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Chapter 1. Introduction 

1.1 Background and problem definition 

In the last years, the role of wastewater treatment plants is even more relevant not only as final 

destination of the collected sewage but also as a center of the sustainable approach to the water 

cycle. Indeed, WWTPs management should play an important role in the frame of the circular 

economy recently supported by the European Commission with a specific action plan presented in 

2015. This plan aims to support economical actors (business and consumers) as well as regional and 

national authorities in the transition through the circular economy. The circular economy aims at 

maintaining the value of products, materials and resources as long as possible, while reducing the 

waste production. Its final purpose consists in the generation of a more sustainable and competitive 

economy model for Europe. Specifically, the implementation of good practices in Wastewater 

Treatment plants (WWTPs) management allows not only to minimize the energy consumption 

maintaining the effluent concentrations under the law thresholds but also to reach different ends 

as wastewater reuse for industry or irrigation, energy production and raw material reservoir.  

The fast improvement of wastewater treatment control technologies supports this new sustainable 

management perspective. The use of ICA (Instrumentation Control and Automation) tools enables 

to regulate the processes minimizing energy requirements and consequently to reduce the 

managements costs (Olsson, 2015). Nowadays, automatic controls tools are commonly used in new 

plants and large-scale plants. However, many small-scale plants (< 50000 PE) are not provided with 

such tools. Indeed these small-scale plants need for accurate input signals and adequate 

measurement instruments that can prove to be expensive (Ingildsen and Olsson, 2001). Thus, a 

correct and efficient implementation of ICA tools requires a study of the correlation between the 

parameters measured and the processes. Moreover, the study of the signals from different sections 

of the plants and in different conditions allows to identify the main control sections and their 

characteristic parameters. 

An incentive to increase the efficiency of WWTPs performances comes from the possibility to reuse 

the treated wastewater. Indeed, water scarcity has become more prominent in the last decades, 

increasing the need for new practices in terms of efficient water management. Reuse and 

valorisation of water from WWTPs can help solving the problem. Wastewater reuse history starts 

from the Minoan Civilization when water scarcity periods forced the use of very smart techniques. 

Several archaeological studies have revealed how Minoan sewer and stormwater drainage systems 

and their management for water reuse in palaces and cities were ahead of their time. In addition to 

the simple ‘grey water’ reuse, the combination of a stormwater drainage system with a wastewater 

system as well as the presence of little sedimentary tanks make Minoans the first civilization 

involved in the development of new techniques for wastewater reuse. All successive civilizations of 

the Mediterranean region, such as Ancient Greeks, applied these Minoan sanitary technologies 
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(Angelakis et al., 2005). Over the last years, the scarcity of water resources has been growing 

drastically, becoming a critical problem both in developing and industrialized countries. The 

agricultural sector, responsible for about 70% of annual global freshwater withdrawals (even up to 

90% in some parts of Asia), is the biggest consumer of water (World Water Development Report 

2016: Water and Jobs, 2016). In this context water reuse and more particularly wastewater reuse 

has a key role. The total amount of global reused water from wastewater treatment plants (WWTPs) 

in 2011 has been estimated to 7 Km3/year (Kirhensteine et al., 2016). Owing to the global increase 

of the agricultural field that requires almost 32% of irrigation reuse, the Global Water intelligence 

estimated an increase of reused water up to 26 Km3/year in 2030 (Kirhensteine et al., 2016). At 

European level, the volume of wastewater reuse was estimated in 2006 to 964 million m3/year (2.4 

% of treated wastewater) (Kirhensteine et al., 2016), and its increase has been estimated to 1100 

million m3/year for 2015 (BIO by Deloitte, 2015) and is expected to reach 3222 million m3/year in 

2025 (Sanz and Bernd, 2014) . In 2006 water volume in Europe has been reused mostly by South-

European countries (Raso, 2013) due to their higher water stress. However, this represents only a 

small part, between 5% to 12%, of the total treated wastewater, which indicates a great potential 

for those countries.  

Finally, the WWTPs management must deal with new problems as the presence of emerging 

pollutants and their accumulation in the environment. Indeed, large amounts of xenobiotic 

compounds end in the plants and can be released in the environment because most of them are 

hardly or not biodegradable. Even if specific legal thresholds are not fixed yet, the problems related 

to these organic chemicals fate will become even more relevant in the WWTPs management 

especially in case of agricultural irrigation reuse (Polesel et al., 2015). 
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1.2 Aim of the thesis and methodology 

The overall aim of this PhD thesis was to investigate the implementation of models in the most 

relevant sections of pilot and full scale plants and the possibility to reuse treated wastewater coming 

from the effluent flow rate of existing plants, or a part of it, for irrigation purpose. The study was 

referred to the treatment scheme showed in Figure  1.1. The scheme is divided in two parts in terms 

of management: “treatment” and “reclamation”. The first part is characterized by a common 

Activated Sludge (AS) scheme with Denitrification/Nitrification. The second part is made of a natural 

treatment basin for finishing with phytotreatment and lagoon. Moreover, the reclamation basin 

provides a natural disinfection and enable the water storage /release with respect to the irrigation 

request.  The target ranges of the study were the small to medium WWTPs fed on mixed civil and 

industrial sewage. 

 

The specific objectives of the thesis were: 

1. to minimize the management costs of the “Treatment” using automatic controls. Different 

control solutions have been tested implementing  the data acquired during a previous study 

on the pilot scale plant located in Trebbo di Reno (BO), in WEST 2012 software (DHI 

Software), based on ASM models. Moreover, a first approach on Business Process 

Management (BPM) applied to WWTPs has been tested; 

2. to assess the parameters, control sections and measure instruments that influence the 

processes in unusual conditions. The monitoring data from Bologna real scale plant fed by 

urban combined sewage have been analyzed in flow variation conditions due to rain events. 

The effects of dry and rainy weather conditions on the process have been studied; 

3. to test the effect of “Reclamation” phase on urban wastewater for irrigation reuse. This part 

has been developed in the frame of a partnership project with HERA, focused on the 

Santerno full scale WWTP located in Imola (Bologna, Italy). One-year measurement 

campaign has been carried on in the finishing lagoon section of the plant. Moreover, a pilot 

plant has been designed, built in the WWTP area and monitored in the same period. The 

pilot plant simulates the process occurring in the Basin 1 of the finishing phase of the plant,  

in different functioning conditions. It consists of a plug-flow reactor divided into two 

different reaction zones: FWS Phytotreatment-Lemna Minor and Aerobic Lagoon. Based on 

Figure  1.1 WWTP scheme for irrigation reuse 



 

17 
 

the data acquired, the finishing effect on Nitrogen compounds and the natural disinfection 

effect on E. coli has been studied. The dispersed flow equation has been implemented to 

model the E. coli removal; 

4. to predict the fate of organic chemicals, surfactants and pharmaceuticals, in conventional 

Activated Sludge plants and its load released in the soil during irrigation. This part has been 

developed during the research period at the Technical University of Denmark (DTU) – Section 

Environmental Chemistry, Department of Environmental Engineering under the supervision 

of Prof. Stefan Trapp as Short Term Scientific Mission (STSM) in the frame of the NEREUS 

COST Action ES1403 “New and emerging challenges and opportunities in wastewater reuse”. 

The residual chemical loads in the WWTP influent have been estimated starting from 

literature data in selected European plants. The Activity SimpleTreat model has been used 

to predict the fate of the selected chemicals in a generic sewage treatment plant. Finally, the 

loads of chemicals released by the most widely cultivated crops in Emilia-Romagna has been 

estimated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

18 
 

 

1.3  Publications and conference contributions 

Based on the research activity carried on during the PhD period, two scientific papers on 

international journals and eight contributions to international conferences were published, listed 

below in reverse chronological order.  

Scientific papers published on international journals: 

• Fiorentino Carmine; Mancini Maurizio; Luccarini Luca, Urban wastewater treatment plant 

provided with tertiary finishing lagoons: management and reclamation for irrigation reuse, 

«JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY», 2016, 91, pp. 1615 - 1622 

[scientific article]. (C. Fiorentino et al., 2016) 

• Fiorentino Carmine; Mancini Maurizio; Luccarini Luca, Optimization of wastewater 

treatment plants monitoring in flow variation conditions due to rain events, 

«ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL», 2016, 15, pp. 1981 - 1988 

[scientific article] (Carmine Fiorentino et al., 2016). 

Contribution to international conferences with proceeding and conference papers: 

• Fiorentino, C., Mancini M., Avolio F. Anzalone F., Biomass recovery from the real scale Lemna 

FWS phytotreatment system implemented in Santerno WWTP , oral presentation in the 

Session “Water management within the circular economy. Resource recovery from the 

water cycle: market, value chains and new perspective for the water utilities and chemical 

industry” ECOMONDO 2016, 8-11 November 2016, Rimini, Italy [abstract and oral 

presentation] 

• Mancini Maurizio; Fiorentino Carmine, Modelling and control of activated sludge wwtps 

under inflow variations due to a combined drainage system, in: Faculty of Civil and Industrial 

Engineering-SAPIENZA University of Rome, SIDISA 016 - Proceedings of X International 

Symposium on Sanitary and Environmental Engineering, Rome, DEI, 2016, pp. C07/2-1 - 

C07/2-13 (atti di: X International Symposium on Sanitary and Environmental Engineering-

SIDISA 016, ROME, 19-23 June 2016) [Contribution to conference proceedings] 

• Fiorentino Carmine; Mancini Maurizio; Ricci Roberto; Luccarini Luca, Modelling of control 

strategies and policies to manage urban wastewater treatment plants, in: Faculty of Civil and 

Industrial Engineering-SAPIENZA University of Rome, SIDISA 016 - Proceedings of X 

International Symposium on Sanitary and Environmental Engineering, Roma, DEI, 2016, 1, 

pp. E03/1.1 - E03/1.8 (atti di: X International Symposium on Sanitary and Environmental 

Engineering-SIDISA 016, ROME, 19-23 June 2016) [Contribution to conference proceedings] 

• Fiorentino Carmine; Mancini Maurizio, nitrogen removal effect of finishing lagoons on urban 

wastewater after secondary treatment, in: International Society for Environmental 

Biotechnology, Proceedings of the 10th International Society for Environmental 

Biotechnology Conference, 08034, Barcelona 2016, BarcelonaTech Jordi Girona, 1-3,, 2016, 

pp. 57 - 58 (conference proceedings: 10th International Society for Environmental 

Biotechnology Conference, Barcelona, 1-3 June 2016) [Abstract] 
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• Fiorentino, Carmine; Mancini, Maurizio; Luccarini, Luca, Optimization of Wastewater 

Treatment plants control in flow variation conditions due to rain events, in: GLOBAL WATER 

EXPO - Le acque di scarico: una risorsa da valorizzare, RIMINI, ECOMONDO, 2015, 1, pp. 1 - 

1 (conference proceeding: ECOMONDO 2015 - The green technology EXPO, RIMINI, 3-6 

november 2015) [Poster] 

• Roberto Ricci; Luca Luccarini; Carmine Fiorentino; Maurizio Mancini, Modellazione di 

processo di un depuratore a fanghi attivi e sviluppo di strategie di controllo tramite Business 

Process, in: Atti della Italian DHI Conference 2015, Torino, DHI Italy, 2015, 1, pp. AU8.1 - 

AU8.40 (atti di: ITALIAN DHI CONFERENCE 2015, Torino, 14-15 october 2015) [Contribution 

to conference proceedings] 

• Fiorentino, Carmine; Mancini, Maurizio; Luccarini, Luca, Optimization of wastewater 

treatment management and reclamation for irrigation reuse, in: E-proceedings - “6th 

European Bioremediation Conference" EBC VI 2015, Thessaloniki, Grafima Publications, 

2015, 1, pp. 489 - 493 (atti di: 6th European Bioremediation Conference EBC VI 2015 - session 

6c: Wastewater valorization, bioremediation, purification and reuse, Chania, Crete, Greece, 

June 29-July 2 2015) [Contribution to conference proceedings] 

• M.L. Mancini; C. Fiorentino; L. Luccarini, Optimal set of control parameters for Wastewater 

Treatment Plants and optimization of instruments placement, in: Green Economy e sua 

implementazione nel Mediterraneo, Rimini, Maggioli Ed., 2014, 1, pp. 323 - 329 (atti di: 

ECOMONDO, Rimini, 5-8 sept 2014) [Contribution to conference proceedings] 
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Chapter 2. Water and wastewater reuse 

regulations 

By defining correctly the water quality indicators, their specific reuse and threshold values, the 

development of guidelines and regulations for wastewater reuse plays a key role: first for the 

promotion of wastewater reuse and secondly for human health and environment protection.  

Historically, the State of California was the first in 1918 to promote water reuse with the adoption 

of the “Regulation Governing Use of Sewage for Irrigation Purposes”(California State Board of 

Health, 1918). For the first time, this Regulation set limits to the water reuse in agriculture and 

initiated the development of this technique in other states of the USA. Afterwards, international 

and national organizations focused on the wastewater safety through several regulations and 

guidelines for wastewater reuse.  

At the European scale, a specific regulation for water reuse does not exist yet but several 

environmental directives are applicable in this field. Nevertheless, laws and standards for water 

reuse applications are written and implemented at member states and regional level. Regulations 

are thus highly heterogeneous, in particular in terms of intended uses, analytical parameters and 

threshold values (Sanz and Bernd, 2014). The main international guidelines for water and 

wastewater reuse for irrigation are listed in chronological order in Table 2.1.   
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Table 2.1 Main international and European guidelines and regulations 

Year Organization Regulation Reference 

1918 California State 
Regulation Governing Use of Sewage 

for Irrigation Purposes 

(California State Board of 

Health, 1918) 

1973 WHO 
Guidelines for Reuse of Water for 

Irrigation 
(WHO, 1973) 

1989 WHO and UNEP Guidelines (WHO, 1989) 

1991 
European 

Community  

Urban Wastewater Directive 

91/271/EEC 
(CEC, 1991) 

1992 EPA  Guidelines for water reuse (EPA, 1992) 

1994 FAO  Water quality for agriculture (Ayers and Westcot, 1994) 

2003 

Italy – Ministry of 

the Environmental 

and Protection of 

Land 

Ministerial Decree (DM)  
(Ministry of Environment and 

Protection of Land, 2003) 

2005 UNEP 
Guidelines for municipal water reuse 

in the Mediterranean region 
(UNEP, 2005) 

2006 WHO 
Guidelines for the safe use of 

wastewater, excreta and greywater 
(WHO, 2006) 

2007 
Spain – Ministry of 

Presidency 
Royal Decree (RD) 

(Ministerio de Sanidad 

Servicios Sociales e Igualdad, 

2007) 

2011 

Greece – Ministry 

of Environment, 

Energy and 

Climate Change 

Common Ministerial Decision (CMD)  
(Government of Greece, 

2011) 

2011 UNEP  

Development of performance 

indicators for the operation and 

maintance of wastewater treatment 

plants and wastewater reuse 

(UNEP, 2011) 

2012 EPA Guidelines for water reuse (USEPA, 2012) 

2015 ISO 

Guidelines for treated wastewater use 

for irrigation projects 

 

(International Organization 

for Standardization, 2015) 
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Currently, the main international guidelines for wastewater reuse for irrigation are: ISO 16075:2015, 

WHO 2006 guidelines and FAO 2006 guidelines.  

The ISO 16075:2015 classes the treated wastewater in five categories (A, B, C, D, E) depending on 

its treatment level and consequently its quality: 

- Category A: very high quality treated water useable for agricultural irrigation of food crops 

consumed raw. 

- Category B: high quality treated wastewater. The wastewater in this category can be used 

for urban irrigation and agricultural irrigation of processed food crops. 

- Category C: medium quality treated wastewater. In this category the raw wastewater has 

been treated with physical and biological treatment and its use is agricultural irrigation of 

non-food crops. 

- Category D: medium quality treated wastewater. As category C, the raw wastewater is 

treated with physical and biological processes and its use is for not potable applications of 

industrial and seeded crops. 

- Category E: extensively treated wastewater. It is raw wastewater treated through natural 

processes and its use is for not potable applications of industrial and seeded crops. 

Table 2.2 shows the parameters recommended for each category in terms of organic matter (BOD5), 

Turbidity or TSS and pathogens (Coliforms): 

Table 2.2  ISO 16075:2015: recommended parameters for each wastewater category 

Parameter Category A Category B Category C Category D Category E 

BOD5 [mg/L] <10 <20 <35 <100 <35 

Turbidity 

[NTU] 
5 NR NR NR NR 

TSS [mg/L] <10 <25 <50 <140 NR 

Coliforms 

[CFU/100 mL] 

<100 thermo-

tolerant 

coliforms 

<1000 thermo-

tolerant 

coliforms 

<10000 

thermo-

tolerant 

coliforms 

NR NR 

Intestinal 

nematode 

[Egg./L] 

NR NR NR <5 <5 

*NR = Not Reccomended 

 

 

According to the WHO 2006 guidelines, two types of use are considered: unrestricted irrigation, 

when the treated wastewater will be used for not potable applications in settings where public 

access is not restricted, and restricted irrigation, treated wastewater used for non potable 

applications in public access areas. 
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  Table 2.3 WHO 2006 Guidelines: recommended parameters for restricted and 
unrestricted uses  

Parameter Unrestricted Restricted 

TSS [mg/L] <10 <25 

Coliforms [CFU/100 mL] E. coli <1000 E. coli <10000 

Intestinal nematode [Egg/L] <1 <1 

 

The EPA 2012 guidelines for water reuse give different parameters thresholds depending on the 

crops type: food crops, in case of irrigation of crops for human consumption consumed raw, and 

processed food crops or food crops not consumed by human. 

  Table 2.4 EPA 2012 Guidelines: recommended parameters for food and 
processed (or non-food) crops  

Parameter For food crops 
For processes food crops 

or non-food crops 

BOD5 <=10 <=30 

Turbidity <=2 Not recommended 

TSS [mg/L] Not recommended <=30 

Coliforms [CFU/100 mL] 
Fecal Coliforms 

Absence 

Fecal Coliforms <=200 

(Median) 

 

Comparing the recommended parameters in the three cases it is possible to note that the parameter 

for organic matter is BOD5 and its thresholds are very strict in ISO 16075:2015 and EPA 2012 for food 

crops (<10 mg/L) while there is not any limit for organic matter in WHO 2006. TSS and turbidity 

thresholds are 5 NTU (ISO 16075:2015) and 2 NTU (EPA 2012) and again those are not considered 

in WHO 2006. The presence of high levels of turbidity can reduce the hydraulic conductivity of the 

soil, obstruct the irrigation facilities and, viruses and bacteria can migrate along with the solid 

particles.  The recommended standards for pathogens are very stringent  and can be achieved only 

through high cost technologies. This is a very real problem in developing countries. 

An important change in some regulations (e.g. WHO 2006) is the use of the E. coli as bacterial 

indicators for water contamination instead of the traditional total and fecal coliform microbiological 

parameters because E. coli better represents the behaviour of pathogenic bacteria in water 

(Baudisova, 1997).   

At the European level, several environmental directives exist and regulations are highly 

heterogeneous, in terms of intended uses, analytical parameters and threshold values (Sanz and 

Bernd, 2014).  
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E. coli is considered the pathogens parameter in many countries but the maximum thresholds are 

very different.  

Table 2.5 shows the legal thresholds values for irrigation reuse in five European countries, referred 

to three main parameters: COD, TN and E. coli.  

 

Table 2.5 TN, COD and E. coli legal limits for irrigation reuse in some European countries 

 
Spain 

(RD1620/2007) 

Italy  

(DM185/2003) 

Greece 

 (CMD 145116)  

France 

( JORF 156/2014) 

Cyprus 

(Law 106/2002) 

COD [mg/L] - 100 - 60 70 

TN [mgN/L] 10* 15 30 - 15 

E. coli 

(CFU/100 mL] 
0-104*** 10** 5-200 250-105 5-103 

*Only for aquifer recharge and recreational uses 

** It is the limit for 80% of the samples while 100 CFU/100mL is the maximum limit for all cases. The limit is higher 

using natural systems (phytodepuration or lagoons) becoming: 50 for 80% of the samples while 200 CFU/100mL is 

the maximum limit for all cases 

*** The range is referred to different uses 

 

In this thesis, the Italian standards for wastewater discharge (Legislative decree 152/2006) and 

reuse (Ministry Decree 185/2003) are considered. The Legislative Decree 152/2016, also called 

“Code on the Environment”, implements two important European directives: the Water Framework 

Directive 2000/60/CE and the urban wastewater treatment 91/271/CE. The wastewater treatment 

rules are defined in the third part of the Legislative Decree (articles from 51 to 176) and the legal 

thresholds for urban wastewater discharge are in the annexes 5 in “Tabella 1”. “Tabella 2” indicates 

further thresholds for Total Phosphorus and Total Nitrogen when the effluent in discharged in 

sensitive areas. Table 2.6 and Table 2.7 below show the parameters and their legal limits as defined 

in “Tabella 1” and “Tabella 2“ of the Legislative Decree 152/2006. 

 

Table 2.6 Urban wastewater discharge thresholds (adapted from “Tabella 1” of Legislative 

Decree 152/2006) 

Parameter 

WWTP capacity [PE] 

2000 - 10000 > 10000 

Concentration Reduction 

percentage 

Concentration Reduction 

percentage 

BOD5 [mg/L] <=25 70%-90% <=25 80% 

COD [mg/L] <=125 75% <=125 75% 

TSS [mg/L] <=35 90% <=35 90% 
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Table 2.7 Urban wastewater discharge thresholds in case of discharging in sensitive areas 

(adapted from “Tabella 2” of Legislative Decree 152/2006) 

Parameter 

WWTP capacity [PE] 

10000 - 100000 > 10000 

Concentration 
Reduction 

percentage 
Concentration 

Reduction 

percentage 

Total Phosphorus 

[mgP/L] 
<=2 80% <=1 80% 

Total Nitrogen  

[mgN/L] 
<=15 70%-80% >=10 70%-80% 

 

The Italian standards for wastewater reuse are fixed by the Ministry Decree (D.M. 185/2003) about 

“Technical measures for reuse of wastewater”. 

Table 2.8 Main Italian standards for wastewater reuse (adapted from 

Ministry Decree DM 185/2003) 
 limit 

Chemical Parameters  

BOD5 [mg/L] 20 

COD [mg/L] 100 

TP [mg/L] 2 

TN [mg/L] 15 

Ammonium [mg/L] 2 

Chloride [mgCl/L] 250 

Total surfactants [mg/L] 0.5 

Microbiological parameters  

Escherichia coli 

10 (80% of the samples) 

100 (maximum limit in all the cases) 

Using natural treatment systems 

(phytodepuration or wetponds) 

50 (80% of the samples) 

200 (maximum limit in all the cases) 

Salmonella absent  

 

The reference parameter for pathogen removal is E. coli and the output concentration limits are 

very strict, as shown in Table 2.8, making water reuse for irrigation hardly feasible from a process 

point of view.  
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Chapter 3. The Activated Sludge process and its 

modeling 

3.1 Mathematical modeling overview 

Several definition and descriptions of mathematical modeling are available in literature. According 

to Hermann Schichl, a model “describes a typical human way of coping with the reality” (Kallrath, 

2013) . He described the history of mathematical modeling since 2000 B.C. when the use of numbers 

can be recognized as the first way to model the reality. 

Dym and Ivey in “Principles of Mathematical Modeling” (Dym and Ivey, 1980), starting from the 

dictionary definition of model : “a miniature representation of something; a pattern of something 

to be made; an example for imitation or emulation; a description or analogy used to help visualize 

something (e.g., an atom) that cannot be directly observed; a system of postulates, data and 

inferences presented as a mathematical description of an entity or state of affairs” and 

mathematical model “a representation in mathematical terms of the behaviour of real devices and 

objects”, focused on the cognitive activity related to the modeling. This activity permits to describe 

the reality using, for instance, the mathematical language. They represented the scientific method 

as shown in Figure  3.1, where models play the key role to understand and predict real world 

phenomena 

 

 

 

The real world The conceptual world

Observations

Phenomena Models

Predictions

Figure  3.1 Description of the scientific method and the role of models [Dym and 
Ivey,1980] 
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Therefore, models can be essentially used in two ways: to explain or predict a behaviour. Starting 

from these two approaches, we end with different applications of models. In Engineering, for 

instance, the prediction approach stands in the design phase while the explanation approach 

corresponds to the test phase. Moreover, models can be used to support the experimental method, 

when it is either too expensive, dangerous or time consuming (Jeppsson and Olsson, 1996). 

Therefore, mathematical models have a long history but their implementation has been growing up 

significantly in the last decades thanks to the development of information technologies and the 

exponential growth of computational power. 

In order to properly implement mathematical models, we have to define the work phases. Many 

approaches are proposed in literature to define these phases and two of them, related to studies 

on wastewater treatment plants modelling, are shown below. The first one is based on the guideline 

for simulation studies of wastewater treatment plants proposed by the HSGSim (Hochschulgruppe 

Simulation) research group. The HSG-guideline proposes the following seven phases: 

1. Definition of objectives  

2. Data collection and model selection 

3. Data quality control 

4. Evaluation of model structure and experimental design 

5. Data collection for simulation study 

6. Calibration/validation 

7. Study and evaluation of success 

The second approach is proposed by Jeppson (Jeppsson and Olsson, 1996) from a previous study by 

(Murthy et al., 1990)   and considered five phases: 

1. Functional process specification 

2. Select modelling objectives 

3. Select model type  

4. Model construction methodology 

5. Model validation 

A comparison of both approaches reveals several common phases: definition of the objectives, 

selection of the model and the validation/calibration of the model. Moreover, the phase “Model 

construction methodology“ in the second approach is described as two phases in the first approach 

with a reference to data collection and evaluation.  

The most important distinction in mathematical models for wastewater treatment processes is 

between steady-state and dynamic models. In steady-state conditions the model is not time 

dependent while in dynamic conditions time is a variable. The advantage of steady-state 

assumptions stands in its computational simplicity. Indeed, they are commonly used for model 

calibration. However, some processes require a more detailed and accurate description and 

consequently dynamic models are necessary despite of their computational cost.  
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A model is characterised by three mathematical properties: variables, constants and parameters. 

Their identification is the most important step to build or use a model. 

Variables: these are the changing parts of the model and the most important are classified as input, 

output and state variables. The input variables are the initial information that the model need to 

run a simulation and to compute the output variables. In a dynamic model the state variables change 

during the calculations and represent the state of the process in a specific time. Output variables 

can also be state variables.  

Constants: are all the components of the model that not change during the process (e.g. gravity). 

Parameters: are the mathematical quantities changeable for a process but constant for a specific 

implementation of them.   

3.2 Activated Sludge process: historical perspective 

The first studies and real implementations of artificial process for sewage treatment started in the 

second half of the 19th century and in the early 20th century. This period is marked by the end of the 

second industrial revolution and, as a consequence, by big economical and social changes that took 

place especially in Europe and United States. Increase of urban population and the change of 

conditions from a poor rural life to big cities, had negative effects on the environment and sanitary 

conditions. Frequent disease and epidemic killed thousands of people (eg., in 1832-33 cholera killed 

over 20,000 people in Britain).  

Thanks to the development of microbiological research, we have started to correlate these health 

problems to  water pollution and, consequently, to its management. Indeed, in the first half of the 

19th century there was not any methods for sewage treatment and water supply technologies were 

very archaic. These problems were obviously more evident in the big cities of the most industrialised 

countries.  

During the congress on “The Sewage of Towns” in 1866, the land treatment was established as the 

only acceptable sewage treatment system (Jenkins and Wanner, 2014). Consequently, this 

technology was adopted firstly in Britain and then in all European countries. Sewage was collected 

and spread on soil with good organic matter and removal efficiencies (eg. around 66% in Berlin). 

However, it was still not clear if the removal mechanisms were chemical or biological. Afterwards, 

an increase of removal efficiency in intermittent fed conditions has been evidenced. These 

conditions allowed the air flow inlet, contributing to the bacterial growth. Even if this bacterial 

process was not completely understood, it was clear that biological processes caused the organic 

matter and ammonia removal. 

The main problem connected to this “natural” technology is big land requirement especially in 

densely populated cities. Then, new studies on more efficient technologies started during the later 

part of the 19th century. The first experiments on the biological processes were done at the 

Lawrence Experimental Station, Massachussetts in 1888 [Dumber 1899] where biological filters 

were aerated. 
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In 1912 Gilbert J. Fowler, researcher at University of Manchester, during a visit to United States (US), 

observed the experiments and started to study the effect of aeration on selected bacteria without 

recycling the settled solids. 

Only in 1914 Edward Arden and William T. Lockett, two Fowler’s students, had the idea to collect 

the sludge from the settler and recycle it in the aerated batch. Using the settled sludge (called 

activated sludge by Arden and Lockett), they observed a reduction of total nitrification time and the 

increase of the purification efficiency (Orhon, 2014).The results were presented at the meeting of 

Society of Chemical Industry held on April 3rd 1914 at the Grand Hotel, Manchester, UK. 

 

Pilot scale and then full-scale plants were implemented in the following years in Europe and US with 

encouraging results. The first activated sludge plant was constructed in 1920 in Sheffield, UK, and in 

1926 in continental Europe (Essen-Rellinghausen, Germany). 

The AS process had a great success as shown by the great amount of conference presentations 

patents and journal articles on this issue (around 606) from 1914 to 1921. 

Figure  3.2 Results of the first experiment on aerated batch sewage with enriched activated 
sludge by Arden and Lockett. (from (Hellenistic, 2007) 
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3.3 The Ludzack-Ettiger scheme 

In this work, the reference AS scheme is the Modified Ludzack-Ettinger (MLE), which is largely used 

to perform nitrogen removal.  

The scheme was proposed for the first time in 1963 (Ludzack and Ettinger, 1963). It is based on two 

reactors in series partially separated: the anoxic and aerobic reactors (Figure  3.4). The partial 

separation between the anoxic and aerobic reactors enables the reduction of nitrate to nitrogen gas 

(denitrification process) in the anoxic reactor, also called pre-denitrification tank. The oxidation and 

nitrification processes occur in the aerobic reactor with the oxidation of ammonia to nitrite and then 

nitrate.    

The scheme is also provided with the recirculation line from the secondary sedimentation to the 

aerobic reactor.  

In 1973 Barnard proposed the MLE scheme in which the anoxic and aerobic tanks were completely 

separated and internal recirculation line was added. This internal recirculation allows to feed the 

pre-denitrification with the nitrate produced during the nitrification process.  

Figure  3.4 Ludzack and Ettinger scheme 

Figure  3.3 A timeline for AS modelling from (IWA Task Group on Good Modelling Practice, 2012) 



 

32 
 

Therefore, the carbon and oxygen source for anoxic bacteria are respectively the influent 

wastewater and the internal recirculation while the recirculated activated sludge provides 

microorganisms (Figure  3.5). 

 

3.4 Modeling the Activated Sludge process 

During the first period after the discovery of the AS process (1920s-1950s), its application was 

widespread but very empirical.  Different hypotheses were proposed to explain the removal 

mechanism and so a long time was also necessary to build a mathematical model.  

In the 1940s, Jacques Monod, Nobel Prize in 1965, studied the bacterial growth using the Escherichia 

coli as biomass and lactic acid as substrate in his experiments.  

In 1942 he proposed, in his doctorate thesis entitled “Recherche sur la croissance des cultures 

bactériennes”, the equation below that connects the bacterial growth rate (μ) and the substrate 

concentration (S) with a first order relationship: 

      
 

𝜇 =  
𝜇𝑀𝐴𝑋 ∙ 𝑆𝑆
𝐾𝑆 + 𝑆

 (Eq.  3.1) 

where: 
- 𝜇𝑀𝐴𝑋 = maximum specific growth rate 
- 𝑆𝑆 = concentration of the growth − limiting substrate 
- 𝐾𝑆 = half saturation constant 

 
In particular, the half saturation constant corresponds to the substrate concentration when the 

growth rate is half of the maximum specific growth rate. Temperature and nutrients are not 

considered as limiting conditions in equation (Eq.  3.1).   

Consequently, the biomass growth rate is: 

 𝑑𝑥

𝑑𝑡
=  (

𝜇𝑀𝐴𝑋 ∙ 𝑆𝑆
𝐾𝑆 + 𝑆

) ∙ 𝑥 (Eq.  3.2) 

     
where: 

- 𝑥 = biomass concentration 

Figure  3.5 Modified Ludzack-Ettinger scheme 
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Considering the coefficient of microbial growth (Y) as the ratio between biomass variation and 
substrate variation (dx/dS) the equation (Eq.  3.2) became:  
 
 

 
 𝑑𝑆

𝑑𝑡
=  (

𝜇𝑀𝐴𝑋
𝑌

∙
𝑆𝑆

𝐾𝑆 + 𝑆
) ∙ 𝑥 (Eq.  3.3) 

      
where: 

- 𝑌 = coefficient of microbial growth =
dx

dS
            

 
The (Eq.  3.3) is the Michaelis-Menten equation. 

After the Monod studies, several studies have been carried out on AS process modeling and design; 

the most relevant from 1954 to 1972 are listed in Table 3.1 below. 

Table 3.1 Studies on AS process modeling and design from the 1950s and 1970s from 
(Angelakis and Joan, 2014) 

1954 Eckenfelder and O’Connor Proposed a mathematical model for AS 

1962 McKinney Proposed a completed mixing model 

1968 Pearson 
Described the materials-balance model like 

approach to reactor analysis 

1970 Lawrence and Carty 
proposed the material-balance model like 

approach to reactor analysis 

1972 Metcalf and Eddy Incorporated the reactor theory approach 

 

The most important improvement was around the 1950s when the soluble and particulate 

component of the organic matter of AS started to be considered. 

In the 1970s the most advanced research centre on AS modeling was the University of Cape Town 

(UCT), South Africa, with the research group of prof. G.v.R Marais that developed the UCT model. 

At the beginning of the 1980s the need for model uniformization and guidelines induced the 

International Association of Water Pollution Research and Control (IAWPRC) to form a Task Group 

on mathematical Modeling for Design and Operation of Activated Sludge Processes.  

The purposes were to review existing models for design and operation of biological wastewater 

treatment systems and create a common and simple platform that could be used for future 

development of AS models.  

The final result was the Activates Sludge Model No. 1, called also IAWPRC model, ASM1 or IAWQ 

model, presented during the IAWPRC Specialised Seminar at KolleKolle, Denmark in 1985.  
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Afterwards, the ASM1 model was discussed by many researches in order to get a solid platform for 

the work and include details that could stand the test of time and was published in 1987 in its final 

form in the IAWPRC Scientific and Technical Report Series as STR No. 1.  

The model was also a guideline for wastewater characterization and development of computer 

codes. Since its presentation, the ASM1 has been widely used for describing WWT biological 

processes all over the world and has been the core of numerous models with a number of 

supplementary details added for specific cases.  

It was especially the matrix notation (Peterson, 1965), which was introduced together with ASM1 

that facilitated the communication of complex models allowing to discuss the biokinetic aspects of 

the model with the common language.  

The Task Group did not include the phosphorus removal because the modeling studies in this field 

were at the very beginning even if it was already used in full-scale treatment plants. 

From the mid-1980s to the mid-1990s the biological phosphorus removal processes grew very 

popular and at the same time the understanding of the basic phenomena of the process was 

increasing. Thus in 1995 the Activated Sludge Model No.2 was published and it included nitrogen 

and phosphorus removal. In 1994, when the ASM2 was developed, the role of denitrification in 

relation of biological phosphorus removal was still unclear, so it was decided not to include that 

element.  

Further developments in the research field lead to the understanding of denitrifying phosphorus-

accumulating organisms (PAOs). Consequently, the Activated Sludge Model No.2 has been 

expanded in 1990 into the ASM2d model with the inclusion of denitrifying PAOs.  

Afterwards, models gained in complexity and, in 1998, the Task Group decided to develop a new 

modeling platform, called the Activated Sludge Model No.3 (ASM3).  

ASM3 introduced the concept of storage-mediated growth of heterotrophic organisms, assuming 

that all readily biodegradable substrate is firstly taken up and stored into an internal cell polymer 

component, which is then used for the biomass growth. Moreover, the model included the 

biological nitrogen removal model while the circular death-regeneration model was converted into 

growth-endogenous respiration model. 
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Figure  3.6 Number of publications on Activated Sludge models from 1985-2011 from Web of 
Science (IWA Task Group on Good Modelling Practice, 2012)   

 

 

3.5 Format and notation: the Peterson matrix and Grau notation  

The most important tasks in the development of a mathematical model are the identification of the 

processes involved and the selection of their respective kinetic and stoichiometric expressions.  

For these purposes, the Task Group decided that the best way to present models was the matrix 

format, based on the work of Peterson. Indeed, this representation offers the opportunity for 

overcoming the problem while conveying the maximum amount of information through a concise 

and intuitive representation of a large equation system. Furthermore, the Task Group 

recommended the use of a unique notation in order to have a common language: the Grau notation 

(GRAU et al., 1983).  

The processes involved in the model are listed in the matrix raws and its components in the columns. 

The indexes j and i are assigned to processes and components respectively. The process rate 

equations or kinetic expressions are given in the last column. The kinetic parameters are listed in 

the last cell of the last column while the stochiometric parameters in the last cell of the first column. 

In the middle of the matrix there is the mass balance equation, which connects the processes 

involved and their kinetic and stoichiometric equations. Figure  3.7 below shows a schematic 

representation of the Peterson matrix. 
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Figure  3.7 Schematic representation of the Peterson matrix 

 

The matrix contains all the information required to write the mass balance equations (ri) for each 

component (i) considering the kinetic expressions (ρj) of the processes (j) involved and the 

stoichometric parameters (νi). The generic equation: 

 

 𝑟𝑖 =∑𝑟𝑖𝑗
𝑗

= ∑𝜈𝑖𝑗𝜌𝑗
𝑗

 (Eq.  3.4) 

enable to write the mass balance equations according to the basic equation: 

 

INPUT – OUTPUT + REACTION = ACCUMULATION 

 

Conventionally the sign used in the matrix is positive for production and negative for consumption. 

Furthermore, the Task Group also decided to adopt the Grau nomenclature (Grau et al., 1983) in 

order to use a common language. Some quantities listed in the Grau notation and useful in AS 

modeling are shown below. 
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Table 3.2 Grau Notation (adapted from (GRAU et al., 1983)) 

Symbol Quantity name or names Dimension 

H Height or depth L 

L Length L 

δ Thickness L 

d Diameter L 

A Area L2 

V Volume L3 

X Particulate material concentration MiL-3 

S Soluble material concentration MiL-3 

C 
Total material concentration (particulate plus 

+soluble) 
MiL-3 

rx Reaction rate per unit mass MiMx
-1T-1 

µ Specific biomass growth rate T-1 (from MxMx
-1T-1) 

µMAX Maximum specific biomass growth rate T-1 (from MxMx
-1T-1) 

bB Specific biomass loss rate T-1 (from MxMx
-1T-1) 

Y Biomass yield coefficient  MxMi
-1 

ν Stoichiometric coefficient MiMj
-1 

 

We briefly describe the use of the Peterson matrix and Grau notation, using the same example as 

the one given in the Task Group final report. 

The aim of this model is to describe the heterotrophic bacteria growth and decay in aerobic 

conditions. Each unit of substrate generates Y units of biomass using 1-Y units of oxygen. 

The first step is the definition of the processes and components involved. Here, two processes are 

involved: aerobic growth of biomass (j=1) and its loss by decay (j=2). The components (or variables) 

are: heterotrophic biomass (XB), soluble substrate (SS) and oxygen (So). Note that according to the 

Grau notation X and S represent respectively the particulate and the soluble material 

concentrations.  

The kinetic expressions came from the Monod-Herbert model, where the biomass aerobic growth 

is calculated with the Monod equation (Eq.  3.1) while the biomass decay is calculated with the 

Herbert equation: 

 

 

 𝑑𝑥

𝑑𝑡
= 𝑏𝑥 

    

(Eq.  3.5) 
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Table 3.3 Monod-Herbert model : Peterson matrix representation from (Henze et al., 2000) 

 

Therefore, the mass balance equation system can be easily written using the ri expression in Table 

3.3: 

 

  

{
  
 

  
 𝑟𝑋𝐵 =

𝜇̂𝑆𝑆
𝐾𝑆 + 𝑆𝑆

𝑋𝐵 − 𝑏𝑋𝐵

𝑟𝑆𝑆 = −
1

𝑌

𝜇̂𝑆𝑆
𝐾𝑆 + 𝑆𝑆

𝑋𝐵

𝑟𝑆0 = −
1 − 𝑌

𝑌

𝜇̂𝑆𝑆
𝐾𝑆 + 𝑆𝑆

𝑋𝐵 − 𝑏𝑋𝐵

 (Eq.  3.6) 

 

Moreover, the matrix annotation enables to check the continuity condition: moving along the rows, 

as indicated by the arrow in Table 3.3, the sum of the stoichiometric coefficients must be zero. 
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3.6 Activated Sludge Model n°1 (ASM1) 

Presented in 1985 for the first time, the ASM1 model has been widely used for describing WWT 

biological processes and became a basis for further models development. 

The purpose of this model was to describe the carbon and nitrogen removal through the activated 

sludge process with biological oxidation, nitrification and denitrification. 

The biomass involved in those processes is: 

- Heterotrophic bacteria, they use organic carbon for growth and are responsible of the 

denitrification process in the anoxic tank and the organic substrate degradation in aeration 

tank. The most common denitrifying bacteria are Bacillus denitrificans, Micrococcus 

denitrificans, Pseudomonas stutzeri and Achrornobacter. In anaerobic conditions, these 

organisms use nitrate or nitrite as terminal electron acceptors and oxidizing organic matter 

for energy. The result is the reduction of nitrate to nitrogen gas.  

- Autotrophic bacteria, they use inorganic carbon for growth and are responsible of 

nitrification in the aerobic tank. The most common genera involved in nitrification are 

Nitrosomonas and Nitrobacter. Nitrosomonas can only oxidize ammonia nitrogen to nitrite 

nitrogen while Nitrobacter oxydize nitrite nitrogen to nitrate nitrogen.  

The ASM1 model is based on three hypotheses: 

- Bisubstrate: the substrate is divided in two fractions of COD readily and slowly 

biodegradable. 

- Michaelis-Menten Kinetic (see (Eq.  3.3). 

- Growth-decay: the result of the biomass decay is only non-biodegradable matter 

representing the inert residue. 

Table 3.4 below shows the Peterson matrix of the ASM1. 

 

 



 

40 
 

Table 3.4 Peterson matrix representation of ASM1 (Henze et al., 2000). 
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According with the first hypothesis of the ASM1 model, the carbon substrate (COD) can be divided 

into readily biodegradable substrate (SS) and slowly biodegradable substrate (XS). The readily 

biodegradable substrate consists of simple soluble molecules that can be readily absorbed by the 

biomass. The slowly biodegradable substrate consists of organic molecules that need enzymes to 

break them in simpler easily biodegradable molecules. The non-biodegradable COD is divided in 

soluble (SI) and particulate (XI) material. The inert particulate material is enmeshed in the sludge 

mass and it accumulates as inert VSS (Volatile Suspended Solids), while the inert soluble material 

leaves the system by the secondary clarifier effluent. Furthermore, the biomass is divided into 

heterotrophic (XB,H) and autotrophic (XB,A) organisms. Finally, an extra state variable (XP) is included 

to model the inert particulate products arising from biomass decay. A schematic subdivision of the 

COD fractions is shown in Figure  3.8 below.  

Figure  3.8  COD components in ASM1 

 

In ASM1 model, the nitrogen compounds are also divided in sub-components. Starting from the 

Total Kjeldahl Nitrogen (TKN), it is divided in soluble ammonia nitrogen (SNH), organically bound 

nitrogen (N) and active mass nitrogen (XNB). Then, the nitrogen fractions are divided into soluble 

and particulate fractions, which can be either biodegradable or non-biodegradable. The soluble 

fraction is the biodegradable organic nitrogen (SND). The particulate fractions are the biodegradable 

organic nitrogen (XND), the active mass nitrogen (XNB), which represents the decay of biomass, and 

the organic nitrogen associated with the inert organic products (XNP) and inert organic matter (XNI). 

Then, in a single step process, a soluble fraction is generated from the nitrification of ammonia to 

nitrate nitrogen (SNO). 
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Two more components are involved in ASM1: the dissolved oxygen concentration (SO) and alkalinity 

(SALK).  A list of the state variables involved in the model is shown in Table 3.5. 

 

Table 3.5 State variables in ASM1 model 

State variable ASM1 notation Dimension 

Soluble inert organic matter             SI                      gCOD/m3 

Readily biodegradable substrate             SS  gCOD/m3 

Particulate inert organic matter             XI  gCOD/m3 

Slowly biodegradable substrate              XS  gCOD/m3 

Active heterotrophic biomass            XB,H  gCOD/m3 

Active autotrophic biomass            XB,A  gCOD/m3 

Particulate product from biomass decay             XP  gCOD/m3 

Dissolved oxygen             SO                     gCOD/m3 

Nitrite and Nitrate nitrogen            SNO                    gCOD/m3 

Free and ionized ammonia            SNH                    gCOD/m3 

Soluble biodegradable organic N            SND                    gCOD/m3 

Particulate biodegradable organic N            XND                   gCOD/m3 

Alkalinity           SALK                   molar units 

 

 

 

 

 

Figure  3.9 Nitrogen components in ASM1 
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The process rate equations included in ASM1 model are indicated on the leftmost column of the 

matrix (Table 3.4) and described in details below:  

- aerobic growth of heterotrophs: occurs when a fraction of Soluble Substrate (SS) is available 

and used for growth of heterotrophic biomass utilizing oxygen. This process is generally the 

main contributor to the production of new biomass and COD removal. Ammonium is the 

nitrogen source for synthesis. The process is modeled with the Monod kinetic (Eq.  3.1), 

which are assumed to be limited by the concentration of SO and SS.  

 
𝜌1 = 𝜇̂𝐻 (

𝑆𝑆
𝐾𝑆 + 𝑆𝑆

) (
𝑆𝑂

𝐾𝑂𝐻 + 𝑆𝑂
)𝑋𝐵,𝐻 (Eq.  3.7) 

- anoxic growth of heterotrophs (denitrification): nitrate is the final electron acceptor in 

anoxic conditions. So heterotroph biomass uses SS as substrate and the final products are 

heterotrophic biomass and nitrogen gas. During the denitrification process the 

heterotrophic biomass reduce nitrate in nitrogen gas. As in the aerobic growth process, the 

Monod kinetic can describe this process but it is necessary to consider a reduction factor 

ɳg<1 as the maximum substrate rate is smaller under anoxic conditions. This is probably due 

to a lower growth rate under anoxic conditions and because only a fraction of heterotrophs 

is able to use nitrate as electron acceptor.  

 
𝜌2 = 𝜂𝑔𝜇𝐻

𝑆𝑆
𝐾𝑆 + 𝑆𝑆

 
𝐾𝑂,𝐻

𝐾𝑂,𝐻 + 𝑆𝑂

𝑆𝑁𝑂
𝐾𝑁𝑂 + 𝑆𝑁𝑂

𝑋𝐵,𝐻 (Eq.  3.8) 

   

- aerobic growth of autotrophs (nitrification): in this case ammonia is used as energy source 

for biomass growth and oxidized to nitrate as products. This process can again be modeled 

with the Monod kinetic. 

 
𝜌3 = 𝜇𝐴

𝑆𝑁𝐻
𝐾𝑁𝐻 + 𝑆𝑁𝐻

 
𝑆𝑂

𝐾𝑂,𝐴 + 𝑆𝑂
𝑋𝐵,𝐴 (Eq.  3.9) 

- decay of heterotrophs: this process is based on the growth-decay hypothesis described 

before: 

 𝜌4 = 𝑏𝐻𝑋𝐵,𝐻 (Eq.  3.10) 

- decay of autotrophs is modeled as decay of heterotrophs: 

 𝜌5 = 𝑏𝐴𝑋𝐵,𝐴 (Eq.  3.11) 

- ammonification of soluble organic nitrogen concerns the conversion of biodegradable 

soluble organic nitrogen to ammonia in a first-order process by the active heterotrophs: 

 𝜌6 = 𝑘𝑎𝑆𝑁𝐷𝑋𝐵𝐻 (Eq.  3.12) 
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- hydrolysis of entrapped organic matter: slowly biodegradable substrate trapped in the 

sludge mass is broken down, producing readily biodegradable substrate, which is then 

available for the growth of organisms.  

 
𝜌7 = 𝑘ℎ

𝑋𝑆/𝑋𝐵,𝐻

𝐾𝑋 + (
𝑋𝑆
𝑋𝐵,𝐻

)
[ 𝜂ℎ (

𝐾𝑂,𝐻
𝐾𝑂,𝐻 + 𝑆𝑂

) (
𝑆𝑁𝑂

𝐾𝑁𝑂 + 𝑆𝑁𝑂
) + (

𝑆𝑂
𝐾𝑂,𝐻 + 𝑆𝑂

)]𝑋𝐵,𝐻 
(Eq.  3.13) 

- hydrolysis of entrapped organic nitrogen consists in the conversion of XND into soluble 

organic nitrogen as defined by the hydrolysis for entrapped organics: 

 
𝜌8 = 𝑘ℎ

𝑋𝑆/𝑋𝐵,𝐻

𝐾𝑋 + (
𝑋𝑆
𝑋𝐵,𝐻

)
[ 𝜂ℎ (

𝐾𝑂,𝐻
𝐾𝑂,𝐻 + 𝑆𝑂

) (
𝑆𝑁𝑂

𝐾𝑁𝑂 + 𝑆𝑁𝑂
) + (

𝑆𝑂
𝐾O,𝐻 + 𝑆𝑂

)]𝑋𝐵,𝐻
𝑋𝑁𝐷
𝑋𝑆

 
(Eq.  3.14) 

Finally, the differential equation system of ASM1 model is obtained combining the process rate 

equations (ρj) with the components (i) through the appropriate stoichiometric parameters(νij) (see 

Table 3.6).  

 Table 3.6 Differential equations in ASM1 model 

Equation description  

𝑑𝑋𝐵,𝐻
𝑑𝑡

= 𝜌1 + 𝜌2 − 𝜌4 heterotrophic biomass (Eq.  3.15) 

𝑑𝑋𝐵,𝐴
𝑑𝑡

= 𝜌3 − 𝜌5 autotrophic biomass (Eq.  3.16) 

𝑑𝑆𝑆
𝑑𝑡

= 𝜌7 − (𝜌1 − 𝜌2) 
readily biodegradable 

substrate 
(Eq.  3.17) 

𝑑𝑋𝑆
𝑑𝑡

= (1 − 𝑓𝑃)(𝜌1 − 𝜌5) − 𝜌7 

particulate substrate 

(slowly biodegradable 

substrate) 

(Eq.  3.18) 

𝑑𝑋𝑃
𝑑𝑡

= 𝑓𝑃(𝜌4 + 𝜌5) inert particulate (Eq.  3.19) 

𝑑𝑋𝑁𝐷
𝑑𝑡

= (𝑖𝑋𝐵 − 𝑓𝑃𝑖X𝑃)(𝜌4 + 𝜌5) − 𝜌7 
particulate organic 

nitrogen 
(Eq.  3.20) 

𝑑𝑆𝑁𝐷
𝑑𝑡

= 𝜌7 − 𝜌6 soluble organic nitrogen (Eq.  3.21) 

𝑑𝑆𝑁𝐻
𝑑𝑡

= −𝑖𝑋B(𝜌1 + 𝜌2) + 𝜌6 − (𝑖𝑋𝐵 +
1

𝑌𝐴
) 𝜌3 ammonia nitrogen (Eq.  3.22) 

𝑑𝑆𝑁𝑂
𝑑𝑡

=
1

𝑌𝐴
𝜌3 (

1 − 𝑌𝐻
2.86𝑌𝐻

) 𝜌2 nitrate (Eq.  3.23) 

𝑑𝑆𝑂
𝑑𝑡

= −(
1 − 𝑌𝐻
𝑌𝐻

) 𝜌1 − (
4.57 − 𝑌𝐴

𝑌𝐴
)𝜌3 dissolved oxygen (Eq.  3.24) 

𝑑𝑆𝐴𝐿𝐾
𝑑𝑡

= −
𝑖𝑋𝐵
14

𝜌1 (
1 − 𝑌𝐻

14.286 𝑌𝐻
)𝜌2 − (

2

𝑌𝐴
+
𝑖𝑋𝐵
14
) 𝜌3 +

1

14
𝜌6 alkalinity (Eq.  3.25) 
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3.7 ASM1 restriction and ASM2, ASM2d, ASM3 models 

ASM1 has been widely used and proved its reliability in nitrification-denitrification processes 

modeling. However, some restrictions connected to the model implementation and the parameters 

must be considered. The model was developed for municipal wastewater and is based only on 

Monod kinetics. As a consequence, in case of a different kind of wastewater other kinetics should 

be included. Moreover, the settleability depends also on the suspended solids concentrations. 

When the sludge age is between 3 and 30 days old and is highly concentrated, a clarified effluent is 

hardly obtained. 

Regarding the parameters:  temperature and pH of the system are assumed constant (pH is assumed 

neutral), the limitation effects of nitrogen, phosphorous and other inorganic nutrients are not 

considered, the heterotrophic biomass is homogeneous and is not conditioned by mutation during 

the time, the organic particulate of biomass is considered to be incorporated immediately, the 

hydrolysis of the organic substrate occurs together with the organic nitrogen hydrolysis and both 

reaction have the same kinetic expression, the biomass decay is not influenced by the type of 

electron acceptor. 

Starting from these limitations and in order to improve the implementation of the model, ASM1 has 

been extended to ASM2.  

Table 3.7 shows the models based on ASM1 and their main features. 

 

 

Table 3.7 Overview of Activated Sludge Models - adapted from (Gernaey et al., 2004)  
Den. PAO= denitrifying PAO activity included in the model; DR=death-regeneration 
concept; EA=electron acceptor depending; ER=endogenous respiration concept; 
Cst=non electron acceptor depending 
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3.8 Introduction to automatic control of WWTPs  

3.8.1 Automatic control of WWTPs 

In the last years, the development of new technologies increases the possibility of automation in 

municipal wastewater treatment plants.  

Nowadays, municipal WWTPs can be equipped with instruments that support the automatic control 

technology. In this frame, the Instrumentation, Control and Automation (ICA) can be a smart 

solution to efficiently manage one or several plants, where the continuous presence of human 

workers cannot be guaranteed due to their size or location (Olsson and Newell, 1999).  

The control of a generic process starts from the analysis of its features in order to understand how 

to enhance its functioning. Wastewater treatment processes have a number of distinctive features 

in terms of process characteristics and operational objectives. Olsson and Newell (1999) listed some 

of them in their book “Instrumentation, Control and Automation in Wastewater Systems”: that are 

disturbances, process complexity operational objectives, manipulated variables and sensors. The 

presence of several disturbances in the WWTPs requires a control. These disturbances can be either 

influent flow rate variations, changes in bacterial population, changes in microbial and physical 

properties, human errors or malfunctioning. The influent flow rate variations are sometimes 

connected to influent load variations in terms of Nitrogen compounds and COD. A part of the 

present thesis focused particularly on these aspects (see Chapter 7). The aim of WWTPs 

management is to obtain performance results in terms of outlet load and minimum operational 

costs, despite of the disturbances. Traditionally, disturbances are controlled by large plants that 

attenuate high flow rate, Nevertheless this comes at large capital costs (Olsson, 2007). Instead, an 

efficient solution to avoid these disturbances might be the introduction of on-line control systems 

as early warning systems.  

The process complexity is mainly due to the variations of the microbial community caused by 

influent variation or change of operational conditions. Other complexities related to the process 

are: 1) the difference in response time between control hardware and on-site instruments and, 2) 

the difference of response time of each instrument.  

Even in case of very complex processes, the number of parameters or configurations that can be 

changed is very limited. In the biological WWTPs the management is based on two typical 

parameters that are the air flow rate controlling the aeration, and the internal sludge flow rate from 

the aerobic tank to the anoxic. 

Process control needs sensors and analysers for continuous on-line implementation. Nowadays 

sensors can measure on-line different variables with an accuracy, frequency and reliability suitable 

for process control. Several sensors are available for control and monitoring of WWTPs parameters 

and their increasing use involves a significant improvement in operating safety and operational 

economy. 
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3.8.2 Automatic controllers: ON-OFF and PID 

Model-based process control is based on the knowledge of the process through its mathematical 

representation. In a WWTP, the aim of a control system is to obtain a desired process output by 

changing or regulating the process behaviour through actuators such as valves pumps. Therefore, a 

control system is based on the feedback principle: once the current state of a process is known 

through sensors measurements, we can make decisions in order to reach the final goal. These 

decisions have to be implemented by the actuators. Three types of algorithms are mostly used in 

WWTPs and in the process industry in general: the on-off, the Proportional-Integral-Derivative (PID) 

and Proportional-Integral algorithms.  

On-off controllers are the simplest and cheapest control systems. They work as feedback controllers 

in the sense that, a given input signal (i.e. sensor measurements) and a final goal, they can switch 

the actuator stage. On-off sensors are typically used to control the sludge recirculation pumps in 

secondary biological treatments. These controllers are not able to manage the settleability problem, 

common in WWTPs, due to the outbreak of filamentous bacteria. The main drawback of a feedback 

controller is that it does not make a corrective action until the disturbance has upset the process 

and generated an error signal.  

The PID control algorithm is a feedforward control method in which the controller output is 

proportional to the error (P), its time history (I), and the rate at which it is changing (D). These control 

algorithms are the most used in WWTPs management. A reference value in the PID is called a set-

point. The difference, also called error, between the measured process variable and the set-point is 

continuously calculated by the PID controller.  

 

Therefore, the controller try to minimize the error by acting on the control variable, which value is 

calculated with the equation below: 

𝑢(𝑡) = 𝑢𝑝(𝑡) + 𝑢𝑖(𝑡) + 𝑢𝑑(𝑡)  (Eq.  3.26) 

where: 

- 𝑢𝑝(𝑡) proportional term to the error 

- 𝑢𝑖(𝑡) Integral term 

- 𝑢𝑑(𝑡) Derivate term 

The proportional term is the proportional correlation to the current error value e(t).: 

𝑢𝑝(𝑡) = 𝐾𝑝 ∙ 𝑒(𝑡)   (Eq.  3.27) 

where: 

- Kp = proportional gain  

The proportional gain determines the ratio of output response of the error signal: increasing the 

proportional gain will increase the speed of the control system response. 
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However, if KP is too high, the process variable will oscillate. As KP keeps increasing, oscillations are 

larger and the system become unstable and out of control.  

 

The integral term is proportional to both the magnitude and the duration of the error. 

𝑢𝑖(𝑡) = 𝐾𝑖 ∙ ∫ 𝑒(𝜏) 𝑑𝜏
𝑡

0

 
 

(Eq.  3.28) 

where: 

- Ki = integral gain  

The integral gain is related to the proportional gain and defines the times integral constant. 

𝑇𝑖 =
𝐾𝑝

𝐾𝑖
 (Eq.  3.29) 

The derivative term represents the prediction trend of the error improving the stability of the 

system.  

𝑢𝑑(𝑡) = 𝐾𝑑
𝑑

𝑑𝑡
𝑒(𝑡) 

 
(Eq.  3.30) 

where: 

- KD = derivative gain 

Finally, (Eq.  3.26 can be rewritten as below: 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫ 𝑒(𝜏) 𝑑𝜏
𝑡

0

+ 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
 

(Eq.  3.31) 

A typical example of PID control implementation is the DO concentration management in the 

activated sludge tank. The airflow inlet (manipulated variable) can be calculated to maintain the DO 

concentration in the tank (controlled variable) as constant as possible together with the change of 

the input sewage characteristics and flow rate (disturbances).  

Normally, feedforward and feedback controllers are combined in order to obtain a more responsive, 

stable and reliable control system. 

An alternative is the cascade control: one feedback controller (primary loop) is used to calculate the 

set-point of another feedback controller (secondary loop).  
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In this study a typical example of cascade PI control used in WWTPs has been implemented to 

manage the airflow injection in the aerobic tank on-line measuring the ammonium concentration.  

Figure  3.10 Cascade PI controllers implemented in aeration tank  

 

Figure  3.10 shows the implementation of two PI controllers for DO management. The ammonium 

set-point (y_S) is compared with the current measured ammonium concentration in the tank (y_M) 

and consequently the output variable is calculated (u). The DO set-point is set as the value previously 

calculated (u). Therefore, the DO set-point is compared with the current DO concentration 

measured (y_M) and the output signal (u = KLa) is calculated.  

3.8.3 Business Processes and Business Process Management Notation 

Business Process Management (BPM) is a discipline involving any combination of modeling, 

automation, execution, control, measurement and optimization of business activity flows, in 

support of enterprise goals, spanning systems, employees, customers and partners within and 

beyond the enterprise boundaries, combining knowledge from information technology and 

knowledge from management sciences and applies this to operational business processes (Weske, 

2007)(van der Aalst, 2004). In recent years, this approach has received considerable attention due 

to its potential for significantly increasing productivity and saving costs. Moreover, today there is an 

abundance of BPM systems. These systems are generic software systems that are driven by explicit 

process designs to enact and manage operational business processes (van der Aalst et al., 2003). 

The notion of a process model is foundational for BPM. A process model aims to capture the 

different ways in which a case (i.e., process instance) can be handled. A plethora of notations exists 

to model operational business processes (e.g., Petri nets, BPMN, UML, and EPCs). These notations 

have in common that processes are described in terms of activities (and possibly subprocesses). The 

ordering of these activities is modelled by describing causal dependencies. Moreover, the process 

model may also describe temporal properties, specify the creation and use of data, e.g., to model 

decisions, and stipulate the way that resources interact with the process (e.g., roles, allocation rules, 

and priorities). 
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A BPM methodology follows a particular “lifecycle” of phases where in each phase, a specific set of 

activities are performed.  Simply put, these are the things you will do and the order in which you 

will do them to continuously improve and control your processes (Figure  3.11) 

- Define – definition of what must be modelled; 

- Model – analyse process and compare the various simulations or process options to determine 

optimal improvements; 

- Execute - select and implement improvements; 

- Monitor – Periodically monitor the processes; 

- Optimize – Iterate for continuous improvement. 

A business process allows you to model your policy goals by describing the steps that need to be 

executed to achieve that goal and the order, using a flow chart. It is a graph that describes the order 

in which a series of steps need to be executed, using a flow chart. A process consists of a collection 

of nodes that are linked to each other using connections. Each of the nodes represents one step in 

the overall process while the connections specify how to transition from one node to the other. 

Figure  3.11 BPM LIfecycle 
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Chapter 4. Natural systems for wastewater 

treatment and modeling 

4.1 Natural systems for wastewater treatment 

Almost all the wastewater treatment processes are based on natural conditions and their efficiency 

depends on natural biological, chemical or physical activities. Specifically, a natural system is not 

dependent by external energy sources.  

Even if this type of processes have been used since 3000 years, the interest has increased again 

during the last fifty years. In 1972, the first US federal law on water pollution, called “Clean Water 

Act”, referred to natural systems as interesting processes for water pollution reduction (Crites et al., 

2006). This was a starting point for further developments of this process and its rediscover. The first 

natural treatment systems were land application and natural ponds. 

Different classifications can be found in literature and sometimes the same terms are used for 

different concepts. The most common classification is based on the processes behaviour and 

distinguishes two natural wastewater treatment processes: phytotreatment and lagoons.  

In the first case the process is based on bacteria and higher forms of plants and animals.  

Phytotreatment systems are wetlands or constructed wetland and can be divided in free water 

surface (FWS) and subsurface flow basins (SSF). FWS wetlands are characterised by low depth canals 

or tanks, generally around 0.5m, with the water surface exposed to the atmosphere and overlaid by 

floating or deeply-routed plants. Floating plants used in FWS wetlands are: Eichornia crassipes, and 

Lemna Minor. 

 

 

 

 

Figure  4.1 Lemna minor in a FWS wetland 
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Deeply-routed plants can be completely below (submerged) or partially above (emerging) the water 

surface. The most common deeply-routed plants used in FWS wetland are: Micriophyllum, 

Potamogeton, Ceratophyllum (submerged) and Phagmites australis, Typha, Scirpus (emerging).  

Subsurface Flow Systems (SSF) consist of basins with a porous media bed with plants. The water 

level must be below the upper surface of the media. Consequently, the porosity of the media is 

chosen in order to avoid obstruction problems. The media allows the growth of the roots, the 

development of bacteria, fungi, protozoa and works as natural filter for the Suspended Solids. The 

most common plants in SSF systems are: Typha, Phragmites and Scirpus. The plants work as natural 

pumps, moving oxygen from the air to the water at a rate estimated from 4 to 45 gO2 per day 

(Bragadin and Mancini, 2007). 

Lagoons, also called ponds, are natural or artificial basins used for natural wastewater treatment. 

The most relevant natural processes occuring in these basins are chemical, biochemical, and 

physical processes. Chemical and biochemical processes are mainly connected to the heterotrophic 

bacteria (Pseudomonas, Flavobacterium, Alicaligen) activity and algae growth (eg. Clamidomonas, 

Skeletonema, Chlorella), while the physical processes are defined by sedimentation and 

flocculation. Therefore, in a lagoon, three processes are in equilibrium: photosyntesis, aerobic 

oxidation and anaerobic decomposition. The regulator of this equilibrium is the oxygen availability 

as shown in Figure  4.2. 

Historically, the main purpose of ponds was to provide detention time to wastewater in order to 

stabilize it. Natural ponds for sewage treatment have been used since 3000 years ago however 

specific design criteria have been developed only recently. Indeed, the first constructed pond in 

United States was the “Mitchell Lake” at San Antonio, Texas in 1901 (Gloyna, 1971). The rapid 

worldwide diffusion of this treatment system came from the success of this first experience. In 2014 

over 8000 WWT ponds were in place in US (U.S. Environmental Protection Agency (EPA), 2011). Easy 

construction and management, lower costs and high removal efficiencies are the main advantages 

Figure  4.2 Processes involved in natural wastewater treatment with lagoons. Adapted from 
(Bragadin and Mancini, 2007) 



 

53 
 

of ponds. The main feature is the possibility to design ponds enabling bacterial growth in different 

conditions such as aerobic, anaerobic and facultative (the combination of aerobic and anaerobic). 

However, ponds have the following drawbacks: large land requirement, possible groundwater 

contamination with leakage, treatment affected by climatic conditions and possible spring smells.     

Several design and modeling criteria for natural treatment systems have been proposed in the last 

years and described in literature (Bragadin and Mancini, 2007) (Gloyna, 1971)(Crites et al., 2006).  

  

4.2 E. coli degradation model – Dispersion model 

In this chapter we describe the dispersion model implemented in this work in order to study the 

E.coli degradation due to natural disinfection in phytotreatment/lagoon basins. 

The model is based on the Wehner and Wilhelm chemical reactor equation (Wehner and Wilhelm, 

1956). The condition of a generic pollutant concentration in a real Plug Flow Reactor (PFR) is well 

represented by the one dimensional dispersion model (Figure  4.3).  

The symbols in Figure  4.3. represents: 

- u = flow velocity 

- C = pollutant concentration 

- L = reactor length 

- dz = infinite lenght 

The mass balance in the infinite length dz consists of convection, dispersion and accumulation 

terms. The convection and dispersion terms can be calculated in the enter section (1) exit section 

(2) as shown in Table 4.1. 

 

 

 

Figure  4.3 One dimensional dispersion model. Adapted from (Butt, 2000) 
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Table 4.1 Convection and dispersion terms 

 Input ① Output ② 

convection uCA  (Eq.  4.1) Adz
dz

dC
Cu 








     (Eq.  4.2) 

dispersion A
dz

dC
D  (Eq.  4.3) Adz

dz

dC

dz

d

dz

dC
D 
















  (Eq.  4.4) 

 

Furthermore, the accumulation term in the infinite volume (dV= A∙dz) is: 

 dzA
dt

dC
  (Eq.  4.5) 

Thus, considering all these terms (uCA  (Eq.  4.1(Eq.  4.5) the mass balance is written: 

  

























































 Adz

dz

dC

dz

d

dz

dC
DAdz

dz

dC
cuAdz

dz

dC
DuCAdzA

dt

dC

 
(Eq.  4.6) 

 simplifying the equivalent terms, it becomes: 

 
dz

dz

dC

dz

d
Ddz

dz

d
Ddz

dz

dC
uAdz

dt

dC








  (Eq.  4.7) 

then rearranging: 

 
2

2

dz

Cd
D

dz

dC
u

dt

dC


 
(Eq.  4.8) 

(Eq.  4.8) is the one dimensional axial dispersion equation that describes the behaviour of a certain 

pollutant concentration C in function of PFR length and retention time. In particular, D is the axial 

dispersion coefficient that takes into account the deviations from ideal flow. 

In (Eq.  4.8 the term  
dz

dC
u    represents the plug-flow mixing model and the term 

2

2

dz

Cd
D   is a 

Fickian form of a diffusional correction term, under the condition of a constant u in the radial 

direction. 

In steady-state conditions the one dimensional axial dispersion equation (Eq.  4.8) becomes: 

 
0)(

2

2

 r
dz

dC
u

dz

Cd
D

  
(Eq.  4.9) 

In this case the term C can be referred to the concentration of reactant or product and thus it is 

necessary to consider the rate of reaction (-r). The term (-r) is net positive or net negative if C refers 

respectively to the reactant or to the product.  
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Considering the following dimensionless variables: 

0C

C
f   (Eq.  4.10) 

L

z


 
(Eq.  4.11) 

D

uL
Pe




 
(Eq.  4.12) 

)( r
Cu

L

u

kL
R 




 
(Eq.  4.13) 

(Eq.  4.9) can be transformed in dimensionless form: 

  
 

 
 

00

2

0

2











L

uC
R

Ld

Cfd
u

Ld

Cfd
D

  
(Eq.  4.14) 

    

then rearranging: 

 00

2

2

2

0 


L

uC
R

d

df

L

C
u

d

fd

L

CD

  
(Eq.  4.15) 

now multiplying by 
0Cu

L


 :  

 
0

0

0

0

2

2

2

0

0











 L

uC
R

Cu

L

d

df

L

C
u

Cu

L

d

fd

L

CD

Cu

L

  
(Eq.  4.16) 

 

simplifying the similar terms: 

 
0

1
2

2

 fR
d

df

d

fd

Pe   
(Eq.  4.17) 

(Eq.  4.17) is the Steady-state differential equation in dimensionless form. 

There are different solutions to this equation, among which the (Wehner and Wilhelm, 1956). The 

latter can be used in all cases due to the absence of assumption for the inlet and output conditions. 

 

Wehner and Wilhelm considered a non-ideal conditions PFR extended from -∞  to +∞ as shown in 

Figure  4.4. 
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The PFR reactor has been divided into three sections (a,b,c) and the equation (Eq.  4.17) has been 

implemented in each section: 

Section a    0  0
1

2

2


 d

df

d

fd

Pe

 (Eq.  4.18) 

Section b  10    0
1

2

2

 fR
d

df

d

fd

Pe 
 (Eq.  4.19) 

Section c   1  0
1

2

2


 d

df

d

fd

Pe

 (Eq.  4.20) 

Thus, there are three boundary problems Wehner and Wilhelm proposed the following six boundary 

conditions to solve them: 

 𝑓(−∞) = 1 𝜁 = −∞ (Eq.  4.21) 

𝑓(0−) −
1

𝑃𝑒𝑎

𝑑𝑓(0−)

𝑑𝜁
= 𝑓(0+) −

1

𝑃𝑒𝑏

𝑑𝑓(0+)

𝑑𝜁
 𝜁 = 0 (Eq.  4.22) 

𝑓(0−) = 𝑓(0+) 𝜁 = 0 (Eq.  4.23) 

𝑓(1−) −
1

𝑃𝑒𝑏

𝑑𝑓(1−)

𝑑𝜁
= 𝑓(1+) −

1

𝑃𝑒𝑐

𝑑𝑓(1+)

𝑑𝜁
 𝜁 = 1 (Eq.  4.24) 

𝑓(1−) = 𝑓(1+) 𝜁 = 1 (Eq.  4.25) 

𝑓(+∞) = 𝑓𝑖𝑛𝑖𝑡𝑒 𝜁 = +∞ (Eq.  4.26) 

The general solutions of the equations (Eq.  4.18(Eq.  4.19(Eq.  4.20) in sections a, b, c are: 

𝑓 = 𝑁1 + 𝑁2 exp(𝑃𝑒𝑎 ∙ 𝜁) 𝜁 ≤ 0 (Eq.  4.27) 

𝑓 = 𝑁8 exp [
𝑃𝑒𝑏
2
(1 + 𝑎) ∙ 𝜁] + 𝑁4 ∙ 𝑒𝑥𝑝 [

𝑃𝑒𝑏
2
(1 − 𝑎) ∙ 𝜁] 0 ≤ 𝜁 ≤ 1 (Eq.  4.28) 

𝑓 = 𝑁5 + 𝑁6 exp( 𝑃𝑒𝑐 ∙ 𝜁) 𝜁 ≥ 1 (Eq.  4.29) 

Figure  4.4 Non ideal conditions PFR 
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Inserting the boundary conditions (Eq.  4.21) to (Eq.  4.26) in the general solutions (Eq.  4.27) to (Eq.  

4.29), the complete solutions are: 

  

where: 

 

defining the dimensionless dispersion number (d) as the opposite of Péclet number: 

 
d =

D

Lu
=
1

Pe
 (Eq.  4.36) 

The equation (Eq.  4.31) become: 

 𝑎 = √1 + 4𝑘𝑡𝑑 (Eq.  4.37) 

Now considering the solution proposed in the output section z= 𝐿 ⟹  𝜁 = 1 , the equation (Eq.  

4.29 becomes: 

 
𝑓 =

𝐶

𝐶0
=

2

(1 + 𝑎)2 exp (
𝑎
2𝑑
) − (1 − 𝑎)2 exp (−

𝑎
2𝑑
)
∙ exp

1

2𝑑
[(1 + 𝑎) − (1 − 𝑎)] (Eq.  4.38) 

 

 

rearranging: 

 

𝑓 =
C

C0
=

4 ∙ exp (−
1
2d
)

(1 + a)2 exp (
a
2d
) − (1 − a)2 exp (−

a
2d
)

 (Eq.  4.39) 

 

 

1 − 𝑓

1 − 𝑓(0)
= exp(𝑃𝑒𝑎 ∙ 𝜁) 𝜁 ≤ 0 (Eq.  4.30) 

𝑓 = 𝑔0 exp [
𝑃𝑒𝑏 ∙ 𝜁

2
] ∙ {(1 + 𝑎) exp [

𝑎 ∙ 𝑃𝑒𝑏 ∙ (1 − 𝜁)

2
] − (1 − 𝑎) ∙ 𝑒𝑥𝑝 [

𝑎 ∙ 𝑃𝑒𝑏(𝜁 − 1)

2
]} 0 ≤ 𝜁 ≤ 1 (Eq.  4.31) 

𝑓 = 𝑓(1) = 2 ∙ 𝑎 ∙ 𝑔0 ∙ exp
𝑃𝑒𝑏
2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝜁 ≥ 1 (Eq.  4.32) 

𝑎 = √1 +
4𝑅

𝑃𝑒𝑏
 (Eq.  4.33) 

𝑔0 =
2

(1 + 𝑎)2 exp (
𝑎 ∙ 𝑃𝑒𝑏
2 ) − (1 − 𝑎)2 exp (−

𝑎 ∙ 𝑃𝑒𝑏
2 )

 
(Eq.  4.34) 

𝑓(0) = {(1 + 𝑎) exp (
𝑎𝑃𝑒𝑏
2
) − (1 − 𝑎) exp (−

𝑎𝑃𝑒𝑏
2
)} (Eq.  4.35) 
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where: 

- Ce = effluent concentration 

- C0 = influent concentration 

- 𝑎 =  √1 + 4𝑘𝑇𝑑 

- K = overall removal rate coefficient 

- T = Hydraulic Retention time 

The equation is commonly used for chemical reactors design. In 1969 Thirumurthi proposed an 

application to BOD removal modeling in facultative ponds as their behaviour can be considered 

something between PFRs and Complete mix (Crites et al., 2006). To facilitate the use of (Eq.  4.39) 

for ponds BOD reduction calculation, Thirumurthi developed a chart relating the values of KT to the 

percentage of remaining BOD for various dispersion conditions. The chart can be used during the 

design phase to calculate the Hydraulic Retention Time for a given k and the desired BOD removal 

in flow conditions going from ideal plug flow to (d=0) to a completely mixed reactor (d=∞).  

 

 

 
 

Later (Eq.  4.39 has been adapted to Fecal Coliform and E. coli degradation in constructed wetlands 

(Khatiwada and Polprasert, 1999; Hamaamin et al., 2014). The dispersed flow equation 

implementation is based on two main hypotheses: 1) a hydraulic behaviour between plug flow and 

completely mixed flow and, 2) a mechanism of pathogen removal due to the effects of temperature, 

solar radiation, sedimentation, adsorption and filtration.  

Figure  4.5 Thirumurti chart adapted from (Mara, 2004) 
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𝐶𝑒
𝐶0
=

4𝑎1𝑒
1
2𝑑

(1 + 𝑎)2𝑒
1
2𝑑 − (1 − 𝑎)2𝑒

1
2𝑑

 

 
(Eq.  4.40) 

 

where: 

Ce effluent E. coli concentration [CFU/100 mL]  

C0  effluent E. coli concentration [CFU/100 mL]  

𝑎 =  √1 + 4𝑘𝑇𝑑 [-] (Eq.  4.41) 

𝑘 = 𝐾𝑡 + 𝐾𝑓 + 𝐾𝑖        overall removal rate coefficient [day-1] (Eq.  4.42) 

𝐾𝑡 = 𝐾𝑡,20 ∗ Φ
𝑡−20 

removal rate coefficient due to 
temperature at °C [day-1] 

(Eq.  4.43) 

𝐾𝑖 = 𝜑 ∗ I𝑎𝑣  
removal rate coefficient due to solar 
radiation [day-1] 

(Eq.  4.44) 

𝐼𝑎𝑣 =
𝐼0
𝜏 ∙ ℎ

(1 − 𝑒−𝜏ℎ) average solar radiation [cal/m2day] (Eq.  4.45) 

𝐾𝑓 =
4

𝜋
𝜂𝛼
𝑢(1 − 𝜗)

𝑑𝑐
 

removal rate coefficient due to 
adsorption, filtration and sedimentation 
[day-1] 

(Eq.  4.46) 

𝜂 = 0.9𝐴𝑆
1
3⁄ ∙ (

𝐾𝐵𝑇𝑎
𝑢𝑑𝑐𝑑𝑝𝑢

)

2
3⁄

+ 
2

3
𝐴𝑠 (

𝑑𝑝

𝑑𝑐
)

2

+ 
(𝜌𝑃 − 𝜌)𝑔𝑑𝑝

2

18𝜇𝑢
 

removal 
efficiency [-] 

(Eq.  4.47) 

𝐴𝑆 =
2(1 − 𝜖5)

2 − 3𝜖 + 3𝜖5 − 2𝜖6
 

parameter accounting for the effect on 
adjacent media grains on the flow about 
a collector [-] 

(Eq.  4.48) 

𝜖 = (1 − 𝜃)
1
3⁄  parameter accounting for the porosity [-] (Eq.  4.49) 

 

In this work, we implemented the Wehner and Wilhelm equation to model the E. coli degradation, 

using the parameters shown in Table 4.2. These parameters have been taken from a bibliography 

research and from a previous study of the author (C. Fiorentino et al., 2016). 
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Table 4.2 Escherichia coli degradation model: parameters used 

Parameters Unit Value Reference 

d Dispersion number [-] 0.15 (Polprasert et al., 1998)  

T Hydraulic Retention Time [day] measured - 

kt,20 
Removal rate coefficient 
at 20°C 

[day-1] 0.047 
(Khatiwada and Polprasert, 
1999)  

φ Temperature coefficient [-] 1.07 (Mancini, 1978)  

t Water Temperature [°C] measured - 

I0 Solar irradiation [cal/m2day] 
continuously 
measured 

- 

ϕ Light mortality constant [cm2/cal] 0.0103 (Sarikaya et al., 1987)  

τ 
Vertical light extinction 
coefficient 

[m-1] 25 (with Lemna) 
(Khatiwada and Polprasert, 
1999)  

[m-1] 1 (without Lemna) 
(Khatiwada and Polprasert, 
1999)  

h Water depth [m] Measured - 

u Velocity of flow [m/day] measured - 

α Sticking efficiency [-] 0.003 
(Khatiwada and Polprasert, 
1999)  

θ Porosity [-] 0.52 
(Khatiwada and Polprasert, 
1999)  

dc Duckweed root diameter [m] 1.76×10-4 (Cedergreen and Madsen, 
2002)  

KB Boltzman constant [J/K] 1.38×10-23 - 

Ta Absolute temperature [°K] 303.15 - 

μ Fluid viscosity [N*s/m2] 1.86×10-5 - 

dp E. coli diameter [m] 1×10-6 (Khatiwada and Polprasert, 
1999) 

ρp E. coli density [kg/m3] 1050 
(Khatiwada and Polprasert, 
1999) 

ρ Density of water [kg/m3] 1000 - 

g Gravitational constant [m/s2] 9.8 - 
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Section 2                                

Materials and methods 
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Chapter 5. Analytical methods 

5.1 Chemical Oxygen Demand (COD) 

The Chemical Oxygen Demand (COD) is an indirect measure of the amount of organic pollution load. 

It is a widely used analytical parameter to monitor the organic pollution and the removal 

performances in WWTPs. It often replaces the BOD measurement, because of the reliability of the 

COD standard laboratory methods (Bourgeois et al., 2001).  

For this study, the selected analytical method for the measurement of COD is based on the 

international references ISO 15705:2002 (ISO, 2002). The COD test consists of the oxidation by 

digesting the samples with sulfuric acid and potassium dichromate in the presence of silver sulfate 

and mercury (II) sulfate. Silver acts as a catalyst to oxidize the more refractory organic matter. 

Mercury reduces the interference caused by the presence of chloride ions. After the digestion, the 

amount of dichromate consumed for the oxidation is determined by measuring the Cr(III) formed at 

a wavelength of 600 nm ± 20 nm. The results are expressed as ST-COD, related to the measured 

absorbance. In case of atypical colouring or turbidity after the digestion, a titrimetric determination 

is required. The method is applicable to any aqueous sample, including all sewage and wastewaters 

that present ST-COD values up to 1000 mg/l and an undiluted chloride concentration that does not 

exceed 1000 mg/l. Samples with higher ST-COD values require pre-dilution. For samples with a low 

COD, the precision of the measurement is reduced. The method oxidizes almost all types of organic 

compounds and most inorganic reducing agents. It has a detection limit (4.65 times the within-batch 

standard deviation of a blank or very low standard) of 6 mg/l for photometric detection at 600 nm. 

For the reduced calibration range up to 150 mg/l, an alternative wavelength 440 nm ± 20 nm may 

be used. For a further reduced calibration range up to 50 mg/l, an alternative wavelength of 348 nm 

±15 nm may be used. At 348 nm and 440 nm, the absorbance of the remaining chromium(VI) is 

measured. 

In this case study, the COD has been analysed using the COD VARIO tube tests by AQUALYTIC in the 

measuring range 0-150 mg/L. The tube tests did not contain mercury as the chloride concentration 

did not exceed 1000 mg/L.  
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Figure  5.1 A typical COD calibration curve 

5.2 Total Suspended Solids (TSS) 

The measure of Total Suspended Solids (TSS) has been executed according to the ISO 11923:1997. 

The test consists on the filtering of the samples through a glass-fibre filter, using a vacuum or 

pressure filtration apparatus. The filter is then dried at 105 °C and the deposited solids are 

determined by weighing. The method is suitable for raw waters, wastewaters and effluents. The 

lower limit of quantification is approximately 2 mg/l while no upper limit has been established. 

Floating oil and other immiscible organic liquids will interfere. Water samples are not always stable, 

meaning that the content of suspended solids depends on storage time, means of transportation, 

pH value and other factors.  

 

5.3 Nitrogen forms 

There are different forms of Nitrogen in wastewater and the most common are: Total Nitrogen (TN), 

Total Kejeldahl Nitrogen (TKN), Ammoniunm Nitrogen (N-NH4
+), Nitrite Nitrogen (N-NO2

-) and 

Nitrate Nitrogen (N-NO3
-), Organic Nitrogen (Norg). Concentrations are reported in mg/L, as 

Nitrogen (N). Activated sludge process is designed to achieve the biological nutrient removal, thus 

an analysis and a control of the different forms of nitrogen are crucial.  

The relationships of the various forms are shown below: 

 TKN = N-NH4
++ Norg (Eq.  5.1) 

 TN = TKN + N-NO2
- + N-NO3

- ( Eq.  5.2) 
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5.4 Ammonium (NH4
+) 

The ammonium concentration during the monitoring campaigns has been measured using the Ion-

Selective electrode CRISON 9663C for its quick response and high precision. The measuring range of 

this electrode is from 0.9 mg/l to 9 g/l under working conditions from pH= 0 to 8 and temperature 

conditions from 5 to 50°C. Possible interferences are produced by K+, Na+ and Ca++  ions. Depending 

on the pH, the dissolved (ammonium) and the gas forms could be present in wastewater. Indeed, 

when the pH of the wastewater is acidic or neutral, ammonium is predominant, whereas when the 

pH increases over 8.0, it is mostly ammonia (NH3).  

5.4.1 Nitrate and Nitrite Nitrogen (N-NO3
- and N-NO2

-) 

Nitrate and Nitrite Nitrogen have been monitored using an ion-chomatography system quipped with 

an IonPac AS144U 250 mm column, a conductivity detector combined to an ASRS-Ultraconductivity 

suppressor system, using a solution of 3.5 mM Na2CO3 and 1.0 mM NaHCO3 prepared in ultra-resi-

analyzed water as eluent, with a flow rate of 1.2 ml/min. A nitrate nitrogen concentration in the 

range 0.2 mg/l to 40 mg/l can be determined.  

 

Figure  5.3 Chromatogram 

Figure  5.2 Ion selective electrode CRISON 9663C and a typical calibration curve 
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5.4.2 Total Nitrogen (TN) 

Total Nitrogen has been analysed according to the 4500-N C. Persulphate Method from APHA 

Methods for water and wastewater (APHA, 1998). 

According to this method, the TN concentration is determined by alkaline oxidation of all nitrogen 

compounds to nitrate at 100 to 110°C. The digestion reagent is potassium persulfate (K2S2O8). 

Spectrophotometric measurement permits to obtain the Nitrate concentration, resulting from the 

oxidation, reading the absorbance against distilled water at the wavelength of 220 nm. However, 

organic matter may also absorb at 220 nm and a second measure must be done at the wavelength 

of 275 nm to correct the nitrate value, as it does not absorb at this wavelength.  

 

5.5 Escherichia coli 

The presence of Escherichia Coli in water and wastewater is an indicator of fecal pollution. In this 

study the E. coli colonies have been detected and enumerated according to the EPA Method 1603 

(Usepa, 2009). The sample is filtered through a Membrane Filter (MF), which retains the colonies 

and is then put in a prepared mTEC agar plate. The plate is incubated at 35°C ± 0.5°C for 2±0.5 hours 

in order to revitalize injured or stressed bacteria, and then incubated at 44.5°C± 0.2°C for 22±2 

hours. After the incubation period, the E. coli colonies are red or magenta because the mTEC agar 

contains a chromogen (5-bromo-6-chloro-3-indolyl-β-D-glucuronide), which is catabolized to 

glucuronic acid and a red or magenta coloured compound by E. coli that produces the enzyme                  

β –D-glucuronidase. 

 

Table 5.1 Modified mTEC composition 

Protease peptone 5.0 g 

Yeast extract 3.0 g 

Lactose 10.0 g 

Sodium chloride 7.5 g 

Dipotassium phosphate (K2HPO4) 3.3 g 

Monopotassium phosphate (KH2PO4) 1.0 g 

Sodium lauryl sulfate 0.2 g 

Sodium  desoxycholate 0.1 g 

Chromogen (5-bromo-6-chloro-3-indolyl-β-D-glucuronide) 0.5 g 

Agar 15.0 g 

Reagent-grade water 1.0 L 
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Once the dry ingredients are dissolved in reagent-grade water the solution is heated to dissolve 

them completely. The solution is sterilized by autoclaving at 121°C (15 PSI) for 15 minutes, cooling 

to 45-50°C and pouring into sterile petri plates. 

The final pH is adjusted to 7.3 ± 0.2 with 1.0 N hydrochloric acid or 1.0 N sodium hydroxide.  

In the present study, the 90924 HiCrome M-TEC Agar by Fluka Analitical have been used. 

Interferences with water samples containing colloidal or suspended particulate material can clog 

the membrane filter and prevent filtration, or cause spreading of bacterial colonies, which could 

interfere with enumeration and identification of target colonies.  

Analysing smaller sample volumes (e.g. <20 mL), 20-30 mL of Phosphate buffered saline (PBS) is 

added to the funnel or an aliquot of sample dispensed into a dilution blank prior to filtration. This 

will allow even distribution of the sample on the membrane. 

 

Table 5.2 Phosphate buffered saline (PBS) composition 

Monosodium phosphate (NaH2PO4) 0.58 g 

Disodium phosphate (Na2HPO4) 2.5 g 

Sodium chloride 8.5 g 

Reagent-grade water 1.0 L 

 

A minimum of two dilutions have been analysed with three replications each. Plates with 20-80 

colonies have been considered as countable.    

Figure  5.4 M-TEC Agar 
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Table 5.3 Cultural characteristics after 22-24 hours at 44.5 +/- 0.2°C    

Organisms (ATCC) Growth Color of Colony 

Escherichia coli (25922) +++ purple / magenta 

Enterococcus faecalis (29212) - - 

Klebsiella pneumoniae (13883) ++ colourless 

Proteus mirabilis (25933) ++ colourless 

 

Table 5.4 shows the results of the E. coli analysis conducted on one sample collected the 22th 

February 2017 in Basin 1 of Santerno full scale WWTP in section A-A’ (see description in Chapter 8). 

Each repetition was identified with the following identification code: 

LXY_00(x) 

where: 

- L is the Basin 

- X is the number of basin 

- Y is the section  

- OO is the volume filtered 

- X is the analysis repetition 

The result of the analysis is the average value of each enumerations with the standard deviation as 

reported in the last two rows of the table. 

 

 

Figure  5.5 Petri plates after incubation. Red to magenta dots are E. coli colonies. 
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Table 5.4 E. coli enumeration: sample collected the 22th February 2017 in Basin 1 Section A-A’ 

 L1A_10(a)  L1A_10(b)  L1A_10(c) 

Volume filtered 10 10 10 

Colonies count 36 52 50 

E. coli [CFU/100 mL] 3.6E+2 5.2E+2 5.0E+2 

 

L1A_5(a) L1A_5(b) L1A_5(c) 

Volume filtered 5 5 5 

Colonies count 18 28 15 

E. coli [CFU/100 mL] 3.6E+2 5.6E+2 3.0E+2 

Result 
Average [CFU/100mL] 4.33E+2 

St Dev [CFU/100mL] 1.06E+2 
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Chapter 6. Instruments and software 

6.1 Multiparameter probe - YSI 556 MPS 

Field measurements were performed using the multiparameter probe system YSI 556 MPS. The 

system is provided by three probes that permit to simultaneously measure dissolved oxygen (probe 

1), pH, ORP (probe 2), conductivity, temperature (probe 3). The data are showed in the electronic 

display and saved. 

 

The data stored can be downloaded using EcoWatch Lite per Windows software. 

The probes slot was fixed to the beam showed in Figure  6.2 during the measurement campaign in 

the full-scale Basin 1 in order to avoid the direct contact of the probes with the mud in the bottom 

of the basin. 

Figure  6.1 Multiprobe system YSI (from YSI 556 operation manual) 

Figure  6.2 Beam used to fix the probes slot 
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6.2 Pyranometer 

The solar irradiation have been measured using the pyranometer PIRSC by GEOVES. It is a 

photodiode-based pyranometer with silicon cell transducer and measuring range from 0 to 2000 

Wm-1. The spectral range is from 1 to 1.1 mm and sensitivity 100 mV. The pyranometer was installed 

in the Santerno WWTP area avoiding shadow during the day. Data were acquired and stored by a 

data logger DataTaker DT 80, at a frequency of 1 per minute. 

 

 

 

 

 

 

 

 

 

 

 

Figure  6.3 Pyranometer PIRSC installed in Santerno WWTP area 
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6.3 WEST 2012 by DHI 

The modelling software WEST 2012 has been used in this thesis work. WEST® (World-wide Engine 

for Simulation and Training, HEMMIS N.V., Kortrijk, Belgium) is a modelling software for dynamic 

modelling and simulation of WWTPs. The software was published by DHI and developed with 

financial support given by IBM Belgium and the Flemish governmental agency for Science and 

Technology (IWT), in collaboration with Department of Mathematics Applied, Biometric and 

Processes Control (BIOMATH) of Gent University, HEMMIS N.V. (Belgium), EPAS (Environmental 

consulting company, Belgium). WEST 2012 is based on the ASM models and uses the nomenclature 

defined by IAWPRC Task Group. the Block Library permits to build the graphical plant layout (Figure  

6.4). Input data a load as csv format files and parameters set up in the specific window. 

 

 

Figure  6.4 WEST 2012 layout window 
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Chapter 7. Optimization of WWTPs monitoring 

in flow variation conditions due to 

rain events. 

7.1 Introduction 

This chapter deals with the use of the parameters for the control and the management of WWTPs, 

considering their relationship with the processes during flow rate variations due to rain events. This 

part of the thesis is the topic of the paper published by the author in 2016 (Carmine Fiorentino et 

al., 2016). 

The study is divided in two parts: 

- review and update of the instruments for the measurement of the most important 

parameters for the control of WWTPs,  

- discussion of the data resulting from a measurement campaign that has been carried out in 

the WWTP of Bologna (Italy).  

Finally, the parameters, control sections and analytical methods indispensable to monitor and 

automatically control full-scale plants, with urban sewage coming from combined sewer systems, 

have been selected. The final aim is to support the choice of the appropriate measurement 

instruments, identifying their correct position on the plant. 

7.2 Monitoring parameters in WWTPs 

The implementation of automatic control systems in WWTPs is based on the quantitative and 

qualitative knowledge of the most important variables and parameters in the different sections of 

the plant including the input and output. The direct measurement of the nutrients largely 

contributes to understand how the quality of the information coming from the instruments may 

improve the performances of the plant. The advanced knowledge acquired on the meaning of the 

signals gives new possibilities to control the biological processes in place and to estimate the 

operational state of the plant, improving the quality of the effluent and keeping the operational 

costs as low as possible. Furthermore, such information can be used to understand which sensors 

has to be installed and where.  

The efficient management of medium to large WWTPs is even more based on the use of innovative 

instrumentation, such as on-line in-situ sensors, and the adoption of control logics and policies by 

means of automatic control systems. WWTPs are complex systems and their management requests 

a multi-disciplinary approach, involving a wide variety of pollutants, biological process, management 

policies and control logics. A new approach to this matter started in 1973 in London through the 

first ICA (Instrumentation Control and Automation) conference, under the sponsorship of IAWPR 
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(International Association on Water Pollution Research) (Olsson et al., 2014). Later, new national 

and international laws, technological innovation together with the need for energy saving in the 

plants encouraged the adoption of ICA tools. Nowadays, a number of sensors are released by 

specialized producers, making possible to deal with thousands of signals for a single WWTP (Olsson 

et al., 2014). The availability of this large amount of data pushed the scientific research to deeply 

study signal analysis in order to model, among the other things, fault detection techniques (Olsson 

et al., 2005), software sensors (Luccarini et al., 2002) and various control algorithms. An important 

emerging problem is the lack of connection between plant designing and management. Indeed, 

most often, WWTPs are designed to work in static and fixed conditions, while it is well known that 

the plant’s working conditions are variable. 

Chemical analysis instruments, commonly used to better manage WWTPs are separated in five 

areas: off-line, at-line, on-line, in-line and non-invasive. The evolution of in-line analysis, involving 

four major types of in-line sensors, such as biosensors, optical sensors, sensors arrays and virtual 

sensors, is increasing steadily (Bonastre et al., 2005). Nowadays, large size plants are regularly 

equipped with various sophisticated instruments and automatic control systems, whereas in the 

smaller ones the lack of technology is evident and generalized. This is due to a high cost/benefit 

ratio, being all the sensors expensive and requiring high maintenance. 

An economical alternative to avoid such constraints has arisen recently with the use of software 

sensors. Soft sensors are a valuable tool in many different industrial application fields, including 

urban pollution and wastewater treatment plants monitoring. They are used to solve a number of 

different problems, such as real-time prediction for plant control, sensor validation and fault 

diagnosis strategies (Fortuna et al., 2007). A soft-sensor is conventionally described as an input-

output process model. The model inputs consist of easy-to-measure secondary variables in the form 

of plant’s signals and measurements and, sometimes, numerically encoded expert knowledge. The 

model outputs consist of information associated with the hard-to-measure primary variables. In the 

soft-sensor, the input and output process information are modeled empirically and the internal 

model is used to return the outputs when only the inputs are available. The range of tasks that can 

be fulfilled by soft sensors is broad and mainly dictated by the nature of the available input 

information, by the information that we are interested to output and the typology of the input-

output model (Haimi et al., 2013). The soft sensors may supply information about the process 

otherwise directly measurable only with expansive hardware sensors. For this reason, they are 

assuming even more importance in WWTPs management, substituting in some cases the traditional 

hardware sensors. In the last years, dedicated sub-systems for the performances evaluation of soft 

sensors, to overcome their measurement accuracy weakness, have been proposed (Luccarini et al., 

2012) (Luccarini et al., 2002). 

7.2.1 Flow rate 

The search for information about the wastewater characteristics should start from the sewer 

system. The first important informations are: the typology of sewer system (mixed or separate), the 

type of measurements executed along the system and their availability. Commonly, the mixed sewer 
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system is used, since it is difficult to have an actual separate flow, even in separate systems. Data 

availability is generally very low or non-existent and restricted to flow rate data. The desirable 

development of real-time management systems could increase the quality and the quantity of data, 

creating a greater inter-connection between the sewage system management, the WWTP and the 

receiving water body, leading to a reduction in management costs (Rathnayake, 2014)(Schütze et 

al., 2004). 

Flow rate variations in a WWTP influence the wastewater treatment processes, then its real-time 

monitoring is important to take decisions about the process management. These flow rate 

variations, meaning also pollutants variations, depend on the size of the city and obviously on the 

habits of its citizen. It is therefore possible to have daily, weekly and seasonally variations (Bragadin 

and Mancini, 2008). The flowmeter instrument is commonly placed at the beginning of the plant, 

where there is usually the inlet basin from the sewer system. In order to choose the appropriate 

flowmeter instrument, it is important to know the arrival level of the sewer system and, in particular, 

if sewage pumping is necessary (Bragadin and Mancini, 2007). The liquid flowmeters are commonly 

based on the change in water level due to an obstacle in the water flow path (Venturi Principle) 

(Vanrolleghem and Lee, 2003). Different methods can be chosen to measure this water level. For 

example, some instruments are based on the Faraday induction law, other on the Von Karman 

theory, and Ultrasound instruments are based on the time delay of the ultrasound through the flow. 

7.2.2 pH 

The pH measurement influences chemical and biological reactions. Its measurement and control in 

different sections of a WWTP could be very useful for its simplicity and cheapness. As the pH 

measurement is normally carried on installing immersion probes with electrodes in sewage, the 

cleaning strategy is very important to get a realistic measurement. Nowadays, self-diagnosis 

systems are integrated in pH measurement systems. Sometimes the pH measurement fails or 

cannot give the right information because of the high buffering capacity of the sewage. 

7.2.3 Total Suspended Solids 

Urban sewage is made of a mixture of organic and mineral pollutants with a great size distribution, 

thus the measurement of the Total Suspended Solids (TSS) is very useful in WWTPs management. 

Three types of measurement techniques are usually implemented: optical measurements, 

ultrasound measurements and dielectric spectrometry (Vanrolleghem and Lee, 2003). The first one 

is the most common method, based on the measure of the optic effects (absorption, transmission, 

scattering) in an illuminated sample. The size and quantity of solids are correlated to the absorption 

measurement and the scattering and scattering angle of the incident light on the sewage. Different 

sources of light emission are known: in lower visible, infrared range or laser(Azema et al., 2002). 

Interferences connected with air bubbles and fouling of probe tips are typical problems related to 

this method (Vanrolleghem and Lee, 2003). The simplicity and rapidity of these common methods 

enable to measure the TSS parameter in different sections of the plant such as the input section, 

after the primary sedimentation, and after the secondary sedimentation. 
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7.2.4 Dissolved Oxygen 

In Activated Sludge processes the energetic cost of aeration is up to 40% the total costs of the plant 

(Menendez, 2010)(Olsson, 2015). Thus, the measurement of the dissolved oxygen and the control 

of the air compressor, play a key role (Luccarini et al., 2015)(McCarty et al., 2011) (Vanrolleghem 

and Lee, 2003). In particular, we may use a PI (Poportional – Integral) controller to maintain DO 

concentration to a fixed set-point and, an inverter in order to regulate the air flow insufflated by the 

compressor in the oxidation tank. Only for this simple control technique, between 30 and 50 per 

cent of the energy consumed could be saved (Luccarini et al., 2015). Since 1970’s a huge amount of 

efforts has been directed towards the improvement of DO concentration, driven by the desire to 

reduce the costs induced by this “energivorous process”(Olsson et al., 2014). In particular, 

worldwide use of DO control systems by the end of 1970’s represents the beginning of process 

control in WWTPs. DO measurement is based on the electrochemical reaction of oxygen diffusing 

from the liquid through a permeable gas membrane in an amperometric or polarographic 

measurement cell (Vanrolleghem and Lee, 2003). Cleaning of the probes, consumption of the 

electrodes, long time of polarization (in case of polarized systems), as well as calibration, are 

common problems emerging from the measurement of this parameter. The proper location of the 

dissolved oxygen probes should prevent fouling problems.   

7.2.5 Biochemical Oxygen Demand 

Despite the Biochemical Oxygen Demand (BOD) measurement is the most adopted parameter for 

water quality assessment (Bourgeois et al., 2001), the laboratory standard method has two main 

drawbacks: time-consuming and an uncertainty of 15-20% on the results. The time-consuming 

prevents the use of this method for real-time control of WWTPs. Since 1977 a wide interest has 

grown in other innovative methods to assess the BOD and scientific articles have been published in 

this issue (Jouanneau et al., 2014). Based on those publications, (Jouanneau et al., 2014) classified 

the assessment methods into six technological categories:  

1) Modified standard methods, 

2) Biosensors with redox-mediator,  

3) Biosensors based on bioluminescent bacteria,  

4) Biosensors with immobilized bacteria,  

5) Microbial fuel cells,  

6) Bioreactors.  

Other methods for BOD determination developed in the last years are based on optical fiber 

biosensors (Bonastre et al., 2005). The parameter used for on-line estimation of BOD is “the short-

term BOD” (BODst), different from the BOD for the fewer time required for its analysis response. 

Finally, BOD measurement methods are even more technologically reliable with response time 

below the five days characteristic of standard method (only 70 seconds for the fastest system) but 

they are not adequate for automated monitoring yet.  
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7.2.6 Chemical Oxygen Demand 

The main problem to automate the Chemical Oxygen Demand (COD) analysis, for on-line and, as 

more as possible, real-time use, is to shorten the time of digestion in dichromate solution that is 

about two hours in laboratory methods. Different approaches have been proposed to oxidize the 

organic compound quickly using chemical compounds different from dichromate. Recently, the use 

of Ozone, characterized by a high oxidizing power, instead of dichromate or permanganate has also 

been investigated (Pisutpaisal and Sirisukpoca, 2014). Furthermore, methods based on the 

measurement of UV – VIS absorption are also developed and applied (Bourgeois et al., 2001). 

Further studies are based on thermal Biosensors (Yao et al., 2014). Nowadays, there are still a lot of 

drawbacks connected with an on-line use of COD measurement methods: time-consuming, use of 

toxic chemicals with production of hazardous liquid waste (e.g. Chromium(Cr) and Mercury(Hg)) or 

expensive chemical (e.g. Silver Sulfate(Ag2SO4)), clogging problems, or incomplete oxidation of the 

pollutants. 

7.2.7 Nitrogen 

Activated sludge process is designed to achieve the biological nutrient removal, so nitrogen forms 

analysis and control is very important. For example, the ammonium (N-NH4
+) measurements are 

becoming important to calculate the variable DO set-point in the cascade Proportional – Integral 

controller. There are three major types of on-line ammonium analyzer: colorimetric, ion-selective 

electrodes and spectrophotometers. The main problems of these analysis stay in the need to use 

chemical reagents, their calibration time and cleaning. 
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7.3 Flow rate variations: Bologna WWTP case study 

Influent flow variations should influence the processes occurring in WWTPs. These variations and 

their influence on the plant have been studied analysing the data collected during the annual 

measurement campaign in the WWTP of Bologna in Italy. The plant is in the outskirt of the city.  

The influent raw sewage comes from a combined sewer system serving about 500,000 PE from the 

city of Bologna and hinterland. The process in place is the traditional Activated Sludge treatment 

without denitrification (Figure  7.1).  

 

The measurement campaign had the specific aim of understanding the plant behaviour under 

different input conditions along the plant sections due to differently diluted inlet. Further data 

analysis permits to verify the feasibility of continuous measurement in the plant, focusing on what 

are the necessary parameter measurements, the instruments availability and the feasibility of given 

measurements according to the wastewater characteristics in the plant sections, i.e. high solids 

concentration that could give measurement errors. The data come from four sections of the plant 

identified with numbers from 1 to 4 (Figure  7.1), in which the control parameters (Table 7.1) were 

measured in accordance with APAT-IRSA methods (APAT IRSA CNR, 2003). 

The COD analysis were carried out every day while the BOD only two or three times a week, as usual. 

In addition to those parameters, the solids concentration (Volatile Suspended Solids, VSS) has been 

measured every day in the sludge recirculation and in the biological tank. 

The weather conditions have been noted every day during the campaign: temperature and rainfall 

measurement has been carried out through a monitoring central control unit. 

 

 

Figure  7.1 Bologna WWTP scheme with the numbers related to the measurement sections listed 
in Table 7.1 
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Based on the data collected, four different cases have been analysed and discussed: 

Case 1) one month flow rate data have been discussed in connection with the most important 

parameters for the WWTPs management; 

Case 2) six days’ data have been studied to understand the behaviour of the plant in rain 

conditions; 

Case 3) relation of the ammonium nitrogen in different sections  

Case 4) a comparison between the flow rate and the solids concentration in the biological tank 

and in the sludge recirculation.  

 

7.3.1 Case 1: flow rate variation in input 

In this case 1, the relationship between the flow rate variations due to rain influence and the 

most relevant parameters in the input section of the plant has been studied. The considered 

parameters, measured in 31 consecutive days are: BOD, COD, TKN, TSS. This time has been chosen 

considering the rain events, in order to have as more variation of flow rate as possible. Figure  7.2 

shows the daily flow rate influent in the plant (blue line) related with BOD, COD, TSS and TKN 

measured in the same section 1.  

Table 7.1 List of the control parameters measured in each section of the Bologna WWTP 

Plant section 
Section 

number 
Control parameters measured 

Input 1 

BOD, COD, pH, Settleable Solids (SS), TSS, N-NH4
+, 

Total Kjeldahl Nitrogen (TKN), Nitrate (N-NO3
-), Nitrite 

(N-NO2
-), Total Phosphorus (TP), Surfactants 

Output grid removal 2 BOD, COD, pH, SS, TSS, N-NH4
+, TKN, TP, Surfactants 

Input biological treatment 3 
BOD, COD, pH, SS, TSS, N-NH4

+, TKN, N-NO3
-, N-NO2

-, 

TP, Surfactants 

Output 4 
BOD, COD, pH, SS, TSS, N-NH4

+, TKN, N-NO3
-, N-NO2

-, 

TP, Surfactants 
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(a) (b) 

 

It has been observed that the flow rate variation due to rain events influences the concentration of 

all the studied parameters. An increase of the flow rate corresponds to a decrease of the pollutants 

concentration, diluting the wastewater that enters in the plant. It means that a real time 

measurement of the influent sewer flow rate is essential for the WWTP management as it influences 

the pollutants concentrations and consequently the following processes. 

 

7.3.2 Case 2: Behaviour during a rain event 

In order to observe the behaviour of the plant during a single rain event, a comparison between 

flow rate in input and pollutants concentration in the sections 1, 3 and 4 has been studied. For this 

purpose, a representative time interval of six days without any rainfalls except on the third day with 

a single rain event that influences significantly the input flow rate to the plant has been chosen. In 

particular, two representative periods have been observed, in order to show scenarios both for 

summer (Figure  7.3) and winter (Figure  7.4) season, with the rain event on the third day.  

 

 

 

 

 

 

 

Figure  7.2 Comparison between flow rate variations with BOD and COD (a) and with TSS and 
TKN (b) 
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(a) 

(b) 

(c) 

 

 

 

 

 

 

Figure  7.3 Comparison between Input flow rate and COD (3a), TKN (3b), TSS (3c) in the sections 
1,3,4 - Summer 
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(a) 

(b) 

(c) 

 

 

 

Figure  7.4 Comparison between Input flow rate and COD (a), TKN (b), TSS (c) in the sections 
1,3,4 - Winter 
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In the first case the plant’s input is a typical “weak wastewater” exacerbated by the dilution effect 

of the rain events while in winter the influent wastewater could be considered “medium 

wastewater” (see blue and red lines in Figures). The difference is due to the characteristics of the 

Bologna sewage system (mixed) that flow to the WWTP and the population behaviour. 

Indeed, during summer the water use of the population is higher than in winter while the industrial 

discharge in winter is higher than in summer. Comparing the COD and TKN data, in summer and 

winter, the input flow variations influence the COD concentration and the TKN both in input (section 

1) and output (section 4) still remaining under the legal thresholds. Besides, the effect of a more 

dilute influent is observable from the day of the rainfall event until the further three days. In dilution 

conditions is also very important the monitoring of pH because the increase of pH could mean a 

decrease of the nitrification capacity. In effect, the process of oxidation of ammonia to nitrites, in a 

first step, and nitrates, subsequently, produces H+ ions, causing a decrease of the pH value. In this 

case study, the increasing pH in the outlet section, corresponded to a reduction of the nitrification 

capacity due to a dilution in input, due to a reduction of the substrate.  

7.3.3 Case 3: Ammonium in sections 1 and 3 

The relation between the ammonium nitrogen (NH4
+) in sections 1 and 3 has been studied in case 3 

analysing daily data during different seasons and input flow rate conditions, has been studied. As 

shown in Figure  7.5, there is a reliable data correlation between ammonium concentration in the 

influent and ammonium concentration inlet to the biological sector. For this reason, the ammonium 

measurement in the section 3 will give the same results as in section 1. Nevertheless, ammonium 

measurement is recommended in section 3 rather than in section 1 as the wastewater solids content 

in this section is lower, allowing for a more accurate measurement.  

 

 

 

Figure  7.5 Ammonium in Input plant (section 1) and Input Biological (section 3) 
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7.3.4 Case 4: Solids concentrations in biological tank and sludge 

recirculation 

In the last case, the trends of three different signals have been compared:  

1) the flow rate variations at the input section (blue line),  

2) the solids concentration of the sludge recirculation (green line) 

3) the solids concentration in the biological tank (red line).  

The comparison has been investigated in two different situations: 31 days with some different rain 

events (Figure  7.6) and 13 days without any rain events (Figure  7.7). As in the previous cases, the 

flow rate increase in the input section leads to a decrease of the pollutants concentrations. The 

sludge recirculation concentration variations (green line) indicate the working state of the 

Secondary Sedimentation. Thus, the wastewater dilution in input influences Sedimentation, 

inducing a non-optimal sludge thickening and finally leading to a sludge recirculation concentration 

reduction. The variation of biomass concentration (red line) is due to two factors: the decrease of 

the Hydraulic Retention Time and the variation of sludge recirculation concentration.  

Furthermore, in dry conditions (Figure  7.7) the TSS concentration trend, both in oxidation tank and 

in sludge recirculation, is more stable than in the first situation (rainy conditions) with a clear effect 

of the more dilute inflow. 

 

 

Figure  7.6 Comparison between flow rate variations with TSS for rainy conditions 
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7.3.5 Discussion of the results 

Comparing the results of the monitoring campaign carried out on Bologna WWTP, it is possible to 

point out a way to change the biodegradation efficiency in dilution conditions. In similar WWTPs, in 

dry conditions the most important management policies are related to the insufflation of the oxygen 

in the aerobic tank and the sludge recirculation flow rate. This is always true as long as the input 

flow rate is three time the medium flow rate in dry conditions. When happen rain events, instead, 

and the input flow rate is four or five times the medium flow rate in dry conditions, due to, instead, 

as showed with the presented data, these policies are not sufficient to optimize the efficiency of the 

plant. In such conditions the most feasible interventions are dependent by the duration of the rain 

event. A part of the load in excess could be stored in an appropriate buffer, for example, waiting for 

to supply the plant in dry conditions. 

Such management policies could be more effective if supported by an efficient monitoring system 

able to observe as soon as possible the input flow variations and then to estimate the operational 

state of the process. In particular, the monitoring campaign showed the importance of an accurate 

monitoring of the oxidation tank with reliable methods. As minimum requirement, pH, REDOX and 

DO real time probes are necessary in order to estimate the nitrification efficiency.  

 

Figure  7.7. Comparison between flow rate variations with TSS for rainy conditions (6a) and dry 
conditions (6b) 
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Chapter 8. Trebbo di Reno and Santerno WWTPs 

8.1 Trebbo di Reno pilot plant 

The modelling study of nitrification and denitrification processes is based on data collected from an 

experimental pilot-scale SBR plant, located in Trebbo di Reno (Bologna, Italy) near the municipal 

WWTP. The data have been collected during a previous research project by ENEA - Bologna branch 

in partnership with Milan Polytechnic University and the multi-utility company HERA S.p.A., 

manager of the plant. The full scale plant serves 2000 PE from the village of Trebbo di Reno and its 

hinterland. The pilot-scale plant fed on real sewage from the primary treatment outlet and the 

process is based on Ludzack-Ettinger scheme (Figure  3.4). 

  

The plant is made up of three parts: pre-denitrification tank (95 L), oxidation tank (162 L) and 

secondary sedimentation tank (85 L) (Figure  8.2). 

 

Figure  8.2 Trebbo di Reno pilot plant 

 

Figure  8.1 Trebbo di Reno pilot plant scheme with flow rates. Q=inflow, 
QIR=internal recirculation, QR=sludge recirculation, QS=sludge surplus 
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The tanks dimensions are listed in the (Table 8.1) below:  

Table 8.1 Trebbo di Reno pilot plant tanks dimensions 

 
High 

[cm] 

Water level 

[cm] 

Width 

[cm] 

Depth 

[cm] 

Water 

Volume [L] 

Diameter 

[cm] 

Anoxic tank 80 70 30 45 94.5 - 

Aerobic tank 80 65 60 45 175.5 - 

Secondary 

sedimentation tank 
- 54 - - 423.9 50 

 

The pilot plant is equipped with three peristaltic pumps which feed the inlet with flow rate of 460 

L/d, the internal recirculation line with flow rate 760 L/d and the sludge recirculation line with flow 

rate 430 L/d. Mechanical equipment includes the mixing system in the anoxic tank and the aeration 

system in the aerobic tank. 

The mixing system consists in a blade stirrer that moves water from the centre outwards. It is 

composed by two palettes fit on a rod, which is connected to alternating current electric power 

connected by a single phase motor.  

A membrane diffuser placed on the bottom of the aerobic tank and a blower that feeds it composes 

the aeration system. The blower flow is 69 m3/h and the delivery pressure is 20 hPa. On the influent 

direction is placed the air flow-meter with a needle valve to control the flow rate. 

 

Figure  8.3 Trebbo di Reno pilot plant: secondary sedimentation 

The plant is equipped with probes to continuously measure: pH, ORP, N-NH4
+, N-NO3

-- in the anoxic 

tank and pH, ORP, DO, N-NH4
+, N-NO3

-- and TSS in the aeration tank. Data are acquired and stored 

by a data logger DataTaker DT 80, at a frequency of 1 per minute.  
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8.2 Santerno WWTP 

A new research project started in March 2016 in partnership with HERA S.p.A. The project focused 

on the management optimization of the municipal wastewater treatment plant “Depuratore 

Santerno” located in Imola (BO). To this aim several monitoring campaigns were carried on the 

existing full scale plant. Moreover, a dedicated pilot scale plant has been designed, implemented 

and monitored in the WWTP area. 

The Santerno full scale plant can be divided in two main parts:  primary/secondary treatment and 

natural finishing treatment. The overall plant scheme is shown in Figure  8.4. 

The first part of the plant consists of two identical treatment lines called Line I and Line II. After the 

primary treatment (screening), without primary sedimentation the influent sewage goes to the 

secondary treatments based on predenitrification/nitrification tanks as active sludge process. Then 

Line I and Line II flow into a collector pipe toward the natural finishing part. The plant is also provided 

with an emergency disinfection tank with Sodium Hypochlorite. The sludge line consists of a 

thickening, anaerobic digestion in each line and a common mechanical dewatering with centrifuge. 

Figure  8.4 Treatment scheme of the Santerno WWTP in Imola (Bologna, Italy) 

Figure  8.5 Santerno WWTP satellite view (from Google) 
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The second part of the plant consists of five natural treatment basins. They provide for the finishing 

and natural disinfection treatment before the final discharge into the Santerno river. The plant is 

fed on urban wastewater from the city of Imola and hinterland, 75000 Population Equivalent and 

has an average influent flow rate of 25000 m3/day. The main characteristics of the plant are shown 

in Table 8.2 Santerno WWTP characteristics.  

Table 8.2 Santerno WWTP characteristics 

Population Equivalent 75000 

Mean influent flow rate [m3/hour] 1000 

Lagoons Total volume [m3]  400000 

Lagoons Total Hydraulic Retention time (HRT) [days] ~ 8 days 

Basin 1 HRT [days] ~ 2 days 

Basin 1 volume [m3] ~ 23000 

Basin 1 surface [m2] 14000 

Figure  8.6 Santerno WWTP: Primary and secondary treatment scheme 
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During the first year of project, the research activity focused on the yearly monitoring of the first 

natural finishing basin (Basin 1) and the implementation and monitoring of the pilot scale plant. 

Basin 1 has been chosen as first case study because of different reasons: 

- it follows the secondary treatments by treating half the effluent flow that can easily be by-

passed for irrigation reuse 

- Duckweed (Lemna minor) grows in this basin occupying its whole surface during summer 

leading to an equilibrium between Lemna minor phytotreatment and Free Water Surface 

(FWS) lagoon. These phenomena have never been studied in this basin and will be useful to 

manage the irrigation request at the highest efficiency.  

- it is the first finishing basin so the phenomena occurring in it can give an idea of the removal 

capacity of the overall natural treatment plant phase 

a b 

 

 

 

 

Figure  8.7 Basin 1: view from the North (a) and South (b) sides 
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Chapter 9. Santerno pilot plant: design and 

implementation 

9.1 Design calculations 

A pilot plant was built in the Santerno WWTP area aiming a representation of the processes 

occurring in the Basin 1 in a smaller scale. In particular, it is possible to study different management 

policies changing the functioning conditions and analyzing the parameters in representative 

sections. An existing reinforced concrete free surface canal was chosen to place the plant and, 

consequently, some dimensions must be considered fixed for the plant design (Figure  9.1). 

 

 

 

The plant has been designed under the following hypothesis: 

1. HRT = 2  days, to have the same retention time of Basin 1; 

2. Re > 3000, to have enough turbulence; 

3. L = 6.25 m, canal length; 

4. a = 1.22 m, canal width. 

To respect these hypotheses, the plant needs a recirculation flow (QREC) and a specific number of 

baffle walls (NBW) with the influent flow rate (QIN). The variables of this system are: distance between 

baffle walls (b) and water depth (y). 

 

 

 

 

                                        Figure  9.1 Santerno pilot plant : existing canal 
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The total flow rate can be calculated multiplying the flow velocity in the canal and the cross sectional 

area of flow. The Chézi formula for open channels permits to calculate the flow velocity in the canal: 

 𝑣 =  𝜒 √𝑅 ∙ 𝐽 (Eq.  9.1) 

where: 

𝜒 =  𝐾𝑆 ∙ 𝑅
1

6  = Chézi coefficient (Eq.  9.2) 

KS  = Manning-Strickler coefficient (Eq.  9.3) 

𝑅 =
Ω

𝑃
  = Hydraulic radius (Eq.  9.4) 

Ω = 𝑦 ∙ 𝑏 = cross sectional area of flow (Eq.  9.5) 

𝑃 = 2𝑦 + 𝑏 = wetted perimeter (Eq.  9.6) 

Then, the total flow rate is: 

Q𝑇𝑂𝑇 = 𝑣 ∙ Ω  (Eq.  9.7) 

 

The influent flow is Total Volume per HRT: 

Q𝐼𝑁 =
𝑉

𝐻𝑅𝑇
  (Eq.  9.8) 

where:    

V = total plant volume   

Then the recirculation flow rate is: 

Q𝑅𝐸𝐶 = Q𝑇𝑂𝑇 − Q𝐼𝑁 =  N𝐵𝑊 ∙ 𝑄𝐼𝑁              (Eq.  9.9) 

 

consequently, the number of baffle walls is: 

N𝐵𝑊 = 
Q𝑅𝐸𝐶
𝑄𝐼𝑁

 
               (Eq.  9.10) 

After setting the equations, the problem was solved by guessing the variables values (b and y) 

integrating until convergence of Re > 3000, under the hypothesis listed before. 
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The results are shown below. 

Table 9.1 Santerno pilot plant design values 

QREC 1.028 L/s 

QIN 0.0318 L/s 

b 0.89 m 

y 0.72 m 

v 0.160 cm/s 

𝜒 97 m-1/2∙s-1 

KS  120 m1/3∙s-1 

𝑅  0.28 m 

Ω 0.6408 m2 

𝑃 2.33 m 

N𝐵𝑊 7 - 

  

9.2 Construction, start-up and functioning  

The scheme of the pilot plant realized in the Santerno WWTP area is shown in Figure  9.2 . It has 
been designed to be a plug flow reactor divided in two reaction zones: FWS with Lemna and aerobic 
lagoon. This distinction is done removing manually the excess of Lemna from the surface until a 
given section. 

. 

 

Figure  9.2 Pilot plant: plan and sections. The sampling points are symbolized as black and white 
dots. Measures are in centimetres 
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The implementation of the plant required the following phases: 

1. Pumps selection for influent and recirculation flows; 

2. Restoration of the canal 

3. Baffle walls and final weir construction and assembly 

The influent flow came from the outlet canal of the secondary sedimentation tanks of the full scale 

plant and was pumped in the pilot plant using a peristaltic pump. The low flow rate suggested to 

choose a peristaltic pump, which is precise, simple to set and gentle in pumping action. Indeed, the 

recirculation flow rate is around 30 times higher than the influent so the recirculation pup installed 

is 0.55 kW with flow rate range from 0.5 to 5.5 L/s. The pumps have been set and the flow rate 

measure during the plant start-up and the monitoring campaigns both in input and recirculation 

lines. The existing canal restoration consisted on levelling with concrete of the walls and the base in 

order to reduce the roughness. Seven steel baffle walls panels have been assembled and installed. 

The T-structure permits to easily remove the walls through the welded to top ring. The final weir is 

in glass-reinforced plastic made by three parts high 25 cm each. 

  

Figure  9.3 Pilot plant: Baffle walls and final weir. 

Finally, the pilot plant has been designed to simulate different conditions:  

- the baffle walls are removable to change the flow length, 

- the final weir is divided in three removable parts to change the water depth in the tank 

- input and recirculation flow rates can be changed 

- the Lemna on the surface can be easily removed to divide the plant in two zones: 

phytotratment and lagoon. 
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Figure  9.4 Pilot plant: from the outlet 
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Section 3                            

Monitoring campaigns and 

experimental results  
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Chapter 10. Monitoring campaigns 

10.1 Trebbo di Reno pilot plant monitoring data 

Sampling campaigns were conducted in 2010 and 2011 in the frame of a previous research project 

by ENEA and created a database (Pulcini, 2015). In the present study, the daily monitored data 

collected the 2nd and 3rd September 2010 have been chosen as input for the model implemented in 

WEST 2012. 

Figure  10.2 show the COD and Nitrogen Ammonium Input data. The trends are typical of an urban 

WWTP with two peaks: the first in the morning (around 7h to 9h) and the second in night (22h-23h) 

connected to the common human activities.  

 

 

 

 

Figure  10.1 Trebbo pilot plant: COD Input 

Figure  10.2 Trebbo pilot plant: Ammonium Nitrogen Input 
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Pulcini, 2015 also suggests a statistical interpretation of the data collected that has been used in the 

present study. In particular, the average hourly trend of Nitrogen Ammonium has been calculated 

(see Figure  10.3). Note that the standard deviation was calculated in the time step from 10h to 11h 

and considered as constant for all the day because more data were available in those time interval. 

 

Moreover, a typical influent flow rate trend of the Trebbo di Reno full scale plant has been evaluated 

by continuous measurement campaigns and their mathematical analysis by (Pulcini, 2015).  
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Figure  10.3 Trebbo pilot plant: N-NH4+ input average concentration 
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Figure  10.4 Trebbo di Reno full scale WWTP: Influent flow rate 
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Finally, the kinetic parameters have been calibrated with respimometric tests and will be used in 

this thesis work.  

 

 

 

 

 

 

 

 

 

 

 

Table 10.1 Parameters of the model calibrated by (Pulcini, 2015) 

Parameter Symbol Unit Value 

Anoxic tank    

Half-saturation (heterotrophs, growth) KS gCOD/m3 0.99 

Half-saturation (heterotrophs, slowly 

biodegradable substrate) 
KX gCOD/gCOD 0.008 

Anoxic hydrolysis rate correction factor ɳh - 0.85 

Maximum specific hydrolysis rate kH - 5.79 

Half-saturation (heterotrophs, denitrification) KNO gNO3-N/m3 0.2 

Aerobic tank    

Nitrogen fraction in biomass (N/COD) iXB gN/gCOD 0.108 

Nitrogen fraction in particulate products (N/COD) iXP gN/gCOD 0.0001 

Half-saturation (heterotrophs, growth) KS gCOD/m3 0.99 

Half-saturation (heterotrophs, oxygen) KOH gO2/m3 0.41 

Correction factor of heterotrophic bacteria 

growing 
ɳg - 0.806 

Ammonification rate ka m3/(gCOD*d) 0.004 

Maximum hydrolysis rate kh gCOD/(gCOD*d) 2 
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10.2 Santerno full scale plant: Basin 1 data 

The measurement campaigns on Basin 1 were conducted from March 2016 to February 2017 in the 

days showed in the following table. Each campaign was named as showed in the first column of the 

table. 

Table 10.2 Basin 1 monitoring campaigns 

Campaign ID date 

C1 13/04/2016 

C2 04/05/2016 

C3 18/05/2016 

C4 25/05/2016 

C5 15/06/2016 

C6 13/07/2016 

C7 26/10/2016 

C8 30/11/2016 

C9 22/02/2017 

This yearly monitoring permits to follow all the seasonal changes and study the effects of them on 

the finishing process.  

The first step was to identify four sections perpendicular to the main flow direction in order to study 

the parameters trends from the input to the output.  

 

Figure  10.5 Basin 1 of natural finishing treatment with sections and measurement points in 
black and sampling points (a,b,c,d,i) 
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For each section, the water depth has been measured at each black point (see Figure  10.5) tracing 

the depth profiles.  

 

 

 

 

Figure  10.6 Basin 1 - section A-A' 

Figure  0.7 Basin 1 - section B-B' 

Figure  10.7 Basin 1 - section C-C' 

Figure  10.8 Basin 1 – Section B-B’ 
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Figure  10.10 shows the Basin 1 plant with the measured distances between each section and their 

length. 

 

 

 

  

 Figure  10.9 Basin 1 - section D-D' 

Figure  10.10 Basin 1: sections with measured distances 



 

102 
 

Therefore, the total cross area and the average water depth of each section has been calculated 

(Table 10.3) 

Table 10.3 Basin 1: Total area and average water depth in each section 

Section Area Average water depth 

 [m2] [m] 

A-A’ 49.4 1.20 

B-B’ 121.5 1.35 

C-C’ 93.1 1.43 

D-D’ 62.4 1.20 

 

Afterwards, Temperature (Temp), Conducibility (Cond) Salinity (Sal), Dissolved Oxygen (DO), pH, 

Oxidation Reduction Potential (ORP) and atmospheric pressure (Atm P) have been measured along 

the water column at each sampling point, using the multiparameter system YSI 556.  

Table 10.4 Monitoring data 04-05-2016. Initial points: B and C’ 

Section Depth 

Distance 
from 
initial 
point 

Temp Cond Sal DO pH  ORP Atm P 

  [m] [m] [°C] [µS] [g/L] [%] [mg/L]   [mV] 
[mmH

g] 

B-B' 1.10 5.00 18.62 1459.24 0.74 11.75 1.09 8.20 -62.65 762.5 

B-B' 0.30 5.00 19.94 1440.50 0.73 58.15 5.27 4.10 62.14 762.4 

B-B' 1.75 10.00 18.27 1654.14 0.84 29.03 2.72 4.35 -30.91 762.6 

B-B' 0.90 10.00 18.34 1543.76 0.78 27.83 2.60 4.51 -25.15 762.6 

B-B' 0.30 10.00 19.73 1429.17 0.72 58.06 5.29 2.59 58.59 762.7 

B-B' 1.90 15.00 18.41 1431.38 0.72 74.50 6.96 2.81 13.55 762.9 

B-B' 0.95 15.00 19.80 1432.23 0.72 54.83 4.98 1.66 81.58 762.9 

B-B' 0.30 15.00 19.93 1439.28 0.72 55.96 5.07 1.54 93.01 762.8 

B-B' 1.90 25.00 17.87 1810.49 0.92 15.66 1.48 3.50 -22.15 761.6 

B-B' 0.95 25.00 18.47 1469.19 0.74 53.32 4.98 3.38 26.21 761.7 

B-B' 0.30 25.00 19.48 1436.98 0.72 60.12 5.50 2.39 64.21 761.7 

B-B' 1.95 35.00 17.75 1871.81 0.96 14.05 1.33 4.13 -52.63 762.0 

B-B' 1.00 35.00 18.21 1527.29 0.77 60.15 5.65 4.19 -7.77 762.0 

B-B' 0.30 35.00 18.78 1476.32 0.74 80.10 7.43 3.54 24.07 762.0 

B-B' 1.80 55.00 17.96 1792.40 0.91 41.35 3.90 7.45 -61.24 763.7 

B-B' 0.90 55.00 18.72 1398.87 0.70 71.39 6.63 7.08 -9.75 763.5 

B-B' 0.30 55.00 18.98 1393.49 0.70 75.32 6.96 6.50 14.57 763.3 

B-B' 1.70 65.00 18.29 1790.56 0.91 21.39 2.00 7.66 -82.19 763.5 

B-B' 0.85 65.00 18.75 1402.94 0.71 58.54 5.44 6.98 -13.55 763.4 

B-B' 0.30 65.00 19.11 1362.85 0.68 70.36 6.49 6.11 24.75 763.5 

B-B' 1.70 70.00 18.19 1722.67 0.88 27.15 2.55 7.84 -79.28 763.3 

B-B' 0.85 70.00 18.71 1432.41 0.72 53.26 4.95 7.41 -37.32 763.1 

B-B' 0.30 70.00 19.53 1371.04 0.69 66.88 6.11 6.23 24.69 763.1 
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B-B' 1.30 80.00 18.48 1687.00 0.86 16.67 1.55 7.82 -80.69 762.6 

B-B' 0.65 80.00 18.92 1341.03 0.67 53.35 4.94 6.72 4.78 762.9 

B-B' 0.30 80.00 19.12 1337.50 0.67 64.49 5.94 6.33 27.21 763.0 

C-C' 1.30 5.00 19.12 1489.95 0.75 12.40 1.14 5.49 -47.90 760.8 

C-C' 0.30 5.00 19.85 1456.01 0.73 24.26 2.20 5.24 35.14 760.7 

C-C' 1.60 15.00 18.83 1712.13 0.87 25.14 2.33 7.71 -82.20 760.8 

C-C' 0.80 15.00 19.13 1518.18 0.77 43.67 4.02 7.76 -41.02 760.9 

C-C' 0.30 15.00 19.42 1416.69 0.71 54.51 4.99 6.60 11.62 760.8 

C-C' 1.90 35.00 19.31 1441.74 0.73 82.27 7.55 5.31 33.74 761.2 

C-C' 0.95 35.00 19.34 1378.28 0.69 45.74 4.20 5.13 69.23 761.4 

C-C' 0.30 35.00 19.57 1402.97 0.71 46.64 4.26 5.09 70.53 761.4 

C-C' 1.85 45.00 18.53 1556.15 0.79 107.19 9.99 6.54 -16.28 760.8 

C-C' 0.90 45.00 18.79 1416.32 0.71 106.17 9.85 6.49 13.45 760.8 

C-C' 0.30 45.00 18.96 1374.71 0.69 89.63 8.29 6.15 29.00 760.9 

C-C' 1.80 60.00 18.62 1490.64 0.75 101.41 9.44 6.52 -1.78 757.1 

C-C' 0.90 60.00 19.00 1359.26 0.68 73.30 6.77 5.65 57.98 757.1 

C-C' 0.30 60.00 19.05 1360.66 0.68 72.64 6.70 5.58 61.07 757.1 

C-C' 1.80 65.00 18.70 1486.79 0.75 91.08 8.46 6.41 -5.68 757.2 

C-C' 0.90 65.00 19.13 1350.14 0.68 73.94 6.81 5.59 61.72 757.2 

C-C' 0.30 65.00 19.14 1349.12 0.68 73.55 6.78 5.55 63.20 757.2 

C-C' 1.40 70.00 19.08 1357.90 0.68 67.03 6.18 4.50 85.64 757.8 

C-C' 0.30 70.00 19.50 1379.67 0.69 67.29 6.16 4.92 72.07 758.1 

 

 

Table 10.5 Monitoring data 18-05-2016. Initial points: A, B, C’ and D 

Section Depth 

Distance 
from 
initial 
point 

Temp Cond Sal DO pH  ORP 
Atm 

Pressur
e 

  [m] [m] [°C] [µS] [g/L] [%] [mg/L]   [mV] [mmHg] 

A-A' 0.30 10.00 22.70 1561.35 0.79 211.25 18.14 7.10 24.48 763.9 

A-A' 0.65 10.00 21.84 1549.60 0.78 243.98 21.30 6.98 17.61 764.0 

A-A' 0.30 20.00 21.55 1567.45 0.79 207.99 18.26 6.32 74.57 764.6 

A-A' 1.30 20.00 19.96 1658.38 0.84 88.04 7.97 6.00 52.20 765.4 

A-A' 0.30 30.00 20.51 1557.11 0.79 308.62 27.65 6.33 102.8 764.5 

A-A' 1.30 30.00 19.65 1618.20 0.82 116.46 10.61 5.91 27.10 764.7 

A-A' 0.30 35.00 21.71 1558.94 0.79 260.92 22.84 6.70 85.55 764.6 

A-A' 1.30 35.00 19.82 1609.67 0.81 233.88 21.24 6.20 -30.12 764.2 

B-B' 0.30 15.00 20.90 1577.64 0.80 219.63 19.53 6.73 74.54 764.5 

B-B' 0.80 15.00 20.19 1617.22 0.82 174.75 15.75 6.72 64.10 764.6 

B-B' 1.30 15.00 19.10 1640.68 0.83 124.10 11.43 6.71 48.42 764.3 

B-B' 0.30 30.00 21.93 1578.07 0.80 278.40 24.27 7.00 69.44 763.3 

B-B' 0.80 30.00 20.53 1648.75 0.83 210.54 18.85 6.96 66.79 763.2 

B-B' 1.45 30.00 18.94 1646.48 0.83 119.10 11.01 6.70 25.25 763.2 
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B-B' 0.30 50.00 21.76 1622.45 0.82 229.56 20.07 6.97 62.93 763.5 

B-B' 0.80 50.00 20.32 1674.66 0.85 182.32 16.39 6.70 64.58 763.5 

B-B' 1.45 50.00 19.06 1654.80 0.84 127.35 11.74 6.65 55.31 763.2 

B-B' 0.30 70.00 22.18 1636.98 0.83 165.16 14.32 7.54 77.71 761.9 

B-B' 0.80 70.00 20.71 1676.57 0.85 161.92 14.45 6.67 71.18 761.9 

B-B' 1.50 70.00 19.70 1666.65 0.84 142.46 12.97 6.64 -35.64 761.9 

B-B' 0.30 80.00 21.84 1649.24 0.83 141.67 12.37 7.14 64.96 761.1 

B-B' 0.80 80.00 20.76 1673.00 0.85 143.83 12.82 7.04 48.63 761.1 

B-B' 1.30 80.00 20.38 1672.79 0.85 115.76 10.39 6.84 -9.05 761.1 

C-C' 0.30 10.00 22.20 1594.30 0.80 165.82 14.38 7.93 47.21 760.6 

C-C' 1.10 10.00 20.92 1596.52 0.81 225.31 20.03 7.49 -18.90 760.5 

C-C' 0.30 20.00 21.67 1579.92 0.80 174.16 15.26 7.32 48.77 760.3 

C-C' 0.80 20.00 20.00 1593.06 0.81 181.43 16.42 7.30 48.26 760.3 

C-C' 1.30 20.00 19.65 1613.37 0.82 193.65 17.65 7.24 -18.65 760.2 

C-C' 0.30 35.00 22.54 1574.70 0.79 157.88 13.60 7.35 42.99 760.1 

C-C' 0.80 35.00 20.92 1652.78 0.84 144.74 12.86 7.32 49.33 760.1 

C-C' 1.40 35.00 19.41 1645.25 0.83 126.79 11.61 7.19 15.14 760.1 

C-C' 0.30 45.00 21.75 1603.24 0.81 154.25 13.49 7.15 53.62 759.9 

C-C' 0.80 45.00 20.80 1628.50 0.82 165.66 14.76 7.11 53.86 759.8 

C-C' 1.45 45.00 19.13 1647.77 0.84 85.43 7.87 6.85 48.76 759.9 

C-C' 0.30 55.00 21.83 1601.89 0.81 173.10 15.11 7.09 58.45 759.9 

C-C' 0.80 55.00 20.56 1638.13 0.83 178.48 15.97 7.04 56.77 759.8 

C-C' 1.50 55.00 19.16 1652.09 0.84 98.43 9.06 6.91 46.89 759.9 

C-C' 0.30 60.00 21.88 1615.70 0.82 182.04 15.88 7.15 58.62 759.9 

C-C' 0.80 60.00 20.71 1653.02 0.84 176.07 15.71 7.12 56.86 759.9 

C-C' 1.40 60.00 19.18 1645.50 0.83 102.29 9.41 6.94 50.32 759.9 

D-D' 0.30 5.00 21.47 1608.08 0.81 167.42 14.72 7.26 62.76 759.4 

D-D' 1.20 5.00 19.53 1589.25 0.80 109.65 10.02 7.07 58.07 759.6 

D-D' 0.30 20.00 21.98 1584.53 0.80 153.76 13.39 7.32 59.05 760.2 

D-D' 0.80 20.00 20.78 1654.31 0.84 174.32 15.53 7.26 58.54 760.5 

D-D' 1.40 20.00 19.33 1647.44 0.83 100.45 9.21 7.08 52.10 760.8 

D-D' 0.30 30.00 22.29 1571.59 0.79 164.81 14.27 7.34 57.11 763.1 

D-D' 0.80 30.00 20.96 1638.98 0.83 187.77 16.67 7.32 57.09 763.4 

D-D' 1.40 30.00 19.32 1653.57 0.84 102.79 9.43 7.06 53.23 763.4 

D-D' 0.30 40.00 23.49 1576.15 0.79 127.11 10.76 7.65 47.27 763.0 

D-D' 0.80 40.00 20.99 1644.31 0.83 186.03 16.51 7.45 51.29 763.0 

D-D' 1.30 40.00 19.53 1631.35 0.83 123.42 11.27 7.33 33.98 763.2 
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Table 10.6 Monitoring data 25-05-2016 Medium point in each section 

Section Depth 

Distance 
from 
initial 
point 

Temp Cond Sal DO pH  ORP 
Atm 

Pressure 

  [m] [m] [°C] [µS] [g/L] [%] [mg/L]   [mV] [mmHg] 

A-A' 0.30 20.00 20.18 1572.13 0.79 100.00 9.06 8.75 -38.52 760.5 

A-A' 0.50 20.00 19.92 1564.77 0.79 98.12 8.89 8.49 -51.88 760.9 

A-A' 0.70 20.00 19.91 1606.34 0.81 98.47 8.93 8.99 -91.50 759.7 

B-B' 0.30 45.00 20.53 1564.88 0.79 81.05 7.26 7.55 1.10 760.0 

B-B' 0.50 45.00 20.11 1562.65 0.79 83.97 7.58 7.54 1.95 759.7 

B-B' 0.70 45.00 19.84 1561.92 0.79 83.05 7.54 7.53 2.62 759.5 

B-B' 0.90 45.00 19.49 1563.07 0.79 78.78 7.20 7.51 3.25 759.4 

B-B' 1.10 45.00 19.46 1561.65 0.79 77.21 7.06 7.48 3.38 759.5 

B-B' 1.30 45.00 19.40 1562.06 0.79 75.80 6.94 7.54 -1.53 759.5 

B-B' 1.50 45.00 19.55 1561.83 0.79 70.65 6.45 9.25 -89.79 759.9 

C-C' 0.30 35.00 20.75 1566.96 0.79 71.68 6.39 8.65 -27.97 761.9 

C-C' 0.50 35.00 20.77 1566.90 0.79 71.51 6.38 8.59 -26.34 761.7 

C-C' 0.70 35.00 20.45 1566.49 0.79 71.32 6.40 8.59 -26.07 761.7 

C-C' 0.90 35.00 20.20 1567.80 0.79 72.13 6.50 8.59 -26.00 761.7 

C-C' 1.10 35.00 19.90 1572.83 0.79 69.47 6.30 8.58 -25.88 761.8 

C-C' 1.30 35.00 19.89 1567.69 0.79 71.34 6.47 8.98 -46.43 761.0 

D-D' 0.30 25.00 21.50 1568.94 0.79 82.83 7.28 8.60 -24.61 758.4 

D-D' 0.50 25.00 21.44 1567.64 0.79 78.26 6.89 8.59 -24.61 758.5 

D-D' 0.70 25.00 21.35 1567.77 0.79 79.10 6.97 8.59 -24.61 758.5 

D-D' 0.90 25.00 21.04 1567.17 0.79 76.28 6.76 8.58 -24.42 758.5 

D-D' 1.10 25.00 20.53 1565.16 0.79 74.46 6.67 8.58 -24.18 758.6 

D-D' 1.30 25.00 20.39 1565.46 0.79 74.07 6.65 8.57 -24.06 758.6 

D-D' 1.50 25.00 20.31 1566.21 0.79 77.81 7.00 8.67 -30.90 758.6 
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Table 10.7 Monitoring data 15-06-2016. Initial points: A, B, C’ and D 

Section Depth 

Distance 
from 
initial 
point 

Temp Cond Sal DO ORP 
Atm 

Pressure 

  [m] [m] [°C] [µS] [g/L] [%] [mg/L] [mV] [mmHg] 

A-A' 0.30 10.00 23.35 1416.54 0.71 122.66 10.42 165.92 754.9 

A-A' 0.50 10.00 23.33 1416.46 0.71 122.01 10.36 165.69 754.9 

A-A' 0.70 10.00 23.32 1416.26 0.71 121.73 10.33 166.44 754.9 

A-A' 0.30 20.00 23.27 1418.13 0.71 122.98 10.45 158.98 755.1 

A-A' 0.50 20.00 23.26 1417.74 0.71 123.88 10.53 160.53 755.1 

A-A' 0.70 20.00 23.26 1417.40 0.71 123.45 10.50 161.08 755.0 

A-A' 0.90 20.00 23.27 1416.55 0.71 123.62 10.51 141.43 755.1 

A-A' 0.30 30.00 23.28 1420.99 0.71 131.31 11.19 161.38 754.9 

A-A' 0.50 30.00 23.27 1421.95 0.71 129.09 11.00 163.09 754.9 

A-A' 0.70 30.00 23.26 1423.64 0.71 126.09 10.72 163.69 755.0 

A-A' 0.90 30.00 23.24 1427.88 0.72 125.97 10.72 163.96 755.0 

A-A' 1.10 30.00 23.21 1432.97 0.72 124.74 10.61 163.99 755.0 

A-A' 1.30 30.00 23.16 1439.92 0.72 123.92 10.53 162.94 755.0 

A-A' 1.50 30.00 23.12 1450.81 0.73 123.63 10.51 138.56 755.1 

A-A' 0.30 35.00 23.31 1425.69 0.71 122.95 10.44 160.32 755.3 

A-A' 0.50 35.00 23.31 1426.19 0.71 121.52 10.30 161.73 755.3 

A-A' 0.70 35.00 23.30 1429.06 0.72 122.01 10.36 162.19 755.3 

A-A' 0.90 35.00 23.18 1435.26 0.72 121.34 10.33 161.73 755.2 

A-A' 1.10 35.00 23.03 1443.75 0.72 119.47 10.20 158.90 755.2 

A-A' 1.30 35.00 22.94 1448.75 0.73 117.01 10.01 143.06 755.0 

B-B' 0.30 15.00 22.07 1427.49 0.72 112.65 9.80 180.6 751.2 

B-B' 0.50 15.00 22.06 1434.20 0.72 111.72 9.72 181.6 751.4 

B-B' 0.70 15.00 22.07 1436.50 0.72 109.73 9.54 181.8 751.5 

B-B' 0.90 15.00 22.08 1432.66 0.72 104.69 9.10 154.7 751.3 

B-B' 1.10 15.00 21.95 1505.41 0.76 95.90 8.36 17.5 751.2 

B-B' 0.30 30.00 22.12 1419.44 0.71 112.45 9.77 177.7 752.1 

B-B' 0.50 30.00 22.10 1425.72 0.72 113.94 9.90 177.9 752.0 

B-B' 0.70 30.00 22.10 1429.62 0.72 111.04 9.65 178.2 752.0 

B-B' 0.90 30.00 22.10 1427.30 0.72 110.75 9.63 177.7 752.1 

B-B' 1.10 30.00 22.11 1428.79 0.72 110.14 9.57 176.8 752.2 

B-B' 1.30 30.00 22.14 1435.72 0.72 111.15 9.65 173.1 752.3 

B-B' 1.50 30.00 22.12 1437.51 0.72 111.71 9.70 123.7 752.3 

B-B' 0.30 50.00 22.25 1409.94 0.71 114.22 9.97 177.5 752.6 

B-B' 0.50 50.00 22.16 1415.36 0.71 107.45 9.38 178.1 752.6 

B-B' 0.70 50.00 22.00 1420.86 0.71 102.10 8.91 178.1 752.7 

B-B' 0.90 50.00 21.90 1420.72 0.71 95.47 8.31 178.2 752.8 

B-B' 1.10 50.00 21.86 1421.03 0.71 90.29 7.84 178.3 752.8 

B-B' 1.30 50.00 21.85 1421.99 0.71 90.18 7.82 174.1 752.9 

B-B' 0.30 70.00 22.36 1409.66 0.71 135.14 11.73 178.3 753.9 
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B-B' 0.50 70.00 22.31 1423.20 0.71 140.29 12.17 178.4 754.0 

B-B' 0.70 70.00 22.24 1426.25 0.72 134.91 11.69 177.1 753.9 

B-B' 0.90 70.00 22.21 1429.76 0.72 135.64 11.74 163.3 754.0 

B-B' 1.10 70.00 22.17 1440.20 0.72 133.91 11.44 152.7 754.1 

B-B' 0.30 80.00 22.44 1390.45 0.70 150.62 13.02 171.4 754.2 

B-B' 0.50 80.00 22.41 1417.37 0.71 150.23 12.98 120.6 754.2 

B-B' 0.70 80.00 22.38 1433.75 0.72 146.74 12.67 69.3 754.2 

C-C' 0.30 15.00 22.70 1381.19 0.69 137.74 11.85 174.1 754.3 

C-C' 0.50 15.00 22.66 1375.71 0.69 131.71 11.41 172.8 754.3 

C-C' 0.70 15.00 22.26 1379.74 0.69 130.80 11.24 115.6 754.2 

C-C' 0.30 20.00 22.39 1382.98 0.69 113.96 9.89 171.3 754.2 

C-C' 0.50 20.00 22.28 1385.09 0.69 112.85 9.76 172.0 754.1 

C-C' 0.70 20.00 22.26 1385.53 0.69 109.47 9.48 172.3 754.1 

C-C' 0.90 20.00 22.27 1385.81 0.69 108.88 9.43 172.6 754.1 

C-C' 1.10 20.00 22.28 1386.39 0.69 108.85 9.43 172.4 754.1 

C-C' 1.30 20.00 22.20 1412.83 0.71 108.10 9.37 117.9 754.1 

C-C' 0.30 30.00 22.30 1387.33 0.70 98.05 8.53 169.3 754.2 

C-C' 0.50 30.00 22.30 1386.39 0.69 92.11 8.02 170.5 754.2 

C-C' 0.70 30.00 22.23 1384.15 0.69 89.00 7.74 171.2 754.3 

C-C' 0.90 30.00 22.22 1383.86 0.69 87.15 7.56 171.9 754.3 

C-C' 1.10 30.00 22.21 1385.56 0.69 86.16 7.47 172.4 754.3 

C-C' 1.30 30.00 22.08 1387.24 0.70 85.19 7.38 173.2 754.3 

C-C' 1.50 30.00 22.01 1388.60 0.70 84.58 7.34 174.0 754.3 

C-C' 0.30 40.00 22.64 1372.34 0.69 89.59 7.82 176.8 754.3 

C-C' 0.50 40.00 22.53 1376.56 0.69 83.35 7.26 177.2 754.3 

C-C' 0.70 40.00 22.14 1384.17 0.69 73.88 6.42 177.3 754.2 

C-C' 0.90 40.00 21.96 1385.74 0.69 72.38 6.23 177.3 754.2 

C-C' 1.10 40.00 21.89 1386.24 0.70 65.74 5.67 166.0 754.1 

C-C' 0.30 55.00 22.77 1367.84 0.68 86.15 7.52 174.4 754.2 

C-C' 0.50 55.00 22.74 1368.31 0.68 79.20 6.90 175.0 754.2 

C-C' 0.70 55.00 22.39 1374.80 0.69 73.18 6.37 175.8 754.1 

C-C' 0.90 55.00 22.25 1378.57 0.69 64.92 5.63 175.9 754.0 

C-C' 1.10 55.00 22.05 1380.41 0.69 57.62 4.98 176.2 754.1 

C-C' 1.30 55.00 21.98 1379.88 0.69 56.37 4.84 176.4 754.1 

C-C' 1.50 55.00 21.89 1380.13 0.69 54.32 4.66 167.2 754.1 

C-C' 0.30 65.00 22.86 1364.10 0.68 64.13 5.60 176.0 754.0 

C-C' 0.50 65.00 22.85 1363.60 0.68 57.37 4.99 175.9 754.1 

C-C' 0.70 65.00 22.81 1363.92 0.68 51.89 4.48 176.0 754.1 

C-C' 0.90 65.00 22.70 1365.31 0.68 50.30 4.32 176.1 754.1 

C-C' 1.10 65.00 22.47 1366.87 0.68 50.14 4.30 176.2 754.1 

C-C' 1.30 65.00 22.03 1373.25 0.69 49.68 4.26 176.5 754.1 

C-C' 1.50 65.00 21.88 1376.86 0.69 49.64 4.25 167.0 754.2 

D-D' 0.30 15.00 23.04 1359.81 0.68 54.08 4.62 175.7 754.4 

D-D' 0.50 15.00 22.73 1360.44 0.68 54.43 4.68 175.2 754.3 

D-D' 0.70 15.00 22.70 1362.07 0.68 53.91 4.63 175.1 754.3 
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D-D' 0.90 15.00 22.54 1364.68 0.68 53.33 4.60 175.3 754.3 

D-D' 1.10 15.00 22.30 1366.04 0.68 52.76 4.57 175.5 754.4 

D-D' 1.30 15.00 22.12 1367.73 0.69 54.70 4.75 175.6 754.4 

D-D' 0.30 20.00 22.90 1366.52 0.68 82.95 7.24 173.5 754.4 

D-D' 0.50 20.00 22.59 1359.04 0.68 80.83 7.05 174.3 754.3 

D-D' 0.70 20.00 22.36 1364.76 0.68 77.30 6.75 174.8 754.3 

D-D' 0.90 20.00 22.24 1370.74 0.69 70.43 6.14 175.0 754.2 

D-D' 1.10 20.00 22.05 1374.51 0.69 60.85 5.29 175.2 754.2 

D-D' 1.30 20.00 21.94 1375.88 0.69 53.21 4.56 175.0 754.3 

D-D' 1.50 20.00 21.90 1376.51 0.69 51.99 4.51 175.1 754.3 

D-D' 1.70 20.00 21.89 1376.55 0.69 51.57 4.44 175.1 754.4 

D-D' 1.90 20.00 21.91 1376.87 0.69 48.98 4.24 164.6 754.5 

D-D' 0.30 30.00 22.51 1376.19 0.69 102.69 8.95 174.4 754.6 

D-D' 0.50 30.00 22.49 1375.39 0.69 100.25 8.74 174.8 754.6 

D-D' 0.70 30.00 22.32 1382.73 0.69 95.98 8.36 175.5 754.6 

D-D' 0.90 30.00 22.14 1384.16 0.69 92.76 8.07 175.8 754.6 

D-D' 1.10 30.00 22.07 1383.20 0.69 87.77 7.62 176.0 754.6 

D-D' 1.30 30.00 22.02 1379.65 0.69 77.41 6.70 176.1 754.5 

D-D' 1.50 30.00 21.98 1377.14 0.69 74.84 6.45 176.1 754.6 

D-D' 1.70 30.00 21.97 1376.22 0.69 74.12 6.39 165.2 754.7 

D-D' 0.30 40.00 22.61 1371.90 0.69 132.48 11.52 175.9 754.4 

D-D' 0.50 40.00 22.63 1369.75 0.69 129.73 11.28 176.1 754.5 

D-D' 0.70 40.00 22.62 1371.94 0.69 123.33 10.71 176.1 754.5 

D-D' 0.90 40.00 22.39 1377.67 0.69 112.31 9.74 176.1 754.5 

D-D' 1.10 40.00 22.20 1379.14 0.69 92.89 8.03 176.0 754.6 

D-D' 1.30 40.00 22.14 1376.33 0.69 83.77 7.21 175.9 754.6 

D-D' 1.50 40.00 22.09 1373.72 0.69 82.39 7.09 175.7 754.6 

D-D' 1.70 40.00 22.07 1372.61 0.69 81.59 7.02 173.8 754.6 
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Table 10.8 Monitoring data 13-07-2016. Initial points: A, B, C’ and D 

Section Depth 

Distance 

from 

initial 

point 

Temp Cond Sal DO ORP 
Atm 

Pressure 

 [m] [m] [°C] [µS] [g/L] [%] [mg/L] [mV] [mmHg] 

A-A' 0.5 10 26.65 1755.17 0.88 2.96 0.24 118.09 751.05 

A-A' 0.7 10 26.57 1800.66 0.91 1.65 0.13 123.27 751.00 

A-A' 0.5 20 26.90 1502.20 0.75 17.59 1.40 115.19 750.96 

A-A' 0.9 20 26.89 1435.97 0.72 17.43 1.39 122.47 750.94 

A-A' 0.5 30 26.89 1423.88 0.71 29.87 2.38 133.55 750.76 

A-A' 0.9 30 26.64 1518.93 0.76 24.98 2.00 132.96 750.73 

A-A' 1.1 30 26.27 1532.83 0.77 20.08 1.61 83.73 750.67 

A-A' 1.5 30 26.15 1533.29 0.77 17.63 1.42 83.09 750.65 

A-A' 0.5 35 26.91 1544.94 0.77 27.98 2.22 130.47 750.59 

A-A' 0.9 35 26.89 1547.71 0.77 27.46 2.18 131.66 750.59 

A-A' 1.1 35 26.62 1545.60 0.77 24.00 1.92 123.08 750.57 

A-A' 1.3 35 26.29 1524.51 0.76 4.06 0.33 113.47 750.60 

B-B' 0.3 15 26.54 1631.78 0.82 54.86 4.39 145.73 756.83 

B-B' 0.5 15 25.90 1637.51 0.82 45.50 3.68 145.61 757.05 

B-B' 0.7 15 25.59 1640.43 0.82 34.00 2.77 137.57 757.16 

B-B' 0.9 15 25.44 1642.98 0.83 18.56 1.51 113.38 757.16 

B-B' 0.3 30 26.00 1660.45 0.84 44.01 3.55 146.12 756.77 

B-B' 0.5 30 25.93 1660.71 0.84 43.27 3.50 146.40 756.83 

B-B' 0.7 30 25.83 1663.72 0.84 43.94 3.56 146.47 756.91 

B-B' 0.9 30 25.67 1666.39 0.84 44.84 3.64 146.21 756.99 

B-B' 1.1 30 25.36 1667.01 0.84 18.82 1.54 -33.64 757.19 

B-B' 1.3 30 25.19 1683.67 0.85 0.00 0.00 -37.05 757.03 

B-B' 0.3 50 26.10 1657.81 0.83 40.73 3.29 126.37 756.87 

B-B' 0.5 50 26.07 1660.51 0.83 42.30 3.41 130.31 756.86 

B-B' 0.7 50 26.05 1661.59 0.84 42.04 3.39 127.96 756.85 

B-B' 0.9 50 25.92 1662.71 0.84 40.16 3.24 90.67 756.84 

B-B' 1.1 50 25.74 1662.72 0.84 27.12 2.20 10.38 756.89 

B-B' 0.3 70 26.12 1629.86 0.82 53.50 4.31 134.65 756.90 

B-B' 0.5 70 26.16 1630.02 0.82 52.95 4.26 134.34 756.90 

B-B' 0.7 70 26.07 1646.55 0.83 53.09 4.28 133.15 756.92 

B-B' 0.9 70 25.79 1649.50 0.83 44.83 3.63 129.51 756.89 

B-B' 1.1 70 25.79 1650.25 0.83 25.63 2.08 99.24 756.85 

B-B' 1.3 70 25.73 1651.05 0.83 2.25 0.18 89.34 756.88 

B-B' 0.3 80 26.12 1597.24 0.80 51.36 4.14 130.88 756.89 

B-B' 0.5 80 26.11 1599.57 0.80 50.76 4.09 129.96 756.89 

B-B' 0.7 80 26.05 1606.29 0.81 48.72 3.93 111.48 756.87 

B-B' 0.9 80 25.89 1612.09 0.81 39.32 3.18 105.14 756.81 
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B-B' 1.1 80 25.80 1614.19 0.81 22.94 1.86 103.16 756.78 

B-B' 1.3 80 25.75 1640.45 0.82 4.97 0.40 90.37 756.79 

B-B' 1.5 80 25.69 1643.15 0.83 3.75 0.30 45.04 756.78 

C-C' 0.3 15 26.33 1743.11 0.88 55.04 4.42 133.58 756.50 

C-C' 0.5 15 26.32 1746.81 0.88 54.58 4.38 106.01 756.48 

C-C' 0.7 15 26.30 1748.60 0.88 53.37 4.28 93.55 756.50 

C-C' 0.9 15 26.04 1749.29 0.93 11.21 0.90 57.58 756.52 

C-C' 0.3 20 26.21 1728.52 0.87 53.44 4.30 128.44 756.46 

C-C' 0.5 20 26.20 1741.82 0.88 52.83 4.25 129.20 756.46 

C-C' 0.7 20 26.17 1742.08 0.88 52.12 4.19 129.87 756.47 

C-C' 0.9 20 26.21 1742.27 0.88 48.78 4.38 130.76 756.43 

C-C' 1.1 20 26.09 1742.74 0.88 51.08 4.12 102.45 756.42 

C-C' 1.3 20 26.09 1742.86 0.88 54.36 3.92 71.83 756.41 

C-C' 0.3 30 26.02 1732.46 0.87 54.58 4.40 132.38 756.38 

C-C' 0.5 30 25.95 1735.93 0.88 51.33 4.15 131.95 756.36 

C-C' 0.7 30 25.95 1739.69 0.88 51.17 4.13 131.11 756.36 

C-C' 0.9 30 25.90 1740.54 0.88 51.66 4.18 130.16 756.36 

C-C' 1.1 30 25.79 1741.13 0.88 48.03 3.89 83.66 756.34 

C-C' 1.3 30 25.79 1744.37 0.88 46.01 3.73 77.61 756.35 

C-C' 0.3 40 26.67 1736.15 0.88 50.65 4.10 133.58 756.16 

C-C' 0.5 40 26.18 1737.24 0.88 48.59 3.93 133.92 756.10 

C-C' 0.7 40 26.20 1739.06 0.88 46.35 3.76 134.04 756.02 

C-C' 0.9 40 25.94 1740.51 0.88 45.20 3.67 134.11 755.86 

C-C' 1.1 40 25.79 1745.66 0.88 42.58 3.43 133.21 755.67 

C-C' 1.3 40 25.75 1746.24 0.88 42.19 3.39 132.77 755.50 

C-C' 1.5 40 25.74 1746.36 0.88 27.88 2.22 129.07 755.39 

C-C' 0.3 55 26.53 1722.04 0.87 47.71 3.86 133.76 754.95 

C-C' 0.5 55 26.42 1733.82 0.87 47.02 3.80 133.30 754.85 

C-C' 0.7 55 25.91 1737.43 0.88 43.20 3.50 133.71 754.55 

C-C' 0.9 55 25.86 1740.06 0.88 41.15 3.34 132.78 754.47 

C-C' 1.1 55 25.77 1740.45 0.88 33.03 2.64 98.59 754.33 

C-C' 1.3 55 25.69 1743.89 0.88 31.05 2.49 57.48 754.21 

C-C' 0.3 65 26.95 1689.60 0.85 48.62 3.86 134.55 753.85 

C-C' 0.5 65 26.29 1717.83 0.86 39.05 3.14 134.38 753.68 

C-C' 0.7 65 26.25 1739.15 0.88 36.84 2.96 134.01 753.54 

C-C' 0.9 65 26.29 1739.59 0.88 35.47 2.85 133.44 753.48 

C-C' 1.1 65 26.28 1739.63 0.88 34.14 2.74 132.07 753.39 

C-C' 1.3 65 26.16 1740.30 0.88 32.22 2.58 123.18 753.35 

C-C' 1.5 65 25.70 1741.18 0.88 21.76 1.77 109.89 753.12 

D-D' 0.3 15 26.52 1732.93 0.87 27.58 2.22 135.05 752.50 

D-D' 0.5 15 26.36 1735.00 0.87 27.05 2.18 135.02 752.50 

D-D' 0.7 15 26.30 1735.42 0.87 22.28 1.79 135.48 752.48 

D-D' 0.9 15 26.08 1735.98 0.87 19.01 1.52 135.65 752.41 
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D-D' 1.1 15 26.08 1737.72 0.88 18.00 1.44 136.12 752.35 

D-D' 0.3 20 26.27 1727.40 0.87 47.76 3.86 136.67 752.14 

D-D' 0.5 20 26.17 1733.32 0.87 46.58 3.77 136.54 752.09 

D-D' 0.7 20 26.16 1733.61 0.87 40.44 3.26 136.50 752.07 

D-D' 0.9 20 25.94 1736.66 0.88 38.78 3.12 136.82 752.04 

D-D' 1.1 20 25.93 1738.29 0.88 35.47 2.87 136.41 752.03 

D-D' 1.3 20 25.84 1738.49 0.88 31.20 2.51 134.79 752.00 

D-D' 1.5 20 25.80 1738.64 0.88 22.47 1.82 128.50 751.96 

D-D' 1.7 20 25.63 1739.35 0.88 10.31 0.84 123.70 751.93 

D-D' 0.3 30 26.32 1733.77 0.87 60.29 4.86 136.50 751.98 

D-D' 0.5 30 26.26 1734.13 0.87 53.19 4.29 136.59 751.97 

D-D' 0.7 30 26.12 1735.13 0.87 52.76 4.26 136.73 751.95 

D-D' 0.9 30 26.03 1735.38 0.87 47.91 3.86 137.16 751.96 

D-D' 1.1 30 26.01 1736.70 0.88 44.10 3.54 135.95 751.96 

D-D' 1.3 30 26.01 1737.47 0.88 39.00 3.13 136.12 751.95 

D-D' 0.3 40 26.69 1726.92 0.87 32.91 2.64 136.84 751.94 

D-D' 0.5 40 26.32 1732.27 0.87 28.75 2.31 137.34 751.95 

D-D' 0.7 40 26.16 1732.76 0.87 30.38 2.45 137.60 751.95 

D-D' 0.9 40 26.04 1733.24 0.87 26.05 2.11 132.81 751.93 

D-D' 1.1 40 25.90 1733.36 0.87 3.77 0.30 113.74 751.06 

 

Moreover, samples have been collected in the sampling points (a, b, c,  d in Figure  10.5) at surface 

(a’, b’, c’, d’) and  30 cm up to the bottom on the Basin (a’’, b’’, c’’, d’’)  in cases 25/05/2016, 

15/06/2016, 13/07/2016 and in the average water depth in cases 26/10/2016, 30/11/2016 and 

22/02/2017 a*, b*, c*, d*). Tables below show the data collected during each measurement 

campaign. 

Table 10.9 Basin 1 data: 25/05/2016  

Sampling 
Point 

 

TSS COD N-NH4
+ N-NO3

- P-PO4
-- E. coli 

 Mean St. Dev.    Mean St. Dev. 

[mg/L] [mg/L] [mg/L] [mgN/l] [mgN/l] [mgP/l] [CFU/100mL] [CFU/100mL] 

a’ 32 - - 7.3 8.97 2.40 2.69E+03 3.17E+02 

a’’ 48 - - 5.9 5.94 2.42 - - 

b’ 30 - - 3.7 8.98 2.39 - - 

b’’ 37 - - 4.8 9.08 2.40 - - 

c’ 23 - - 4.7 9.29 2.40 6.77E+02 3.01E+02 

c’’ 30 - - 4.1 9.22 2.41 - - 

d’ 15 - - 4.0 9.38 2.41 3.67E+02 1.86E+02 

d’’ 20 - - 3.5 9.27 2.41 - - 
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Table 10.10 Basin 1 data: 15/06/2016  

Sampling 
Point 

 

TSS COD N-NH4
+ N-NO3

- P-PO4
-- E. coli 

 Mean St. Dev.    Mean St. Dev. 

[mg/L] [mg/L] [mg/L] [mgN/l] [mgN/l] [mgP/l] [CFU/100mL] [CFU/100mL] 

a’ 28 226.65 0.25 4.39 6.98 1.42 1.37E+03 2.15E+02 

a’’ 45 - - 12.76 6.74 1.96 - - 

b’ 20 235.18 19.84 3.80 7.44 2.09 9.27E+02 1.95E+02 

b’’ 30 - - 3.28 7.18 2.09 - - 

c’ 15 319.09 132.74 4.32 7.89 2.13 - - 

c’’ 18 - - 3.80 6.91 2.08 - - 

d’ 10 281.53 52.74 3.42 7.28 2.11 5.63E+02 1.70E+02 

d’’ 14 - - 4.16 7.28 2.04 - - 

 

Table 10.11 Basin 1 data: 13/07/2016 

Sampling 
Point 

 

TSS COD N-NH4
+ N-NO3

- P-PO4
-- E. coli 

 Mean St. Dev.    Mean St. Dev. 

[mg/L] [mg/L] [mg/L] [mgN/l] [mgN/l] [mgP/l] [CFU/100mL] [CFU/100mL] 

a’ 35 214.10 4.98 3.01 5.40 3.03 2.77E+03 1.87E+02 

a’’ 45 408.40 14.50 3.15 5.02 2.94 - - 

b’ 28 244.83 1.71 3.13 5.02 3.17 1.85E+03 1.31E+02 

b’’ 30 270.82 5.93 3.27 4.67 3.13 - - 

c’ 20 285.44 4.15 2.57 5.13 3.13 - - 

c’’ 23 232.10 1.71 2.82 5.13 3.16 - - 

d’ 15 229.14 1.71 3.03 5.14 3.26 1.76E+03 1.04E+02 

d’’ 18 218.54 0.45 3.20 5.13 3.14 - - 
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Table 10.12 Basin 1 data: 26/10/2016 

Sampling 
Point 

 

TSS COD N-NH4
+ N-NO3

- P-PO4
-- E. coli 

 Mean St. Dev.    Mean St. Dev. 

[mg/L] [mg/L] [mg/L] [mgN/l] [mgN/l] [mgP/l] [CFU/100mL] [CFU/100mL] 

a* 20 270.18 19.33 3.47 7.96 3.14 1.09E+03 2.64E+02 

b* 23 225.52 62.36 3.17 8.42 2.60 1.03E+03 2.54E+02 

c* 15 350.24 62.88 3.19 8.51 2.51 7.17E+02 1.37E+02 

d* 18 272.28 50.17 3.36 8.46 2.38 8.96E+01 2.30E+01 

 

Table 10.13 Basin 1 data: 30/11/2016 

Sampling 
Point 

 

TSS COD N-NH4
+ N-NO3

- P-PO4
-- E. coli 

 Mean St. Dev.    Mean St. Dev. 

[mg/L] [mg/L] [mg/L] [mgN/l] [mgN/l] [mgP/l] [CFU/100mL] [CFU/100mL] 

a* 5 134.49 0.34 1.35 8.88 1.99 7.33E+03 2.30E+03 

b* 5 152.33 0.56 0.96 11.05 2.03 8.77E+02 3.86E+02 

c* 5 130.25 1.55 1.00 10.96 1.98 5.17E+02 6.45E+02 

d* 15 110.53 1.40 1.00 10.05 1.98 4.05E+02 7.07E+00 

 
 

Table 10.14 Basin 1 data: 22/02/2017 

Sampling 
Point 

 

TSS COD N-NH4
+ N-NO3

- P-PO4
-- E. coli 

 Mean St. Dev.    Mean St. Dev. 

[mg/L] [mg/L] [mg/L] [mgN/l] [mgN/l] [mgP/l] [CFU/100mL] [CFU/100mL] 

a* 10 658.54 74.57 1.39 20.11 3.92 2.17E+03 4.92E+02 

b* 12 496.24 6.41 1.45 19.17 3.18 3.30E+02 5.93E+01 

c* 15 644.12 45.23 1.45 18.71 3.15 4.75E+01 2.50E+01 

d* 20 540.93 155.25 1.57 18.67 3.12 3.75E+01 1.71E+01 
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The solar irradiation data have been collected in the full scale plant using the Pyranometer installed 

as explained. The daily average irradiation data collected in Santerno WWTP are shown in Annex A. 

 

 

 

 

Figure  10.11 Solar Irradiance data 25/05/2016 
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Figure  10.12 Solar Irradiance data 12/10/2016 
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Figure  10.13 Solar Irradiance data 26/10/2016 
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Figure  10.14 Solar Irradiance data 25/01/2017 
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Figure  10.15 Solar Irradiance data 22/02/2017 
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10.3 Santerno pilot plant data 

The measurement campaigns on the Santerno pilot plant started in July 2016 until February 2017 in 

the days showed in the following table. Each campaign was named as showed in the first column of 

the table. 

Table 10.15 Santerno Pilot Plant monitoring campaigns 

Campaign ID date 

P1 13/07/2016 

P2 12/10/2016 

P3 30/11/2016 

P4 14/12/2016 

P5 25/01/2017 

P6 22/02/2017 

 

During each monitoring campaign, samples from three sampling points were collected. The 

sampling points were located near the input, sections 1-1’, in the middle of the plant, section 2-2’, 

and near the output, section 3-3’ (Figure  10.16) and named PPIN, PPM and PPOUT respectively. The 

location of the sampling points was chosen in order to monitor the plant state along the flow 

direction.  

 

 

 

 

 

 

Figure  10.16 Santerno Pilot plant with sampling points 
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Table 10.16 Pilot plant data: 13/07/2016 

Sampling 
Point 

 

TSS COD N-NH4
+ N-NO3

- P-PO4
-- E. coli 

 Mean St. Dev.    Mean St. Dev. 

[mg/L] [mg/L] [mg/L] [mgN/l] [mgN/l] [mgP/l] [CFU/100mL] [CFU/100mL] 

PPIN 13 207.00 4.56 2.52 5.10 2.71 1.41E+03 4.94E+02 

PPM 12 231.74 0.98 2.68 5.01 2.72 1.89E+03 9.78E-01 

PPOUT 12 274.78 0.64 2.41 4.99 2.73 1.99E+03 1.47E+02 

 

Table 10.17 Pilot plant data: 12/10/2016 

Sampling 
Point 

 

TSS COD N-NH4
+ N-NO3

- P-PO4
-- E. coli 

 Mean St. Dev.    Mean St. Dev. 

[mg/L] [mg/L] [mg/L] [mgN/l] [mgN/l] [mgP/l] [CFU/100mL] [CFU/100mL] 

PPIN 10 125.44 3.53 1.31   1.90E+02 1.41E+01 

PPM 10 56.64 6.10 0.87   1.20E+02 2.83E+01 

PPOUT 5 55.35 10.24 0.82   7.07E+01 2.83E+01 

 

Table 10.18 Pilot plant data: 30/11/2016 

Sampling 
Point 

 

TSS COD N-NH4
+ N-NO3

- P-PO4
-- E. coli 

 Mean St. Dev.    Mean St. Dev. 

[mg/L] [mg/L] [mg/L] [mgN/l] [mgN/l] [mgP/l] [CFU/100mL] [CFU/100mL] 

PPIN 10 141.33 0.21 0.83 9.20 1.81 - - 

PPM 15   0.72 8.45 1.63 - - 

PPOUT 20   0.76 7.47 1.58 - - 

 

Table 10.19 Pilot plant data: 14/12/2016 

Sampling 
Point 

 

TSS COD N-NH4
+ N-NO3

- P-PO4
-- E. coli 

 Mean St. Dev.    Mean St. Dev. 

[mg/L] [mg/L] [mg/L] [mgN/l] [mgN/l] [mgP/l] [CFU/100mL] [CFU/100mL] 

PPIN 10 229.81 4.28 3.20 9.52 - 3.00E+02 1.41E+02 

PPM 6.7 301.69 36.63 2.04 10.64 - 7.40E+01 6.62E+01 

PPOUT 6.7 259.70 16.28 1.98 10.46 - 7.00E+01 5.20E+01 
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Table 10.20 Pilot plant data: 25/01/2017 

Sampling 
Point 

 

TSS COD N-NH4
+ N-NO3

- P-PO4
-- E. coli 

 Mean St. Dev.    Mean St. Dev. 

[mg/L] [mg/L] [mg/L] [mgN/l] [mgN/l] [mgP/l] [CFU/100mL] [CFU/100mL] 

PPIN 5.3 298.79 22.90 5.69 6.25 4.80 2.88E+02 8.17E+01 

PPM 5.3 317.34 23.48 4.89 7.44 4.79 2.45E+02 1.50E+02 

PPOUT 4 292.32 32.77 4.81 7.41 4.62 2.17E+02 8.74E+01 

 

Table 10.21 Pilot plant data: 22/02/2017 

Sampling 
Point 

 

TSS COD N-NH4
+ N-NO3

- P-PO4
-- E. coli 

 Mean St. Dev.    Mean St. Dev. 

[mg/L] [mg/L] [mg/L] [mgN/l] [mgN/l] [mgP/l] [CFU/100mL] [CFU/100mL] 

PPIN 2.8 307.92 29.13 1.42 1.79 2.89 2.11E+03 2.88E+02 

PPM 1.4 262.26 38.35 1.00 0.73 2.14 3.50E+02 1.51E+02 

PPOUT 1.4 419.14 7.77 0.93 0.54 2.05 2.82E+02 1.05E+02 

 

Afterwards, Temperature (Temp), Conducibility (Cond), Dissolved Oxygen (DO), Oxidation 

Reduction Potential (ORP) and atmospheric pressure (Atm P) have been measured along the water 

column in PPIN, PPM, and PPOUT using the multiparameter system YSI 556.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 10.22 Pilot plant monitoring data - 12/10/2016 

Section 
Depth Temp Cond DO ORP Atm P 

[m] [°C] [µS] [%] [mg/L] [mV] [mmHg] 

PPIN 0.25 15.51 1398 92.4 9.17 40.1 761.3 

PPIN 0.45 15.5 1396 92.7 9.21 38.7 760.9 

PPIN 0.70 15.49 1395 92.6 9.2 37.7 761.1 

PPM 0.25 15.45 1396 88.1 8.76 41.2 760.6 

PPM 0.45 15.47 1397 88.9 8.84 39 760.5 

PPM 0.70 15.48 1397 88.5 8.8 36.9 760.4 

PPOUT 0.25 15.35 1392 89.4 8.91 44.4 760.3 

PPOUT 0.45 15.35 1392 89.3 8.9 44 760.4 

PPOUT 0.70 15.35 1392 89.5 8.92 43.8 760.5 
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In the last case the 0.25 m data are not available because the water depth was 0.5 m due to 

mechanical problems to the inlet pump during the days before. 

Table 10.23 Pilot plant monitoring data - 30/11/2016 

Section 
Depth Temp Cond DO ORP Atm P 

[m] [°C] [µS] [%] [mg/L] [mV] [mmHg] 

PPIN 0.25 8.28 1425 100 12.1 35.6 769 

PPIN 0.45 8.27 1425 100 11.89 28.5 768.2 

PPIN 0.7 8.2 1417 98.2 11.52 21.5 766.6 

PPM 0.25 8.2 1417 98.1 11.51 20.6 766.6 

PPM 0.45 8.18 1417 98.2 11.53 19 766.4 

PPM 0.7 8.16 1417 98.0 11.49 20 766.6 

PPOUT 0.25 8.13 1425 100 11.77 36.4 766.7 

PPOUT 0.45 8.16 1423 93.1 10.93 29.2 767.0 

PPOUT 0.7 8.16 1424 91.3 10.72 27.9 767.2 

Table 10.24 Pilot plant monitoring data - 14/12/2016 

Section 
Depth Temp Cond DO ORP Atm P 

[m] [°C] [µS] [%] [mg/L] [mV] [mmHg] 

PPIN 0.25 7.77 1393 98.3 11.66 520.1 760.5 

PPIN 0.45 7.84 1391 96.6 11.43 511.2 760.4 

PPIN 0.7 7.84 1407 96 11.36 510 760.4 

PPM 0.25 7.68 1404 96.2 11.43 458.4 760.2 

PPM 0.45 7.69 1391 94.7 11.25 463.7 760.2 

PPM 0.7 7.7 1399 94.3 11.2 467.3 760.1 

PPOUT 0.25 7.56 1617 102.8 12.25 444.5 760 

PPOUT 0.45 7.62 1308 96.4 11.48 456.4 759.9 

PPOUT 0.7 7.62 1656 93.7 11.15 459.7 759.9 

Table 10.25 Pilot plant monitoring data – 22/02/2017 

Section 
Depth Temp Cond DO ORP Atm P 

[m] [°C] [µS] [%] [mg/L] [mV] [mmHg] 

PPIN 0.25 - - - - - - 

PPIN 0.45 10.01 1800 104.9 11.76 528 757.6 

PPIN 0.7 10.44 1780 99.2 11.03 532.9 757.5 

PPM 0.25 - - - - - - 

PPM 0.45 9.85 1794 103.9 11.7 548.4 757.3 

PPM 0.7 10.23 1776 98.8 11.03 548.3 757.2 

PPOUT 0.25 - - - - - - 

PPOUT 0.45 10.05 1761 103 11.55 550 757 

PPOUT 0.7 10.24 1764 96.9 10.82 534.1 756.9 
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Chapter 11. Activated sludge modelling: Results 

and discussion 

11.1 Initial hypothesis   

The activated sludge process of the pilot plant was simulated in different operational conditions 

using W.E.S.T. 2012 and the results discussed in order to define the best control policies able to 

reduce the energy costs guaranteeing a good efficiency of the plant, respecting the Italian legal 

thresholds. 

Firstly, two hypotheses were fixed: 

1. The ammonium concentration influent increases as long as the input flow rate. This 

hypothesis based on the comparison between the influent flow rate in the full scale plant 

(Figure  10.4) and the input ammonium concentration trends in the pilot plant (Figure  10.3). 

Indeed, the trends are similar with the minimum at around 5 am and maximum peak at 

around 11 am. 

2. The input conditions, in terms flow rate and ammonium concentration, are constant during 

three time ranges. This hypothesis comes from the first and the time slots have been 

established comparing the input flow rate and the ammonium concentration. Thus, it has 

been assigned to each time slot the input flow rate and the average ammonium 

concentration based on the Trebbo pilot plant data. 

 

 

 

 

 

 

 

 

Under these hypothesis, the nitrification and denitrification processes have been studied separately 

in different conditions. In particular, the nitrification and denitrification efficiencies have been 

evaluated changing respectively the DO concentration, through PI controllers, and the external 

recirculation flow rate. 

 

 

 

Table 11.1 Time-slot identification 

 Time 
Flow rate 

[m3/d] 

N-NH4
+ 

[mgN/L] 

Time-slot 1 03:00/10:00 0.34 20 

Time-slot 2 10:00/16:00 1 50 

Time-slot 3 16:00/03:00 0.67 30 
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11.2 Nitrification modeling  

11.2.1 Case A 

The oxygen inlet in the nitrification tank is regulated by a PI cascade controller (Figure  11.1). Three 

dynamic simulations were carried on setting the y_S of the ammonia controller 1 mg/L (SP1), 1.5 

mg/L (SP2) and 2 mg/L (SP3) respectively. Finally, the effluent Total Nitrogen concertation and the 

management costs resulting from the dynamic simulations have been compared. 

 

 

 

 

 

 

Figure  11.1 Case A: WEST 2012 layout 

Figure  11.2 Case A: PI automatic 
control system. Blue arrow represents 
the variable measured in the aerobic 
tank and black arrows represent the 

adjusted variables  
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Finally, the effluent TN concentration and the management costs resulting from each simulation 

were listed (Table 11.2). The TN concentrations are referred to the average value in each time slot. 

Table 11.2 Case A: simulation results 

 SP1 = 1 mg/L SP2 = 1.5 mg/L SP3 = 2 mg/L 

 TNOUT[mg/L] Costs [€/h] TNOUT[mg/L] Costs [€/h] TNOUT[mg/L] Costs [€/h] 

Time-slot 1 12.88 7.43 11.76 7.16 10.43 6.95 

Time-slot 2 15.09 8.82 14.44 8.57 13.67 8.38 

Time-slot 3 13.26 7.62 12.42 7.30 11.45 7.03 

 

The TN maximum values are in the time-slot 2 as expected because in this time range the influent 

ammonia and COD concentrations are higher. It is interesting to note that the the output TN 

concentration is higher when the ammonia set-point is lower. Indeed, the amount of nitrate 

produced and recirculated in the internal recirculation increase when the ammonia set-point is 

higher because also the dissolved oxygen in nitrification tank is higher. Consequently, the Nitrate 

removal efficiency of the denitrification tank could decrease with lower Total Nitrogen in the final 

effluent.  Comparing the simulation results the Italian legal thresholds (see  Table 2.7) the TN output 

is over the limit only when the ammonia set-point is 1 mg/L during the time-slot 2.  

The management costs increase with the ammonia set-points because the main management cost 

is due to the aeration pumping station. This shows the need for policies able to optimize aeration 

system management. 

11.2.2 Case B 

In case A there is not variation in the ammonia set-points during the day so the results were referred 

to the average values. Therefore, in case B a timer connected to the ammonium controller was 

added. 

 Figure  11.3 Case B:  WEST 2012  layout 
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The Timer depends on two parameters: the signal (u) and the signal time (T). In the present case, 

four signal times (T1, T2, T3, T4) are needed to divide the reference day in three time-slots. 

Consequently, an ammonia set-point (signal) will correspond to each signal time as showed below: 

• T3 = 00:00 - 3:00     -> NH4
+ Set point = 1,5 mg/L 

• T1 = 3:00 - 10:00     -> NH4
+ Set point = 1 mg/L 

• T2 = 10:00 - 16:00   -> NH4
+ Set point = 2 mg/L 

• T3 = 16:00 - 00:00   -> NH4
+ Set point = 1,5 mg/L 

 

The results of case B simulations in terms of ammonium and nitrate concentrations in the effluent 

are showed in Figure  11.5. The trends are similar and the ammonium increases because nitrate 

increases after approximatively one hour.  

 

Figure  11.4 Case B: Automatic control system.Blue arrow 
represents the variable measured in the aerobic tank and 

black arrows represent the adjusted variables 

 

Figure  11.5 Case B results: ammonium and nitrate output concentrations 
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Comparing the average TN output concentrations are in this case under the legal thresholds in all 

time-slots.  

Table 11.3 Case B: simulation results 

 TNOUT[mg/L] 

Time-slot 1 12.10 

Time-slot 2 13.99 

Time-slot 3 11.51 

Daily average 12.53 

 

11.2.3 Case C 

In this case a further simplification to the automatic control system has been made: the ammonium 

controller has been eliminated and the timer is connected directly to the oxygen PI-controller. Thus, 

the timer will change the oxygen set-point of it. The values of the oxygen set-point have been 

calculated as the average in each time slot in the previous case B: 

• T3 = 00:00 - 3:00     -> DO Set point = 0.55 mg/L 

• T1 = 3:00 - 10:00     -> DO Set-point = 0.77 mg/L 

• T2 = 10:00 - 16:00   -> DO Set-point = 0.70 mg/L 

• T3 = 16:00 - 00:00   -> DO Set-point = 0.55 mg/L 

 

 

 

 

 

 Figure  11.6 Case C: WEST 2012 layout 
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The results show that the NH4
+ output concentration increases from 10 h to 17 h while the nitrate 

trend is similar but shifter one hour later, probably due to the internal recirculation of nitrates, and 

the peak is less evident.  

 

 

 

 

 

 

Figure  11.7 Case C: Automatic control system.Blue 
arrow represents the variable measured in the aerobic 
tank and black arrows represent the adjusted variables 
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 Figure  11.8 Case C results: ammonium and nitrate output 
concentrations 
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Even if during the ammonium peak described before, the TN concentration is higher than the legal 

limit, both the average daily and the time slots TN average concentrations are under this limit. 

Table 11.4 Case C: simulation results 

 TNOUT[mg/L] 

Time-slot 1 12.24 

Time-slot 2 13.66 

Time-slot 3 11.91 

Daily average 12.60 

 

Finally, the solution simulated in case C optimize the process because lower TN output 

concentration have been achieved using a control system simpler that case A: the ammonium 

controller has been replaced by a timer with evident advantages in terms of equipment and 

management costs. 

11.3 Denitrification modeling 

The denitrification has been analysed simulating four policies with the aim to optimize its 

management saving the energy costs. The denitrification process mainly depends on the nitrate 

concentration in the anoxic tank and the organic carbon readily biodegradable availability which in 

turn depend on the internal recirculation flow rate (QREC). Therefore, four internal recirculation flow 

rates values have been chosen and implemented in the model.  

The flow rate values were chosen taking into account that low value involves low nitrates 

concentration in the anoxic tank and, consequently, the efficiency of the denitrification process will 

decrease. Therefore, internal recirculation flow rate at least 1.5 times bigger than the influent flow 

rate (QIN) is recommended. Furthermore, high value could cause disequilibrium of the process 

because the dissolved oxygen in the aerobic tank could be recirculated to the anoxic tank. 

Consequently, the heterotrophic bacteria would use the oxygen recirculated from the aerobic tank 

instead of the oxygen contained in nitrates decreasing the denitrification process efficiency. To 

avoid this problem the oxygen concentration in the anoxic tank must be maintained below 0,5 mg/l, 

which means recirculation flow rate 3 times smaller than the influent flow rate (QIN). Thus, four 

recirculation flow rates values have been chosen in the range from 1.5∙QIN to 3∙QIN. 

 

 

 

 

 

 

Table 11.5 Recirculation rate used for the simulations 

QREC1 1,5 ∙ QIN 

QREC2 2,0 ∙ QIN 

QREC3 2,5 ∙ QIN 

QREC4 3,0 ∙ QIN 
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The simulation layout implemented is the same used in case A – nitrification in which four ammonia 

set-point were fixed and a dynamic simulation was carried on for each recirculation flow rate. The 

results in terms of COD, Nitrates and TN concentrations in the output section of the denitrification 

tank are showed below. 

 

Table 11.6 Denitrification: simulation results 

Ammonia set-point = 1 mg/L 

 QREC1 QREC2 QREC3 QREC4 

 COD NO3
- TN COD NO3

- TN COD NO3
- TN COD NO3

- TN 

T1 62.1 0.04 13.47 51.4 0.04 12.43 43.37 0.05 11.59 37.3 0.06 10.9 

T2 65.2 0.05 15.54 52.1 0.05 14.33 42.54 0.06 13.34 35.4 0.07 12.5 

T3 73.6 0.04 13.58 62.1 0.04 12.27 54.06 0.05 11.23 48.1 0.05 10.3 

Ammonia set-point = 1.5 mg/L 

 QREC1 QREC2 QREC3 QREC4 

 COD NO3
- TN COD NO3

- TN COD NO3
- TN COD NO3

- TN 

T1 105 0.02 10.6 92.4 0.02 10.01 82.66 0.03 9.49 74.9 0.03 9.06 

T2 102 0.03 13.95 85.1 0.04 13.16 72.27 0.05 12.47 62.2 0.05 11.9 

T3 105 0.03 11.7 90.2 0.03 10.8 79.44 0.03 10 71.3 0.03 9.37 

Ammonia set-point = 2 mg/L 

 QREC1 QREC2 QREC3 QREC4 

 COD NO3
- TN COD NO3

- TN COD NO3
- TN COD NO3

- TN 

T1 128 0.02 9.72 112 0.02 9.29 100 0.02 8.92 90.9 0.02 8.59 

T2 123 0.03 13.21 104 0.03 12.61 89.9 0.04 12.1 78.5 0.04 11.6 

T3 127 0.02 10.1 110 0.02 10.1 96.9 0.03 9.46 87.1 0.03 8.95 

 

Nitrates concentration is very low in all cases showing a good denitrification capacity. The TN is 

higher during T2 than in T1 and T3 because the input conditions are different but those values 

decrease increasing the recirculation flow rate. COD values are almost constant in all cases, showing 

that the internal flow rate variations do not influence the oxidation capacity of the aerobic tank. 
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11.4 First approach to BPMN modelling for WWTPs 

The simulations results discussed before, show the possibility to optimize the nitrification and 

denitrification process though appropriate management policies. The ammonia and axigen set-

points play a key role and its setting is crucial. Therefore, the possibility to change those set-points 

based on the variability of the influent parameters has been studied using a BPMN approach. In 

particular the TN values resulting from the simulations in WEST 2012 have been implemented in 

Bonita BPM software. At present, there is not the possibility to connect directly those software 

directly, the results from WEST must be organised as .csv file and upload in Bonita.  

During this thesis study, a first approach to the problem has been carried on. In particular, the 

objective function and the boundaries have been defined and a first process scheme in Bonita has 

been proposed.  

The objective function is to minimize the TN in output respecting the legal limit for wastewater 

treatment: 15 mg/L referred to the present Italian regulation. Therefore the first model boundary is 

the legal limits for discharge and the second is the input load of TN, in this case. Based on those 

hypotheses, the final aim of the BPMN approach is to optimize the process management regulating 

the oxygen inlet in the aerobic tank based on the input load respecting the legal limits for discharge.  

The process model showed in Figure  11.9 permits to manage automatically the set-point once the 

input load is defined. After the management system start (green dot) the first task is the data 

reading which means reads of the TN concentration in the aerobic tank. Then the optimized set-

point is generated based on the TN load read. Finally the TN concentration in the tank is compared 

with the legal limit: if the limit is not respected the set point will be changed to a lower level, if not 

the set-point will not change. Note that the process activities can be script tasks, page symbol in 

Figure  11.9, or human tasks, human symbol in Figure  11.9. In the present thesis, will not be 

presented any results about this part because the study is currently underway and the first results 

need more in-depth analysis. Anyway, this part will surely have future development and there are 

high expectations.  

 

Data reading 

Optimized 

set-point, 

low load 

Optimized 

set-point, 

high load 

Optimized 

set-point, 

average load 

Figure  11.9 Process layout in Bonita BPM 
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Chapter 12. Santerno full-scale finishing lagoons 

and pilot scale:results and 

discussion 

12.1 Santerno full scale finishing lagoons: Basin 1 monitoring results and 

discussion 

12.1.1 Finishing effect on Nitrogen 

The results concerning the Ammonium Nitrogen, Nitrate Nitrogen and Total Nitrogen analysis were 

grouped in Table 12.1 Data from the Basin 1 – Santerno WWTP in Imola (Bologna, Italy) – Nitrogen 

concentration and Figure  12.1. The basin surface covered by Lemna has been evaluated in each 

measurement campaign in order to take into account its finishing effect. Figure  12.2 shows the 

Lemna coverage (green). In the 25/05/2016 data, ammonium nitrogen decreases while nitrate 

nitrogen increases and TN remains under the legal thresholds for irrigation reuse even if the N-NH4
+ 

in input is higher than usual values. Indeed, the input data are typical of a partial nitrification of the 

secondary treatment. The ammonium Nitrogen reduction in the basin is only due to the nitrification 

process and there is no evidence of photosynthetic activity. Moreover, Lemna did not influence the 

process as it occupied only a small area near the inlet section. 

Comparing the 25/05/16 data with the 15/06/16 data we note that the conditions started to change: 

N-NO3
- in section D-D’ is lower, the N-NH4

+ removal efficiency is lower even if N-NH4
+ in input is 

comparable with the previous case. In this case, the data reveal typical aerobic lagoon conditions 

with photosynthetic activity. The finishing effect of Lemna started to influence the process because 

it covered approximatively one third of the basin surface near the bank.  

On 13/07/16 almost all the basin surface is covered by Lemna so in this period we observe a 

maximum finishing effect as shown by the TN removal efficiency, around 40%. In particular, the 

highest TN decrease is observable in the middle of the basin, sections B-B’ and C-C, where Lemna is 

better established (Figure  12.1).  

On 26/10/16 we note a decrease of TN removal efficiency due to lower nitrification while N-NH4
+ 

reduction is minimal. Moreover, Lemna cover one fourth of the surface near the D-D’ section, but 

its finishing effect is again minimal because its main part is not in vegetative phase. 

The 30/11/16 and 22/02/2017 data show that the finishing effect of the lagoon is very lower than 

before. Indeed, those analisys were conducted during the winter season when the photosyntetic 

activity was pratically absent and there was not Lemna on the surface. The Nitrate concentration in 

the last monitoring campaign is higher than the others problably due to the reduction of efficiency 

of the denitrification process and a reduction efficiency around 10% is registred in the Basin 1.  
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Table 12.1 Data from the Basin 1 – Santerno WWTP in Imola (Bologna, Italy) – Nitrogen concentration 

 A-A’  B-B’  C-C’  D-D’  Removal efficiency 

Meas. 
campaign 

N-NH4
+ N-NO3

- TN  N-NH4
+ N-NO3

- TN  N-NH4
+ N-NO3

- TN  N-NH4
+ N-NO3

- TN  N-NH4
+ TN 

[mg/l] [mg/l] [mg/l]  [mg/l] [mg/l] [mg/l]  [mg/l] [mg/l] [mg/l]  [mg/l] [mg/l] [mg/l]  [%] [%] 

25/05/16 8.6 7.5 16.2  3.5 8.9 18  3.9 9.2 13.3  3.7 9.3 13.2  57 19 

15/06/16 6.7 6.8 13.7  4.2 7.3 14.5  4.4 7.3 11.8  3.7 7.2 10.9  45 20 

13/07/16 3.2 5.2 8.6  3.1 3.2 6.5  2.7 2.6 5.4  2.6 2.6 5.2  19 40 

26/10/16 3.5 7.9 11.9  3.5 8.3 12  3.2 8.6 11.8  3.2 8.5 11.8  9 1 

30/11/16 1.3 8.9 11.3  0.9 11.1 12.1  1 11.0 12.0  1.0 10.0 11.2  23 - 

22/02/16 1.4 20.1 21.9  1.4 19.2 22.0  1.4 18.7 20.1  1.6 18.7 21.0  - 4 

 
 
 
 

(5a)        (5b)        (5c) 

 
 

 

Figure  12.1 . Results for Ammonium Nitrogen (5a), Nitrate Nitrogen (5b) and Total Nitrogen (5c) in Basin 1 in four measurement campaigns 
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Figure  12.2 Basin 1: surface occupied by Lemna during the measurement campaigns 
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It is very interesting the analysis of the Temperature and Dissolved Oxygen data measured along the 

water column in sections B-B’ and C-C’ (Table 12.2, Table 12.3, Table 12.4).  

The 25/05/16 data (Table 12.2) show temperature values around twenty degrees that are typical 

for that season without evidence of particular trends in depth. DO confirms the aerobic condition 

in all the water volume and consequently nitrification process underway. Higher DO percentage in 

section B-B’ is not due to photosynthetic activity while to the oxygen dissolved during the input. 

Indeed, sewage flows in Basin 1 through a free surface channel with diameter of one meter and 

length around three meter.  

DO percentage in 15/06/16 (Table 11.3Table 12.3) confirms the photosynthetic activity of 

phytoplankton, higher in surface than in the bottom. The DO percentage does not show anoxic 

conditions so there is not denitrification in the bottom. Temperature are higher than 25/05/16 and 

approximately constant along the water column.  

In addition to the presence of Lemna on the Basin 1, the increase of Nitrogen removal efficiency 

observed the 13/07/2016 is also due to low DO concentration in the bottom layer of the water 

column (Table 12.4). Indeed, the anoxic conditions implied the denitrification process have taken 

place where the water depth was approximately more than 1.10 m. This is confirmed by the nitrate 

reduction efficiency around 50%. Moreover, the DO percentage shows the not saturate conditions 

in the water column. Firstly, this is due to the Lemna coverage which reduced both the oxygen 

transfer from the air to the water and secondly to the reduction of the photosynthetic activity 

because the solar irradiation did not penetrate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12.2 Basin 1: Temperature (T) and Dissolved Oxygen (DO) along the water 
column - 25/05/16 

 B-B’  C-C’ 

Depth T DO  T DO 

[m] [°C] [%] [mg/L]  [°C] [%] [mg/L] 

0.30 20.53 81.0 7.26  20.75 71.7 6.39 

0.50 20.11 84.0 7.58  20.77 71.5 6.38 

0.70 19.84 83.0 7.54  20.45 71.3 6.40 

0.90 19.49 78.8 7.20  20.20 72.1 6.50 

1.10 19.46 77.2 7.06  19.90 69.5 6.30 

1.30 19.40 75.8 6.94  19.89 71.3 6.47 

1.50 19.55 70.7 6.45  19.88 71.7 6.39 
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Table 12.3 Basin 1: Temperature (T) and Dissolved Oxygen (DO) along the water 
column - 15/06/16 

 B-B’  C-C’ 

Depth T DO  T DO 

[m] [°C] [%] [mg/L]  [°C] [%] [mg/L] 

0.30 22.12 112.4 9.77  22.30 98.0 8.53 

0.50 22.10 113.9 9.90  22.30 92.1 8.02 

0.70 22.10 111.0 9.65  22.23 89.0 7.74 

0.90 22.10 110.8 9.63  22.22 87.2 7.56 

1.10 22.11 110.1 9.57  22.21 86.2 7.47 

1.30 22.14 111.1 9.65  22.08 85.2 7.38 

1.50 22.12 111.7 9.70  22.01 82.7 7.16 

Table 12.4 Basin 1: Temperature (T) and Dissolved Oxygen (DO) along the water 
column - 13/07/16  

 B-B’  C-C’ 

Depth T DO  T DO 

[m] [°C] [%] [mg/L]  [°C] [%] [mg/L] 

0.30 26.00 44.01 3.55  26.67 50.65 4.10 

0.50 25.93 43.27 3.50  26.18 48.59 3.93 

0.70 25.83 43.94 3.56  26.20 46.35 3.76 

0.90 25.67 44.84 3.64  25.94 45.20 3.67 

1.10 25.36 18.82 1.54  25.79 42.58 3.43 

1.30 25.19 15.96 1.20  25.75 42.19 3.39 

1.50 25.15 12.30 0.48  25.74 27.88 2.22 
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12.1.2 Natural disinfection effect: Escherichia coli removal 

The natural disinfection capability of Basin 1 has been tested measuring the E. coli concentration in 

four sections showed in Figure  10.5. A comparison of the results is showed in Figure  12.3. 

 

Starting from similar values in input, around 103 CFU/100 mL, the overall efficiency changed 

significantly (Table 12.5) due to the Lemna growth that covered the surface preventing the solar 

irradiation from penetrating in water. Indeed, the removal efficiency in Summer decrease (59% - 

36%) while is maximum in winter, even is the solar irradiation is less than in Summer. However, the 

results show the possibility to obtain the natural disinfection with efficiency up to 92% in winter and 

around 40 % in summer. Management policies on the Lemna growth could increase the removal 

efficiency also in Spring and Summer. 

  

 

 

 

 

 

 

 

Table 12.5 Basin 1: E. coli removal efficiency 

Monitoring campaign 
Removal efficiency 

[%] 

25/05/16 86% 

15/06/16 59% 

13/07/16 36% 

26/10/16 92% 

30/11/16 94% 

22/02/17 98% 

  

Figure  12.3 Basin 1: E.coli concentration measured in four sections 
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12.2 Santerno pilot plant: monitoring results and discussion 

12.2.1 Finishing effect on Nitrogen 

 The Santerno pilot plant has been monitored since 13/07/2016 so the resulting data are referred 

to the initial activity of the plant in instable conditions due to the start-up period. Anyway, some 

interesting behaviour are already observable. As shown in Figure  12.4 the Nitrogen Nitrate input 

concentrations are low thanks to a good efficiency of the secondary treat phase of the full scale 

plant but there is a removal effect of the plant with removal efficiency around 35%. Atypical values 

have been registered in 13/07/16 and 30/11/2016: the first low removal efficiency is due to the 

beginning phase and the second to very low input values. Moreover, the finishing effect of the pilot 

plant occurs with different input ammonium concentration, from 0.83 mg/L to 5.69 mg/L. 
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N-NH4
+ 

removal 
efficiency 

[%] 

13/07/16 4% 

12/10/16 37% 

30/11/16 8% 

14/12/16 38% 

25/01/17 15% 

22/02/17 35% 
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Figure  12.4 Santerno Pilot plant: Ammonium Nitrogen monitoring results 
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12.2.2 Natural disinfection effect: Escherichia coli removal 

The E. coli concentrations in three sections of the Santerno pilot plant have been measured and the 

results are shown in Figure  12.5. Moreover, during the last measurement campaign, we verified if 

the designed pilot plant was representing well what was happening in Basin 1, in terms of 

disinfection capability.  

In the first measurement (13/07/2016) there is not E. coli concentration reduction because the data 

refer to the starting conditions when the disinfection process did not begin yet. Indeed, the data 

from 12/10/2016 to 22/02/2017 shows a good removal efficiency (Table 12.6) with different input 

concentrations. The lowest values (14/12/2016 and 25/01/2017) referring to winter conditions with 

the lowest irradiation are encouraging. We have to be aware that the pilot plant surface was 

covered by Lemna for the entire period, which shaded the wastewater from the solar lights. 

Therefore, higher removal efficiencies values are achievable. The removal efficiencies registered in 

Pilot plant and Basin 1 during the last campaign (22/02/2017) are quite similar: 87% in pilot plant 

and 98% in Basin 1. Considering that the pilot plant was covered by Lemna, we can say that the pilot 

plant is able to represent what happens in Basin 1. Obviously, more data are necessary for a better 

comparison. 

 

  

 

 

 

 

 

Table 12.6 Santerno pilot plant: E. coli removal efficiency 

Monitoring campaign 
Removal efficiency 

[%] 

13/07/16 - 

12/10/16 63% 

14/12/16 47% 

25/01/16 25% 

22/02/17 87% 

  

Figure  12.5 Santerno Pilot plant: E. coli monitoring results 
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12.3 Escherichia coli model implementation 

Measured E. coli data have been compared with the results obtained from the E. coli degradation 

model described in Chapter 4. The implementation has been carried on using both Basin 1 and pilot 

plant data. The parameters shown in Table 4.2  have been used. In particular, the vertical extinction 

coefficient is assumed to be 1 m-1 when surface is covered by Lemna and 25 m-1 when surface is free 

(Khatiwada and Polprasert, 1999), and the solar irradiation (I0) has been obtained from the data 

collected with the pyranometer installed on the plant. 

The E. coli model has been implemented on full scale Basin1. Firstly, the flow velocity has been 

calculated with Chézi formula in each chosen section, considering the influent flow rate and the 

cross area measured (Table 10.3). Secondly, the Basin 1 has been schematized as four rectangles in 

which the flow velocity (v) and the water depth (H) are constant (Figure  12.6). Thirdly, the Basin 1 

has been discretized into sections far 10 m each other. Finally, (Eq.  4.40) has been solved assigning 

the E. coli input concentration as C0 in the first section and obtaining the value Cei, which became 

the input C0i value for the following section and so on.  

 

 

 

 

 

 

 

Figure  12.6 Basin 1 scheme for E. coli model implementation 
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The results of E. coli model implementation from input (0 m) to output (210 m) are shown below. 

Measured data are represented with standard deviation as red dots and blue lines are the modeling 

results. 
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Figure  12.7 Basin 1: E. coli measured and modelled values 25/05/2016 
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Figure  12.8 Basin 1: E. coli measured and modelled values 15/06/2016 
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Figure  12.9 Basin 1: E. coli measured and modelled values 13/07/2016 

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

E.
 C

o
li 

[C
FU

/ 
1

0
0

 m
L]

Lenght [m]

E.Coli degradation (26/10/2016)

E.Coli modelled

E.Coli measured

Figure  12.10 Basin 1: E. coli measured and modelled values 26/10/2016 
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The results show a good comparison between measured and simulated data. For the 15/06/2016 

case, simulated data stands in the confidence interval of the real data, while for the 25/05/16 case 

they are outside with a difference below 30 CFU/100 mL. 

For the 13/07/2016 case, in both sections B-B’ and D-D’, simulated data are higher than real data, 

around 300 CFU/100 mL. This can be explained by the presence of Lemna on the whole surface. For 

the 26/10/2016 case, the modeled data stands below the measured data in sections B-B’ and C’C’, 

and above them in section D-D’. This is probably due to the presence of Lemna that covered half of 

Basin 1 surface and was not stable in a portion of the basin due to the wind.  

 

Finally, the model was implemented using the data collected on Santerno pilot plant. Those data 

represent the start-up condition of the pilot plant so also the model implementation provides a first 

comparison between full- scale and pilot plants. 

The water depth and section width are constant and set to 0.72 m and 0.89 m respectively. The flow 

velocity is 0.00160 m/s and in all cases the water surface was covered by Lemna. 
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Figure  12.11Santerno pilot plant: E. coli measured and modelled values 12/10/2016 
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Modelled data are below the measured in the output section (PP_OUT) in all case. This should be 

due to the Lemna coverage. The last case (22/02/2017) shows the best fit indeed modelled data are 

close to the confidence interval of the measured data.  
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Figure  12.12 Santerno pilot plant: E. coli measured and modelled values 25/01/2017 
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Figure  12.13 Santerno pilot plant: E. coli measured and modelled values 22/02/2017 
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Chapter 13. Fate of organic chemicals during 

wastewater treatment plants  

13.1 Introduction  

This chapter provides the results of the activities carried out during the research period abroad at 

Technical University of Denmark (DTU) of Copenhagen. This visiting period was conducted in the 

frame of the COST Action ES1403 “New and emerging challenges and opportunities in wastewater 

reuse” (NEREUS) from August to September 2016 as Short Term Scientific Mission (STSM) under the 

supervision of prof. Stefan Trapp and in collaboration with Dr Fabio Polesel.  

The topic of the STSM was “Fate and elimination of organic chemicals during wastewater treatment: 

modelling implementation and simulation” with the following specific objectives: 

1. the fate prediction of organic chemicals in conventional WWTPs, namely 

a. surfactants 

b. pharmaceuticals 

2. the estimation of residual chemical loads in WWTP effluents based on existing data on the 

consumption or emission to WWTPs; 

3. the calculation of the loads of chemicals released in the soil during irrigation; 

The selection of the chemicals and crops have been chosen with reference to the Bologna region 

(Emilia-Romagna) in order to connect this part with the one already discussed in this thesis.  

Surfactants and pharmaceuticals, also called xenobiotic chemicals, are widely used for human 

activities thus its release in the environment is critical. The main release sources of those chemicals 

are healthcare facilities and agricultural, livestock and industrial activities. Obviously, a large amount 

goes to the WWTPs where they are partially degraded, mainly in aerobic processes, and absorbed 

in sewage sludge. The degradation of xenobiotic chemicals in WWTPs is currently a challenging 

problem on one hand because the plants are not specifically designed to degrade them and on the 

other hand because those chemicals are very variable in terms of types of marketed and consumed.  

In this context, a study on wastewater reuse must consider the fate of the organic chemicals in the 

WWTPs because the presence in the effluents can have a negative impact on agricultural irrigation 

for two main reasons: toxic chemicals could reach the crops or fruits, slow plant growth and effects 

on soil-water properties (specifically surfactants). 
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13.2 Activity SimpleTreat model 

Activity SimpleTreat is an extension of Simple-Treat 3.1 (Struijs, 1996), the sewage treatment plant 

model implemented in the EU System for Evaluation of Substances EUSES. This model predicts the 

fate and elimination of neutral and monovalent organic chemicals in a generic sewage treatment 

plant. It is based on the activity approach to describe transport and partitioning of ionizing organic 

chemicals. As in SimpleTreat 3.1, calculations are performed for two generic treatment scenarios: 

with and without primary settling (6-box and 9-box system). Aeration tank and secondary clarifier 

are common to the two scenarios while the 9-box system additionally includes primary settler. The 

9-box model includes air, water and suspended solids in the primary settler, primary sludge, water 

and suspended solids (biomass) in the aeration tank, water and suspended solids in the secondary 

clarifier and secondary sludge. The model is structured in four worksheets: input, B-values, 9-box 

and 6-box. The minimum data requirement corresponds to the cells marked in yellow in the input 

worksheet, comprising physico-chemical properties, emissions and biodegradation rates. The 

physico-chemical input properties are: the molecular weight, the octanol-water partition coefficient 

(KOW), vapor pressure, solubility, type of ionization (neutral, acid, base), acid dissociation constant 

of acids and bases (pKa,a and pKa,b), Henry constant of the neutral compound (Figure  13.1). The 

Henry constant is calculated from vapor pressure and solubility if not given by the user. According 

to the type of information available about biodegradation (ready biodegradability test, activated 

sludge batch test or Monod kinetics), biodegradation data can be input through three different 

methods, as in SimpleTreat 3.1. 

 

Figure  13.1 Input physico-chemicals properties 

For all input parameters, default values are selected if the cell is left blank. The default scenario 

represents a typical sewage treatment plant serving a population of 10000 Person Equivalent (PE) 

with a pro capita water consumption of 200 L/PE/d. The cells that are not marked in yellow in the 

input worksheet may be filled by the user to refine the emission scenario and the characteristics of 

the treatment plant. The worksheet B-values contains the species-specific calculations of phase 

partitioning and the activity capacities (B-values, m3/m3) in the raw sewage and in the nine (or six) 

compartments. The calculations of mass transport and removal processes, the mass balance matrix 

and its solution are included in the 9-box worksheet (for the 9-box system). The 9-box worksheet 

includes compartment–specific parameters (e.g., pH, concentration of solids, density and organic 

carbon content of solids), which may be modified by the expert user. Mass transport and removal 
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processes are determined in terms of T-values (m3/h). The T-values build up the mass balance 

matrix, which is solved for the total activity, i.e. the sum of all species activities. Total activities and 

concentrations (both in mol/m3) in the 9 compartments are reported next to the mass balance 

matrix. The mass fluxes and removal efficiencies are presented in a flow diagram at the top of the 

worksheet. 

Figure  13.2 Case LAS: Screen snapshot of the 9-box and 6-box worksheets with mass 
fluxes(mol/h) and removal efficiencies (%) through the primary settler (left), aeration tank 

(center) and secondary clarifier (right). 

13.3 Organic chemicals modelled 

As first step, the chemicals to be modeled using Activity SimpleTreat have been selected. The 

selection was based on the following criteria: data availability, widespread usage, persistence to 

conventional wastewater treatment, and the possible impacts on soil or plants following irrigation 

with WWTP effluent. The selected chemicals are shown in the Table 13.1 below: 

 

Table 13.1 Chemicals selected to be modelled using Activity SimpleTreat  

Surfactants Pharmaceuticals 

Linear Alkylbenzene Sulfonate (LAS) Diclofenac 

Benzalkonium Chloride (BAC) Carbamazepine 

Nonylphenol (NP)  

 

Their physical and chemical properties have been found in literature searching both on related papers 

and on the common chemical databases (EPIWEB, PUBCHEM).  For each surfactant, a literature research 

has been carried on focusing on influent concentration data in different conditions, countries and 

WWTPs. Particularly, the research focused on Italian study cases, when available. The selected data 

have been normalized with their PE and multiplied for 10,000 PE (the reference for Active 

SimpleTreat model). Finally, the mean value was used as input (Emission Rate Chemical) for the 

model, checking the standard deviation. Input data for pharmaceuticals have been obtained from 

the Italian National report of pharmaceutical use (AIFA, 2015). Starting from the amount of 

Diclofenac and Carbamazepine used in Italy from 2007 to 2015, the mean mass excreted per 

inhabitants has been calculated and finally adapted for the reference model (mol/day per 10000 

PE).  

9 Boxes
All mass fluxes in mol/sec

Volatilized (%)

5.10E-20 0.00

3.65E-16 -4.22E-23 1.10E-16

Emission

3.02E-04 3.02E-04 3.49E-04 1.69E-05

1.71E-05 Discharged 

via effluent 

(%)

5.06E-04
-5.70E-17 -6.35E-05 3.74E-06 3.58

2.04E-04

6.80E-05 0.00E+00 1.36E-04 1.02E-06

1.36E-04 1.35E-04

1.31E-04

1.36E-04 3.22E-06

Removed by PS (%) Degraded  (%) Removed by SC (%)

26.87 68.92 0.64

6-Box
All mass fluxes in mol/h Volatilized (%)

1.15E-20 0.00

1.72E-16 1.149E-20

Emission 3.02E-04 4.84E-04 1.49E-05 1.55E-05 Discharged via effluent (%)

5.06E-04
6.30E-04 3.38E-06 3.25

2.04E-04

0.00E+00 1.33E-04 9.91E-07

1.31E-04

1.26E-04

5.47E-06

Degraded (%) Removed by SC (%)

95.67 1.08
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13.4 Surfactants: input data and modelling results 

13.4.1 Linear Alkylbenzene Sulfonate (LAS) 

Linear Alkylbenzene Sulfonate (LAS) is an anionic surfactant fully ionized in water, indeed it doesn’t 

exist in the neutral form. LAS has been introduced in the market in 1964 and the type used in the 

European market is a mixture generated from the precursor Linear Alkyl Benzene (LAB). The linear 

alkyl chain has typically 10 to 13 carbon units in the ratio C10:C11:C12:C13=13:30:33:24. For instance, 

the chemical formula of C12-LAS (Sodium 2-dodecylbenzenesulfonate) is C12H25C6H4SO3Na and its 

structure is showed below:  

In European market the use is related to household detergency (> 80%) and industrial and 

Institutional cleaners and textile processes and formulation of crop protection agents (20%). LAS 

maximum concentration in raw sewage is 15 mg/L (HERA substance, 2013). The physical-chemical 

input data are referred to the commercial C11,6 and showed in the table below: 

Table 13.2 Linear Alkylbenzene Sulfonate (LAS) physical-
chemical input data  

Molecular weight (g mol-1) 342.4 

logKow,n (-) 3.32 

Vapour pressure  (-) 3.17E-13 

Solubility (Pa) - 

mono(valent)/bivalent (mg/L) mono 

neutral/acid/base/amphoter  base 

pKaa (-) 0 

pKab (-) 14 

Henry constant(neutural ) (Pa*m3mol-1) 6.35E-03 

Kocn,exp (L/kg) - 

Kocan,exp (L/kg) 2500 

Koccat,exp (L/kg) - 

Figure  13.3 C12-LAS 2D structure from Pubchem database 
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Starting from a bibliography research on several European WWTPs, five Italian case studies have 

been selected: Roma Nord (Waters and Feijte, 1995), Torino (Cavalli et al., 1993) and Ostia, Fregene 

and Roma Est (Di Corcia et al., 1999). The data of LAS concentration in the selected plants have been 

normalized with their PE and multiplied for 10,000 PE, the reference for Active SimpleTreat model 

(see Table 13.3). Finally, the mean value 43.740 mol/day has been implemented in the model as 

input concentration of LAS. 

 

 

 

 

 

 

 

 

 

 

In order to know the influence of the parameters on the model, simulations have been implemented 

by changing the values of the main parameters: KBIO and KOC. In particular, KD has been changed in 

the range 2500 – 5000 L/Kg and combined with KBIO in the range 1-3 d-1, referring to 6-Box and 9-

Box. 

Table 13.4 shows the modelling results in the eighteen cases for Box 9 and Box 6. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 13.3 Linear Alkylbenzene Sulfonate (LAS) Emission rate chemical  

WWTP Emission rate chemical [mol/day] 

Roma Nord 56.066 

Ostia (Rome) 55.759 

Fregene (Rome) 43.417 

Roma Est 41.744 

Torino 24.712 

Mean 43.740 

Standard deviation 12.223 
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Table 13.4 LAS modelling results 

 
Case n° 

Koc,an Kbio LAS OUTPUT Removal 

 [L/Kg] [h-1] [mol/d] [mol/s] [mg/L] [%] 

B
O

X
 9

 

1 2500 1.0 4.6725 5.41E-05 0.7999 89.3 

2 2500 2.0 2.5152 2.91E-05 0.4306 94.2 

3 2500 3.0 1.6762 1.94E-05 0.2870 96.2 

4 3000 1.0 4.4781 5.18E-05 0.7667 89.8 

5 3000 2.0 2.4579 2.84E-05 0.4208 94.4 

6 3000 3.0 1.6814 1.95E-05 0.2879 96.2 

7 3500 1.0 4.4461 5.15E-05 0.7612 89.8 

8 3500 2.0 2.4002 2.78E-05 0.4109 94.5 

9 3500 3.0 1.6550 1.92E-05 0.2833 96.2 

10 4000 1.0 4.3442 5.03E-05 0.7437 90.1 

11 4000 2.0 2.3596 2.73E-05 0.4040 94.6 

12 4000 3.0 1.6196 1.87E-05 0.2773 96.3 

13 4500 1.0 4.2587 4.93E-05 0.7291 90.3 

14 4500 2.0 2.3095 2.67E-05 0.3954 94.7 

15 4500 3.0 1.5925 1.84E-05 0.2726 96.4 

16 5000 1.0 4.1731 4.83E-05 0.7144 90.5 

17 5000 2.0 2.2671 2.62E-05 0.3881 94.8 

18 5000 3.0 1.5656 1.81E-05 0.2680 96.4 

B
O

X
 6

 

1 2500 1.0 3.7696 4.36E-05 0.6454 91.4 

2 2500 2.0 1.9934 2.31E-05 0.3413 95.4 

3 2500 3.0 1.3630 1.58E-05 0.2333 96.9 

4 3000 1.0 3.7817 4.38E-05 0.6474 91.4 

5 3000 2.0 2.0055 2.32E-05 0.3433 95.4 
6 3000 3.0 1.3717 1.58E-05 0.2348 96.9 

7 3500 1.0 3.7947 4.39E-05 0.6497 91.3 

8 3500 2.0 2.0177 2.34E-05 0.3454 95.4 

9 3500 3.0 1.3805 1.60E-05 0.2363 96.8 

10 4000 1.0 3.8163 4.42E-05 0.6533 91.3 

11 4000 2.0 2.0382 2.36E-05 0.3489 95.3 

12 4000 3.0 1.3981 1.62E-05 0.2394 96.8 

13 4500 1.0 3.8284 4.43E-05 0.6554 91.2 

14 4500 2.0 2.0511 2.37E-05 0.3512 95.3 

15 4500 3.0 1.4071 1.63E-05 0.2409 96.8 

16 5000 1.0 3.8413 4.45E-05 0.6576 91.2 

17 5000 2.0 2.1565 2.50E-05 0.3692 95.1 

 18 5000 3.0 1.4248 1.65E-05 0.2439 96.7 
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The results have been grouped in Figure  13.3 and Figure  13.4 to show the comparison between 

the simulation results and the Italian legal limit of the Total Surfactants for irrigation reuse according 

to the DM 185/2003 (red line). 

Figure  13.5 LAS effluent modelling results under different KOC and KBIO conditions without 
secondary sedimentation (BOX6) 

The modelled LAS effluent concentration strongly depends on the KBIO while the KOC influence is 

lower.  

The Italian legal limits for water reuse are not respected when KBIO is lower than 1.8 h-1, with primary 

sedimentation (Box9), and 1.5 h-1, without primary sedimentation (Box 6). 

 

 

 

Figure  13.4 LAS effluent modelling results under different KOC and KBIO conditions with 
secondary sedimentation (BOX9) 
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13.4.2 Benzalkonium Chloride (BAC) 

Benzalkonium chloride (BAC) is a mixture of alkyl benzyl dimethyl ammonium chlorides with C8 to 

C18 alkyl groups that belongs to the quaternary ammonium compounds (QACs) and is the active 

ingredient of many pharmaceuticals, cosmetics, commercial disinfectants, and food preservative.  

The formula is: C6H5CH2N(CH3)2RCl, R=C8H17 - C18H37 and the structural formula is showed below. 

 

Figure  13.6 Structural formula of BAC 

The physical-chemical input data are showed in the table below: 

Table 13.5 Benzalkonium chloride (BAC) physical-chemical input data  

Molecular weight (g mol-1) 340 

logKow,n (-) 1.35 

Vapour pressure  (-) 2.51E-09 

Solubility (Pa) 1.41E-04 

mono(valent)/bivalent (mg/L) Mono 

neutral/acid/base/amphoter  Base 

pKaa (-) 0 

pKab (-) 14 

Henry constant(neutural ) (Pa m3 mol-1) 7.71E07 

Kocn,exp (L/kg) - 

Kocan,exp (L/kg) - 

Koccat,exp (L/kg) 5434 

 

Due to the scarcity of literature data the input and output concentration of BAC with alkyl groups 

C12, C14, C16 and C18 used in this work, have been taken from a monitoring campaign in Austrian 

WWTPs carried on by (Clara et al., 2007). The Emission Rate Chemical implemented in the model is 

0.0381mol/day. 

As in the previous case, the input data of BAC have been modelled changing the KD and KBIO values 

in the ranges as above.  
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Table 13.6 BAC modelling results 

 
Case n° 

Koc,an Kbio LAS OUTPUT Removal 

 [L/Kg] [h-1] [mol/d] [mol/s] [mg/L] [%] 

B
O

X
 9

 

1 4000 1.0 3.79E-03 4.39E-08 6.45E-04 90.1 

2 4000 2.0 2.06E-03 2.39E-08 3.50E-04 94.6 

3 4000 3.0 1.41E-03 1.63E-08 2.40E-04 96.3 

4 4500 1.0 3.71E-03 4.30E-08 6.31E-04 90.3 

5 4500 2.0 2.02E-03 2.34E-08 3.43E-04 94.7 

6 4500 3.0 1.39E-03 1.61E-08 2.37E-04 96.4 

7 5000 1.0 3.64E-03 4.22E-08 6.19E-04 90.5 

8 5000 2.0 1.98E-03 2.30E-08 3.37E-04 94.8 

9 5000 3.0 1.37E-03 1.59E-08 2.33E-04 96.4 

10 5434 1.0 3.59E-03 4.15E-08 6.10E-04 90.6 

11 5434 2.0 1.96E-03 2.27E-08 3.33E-04 94.9 

12 5434 3.0 1.35E-03 1.57E-08 2.30E-04 96.5 

13 6000 1.0 3.52E-03 4.07E-08 5.98E-04 90.8 

14 6000 2.0 1.92E-03 2.23E-08 3.27E-04 95.0 

15 6000 3.0 1.33E-03 1.54E-08 2.27E-04 96.5 

B
O

X
 6

 

1 4000 1.0 0.0033 3.85E-08 5.66E-04 91.3 

2 4000 2.0 0.0018 2.06E-08 3.02E-04 95.3 

3 4000 3.0 0.0012 1.41E-08 2.07E-04 96.8 

4 4500 1.0 0.0033 3.87E-08 5.69E-04 91.2 

5 4500 2.0 0.0018 2.07E-08 3.04E-04 95.3 

6 4500 3.0 0.0012 1.4274E-08 2.10E-04 96.8 

7 5000 1.0 0.0034 3.89E-08 5.71E-04 91.2 

8 5000 2.0 0.0018 2.08E-08 3.06E-04 95.3 

9 5000 3.0 0.0012 1.44E-08 2.11E-04 96.7 

10 5434 1.0 0.0034 3.89E-08 5.72E-04 91.2 

11 5434 2.0 0.0018 2.10E-08 3.09E-04 95.2 

12 5434 3.0 0.0012 1.44E-08 2.12E-04 96.7 

13 6000 1.0 0.0034 3.91E-08 5.74E-04 91.2 

14 6000 2.0 0.0018 2.12E-08 3.11E-04 95.2 

15 6000 3.0 0.0013 1.47E-08 2.15E-04 96.7 

 

The modelling results have been compared in Figure  13.7 with the measured by (Clara et al., 2007).  
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(a) (b) 

 

Figure  13.8 shows the comparison between experimental BAC removal efficiency and the calculated 

by Activity SimpleTreat model. 

BAC effluent concentrations are lower than LAS as shown in Figure  13.7. The comparison of the BAC 

effluent concentrations shows that there are not relevant differences with and without primary 

sedimentation.  In particular, Figure  13.8 shows a good fit between real and modelled data. 

 

  

 

 

 

Figure  13.7 BAC effluent in different KOC  and KBIO conditions with (a) and without (b) secondary 
sedimentation compared with BAC effluent experimental (red line) 
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Figure  13.8 Experimental and calculated BAC removal efficiencies comparison 
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13.4.3 Nonylphenols (NP) 

Nonylphenol (NP) is a toxic xenobiotic compound classified able of interfering with the hormonal 

system of numerous organisms. It is widely used in industrial production of lubrificating oil additives, 

antioxidants and mainly for the production of nonylphenol ethoxylates surfactants (65% of use) 

(Soares et al., 2008). 

Nonylphenol ethoxylates are surfactants with high performances so they have different uses: 

industrial, commercial and household as detergents, antistatic agent, solubilisers etc. The 

consequence of their large use is the discharge in WWTPs where they are incompletely degraded. 

The impacts of nonylphenol in the environment are a feminization of aquatic organisms, a decrease 

in male fertility and in the survival of juveniles at concentrations as low as 8.2 μg/l (Soares et al., 

2008). 

The main physical–chemical characteristics are a low solubility, high hydrophobicity and high 

persistence that allows its accumulation in the sewage sludge and river sediment. 

Table 13.7 Nonylphenol (NP) physical-chemical input data 

Molecular weight (g mol-1) 220.36 

logKow,n (-) - 

Vapour pressure (-) 0.479 

Solubility (Pa) 1.57 

mono(valent)/bivalent (mg/L) mono 

neutral/acid/base/amphoter  acid 

pKaa (-) 1.0E+01 

pKab (-)  

Henry constant(neutural ) (Pa m3 mol-1) 6.05E-01 

Kocn,exp (L/kg) 382560 

Kocan,exp (L/kg) - 

Koccat,exp (L/kg) - 

 

Influent data from two Danish WWTPs have been used for the modelling implementation: Avedøre 

(Seriki et al., 2009) and Roskilde (Stuer-Lauridsen, 2000). The mean Nonylphenols influent 

concentration has been calculated and implemented in the model as Emission Rate Chemical 

(0.0033 mol/day).  
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(a) (b) 

NP effluent concentrations are similar to the results obtained in BAC case and lower than LAS. 

Comparing the data with and without secondary sedimentation (Box 9 and Box 6) there are not 

relevant differences in the NP removal efficiencies.  

13.5 Pharmaceuticals: input data and modelling results 

13.5.1 Diclofenac 

The medical definition of Diclofenac is non-steroidal anti-inflammatory drug (NSAID). It is commonly 

used  to treat the inflammation associated with conditions such as arthritis, tendonitis, and bursitis. 

It is also used as an analgesic (painkiller) and antipyretic (combatting fever). The well known 

commercial name is Voltaren and examples of NSAIDs include also aspirin, indomethacin (brand 

name: Indocin), ibuprofen (brand name: Motrin), naproxen (brand name: Naprosyn), piroxicam 

(brand name: Feldene), and nabumetone (brand name: Relafen).  

The name diclofenac derives from its chemical name: 2-(2,6-dichloranilino) phenylacetic acid and its 

chemical structure is C14H11Cl2NO2.  

 

Figure  13.9 Nonylphenol effluent in different KOC and KBIO conditions with (a) and without (b) 
secondary sedimentation 

Figure  13.10 Diclofenac 2D structure from Pubchem database 

http://www.medicinenet.com/arthritis/article.htm
http://www.medicinenet.com/acute_and_chronic_bursitis/article.htm
http://health.ccm.net/faq/1121-antipyretic-definition
http://health.ccm.net/faq/2981-fever-definition
http://www.medicinenet.com/indomethacin/article.htm
http://www.medicinenet.com/ibuprofen/article.htm
http://www.medicinenet.com/naproxen/article.htm
http://www.medicinenet.com/piroxicam/article.htm
http://www.medicinenet.com/nabumetone/article.htm
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The main physical–chemical characteristics and the input data in Activity Simple Treat are listed 

below. 

Table 13.8 Diclofenac physical-chemical input data 

Molecular weight (g mol-1) 296.15 

logKow,n (-) 4.58 

Vapour pressure  (-) 6.14E-08 

Solubility (Pa) 2.37 

mono(valent)/bivalent (mg/L) mono 

neutral/acid/base/amphoter  acid 

pKaa (-) 4.4 

pKab (-) - 

Henry constant(neutural ) (Pa m3 mol-1) 4.79E-7 

Kocn,exp (L/kg) - 

Kocan,exp (L/kg) 458 

Koccat,exp (L/kg) - 

 

The Emission Rate Chemical implemented in the model is 0.00575 mol/day. This value was 

calculated starting from the amount of Diclofenac used in Italy expressed in [DDD/1000 inh/d] from 

2007 to 2015  (AIFA, 2015). From this yearly amount was calculated the amount of Diclofenac used 

per year and inhabitant (kg/year/inh) assuming the Convertion Factor, from dose to mg, equal to 

100 mg/DDD, as suggested by WHO (WHO, 2015), and the Italian population in each year from 2007 

to 2015. Then, the amount excreted per year and inhabitant was calculated assuming under the 

hypothesis of 39% of initial amount excreted. Finally the mean value of the amount escreted per 

year was related to 10000 inh to obtain the EMR value. 

Then KBIO has been assumed as 0.01 h-1 (Kujawa-Roeleveld, 2008)(Joss et al., 2006) and KOC 458 L/Kg.  

The simulations results are shown in the Table below:  

Table 13.9 Diclofenac: Simulations results 

 Koc,an KBIO Influent Effluent Removal Efficiency 

 [L/Kg] [h-1] [µg/L] [µg/L] [%] 

Box 9 458 0.01 8.52E-1 7.55E-1 11.4 

Box 6 458 0.01 8.52E-1 7.50E-1 12 
 

As expected the modelling results of pharmaceuticals (Table 13.9 Diclofenac: Simulations results 

reveal that Diclofenac is hardly biodegradable. Furthermore, the results obtained with (Box 9) and 

without (Box 6) primary sedimentation, are substantially similar then the degradation is not due to 

sorption and sedimentation. 
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13.5.2 Carbamazepine 

Carbamazepine (5H-dibenzo[b,f]azepine-5-carboxamide) is a tricyclic compound chemically related 

to tricyclic antidepressants with anticonvulsant and analgesic properties. It is used to treat partial 

seizures, tonic-clonic seizures, pain of neurologic origin such as trigeminal neuralgia, and psychiatric 

disorders including manic-depressive illness and aggression due to dementia.  

The chemical structure is C15H12N2O and its molecular weight is 236.26858 g/mol. It is soluble in 

alcohol, acetone, propylene glycol and practically insoluble in water (17.7 mg/L).  

The Emission Rate Chemical has been calculated with the same procedure as described before in 

Diclofenac case. The amount of Carbamazepine used data are referred to 2009 and 2010, the 

Conversion Facto is 1000 mg/DDD and the excretion percentage is 5%. The EMR calculated and 

implemented in Activity SimpleTreat model is 0.00309 mol/day. Then KBIO has been assumed as 0.05 

h-1, the main value in the range 0-0.01 h-1(Suarez et al., 2010)(Plósz et al., 2012), and KOC 1328 L/Kg 

458 L/Kg.  The simulations results are shown in the Table below:  

Table 13.10 Carbamazepine: simulation results 

 Koc,an KBIO Influent Effluent Removal Efficiency 

 [L/Kg] [h-1] [µg/L] [µg/L] [%] 

Box 9 1328 0.05 3.65E-1 2.37E-1 35.1 

Box 6 1328 0.05 3.65E-1 2.37E-1 37.9 

The results show that Carbamazepine is more biodegradable than Diclofenac with removal 

efficiencies around 35%. The results obtained with (Box 9) and without (Box 6) primary 

sedimentation, are again substantially similar then the degradation is not due to sorption and 

sedimentation. 

 

 

 

 

Figure  13.11 Carbamazepine 2D structure from Pubchem database 

https://pubchem.ncbi.nlm.nih.gov/compound/acetone
https://pubchem.ncbi.nlm.nih.gov/compound/water
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13.6 Impact of organic chemicals on crops during irrigation: the case study of 

Emilia-Romagna  

The modelling results showed before has been use to evaluate the amount of chemicals released 

during annual irrigation in Emilia-Romagna region, Italy. 

Firstly, the most largely cultivated crops in this Region have been chosen with reference to the total 

cultivated surface in 2014 and 2015 as reported by “The agri-food system in Emilia-Romagna - 

Report 2015” (Fanfani and Pieri, 2016). 

Table 13.11 Crops chosen and their cultivated surface 
in Emilia-Romagna Region in 2014- 2015 

Crops 
Surface 

[ha] 
 2014 2015 

Corn 73279 80863 

Peer trees 20541 18516 

Beet 22823 27073 

Soy 35421 22755 

Rice 7048 6806 

Olive trees 3875 3079 

 

Finally, the amount of chemicals released during irrigation (mg/ha*year) has been obtained as 

combination of the irrigation need (mm/ha*year) for each crop and the effluent concentration of 

the organic chemicals studied as mean value of the effluent concentration resulting from the 

simulation showed before (mg/L). 

 

 

 

 

 

 

 

 

Comparing the results (Table 13.13) we note that the highest accumulation of organic chemical is in 

corn. More detailed studies about the irrigation needs should improve the knowledge about this 

problem 

 Table 13.12 Surface occupied by each crop in Emilia-Romagna 
Region in 2015 and their Irrigation need 

Crop Surface Irrigation need 
  [ha] [m3/m2*year] [L/ha*year] 

Corn 80863 0.665 6645590 
Peer trees 18516 0.350 3500000 

Beet 27073 0.400 4000000 
Soy  22755 0.633 6332420 
Rice 6806 0.687 6873540 

Olive trees 3079 0.300 3000000 
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Table 13.13 Annual amount of selected chemical released in Emilia-Romagna  

  Corn Peer trees Beet Soy Rice Olive trees 

LASeff [mg/L] 4.80E-01 4.80E-01 4.80E-01 4.80E-01 4.80E-01 4.80E-01 

Yearly LAS released per ha [mg/ha*year] 3.19E+06 1.68E+06 1.92E+06 3.04E+06 3.30E+06 1.44E+06 

Yearly LAS released [mg/year] 2.58E+11 3.11E+10 5.20E+10 6.92E+10 2.25E+10 4.43E+09 

BACeff [mg/L] 3.97E-04 3.97E-04 3.97E-04 3.97E-04 3.97E-04 3.97E-04 

Yearly BAC released per ha [mg/ha*year] 2.64E+03 1.39E+03 1.59E+03 2.51E+03 2.73E+03 1.19E+03 

Yearly BAS released [mg/year] 2.13E+08 2.57E+07 4.30E+07 5.72E+07 1.86E+07 3.67E+06 

NPeff [mg/L] 1.72E-04 1.72E-04 1.72E-04 1.72E-04 1.72E-04 1.72E-04 

Yearly NP released per ha [mg/ha*year] 1.14E+03 6.02E+02 6.88E+02 1.09E+03 1.18E+03 5.16E+02 

Yearly NP released [mg/year] 9.24E+07 1.11E+07 1.86E+07 2.48E+07 8.05E+06 1.59E+06 

Diclofenaceff [mg/L] 7.52E-04 7.52E-04 7.52E-04 7.52E-04 7.52E-04 7.52E-04 

Yearly Diclofenac released per ha [mg/ha*year] 5.00E+03 2.63E+03 3.01E+03 4.76E+03 5.17E+03 2.26E+03 

Yearly Diclofenac released [mg/year] 4.04E+08 4.87E+07 8.14E+07 1.08E+08 3.52E+07 6.95E+06 

Carbamazepineeff [mg/L] 2.32E-04 2.32E-04 2.32E-04 2.32E-04 2.32E-04 2.32E-04 

Yearly Carbamazepine released per ha [mg/ha*year] 1.54E+03 8.12E+02 9.28E+02 1.47E+03 1.59E+03 6.96E+02 

Yearly Carbamazepine released [mg/year] 1.25E+08 1.50E+07 2.51E+07 3.34E+07 1.09E+07 2.14E+06 
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Conclusions 

In this work, we evaluated the feasibility and efficiency of a modeling approach for the management 

of the most relevant phases of Wastewater Treatment Plants in the frame of wastewater reuse for 

irrigation purpose. We started with a detailed review of the main international and Italian 

regulations on wastewater reuse and an exhaustive description of Activated Sludge and natural 

treatments processes. We conclude this preliminary analysis with an explanation of the theoretical 

framework governing the models implemented in this study. 

We have implemented the WEST 2012 modeling software that allows different control policies. Our 

database is built on real sewage data acquired on a pilot plant located in Trebbo di Reno (Bologna, 

Italy) in September 2010. In order to regulate the dissolved oxygen in nitrification tank while 

minimizing the management costs, we tested three automatic control configurations: cascade PID, 

cascade PID with timer and single PID with timer. The simulation results were then compared with 

the legal threshold for wastewater discharge. The third configuration was provided by a timer that 

fixed three OD set-points (from 0.55 mg/L to 0.77 mg/L) for the oxygen PID controller and the daily 

average Total Nitrogen of 12.60 mgN/L in output evidences the possibility to respect the TN legal 

thresholds using a this simple DO control system. Therefore, we concluded that a pilot plant fed on 

real sewage can be managed with automatic controller while maintaining the average output TN 

under the legal limits. The pilot plant can represent a small plant with Ludzack-Ettinger scheme 

where the results can be extended.  

Starting from these results and aware that an irrigation reuse requires the availability of a 

tremendous volume of wastewater, we carried out further studies on medium and big size plants (> 

50000 PE). The output concentration of Nitrogen mainly depends on the influent load variations 

caused by influent flow rate. These fluctuations are conditioned by rainy conditions that have 

smaller effects in bigger plants, where the higher influent volume favour the predominance of 

seasonal flow rate variations caused by human or industrial over these fluctuations. Thus, 

wastewater reuse for irrigation implies a careful study on flow input variations and their 

consequences on the processes. For this scope, the annual monitoring data collected in the Bologna 

full scale WWTP were analysed in four peculiar sections of the plant.  

Tracking the input variations requires the monitoring of BOD, COD and TSS at the primary 

sedimentation outlet, as well as in the input and output sections of the plant. Besides, with low 

values of TSS in primary sedimentation, we can continuously control the nitrogen using simple 

probes and thus obtain relevant information for the definition of management policies in the 

following phases. We verified that an increase of the flow rate in input influences the TSS 

concentration in aeration tank and consequently the sludge thickening at secondary sedimentation. 

Thus, in addition to the classic pH/ORP/OD probes, it might be essential to monitor the TSS 

concentration in aeration tank using continuous optical methods. Finally, the sewage dilution is a 

sudden and fast event with respect to the usual monitoring response of a WWTP monitoring system 

that depends on the sewage system dimension. In our case, the sewage system is large and its 



 

160 
 

Hydraulic Retention Time of approximately two days should enable the identification and 

management of the inlet dilution during rain events using an appropriate monitoring system. 

 

Considering the Nitrogen output concentration requested for irrigation reuse and the issues 

connected to flow variations, natural treatment systems can help reaching the legal concentrations 

for wastewater reuse. Therefore, we have studied the finishing effect of the natural treatment 

phase using data recorded during several monitoring campaigns on the Santerno full-scale WWTP 

located in Imola (Bologna, Italy). The monitored data in the output section of the secondary 

treatment plant reveals that ammonium nitrogen concentrations can reach almost 8 mgN/L in some 

periods. Thus, we investigated the nitrification effect of the natural treatment. The removal 

efficiency resulting from the monitoring campaigns reach 40% for ammonium and 20% for TN. 

The natural treatment phase also allows a natural disinfection from solar irradiation. This feature is 

critical in the frame of wastewater reuse as the low legal thresholds for pathogens output 

concentration, expressed as E. coli, is a challenging limit. We analyzed the natural disinfection 

process through the monitoring of E. coli concentration along the first natural treatment basin 

(Basin 1). Although the results indicate a disinfection capacity up to around 40 %, the E. coli output 

concentration does not permit the reuse of wastewater. The monitoring campaigns show a 

considerable variability of the removal efficiency due to seasonal irradiation and eventual presence 

of Lemna Minor on the surface, which shaded the light. In order to model the E. coli degradation in 

Basin 1, we implemented the dispersed flow equation and obtained encouraging results with 

respect to measured data. In order to simulate the process occurring in the natural finishing phase 

in a controlled volume, we designed, implemented and started up a dedicated pilot plant in the 

Santerno WWTP area. The first monitoring analysis and E. coli model implementations on the pilot 

plant are very encouraging, proving a real possibility to test management policies first in this 

controlled volume and then on the full scale natural treatment phase.  

In the last chapter of this thesis, we studied the fate of the organic chemicals during wastewater 

treatment plant. Even if they do not represent currently a relevant limitation to wastewater reuse, 

their low biodegradability and their consequent accumulation during irrigation could be a significant 

issue in the future. 

Finally, the results obtained on pilot and full scale plants during this PhD thesis provide a useful help 

to design, adequate and manage WWTPs for irrigation reuse  and enhanced the knowledge on some 

critical aspects of the processes involved. 
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Annex A: Solar irradiation measured 

Hourly average solar irradiation measured – 25/05/2016 

Hour I0_average 

[h] [h] [w/m2] [cal/m2*d] 

00:00 01:00 0.00 0.00 
01:00 02:00 0.00 0.00 
02:00 03:00 0.00 0.00 
03:00 04:00 0.00 0.00 
04:00 05:00 0.00 0.00 
05:00 06:00 0.00 0.00 
06:00 07:00 0.00 0.00 
07:00 08:00 0.00 0.00 
08:00 09:00 522.29 10785364.35 
09:00 10:00 685.55 14156624.85 
10:00 11:00 773.60 15974876.65 
11:00 12:00 818.62 16904571.44 
12:00 13:00 782.14 16151367.83 
13:00 14:00 742.51 15332975.80 
14:00 15:00 636.81 13150115.20 
15:00 16:00 454.85 9392729.37 
16:00 17:00 61.40 1267884.31 
17:00 18:00 31.00 640238.82 
18:00 19:00 0.00 0.00 
19:00 20:00 0.00 0.00 
20:00 21:00 0.00 0.00 
21:00 22:00 0.00 0.00 
22:00 23:00 0.00 0.00 
23:00 00:00 0.00 0.00 
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Hourly average solar irradiation measured – 12/10/2016 

Hour I0_average 

[h] [h] [w/m2] [cal/m2*d] 

00:00 01:00 0.00 0.00 
01:00 02:00 0.00 0.00 
02:00 03:00 0.00 0.00 
03:00 04:00 0.00 0.00 
04:00 05:00 0.00 0.00 
05:00 06:00 0.00 0.00 
06:00 07:00 0.00 0.00 
07:00 08:00 3.17 65540.29 
08:00 09:00 74.17 1531571.47 
09:00 10:00 176.92 3653467.33 
10:00 11:00 299.43 6183244.09 
11:00 12:00 472.23 9751644.28 
12:00 13:00 531.48 10975151.37 
13:00 14:00 535.59 11059900.37 
14:00 15:00 479.53 9902391.81 
15:00 16:00 395.80 8173269.99 
16:00 17:00 98.98 2043999.17 
17:00 18:00 35.95 742330.59 
18:00 19:00 9.84 203203.37 
19:00 20:00 0.00 0.00 
20:00 21:00 0.00 0.00 
21:00 22:00 0.00 0.00 
22:00 23:00 0.00 0.00 
23:00 00:00 0.00 0.00 
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Hourly average solar irradiation measured – 26/10/2016 

Hour I0_average 

[h] [h] [w/m2] [cal/m2*d] 

00:00 01:00 0.00 0.00 

01:00 02:00 0.00 0.00 

02:00 03:00 0.00 0.00 

03:00 04:00 0.00 0.00 

04:00 05:00 0.00 0.00 

05:00 06:00 0.00 0.00 

06:00 07:00 0.00 0.00 

07:00 08:00 0.00 0.00 

08:00 09:00 7.78 160558.56 

09:00 10:00 32.63 673827.62 

10:00 11:00 72.16 1490170.09 

11:00 12:00 144.65 2987073.98 

12:00 13:00 89.52 1848535.83 

13:00 14:00 68.34 1411191.15 

14:00 15:00 62.72 1295113.31 

15:00 16:00 57.11 1179371.68 

16:00 17:00 21.09 435410.62 

17:00 18:00 9.20 189998.78 

18:00 19:00 0.00 0.00 

19:00 20:00 0.00 0.00 

20:00 21:00 0.00 0.00 

21:00 22:00 0.00 0.00 

22:00 23:00 0.00 0.00 

23:00 00:00 0.00 0.00 
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Hourly average solar irradiation measured – 22/02/2017 

Hour I0_average 

[h] [h] [w/m2] [cal/m2*d] 

00:00 01:00 0.00 0.00 
01:00 02:00 0.00 0.00 
02:00 03:00 0.00 0.00 
03:00 04:00 0.00 0.00 
04:00 05:00 0.00 0.00 
05:00 06:00 0.00 0.00 
06:00 07:00 0.09 1757.56 
07:00 08:00 14.59 301203.93 
08:00 09:00 44.14 911472.70 
09:00 10:00 71.82 1483005.28 
10:00 11:00 116.79 2411738.20 
11:00 12:00 144.26 2978975.09 
12:00 13:00 201.88 4168766.77 
13:00 14:00 382.49 7898501.01 
14:00 15:00 345.75 7139704.76 
15:00 16:00 185.87 3838292.18 
16:00 17:00 73.06 1508692.45 
17:00 18:00 8.98 185459.19 
18:00 19:00 0.00 0.00 
19:00 20:00 0.00 0.00 
20:00 21:00 0.00 0.00 
21:00 22:00 0.00 0.00 
22:00 23:00 0.00 0.00 
23:00 00:00 0.00 0.00 

 

 


