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Abstract 

In a context of system biology concepts applied to livestock, animal nutrition can be considered as 

the netwotk interconnecting metabolic, physiologic and genetic aspects. The aim of this Thesis was 

to detect markers associated with productive traits and metabolic pathways in pigs, merging analyses 

on pig genome, transcriptome and metabolome. Several approaches of target metabolomics, target 

re-sequencing of pig genome portions and RNA-seq have been performed, adding classical lab 

validations. Analysis of the variability in pig genes related to metabolism like bitter taste receptors 

genes (TAS2R), fatty acids receptors genes (GPR120), KMO and others have been carried out in 

different pig populations, including commercial breeds (Large White, Duroc, Landrace, Pietran, 

Meishan) and Italian local pig breeds (Mora Romagnola, Nero Siciliano, Apulo-Calabrese, Casertana 

and Cinta Senese) as well as wild boars. Moreover, genome wide association analyses based on 

metabolites and, for most metabotypes, significant SNPs were close or within genes directly involved 

in the catabolic or anabolic pathways of the targeted metabolites. A few of these markers were 

associated (P nominal value <0.01) with production and carcass traits. According to our results, the 

development of precision feeding strategies focused on specific amino acid needs of the animals 

according to their genotype in genes involved in the amino acid metabolism pathways would be one 

of the envisaged perspectives of application in pig nutrigenetics and, more generally, in livestock 

nutrition. 
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1. General Introduction  

Nutrition has always been one of the most important issue related to human health and welfare. As 

already Hippocrates stated long time ago (“Let food be thy medicine and medicine be thy food”, 

Hippocrates, 431 B.C.), there is a bond, a very close connection, between nutrition and physiology 

not only in humans, but more in general in all the living organisms. In fact, food components 

introduced in a organism through diet could affect not only its metabolism but also its immune system 

response, its gut microbiota or its cell proliferation and signalling, preventing in some cases the 

development of diseases like cancer (Pardee, 1974; Donaldson, 2004; Kau et al., 2011).  

In livestock, nutrition and diet are fundamental for animal health and welfare, and are strictly 

connected with the rearing methods and breedings. The choice of the right raw materials to feed 

animals could prevent the massive use of antibiotics and drugs for prophylaxis, increasing some 

disease resistances in several livestock animals (Stein, 2002; Patterson and Burkholder, 2003; Castillo 

et al., 2004). Moreover, animal diet could also affect different phenotypes related to productive traits, 

such as animal growth, feed intake, reproductive performances, physiology conditions, litter size and 

so on (Romanov, 1999; Chagas et al., 2007; Gonzàles-Alvarado et al., 2007; Santos et al., 2011).  

Finally, nutrition is related to feed intake which is the centre of a network interconnecting multiple 

metabolic, physiologic and genetic aspects. This network of relationships can be included in the 

complex concept of system biology, called also integrated metabolism (Zeisel et al., 2001; Nicholson 

et al., 2004).   

 

1.1. “Omics” Sciences: genomics, transcriptomics and metabolomics 

The Central Dogma of Molecular Biology, enunciated by Crick in 1958, states that in living organism 

DNA carries the genetic information that is tranfered to RNA through a biological process called 

transcription and then the sequence information is translated in proteins following the genetic code 

thanks to the ribosomial process called translation (Crick, 1970). Proteins are the biomolecules 

responsible for the phenotype, including all the external observable characteristics and features of an 

individual. The role of proteins is also extended to organism physiology and metabolism because a 

substantial proportion of them are enzymes involved in all the biochemical pathways for synthesis 

and transformation of all biological molecules (Fairbanks and Andersen, 1999).  
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The understanding of the path of the information flow from genes to phenotype (proteins) is one of 

the main concern of modern molecular biology, considering all the steps included in this process of 

information transfer. In order to describe the global study and analysis of genes, transcripts (RNAs), 

proteins and metabolites (including all the biological molecules obtained from a whatever metabolic 

pathway) 4 popular terms have been widely estabilshed and accepted, ending with the Greek suffix 

“-ome” with the meaning of “complete”: genomics, transcriptomics, proteomics and metabolomics 

(Mooser and Ordovas, 2003).  

Genomics is considered the analysis of all the genes present in a genome of a given organism, 

describing their DNA sequence, structure in exons/introns and mapping on chromosomes. Genomics 

can also include functional and comparative approaches studying how genes interact with each other 

in order to define better the role of different genes (Tyers and Mann, 2003). Transcriptomics can be 

defined as the analysis of all the RNAs species (including mRNAs, non-coding RNAs and small 

RNAs) present in a tissue through cDNA sequencing or using oligonucleotide microarray technology 

(Ozsolak and Milos, 2011). This analysis level is very complemetary to genomics and allows to 

understand the role played by functional elements of a genome, their expression and their quantity in 

a particular tissue in a particular physiological condition of an organism (Wang et al., 2009).  

Proteomics and metabolomics can be considered the other facets of biological complexity in a living 

organism: even if they are strictly related because most of the times enzymes involved in a metabolic 

pathway lead to the production of several metabolites, proteomics deals with the characterization of 

all the proteins present in a particular tissue including the analysis of their distribution, abundance, 

post-translation modifications and functions (Mooser and Ordovas, 2003). Metabolomics, on the 

other hand, aims to analyze all the metabolites in a biological sample, which could include a large 

range of biomolecules such as proteins, small oligopeptides, aminoacids, glicoproteins, sugars, lipids, 

fatty acids, nucleotides and so on. These numerous analytes have very different physiological and 

chemical properties occurring at different abundance levels (Dettmer et al., 2006) and can be defined 

as the biochemical substrates or products of enzymatic reactions (Fontanesi, 2016). However, 

obtaining a complete characterization of all the metabolites present in a complex biological organism 

in several conditions is still a tricky issue (Patti et al., 2012). 

Because proteome and metabolome are at the end of the “Omics” cascade, they can be considered as 

internal phenotypes, a sort of expressed (and detectable) profiles with morfological and functional 

relevance in an organism (Raamsdonk et al., 2001).  
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Finally, an integrative analysis combining genomics, transcriptomics, proteomics and metabolomics 

would provide a complementary and global view of genome organization, cellular function and 

responses to enviroment of complex systems (Hawkins et al., 2010).  

 

1.2. Molecular approaches and biotechnologies behind “Omics” Sciences 

During the last few years, the technological advances in biology has led to the comprehension of the 

emerging field of system biology. In particular, the possibility to investigate and analyze at the same 

time the whole genome, transcriptome, proteome and metabolome of an organism, in particular 

physiologic conditions or in response of a given stimulus, is fundamental for the better understanding 

of the biochemical and biological mechanisms in a complex system (Dettmer et al., 2006). Due to 

their different biological features, DNA, RNA, proteins and metabolites can be detected using 

different technologies, according to the investigation. In general, DNA and RNA have been so far 

analyzed with DNA sequencing approaches or using array technologies (Ozsolak and Milos, 2011). 

On the other hand, comprehensive metabolomics analyses require several approaches based on mass 

spectometry, due to the large variety of physical and chemical properties of metabolites (Bino et al., 

2004). Another strategy used in metabolomic investigations is the Nucleic Magnetic Resonance 

(NMR) spectroscopy, used mainly for high-throughtput metabolic profiles (Dettmer et al., 2006). 

More detailed metabolomic technologies are explained in Paragraph 1.2.2.     

 

 1.2.1 Genomics and Transcriptomics: Next Generation Sequencing technologies   

Recently, the development of high-throughput next generation DNA sequencing (NGS) technologies 

revoluzioned genomics and transcriptomics, including the possibility to obtain Whole Genome 

Sequencing (WGS) from a pool or from an individual or to obtain Gene Targeted Resequencing with 

very little costs (for example, the barrier of $1000 genome has been broken; van Dijk et al., 2014). 

NGS can also detect some genomic rearrangements such as copy-number variants or gene-fusion 

events, allowing the better understanding of genome dynamics (Hawkins et al., 2010). In 

trascriptomics, RNA-Seq method (RNA sequencing), based on cDNA libraries sequencing through 

reverse transcription, allows to both mapping and quantifying the population of RNA (total or 

fractioned) present in a given tissue or even cell (Beyer et al., 2007; Wang et al., 2009; Ozsolak and 

Milos, 2011). RNA-Seq can detect alternative splice variants and includes also small RNAs 

sequencing which are involved in several trascriptional and post-trascriptional regulation 

mechanisms. NGS platforms that have been mainly used over the past 10 years are 454 (Roche), 
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Illumina, SOLiD (Thermo Fisher Scientific), Ion Torrent (Thermo Fisher Scientific) and Pacific 

Biosciences (PacBio). These platforms are based on different NGS methods: while Illumina, SOLiD 

and 454 use optical detection of incorporated nucleotides using fluorescence and camera scanning, 

Ion Torrent does not require any imaging technology because it is based on a semiconductor 

sequencing in which a proton is released during nucleotide incorporation and it is subsequently 

detected by ion sensors. Sequencing platforms described above generate short reads, in a range from 

35 to 400 bp excepted the 454 instruments which can generate reads of maximum 1 kb. PacBio 

platforms, on the other hand, provide extremely long reads of 20 kb and more and it is considered the 

ideal tool to finish de novo genome assemblies or improve genome drafts (van Dijk et al., 2014).  

  

1.2.2. Metabolomics data analysis and application in livestock 

In livestock, metabolomics has alrealdy contribute to add more information on the physiologic and 

metabolic state of animals detecing and quantifying hundreds of metabolites in a biological sample 

(e.g. serum, plasma, milk and so on). Metabotypes constitute internal or molecular phenotypes which 

are defined by the amount of metabolites in a sample and can be influenced by genetical and 

environmental factors (Fontanesi, 2016). Application of metabolomics to livestock and animal 

breeding can refine and improve trait descriptions, characterizing more intermediate phenotypes 

related to productive traits such as growth rate, fat deposition, milk production and so on. 

In general, as described by Junot and colleagues (2014), metabolites can be classified in endogenous 

metabolites and xenobiotics; the first ones are produced directly by the biochemical processes of the 

organism while the second ones are all the chemical compounds present in the biological sample 

derived from external molecules introduced and, in some cases, transformed by the organism.  

Because of the heterogeneity and the instability of the molecular species constituiting metabolites, 

there is no a technology able to detect precisely the whole metabolome (Fontanesi, 2016). However, 

the analytica platforms mainly used for metabolomics are based on mass spectrometry (MS), high-

performace liquid-phase chromatography (HPLC) and nuclear magnetic resonance (NMR) 

spectrometry (Dettmer et al., 2006). Approaches such as liquid-cromatorgaphy/mass-spectrometry 

(LC/MS) an NMR are considered untargeted because they detect as many metabolites as possible 

through different peaks (MS) or spectra (NMR) but not always they are able to characterize all of 

them in terms of metabolites structure and require appropriate and very complex statistical methods 

with multivariate approaches (Alonso et al., 2015; Yi et al., 2016). On the other hand, the targeted 

metabolomics approaches like gas-cromatography/mass-spectrometry (GC/MS) and flow injection 
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analysis MS/MS are based on preselected metabolites which are considered enough informative to 

describe biological and physiological conditions of an organism. Therefore, in targeted approaches, 

specific known metabolites are profiled and quantified with precision (Yi et al., 2016). 

Metabolomics data analyses require an a priori biological pathway and gene network analyses, for 

which there are some dedicated databases, for example the Kyoto Encyclopedia of Genes and 

Genomes (KEGG; Kanehisha et al., 2014). Generally speaking, raw metabolomics data must be 

processed to reduce complexity and enhance metabolically significant pathways in order to obtain 

practicable data matrices. According to Yi and colleagues (2016), extracting information from 

metabolomics data requires 4 steps: a) Pre-processing which includes noise filtering, peak detection 

and normalization steps; b) Identification of metabolites analysing accurately peaks and spectra, for 

which there are many tools and softwares according to the technology used for metabolomics 

analysis; c) Variable selection which aims to extract relevant metabolites among all the detected ones 

with essential roles in metabolism; d) Modeling of the data, the final step able to extract information 

from biological and physiological events occurring in the organism.  

Biological pathways are fundamental in metabolomics analysis to group metabolites that are linked 

to each other because of subsequent enzymatic and biochemical reactions: for this reason, several 

methodologies have been developed to perform metabolite enrichment analysis (for example the web-

based tool Metabolite Set Enrichment Analysis, MSEA; Xia and Wishart, 2010). Finally, network 

reconstruction methods based on system biology can help to better understand the complexity of 

metabolomics in livestock and to link metabolomics with genomics and transcriptomics, reaching a 

more complex and complete overview of the state or the condition of an animal (Fontanesi, 2016).    

 

 1.2.3. Merging Genomics and Metabolomics in livestock: mGWAS approach 

In literature, only few studies have been published on the integration of metabolomics with livestock 

genomics (Fontanesi, 2016). In particular, genetic variants occurring in some key genes of metabolic 

pathways might affect the level of many metabolites in animal biofluids and tissues, leading to 

changes of their metabolomic profiles. These metabolites controlled and influenced by genetics are 

defined as metabotypes and several studies in humans showed that mutations in genes related to 

metabolic pathways are associated with the level of one or more linked metabolites (Suhre and 

Gieger, 2012). These metabolite-based genome-wide association studies (mGWAS) provide the 

possibility to analyze and detect the link between a genetic variant and a presence/absence or the level 

of a metabolite.   
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In livestock, mGWAS have been performed in some pig populations on plasma using a target 

metabolomics approach (Fontanesi et al., 2014; 2015) and in Danish Holstein dairy cattles on milk 

using an untargeted metabolomics apporach (Buitenhuis et al., 2013). Fontanesi and collaborators 

(2014 and 2015) demonstrated that the level of metabotypes derived from diet in circulating plasma 

of pigs were associated with the variability in some specific and linked genes, suggesting to open new 

opportunities for novel applications of metabotypes analysis in animal breeding, such as nutrigenomic 

approaches.  

 

1.3 Nutrigenetics and Nutrigenomics 

In the era of “Omic” sciences, in which it is possible to better investigate and link almost all the 

biological processes occurring in an organism, nutrition can be considered a true integrative science 

in this context (Mutch et al., 2005). It is largely known that nutrients can interact with molecular 

mechanisms and modulate biochemical processes affecting organism’s physiological and metabolic 

functions; in particular, as Garg and colleagues reported (2014), nutrients are considered the most 

influential environmental factors to which genomes are exposed. In fact, at the cellular level nutrients 

can act for example a) as direct ligands for transcription factor receptors; b) in signal transduction 

pathways and c) modifying both primary and secondary pathways of metabolism because 

concentrations of substrates can alter gene regulation or cell signalling (Garg et al., 2014). 

The scientific discipline studying relationships between the individual genetic variability and the diet 

is the nutrigenetics, a concept introduced by Brennan and Mulligan in 1975 studying the 

hypoglycemia in humans (Brennan and Mulligan, 1975). In general, nutrigenetics aims to understand 

how the genetic composition, in terms of SNPs or other variants, of an organism responds to diet or 

is associated with different responses to nutrients (Ordovas and Corella, 2004; Mutch et al., 2005). 

On the other hand, nutrigenomics applies genomic concepts in nutritional research describing the 

influence of common dietary ingredients on the genome (in terms of gene expression, genome 

stability and epigenome alterations; Garg et al., 2014) and allowing a better understanding of how 

nutrients affect metabolism and homeostasis (Ordovas and Corella 2004; Muller and Kersten, 2003). 

Thus, with nutrigenomics it will be possible to define personalized diet according to genotypes in 

humans but also in livestock, developing personalized nutrition or precision feeding strategies in 

order to prevent some diseases and improve feed intake (Fenech et al., 2011; Simopoulos, 2010).  
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Nutrigenetics and nutrigenomics are different approaches aiming to investigate the interaction 

bewteen genetics and diet from two opposite points of view and can be applied successfully in 

livestock (Garg et al., 2014).   

 

1.4 Nutrigenetics, taste perception and feed intake in pigs 

In general, nutrition and feed intake are strictly linked with feeding behaviour in both wild and 

domesticated animals. The chemosensory system is one of the most relevant factor determining food 

preferences and has evolved to allow animals to discriminate between foods in their environment 

(Kats and Dill, 1998; Li and Zhang, 2013). Nutritional chemosensing allows the understanding of the 

perception of nutrients related to genomic, metabolic, physiological mechanisms and body 

homeostasis; in livestock, nutritional chemosensing science has been unexplored so far comparing to 

what has been well documented in human and animal models (Clop et al., 2016). In fact, the diet 

offered to farm animals is usually a single diet nutritionally balanced but with no possibilty for the 

livesock to choose food, assuming that animals can adapt their taste perception according to whatever 

diet.  

Domesticated pigs belong to Sus scrofa species (Linneaus 1758) and originated from wild boars with 

two independent domestication events starting about 9000 years ago in the Middle-East Asia and in 

Central Asia (Groenen et al., 2012; Rubin et al., 2012); since then, pigs have spread worldwide 

becoming one of the most important livestock for meat production.  

Even if pigs are mainly reared for the production of several high-quality meat and food products, their 

suitability as models for human biomedical research is becoming accepted in the last decade 

(Gandarillas and Bas, 2009; Bendixen et al., 2010; Verma et al., 2011). In fact, both human and pigs 

are omnivorous mammals and share physiological similarities related to anatomy of the 

gastrointestinal tract (GIT), for example the size of the organs or the use of colon as the main 

fermentation site of dietary components of plant origins (Roura et al., 2016).  

As occurred in all mammals, also in pigs nutrients introduced with diet are primarly perceived through 

the taste system in the oral cavity. There, food compounds are solubilised in saliva and detected by 

the taste system thanks to sensory cells of the taste buds in the tongue papillae (Matsuo, 2000); then, 

a depolarisation occurrs in the sensory cells after biochemical signalling and reach the brain through 

a dedicated neuronal network (Barretto et al., 2015; Roura et al., 2016). In general there are five basic 

tastes detected by mammals: sweet, salty, sour, umami and bitter (Bachmanov and Beauchamp, 2007; 

Chaudhari and Roper, 2010). While salty and sour tastes are detected by trans-membrane ion 
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channels, sweet, umami and bitter are sensed by G-protein coupled receptors (GPCRs) belonging to 

the taste receptors class genes (TASRs). Tastes such as sweet and umami are appetizing and 

characterize high energy foods containing sugars and amino acids, while bitter taste is unpleasant and 

evolved as a warning system to protect against the presence of toxic and dangerous compounds in 

food (Li and Zhang, 2013).  

In livestock, including pigs, taste perception can influence production and performance traits 

promoting different feeding behaviours (for example the appetite and the reward circuits) affecting 

the energy balance and body homeostasis (Depoortere, 2014; Loper et al., 2015; Ribani et al., 2016; 

Clop et al., 2016). Genes encoding for taste receptors (TASRs), taste sensitivity and the related 

molecular mechanisms are in general similar between pigs and humans, especially for sweet, sour, 

umani, and fatty acid tastes (Roura et al., 2016). On the other hand bitter perception is the most 

different between the two species, maybe because of the different environment in which they evolved 

and adapted (Li and Zhang, 2013). However, some components known to be bitter to humans like 

alkaloids such as caffeine or pharmaceuticals including antibiotics are avoided by pigs (Nelson and 

Sangeret, 1997; Danilova et al., 1999). 

In pigs, recent studies have repoterd associations between taste receptors genes (TASR) and some 

important productive traits such as growth and fat deposition (Fontanesi et al., 2015; Ribani et al., 

2016; Clop et al., 2016). In particular, variants in bitter taste receptors genes (TAS2R gene family) 

in particular in TAS2R38 and TAS2R39 genes show significant association with Back Fat Thickness 

(BFT), suggesting their involvment in fat deposition (Ribani et al., 2016). Compared to humans, pigs 

have a lower number of TAS2R genes, indicating that probably pigs evolved a higher resilience to 

bitter dietary components (Groenen et al., 2012).  

Generally, pigs show preferences for sweeteners (Roura and Tedo, 2009; Ripken et al., 2014) 

probably due to the endocrinological responses determining short-term feed intake (Houpt et al., 

1979). In addition, several studies demonstrate that pigs show preferences for umami tastants 

especially amino acids including also the limiting essential amino acids used as supplements in swine 

diets: Lysine, Methionine and Threonine (Ettle et al., 2010; Roura et al., 2011). Moreover, fats 

introduced by diet are appetizing for pigs and are the main sources of energy supply; they can have 

an influence in the carcass meat quality in pig production. Several long chain fatty acids receptors 

have been detected in pigs encoded by GPR120, GPR40, GPR41, GPR43 and GPR84 genes (De Jager 

et al., 2013). In particular, variants in GPR120 have been significantly associated with fat deposition 

and growth (Fontanesi et al., 2015; Song et al., 2015).    
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Finally, the understanding of how genes involved in the taste perception system interact with each 

other building a nutrient sensing regolatory network is crucial to develop nutrigenetic approaches in 

pig breeding and nutrition.  
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1.5 Aim 

The aim of this Thesis was to detect markers associated with productive traits and feed intake in pigs, 

merging analyses on pig genome, transcriptome and metabolome. Several approaches of re-

sequencing of pig genome portions and RNA-seq using different Next Generation Sequencing 

platforms have been performed, adding classical lab validations such as Sanger sequencing, PCR-

RFLP, fragment analyses or Real-Time PCRs for gene expression analyses. Analysis of the variability 

in pig genes related to metabolism like bitter taste receptors genes (TAS2R), fatty acids receptors 

genes (GPR120), KMO and others have been carried out in different pig populations, including 

commercial breeds (Large White, Duroc, Landrace, Pietran, Meishan) and Italian local pig breeds 

(Mora Romagnola, Nero Siciliano, Apulo-Calabrese, Casertana and Cinta Senese) as well as wild 

boars.  

In the first chapter we performed an association study beetween a nutrigenetics target gene, the fatty 

acid receptor GPR120, and the average growth rate in Italian Large White pigs, re-sequencing 

GPR120 gene in different pig populations using the next generation sequencing Ion Torrent PGM 

platform. We identified 3 SNPs in the gene among the populations and significant differences of allele 

and genotype frequencies distribution associated with Average Daily Gain (ADG) estimated breeding 

value (EBV) trait. The second chapter show the study of the re-sequencing of the bitter taste receptors 

genes in different pig populations detecting SNPs and some mutations affecting protein conformation 

of some of the receptors. Morevore, we identified significant association with some variants and the 

Back Fat Thickness (BFT) estimated breeding value (EBV) trait in Italian Large White pigs. Finally, 

in the last chapter we investigated the functional interactions between pig genome and metabolome 

performing genome wide association studies based on 200 plasma metabolites and on the Illumina 

PorcineSNP60 BeadChip genotyping in two pig comercial breeds, Italian Large White and Italian 

Duroc. We added moreover a gene expression analysis as a nutrigenetic pilot study. Our result will 

be useful to integrate molecular phenotypes and genotyping for breeding purposes.  
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2. Chapters 
 

2.1. Next generation semiconductor based-sequencing of a nutrigenetics target gene (GPR120) 

and association with average growth rate in Italian Large White pigs 

 

Luca Fontanesi1,2, Francesca Bertolini1*, Emilio Scotti1*, Giuseppina Schiavo1, Michela Colombo1, 

Paolo Trevisi1, Anisa Ribani1, Luca Buttazzoni3, Vincenzo Russo1, Stefania Dall’Olio1 

 

 

1 Department of Agricultural and Food Sciences (DISTAL), Division of Animal Sciences, 

University of Bologna, Viale Fanin 46, 40127 Bologna, Italy 

2 Centre for Genome Biology, University of Bologna, 40126 Bologna, Italy 

3 Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Produzione 

delle Carni e il Miglioramento Genetico, Via Salaria 31, 00015 Monterotondo, Roma, Italy 

 

* These authors contributed equally to this work. 

 

Running head: GPR120 SNP in pigs and growth rate 

 

Published in Animal Biotechnology 2015 26(2), 92-97 

http://dx.doi.org/10.1080/10495398.2014.881369 
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ABSTRACT 

The GPR120 gene (also known as FFAR4 or O3FAR1) encodes for a functional omega-3 fatty 

acid receptor/sensor that mediates potent insulin sensitizing effects by repressing macrophage-

induced tissue inflammation. For its functional role, GPR120 could be considered a potential target 

gene in animal nutrigenetics. In this work we resequenced the porcine GPR120 gene by high 

throughput Ion Torrent semiconductor sequencing of amplified fragments obtained from 8 DNA 

pools derived, on the whole, from 153 pigs of different breeds/populations (two Italian Large White 

pools, Italian Duroc, Italian Landrace, Casertana, Pietrain, Meishan and wild boars). Three single 

nucleotide polymorphisms (SNPs), two synonymous substitutions and one in the putative 3’-

untranslated region (g.114765469C>T), were identified and their allele frequencies were estimated 

by sequencing reads count. The g.114765469C>T SNP was also genotyped by PCR-RFLP 

confirming estimated frequency in Italian Large White pools. Then, this SNP was analyzed in two 

Italian Large White cohorts using a selective genotyping approach based on extreme and divergent 

pigs for back fat thickness (BFT) estimated breeding value (EBV) and average daily gain (ADG) 

EBV. Significant differences of allele and genotype frequencies distribution was observed between 

the extreme ADG-EBV groups (P<0.001) whereas this marker was not associated with BFT-EBV. 

 

Key words: GPR120; Ion Torrent semiconductor sequencing; SNP; Association study; Heavy pigs  
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INTRODUCTION 

Nutrigenetics applied to the livestock industry aims to improve feed efficiency, growth rate, 

and health status of animals and, in turn, several related economic traits. In order to maximize these 

objectives it is important to investigate the genetic factors involved in the biological mechanisms 

affecting nutrient-gene interactions. For example, several studies have already identified mechanisms 

by which the gut senses luminal nutrients and regulates homeostatic mechanisms of energy 

metabolism in response to feeding or fasting through activation of gut-brain networks [reviewed in 

(1)]. Specific taste receptors for different nutrients mediate sensing responses of specialized 

enteroendocrine cells of the intestinal epithelium that transmit signals by releasing gastro-intestinal 

regulatory peptides. 

Free fatty acids (FFAs) are essential dietary nutrients that activate different G-protein-coupled 

receptors (GPCR) that function on the cell surface and play essential roles also in nutritional 

regulation. Among these receptors, FFAR2 (GPR43) and FFAR3 (GPR41) are activated by short-

chain FFAs, whereas medium and long-chain FFAs activate FFAR1 and GPR120 [also known as 

FFAR4 or O3FAR1; (2)]. In particular, GPR120 is activated by saturated (C14-C18) and unsaturated 

FFAs (C16-C22) that induce a rise in cytosolic free Ca2+, but do not promote cAMP production. 

Recently Oh et al. (3) demonstrated that GPR120 is a functional omega-3 fatty acid receptor/sensor 

and mediates potent insulin sensitizing and antidiabetic effects by repressing macrophage-induced 

tissue inflammation. This receptor is highly expressed in human and mouse intestinal tracts, adipose 

tissues, and macrophages (3, 4). Colombo et al. (5) confirmed that the GPR120 gene is expressed also 

in the gastrointestinal tract of young pigs, with higher expression in the colon as compared to three 

different gastric sites and jejunum. This finding would support a major role of this receptor in the 

colon, where it might mediate incretin rise after stimulation with FFAs, as reported in mice (6). 

Moreover, GPR120 transcription level in intestinal epithelial cells is significantly increased  by 

bacteria categorized as either probiotics or bacteria capable of inducing anti-inflammatory effects. 
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These microorganisms can produce FFAs in the intestine by microbial fermentation, so providing a 

signaling pathway finally turning out in an anti-inflammatory effect (7).  

The role of GPR120 was further investigated by Ichimura et al. (8) who showed that GPR120 

knock-out mice fed a high-fat diet developed obesity, glucose intolerance, reduced insulin signalling, 

enhanced inflammation in adipose tissue, fatty liver with decreased adipocyte differentiation and 

lipogenesis and enhanced hepatic lipogenesis through a reduced production of lipid hormone C16:1n7 

palmitoleate, while no effect was observed in control mice. In humans, exon sequencing of the 

GPR120 gene revealed that a deleterious non synonymous mutation (p.R270H) inhibiting signalling 

activity increased the risk of obesity in European and Japanese populations (8,9). 

Using a genome wide candidate gene approach coupled with genome wide association studies 

with anonymous single nucleotide polymorphisms (SNPs), we recently started a systematic 

investigation to identify genetic factors affecting fat deposition and growth efficiency in Italian heavy 

pigs (10-14). These two traits are final complex phenotypes related to feed consumption and energy 

metabolism that might be explained, at least in part, by genetic factors that govern gene-nutrient 

interactions. 

Next generation sequencing platforms are changing the way in which sequencing experiments 

for SNP discovery are designed. In particular, the Ion Torrent semiconductor-based sequencing can 

be applied to different experimental designs and targets due to its scalability (15). 

In this work we resequenced the porcine GPR120 gene by high throughput semiconductor 

sequencing (15) to identify polymorphisms in the pig. Then, we genotyped an SNP in two Italian 

Large White cohorts to evaluate if this marker is associated with back fat thickness (BFT) and average 

daily gain (ADG). 

 

MATERIALS AND METHODS 
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Animals and production traits 

Two groups of Italian Large White pigs were used in the association studies. The first group 

was constituted by 560 two-generations unrelated gilts with extreme and divergent estimated breeding 

values (EBVs) for BFT (280 with the most negative BFT EBV and 280 with the most positive BFT 

EBV), selected among about 12,000 pigs individually performance tested at the Central Test Station 

of the National Pig Breeder Association (ANAS) for the sib-testing evaluation of candidate boars 

within the national selection program of the Italian Large White breed (12). Average and standard 

deviation of BFT EBV of the pigs in the negative and positive tails was: –9.40 ± 1.60 mm and +8.00 

± 5.95 mm, respectively. 

The second group of Italian Large White pigs was constituted by 380 two-generation unrelated 

gilts with extreme and divergent ADG EBV, selected among the same population described above 

(190 with the most negative ADG EBV and 190 with the most positive ADG-EBV). Average and 

standard deviation values of ADG EBV of the pigs in the negative and positive tails were –30 ± 14 g 

and +81 ± 12 g, respectively. More details about these animals are reported in Fontanesi et al. (10, 

14). 

Estimated breeding values for these traits were predicted by a BLUP-multiple trait animal 

model including the fixed factors of batch, age at the beginning of test, date of slaughtering and 

inbreeding coefficient, besides the random factors of animal and litter. For BFT, also body weight at 

slaughter and age at slaughter were considered. Fifty Italian Large White pigs with the lowest BFT 

EBV and 50 with the highest BFT EBV from the first group were used for resequencing the GPR120 

gene. Other pigs randomly selected from different breeds (10 Italian Duroc, 10 Italian Landrace, 8 

Pietrain, 10 Casertana, 5 Meishan and 10 Italian wild boars), for which no phenotypic data were 

available, were used for resequencing this gene. 
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Resequencing and identification of polymorphisms 

Genomic DNA was extracted from blood, muscle or ear tissue using the Wizard® Genomic 

DNA Purification kit (Promega Corporation, Madison, WI, USA). Extracted DNA was quantified 

using a NanoPhotometer P-330 instrument (Implen GmbH, München, Germany) and pooled at 

equimolar concentration as it follows: one pool was constituted from the sub-sample of 50 Italian 

Large White pigs with the lowest BFT EBV, one pool was constituted from the 50 Italian Large White 

pigs with the highest BFT EBV, and one pool was constituted for each of the other breeds with no 

phenotypic information (Italian Duroc, Italian Landrace, Pietrain, Casertana, Meishan and Italian 

wild boars). 

PCR primers were designed on the sequence of the porcine GPR120 gene annotated in the 

Sscrofa10.2 gene (Ensembl accession no. ENSSSCG00000010478) to amplify all three coding exons 

including non coding transcribed and intronic regions (Table 1). PCR was carried out using the DNA 

pools prepared as described above and the Phusion® Hot Start Flex 2X Master Mix (Euroclone) using 

PCR conditions reported in Table 1. Amplified fragments were purified using ExoSAP-IT® (USB 

Corporation, Cleveland, Ohio, USA), pooled according to the breed/DNA pool of origin using 

equimolar DNA from each amplified product. Then, obtained pooled fragments were used for library 

preparation and sequencing with the Ion Torrent PGM (Life Technologies). Briefly, 200 ng of every 

pool of amplified products was enzymatically sheared, end repaired and ligated with different 

barcodes using the Ion XpressTM Plus Fragment Library kit (Life Technologies) and the Ion Xpress™ 

Barcode Adapters 1-16 Kit (Life Technologies). Then, resulting DNA material was size selected 

using the e-gel system (Invitrogen, Carlsbad, CA, USA) and bands corresponding to 100 bp of inserts 

were collected and quantified by qPCR using a StepOnePlus™ Real-Time PCR System (Life 

Technologies). Barcoded fragments were pooled again with the same concentration, clonally 

amplified, purified and sequenced using the Ion One TouchTM 100 Template kit and the Ion PGMTM 

Sequencing kit with a Ion 316 chip (Life Technologies). Obtained sequencing reads for the GPR120 
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gene were filtered, trimmed, automatically assigned to the different barcodes, and analysed for the 

presence of differences between the reference sequence (ENSSSCG00000010478) and obtained 

sequences with the Ion Torrent suite v.2.2 (Life Technologies). Several other amplified fragments 

were also sequenced in the same chip and results will be reported elsewhere. Average coverage of 

the sequenced GPR120 gene was 20,535 X. 

 

SNP genotyping 

An SNP identified by sequencing (g.114765469C>T) was genotyped by PCR-RFLP. Briefly, 

genomic DNA from individual samples was amplified by using primer pair ExSNP (Table 1) and the 

obtained DNA fragment (5 L of PCR product) was digested overnight at 37 °C with 2 U of FspBI 

restriction enzyme (Thermo Scientific - Fermentas, Vilnius, Lithuania) in a total of 25 L of reaction 

volume with 1X reaction buffer. Resulting DNA fragments were electrophoresed in TBE 1X 2.5% 

agarose gels. DNA bands were visualized with 1X GelRed Nucleic Acid Gel Stain (Biotium Inc., 

Hayward, CA, USA). Allele C resulted in an undigested fragment of 170 bp, whereas allele T was 

detected by the occurrence of two fragments of 126 and 44 bp (the latter not completely visible in the 

gel). 

 

Data analysis 

Estimated SNP allele frequencies in the different breeds and groups of pigs was obtained by 

counting alternative Ion Torrent filtered reads produced within different barcoded libraries and 

normalizing according to the number of sequenced chromosomes. 

The miRNA_Targets server 

[http://mamsap.it.deakin.edu.au/~amitkuma/mirna_targetsnew/sequence.html (16)] that includes two 

target prediction algorithms (miRanda and RNAhybrid) was used to screen the putative 3’-UTR of 

http://mamsap.it.deakin.edu.au/~amitkuma/mirna_targetsnew/sequence.html


18 

 

the porcine GPR120 gene for possible microRNA target sites in the region of the g.114765469C>T 

SNP, using human and mouse microRNA databases. In addition, RNAhybrid web server 

(http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/submission.html) was used to predict potential 

porcine microRNA target sites in the same GPR120 gene region. Porcine microRNAs were obtained 

from Li et al. (17). 

Chi square and Cochran-Armitage trend tests of significance of allele and genotype frequency 

differences for the g.114765469C>T GPR120 SNP between the two extreme tails of genotyped pigs 

was calculated. 

 

RESULTS AND DISCUSSION 

Ion Torrent resequencing of 2570 bp of the porcine GPR120 gene (including the whole coding 

region, 5’- and 3’-untranslated regions (UTR) and portions of adjacent 5’- or 3’-flanking and intronic 

regions; Table 1) in a total of 153 animals identified just 3 SNPs (g.114743623G>C;  

g.114764865G>A; and g.114765469C>T) suggesting that this gene is quite conserved in Sus scrofa. 

Two SNPs were synonymous substitutions in exon 1 (g.114743623G>C or c.42G>C) and exon 3 

(g.114764865G>A or c.837G>A) already annotated in Ensembl Sscrofa10.2 version (rs335415655 

and rs343994284, respectively). The third SNP (g.114765469C>T indicated also as rs327485208 in 

Ensembl Sscrofa10.2), was located in the putative 3’-UTR of the gene. Analysis of this region with  

a few microRNA target prediction tools suggested that this polymorphism could potentially have a 

functional role. Several potential binding sites for different microRNA could be altered by the 

g.114765469C>T SNP. For example, considering a threshold of minimum free energy of -20 for the 

microRNA-target duplex, a few target sites for microRNAs (miR-30b-3p, PC220-3p, miR-216-3p, 

and PC167-3p among a few others) were modified by the polymorphism in this putative 3’-UTR. 

However, these modifications did not substantially distinguish the putative effect of the alternative 

http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/submission.html
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alleles (data not shown). This preliminary in silico analysis should be further evaluated and supported 

demonstrating that i) this SNP is included in a transcribed 3’-UTR (it is located 355 downstream the 

stop codon), as the full 3’-UTR of this gene is not characterized yet; ii); microRNAs actually bind the 

predicted sites and alter gene expression. 

Frequencies of the two alleles of the 3 GPR120 SNPs, as estimated on the basis of Ion Torrent 

reads, are reported in Table 2. To our knowledge, this study has been the first to apply the Ion Torrent 

semiconductor sequencing platform to estimate allele frequencies in DNA pools. The 

g.114764865G>A SNP was polymorphic only in the Pietrain breed in which the reference allele (G) 

showed a frequency of 0.590. In Italian Duroc, Meishan and Italian wild boars all three SNPs were 

monomorphic for the reference allele. Estimates of allele frequencies of the g.114765469C>T SNP 

in the two Italian Large White sequenced pools were also evaluated by genotyping this mutation by 

PCR-RFLP in the same animals that constituted the pools. Allele frequency in the negative and 

positive BFT EBV pools was 0.370 and 0.480 respectively, very close to what was estimated on 

pooled DNA by high throughput sequencing (negative pool 0.324; positive pool 0.444). Small 

discrepancies between the two genotyping protocols might be due to technical errors in constructing 

the DNA pools to be amplified, related to DNA quantification or by pipetting errors, or derived by 

difference of DNA quality among the samples. Other errors might come from PCR amplification, 

allele preferential bias or from barcoding and emulsion PCR steps (18). Comparison among estimated 

allele frequencies of the different SNPs could provide an indication about linkage disequilibrium 

among markers. Based on a first raw evaluating of the sequencing results, g.114743623G>C and 

g.114765469C>T SNPs may not be in complete linkage disequilibrium in Italian Large White, 

whereas these two polymorphic sites might be in complete or almost complete linkage disequilibrium 

in Italian Landrace, Pietrain and Casertana, where the reference allele of both SNPs had very close 

frequency. The g.114764865G>A polymorphism creates additional haplotypes in the Pietrain breed. 
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The g.114765469C>T SNP, because of its potential functional effect, has been chosen for 

genotyping by PCR-RFLP the two Italian Large White cohorts with extreme and divergent EBVs for 

BFT or ADG. These traits are end phenotypes that are related to functional relevance of the GPR120 

gene already demonstrated in humans and mice (8). The genotyping of the Italian Large White cohort 

selected according to extreme BFT EBV completed the genotyping carried out to verify allele 

frequencies estimated by high throughput sequencing. Allele and genotype differences between 

extreme tails in the BFT and ADG populations are reported in Table 3. In the whole BFT EBV cohort, 

allele and genotype  frequency differences were not statistically significant (P > 0.10 ) whereas allele 

and genotype distributions in the extreme tails for ADG EBV were highly significant (P = 9.50E-05 

and P<0.001, respectively). The reference allele (C) was less frequent in the negative tail than in the 

positive one. In this tail there was a marked increase of genotype CC and a decrease of genotype TT. 

Heterozygous animals remained almost of the same frequency in the two extreme groups (Table 3). 

These genotype distributions in the two compared ADG tails and the highly significant Cochran-

Armitage trend test (P= 3.20E-04) may indicate an additive effect of this marker on ADG. 

A few QTL for ADG or related traits [http://www.animalgenome.org/cgi-bin/QTLdb/SS/index 

(19)] have been already reported on porcine chromosome 14 (SSC14) where this gene is located  

(between positions 114742975 and 114765758). In a genome wide association study for ADG that 

we recently carried out in Italian Large White pigs (14) an SNP on SSC14 at position 107939105 

(ALGA0080306) was one of the most significant marker associated with this trait (P=1.08E-07). 

Additional SNPs closer to the GPR120 had low P values (e.g. ASGA0065801, P=4.47E-04) 

suggesting that the region around this gene may contain QTL for growth in this heavy pig breed. 

GPR120 is a 2 G protein coupled taste-active fatty acid receptor involved in various 

physiological homeostasis processes such as fat deposition, regulation of appetite and food preference 

(4,20). In humans, a deleterious missense mutation in the GPR120 gene is associated with increased 

risk of obesity and GPR120 knocked-out mice show reduced insulin signalling and enhanced 

http://www.animalgenome.org/cgi-bin/QTLdb/SS/index
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inflammation in adipose tissue and develop obesity when fed a high-fat diet (8). No missense 

mutation was identified in the porcine gene even if a large number of animals from different breeds 

was sequenced. In addition, the genotyped polymorphism was not associated with BFT in Italian 

Large White pigs indicating that GPR120 might not play an important role in defining this obesity 

related phenotype in the analyzed cohort, even if results reported in Table 3 indicated a tendency 

towards suggestive differences of allele frequencies in the two extreme BFT EBV tails. GPR120 is 

expressed in the gastrointestinal tract of pigs (5) where it could be directly involved in fatty acid 

perception and feed uptake, and, indirectly, in growth rate and efficiency, potentially linking 

molecular functions with a final phenotype. Association between  the g.114765469C>T SNP and 

ADG may add evidences towards a potential functional role of this SNP and, in general, of the 

GPR120 receptor in the biological mechanisms affecting this important production trait. 

Nutrigenetics approaches to define appropriate feeding practices and more efficient feedstuff in heavy 

pigs could consider variability in the GPR120 gene worth of further investigation to evaluate host 

gene-feeding interactions. Additional studies will be needed to experimentally validate a potential 

functional role of g.114765469C>T SNP, in altering putative 3’-UTR regulatory regions (e.g. 

microRNA target sites) and confirm the results of the association study before considering this 

polymorphism in selection plans for the Italian Large White breed to improve ADG. 
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Table 1. PCR primer used in this study 

Primer 

pair name 

Primer forward and reverse (5’-3’) Amplified region (bp) Annealing 

Temperature 

(°C)a 

Use 

Ex1 TGTTTCCAGCTGGCACTTC 

TGGGTACGGTGACACGATTA 

5’-flanking region, 5’-

UTR, exon 1, part of 

intron 1 (912) 

59 Resequencing 

(Ion Torrent) 

Ex2 GAGGACAGAGTTGCCGAGTC 

TGTCCCTCAGTGTTGCAGAG 

Part of intron 1, exon 2, 

part of intron 2 (925) 

65 Resequencing 

(Ion Torrent) 

Ex3 GAACCCCACCCTGATGTG 

GGGTGGGGAACTAGAGTGG 

Part of intron 2, exon 3, 

part of 3’-UTR and part 

of the putative 3’-

flanking region (850) 

59 Resequencing 

(Ion Torrent) 

Ex3SNP GGTGTGTTAGTAATATGATTG 

 

GGGTGGGGAACTAGAGTGG 

 

Putative 3’-UTR (170) 56 PCR-RFLP 

(FspBI) 

 

a PCR profile for primer pairs Ex1, Ex2, and Ex3 was the following : 98 °C for 1 min, followed by 

35 cycles with 98 °C for 10 sec, the appropriate annealing temperature for 30 sec, 72 °C for 40 sec, 

the final elongation step was at 72 °C for 8 min. PCR Profile for primer pair Ex3SNP was the 

following: 95 °C for 5 min, then 35 cycles at 95 °C for 30 sec, the reported annealing temperature for 

30 sec, 72 °C for 30 sec, the final elongation step was for 5 min at 72 °C.  
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Table 2. Estimated allele frequencies of the three identified GPR120 polymorphisms based on Ion 

Torrent reads count. Only the frequency of the first allele is reported. 

 

Breeds No. of 

animals 

g.114743623G>C g.114764865G>A g.114765469C>T 

Italian Large White 

(negative BFT EBV) 

50 0.437 1.000 0.324 

Italian Large White 

(positive BFT EBV) 

50 0.590 1.000 0.444 

Italian Landrace 10 0.585 1.000 0.588 

Italian Duroc 10 1.000 1.000 1.000 

Pietrain 8 0.482 0.590 0.486 

Casertana 10 0.564 1.000 0.500 

Meishan 5 1.000 1.000 1.000 

Italian wild boars 10 1.000 1.000 1.000 

 



27 

 

Table 3. Differences of allele and genotype frequencies of the g.114765469C>T polymorphism 

between the two extreme and divergent tails chosen using a selective genotyping approach based on 

estimated breeding values for two production traits in Italian Large White pigs. 

 

Traita Tailb No. 

of 

pigsb 

Allele frequencies Genotype frequencies 

C T Pc CC CT TT Pd Pe 

BFT 

negative 275 0.418 0.582 

0.139 

0.186 0.465 0.349 

0.346 0.155 

positive 279 0.462 0.538 0.222 0.480 0.298 

ADG 

negative 189 0.352 0.648 9.50E-

05 

0.127 0.450 0.423 6.59E-

04 

3.20E-

04 positive 189 0.492 0.508 0.249 0.487 0.264 

 

aBFT = back fat thickness estimated breeding value (EBV); ADG = average daily gain EBV. 

bThe two extreme and divergent tails for BFT EBV and ADG EBV. 

cP value of the chi square test for allele frequency difference between the negative and positive tails. 

dP value of the chi square test for genotype frequency difference between the negative and positive 

tails. 

eP value of the Cochran-Armitage trend test for genotype frequency differences between the negative 

and positive tails. 
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2.2. Next generation semiconductor based sequencing of bitter taste receptor genes in different 

pig populations and association analysis using a selective DNA pool-seq approach 

 

A. Ribani1*, F. Bertolini1*, G. Schiavo1*, E. Scotti1, V. J. Utzeri1, S. Dall’Olio1, P. Trevisi1, P. Bosi1, 

and L. Fontanesi1 

 

1Department of Agricultural and Food Sciences (DISTAL), Division of Animal Sciences, University 

of Bologna, Viale Fanin 46, 40127 Bologna, Italy 

 

* These authors contributed equally to this work 
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Summary 

Taste perception in animals affects feed intake and may influence production traits. In particular, 

bitter is sensed by receptors encoded by a family of TAS2R genes. In this research, using a DNA pool-

seq approach, coupled with next generation semiconductor based target re-sequencing, we analysed 

9 porcine TAS2R genes (TAS2R1, TAS2R3, TAS2R4, TAS2R7, TAS2R9, TAS2R10, TAS2R16, 

TAS2R38 and TAS2R39) to identify variability and, at the same time, estimate single nucleotide 

polymorphism (SNP) allele frequencies in several populations and testing differences in an 

association analysis. Equimolar DNA pools were prepared for five pig breeds (Italian Duroc, Italian 

Landrace, Pietrain, Meishan and Casertana) and wild boars (5-10 individuals each) and for two groups 

of Italian Large White pigs with extreme and divergent back fat thickness (BFT; 50 + 50 pigs). About 

1.8 million of reads were obtained by sequencing amplicons generated from these pools. A total of 

125 SNPs were identified, of which 37 were missense mutations. Three of them (p.I53F and p.W85L 

in TAS2R4; p.L37S in TAS2R39) could have important effects on the function of these bitter taste 

receptors, based on in silico predictions. Variability in wild boars seems lower than that in domestic 

breeds potentially as a result of selective pressure in the wild towards defensive bitter taste perception. 

Three SNPs in TAS2R38 and TAS2R39 were significantly associated with BFT. These results might 

be important to understand the complexity of taste perception and their associated effects that could 

be useful to develop nutrigenetic approaches in pig breeding and nutrition. 

 

Keywords: Nutrigenetics, SNP, Ion Torrent, Back fat thickness, Taste perception, TAS2R38, 

TAS2R39  



30 

 

Text 

Taste perception mainly affects preferences and consequently food/feed intake (Chaudhari & 

Roper 2010) that, in turn, can influence production and performance traits in livestock (Patience et 

al. 2015). The mammalian chemosensory system usually discriminates five major basic taste classes: 

salty, sour, sweet, umami and bitter (Kinnamon & Cummings 1992; Lindemann 1996; Drayna 2005; 

Behrens & Meyerhof 2009; Chaudhari & Roper 2010). Among these taste classes, bitter perception, 

that evolved as a central warning system to protect against ingesting potentially toxic bitter-tasting 

substances (Li & Zhang 2014), could be particularly relevant to design appropriate feeding strategies 

in livestock dealing with bitter compounds present in feedstuff (e.g. Roura & Tedò 2009; Solà-Oriol 

et al. 2014; Lombardi et al. 2015). Bitter is sensed by a family of bitter taste receptors (referred as 

TAS2Rs) that are seven-transmembrane receptors encoded by a family of approximately 10-40 

functional TAS2R genes in mammalian genomes (Chandrashekar et al. 2000; Wu et al. 2005; 

Bachmanov & Beauchamp 2007). Polymorphisms in TAS2R genes are associated with different taste 

responses to several compounds, both natural and synthetic (Bufe et al. 2002; Kim et al. 2003; Kim 

& Drayna 2005; Hayes et al. 2011). Bitter taste receptors also influence glucose homeostasis and 

regulate thyroid function (Dotson et al. 2008; Clark et al. 2015) and a few variants in these genes are 

associated with body weight and obesity in humans (Goldstein et al. 2005; Keller et al. 2010, 2014). 

Few studies have investigated the structure, expression and variability of TAS2R genes in pigs 

(Colombo et al. 2012; Groenen et al. 2012; da Silva et al. 2014). Da Silva et al. (2014), by querying 

the pig genome, identified 15 TAS2Rs genes (11 annotated as genes and 4 described as pseudogenes), 

in addition to other taste receptor genes. Subsequently, they analysed the variation in these genes by 

comparing whole re-sequencing data from 79 pigs of different breeds and provided evolutionary and 

phylogeographical relationships in comparison with non-bitter taste genes (da Silva et al. 2014). As 

far as we know, no association studies have been carried out thus far using variants in these porcine 

genes. 

We recently evaluated the use of next generation semiconductor based sequencing (i.e. Ion 
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Torrent technology; Rothberg et al. 2011) for partial and whole genome re-sequencing and single 

nucleotide polymorphism (SNP) discovery in a few livestock and aquaculture species (Bertolini et al. 

2014, 2015, 2016; Bovo et al. 2015). In addition, we used this sequencing platform for target 

resequencing combining, at the same time, SNP discovery and association analyses using a selective 

DNA pool-seq approach (Fontanesi et al. 2015). Allele frequency estimation in DNA pools 

constructed from divergent groups of animals has been commonly used in different livestock species 

to evaluate association between DNA markers and productive traits (e.g. Darvasi & Soller 1994). In 

this work we applied the DNA pool-seq approach previously described (Fontanesi et al. 2015) to re-

sequence nine TAS2R genes (TAS2R1, TAS2R3, TAS2R4, TAS2R7, TAS2R9, TAS2R10, TAS2R16, 

TAS2R38 and TAS2R39), three of them (TAS2R1, TAS2R3 and TAS2R4) not previously investigated 

by others (da Silva et al. 2014; Table 1), as they were not annotated or assembled in any Sscrofa10.2 

chromosomes or they were considered pseudogenes. Resequencing was carried out in six pig breeds 

and wild boars for polymorphism identification and association analysis with back fat thickness 

(BFT). A fat deposition trait was included in the association analysis, as TAS2R gene variants are 

associated with human obesity and related traits, even if the molecular mechanisms involving TAS2R 

in fat deposition are not understood yet (Tepper & Ullrich 2002; Goldstein et al. 2005; Keller et al. 

2010, 2014). 

The porcine TAS2R genes indicated above (and identified by BLAST analysis with the 

corresponding genes in humans and mice; Table 1) were amplified from DNA pools using primer 

pairs reported in Table S1. DNA pools were prepared with equimolar quantity of DNA from each of 

five pig breeds (Italian Duroc, n. of pigs in the pool = 10; Italian Landrace, n. = 10; Pietrain, n. = 8; 

Casertana, n.= 10 and Meishan, n. = 5) and wild boars (n. = 10) to obtain allele frequencies in different 

populations. Moreover, two DNA pools (50 + 50 animals) were prepared from Italian Large White 

pigs (all gilts) with extreme and divergent estimated breeding value (EBV) for BFT. EBV were 

calculated as previously described (Fontanesi et al. 2012a, 2012b). Average and standard deviation 

of BFT EBV of the pigs in the negative and positive tails were: –9.40 ± 1.60 mm and +8.00 ± 5.95 
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mm, respectively. These pigs were selected from ~12,000 pigs individually performance tested at the 

Central Test Station of the National Pig Breeder Association (ANAS) for the sib-testing evaluation 

of candidate boars within the national selection program of the Italian Large White breed (Fontanesi 

et al. 2012a, 2012b, 2015). PCR was carried out from DNA pools (Table S1) and all amplicons 

obtained from the same breed/DNA pool were in turn pooled for library preparation and sequencing 

with the Ion Torrent PGM (Life Technologies) using different barcodes (Table S1). Barcoded 

fragments were pooled again at the same concentration, clonally amplified, purified and sequenced 

using the Ion One TouchTM 100 Template kit and the Ion PGMTM Sequencing kit with an Ion 316 

chip (Life Technologies). The sequencing reads generated were filtered, trimmed, automatically 

assigned to the different barcodes and aligned to the reference sequences using the Ion Torrent Suite 

2.2 (Life Technologies), that includes TMAP aligner (https://github.com/iontorrent/TMAP). Average 

depth and coverage for the sequenced regions is reported in Table S2. Differences in coverage might 

be due to different efficiencies in the construction of the barcoded sub-libraries or to other technical 

issues derived by the starting DNA quantity used for each amplicons (see notes to Table S1 about the 

Ion Torrent sequencing protocols). A total of 1,821,843 reads successfully aligned to the targeted 

regions with a mean depth of 2,711 X. The filtered bam files were deposited in the EMBL-EBI 

European Nucleotide Archive (ENA) with the project accession number PRJEB11635. 

Polymorphism detection was carried out using mpileup function of SAMTOOLS (Li et al. 2009). 

Then, only SNPs with quality scores ≥20 were retained for further analyses. Sanger sequencing was 

carried out to confirm Ion Torrent sequencing data on a few fragments (Table S1). A combination of 

mpileup counts with SAMTOOLS and Python scripts was then used to determine the number reads 

with the reference and with the alternative nucleotide at each SNP site, that was weighted according 

to the number of sequenced chromosomes for allele frequency estimation (Table S3). Five SNPs were 

genotyped by PCR-RFLP on individual pigs included in the DNA pools to validate allele frequency 

estimates as determined by read count (Tables S1 and S4), confirming these values as previously 

demonstrated (Fontanesi et al. 2015). Amplicons obtained for the same gene were partially 

https://github.com/iontorrent/TMAP
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overlapped. Overlapping amplified regions reported the presence of 6 SNPs in both amplicons (Table 

S3) further confirming that the SNP calling pipeline was set up correctly and was able to eliminate 

false positives that might be produced by the Ion Torrent sequencing technology. The effect of each 

SNP was evaluated using VEP (Variant Effect Predictor) and the effect of all missense mutations was 

analysed using SIFT (Kumar et al. 2009). 

Sequence data we obtained with Sanger and Ion Torrent indicated that the porcine TAS2R1 is 

not a pseudogene (EMBL accession no. LT221026), in contrast to the previous analyses (da Silva et 

al. 2014) and the current annotation in Sscrofa10.2 (Ensembl release n. 84, March 2016). Figures 1a 

and 1b give an overview of the distribution of the SNPs in the investigated pig populations and in the 

analysed TAS2R genes. Detailed information is reported in Table S3. A total of 125 SNPs were 

identified in at least one population (Table 1, Fig. 1 and Fig. 2). Among these SNPs, 70 were already 

present in dbSNP (http://www.ncbi.nlm.nih.gov/SNP/) build 146 (November 24th, 2015), 53 of which 

were also reported by da Silva et al. (2014), whereas 55 were novel (Table S3; dbSNP ID: from 

ss1971458462 to ss1971458516). TAS2R3 (n. of SNPs = 26), TAS2R38 (n. = 23) and TAS2R1 and 

TASR29 (n. = 22) genes had the largest number of detected SNPs among the investigated genes (Table 

1). Among the 125 identified polymorphisms, 66 occurred in flanking or untranslated regions and 59 

were located in coding regions, 22 of which were synonymous and 37 were missense mutations. 

These latter variants might provide the most interesting polymorphisms, considering the functional 

roles of different protein domains in these receptors related to bitter molecule sensing and chemo-

signal transmission (Fig. 3). Ten missense mutations (the largest number) were identified in TAS2R39, 

one of them (p.L37S, located in the first intracellular domain; polymorphic in wild boars, Italian 

Large White, Casertana and Pietrain breeds) was predicted to significantly modify the protein 

function (SIFT P < 0.05). Two other missense mutations in TAS2R4 (p.I53F and p.W85L, located in 

the second and third transmembrane domains, respectively, and polymorphic in Italian Landrace, 

Italian Duroc and Meishan pigs) were predicted to be deleterious (SIFT P< 0.05). 

Cluster analyses of the heat map based on SNP allele frequency distribution in the analysed 

http://www.ncbi.nlm.nih.gov/SNP/
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breeds confirmed the different origin of the Chinese Meishan pigs compared to all other European 

breeds/populations, as already well established (Fig. 1b). The largest number of SNPs was identified 

in Italian Duroc pigs (n. = 70) and the lowest in wild boars (n. = 43). According to these results, it 

seems that the domestication process might have relaxed the variability in TAS2R genes compared to 

wild boars (the number of SNPs identified in domestic breeds and in wild boars differed at P<0.10) 

in which the exposure to natural potential toxic feeds could have contributed to the selection and 

fixation of some of the bitter taste receptor variants. However, more detailed population genetic 

analyses should be carried out to confirm this hypothesis as we investigated a small number of wild 

boars. 

A total of 13 SNPs (7 in TAS2R39, 3 in TAS2R38 and one in TAS2R4, TAS2R10 and TAS2R16) 

were significantly associated (Pnominal value<0.05; Chi square tests) with BFT, by comparing estimated 

allele frequencies in the two extreme and divergent groups of Italian Large White pigs (Table S5). 

Considering that SNPs in the same genes might be in linkage disequilibrium and the tests are not 

independent (a few genes are on the same chromosome; Table 1), correction for multiple testing was 

obtained using the Proportion of False Positives (PFP; Fernando et al. 2004), as described in 

Fontanesi et al. (2012). One of the analysed SNPs in TAS2R39 (a missense mutation: p.N71T; 

rs342835508) had a PPFP<0.05 and two additional SNPs, one in the same TAS2R39 (rs326928677, 

located in the 5’-flanking or untranslated region) and one in TAS2R38 (a missense mutation not 

reported before: p.I277M) had a PPFP<0.10. As TAS2R38 and TAS2R39 are both on SSC18, it might 

be possible that their potential effect on BFT could be due to linkage disequilibrium with other QTL 

segregating on this chromosome region. However, our previous genome wide association studies on 

BFT in the Italian Large White pig breed did not identify any significant signals in the regions in 

which these genes are located (Fontanesi et al. 2012b; Bovo et al. 2015) even if several QTLs for fat 

deposition traits have been reported in this region by other studies (e.g. Hu et al. 2016). These two 

associated TAS2R39 SNPs might capture two major haplotypes segregating in Italian Large White 

pigs for this gene, as it could be also deduced in part by the signals of association (even if at a Pnominal 
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value<0.05) that come from other 5 polymorphisms of the same gene (Table S5). To further validate 

the results obtained for TAS2R39, the most significant SNP (p.N71T) was also genotyped by PCR-

RFLP in a larger number of pigs (75 + 75 animals with extreme and divergent EBV for BFT; all gilts 

with BFT EBV < - 8.5 and all gilts with BFT EBV > +5.5 mm recruited from a population of about 

12,000 performance tested pigs; Fontanesi et al. 2012a, 2012b, 2015). Results of individual 

genotyping confirmed the effect already observed (Pnominal value <0.01). The human bitter taste receptor 

hTAS2R39 has been recently characterized as a receptor for several bitter compounds, e.g. flavonoids 

(Roland et al. 2014; Yamazaki et al. 2014) but no study investigated its association with obesity or 

fat deposition traits in human or other species yet. TAS2R38 is a major bitter compound receptor in 

humans whose variability is strongly associated with the perception of some bitter synthetic 

compounds such as phenylthiocarbamide (PTC) and the related 6-n-propylthiouracil (PROP; Suo & 

Reed 2001). Variability in PROP sensitivity and variants in the human TAS2R38 were the subject of 

controversial association studies with body mass index (Tepper & Ullrich 2002; Goldstein et al. 2005; 

Tepper et al. 2008; Sausenthaler et al. 2009). From these studies, it is not clear if there is a direct or 

indirect involvement of variability in this gene in the final effects of food ingestion, i.e. body weight. 

In our study in pigs, as the animals were from a performance test station, there should not be any 

difference in terms of diet components given to the animals. It will be interesting to further evaluate 

if the significant effect on BFT might be indirectly due to a different feed ingestion rate (due to 

different feed taste perception) or due to other factors that might contribute to understand the 

physiological effects of TAS2R38 variants in pigs. Association studies with feed conversion rate and 

daily gain will be carried out to dissect, at least in part, the effects on related traits routinely measured, 

as association studies on feed preference in livestock might be difficult to carry out for a large number 

of animals needed to obtain meaningful results. 

In conclusion, this study, using a methodological approach based on next generation 

sequencing, was able to obtain in a single experiment multiple levels of results. The identified 

variability in the investigated family of genes (i.e. bitter taste receptors) might be important to 
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understand the complexity of taste perception (Roundnitzky et al. 2015) and their associated effects 

on production and performance traits. Further studies are needed to develop nutrigenetic approaches 

starting from the obtained results and integrate them in pig breeding and nutrition. 
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Figure 1. Number of segregating single nucleotide polymorphisms (SNPs - missense; synonymous; 

5’-flanking/5’-untranslated regions, 5’-UTR; 3’-flanking/3’-untranslated regions, 3’-UTR) identified 

in the different breeds or populations (P, Pietrain; M, Meishan; CA, Casertana; WB, wild boars; L, 

Italian Landrace; D, Italian Duroc; LW (-), Italian Large White with negative back fat thickness 

estimated breeding value; LW (+), Italian Large White with positive back fat thickness estimated 

breeding value.  
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Figure 2. Heatmap representing allele frequencies distribution of the SNPs identified in the 

corresponding bitter taste receptor genes among the analysed pig breeds or populations (indicated as 

reported above).  

 

 



43 

 

Figure 3. Snake plot of general bitter taste receptor protein (modified from Roudnitzky et al. 2015) 

with information on the position of the missense mutations identified in the deduced protein of the 

analysed porcine taste receptor genes. Colours correspond to different genes. Bolded circled amino 

acids indicate deleterious substitutions. Positions of the substituted amino acids have been deduced 

from multiple alignments of the protein sequences and Prediction of Transmembrane Regions and 

Orientation using TMpred server at the ExPASy Bioinformatic resource portal (http://embnet.vital-

it.ch/software/TMPRED_form.html). Numbers in the amino acid positions in the snake plots indicate 

a progressive order reported below the figure with the corresponding amino acid substitution details. 

TMI-VII indicates the seven transmembrane domains. 

 

http://embnet.vital-it.ch/software/TMPRED_form.html
http://embnet.vital-it.ch/software/TMPRED_form.html
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Table 1. Summary of information from the analysed porcine bitter taste receptor genes, comparison with putative homologous genes in humans and mice 

and number of single nucleotide polymorphisms (SNPs) identified in this study. 

 

Sus scrofa gene symbol (NCBI)1 SSC (coordinates and gene size)2 Homo sapiens 

(identity %)4 

Mus musculus 

(identity %)5 

No. of SNPs6 

TAS2R1 (LOC106508396) GL893464.1 (28,052-29,033; 981 bp)3 TAS2R1 (74) Tas2r119 (71) 22 (2, 7, 2, 11) 

TAS2R3 (LOC100621051) GL892960.2 (34,965-35,915; 950 bp)3 TAS2R3 (81) Tas2r137 (76) 26 (20, 4, 2, 0) 

TAS2R4 (LOC100620853) GL892960.2 (41,686-42,576; 890 bp)3 TAS2R4 (80) Tas2r108 (74) 5 (1, 3, 1, 0) 

TAS2R7 (LOC100523246) 5 (63,985,142- 63,986,080; 938 bp) TAS2R7 (81) Tas2r130 (78) 6 (1, 3, 0, 2) 

TAS2R9 (LOC100522867) 5 (63,976,739-63,977,674; 935 bp) TAS2R9 (83) Tas2r130 (69) 3 (1, 2, 0, 0) 

TAS2R10 (LOC100522675) 5 (63,965,446-63,966,375; 929 bp)  TAS2R10 (84) Tas2r104 (72) 8 (2, 0, 2, 4) 

TAS2R16 (LOC100513769) 18 (25,883,452-25,884,354; 902 bp) TAS2R16 (77) Tas2r118 (71) 10 (2, 1, 3, 4) 

TAS2R38 (LOC100624167) 18 (8,357,518-8,358,525; 1007 bp) TAS2R38 (77) Tas2r138 (75) 23 (8, 7, 8, 0) 

TAS2R39 (LOC100621890) 18 (7,358,848-7,359,855; 1007 bp) TAS2R39 (81) Tas2r139 (71) 22 (6, 10, 4, 3) 

 

1 Within brackets: Gene symbol in NCBI Gene database (http://www.ncbi.nlm.nih.gov/gene/). 

2 SSC: porcine chromosome; in parenthesis: gene coordinates in the corresponding chromosome or scaffold as reported in the Sscrofa10.2 genome 

version Ensembl Release 84, March 2016, and size on the gene in bp). 

http://www.ncbi.nlm.nih.gov/gene/
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3 Scaffold ID and related gene coordinates within it are reported. 

4 Human gene with the highest identity. 

5 Mouse gene with the highest identity. 

6 The numbers within brackets correspond to SNPs in the 5’-flanking region/5’-untranslated region, missense mutations, synonymous mutations, SNPs 

in the 3’-flanking region/3’-untranslated region, respectively.  
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Supplementary material 

 

Table S1. Primers, PCR conditions and methods used for Ion Torrent sequencing, Sanger sequencing and PCR-RFLP analyses. 

 

Gene 

symbol 
Primer name Primer sequence1,2 

Primer start position 

(SSC:coordinate)3 

Amplified 

fragments 

size (in bp, 

excluding 

primers) 

Use4 

TAS2R1 

TAS2R1-like_pig_p1_F GTCTTCGGCTTCCTCTCTGA GL893464.1:27,505 
381 

Ion 

Torrent/Sanger TAS2R1-like_pig_p1_R TGGATTTGCTCCTTTTTCAA GL893464.1:27,926  

TAS2R1-like_pig_p2_F TGCAAGATGAGACTGCAAGG GL893464.1:27,816 
409 

Ion 

Torrent/Sanger TAS2R1-like_pig_p2_R ATCCTGGTCTTCCTGGGTCT GL893464.1:28,264  

TAS2R1-like_pig_p4_F GCAAACCAAAGTCCCGATT GL893464.1:28,747 
450 

Ion 

Torrent/Sanger TAS2R1-like_pig_p4_R AGCAAATCCTCGCCAGAGTA GL893464.1:29,235  

TAS2R1_773_SS_F GGCAGCAGTTTTGTTCTTTT GL893464.1:28,079 
108 

PCR-RFLP 

(SspI) TAS2R1_773_SS_R CAACTTCTTCCCAATCTGCT GL893464.1:28,226 

TAS2R3 

TAS2R3_IT_1_F TGAGAAACCTTTGTATTCCCAGT GL892960.2:33,979 
940 Ion Torrent 

TAS2R3_IT_1_R AGCTTATTCGGCAGACCTGA GL892960.2:34,961 

TAS2R3_IT_2_F GGGCAGAGACAAGAGACAGG GL892960.2:34,838 952 Ion Torrent 
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TAS2R3_IT_2_R TGTTTCCCAGAATGAGGACA GL892960.2:35,829 

TAS2R4 

TAS2R4_IT_1_F AGATGGGGAAGATGGTTGC GL892960.2:41,161 
809 Ion Torrent 

TAS2R4_IT_1_R TGGCAATCTTCACACAGTACAA GL892960.2:42,010 

TAS2R4_IT_2_F TTTGGTTTGTAACCTTGCTGAA GL892960.2:41,963 
801 Ion Torrent 

TAS2R4_IT_2_R TGCCCATGTAAAACACATGC GL892960.2:42,805 

TAS2R7 

TAS2R7_IT_1_F TGGGTTTCTGGTAAGTTTATTCG 5:63,984,702 
826 Ion Torrent 

TAS2R7_IT_1_R AAACACAGAGAGGGCCAAAC 5:63,985,570 

TAS2R7_IT_2_F TTCCTCTGGATGAGGTGGAG 5:63,985,496 
925 Ion Torrent 

TAS2R7_IT_2_R GTTGAGCCAACAGCTTTTCA 5:63,986,461 

TAS2R9 

TAS2R9_IT_1_F GGCTACCCATCTCTTTCATTCC 5:63,976,173 
892 Ion Torrent 

TAS2R9_IT_1_R TTCAGCCAGAGGAAAAATGG 5:63,977,106 

TAS2R9_186_deg_SS_F CCAGAATCTGCTTGTTGTCTGTaAT2 5:63,976,899 
147 

PCR-RFLP 

(SspI) TAS2R9_186_SS_R AAAATGGGTGGGATATACTGGCT 5:63,977,093 

TAS2R10 

TAS2R10_IT_1_F TTCAAAGAAACTTGTGTCTTCAGTG 5:63,964,924 
880 Ion Torrent 

TAS2R10_IT_1_R CCCATCAGAATGAGAAGAACC 5:63,965,849 

TAS2R10_IT_2_F GCAAATTTTTCCCACCACAT 5:63,965,779 
939 Ion Torrent 

TAS2R10_IT_2_R TTTGGGTTTTCCTGGTGAAG 5:63,966,757  

TAS2R16 

TAS2R16_IT_1_F TCTCAGGCTGATAATGAAGGAA 18:25,883,129 
803 Ion Torrent 

TAS2R16_IT_1_R GCAGAAATGTCTCAAGCCTCT 18:25,883,974  

TAS2R16_IT_2_F TTCTCTAGAAACAGCACCGTGA 18:25,883,929 806 Ion Torrent 



48 

 

TAS2R16_IT_2_R TGGGCAATAAATTCTTGTGG 18:25,884,776 

TAS2R16_233_deg_SS_F CTCCCACTTCCATCCTCACTGTGaAT2 18:25,883,658 
88 

PCR-RFLP 

(SspI) TAS2R16_233_SS_R ATGGGGCAGCTGAAGGAGGAG 18:25,883,792  

TAS2R20 

TAS2R20_IT_1_F CAATCCCTGGCCTCTCAGT 5:63,903,604 
938 Ion Torrent 

TAS2R20_IT_1_R TGAAGAAAAACTAGGCTGGAGAA 5:63,904,581 

TAS2R20_IT_2_F CTTCTGGGAGCTTCGTTCTT 5:63,904,533 
804 Ion Torrent 

TAS2R20_IT_2_R TTCATTTGGACGATGATAACG 5:63,905,377  

TAS2R38 

TAS2R38_IT_1_F AAAACAGTTCATGGTAAGAGTCTCC 18:8,356,992 
802 Ion Torrent 

TAS2R38_IT_1_R CAGGCCAGCTTGATTTATGA 18:8,357,838  

TAS2R38_IT_2_F CAGCTACCAAACCACCATCA 18:8,357,787 
805 Ion Torrent 

TAS2R38_IT_2_R TGGATCTTTAACCCAGTGTGC 18:8,358,632 

TAS2R39 

TAS2R39_IT_1_F CCACATCTGCAAAATGGAG 18:7,358,370 
808 Ion Torrent 

TAS2R39_IT_1_R AGGCCACAGTAATTGAAGAACA 18:7,359,218 

TAS2R39_IT_2_F TTCAACATCCCCAAGCTTTT 18:7,359,135 
876 Ion Torrent 

TAS2R39_IT_2_R AATGGAAGACGCAGGTGAAG 18:7,360,050 

TAS2R39_118_SS_F ATGATCAAAACCAGCAGTCC  18:7,358,899 
138 

PCR-RFLP 

(PsiI) TAS2R39_118_SS_R AAAGCAGGATCTTGCCATTT  18:7,359,077  

TAS2R39_N71T_SS_F TGGGTTCATTGCAGCTATAA 18:7,359,000 
328 

PCR-RFLP 

(BsrI) TAS2R39_N71T_SS_R AAACCAGGGCATCAATCCAG 18:7,359,327 
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1 PCR primers were designed on the corresponding regions retrieved from Sscrofa10.2. Primers were designed to amplify all coding exons including 

non-coding transcribed and flanking regions. Genomic DNA was extracted from blood, muscle or ear tissue using the Wizard® Genomic DNA 

Purification kit (Promega Corporation, Madison, WI, USA). Extracted DNA was quantified in triplicate using a NanoPhotometer P-330 instrument 

(Implen GmbH, München, Germany) and pooled at equimolar concentration (as reported in the text for the different breeds/populations) for the Ion 

Torrent sequencing. For all other applications, each DNA sample was considered separately. 

2 Nucleotides in lower case letter have been included to create artificial restriction sites for PCR-RFLP analysis.  

3 The nucleotide coordinate in the corresponding Sus scrofa chromosome (SSC) in the Sscrofa10.2 genome version is reported. The scaffold ID is reported 

for the genes not assembled in any chromosome yet. 

4 Use of the amplified fragments. Ion Torrent: sequencing with Ion Torrent; Sanger: sequencing with Sanger technology; PCR-RFLP: analisys of 

polymorphisms with this genotyping approach. 

Ion Torrent sequencing. PCRs on equimolar pools were performed in a total volume of 25 μl of final volume in a 2720 thermal cycler (Life 

Technologies, Carlsbad, CA, USA): the reaction included 50 ng of genomic DNA, 1X of Phusion® Hot Start Flex 2X Master Mix, 10 μM of Forward 

Primer, 10 μM of Reverse Primer with the following amplification condition: 98 °C for 1 min, followed by 35 cycles with 98 °C for 10 sec, 57-59 °C for 

30 sec, 72 °C for 40 sec and final elongation step at 72 °C for 8 min. Amplified fragments were purified using ExoSAP-IT® (USB Corporation, Cleveland, 

Ohio, USA), pooled according to the breed/DNA pool of origin using putative equimolar DNA from each amplified product estimated from gel 

electrophoresis. The resulting pooled fragments were then used for library preparation and sequencing with the Ion Torrent PGM (Life Technologies). 

Briefly, 200 ng of every pool of amplified products was enzymatically sheared, end repaired and ligated with different barcodes using the Ion XpressTM 

Plus Fragment Library kit (Life Technologies) and the Ion Xpress™ Barcode Adapters 1-16 Kit (Life Technologies). The resulting DNA was then size 

selected using the e-gel system (Invitrogen, Carlsbad, CA, USA) and bands corresponding to 100 bp of inserts were collected and quantified by qPCR 

using a StepOnePlus™ Real-Time PCR System (Life Technologies). Barcoded fragments were pooled again with the same concentration, clonally 

amplified, purified and sequenced using the Ion One TouchTM 100 Template kit and the Ion PGMTM Sequencing kit with an Ion 316 chip (Life 
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Technologies). Obtained sequencing reads were filtered, trimmed, automatically assigned to the different barcodes, and analysed for the presence of 

differences between the reference sequences (from Sscrofa10.2) and obtained sequences with the Ion Torrent suite v.2.2 (Life Technologies). 

PCR-RFLP. PCRs were obtained in a 2720 Life Technologies thermal cycler (Life Technologies) with the following profile: 5 min at 95 °C; 35 

amplification cycles of 30 sec at 95 °C, 30 sec at the appropriate annealing temperature (53-62 °C), 30 sec at 72 °C; 10 min at 72 °C. The final reaction 

volume was of 20 µL and included about 50 ng of template DNA; the Phusion® High-Fidelity PCR Master Mix (New England Biolabs, Ipswich, UK); 

10 pmol of each primer. A total of 5 µl of PCR product was digested overnight with 2 U of the enzyme indicated in brackets and 1X reaction buffer in a 

total of 20 L of reaction volume, following the temperature indicated in each manufacturer protocol. Resulting DNA fragments were electrophoresed 

in 2.5% agarose gels in TBE 1X and stained with 1X GelRed Nucleic Acid Gel Stain (Biotium Inc., Hayward, CA, USA). 

Sanger sequencing. Amplicons obtained by PCR from individual DNA samples were purified with ExoSAP-IT (USB Corporation, Cleveland, Ohio, 

USA) and then sequenced using the Sanger method with the BrightDye® Terminator Cycle Sequencing Kit (NIMAGEN, Nijmegen, the Netherlands). 

Sequencing reactions were loaded on an ABI3100 Avant sequencer (Applied Biosystems). All sequences were visually inspected and aligned with the 

help of CodonCode Aligner (version 5.1.5) software. 
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Table S2. Average depth and coverage for the sequenced gene regions in the different breeds/populations and average across all genes. 

Breeds/populations are defined below. 

 Gene/ite

ms 

Mean depth (X) Coverage (%) 

LW 

(+) 

LW (-

) 
L D WB CA M P 

LW 

(+) 

LW (-

) 
L D WB CA M P 

TAS2R1 417 3748 5851 2054 268 143 107 59 100 100 100 100 100 100 100 76 

TAS2R3 1956 10978 1936 6432 1005 858 590 777 100 100 100 100 100 100 100 100 

TAS2R4 2119 10270 6894 7845 1186 905 425 457 100 100 100 100 100 100 100 100 

TAS2R7 1801 11346 5717 6100 978 995 484 835 100 100 100 100 100 100 100 100 

TAS2R9 474 2854 2023 2645 342 388 252 253 100 100 100 100 100 100 100 100 

TAS2R10 498 3133 2252 2718 157 246 168 153 100 100 100 100 100 100 100 100 

TAS2R16 2212 12758 8107 9116 1127 1068 568 825 100 100 100 100 100 100 100 100 

TAS2R38 2107 10489 5788 6499 1069 898 547 575 99 100 100 100 100 100 100 100 

TAS2R39 1769 4083 4230 5868 392 542 328 149 100 100 100 100 100 100 100 100 

Averaged 1484 7740 4755 5475 725 672 385 454 100 100 100 100 100 100 100 97 

 

Mean depth indicates the mean number of times that each nucleotide in the analysed genes is covered by the reads (calculated per pool and then averaged 

per breed/group). Coverage indicates the percentage of each gene with depth of at least 1/10 the mean depth. LW (+), Italian Large White with positive 

back fat thickness estimated breeding value, LW (-), Italian Large White with negative back fat thickness estimated breeding value; L, Italian Landrace; 

D, Italian Duroc; WB, wild boars; CA, Casertana; M, Meishan; P, Pietrain. 
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Table S3. Detailed information on the identified single nucleotide polymorphisms (SNPs). 

Gene 

symbol 

SNP position 

(SSC:chromosome 

coordinate or 

scaffold) in 

Sscrofa10.21,2,3 

Pos

itio

n 

in 

the 

am

plic

on 

Gene 

region/type of 

mutation4 

Effects 

on 

protei

n 

SIF

T 

Novel 

or 

reporte

d also 

by 

previou

s 

studies  

dbSNP ID LW 

(+)5 

LW 

(+) 

LW (-

) 

LW (-

) 

L L D D WB WB CA CA M M P P 

        freq_re

f6 

freq_al

t7 

freq_r

ef 

freq_a

lt 

freq_r

ef 

freq_a

lt 

freq_r

ef 

freq_a

lt 

freq_r

ef 

freq_a

lt 

freq_r

ef 

freq_a

lt 

freq_r

ef 

freq_a

lt 

freq_r

ef 

freq_a

lt 

TAS2R1 GL893464.1:g.27529G

>C 

24 3'UTR   This 

study 

ss19714584

62 

                      

-    

                 

1,00  

                 

0,02  

                 

0,98  

                 

0,28  

                 

0,72  

                 

0,49  

                 

0,51  

                      

-    

                 

1,00  

                 

0,10  

                 

0,90  

                 

1,00  

                      

-    

                 

0,22  

                 

0,78  

 GL893464.1:g.27703C

>T 

198 3'UTR   This 

study 

ss19714584

63 

                 

0,10  

                 

0,90  

                 

0,11  

                 

0,89  

                 

0,43  

                 

0,57  

                 

0,39  

                 

0,61  

                 

0,10  

                 

0,90  

                 

0,22  

                 

0,78  

                 

0,08  

                 

0,92  

                 

0,06  

                 

0,94  

 GL893464.1:g.27727C

>G 

222 3'UTR   This 

study 

ss19714584

64 

                 

0,01  

                 

0,99  

                 

0,00  

                 

1,00  

                 

0,22  

                 

0,78  

                 

0,21  

                 

0,79  

                      

-    

                 

1,00  

                 

0,10  

                 

0,90  

                 

1,00  

                      

-    

                 

0,18  

                 

0,82  

 GL893464.1:g.27781C

>G 

276 3'UTR   This 

study 

ss19714584

65 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,63  

                 

0,37  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

 GL893464.1:g.27819A

>C 

314 3'UTR   This 

study 

ss19714584

66 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,26  

                 

0,74  

                 

1,00  

                      

-    

 GL893464.1:g.27822A

>G 

317 3'UTR   This 

study 

ss19714584

67 

                 

0,01  

                 

0,99  

                 

0,04  

                 

0,96  

                 

0,18  

                 

0,82  

                 

0,24  

                 

0,76  

                 

0,07  

                 

0,93  

                 

0,13  

                 

0,87  

                 

1,00  

                      

-    

                      

-    

                 

1,00  

 GL893464.1:g.27843G

>A 

28 3'UTR   This 

study 

ss19714584

68 

                 

0,01  

                 

0,99  

                 

0,01  

                 

0,99  

                 

0,19  

                 

0,81  

                 

0,27  

                 

0,73  

                      

-    

                 

1,00  

                 

0,05  

                 

0,95  

                 

1,00  

                      

-    

                      

-    

                 

1,00  

 GL893464.1:g.27847A

>C 

32 3'UTR   This 

study 

ss19714584

69 

                 

0,37  

                 

0,63  

                 

0,29  

                 

0,71  

                 

0,18  

                 

0,82  

                 

0,39  

                 

0,61  

                 

1,00  

                      

-    

                 

0,51  

                 

0,49  

                 

1,00  

                      

-    

                 

0,38  

                 

0,63  

 GL893464.1:g.27851G

>T 

36 3'UTR   This 

study 

ss19714584

70 

                 

0,01  

                 

0,99  

                 

0,01  

                 

0,99  

                 

0,16  

                 

0,84  

                 

0,23  

                 

0,77  

                 

0,01  

                 

0,99  

                 

0,03  

                 

0,97  

                 

1,00  

                      

-    

                      

-    

                 

1,00  

 GL893464.1:g.27863A

>G 

48 3'UTR   This 

study 

ss19714584

71 

                 

0,00  

                 

1,00  

                 

0,01  

                 

0,99  

                 

0,16  

                 

0,84  

                 

0,38  

                 

0,62  

                 

0,01  

                 

0,99  

                 

0,03  

                 

0,97  

                 

1,00  

                      

-    

                 

0,15  

                 

0,85  

 GL893464.1:g.27869G

>C 

54 3'UTR   This 

study 

ss19714584

72 

                      

-    

                 

1,00  

                 

0,00  

                 

1,00  

                 

0,17  

                 

0,83  

                 

0,24  

                 

0,76  

                      

-    

                 

1,00  

                 

0,03  

                 

0,97  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

 GL893464.1:g.28156T

>C 

341 Missense I260V 0,88 This 

study 

ss19714584

73 

                      

-    

                 

1,00  

                 

0,02  

                 

0,98  

                 

0,46  

                 

0,54  

                 

0,39  

                 

0,61  

                      

-    

                 

1,00  

                 

0,27  

                 

0,73  

                      

-    

                 

1,00  

NA8  NA  

 GL893464.1:g.28179C

>T 

364 Missense R252K 0,2 This 

study 

ss19714584

74 

                      

-    

                 

1,00  

                 

0,02  

                 

0,98  

                 

0,46  

                 

0,54  

                 

0,44  

                 

0,56  

                      

-    

                 

1,00  

                 

0,26  

                 

0,74  

                 

1,00  

                      

-    

 NA   NA  

 GL893464.1:g.28240C

>T 

425 Missense V232I 0,67 This 

study 

ss19714584

75 

                      

-    

                 

1,00  

                 

0,02  

                 

0,98  

                 

0,42  

                 

0,58  

                 

0,40  

                 

0,60  

                      

-    

                 

1,00  

                 

0,25  

                 

0,75  

                 

1,00  

                      

-    

 NA   NA  

 GL893464.1:g.28808G

>A 

60 Missense L76F 0,71 This 

study 

ss19714584

76 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,01  

                 

0,99  

                 

0,71  

                 

0,29  

 GL893464.1:g.28814C

>T 

68 Missense G74R 0,57 This 

study 

ss19714584

77 

                      

-    

                 

1,00  

                 

0,01  

                 

0,99  

                 

0,52  

                 

0,48  

                 

0,40  

                 

0,60  

                      

-    

                 

1,00  

                 

0,21  

                 

0,79  

                 

0,01  

                 

0,99  

                      

-    

                 

1,00  

 GL893464.1:g.28842G

>A 

96 Synonymous C64  This 

study 

ss19714584

78 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,03  

                 

0,97  

                 

0,77  

                 

0,23  

 GL893464.1:g.28953A

>G 

207 Synonymous I27  This 

study 

ss19714584

79 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,66  

                 

0,34  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,00  

                 

1,00  

                 

0,61  

                 

0,39  

 GL893464.1:g.29026G

>T 

280 Missense A3E 1 This 

study 

ss19714584

80 

                 

0,00  

                 

1,00  

                 

0,01  

                 

0,99  

                 

0,47  

                 

0,53  

                 

0,37  

                 

0,63  

                 

0,01  

                 

0,99  

                 

0,20  

                 

0,80  

                 

0,00  

                 

1,00  

                      

-    

                 

1,00  

 GL893464.1:g.29029A

>G 

283 Missense L2P 0,1 This 

study 

ss19714584

81 

                 

0,00  

                 

1,00  

                 

0,01  

                 

0,99  

                 

0,47  

                 

0,53  

                 

0,37  

                 

0,63  

                 

0,00  

                 

1,00  

                 

0,20  

                 

0,80  

                      

-    

                 

1,00  

                      

-    

                 

1,00  
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 GL893464.1:g.29037G

>A 

291 5'UTR   This 

study 

ss19714584

82 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,02  

                 

0,98  

                 

0,73  

                 

0,27  

 GL893464.1:g.29058T

>C 

312 5'UTR   This 

study 

ss19714584

83 

                 

0,00  

                 

1,00  

                 

0,02  

                 

0,98  

                 

0,47  

                 

0,53  

                 

0,70  

                 

0,30  

                 

0,00  

                 

1,00  

                 

0,21  

                 

0,79  

                 

1,00  

                      

-    

                 

0,46  

                 

0,54  

TAS2R3 GL892960.2:g.33976G

>A 

46 5'UTR   This 

study 

ss19714584

84 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,78  

                 

0,22  

                 

0,61  

                 

0,39  

                 

1,00  

                      

-    

                 

0,85  

                 

0,15  

                 

0,19  

                 

0,81  

                 

0,87  

                 

0,13  

 GL892960.2:g.33988T

>C 

58 5'UTR   This 

study 

ss19714584

85 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,62  

                 

0,38  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,19  

                 

0,81  

                 

1,00  

                      

-    

 GL892960.2:g.34100G

>A 

170 5'UTR   This 

study 

ss19714584

86 

                 

0,80  

                 

0,20  

                 

0,71  

                 

0,29  

                 

0,94  

                 

0,06  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,90  

                 

0,10  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

 GL892960.2:g.34112T

>A 

182 5'UTR   This 

study 

ss19714584

87 

                 

0,10  

                 

0,90  

                 

0,18  

                 

0,82  

                 

0,27  

                 

0,73  

                 

1,00  

                      

-    

                 

0,02  

                 

0,98  

                 

0,71  

                 

0,29  

                 

1,00  

                      

-    

                 

0,37  

                 

0,63  

 GL892960.2:g.34131A

>G 

201 5'UTR   This 

study 

ss19714584

88 

                 

0,11  

                 

0,89  

                 

0,18  

                 

0,82  

                 

0,27  

                 

0,73  

                 

1,00  

                      

-    

                 

0,03  

                 

0,97  

                 

0,73  

                 

0,27  

                 

1,00  

                      

-    

                 

0,37  

                 

0,63  

 GL892960.2:g.34132T

>C 

202 5'UTR   This 

study 

ss19714584

89 

                 

0,95  

                 

0,05  

                 

0,93  

                 

0,07  

                 

0,91  

                 

0,09  

                 

0,64  

                 

0,36  

                 

0,95  

                 

0,05  

                 

0,90  

                 

0,10  

                 

0,21  

                 

0,79  

                 

0,95  

                 

0,05  

 GL892960.2:g.34133A

>C 

203 5'UTR   This 

study 

ss19714584

90 

                 

0,11  

                 

0,89  

                 

0,18  

                 

0,82  

                 

0,26  

                 

0,74  

                 

1,00  

                      

-    

                 

0,02  

                 

0,98  

                 

0,72  

                 

0,28  

                 

1,00  

                      

-    

                 

0,37  

                 

0,63  

 GL892960.2:g.34179G

>A 

249 5'UTR   This 

study 

ss19714584

91 

                 

0,89  

                 

0,11  

                 

0,84  

                 

0,16  

                 

0,79  

                 

0,21  

                 

0,15  

                 

0,85  

                 

0,98  

                 

0,02  

                 

0,36  

                 

0,64  

                      

-    

                 

1,00  

                 

0,71  

                 

0,29  

 GL892960.2:g.34181C

>A 

251 5'UTR   This 

study 

ss19714584

92 

                 

0,90  

                 

0,10  

                 

0,85  

                 

0,15  

                 

0,81  

                 

0,19  

                 

0,16  

                 

0,84  

                 

1,00  

                      

-    

                 

0,37  

                 

0,63  

                      

-    

                 

1,00  

                 

0,72  

                 

0,28  

 GL892960.2:g.34205G

>A 

275 5'UTR   This 

study 

ss19714584

93 

                 

0,99  

                 

0,01  

                 

0,98  

                 

0,02  

                 

0,95  

                 

0,05  

                 

0,66  

                 

0,34  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,27  

                 

0,73  

                 

1,00  

                      

-    

 GL892960.2:g.34218T

>A 

288 5'UTR   This 

study 

ss19714584

94 

                 

0,10  

                 

0,90  

                 

0,17  

                 

0,83  

                 

0,25  

                 

0,75  

                 

0,76  

                 

0,24  

                 

0,02  

                 

0,98  

                 

0,71  

                 

0,29  

                 

1,00  

                      

-    

                 

0,37  

                 

0,63  

 GL892960.2:g.34285C

>T 

355 5'UTR   This 

study 

ss19714584

95 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,65  

                 

0,35  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,20  

                 

0,80  

                 

1,00  

                      

-    

 GL892960.2:g.34410A

>G 

480 5'UTR   This 

study 

ss19714584

96 

                 

0,10  

                 

0,90  

                 

0,17  

                 

0,83  

                 

0,25  

                 

0,75  

                 

0,92  

                 

0,08  

                 

0,02  

                 

0,98  

                 

0,73  

                 

0,27  

                 

1,00  

                      

-    

                 

0,35  

                 

0,65  

 GL892960.2:g.34488A

>G 

558 5'UTR   This 

study 

ss19714584

97 

                 

0,93  

                 

0,07  

                 

0,86  

                 

0,14  

                 

0,83  

                 

0,17  

                 

0,42  

                 

0,58  

                 

1,00  

                      

-    

                 

0,31  

                 

0,69  

                 

0,81  

                 

0,19  

                 

0,66  

                 

0,34  

 GL892960.2:g.34516C

>G 

586 5'UTR   This 

study 

ss19714584

98 

                 

0,92  

                 

0,08  

                 

0,86  

                 

0,14  

                 

0,84  

                 

0,16  

                 

0,44  

                 

0,56  

                 

1,00  

                      

-    

                 

0,33  

                 

0,67  

                 

0,82  

                 

0,18  

                 

0,69  

                 

0,31  

 GL892960.2:g.34522C

>G 

592 5'UTR   This 

study 

ss19714584

99 

                 

0,73  

                 

0,27  

                 

0,59  

                 

0,41  

                 

0,75  

                 

0,25  

                 

0,13  

                 

0,87  

                 

1,00  

                      

-    

                 

0,26  

                 

0,74  

                 

0,06  

                 

0,94  

                 

0,69  

                 

0,31  

 GL892960.2:g.34537A

>G 

607 5'UTR   This 

study 

ss19714585

00 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,82  

                 

0,18  

                 

0,70  

                 

0,30  

                 

1,00  

                      

-    

                 

0,83  

                 

0,17  

                 

0,20  

                 

0,80  

                 

1,00  

                      

-    

 GL892960.2:g.34538C

>T 

608 5'UTR   This 

study 

ss19714585

01 

                 

0,93  

                 

0,07  

                 

0,87  

                 

0,13  

                 

1,00  

                      

-    

                 

0,42  

                 

0,58  

                 

1,00  

                      

-    

                 

0,50  

                 

0,50  

                 

0,82  

                 

0,18  

                 

0,69  

                 

0,31  

 GL892960.2:g.34555G

>A 

625 5'UTR   This 

study 

ss19714585

02 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,71  

                 

0,29  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,18  

                 

0,82  

                 

1,00  

                      

-    

 GL892960.2:g.34759T

>C 

829 5'UTR   This 

study 

ss19714585

03 

                 

0,89  

                 

0,11  

                 

0,87  

                 

0,13  

                 

0,76  

                 

0,24  

                 

0,11  

                 

0,89  

                 

1,00  

                      

-    

                 

0,33  

                 

0,67  

                 

0,01  

                 

0,99  

                 

0,85  

                 

0,15  

 GL892960.2:g.34995G

>A 

158 Missense V11I 0,47 This 

study 

ss19714585

04 

                 

0,88  

                 

0,12  

                 

0,83  

                 

0,17  

                 

0,68  

                 

0,32  

                 

0,16  

                 

0,84  

                 

1,00  

                      

-    

                 

0,35  

                 

0,65  

                 

0,01  

                 

0,99  

                 

0,82  

                 

0,18  

 GL892960.2:g.35106C

>A 

269 Missense L48I 1 This 

study 

ss19714585

05 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,65  

                 

0,35  

                 

0,63  

                 

0,37  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,22  

                 

0,78  

                 

1,00  

                      

-    

 GL892960.2:g.35387A

>T 

550 Synonymous S141  This 

study 

ss19714585

06 

                 

0,78  

                 

0,22  

                 

0,76  

                 

0,24  

                 

0,93  

                 

0,07  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,94  

                 

0,06  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

 GL892960.2:g.35602G

>A 

765 Missense R213Q 1 This 

study 

ss19714585

07 

                 

0,72  

                 

0,28  

                 

0,76  

                 

0,24  

                 

0,68  

                 

0,32  

                 

0,64  

                 

0,36  

                 

1,00  

                      

-    

                 

0,75  

                 

0,25  

                 

0,28  

                 

0,72  

                 

1,00  

                      

-    

 GL892960.2:g.35640C

>A 

803 Missense P226T 1 This 

study 

ss19714585

08 

                 

0,72  

                 

0,28  

                 

0,75  

                 

0,25  

                 

0,64  

                 

0,36  

                 

0,61  

                 

0,39  

                 

1,00  

                      

-    

                 

0,74  

                 

0,26  

                 

0,24  

                 

0,76  

                 

1,00  

                      

-    
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 GL892960.2:g.35729C

>T 

892 Synonymous S255  This 

study 

ss19714585

09 

                 

0,73  

                 

0,27  

                 

0,74  

                 

0,26  

                 

0,83  

                 

0,17  

                 

0,68  

                 

0,32  

                 

1,00  

                      

-    

                 

0,96  

                 

0,04  

                 

0,22  

                 

0,78  

                 

1,00  

                      

-    

TAS2R4 GL892960.2:g.41356T

>C 

238 5'UTR   This 

study 

ss19714585

10 

                 

0,77  

                 

0,23  

                 

0,75  

                 

0,25  

                 

0,68  

                 

0,32  

                 

0,66  

                 

0,34  

                 

1,00  

                      

-    

                 

0,73  

                 

0,27  

                 

0,26  

                 

0,74  

                 

1,00  

                      

-    

 GL892960.2:g.41842A

>T 

724 Missense I53F 0,01 This 

study 

ss19714585

11 

                 

0,74  

                 

0,26  

                 

0,76  

                 

0,24  

                 

0,68  

                 

0,32  

                 

0,67  

                 

0,33  

                 

1,00  

                      

-    

                 

0,75  

                 

0,25  

                 

0,24  

                 

0,76  

                 

1,00  

                      

-    

 GL892960.2:g.41940G

>C 

822 Missense W85C 0,01 This 

study 

ss19714585

12 

                 

0,74  

                 

0,26  

                 

0,78  

                 

0,22  

                 

0,69  

                 

0,31  

                 

0,67  

                 

0,33  

                 

1,00  

                      

-    

                 

0,79  

                 

0,21  

                 

0,28  

                 

0,72  

                 

1,00  

                      

-    

 GL892960.2:g.42100G

>T 

138 Missense V139F 0,89 This 

study 

ss19714585

13 

                 

0,64  

                 

0,36  

                 

0,79  

                 

0,21  

                 

0,94  

                 

0,06  

                 

1,00  

                      

-    

                 

0,86  

                 

0,14  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,69  

                 

0,31  

 GL892960.2:g.42117C

>T 

155 Synonymous Y144  This 

study 

ss19714585

14 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,87  

                 

0,13  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,57  

                 

0,43  

                 

1,00  

                      

-    

TAS2R7 5:g.63984901T>G 200 5'UTR   da Silva 

et al. 

(2014) 

rs33265871

8 

                 

0,85  

                 

0,15  

                 

0,84  

                 

0,16  

                 

0,81  

                 

0,19  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,82  

                 

0,18  

                 

1,00  

                      

-    

                 

0,40  

                 

0,60  

 5:g.63985428T>C 727 Missense I96T 0,11 da Silva 

et al. 

(2014) 

rs32545811

9 

                 

0,70  

                 

0,30  

                 

0,70  

                 

0,30  

                 

0,68  

                 

0,32  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,83  

                 

0,17  

                 

1,00  

                      

-    

                 

0,18  

                 

0,82  

 5:g.63985814G>C 319 Missense A225P 1,00 da Silva 

et al. 

(2014) 

rs34440829

6 

                 

0,63  

                 

0,37  

                 

0,67  

                 

0,33  

                 

0,61  

                 

0,39  

                 

1,00  

                      

-    

                 

0,78  

                 

0,22  

                 

0,46  

                 

0,54  

                      

-    

                 

1,00  

                 

0,29  

                 

0,71  

 5:g.63986034G>A 539 Missense K298R 1 da Silva 

et al. 

(2014) 

rs33555686

0 

                 

0,65  

                 

0,35  

                 

0,66  

                 

0,34  

                 

0,61  

                 

0,39  

                 

1,00  

                      

-    

                 

0,77  

                 

0,23  

                 

0,46  

                 

0,54  

                 

0,00  

                 

1,00  

                 

0,29  

                 

0,71  

 5:g.63986142A>G 646 3'UTR   dbSNP 

databas

e 

rs33137091

3 

                 

0,96  

                 

0,04  

                 

1,00  

                      

-    

                 

0,86  

                 

0,14  

                 

1,00  

                      

-    

                 

0,71  

                 

0,29  

                 

0,84  

                 

0,16  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

 5:g.63986415A>C 917 3'UTR   This 

study 

ss19714585

15 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,94  

                 

0,06  

                 

0,07  

                 

0,93  

                 

1,00  

                      

-    

TAS2R9 5:g.63976430C>T 258 5'UTR   da Silva 

et al. 

(2014) 

rs31842234

0 

                 

0,75  

                 

0,25  

                 

0,69  

                 

0,31  

                 

0,68  

                 

0,32  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,83  

                 

0,17  

                 

0,00  

                 

1,00  

                 

0,45  

                 

0,55  

 5:g.63976924G>A 752 Missense M62I 1 da Silva 

et al. 

(2014) 

rs34177488

8 

                 

0,67  

                 

0,33  

                 

0,68  

                 

0,32  

                 

0,52  

                 

0,48  

                 

1,00  

                      

-    

                 

0,60  

                 

0,40  

                 

0,54  

                 

0,46  

                      

-    

                 

1,00  

                 

0,48  

                 

0,52  

 5:g.63977076G>A 904 Missense S113N 1 da Silva 

et al. 

(2014) 

rs81384489                  

0,75  

                 

0,25  

                 

0,72  

                 

0,28  

                 

0,67  

                 

0,33  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,74  

                 

0,26  

                      

-    

                 

1,00  

                 

0,45  

                 

0,55  

TAS2R1

0 

5:g.63965383G>A 460 5'UTR   da Silva 

et al. 

(2014) 

rs33723913

8 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,73  

                 

0,27  

                      

-    

                 

1,00  

                 

0,53  

                 

0,47  

 5:g.63965434G>A 511 5'UTR   dbSNP 

databas

e 

rs34411661

9 

                 

0,68  

                 

0,32  

                 

0,67  

                 

0,33  

                 

0,57  

                 

0,43  

                 

1,00  

                      

-    

                 

0,81  

                 

0,19  

                 

0,60  

                 

0,40  

                      

-    

                 

1,00  

                 

0,29  

                 

0,71  

 5:g.63965817T>A 39 Synonymous G124  This 

study 

ss19714585

16 

                 

0,30  

                 

0,70  

                 

0,45  

                 

0,55  

                 

0,28  

                 

0,72  

                 

0,69  

                 

0,31  

                 

0,69  

                 

0,31  

                 

0,85  

                 

0,15  

                 

0,79  

                 

0,21  

                 

0,90  

                 

0,10  

 5:g.63966066G>A 288 Synonymous R207  da Silva 

et al. 

(2014) 

rs31883722

2 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,83  

                 

0,17  
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 5:g.63966540G>A 762 3'UTR   da Silva 

et al. 

(2014) 

rs33040733

6 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,71  

                 

0,29  

 5:g.63966654A>G 876 3'UTR   da Silva 

et al. 

(2014) 

rs33366242

9 

                 

0,90  

                 

0,10  

                 

0,83  

                 

0,17  

                 

0,89  

                 

0,11  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,68  

                 

0,32  

 5:g.63966666A>G 888 3'UTR   da Silva 

et al. 

(2014) 

rs34514497

6 

                 

0,89  

                 

0,11  

                 

0,89  

                 

0,11  

                 

0,84  

                 

0,16  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,69  

                 

0,31  

                 

0,03  

                 

0,97  

                 

0,69  

                 

0,31  

 5:g.63966675A>G 897 3'UTR   da Silva 

et al. 

(2014) 

rs32549332

4 

                 

0,89  

                 

0,11  

                 

0,89  

                 

0,11  

                 

0,82  

                 

0,18  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,74  

                 

0,26  

                      

-    

                 

1,00  

                 

0,67  

                 

0,33  

TAS2R1

6 

18:g.25883270A>G 142 5'UTR   da Silva 

et al. 

(2014) 

rs31945701

3 

                 

0,98  

                 

0,02  

                 

1,00  

                      

-    

                 

0,97  

                 

0,03  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,56  

                 

0,44  

                 

1,00  

                      

-    

 18:g.25883439T>C 311 5'UTR   da Silva 

et al. 

(2014) 

rs32144929

1 

                 

0,99  

                 

0,01  

                 

0,98  

                 

0,02  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,95  

                 

0,05  

                 

0,88  

                 

0,12  

                 

0,58  

                 

0,42  

                 

1,00  

                      

-    

 18:g.25883604C>T 476 Synonymous S51  da Silva 

et al. 

(2014) 

rs32239283

9 

                 

0,87  

                 

0,13  

                 

0,80  

                 

0,20  

                 

1,00  

                 

0,00  

                 

0,98  

                 

0,02  

                 

1,00  

                      

-    

                 

0,93  

                 

0,07  

                 

1,00  

                      

-    

                 

0,58  

                 

0,42  

 18:g.25883684T>A 556 Missense F78Y 0,84 da Silva 

et al. 

(2014) 

rs33186379

6 

                 

0,59  

                 

0,41  

                 

0,59  

                 

0,41  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,82  

                 

0,18  

                 

0,88  

                 

0,12  

                 

0,61  

                 

0,39  

 18:g.25883991T>C 63 Synonymous Y180  da Silva 

et al. 

(2014) 

rs33402327

8 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,63  

                 

0,37  

                 

1,00  

                      

-    

 18:g.25884087A>G 159 Synonymous Q212  da Silva 

et al. 

(2014) 

rs34141404

9 

                 

0,59  

                 

0,41  

                 

0,74  

                 

0,26  

                 

0,90  

                 

0,10  

                 

0,79  

                 

0,21  

                 

0,01  

                 

0,99  

                 

0,67  

                 

0,33  

                 

0,00  

                 

1,00  

                 

1,00  

                      

-    

 18:g.25884466G>A 538 3'UTR   dbSNP 

databas

e 

rs32141130

8 

                 

0,73  

                 

0,27  

                 

0,81  

                 

0,19  

                 

0,90  

                 

0,10  

                 

0,97  

                 

0,03  

                 

0,29  

                 

0,71  

                 

0,80  

                 

0,20  

                 

0,21  

                 

0,79  

                 

1,00  

                      

-    

 18:g.25884532T>C 604 3'UTR   da Silva 

et al. 

(2014) 

rs33683797

6 

                 

0,67  

                 

0,33  

                 

0,75  

                 

0,25  

                 

0,91  

                 

0,09  

                 

0,80  

                 

0,20  

                 

0,31  

                 

0,69  

                 

0,80  

                 

0,20  

                      

-    

                 

1,00  

                 

1,00  

                 

0,00  

 18:g.25884711C>T 783 3'UTR   da Silva 

et al. 

(2014) 

rs34017022

9 

                 

0,62  

                 

0,38  

                 

0,74  

                 

0,26  

                 

0,91  

                 

0,09  

                 

0,79  

                 

0,21  

                 

0,31  

                 

0,69  

                 

0,74  

                 

0,26  

                      

-    

                 

1,00  

                 

1,00  

                      

-    

 18:g.25884734A>G 806 3'UTR   da Silva 

et al. 

(2014) 

rs31987768

7 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,65  

                 

0,35  

                 

1,00  

                      

-    

TAS2R3

8 

18:g.8357099C>T 108 5'UTR   da Silva 

et al. 

(2014) 

rs33294302

0 

                 

0,40  

                 

0,60  

                 

0,50  

                 

0,50  

                 

0,93  

                 

0,07  

                 

0,44  

                 

0,56  

                 

0,01  

                 

0,99  

                 

0,51  

                 

0,49  

                 

1,00  

                      

-    

                 

0,76  

                 

0,24  

 18:g.8357181G>A 190 5'UTR   da Silva 

et al. 

(2014) 

rs32794298

9 

                 

0,96  

                 

0,04  

                 

0,90  

                 

0,10  

                 

0,99  

                 

0,01  

                 

0,49  

                 

0,51  

                 

1,00  

                      

-    

                 

0,75  

                 

0,25  

                 

1,00  

                      

-    

                 

0,90  

                 

0,10  

 18:g.8357288C>T 297 5'UTR   da Silva 

et al. 

(2014) 

rs33906318

6 

                 

0,95  

                 

0,05  

                 

0,89  

                 

0,11  

                 

1,00  

                      

-    

                 

0,24  

                 

0,76  

                 

0,80  

                 

0,20  

                 

0,74  

                 

0,26  

                 

1,00  

                      

-    

                 

0,90  

                 

0,10  

 18:g.8357304T>C 313 5'UTR   da Silva 

et al. 

(2014) 

rs31891426

9 

                 

0,46  

                 

0,54  

                 

0,58  

                 

0,42  

                 

0,69  

                 

0,31  

                 

0,30  

                 

0,70  

                 

0,02  

                 

0,98  

                 

0,44  

                 

0,56  

                 

0,21  

                 

0,79  

                 

0,82  

                 

0,18  
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 18:g.8357408G>C 417 5'UTR   da Silva 

et al. 

(2014) 

rs33618008

0 

                 

0,78  

                 

0,22  

                 

0,78  

                 

0,22  

                 

0,68  

                 

0,32  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,74  

                 

0,26  

                 

0,22  

                 

0,78  

                 

1,00  

                      

-    

 18:g.8357418A>G 427 5'UTR   da Silva 

et al. 

(2014) 

rs32021770

0 

                 

0,44  

                 

0,56  

                 

0,51  

                 

0,49  

                 

0,68  

                 

0,32  

                 

0,16  

                 

0,84  

                 

0,02  

                 

0,98  

                 

0,32  

                 

0,68  

                 

0,22  

                 

0,78  

                 

0,80  

                 

0,20  

 18:g.8357446A>C 455 5'UTR   da Silva 

et al. 

(2014) 

rs33911494

3 

                 

0,44  

                 

0,56  

                 

0,52  

                 

0,48  

                 

0,69  

                 

0,31  

                 

0,24  

                 

0,76  

                 

0,01  

                 

0,99  

                 

0,33  

                 

0,67  

                 

0,23  

                 

0,77  

                 

1,00  

                      

-    

 18:g.8357461G>C 470 5'UTR   da Silva 

et al. 

(2014) 

rs31919975

8 

                 

0,90  

                 

0,10  

                 

0,84  

                 

0,16  

                 

1,00  

                      

-    

                 

0,25  

                 

0,75  

                 

0,80  

                 

0,20  

                 

0,74  

                 

0,26  

                 

1,00  

                      

-    

                 

0,90  

                 

0,10  

 18:g.8357565C>A 574 Missense N16K 0,45 da Silva 

et al. 

(2014) 

rs34437369

9 

                 

0,90  

                 

0,10  

                 

0,84  

                 

0,16  

                 

1,00  

                      

-    

                 

0,56  

                 

0,44  

                 

0,81  

                 

0,19  

                 

0,76  

                 

0,24  

                 

1,00  

                      

-    

                 

0,91  

                 

0,09  

 18:g.8357604A>G 613 Synonymous G29  da Silva 

et al. 

(2014) 

rs32966359

3 

                 

0,42  

                 

0,58  

                 

0,52  

                 

0,48  

                 

0,68  

                 

0,32  

                 

1,00  

                      

-    

                 

0,02  

                 

0,98  

                 

0,35  

                 

0,65  

                 

0,21  

                 

0,79  

                 

0,80  

                 

0,20  

 18:g.8357605A>C 614 Missense I30L 0,21 dbSNP 

databas

e 

rs34022813

3 

                 

0,39  

                 

0,61  

                 

0,49  

                 

0,51  

                 

0,65  

                 

0,35  

                 

0,17  

                 

0,83  

                 

0,01  

                 

0,99  

                 

0,32  

                 

0,68  

                 

0,18  

                 

0,82  

                 

0,82  

                 

0,18  

 18:g.8358006T>C 220 Synonymous F163  da Silva 

et al. 

(2014) 

rs32496819

8 

                 

0,44  

                 

0,56  

                 

0,55  

                 

0,45  

                 

1,00  

                      

-    

                 

0,59  

                 

0,41  

                 

0,23  

                 

0,77  

                 

0,83  

                 

0,17  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

 18:g.8358067T>C 281 Synonymous L184  da Silva 

et al. 

(2014) 

rs34449811

1 

                 

0,49  

                 

0,51  

                 

0,66  

                 

0,34  

                 

1,00  

                      

-    

                 

0,66  

                 

0,34  

                 

0,23  

                 

0,77  

                 

0,60  

                 

0,40  

                 

0,28  

                 

0,72  

                 

1,00  

                      

-    

 18:g.8358202G>A 416 Missense A229T 0,68 dbSNP 

databas

e 

rs33606079

9 

                 

0,25  

                 

0,75  

                 

0,31  

                 

0,69  

                 

0,51  

                 

0,49  

                 

0,09  

                 

0,91  

                 

0,01  

                 

0,99  

                 

0,20  

                 

0,80  

                 

0,15  

                 

0,85  

                 

0,70  

                 

0,30  

 18:g.8358264C>T 478 Synonymous L249  da Silva 

et al. 

(2014) 

rs34326065

2 

                 

0,99  

                 

0,01  

                 

0,99  

                 

0,01  

                 

0,83  

                 

0,17  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,78  

                 

0,22  

                 

0,22  

                 

0,78  

                 

1,00  

                      

-    

 18:g.8358303C>T 517 Synonymous A262  da Silva 

et al. 

(2014) 

rs32721455

2 

                 

0,46  

                 

0,54  

                 

0,62  

                 

0,38  

                 

0,67  

                 

0,33  

                 

0,66  

                 

0,34  

                 

0,19  

                 

0,81  

                 

0,52  

                 

0,48  

                 

0,23  

                 

0,77  

                 

1,00  

                      

-    

 18:g.8358348C>G 562 Missense I277M 0,27 dbSNP 

databas

e 

rs33773555

4 

                 

0,75  

                 

0,25  

                 

0,92  

                 

0,08  

                 

0,87  

                 

0,13  

                 

0,72  

                 

0,28  

                 

0,31  

                 

0,69  

                 

0,67  

                 

0,33  

                 

0,37  

                 

0,63  

                 

0,96  

                 

0,04  

 18:g.8358474A>G 688 Synonymous L319  da Silva 

et al. 

(2014) 

rs32804433

4 

                 

0,42  

                 

0,58  

                 

0,51  

                 

0,49  

                 

0,70  

                 

0,30  

                 

0,20  

                 

0,80  

                 

0,01  

                 

0,99  

                 

0,34  

                 

0,66  

                 

0,36  

                 

0,64  

                 

0,81  

                 

0,19  

 18:g.8358480A>G 694 Synonymous L321  da Silva 

et al. 

(2014) 

rs33540735

3 

                 

0,53  

                 

0,47  

                 

0,67  

                 

0,33  

                 

0,74  

                 

0,26  

                 

0,72  

                 

0,28  

                 

0,18  

                 

0,82  

                 

0,63  

                 

0,37  

                 

0,38  

                 

0,62  

                 

0,96  

                 

0,04  

 18:g.8358485T>C 699 Missense V323A 1 dbSNP 

databas

e 

rs31957301

5 

                 

0,44  

                 

0,56  

                 

0,55  

                 

0,45  

                 

1,00  

                      

-    

                 

0,22  

                 

0,78  

                 

0,02  

                 

0,98  

                 

0,39  

                 

0,61  

                 

0,39  

                 

0,61  

                 

0,81  

                 

0,19  

 18:g.8358486A>G 700 Synonymous V323  da Silva 

et al. 

(2014) 

rs33070729

2 

                 

0,45  

                 

0,55  

                 

0,55  

                 

0,45  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,01  

                 

0,99  

                 

0,40  

                 

0,60  

                 

0,39  

                 

0,61  

                 

0,81  

                 

0,19  
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 18:g.8358491G>A 705 Missense R325H 1 dbSNP 

databas

e 

rs34094811

8 

                 

0,44  

                 

0,56  

                 

0,53  

                 

0,47  

                 

0,71  

                 

0,29  

                 

0,22  

                 

0,78  

                 

0,01  

                 

0,99  

                 

0,37  

                 

0,63  

                 

0,40  

                 

0,60  

                 

0,81  

                 

0,19  

 18:g.8358500A>G 714 Missense D328G 0,53 dbSNP 

databas

e 

rs31826239

1 

                 

0,90  

                 

0,10  

                 

0,86  

                 

0,14  

                 

0,98  

                 

0,02  

                 

0,57  

                 

0,43  

                 

0,85  

                 

0,15  

                 

0,77  

                 

0,23  

                 

1,00  

                      

-    

                 

0,84  

                 

0,16  

TAS2R3

9 

18:g.7358453A>T 84 5'UTR   da Silva 

et al. 

(2014) 

rs34229357

5 

                 

0,47  

                 

0,53  

                 

0,67  

                 

0,33  

                 

0,40  

                 

0,60  

                 

0,46  

                 

0,54  

                 

0,75  

                 

0,25  

                 

1,00  

                      

-    

                      

-    

                 

1,00  

                 

1,00  

                      

-    

 18:g.7358501G>C 132 5'UTR   dbSNP 

databas

e 

rs33439436

9 

                 

0,54  

                 

0,46  

                 

0,73  

                 

0,27  

                 

0,87  

                 

0,13  

                 

0,48  

                 

0,52  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,54  

                 

0,46  

                 

1,00  

                      

-    

 18:g.7358533G>A 164 5'UTR   dbSNP 

databas

e 

rs34319420

0 

                 

0,62  

                 

0,38  

                 

0,74  

                 

0,26  

                 

0,86  

                 

0,14  

                 

0,56  

                 

0,44  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,58  

                 

0,42  

                 

1,00  

                      

-    

 18:g.7358549A>G 180 5'UTR   da Silva 

et al. 

(2014) 

rs32692867

7 

                 

0,12  

                 

0,88  

                 

0,30  

                 

0,70  

                 

0,14  

                 

0,86  

                 

0,47  

                 

0,53  

                 

0,10  

                 

0,90  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                 

0,38  

                 

0,62  

 18:g.7358626A>C 257 5'UTR   da Silva 

et al. 

(2014) 

rs34547943

3 

                 

0,96  

                 

0,04  

                 

0,94  

                 

0,06  

                 

0,55  

                 

0,45  

                 

0,97  

                 

0,03  

                 

1,00  

                      

-    

                 

0,83  

                 

0,17  

                 

0,45  

                 

0,55  

                 

1,00  

                      

-    

 18:g.7358730G>C 361 5'UTR   da Silva 

et al. 

(2014) 

rs32580718

0 

                 

0,57  

                 

0,43  

                 

0,71  

                 

0,29  

                 

0,85  

                 

0,15  

                 

0,51  

                 

0,49  

                 

1,00  

                      

-    

                 

0,84  

                 

0,16  

                 

0,54  

                 

0,46  

                 

1,00  

                      

-    

 18:g.7358891G>A 522 Missense R15Q 0,58 da Silva 

et al. 

(2014) 

rs33183299

1 

                 

0,56  

                 

0,44  

                 

0,74  

                 

0,26  

                 

0,88  

                 

0,12  

                 

0,51  

                 

0,49  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,58  

                 

0,42  

                 

1,00  

                      

-    

 18:g.7358903T>C 534 Missense I19T 0,5 da Silva 

et al. 

(2014) 

rs33556836

9 

                 

0,55  

                 

0,45  

                 

0,68  

                 

0,32  

                 

0,87  

                 

0,13  

                 

0,51  

                 

0,49  

                 

1,00  

                      

-    

                 

0,82  

                 

0,18  

                 

0,58  

                 

0,42  

                 

1,00  

                      

-    

 18:g.7358928T>C 559 Synonymous N27  da Silva 

et al. 

(2014) 

rs31998566

0 

                 

0,96  

                 

0,04  

                 

0,90  

                 

0,10  

                 

0,99  

                 

0,01  

                 

0,48  

                 

0,52  

                 

0,99  

                 

0,01  

                 

0,79  

                 

0,21  

                 

0,65  

                 

0,35  

                 

0,94  

                 

0,06  

 18:g.7358957T>C 588 Missense L37S 0,02 da Silva 

et al. 

(2014) 

rs33111447

2 

                 

0,62  

                 

0,38  

                 

0,65  

                 

0,35  

                 

0,69  

                 

0,31  

                 

1,00  

                      

-    

                 

0,12  

                 

0,88  

                 

0,32  

                 

0,68  

                 

1,00  

                      

-    

                 

0,53  

                 

0,47  

 18:g.7358965G>A 596 Missense V40I 0,47 da Silva 

et al. 

(2014) 

rs34500683

4 

                 

0,91  

                 

0,09  

                 

0,86  

                 

0,14  

                 

0,56  

                 

0,44  

                 

0,48  

                 

0,52  

                 

1,00  

                      

-    

                 

0,67  

                 

0,33  

                      

-    

                 

1,00  

                 

1,00  

                      

-    

 18:g.7358970C>T 601 Synonymous S41  da Silva 

et al. 

(2014) 

rs32244172

8 

                 

0,96  

                 

0,04  

                 

0,91  

                 

0,09  

                 

1,00  

                      

-    

                 

0,53  

                 

0,47  

                 

1,00  

                      

-    

                 

0,80  

                 

0,20  

                 

0,64  

                 

0,36  

                 

1,00  

                      

-    

 18:g.7358972C>T 603 Missense A42V 0,98 dbSNP 

databas

e 

rs33981002

6 

                 

0,96  

                 

0,04  

                 

0,86  

                 

0,14  

                 

0,86  

                 

0,14  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,88  

                 

0,12  

                 

0,37  

                 

0,63  

                 

1,00  

                      

-    

 18:g.7358980A>G 611 Missense I45V 0,71 dbSNP 

databas

e 

rs32360652

1 

                 

0,95  

                 

0,05  

                 

0,96  

                 

0,04  

                 

0,61  

                 

0,39  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,90  

                 

0,10  

                 

0,43  

                 

0,57  

                 

1,00  

                      

-    

 18:g.7359027G>A 658 Synonymous A60  da Silva 

et al. 

(2014) 

rs33475584

6 

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,52  

                 

0,48  

                 

1,00  

                      

-    

                 

1,00  

                      

-    

                 

0,62  

                 

0,38  

                 

1,00  

                      

-    

 18:g.7359059A>C 690 Missense N71T 1 dbSNP 

databas

e 

rs34283550

8 

                 

0,09  

                 

0,91  

                 

0,29  

                 

0,71  

                 

0,14  

                 

0,86  

                 

0,16  

                 

0,84  

                 

0,11  

                 

0,89  

                 

0,00  

                 

1,00  

                 

0,01  

                 

0,99  

                 

0,36  

                 

0,64  



58 

 

 18:g.7359190G>A 56 Missense G115S 0,5 dbSNP 

databas

e 

rs32323802

2 

                 

0,30  

                 

0,70  

                 

0,41  

                 

0,59  

                 

0,72  

                 

0,28  

                 

0,71  

                 

0,29  

                 

0,24  

                 

0,76  

                 

0,18  

                 

0,82  

                 

0,89  

                 

0,11  

                 

0,40  

                 

0,60  

 18:g.7359467C>T 333 Missense T207I 0,72 dbSNP 

databas

e 

rs33770067

9 

                 

0,33  

                 

0,67  

                 

0,47  

                 

0,53  

                 

0,70  

                 

0,30  

                 

1,00  

                      

-    

                 

0,34  

                 

0,66  

                 

0,15  

                 

0,85  

                 

0,97  

                 

0,03  

                 

0,44  

                 

0,56  

 18:g.7359534T>C 400 Synonymous T229  da Silva 

et al. 

(2014) 

rs81209906                  

0,23  

                 

0,77  

                 

0,40  

                 

0,60  

                 

0,15  

                 

0,85  

                 

0,90  

                 

0,10  

                 

0,34  

                 

0,66  

                 

0,01  

                 

0,99  

                 

0,05  

                 

0,95  

                 

0,43  

                 

0,57  

 18:g.7359852G>C 718 Missense E335D 0,46 dbSNP 

databas

e 

rs31902508

2 

                 

0,86  

                 

0,14  

                 

0,89  

                 

0,11  

                 

0,42  

                 

0,58  

                 

0,91  

                 

0,09  

                 

1,00  

                      

-    

                 

0,83  

                 

0,17  

                 

0,02  

                 

0,98  

                 

1,00  

                      

-    

 18:g.7359892G>C 758 3'UTR   da Silva 

et al. 

(2014) 

rs33030421

2 

                 

0,50  

                 

0,50  

                 

0,56  

                 

0,44  

                 

0,77  

                 

0,23  

                 

0,45  

                 

0,55  

                 

0,01  

                 

0,99  

                 

0,56  

                 

0,44  

                 

1,00  

                      

-    

                 

0,94  

                 

0,06  

 18:g.7359969T>G 835 3'UTR   da Silva 

et al. 

(2014) 

rs34017603

6 

                 

0,87  

                 

0,13  

                 

0,88  

                 

0,12  

                 

0,39  

                 

0,61  

                 

0,70  

                 

0,30  

                 

1,00  

                      

-    

                 

0,84  

                 

0,16  

                 

0,01  

                 

0,99  

                 

1,00  

                      

-    

                        

In bold, SNPs identified by sequencing overlapping amplicons. 2: underlined SNPs were genotyped also by PCR-RFLP. 3: the first allele is the 

reference allele, the second allele is the alternative allele. 4: 5'UTR and 3'UTR indicate SNPs in the flaking or untranslated regions. 5: Breeds or 

Populations acronyms are as reported as note to Table S2. 6,7: freq_ref and freq_alt indicate the estimated frequency based on Ion Torrent read 

counts of the reference and alternative alleles, respectively. 8: NA: not available 
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Table S4. Comparison of allele frequency estimation methods: Ion Torrent by sequencing DNA pools vs PCR-RFLP by genotyping individual samples 

of the DNA pools (see text). 

Gene SNP position1 Method Allele frequencies2,3 

LW (+)  LW (-)  WB  CA 

Ref Alt Ref Alt Ref Alt Ref Alt 

TAS2R1 GL893464.1:g.28179C>T Ion Torrent -    1.00  0.02  0.98  -    1.00  0.26  0.74  
  

PCR-RFLP -    1.00  0.03  0.97  -    1.00  0.20  0.80  

TAS2R9 5:g.63976924G>A Ion Torrent 0.67  0.33  0.68  0.32  0.60  0.40  0.54  0.46  
  

PCR-RFLP 0.66  0.34  0.67  0.33  0.67  0.33  0.50  0.50  

TAS2R16 18:g.25883684A>T Ion Torrent 0.59  0.41  0.59  0.41  1.00  -    0.82  0.18  
  

PCR-RFLP 0.57  0.43  0.56  0.44  1.00  -    0.65  0.35  

TAS2R39 18:g.7358957T>C Ion Torrent 0.62 0.38 0.65 0.35  0.12 0.88 0.32  0.68  
  

PCR-RFLP NA  NA  NA  NA  NA  NA  0.28  0.72  

TAS2R39 18:g.7359059A>C Ion Torrent 0.09 0.91 0.29 0.71 0.11 0.89 - 1.00 

  PCR-RFLP 0.13 0.87 0.27 0.73 NA NA NA NA 

 

1The first allele is the reference (Ref) allele, the second allele is the alternative (Alt) allele. 

2 LW (+), 50 Italian Large White pigs with positive back fat thickness estimated breeding value; LW (-), 50 Italian Large White pigs with negative back 

fat thickness estimated breeding value; WB, 10 wild boars; CA, 10 Casertana; NA: not amplified. 



60 

 

3 A few differences between the two methods were more evident when estimated allele frequencies were obtained in DNA-pools with a low number of 

pigs (e.g. 10). This is probably due to technical errors that might be amplified when a small number of individuals are used in the construction of the 

pools. Differences were ≤  ± 0.04 in the DNA pools with 50 pigs.  
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Table S5. Single nucleotide polymorphisms with P nominal value<0.05 (chi square test) with corresponding 

Proportion of False Positives (PPFP) in the comparison of allele frequencies between the two groups of 

Italian Large White with extreme divergent estimated breeding values for back fat thickness. 

 

Gene 

symbol 

dbSNP ID and/or SNP 

effect/position 

SNP position Pnominal value PPFP 

TAS2R39 rs342835508 (p.N71T) 18:7359059 0.0006 0.0451 

TAS2R38 rs337735554 (p.I277M) 18:8358348 0.0023 0.0774 

TAS2R39 rs326928677 (5’-UTR) 18:7358549 0.0032 0.0845 

TAS2R39 rs342293575 (5’-UTR) 18:7358453 0.0067 0.120 

TAS2R39 rs334394369 (5’-UTR) 18:7358501 0.0082 0.122 

TAS2R39 rs331832991 (p.R15Q) 18:7358891 0.0117 0.143 

TAS2R39 rs81209906 (synonymous) 18:7359534 0.0149 0.156 

TAS2R38 rs344498111 (synonymous) 18:8358067 0.0221 0.203 

TAS2R39 rs339810026 (p.A42V) 18:7358972 0.0262 0.208 

TAS2R4 Novel, ss1971458513 (p.V139F) GL892960.2:42100 0.0283 0.213 

TAS2R38 rs327214552 (synonymous) 18:8358303 0.0333 0.220 

TAS2R16 rs341414049 (synonymous) 18:25884087 0.0360 0.222 

TAS2R10 

Novel, ss1971458516 

(synonymous) 5:63965817 0.0409 0.231 
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nutrigenetic experiment in pigs 
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ABSTRACT 

 

In this study we present an innovative genomics-metabolomics approach in pigs. A total of about 1500 

performance tested pigs (900 Italian Large White and 400 Italian Duroc pigs) have been genotyped with 

the Illumina PorcineSNP60 BeadChip. Blood was collected at slaughtering for haematological analyses. 

Plasma was used for the determination of about 200 metabolites using mass spectrometry. Performance 

and carcass traits were measured on the same animals. Heritability of metabotypes and haematological 

parameters ranged from 0.04 to 0.93. A Graphical Gaussian Model (GGM) was generated including partial 

correlation coefficients. The structure of the obtained network represented clearly the general biological 

relationships among metabolites. GGM analyses suggested that pig metabolism is very close to the human 

metabolism. Genome wide association studies identified a large number of significant regions affecting 

metabotypes in both breeds, partially overlapping comparing the two groups of pigs, suggesting that 

common genetic determinants and, on the other hand, different genetic factors are acting in Italian Large 

White and Italian Duroc populations to shape their breed-defined metabolomic profiles. One of the most 

significant results was observed for the level of kynurenine on porcine chromosome 10 in the 

correspondence of the kynurenine 3-mono oxygenase gene (KMO). The expression of this gene was 

investigated in the liver of piglets having different genotypes at the KMO gene suggesting that different 

activities in the KMO enzyme might be due to different affinities or functionality of the enzyme and not 

due different expression levels of this gene. Metabotypes from metabolite families were influenced by the 

same genomic regions providing useful information to indirectly disentangle unknown metabolomic 

pathways. Finally, genome wide association studies basing on metabolites and the integration of omics 

approaches could open interesting applications in pig nutrigenetics, for which we here present the first 

pilot experiment.   

 

Keywords: metabolomics, phenomics, systems biology, genome wide association study 
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Introduction 

 

Holistic approaches based on the integration of different omics technologies are clarifying the biological 

processes underlying many phenotypic and pathological traits in humans and in many other species 

(Mooser and Ordovas, 2003). Metabolomics has been changing the way in which differences among 

animals can be investigated. Metabolomics can detect and quantify hundreds of metabolites that constitute 

internal (or molecular) phenotypes, providing information on the metabolic state of the animals that is 

influenced by genetic and environmental factors (Dettmer et al., 2006). Metabotypes are referred as 

phenotypes defined by the level of metabolites in a biological fluid. 

In livestock, high throughput genotyping platforms, such as Illumina and Affymetrix, have changed the 

possibility to dissect genetic variability of performance traits applying genome wide association studies 

(GWAS). In pigs, GWASs were mainly conducted for a few performance traits (e.g. Fontanesi et al., 2012; 

Fowler et al., 2013; Diniz et al., 2014; Qiao et al., 2015).  

However, despite this approach has produced a quite large number of single nucleotide polymorphisms 

(SNPs) associated to the target traits, only in few cases significant SNPs could be directly linked to a 

biological process explaining variability of the investigated parameter. Therefore it seems that a quite 

large distance exists between the genotype space (a portion of the whole genome information of the 

animals) and the final production traits that dilutes the effects of the markers reducing the proportion of 

variability explained in GWAS, usually conducted with a relatively low number of animals. 

Metabolomics is the study of a large range of metabolites generated from the characterization of biological 

samples (Suhre and Gieger, 2012). Metabolites represent phenotypes (metabotypes) that are the direct 

products of the activities of enzymes included in all metabolic pathways. Therefore, they represent internal 

(or molecular) phenotypes that can be used to dissect more complex phenotypes like performance traits in 

livestock (Houle et al., 2010). 

In this study we present an innovative genomics-metabolomics approach in two populations of highly 

phenotyped pigs, Italian Large White and Italian Duroc pigs. This dataset provided different levels of 

information for GWAS with about 230 different traits (performance and carcass traits, haematological 

parameters and metabotypes). Metabotype data were also used to model a systems biology approach that 

identified close metabolic similarities between humans and pigs.  

Moreover, we present the first nutrigenetic pilot study of integration of omics approaches in a small 

population of 24 post-weaning Italian Large White piglets from the same litters balanced inside for the 

genotypes of a significant SNP present in the Illumina PorcineSNP60 BeadChip (Ramos et al., 2009) near 
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to kynurenine 3-monooxygenase (KMO) gene, involved in tryptophan (Trp) catabolism in mammals and 

associated with kynurenine levels in pig plasma (Bovo et al., 2016). Tryptophan (Trp) catabolism in 

mammals is fundamental for the immune system response to inflammation and other important 

physiological processes, including the conversion of Trp in essential biochemical active compounds 

(Moroni, 1999). This pilot study is the first application of nutrigenetic concepts in livestock.  

 

Materials and Methods 

 

Animals. About 900 performance tested Italian Large White pigs and about 400 Italian Duroc pigs were 

included in this study, for a total of 1500 animals. These pigs were from the national selection program 

and are individually performance tested at the Central Test Station of the National Pig Breeder Association 

(ANAS) for the genetic evaluation of a boar from the same litter (sib-testing). Pigs were slaughtered in a 

commercial abattoir in different groups of 30-60 pigs. For nutrigenetic experiment we reared 24 Italian 

Large White post-weaning piglets from the same litters balanced inside for the KMO genotype (11, 12, 

22). After a treatment with a normal meal and dietary Trp load for all the three groups of piglets according 

to their genotype, we collected whole blood and, after slaughtering, liver tissues to perform DNA and 

RNA analyses.  

 

Metabolomics data. Several performance traits (average daily gain and feed gain ratio), carcass traits 

(ham weight, backfat thickness, weight of several cuts) were determined on all animals in vivo or after 

slaughtering. 

In addition, blood and livers were collected at slaughtering for biochemical, haematological and molecular 

analyses. Plasma was used for the determination of 186 metabolites using a combined Direct Flow 

Injection (DFI-) and liquid chromatography (LC-) coupled with tandem mass spectrometer (LC-MS/MS) 

Triple Quadrupole. Metabolite data were filtered using inter- and intra-plates coefficient of variation 

<0.20. The normalization of metabolite and haematological data was performed with a BoxCox 

transformation using a lambda which presented the best log likelihood. 

 

DNA and RNA analyses. DNA was extracted from pig whole blood and liver with standard protocols or 

using the Wizard Genomic Purification Kit (Promega, Madison, Wisconsin, USA). Pigs have been 

genotyped with the Illumina PorcineSNP60 BeadChip (Ramos et al., 2009). After that, we sequenced the 

whole KMO pig gene designing 16 primer pairs covering the UTRs and all the 17 exons of the gene in a 

subset of Italian Large White and Italian Duroc genotyped pigs, using the next generation sequencing 
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(NGS) platform Ion Torrent Personal Genome Machine (PGM, Thermo Fisher Scientific, Waltham, 

Massachussets, USA). Following manufacturer instructions, we constructed 3 libraries, each representing 

a genotype, using different barcodes. Barcoded fragments have been pooled together, clonally amplified 

with emulsion PCR, purified and sequenced using the Ion PGM Sequencing kit with an Ion 316 chip 

(Thermo Fisher Scientific).  

Total RNA was extracted from piglets’ livers with the RNeasy Mini Kit and the RNeasy MinElute 

CleanUp Kit (QIAGEN, Venlo, The Netherlands) including smallRNAs. A RNA-seq experiment has been 

performed using the NGS platform Illumina Hi-Seq 2500 (Illumina, San Diego, California, USA). 

Following the manufacturer protocols, 3 barcoded libraries have been sequenced, each representing one 

KMO genotype, in order to detect differential gene expression patterns according to the different 

genotypes of KMO gene. Validations of KMO expression levels have been performed with Real Time 

PCR using the ABI PRISM 7000 instrument (Thermo Fisher Scientific, Waltham, Massachussets, USA) 

using the Kapa SYBR Fast qPCR MasterMix Kit (Roche, Basel, Switzerland). We analyzed standard 

curves using the -2ΔΔCt method (Schmittgen and Livak, 2008), using reference genes according to Park 

et al (2015).   

 

Metabolomics statistical analyses.  

The Pearson phenotypic correlation coefficients among metabotypes and performance and carcass traits 

were calculated with the CORR procedure of SAS (SAS Inst. Inc., Cary, NC). Variance components, 

genetic parameters and their standard errors were estimated by using VCE software (Neumaier and 

Groeneveld, 1998; Groeneveld et al., 2010). Bivariate mixed linear animal models, for each parameter 

with backfat thickness, considered the significant effects of date of slaughtering (26 levels), sex (2 levels), 

and carcass weight (covariates). Animal (22785 pigs) and residual random effects were assumed to follow 

normal distributions with zero mean. 

Gaussian Graphical Model (GGM) was obtained with metabolomic data. GGM is based on pairwise 

Pearson correlation coefficients corrected for the correlations with the other metabolites. The partial 

correlation coefficients were computed with R package “corpcor”. Then the list of all the correlations 

coefficient was extracted from the matrix and used as input in Cytoscape (Version. 3.0.1). 

GWAS was carried out with GEMMA (Zhou and Stephens, 2012) after filtering for minor allele frequency 

<0.05 and Hardy Weinberg equilibrium <0.001. Different covariates were included in the model according 

to the traits (sex, weight, slaughtering date (range: 1-25), kit plate (range:1-14) and the centered genomic 

matrix, to exclude the stratification of the population due to the relatedness. 
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NGS analyses. Reads obtained by re-sequencing of KMO pig gene were filtered, trimmed and aligned to 

the reference sequences using TMAP aligner, included in the Ion Torrent Suite 2.2 software (Thermo 

Fisher Scientific). The filtered bam files were then processed with SAMTOOLS (Li et al., 2009), using 

mpileup function for SNPs detection. The effect of each SNP has been evaluated using the Variant Effect 

Predictor (VEP) and all missense mutations have been analyzed using the online SIFT tool (Kumar et al., 

2009). For total RNA-seq reads, we performed preliminary bioinformatics analyses of transcripts filtering 

and trimming low-quality sequences: then we aligned on pig genome reference the remaining reads using 

TopHat algorithm and we performed the differentially expression analysis using Cufflinks implemented 

in Galaxy platform (Trapnell et al., 2009; 2012).  

 

Results and Discussion 

 

Correlations and heritability. After quality control and filtering 113 metabolites were selected for 

further analyses. Figure 1 shows the Pearson phenotypic correlation coefficients among metabotypes and 

production and carcass traits. Metabolites within classes were usually more correlated to each other than 

with metabolites of other classes. Heritability of metabolites and haematological parameters within the 

same classes varied substantially (Table 1). Heritability of backfat thickness was similar to previous 

estimates for this trait (0.60). 

 

Gaussian Graphical Model. A GGM was generated including all partial correlation coefficients (PCC) 

that were above 0.21. This threshold corresponded to a Bonferroni corrected threshold of 0.05. The 

structure of the obtained network represented clearly the general biological relationships among 

metabolites (within classes) and among different classes of metabolites and included several substructures 

(Figure 2). The highest PCCs were obtained between metabolites that are very close in terms of positions 

in the metabolic pathway. In particular, SM C18:0 and SM C18:1 that showed a PCC of 0.77 are separated 

to each other by just one enzymatic reaction. These results, together with many other PCC between 

different pairs of metabolites (data not shown) confirmed in pigs the metabolic relationships and pathways 

already described in humans (Krumsiek et al., 2011). GGM analyses suggested that pig metabolism is 

very close to the human metabolism.   

 

Genome Wide Association Studies. GWAS was carried out for a total of 153 traits (113 metabotypes, 

33 haematological parameters and 7 production and carcass traits. Significant SNPs (P<0.10, Bonferroni 

corrected) were obtained for 20 metabotypes, 6 haematological parameters and 4 production/carcass traits. 
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In particular, for most metabotypes, significant SNPs were close or within genes directly involved in the 

catabolic or anabolic pathways of the targeted metabolites. A few of these markers were associated (P 

nominal value <0.01) with production and carcass traits. 

One of the most important peaks in the GWAS in both breeds was observed on porcine chromosome 10 

for the level of kynurenine in the correspondence of the KMO gene (Figure 3). KMO encodes for an 

enzyme that is involved in the tryptophan catabolism and transforms L-kynurenine in 3-

hydroxykynurenine. Two alleles were identified in the tag SNPs. One that increases the level of 

kynurenine and another one that decreases the level of this metabolite. Considering the role that KMO 

play in the metabolism of an essential amino acid, the porcine gene encoding for this enzyme might be 

considered an interesting candidate for nutrigenetic studies. 

 

Nutrigenetic experiment and KMO gene expression analysis. In order to investigate if KMO gene was 

differentially expressed in piglets’ liver with different genotypes, we analyzed their trascriptome using 

RNA-seq approach: from each barcoded library (representing KMO genotypes 11, 12, 22), we obtained 

more than 70 million of reads and we detected the same pattern of expression of KMO gene. We confirmed 

these results using RT-qPCR for which we did not find any difference in KMO expression in piglets with 

different genotypes (-2ΔΔCt value: 1.3124).  

From the whole KMO gene sequencing we detected 215 variants, of which 1 splice region variant, 5 

missense and 2 synonymous SNPs and a 3 bp exonic INDEL which is in linkage disequilibrium with the 

SNP present in Illumina PorcineSNP60 BeadChip: this INDEL may leads to a conformational change in 

the enzyme structure, probably associated with its efficiency in catalyzing kynurenine (data not shown as 

they are under patent evaluation).  

Combining gene expression analysis and the structural deduced information on the encoded protein, it 

could be possible to speculate that the different level of kynurenine affected by the two alleles at the KMO 

gene might be due to different affinities or functionality of the alternative protein forms and not by 

different gene expression levels of the two gene alleles at this locus. 

 

Conclusion 

 

This study reports for the first time the analysis of heritability of a large number of metabotypes in pigs 

and describes a systems biology analysis based only on metabolomics data (GGM). GGM identified 

biological relationships between metabolites already described in humans supporting indirectly the quality 

of the data we obtained using a targeted metabolomic approach. GWAS identified genetic variation in 
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genes directly involved in the metabolism of several metabolites that could open interesting applications 

in pig nutrigenomics. GWAS using metabolomics data can help to dissect the biological complexity of 

performance traits in livestock.  

In conclusion, our nutrigenetic experiment using KMO genotypes as key study is the first approach using 

different omics technologies in livestock: the integration of these sciences will allow to develop 

nutrigenetic and feeding precision strategies in animal breeding.  
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Table 1. Summary of heritability (h2, minimum and maximum) of metabolites, haematological parameters 

and backfat thickness 

 

 

Classes 
h2 min h2 max 

# of metabolites/ 

parameters 

Acylcarnitines 0.07 0.34 10 

Amino acids 0.07 0.45 20 

Biogenic amines 0.21 0.50 9 

Hexoses 0.14 0.14 1 

PC ae  0.05 0.72 27 

PC aa 0.16 0.73 27 

Lyso PC a 0.05 0.48 9 

Sphingomyelines 0.14 0.47 10 

Haematological parameters 0.04 0.93 33 

Backfat thickness 0.60   
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Figure 1. Heat map of Pearson correlations between production traits and metabolites. Hottest correlations 

are indicated in red-yellow. 
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Figure 2. Gaussian Graphical Model obtained using pig metabolomic data.  
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Figure 3. Manhattan plot showing genome wide association results obtained in Italian Large White 

pigs for a subset of metabolites (i.e. overlapping results for more than one metabolite). The peak 

evidenced is for the level of kynurenine in the correspondence of the KMO gene. The KMO enzyme 

is involved in the catabolism of the tryptophan as evidenced in the picture. 
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3. General Conclusions 

In this Thesis we applied different omics technologies for the identification of metabolic and 

productive markers in several pig populations, in order to develop nutrigenetic strategies for pig 

breeding. In particular, we performed association studies focusing on Average Daily Gain (ADG) and 

Back Fat Thickness (BFT) estimated breeding value (EBV) traits mainly in Italian Heavy Pigs, like 

Italian Large White pigs. These traits are considered as the most important in terms of productivity 

in pig production chains and involve physiological processes such as growth rate and fat deposition. 

With a re-sequencing approach using the next generation semiconductor-based sequencing platform 

Ion Torrent PGM, we characterized 10 porcine taste receptors genes, 9 bitter taste receptors genes 

(TAS2R family: TAS2R1, TAS2R3, TAS2R4, TAS2R7, TAS2R9, TAS2R10, TAS2R16, TAS2R38 and 

TAS2R39) and the long chain fatty acid receptor GPR120 gene, all involved in the taste system 

affecting food preferences and feed intake in different pig populations;  we included also two groups 

(50 + 50 animals) from Italian Large White pigs with extreme and divergent estimated breeding value 

(EBV) for ADG and BFT. Three single nucleotide polymorphisms (SNPs) were found in GPR120 

gene showing significant differences of allele and genotype frequencies distribution between the 

extreme ADG-EBV groups (P<0.001). In TAS2R genes, a total of 125 SNPs have been detected, of 

which 37 missense mutations and among these three of them that can have important effects on bitter 

taste receptors functionality (base on in silico predictions). Moreover, we identified a total of 13 

SNPs, 7 in TAS2R39, 3 in TAS2R38 and one in TAS2R4, TAS2R10 and TAS2R16 each, significantly 

associated with BFT trait (Pnominal value<0.05; Chi square tests). Our results, using a methodological 

approach based on next generation sequencing, provided a better understanding of the complexity of 

taste perception in pigs but also in humans, considering that in the recent years they have been 

successfully used as animal model in this field.  Moreover, significant associations with production 

and performance traits like ADG and BFT can open the opportunities to develop nutrigenetic 

approaches for pig breeding and nutrition.  

The last study we carried out aimed to integrate target re-sequencing NGS genes, expression analyses 

and metabolomics approaches for the first time in livestock. We used a target metabolomic approach 

on two pig populations, Italian Large White and Italian Duroc pigs, and we detected a large number 

of metabotypes identifying biological relationships between metabolites. We performed a GWAS 

detecting genetic variation in genes involved in metabolism suggesting also in this case opportunities 

for application in pig nutrigenetics and nutrigenomics. Finally, we performed the first nutrigenetic 

experiment in pigs analysing genomic sequences, transcripts and related metabolites of an enzyme 

involved in the Trp catabolism, integrating these different kind of data.  
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In conclusion, the importance of the characterization of new phenotypes including internal 

phenotypes (such as new metabotypes or other bioanalytes) and external ones (e.g. food preference 

tests) is one of the most prevalent direction undertaken by the so called phenomics, toward high-

throughput phenotyping. Moreover, future studies will be needed to better understand genotypes 

effects of taste genes on food preferences in order to increase feed intake in pigs as well as to clarify 

the association between taste receptors variability and fat deposition trait.  

From a methodological point of view, the integration of genomics, transcriptomics and metabolomics 

approaches in order to better investigate complexity traits is becoming a feasable solution thanks to 

the new technological advances and the reduction of costs.  

Whole genome association studies might be planned following the same strategy that we have 

proposed in the second paper. Instead of working in a targeted approach, DNA-pool seq could be 

used directly in an association study by sequencing at high depth DNA pool constructed from pigs 

with extreme and divergent trait values. 

 

Finally, the development of precision feeding strategies focused on specific amino acid needs of the 

animals according to their genotype in genes involved in the amino acid metabolism pathways would 

be one of the envisaged perspectives of application in pig nutrigenetics and, more generally, in 

livestock nutrition. 
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6. Appendix 
 

In Appendix it is reported the list of published papers which have not been mentioned in the Thesis 

and all the posters presented in Scientific Congresses attended during my PhD period.  

 

Publications 

 

Schiavo, G., Ivett Hoffmann, O., Ribani, A., Utzeri, V.J., Ghionda, M.C., Bertolini, F., Geraci, 

C., Bovo, S., and Fontanesi, L. (2017). A genomic landscape of mitochondrial DNA insertions in 

the pig nuclear genome provides evolutionary signatures of interspecies admixture. Accepted by DNA 

Research.  

 

Abstract 

 

Nuclear DNA sequences of mitochondrial origin (numts) are derived by insertion of mitochondrial 

DNA (mtDNA), into the nuclear genome. In this study, we provide, for the first time, a genome 

picture of numts inserted in the pig nuclear genome. The Sus scrofa reference nuclear genome 

(Sscrofa10.2) was aligned with circularized and consensus mtDNA sequences using LAST software. 

A total of 430 numt sequences that may represent 246 different numt integration events (57 numt 

regions determined by at least two numt sequences and 189 singletons) were identified, covering 

about 0.0078% of the nuclear genome. Numt integration events were correlated (0.99) to the 

chromosome length. The longest numt sequence (about 11 kbp) was located on SSC2. Six numts were 

sequenced and PCR amplified in pigs of European commercial and local pig breeds, of the Chinese 

Meishan breed and in European wild boars. Three of them were polymorphic for the presence or 

absence of the insertion. Surprisingly, the estimated age of insertion of two of the three polymorphic 

numts was more ancient than that of the speciation time of the Sus scrofa, supporting that these 

polymorphic sites were originated from interspecies admixture that contributed to shape the pig 

genome.  

 

 

 

Motta, V., Trevisi, P., Bertolini, F., Ribani, A., Schiavo, G., Fontanesi, L., and Bosi, P. (2017). 

Exploring gastric bacterial community in young pigs. PloS one, 12(3), e0173029. 
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Abstract 

 

Microbiota plays an important role in the homeostasis of the gastrointestinal tract. Understanding the 

variations of the commensal microbiota composition is crucial for a more efficient control of enteric 

infectious diseases and for the reduction of the use of antibiotics in animal production, which are the 

main points of interest for improved animal healthcare and welfare and for consumer health 

protection. Even though the intestinal microbiota has been extensively studied, little is known about 

the gastric microbiota. This pilot study was aimed at a descriptive analysis of the gastric microbiota 

in healthy pigs and at the identification of any differences among four potentially distinct microbial 

niches in the stomach. Gastric mucosal samples from the oxyntic area, the pylorus and the gastric 

groove, and a sample of gastric contents were collected from four healthy weaned pigs. Bacterial 

DNA was isolated and extracted from each sample and amplicons from the V6 region of the 16S 

rRNA gene were sequenced using Ion Torrent PGM. The data were analysed by an “unsupervised” 

and a “supervised” approach in the Ribosomal Database Project (RDP) pipeline. Proteobacteria was 

the dominant phylum in all the samples. Differences in bacterial community composition were found 

between mucosal and content samples (one-way ANOSIM pairwise post hoc test, p < 0.05); instead, 

the different mucosal regions did not show differences between them. The mucosal samples were 

characterised by Herbiconiux and Brevundimonas, two genera which include cellulolytic and 

xylanolytic strains. Nevertheless, additional larger trials are needed to support the data presented in 

this pilot study and to increase the knowledge regarding the resident microbiota of the stomach. 

 

 

 

Fontanesi L., Di Palma F., Flicek P., Smith A. T., Thulin C. G., Alves P. C.  and the Lagomorph 

Genomics Consortium. LaGomiCs—Lagomorph Genomics Consortium: An International 

Collaborative Effort for Sequencing the Genomes of an Entire Mammalian Order. Journal of Heredity 

2016, esw010. 

 

Abstract 

The order Lagomorpha comprises about 90 living species, divided in 2 families: the pikas (Family 

Ochotonidae), and the rabbits, hares, and jackrabbits (Family Leporidae). Lagomorphs are important 

economically and scientifically as major human food resources, valued game species, pests of 

agricultural significance, model laboratory animals, and key elements in food webs. A quarter of the 
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lagomorph species are listed as threatened. They are native to all continents except Antarctica, and 

occur up to 5000 m above sea level, from the equator to the Arctic, spanning a wide range of 

environmental conditions. The order has notable taxonomic problems presenting significant 

difficulties for defining a species due to broad phenotypic variation, overlap of morphological 

characteristics, and relatively recent speciation events. At present, only the genomes of 2 species, the 

European rabbit (Oryctolagus cuniculus) and American pika (Ochotona princeps) have been 

sequenced and assembled. Starting from a paucity of genome information, the main scientific aim of 

the Lagomorph Genomics Consortium (LaGomiCs), born from a cooperative initiative of the 

European COST Action "A Collaborative European Network on Rabbit Genome Biology - RGB-Net" 

and the World Lagomorph Society (WLS), is to provide an international framework for the 

sequencing of the genome of all extant and selected extinct lagomorphs. Sequencing the genomes of 

an entire order will provide a large amount of information to address biological problems not only 

related to lagomorphs but also to all mammals. We present current and planned sequencing programs 

and outline the final objective of LaGomiCs possible through broad international collaboration. 

 

 

 

Utzeri V.J., Bertolini F., Ribani A., Schiavo G., Dall‘Olio S., Fontanesi L. The albinism of the 

feral Asinara white donkeys (Equus asinus) is associated with a missense mutation in a highly 

conserved position of the tyrosinase (TYR) gene. Animal Genetics 2016, 47(1): 120-124. 

 

Summary 

 

A feral donkey population (Equus asinus), living in the Asinara island National Park (north-west to 

Sardinia, Italy), includes a unique white albino donkey sub-population or colour morph, known as 

Asino dell’Asinara (with about 100-120 animals), that is a major attraction of this natural park. 

Disrupting mutations in the tyrosinase (TYR) gene are known to cause recessive albinisms in humans 

(i.e. Oculocutaneous Albinism Type 1 or OCA1 defects) and several other species. In this study, we 

analysed the donkey TYR gene as a strong candidate to identify the causative mutation of the albinism 

of the Asinara white donkeys. All five exons and parts of the intronic and flanking regions of the TYR 

gene were sequenced from 13 donkeys (7 Asinara white albino and 6 coloured animals). Seven single 

nucleotide polymorphisms were identified and distributed in five haplotypes. A missense mutation 

(p.H202D) in a highly conserved amino acid position (even across kingdoms), that disrupts the first 

copper binding site (CuA) of the TYR catalytic domain (as also confirmed by 3D protein modelling), 
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was identified in homozygous condition (D/D) in all Asinara white albino donkeys and in the albino 

son of a trio (the grey parents had genotype H/D), confirming the recessive mode of inheritance of 

this mutation. Genotyping 82 donkeys confirmed that Asinara white albino donkeys had genotype 

D/D whereas all other coloured donkeys had genotype H/H or H/D. Across populations association 

between the p.H202D genotypes and albino coat colour was highly significant (P=6.17E-18), further 

supporting a causative role of this amino acid substitution. The identification of the causative 

mutation of the albinism in the Asinara white donkeys might open new perspectives to study the 

dynamics of this putative deleterious allele in a feral population and to manage this interesting animal 

genetic resource. 

 

 

 

Bertolini F., Schiavo G., Scotti E., Ribani A., Martelli P.L., Casadio R., Fontanesi L. High 

throughput SNP discovery in the rabbit (Oryctolagus cuniculus) genome by next generation 

semiconductor based-sequencing.  Animal Genetics 2014, 45 (2):304-307 

 

Abstract 

 

The European rabbit (Oryctolagus cuniculus) is a domesticated species with one of the broadest 

ranges of economic and scientific applications and fields of investigation. Rabbit genome information 

and assembly are available (oryCun2.0), but so far few studies have investigated its variability, and 

massive discovery of polymorphisms has not been published yet for this species. Here, we sequenced 

two reduced representation libraries (RRLs) to identify single nucleotide polymorphisms (SNPs) in 

the rabbit genome. Genomic DNA of 10 rabbits belonging to different breeds was pooled and digested 

with two restriction enzymes (HaeIII and RsaI) to create two RRLs which were sequenced using the 

Ion Torrent Personal Genome Machine. The two RRLs produced 2 917 879 and 4 046 871 reads, for 

a total of 280.51 Mb (248.49 Mb with quality >20) and 417.28 Mb (360.89 Mb with quality >20) 

respectively of sequenced DNA. About 90% and 91% respectively of the obtained reads were mapped 

on the rabbit genome, covering a total of 15.82% of the oryCun2.0 genome version. The mapping 

and ad hoc filtering procedures allowed to reliably call 62 491 SNPs. SNPs in a few genomic regions 

were validated by Sanger sequencing. The Variant Effect Predictor Web tool was used to map SNPs 

on the current version of the rabbit genome. The obtained results will be useful for many applied and 

basic research programs for this species and will contribute to the development of cost-effective 

solutions for high-throughput SNP genotyping in the rabbit. 
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Fontanesi L., Ribani A., Scotti E., Utzeri V.J., Velickovic N., Dall’Olio S.  Differentiation of meat 

from European wild boars and domesticated pigs using polymorphisms in the MC1R and NR6A1 

genes. Meat Science 2014, 98: 781-784 

 

Abstract 

 

Wild boar meat cannot be easily distinguished from domestic pig meat, especially in processed 

products, thus it can be fraudulently substituted with cheaper domestic pork. In this study we 

genotyped polymorphisms in two genes (MC1R, affecting coat color and NR6A1, associated with 

number of vertebrae) in 293 domestic pigs of five commercial breeds, 111 wild boars sampled in 

Italy, and 90 in Slovenia and other Western Balkan regions. Allele and genotype frequency datawere 

used to set up a DNA-based method to distinguish meat of wild boars and domestic pigs. Genotyping 

results indicated that domesticated genes were introgressed intowild boar populations. This 

complicated the determination of the origin of the meat andwould cause a high error rate if markers 

of only one gene were used. The combined use of polymorphisms in the two analyzed genes 

substantially reduced false negative results 

 

 

 

 

Utzeri V.J., Ribani A., Fontanesi L. A premature stop codon in exon 2 of the TYRP1 gene is 

associated with brown coat colour in rabbits (Oryctolagus cuniculus). Animal Genetics 2014, 45:600 

– 603 

 

Abstract 

 

Classical genetic studies in European rabbits (Oryctolagus cuniculus) suggested the presence of two 

alleles at the brown coat colour locus: a wild-type B allele that gives dense black pigment throughout 

the coat and a recessive b allele that in the homozygous condition (b/b genotype) produces brown 

rabbits that are unable to develop black pigmentation. In several other species, this locus is determined 

by mutations in the tyrosinase-related protein 1 (TYRP1) gene, encoding a melanocyte enzyme needed 
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for the production of dark eumelanin. In this study, we investigated the rabbit TYRP1 gene as a strong 

candidate for the rabbit brown coat colour locus. A total of 3846 bp of the TYRP1 gene were 

sequenced in eight rabbits of different breeds and identified 23 single nucleotide polymorphisms 

(SNPs; 12 in intronic regions, five in exons and six in the 30-untranslated region) and an insertion/ 

deletion of 13 bp, in the 30-untranslated region, organised in a few haplotypes. A mutation in exon 2 

(g.41360196G>A) leads to a premature stop codon at position 190 of the deduced amino acid 

sequence (p.Trp190ter). Therefore, translation predicts a truncated TYRP1 protein lacking almost 

completely the tyrosinase domain. Genotyping 203 rabbits of 32 different breeds identified this 

mutation only in brown Havana rabbits. Its potential functional relevance in disrupting the TYRP1 

protein and its presence only in brown animals strongly argue for this non-sense mutation being a 

causative mutation for the recessive b allele at the brown locus in Oryctolagus cuniculus. 
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