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INTRODUCTION 

 

The main purpose of this PhD thesis was the development of an innovative 

methodology for the seismic array data analysis, named DWT-MuSiC (Discrete 

Wavelet Transform -Multiple Signals Classification). 

Seismic arrays are nowadays widely used in geophysics and many methodologies 

have been developed to obtain as much information is possible for their 

utilization. 

DWT-MuSiC is a new proposed method intended to be able to perform near-real 

time analysis relating to the detection of different seismic wave field and their 

characterization, starting from raw seismic array data. 

The innovative point of DWT-MuSiC is that it is thought to combine the 

resolution of the MuSiC (Multiple Signals Classification) algorithm, methodology 

used for frequency estimation and source location, proposed by Schmidt (1986), 

and the potentialities of the discrete wavelet domain analysis. The  DWT-MuSiC, 

whose algorithm structure is further discussed in the chapter 3, in fact other than 

to distinguish the presence of different wavefronts, provides both the direction of 

arrival of the front themselves (back azimuth) and their apparent speed of 

advancement (the inverse of the slowness), returning even information about the 

polarization of each identified phases, preserving furthermore spatial information 

of the original signals, as well as their amplitude spectrum. 

More precisely, the program starts performing a preliminary transformation of the 

signals that are going to be processed in the wavelet domain by means of discrete 

wavelet transform. After getting the wavelet coefficients relative to the several 

frequency bands, and different temporal positions in which the original signals are 

decomposed, DWT-MuSiC uses the coefficients themselves in order to analyze 

their covariance between the different sensors that compose the array and obtains 

the desiderate results. 

The analysis of the covariance is made by MuSiC method that, applied in a proper 

way with a multi dimensional grid search method, permit to distinguish the useful 

information related to coherent the seismic sources, from the incoherent seismic 
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noise. In this way, for each time/frequency band interval, it is possible to 

recognize a certain number of seismic phases related to different seismic sources. 

After having distinguish the different seismic phases, and after having 

characterized them with all the researched parameters, DWT-MuSiC revise the 

results with the use of a non linear optimization function in order to overcome the 

limitation of the grid search method resolution. 

This thesis is structured in different chapters in order to give an extensive 

overview about the topic. In particular, in the first chapter is presented a general 

overview about the seismic arrays, their application in seismology and the basic 

principle related to their utilization. In the second chapter are introduced the main 

theoretical concepts involved in the presented methodology, in chapter 3 is 

explained in detail the structure of the DWT-MuSiC and its operation, while in 

chapter 4 are presented some synthetic test used to validate the methodology, as 

well as the comparison with others analysis like the beamforming and the MuSiC 

method used in the Fourier domain.  

In chapter 4 are moreover presented 2 applications to real cases that show some of 

the potential applications of the methodology in different geophysical contests. 

The first is an analysis of a volcano-tectonic event registered at Mount Vesuvius, 

Italy, and the second is the characterization of array data acquired during an active 

seismic survey at Krafla caldera,  Island. 
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CHAPTER 1: SEISMIC ARRAY BACKGROUND 

 

 

1.1 SEISMIC ARRAYS OVERVIEW 

 

A seismic array consists of a certain number of seismometers arranged in a well-

defined geometric configuration. They are used in geophysics in many fields of 

application. The installation of the firsts seismic arrays started at the beginning of 

the 1960s when, for military purposes, it was necessary to have an analytic 

methodology capable of improve the threshold of detection of underground 

nuclear tests made worldwide, discriminating at the same time between them and 

global natural earthquakes [e.g. Douglas et al, 1999]. 

After this first purpose, since then, seismic arrays started to be used also for civil 

scientific purposes thanks to its powerful potentiality. 

Some example of the nowadays application consist of estimation of the seismic 

phases slowness vectors [e.g. Shyh-Jeng et al., 1993] as well as locating and 

tracking volcanic tremor [e.g. Almendros et al., 1997], signals extractions and 

polarization analysis [e.g. Meersman et al., 2006], characterization of a rupture 

propagation during an earthquake [e.g. Goldstain et al., 1991] refining  small-

scale structures in the Earth’s interior [e.g. Weber et al., 1996] or high resolution 

tomographic images on regional scales [e.g. Arlitt et al., 1999]. 

Another aspect that contributes to the appeal of arrays in geophysics, has been the 

advent of digital data loggers allowing a fast development of portable arrays, 

which actually can be easily deployed for experiments of short time duration like 

the study of seismic noise [e.g. Saccarotti et al., 2001] or time limited experiments 

aimed at the detection and tracking of the tremor or long period events on active 

volcanoes [e.g. Saccarotti et al., 2008]. The physical principles behind the use of 

the seismic array analysis, acting like a directional receivers, is the same as in 

other field of applications where arrays are used since more time, like 

telecommunications or radio astronomy or radar science. 
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This means that in seismology, they can measures the directional properties of the 

wave-field (slowness or wave number vector) radiated by one or more seismic 

sources. 

A seismic array differs from a local network of seismic stations mainly by the 

techniques used for data analysis, by which the detectable threshold of seismic 

signals, with respect to the ambient seismic noise within the Earth, can be 

significantly enhanced [e.g. Schimmel and Paulssen, 1997]. 

The main advantage of seismic arrays, in fact, if compared to single seismological 

stations, is the improvement of the signal-to-noise ratio (SNR) due to the 

summation of the individual recordings of the array stations.  

In addition, the seismic arrays can determine directional information of seismic 

signals by which is possible to locate the source of a seismic signal by a single 

array measurement. 

This enables to study phases that normally do not show up in seismograms of 

single stations with amplitudes large enough to study travel times and/or 

waveforms. This is the primary reason why seismic arrays are very useful in 

studies of the small-scale surveys.  

Besides the large-scale acquisitions that are only possible with traditional seismic 

stations, many regional and local studies have been made possible with seismic 

arrays act like a directional receivers [e.g. Inza et al., 2011]. Arrays helped to 

resolve fine-scale structure well below the resolution level of global seismology in 

many different places in the Earth, from the crust using body waves and surface 

waves, the upper mantle, the lower mantle, the core-mantle boundary, and the 

inner core [e.g. Rothert et al., 2001 ; Vidale et al., 2000].  

Different arrays can have different characteristic considering the considering the 

purpose for which they are used.  

One of the most important characteristic of a seismic array is its geometrical 

configuration, i.e. array aperture, sensors interspacing, number of array stations, 

etc. A careful choice of these parameters is essential for obtaining good results for 

the chosen analytical purposes. 
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Different array designs have been tested in literature, and, depending on their 

application, their optimal characteristics has been discussed significantly 

[Schweitzer et al., 2002].  

The aimed objective is to obtain, as a response function used to detect the seismic 

source, a one that present a sharp maximum with a rapid suppression of the 

energy next to it.  

Additionally, a configuration able to minimize spatial aliasing should be taken in 

account, for example avoiding distances between stations similar to the wave 

number window of interest. These prerequisites, obviously are dependent on the 

wavelengths of the seismic phases that are going to be studied.  

Therefore seismological arrays are deployed taking into account also the expected 

wave field frequency content. To fulfill these criteria, the number of array 

stations, the inter-station spacing, and the configuration of the array can be varied.  

To make some examples it is possible to say that the aperture of the array affects 

the array response in terms of the ability of the array to separate the wave numbers 

of two incoming wavefronts, and the number of stations controls the quality of the 

array response, optimizing the signal to noise ratio making possible to detect 

weaker signals. 

The inter-station spacing of the array stations defines the position of the side lobes 

in the response function and the largest resolvable wave number. The smaller is 

the inter-station spacing, the larger the wavelength of a resolvable seismic phase 

will be.  

Finally, the geometry of the array controls the azimuthal dependency of the 

resolution and the quality and the position of the side lobes.  

Seismic arrays are designed to exploit the coherence of seismic  signals between 

sensors in order to detect and characterize the impinging wave field. However, 

signal coherence decreases with increasing distance between measurement 

locations due to effects that include, but are not limited to, signal multi-pathing, 

dispersion, and wavefront distortion. Therefore, the design of an array is a balance 

between ensuring the sensor separations are small enough to guarantee acceptable 
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signal coherence, yet large enough to provide the required resolution when 

estimating signal azimuth and velocity. 

All these conditions, as explained play a role in the array response quality and as 

it is possible to imagine, it is not always simple to work with real data acquired in 

the perfect theoretical condition. 

Anyway the most important aspect is that a registered wavefronts has to produce a 

significant phase change in relation with the array aperture.  

The condition is satisfied imposing that the array aperture mast be at least four 

times greater than the wave length of the seismic phase that we want to analyze. 

This is expressed by the following relation: 

 � = �� ≤ 4 ∙ �		
� 

�	��	�                                                      (Eq. 1.1) 

 
 
Where V is the seismic velocity of the medium and f is the frequency of the 

seismic wave  

In order to avoid spatial aliasing, moreover, the wavelength of a wavefront has to 

be at least comparable with the array interspacing. This condition is described by 

the equation: 

 � = �� ≥ �		
� ����	�

����                                                   (Eq. 1.2) 

 

These conditions are considered to the prerequisites for being able to perform an 

array analysis, and are valid for all the methodologies involved in the array 

analysis and  further, more strictly conditions can be adopted depending on the 

methodology involved. 
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1.2 THREE COMPONENT SENSORS AND SEISMIC WAVE 

POLARIZATION 

 

Because of the elastic properties of Earth materials and the presence of surface 

boundary, different types of seismic waves propagate within it. 

Compressional (P) and Shear (S) waves propagate through the Earth’s interior and 

are known as body waves.  Love and Rayleigh waves propagate primarily at and 

near the Earth's surface and are called surface waves.   

Different wave types produce different oscillations of the medium within them are 

travelling and this schematically as represented  in figure 1.1 . 

(a) 

(b)

(c) 

 (d) 

FIGURE 1.1 Representation of the disturbance caused by the passage of a P-wave(a), S-Wave(b), 

a Rayleigh wave(c) and a Love-wave(d)  
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The P-waves, figure 1.1(a), create a disturbance that is propagated as a 

compression and dilatation of the material, generated in the direction of 

propagation.   The  particle motion related to an S-wave propagation, figure 1.1 

(b), on the contrary,  show shear motion directed horizontally to the direction of 

propagation. 

Regarding the surface waves, a Rayleigh-waves propagation through a  volume of 

elastic material, Fig.1.1(c), cause a disturbance that generates  an elliptical motion 

caused by the combination of both a vertical, (perpendicular to the direction of 

propagation but in the plane of the ray path), and horizontal (in the direction of 

propagation) particle motion.  The last type of wave, Love-waves, Fig. 1.1(c) 

cause a disturbance that is propagated horizontally and perpendicularly to the 

direction of propagation.  Considered what written before, it is clear that the use 

of P-waves seismic data alone may not be enough to characterize completely a 

wavefront that impinge a seismic array. 

Having the possibility to identify different seismic components is really important 

to distinguish different structure present in the subsurface. 

When a P-wave arrives at subsurface rock interfaces at non-normal angles of 

incidence, in fact, a conversion of P-wave takes place, generating an S wave,.  

S waves can be composed by a horizontal (SH) and a vertical (SV)  waves causing 

the rock particles to oscillate perpendicular to the direction of the propagating 

wavefront and orthogonal to each other as well. These three different components 

of the seismic reflected wavefront can be recorded with sensors that recognize the 

full particle motions, and are called multi component or three component sensors 

Geophones used for conventional seismic data acquisition are constrained to 

respond to just one component, i.e. the vertical component, but the multi-

component sensors have the motion sensing elements arranged in a single casing 

and are used for recording the complete seismic wave field. Orientation of sensors 

is also an important aspect in multi component seismic acquisition, because the 

processing depends on reliable information about geophone direction and polarity. 

Current techniques of acquisition generally keep all the geophones in the same 

predefined orientation such that all the axial and transverse components maintain 

the same polarity and direction.  
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Most modern seismometers include a configuration to measure  three orthogonal 

separate elements that allow the determination of the simultaneous movement in 

three different directions; two horizontal, aligned  east-west and north-south,  and 

the third vertical. This configuration is also takes in consideration  in this thesis. 

 

 

FIGURE 1.2 The image show the 3 different traces registered by a 3 component seismic sensor, 

with different signals amplitudes dependent on the wavefront polarization 

 

 

 

In Figure 1.2 is presented  for example a synthetic seismic signal that well show 

the registration of the 3 different components and the relative amplitude produced 

caused by the orientation of the wavefront in respect to the station, and its 

polarization pattern. 
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1.2 DIRECTION OF ARRIVAL AND SLOWNESS CHARACTERIZATION 

 

The majority of array seismology methods assume a plane wave arriving at the 

array. This assumption is valid for distances from the source much larger than 

about 4 wavelengths [e.g. Rost et. al.,2002].  

 ����
��� ���	�� ≫ �		
� 

�	��	�                                  (Eq. 1.3) 

 

The directions of approach and propagation of the wavefront projected onto the 

horizontal plane are defined by the following parameters: 

 

1) Φ Backazimuth = angle of wavefront approach, measured clockwise from 

the North to the direction pointing towards the source.  

 

 

FIGURE 1.3 Schematic representation of the back azimuth angle of an impinging wavefront. 

 

 

2) i vertical incidence angle = vertical angle of wavefront approach, measured 

from the vertical 0°<i< 90° 
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FIGURE 1.4 Schematic representation of the vertical incidence angle of an impinging wavefront. 

 
 
 
 
3) Slowness u= the inverse of the propagation velocity of the wavefront across 

the array 1/v0.  

 

�= ���, ��, ��� =  sin�$�%& , cos�$�%& , 1%& tan �, = 

= -./ �sin � sin $ , sin � cos ∅, cos ��                                   (Eq. 1.4) 

 

The slowness vector u points toward the direction of the wave source, and its 

modulus is the reciprocal of the wave speed. 
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FIGURE 1.5 Representation of the slowness vector and its 3 component. 

 

 

Although it is possible to install seismic array sensors at different depths (i.e. in 

wells), generally a seismic array stations are all placed on the ground level, in a 

flat area, to form a two-dimensional planar geometry. That is the difference 

between 2-dimensional and 3-dimensional arrays. Roughly speaking, in array 

analysis we measure the difference of the arrival times or the phase difference at 

various stations. It is then enough clear that in a 2-dimensional array it is possible 

to experience the same delay in the arrival time at different stations for various 

configuration of slowness and incidence angle. From this is clear that the biggest 

limitation of a two–dimensional array is that is not possible to reconstruct the real 

slowness of the incident wavefront but only a component of it called apparent 

slowness. Considering that the apparent speed is defined as follow: 

 1233 = �/456 �7�                                                                   (Eq. 1.5) 

 

where V0 is the real wave velocity beneath the array. 

Apparent slowness vector u is defined as follows: 

 �= ���, ��� =  sin�$�%233 , cos�$�%233 , = 1%8 �sin � sin $ , sin � cos $� 

(Eq. 1.6) 
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1.4 BEAMFORMING 

 

Beamforming [Barlett,1948],  is one of the most basic and common 

methodologies used in array data processing, aimed at determining the slowness 

and the back azimuth of a seismic phase. 

Beamforming technique is not only used in seismology, but being based on a 

relative simple principle, has a wide application also in radar analysis, wireless 

communications, astronomy or acoustic problems [Brooks et al., 2006 ; Steyskal, 

1987]. 

The principle at the basis of the beamforming analysis is to detect  the slowness 

and  the back azimuth of a certain  seismic phase by improving the signal-to-noise 

ratio (SNR) of the stacked traces registered by the array seismic sensors. After 

shifting in time the traces of the different sensors till obtaining a perfect 

alignment, summing them all together, is possible to maximize the constructive 

interference related to the coherent signals, reducing at the same time the 

incoherent noise. 

In order to do that, the operation to align the seismic traces to make them 

comparable before summation, is only possible after having found the right values 

of delay time, specific for each single sensor. 

The delay time is defined as the extra time needed by a seismic wavefront to reach 

the different seismic sensors that compose an array. For a certain number of 

stations, with known coordinates, the delay time is only dependent on the apparent 

slowness and back azimuth angle of the wavefront. 

Considering a generic array, with a geometric configuration like the one 

represented in Fig.1.6, it is possible to express the position of all the sensors, 

relative to a reference origin point. 

Generally the reference system is placed in correspondence of a specific station 

having a central position in the array, or associated to the array geometric center. 



 

FIGURE 1.6 Map view of the

seismic. 

Assuming a plane wave approximation, being the distance of 

larger than the array aperture, 

reference system, where 

axes towards East (x), towards North 

registered at the station o is defined as:

 �&��� = 9��� :
 

Where f(t) is the signal 

distance rj  from the center

 �;��� = 9<� = >
The same signal, after removing 

relation: 

 �?;��� = 9��� :

Map view of the spatial distribution of the station composing a computer created 

 

 

plane wave approximation, being the distance of the source much 

larger than the array aperture, If we define O (xo,yo,zo) as the

, where (x,y,z) are the Cartesian coordinates in [

axes towards East (x), towards North (y), and vertically (z), a

station o is defined as: 

� � : �&���                                          

is the signal no is the seismic noise at station j-th(xj

from the center O, the registered trace can be expressed as:

< >@ ∙ �A : �;���                                         

after removing the delay time is expressed by the following 

� �;�� : >@ ∙ ��                                                       
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ial distribution of the station composing a computer created 

the source much 

as the center of the 

the Cartesian coordinates in [m] with positive 

, a seismic signal 

                                          (Eq. 1.7) 

j,yj,zj)  having a 

an be expressed as: 

                          (Eq. 1.8) 

 

is expressed by the following 

                                                       (Eq. 1.9) 
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The beamforming function is then: 

 B�
C��� = 9��� : -D ∑ �;�� : >@ ∙ ��D;F-                             (Eq. 1.10) 

 
 

where M is the number of the stations. 

An example of the beamforming methodology is applied to some synthetic signals 

showed in Fig 1.6. The synthetic signals are related to a P wave crossing the array 

indicated in figure Fig.1.5 and the wavefront characteristics are: frequency 15 Hz, 

speed  of  350 m/s and back azimuth angle of 45°. 

 

 

FIGURE 1.7 Synthetic seismic signals showing a time delay due to the different registration time 

at the different sensors. 

 

The delay of the signals through the stations, clearly visible in Figure 1.7, is 

corrected for the wavefront slowness and back azimuth, obtaining a perfect 

alignment of the seismic traces as shown in Figure 1.8. 
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FIGURE1.8 Synthetic seismic signals after the time  alignment 

 

If we assume that the noise present in the traces has a zero mean value and a 

variance σ2, it is possible to sum the aligned signals obtaining , for an array with 

M stations, an  improvement of the signal-to-noise in comparison with the signal-

noise ration of a single station (s) specified by: 

 GHI = √K �                                                                (Eq. 1.11) 

 

where M is the number of the stations. 

This is done assuming perfectly coherent signals f(t) at every array station, and 

completely uncorrelated noise nj(t). 

The results can be observed in Fig. 1.9 showing the stacked signals. 
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FIGURE 1.9 Beamforming of the signals obtained summing all the seismic aligned previously 

aligned. 

 

 

To obtain a great accuracy of the results, it is important to reconstruct as precisely 

as possible the complete slowness vector of a particular seismic phase. 

Beamforming is a reliable methodology even if the theoretical results expected 

can be influenced negatively by other factors like local variation of wave speeds 

beneath the array stations. Considering the simplicity on implementation and  the 

few computational resources needed to perform the analysis, Beamforming  

continues to be one of the most used techniques for array analysis  

Some examples of application of the beamforming methodology, compared to the 

DWT-MuSiC results, are presented in chapter 4, while in the following chapter 

we will introduce the main theoretical background of the latter, to better 

understand the principle on which the latter is based. 
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CHAPTER 2 : THEORETICAL BACKGROUND 

 

 

2.1 INTRODUCTION TO THE RELEVANT THEORIES 

 

Seismic arrays have shown their potentiality in application in a variety of sectors. 

Consequently much attention has been given to arrays in geophysics especially in 

studies detecting plane-wave signals and their relative slowness vectors and 

backazimuth [e.g. Kennett et al., 2003]. 

In the scientific literature there are numerous different techniques which, using 

different approaches, are used to analyze arrays seismic data. Each of them has 

different advantages and limitations. 

One of the first and basic approach used to characterize the wave field in terms of 

backazimuth and slowness, consisted to carrying out space-time processing of the 

array data, estimating the parameters using a cross correlation method between 

signals. 

One of the simplest techniques using this approach is the beamforming method, 

already explained in paragraph 1.4.  

A numerous of alternative methods for enhancing the results obtained by the 

traditional beamforming have also been proposed to improve the resolution in 

detecting closely spaced signal sources [Van Veen, Buckley, 1998; Frost,1972]. 

The main advantage of the time domain methods is the relative simplicity of 

analysis and the small computational resources that in general they needs. The 

main limitation is that, analyzing all in once the entire bandwidth of the data, it is 

impossible to separate the single source contribution, eventually giving inaccurate 

results caused by reciprocal interference of the sources. 

The limitations of the time domain approaches brought to the development of  

new different methodologies based on the analysis of the frequency content of the 

signals. Also in this case numerous methods have been proposed. Among the most 

commonly used is the Capon maximum likelihood technique [Capon, 1969] . 
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Regarding the methods based on frequency domain analysis, it is possible to 

affirm that even if in theory they are capable to detect multiple signals sources 

having different frequency contribution, in practice in seismology that not always 

can be effectively applied due to a strong non-stationary and transient nature of 

the signals. In fact these methods were designed to face with nearly 

monochromatic signals. 

Another solution consist in the introduction of subspace-based estimation 

techniques that offered new possibilities in the sensor array signal processing. 

The subspace-based approach relies on certain geometrical properties of the 

assumed data model, resulting in a high resolution capability providing that 

experimental data accurately reflects the model assumptions.  

Pisarenko (1973) was one of the first to exploit the structure of the data model and 

from his approach derives the MuSiC method developed by Smith. MuSiC is one 

of the most efficient techniques applied to array analysis and used to estimate the 

backazimuth of signals sources and it is widely applied in literature, not only in 

seismology but also in other field of application . 

In its original form, as proposed by Smith in (1977), MuSiC methodology was 

applied to electromagnetic wave time series data and it is shown its capabilities to 

resolve multiple closely spaced sources, being selectively sensitive to the 

strongest ones. 

The MuSiC method, in its original form, assumes that the observed signals were 

stationary in time, and its constituent sources uncorrelated. While these 

assumptions may apply to different fields of applications, as for example in 

telecommunication, in seismology that assumptions are generally no more valid. 

The majorities of the seismic signals, are transient and arrive simultaneously from 

different directions (e.g. scattered waves).  

The innovation introduced in this thesis has been to provide a methodological 

improvement that made the characterization of the wavefront more precise and 

complete adopting a generalization of the MuSiC approach. 



23 

 

The creation of the DWT-MuSiC is in fact an adaptation of the original MuSiC 

with the basic idea to decompose the signals in different time/frequency intervals 

using the discrete wavelet transform, and  then analyze them one interval per time. 

In this way it is possible to consider each single interval, as the signal is stationary 

which was otherwise not feasible by only using MuSiC as proposed in the original 

version. 

The use of wavelet transform in fact is particularly useful for the analysis of 

transients, aperiodic and non-stationary signal features where, through its use, 

subtle changes in signals morphology may be highlighted over the scale of 

interest. 

Wavelet analysis is moreover particularly valuable because of its ability to 

preserve simultaneously the spectral and temporal information from an original 

signal by employing a window of variable width.  

Thus wavelet transforms produce a time–frequency decomposition of the signal 

which separates individual signal components more effectively comparing to 

more traditional methods like short time Fourier transform (STFT). This flexible 

temporal–spectral aspect of the transform allows a local scale-dependent spectral 

analysis of individual signal features. In this way both short duration / high 

frequency and longer duration / lower frequency information, can be captured 

simultaneously. The use of the DWT-MuSiC, other than to distinguish the arrival 

of different wavefronts, uses also the MuSiC method to provide information about 

the polarization of each identified phases. 

The main limitation of the methodology is that for each analysis performed for a 

single time-frequency interval, all the signal information is contained in one single 

wavelet coefficient and this makes difficult to discriminate among more than one 

seismic phase  for each interval. 

A detailed explanation of the DWT-MuSiC algorithm structure is in chapter 3, 

while in the next paragraphs we introduce the basic theoretical elements of the 

MuSiC method and an overview of the Wavelet analysis theory. 
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2.2 MUSIC ANALYSIS 

 

To describe the MuSiC theory, we start supposing to receive at N sensors, a 

number of q plane waves with the same angular frequency ω. The signal received 

at the station xi can be written as: 

 L�MN, �� = ∑ �OPOF- �7�QR∙STUVWXYZ�W�� : [�MN, ��       (Eq. 2.1) 

 

where η(xi,t) is the noise, km is the wave vector of the m-th signal and φm is the 

phase information of the m-th signal. The covariance Rij relative to the stations xi 

and xj can be then be defined as: 

 R5] = 〈L��7 , ��L_��7 , ��〉W                                              (Eq. 2.2) 

 

where<>t is the time average and †is the Hermitian conjugate; 

When the signals are stationary, the correlation of the signals received at the 

station xi and  xj, is expressed by the element of the covariance matrix as: 

 R5] = ∑ |�O|cPOF- �7QR∙�STUSd� : ecδ5]                          (Eq. 2.3) 

 

Where σ2 is the noise intensity and A is the amplitude of the m-th signal.  

We define the total signals vector as: 

 g�h� = [L�M-, ��, L�Mc, ��, L�Mj , ��]l                          (Eq. 2.4) 

 

where T means the transpose operator, and considering also the (2.2) and (2.3), 

we have that the signal vector can be expressed as follows: 

 



25 

 

Ψ��� = ∑ �OPOF- ��QO��U7�VWXYZ�W��                         (Eq. 2.5) 

 

where the directional information is contained in the term ��QO� and is defined 

as: 

 ��QO� = [�7QZ∙Mn , … , �7QZ∙Mp]q
                                                (Eq. 2.6) 

 

Considering the (2.2), (2.3), (2.4), (2.5) and (2.6), the covariance matrix can be 

then written as: 

 r = ∑ |�O|cPOF- ��QO� ⊗ �_�QO� : ect                          (Eq. 2.7) 

 

Or in matrix notation: 

 u = vwv_ : ect                                                                                (Eq. 2.8) 

 

Where U is the matrix of the spatial signal signature formed using the 

concatenation of the N directional vectors of the q sources and having dimension 

[N x q], I is the identity matrix and S is the matrix containing the intensities |Am|2 

of the vectors u(km). σ2
I is the noise power matrix. 

Now presuming that the condition q < N is verified, the covariance matrix R has 

rank q. We can proceed decomposing it into eigenvalues and eigenvectors. 

After the decomposition we obtain a series of N eigenvalues and the associated 

eigenvectors that must be separated into two orthogonal subspaces: the noise 

subspace and signal subspace. The signal space will be identified by the largest 

eigenvalues (q) while the other eigenvalues N-q will be relative to the noise 

subspace. It is fundamental to highlight that the N-q eigenvectors of R are 

orthogonal to the spatial signals vectors u(km) . 
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Defining Es the matrix [N x q], collinear to the directional vectors and associated 

with the q largest eigenvalues, and the Λs the diagonal matrix  [q x q] of the 

relative eigenvectors, and defining Es[N x N-q] the eigenvalues matrix associated 

with the N-q eigenvalues (subspace noise) orthogonal to the spatial signals vectors 

u(km) , with the associated eigenvectors diagonal matrix [q x q] Λn, then the 

covariance matrix can be rewritten as: 

 u = xyzyxy_ :  x{z{x{_                                                                 (Eq. 2.9) 

 

Where xyzyxy_  is the contribution to the covariance matrix relative to the signals 

and x{z{x{_ is the contribution relative to the noise. 

Afterwards, it is necessary to find a set of steering vectors to project them on the 

noise space: 

 |�Q� = [�7QZ∙Mn , … , �7QZ∙Mp]                                                     (Eq. 2.10) 

 

To estimate the signal direction vectors u(km)  we have to find the steering vectors 

that give the minimum projection in the noise subspace. 

To do this operation, we define the MuSiC estimator function as follows: 

 }�Q� = ~||�Q�∙x{|�                                                           (Eq. 2.11) 

 

Once the spectrum of the function D(k) has been correctly determined using all 

the set of steering vectors, than the  research of the maximum value of the 

function can be performed with a grid search method. 
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FIGURE 2.1  Schematic representation of the signal and noise subspace spanned by some 

steering vector projecting their image on noise subspace. 
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2.3 WAVELET ANALYSIS  

 

In signal analysis Fourier transform is only able to provide information about the 

frequency composition of a given signal but is not useful to reveal the temporal 

localization of a signal. Another limitation of Fourier transform is that the 

sin(x)and cos(x) in which the original function is transformed are infinite and 

periodic functions. These functions are smooth and do not adapt to the sharp 

changes of the input signal. 

This limitation can be partially solved dividing the original signal with a sliding 

time windows of fixed dimension to keep the information about the temporal 

localization. This solution is known as short time Fourier transform and provides 

a certain temporal resolution by highlighting the spectral response for each time 

interval.  

Wavelet analysis represents a much powerful solution, to analyze data 

maintaining the time and spectral information and for its potentiality is widely 

used in several scientific fields like, engineering, pattern recognition and 

geophysics. 

Wavelets  are oscillatory functions of short durations and that is the reason of their 

name.  There are many wavelets to choose from; however, by far the most popular 

are the Mexican hat wavelet, the Morlet wavelet or the Coiflet wavelet. (Fig. 2.2) 

 

 

FIGURE 2.2 Representation of 3 of the most common used wavelet form. 

 

In wavelet analysis, we use an integration mechanism similar to that of Fourier 

Transform to compute the wavelet coefficients:   
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dtshiftscaletxshiftscaleC ∫
∞

∞−

= ),()(),( ψ                                 (Eq. 2.12) 

 

The idea is to take a waveletψ , that we call mother wavelet, and scale and shift it 

to create a new wavelet.  Then we measure how well a similar size segment on the 

original signal fits the wavelet shape.  This results in some coefficients that 

represent the level of adaptation.  The larger the absolute value the better is the 

match. 

 
FIGURE 2.3 Representation of a mother wavelet scaled and shifted in order to perform the 

wavelet transform analysis. 

 

 

Wavelet analysis is particularly useful for the analysis of transients, aperiodic and 

non-stationary signals because it allows generating a time–frequency 

decomposition of the signal which separates individual signals more effectively 

than the traditional short time Fourier transform. In this way both short duration, 

high frequency and longer duration, lower frequency information can be 

appreciated simultaneously.  

Wavelet transforms as they are defined come in two distinct types: the continuous 

wavelet transform and the discrete wavelet transform.  
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The continuous wavelet transform of a time signal, x(t), is defined as: 

 ��
, �� = -√2 � ����L ∗ �WU�2 � d��U�                                (Eq. 2.13) 

 

where ψ∗(t) is the complex conjugate of the analyzing wavelet function ψ(t), a is 

the dilation parameter of the wavelet and b is the location parameter of the 

wavelet.  

In order to be classified as a wavelet, a function must satisfy certain mathematical 

criteria. The conditions are: 

Wavelets must have finite energy: � = � |L���|cd� ≤ ∞�U�                                                 (Eq. 2.14) 

 

If �� (f ) is the Fourier transform of ψ (t), i.e. L� = � L����U7�c���Wd��U�                                               (Eq. 2.15) 

 

Then the following condition must hold: 

�� = � ��� ������ d9 < ∞�8                                                  (Eq. 2.16) 

 

This implies that the wavelet must have a zero mean. 

The contribution to the signal energy at the specific a scale and b location is given 

by the two-dimensional wavelet energy density function defined as: 

 

E(a,b) = |T (a, b)|
2
                                                                                   (Eq. 2.17) 

 

Peaks in E(a) highlight the dominant energetic intervals within the signal.  

For a certain transformed signal, the original signal may be reconstructed using an 

inverse wavelet transform, defined as follows: 
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���� = -�� � � ��
, ��L2,���� �2��2��8�U�                           (Eq. 2.18) 

 

The continuous wavelet transform can be calculated over an arbitrarily fine time–

frequency grid. This characteristic involves a great disadvantage because the 

CWT involves a lot of computational resources. This is limiting and moreover 

unnecessary because a vast amount of repeated information is contained within 

this redundant representation of the continuous wavelet transform T (a, b).  

For this reason to save computational resources, often it is used the discrete 

wavelet transform (DWT), in which the wavelets are discretely sampled over a 

dyadic grid. 

In its most common form, the DWT employs a dyadic and orthonormal wavelet 

basis functions and exhibits zero redundancy. The transform integral in fact is 

determined only on a discrete grid of a scales and b locations. In practice, the 

input signal is treated as an initial wavelet approximation to the underlying 

continuous signal from which, using a multi resolution algorithm, the wavelet 

transform and inverse transform can be computed discretely, quickly and without 

loss of signal information. 

A natural way to sample the parameters a and b is to use a logarithmic 

discretization of the a scale and link this, in turn, to the size of steps taken 

between b locations. To link b to a we move in discrete steps to each location b, 

which are proportional to the a scale. This kind of operation can be expressed as: 

 LO,���� = -�2/Z L �WU��/2/Z2/Z �                                         (Eq. 2.19) 

 

where the integers m and n control the wavelet dilation and translation 

respectively; a0 is a specified fixed dilation step parameter and b0 is the location 

parameter.. This power-of-two logarithmic scaling of both the dilation and 

translation steps is known as the dyadic grid arrangement. The dyadic grid is the 



32 

 

simplest and most efficient discretization for practical purposes and lends itself to 

the construction of an orthonormal wavelet basis. 

Discrete dyadic grid wavelets are orthogonal to each other and are normalized to 

have unit energy. This is expressed as: 

 

� LO,��U� ���O�,�����d� = �1    �9  C = C�
�� � = �′0                       ��ℎ�	¡ℎ��� ¢          (Eq. 2.20) 

 

With the DWT, you always end up with the same number of coefficients as the 

original signal samples, but many of the coefficients may be close to zero in 

value. As a result, you can often throw away those coefficients and still maintain a 

high-quality signal approximation. Using the dyadic grid derived from equation 

(2.18), the discrete wavelet transform (DWT) can be written as:  

 �O,� = � ����LO,��U� �t�d�                                          (Eq. 2.21) 

 

Where Tm,n is known as the coefficient at scale and location indices (m, n).  

For the DWT the transform integral remains continuous but is determined only on 

a discretized grid of a scales and b locations.  

Orthonormal dyadic discrete wavelets are associated with scaling functions and 

their dilation equations.  

The scaling function is associated with the smoothing of the signal and has the 

same form as the wavelet, given by 

 £O,���� = 2UZ� £�2UO� = ��                                       (Eq. 2.22) 

 

They have the property: 

 � £8,8����U� �� = 1                                                       (Eq. 2.23) 
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where φ0,0(t)=φ (t) is  referred to as the father wavelet or scaling function. The 

father wavelet is orthogonal to translations of itself, but not to dilations of itself. 

The scaling function can be convolved with the signal to produce approximation 

coefficients as follows: 

 GO.� = � ����£O,�����U� d�                                          (Eq. 2.24) 

 

A signal x(t) can then be represented using a combined series expansion using 

both the approximation coefficients and the detail coefficients as follows: 

 ���� = ∑ GO/.�£O/.������FU� : ∑ ∑ �O.�LO,������FU�O/�FU�  (Eq. 2.25) 

 

We can see from this equation that the original continuous signal is expressed as a 

combination of an approximation of itself, at arbitrary scale index m0, added to a 

succession of signal details from scales m0 down to negative infinity. 

 The signal detail at scale m is defined as: 

 �O��� = ∑ �O.�LO,������FU�                                       (Eq. 2.26) 

 

Hence we can write equation (2.25) as: 

 ���� = �O/��� : ∑ �O�����FU�                                    (Eq. 2.27) 

 

From the equation (2.27) is possible to show that: �OU-��� = �O��� : �O���                                          (Eq. 2.28) 
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which tells us that if we add the signal detail at an arbitrary scale (index m-1) to 

the approximation at that scale we get the signal approximation at an increased 

resolution. This is called a multi-resolution representation. 

The numerical computation of the DWT can be made very rapidly by using an 

algorithm (fast DWT) which determines the DWT coefficients at each scale 

through repeated iterations. 

The algorithm, starting from an input signal, produces two different sets of 

coefficients: approximation coefficients cA1, and detail coefficients cD1. These 

vectors are obtained by convolving the input signal with the low-pass filter 

function for approximation, and with the high-pass filter function for detail. This 

operation is repeated continuing splitting the approximation coefficients cA1 in 

two parts using the same scheme, replacing the input signal by cA1, and producing 

new set of coefficients, cA2and cD2 relative to the second scale of decomposition, 

and so on.  

Here follows a schematic representation of the algorithm after which utilization, 

the signal  will be represented by the following structure having a tree shape: 

 

 

FIGURE 2.4 The image show the multi resolution wavelet decomposition performed at different 

scales and shows for each scale the relative approximation and detail coefficients obtained 
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After having introduced in this chapter the fundamental theory involved for the 

development of the DWT-MuSiC methodology, in the next chapter is described in 

detail the structure of the algorithm and how is the working method for each step 

of the analysis it performs. 
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CHAPTER 3: DWT-MUSIC ALGORITHM 

3.1 ALGORITHM OVERVIEW 

 

The main purpose of this PhD thesis was to develop an innovative methodology 

for the seismic array data analysis, named DWT-MuSiC (Discrete Wavelet 

Transform-Multiple Signal Classification) 

DWT-MuSiC, is based on a combination of MuSiC and the potentialities of the 

discrete wavelet analysis. The use of the DWT-MuSiC, other than to distinguish 

the arrival of different wavefronts, providing both their backazimuth and their 

apparent speed of advancement (the inverse of the apparent slowness),  returns 

even information about the polarization of each identified phase. With the analysis 

results, moreover, temporal information as well as amplitude spectrum content 

related to the original signals are preserved. 

The aim of this thesis, however, was not only to develop such a methodology, but 

also to develop a software package, potentially capable to perform near-real time 

analysis in different geophysical contests, as monitoring, where fast arrays 

analysis is a critical task. For this purpose the DWT-MuSiC algorithm was 

implemented using Python, a modern and innovative programming language. 

Python is a widely used high-level programming language used for general 

purpose programming, created by Guido van Rossum and first released in 1991.It 

has a design philosophy which emphasizes code readability and a syntax which 

allow writing calculation in fewer lines of code. Moreover it is widely used and 

interpreters are available for many operating systems, allowing its code to run on 

a wide variety of systems, is open source and has a community-based 

development model, as do nearly all of its variant implementations. 

Developing the methodology, particular emphasis was placed in finding a 

compromise in producing high quality results, keeping computing time within few 

minutes, using current desktop computers. A large possibility of customizable 

settings are also implemented in DWT-MuSiC algorithm, helping the user to 

prioritize the quality of the analysis rather than the time needed to perform it, 
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leaving also the option to perform the complete algorithm workflow 

characterizing signals polarization, slowness and backazimuth, or limiting the 

results just to some specific analysis. 

For better understanding how the algorithm of DWT-MuSiC works, here it is 

presented the completed algorithm workflow that is  schematized into 4 different 

steps, which are subsequently discussed in separate paragraphs. The steps are: 

 

1) Wavelet decomposition  

2) Preliminary backazimuth and slowness wavefront estimation 

3) Wavefront polarization characterization 

4) Non-linear optimization of the results 

 

To overview the whole process, the algorithm starts making a preliminary 

transformation of the seismic signals by means of the discrete wavelet transform 

(DWT), obtaining the wavelet coefficients that are going to be processed. 

After getting the wavelet coefficients, DWT-MuSiC performs the backazimuth 

and slowness estimation, as well as the polarization characterization, on each  

single wavelet frequency/time interval of the decomposed signal. 

After distinguishing the seismic phases, and after having characterized them for 

all the explored parameters, DWT-MuSiC revises the results using a non-linear 

optimization technique in order to overcome the problem of the resolution of grid 

search methods. 

The application of DWT-MuSiC of course is subject to some assumptions related 

to the limits of the MuSiC  methodology and to the range of application of seismic 

arrays. 

The main assumptions are listed below: 

 

1) The methodology is applicable to the case of a planar array  

2) The seismic signals are assumed to be under the far-field assumption 

(seismic source >> array aperture) 

 



38 

 

3) Seismic waves are assumed to propagate in a homogeneous medium in the 

surroundings of the array. 

4) The signals come from an undefined numbers of seismic sources that are 

anyway assumed to be less than the number of array sensors. 

5) Seismic noise is assumed to be spatially incoherent 

 

In the next paragraph it is explained in detail the algorithm workflow here 

introduced. 
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3.2 DISCRETE WAVELET TRANSFORM ALGORITHM 

 

The first operation that the algorithm performs is the decomposition of the seismic 

signals by means of the DWT. Before executing this step, a  preliminary operation 

is needed in order to obtain the analytic representation of the seismic signals. This 

lets the MuSiC algorithm being able to extrapolate signals phases information. 

The use of the analytic representation of the signal is in fact essential in order to 

obtaining at the end of the process complex wavelets coefficients that preserve the 

phase information. 

In signal processing, the analytic representation of a real data sequence is defined 

as: 

 �2��� = ���� : � ∙ ¦���                                                 (Eq. 3.1) 

 

Where u(t) is the original data, i is the imaginary unit and H(t) the Hilbert 

transform. The Hilbert transform is a linear operator that takes a function, u(t), 

and produces a function, H(t), in  the same domain: 

 

 

                                                                        (Eq. 3.2) 

 

The Hilbert transformed signals have the same amplitude and frequency content 

as the original sequence but phases of individual components are shifted of π/2.  

After having calculated the analytical representation of the input signal, the 

algorithm proceeds performing the discrete wavelet decomposition calculating the 

complex wavelet coefficients. 

The input signal S is then decomposed as indicated in Eq. 3.3 according to the 

DWT theory. 

  

S=[cD1,cA1;cA2,, cD2 ; ... cAn, cDn]                                (Eq. 3.3) 

ds
st

su
tH ∫

∞

∞− −
=

)(1
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where n is the last level of decomposition and cD and cA are the detail and 

approximate Coefficient of each level. 

For this thesis a Coiflet wavelet was chosen as mother wavelet. The choice was 

supported by the motivation that the Coiflet wavelet has a symmetrical shape that 

well adapts to the seismic signals and is computationally cheap. 

The levels of the DWT decomposition was automatically selected each time by 

the used algorithm, aiming to the maximum level it was able to compute on the 

basis of the input signals. Once the algorithm completes the analysis, for each 

input signal, it returns a matrix of values: 

 

§ = ¢̈σªn,«n;  σªn,«�; σªn,«­ … σªn,«®σª�,«n;  σª�,«�; σª�,«­ … σª�,«®…σª¯,«n;  σª¯,«�; σª¯,«­ … σª¯,«®
°¢                           (Eq.3.4) 

 

Where ωn is the n-th decomposition level and tm is the m-th wavelet time interval. 

In the case of the DWT-MuSiC, the algorithm performs, once a time, the wavelet 

decomposition of all the signals registered at the array stations, taking the 

coefficients of only one seismic component of each station a time. It is moreover 

important to highlight that the coefficients coming out after all DWT 

decomposition, are stored in 3 different datasets, each one containing the 

coefficients of a single sensor component registered  by all the array stations : 

 

Σx=[C1, C2…Ci] , Σy=[C1, C2…Ci] , Σz=[C1, C2 …Ci]     (Eq.3.5) 

 

where i is the i-th array station, and x,y,z are the seismic components. 

The reason for separating the coefficients, is because for each time/frequency 

wavelet interval, MuSiC analysis is performed first separately on each component 

and then  recombined together only at a final stage. 

To better visualize and understand the structure of wavelet coefficients obtained 

as outputs, each dataset Σ of coefficients  is presented with a particular plot, called 
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scalogram. This plot has 3 axis: x=time, y=scale of decomposition and a color 

legend that represents the coefficient amplitude. A schematic representation of a 

scalogram is shown in figure 3.1. It is possible to note how the time windows 

length is adapted automatically to best fit each DWT level content that is 

analyzed. 

 

FIGURE 3.1 Representation of a scalogram with  the DWT  intervals 

 

For better understanding the outputs returned by the DWT-MuSiC algorithm, in 

the figure 3.2(a)(b)(c) are shown 3 different scalograms, each one relative to a 

single component (East-West, North-South, and Vertical) obtained from a 

synthetic signal shown above each of them. 

In figure 3.3, moreover, it is represented the scalogram of the total signal 

components, obtained combining the contribution of all the component together. 

The total coefficient amplitude has been reconstructed starting from the single 

component contributions with the following relation: 

σ«±«²³�ω, t� = µ¶ σ]�ω, t�c·
;F-                                             �x¸. ¹. º� 

 

where ω is the DWT decomposition level, t is the temporal reference and j is the 

number of seismic component 
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(a) 

 

(b) 
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(c) 

FIGURE 3.2(a)(b)(c) Single component scalograms of a synthetic seismic signal decomposed by 

means of the DWT 

 

 

 

 

FIGURE 3.3 Scalogram showing the coefficient amplitude of the 3 component wavelet coefficients 

recombined together. 
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From the analysis of the figure 3.2(a)(b)(c) it has to be noted that instead of 

indicating the DWT decomposition level on the y axis, we show the central 

frequency for an easier interpretation.  

To be able to attribute a central value of frequency to each  level, we used as 

reference the associated mother wavelet, checking its amplitude spectrum with a 

Fourier transform. Although a wavelet is not a monochrome function, it is 

possible to check its amplitude spectrum taking the value of the maximum 

amplitude as reference. Continuing observing the signal wavelet decomposition 

and its representation through scalograms, it is interesting to see how the wavelet 

coefficient amplitude is a parameter that easily indicates where the energy of the 

signal is located in terms of temporal position and frequency content. That is 

especially true in the case where the analyzed seismic signal has the contribution 

of more than one seismic source. In this case it is extremely important to 

immediately recognize different seismic phases. The seismogram represented in 

figure 3.4(a) for example represents 2 signals with similar frequency but arriving 

at the station at different time. The figure 3.4(b) represents, on the contrary, a 

scalogram of  2 signals with different frequencies that arrive at the same time. 

 

 

(a) 
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(b) 

FIGURE 3.4 Scalogram showing a seismic signal with 2 different wavefronts. In figure (a) the 2 

waves have similar frequencies and different arrival time, in figure (b) waves have different 

frequencies and overlaps. 

 

 

The information coming from coefficient amplitudes of the signals is very 

important because gives a quick overview of where the seismic energy of the 

different phases are located and subsequently where maximum signal coherence 

in the following MuSiC analysis has to be expected. 

The DWT-MuSiC uses the wavelet coefficient amplitudes as a threshold value, in 

order to perform the subsequent MuSiC analysis just within the intervals where 

the amplitude overpass a chosen arbitrary value and the signals information are 

expected to be higher. This is made to save computational time. 
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3.3 BACKAZIMUTH AND SLOWNESS ESTIMATION 

 

Starting from the transformed signal by means of DWT algorithm, the next step 

that DWT-MuSiC does, is to perform the analysis aimed at detecting different 

seismic phases present in the seismograms, characterizing them in term of 

backazimuth and slowness. 

MuSiC analysis is designed to be performed on nearly monochromatic signals, so 

to be adapted to a seismograms, that for their nature are broadband, the analysis  

has to be carried out several times, each time considering only the wavelet 

coefficients relative to a particular narrow frequency band. In order to analyze 

separately the different DWT time intervals, moreover, for each frequency band, 

only the coefficients related to a specific time window are selected. In this way the 

DWT-MuSiC will perform multiple analysis , for each different frequency bands, 

each one having  a certain numbers of DWT time intervals. 

Each single analysis is performed on a dataset of wavelet coefficients that has as 

many elements as the number of the stations composing the array: 

 

Cj=[σ1,j(ωk,tk), σ2,j(ωk,tk)… σi,j(ωk,tk)]                            (Eq. 3.7) 

 

Where i is the i-th array station, 1<j<3 is the  seismic component and k is the k-th 

interval. 

To create the input covariance matrix, according to the MuSiC theory, the 

algorithm multiplies the coefficient dataset with the conjugate transpose of itself: 

 I = � ∙ �_                                                                     (Eq . 3.8) 

 

where the symbol † is the conjugate transpose. 
The covariance matrix is then decomposed in terms of eigenvalues and 

eigenvectors in order to separate the noise subspace to the signals subspace. 
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As explained in the paragraph 2.2 the MuSiC theory says that a threshold has to 

be chosen in order to divide the two subspaces, on the basis of the reduction in the 

eigenvalues amplitude. 

Despite it is possible to use different to face to this problem, e.g. Akaike’s 

Information Criteria, for what concern for this thesis, the signal subspaces is 

always associated only to the first eigenvalue having the greatest value, attributing 

the noise information to all others. 

The reason of this choice is that experimentally, displaying the value of all the 

eigenvalues on a plot, it has been verified that only the first one had a high value 

associable to the seismic signals, while all the others showed a near null value 

(figure 3.5). This is true also when multiple synthetic seismic sources were 

simulated. 

This characteristic is related to the fact that the covariance matrix has been created 

starting from only one wavelet coefficient per seismic station instead of the signal 

itself, the original version of MuSiC algorithm says. 

 

FIGURE 3.5 Example of eigenvalues and their related amplitudes obtained decomposing the 

covariance coefficients matrix 

 

After having selected and isolated the eigenvalues and the relative eigenvectors 

associated to the noise subspace, the algorithm continues its analysis, determining 
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the backazimuth and the slowness of coherent seismic phases presented in each 

considered signal interval. 

To make this, following the MuSiC method, the eigenvalues of the noise subspace 

En are used in conjunction by a set of steering vectors, to check where the 

projection of these on the noise subspace  is low. 

The Eq. 3.9 recalls the formula of the MuSiC estimator function D(k): 

 }�Q� = ~||�Q�∙x{|�                                                             (Eq. 3.9) 

 

The exploration of the noise subspace, is performed with a grid search method, 

defining different steering vectors with different couples of ux and uy slowness 

values, taken at regular steps between a minimum and a maximum  preselected 

range. A Steering vector is an L-dimensional complex vector containing responses 

of all L elements of the array to a narrowband source of unit power. 

For each node of the grid then, we obtain a value of D(k) function that is 

representative of  how the used steering vector,  associated to a defined couple of 

ux and  uy values represents the signal subspace. 

With a certain steering vector, the higher is the value of the D(k) function, the 

much representative its associated slowness values are.  

For each analysis performed the ux and uy grid limits are not fixed, but vary 

depending on the frequency band of the signal is being analyzed. 

The necessity to set different slowness limits is aimed to eliminate artifacts due to 

spatial aliasing and to assure that the analysis is performed within its validity 

range. There are some constrains that were considered structuring the algorithm 

analysis, some of them related to the use of the wavelet, some other already 

introduced in chapter 1 and strictly related to the use of the array.  

The first condition is based on the consideration that the wavelength of a wave  

has to be at least comparable with the array interspacing: 
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� = .� ≥ �		
� ����	�

����                                     (Eq. 3.10) 

 

To satisfy this, for an analyzed frequency band, the analysis is high limited in the 

explored slowness. This is done in order to consider only signals having the 

wavelength longer than the array interspacing, thus reducing the aliasing 

phenomenon. 

Another condition is related to the possibility of resolving the phase difference at 

the stations. To make it possible the wavelength of the signals must be 

comparable with the array aperture: 

 � = .� ≤ 2 ∙ �		
� 

�	��	�                                       (Eq. 3.11) 

 

To satisfy this condition, again, assuming we decided to analyze a certain interval 

of speed based on local geology and velocity medium,  it is enough to set  a lower 

limit in the wavefront slowness (1/v)  to be analyzed. 

The last condition is justified by the necessity that a seismic phase, to be analyzed, 

have to travel through the entire array. Considering the length of the considered 

wavelet at a given scale (t), the condition is expressed as: 

 � ≥ »¼¼2½23¾¼W¿¼¾.                                                           (Eq. 3.12) 

 

Considering that each DWT time intervals t has different length on the basis of the 

explored frequencies, also in this case, it is necessary to set a maximum value of 

slowness (1/v) to be analyzed. 

At the end of the process, when for each single node of the grid, the complete 

spectrum of the function D(k) function is obtained, the program  return as output, 

the ux and uy related to the maximum value of the D(k) spectrum. 
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With these values, we can obtain backazimuth and apparent speed values using 

the following relations: 

 À = tanU-��½/�S� 

ÂÃÄÄ  = Å�Sc : �½c                                                    (Eq. 3.13) 

 

The D(k) spectrum can also presented on a 2D polar plot (figure3.6). 

The diagram is structured in order to have on the X-axis the interval of analyzed 

East-West slowness interval, while the Y-axis the slowness component on the 

North-South direction. The advantage of using this plot is based on the possibility 

to read it as a compass diagram. Since the Y-axis coincides with the North-South 

direction and the X-axis with the East-West one, the position of the maximums of 

the D(k) function is easily be associate to a particular backazimuth. Different 

circular lines of equal apparent propagation speed, with increasing values toward 

the center, are also represented on the plot for better reference. Below there is a 

schematic representation of the diagram just introduced: 

 

 

FIGURE 3.6 Representation of the circular diagram used to plot the D(k) MuSiC spectrum. 
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As explain before,  the function D(k) is calculated independently for each single 

seismic component, but in order to be representative of the total seismic signal, 

we need combining the single seismic components spectrum D(k) all together. In 

order to do this, the DWT-MuSiC can follows two different strategies.  

The first, used to maximizing the coherence between the three components 

combines the components spectrum using the following relationship:  

 

 

��Æ� = Å∑ ����Æ�/���Æ�Ç �c·�F-                                              (Eq. 3.14) 

 

where the symbol ~ is the median of the function. 

The second method, that can be selected in place of the previous one, consists 

incomparing the value of D(k) for each component, creating a new spectrum 

taking for each position the maximum value among the three spectrum. 

 

 

                 (Eq. 3.15) 

 

 

The results in general are similar, but the choice of one instead of the other has to 

be evaluated in any single case. For each combination method in fact, the outputs 

can be slightly different depending if there are more different seismic phases and 

their energy contribution on each seismic component. In figure 3.8 there is an 

example of a backazimuth and slowness estimation relative to a simulated seismic 

phase coming from 45° N and having an apparent speed of 600m/s. The analysis 

has been performed with a simulated array having an aperture of 200 meters and 

composed by10 three-component  sensors (figure 3.7). 

)](),(),([)( 321 kDkDkDMaxkD =



 

FIGURE 3.7 Plan view of the synthetic array geometry

 

FIGURE 3.8 MuSiC analysis of a synthetic signal coming from 45° N and having an apparent 

speed of  600m/s. 

 

Plan view of the synthetic array geometry 

MuSiC analysis of a synthetic signal coming from 45° N and having an apparent 
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MuSiC analysis of a synthetic signal coming from 45° N and having an apparent 
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In the figure3.8 we can see the scalogram showing the wavelet coefficient of the 

signal (the 3 component together) and in correspondence to the interval with the 

higher energy, the results of the DWT-MuSiC analysis. The backazimuth and 

slowness results are presented by means of arrow. The direction where the arrow 

points, correspond to the backazimuth, whereas the speed of propagation is 

indicated by the color of the arrow itself. 

Figure3.9 shows a detail of the three seismic component spectrum from which the 

total D(k) function is reconstructed. 

As we can see from the amplitude of the signals in figure 3.9, the majority of the 

energy signal is contained in the horizontal component. While the vertical 

component is almost all composed of noise. 

 

 

 

FIGURE 3.9 MuSiC analysis of a synthetic signal coming from 45° N and having an apparent 

speed of 600m/s. 
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FIGURE 3.10 MuSiC analysis of a synthetic signal coming from 45° N and having an apparent 

speed of 600m/s. 

 

 

As it was previously described, it is possible to select the intervals where to 

execute the DWT-MuSiC analysis by setting a threshold value based on the 

maximum amplitude of the wavelet coefficients.  

In figure 3.11 we perform DWT-MuSiC, setting a lower threshold value. What is 

possible to notice is that the MuSiC analysis is performed on a greater number of 

coefficients. Where the signal energy is less, the coherence of the analysis 

decreases, showing only random orientations where the signal/noise ratio is too 

low. This show the importance of choosing a valid threshold value for saving 

computational time and to improve the readability of the results. 
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FIGURE 3.11MuSiC analysis of a synthetic signal coming from 45° N and having 

an apparent speed of 600m/s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3.4  POLARIZATION ESTIMATION

 

This paragraph describes

workflow, during which the polarization of the previously identified seismic 

phases are characterized.

The seismic wave field is a combination of polarized waves in the three

dimensional space. The polarization is a characteristic of the wave related to the 

displacement of particles that shows a preferred direction of motion depending on 

the source properties and the Earth structure.

generate a linear particle motion

type (P or S). Rayleigh waves, on

polarization. The characterization of the polarization is useful to improve the 

understanding of the source process and the Earth

recorded waves. The objective of the polarization analysis is the

the type of polarization (linear, ell

orientation  in the space, by means of the following parameters:

 

4) Polarization  azimuth

clockwise from the North. 0°<α< 360°

 

5) Polarization inclination β

measured from the vertical  0°<

 

FIGURE 3.12 Diagram showing polarization azimuth α a

reference system. 

3.4  POLARIZATION ESTIMATION 

his paragraph describes the second step of the DWT-MuSiC

workflow, during which the polarization of the previously identified seismic 

aracterized. 

field is a combination of polarized waves in the three

dimensional space. The polarization is a characteristic of the wave related to the 

displacement of particles that shows a preferred direction of motion depending on 

urce properties and the Earth structure. Body waves for example, 

linear particle motion with different directions depending on the wave 

type (P or S). Rayleigh waves, on the other hand, generate retrograde elliptical 

aracterization of the polarization is useful to improve the 

understanding of the source process and the Earth structures crossed by the 

recorded waves. The objective of the polarization analysis is the determination of 

the type of polarization (linear, elliptical, transversal or longitudinal) and its 

the space, by means of the following parameters: 

azimuth α = angle of the main polarization axis, measured 

clockwise from the North. 0°<α< 360° 

Polarization inclination β = vertical angle of the main polarization axis, 

measured from the vertical  0°<β< 90° 

 

Diagram showing polarization azimuth α and inclination β in a 
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MuSiC algorithm 

workflow, during which the polarization of the previously identified seismic 

field is a combination of polarized waves in the three-

dimensional space. The polarization is a characteristic of the wave related to the 

displacement of particles that shows a preferred direction of motion depending on 

Body waves for example, usually 

depending on the wave 

the other hand, generate retrograde elliptical 

aracterization of the polarization is useful to improve the 

structures crossed by the 

determination of 

iptical, transversal or longitudinal) and its 

= angle of the main polarization axis, measured 

= vertical angle of the main polarization axis, 

nd inclination β in a Cartesian 
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6) Polarization ellipticity ε= a parameter indicating how much a wavefront 

polarization is close to circular pattern. 0<ε< 1. A value of 0 identifies a 

linear polarization typical of body wave. Greater value, usually ε>0,5 

identify progressively a near circular polarization typical of surface waves. 

 

If the components oscillation have the same phase in fact, will produce a linear   

polarization, but if it is presented a phase shift in between components, these will 

generate an elliptical polarization as is shown in the figure 3.13. When the phase 

shift is exactly ±π/2°, then circular polarization case is verified. 

 

 

FIGURE 3.13 Various examples of polarization diagrams. From the left to the right the ellipticity 

value is increasing passing from a linear polarization to a circular one. ϕV and ϕH  represent the 

horizontal and vertical phases. 

 

 

Considering the coordinate system defined by the 3 seismic component registered 

by the seismic sensors, the ellipticity can be described by the relative phase 

variation of the horizontal component in relation with the vertical one. 

 

È = Å�YÉUYÊ��X�YÉUYË��
2                                                 (Eq. 3.16) 

 

where ϕx and ϕy are the phases along the East-West and North-South directions, 

while ϕz is the phase value on the vertical plane. a=4.44 and is a normalizing 

constant considering the maximum  phase difference of π between the vertical and  

each horizontal component. 
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Before describing the algorithm in detail, we need to clarify the reason why 

DWT-MuSiC is structured in such a way to perform the backazimuth and 

slowness estimation and from  polarization in 2 separate steps. 

The reason to structure the algorithm in this way is because, even if theoretically 

the slowness, the backazimuth and the polarization estimation could be done 

simultaneously, the computational time required to perform MuSiC calculation 

dealing with a 5-D space parameter (backazimuth, slowness, polarization azimuth, 

polarization inclination and ellipticity) is not acceptable to the scope for which 

DWT-MuSiC is thought. 

Considering so, it resulted practical to divide the process of estimation into two 

different steps reducing drastically the time needed for obtaining the results, 

without moreover having a negative dependence between the 2 steps. It has been 

experimented in fact that the polarization characterization of the algorithm doesn’t 

depends much on the success of previous analysis, even if its results would be not 

so accurate. For example if we decide to perform the analysis with a coarse grid 

search algorithm for time saving purpose, DWT-MuSiC is still able to find the 

signals polarization domain with good accuracy. 

The way how the polarization analysis is performed, is by starting a new MuSiC 

analysis searching also in this case the maximum D(k) estimator function’s with a 

grid search method. This time the function spans a 3-D space defined by the 

polarization parameters (α,βand ε). 

Despite the similarity of the previous step aimed to backazimuth and slowness 

estimation, there are some differences in the way how the polarization 

characterization is performed. 

Polarization in fact is calculated considering the interaction of all the 3 seismic 

components signals and for this reason the MuSiC estimator function D(k) has to 

be calculated taking into account the wavelet coefficients of the all 3 seismic 

component at the same time. This is done computing, for each DWT interval, the 

covariance matrix of the long concatenated vector coefficient C(s,t) defined as 

follows: 
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)];(),;(),;([),( tsCztsCytsCxtsC =                                  (Eq. 3.17) 

 

where Cx, Cy, Cz are the 3 component coefficients, s is the DWT decomposition 

level and t  is the time interval analyzed. 

After having analyzed the eigenstructure of the matrix, selecting the eigenvalues 

related to the noise and signal subspace as theory says, a new set of steering 

vectors are created  to span those subspaces. 

This time the steering vectors are defined differently, and vary only according to 

different values of α, βand ε, maintaining a fixed values of ux and uy slowness, as 

found in the first step of the analysis. In this case also the relative amplitudes of 

the steering vectors among the seismic components, is variable according the 

polarization. If we consider in fact the relation between the coordinates of the 

propagation vector in the sensor coordinates system, 

 

[ ]Ta ββαβα cos,sinsin,sincos ⋅⋅=                             (Eq. 3.18) 

 

an incoming wave s(t) generates three different amplitudes as output on a multi 

component sensor defined as sx(t), sy(t), and sz(t) .The response model to s(t) can 

thus be defined  as: 
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                                                                         (Eq. 3.19) 

 
 
where w(t) is  the signal source function. 

The steering vectors a(k), considering how the covariance matrix is structured, 

span 3 independent seismic components and so,  results from the concatenation of 

the 3 steering vectors related to the 3 components: 
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�Æ� = [
�Æ�S , 
�Æ�½ , 
�Æ�Ì]                                        (Eq. 3.20) 

 

After performing the analysis for all the DWT coefficients, the results are 

determined by checking for which position of the grid search, the  function has its 

maximum, returning as output, α, β and ε related to that position. 

The spectrum of the estimator function is displayed on a specific plot having on 

the x-axis the polarization azimuth, and on y-axis the  inclination.  

To show the variations of the polarization of the phases present in the whole 

seismic signal analyzed, the results are presented on a separate scalogram, with 

superimposed the polarization information.  

An example is shown in figure 3.14 where both the polarization and  slowness-

backazimuth relative to two synthetic simulated seismic phases. 

For that simulation we considered two seismic phases: the first is an S wave 

having a backazimuth of 50° N a speed of  900m/s, an incidence of 30° and a 

frequency of  5 Hz. 

The second is a Rayleigh wave having a backazimuth of 80° N, an apparent speed 

of  600m/s, a horizontal incidence and a frequency of  9 Hz. 

The analysis have been performed with the same simulated array shown in figure 

3.9 

The upper scalogram shows backazimuth and slowness results, while the lower 

one is associated to polarization characterization. 
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FIGURE 3.14 Completed analysis performed on a synthetic signal composed by two wavefronts 

(S wave and Rayleigh  wave). 

In the figure are presented the 2 scalograms relative to backazimuth and slowness outputs, and 

polarization outputs. In the lower part of the figure are reported also 2 representative plots 

showing the MuSiC polarization spectrum relative to both the simulated waves. 

 

 

The backazimuth and slowness results are presented in the upper scalogram by 

means of arrows, as explained in the previous paragraph.  

In the lower scalogram, the direction where the bar points corresponds to the 

azimuth of polarization, whereas the color represents its angle of inclination. The 

red circle, over imposed on the scalogram, gives a representation of the ellipticity 

of the associated main polarization. If the polarization is purely linear, the circle is 



62 

 

represented as a single small red dot. The larger is the circle the greater is the 

ellipticity. 

Presenting the results in such a way is useful to easily interpret the information 

about the wave field, for example comparing the backazimuth of the wavefronts 

with the polarization azimuth, helps understanding the type of the seismic wave 

crossing the array. 

The interpretations of the results as well as the presentation of some case studies 

are explained in the following chapter 4. 
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3.5 COMPUTATIONAL SPEED-UP 

 

After having completed, for all the DWT coefficients, the analysis to obtain all the 

wavefront characteristics, the next and last step of the algorithm is to increase the 

precision of the already obtained output. 

The parameters estimation using a grid search methods, in fact are strongly 

dependent on the numbers of nodes present in the search grid itself. Although the 

algorithm was designed in a way the user can select a fine grid search rather than 

a coarse one, it is not convenient in terms the computational resources to 

increments the precisions of results everywhere on the grid. 

What is more convenient in fact is just to have a higher precision in the 

surrounding of the model space where the MuSiC estimator function has its 

maximum value. 

The best solution, to save time and computational resources, is to calculate the 

MuSiC function D(k) starting with a relatively coarse grid search, and then 

increasing the accuracy of the results searching with a non linear optimization a 

better result. 

The way used to perform this optimization is the Nelder-Mead simplex algorithm, 

[J.A. Nelder, R. Mead, 1965]. This method is commonly used to find the 

minimum, or eventually the maximum of a function in a multidimensional space 

and it is generally applied to nonlinear optimization problems for which 

derivatives may not be known.  

The algorithm starts from an initial set of points representing solution estimates 

relative to an objective function F(x1,x2,x3,xn).  

The number of points supplied is one more than the spatial dimension of the 

model space. They form a “simplex” of n + 1 points within an-dimensional vector 

space. Examples of “simplices” include a line segment on a line, a triangle on a 

plane, a tetrahedron in a three-dimensional space and so forth. 
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The algorithm then evaluates the function at each point on the simplex and tries to 

extrapolate the values of the objective function measured at each test point, in 

order to find a new test point and to replace the old with the new one, and so on. 

It considers various ways of seeking a better estimate, including replacing one 

vertex of the simplex by its reflected image, or by shrinking or expanding the 

simplex.  

The basic approach is to replace the worst point with a point reflected through the 

centroid of the remaining n points. If this point is better than the best current 

point, then it can try stretching exponentially out along this line. On the other 

hand, if this new point isn't better than the previous value, then we are stepping 

across a valley, so it shrinks the simplex towards a better point.  

Although the user specifies an initial simplex of starting values, the algorithm is 

not constrained to search only within that simplex. This means that the user 

cannot force the algorithm to search only within a restricted region. The method is 

well suited to solve optimization problems where the objective function varies 

smoothly and is unimodal. 

The way how Nelder–Mead method is used by DWT-MuSiC algorithm, starting 

from the input results, is to define new values of the D(k) function, changing  the 

following parameters: 

 

1) East-West slowness vector ux  

2) North-South slowness vector uy 

3) Polarization azimuth α 

4) Polarization inclination β 

5) Ellipticity ε 

 

In figure 3.15 is reported an example of an array signal analyzed first with the 

MuSiC grid search algorithm (a), and then optimized with the use of the Nelder-

Mead simplex algorithm (b). 
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For that simulation we considered two different wavefronts. The first  is a P wave 

having a backazimuth of 45° N, an incidence of 90°,a speed of 1100m/s and a 

frequency of 4 Hz. 

The second is a Rayleigh wave having a backazimuth of 45° N with an apparent 

speed of  800m/s, incidence of 90° and a frequency of  8 Hz. 

 As can be seen from the results, the quality of the results is greatly improved 

 

 

 

. 

 

(a) 
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(b) 

 

FIGURE 3.15 Comparison between outputs before (a) and after(b) non-linear optimization. It is 

possible to notice the greater accuracy in the results and a better reliability in the identified 

seismic phases. 

 

 

After having explained in detail how the algorithm works, in the next chapter are 

presented some tests that show the results obtained in different scenarios. 
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CHAPTER 4: APPLICATION OF DWT-MUSIC TO 

SYNTHETIC AND ACTUAL DATASETS 

 

 

In this chapter are shown some indicative application of the DWT-MuSiC 

algorithm on synthetic datasets, performed to validate the methodology in 

different seismological scenarios. Together with the presentation of the synthetic 

tests, in paragraph 4.3 we show the results obtained applying the DWT-MuSiC to 

two different real cases: a volcano-tectonic event registered at Mount Vesuvius 

(Italy) and the analysis of array data acquired during an active seismic survey  

made at the Krafla caldera (Island). 

 

4.1 TESTS ON SYNTHETIC DATA 

 

During this work, for the development of the methodology a great number of 

synthetic tests have been executed in order to evaluate the capabilities and 

limitations of the DWT-MuSiC algorithm, checking the reliability of the obtained 

results. In this chapter we selected four significant tests among all those 

performed, to show in particular the applicability of the methodology in 

discriminating and characterizing: 

 

1) A single wavefront in low signal / noise ratio condition. 

2)  Multiple wavefronts partially overlapped, uncorrelated, having a similar 

frequency content but impinging on the array at different times. 

3) Multiple wavefronts, partially overlapped, uncorrelated, having different 

frequency content but impinging on array at the same time. 

4) A wavefront composed by different transient phases. In particular we 

simulated a seismogram with the first arrival corresponding to the P wave, 

followed by the S wave and a  Rayleigh wave having an elliptical 

polarization pattern. 
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For each performed test we present the results obtained with the DWT-MuSiC and 

we also compare the results obtained with other methodologies. In particular we 

considered the comparison of the DWT-MuSiC, to the standard beamforming 

analysis, and to the MuSiC analysis in the Fourier's domain. The aim of the 

comparison is to highlight the differences in executing array analysis in the time 

domain, in the frequency domain and in the wavelet domain. 

The beamforming method was already described in Chapter 1 and we briefly 

introduce here the MuSiC applied to the  Fourier domain. Instead of being carried 

on wavelet coefficients obtained through DWT, with this approach, the analysis is 

simply performed on the Fourier coefficients of the input signals. In this way it is 

possible to divide a broad band input signal into several monochromatic functions 

and perform an analysis similar to the MuSiC originally proposed by Smith. For 

each frequency, and its associated coefficients related to the signals registered at 

the array stations, we performed a MuSiC analysis in a similar way as for the 

DWT coefficients (see chapter 3).The main difference in the results, comparing 

the DWT-MuSiC algorithm is the complete loss of temporal information that 

especially in presence of transient signals, which are very common in seismology, 

represents a big limitation. 

For the execution of synthetic tests we used a synthetic small-aperture array 

composed of 10 stations and having an array aperture of 200m (Figure 4.1). This 

geometry mimics the typical setup of arrays used in different seismological 

applications.  

The position of the stations has been imagined to have a random distribution, 

equally distributed, in order to balance the resolution in all the directions, limiting 

at the same time the occurrence of spatial aliasing phenomena which can arise 

from a regular geometry of  the array. 



 

FIGURE 4.1 Plan view of the simulated array used to perform the synthetic tests.

The synthetic signals 

sine waves having a certain frequency.

To perform each synthetic test 

the entire wave to cross 

before the first appearance of the signal at the first station and 2 seconds after 

wavefront leaves the array.

In this way it was assured 

without loss of information

For each simulated wavefront the in

were: 

 

1) The backazimuth angle

2) The wavefront velocity

3) The angle of inclination of the 

4) The type of the seismic wave

Plan view of the simulated array used to perform the synthetic tests.

 

 were obtained simulating each seismic phase with a d

having a certain frequency. 

To perform each synthetic test we choose a time window long enough to permit 

the entire wave to cross all array stations, leaving a padding time 

before the first appearance of the signal at the first station and 2 seconds after 

leaves the array. 

it was assured that at all the stations, the entire signal was analyzed 

without loss of information. 

ted wavefront the input parameters used to generate the signals 

The backazimuth angle 

velocity 

The angle of inclination of the wavefront, respect to the vertical

The type of the seismic wave 
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Plan view of the simulated array used to perform the synthetic tests. 

were obtained simulating each seismic phase with a damped 

long enough to permit 

time of 2 seconds 

before the first appearance of the signal at the first station and 2 seconds after the 

the entire signal was analyzed 

used to generate the signals 

wavefront, respect to the vertical 
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5) The signal/noise ratio 

6) The relative arrival time of wavefronts referenced to the center of the array 

 

The noise simulated for the tests is assumed to be uncorrelated between the array 

stations and possessing a white spectrum. 

 

• Test 1: Detection  of a low signal to noise ratio signal 

 

In this first test it is shown the capability of the DWT-MuSiC algorithm in 

detecting and characterizing a single wavefront having a low signal/noise ratio.  

The aim of the test is to show how the DWT is able to detect coherent phases even 

if their energy is low compared to the uncorrelated background noise. The 

simulated wavefront has the following characteristics: 

 

1) P wave 

2) Speed of propagation of  900m/s 

3) backazimuth of 240° 

4) 40° of inclination 

5) Frequency of 10Hz. 

 

The minimum signal to noise ratio that is presented here was the lowest one that 

produced coherent results, and had a value of 1.5 

In figure 4.2 are reported the seismograms of the synthetic signals. 
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FIGURE 4.2 Synthetic seismograms used to perform the test1. 

 

The test was performed setting a threshold value of 30% of the maximum wavelet 

coefficients amplitude. This means that wavelet coefficients having lower 

amplitude have been ignored because they were deemed uninformative.  

The estimation of the backazimuth and slowness was performed on a grid of 

15x15 nodes while the polarization inclination and azimuth was calculated on a 

grid of 10x10 nodes. The results were obtained in about 2 minutes of computation 

with a dual core CPU @ 2.5 GHz laptop computer. 
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FIGURE 4.3 Results of the first test showing the correct characterization of a weak signal with a 

signal to noise ratio of 1.5.  The results in correspondence with the maximum energy of the signal 

show the presence of a P-wave having a S-W backazimuth and parallel polarization. Where the 

signal no noise amplitude  ratio decrease the results loose  coherence.     
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WAVEFRONT 9.4 1.3 240° 1310 239° 43° 0 

 

TABLE 4.1 In this table are reported the numerical results returned by the DWT-Analysis. The 

results refer to the interval identified by the 9.45 Hz frequency band and the 1.3 s time interval, 

where the signal presented its maximum energy.     

 

 

 

The results of the analysis are shown in figure 4.3 and in table 4.1. It is possible to 

see how DWT-MuSiC was able to recognize the presence of the wavefront 

characterizing it correctly in terms of backazimuth, slowness and polarization. 

Taking a look at the results reported in figure 4.3 and table 4,1, within the interval 

where the wavefront energy was maximum, we can see that the analysis correctly 

returned  a backazimuth value of 240° and an apparent speed of the wavefront of 
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~ 1300m/s. The apparent speed obtained in output is correctly greater than the real 

speed chosen to simulate the wavefront because its inclination angle of 40°. 

In the lower scalogram, we can see from the red circle marker, that the results 

indicate not only almost linear polarization, typical of a P wave, but also a 

concordance in the polarization azimuth and the wavefront backazimuth.  

 

• Test 2: characterization of 2 wavefronts partially overlapped having different 

frequency content and impinging at the array at different time. 

 

In this test we verified the capability of the algorithm in detecting and 

characterizing the arrival of two different wavefronts impinging the array at 

almost the same time but having different frequencies. The aim is to show how  

the DWT–MuSiC algorithm discriminate both the wavefronts, while the same 

operation is more difficult using the beamforming analysis and with the MuSiC 

analysis applied in the Fourier domain. 

The synthetic seismograms used for this test are made by the overlap of: 

 

1) The first wavefront associated to a P wave, speed of 900m/s, backazimuth 

of  240°, 45° of inclination and a frequency of 10Hz 

2) The second P wavefront, speed of 900m/s, backazimuth of 150°, 35° of 

inclination and a frequency of 4Hz. 

 

In figure 4.4 are reported the seismograms of the synthetic signal. 
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FIGURE 4.4 Synthetic seismograms used to perform the test 2. 

 

The test was performed setting a threshold value where to perform the analysis, 

based on the 40% of the maximum wavelet coefficients amplitude. The analysis 

on a dual core CPU @ 2.5GHz laptop took about 2 minutes to be performed. The 

estimation of the backazimuth and slowness was performed on a grid of 15x15 

nodes while the polarization inclination and azimuth was calculated on a grid of 

10x10 nodes. The results of the DWT-MuSiC analysis is reported in figure 4.5 

and in table 4.2: 
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FIGURE 4.5 Results of the first test showing the correct characterization of the 2 wavefront that 

partially overlap in time. The simulated P waved can be distinguish thanks to their different 

frequency content, permitting to isolate their own characteristics correctly.  
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Wavefront1 9.4 1.3 240° 1200 239 45° 0 

Wavefront 2 4.7 1.4 150° 1870 151° 32° 0 

 

TABLE 4.2 In this table are reported the numerical results returned by the DWT-Analysis. For the 

1
st
 wavefront the results refers to the interval identified by the 9.45 Hz frequency band and the 1.2 

s time interval . For the 2
nd

 wavefront the results refers to the interval identified by the 4.72 Hz 

frequency band and the 1.2 s time interval. where the signal presented its maximum energy.     
  

 

Taking a look at the results reported in figure 4.5 and table 4.2, we can see that 

performing the analysis both the wavefronts are correctly characterized in terms of 

backazimuth an apparent speed. 
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In the lower scalogram, the polarization results indicate for both the wavefronts a 

linear polarization, typical of a P wave, and a concordance in the polarization 

azimuth with the wavefronts backazimuth. Reading the results as well as the 

scalogram colorbar it is possible to check the value in degrees of the polarization 

inclination. 

Considering the same input signals, it is interesting to make a comparison with the 

other results obtained with a beamforming analysis, shown in figure 4.6 and the 

MuSiC analysis applied to the Fourier domain shown in figure 4.7. 

 

FIGURE 4.6 Results of the beamforming analysis showing the peak in the response spectrum 

produced by the two simulated wavefronts. The peak of the Beamforming spectrum  is in 

correspondence of  a backazimuth of 173° and  an apparent speed of 1600m/s 

 

 

As is possible to note the beamforming analysis show some limitation in returning 

the exact information of the two simulated wavefronts.  

The analysis in fact returns a significant peak positioned in a wrong location in 

correspondence of the values indicated in figure 4.6. A second peak of lower 



 

amplitude is also present, indicating the existence of another wavefront, but 

results shows that the 

caused only a smaller relative maximum 

an effect of the overlap

properly to evaluate sin

The results moreover do

wavefronts as well as about their arrival time.

 

 

FIGURE 4.7Results of the MuSiC analysis in the Fourier domain. It is possible to see the 

in the amplitude spectrum 

3.9 Hz, is characterized with a backazimuth of 148° and an apparent speed of 1935 m/s. The

their relative characterization

with a backazimuth of 242° and an apparent speed of 1310 m/s. 

 
 

 

 

 

 

amplitude is also present, indicating the existence of another wavefront, but 

shows that the presence of the wavefront having the lower frequency, 

smaller relative maximum in the response function

overlap of the 2 wavefronts that in this case can’t be isolated 

properly to evaluate singularly their contributions. 

The results moreover do not provide any information about the frequency of the 

as well as about their arrival time. 

of the MuSiC analysis in the Fourier domain. It is possible to see the 

in the amplitude spectrum associated to the 2 wavefronts. The 1
st
 wavefront, in correspondence of 

is characterized with a backazimuth of 148° and an apparent speed of 1935 m/s. The

their relative characterization.  The 2
nd

 wavefront, in correspondence of 10 Hz, is characterized 

with a backazimuth of 242° and an apparent speed of 1310 m/s.  
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amplitude is also present, indicating the existence of another wavefront, but 

of the wavefront having the lower frequency, 

in the response function. This is clearly 

of the 2 wavefronts that in this case can’t be isolated 

not provide any information about the frequency of the 

 

of the MuSiC analysis in the Fourier domain. It is possible to see the 2 peaks 

, in correspondence of 

is characterized with a backazimuth of 148° and an apparent speed of 1935 m/s. The with 

spondence of 10 Hz, is characterized 
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The results obtained with the MuSiC applied to Fourier domain are shown in 

figure 4.7. The analysis identified two clear peaks in the amplitude spectrum of 

the signals, in correspondence of the proper frequencies of the simulated 

wavefronts. The analysis performed at these frequencies, as can be seen from the 

results, correctly characterized the wavefronts backazimuth and apparent speed 

even if with a lower precision than the analysis performed with the DWT-MuSiC 

method. This technique was able to recognize two different wavefronts having 

different frequencies, but cannot locate them in the time domain. This makes 

impossible to perform any evaluation on transient signals that changes gradually 

their proprieties.  

 

• Test 3: Recognition of 2 wavefronts partially overlapped having the same  

frequency content but  impinging on the array at different times. 

 

In this test it is highlighted the capability of the algorithm in detecting and 

characterizing the arrival of two different wavefronts impinging the center of the 

array with a difference in time of 1 second but having the same frequency. The 

interesting of this test is to observe how of the DWT–MuSiC algorithm recognizes 

correctly both the wavefronts. Also in this case it is presented the comparison 

between the DWT-MuSiC methodology and both the beamforming technique and 

the MuSiC analysis applied to the Fourier domain. 

 The simulated wavefronts used in this test has the following characteristics: 

 

1) The first wavefront is a P wave, speed of 900m/s, backazimuth of 240°, 45° 

of inclination and a frequency of 5Hz.  

2) The second wavefront is an S wave having a traversal polarization, speed of 

800m/s, backazimuth of 150°, 30° of inclination and a frequency of 5Hz. 

 

In figure 4.8 we report the seismograms of the synthetic signal. 
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FIGURE 4.8 Synthetic seismograms used to perform the test 3. 

 

 

 

The DWT-MuSiC analysis was performed choosing a threshold value of the 

wavelet coefficient amplitude of the 40% of the maximum value. The analysis 

performed on a dual core CPU @ 2.5GHz laptop took about 3 minutes to be 

performed. The estimation of the backazimuth and slowness was performed on a 

grid of 15x15 nodes while the polarization inclination and azimuth was calculated 

on a grid of 10x10 nodes. 
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FIGURE 4.9 Results of the first test showing the correct characterization of the 2 wavefronts 

having the same frequency but impinging at the array with 1s. of difference. The simulated P 

waves can be clearly distinguish by their difference in backazimuths, speeds and polarizations.  

content, permitting to isolate their own characteristics correctly. 

 

 

 

 

 

 

 

 

TABLE 4.3 In this table are reported the numerical results returned by the DWT-Analysis. For the 

1
st
 wavefront the results refers to the interval identified by the 4.3 Hz frequency band and the 2.0 s 

time interval . For the 2
nd

 wavefront the results refers again  to the interval identified by 4.3 Hz 

frequency band  but  at  2.9 s time interval  where the latter signal presented its maximum energy.     
 

 

The results of the DWT-MuSiC analysis is reported in figure 4.9 and table 4.3. 

Taking a look at the results we can see that also on this test the analysis correctly 

returned the backazimuth and the apparent speed values relative to the simulated 

wavefronts. 
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Wavefront 1 4.3 2.0 239° 1110 240° 44° 0 

Wavefront 2 4.3 2.9 150° 1390 239° 89° 0 
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In the lower scalogram, we can see that the polarization results indicate for both 

the wavefronts a linear polarization, typical of the body wave. For the first wave 

the results show a concordance between the polarization azimuth and the 

backazimuth, but for the second one we see that the polarization azimuth is 

orthogonal to the wavefront backazimuth.  From these observations it is possible 

to deduce that the first wavefront is related to a P wave while the second one  is an 

S wave. Considering the same input signals, the results obtained  with a 

beamforming analysis, are shown in figure 4.10 while the MuSiC analysis applied 

to the Fourier domain are shown in figure 4.11. 

 

 

FIGURE 4.10 Results of the Beamforming analysis applied to the synthetic signals. The peak of 

the response function is in correspondence of a backazimuth of 150° and an apparent speed of 

1408 m/s  

 

As is possible to note the Beamforming analysis show also in this case some 

limits in returning the exact information of the 2 simulated wavefronts.  

The analysis in fact, as in the previous test, returned a peak positioned in an 

imprecise position. The results in this case show that the analysis prioritized the 



 

detection of the wavefront having the higher amplitud

relative peak in correspondence to the other one.

FIGURE 4.11 Results of the MuSiC analysis in the Fourier domain.

in the amplitude spectrum 

analysis returned a backazimuth of 234° and an apparent speed of 1343 m/s. The results in this 

case are not precise and the second wavefront remain undetected. This is cause by the 

the frequency domain of the 2 wavefronts, havi

 
 

The results obtained with the MuSiC

clear pick in the amplitude spectrum in correspondence of the frequency of 5 Hz. 

The analysis performed at this frequency, as 

returned only a single value of backazimuth and slowness leaving undetected the 

wavefront coming from 240°. This shows that with this methodology approach, 

when more than one wavefront with the same frequency is present, the results are 

only partially correc

phases leaving the other ones undetected, having also the possibility to generate 

some artifacts in the MuSiC response function, due to the reciprocal

 

detection of the wavefront having the higher amplitude attributing only a smaller 

relative peak in correspondence to the other one. 

Results of the MuSiC analysis in the Fourier domain. It is possible to see the  pea

in the amplitude spectrum associated to the 1st wavefront in correspondence o

analysis returned a backazimuth of 234° and an apparent speed of 1343 m/s. The results in this 

case are not precise and the second wavefront remain undetected. This is cause by the 

the frequency domain of the 2 wavefronts, having both 5 Hz..  

The results obtained with the MuSiC applied in the Fourier domain show only

clear pick in the amplitude spectrum in correspondence of the frequency of 5 Hz. 

The analysis performed at this frequency, as can be seen from figure 4.11, 

turned only a single value of backazimuth and slowness leaving undetected the 

wavefront coming from 240°. This shows that with this methodology approach, 

one wavefront with the same frequency is present, the results are 

ect, showing the presence in detecting one of the 2 seismic 

leaving the other ones undetected, having also the possibility to generate 

some artifacts in the MuSiC response function, due to the reciprocal
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e attributing only a smaller 

 

It is possible to see the  peak 

of 5 Hz. The MuSiC 

analysis returned a backazimuth of 234° and an apparent speed of 1343 m/s. The results in this 

case are not precise and the second wavefront remain undetected. This is cause by the overlap in 

applied in the Fourier domain show only one 

clear pick in the amplitude spectrum in correspondence of the frequency of 5 Hz. 

n from figure 4.11, 

turned only a single value of backazimuth and slowness leaving undetected the 

wavefront coming from 240°. This shows that with this methodology approach, 

one wavefront with the same frequency is present, the results are 

t, showing the presence in detecting one of the 2 seismic 

leaving the other ones undetected, having also the possibility to generate 

some artifacts in the MuSiC response function, due to the reciprocal interference. 
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• Test 4: Recognition of a transient seismogram composed by different 

wavefronts having different characteristics 

 

In this last test we simulated different kind of waves coming from the same 

seismic source. In particular it is first simulated the arrival of the P wave, 

followed by the S wave, again followed by the arrival of the Rayleigh tail. The 

scope of the test is to show how the DWT is able show the variation present in the 

seismogram due to these different waves. The simulated wavefront has the 

following characteristics: 

 

1) The P wave has a speed of 900m/s, backazimuth of 130°, 60° of 

inclination and a frequency of 10 Hz. 

2) The S wave has a speed of 700m/s, backazimuth of 130°, 30° of 

inclination and a frequency of 7 Hz. 

3) The Rayleigh wave has a speed of 500m/s, backazimuth of 130°, 90° of 

inclination and a frequency of 3 Hz. 

 

In figure 4.12 are reported the seismograms of the synthetic signal. 

 

FIGURE 4.12 Synthetic seismograms used to perform the test  
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The analysis was performed choosing a threshold value of the wavelet coefficient 

amplitude of the 30% of its maximum value. The analysis on a dual core CPU @ 

2.5GHz laptop typical laptop took 2 minutes to be performed. The estimation of 

the backazimuth and slowness was performed on a grid of 15x15 nodes while the 

polarization inclination and azimuth was calculated on a grid of 10x10 nodes. The 

results of the analysis are shown in figure 4.13 and in table 4.4. 

 

FIGURE 4.13 Results of the DWT-MuSiC analysis showing the characteristics of the 3 different 

simulated wavefronts. From the left to the right is it possible to identify the P wave front  
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Wavefront 1 8.6 1.5 239° 970 234° 60° 0 

Wavefront 2 8.6 2.5 238° 1480 58° 89° 0 

Wavefront 3 4.4 3.5 238° 510 238° 35° 0.85 

TABLE 4.4 In this table are reported the numerical results returned by the DWT-Analysis. The 

characterization data of the wavefronts is referred to the DWT intervals considered where the 

signals presented their maximum energy.     
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As is possible to see, DWT-MuSiC is able to detect the variations in time present 

in the seismogram.  If we take a look at the results,  we can see that the analysis 

correctly recognized the presence of three wavefronts coming from 130° and 

having different characteristics. Considering together the lower and the upper 

scalograms it is possible to see how the firsts two wavefronts have an almost 

linear polarization, typical of the body waves while the third one present an high 

level of ellipticity indicated by the big red circle. The concordance between the 

polarization azimuth and the wavefront backazimuth make it possible to 

distinguish the P wave with the SH wave that, conversely, possess a polarization 

angle orthogonal to the backazimuth. All these information deduced from the 

results would not have been available from beamforming analysis as shown in 

figure 4.14. The results in fact only show one peak in the estimator function 

making the different phases undetectable. 

 

 

FIGURE 4.14Results of the beamforming analysis performed on the 3 wavefronts. The 

Beamforming analysis returned  only one peak in correspondence of a backazimuth of 129° and an 

apparent speed of 486 m/s   
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With the MuSiC analysis applied in the Fourier domain (figure 4.15) on the 

contrary is possible to distinguish the three different wavefronts, but again, 

without the possibility to collocate it in the time domain it is impossible to deduce 

even the basic feature of the seismic signal. 

 

 

FIGURE 4.15 Outputs obtained performing the MuSiC analysis in the Fourier domain. It is 

possible to see the three peaks associated to the 3 wavefronts with the returned characterization. 

The first peak at 3 Hz returned a backazimuth of 129° and an apparent speed of 507 m/s. The 

second peak at 7 Hz returned a backazimuth of 129° and an apparent speed of 1352, while the 3
rd

 

one at 10 Hz returned a backazimuth of 130° and an apparent speed of  1020 m/s 
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4.2 APPLICATION TO A VOLCANO-TECTONIC EVENT RECORDED 

AT MOUNT VESUVIUS 

 

Mt. Vesuvius is one of the most dangerous volcanos in the world due to its 

proximity to the urban area of Naples and its volcanic activity is characterized by 

explosive eruptions. 

Mount Vesuvius background seismicity has been described in various studies 

[Castellano et al., 2002; Del Pezzo et al., 2004, and references therein], and to 

monitor its activity, Vesuvius Observatory, operates a continuous surveillance 

for the detection of possible precursors of eruptions. 

Together with different geophysical and geochemical instruments and a seismic 

network also array are used for monitoring purposes,  especially to detect non 

impulsive sources generating signals, like volcanic tremor and LP events where 

the evaluation of the wavefronts characteristics offer a powerful tool to 

estimate the temporal and spatial evolution of seismic source [Bianco et al., 

2005]. 

Examples of application of these methods to volcanic signals have been reported, 

for example, for Kilauea [Saccorotti et al., 2001], Stromboli [Chouet et al., 

1997, Deception Island [Ibanez et al., 2000], and Mt. Vesuvius [Saccorotti et 

al., 2001]. 

The array analysis also helps in discriminating artificial seismic from natural 

events simply determining if the backazimuth of a seismic phase point or not 

toward the volcano. 

The application of the DWT-MuSiC to Mount Vesuvius array data consisted in 

the analysis of seismograms registered with a small-aperture array that has been 

installed from 2006 to 2010 on the SW side of Mt. Vesuvius, to improve the 

seismic monitoring of the volcano. It was composed of 14 multi component 

Lennartz LE-3D seismometers.  

The figure 4.16 shows the configuration of the array and its location respect to the 

crater. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.16 Plan view of the array used to acquire the s

upper right corner the position relative to the Mont Vesuvius crater.

 

 

 

The 11/09/2009 at 21:06 UTC

Md=1.0 that is reported 

Plan view of the array used to acquire the seismic data. In the 

upper right corner the position relative to the Mont Vesuvius crater.

11/09/2009 at 21:06 UTC, the array registered an event of magnitude 

that is reported in figure 4.17. 
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eismic data. In the 

upper right corner the position relative to the Mont Vesuvius crater. 

, the array registered an event of magnitude 
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FIGURE 4.17 Seismograms of the event recorded the 11/09/2009 at 21:06 UTC. 

 

 

The analysis was performed on a 2.5 s window on the seismograms pre-processed 

to remove the mean value. The input seismograms used for the analysis are shown 

in figure 4.18. 

 



90 

 

 

FIGURE 4.18 Seismogram after pre-processing 

 

 

FIGURE 4.19 Results of the DWT-MuSiC analysis showing three different identified phases. In 

red the P waves, in green the S waves and in magenta the coda waves. 
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The results of the analysis indicate that the first phases identified, highlighted 

with a red box in figure 4.19 is associated to P waves, which propagates with an 

apparent velocity greater than 2000 m/s, with a backazimuth of ~80°, or in 

other words pointing toward the crater area. This is in agreement with the 

locations obtained for the same events using the ordinary location technique 

applied to the data recorded by the permanent seismic network. We can observe 

the increment of the coefficient energy interpreted as the arrival of the S wave and 

having a greater amplitude (Green box in figure 4.19) 

The S waves shares the same backazimuth of the P waves but have a lower 

apparent speed. The polarization angle moreover is deeper and its azimuth is 

orthogonal to the backazimuth indication, as expected for S waves. 

The coda part of the seismogram presents highly scattered backazimuth values, 

revealing the absence of a predominant direction of propagation of this wavefield 

(Magenta box in figure 4.19). This is in accordance with previous studies 

concerning the wavefield of coda waves at Mt. Vesuvius. [e.g. Saccorotti et 

al.,2001 ; Tramelli et al., 2009]. However they show that DWT-MuSiC has the 

ability to identify and discriminate seismic phases, proving a set of important 

parameters associated with them. This suggests that results of DWT-MuSiC can 

be used as a starting point for the development of methods for the automatic 

detection of P and S phases from seismic array recording of earthquakes. 
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4.3 APPLICATION TO AN ACTIVE SEISMIC EXPERIMENT AT 

KRAFLA CALDERA (ICELAND) 

 

Krafla Caldera in northern Iceland is a well-monitored and extensively drilled 

caldera system that underwent a major rifting and eruption episode in 1975 to 

1984. In 2009, during the execution of a well, for the Iceland Deep Drilling 

Project (IDDP), the borehole IDDP-1, aimed to reach supercritical fluids at 4 km 

depth in Krafla Caldera, unexpectedly encountered rhyolite melt at 2.1 km depth, 

that was not hypnotized to be there [e.g. Hólmgeirssona et al., 2014]. The drill site 

in fact was chosen paradoxically because magma was not expected at shallow 

depth, based on the occurrence of seismicity to twice that depth beneath the site 

during the last eruption, and on 3-D resistivity structure.  

 

 

FIGURE 4.20 3D representation of the IDDP-1 borehole trajectory and the magmatic chamber 

encountered. 

 

 



 

This discovery opened

thermal, chemical, and mechanical behavior of the active magma

discovered by IDDP-

Friðleifsson et al., 2014]

Further drillings have been conducted in order to improve the understanding of 

volcanic hazards in calderas and better interpretation of precursory deformation 

and seismic signals that may herald eruption. 

Part of the experiment  

of Iceland and ISOR 

aimed to determine the geometry and the physical properties of the shallow (2

km) magma chamber 

During the experiment were positioned 30 seismic stations, 2 seismic array

were exploded59 artificial shots in order to collect enough data.

We checked the capability of the DWT

seismic phases, which ca

the seismogram acquired by one of the arra

The array had an aperture of ~140m and the stations were located as in figure 

4.21. 

FIGURE 4.21Plan view of the array B used for 

ed the way to the project KMDP finalized to understand the 

thermal, chemical, and mechanical behavior of the active magma

-1 and the ductile rocks enclosing it. [e.g. Elders

2014] 

have been conducted in order to improve the understanding of 

volcanic hazards in calderas and better interpretation of precursory deformation 

and seismic signals that may herald eruption.  

Part of the experiment  was carried out by INGV in collaboration with University 

 on 6-16 September 2015, and consisted in a seismic survey 

aimed to determine the geometry and the physical properties of the shallow (2

km) magma chamber through the analysis of its reflected phases. 

During the experiment were positioned 30 seismic stations, 2 seismic array

59 artificial shots in order to collect enough data. 

the capability of the DWT-MuSiC to detect some P

which can be associate to the top of the magma chamber.

the seismogram acquired by one of the arrays, called the array “B”. 

The array had an aperture of ~140m and the stations were located as in figure 

Plan view of the array B used for the active seismic survey at Krafka
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the way to the project KMDP finalized to understand the 

thermal, chemical, and mechanical behavior of the active magma system 

Elders et al. ,2014; 

have been conducted in order to improve the understanding of 

volcanic hazards in calderas and better interpretation of precursory deformation 

oration with University 

consisted in a seismic survey 

aimed to determine the geometry and the physical properties of the shallow (2.1 

During the experiment were positioned 30 seismic stations, 2 seismic arrays and 

P-to-S converted 

n be associate to the top of the magma chamber. We used 

, called the array “B”.  

The array had an aperture of ~140m and the stations were located as in figure 

 

seismic survey at Krafka caldera. 
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At this array were registered different shots identified by the letter T and a 

progressive number, having the source location as shown in figure 4.22 

 

FIGURE 4.22 Map of the array B location and the position of the shots. 

 

 

The case presented in this thesis is the seismic acquisition associated with the T03 

shot. The motivation in choosing this shot was based on the better quality of the 

signal and the bigger distance from the shot to the array, that better approximates 

the far field condition necessary for the array analysis. 

We show in figure 4.23 the seismograms registered at the array stations: 
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FIGURE 4.23 Seismograms relative to the shot T3 ,  used to perform the test. The used 

seismograms are relative to a time window of 2.5 seconds. The raw signals before being used has 

been optimized to remove the mean error on the tracks and normalize to level out the relative 

amplitudes. 

 

 

We selected a 2.5 s window at the beginning of the signal. After having removed 

the mean on the signals we performed the DWT-MuSiC analysis obtaining the 

following results (figure 4.24): 
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FIGURE 4.24 Results of the DWT-MuSiC analysis showing three different 

identified phases. In red the P waves, in green the S waves and in magenta the 

coda wave. 

 

 

From the analysis results it is possible to note a general trend of the wavefronts 

that show a coherent backazimuth direction of 70°-80° in accord to the relative 

position of the shot T03 respect to the array.  We can also observe that the greatest 

part of the signal energy is localized on the frequency band between 3 and 10 Hz, 

in the time intervals comprise to 1.0 and 1.5 s. Looking at the results more in 

details it is possible moreover to distinguish different seismic phases. In particular 

is possible to highlight some coherent phases located at the beginning of the 

seismogram (highlighted in red in the figure 4.24) that can be associated to the 

first arrival of the P waves. This can also be observed in the same position in the 

polarization results where, it is possible to observe a low polarization inclination 

angle  and a concordance in polarization azimuth and wavefront backazimuth. 
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Proceeding the analysis of the seismogram it is possible to highlight also another 

group of seismic phases (green circled in the figure 4.24) that may represent the 

reflected waves from the magmatic chamber. 

These phases have a Nord-West backazimuth in contraposition to the general 

East-North-East trend. The resulting speed is lower and also the polarization 

azimuth, shows a direction which differs to the wavefront backazimuth. The third 

part of the seismogram that is possible to identify, are the coda waves (circled in 

blue) that present a lower frequency and a lower speed of propagation. They are 

likely to be associated to surface waves generated by the shot. 

We can affirm that the S wave evidenced by the analysis were likely to be 

generated at the top of the magmatic chamber because the artificial source used 

for this survey, in absence of a discontinuity is only capable producing P and 

Rayleigh waves.  In conclusion it is possible to affirm that even if the condition to 

perform this kind of analysis was not optimal, due to the complex wavefield and 

the low signal/noise ratio, it is possible to use the DWT-MuSiC as a tool to 

highlight the presence of some specific phase within signals generated by artificial 

shots. In this case the use of DWT-MuSiC clearly evidenced the presence of a 

converted P-to-S seismic phase. The analysis of all the dataset would provide 

important information about the position of the magmatic chamber and in 

delineating its shape. 
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CONCLUSIONS 

 

The main purpose of this PhD project was develop an innovative methodology for 

the seismic array data analysis able to return a complete characterization of the 

seismic wavefield and useful to be used in different geophysical contests like 

volcanic monitoring, identification of underground structures, characterization of 

ambient noise,  identification of wake seismic signal etc. 

The implemented methodology, named DWT-MuSiC (Discrete Wavelet 

Transform - Multiple Signals Classification), has shown to be able to perform 

near-real time analysis providing, in different contests and even in presence of 

multiple seismic sources, the detection of the seismic phases and the 

characterization of their parameters, in terms of direction of arrival (backazimuth), 

apparent speed of propagation and polarization. The method, moreover, being 

based on the discrete wavelet decomposition of the seismogram, is also capable to 

reference the results in terms of time and frequency content, making in this way 

possible the analysis of transient seismic signals.   

The development of the DWT-MuSiC algorithm was made completely from 

scratch, creating a tool with Python, a modern and versatile open-source 

programming code that, and the time of writing, this tool is intended to be 

distributable in the next future to the scientific community through a stand-alone 

package to be used in various geophysical contests.  

The realization of the thesis was split in three different phases: 

 

1) The design and development of the chosen methodology in Python language 

2) Its validation by means of editable synthetic signals, specifically generated 

by new Python language scripts 

3) The execution of some comparison tests between the DWT-MuSiC 

algorithm and  different array analysis techniques, also  in this case 

implemented  in Python language from scratch  

4) The application of the DWT-MUSIC to 2 different real cases; the first to 

volcano-tectonic array data registered at Mount Vesuvius, Italy,  and the 
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second to data acquired during an active seismic survey at Krafla caldera, 

Island. 

 

The synthetic tests performed with the DWT-MuSiC analysis have shown the 

ability of the algorithm to detect wake signals also on signals that present to noise 

ratio of 1.5. The tests moreover verified that the method returned correct 

information in those cases where the analysis is performed on multiple seismic 

phases that overlap in terms of time of registration or / and frequency content of 

the signals themselves. The comparison between other methodology like the 

beamforming and MuSiC itself applied in the Fourier domain, shown how the 

information returned by the DWT-MuSiC  was  much more complete.  

The use of discrete wavelets and the optimization algorithm implemented in the 

analysis permit moreover to save computational time analyzing only the important 

data, allowing the recovery of hidden information when more than one wavefronts 

overlap. 

The application to the real cases was important to test the applicability of the 

methodology in different contests. The analysis performed on the data collected at 

Mount Vesuvius has shown that the registered event was confirmed to be a natural 

volcano-tectonic event, excluding the possibility of an artificial explosion. This 

was possible collocating the direction of  source  from the  backazimuth analysis 

and identifying different seismic phases in the seismogram typical of the 

seismicity of the area.  The analysis of the array data collected at the Krafla 

caldera, confirmed the presence of some reflected S phase in the seismogram, 

caused by the presence of a shallow magmatic chamber.  The evidence of the 

reflected S phase suggests the possibility to use the DWT-MuSiC as a support 

methodology in acquiring useful information to map the magmatic chamber itself. 

To conclude, the DWT MuSiC methodology gave promising results and it will be 

interesting to test possible further application of the methodology that could 

involve also other field of application like detection of local micro-earthquakes, 

real-time seismological volcano monitoring , industrial applications (e.g. seismic-
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while-drilling, wide-angle exploration), or also engineering applications like 

detection and characterization of nuclear detonations. 
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