives for parallelism management

that are used by both runtime environments. The variations on kernel

footprint are related to the degree of code optimization enabled at com-

pile and link time by the two approaches. In GB-RTE the kernels are

standalone shared objects, and they are dynamically loaded at execution

4 Experimental results 139

Figure 5.9: Total memory savings (CG-RTE vs GB-RTE).

time. Consequently, their total memory footprint is the sum of all kernel

binaries. In CG-RTE the kernels are merged with the generated control

code at link time to produce a single binary for the accelerator. This

allows to enable aggressive LTO passes in the toolchain, with an impact

on the code size. In the benchmarks the code size is increasing in Canny,

which contains multiple inlined instances of the same kernels.

Figure 5.9 compares the memory footprint of CG-RTE and GB-RTE.

The figure also reports percent L2 memory savings using CG-RTE in-

stead of GB-RTE (these gaps are highlighted by vertical dashed lines).

GB-RTE includes the graph interpreter (Section 2.3), that is independent

of the executed benchmark. CG-RTE includes the control code gener-

ated for the specific benchmark (Section 3.1). The minimum difference

between the runtime supports is variable, and in general CG-RTE could

exceed GB-RTE. This effect is evident for CNN, which has a high num-

ber of kernels whose orchestration requires more lines of generated code

w.r.t. other benchmarks. A horizontal dotted line highlights this over-

head (about 1.30 KB). In any case its value is always lower than the sum

of GB-RTE and the corresponding runtime graph. Overall the removal

140 4 Experimental results

Figure 5.10: Execution time (GB-RTE vs CG-RTE).

of the RTE runtime graph is the major contribution to on-chip memory

saving, that is a primary goal of our work.

4.3 Execution time

Figure 5.10 reports the execution time of the benchmarks for both run-

time versions. The speed-up of CG-RTE over GB-RTE varies from 1.04

to 7.89, and this behavior depends on three main factors. First, it is

proportional to a C/C factor, which includes the impact of the compu-

tation intensity of the kernel in terms of computation/communication

ratio. Second, it is proportional to the number of tiles, as the overhead

introduced by graph interpretation in GB-RTE is higher. Third, it is

inversely proportional to the number of nodes, as the overhead of gener-

ated control loop in CG-RTE increases with this metric. The data table

in Figure 5.10 reports these factors, and the resulting speed-up can be

computed by the formula C/C ∗ Tiles/Nodes. The resulting speed-up is

4 Experimental results 141

Figure 5.11: Energy efficiency of the STM32-L476 host compared to the
PULP accelerator.

an additional benefit of our approach, mainly due to the aggressive link-

time optimizations that are possible in the CG-RTE runtime (described

in Section 3.1). The execution time on the MCU is also reported for

comparison.

4.4 Energy efficiency

The reported MCU setup implies an average power consumption of 8.64

mW, close to the 8.10 mW value computed for the PULP accelerator.

Considering this operating point, Figure 5.11 shows the energy efficiency

of both OpenVX RTEs on the mW-scale accelerator with respect to the

execution on the STM32-L476 MCU. To make a fair comparison, we

compiled the optimized code generated by CG-RTE for the MCU target,

using an intermediate C representation which includes advanced inlining.

In addition, we used a basic instruction set for both cores to avoid the ef-

fects of vectorization or special-purpose acceleration. Overall, the energy

efficiency of the MCU is two order of magnitude less than the one mea-

sured on the accelerator. Figure 5.11 also reports the ratio between the

energy efficiency of CG-RTE and that of GB-RTE. On average, CG-RTE

142 4 Experimental results

Figure 5.12: Frame memory bandwidth.

improves energy efficiency by 2.14×. This increase in energy efficiency

is mainly due to the lower number of executed instructions and to the

reduced number of L1/L2 accesses to runtime data which are replaced

with cheaper control instructions (ALU operations).

4.5 Bandwidth reduction

Figure 5.12 shows the bandwidth required by both RTEs compared to a

baseline implementation that access the external memory to store all the

intermediate results. The bandwidth is computed as a ratio between the

memory traffic required to compute a single image and its corresponding

execution time on the accelerator. This consistent reduction enables the

use of a low bandwidth SPI serial memory, while the access latency is

hidden by double-buffering. There is no significant difference between

GB-RTE and CG-RTE regarding the access patterns on the external

memory. The bandwidth requirements of CG-RTE are lightly lower since

the tiles are typically greater (L1 memory does not contain a reserved

area for RTE data) and consequently the border effects are less evident.

Conversely, the bandwidth requirements of L2 and L1 memories are

5 Related work 143

affected. In GB-RTE a runtime graph must be read from L2 and writ-

ten to L1 to be used by the graph interpreter. This amount of data is

equal to the size of the runtime graphs, as reported by Figure 5.9. Us-

ing code generation these accesses to L1 and L2 are totally removed, as

runtime parameters are directly encoded as instruction immediates with

no additional redundancy.

5 Related work

The role of OpenVX to achieve performance optimization at system level

has been initially highlighted in [71]. Its execution model assumes a

graph-based application description. This is a very common approach in

literature, and it has been extensively used to derive foundational models

such as task graphs [105] and data-flow graphs [106]. The semantic of

OpenVX defines a dependency graph, that is a structure that describes a

partial evaluation order among kernel nodes. This approach is common

to other modern programming models, such as OpenMP 4.0 tasking [107]

and Intel TBB library [108]. The OpenVX standard has been supported

by several major industries interested into CV acceleration on parallel

computation devices, such as NVIDIA, AMD and Synopsys [109].

Alternatives to OpenVX are Halide [54] and HIPAcc [70], which

allow programmers to specify a functional description with a domain-

specific language. However these solutions present major limitations

when applied to generic CV algorithms, in particular (i) irregular data

patterns are not supported, (ii) composability of software modules is lim-

ited to pipeline patterns, and (iii) schedule management requires to write

platform-specific code. OpenCL [61] allows applications to use pre-built

144 5 Related work

binaries, or alternatively to load and compile the program source at run-

time. We apply the first method on the host side to load a pre-built

OpenVX application, but in our optimized approach the source code for

the accelerator is automatically generated from an OpenVX program.

The principle of code generation has been applied effectively in sev-

eral contexts. In the context of Domain Specific Embedded Languages,

code generation is commonly used to transform high-level patterns and

structures into efficient parallel code for different architectures, such as

CPUs [110], GPUs [111] or DSPs [112]. Machine learning techniques can

be also used to generate efficient code for a specific algorithm [66]. An-

other technique which is strictly connected to code generation is partial

evaluation. A computer program can be modeled as a mapping of in-

put data into output data. A new mapping (i.e., a new program) can

be obtained by removing from the input space all the dimensions corre-

sponding to static inputs that are totally known at compile time. This is

the principle that we have considered in this chapter, initially introduced

by the first Futamura projection [113] in the context of code interpreters.

We have extended this basic principle in two ways, by generating the

code at the runtime level of a meta-model (that is the OpenVX program

executing on the developer workstation) and by supporting the dynamic

aspects of the original execution model with specific control code.

OpenVX support has been provided for different devices. The Khronos

website [23] provides a sample implementation of the OpenVX specifica-

tion targeting x86 architectures. VisionWorks [114] is software develop-

ment toolkit that implements the OpenVX standard, targeting CUDA-

capable GPUs and SOCs. Another OpenVX implementation supports

5 Related work 145

the PAAG array processor (Polymorphic Array Architecture for Graph-

ics and image processing) [115], a polymorphous architecture specifically

tailored for graphics rendering and image processing. An OpenVX frame-

work tailored for low-power many-core accelerators has been presented

in [27]. Most of these solutions are characterized by a power consump-

tion from 500 mW up to 5 W with no specific memory limit, while the

techniques described in this chapter are intended for heavily-constrained

mW-scale devices.

State-of-the-art mW-scale MCUs (e.g., STMicroelectronics STM32-

L476 [103], SiliconLabs EFM32 [116] and Texas Instruments MSP430

[117]) already target a power budget lower than 50 mW, but they can-

not guarantee high computing performance for the embedded vision do-

main. To bridge this gap some MCUs provide fixed-function hardware

blocks [118] [119] or partially programmable accelerators [120], but their

programmability is very limited and they cannot support a full OpenVX

framework. In this chapter we have preferred a more general approach,

coupling to the MCU a fully programmable accelerator able to execute

diverse and complex workloads with a limited budget for silicon area and

power consumption. Some multi-core MCUs [121] [122] are available, but

they employ multiple cores with the objective to save power distributing

heterogeneous tasks to specialized units.

Today the market offers several products that can be included in the

class of mW-scale parallel accelerator, mostly in the segment of licensable

IP cores. DesignWare EV52 and EV54 processors [94] by Synopsys inte-

grate two or four 32-bit ARC HS cores with up to eight programmable

accelerators optimized for CV and convolutional neural networks. CEVA-

XM4 processor [93] is based on a general-purpose DSPs, with a VLIW

146 6 Conclusion

support up to eight parallel operations on 4,096 bits. Cadence IVP pro-

cessor [89] is based on the configurable Xtensa CPU/DSP, supporting

three parallel operations on 512 bits. Considering platform proposed by

academic institutions, possible candidates to the role of multi-core accel-

erator are Centip3de [95] and PULP [96]. Centip3de is a clustered-based

fabric of Cortex M3 cores, while PULP presents a similar design based

on OpenRISC cores. These solutions rely on near-threshold and parallel

computing to increase performance and energy efficiency. We used PULP

as a target, for two main reasons: (i) its architecture is representative of

our device class, and (ii) a virtual platform with an OpenVX RTE was al-

ready available for tests and comparisons. To the best of our knowledge,

no optimized OpenVX support is provided for any platform including a

MCU and a mW-scale parallel accelerator.

6 Conclusion

In this chapter we propose an alternative and novel approach to provide

OpenVX support in heterogeneous systems including a MCU and a par-

allel accelerator. Our main contributions are an extension to the original

OpenVX model to support static management of application graphs, and

the definition of the milliVX specification, which provides a lightweight

support to execute static graphs in a resource-constrained environment,

without renouncing the dynamic features provided by OpenVX. Exper-

imental results show that our approach drastically reduces the memory

footprint (-68%) and the required bandwidth (-10%). Moreover, there

is an average 3× execution speed-up and a 2× energy efficiency com-

pared to a baseline implementation. From a theoretical point of view

6 Conclusion 147

our approach is fully scalable w.r.t. the number of nodes and process-

ing elements in the system, with the only limitation given by the system

resources.

Chapter 6

A new frontier: supporting

approximate computing on

mW-scale parallel accelerators

1 Introduction

Embedded systems targeting ultra-low power (ULP) markets are mostly

implemented with single-core microcontrollers [123] [124] [125]. Usually,

the computational power delivered by such systems within the admitted

power envelope is sufficient for satisfying the very low demand of the

target applications. This assumption is less and less valid for today’s

deeply embedded sensing applications [126], whose computation require-

ments grow to match the complexity of increasingly sophisticated work-

loads. To match conflicting requirements for energy consumption and

performance, near-threshold multi-core systems have been recently pro-

posed [127] [95] [128] in application fields such as industrial automation,

wearable consumer electronics, human-computer interfaces and pervasive

1 Introduction 149

video infrastructures. By joining parallelism with near threshold comput-

ing, these systems are able to provide more than one order of magnitude

increase in energy efficiency [129] preserving the performance target.

In the context of energy efficient computing platforms operating in

near-threshold, the memory system emerges as one of the most critical

components, burning more than 50% of the total chip power [130] [32].

While standard voltage scaling techniques can be to some extent ap-

plied to reduce energy, their aggressive use is not possible for memory

energy reduction as operations on standard six-transistor static RAM

(6T-SRAM) cells become unreliable at low voltages due to the lack of

sufficient static noise margin and read/write stability [131]. On these

premises, the design must take into account a specific voltage domain to

be kept at higher voltage that includes the memory system, and energy

requirements become even more memory-dominated. Advanced design

techniques have been proposed to improve the performance of SRAM

banks at low voltage [132] [133] [134], but overall their adoption is diffi-

cult due to area and cost considerations [135]. A promising solution con-

sists of adopting a heterogeneous memory architecture [136] [34], which

includes both 6T-SRAM and standard-cell memory (SCM) banks.

The key idea of this approach is that SCM banks and 6T-SRAM banks

can be powered at different voltage levels. At high voltage both memories

operate reliably, but the SCM consumes significantly less energy. At low

voltage, the 6T-SRAM has an associated probability of error (flip-bit) if

it is read or written, while the SCM remains reliable and more energy effi-

cient. Effectively managing a hybrid memory system requires techniques

to partition data in a way that minimizes energy consumption. For ex-

ample, greedy-allocation heuristics can be applied at the compiler level

150 1 Introduction

to place most frequently accessed data into the memory that maximizes

the metric of interest, e.g., energy efficiency [31], predictability [137] or

performance [138].

In recent years approximate computing has emerged as a promising

approach to design energy-efficient digital systems working at unreliable

voltage levels, ranging from functional units [139] to interconnect [140]

and memory systems. The notion of approximate computing [141] refers

to a set of techniques ranging from programming language- to transistor-

level, with a common aim to allow computing systems to save energy

to the detriment of the quality of the computed results. Approximate

computing is a promising approach in the ULP domain when applications

exhibit inherent tolerance to errors [142] [143] [144].

In this chapter we propose a novel HW/SW approach to design energy-

efficient ULP systems which combine the key ideas of hybrid memory

designs and approximate computing. At the architecture level, we design

a mechanism to split multi-byte data that is “tolerant” to approximation

into multiple memory banks. The most significant bits (MSBs) of a word

are stored in the SCM, while the least significant bits (LSBs) are stored

in the 6T-SRAM. Both memories can be safely powered at the lower volt-

age level: here the SCM operates reliably, while the probability of error

on the 6T-SRAM is guaranteed to be tolerated by the computation (i.e.,

the error is bound to the LSBs). Our experiments demonstrate that this

approach provides much better precision than just dropping the LSBs.

More specifically, we provide an upper bound to the accepted error for

each application included in the benchmark suite, and we show that our

approach complies with these bounds with a safety margin.

To expose the hardware extensions at the software level, we introduce

1 Introduction 151

appropriate source code annotations used to specify what regions of code

and what variables are tolerant to approximation. We choose to extend

the OpenMP programming model, since this approach enables program-

mers to simply handle both parallelism and approximation efforts by

annotating a C program with pragma directives. The annotations are

processed by a compiler pass that implements an allocation heuristic

which places data into one of the available logical memory areas (SCM,

6T-SRAM and split) according to their tolerance to errors. In addition,

since different variables might be accessed in different program regions,

we extend this heuristic to also take into account live ranges of tolerant

variables. At the hardware level the 6T-SRAM memory is partitioned

into multiple, independent voltage domains (1, 2 or 4), and the heuristic

allocates variables with non-overlapping live ranges into distinct domains

to allow for lowering the voltage when a variable is not accessed in the

program.

The proposed techniques have been implemented in the parallel ultra-

low-power platform (PULP) [128]. PULP is a scalable, clustered parallel

computing platform that features a parametric number of processing el-

ements (PE) per cluster, sharing a multi-banked tightly coupled L1 data

memory (TCDM), acting as a scratchpad. At the HW level, our proposal

focuses on energy saving techniques for the TCDM, while the PEs work

at the most energy efficient operating point. To implement and validate

the HW extensions required by our approach we used cycle-accurate sim-

ulation models, back-annotated with energy and performance numbers

taken from a silicon implementation of the baseline system-on-chip (SoC)

with 28 nm ultra-thin body and buried oxide fully depleted silicon-on-

insulator (UTBB FDSOI) technology. Experimental results demonstrate

152 2 Related work

that our approach can reduce the energy consumption of the memory sys-

tem by 47% on average (for a set of real-world benchmarks) compared

to the baseline SoC. Focusing on the whole-system energy, our technique

allows on average 27% savings and outperforms other solutions. We fi-

nally show that our approach is fully compliant with a set of realistic

accuracy levels deriving from practical constraints, which assesses the

effective usability of the described techniques in real-life applications.

2 Related work

In the past few years approximate computing has been considered a

promising approach in different research areas [145] [146]. Many stud-

ies have also pointed out that approximate computing is an amenable

solution for applications in the ULP domain [142] [143] [144], and this fa-

cilitates the translation of such algorithms into energy-efficient hardware

implementations.

Circuit level [147] [148] and architecture level [149] [141] techniques

have been used to to reduce overall energy consumption to the detriment

of numerical accuracy. However, different research works observed that

most of the energy consumed by ULP systems is spent on on-chip mem-

ory [130] [32]. In addition, memory is the primary source of faults, while

logic components are typically more robust. Starting from these consid-

erations, our approach considers the use of two voltage levels for a set of

6T-SRAM domains, with the aim to achieve a significant power reduction

with a disciplined relaxation to approximate results. The rest of our ar-

chitecture is designed to work safely at low voltage, and this assumption

simplifies the overall model with a minimum loss of generality.

2 Related work 153

Raising power concerns to the software level enables a range of en-

ergy savings opportunities at OS [150] and application level [151] [152]

[153] [154]. These approaches require approximate code transformations

with the aim to modify the application code to support the manage-

ment of performance/accuracy tradeoffs. The extensions to the compiler

toolchain required by our framework can be implemented at a higher

level of abstraction w.r.t. the cited approaches. A specific support by

the OS is not required, conversely the requested features can be provided

by a lightweight runtime layer. Moreover, we introduce a minimum set

of preprocessor directives to write error-tolerant parallel programs using

an annotation mechanism that is of immediate use to embedded C/C++

programmers. Note that our approach could be considered orthogonal

to other approximation techniques, since the programming model fron-

tend can be decoupled by the approximation support, which includes the

hardware design, the runtime layer and the compiler support. In this per-

spective the cited tools could be extended to leverage our approximation

support by providing additional directives/keywords.

Approaches based on hardware design of approximated memories can

be classified into two main categories, that are custom [155] and domain-

specific [156] [136]. These solutions are tailored for specific applications

or algorithms and achieve significant energy savings, but overall they

lack the hardware and software support required to implement a general-

purpose application. Using our platform we provide dedicated hardware,

runtime features and compiler support to fulfill this goal.

Different approaches have been proposed to improve the performance

of SRAM at low voltage [132] [133] [157]. A different approach to

the problem is to implement low-voltage memory structures relying on

154 2 Related work

standard-cell memory (SCM) [134]. All the described approaches cause

serious overheads in terms of area, leakage and dynamic power consump-

tion (at same supply voltage) with respect to standard 6T-SRAM [135].

Hence, their adoption for the implementation of the whole memory sys-

tem is impractical, due to area and cost considerations. Frustaci et

al. [158] explore the use of approximate SRAM banks in the context

of error-tolerant applications, at the cost of the occurrence of read/write

errors in the least significant bits of data. Although this technique is

effective, it requires the design of custom SRAM banks featuring deep

circuit-level optimizations, which leads to a low technology portability.

Our approach leverages standard 6T-SRAM cells that can be realized

with any memory generators provided by silicon vendors, and SCM that

can be implemented with standard semi-custom design flows relying on

industrially qualified standard-cells for implementation.

Recent works [159] [160] propose statistical techniques to measure

the program response to injected approximation and derive the behavior

of code and data. Compared to a programmer-annotated version, these

techniques can lead to significant errors in some use cases, by marking as

approximable a variable that is not tolerant for specific execution paths.

Other works propose the adoption of emerging technologies to realize

approximate memory cells, such as RRAM [161] and memristors [162].

These are promising approaches for the future, but today their applica-

tion is limited to specific domains (e.g., neural networks) and requires a

custom design. The solution proposed in this chapter is totally general

and can be directly applied using standard design flows provided by tool

vendors.

3 Hardware Architecture 155

...

...

...

Figure 6.1: PULP architecture with hybrid L1 memory.

3 Hardware Architecture

ULP systems are largely based on microcontrollers featuring simple, cache-

less cores (e.g., Cortex M0 or M4), coupled to simple support for power

management and a standard set of peripherals. The parallel processing

ultra-low-power platform (PULP) [32] [34] aims at providing a significant

boost to the peak performance that ULP systems can achieve by coupling

the multi-core paradigm to the most advanced FDSOI design technol-

ogy and associated techniques for energy efficiency (near-threshold com-

puting, body biasing, etc.) [35]. The following subsections describe the

baseline PULP platform (Section 3.1) and the extensions to the memory

system introduced by our work to support computation approximation

(Section 3.2).

156 3 Hardware Architecture

Figure 6.2: Breakdown analysis of the PULP SoC area.

3.1 PULP with hybrid L1 memory

The PULP instance considered in this chapter consists of a single cluster

featuring 8 PEs and a TCDM composed by 16 6T-SRAM banks of 4KB

each (64KB total) and 16 SCM banks of 1KB each (16KB total), plus

256KB of L2 memory. Each core features 1 Kbyte of I$ implemented

with SCM, hence reliable down to 0.5 V. Three voltage domains are con-

sidered: i) the SoC domain includes the L2 memory and peripherals; ii)

the cluster domain includes the PEs the SCM, the DMA and the clus-

ter interconnect; and iii) the 6T-SRAM banks. A 28 nm UTBB FDSOI

(STMicroelectronics technology) implementation of the platform in this

configuration can operate at 20 MHz @ 0.5 V. We extend this baseline

platform to support computation approximation in strict cooperation

with the programming model. Figure 6.2 shows the contributions of the

hardware components to the total area of a PULP SoC, that we consider

a baseline configuration for this work.

3 Hardware Architecture 157

Voltage [V] 0.50 0.55 0.6 0.65 0.7 0.75
P(bit-flip) 0.0037 0.0012 0.0003 5.24e-5 4.35e-6 6.16e-8

Table 6.1: Probability of bit-flip errors in 6T-SRAM.

3.2 TCDM Reliability Extensions

On-chip memory is traditionally implemented with 6T-SRAM banks work-

ing in super-threshold operating region. When operating close to the

threshold voltage, SCM has demonstrated a better tradeoff between re-

liability, energy efficiency, area and portability among technology nodes

[134]. In particular, although 6T-SRAM cells provide a much better

storage density than SCM (∼ 3×), SCMs are reliable over all the op-

erating voltage range of the architecture (0.5 – 0.8 V) [155]. Accessing

6T-SRAM at a voltage lower than 0.8 V may results in a flip-bit error, as

shown in Table 6.1. These values are derived executing the test patterns

on PULP’s silicon prototypes at different voltages using an Advantest

SoCV93000 tester system. The program performs 1010 memory accesses

on the 6T-SRAM memory area of PULP chips [34], and probability is

computed from the error ratio.

SCM can thus operate at the same low voltage of the logic in a reli-

able way, with the key benefit of providing much smaller energy/access

(∼ 4×) [163]. Based on these observations and on the evidence that we

cannot afford to build the entire TCDM with SCM, we propose a hybrid

L1 memory design. We organize the TCDM in two different physical

memory areas, including 16KB of SCM and 64KB of 6T-SRAM. Here-

after we consider alternative scenarios which provide a different number

of voltage domains for the 6T-SRAM area, corresponding to the follow-

ing memory layouts described in Table 6.2. Considering this size of the

158 3 Hardware Architecture

6T-SRAM region (64KB), a further partitioning would produce a signif-

icant overhead, since the total area would be heavily dominated by the

periphery and embedded power switches in small memory cuts.

A set of reliability management units (RMUs) are introduced in the

path between the interconnect and the TCDM. These are simple combi-

national logic blocks that allow to remap the physical address range of

the TCDM into three distinct logical memory areas:

• SCM – mapped in the SCM physical memory area (reliable at any

operating point);

• 6T-SRAM – mapped into the 6T-SRAM physical memory area (re-

liable at 0.8 V), include multiple regions corresponding to distinct

voltage domains;

• split – MSBs are mapped in the SCM physical memory area and

LSBs in the 6T-SRAM physical memory area.

Figure 6.3 shows the new TCDM design and the defined memory

areas for the memory layout including four 6T-SRAM voltage domains.

Level shifters are required at the boundaries between voltage domains,

i.e., when the 6T-SRAM is operating at 0.8 V and the logic at a lower

voltage (0.5 V). Considering the power breakdown of each memory bank,

the overhead of the level shifters is < 1%. The impact on critical path is

also negligible, mitigated by the fact that delay is dominated by SRAM

6T-SRAM domains SCM cuts 6t-SRAM cuts
1 64 128× 16 16 2048× 16
2 64 128× 16 32 1024× 16
4 64 128× 16 64 512× 16

Table 6.2: Memory layout changing the 6T-SRAM voltage domains.

3 Hardware Architecture 159

0x0000

0x2000

0x08000

OFFSET

0x2000
+

OFFSET

from interconnect

0x0C000

…

0x14000

…

…

…

…

…

0.8V – 1.0V: RELIABLE

0.5V – 0.8V: NOT RELIABLE

0.8V – 1.0V: RELIABLE

0.5V – 0.8V: MSBs RELIABLE, LSBs NOT RELIABLE

0.5V – 1.0V: RELIABLE

Figure 6.3: Hybrid TCDM organization.

banks when they operate at low-voltage (0.5 V), while the paths toward

TCDM is not critical when the 6T-SRAM area operates at high voltage

(0.8 V).

The RMUs provide access to the split area only at word or half-word

level. In both cases, MSBs (upper 16 or 8 bits) are placed into SCM

cells, while LSBs (lower 16 or 8 bits) are placed into 6T-SRAM cells.

Figure 6.4 depicts the remapping of physical addresses when accessing

the split area at word level. This implies that errors can show up only on

LSBs at voltage levels below 0.8 V, guaranteeing a correctness threshold

160 3 Hardware Architecture

6
T
-S

R
A

M
S

C
M

WORD 1 [31:16] WORD 0 [31:16]

WORD 3 [31:16] WORD 2 [31:16]

WORD 1 [15:0] WORD 0 [15:0]

WORD 3 [15:0] WORD 2 [15:0]

WORD 0 [31:0]

WORD 1 [31:0]

WORD 2 [31:0]

BYTE 1BYTE 2BYTE 3

WORD 3 [31:0]

...
...

...

RECONFIGURED

ADDRESS SPACE BYTE 0

Figure 6.4: Reconfigured address space for a word level access in the split
memory area.

for data when executing approximate code regions. In this design memory

cuts are 16-bit wide. A word operation (32-bit) on SCM and 6T-RAM

logical areas implies an access to two 16 bits banks in the corresponding

physical area, while a word operation on the split logical area produces

an access to a 16-bit bank in the SCM physical area and to a 16-bit bank

in the 6T-SRAM physical area. The offset that defines the boundaries

between the three logical memory areas can be configured by writing

into a memory-mapped peripheral, accessible by every PE. Thus, the

memory map can be re-configured on-the-fly by the software, enabling

the optimization of application-specific policies. This design choice is due

to the fact that 32-bit data types are common when programming ULP

microcontrollers. A 64-bit operation in the split area is not supported,

the compiler discards the tolerant flags related to 64-bits variables and

reports a warning message.

4 Software Stack 161

4 Software Stack

4.1 Programming Model

Many works in literature have shown that a variety of applications are

tolerant to errors [164] [165] [166]. In most cases, some code regions of

the application are inherently tolerant, while others must be protected

from errors. To exploit the hardware support to reliability management,

we propose a programming model which is based on a small set of an-

notations involving program statements and variables, that is a common

approach in the field of approximate computing [154] [141]. To fully ex-

ploit the parallel capabilities of our multi-core platform with a limited

programming effort, we adhere to the OpenMP specification [21], which

provides a model for parallel programming that is portable across differ-

ent shared memory architectures. In the PULP platform the program

code is stored in L2 and accessed via private I$. The latter is imple-

mented with SCM cuts, and thus is always reliable. The focus of our

techniques in thus only on data, which reside in the TCDM. The DMA

unit introduced in Section 3.1 can be used to move data between the L2

and the TCDM. Based on these premises, we propose an extension to

OpenMP including two constructs:

• #pragma tolerant – a directive applied to a program statement

to assert that the related code is tolerant to approximation;

• var_list(var1, var2, ...) – a clause coupled to the tolerant

directive to qualify what variables can be actually approximated.

162 4 Software Stack

tolerant region

no access

r/w access (outside a tolerant region)

error tolerant r/w access

r/w access with no tolerance

Region

/

A

T

NT

time

Figure 6.5: Evolution of variables in different program regions.

This model takes into account the full orthogonality between code and

data in terms of approximation behavior. For analytical purposes the ap-

plication code can be divided into multiple regions, each one including

one or more statements. Each #pragma tolerant directive defines a tol-

erant region, while the rest of the code is grouped in non-tolerant regions

(function starting/ending points and tolerant regions define their limits).

At execution time, the program counter evolves through statements be-

longing to different regions, and each program variable can be accessed

or not in a specific region (i.e., it is out of scope or not required). When

a variable is accessed inside a tolerant region, it could be not tolerant to

errors due to specific program constraints. Moreover, a variable can be

error tolerant or not at different points of the execution flow, depending

on the specific region it is accessed in. Figure 6.5 depicts the status of

a set of variables when executing a use case that includes an alternation

of tolerant and non-tolerant regions. In most practical cases programs

start and end with non-tolerant regions with the precise aim to provide

a consistent view to their execution environment.

4 Software Stack 163

1

2

3

4

5

6

7

8

9

10

11

12

13

14

int main (...)

{

int sparse_M[N];

int i = 0, index;

while(func(i))

{

...

index = compute_index ();

#pragma tolerant var_list(sparse_M)

sparse_M[index] = compute_element ();

...

update(i);

}

}

Figure 6.6: A sparse matrix computation with a tolerant directive.

Figure 6.6 shows an example of C code including a tolerant directive.

In sparse matrix computation, matrix indexes cannot be approximated

(a single error implies wrong element choice), while matrix elements may

tolerate approximation. Thus, we declare the sparse_M array and the

element computation as tolerant, while index and its computation are

not tolerant. Three code regions are highlighted in the code, a tolerant

region and two non-tolerant. Note that error tolerance is not a property of

sparse_M, but of the code region. When a tolerant variable is copied to a

non-tolerant variable, its value is automatically promoted to non-tolerant

state after the read. Also the opposite copy is permitted, for instance

the automatic variable containing the result of compute_element() (non-

tolerant) is copied to sparse_M (tolerant).

In principle, approximate algorithms can “absorb” errors which occur

with a probability lower than a given threshold. To lower this idea in

the context of our approach, we need a rigorous methodology to identify

the tolerant regions and evaluate the impact of flip-bit errors on data

accuracy. Even if an extensive discussion of automatic techniques is out

164 4 Software Stack

of scope for this dissertation, we focus on describing the empirical pro-

cess that we followed to derive suitable approximation thresholds for the

various benchmarks. To annotate the applications described in Section

5, we first performed a set of accuracy tests on a x86 workstation. We

simulated the effects of an unreliable memory by instrumenting variables

with a macro (APPROX) which injects flip-bit errors on the LSBs with

a configurable probability. Different code regions can be assigned to a

specific accuracy level by modifying the flip-bit probability with runtime

calls, which correspond to voltage switch operations in the final platform.

Statistics on the result accuracy are collected for different configurations,

each one corresponding to a bijective association among program vari-

ables and accuracy levels. The acceptable error threshold is application

specific, and we provide details in Section 5.5.

4.2 Runtime Extensions

The framework described in this chapter requires a lightweight runtime

support. The extensions that must be added to the OpenMP runtime

can be summarized as follows:

• an interface to activate the split memory area and set its actual

size;

• an interface to allocate data structures in a specific logical memory

area;

• an interface to modify the voltage supply of 6T-SRAM domains.

In addition, the main modification to the OpenMP runtime involves the

allocation of internal data structures. Whenever an OpenMP construct is

4 Software Stack 165

present inside a tolerant region, the data structures describing its behav-

ior are not tolerant to errors, and they are allocated partly on the stack

(e.g., the bound variables generated to distribute the workload among

processing elements in loop constructs) and partly on the heap (e.g., the

work-share descriptors). The heap area for these data structures is typ-

ically reserved using a dynamic allocator (a call to a malloc in POSIX

API). To handle this aspect of the runtime environment, we introduced

the concept of allocation control variable. This is an internal control

variable, akin to others defined by the OpenMP standard, that specifies

the logical memory region the runtime must allocate its dynamic data

structures in. The positioning of the stack and the value of this variable

is a further control knob for our architecture, as described in the next

section.

4.3 Compile-time Optimizations

Our compile time optimizations are based on the analysis of the appli-

cation call graph, that is the directed graph representing calling rela-

tionships between functions in the execution flow. After applying the

outlining technique typically used for OpenMP constructs, each state-

ment annotated by a #pragma tolerant directive is translated into an

equivalent function, and so it follows that the statement in the program

flow is replaced by a function call. After this source code transformation,

each tolerant region corresponds to a single node in the call graph, while

original nodes represent sets of non-tolerant regions. As a preliminary

166 4 Software Stack

6T-SRAM voltage SCM 6T-SRAM SPLIT
0.5 V 0.6 / 0.6 - 3.2 / 2.9
0.8 V 0.6 / 0.6 13.6 / 12.2 7.1 / 6.4

Table 6.3: Energy consumption (pJ) of a 32-bit read/write access.

step, an extended use-defs analysis is applied over the call graph to ex-

tract statistics about global and local variables1. For each variable the

following attributes are collected:

• scope – a flag that specifies whether the variable is local or global;

• dynamic – a flag that specifies whether the variable is allocated

statically (stack or global variable) or dynamically (call to malloc);

• class – the type of the variable (scalar/array/reference);

• use-intervals – live range of the variable within its entire scope;

• tolerant-use-intervals – live range of the variable restricted to tol-

erant code regions;

• usedefs – use-defs chains for the variable.

Table 6.3 reports the memory consumption (in pJ) of a single 32-

bit read/write access to different logical memory regions. It considers

the case of a single 6T-SRAM voltage domain, but the trend is similar

when the number of domains increases. Taking into account the high

voltage level (0.8 V), an access to SCM costs less than an access to 6T-

SRAM, while an access to the split memory area costs more than an

access to SCM but less than an access to 6T-SRAM; at the low voltage

1Static use-defs analysis limits the applicability of the approach to programs writ-
ten as a single translation unit. Inter-Procedural Analysis and Link-Time Optimiza-
tion approaches can be considered to avoid this limitation.

4 Software Stack 167

level (0.5 V), the cost of accessing the split memory area decreases, while

6T-SRAM cannot be accessed any more due to precision constraints.

Accesses to the 6T-SRAM logical memory area are not allowed below 0.8

V. Considering the reported values, an approach that uses data tiling on

the SCM could be considered the most viable solution to minimize the

energy consumption. By leveraging the knowledge of the memory access

pattern, data tiling exploits spatial locality in a program by partitioning

large data structures into smaller chunks that are brought in and out of

the target memory via DMA transfers. By reducing the granularity of

data tiling it is theoretically possible to efficiently manage even very small

memories. However, creating smaller tiles implies increasing the number

of transfers required to process a given data structures, which is subject

to increasing impact of DMA latency and programming overheads. Due

to these considerations, the energy consumption of the whole system is

indeed greater w.r.t. other solutions due to overhead effects, as explained

in further detail in Section 5.

Taking into account the usage of both SCM and 6T-SRAM areas,

the problem of allocating variables into logical memory areas minimizing

the energy consumption can be solved using two general approaches, a

formal integer linear programming (ILP) model or a heuristic algorithm.

ILP models of the memory allocation problem are known in literature

[167]. However in this context they cannot be fed with a complete set of

parameters, since experimental evidence shows that access frequency and

data size cannot be exactly determined in all practical cases by means of

a static analysis.

On the basis of the previous considerations, variables are allocated

into different logical memory regions using a heuristic algorithm based

168 4 Software Stack

on the following policies:

• tolerant variables are allocated in the split area, since SCM is a

limited resource while using the 6T-SRAM logical area could miss

a voltage switch opportunity;

• non-tolerant variables are allocated in SCM, with the aim to switch

down the voltage of unused 6T-SRAM domains;

• variables accessed inside a non-tolerant region (if not considered by

previous rules) are allocated in a single 6T-SRAM voltage domain;

• variables devoted to SCM and split memory areas are organized into

separate lists, ordered on the basis of the most-frequent-accessed-

first heuristic. The variables that eventually do no fit the related

memory area are allocated in 6T-SRAM areas, applying (when fea-

sible) the single-domain-per-area heuristic;

• the allocation control variable in the OpenMP runtime is set to use

SCM (if available), or a previously allocated 6T-SRAM area with

free space (in the worst case it could reference a new 6T-SRAM

domain, which cannot be switched down in the region containing

the current OpenMP directive);

• the voltage levels of unused domains (i.e., domains which are not

used for allocation or contain variables that are not accessed) are

switched down at the beginning of a region, with the aim to reduce

the leakage power of the related memory banks.

All these transformations involving the source code are performed at

compile time on the current application, but in any case they do no affect

5 Experimental Evaluation 169

the binary size since program data are moved but not increased. This

algorithm takes into account all global variables and a subset of local

variables, including: arrays, variables allocated with a malloc request,

and local variables used in var_list clauses. Ultimately, what is not

included are automatic variables that are left on the program stack. In

the most common cases, the stack is accessed when executing tolerant

regions and it typically contains non-tolerant variables (e.g., indexes and

pointers), so it must be allocated in SCM or in a 6T-SRAM region kept

at high voltage. The previous steps guarantee that the stack is reduced to

a minimal set of scalar variables; since the experimental evidence shows

that stack accesses are still frequent in tolerant regions after this process,

in our solution the stack is preferably allocated in the SCM area. The

size of the stack can be determined through static analysis in some cases

(e.g., consider the restrictions to the standard C language imposed by

OpenCL for kernels [20]), but this is not true in the most general case.

For most applications included in our benchmark suite, the aforemen-

tioned heuristics enable the allocation of a limited stack area (512 bytes

per core). A check for stack overflow is provided at hardware level to

guarantee a controlled termination in all the cases that are not properly

managed by the static analysis, and therefore require a manual stack

sizing.

5 Experimental Evaluation

This section introduces the methodology adopted to validate our archi-

tecture, and then focuses on the implementation of the software stack

and the reference benchmarks. The results for most relevant metrics

170 5 Experimental Evaluation

Application Description Regions Tol. regions Tolerant data %

Color Tracking

A sequence of
image

processing
filters, with
the aim to

find the
center of
mass for

objects of a
specific color

in a video

5 3 100% / 50% / 95%

HOG

Histogram of
oriented

gradients,
that is a
feature

descriptor
used to
perform
object

detection

5 3 50% / 80% / 50%

CNN

A
convolutional

neural
network

including 6
layers

16 6 50% / 100% / 50% /

100% / 50% / 100%

Health

A signal
processing

algorithm to
process ECG
data series

with the aim
to predict
seizures

5 2 50% / 50%

Navi

A navigation
support for
unmanned
vehicles,

including the
Djikstra

algorithm (to
find the

shortest path
between
known

locations) and
a heuristic to

plan
recharging

stops (based
on distance
and power

consumption)

6 2 50% / 25%

Table 6.4: Characterization of the benchmark suite.

are reported and commented (energy consumption in Section 5.3, area

compared to energy in Section 5.4 and accuracy in Section 5.5).

5 Experimental Evaluation 171

Figure 6.7: Layout of the PULP chip used for memory reliability and
power characterization.

5.1 Simulation Setup and Methodology

The power consumption of the baseline architecture at different voltage

levels has been measured on the first silicon implementation of PULP,

realized with STMicroelectronics 28 nm UTBB FDSOI technology [32].

Figure 6.7 depicts the layout of this reference chip, highlighting its key

subsystems. The power figures measured from real silicon have been then

partitioned among the key components of the platform (cores, I$, SRAM

banks, SCM banks, interconnect) taking into account back-annotated

simulations performed on the post place&route netlist of the SoC. Finally,

the energy numbers have been fed into the models of Virtual SoC [168],

a SystemC-based cycle-accurate virtual platform for the simulation of

massively parallel heterogeneous architectures, that is used to perform a

172 5 Experimental Evaluation

design exploration of the extensions proposed in this chapter. Table 6.3

reports the dynamic energy required for each read/write operation. Ta-

ble 6.5 reports the leakage energy consumed by the memory cuts for a

single clock cycle at 20 MHz, that is the operational frequency of our

platform. The size of the memory cuts is the one described in Table 6.2

for alternative setups. This approach couples the advantages of very ac-

curate power models with the simulation speed of the SystemC model,

that allows to perform a wide exploration utilizing real-life benchmarks.

Compared to a complete RTL simulation, the virtual platform guaran-

tees a maximum error on the number of reported cycles that is between

5% and 6%. This error has a minimum impact on the leakage component

of the total energy.

5.2 Software Stack and Benchmark Suite

To experimentally validate our framework, we set up a toolchain based

on Clang [169] and LLVM [101]. The compiler frontend transforms the

directives into annotated tokens in its intermediate representation (IR)

format. These annotations are collected and interpreted by the heuristic

algorithm described in Section 4.3, which is implemented as an IR opti-

mization pass in the LLVM compiler infrastructure. To provide program-

ming model and runtime support, we extended an OpenMP implementa-

tion tailored for embedded multicore systems [170], adding the features

SCM @ 0.5 V 6T-SRAM @ 0.5 V 6T-SRAM @ 0.8 V

1 region 0.002 0.0056 0.021
2 regions 0.002 0.0043 0.013
4 regions 0.002 0.0022 0.0083

Table 6.5: Leakage energy (pJ per cycle) of SCM and 6T-SRAM cuts.

5 Experimental Evaluation 173

discussed in Sections 4.1 and 4.2. The benchmarks are implemented in

C using standard OpenMP directives to split the workload over the 8

available cores. Considering the intrinsic data parallelism of the com-

putational kernels, for the selected benchmarks we use a omp parallel

for directive with a static chunking pattern. The data footprint of con-

sidered applications does not entirely fit into the TCDM, so we use the

DMA engine to implement a data tiling technique; in addition, we adopt

double-buffering with the aim to hide the DMA transfer latency. The

applications included in the benchmark suite are described in Table 6.4,

that also provides more information on single applications. Regions is

the total number of code regions, while Tol. regions includes only the

tolerant regions (Section 4.3). Tolerant data % reports the percentage of

accessed data which are error tolerant in the corresponding region. For

instance, in the first tolerant region of Color Tracking all the data are

tolerant, in the second one half data are tolerant and the other half are

not.

5.3 Energy Consumption

In the experiments that follow we take into account five alternative con-

figurations:

• Default – No optimization is applied, program data are allocated

into TCDM using standard compilation and linking policies;

• Heuristic – Program data are allocated in TCDM using a most-

accessed-first heuristic;

• Heur+VS – Like Heuristic, but enabling low voltage operation for

SRAM memory areas that are not used within a target code region;

174 5 Experimental Evaluation

Figure 6.8: Normalized energy consumption of the TCDM (average en-
ergy reduction is reported in percentage).

• Split+VS – Tolerant data is allocated in the split memory area

and the allocation heuristic maximizes low voltage SRAM memory

operation;

• Tiling – All program data is accessed in small chunks from the

SCM only, using DMA transfers to update continuously its content.

SRAM is constantly powered at low voltage.

5 Experimental Evaluation 175

We first analyze the behavior of the memory system in isolation. Fig-

ure 6.8 depicts the energy consumption of the TCDM system, including

the memory banks and the RMU logic block. The figure shows three

plots, one for each explored configuration in terms of SRAM voltage do-

mains: 1 (left), 2 (middle) and 4 (right). Each bar in a group depicts

the energy consumption of a given application (normalized to the De-

fault configuration), and different groups of bars represent a different

configuration from the list above. The average energy reduction (% of

the Default configuration) is also reported for each group. Consider-

ing a single SRAM voltage domain, Heuristic, Heur+VS and Split+VS

are identical. This is expected, because unless all data fits in the SCM

(which happens only for Tiling), it is impossible to lower the voltage of

the SRAM without corrupting the correctness of the results. Increasing

the number of voltage domains, the benefits of Split are more and more

evident. With 2 voltage domains, the energy efficiency is increased by

15% on average by just enabling voltage switching on idle SRAM banks,

and by 36% by allocating tolerant data on the split memory area. With

4 voltage domains, these values are respectively 31% and 47%. Tiling is

≈60% more efficient than the Default configuration, independent of the

number of voltage domains (as the SRAM is constantly powered at a low

voltage). This is not surprising, as SCM accesses are much more energy

efficient than SRAM accesses, as reported in Table 6.3.

However, while every configuration requires DMA transfers to accom-

modate larger data structures than the whole TCDM in chunks, Tiling

requires more DMA transfers that any other configuration. This is be-

cause the SCM is only a fraction of the total TCDM size (one fifth in

our architecture), and part of it is devoted to data that always need to

176 5 Experimental Evaluation

Figure 6.9: Normalized components of the energy consumption.

be reliably accessed, such as the stacks of the threads and the OpenMP

runtime metadata. As a consequence, the main drawback of this config-

uration is that it is more sensitive to DMA management overhead (the

finer and more numerous the DMA transfers, the higher the overhead for

their management). Focusing on the whole system energy consumption

in Figure 6.10 this effect becomes evident. In this plot, energy numbers

are normalized to the Default configuration and broken down into the

contributions of the TCDM system (what we already showed) and other

SoC components (cores, I$, DMA engine, interconnect and L2). Again,

the figure shows three plots, one for each explored configuration in terms

of SRAM voltage domains: 1 (left), 2 (middle) and 4 (right). The higher

energy values reported for HOG and Navi in the Tiling configuration are

due to the fact that these applications require a bigger stack (768 bytes

per core) and a larger footprint of the OpenMP metadata (due to the

use of a higher number of dynamic parallelization constructs). Compared

to other applications, this reduces the available SCM space to host data

tiles, which will eventually be very small and numerous and ultimately

imply a larger DMA overhead. Table 6.6 reports execution cycles for

5 Experimental Evaluation 177

Figure 6.10: Normalized energy consumption of the full SoC.

178 5 Experimental Evaluation

Others Tiling

Color Tracking 29.48 32.15
HOG 70487.50 134540.00
CNN 77.78 141.66
Health 1460.16 1563.77
Navi 54.12 99.49

Table 6.6: Total number of core cycles (in millions).

Tiling compared to other configurations. The effect of DMA manage-

ment is clearly visible also in terms of execution time, with the obvious

effect on overall energy consumption2. On average, the Split+VS ap-

proach allows a 13% reduction of the total SoC energy (up to 28% for

the considered applications). The benefits of Tiling only become visible

when the granularity of the technique is such that DMA management

overhead becomes negligible (see Section 5.4). This approach never al-

lows tangible benefits for the SCM size considered in our work. It in-

creases the average energy consumption by 27% (by 54% in the worst

case).

Figure 6.9 shows dynamic and leakage components of the energy con-

sumption for the Split+VS approach. The reported values are the av-

erages of all the applications and are normalized to the baseline case of

a single voltage domain. Both leakage and dynamics components of the

energy consumption are reduced by our approach. The leakage energy

is reduced by switching down the voltage of the 6T-SRAM banks that

are not accessed or are part of the split area. The dynamic energy is

reduced accessing the 6T-SRAM banks at low voltage in the split area

and maximizing the access to the SCM area.

2The execution time is not affected by the number of voltage domains, as the
performance overhead of a voltage switch is just 2 additional cycles.

5 Experimental Evaluation 179

Note that the Split+VS approach can work in synergy with other

approximation techniques, for instance arithmetic units [147] or inter-

connects [140], with the aim to increase the energy saving of the full sys-

tem. In this perspective, our programming model can be also extended

to support additional knobs.

5.4 SoC Area

Table 6.7 reports the area increase to implement our Split+VS technique

when considering 2 and 4 SRAM voltage domains. The table also reports

average and max energy savings enabled by the technique. Normalized

energy and Normalized area are referred to the baseline SoC (with a

single SRAM voltage domain). Looking at energy alone, 4 SRAM voltage

domains are better than 2 only. If we consider a combined energy×area

metric the difference is no longer visible (for both the average and the

best case).

Another approach to use additional design area would obviously be

that of increasing the size of the SCM. As we discussed earlier, this would

have a beneficial effect on the Tiling approach, as it would allow to

amortize the overhead of DMA programming. Figure 6.11 compares the

effectiveness of Split and Tiling approaches at using additional chip area.

Specifically, the X-axis reports the area increase (% of the original design;

1 domain 2 domains 4 domains

Average Best Average Best
Area (µm2) 2943648 2968768 3062400

Normalized energy 1.00 0.91 0.80 0.88 0.72
Normalized area 1.00 1.01 1.04
Norm en. × area 1.00 0.92 0.81 0.92 0.81

Table 6.7: Area and energy/area values.

180 5 Experimental Evaluation

0 2 4 6 8 10 12 14 16 18 20

Area increase (%) wrt cluster size

0 1 2 3 4 5 6 7 8 9 10

Area increase (%) wrt SoC size

N
o

rm
a

liz
ed

 e
n

er
g

y
(t

o
 b

a
se

lin
e

cl
u

st
er

)

Figure 6.11: Normalized energy consumption for two solutions (SCM
with tiling VS hybrid memory with our approach).

for the whole SoC on top and for the cluster only on bottom) and the

Y-axis reports normalized energy (compared to the Default allocation).

The plot shows that Tiling is capable of amortizing DMA overheads

when the SCM size is increased to 24KB, which corresponds to 16% of

the original cluster area. Split makes better use of additional chip area

when the number of voltage domains is increased to up to 4. Beyond

this number we reach a plateau in the energy saving curve. Further

partitioning the 6T-SRAM into additional voltage domains, the total

area would be dominated by the periphery and embedded power switches.

The area between the two curves represent the design space where Split

is more energy/area-efficient than Tiling.

5 Experimental Evaluation 181

5.5 Application accuracy

To assess the benefits of our approach, we compared the use of unreli-

able LSBs with a more drastic alternative, that is not computing them

at all. To make the two solutions fully comparable, we used the same

algorithms and data types, but in the second case we forced the LSBs to

zero. Practically, the zeroing case represents an upper bound to the LSB

error, since it totally discards the LSB part. All computations are per-

formed on the integer range (32 bit words), and the values reported in the

flip-bit column are the worst cases over 1000 executions. To be conserva-

tive, we used the highest flip-bit probability considered by our platform

(0.0037, as reported in Table 6.1). Table 6.8 reports the value of the mean

squared error (MSE) for both approaches, compared to a maximum ac-

cepted value. The maximum accepted MSE is not an inherent property

of the algorithms, nevertheless it is a requirement of the application con-

text. To derive meaningful values for our benchmarks, we made some

hypotheses based on practical use cases. Most works on approximate

computing use a similar approach, first checking a wide but yet limited

subset of the output and then assuming that it is representative. These

approaches have been shown to produce average errors that are accept-

able for the considered use cases, but they cannot take corrective actions

when large errors occur. Recent works [171] [172] tackle the result qual-

ity problem applying runtime checks; a lightweight application-specific

metric could be used to derive a quality check of the result, with the aim

to adapt the application behavior to an unacceptable quality loss. While

this research topic is really promising, its discussion is beyond the scope

of this dissertation. However, runtime techniques to support advanced

quality management can be straightforwardly implemented on top of our

182 5 Experimental Evaluation

framework.

Color Tracking computes a point centered on the object of a speci-

fied color in the input image, and the error metric is based on the Cheby-

shev distance. Considering an industrial application with a 640×480

image source and a minimum object size of 60 pixels enforced by fixed

camera positioning, a maximum error of 15 pixels guarantees that the

midline between the center of mass and the object border is not ex-

ceeded by the approximated value. From these premises, the maximum

MSE is 225. HOG computes a feature descriptor that counts discretized

occurrences of gradient orientations in different regions of an input image.

For human detection applications, the miss rate of HOG-based solutions

is around 0.5. We verified that a 0.01% error rate on the computed

descriptor does not affect this recognition rate. Using the difference be-

tween the binary checksums of feature descriptors as an error metric, this

corresponds to a maximum MSE of 2814663 in our experimental setup.

CNN computes a set of binary features filtered by multiple neural layers.

Applied to face recognition, a CNN can achieve a 98% recognition rate.

Using the same error metric of the previous benchmark, also in this case

we verified that a 0.01% error rate does not affect the expected results.

This error rate corresponds to a maximum MSE of 36864 in our experi-

mental setup. Health computes the energy levels associated to its final

wavelet transform. Considering the typical dynamics of energy levels in

our experimental setup, an absolute error of 25 on a single energy level

does not compromise the results. Using the average of the differences of

energy levels to measure the error, this corresponds to a maximum MSE

of 2500. Navi computes the travel plan and the required recharging stops

of a unmanned vehicle. We consider the total travel time as a key metric

5 Experimental Evaluation 183

Benchmark Zeroing Flip-bit Max MSE

Color Tracking 676 64 225
HOG 2.12E+13 58564 2814663
CNN 17114769 26244 36864
Health 6867734 378 25000
Navi 1681 36 100

Table 6.8: Mean squared error for zeroing and flip-bit error.

8.79
7.47

2.0
1.71

0.54

} }
} }
}

SPLIT+VS reference

Area

Figure 6.12: Energy consumption and area compared to Split-VS.

to evaluate errors, and then we consider 10 minutes as an upper bound

for the maximum delay acceptable by an impatient human being. Finally

the maximum MSE is 100.

5.6 Comparison with other approaches

In this section we compare energy and area of our solution to several

alternative approaches: (i) 6T uses 6T-SRAM without applying volt-

age scaling; (ii) 6T+VS is the solution adopted by EnerJ [154], using

6T-SRAM and voltage scaling; (iii) 8T/6T+VS and 10T/6T+VS imple-

ment a hybrid memory system, using respectively 8T-SRAM [135] and

10T-SRAM [132]; (iv) SCM uses SCM cuts to implement the full SRAM.

184 5 Experimental Evaluation

For each of the proposed approaches we configure our simulation infras-

tructure (introduced in Section 5.1) based on energy numbers reported

in the literature and we collect the results running the benchmarks pre-

viously described.

Since our technique is explicitly aimed at reducing energy spent in

the memory, we first focus on energy and area numbers for the mem-

ory subsystem only. Results are shown in Figure 6.12 (bars represent

memory energy and the dashed line represents memory subsystem area).

Energy/area numbers for each approach are normalized to energy/area

numbers for our technique (numbers below one are better than our so-

lution, numbers above one are worse than our solution). The numbers

on top of each group of bars show average normalized energy for each

benchmark. On average, EnerJ consumes 8.9× higher energy than our

solution. From the comparison with 8T/6T+VS and 10T/6T+VS ar-

chitectures it is also evident that hybrid memory enables major energy

savings.

Since from these results there is an obvious trade-off between energy-

consumption and area, we also show results for a combined metric –

normalized energy-area product (NEAP). We show NEAP for the mem-

ory part only (like in Figure 6.12) and for the whole cluster (the benefits

of our approach are less evident). NEAP for these two configurations

is shown in Table 6.9. Focusing on the memory part only, our solu-

tion always provides the best NEAP. When considering also the rest of

the cluster components, the benefits are reduced, as expected. However,

although the techniques 8T/6T+VS and 10T/6T+VS reach very close

NEAP to ours, they never perform better.

6 Conclusion 185

Our 6T 6T+VS 8T/6T+VS 10T/6T+VS SCM
Memory 1.00 4.50 3.83 1.48 1.41 1.58
Cluster 1.00 1.74 1.58 1.03 1.03 1.80

Table 6.9: Normalized energy-area product (NEAP).

6 Conclusion

In this chapter we propose a novel HW/SW approach to design energy-

efficient ULP architectures which combine approximate computing and

hybrid memory systems featuring both SCM and 6T-SRAM. At the hard-

ware level, we introduce a support to split error-tolerant data so to host

MSBs in the SCM and LSBs in the 6T-SRAM. This allows to power the

TCDM system at a low voltage while ensuring correct operation by bind-

ing potential flip-bit errors to the LSBs only. In addition, by organizing

6T-SRAM banks into multiple and independent voltage domains we en-

able fine-grained, software-controlled voltage switching policies. At the

software level, we propose language constructs to specify what regions

of code and what variables are tolerant to approximation. A compiler

pass implements a heuristic algorithm which allocates data into available

memory regions and leverages hardware knobs to maximize energy sav-

ings. Experimental results show that our hybrid memory architecture

can reduce by 47% the energy consumption of the TCDM memory. Fo-

cusing on the whole-system, our technique allows on average 27% savings

and outperforms other solutions. At the same time we can guarantee the

exact level of accuracy required by real-life applications, since the MSE of

our approach is always below a maximum reference value when a proper

approximation policy is applied. Overall, these results encourage further

research activities in the field of hybrid memory architectures, as these

solutions represent a promising opportunity for the design of future ULP

186 6 Conclusion

systems.

Conclusion

Many-core computing platforms have emerged as a promising solution

to tackle the major issues of architecture designers in the last years,

namely the power wall, the memory wall and the ILP wall. However

the technological evolution is going to hit these walls again, and this

will require disruptive changes in the next decade. On the software side,

it is paramount to provide programmers proper techniques and tools

to take advantage of the increasing number of cores. In this scenario,

there are two main objectives: first, improving performance and energy

efficiency of the platform, which are key metrics for embedded computing

systems; second, enforcing software engineering practices with the aim to

guarantee code quality and reduce software costs.

This thesis introduces a set of techniques and tools that have been

studied to achieve these objectives. In the dissertation we consider a

range of devices with a more and more stringent power budget, since

the emergence of new application areas (e.g., IoT applications) makes

a common requirement that devices combine complex processing capa-

bility with ultra-low-power operation. The proposed solutions aim at

ehnancing the state-of-the-art of optimization techniques for parallel pro-

gramming of embedded parallel architectures, considering both general-

purpose and domain-specific programming models. Even if it is not yet

188 6 Conclusion

totally clear which programming paradigm will prevail in the next years,

our work brings out two main aspects that are an important subject for

further research activities: first, the need for transparent mechanisms to

handle processing and memory management in heterogenous platforms;

second, the importance of providing synergistic hardware and software

support to effectively exploit advanced techniques such as approximate

and near-threshold computing.

List of Publications

1. Paolo Burgio, Giuseppe Tagliavini, Francesco Conti, Andrea

Marongiu, Luca Benini. ”Tightly-coupled hardware support to dy-

namic parallelism acceleration in embedded shared memory clus-

ters.” In Proceedings of the conference on Design, Automation &

Test in Europe (DATE), p. 156. EDAA, 2014.

2. Giuseppe Tagliavini, Germain Haugou, Luca Benini. ”Support-

ing localized OpenVX kernel execution for efficient computer vision

application development on STHORM many-core platform.”In Pro-

ceedings of the 11th ACM Conference on Computing Frontiers, p.

23. ACM, 2014.

3. Giuseppe Tagliavini, Germain Haugou, Luca Benini. ”Optimiz-

ing memory bandwidth in OpenVX graph execution on embedded

many-core accelerators.” In 2014 Conference on Design and Archi-

tectures for Signal and Image Processing (DASIP), pp. 1-8. IEEE,

2014.

4. Davide Rossi, Igor Loi, Francesco Conti, Giuseppe Tagliavini,

Antonio Pullini, Andrea Marongiu. ”Energy efficient parallel com-

puting on the PULP platform with support for OpenMP.” In 2014

190 6 Conclusion

IEEE 28th Convention of Electrical & Electronics Engineers in Is-

rael (IEEEI), pp. 1-5. IEEE, 2014.

5. Giuseppe Tagliavini, Germain Haugou, Andrea Marongiu, Luca

Benini. ”ADRENALINE: an OpenVX environment to optimize

embedded vision applications on many-core accelerators.” In 2015

IEEE 9th International Symposium on Embedded Multicore/Many-

core Systems-on-Chip (MCSoC), pp. 289-296. IEEE, 2015.

6. Nandhini Chandramoorthy, Giuseppe Tagliavini, Kevin Irick,

Antonio Pullini, Siddharth Advani, Sulaiman Al Habsi, Matthew

Cotter, John Sampson, Vijaykrishnan Narayanan, Luca Benini.

”Exploring architectural heterogeneity in intelligent vision systems.”

In 2015 IEEE 21st International Symposium on High Performance

Computer Architecture (HPCA), pp. 1-12. IEEE, 2015.

7. Giuseppe Tagliavini, Germain Haugou, Andrea Marongiu, Luca

Benini. ”A framework for optimizing OpenVX applications perfor-

mance on embedded manycore accelerators.” In Proceedings of the

18th International Workshop on Software and Compilers for Em-

bedded Systems (SCOPES), pp. 125-128. ACM, 2015.

8. Giuseppe Tagliavini, Davide Rossi, Luca Benini, Andrea Marongiu.

”Synergistic Architecture and Programming Model Support for Ap-

proximate Micropower Computing.” In 2015 IEEE Computer Soci-

ety Annual Symposium on VLSI, pp. 280-285. IEEE, 2015.

9. Andrea Marongiu, Alessandro Capotondi, Giuseppe Tagliavini,

6 Conclusion 191

Luca Benini. ”Simplifying many-core-based heterogeneous SoC pro-

gramming with offload directives.” In IEEE Transactions on Indus-

trial Informatics 11, no. 4 pp. 957-967. IEEE, 2015.

10. Davide Rossi, Francesco Conti, Andrea Marongiu, Antonio Pullini,

Igor Loi, Michael Gautschi, Giuseppe Tagliavini, Alessandro

Capotondi, Philippe Flatresse, Luca Benini. ”PULP: A parallel

ultra low power platform for next generation IoT applications.” In

Hot Chips 27 Symposium (HCS), pp. 1-39. IEEE, 2015.

11. Giuseppe Tagliavini, Germain Haugou, Andrea Marongiu, Luca

Benini. ”Optimizing memory bandwidth exploitation for OpenVX

applications on embedded many-core accelerators.” In Journal of

Real-Time Image Processing, pp. 1-20. Springer, 2016

12. Giuseppe Tagliavini, Germain Haugou, Andrea Marongiu, Luca

Benini. ”Enabling OpenVX support in mW-scale parallel acceler-

ators.” In 2016 International Conference on Compliers, Architec-

tures, and Sythesis of Embedded Systems (CASES), pp. 1-10.

IEEE, 2016.

13. Giuseppe Tagliavini, Davide Rossi, Andrea Marongiu, Luca Benini.

”Synergistic HW/SW Approximation Techniques for Ultra-Low-Power

Parallel Computing.” In IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems. IEEE, 2016.

14. Giuseppe Tagliavini, Andrea Marongiu, Davide Rossi, Luca Benini.

”Always-on motion detection with application-level error control on

a near-threshold approximate computing platform.” In 2016 IEEE

International Conference on Electronics, Circuits and Systems (ICECS),

192 6 Conclusion

pp. 552-555. IEEE, 2016.

Acknowledgments

Questa tesi è il risultato di tre anni di lavoro intensi, che mi hanno

richiesto molto lavoro ma mi hanno anche elargito diverse soddisfazioni.

Per prima cosa voglio ringraziare il prof. Luca Benini, che mi ha

supportato in questo percorso e mi ha sempre fornito preziosi consigli su

come migliorare il mio lavoro.

Un ringraziamento speciale va poi ad Andrea Marongiu, che ha cer-

cato di insegnarmi uno stile di lavoro paziente e metodico al fine di mod-

erare il mio approccio troppo sbrigativo: per me i suoi consigli sono stati

molto preziosi e mi hanno guidato verso una metodologia di lavoro più

equilibrata... anche se nel profondo rimarrò sempre ”barroso”!!!

I would like to thank Prof. Philippe Coussy and Prof. Marco D. San-

tambrogio for their partecipation to the review process of this manuscript,

I really appreciated their advices.

Voglio anche ringraziare i miei colleghi (attuali e passati) per l’enorme

supporto che mi hanno dato in questi anni a livello lavorativo e person-

ale, e per aver trasformarto in molteplici occasioni la fatica di svegliarsi

la mattina dopo una notte di lavoro nel piacere di godersi una pausa

caffé in un clima di rilassatezza e ilarità. Grazie a tutti voi: Andrea

Bartolini, Christian Pinto, Daniele Bortolotti, Daniele Cesarini, Davide

Rossi, Francesco Beneventi, Francesco Conti, Francesco Paci, Germain

Haugou, Igor Loi, Marco Balboni, Paolo Burgio, Simone Benatti, Thomas

Bridi.

Ringrazio i miei genitori, Nadia e Angelo, che hanno sempre creduto

che io potessi raggiungere ogni obiettivo che mi ero prefissato.

Infine il ringraziamento più importante va a Francesca, la mia com-

pagna e l’amore della mia vita. Senza il suo supporto e la sua fiducia

nelle mie capacità non avrei mai intrapreso questo percorso.

Bibliography

[1] G. E. Moore, “Cramming more components onto integrated cir-

cuits, Reprinted from Electronics, volume 38, number 8, April

19, 1965, pp.114 ff.” IEEE Solid-State Circuits Society Newsletter,

vol. 11, no. 5, pp. 33–35, 2006.

[2] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and

A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very

small physical dimensions,” IEEE Journal of Solid-State Circuits,

vol. 9, no. 5, pp. 256–268, 1974.

[3] D. A. Patterson and J. L. Hennessy, Computer Organization and

Design - The Hardware / Software Interface (Revised 4th Edition),

ser. The Morgan Kaufmann Series in Computer Architecture and

Design. Academic Press, 2012.

[4] G. G. Shahidi, “From 2D-planar to 3D-non-planar device architec-

ture: A scalable path forward?” in Proceedings of the IEEE 2013

Custom Integrated Circuits Conference. IEEE, 2013, pp. 1–8.

[5] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implica-

tions of the obvious,” ACM SIGARCH computer architecture news,

vol. 23, no. 1, pp. 20–24, 1995.

[6] S. Borkar, P. Dubey, K. Kahn, D. Kuck, H. Mulder, S. Pawlowski,

and J. Rattner, “Platform 2015: Intel processor and platform evo-

lution for the next decade,” Technology, vol. 1, 2005.

[7] J. L. Hennessy and D. A. Patterson, Computer architecture: a

quantitative approach. Elsevier, 2011.

[8] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,

J. Lugo-Martinez, S. Swanson, and M. B. Taylor, “Conservation

cores: reducing the energy of mature computations,” in ACM

SIGARCH Computer Architecture News, vol. 38, no. 1. ACM,

2010, pp. 205–218.

[9] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and

D. Burger, “Dark silicon and the end of multicore scaling,” in Com-

puter Architecture (ISCA), 2011 38th Annual International Sym-

posium on. IEEE, 2011, pp. 365–376.

[10] A. Branover, D. Foley, and M. Steinman, “AMD Fusion APU:

Llano,” Ieee Micro, vol. 2, no. 32, pp. 28–37, 2012.

[11] H. Chung, M. Kang, and H.-D. Cho, “Heterogeneous Multi-

Processing Solution of Exynos 5 Octa with ARM R© big. LIT-

TLEâĎć Technology,” Samsung White Paper, 2012.

[12] Texas Instruments Inc. KeyStone II System-on-Chip 66AK2Hx.

[Online]. Available: http://www.ti.com/lit/ds/symlink/66ak2h12.

pdf

[13] Nvidia Inc. (2014) Nvidia Tegra X1 - NVIDIA’S New Mobile

Superchip. [Online]. Available: http://international.download.

nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf

http://www.ti.com/lit/ds/symlink/66ak2h12.pdf
http://www.ti.com/lit/ds/symlink/66ak2h12.pdf
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf

[14] B. D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert,

B. Ganne, P. G. de Massas, F. Jacquet, S. Jones, N. M. Chaise-

martin, F. Riss et al., “A clustered manycore processor architecture

for embedded and accelerated applications,” in HPEC, 2013, pp. 1–

6.

[15] PEZY Computing. (2014) PEZY-SC Many Core Processor.

[Online]. Available: http://www.pezy.co.jp/en/products/pezy-sc.

html

[16] L. Benini, E. Flamand, D. Fuin, and D. Melpignano,“P2012: Build-

ing an ecosystem for a scalable, modular and high-efficiency embed-

ded computing accelerator,” in Design, Automation Test in Europe

Conference Exhibition (DATE), 2012.

[17] A. Olofsson, “Epiphany-V: A 1024 processor 64-bit RISC System-

on-Chip,” arXiv preprint arXiv:1610.01832, 2016.

[18] M. Jørgensen, “A review of studies on expert estimation of soft-

ware development effort,” Journal of Systems and Software, vol. 70,

no. 1, pp. 37–60, 2004.

[19] J. Diaz, C. Munoz-Caro, and A. Nino, “A survey of parallel pro-

gramming models and tools in the multi and many-core era,” IEEE

Transactions on parallel and distributed systems, vol. 23, no. 8, pp.

1369–1386, 2012.

[20] Kronos Group, “OpenCL 2.1 Specification,” https://www.khronos.

org/registry/cl/specs/opencl-2.1.pdf, 2015.

[21] “OpenMP 4.0 Specification,” http://www.openmp.org/

mp-documents/OpenMP4.0.0.pdf, 2015.

http://www.pezy.co.jp/en/products/pezy-sc.html
http://www.pezy.co.jp/en/products/pezy-sc.html
https://www.khronos.org/registry/cl/ specs/opencl-2.1.pdf
https://www.khronos.org/registry/cl/ specs/opencl-2.1.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

[22] S. Wienke, P. Springer, C. Terboven, and D. an Mey, “OpenACC

First Experiences with Real-World Applications,” in Euro-Par 2012

Parallel Processing. Springer, 2012.

[23] Kronos Group,“The OpenVX API for hardware acceleration,”http:

//www.khronos.org/openvx, 2015.

[24] P. Burgio, G. Tagliavini, A. Marongiu, and L. Benini, “Enabling

fine-grained OpenMP tasking on tightly-coupled shared memory

clusters,” in Design, Automation Test in Europe Conference Exhi-

bition (DATE), 2013, 2013, pp. 1504–1509.

[25] P. Burgio, G. Tagliavini, F. Conti, A. Marongiu, and L. Benini,

“Tightly-coupled hardware support to dynamic parallelism acceler-

ation in embedded shared memory clusters,” in Proceedings of the

conference on Design, Automation & Test in Europe. European

Design and Automation Association, 2014, p. 156.

[26] N. Chandramoorthy, G. Tagliavini, K. Irick, A. Pullini, S. Ad-

vani, S. Al Habsi, M. Cotter, J. Sampson, V. Narayanan, and

L. Benini, “Exploring architectural heterogeneity in intelligent vi-

sion systems,” in 2015 IEEE 21st International Symposium on High

Performance Computer Architecture (HPCA). IEEE, 2015, pp. 1–

12.

[27] G. Tagliavini, G. Haugou, and L. Benini, “Optimizing memory

bandwidth in OpenVX graph execution on embedded many-core

accelerators,” in Design and Architectures for Signal and Image

Processing (DASIP), 2014 Conference on. IEEE, 2014, pp. 1–8.

http://www.khronos.org/openvx
http://www.khronos.org/openvx

[28] G. Tagliavini, G. Haugou, A. Marongiu, and L. Benini, “Optimiz-

ing memory bandwidth exploitation for OpenVX applications on

embedded many-core accelerators,” Journal of Real-Time Image

Processing, pp. 1–20, 2016.

[29] ——,“ADRENALINE: An OpenVX Environment to Optimize Em-

bedded Vision Applications on Many-core Accelerators,” in Embed-

ded Multicore/Many-core Systems-on-Chip (MCSoC), 2015 IEEE

9th International Symposium on, 2015, pp. 289–296.

[30] ——, “Enabling OpenVX Support in mW-scale Parallel Accelera-

tors,” in Proceedings of the International Conference on Compilers,

Architectures and Synthesis for Embedded Systems, ser. CASES ’16.

ACM, 2016, pp. 2:1–2:10.

[31] G. Tagliavini, D. Rossi, A. Marongiu, and L. Benini, “Synergistic

Architecture and Programming Model Support for Approximate

Micropower Computing,” in VLSI (ISVLSI), 2015 IEEE Computer

Society Annual Symposium on, 2015, pp. 280–285.

[32] D. Rossi, A. Pullini, I. Loi, M. Gautschi, F. K. Gürkaynak, A. Bar-

tolini, P. Flatresse, and L. Benini, “A 60 GOPS/W,- 1.8 V to 0.9 V

body bias ULP cluster in 28nm UTBB FD-SOI technology,” Solid-

State Electronics, vol. 117, pp. 170–184, 2016.

[33] Zedboard.org, “Zedboard product page,” http://zedboard.org/

product/zedboard, 2015.

[34] D. Rossi, A. Pullini, I. Loi, M. Gautschi, F. K. Gurkaynak, A. Te-

man, J. Constantin, A. Burg, I. M. Panades, E. BeignÃĺ, F. Cler-

midy, F. Abouzeid, P. Flatresse, and L. Benini, “193 MOPS/mW

http://zedboard.org/product/zedboard
http://zedboard.org/product/zedboard

162 MOPS, 0.32V to 1.15V Voltage Range Multi-Core Accelerator

for Energy-Efficient Parallel and Sequential Digital Processing,” in

Cool Chips XIX, 2016.

[35] N. Planes, O. Weber, V. Barral, S. Haendler, D. Noblet, D. Croain,

M. Bocat, P. O. Sassoulas, X. Federspiel, A. Cros, A. Bajo-

let, E. Richard, B. Dumont, P. Perreau, D. Petit, D. Golanski,

C. Fenouillet-BÃl’ranger, N. Guillot, M. Rafik, V. Huard, S. Puget,

X. Montagner, M. A. Jaud, O. Rozeau, O. Saxod, F. Wacquant,

F. Monsieur, D. Barge, L. Pinzelli, M. Mellier, F. Boeuf, F. Ar-

naud, and M. Haond, “28nm FDSOI technology platform for high-

speed low-voltage digital applications,” in VLSI Technology (VL-

SIT), 2012 Symposium on, June 2012, pp. 133–134.

[36] “OpenRISC project,” http://www.opencores.org/or1k/.

[37] D. Rossi, I. Loi, G. Haugou, and L. Benini, “Ultra-low-latency

lightweight DMA for tightly coupled multi-core clusters,” in Pro-

ceedings of the 11th ACM Conference on Computing Frontiers,

2014, p. 15.

[38] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Mas-

saioli, X. Teruel, P. Unnikrishnan, and G. Zhang, “The design of

OpenMP tasks,” IEEE Transactions on Parallel and Distributed

Systems, vol. 20, no. 3, pp. 404–418, 2009.

[39] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,

K. H. Randall, and Y. Zhou, “Cilk: An efficient multithreaded run-

time system,” Journal of parallel and distributed computing, vol. 37,

no. 1, pp. 55–69, 1996.

http://www.opencores.org/or1k/

[40] C. Pheatt, “Intel R© threading building blocks,” Journal of Comput-

ing Sciences in Colleges, vol. 23, no. 4, pp. 298–298, 2008.

[41] K.-F. Faxén, “Wool-a work stealing library,”ACM SIGARCH Com-

puter Architecture News, vol. 36, no. 5, pp. 93–100, 2008.

[42] K. Sakamoto and T. Furumoto, “Grand central dispatch,” in

Pro Multithreading and Memory Management for iOS and OS X.

Springer, 2012, pp. 139–145.

[43] B. Chapman, L. Huang, E. Biscondi, E. Stotzer, A. Shrivastava,

and A. Gatherer, “Implementing OpenMP on a high performance

embedded multicore MPSoC,” in Parallel & Distributed Processing,

2009. IPDPS 2009. IEEE International Symposium on. IEEE,

2009, pp. 1–8.

[44] G. Mitra, E. Stotzer, A. Jayaraj, and A. P. Rendell, “Implementa-

tion and optimization of the OpenMP accelerator model for the TI

Keystone II architecture,” in International Workshop on OpenMP.

Springer, 2014, pp. 202–214.

[45] A. Marongiu, A. Capotondi, G. Tagliavini, and L. Benini, “Simpli-

fying many-core-based heterogeneous soc programming with offload

directives,” IEEE Transactions on Industrial Informatics, vol. 11,

no. 4, pp. 957–967, 2015.

[46] A. Duran, J. Corbalán, and E. Ayguadé, “Evaluation of OpenMP

task scheduling strategies,” in International Workshop on OpenMP.

Springer, 2008, pp. 100–110.

[47] C. D. Marlin, Coroutines: a programming methodology, a language

design and an implementation. Springer Science & Business Media,

1980, no. 95.

[48] A. Duran, J. Corbalán, and E. Ayguadé, “An adaptive cut-off for

task parallelism,” in Proceedings of the 2008 ACM/IEEE conference

on Supercomputing. IEEE Press, 2008, p. 36.

[49] A. Heinecke, M. Klemm, and H. Bungartz, “From GPGPU to

Many-Core: Nvidia Fermi and Intel Many Integrated Core Archi-

tecture,” Computing in Science & Engineering, 2012.

[50] P. Rogers and A. FELLOW, “Heterogeneous system architecture

overview,” in Hot Chips, 2013.

[51] G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale, “To-

wards Transparently Tackling Functionality and Performance Is-

sues across Different OpenCL Platforms,” in Computing and Net-

working (CANDAR), 2014 Second International Symposium on,

2014.

[52] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A

language for streaming applications,” in Compiler Construction.

Springer, 2002.

[53] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and

Y. LeCun, “Neuflow: A runtime reconfigurable dataflow processor

for vision,” in 2011 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition Workshops (CVPRW), 2011.

[54] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and

S. Amarasinghe, “Halide: a language and compiler for optimiz-

ing parallelism, locality, and recomputation in image processing

pipelines,” in Proceedings of the 34th ACM SIGPLAN conference

on Programming language design and implementation, 2013.

[55] Embedded Vision Alliance, http://www.embedded-vision.com/,

2015.

[56] S. Park, A. A. Maashri, K. M. Irick, A. Chandrashekhar, M. Cot-

ter, N. Chandramoorthy, M. Debole, and V. Narayanan, “System-

on-chip for biologically inspired vision applications,” Information

Processing Society of Japan: Transactions on System LSI Design

Methodology, 2012.

[57] S. Greengard, “Computational photography comes into focus,”

Commun. ACM, 2014.

[58] Plurality Ltd, “The HyperCore Processor,” http://www.plurality.

com/hypercore.html, 2015.

[59] Adapteva, Inc., “Epiphany-IV 64-core 28nm Microprocessor,” http:

//www.adapteva.com/products/silicon-devices/e64g401/, 2015.

[60] F. Conti, D. Rossi, A. Pullini, I. Loi, and L. Benini, “Energy-

efficient vision on the PULP platform for ultra-low power parallel

computing,” in 2014 IEEE Workshop on Signal Processing Systems

(SiPS), 2014.

[61] Kronos Group, “The OpenCL 1.1 Specifications,” http://www.

khronos.org/registry/cl/specs/opencl-1.1.pdf, 2015.

http://www.embedded-vision.com/
http://www.plurality.com/hypercore.html
http://www.plurality.com/hypercore.html
http://www.adapteva.com/products/silicon-devices/e64g401/
http://www.adapteva.com/products/silicon-devices/e64g401/
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

[62] M. Sonka, V. Hlavac, R. Boyle et al., Image processing, analysis,

and machine vision. Thomson Toronto, 2008.

[63] M. Geilen, T. Basten, and S. Stuijk, “Minimising buffer require-

ments of synchronous dataflow graphs with model checking,” in

Proceedings of the 42nd annual Design Automation Conference,

2005.

[64] M. Magno, F. Tombari, D. Brunelli, L. Di Stefano, and L. Benini,

“Multimodal abandoned/removed object detection for low power

video surveillance systems,” in Sixth IEEE International Confer-

ence on Advanced Video and Signal Based Surveillance, 2009.

[65] F. Schubert, K. Schertler, and K. Mikolajczyk, “A hands-on ap-

proach to high-dynamic-range and superresolution fusion,” in Ap-

plications of Computer Vision (WACV), 2009 Workshop on, 2009.

[66] E. Rosten, R. Porter, and T. Drummond, “Faster and better: A

machine learning approach to corner detection,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2010.

[67] J. Canny, “A computational approach to edge detection,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, 1986.

[68] B. D. Lucas, T. Kanade et al., “An iterative image registration

technique with an application to stereo vision,” in IJCAI, 1981.

[69] T. Lepley, P. Paulin, and E. Flamand, “A Novel Compilation Ap-

proach for Image Processing Graphs on a Many-core Platform with

Explicitly Managed Memory,” in Proceedings of the 2013 Interna-

tional Conference on Compilers, Architectures and Synthesis for

Embedded Systems, 2013.

[70] R. Membarth, O. Reiche, F. Hannig, J. Teich, M. Korner, and

W. Eckert, “Hipacc: A Domain-Specific Language and Compiler for

Image Processing,” IEEE Transactions on Parallel and Distributed

Systems, 2015.

[71] E. Rainey, J. Villarreal, G. Dedeoglu, K. Pulli, T. Lepley, and

F. Brill, “Addressing System-Level Optimization with OpenVX

Graphs,” in 2014 IEEE Conference on Computer Vision and Pat-

tern Recognition Workshops (CVPRW), 2014.

[72] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.

Anderson, S. Brown, and T. Czajkowski, “LegUp: high-level syn-

thesis for FPGA-based processor/accelerator systems,” in Proceed-

ings of the 19th ACM/SIGDA international symposium on Field

programmable gate arrays, 2011.

[73] Y. Lei, Z. Gang, R. Si-Heon, L. Choon-Young, L. Sang-Ryong,

and K.-M. Bae, “The platform of image acquisition and processing

system based on DSP and FPGA,” in International Conference on

Smart Manufacturing Application, 2008.

[74] S. K. Gehrig, F. Eberli, and T. Meyer, “A real-time low-power

stereo vision engine using semi-global matching,” in Computer Vi-

sion Systems. Springer, 2009.

[75] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman,

“CHARM: A Composable Heterogeneous Accelerator-rich Micro-

processor,” in Proceedings of the 2012 ACM/IEEE International

Symposium on Low Power Electronics and Design, 2012.

[76] J. Cong, C. Liu, M. A. Ghodrat, G. Reinman, M. Gill, and Y. Zou,

“AXR-CMP: Architecture Support in Accelerator-Rich CMPs,”

2011.

[77] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Co-

hen, S. Bell, A. Vasilyev, M. Horowitz, and P. Hanrahan, “Dark-

room: Compiling high-level image processing code into hardware

pipelines,” in Proceedings of the 41st International Conference

on Computer Graphics and Interactive Techniques (SIGGRAPH),

2014.

[78] OpenCV Library Homepage, http://www.opencv.com/, 2015.

[79] J. Coombs and R. Prabhu, “OpenCV on TIâĂŹs DSP+ ARM R©

platforms: Mitigating the challenges of porting OpenCV to embed-

ded platforms,” Texas Instruments, 2011.

[80] Tegra Android Development Documentation Website, http://docs.

nvidia.com/tegra/index.html, 2015.

[81] Qualcomm, “Computer Vision (FastCV),” https://developer.

qualcomm.com/computer-vision-fastcv, 2015.

[82] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel program-

ming standard for heterogeneous computing systems,” Computing

in science & engineering, 2010.

[83] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kin-

sner, D. Neto, J. Wong, P. Yiannacouras, and D. P. Singh, “From

OpenCL to high-performance hardware on FPGAs,” in 22nd Inter-

national Conference on Field Programmable Logic and Applications

(FPL), 2012.

http://www.opencv.com/
http://docs.nvidia.com/tegra/index.html
http://docs.nvidia.com/tegra/index.html
https://developer.qualcomm.com/computer-vision-fastcv
https://developer.qualcomm.com/computer-vision-fastcv

[84] P. Boudier and G. Sellers, “Memory System on Fusion APUs,”

AMD fusion developer summit, 2011.

[85] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick,

“Optimization and performance modeling of stencil computations

on modern microprocessors,” SIAM review, 2009.

[86] J. Lee, S. Seo, C. Kim, J. Kim, P. Chun, Z. Sura, J. Kim, and

S. Han, “COMIC: a coherent shared memory interface for Cell BE,”

in Proceedings of the 17th international conference on Parallel ar-

chitectures and compilation techniques, 2008.

[87] M. Gonzàlez, N. Vujic, X. Martorell, E. Ayguadé, A. E. Eichen-

berger, T. Chen, Z. Sura, T. Zhang, K. O’Brien, and K. O’Brien,

“Hybrid access-specific software cache techniques for the Cell BE

architecture,” in Proceedings of the 17th international conference

on Parallel architectures and compilation techniques, 2008.

[88] A. Franceschelli, P. Burgio, G. Tagliavini, A. Marongiu, M. Rug-

giero, M. Lombardi, A. Bonfietti, M. Milano, and L. Benini,

“MPOpt-Cell: A High-performance Data-flow Programming En-

vironment for the CELL BE Processor,” in Proceedings of the 8th

ACM International Conference on Computing Frontiers, 2011.

[89] “Tensilica Customizable Processor IP,” http://ip.cadence.com/

ipportfolio/tensilica-ip.

[90] Gartner, “Gartner Says the Internet of Things Installed Base Will

Grow to 26 Billion Units By 2020,” http://www.gartner.com/

newsroom/id/2636073.

http://ip.cadence.com/ipportfolio/tensilica-ip
http://ip.cadence.com/ipportfolio/tensilica-ip
http://www.gartner.com/newsroom/id/2636073
http://www.gartner.com/newsroom/id/2636073

[91] ABIresearch, “More Than 30 Billion Devices Will Wire-

lessly Connect to the Internet of Everything in 2020,”

https://www.abiresearch.com/market-research/product/

1021642-edge-analytics-in-iot/.

[92] ——, “Edge Analytics in IoT,” https://www.abiresearch.com/

press/more-than-30-billion-devices-will-wirelessly-conne/.

[93] “CEVA-XM4 Intelligent Vision Processor,” http://www.ceva-dsp.

com/CEVA-XM4.

[94] “DesignWare EV Family of Vision Processors,” https://www.

synopsys.com/dw/ipdir.php?ds=ev52-ev54.

[95] D. Fick, R. G. Dreslinski, B. Giridhar, G. Kim, S. Seo, M. Fo-

jtik, S. Satpathy, Y. Lee, D. Kim, N. Liu et al., “Centip3De:

A 3930DMIPS/W configurable near-threshold 3D stacked system

with 64 ARM Cortex-M3 cores,” in IEEE International Solid-State

Circuits Conference Digest of Technical Papers. IEEE, 2012, pp.

190–192.

[96] D. Rossi et al., “PULP: A Parallel Ultra-Low-Power Platform for

Next Generation IoT Applications,” in HotChips 2015.

[97] A. Y. Dogan et al., “Power/performance exploration of single-core

and multi-core processor approaches for biomedical signal process-

ing,” in Integrated Circuit and System Design. Power and Timing

Modeling, Optimization, and Simulation. Springer, 2011, pp. 102–

111.

[98] S. Banerjee and D. O. Wu, “Final report from the nsf workshop on

future directions in wireless networking,” 2013.

https://www.abiresearch.com/market-research/product/1021642-edge-analytics-in-iot/
https://www.abiresearch.com/market-research/product/1021642-edge-analytics-in-iot/
https://www.abiresearch.com/press/more-than-30-billion-devices-will-wirelessly-conne/
https://www.abiresearch.com/press/more-than-30-billion-devices-will-wirelessly-conne/
http://www.ceva-dsp.com/CEVA-XM4
http://www.ceva-dsp.com/CEVA-XM4
https://www.synopsys.com/dw/ipdir.php?ds=ev52-ev54
https://www.synopsys.com/dw/ipdir.php?ds=ev52-ev54

[99] “IoT-From Research and Innovation to Market Deployment,” http:

//www.internet-of-things-research.eu/.

[100] I. Kadayif and M. Kandemir, “Data Space-oriented Tiling for En-

hancing Locality,” ACM Trans. Embed. Comput. Syst., vol. 4, no. 2,

pp. 388–414, 2005.

[101] C. Lattner and V. Adve, “LLVM: A compilation framework for

lifelong program analysis & transformation,” in Code Generation

and Optimization, 2004. CGO 2004. International Symposium on.

IEEE, 2004, pp. 75–86.

[102] Y. LeCun and Y. Bengio, “Convolutional networks for images,

speech, and time series,” The handbook of brain theory and neu-

ral networks, vol. 3361, no. 10, 1995.

[103] STMicroelectronics, STM32L476xx Datasheet, rev. 2.

[104] P. Flatresse et al., “Ultra-wide body-bias range LDPC decoder

in 28nm UTBB FDSOI technology,” in Solid-State Circuits Con-

ference Digest of Technical Papers (ISSCC), 2013 IEEE Interna-

tional. IEEE, 2013, pp. 424–425.

[105] T. Yang and A. Gerasoulis, “DSC: scheduling parallel tasks on an

unbounded number of processors,” IEEE Transactions on Parallel

and Distributed Systems, vol. 5, no. 9, pp. 951–967, 1994.

[106] E. A. Lee and D. G. Messerschmitt, “Static scheduling of syn-

chronous data flow programs for digital signal processing,” Com-

puters, IEEE Transactions on, vol. 100, no. 1, pp. 24–35, 1987.

http://www.internet-of-things-research.eu/
http://www.internet-of-things-research.eu/

[107] P. Virouleau et al., “Evaluation of OpenMP dependent tasks with

the KASTORS benchmark suite,” in Using and Improving OpenMP

for Devices, Tasks, and More. Springer, 2014, pp. 16–29.

[108] A. Kukanov and M. J. Voss, “The Foundations for Scalable Multi-

core Software in Intel Threading Building Blocks.” Intel Technology

Journal, vol. 11, no. 4, 2007.

[109] Khronos Group, “OpenVX resources,” http://www.khronos.org/

openvx/resources.

[110] A. T. Tan, J. Falcou, D. Etiemble, and H. Kaiser, “Automatic task-

based code generation for high performance domain specific embed-

ded language,” International Journal of Parallel Programming, pp.

1–17, 2014.

[111] J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-

performance code generation for stencil computations on GPU ar-

chitectures,” in Proceedings of the 26th ACM international confer-

ence on Supercomputing. ACM, 2012, pp. 311–320.

[112] M. Püschel et al., “SPIRAL: Code generation for DSP transforms,”

Proceedings of the IEEE, vol. 93, no. 2, pp. 232–275, 2005.

[113] Y. Futamura, “Partial evaluation of computation process–an ap-

proach to a compiler-compiler,” Higher-Order and Symbolic Com-

putation, vol. 12, no. 4, pp. 381–391, 1999.

[114] NVIDIA, “NVIDIA Jetson TX1 Supercomputer-on-Module Drives

Next Wave of Autonomous Machines,” http://devblogs.nvidia.

com/parallelforall/nvidia-jetson-tx1.

http://www.khronos.org/openvx/resources
http://www.khronos.org/openvx/resources
http://devblogs.nvidia.com/parallelforall/nvidia-jetson-tx1
http://devblogs.nvidia.com/parallelforall/nvidia-jetson-tx1

[115] Z. Guo, J. Han, and T. Li, “Implementing OpenVX on a polymor-

phous array processor,” in 2015 IEEE 16th International Confer-

ence on Communication Technology (ICCT), 2015, pp. 598–601.

[116] SiliconLabs, EFM32G210 Datasheet, rev. 1.90.

[117] Texas Instruments, MSP430F161 Datasheet, rev. G.

[118] J.-S. Yoon, J.-H. Kim, H.-E. Kim, W.-Y. Lee, S.-H. Kim, K. Chung,

J.-S. Park, and L.-S. Kim, “A Unified Graphics and Vision Proces-

sor With a 0.89/spl mu/W/fps Pose Estimation Engine for Aug-

mented Reality,” Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, vol. 21, no. 2, pp. 206–216, 2013.

[119] J. Oh, S. Lee, and H.-J. Yoo, “1.2-mW Online Learning Mixed-

Mode Intelligent Inference Engine for Low-Power Real-Time Ob-

ject Recognition Processor,” Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, pp. 921–933, 2013.

[120] Carnegie Mellon University, “CMUcam,”

http://www.cmucam.org/.

[121] NXP, LPC5410x Datasheet, rev. 2.1.

[122] Freescale, MC9S12XDP512 Datasheet, rev. 2.21.

[123] “STM32L4 ultra-low-power MCUs,” http://www.st.com/stm32l4.

[124] “Texas Instruments MSP Microcontrollers,” http://www.ti.com/

lsds/ti/microcontrollers 16-bit 32-bit/msp/overview.page.

[125] “Ambiq Apollo,” http://ambiqmicro.com/

low-power-microcontroller.

http://www.st.com/ stm32l4
http://www.ti.com/ lsds/ti/microcontrollers_16-bit_32-bit/msp/overview.page
http://www.ti.com/ lsds/ti/microcontrollers_16-bit_32-bit/msp/overview.page
http://ambiqmicro.com/low-power-microcontroller
http://ambiqmicro.com/low-power-microcontroller

[126] A. Y. Dogan, J. Constantin, D. Atienza, A. Burg, and L. Benini,

“Low-power processor architecture exploration for online biomedi-

cal signal analysis,” IET Circuits, Devices Systems, vol. 6, no. 5,

pp. 279–286, Sept 2012.

[127] E. Krimer, R. Pawlowski, M. Erez, and P. Chiang, “Synctium: a

Near-Threshold Stream Processor for Energy-Constrained Parallel

Applications,” IEEE Computer Architecture Letters, vol. 9, no. 1,

pp. 21–24, Jan 2010.

[128] D. Rossi, I. Loi, F. Conti, G. Tagliavini, A. Pullini, and

A. Marongiu, “Energy efficient parallel computing on the pulp plat-

form with support for openmp,” in Electrical & Electronics Engi-

neers in Israel (IEEEI), 2014 IEEE 28th Convention of. IEEE,

2014, pp. 1–5.

[129] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and

T. Mudge, “Near-Threshold Computing: Reclaiming Moore’s Law

Through Energy Efficient Integrated Circuits,” Proceedings of the

IEEE, vol. 98, no. 2, pp. 253–266, Feb 2010.

[130] D. Bol, J. De Vos, C. Hocquet, F. Botman, F. Durvaux, S. Boyd,

D. Flandre, and J.-D. Legat, “A 25MHz 7µW/MHz ultra-low-

voltage microcontroller SoC in 65nm LP/GP CMOS for low-carbon

wireless sensor nodes,” in Solid-State Circuits Conference Digest of

Technical Papers (ISSCC), 2012 IEEE International. IEEE, 2012,

pp. 490–492.

[131] B. H. Calhoun and A. Chandrakasan, “Analyzing static noise mar-

gin for sub-threshold SRAM in 65nm CMOS,” in Solid-State Cir-

cuits Conference, 2005. ESSCIRC 2005. Proceedings of the 31st

European, Sept 2005, pp. 363–366.

[132] M. E. Sinangil, N. Verma, and A. P. Chandrakasan, “A Reconfig-

urable 8T Ultra-Dynamic Voltage Scalable (U-DVS) SRAM in 65

nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 44, no. 11,

pp. 3163–3173, Nov 2009.

[133] B. H. Calhoun and A. P. Chandrakasan, “A 256-kb 65-nm Sub-

threshold SRAM Design for Ultra-Low-Voltage Operation,” IEEE

Journal of Solid-State Circuits, vol. 42, no. 3, pp. 680–688, March

2007.

[134] A. Teman, D. Rossi, P. Meinerzhagen, L. Benini, and A. Burg,

“Power, Area, and Performance Optimization of Standard Cell

Memory Arrays through Controlled Placement,” in ACM Trans-

actions on Design Automation of Electronic Systems, 2016.

[135] P. Meinerzhagen, S. M. Y. Sherazi, A. Burg, and J. N. Rodrigues,

“Benchmarking of Standard-Cell Based Memories in the Sub-VT

Domain in 65-nm CMOS Technology,” IEEE Journal on Emerging

and Selected Topics in Circuits and Systems, vol. 1, no. 2, pp. 173–

182, June 2011.

[136] D. Bortolotti, A. Bartolini, C. Weis, D. Rossi, and L. Benini, “Hy-

brid memory architecture for voltage scaling in ultra-low power

multi-core biomedical processors,” in Design, Automation and Test

in Europe Conference and Exhibition (DATE), 2014, March 2014,

pp. 1–6.

[137] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen, “WCET

centric data allocation to scratchpad memory,” in 26th IEEE Inter-

national Real-Time Systems Symposium, Dec 2005, pp. 10 pp.–232.

[138] J. Hu, C. J. Xue, Q. Zhuge, W. C. Tseng, and E. H. M. Sha, “To-

wards energy efficient hybrid on-chip Scratch Pad Memory with

non-volatile memory,” in Design, Automation Test in Europe Con-

ference Exhibition (DATE), 2011, March 2011, pp. 1–6.

[139] M. Gautschi, M. Schaffner, F. K. GÃijrkaynak, and L. Benini, “A

65nm CMOS 6.4-to-29.2pJ/FLOP@0.8V shared logarithmic float-

ing point unit for acceleration of nonlinear function kernels in

a tightly coupled processor cluster,” in 2016 IEEE International

Solid-State Circuits Conference (ISSCC), Jan 2016, pp. 82–83.

[140] A. Mineo, M. Palesi, G. Ascia, P. Pande, and V. Catania,

“On-Chip Communication Energy Reduction through Reliabil-

ity Aware Adaptive Voltage Swing Scaling,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems,

vol. PP, no. 99, pp. 1–1, 2016.

[141] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architec-

ture support for disciplined approximate programming,” in ACM

SIGPLAN Notices, vol. 47, no. 4. ACM, 2012, pp. 301–312.

[142] S. H. Nawab, A. V. Oppenheim, A. P. Chandrakasan, J. M. Wino-

grad, and J. T. Ludwig, “Approximate signal processing,” Journal

of VLSI signal processing systems for signal, image and video tech-

nology, vol. 15, no. 1-2, pp. 177–200, 1997.

[143] J. T. Ludwig, S. H. Nawab, and A. P. Chandrakasan, “Low-power

digital filtering using approximate processing,” IEEE Journal of

Solid-State Circuits, vol. 31, no. 3, pp. 395–400, Mar 1996.

[144] R. Hegde and N. R. Shanbhag, “Energy-efficient signal process-

ing via algorithmic noise-tolerance,” in International Symposium

on Low Power Electronics and Design, Aug 1999, pp. 30–35.

[145] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate Computing:

A Survey,” IEEE Design Test, vol. 33, no. 1, pp. 8–22, Feb 2016.

[146] S. Mittal, “A Survey of Techniques for Approximate Computing,”

ACM Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, Mar. 2016.

[147] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-

Power Digital Signal Processing Using Approximate Adders,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 32, no. 1, pp. 124–137, Jan 2013.

[148] A. Rahimi, A. Marongiu, R. K. Gupta, and L. Benini, “A

variability-aware OpenMP environment for efficient execution

of accuracy-configurable computation on shared-FPU processor

clusters,” in Hardware/Software Codesign and System Synthesis

(CODES+ISSS), 2013 International Conference on, Sept 2013, pp.

1–10.

[149] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T.

Chakradhar, “Scalable effort hardware design: Exploiting algorith-

mic resilience for energy efficiency,” in Design Automation Confer-

ence (DAC), 2010 47th ACM/IEEE, June 2010, pp. 555–560.

[150] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat, “ECOSystem:

Managing Energy As a First Class Operating System Resource,” in

Proceedings of the 10th International Conference on Architectural

Support for Programming Languages and Operating Systems, ser.

ASPLOS X. ACM, 2002, pp. 123–132.

[151] A. Agarwal, M. Rinard, S. Sidiroglou, S. Misailovic, and H. Hoff-

mann, “Using code perforation to improve performance, reduce en-

ergy consumption, and respond to failures,” in MIT CSAIL Tech.

Reports, 2009.

[152] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman, and

S. Amarasinghe, “Language and compiler support for auto-tuning

variable-accuracy algorithms,” in 9th IEEE/ACM International

Symposium on Code Generation and Optimization, April 2011, pp.

85–96.

[153] W. Baek and T. Chilimbi, “Green: A system for supporting energy-

conscious programming using principled approximation,” TR-2009-

089, Microsoft Research, Tech. Rep., 2009.

[154] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze,

and D. Grossman, “EnerJ: Approximate Data Types for Safe and

General Low-power Computation,” in Proceedings of the 32Nd

ACM SIGPLAN Conference on Programming Language Design and

Implementation, ser. PLDI ’11. ACM, 2011, pp. 164–174.

[155] I. J. Chang, D. Mohapatra, and K. Roy, “A Priority-Based 6T/8T

Hybrid SRAM Architecture for Aggressive Voltage Scaling in Video

Applications,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 21, no. 2, pp. 101–112, Feb 2011.

[156] M. Cho, J. Schlessman, W. Wolf, and S. Mukhopadhyay, “Recon-

figurable SRAM Architecture With Spatial Voltage Scaling for Low

Power Mobile Multimedia Applications,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 19, no. 1, pp.

161–165, Jan 2011.

[157] N. Verma and A. P. Chandrakasan, “A 256 kb 65 nm 8T Sub-

threshold SRAM Employing Sense-Amplifier Redundancy,” IEEE

Journal of Solid-State Circuits, vol. 43, no. 1, pp. 141–149, Jan

2008.

[158] F. Frustaci, M. Khayatzadeh, D. Blaauw, D. Sylvester, and

M. Alioto, “SRAM for Error-Tolerant Applications With Dynamic

Energy-Quality Management in 28 nm CMOS,” IEEE Journal of

Solid-State Circuits, vol. 50, no. 5, pp. 1310–1323, May 2015.

[159] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan,

“Analysis and characterization of inherent application resilience

for approximate computing,” in Design Automation Conference

(DAC), 2013 50th ACM/EDAC/IEEE, May 2013, pp. 1–9.

[160] P. Roy, R. Ray, C. Wang, and W. F. Wong, “ASAC: Automatic

Sensitivity Analysis for Approximate Computing,” in Proceedings of

the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers

and Tools for Embedded Systems, ser. LCTES ’14. ACM, 2014,

pp. 95–104.

[161] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang, “RRAM-

Based Analog Approximate Computing,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 34,

no. 12, pp. 1905–1917, Dec 2015.

[162] B. Li, Y. Shan, M. Hu, Y. Wang, Y. Chen, and H. Yang,

“Memristor-based approximated computation,” in Proceedings of

the 2013 International Symposium on Low Power Electronics and

Design, ser. ISLPED ’13. IEEE Press, 2013, pp. 242–247.

[163] P. Meinerzhagen, S. M. Y. Sherazi, A. Burg, and J. N. Rodrigues,

“Benchmarking of standard-cell based memories in the sub-domain

in 65-nm CMOS technology,” IEEE Journal on Emerging and Se-

lected Topics in Circuits and Systems, vol. 1, no. 2, pp. 173–182,

June 2011.

[164] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA:

Error Resilient System Architecture for probabilistic applications,”

in Design, Automation Test in Europe Conference Exhibition

(DATE), 2010, March 2010, pp. 1560–1565.

[165] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker:

saving DRAM refresh-power through critical data partitioning,”

SIGPLAN Not., vol. 46, no. 3, pp. 213–224, Mar. 2011.

[166] V. Wong and M. Horowitz, “Soft error resilience of probabilistic in-

ference applications,” in In Proceedings of the Workshop on System

Effects of Logic Soft Errors. SELSE, 2006.

[167] S. Steinke, L. Wehmeyer, B.-S. Lee, and P. Marwedel, “Assigning

program and data objects to scratchpad for energy reduction,” in

Design, Automation and Test in Europe Conference and Exhibition,

2002. Proceedings, 2002, pp. 409–415.

[168] D. Bortolotti, C. Pinto, A. Marongiu, M. Ruggiero, and

L. Benini, “VirtualSoC: A Full-System Simulation Environment

for Massively Parallel Heterogeneous System-on-Chip,” in Paral-

lel and Distributed Processing Symposium Workshops PhD Forum

(IPDPSW), 2013 IEEE 27th International, May 2013, pp. 2182–

2187.

[169] “clang: a C language family frontend for LLVM ,” http://clang.

llvm.org/.

[170] A. Marongiu and L. Benini, “An OpenMP Compiler for Efficient

Use of Distributed Scratchpad Memory in MPSoCs,” IEEE Trans-

actions on Computers, vol. 61, no. 2, pp. 222–236, Feb 2012.

[171] B. Grigorian and G. Reinman, “Dynamically adaptive and reliable

approximate computing using light-weight error analysis,” in Adap-

tive Hardware and Systems (AHS), 2014 NASA/ESA Conference

on, July 2014, pp. 248–255.

[172] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An

Online Quality Management System for Approximate Computing,”

http://clang.llvm.org/
http://clang.llvm.org/

in Proceedings of the 42Nd Annual International Symposium on

Computer Architecture, ser. ISCA ’15. ACM, 2015, pp. 554–566.

