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Abstract	
	
	
	
The	 spine	 is	 a	 complex	 and	 a	 still	 partially	 unexplored	 structure.	 	 Due	 to	 the	
constantly	 increasing	 longevity	 and	 the	 sedentary	 life-style	 typical	 of	 the	
industrialized	countries,	spinal	diseases	are	becoming	a	serious	problem	inside	
the	modern	society	and	a	deeper	knowledge	of	spine	biomechanics	is	required.		
In	the	literature	a	series	of	works	investigated	the	biomechanics	of	the	spine	in	
order	 to	 characterize	 the	 overall	 spine,	 its	 organs,	 its	 tissues	 separately,	 in	
physiological,	 pathological	 and	 after	 treatment	 conditions.	 	 In	 vivo	 tests	 are	
performed	evaluating	the	range	or	motion	and	the	spinal	loads	in	living	subjects.	
In	vitro	 tests	 allow	measuring	 the	 strain	 on	 vertebrae	 and	 intervertebral	 discs	
and	 testing	new	spinal	devices.	 	Moreover,	 in	silico	 tests	 are	useful	 to	 simulate	
different	 loading	 scenarios,	 pathologies,	 and	 devices,	 especially	 when	 used	 in	
synergies	with	in	vivo	and	in	vitro	tests.		A	methodology	to	merge	the	evaluation	
of	 the	 range	 of	 motion	 with	 the	 full-field	 strain	 measurement	 was	 not	 been	
implemented.		A	clear	description	of	the	strain	associated	to	physiological	tasks	
can	help	the	clinicians,	can	improve	the	design	of	new	devices	and	can	guide	the	
development	 of	 new	 surgical	 procedures.	 	 In	 order	 to	 achieve	 this	 goal,	 the	
mapping	 of	 the	 strain	 distribution	 must	 be	 achieved	 simultaneously	 on	 the	
vertebrae	and	the	intervertebral	discs.				
The	 aim	 of	 my	 PhD	 thesis	 was	 the	 implementation	 and	 improvement	 of	 the	
methodologies	to	quantify	the	displacements	and	strains	in	spine	segments	in	a	
full-field	view	and	a	contactless	way,	in	order	to	characterize	the	biomechanics	of	
the	spine	as	a	whole	and	in	the	details	of	its	organs.			
	
The	 first	part	of	 this	 thesis	 focuses	on	 the	evaluation	of	 the	displacements	and	
strains	distribution	on	 the	entire	spine	surface.	 	 In	order	 to	achieve	 this	goal	a	
contactless,	full-field	measurement	technique	was	employed	and	optimized:	the	
Digital	 Image	 Correlation	 (DIC).	 	 Before	 starting	 to	 use	 the	 Digital	 Image	
Correlation,	 the	 tool	 was	 deeply	 validated,	 starting	 from	mechanical	 specimen	
(aluminum	 beam)	 up	 to	 biological	 specimen	 (vertebrae).	 	 A	 factorial-design	
allowed	 optimizing	 the	 procedure	 to	 prepare	 a	 repeatable	 and	 reproducible	
speckle	 pattern	 and	 identifying	 the	 best	 acquisition/elaboration	 parameters.		
The	optimization	reduced	the	systematic	error	to	10	microstrain	and	the	random	
error	 to	 110	 microstrain.	 	 Porcine	 spine	 segments,	 with	 intervertebral	 discs,	
were	used	to	explore	the	feasibility	of	measuring	strain	on	the	entire	specimen	
surface	using	the	Digital	 Image	Correlation.	 	To	measure	the	strain	distribution	
on	the	hard	and	soft	 tissues,	 the	spine	segments	were	prepared	with	a	random	
white-on-black	 speckle	 pattern	 and	 tested	 in	 simplified	 loading	 conditions	 to	
reproduce	the	anterior	bending	and	the	lateral	bending.		The	displacements	and	
the	 strains	 were	 thus	 evaluated,	 simultaneously	 on	 the	 vertebrae	 and	 on	 the	
intervertebral	discs,	using	 the	optimized	Digital	 Image	Correlation	showing	 the	
potentiality	of	exploring	the	spine	as	a	whole	and	in	detail.					
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The	 second	 area	 of	 research	 consists	 in	 going	 beyond	 the	 evaluation	 of	
measurements	 on	 the	 specimen	 surface,	 and	 providing	 the	 three-dimensional	
displacements	 and	 strains	 maps	 inside	 the	 specimen	 through	 Digital	 Volume	
Correlation	(DVC).		Of	course	the	measurement	uncertainties	cannot	be	taken	for	
granted.	 	 Even	 more	 than	 in	 the	 Digital	 Image	 Correlation,	 the	 reliability	 of	
Digital	Volume	Correlation	must	be	assessed;	because	of	no	other	measurement	
techniques	 are	 able	 to	 provide	 comparable	 measurements.	 	 Different	 studies	
were	developed	from	the	tissue-level	(bovine	cortical	and	trabecular	bone	cores)	
up	to	organ-level	(porcine	vertebrae	and	murine	tibiae).		Both	laboratory	micro-
CT	 (voxel	 size	10-40	micrometers),	 and	 synchrotron	 radiation	micro-CT	 (voxel	
size	1.6	micrometers	–	Diamond	Light	Source)	were	used	to	assess	the	impact	of	
the	quality	and	resolution	of	 the	 input	 images.	 	As	no	alternative	measurement	
technique	can	be	used	to	quantify	the	errors	of	DVC,	multi-factorial	(tissue	types,	
imaging	 techniques,	 spatial	 resolutions,	 DVC	 approaches,	 DVC	 parameters)	
studies	 were	 designed	 based	 on	 datasets	 shared	 between	 different	 research	
centres	 (like	Round-Robin	 test).	 	This	allowed	 to	assess	 the	effect	of	 the	 single	
parameters	 on	 the	 final	 displacement	 and	 strain	 measurements.	 	 All	 the	
specimens	were	scanned	twice	without	any	repositioning	and	without	any	loads,	
because	 this	 procedure	 is	 the	 only	 way	 to	 know	 certainly	 the	 strains	 (zero-
strain)	 within	 the	 specimen.	 	 Furthermore	 the	 algorithms	 were	 verified	 using	
artificially	 translated	 images.	 	All	 these	 tests	did	not	complete	 the	validation	of	
the	Digital	Volume	Correlation	that	is	still	challenging,	but	defined	the	minimum	
and	 unavoidable	 intrinsic	 measurement	 errors	 related	 to	 the	 compromise	
between	measurement	uncertainties	 and	measurement	 spatial	 resolution.	 	 The	
original	 goal	 was	 to	 obtain	 a	 measurement	 uncertainty	 lower	 than	 200	
micrometers	in	order	to	use	the	DVC	also	for	the	measurement	of	strain	related	
to	physiological	 loads.	 	The	 threshold	was	reached	with	a	measurement	spatial	
resolution	 of	 ≈2mm	 for	 laboratory	 source	 microCT	 based	 DVC	 and	 40/80	
micrometers	 for	 Synchrotron	 radiation	 microCT	 based	 DVC.	 	 The	 acquired	
background	about	the	optimization	of	the	DVC	parameters	was	exploited	to	start	
measuring	the	strain	distribution	within	a	vertebral	body	under	load.		This	final	
work	showed	the	strain	gradients	 inside	the	vertebra	 in	a	destructive	stepwise	
loading,	 highlighting,	 already	 in	 the	 elastic	 regime,	 the	 highest	 strain	 region	
where	failure	will	start.	
	
In	 conclusion,	 the	 project	 highlighted	 the	 importance	 of	 a	 careful	 validation	
before	 using	 these	 novel	 measurement	 techniques	 and	 confirmed	 that	 after	
optimizing	the	experimental	details	it	is	possible	to	apply	these	new	procedures	
on	spine	segments.	 	The	methodologies	can	be	considered	as	completed,	but	 in	
the	 next	 years	 the	 application	 of	 the	methods	 should	 be	 performed	 on	 human	
specimens:	 applying	 more	 complex	 loading	 scenarios	 and	 exploring	 the	
biomechanics	in	physiological,	pathological	and	instrumented	specimens.	
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1.1 Background 

The	spine	is	one	of	the	most	complex	portions	of	the	skeleton	to	study	(White	III	
and	 Panjabi,	 1990):	 it	 consists	 in	 an	 alternation	 of	 vertebrae	 (seven	 cervical,	
twelve	 thoracic,	 five	 lumbar	 and	 four/five	 fused	 sacral,	 three-five	 fused	 coccyx	
vertebrae)	and	intervertebral	discs,	stabilized	by	a	series	of	ligaments	(Fig.	1).			
In	 the	next	 lines	 I	will	not	deal	with	 the	 spine	anatomy	 in	detail,	 instead	 I	will	
briefly	describe	the	organs,	which	constitute	the	spine,	and	their	biomechanical	
function.	
	

	 	 	
Fig.	1:	On	the	left	(Image	from:	By	Mikael	Häggström	[Public	domain],	via	Wikimedia	Commons):	
The	spine	occupies	a	central	position	in	the	human	body	and	plays	a	fundamental	role	to	sustain	
organs.		On	the	right	(Image	from:	Henry	Vandyke	Carter	[Public	domain	or	Public	domain],	via	
Wikimedia	Commons):	In	the	spine,	five	different	segments	can	be	distinguished	in	relation	to	
vertebrae	shape,	from	top	to	down:	cervical	(red),	thoracic	(blue),	lumbar	(yellow),	sacrum	

(green),	coccyx	(purple).	
	
The	vertebrae	 (Fig.	2)	 are	 irregular	bones,	 their	dimension	varies	 according	 to	
their	position	in	the	spine,	posture,	load,	pathology	(Gray,	1858).		Each	vertebra	
has	a	vertebral	body,	a	thick	layer	of	cortical	bone	that	surrounds	the	trabecular	
bone,	 a	 posterior	 arch	 and	 the	 processes,	with	 a	 thicker	 cortical	 bone.	 	 Finally	
between	the	body	and	the	arch	there	is	the	spinal	cavity,	where	the	spinal	cord	is	
placed.		The	vertebrae	are	the	hard	tissues	of	the	spine.		The	principal	functions	
of	the	vertebrae	are:	

• Supporting	the	body,	forming	the	vertebral	column;			
• Allowing	 the	 movement,	 in	 fact	 the	 upper	 and	 lower	 surfaces	 of	 the	

vertebrae	are	attached	to	the	ligamenta	flava,	which	allow	the	movements	
of	the	upper	body;	

• Protecting	the	spinal	cord,	due	to	vertebra	shape	and	geometry.	
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Fig.	2:	Vertebrae	and	intervertebral	disc.		In	the	vertebra	can	be	distinguished	the	vertebral	body,	
the	processes,	and	the	posterior	arch.		The	intervertebral	discs	instead	is	represented	on	the	left	
between	the	vertebrae	and,	on	the	right,	sectioned.		On	the	sectioned	view	is	possible	appreciate	
the	nucleus	polposus	surrounded	by	the	annulus	fibrosus	(Image	from:	OpenStax	College	-	
Anatomy	&	Physiology,	Connexions	Web	site.	http://cnx.org/content/col11496/1.6/,	Jun	19,	

2013.,	CC	BY	3.0)	
	
The	intervertebral	discs	(Fig.	2)	are	composed	of	two	soft	tissues	(Cassidy	et	al.,	
1989):	 the	 anulus	 fibrosus,	 layers	 of	 fibrocartilages,	 and	 inside	 the	 nucleus	
polposus,	 fibers	 scattered	 in	 a	 mucoprotein	 gel.	 	 The	 structure	 of	 the	
intervertebral	 discs	 allows	 them	 to	 carry	 out	 the	 function	 of	 shock	 absorber,	
distributing	the	pressure	in	all	directions	and	dumping	the	force	peaks	from	the	
lower	 limbs.	 	 Furthermore	 connecting	 the	 vertebrae	 each	 other,	 the	
intervertebral	 discs	 restrain	 some	 movements	 of	 the	 spine:	 constrain	 the	
translations	and	allow	the	rotations,	preserving	the	neighboring	nervous	tissues.		
The	vertebrae	and	intervertebral	discs	are	connected	by	the	endplates,	made	of	
hyaline	cartilage.		The	endplates	contain	the	discs	and	provide	anchorage	of	the	
collagen	fibers.		
Finally,	 the	 spinal	 ligaments	 (anterior	 longitudinal,	 posterior	 longitudinal,	
ligamentum	 flavum,	 facet	 capsulary	 ligament,	 intertransverse	 ligament,	
interspinous	 ligament,	 supraspinous	 ligament)	 are	 fibrous	 bands	 or	 sheets	 of	
connective	tissue,	made	of	collagenous	fibers	(Fig.	3).		Each	of	the	ligaments	has	
its	 specific	 function	 (Aspden,	 1992)	 but,	 generally,	 they	 play	 the	 role	 of	
interconnecting	 the	 vertebrae	 each	 other	 and	 preserving	 the	 upright	 posture,	
avoiding	excessive	movements	or	movement	in	certain	directions.			
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Fig.	3:	Description	of	the	common	and	principal	ligaments	on	spine	(Image	from:	

http://ranzcrpart1.wikia.com/wiki/File:PicA2.jpg)	
	
Each	of	these	organs	has	specific	characteristics,	behaviors	and	specific	roles	in	
the	musculoskeletal	 apparatus	 and	 they	 are	 actually	different	 from	each	other.		
But	looking	at	the	spine	as	a	whole,	it	plays	the	fundamental	roles	of	supporting	
the	 body	 in	 a	 standing	 position	 allowing	 a	 wide	 range	 of	 movements	 and	
protecting	the	spinal	cord.	
	
	
	
1.2 Pathologies 

The	 effects	 of	 spine	 diseases	 and	 failures	 affect	 a	 large	 portion	 of	 populations.		
They	 could	 be	 done	 to	 different	 causes	 and	 could	 affect	 different	 organs:	
vertebrae,	intervertebral	discs	and	ligaments.		
The	 scoliosis	 (Aebi,	 2005;	Donzelli	 et	 al.,	 2015),	 hyper-kyphosis	 (Barrett	 et	 al.,	
2014)	 and	 hyper-lordosis	 (Been	 and	 Kalichman,	 2014)	 are	 the	 most	 frequent	
syndromes	 of	 the	 spine.	 	 They	 could	 affect	 young	 and	 old	 people,	with	 a	 large	
variety	 of	 emphases,	 symptoms	 and	 effects.	 	 These	 syndromes	 consist	 in	 a	
degeneration	 of	 a	 spine	 segment,	more	 or	 less	 extended,	 (not	 concentrated	 on	
the	 single	 organ)	 that	 change	 the	 physiological	 spine	 curvature.	 	 The	 different	
levels	of	the	syndrome	can	evolve	in	different	issues:	from	the	back	pain,	passing	
to	cardio-respiratory	diseases	up	to	immobility.	
The	 vertebrae,	 as	 other	 bones,	 can	 be	 affected	 by	 pathologies	 such	 as	
osteoporosis	 and	 osteopenia	 (WHO,	 1994,	 2007).	 	 These	 pathologies	 entail,	
respectively,	 the	 gradual	 loss	 of	 bone	density	 (Morita	 et	 al.,	 1994;	Ritzel	 et	 al.,	
1997)	 and	of	 bone	mineral	density	 (Karaguzel	 and	Holick,	 2010),	 reducing	 the	
strength	of	 the	bone.	 	These	conditions	 increase	 the	risk	of	vertebral	 fractures,	
and	concurrently	of	forearm	and	hip	fractures,	in	the	elderly	under	daily	loading	
conditions	(Myers	and	Wilson,	1997;	Silva,	2007);	with	the	consequent	high	risk	
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of	correlated	diseases	on	the	neighbor	nervous	tissue.		Moreover,	the	function	of	
the	vertebrae	could	be	compromised	by	metastasis,	usually	from	prostate	or	lung	
cancers.	 	 In	 this	 case,	 the	 vertebrae	 show	a	 significantly	 reduction	of	 the	bone	
mass,	 and	 consequently	 the	 reduction	 of	 their	 strength	 section	 (Botelho	 et	 al.,	
2013;	Choi	et	al.,	2010).		A	well-defined	surgical	procedure	is	missing,	due	to	the	
poor	number	of	cases	and	the	advances	in	technologies.		It	entails	to	increase	the	
risk	associated	to	this	pathology	and	the	deep	influence	on	the	life	quality.			
The	intervertebral	discs,	as	the	vertebrae,	are	subjected	to	a	series	of	pathologies	
that	 compromise	 their	 function	 and	 could	 lead	 to	 immobility.	 	 As	 described	
above,	the	intervertebral	discs	have	the	function	of	shock	absorber,	so	they	are	
continuously	 stressed	 during	 the	 normal	 daily	 activity.	 	 The	 most	 known	
pathology	 affecting	 the	 intervertebral	 discs	 is	 the	 slipped	 disc	 (Jordan	 et	 al.,	
2011):	 it	consists	 in	a	bulge	over	the	edge	of	the	intervertebral	disc,	due	to	the	
loss	of	their	elasticity	becoming	brittle	and	cracked.		There	are	different	level	of	
slipped	disc	and	related	different	symptom,	from	the	totally	asymptomatic	to	the	
immobility	for	the	spinal	cord	compression.		The	spondylolisthesis,	another	disc	
pathology,	represent	the	translation	of	a	vertebra	on	another	(Matz	et	al.,	2016).		
It	could	involve	in	back	pain	and	immobility.		Clinicians	through	screws	and	bars	
systems,	as	for	other	spinal	pathologies,	restore	the	regular	anatomy	of	the	spine,	
but	 after	 a	 first	 asymptomatic	 period,	 in	 the	 40%	 of	 the	 cases	 (Jutte	 and	
Castelein,	2002),	the	system	fails	in	proximal	junctional	kyphosis	(Lee	and	Park,	
2016),	bars/screws	failure	(Luca	et	al.,	2016).		
These	 pathologies,	 or	 syndromes,	 involve	 entire	 spine	 segments,	 and	 not	 the	
single	 organs,	 such	 as	 the	 singles	 vertebra	 or	 the	 single	 discs.	 	 This	
multifactoriality	increases	the	difficult	to	work	on	a	so	complicated	system.		
	
	
	
1.3 The implications of spinal diseases on our society 

The	 consequences	 of	 these	 diseases	 can	 affect	 with	 different	 endings	 the	
subject’s	life.		In	the	best	case,	the	subject	lives	with	spine	diseases	without	any	
pain	 or	 symptoms	 and	 without	 changing	 his/her	 life	 style.	 	 The	 worst-case	
scenario,	 instead,	 corresponds	 to	 the	 immobilized	 patient,	 with	 consequents	
morbidities,	 that	 deeply	 affects	 the	 life	 quality,	 up	 to	mortality	 (Christodoulou	
and	Cooper,	2003;	Cooper	et	al.,	2006;	Holroyd	et	al.,	2008;	WHO,	2004).	
The	 spinal	 pathologies,	 of	 course,	 had	 a	 high	 impact	 also	 on	 the	 healthcare	
systems	 in	 terms	 of	 costs,	 because	 of	 complex	 and	 expensive	 patient	 specific	
treatments/devices,	high	rate	failure	and	long	convalescence	(Boos,	2009).			
For	 example,	 the	 average	 cost	 for	 lumbar	 spinal	 surgery	 is	 of	 28	 000	 $	 (Boos,	
2009)	 (quasi-twice	 the	 cost	 for	 a	 knee	or	 hip	 replacement	 (Polly	 et	 al.,	 2007))	
and	 it	 is	 rising	 despite	 the	 lack	 of	 a	 clinical	 evidence	 of	 their	 effectiveness	
compared	to	other	treatments	(Fairbank	et	al.,	2005).	 	 In	fact	some	treatments,	
such	 as	 the	 pedicle	 screw	 fixation	 or	 the	 augmentation	 (vertebroplasty	 or	
kyphoplasty),	are	technically	demanding	and	associated	with	high	complications	
rates.	 	 For	 the	 pedicle	 screw	 fixation,	 one	 or	 more	 complications	 were	 been	
found	 in	 40%	 of	 the	 cases	 (Esses	 et	 al.,	 1993;	 Jutte	 and	 Castelein,	 2002;	
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Pihlajamaki	 et	 al.,	 1997),	 while	 for	 the	 augmentation	 the	 complications	 were	
around	the	20%	of	the	cases	(Yang	et	al.,	2008).	
Moreover,	 this	 spinal	 diseases	 scenario	 is	 continually	 worsening	 due	 to	 the	
increasing	 longevity,	 not	 ever	 associated	 to	 a	 high-quality	 life,	 and	 the	
widespread	 sedentary	 lifestyle	 (Affairs,	 2007).	 	 Just	 to	 mention,	 in	 the	 United	
States	of	America,	31	million	people	(10%	of	the	population)	suffer	of	back	pain	
(Agency	for	Healthcare	Research	and	Quality).	
	
	
	
1.4 How can we explore the spine biomechanics?  

In	literature	a	series	of	work	investigated	the	biomechanics	of	the	spine	in	vivo,	
in	 vitro	 and	 in	 silico	 in	 order	 to	 characterize	 the	 overall	 spine,	 its	 organs,	 its	
tissues	 independently,	 in	 physiological,	 pathological	 and	 after	 treatment	
conditions.			
The	in	vivo	works	mainly	described	the	kinematic	of	the	spine	in	different	motor	
tasks.	 	 Initially,	 the	 goal	 was	 reached	 videotaping	 the	 subjects	 using	 normal	
cameras	(Cholewicki	and	McGill,	1996).	 	The	researchers	 then	had	 to	manually	
define	the	markers	and	compute	the	range	of	motions,	with	unavoidable	 issues	
of	 repeatability	 and	 reproducibility.	 	During	 the	years,	 improved	measurement	
systems,	such	as	the	stereophotogrammetry	(Lee	et	al.,	1993)	or	the	inertial	and	
magnetic	 sensors	 (Tafazzol	 et	 al.,	 2014),	 allowed	 reducing	 the	 measurement	
uncertainties	 (Stagni	 et	 al.,	 2009)	 of	 the	 procedure	 and	 defining	 the	 spine	
kinematics	in	various	field,	as	swimming	(de	Magalhaes	et	al.,	2015)	or	running	
(Preece	 et	 al.,	 2016).	 	 The	 last	 improvement	 in	 terms	 of	 defining	 the	 spine	
kinematics	is	using	MRI	or	CT	scans	(Anderst	et	al.,	2014;	Fujimori	et	al.,	2014).		
This	 procedure	 has	 the	 advantages	 of	 solving	 the	 problem	 of	 the	 markers	
application	and	providing	a	tridimensional	kinematic	of	the	single	vertebra	of	the	
spine.		In	fact	with	the	other	techniques,	the	markers	are	applied	on	the	skin,	or	
are	 wearable	 with	 consequent	 problems	 of	 defining	 the	 spine	 movements	
instead	 of	 the	 spine	 and	 surrounding	 soft	 tissues.	 	 On	 the	 other	 hand,	 the	 CT	
scans	is	connected	to	a	minimal	radiation	dose.		Other	in	vivo	tests	were	carried	
out	 to	 define	 the	 spinal	 loads.	 	 The	 group	 of	 Prof.	 Bergmann	 provided	 a	wide	
knowledge	about	the	spinal	 loads	(as	well	as	other	anatomical	districts)	 in	vivo	
using	telemeterised	prosthesis.	A	telemeterised	vertebral	body	replacement	was	
implanted	in	patients	who	had	a	compression	fracture	on	a	vertebra	(Dreischarf	
et	al.,	2015;	Rohlmann	et	al.,	2007)	to	define	the	loads	for	each	vertebra	in	daily	
tasks.		Expanding	the	knowledge	to	spine	segment,	custom-made	internal	spinal	
fixators	 were	 used	 in	 patients	 with	 spine	 instability	 (Rohlmann	 et	 al.,	 1994;	
Rohlmann	et	al.,	1997;	Rohlmann	et	al.,	1999).	 	 It	allows	defining	the	ranges	of	
loads	in	different	 loading	scenario,	 in	different	spine	zones.	 	A	hybrid	 in	vivo/in	
silico	work	instead	provided	the	 loads	on	healthy	intervertebral	discs	(Wang	et	
al.,	2014),	helping	to	understand	the	intrinsic	biomechanics	of	the	spine	and	the	
related	organs.			
The	 in	 vitro	 works	 mainly	 described	 the	 biomechanical	 characteristics	 of	 the	
spine,	considering	the	spine	as	a	whole,	or	a	vertebra	and	its	next,	or	a	more	or	
less	extended	spine	segment	(Brandolini	et	al.,	2014).	 	The	Panjabi	and	White’s	
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group	(Panjabi	et	al.,	1976)	evaluated	the	three-dimensional	 load-displacement	
curves	 of	 the	 thoracic	 spine,	 defining	 the	 mechanical	 characteristics	 of	 each	
motion	segment.		A	series	of	works	defined	the	range	of	motion	of	human	spine	
(Oda	 et	 al.,	 2002;	 Panjabi	 et	 al.,	 1981;	 Panjabi	 et	 al.,	 1994).	 	 Other	 works,	 in	
addition	to	the	range	of	motion,	computed	the	stiffness	of	the	spine	in	different	
motor	tasks	(Anderson	et	al.,	2009;	Busscher	et	al.,	2010a;	Busscher	et	al.,	2010b;	
Busscher	 et	 al.,	 2009;	 Hansson	 et	 al.,	 1987;	Wilke	 et	 al.,	 1997).	 	 The	 range	 of	
motion	 and	 the	 stiffness	 were	 frequently	 used	 to	 compare	 the	 physiological	
spines,	 with	 pathological	 and	 instrumented	 ones	 (Alkalay	 et	 al.,	 1999;	 Oxland	
and	 Lund,	 2000;	 Schultheiss	 et	 al.,	 2006;	 Wilke	 et	 al.,	 2006).	 	 These	 two	
parameters	offer	a	useful	but	rather	delimited	description	of	the	biomechanics	of	
the	spine.		In	fact,	some	processes,	such	as	the	bone	remodeling	(Wolff’s	law)	or	
the	bone	fracture	(Bayraktar	et	al.,	2004;	Cristofolini,	2015),	are	well	known	as	
strain-based	ones.		Moreover,	the	biological	specimens	are	often	inhomogeneous	
and	 anisotropic	 and	 full-field	 measurements	 are	 mandatory	 to	 deeply	
characterize	 the	 tissues.	 	 Finally,	 experimental	 full-field	 measurements	 can	
validate	 complex	 finite	 element	 model.	 	 In	 vitro	 works	 allow	 also	 measuring	
experimentally	 the	 strain	 on	 the	 specimens.	 	 Some	 works	 investigated	
qualitatively	the	strain	distribution	on	a	spine	segment	using	the	brittle	paint	or	
photoelasticity	 (Shah	 et	 al.,	 1976).	 	 Of	 course,	 these	 measurement	 techniques	
provided	useful	information,	especially	for	a	complex	geometry	such	as	the	one	
of	 the	 spine,	 to	 describe	 the	 biomechanics	 of	 the	 spine.	 	 At	 the	 same	 time,	 the	
boundary	conditions	of	 these	 techniques	were	actually	 far	 from	the	reality	and	
considerably	 affected	 the	 measurements.	 	 A	 quantification	 of	 the	 strain	 was	
possible	using	the	strain	gauges.		They	granted	stability	and	precision	but	strain	
gauges	provided	only	point-wise	measurement.		Nevertheless,	the	reinforcement	
effect,	typical	of	the	strain	gauges,	limited	their	employment	only	on	hard	tissues	
(Cristofolini	et	al.,	2013;	Danesi	et	al.,	2016a;	Shah	et	al.,	1978).	 	More	complex	
was	 the	 quantification	 of	 the	 strain	 on	 the	 intervertebral	 discs,	 due	 to	 their	
intrinsic	characteristic,	such	as	a	relatively	low	Young’s	modulus	(Cassidy	et	al.,	
1990;	Karakolis	and	Callaghan,	2015;	Spera	et	al.,	2011).		And	this	difficulty,	can	
be	see,	to	date,	as	a	gap	between	the	know-how	on	vertebrae	and	intervertebral	
discs.	 	 Braggs’	 fibers	 were	 used	 to	 evaluate	 the	 strain	 but	 only	 for	 a	 limited	
portion	of	the	surface	(Stokes,	1987).		
Moreover,	the	exploration	of	the	spine	goes	over	the	knowledge	about	vertebrae	
and	 intervertebral	 discs:	 an	 increasing	 number	 of	works	 studies	 the	 behavior,	
the	 function	 and	 the	 characterization	 of	 the	 ligaments	 (Gillespie	 and	 Dickey,	
2004;	 Hindle	 et	 al.,	 1990;	 Panjabi	 et	 al.,	 2009;	 Shim	 et	 al.,	 2006).	 	 Other	
experimental	works	compared	the	different	surgical	techniques,	to	highlight	the	
pros	and	cons	connected	to	each	ones	(Cardoso	et	al.,	2008;	Lee	et	al.,	2010).	
Finally,	 it	 is	not	negligible	 that	a	wide	portion	of	 literature	 is	based	on	 in	silico	
tests	 through	 finite	 element	 analysis.	 	 As	 in	 other	 fields,	 the	 finite	 element	
analysis	 shows	 high	 potentiality	 but,	 before	 starting	 to	 use	 it,	 a	 validation	 is	
needed	(Dall'ara,	2012;	Dall'Ara	et	al.,	2013;	Dall'Ara	et	al.,	2010).	 	 In	this	case,	
the	 synergies	with	 in	 vivo	 (Zander	 et	 al.,	 2015)	 and	 in	 vitro	 (Cristofolini	 et	 al.,	
2010b;	Noailly	et	al.,	2007;	Reitmaier	et	al.,	2012)	tests	allow	going	beyond	this	
problem	and	increasing	the	knowledge	in	the	field.		In	fact,	using	finite	elements	
models	 is	possible	simulating	pathologies,	bone	remodeling,	devices,	overloads,	
and	a	long	list	of	situations	hard	to	reproduce	in	laboratory	for	 in	vitro	 tests	or	
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on	human	on	 in	vivo	 tests.	The	spine	 is	deeply	 investigated	with	 finite	element	
analysis	by	the	“MySpine	group”,	coordinated	by	Prof.	Lacroix	(Galbusera	et	al.,	
2011;	Malandrino	et	al.,	2014;	Malandrino	et	al.,	2009).		Their	research	covered	
both	the	vertebrae	and	the	intervertebral	discs	and	their	aim	was	the	creation	of	
a	computing	platform	to	be	used	in	clinical	images.			
On	 this	 topic,	 the	 Avicenna	 roadmap	 (Viceconti	 et	 al.,	 2016)	 written	 by	 Prof.	
Viceconti	of	 the	 Insigneo	(Institute	 for	 In	Silico	Medicine)	and	approved	by	 the	
European	Commission	define	the	route	by	which	in	silico	techniques	of	computer	
simulation	will	 be	 introduced	 into	 clinical	 trials,	 the	 studies	 that	 are	 routinely	
conducted	to	establish	the	safety	and	efficacy	of	new	medical	interventions.	
	
	
	
1.5 What is still unsolved? 

The	spine	is	described	through	a	detailed	evaluation	of		
• The	kinematics	in	different	conditions	and	using	different	in	vitro,	in	vivo	

and	in	silico	tests;		
• The	overall	stiffness;	
• The	 mechanical	 characteristics	 of	 the	 tissues	 component	 the	 bone,	 the	

intervertebral	discs	and	the	ligaments;	
• A	series	of	models	usable	to	simulate	different	scenarios.			

To	date,	a	methodology	to	merge	the	evaluation	of	the	range	of	motion	with	the	
full-field	strain	measurement	is	not	implemented.	
But,	 what	 happens	 in	 the	 interface	 between	 vertebrae	 and	 discs,	 where	 is	 the	
failure	 point	 on	 spines,	 how	 the	 vertebrae	 and	 the	 discs	 works	 when	 an	
implantable	 devices	 is	 used,	 is	 not	 actually	 well	 known.	 	 More	 generally,	 a	
quantification	of	the	strain	taking	into	account	the	spine	segments	as	a	whole	is	
missing	and	can	be	very	useful	in	the	biomechanical	field.		A	clear	description	of	
the	 strain	 associated	 to	 physiological	 tasks	 can	 help	 the	 clinician	 to	 better	
understand	 the	 pathologies	 related	 to	 spine,	 can	 improve	 the	 design	 of	 new	
implantable	 devices	 with	 a	 lower	 failure	 rate	 and	 can	 develop	 new	 surgical	
procedures,	beneficially,	less	invasive.	
	
	
	
1.6 Aim of my PhD project 

The	aim	of	my	project	consisted	in	improving	the	methodologies	and	procedures	
to	 test,	 and	consequently	widely	 characterize,	 the	biomechanics	of	 the	 spine	 in	
vitro	in	different	conditions.			
The	 entire	 work	 mainly	 focused	 on	 the	 application	 of	 quantitative	 full-field	
displacement/strain	measurement	techniques	able	to	provide	new	essential	data	
helpful	 to	 open	 the	way	 to	 new	 studies	 on	 the	 spine,	 to	 better	 understand	 its	
pathologies	 and	 to	 develop	 improved	 devices.	 	 In	 order	 to	 offer	 a	 wide	 and	
complete	 methodology,	 surface	 and	 internal	 strains	 and	 displacements	
measurements	 were	 explored.	 	 Initially,	 the	 uncertainties	 were	 evaluated	 to	
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know	 the	 level	of	 reliability	 for	each	measurement	 techniques;	 then	 the	know-
how	 was	 applied	 to	 answer	 to	 biomechanical	 questions:	 such	 as	 the	 strain	
distribution	 on	 a	 multi-vertebrae	 spine	 segments,	 or	 what	 happens	 in	 the	
trabecular	bone	of	a	vertebra.				
	
	
	
1.7 Outline of the thesis 

The	 work	 was	 conceptually	 split	 in	 two	 areas	 of	 research:	 the	 strain	
measurement	 on	 the	 surface	 of	 the	 specimen	 and	 the	measurement	 inside	 the	
specimen.			
In	order	to	achieve	my	goal,	a	series	of	steps	were	needed.			
For	the	strain	measurement	on	the	surface	of	the	specimens:	

• Review	of	the	literature	of	the	application	of	Digital	Image	Correlation	in	
the	biomechanical	field	(Chapter	2);	

• Quantification	 of	 the	 measurement	 uncertainty	 of	 the	 surface	
measurements,	obtained	through	Digital	Image	Correlation,	on	biological	
specimens	and	its	relative	optimization	(Chapter	3);	

• Application	of	 the	acquired	kwon-how	 in	 terms	of	surface	measurement	
on	 multi-vertebrae	 spine	 segments	 providing	 a	 full-field	 strain	 maps	
(Chapter	4);	

For	the	strain	measurement	inside	the	specimens:	
• Review	 of	 the	 literature	 focusing	 the	 reliability	 of	 the	 Digital	 Volume	

Correlation	and	comparing	the	different	tools,	approaches	(Chapter	5);		
• Quantification	 of	 the	 measurement	 uncertainty	 of	 the	 measurements	

inside	 the	 specimen,	 obtained	 though	 Digital	 Volume	 Correlation,	 on	
different	biological	specimens	with	different	image	sources	(Chapter	6,	7,	
8,	9);	

• Preliminary	 applications	 of	 the	 optimized	 procedures	 to	 obtain	 internal	
full-field	strain	maps	on	animal	specimens	(Appendix);	

• General	conclusion	of	the	work	with	the	next	step	planned	(Chapter	10).	
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Part I 
 
Displacement and strain 
measurement 
on the surface of the specimens 
	
	

“You,	who	live	in	a	world	with	shades	of	light,	who	have	two	eyes,	who	have	an	
innate	knowledge	of	perspective	and	depth,	you,	who	can	actually	see	an	angle	and	
an	entire	figure	from	the	happy	perspective	of	three	dimensions	-	how	can	I	possibly	

make	clear	to	you	the	extreme	difficulty	that	we	in	Flatland	experience	in	
recognizing	one	another's	configuration?”	

	
E.	Abbott	-	Flatlandia	
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Overview of the applications of  
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in Biomechanics 
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2.1 Introduction 
 
2.1.1 Why is it important to measure full-field 
displacement and strain 
The	 measurement	 of	 displacement	 and	 strain	 is	 an	 important	 task	 in	
experimental	 biomechanics	 because	 it	 allows	 the	 characterisation	 of	 biological	
tissues,	organs,	and	their	interactions	with	biomedical	devices.		For	instance,	the	
stiffness	is	computed	as	the	ratio	between	the	load	and	the	displacement;	bone	
remodelling	 is	 a	 well-known	 stress/strain-driven	 process	 (Wolff’s	 law);	 bone	
fracture	 is	governed	by	a	strain-based	 failure	criterion	(Bayraktar	et	al.,	2004).		
Due	 to	 the	 features	 of	 biological	 specimens,	which	 are	mainly	 inhomogeneous	
and	 anisotropic,	 it	 is	 extremely	 important	 to	 obtain	 full-field	 measurements,	
ideally	 with	 a	 contactless	 technique	 (Haddadi	 and	 Belhabib,	 2008).	 	 On	 the	
computational	 side,	 finite	 element	 (FE)	 analysis	 results	 require	 experimental	
data	as	an	 input,	and	must	be	validated	against	experimental	 tests.	 	Point-wise	
(averaged	 over	 a	 small	 surface)	 measurements,	 such	 as	 the	 ones	 provided	 by	
strain	gauges,	sometimes	are	not	sufficient	to	fully	monitor	an	experiment.		Full-
field	 measurements	 are	 very	 important	 when	 local	 damages,	 such	 as	 a	 crack	
initiation	or	propagation,	must	be	identified.	
 
2.1.2 Overview of full-field, contactless optical 
measurement technique  
Among	the	different	optical	techniques,	the	ones	most	frequently	used	nowadays	
are	the	digital	ones	that	allow	automation	of	the	acquisition	and	analysis	process.		
After	 an	 initial	 stage	of	 general	diffidence	during	 the	80s’	 followed	by	 the	 first	
successful	 applications	 on	 mechanical	 tests	 in	 the	 90s’,	 optical	 measurement	
techniques	 are	 become	 very	 appealing	 and	 are	 increasingly	 applied	 in	 the	
industrial	and	research	environments.		These	measurement	techniques	allow:	

• Full-field	 measurement	 through	 visualization	 of	 strain	 gradients	 and	
concentrations.	 	 This	 produces	 a	 more	 complete	 description	 of	 the	
behavior	of	biological	specimens	during	in	vitro	tests;	

• Contactless	measurements	that	enable	the	measurement	of	strain	without	
disturbing	 the	 local	 mechanical	 response	 of	 the	 material.	 	 This	
requirement	 is	 particularly	 important	 for	 deformable	materials	 such	 as	
soft	tissues	(liver,	intervertebral	discs,	etc.);	

• Relatively	 simple	 preparation	 of	 the	 surface	 compared	 to	 other	
measurement	techniques,	such	as	the	application	of	strain	gauges	or	fibre	
Bragg	grating	sensors.			

Such	 features	 are	 mandatory	 for	 typical	 biomechanical	 tests	 on	 non-
homogeneous	 and	 anisotropic	 materials,	 and	 specimens	 with	 a	 complex	
geometry.		At	the	same	time,	an	optical	measurement	technique	must	be	accurate	
and	precise.		
Some	 optical	 measurement	 techniques,	 such	 as	 holographic	 interferometry,	
speckle	 interferometry	 (including	 its	 digital	 version,	 electronic	 speckle	 pattern	
interferometry	 (ESPI)	 are	 highly	 accurate,	 but	 they	 are	 too	 sensitive	 to	 small	
displacements,	 and	 therefore	 unsuitable	 for	 deformable	 materials	 such	 as	
biological	 tissues	 (Freddi	 et	 al.,	 2015).	 	Other	optical	 techniques	 such	as	Moiré	
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interferometry,	 require	 the	 preparation	 of	 a	 regular	 pattern	 on	 the	 specimen	
surface	(Post	and	Han,	2008)	(Freddi	et	al.,	2015),	which	can	be	very	difficult	for	
biological	 specimens	 having	 an	 irregular	 geometry.	 	 In	 general	 all	 such	
techniques	 have	 recently	 found	 very	 limited	 application	 because	 of	 their	
complexity	in	practical	use.		A	promising	optical	technique	for	the	biomechanical	
field	is	the	Digital	Image	Correlation	(DIC)	(Sutton	et	al.,	2009),	which	is	able	to	
overcome	most	of	such	limitations	(Freddi	et	al.,	2015).	
	
2.1.3 Aim 
The	purpose	of	this	paper	is	to	provide	an	overview	on	the	operating	principles	
of	Digital	Image	Correlation	(DIC),	and	of	its	applications	in	biomechanical	area.		
This	 review	 is	 conceived	 for	 biomechanicians	 who	 want	 to	 improve	 their	
knowledge	about	DIC,	and	need	to	critically	understand	the	underlying	benefits	
and	limitations	related	to	biomechanical	applications.			
	
	
	
2.2 Introducing Digital Image Correlation (DIC) 

2.2.1 History of DIC 
The	increasing	diffusion	of	DIC	can	be	explained	by	its	flexibility,	scalability	to	a	
wide	 range	 of	 dimensions,	 the	 robustness	 of	 its	 operating	 principle,	 and	 its	
(apparent)	ease	of	use	(Amiot	et	al.,	2013)	(Freddi	et	al.,	2015;	Pan	et	al.,	2009;	
Soons	et	al.,	2012;	Sutton	et	al.,	2009;	Tyson	et	al.,	2002).		DIC	was	introduced	in	
the	 early	 of	 80s,	 with	 the	 first	 system	 developed	 at	 the	 University	 of	 South	
Carolina	(Bruck	et	al.,	1989;	Chu	et	al.,	1985;	Peters	and	Ranson,	1982;	Sutton	et	
al.,	 1983),	 and	 has	 been	 subsequently	 improved	 (Helm	 et	 al.,	 1996;	 Luo	 et	 al.,	
1994;	Luo	et	al.,	1992).	 	The	first	applications	of	DIC	in	biomechanics	date	back	
to	 the	 90s	 (Bay,	 1995;	 Bay	 et	 al.,	 1999b).	 	 During	 the	 first	 decade	 of	 the	 new	
century,	DIC	was	applied	regularly	in	the	biomechanical	field,	with	home-written	
algorithms	(Nicolella	et	al.,	2001;	Zhang	et	al.,	2002a;	Zhang	et	al.,	2002b).		Later	
on,	 several	 companies	 developed	 proprietary	 DIC	 systems	 (Table	 1-2).		
Additionally,	DIC	 libraries	 are	 also	 available	 as	part	of	 software	 suites,	 such	as	
Matlab	 (MathWorks,	 Natick,	 Massachusetts,	 USA)	 and	 Mathematica	 (Wolfram,	
Champaign,	 IL,	 USA).	 	 Reviews	 on	 the	 use	 of	 DIC	 for	 traditional	 engineering	
materials	can	be	found	(Pan	et	al.,	2009)	(Hild	and	Roux,	2006).			
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Table 1 – Papers presenting applications of DIC to biomechanical investigations of the soft tissues.  References are listed in chronological order 

within each subsection. 

 

Specimen	 Field	 of	
view	

Pixel	
size	
(�m)	

Type	 of	 random	
pattern	

Type	 of	
mechanical	
Test	

Reported	
quantities	

Number	 of	
specimens	

DIC	
system	

DIC	
parameters	

Note		 References	

Cardiovascular	-	human	

Human	 aortic	
tissue	

N.A.	 N.A.	 N.A.	 Inflation	test	 Displacement	
and	 strain	
distribution	

4	 Aramis	3D	 N.A.	 	 (Kim	 et	 al.,	
2011)	

Human	heart	 100x100	
mm2	

147	 Natural	pattern	 Myocardial	
movements		

Displacement	
and	 strain	
distribution	

1	 DaVis	 F_S:	121x121	

G_S:	1	

In	vivo	 (Hokka	 et	 al.,	
2015)	

Cardiovascular	-	animal	

Bovine	Aorta	 25x18	mm2	 20	 Airbrush	 Tensile	test	 Full-field	
displacement;	
strain	
distribution	

N.A.	 Home	
written	

N.A.	 	 (Zhang	 et	 al.,	
2002a)	

Mice	 carotid	
arterial	

290x770	�
m2	

2.2	 Powder	 Pressure	test	 Lagrangian	strain	1	 Vic-3D	
modified	

F_S:	43x43;	

G_S:	5	

	 (Sutton	 et	 al.,	
2008a)	

Mice	 carotid	
arterial	

N.A.	 N.A.	 Ethidium	 bromide	
nuclear		

Pressure	 and	
tensile	test		

Displacement	
and	 strain	
distribution	

1	 Vic-3D	 F_S:	15x15	 Singular	
speckle	pattern	

(Ning	 et	 al.,	
2010)	

Mice	 carotid	
arteries	

N.A.	 	 Airbrush	 Pressure	test	 Strain	
distribution	

1	 Home	
written	

G_S:	8x4	 	 (Genovese	 et	
al.,	2011)	
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Mice	 suprarenal	
aorta	 with	
abdominal	
aneurysm	

N.A.	 N.A.	 Airbrush	 Pressure	test	on	
lesions	

	

Strain	
distribution	

1	 Home	
written	

N.A.	 pDIC	 (Genovese	 et	
al.,	2012)	

Mice	 suprarenal	
aorta	

N.A.	 N.A.	 Airbrush	 Pressure	test		 Strain	
distribution	

1	 Home-
written	

N.A.	 	 (Genovese	 et	
al.,	2013b)	

Porcine	aortic	arch	N.A.	 N.A.	 Airbrush	 Pressure	test		 Strain	
distribution	

1	 Home	
written	

N.A.	 pDIC	 (Genovese	and	
Humphrey,	
2015)	

Porcine	 left	
ventricular	wall	

N.A.	 N.A.	 Airbrush	 Indentation	test	

	

Displacement	
and	 strain	
distribution	

1	 Home	
written	

N.A.	 Combined	 with	
a	 Fringe	
Projection	
method	

(Genovese	 et	
al.,	2015)	

Cartilage	-	human	

Human	 cartilage	
from	patellae	

N.A.	 4	 N.A.	 Tensile	test	 Normal	strain	 10	 Home	
written	

N.A.	 	 (Narmoneva,	
2002)	

Cartilage	-	animal	

Bovine	
carpometacarpal	
joint	cartilage	

888x703	�
m2	

	

0.683	 Natural	pattern	 Unconfined	
compression	

Young’s	
modulus;	

Poisson	ratio	

21	 N.A.	 F_S:	20/40/60	

G_S:	 from	 8	 to	
120	

	 (Wang	 et	 al.,	
2002)	

Bovine	 articular	
cartilage	

N.A.	 N.A.	 N.A.	 Unconfined	
compression	

Young’s	
modulus;	

Poisson	ratio	

15	 Home-
written	

N.A.	 	 (Wang	 et	 al.,	
2003)	

Porcine	 articular	
cartilage	

N.A.	 59.56	 Airbrush	 Tensile	test	

	

Displacement	
distribution	

	

	

1	 Home	
written	

N.A.	 Comparison	
with	ESPI	

(Zhang	 et	 al.,	
2005)	
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Porcine	
Intervertebral	 disc	
(FSU	L4-L5)	

51.2x10.2	
mm2	

23	 Powder	 Compression	
test	

Strain	
distribution	

1	 Home	
written	

F_S:	9x9	 	 (Spera	 et	 al.,	
2011)	

Eye	-	human	

Human	 posterior	
sclera	

20x20	mm2	 	 Powder	 Inflation	test	 Displacement	
distribution;	
circumferential	
and	 meridian	
strain	

57	 Vic-3D	 N.A.	 	 (Coudrillier	 et	
al.,	2012)	

Human	 posterior	
sclera;	optic	nerve	

100x75	
mm2	

30	 Airbrush	 Inflation	test	 Displacement	
and	 strain	
distribution	

1	 Home	
written	

F_S:	9x9;	

C_W:	21x21	

	 (Pyne	 et	 al.,	
2014)	

	

Eye	-	animal	

Bovine	cornea	 21x21	mm2	 30	 Powder	 Inflation	test	 Displacement	
distribution	

9	 Vic-3D	 F_S:	35x35	 	 (Boyce	 et	 al.,	
2008)	

Bovine	 posterior	
sclera	

40x40	mm2	 3.4	 Airbrush	 Inflation	test	 Displacement	
distribution	

10	 Vic-3D	 N.A.	 	 (Myers	 et	 al.,	
2010)	

Tendon	and	ligament	–	human	

Human	 vocal	
ligaments	

8.5x6.8	
mm2	

6.7	 Airbrush	 Tensile	test	 Axial	strain	 1	 Vic-2D	 N.A.	 	 (Kelleher	 et	
al.,	2010)	

Human	tendon	 N.A.	 N.A.	 Airbrush	 Tensile	test	 Normal	 and	
shear	 in-plane	
strain		

	

	

6	 Vic-3D	 N.A.	 	 (Luyckx	 et	 al.,	
2014)	
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Tendon	and	ligament	–	animal	

Mice	 Achilles	
tendon	

N.A.	

	

N.A.	 Powder		 Tensile	test	

	

Axial	
displacement	and	
strain	

8	 Home	
written	

N.A.	 Use	 of	
ultrasound	
images	

(Okotie	 et	 al.,	
2012)	

Porcine	
uterosacral	 and	
cardinal	ligaments	

N.A.	 N.A.	 Poppy	 seeds	 as	
marker	

Tensile	test	 Axial	
displacement	and	
strain	

18	 ProAnalyst	N.A.	 	 (Tan	 et	 al.,	
2015)	

Porcine	
uterosacral	 and	
cardinal	ligaments	

N.A.	 N.A.	 Poppy	 seeds	 as	
marker	

Bi-axial	test	 Displacement	
and	 strain	
distribution	

22	 ProAnalyst	N.A.	 	 (Becker	 and	
De	Vita,	2015)	

Keratinized	tissue		–	human	

Human	skin	 100	 x	 70	
mm2	

N.A.	 N.A.	 In-plane	 point	
loading		

Displacement	
distribution	

1	 Vic-3D	 N.A.	 In	vivo	 (Evans	 and	
Holt,	2009)	

Human	skin	 12	 x	 38	
mm2	

50	 Airbrush	 Tensile	test	 Displacement	
distribution	

32	 Vic-3D	 N.A.	 High-speed	
camera	

(Ottenio	 et	 al.,	
2015)	

Keratinized	tissue	–	animal	

Bovine	hoof	horn	 8.5x6.4	
mm2	

13.3	 Airbrush	 Tensile	test	 Full-field	
displacement;	
strain	
distribution	

	

1	 Home-
written	

N.A.	 	 (Zhang	 and	
Arola,	2004)	

Chondrocyte	
seeded	 agarose	
hydrogels	

N.A.	 N.A.	 Natural	pattern	 Compression	
test	

Axial	 and	 lateral	
strain	

	

	

	

N.A.	 Home	
written	

N.A.	 	 (Kelly	 et	 al.,	
2006)	
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Beaks	 of	
granivorous	birds	

14x17	mm2	 6.8	 Airbrush	 Bending	test	 Displacement	
distribution;	 in-
plane	 normal	
strain,	 in-plane	
shear	strain		

2	 Home-
written	

F_S:	21x21	

G_S:	10	

C_W:	50x50	

	 (Soons	 et	 al.,	
2012)	

Scales	 from	
Cyprinus	carpio	

5.6	 x	 4.2	
mm2	

4	 Airbrush	 Tensile	test	 Strain	
distribution	

10	 Home-
written	

N.A.	 Microscopy	DIC	(Marino	
Cugno	
Garrano	 et	 al.,	
2012)	

Mice	skin	 N.A.	 N.A.	 N.A.	 Tensile	test	 Strain	
distribution	

6	 N.A.	 N.A.	 	 (Karimi	 et	 al.,	
2015)	

Internal	organs	-	human	

Human	 cervical	
tissue	

N.A.	 N.A.	 Airbrush	 Tensile	test	 Axial	 and	 lateral	
strain	

10	 Vic-2D	 N.A.	 	 (Myers	 et	 al.,	
2008)	

Human	liver	 25x25	mm2	 	 Airbrush	 Inflation	test	 Displacement	
and	 strain	
distribution	

15	 Vic-3D	 F_S:	21x21	

G_S:	5	

	 (Brunon	 et	 al.,	
2011)	

Internal	organs	-	animal	

Porcine	liver	 100x80	
mm2	

3.3	 Airbrush	 Indentation	test	Deformation	
distribution	

1	 Aramis	3D	 N.A.	 	 (Ahn	and	Kim,	
2010)	

Porcine	livers	 N.A.	 N.A.	 Natural	pattern	 Tensile	test	 Strain	 in	
longitudinal	
direction	

10	 Home	
written	

N.A.	 	 (Gao	 and	
Desai,	2010)	

Porcine	brain	 N.A.	 N.A.	 Airbrush	 Unconfined	
compression	
test	

Displacement	
distribution	

N.A.	 Vic-3D	 N.A.	 	 (Libertiaux	 et	
al.,	2011)	

Lamb	gallbladder	 N.A.	 N.A.	 Airbrush	 Pressure	test	

	

Full	 strain	
distribution	

1	 Home	
written	

F_S:	21x21	

C_W:	41x41px	

pDIC	 (Genovese	 et	
al.,	2014)	
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Human	 lower	 limb	
muscles	

N.A.	 N.A.	 Natural	pattern	 Compression	
test		

Displacement	
distribution	

4	 Home	
written	

N.A.	 Use	 of	
ultrasound	
images	

(Affagard	 et	
al.,	2014)	

Artificial	soft	tissue	

Heart	valve	tissue	 N.A.	 N.A.	 N.A.	 Indentation	test	Displacement	
and	 strain	
distribution	

N.A.	 Aramis	3D	 N.A.	 	 (Cox	 et	 al.,	
2008)	

Synthetic	 vocal	
fold	

N.A.	 11	 Airbrush	 Airflow	test;	

	

Displacement	
and	 strain	
distribution	

N.A.	 Vic-3D	 F_S:	23x23	 Use	 of	 high	
speed	camera;	

3D	 with	 a	
single	camera	

(Spencer	et	al.,	
2008)	

Silicon	gel	 N.A.	 N.A.	 Painted	 Indentation	test	Deformation	
distribution	

1	 Vic-3D	 N.A.	 	 (Moerman	 et	
al.,	2009)	

	
Legend:	
N.A.	=	information	not	available		
F_S	=	facet	size	
G_S	=	grid	spacing	
C_W	=	computation	window	
Istra-4D	by	Dantec Dynamics (Skovlunde, Denmark),  
Aramis 3D by GOM (Braunschweig, Germany),  
Vic-2D and Vic-3D by Vision Solution (Irvine, California, USA),  
StrainMaster and DaVis by LaVision (Goettingen, Germany) 
ProAnalyst by Xcited (Woburn, Maine, USA) 
Rapid Correlation by XStream Software (Ottawa, Ontario, Canada)  
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Table 2 – Papers presenting applications of DIC to biomechanical investigations of hard tissue.  With each subsection, references are listed in 

chronological order. 

Specimen	 Field	 of	
view	

Pixel	
size	

(�m)	

Type	 of	
random	
pattern	

Type	 of	
mechanical	
Test	

Reported	
quantities	

Number	
of	
specimens	

DIC	
system	

DIC	
parameters	

Note		 References	

Tissue	level	-	human	

Trabecular	
bone	 from	
human	 femoral	
head	

N.A.	 N.A.	 Natural	
pattern	

Compression	
test	

Displacement	
distribution	

6	 Home	
written	

	 	 (Bay,	1995)	

Slices	 of	 human	
thoracic	 spinal	
motion	
segments	

N.A.	 N.A.	 Natural	
pattern	

Compression	
test	

Strain	
distribution	

6	 Home	
written	

	 With	
radiographs	unit	

(Bay	 et	 al.,	
1999b)	

Trabecular	
bone	 of	 human	
cadaveric	knee	

N.A.	 N.A.	 Natural	
pattern	

Compression	
test	

	

Strain	
distribution;	
principal	
strain	

8	 Home	
written	

	 with	radiographs	
unit	

(McKinley	
and	 Bay,	
2003)	

Interface	
human	 bone	
cement	

N.A.	 8.9	 N.A.	 Shear	 fatigue	
test	

Interface	
displacement	

25	 Rapid	
Correlation	

F_S:40x40	 	 (Mann	 et	
al.,	2008)	

Human	
trabecular	 bone	
from	femur	

N.A.	 N.A.	 Airbrush	 Compression	
test	

Displacement	
and	 strain	
distribution	

12	 Istra-4D	 N.A.	 	 (Cyganik	 et	
al.,	2014)	

Human	 cortical	
bone	 from	
femur	

3.6	 x	 2.7	
mm2	

2.6	 Natural	
pattern	

Shear	test	 Displacement	
and	 strain	
distribution	

29	 DaVis	 	 Use	 of	 optical	
microscope	

(Tang	et	al.,	
2015)	
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Tissue	level	-	animal	

Cortical	 bone	 of	
bovine	tibias	

180x141	
�m2;	

445x350	
�m2	

0.137;	

0.339	

Natural	
pattern	

Micro-crack	
in	 stressed	
cortical	bone	

Principal	
strain	

N.A.	 Home-
written	

F_S:	 9x9x;	
19x19;	
31x31;	
63x63	

	 (Nicolella	
et	al.,	2001)	

Cortical	 bone	 of	
bovine	tibias	

180x141	
�m2;	

445x350	
�m2	

0.137;	

0.339	

Natural	
pattern	

Tensile	test	 Strain	
distribution;	
maximum	
principal	
strain	

N.A.	 Home	
written	

F_S:	51x51	 	 (Nicolella	
et	al.,	2005)	

Cortical	 bone	 of	
bovine	tibias	

180x141	
�m2;	

445x350	
�m2	

0.137;	

0.339	

Natural	
pattern	

Tensile	test	 Principal	
strain	

7	 Home	
written	

F_S:	 24x18	
G_S:	50;	

F_S:	14x10	

G_S:	10	

	 (Nicolella	
et	al.,	2006)	

Bovine	 cortical	
bone	

2.6x2	
mm2;	

1.3x1	
mm2	

1.30;	

0.65	

Natural	
pattern	

Compression	
test;	 Nano-
indentation	
test	

Axial	strain		

	

4;	

3	

Home	
written	

F_S:	60x60	 	 (Hoc	 et	 al.,	
2006)	

Ovine	 early	
bone	callus		

23.2x15.4	
mm2	

7.7	 Powder	 Compression	
test	

Strain	
distribution,	
minimal	
principal	
distribution	

N.A.		 Vic-2D	 F_S:	29x29	 	 (Thompson	
et	al.,	2007)	

Cortical	 bone	
from	 bovine	
femoral	shaft	

8x8.7	
mm2	

17	 Airbrush	 Three-point	
bending	

Normal	
strains	 and	
shear	strain	

20	 Home	
written	

F_S:	36x36	 	 (Yamaguchi	
et	al.,	2011)	

Bovine	 fibro	
lamellar	bone	

N.A.	 N.A.	 Airbrush	 Tensile	test	

	

Axial	 and	
transversal	

	 Home	
written	

F_S:	30x70	 Use	 of	 high-
speed	camera	

(Benecke	et	
al.,	2011)	
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strain	

Single	
trabecular	 of	
bovine	femora	

N.A.	 N.A.	 Ink	 jet	
printing	

Three	 point	
bending	

Displacement	
and	 strain	
distribution	

10	 Vic-2D	 N.A.	 High	 speed	
photography	

(Jungmann	
et	al.,	2011)	

Whole	organ	-	human		

Human	teeth	 3x4	mm2	 3	 Powder	 Crack	
propagation		

	

Displacement	
distribution	

N.A.	 Home	
written	

F_S:	15x15	 fatigue	 and	
fracture	

(Zhang	 et	
al.,	2007)	

Human	femurs	 N.A.	 N.A.	 Natural	
pattern	

Sideways	fall	

	

Horizontal	
and	 vertical	
displacement;	
strain	
distribution	

22	 Home-
written	

N.A.	 Use	 of	 high-
speed	camera	

(Op	 Den	
Buijs	 and	
Dragomir-
Daescu,	
2011)	

Dried	mandible	 N.A.	 N.A.	 Airbrush	 Compression	
test	

Major	
principal	
strain	

N.A.	 Aramis	3D	 N.A.	 	 (Tanasic	 et	
al.,	2012)	

Human	femur	 87x87	
mm2	

250		 N.A.	 Sideways	fall	

	

Principal	
minimum	
strain	

1	 Strain	
Master	

F_S:	32x32;	

G_S:	50%	

Use	 of	 high-
speed	camera	

(Helgason	
et	al.,	2014)	

Human	
vertebra	

100x67	
mm2	

N.A.	 Airbrush	 Accuracy	 and	
precision	test	

Principal	
strain	

1	 Istra-4D	 F_S:	 15x15,	
19x19,	
21x21,	
25x25	

G_S:	
4,7,11,15	

C_W:	3,	5,	7,	
9,	11,	13,	15	

	 (Palanca	 et	
al.,	2015a)	

Human	femur	 N.A.	 100	 Manually	
applied	 with	

Compression	 Principal	 3	 Vic-3D	 F_S:	25x25	 Use	 of	 high-
speed	DIC	

(Grassi	 et	
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marker	 test	 strain	 G_S:	1,	5	px	 al.,	2014)	

Whole	organ	-	animal	

Cemented	 total	
hip	replacement	

19x14	
mm2	

9.3	 N.A.	 Fatigue	test	 Full-field	
displacement,	
strain	
distribution	

1	 Home-
written	

N.A.	 	 (Zhang	 and	
Arola,	
2004)	

Chelipeds	 of	
lobster	

2x4	mm2	 9.5	 Airbrush	 Tensile	test	 Displacement	
and	 strain	
distribution	

8	 Aramis	3D	 F_S:	23x23;	

G_S:	10	px	

	 (Sachs	 et	
al.,	2006)	

Mouse	tibia	 16x12	
mm2	

12	 Airbrush	 Compression	
test	

Strain	
(average)	

4	 Aramis	3D	 F_S:	19x19	

G_S:	9	

	 (Sztefek	 et	
al.,	2010)	

Fresh	 ovine	
femur	

N.A.	 N.A.	 Airbrush	 Compression	
test	

Strain	
distribution	

N.A.	 Vic-3D	 N.A.	 	 (Ghosh	 et	
al.,	2012)	

Rat	femora	 N.A.	 N.A.	 Airbrush	 Compression	
test	till	failure	

Principal	
strain	

9	 Vic-3D	 N.A.	 	 (Amin	
Yavari	 et	
al.,	2013)	

Mouse	tibia	 15x12	
mm2	

6	 Airbrush	 Compression	
test	

Max	 and	
average	strain	

3	 Aramis	3D	 F_S:	19x19	

Overlap:	
20%	

	 (Carriero	et	
al.,	2014)	

Synthetic	

Dental	
composite	

N.A.	 N.A.	 Airbrush	 Curing	
process	

Axial	 and	
transversal	
strain	

10	 Strain	
Master	

N.A.	 	 (Li	 et	 al.,	
2009)	

Composite	
femur	

	25	 area	
of	5	mm2	

	

50	 Airbrush	 Press/flection	
test	

Strain	
(sensitivity/	

experimental	
error)	

N.	S.	 Vic-3D	 N.A.	 	 (Dickinson	
et	al.,	2011)	
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Osseointegrated	
Transfemoral	
Implant	System	

N.A.	 47	 N.A.	 Bending	test	 Displacement	
and	 strain	
distribution	

12	 Vic-3D	 F_S:	27x27	

G_S:	10px	

C_W:	
150px2	

	 (Thompson	
et	al.,	2011)	

Dental	
composited	

N.A.	 N.A.	 Powder	 Curing	
process	

Axial	 and	
transversal	
displacement	

32	 Vic-2D	 F_S:	21x21	 	 (Chuang	 et	
al.,	2011)	

Acrylic	 resin	
mandibular	
with	 and	
without	implant	

50x37.5	
mm2	

35	 Airbrush		 3-point	
bending	

Strains	 in	
horizontal	
direction	 and	
in-plane	shear	
strain	

N.A.	 Strain	
Master	

N.A.	 	 (Tiossi	 et	
al.,	2011)	

Composite	
hemi-pelvis	

36	 area	
of	 5x5	
mm2	

N.A.	 Airbrush	 Compression	
test	

Displacement	
distribution;	
principal	
strain	

N.A.	 Vic-3D	 N.A.	 	 (Dickinson	
et	al.,	2012)	

Acrylic	 resin	
mandibular	
with	 and	
without	implant	

50x37.5	
mm2	

35	 Airbrush		 3-point	
bending	

Strains	 in	
horizontal	
direction	 and	
in-plane	shear	
strain	

N.A.	 Strain	
Master	

N.A.	 	 (Tiossi	 et	
al.,	2012)	

Composite	
femur	

115x57	
mm2	

200	 Airbrush	 Sideways	fall	 Displacement	
distribution;	
minimum	
principal	
strain	

20	 Strain	
Master	

N.A.	 	 (Gilchrist	et	
al.,	2013)	

Composite	
femur	

N.A.	 N.A.	 Airbrush	 Press/flection	
test	

Principal	
strain	

6	 Vic-3D	 N.A.	 	 (Grassi	 et	
al.,	2013)	

Composite	
femur	

N.A.	 N.A.	 Airbrush	 Compression	
test	

Principal	
strain	

6	 Vic-3D	 N.A.	 	 (Vaananen	
et	al.,	2013)	



Overview	of	Digital	Image	Correlation	in	Biomechanics	

Published in: International Biomechanics, 2016, 3(1): 1 - 21 

37	

	
	
Legend:	
N.A.	=	information	not	available		
F_S	=	facet	size	
G_S	=	grid	spacing	
C_W	=	computation	window	
Istra-4D	by	Dantec Dynamics (Skovlunde, Denmark),  
Aramis 3D by GOM (Braunschweig, Germany),  
Vic-2D and Vic-3D by Vision Solution (Irvine, California, USA),  
StrainMaster and DaVis by LaVision (Goettingen, Germany) 
ProAnalyst by Xcited (Woburn, Maine, USA) 
Rapid Correlation by XStream Software (Ottawa, Ontario, Canada) 
 



Overview	of	Digital	Image	Correlation	in	Biomechanics	

Published in: International Biomechanics, 2016, 3(1): 1 - 21 

38	

2.2.2 Operating principle 
DIC	is	based	on	sets	of	images	of	the	surface	of	the	specimen	in	the	undeformed	
(reference)	and	deformed	states	(Fig.	1).	 	DIC	can	be	implemented	both	in	a	bi-
dimensional	(2D-DIC,	with	a	single	camera),	and	a	tri-dimensional	(3D-DIC,	using	
two	or	more	cameras)	version.		A	calibration	is	necessary	to	initialize	the	spatial	
correlation	 processes	 of	 DIC.	 	 The	 images	 are	 divided	 in	 smaller	 sub-images	
(facets),	 and	 a	 matching	 algorithm	 is	 used	 to	 match	 the	 facets	 between	 the	
reference	 and	 deformed	 states.	 	 The	 displacement	 field	 is	 then	 computed.		
Subsequently,	 the	strain	field	 is	obtained	by	derivation.	 	More	details	about	the	
operating	 principle	 are	 reported	 in	 Appendix	 1.	 	 The	 main	 advantages	 and	
disadvantages	of	DIC	(Schmidt	et	al.,	2003;	Sutton	et	al.,	2009)	are	summarized	
in	Table	3.		
	

	
Fig.	1	–	Workflow	of	DIC	displacement	and	strain	measurement:	as	an	example,	a	3D-DIC	

arrangement	was	used	to	investigate	a	human	tibia.	
	
Table	3	-	Summary	of	the	main	potentialities	and	limitations	of	DIC.	
	
Advantages	 Disadvantages	

- Full-field	 measurement	 of	
displacement/strain		

- For	 any	 size	 and	 material	 of	
specimens	

- Determination	 of	 strain	
gradient	 and	 stress	
concentrators	

- Both	 for	 small	 and	 large	
deformation	

- Usable	in	vivo	
- Synergies	with	FE		
- Not	invasive*	

- Less	 accurate	 and	 precise	 than	
others	 measurements	
techniques	

- Need	of	a	carefully	optimization	
for	the	specific	application	

- Not	real-time	
- Need	 of	 optical	 access	 to	 the	

specimen	
- Requires	surface	preparation*	

	
*In	most	cases,	a	surface	preparation	is	required.		It	is	a	layer	of	paint	or	powder	
fixed	on	the	surface.		Sometimes,	the	natural	pattern	is	usable	to	
	 	

Displacement	field	 Strain	field	
Loaded	
Image	

Unloaded	
Image	

Test	Specimen	

Acquisi'on	of		
digital	images	 Recogni'on	

of	features	 Differen'a'on	

Ver8cal	displacement	 Axial	strain	
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2.3 Surface pattern preparation on biological specimens 
 
For	an	optimal	use	of	DIC,	 the	surface	of	 interest	must	have	a	 random	pattern,	
which	deforms	together	with	the	specimen	surface.	 	 If	 the	specimen	presents	a	
natural	random	pattern,	due	to	an	intrinsic	texture	or	inhomogeneity,	this	can	be	
directly	exploited	by	the	DIC	system.		In	all	other	cases,	a	random	pattern	must	
be	generated.		To	ensure	accuracy	and	precision	of	the	computed	displacements	
and	strains,	 the	 speckle	pattern	 should	meet	 some	requirements	 (Barranger	et	
al.,	2010;	Crammond	et	al.,	2013;	Lecompte	et	al.,	2006;	Pan	et	al.,	2008;	Sutton	
et	al.,	2009;	Yaofeng	and	Pang,	2007):	

• Random	 distribution,	 in	 order	 to	 make	 each	 area	 of	 the	 surface	 of	 the	
specimen	univocally	identifiable;	

• High	contrast,	to	allow	the	image	correlation	algorithm	works	effectively;	
• Black/white	 ratio	 of	 50:50,	 to	 avoid	 regions	 that	 cannot	 be	 properly	

recognized;	
• Roughness	should	be	kept	at	minimum,	in	order	to	avoid	alteration	of	the	

surface	geometry.			
• Probably	 the	most	 important	 issue	 in	 biomechanical	 applications	 is	 the	

size	 of	 the	 speckle	 dots	 (in	 relation	 to	 the	 specimen	 size),	 in	 order	 to	
optimally	exploit	 the	 resolution	of	 the	 camera	 (Lionello	and	Cristofolini,	
2014).	 	 In	 fact,	 the	 larger	 the	 measurement	 window,	 the	 larger	 the	
corresponding	area	covered	by	each	pixel	(for	a	given	sensor	resolution)	
and	therefore	the	dots	of	the	speckle	pattern.		In	order	to	obtain	the	best	
speckle	pattern	for	the	specific	application,	the	dimension	of	the	speckle	
should	be	different	for	each	application.		The	ideal	size	of	the	speckle	dots	
corresponds	to	3-5	pixels	(Sutton	et	al.,	2009).		The	magnification	factor,	
M,	is	defined	as	the	ratio	between	the	number	of	pixels	on	the	long	side	of	
the	 camera	 sensor	 and	 the	 long	 side	 of	 the	 measurement	 window	 (M	
indicates	how	many	pixels	 correspond	 to	 the	unit	 length	of	 the	physical	
specimen).	 	 Thus,	 the	 ideal	 size	 of	 the	 speckle	 dots	 corresponds	 to	 3-5	
pixels	divided	by	M.		For	example,	using	a	camera-sensor	of	5	Megapixels	
(2448x2050	pixels)	on	a	field	of	view	of	2mm	x	2mm	(e.g.	few	trabeculae),	
yields	 an	 optimal	 dimension	 of	 the	 speckle	 pattern	 of	 about	 0.003mm.		
The	same	camera-sensor	applied	to	a	 larger	area	of	 interest	of	2m	x	2m	
(e.g.	 a	 whole	 human	 body)	 would	 require	 larger	 speckle	 dots,	 about	
3.25mm.	 	 Usually,	 round	 dots	 were	 prepared,	 because	 of	 its	 “easy”	
preparation	 with	 different	 techniques,	 but	 also	 linear	 marks	 could	 be	
potentially	used	taking	in	account	the	above	reported	requires.			

Recently,	 a	 tool	 (a	 script	 in	Matlab)	was	developed	 to	 evaluate	 the	quality	 and	
suitability	 of	 a	 given	 speckle	 pattern	 for	 a	 given	 DIC	 application	 (Estrada	 and	
Franck,	2015).	
The	techniques	to	prepare	a	speckle	pattern	most	commonly	used	are	(Table	1-
2):	

• High-contrast	 paint	 sprayed	 with	 an	 airbrush	 airgun	 (Fig.	 2a):	 this	
technique	is	suitable	for	both	small	and	large	deformations	(Barranger	
et	al.,	2010;	Lionello	and	Cristofolini,	2014),	as	the	speckle	dot	itself	is	
strained	during	the	deformation.			
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• A	dispersion	of	 toner/graphite	powder	 (Fig.	2b)	randomly	placed	on	
the	 specimen:	 this	 is	 a	 remarkable	 technique	 in	 case	 of	 small	
deformations,	particularly	for	soft	tissues,	due	to	an	optimal	adhesion	
on	moist	 surfaces.	 	 Conversely,	 in	 case	 of	 large	 deformations	 it	 can	
produce	 an	 underestimation	 of	 the	 strain,	 as	 the	 powder	 particles	
displace	but	do	not	strain	when	the	underlying	specimen	is	deformed	
(Barranger	et	al.,	2010).			

The	 black-on-white	 speckle	 pattern	 is	 most	 frequently	 used:	 first	 a	 uniform	
white	 background	 is	 created,	 on	 which	 black	 speckles	 are	 added.	 	 This	
preparation	provides	the	optimal	contrast.		If	the	surface	of	the	specimen	itself	is	
already	of	a	light	colour	(i.e.	bone),	preparation	of	the	white	background	could	be	
avoided.	 	 The	use	 of	water-based	paints	minimises	 the	 alteration	on	biological	
specimens	(Freddi	et	al.,	2015).	
In	 sporadic	 cases	 (Genovese	 et	 al.,	 2013b;	 Lionello	 et	 al.,	 2014;	 Luyckx	 et	 al.,	
2014),	especially	for	soft	tissues,	the	white-on-black	speckle	pattern	can	be	used	
(Fig.	2c).		The	difference	lies	in	the	colour	of	the	background	(black	or	dark	blue),	
and	 of	 the	 speckles	 (white).	 	 The	 dark	 background	 is	 obtained	 through	
immersion	 of	 the	 specimen	 in	 some	 colouring	 agent	 (typically	methylene	 blue	
staining).	 	 This	 prevents	 delamination	 and	 crumbling	 of	 the	 background	 layer	
even	 at	 large	 deformations,	 which	 may	 occur	 with	 a	 paint	 layer.	 	 The	 white	
speckle	 pattern	 is	 then	 produced	 with	 an	 airgun.	 	 It	 has	 been	 shown	 that	
application	 of	 methylene	 blue	 on	 ligaments	 increases	 their	 stiffness	 by	 0.8%.		
Deposition	of	the	white	pattern	further	increased	the	stiffness	to	1.7%	(Lionello	
et	al.,	2014).			
A	 different	 preparation	 of	 the	 specimen	 was	 used,	 where	 ethidium	 bromide	
nuclear	 staining	 was	 used	 to	 incorporate	 a	 high-contrast	 pattern	 (Ning	 et	 al.,	
2010).	 	 This	 allows	 a	 permanent	 incorporation	 of	 the	 pattern	 into	 the	
microstructure	of	the	specimen.			
	

	
Fig.	2	–	Example	of	specimens	with	different	speckle	patterns:	(a)	Black-on-white	speckle	pattern	
created	with	the	airbrush	airgun	technique	on	a	porcine	vertebral	body;	(b)	Black-on-white	
speckle	pattern	created	with	the	powder	technique	on	a	bovine	cornea	(picture	courtesy	of	dr.	
Brad	L.	Boyce,	(Boyce	et	al.,	2008));	(c)	Speckle	pattern	created	with	airbrush	airgun	technique,	

white-on-black,	on	a	human	Achilles	tendon	(picture	adapted	from	(Luyckx	et	al.,	2014)).	
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2.4 Correlation algorithm parameters  

 
In	order	to	obtain	the	best	results	from	this	versatile	measurement	technique,	a	
number	of	parameters	must	be	adapted	to	the	specific	application	(Fig.	3):	

• Facet	size	(dimension	of	the	sub-image	used	in	the	computation);		

• Grid	spacing	(step	between	consecutive	facets);	

• Strain	computation	window	(typically	larger	than	the	single	facet)	used	to	
derive	the	strain	field	over	a	larger	area,	in	order	to	attenuate	the	noise	

• Validity	quote	(Minimum	percentage	of	computation	points	that	must	the	
available	for	strain	to	be	calculated	over	a	given	computation	window);	

• Filtering	 (sometimes	applied	at	 the	different	stages	of	 the	correlation	 to	
reduce	noise).	

The	values	assigned	 to	 such	parameters	determine	 the	accuracy,	precision	and	
spatial	 resolution	 (Palanca	 et	 al.,	 2015a)	 (see	 below).	 	 There	 is	 no	 universally	
optimal	set	of	parameters,	due	to	the	numerous	possible	uses	of	DIC,	particularly	
in	biomechanics.	 	A	choice	must	be	made	 in	 relation	 to	 the	specific	application	
(i.e.	 tissue,	anatomy	and	dimensions	of	the	specimens).	 	Only	 in	few	papers	the	
DIC	parameters	are	detailed	(Table	1-2).	
	
2.4.1 Facet size 
The	 digital	 images	 are	 divided	 into	 sub-images,	 called	 facets,	 of	 MxN	 pixels	
(typically	squared).		Each	facet	is	represented	by	a	grey-level	distribution,	which	
is,	in	most	cases,	interpolated	by	a	bi-cubic	spline	to	obtain	an	approximation	of	
grey-scale	between	adjacent	pixels.		Each	facet	is	summarized	by	the	information	
about	the	pattern,	and	its	location	in	space.		The	correlation	algorithm	identifies	
the	best-matching	region	at	different	load	steps.		The	influence	of	the	facet	size	is	
remarkable	(Lava	et	al.,	2009).		The	facet	size	must	be	defined	according	to:	the	
specimen	 size	 (or	 the	 field	 of	 view),	 the	 size	 of	 the	 speckles,	 and	 the	 strain	
gradients	expected	based	on	the	loading	conditions	and	the	anatomy	(Carriero	et	
al.,	2014;	Freddi	et	al.,	2015).			
The	 facet	 should	 be	 larger	 than	 speckle	 dots,	 to	 allow	 detection	 of	 small	
displacements,	in	relationship	to	the	granularity	of	the	speckle	pattern	(Sutton	et	
al.,	2009).		However,	the	facet	should	not	be	unnecessarily	large,	to	avoid	loss	of	
resolution	(Lionello	and	Cristofolini,	2014).	
	
2.4.2 Grid spacing 
This	 parameter	 indicates	 the	 distance	 between	 two	 consecutive	 facets.	 	 It	
describes	the	density	of	facets	in	the	measurement	window:	the	smaller	the	grid	
spacing,	 the	 larger	 the	number	of	 facets	 (at	 a	higher	 computational	 cost).	 	 The	
influence	 of	 the	 grid	 spacing	 on	 the	 precision	 and	 accuracy	 of	 the	 computed	
displacement	 field	 is	 minimal	 (Lava	 et	 al.,	 2009).	 	 Conversely,	 the	 overlap	
provides	advantages	 in	terms	of	precision	and	accuracy	of	 the	computed	strain	
field.	 	The	density	of	measurement	points	should	be	selected	based	on	 the	 test	
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details	 (type	 of	 specimen,	 field	 of	 view,	 pattern	 and	 strain	 gradient).	 	 For	 an	
expected	uniform	 strain	 (e.g.	 long	 bone	 in	 bending)	 larger	 grid	 spacing	 can	 be	
preferable.		Conversely,	if	high	strain	gradients	are	expected	(e.g.	specimens	with	
complex	 geometry),	 a	 smaller	 grid	 spacing	 is	 necessary	 (Palanca	 et	 al.,	 2015a;	
Sutton	et	al.,	2009).	
	
2.4.3 Strain computed window 
Once	 the	 displacements	 have	 been	 computed	 for	 each	 facet,	 the	 strain	 field	 is	
computed	by	derivation.		While	in	principle	2	x	2	facets	are	sufficient	to	compute	
the	 local	 strain,	 larger	 windows	 are	 often	 used	 to	 attenuate	 the	 noise	 in	 the	
derived	strain	field.		While	larger	strain	computation	windows	reduce	the	noise	
in	the	DIC-computed	strain	distribution,	this	also	may	result	in	an	attenuation	of	
existing	 strain	 gradients,	 which	 can	 be	 detrimental	when	 analysing	 specimens	
with	 an	 irregular	 geometry	 (which	 often	 occurs	 with	 anatomical	 specimens).		
This	 effect	 is	 thus	 similar	 to	 the	 effect	 of	 grid	 spacing	 (Palanca	 et	 al.,	 2015a;	
Sutton	et	al.,	2009).	
	
2.4.4 Validity quote 
The	validity	quote	represents	the	tolerance	for	computing/ignoring	the	strain	a	
certain	region:	if	the	number	of	valid	neighbouring	points	is	below	the	threshold,	
the	 software	 does	 not	 evaluate	 the	 strain.	 	 A	 high-level	 of	 the	 validity	 quote	
means	that	strains	are	computed	only	where	redundant	information	is	available,	
thus	 providing	 a	 more	 reliable	 strain	 value.	 	 If	 the	 specimen	 has	 a	 complex	
geometry	 (i.e.	 a	 vertebra,	 or	 a	 pelvis),	 a	 lower	 threshold	 might	 be	 necessary,	
resulting	in	less	reliable	strain	estimates.	
	
2.4.5 Filtering 
In	general,	DIC	allows	obtaining	very	precise	displacement	fields	(i.e.	affected	by	
very	low	noise,	typically	sub-pixel).		However,	as	the	operation	of	derivation	acts	
as	 the	opposite	of	a	 filter,	 the	strain	 field	 is	generally	affected	by	 large	random	
error	(being	obtained	through	the	derivation	of	the	displacement	field).		Filtering	
can	 be	 applied	 to	 the	 digital	 images,	 to	 the	 DIC-computed	 displacement	 field,	
and/or	to	the	DIC-computed	strain	field	(Baldoni	et	al.,	2016).		There	are	several	
filters	 that	 mainly	 differ	 in	 the	 intensity	 of	 attenuation,	 and	 filtering	 strategy	
(whether	 local	 or	 global).	 	 However,	 this	 also	 smoothens	 any	 gradient	 or	
stress/strain	concentration,	resulting	in	a	loss	of	information.			
For	a	homogeneous	deformation	(i.e.	in	the	diaphysis	of	a	long	bone,	or	a	tendon	
under	 tension)	 a	 smoothing	 spline	 can	 be	 successfully	 used	 to	 attenuate	 the	
noise	by	averaging	the	results	over	the	field	of	view.		Larger	averaging	areas	are	
associated	with	more	severe	loss	of	information	(Lava	et	al.,	2010).		Conversely,	
when	the	specimen	is	subject	to	high	strain	gradients	(i.e.	an	irregular	bone	such	
as	a	vertebra,	or	a	complex	structure	such	as	the	sclera)	a	local	filtering,	should	
be	preferred	 (at	 the	 cost	of	noisier	 results,	 (Wang	et	 al.,	 2012)).	 	Alternatively,	
strain	 can	 be	 computed	 by	 means	 of	 an	 FE	 solver,	 where	 DIC-measured	
displacements	 are	 imposed	 to	 the	 FE	 nodes	 (Evans	 and	 Holt,	 2009).	 	 The	
continuum	assumption	 (which	 is	 intrinsic	 to	 FE	modelling),	 acts	 as	 a	 low-pass	
filter.	
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Fig.	3	–	Detail	of	the	specimen	surface	prepared	with	a	random	speckle	pattern,	as	seen	after	
acquisition	as	a	digital	image	(i.e.	discretized	in	pixels).		The	DIC	software	parameters	are	
illustrated:	to	compute	the	displacement	field,	the	digitized	image	is	divided	in	sub-images	

(facets,	20	x	20	pixels	in	this	case);	a	grid	spacing	of	15	pixels	is	used	in	this	case	(resulting	in	a	
partial	overlap	of	5	pixels);	a	larger	area	(computation	window,	3	x	3	facets	in	this	case)	is	used	

to	compute	the	strain	field.	
	
 
 
2.5 Error affecting DIC measurements in biomechanics 

2.5.1 Accuracy and precision 
It	 is	 important	 to	 distinguish	 between	 systematic	 error	 (bias	 of	 the	 average,	
resulting	 in	 lack	 of	 accuracy),	 and	 random	 error	 (large	 standard	 deviation,	
resulting	 in	 lack	 of	 precision).	 	 In	 fact,	 accuracy	 and	 precision	 of	 the	 DIC	
measurements	cannot	be	taken	for	granted	if	 the	measurement	system	and	the	
numerical	processing	have	not	been	optimized	and	validated	(Fig.	4).		The	errors	
affecting	displacement	and	strain	are	originally	induced	by	the	overall	quality	of	
the	 native	 images.	 	 The	 DIC-computed	 displacement	 field	 is	 less	 sensitive	 to	
modifications	of	software	parameters;	 their	effect	 is	 larger	on	strains	(Nicolella	
et	 al.,	 2001;	 Palanca	 et	 al.,	 2015a).	 	 Accuracy	 and	 precision	 of	 the	 DIC	 in	
computing	 the	displacements	are	 in	 the	order	of	0.01	pixel	 (Amiot	et	al.,	2013;	
Nicolella	 et	 al.,	 2001;	 Zhang	 and	Arola,	 2004);	with	 some	 optimizations	 errors	
can	 be	 further	 reduced	 (Barranger	 et	 al.,	 2010).	 	 DIC-computed	 strains	 are	
generally	quite	accurate	 (systematic	 errors	of	 the	order	of	 few	microstrain	are	
negligible	 in	most	biomechanical	applications).	 	Conversely,	 large	noise	usually	
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affects	DIC-computed	 strains:	 a	precision	of	 some	hundreds	of	microstrain	 can	
be	achieved	only	under	optimal	conditions.		
	

	
Fig.	4	–	Example	of	errors	affecting	the	DIC-computed	strain	distribution.		A	porcine	vertebra	
was	examined	in	a	zero-strain	condition.		Strains	were	computed	with	DIC	software	with	default	

(i.e.	not	optimized)	settings.		Any	strain	readout	different	from	zero	is	due	to	errors	(a	
combination	of	systematic	error	and	random	error).	

	
	
2.5.2 Errors due to the pattern 
The	DIC	 analysis	 relies	 on	 the	 presence	 of	 a	 suitable	 pattern	 on	 the	 specimen	
surface.		In	order	to	evaluate	the	errors	related	to	the	morphology	of	the	pattern,	
digital	 images	 of	 the	 speckle	 patterns	 were	 virtually	 translated	 (Haddadi	 and	
Belhabib,	2008),	numerically	deformed	 (Lecompte	et	 al.,	 2006),	 correlated	 in	a	
zero-strain	 condition	 (Carriero	 et	 al.,	 2014).	 	 An	 unsuitable	 speckle	 pattern	 is	
likely	to	make	the	correlation	impossible	at	some	facets,	reducing	the	number	of	
measurements	 points	 (Haddadi	 and	 Belhabib,	 2008).	 	 An	 optimal	 ratio	 exists	
between	the	facet	size	and	the	mean	speckle	size	to	reduce	errors	affecting	DIC-
computed	 displacements	 (Lecompte	 et	 al.,	 2007;	 Lecompte	 et	 al.,	 2006).	 	 They	
also	 showed	 that	 a	 limited	 scatter	 of	 speckle	 sizes	 yields	 more	 accurate	
displacement	measurements,	and	that	larger	dots	result	in	larger	random	errors	
in	the	displacement	field.		The	differences	between	black-on-white	and	white-on-
black	 speckle	 patterns	 are	 negligible	 in	 terms	 of	 measurement	 quality	
(Barranger	et	 al.,	 2010).	 	A	 clear	 relationship	exists	between	 the	measurement	
error	and	the	uniqueness	of	the	pattern,	which	depends	on	the	speckle	size	and	
shape,	 and	 on	 the	 facet	 size	 (Crammond	 et	 al.,	 2013).	 	 The	 airbrush	 airgun	
method	provides	a	better	control	of	the	dots	dimension	compared	to	the	use	of	
powder	 (Myers	 et	 al.,	 2010).	 	 Even	 if	 an	 airbrush	 airgun	 and	 only	 to	 a	 limited	
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extent	be	adjusted	to	produce	the	desired	speckle	dots	(Crammond	et	al.,	2013),	
the	performance	of	DIC	is	quite	robust	and	tolerant	(Wang	et	al.,	2012).			
A	small	unavoidable	compromise	should	be	 taken	 in	account	when	DIC	 is	used	
on	 biological	 specimens.	 	 In	 fact,	 the	 thin	 paint	 layer	 can	 potentially	 affect	 the	
specimen	 mechanical	 characteristics	 and	 complicate	 the	 hydration	 of	 the	
biological	specimen.	 	Specific	solution,	as	water-based	paint,	should	be	selected	
to	solve	these	issues	(Palanca	et	al.,	2015a).	
	
2.5.3 Errors due to the acquired images 
Random	errors	affect	the	images	acquired	by	the	digital	camera,	such	as	thermal	
noise	 (or	dark	noise),	excess	noise	due	 to	 the	CCD	sensor,	and	electromagnetic	
noise	of	the	relative	measurement	chain	(Freddi	et	al.,	2015).		Moreover,	a	source	
of	 systematic	 error	 in	 2D-DIC	 derives	 from	 out-of-plane	 displacements	 of	 the	
specimen	during	loading.		2D-DIC	is	often	chosen	in	investigations	at	the	tissue-
level	(Pan	et	al.,	2013;	Sutton	et	al.,	2008b).		They	explained	the	combined	effect	
of	the	out-of-plane	motion	of	the	tested	object	surface	and	of	the	cameras.		
	
2.5.4 Errors due to the correlation process 
Suboptimal	 choice	 of	 the	 software	 parameters	 can	 result	 in	 large	 noise,	 or,	
conversely,	 could	 hide	 existing	 strain	 gradients	 (Baldoni	 et	 al.,	 2016).	 	 The	
optimal	 parameters	 can	 be	 identified	 through	 virtually-imposed	 displacement	
tests	 (Haddadi	 and	 Belhabib,	 2008).	 	 Numerically	 deformed	 images	 were	
prepared	 to	 evaluate	 the	 accuracy	 and	precision	 in	 the	displacement	 field,	 and	
identify	the	optimal	parameters	(Lava	et	al.,	2009;	Lava	et	al.,	2010;	Lava	et	al.,	
2011)	(Wang	et	al.,	2012).		A	zero-strain	test	was	applied	on	a	vertebra	(Fig.	4)	to	
investigate	 the	 software	 parameters	 to	 estimate	 the	 accuracy	 and	 precision	
(Palanca	et	al.,	2015a).			
	
2.5.5 Recommendations to minimize measurement 
errors in biomechanical applications 
It	 is	 possible	 and	 to	 some	 extent	mandatory	 to	 validate	DIC	measurements	 by	
comparison	against	independent	measurements:	(Gilchrist	et	al.,	2013;	Sutton	et	
al.,	2008a;	Zhang	and	Arola,	2004)	compared	the	DIC-computed	strains	against	
single	 strain	 gauges.	 	 A	 more	 extensive	 validation	 may	 include	 the	 use	 of	
specimens	 with	 known	 material	 properties,	 subjected	 to	 well-defined	 loading	
conditions	 (Gilchrist	 et	 al.,	 2013;	 Sutton	 et	 al.,	 2008a;	 Zhang	 and	Arola,	 2004).		
Moreover,	 preliminary	 tests	 to	 identify	 the	 spatial	 displacements	 could	help	 in	
avoiding	out-of-plane	artefacts	in	a	2D-DIC.			
To	 optimize	 the	 speckle	 pattern	 for	 biological	 specimens	 (Lionello	 and	
Cristofolini,	 2014;	 Lionello	 et	 al.,	 2014;	 Palanca	 et	 al.,	 2015a)	 proposed	 a	
factorial-design	 to	 adjust	 the	 airbrush	 settings	 so	 as	 to	 a	 pattern	 having	 the	
desired	average	speckle	size	with	minimal	scatter.		
The	 lens	 distortion	 generates	 a	 systematic	 error,	 which	 can	 be	 partially	
compensated	 through	 dedicated	 algorithms	 (Yoneyama,	 2006),	 or	 an	
appropriate	calibration	 (Patterson	et	al.,	2007;	Sebastian	and	Patterson,	2012).		
Such	 artefacts	 can	be	 completely	 eliminated	with	 telecentric	 lenses	 (Pan	 et	 al.,	
2013),	 or	 by	 exploiting	 the	 central	 portion	 of	 the	 lens	 angle	 (Palanca	 et	 al.,	
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2015a).	 	 An	 in-house	 smart	 solution	 consists	 in	 performing	 3D	 deformation	
measurements	with	 a	 single	 camera	 using	 a	 biprism	 to	 avoid	 distortion	 of	 the	
images	(Genovese	et	al.,	2013a;	Genovese	et	al.,	2013b).	 	The	illumination	must	
be	 stable	 and	 uniform	 to	 reduce	 the	 noise	 and	 obtain	 better	 native	 images.		
Moreover,	 due	 to	 the	 nature	 of	 biological	 specimens,	 cold	 light	 illumination	 is	
preferable	(i.e.	using	LED	technology).	 	Noise	and	its	influence	can	be	somehow	
reduced,	 but	 not	 completely	 eliminated,	 with	 high-performance	 hardware	 (i.e.	
lenses,	cameras,	frame	grabber,	etc).			
To	reduce	correlation	errors	due	to	unsuitable	settings,	it	is	important	to	have	a	
provisional	 estimate	of	 the	expected	 strain	gradients.	 	 In	 case	of	homogeneous	
deformation	a	large	facet	size,	large	grid	spacing	and	large	computation	window	
are	able	to	produce	accurate	and	precise	measurement	with	limited	computation	
cost	 (Sutton	 et	 al.,	 2009).	 	 Conversely,	 stress/strain	 concentrations	 should	 be	
investigated	 with	 a	 high	 spatial	 resolution	 (i.e.	 small	 facets	 and	 computation	
windows),	to	avoid	loss	of	detail.			
Filtering	 can	 help	 reduce	 the	 noise	 in	 the	 DIC-computed	 strains.	 	 However,	
filtering	 should	 be	 used	 with	 extreme	 caution	 to	 avoid	 loss	 of	 information	 in	
high-gradient	regions,	such	as	anatomical	specimens	with	an	irregular	geometry,	
or	in	highly	inhomogeneous	tissues	(Baldoni	et	al.,	2016).		A	careful	optimization	
of	the	entire	measurement	chain	can	reduce	the	errors	(Fig.	5)	and	provide	more	
accurate	and	precise	outputs	(Palanca	et	al.,	2015a).	
	

	
Fig.	5	–	Plots	showing	how	the	systematic	error	and	the	random	noise	were	dramatically	high	if	
no	special	care	was	taken	to	reduce	them,	and	how	effective	an	optimization	following	the	

principles	of	DOE	can	be,	to	improve	precision	and	accuracy	(Palanca	et	al.,	2015a).	
	
	
	
2.6 Example of biomechanical applications 

Big	 potentiality	 of	 DIC	 lies	 in	 its	 suitability	 to	 investigate	 different	 kinds	 of	
materials,	 such	 as	 soft	 and	 hard	 biological	 tissues,	 independently	 their	
mechanical	 behaviour	 (brittle/ductile,	 isotropic/anisotropic,	
homogeneous/inhomogeneous),	 for	 small	 or	 large	 deformation	 (Sutton	 et	 al.,	
2009).	
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2.6.1 Applications to soft tissue 
Before	the	introduction	of	DIC,	strain	in	soft	tissue	structures	have	been	initially	
measured	by	means	of	extensometers	(Larrabee,	1986;	Nagarkatti	et	al.,	2001).		
This	 method	 significantly	 perturbs	 the	 specimen	 under	 observation,	 both	 in	
terms	of	 local	 stiffening,	 and	notching.	 	A	better	alternative	 is	based	on	optical	
extensometers	 (i.e.	 (Holzapfel,	 2006;	 Weisbecker	 et	 al.,	 2012)).	 	 The	 main	
limitation	 of	 optical	 extensometers	 is	 that	 they	 track	 the	 displacement	 of	 only	
two	points	 in	 the	 specimen.	 	Therefore,	 the	 strain	 field	between	 such	points	 is	
averaged,	with	no	information	about	the	local	strain	distribution.		Furthermore,	
most	optical	techniques	tend	to	loose	correlation	when	large	displacements	are	
involved,	which	 often	 occurs	with	 soft	 tissues.	 	 DIC	 overcomes	 such	 problems,	
opening	 possibilities	 to	 new	measurements	 and	 new	 data	 in	 the	 experimental	
tests	 (Table	 1).	 	 For	 example,	 DIC	 opened	 the	 way	 to	 measurements	 on	
micrometric	scales	(tissue-level).	
DIC	 enabled	 improvements	 in	 the	 field	 of	 microindentation.	 	 Originally,	
indentation	 focused	 only	 on	 the	 force-indentation	 relationship.	 	 DIC	 allows	
measuring	 the	 surface	 deformation	 around	 the	 point	 of	 load	 application.	 	 This	
methodology	 was	 assessed	 on	 a	 silicon	 gel	 (Moerman	 et	 al.,	 2009)	 and	 on	 a	
porcine	 liver	(Ahn	and	Kim,	2010).	 	Single-camera-DIC	combined	with	a	radial-
fringe-projection	was	used	to	measure	the	displacement	field	in	the	indentation	
tests	on	porcine	ventricle	(Genovese	et	al.,	2015).	 	As	the	reliability	of	DIC	with	
microindentation	has	been	proven	in	vitro,	this	technique	has	the	potential	to	be	
deployed	in	vivo	for	future	diagnostic	purposes.		
In	 vitro	 application	 of	 DIC	 to	 measure	 the	 strain	 distribution	 in	 various	
components	 of	 the	 cardiovascular	 system	 is	 extremely	 important,	 for	 potential	
its	 impact	 to	 improve	 the	 understanding	 of	 pathologies,	 and	 delivery	 better	
treatment.		However,	the	state	of	stress/strain	is	difficult	to	measure,	because	of	
the	 inherent	 pseudoelastic	 nature,	 the	 small	 dimensions	 of	 the	 specimens,	 and	
the	 difficulty	 in	 reproducing	 the	 physiological	 working	 condition.	 	 Initially,	
bovine	 aorta	 specimens	 were	 investigated	 by	 means	 of	 DIC	 by	 (Zhang	 et	 al.,	
2002a):	 the	 Poisson’s	 ratio	 was	 determined	 from	 the	 displacements,	 and	 the	
corresponding	 strains	 up	 to	 40%,	 in	 the	 axial	 and	 circumferential	 directions.		
This	 work	 was	 based	 on	 simplified	 boundary	 conditions:	 the	 specimens	 were	
loaded	in	a	uniaxial	tensile	test,	far	from	the	physiological	conditions.		Additional	
experiments	were	conducted	with	silicone	rubber	sheets,	providing	a	validation	
of	 DIC	 under	 large	 strains.	 	 Later,	 other	 works	 included	 an	 improved	
resemblance	to	the	physiological	condition.		Mice	carotid	arteries	were	subjected	
to	 a	 pressure	 test	 to	 identify	 significant	 variations	 in	 constitutive	 material	
response	(Sutton	et	al.,	2008a).		This	test	was	performed	using	a	microscopic	3D-
DIC,	with	a	 field	of	about	0.2	mm^2.	 	Due	 to	 the	3D	anatomy,	only	a	 restricted	
region	of	the	surface	was	investigated.		The	entire	surface	of	a	mice	carotid	was	
investigated	 out	 using	 a	 conic	 mirror,	 while	 a	 single	 camera	 was	 moved	
(Genovese	 and	 Humphrey,	 2015;	 Genovese	 et	 al.,	 2011).	 	 The	 distribution	 of	
mechanical	properties	was	obtained	 from	the	strain	 field,	exploiting	an	 inverse	
material	characterization.	 	As	this	method	allows	measuring	displacements	and	
strains	 on	 the	 entire	 surface,	 complex	 pathological	 conditions	 such	 abdominal	
aortic	aneurysms	could	be	investigated	(Genovese	et	al.,	2012).	 	The	anisotropy	
of	 tissue-engineered	 heart	 valves	 was	 investigated	 with	 indentation	 tests	 at	 a	
microscopic	scale	(Cox	et	al.,	2008).			



Overview	of	Digital	Image	Correlation	in	Biomechanics	

Published in: International Biomechanics, 2016, 3(1): 1 - 21 

48	

A	pioneering	rudimental	DIC	system	allowed	evaluating	the	strain	distribution	in	
the	 human	 cornea	 by	 measuring	 the	 in	 vitro	 displacement	 of	 only	 few	 (6)	
discrete	 particles	 (Shin	 et	 al.,	 1997).	 	 In	 order	 to	 understand	 the	 non-linear	
viscoelastic	and	anisotropic	behaviour	of	the	cornea,	a	3D-DIC	was	used	(Boyce	
et	 al.,	 2008).	 	 Bovine	 corneas	 were	 constrained	 in	 a	 custom	 pressurization	
chamber	 and	 loaded	 with	 physiological	 and	 pathological	 pressure.	 	 The	
potentialities	 of	 3D-DIC	 were	 exploited	 to	 measure	 the	 out-of-plane	
displacements	and	to	obtain	the	pressure-displacement	response.		The	response	
at	 various	 pressure	 rates	 and	 the	 creep	 at	 different	 pressures	 of	 the	 bovine	
posterior	sclera	were	investigated	(Myers	et	al.,	2010).		A	consolidated	protocol	
to	measure	the	spatial	displacement	field	during	an	inflation	test	was	used	for	an	
in-depth	investigation	of	the	behaviour	of	physiological	and	pathological	human	
posterior	 sclera	 (Coudrillier	 et	 al.,	 2013;	 Coudrillier	 et	 al.,	 2012).	 	 A	 system	
where	 the	 camera	 can	 be	 rotated	 by	 90-degrees	 around	 two	 orthogonal	 axes	
(sequential-DIC)	allows	improving	the	out-of-plane	resolution	of	a	single	camera,	
without	 losing	 sensitivity	 (Pyne	 et	 al.,	 2014).	 	 They	 used	 sequential-DIC	 for	
mapping	 the	 optic	 nerve	 head	 deformation.	 	 As	 sequential-DIC	 requires	 some	
time	 to	 acquire	 the	 images	 from	 different	 angles,	 it	 cannot	 be	 used	 for	 time-
critical	 experiments	 such	 as	measuring	 viscoelastic	 properties.	 	 The	 advent	 of	
DIC	 enabled	 the	 incorporation	 of	 loading	 conditions	 that	 better	 replicate	 the	
complex	 in	vivo	mechanical	 environment	 in	 the	eye	 structure,	 compared	 to	 the	
crude	simplifications	of	the	past	(uniaxial	tests	(Boyce	et	al.,	2007)).			
Cartilage	 tissue	 specimens	 (1-mm	 cubes)	 were	 subjected	 to	 unconfined	
compression	 tests;	 2D-DIC	was	 used	 to	measure	 the	 equilibrium	modulus	 and	
the	Poisson	ratio	 (Wang	et	al.,	2003;	Wang	et	al.,	2002).	 	Similarly,	 the	Poisson	
ratio	was	measured	at	the	tissue-level	in	tension	for	the	human	patellar	cartilage	
(Narmoneva,	2002;	Zhang	et	al.,	2005).			
Intervertebral	 disks	 are	 difficult	 to	 study,	 both	 for	 their	mechanical	 behaviour	
and	 for	 their	 anatomical	 position.	 	 Traditionally	 (Causa	 et	 al.,	 2002;	 Panjabi,	
2007)	the	force-displacement	curve	of	functional	spinal	units	was	extracted	from	
displacement	 transducers	 under	 uni-	 or	 multi-axial	 simulators.	 	 The	 strain	
distribution	 in	 the	 disks	 was	 measured	 with	 3D-DIC	 at	 the	 organ-level	 under	
simulated	physiological	loading	(Spera	et	al.,	2011).			
The	 distribution	 of	 strain	 in	 the	 entire	 human	 Achilles	 tendon	 was	 examined	
through	DIC	(Luyckx	et	al.,	2014),	while	in	the	past	only	the	average	strain	could	
be	 assessed	 by	 means	 of	 extensometers.	 	 An	 image	 correlation	 process	 was	
applied	to	dynamic	ultrasound	images	to	measure	the	in	vivo	strain	distribution	
in	 mice	 tendon	 (Okotie	 et	 al.,	 2012).	 	 This	 technique	 exploited	 the	 “natural”	
speckle	pattern	of	ultrasound	images.			
The	biomechanics	of	bovine	hoof	has	been	investigated	in	uniaxial	tension	using	
DIC,	so	as	to	obtain	a	full-field	description	of	the	axial	strain	distribution	(Zhang	
and	Arola,	 2004).	 	 The	 strain	 gradients	 observed	 indicated	 an	 inhomogeneous	
distribution	of	the	mechanical	properties,	which	would	otherwise	be	difficult	to	
assess.			
The	interplay	between	the	uterine	cervix	tissue	and	its	macroscopic	mechanical	
properties	was	investigated	with	DIC	(Myers	et	al.,	2008).		Strain	distributions	in	
the	range	from	5%	to	30%	were	measured	with	DIC,	and	plotted	against	stress.		
Recent	works	were	done	on	porcine	uterosacral	and	cardinal	 ligaments	 in	uni-
axial	 (Tan	 et	 al.,	 2015)	 and	 bi-axial	 (Becker	 and	 De	 Vita,	 2015)	 loading	



Overview	of	Digital	Image	Correlation	in	Biomechanics	

Published in: International Biomechanics, 2016, 3(1): 1 - 21 

49	

conditions,	deploying	a	simplified	DIC	(a	limited	number	of	poppy	seeds	used	as	
markers).	 	They	determined	the	mechanical	properties	(elastic	moduli,	ultimate	
tensile	 strength	 and	 strain)	 of	 the	 two	 major	 ligaments	 that	 support	 uterus,	
cervix	 and	 vagina.	 	 The	 bi-axial	 test,	 moreover,	 investigated	 deeply	 the	
orthotropic	behaviour	of	 these	 ligaments,	 formulating	a	new	three-dimensional	
constitutive	model.	
The	 spatial	 deformation	 of	 the	 vocal	 folds	 was	 measured	 by	 means	 of	 DIC	
(Kelleher	et	al.,	2010;	Spencer	et	al.,	2008).	 	This	study	focused	on	the	superior	
surface	of	a	synthetic	model	of	the	vocal	folds	sprayed	with	a	speckle	pattern.		To	
extend	this	promising	technique	to	clinical	laryngoscopic	evaluations,	a	non-toxic	
speckle	pattern	would	be	required.		DIC	was	used	in	vitro	to	evaluate	the	spatial	
deformation	 field	 for	 an	 entire	 vocal	 ligament.	 	 FE	models,	 based	 on	 the	 DIC-
derived	material	 properties,	were	 created	 to	 evaluate	 how	 variations	 of	 cross-
section,	 inhomogeneity,	 and	 anisotropy	 affect	 the	 fundamental	 frequency	 of	
vibration	(Kelleher	et	al.	2010).	
An	 area	where	DIC	 outperforms	most	 other	 strain	measurement	 techniques	 is	
that	 of	 in	 vivo	 measurements,	 thanks	 to	 its	 limited	 invasiveness.	 	 In	 vivo	
applications	of	DIC	are	hindered	by	a	number	of	factors:	difficulty/impossibility	
to	 create	 a	 dedicated	 speckle	 pattern,	 and	 limited	 control	 on	 the	 boundary	
conditions.	 	 The	 displacement	 of	 a	 non-linear	 elastic,	 viscoelastic,	 anisotropic	
material,	highly	variable	and	sensitive	to	the	environment	condition,	such	as	the	
human	skin	was	measured	 in	vivo	using	DIC	under	 large	deformation,	 enabling	
the	creation	of	a	library	of	material	properties	(Evans	and	Holt,	2009).		Fast	and	
accurate	 measurement	 of	 the	 displacements	 and	 strain	 of	 the	 heart	 during	
cardiac	surgery	can	help	assessing	the	best	strategy:	DIC	(exploiting	the	natural	
pattern	 on	 the	 myocardium)	 was	 adopted	 in	 the	 surgical	 theatre	 during	 a	
cardiopulmonary	 bypass	 surgery	 (Hokka	 et	 al.,	 2015).	 	 DIC	 was	 applied	 to	
ultrasound	breast	images	to	identify	cancerous	tissue,	based	on	its	deformation	
and	stiffness	(Han	et	al.,	2012).		DIC	with	ultrasound	images	has	also	been	used	
to	measure	 in	vivo	deformation	 in	 tendons	(Okotie	et	al.,	2012)	and	 lower	 limb	
muscles	(Affagard	et	al.,	2014).			
	
2.6.2 Applications to hard tissue 
Historically,	 the	main	way	 to	measure	 strain	 in	 hard	 tissues	was	 by	means	 of	
strain	gauges	(Cristofolini	et	al.,	2013;	Cristofolini	et	al.,	2010a;	Cristofolini	and	
Viceconti,	1997;	Yang	et	al.,	2011).	 	However,	 the	reinforcement	effect	of	strain	
gauges	may	not	be	negligible	(Ajovalasit	and	Zuccarello,	2005;	Little	et	al.,	1990).		
Strain	 gauges	 are	 sometimes	 too	 large	 when	 compared	 to	 the	 scale	 at	 which	
strains	 gradients	 are	 evaluated	 in	 biological	 tissues	 (Amin	 Yavari	 et	 al.,	 2013;	
Cristofolini	et	al.,	1997;	Nicolella	et	al.,	2001).	 	Furthermore,	strain	gauges	only	
measure	 at	 the	 discrete	 points	 where	 they	 are	 attached.	 	 Extensometers	 have	
sometimes	been	used	to	measure	deformation	in	bone	specimens,	e.g.	(Keaveny	
et	al.,	1997).		Similarly	to	soft	tissue,	extensometers	may	induce	micro-damage	in	
bone,	 and	 measure	 the	 average	 strain	 over	 the	 gauge	 length.	 	 Relevance	 of	
transmission	 photoelasticity	 to	 bone	 testing	 is	 limited	 by	 the	 fact	 that	 model	
materials	 such	 as	 araldite	 are	 homogeneous	 and	 isotropic.	 	 With	 reflection	
photoelasticity	 real	 bone	 can	 be	 tested,	 but	 large	 errors	 arise	 due	 to	 the	
reinforcement	 effect	 (Cristofolini	 et	 al.,	 1994;	 Cristofolini	 et	 al.,	 2003).	 	 An	
overview	of	applications	of	strain	gauges,	in-fibre	Bragg	grating	sensors,	DIC	and	
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Digital	 Volume	 correlation	 (DVC)	was	 recently	 published	 (Grassi	 and	 Isaksson,	
2015).		
DIC	 shows	 its	 benefits	 also	 with	 hard	 tissue,	 allowing	 operating	 at	 different	
dimensional	 scales	 (Table	 2):	 from	 small	 specimens	 (tissue-level),	 such	 as	
cortical	bone	 (Hoc	et	 al.,	 2006),	 teeth	 (Gao	et	 al.,	 2006),	up	 to	 large	 specimens	
(organ-level),	 such	 as	 whole	 bones	 (Tayton	 et	 al.,	 2010).	 	 In	 this	 case	 small	
strains	are	involved,	never	exceeding	10	000	microstrain	(Bayraktar	et	al.,	2004).	
The	 problem	 of	 characterizing	 cortical	 bone	 at	 the	 tissue-level	 (Haversian	
system)	to	assess	local	phenomena,	such	as	micro-damage	or	bone	remodelling,	
was	solved	with	DIC	(Hoc	et	al.,	2006;	Nicolella	et	al.,	2001).		Single	trabeculae	of	
cancellous	bone	have	been	 investigated	with	DIC	and	a	high-speed	camera	 in	a	
three-point-bending	test	(Jungmann	et	al.,	2011).			
A	 whole-organ	 investigation	 was	 carried	 out	 on	 teeth	 (few	 millimetres)	 to	
optimize	 the	 stiffness	and	 load	 transfer	 in	dental	 implants	 (Tiossi	 et	al.,	2011).		
DIC	 and	 strain	 gauges	 were	 used	 on	 mouse	 tibias	 under	 axial	 compression	
(Sztefek	et	al.,	2010).	 	 It	was	concluded	that	 the	spatial	resolution	of	 the	strain	
gauges	was	 inadequate	 to	measure	 the	 localized	peak	strains	 identified	by	DIC.		
Similarly,	(Vaananen	et	al.,	2013)	showed	the	effectiveness	of	DIC	in	identifying	
the	 location	 and	 modality	 of	 fracture	 in	 bones	 (in	 this	 preliminary	 study	
composite	 femurs	were	 used).	 	 Strains	measured	with	 DIC	 at	 selected	 regions	
were	 used	 to	 validate	 an	 FE	 model	 of	 the	 same	 composite	 femur	 built	 from	
computed	 tomography	 (Dickinson	 et	 al.,	 2011).	 	 This	 research	 was	 further	
extended	by	(Grassi	et	al.,	2013),	who	performed	a	much	 larger	number	of	DIC	
measurements	on	similar	composite	femurs.		A	similar	work	was	carried	out	on	
cadaver	femurs:	a	high-speed	cameras	was	used	to	measure	strain	and	fracture	
with	 2D-DIC,	 and	 validate	 the	 corresponding	 FE	 models	 (Op	 Den	 Buijs	 and	
Dragomir-Daescu,	2011).	 	This	approach	was	 further	extended	to	3D-DIC	using	
two	high-speed	cameras	(Grassi	et	al.,	2014;	Helgason	et	al.,	2014).		Due	to	their	
limited	 resolution	 (1	Megapixel	 or	 lower,	 depending	 on	 the	 frame	 rate),	 high-
speed	cameras	were	originally	 introduced	 to	biomechanical	 investigations	only	
to	 qualitatively	 investigate	 fracture	 (Cristofolini	 et	 al.,	 2007;	 de	 Bakker	 et	 al.,	
2009;	Juszczyk	et	al.,	2011)	(Schileo	et	al.,	2008b;	Zani	et	al.,	2015).		High-speed	
cameras	 with	 sufficient	 resolution	 to	 be	 integrated	 in	 a	 DIC	 system	 became	
available	only	recently.	
A	preliminary	application	to	the	human	vertebra	was	recently	published,	where	
the	methods	were	fine-tuned	to	minimize	errors	(Palanca	et	al.,	2015a).			
	
	
	
2.7 Synergies with finite element in biomechanics 

Another	 important	 feature	 of	 DIC	 is	 its	 ability	 to	 integrate	with	 FE	models,	 in	
different	 ways	 (Babuska	 and	 Oden,	 2004;	 Cristofolini	 et	 al.,	 2010b;	 Jones	 and	
Wilcox,	2008):	

1. Experimental	 identification	 of	 model	 parameters:	 the	 high	 complexity	
involved	 in	 FE	 models	 (often	 including	 patient-specific	 detail,	
inhomogeneous	material	properties,	non-linear	interfaces,	etc)	requires	
experimental	measurements	to	identify	the	input	parameters.			
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2. Experimental	validation	of	model	predictions:	as	reliability	of	numerical	
predictions	 cannot	 be	 taken	 for	 granted,	 quantitative	 comparison	with	
experimental	data	is	necessary.		DIC	(if	properly	optimized)	has	a	similar	
systematic	error,	but	larger	random	error	than	strain	gauges.		However,	
DIC	 can	 provide	 full-field	 information.	 	 For	 instance,	 DIC	 was	 used	 to	
validate	 FE	models	 of	 the	 proximal	 femur	 for	 the	 prediction	 of	 strains	
and	 fracture,	 both	 qualitatively	 (Helgason	 et	 al.,	 2014),	 and	
quantitatively	 (regression	 between	 DIC-measured	 and	 FE-computed	
stiffness	 and	 strain	 (Dickinson	 et	 al.,	 2011;	Grassi	 et	 al.,	 2013;	Op	Den	
Buijs	and	Dragomir-Daescu,	2011)).	

3. Use	 of	 numerical	 models	 to	 improve	 the	 experiment:	 the	 synergy	
between	 a	 local	 approach	 (implemented	 in	 most	 DIC	 software)	 and	 a	
global	 approach	 (FE)	 can	 be	 exploited	 to	 reduce	 the	 errors	 in	 DIC-
computed	strain	field.		In	fact,	usually	low-pass	filters	are	used	to	reduce	
the	noise	in	the	strain	maps	obtained	by	derivation	of	the	displacements	
(Baldoni	et	al.,	2016).	 	This	can	result	 in	 loss	of	 information	due	to	 the	
smoothening	of	existing	gradients.		Alternatively,	strain	can	be	computed	
by	 means	 of	 an	 FE	 solver,	 where	 DIC-measured	 displacements	 are	
imposed	 to	 the	 FE	 nodes	 (Evans	 and	 Holt,	 2009).	 	 The	 continuum	
assumption	(which	is	intrinsic	to	FE	modelling),	acts	as	a	low-pass	filter.			

4. Use	of	numerical	models	for	inverse	material	characterization,	based	on	
experimental	measurements:	integration	of	numerical	and	experimental	
methods	 allows	 non-destructive	 assessment	 of	 mechanical	 properties	
that	are	otherwise	difficult	to	measure	experimentally.	 	For	instance,	to	
investigate	 the	 mechanical	 response	 of	 the	 skin,	 in	 vivo	 strain	 under	
point	 loading	was	measured	by	DIC;	 such	measurements	were	 fed	 into	
an	 FE	model	 to	 estimate	 the	 hyperelastic	 parameters	 (Evans	 and	Holt,	
2009).	 	 Similarly,	 specimen-specific	 FE	 models	 of	 the	 sclera	 were	 fed	
with	DIC-measured	quantities	(Coudrillier	et	al.,	2013).				

	
	
	
2.8 Other image correlation tools 

DIC	allows	calculating	the	displacement	and/or	strain	only	on	the	surface	of	the	
specimens.	 	 An	 important	 step	 forward	 in	 the	 characterisation	 of	 biological	
structures	 consists	 in	 measuring	 displacement	 and	 strain	 fields	 on	 entire	
volumes	 (Freddi	 et	 al.,	 2015;	 Roberts	 et	 al.,	 2014).	 	 The	 concept	 of	 DVC	 was	
introduced	by	(Bay	et	al.,	1999a;	Smith	et	al.,	2002)	as	a	natural	extension	of	DIC	
to	 a	 three-dimensional	 domain.	 	 With	 the	 rapid	 improvement	 of	 micro-focus	
computed	 tomography	 (micro-CT),	 DVC	 has	 gained	 increasing	 attention	 as	 a	
powerful	tool	to	examine	full-field	deformations	in	trabecular	bone	(Dall'Ara	et	
al.,	2014;	Gillard	et	al.,	2014;	Liu	and	Morgan,	2007;	Nazarian	and	Müller,	2004;	
Palanca	et	al.,	2015b),	cortical	bone	(Dall'Ara	et	al.,	2014;	Palanca	et	al.,	2015b),	
whole	bones	(Hussein	et	al.,	2012;	Hussein	et	al.,	2013),	cellular	scaffolds	(Madi	
et	al.,	2013)	and	bone-cement	interface	(Tozzi	et	al.,	2012,	2014).		
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2.9 Conclusions 

This	review	has	shown	the	potential	usefulness	of	DIC	as	a	full-field,	contactless	
and	versatile	technique.		In	fact	successful	biomechanical	applications	of	DIC	can	
be	 found	 at	 different	 dimensional	 scales	 (from	 the	microscopic	 tissue-level,	 to	
macroscopic	 organ-level	 specimens),	 on	 a	 wide	 range	 of	 biological	 specimens	
(both	soft	and	hard	tissue)	and	for	a	variety	of	tests,	including	fracture.	
DIC	 can	 measure	 displacements	 with	 very	 high	 accuracy	 and	 precision.		
However,	 to	 obtain	 accurate	 and	 precise	 measurement	 of	 strain,	 great	 care	 is	
needed	 to	 optimize	 the	 surface	 preparation,	 and	 the	 hardware	 and	 software	
settings.		Thanks	to	the	versatility	of	DIC,	it	can	be	foreseen	that	more	and	more	
application	will	be	developed	in	biomechanics	in	the	forthcoming	years,	both	in	
vitro	and	in	vivo.	
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Appendix 

DIC	 uses	 digital	 images	 to	 track	 the	 displacement	 of	 portions	 of	 the	 speckled	
surface	 (Fig.	 1).	 	 In	 the	 case	 of	 2D-DIC,	 images	 of	 specimen	 surface	 in	 the	
undeformed	 (or	 reference)	 and	 deformed	 states	 are	 acquired	 by	 one	 high-
spatial-resolution	 digital	 image	 acquisition	 device	 (such	 as	 a	 regular	 digital	
camera,	 a	 high-speed	 camera,	 an	 optical	 microscope).	 	 The	 digital	 images	
(typically	in	grey-scale)	are	divided	into	sub-images	(facets).		In	order	to	obtain	
an	 approximation	 of	 grey-scale	 between	 pixels	 instead	 of	 discrete	 and	
independent	values,	the	grey-scale	distributions	are	interpolated,	usually	with	a	
bicubic	spline.		Images	of	the	deformed	states	are	compared	to	the	reference	one	
in	 order	 to	match	 facets	 and	 track	 the	 displacement.	 	 The	 degree	 of	matching	
between	 facets	 is	 evaluated	by	a	normalized	cross-correlation	 function	such	as	
(Eq.	1):	
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Or	a	normalized	sum-of-squared-differences	such	as	(Eq.	2):	
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	 	 	 (Eq.	2)	
Where	 F(x,y)	 and	 G(x’,y’)	 represent	 the	 grey-scale	 value	 for	 the	 pixel	 at	 the	
coordinate	(x,y)	of	the	reference	image	and	the	coordinate	(x’,y’)	of	the	deformed	
image,	 respectively.	 	 N	 and	M	 are	 the	 dimensions	 of	 the	 facet,	 usually	 square.		
After	matching	the	facets,	 the	full-field	displacement	 is	automatically	computed	
by	 tracking	 the	 change	 in	 position	 of	 points	 on	 digitized	 images.	 	 In	 fact,	 the	
coordinates	in	the	reference	image	(x,y)	and	in	the	deformed	one	(x’,y’)	describe	
the	deformation	between	the	two	states	(Eq.	3):	

x ' = x +u+ ∂u
∂x
Δx + ∂u

∂y
Δy

y ' = y+ v+ ∂v
∂x
Δx + ∂v

∂y
Δy

	 	 	 	 	 	 	 (Eq.	3)	
where	u	 and	v	 represent	 the	displacements	 for	 the	 facet	 centres	 in	 the	x	 and	y	
directions,	respectively.		�x	and	�y	are	the	distances	in	the	x	and	y	directions,	
from	 the	 centres	 of	 the	 facet	 to	 the	 point	 in	 coordinates	 (x,	 y).	 	 The	 gradient	
terms	 in	Eq.	 3	 indicate	 that	 the	 initial	 facet	 of	 (MxN)	pixels	will	 be	 strained	 to	
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optimally	match	 the	 correspondent	 facet	 in	 the	 deformed	 status	 (Bruck	 et	 al.,	
1989;	Peters	and	Ranson,	1982;	Wang	et	al.,	2002).			
The	 strain	 tensor	 (Eq.	 4)	 is	 obtained	 by	 derivation	 on	 displacement	 gradients	
(Sutton	et	al.,	2009):	
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In	order	 to	 find	 the	six	deformation	parameters	 (u,	v,	
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and	match	 the	 facet,	 an	 approximate-solution	method	 is	 adopted.	 	 Usually,	 the	
Newton-Raphson	 algorithm	 is	 used	 because	 of	 its	 computational	 economy	
(Kelley,	 1999).	 	 Other	 algorithms	 are	 also	 adopted,	 such	 as	 the	 Levenberg-
Marquardt.		When	the	method	converges,	the	displacement	field	is	obtained	but	
discontinuities	 might	 appear	 due	 to	 the	 local	 grey-scale	 value.	 	 A	 smoothing	
algorithm	 is	 needed	 to	provide	 a	 continuous	displacement	 field	 and	perform	a	
strain	 analysis.	 	 Among	 the	 available	 smoothing	 algorithms	 (Wahba,	 1975;	
Woltring,	1985),	some	are	better	suited	than	others,	depending	on	the	features	of	
the	noise	to	be	attenuated	(Baldoni	et	al.,	2016).			
3D-DIC	can	be	considered	as	an	extension	of	2D-DIC,	as	the	operating	principles	
are	similar,	but	extended	on	a	third	dimension	(Luo	et	al.,	1992)	by	using	two	or	
more	cameras	in	stereoscopic	vision.	
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3.1 Introduction 

Digital	image	correlation	(DIC)	is	a	tool	that	allows	the	contact-less	and	full	field	
measurement	 of	 displacement	 and	 strain	 in	 specimens	with	different	 sizes.	 	 In	
the	 last	 ten	 years	 the	 diffusion	 of	 the	 DIC	 in	 the	 biomechanical	 field	 was	
constantly	increasing	(Palanca	et	al.,	2016a).		This	was	due	to	its	high	flexibility	
and	 potentiality.	 	 In	 fact,	 it	 allows	 measuring	 displacements	 and	 strains	 at	 a	
tissue-level,	e.g.	on	cortical	bone	(Hoc	et	al.,	2006),	as	well	as	at	the	organ-level,	
on	soft	tissue	(Boyce	et	al.,	2008;	Luyckx	et	al.,	2014)	and	hard	tissue	(Grassi	et	
al.,	2013;	Tayton	et	al.,	2010).			
DIC	 algorithms	 generally	 allow	 the	 measurement	 of	 displacement	 with	 an	
excellent	 accuracy	 and	 precision	 (Freddi	 et	 al.,	 2015;	 Sutton	 et	 al.,	 2009).		
However,	 the	 excellent	 accuracy	 and	 precision	 are	 lost	 when	 computing	 the	
strain	 distribution.	 	 In	 fact,	 the	 differentiation	 process	 involved	 enhances	 the	
noise	present	in	the	computed	field	of	displacements.			
Before	starting	to	use	the	DIC	in	a	biomechanical	study,	a	validation	was	required	
both	 for	 the	 specimen	 preparation	 and	 the	 acquisition	 and	 processing	
parameters	 (Lionello	 and	 Cristofolini,	 2014;	 Sutton	 et	 al.,	 2008a;	 Wang	 et	 al.,	
2009;	 Zhang	 and	Arola,	 2004).	 	 Because	 the	 accuracy	 and	 precision	 cannot	 be	
taken	for	granted,	a	benchmark	test	was	performed.			
The	aims	of	this	work	were:	

• To	define	a	 repeatable	and	reproducible	procedure	 to	create	an	optimal	
speckle	pattern;	

• Optimize	as	much	as	possible	the	performance	of	a	DIC	system;	
• Perform	a	preliminary	test	on	biological	tissue:	a	vertebra	specimen.	

	
	
	
3.2 Material and Methods 

3.2.1 Optimization of the preparation of the speckle 
pattern 
In	order	 to	have	correct	recognition	of	 the	specimen’s	surface,	and	an	accurate	
and	 precise	 strain	 measurement,	 a	 speckle	 pattern	 must	 have	 the	 following	
features	(Palanca	et	al.,	2016a;	Palanca	et	al.,	2015b;	Sutton	et	al.,	2009):		

• A	random	distribution;	
• A	high	contrast;	
• A	black-to-white	ratio	close	to	50%.	

The	specimen	surface	of	an	aluminum	beam	was	coated	with	a	water-based	paint	
(white	matt,	Chrèon,	Lechler,	Como,	Italy).	For	the	speckle	dots,	a	black	paint	was	
used	(black	matt,	Chrèon,	Lechler).		The	paints	were	deposited	on	the	specimens	
by	means	of	an	airbrush	spray	gun	(AZ3	HTE	2,	Antes	Iwata,	Torino,	Italy)	with	a	
nozzle	of	1.8	mm,	a	round	jet	and	a	spray	distance	of	300	mm.		
It	 has	 been	 found	 that	 to	 achieve	 satisfactory	 correlation	 results	 the	 black	
speckles	should	be	2-3	times	the	pixel	dimension	of	the	acquired	image	(Bruck	et	
al.,	1989)	and	their	size	should	have	a	low	dispersion.	
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In	 order	 to	 produce	 the	 speckles	with	 the	 features	 just	mentioned,	 9	 patterns	
were	produced	on	 the	 same	 aluminum	 specimen,	 after	 achieving	 a	 good	 intra-	
and	extra-operator	reproducibility,	exploring	different	settings	of	the	airbrush.	A	
factorial	design	was	planned,	where	two	factors	were	investigated,	each	at	three	
levels:	

• The	air	pressure:	500	kPa,	1000	kPa	and	1500	kPa;	
• The	airflow:	1	turn,	2	turns,	3	turns	of	the	knob	from	the	close	all	position.	

The	images	of	the	patterns	so	made	were	acquired	with	a	dimensional	reference	
scale.	 	 The	 quality	 of	 the	 speckle	 pattern	 was	 analyzed	 with	 a	 home-written	
algorithm	in	MATLAB	(Math	Works	Inc,	Natick,	Massachusetts,	USA)	to	compute	
the	 average	 and	 standard	 deviation	 of	 the	 speckles	 dimension	 (Lionello	 and	
Cristofolini,	2014).	
	
3.2.2 Benchmark test 
3.2.2.1 Selection of the software parameters 
A	flat	aluminum	specimen	was	prepared	with	the	best	speckle	pattern	identified	
with	the	previous	tests	(Palanca	et	al.,	2016a;	Sutton	et	al.,	2009).		The	specimen	
was	 acquired	 in	 a	 zero-displacement	 and	 zero-strain	 condition	 by	 the	 two	
cameras	 of	 a	 3D	 DIC	 system	 (Q-400,	 Dantec	 Dynamics,	 Skovlunde,	 Denmark),	
equipped	with	17-mm	 lenses	 (Xenoplan,	 Schneider-Kreuznach,	Bad	Kreuznach,	
Germany).		The	Istra-4D	software	(Dantec	Dynamics)	was	employed	to	elaborate	
the	images	and	compute	the	displacement	and	strain	distribution.		Both	the	axial	
and	 the	 transversal	 strain	 were	 computed	 to	 investigate	 the	 presence	 of	
preferential	directions	for	strain	measurement	in	the	algorithm.	
In	order	to	understand	the	effects	of	the	variation	of	the	parameters	of	the	DIC	
software,	a	factorial	design	was	performed.		The	parameters	investigated	in	this	
work	were:	

• The	 facet	 size,	 the	 dimension	 of	 the	 computation	 area:	 15,	 19,	 21,	 25	
pixels;	

• The	grid	spacing,	the	step	between	consecutive	facets:	4,	7,	11,	15	pixels;	
• The	 local	 regression	 (Palanca	 et	 al.,	 2016a)	 used	 to	 reduce	 noise	 of	 the	

computed	strain	by	extending	the	computation	on	a	larger	domain:	3,	5,	7,	
9,	11,	13,	15	facets.	

For	 each	 of	 the	 112	 combinations	 of	 parameters,	 the	 strain	 in	 the	 axial	 and	
transversal	direction	was	computed	on	the	same	computation	area	of	100	mm	x	
67	mm.		Because	the	specimen	was	in	a	zero-strain	condition,	the	expected	strain	
was	 zero.	 	 Consequently,	 any	 strain	 different	 from	 zero	 was	 accounted	 as	 an	
error:			

• The	systematic	error:	bias	of	the	average,	i.e.	lack	of	accuracy;	
• The	random	error:	standard	deviation	of	the	readout,	i.e.	lack	of	precision.	

	

3.2.2.2 Selection of the hardware parameters 
After	 defining	 the	 best	 setting	 of	 the	 software	 parameters,	 the	 following	
hardware	parameters	were	studied,	when	the	same	aperture	was	used,	and	the	
same	lighting	was	delivered	on	the	specimen:	

• The	 gain	 (i.e.	 the	 gain	 applied	 to	 the	 signal	 acquired	 by	 the	 camera	
sensor):	0	db,	3	db	and	9	db;	
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• The	image	exposure	(i.e.	the	lightness/darkness	of	the	image,	which	was	
controlled	by	adjusting	 the	shutter	 time):	couples	of	 images	 from	highly	
underexposed	 (55/255	 average	 value)	 to	 highly	 overexposed	 (248/255	
average	value)	were	acquired.			

• The	effect	of	the	distortion	of	the	lenses:	a	couple	of	images	were	acquired	
and	elaborated.		A	virtual	circular	strain	gauge	of	10	mm	of	diameter	was	
placed	in	the	center	of	the	image	and	moved	to	the	corner	passing	along	
the	diagonal.			

	
3.2.3 Preliminary test on a vertebra specimen 
Finally,	 the	 acquired	 know-how	 was	 moved	 from	 the	 benchmark	 test	 to	
investigate	 a	 biological	 specimen.	 	 A	 human	 vertebra	 specimen	 (L5)	 was	
obtained	 though	 an	 ethically	 approved	 international	 donation	 program	 (IIAM,	
Jessup,	 PA,	USA).	 	 The	donor	was	 a	male,	 49	 years	 old,	without	 any	muscular-
skeletal	 pathology,	 died	 because	 of	 pneumonia.	 	 All	 soft	 tissues,	 including	 the	
intervertebral	disks,	tendons	and	ligaments	were	removed.	 	The	vertebral	body	
was	degreased	with	acetone	and	was	fixed	in	a	pot	with	acrylic	bone	cement.		An	
optimized	speckle	pattern	was	painted	following	the	guidelines	above.		The	DIC	
system	was	 set	 on	 the	 best	 parameters,	 based	 on	 the	 previous	 tests.	 	 A	 zero-
strain	 condition	was	 implemented	also	 for	 the	 vertebra.	 	 In	order	 to	know	 the	
quality	of	 the	measurement	on	a	biological	 tissue,	 the	 strain	was	 computed	on	
the	prepared	vertebral	body.		
	
	
 
3.3 Results 

3.3.1 Optimal speckle pattern 
The	 dimension	 of	 the	 speckle	 dots	 increased	 for	 higher	 airflow	 rates,	 and	 it	
decreased	 for	 higher	 air	 pressure	 	 (Fig.	 1).	 	 The	 results	 also	 showed	 that	
increasing	 the	 airflow	 rate,	 the	dispersion	 tended	 to	 increase,	while	 increasing	
the	pressure	the	dispersion	decreased.		For	a	given	resolution	of	the	cameras	of	
the	 DIC	 system	 (2592	 x	 1936	 pixels),	 the	 dimension	 of	 the	 computation	 area	
(100	mm	x	67	mm),	and	the	recommended	average	dimension	of	the	speckles	(2-
3	pixels),	 the	desirable	dimension	of	 the	speckle	 should	be	between	0.077	mm	
and	 0.116	 mm.	 	 The	 best	 combination	 (optimal	 average	 size	 with	 minimal	
dispersion)	 of	 the	 factorial	 design	 corresponded	 to	 specimen	number	5	 (Table	
1).	
	
Table	 1	 -	 Summary	of	 the	 investigated	parameters	of	 the	airbrush	 spray	gun,	 and	 the	 relative	
dimension	obtained	of	the	speckle	pattern	
	
Specimen	
number	

Flow	rate	
(knob	turns)	

Pressure	
(kPa)	

Average	speckle	
area	(mm2)	

St.	dev.	speckle	
area	(mm2)	

1	 1	 500	 0.094	 0.068	
2	 2	 1000	 0.065	 0.045	
3	 3	 1500	 0.063	 0.044	
4	 1	 500	 0.120	 0.110	
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Specimen	
number	

Flow	rate	
(knob	turns)	

Pressure	
(kPa)	

Average	speckle	
area	(mm2)	

St.	dev.	speckle	
area	(mm2)	

5	 2	 1000	 0.099	 0.108	
6	 3	 1500	 0.099	 0.113	
7	 1	 500	 0.127	 0.129	
8	 2	 1000	 0.091	 0.088	
9	 3	 1500	 0.075	 0.057	

	

 
Fig.	1	–	Histograms	of	the	distribution	of	the	speckle	patterns	for	the	different	airbrush	gun	

settings.	

 
3.3.2 Accuracy and precision in the benchmark test 
3.3.2.1 Influence of the software parameters 
The	 outputs	 of	 the	 test	 allowed	 knowing	 the	 effect	 of	 the	 changing	 of	 single	
parameters.		The	total	error	(sum	of	systematic	and	random	error)	was	similar	in	
the	axial	and	transversal	directions,	and	it	showed	the	influence	of	facet	size,	grid	
spacing	and	filtering.		For	sake	of	brevity,	only	the	errors	for	the	axial	strains	are	
presented	(Fig.	2):	
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• The	facet	size	slightly	reduced	the	total	error:	when	the	other	parameter	
were	 optimized,	 the	 total	 error	was	 254	microstrain	with	 a	 facet	 of	 15	
pixels,	244	microstrain	with	a	 facet	of	19	pixels,	232	microstrain	with	a	
facet	of	21	pixels,	211	microstrain	with	a	facet	of	25	pixels.			

• The	 grid	 spacing	 markedly	 reduced	 the	 total	 error.	 	 The	 grid	 spacing	
decreased	the	total	error	on	the	computed	strain	by	a	factor	2,	when	the	
larger	 local	 regression	 window	 was	 applied.	 	 Such	 a	 benefit	 rose	 to	 a	
factor	 5	 when	 a	 smaller	 regression	 window	 (i.e.	 milder	 filtering)	 was	
implemented.			

• As	expected,	the	local	regression	acted	as	a	filter:	the	larger	the	regression	
window,	 the	 lower	 the	 error	 on	 the	 computed	 strain.	 	 Filtering	 allowed	
reducing	the	errors	by	a	factor	3.			
	

	
	
Fig.	2	–	Effects	of	the	software	parameters	on	the	total	error	(sum	of	systematic	and	random	

error)	in	computing	the	strains.	
	

It	 must	 be	 noticed	 that	 increasing	 the	 grid	 spacing	 and	 the	 filtering	 (local	
regression)	reduces	the	random	error,	but	at	the	same	time	it	is	associated	with	
a	worse	resolution	(possibly	causing	loss	of	details	in	high	gradient	regions).	
In	 the	 following,	 we	will	 focus	 on	 a	 limited	 range	 of	 facet	 size,	 step	 and	 local	
regression,	which	 correspond	 to	 a	 computation	 area	 between	 1.5	 and	 3.5	mm	
(this	 is	 the	 typical	 size	 of	 strain	 gauges	 used	 in	 biomechanical	 investigations	
addressing	 whole	 bones	 (Cristofolini	 et	 al.,	 2013;	 Cristofolini	 et	 al.,	 2010a)).		
When	the	two	components	of	error	were	examined	separately	(Fig.	3):	

• The	 systematic	 error	 was	 not	 significantly	 influenced	 by	 the	 software	
parameters;	
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• The	random	error	strongly	depended	on	the	software	parameters.	In	fact,	
increasing	 the	 grid	 spacing	 and	 the	 dimension	 of	 the	 local	 regression	
decreased	the	noise.	

Limiting	the	resolution	on	a	 limited	range	needed	 in	biomechanical	 field	 it	was	
possible	select	the	best	software	parameters,	for	the	specific	test	and	the	specific	
condition	(lighting,	hardware,	software):	

• Facet	size:	25	pixels	
• Grid	spacing:	11	pixels	
• Local	regression:	9	x	9	facets	

	

	
Fig.	3	–	Analysis	of	the	error	affecting	the	DIC-computed	strain	as	a	function	of	the	spatial	

resolution.		The	range	explored	was	equivalent	to	a	strain	gauge	length	between	1.5	mm	and	3.5	
mm.		The	horizontal	line	indicates	the	average	error	(systematic	bias);	the	vertical	bars	indicate	

the	random	error	(noise).	
	
3.3.2.2 Influence of the software parameters 
Similar	 to	 the	 tests	 on	 the	 software	 parameters,	 the	 systematic	 error	was	 not	
influenced	by	the	gain.		Conversely,	it	was	found	that	increasing	the	gain	resulted	
in	higher	noise	(larger	random	error):	with	0	dB	gain	the	random	error	was	130	
microstrain,	with	3	dB	it	raised	to	160	microstrain,	and	with	9	dB	it	went	up	to	
210	microstrain.	
The	 exposure	 test	 allowed	 finding	 a	 value	 of	 exposure	 better	 than	 the	 one	
recommended	by	the	Istra-4D	software.		In	fact,	moving	from	underexposure	to	
overexposure	 the	 random	 error	 decreased.	 	 The	 minimum	 noise	 (120	
microstrain)	was	found	with	a	level	of	exposure	of	210/255.	Over	this	point,	the	
random	error	increased	quickly	(the	image	was	mostly	saturated	to	white).			
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Finally,	 the	 variations	 of	 the	 systematic	 and	 random	 error	 due	 to	 image	
distortion	were	analyzed	 from	the	center	of	 the	 image	 to	 the	corner.	 	Near	 the	
center	 of	 the	 image	 the	 errors	 had	 their	minimum	value	 (systematic	 error:	 10	
microstrain,	 random	 error:	 390	 microstrain).	 	 Near	 the	 corners	 the	 error	
increased	(systematic	error:	100	microstrain;	random	error:	950	microstrain).	
	
3.3.2.3 Summary of the reduction of the systematic error and noise 
The	optimization	of	the	software	and	hardware	parameters	allowed	reducing	the	
systematic	 and	 random	 errors.	 	 It	 was	 shown	 that	 the	 facet	 step	 and	 the	
regression	window	are	more	powerful	tools	in	reducing	the	error	than	the	facet	
size	by	itself.		It	was	also	confirmed	that	suitable	illumination	is	needed	to	allow	
optimal	 image	 sharpness	 without	 the	 need	 of	 increasing	 the	 gain.	 	 This	
optimization	 process	 reduced	 the	 systematic	 error	 from	 150	 microstrain	
(before)	 to	10	microstrain	(after);	 the	random	error	was	 from	600	microstrain	
down	to	110	microstrain.			
	
3.3.3 Results of the test on a vertebra specimen 
The	 preliminary	 test	 conducted	 on	 a	 vertebra	 specimen	 showed	 that	 it	 is	
possible	using	the	DIC	on	a	biological	specimen	with	a	complex	geometry,	like	a	
vertebra.	 	 The	 portion	 of	 observed	 surface	 where	 correct	 correlation	 was	
achieved	was	about	80%.		In	the	zero-displacement,	zero-strain	tests,	systematic	
and	random	errors	were	visible	(Fig.	4).	 	The	magnitude	of	 the	apparent	strain	
computed	in	the	vertebra	in	the	zero-strain	condition	was	higher	than	that	in	the	
benchmark	test.	
	

	
Fig.	4	–	Test	of	correlation	on	a	vertebra	specimen	(L5,	anterior	view):	the	apparent	strain	in	a	

zero-strain,	zero-displacement	condition	is	shown,	without	application	of	any	filtering.	
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3.4 Discussion 

The	work	showed	the	 importance	of	a	careful	optimization	of	 the	DIC	software	
and	 hardware	 settings	 to	 minimize	 random	 and	 systematic	 errors.	 	 As	 in	 the	
work	of	(Amiot	et	al.,	2013;	Barranger	et	al.,	2010;	Lava	et	al.,	2009;	Lava	et	al.,	
2010;	Lava	et	al.,	2011),	a	benchmark	test	allowed	to	understand	the	behavior	of	
the	algorithms,	and	defining	the	best	setting	for	the	parameters.		The	study	about	
the	software	parameters	was	consistent	with	the	work	of	(Carriero	et	al.,	2014).		
In	 general,	 the	 settings	 that	 allowed	 minimizing	 the	 random	 errors	 were	
associated	also	with	averaging	over	a	larger	area,	and	were	therefore	associated	
with	poorer	spatial	resolution.	
To	 the	Authors’	knowledge	 this	 is	 the	 first	work	 that	analyzed	 the	effect	of	 the	
exposure	on	the	errors	affecting	the	DIC-computed	strains.		The	optimization	of	
the	 gain	 of	 the	 hardware	 parameters	 was	 in	 line	 with	 the	 conclusions	 of	
(Pallottino,	2011):	when	the	exposure	was	low,	a	higher	gain	was	needed	which	
worsened	 the	signal-to-noise	 ratio	 (the	dark	noise	due	 to	 thermal	excitation	of	
the	 electrons	 is	 approximately	 constant,	whereas	 the	 image	 signal	was	 lower).		
When	 the	 pictures	 were	 brighter,	 this	 allowed	 using	 a	 lower	 gain,	 providing	
better	accuracy	and	precision	in	the	computed	strains.			
The	 distortion	 due	 to	 the	 lenses	 deserves	 special	 attention.	 	 In	 fact,	 while	 the	
other	 tests	 allowed	 the	 identification	 of	 specific	 parameters,	 this	 test	 allowed	
only	the	identification	of	the	less	critical	area	within	the	frame.		This	did	not	offer	
quantitative	information	about	any	adjustable	parameter,	but	only	a	qualitative	
consideration	about	 the	most	critical	regions.	 	The	solution	to	reduce	the	error	
due	 to	 the	 distortion	 of	 the	 lenses	 is	 to	 replace	 the	 lenses	 with	 one	with	 less	
distortion	(longer	focal	length).			
Finally,	 the	work	moved	 from	a	simplified	specimen	 to	a	biological	one,	with	a	
more	 complex	 geometry.	 The	 influence	 of	 the	 complex	 geometry	 and,	 the	
consequent	reduction	of	accuracy	and	precision,	were	highlighted.			
Future	 tests	 will	 allow	 measuring	 the	 displacements	 and	 strains	 of	
biomechanical	specimens,	exploiting	the	acquired	know-how.			
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4.1 Introduction 

The	 spine	 is	 one	 of	 the	 most	 complex	 structures	 of	 the	 musculoskeletal	
apparatus.	 	 It	consists	of	a	sequence	of	hard	tissues	(vertebrae)	and	soft	 tissue	
(intervertebral	discs),	stabilized	by	the	ligaments.		The	spine	has	the	function	of	
supporting	the	body	in	a	standing	position	and	protecting	the	spinal	cord.	 	The	
morbidity	 and	 mortality	 associated	 to	 spine	 diseases	 are	 an	 increasingly	
concerning	 issue	 (Johnell	 and	 Kanis,	 2006).	 	 Spine	 characterization	 is	 a	
fundamental	task	in	biomechanics	because	it	could	help	engineers	and	clinicians,	
to	 design	 implants	with	 a	 higher	 success	 ratio	 (Luca	 et	 al.,	 2016;	 Smith	 et	 al.,	
2011).			
To	 reach	 this	 know-how,	 the	 spine	 segments	 were	 frequently	 investigated	 in	
experimental	 tests	 applying	 known	 motions	 (Corse	 et	 al.,	 2003;	 Gillespie	 and	
Dickey,	2004;	Hindle	et	al.,	1990)	or	known	loads	(Busscher	et	al.,	2009;	Hansson	
et	al.,	1987;	Panjabi	et	al.,	1994).		From	these	tests,	the	range	of	motion	and	the	
stiffness	 can	be	evaluated,	describing	 the	kinematics	of	 the	 spine	 segment	as	a	
whole,	in	physiological	(Ahn	and	DiAngelo,	2007;	Cook	et	al.,	2015;	White	III	and	
Panjabi,	 1990),	 pathological	 (Oda	 et	 al.,	 2002)	 and	 after	 treatments	 conditions	
(Metzger	et	al.,	2016).			
Just	 in	 few	 cases	 the	 local	 strain	 distribution	 was	 experimentally	 evaluated,	
separately	 either	 on	 the	 vertebra	 or	 on	 the	 intervertebral	 disc.	 	 Strain	 in	 the	
vertebra	 was	 measured	 by	 means	 of	 strain	 gauges	 (Cristofolini	 et	 al.,	 2013;	
Danesi	et	al.,	2016a;	Pintar	et	al.,	1995;	Shah	et	al.,	1978):	this	provides	accurate	
measurements,	 but	 measurement	 is	 limited	 to	 the	 point	 of	 application	 of	 the	
strain	 gauge.	 	 Moreover,	 the	 reinforcement	 effect	 of	 strain	 gauges	 is	 not	
negligible	 (up	 to	 9%),	 especially	 on	 the	 thin	 shell	 of	 osteoporotic	 bones	
(Ajovalasit	et	al.,	2007;	Cristofolini	et	al.,	2013;	Little	et	al.,	1990).		Measuring	the	
local	strain	 in	 the	 intervertebral	disc	 is	even	more	difficult,	due	to	 the	 intrinsic	
nature	of	the	disc	itself	(low	stiffness,	 inhomogeneous,	anisotropic).	 	One	of	the	
first	measurements	of	the	strain	on	the	outer	part	of	the	disc	(annulus	fibrosus)	
was	 based	 on	 stereo-photogrammetry,	 and	 covered	 a	 limited	 field	 of	 view	
(Stokes,	 1987).	 	 More	 recently,	 the	 entire	 disc	 surface	 was	 investigated	
(excluding	the	adjacent	vertebrae),	using	digital	 image	correlation	(DIC)	(Spera	
et	al.,	2011).		On	the	other	hand,	Digital	Volume	Correlation	(DVC)	(Roberts	et	al.,	
2014)	was	deeply	investigated	to	be	used	with	enough	confidence	on	vertebrae	
(Palanca	et	al.,	2016b),	and	has	already	been	applied	on	spine	segments	(Hussein	
et	 al.,	 2012).	 	 Nevertheless,	 DVC	 remains	 connected	 with	 the	 time-consuming	
procedure	of	the	images	acquisition,	which	could	be	a	problem	with	viscoelastic	
specimens,	 such	 as	 the	 bone	 or	 the	 intervertebral	 discs.	 	 In	 fact,	 the	 loading	
speed	of	physiological	motor	 task	 is	 far	 from	the	 time	necessary	 for	a	CT	scan.		
And,	 consequently,	 being	 the	 behaviour	 of	 a	 time-dependent	 material	 strictly	
connected	 with	 the	 loading	 speed,	 the	 provided	 strain	 describes	 only	 a	
circumscribed	and	limited	condition.		
However,	what	is	the	local	deformation	of	spine	segments	under	loading,	what	is	
the	 strain	 pattern,	 how	 it	 is	 affected	 by	 spinal	 fixation	 devices,	 where	 is	 the	
failure	region	located,	are	just	few	of	the	unsolved	questions	about	the	spine.		In	
fact,	to	date,	an	experimental	description	of	the	strain	distribution	on	the	surface	
of	a	spine	segment	that	includes	both	the	vertebrae	and	the	discs	is	missing.			
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The	aim	of	this	work	was	to	explore	the	feasibility	of	using	DIC	to	measure	the	
strain	distribution	simultaneously	on	the	vertebral	bodies	and	the	intervertebral	
discs	of	thoracic	and	lumbar	spine	segments	in	different	loading	configurations.			
	
	
	
4.2 Materials and Methods 

4.2.1 Specimen and pattern preparation 
Three	 porcine	 spine	 segments	 were	 obtained	 from	 animals	 sacrificed	 for	
alimentary	purposes,	and	stored	at	-28°C	before	the	preparation	and	the	testing.	
The	animals	were	all	female,	of	the	same	breed,	approximately	9	months	old	and	
100	 kg	 at	 sacrifice.	 	 The	 segments	 consisted	 of	 four	 thoracolumbar	 vertebrae	
(T7-T10/T11-T14/L2-L5).		
The	 muscles,	 the	 anterior	 longitudinal	 ligament,	 the	 periosteum	 and	 the	 ribs	
(where	presents)	were	carefully	removed	using	surgical	tools,	without	damaging	
the	vertebral	bodies	and	the	intervertebral	discs.		
	

							 	
Fig.	1	-	Overview	at	different	dimensional	scales	of	specimen	preparation	and	analysis.		The	

porcine	spines	were	cleaned	removing	the	surrounding	tissues	(A),	and	preparing	the	white-on-
black	speckle	pattern	(B):		the	red	windows	represent	the	field	of	view	recorded	by	the	DIC	
cameras.		Binarized	images	of	the	entire	region	of	interest	(which	covered	the	central	disc	and	
the	two	adjacent	vertebrae)	were	generated	to	evaluate	the	dimensions	of	the	white	speckle	dots	
(C).		The	facet	size	and	grid	spacing	(yellow	lines)	can	be	compared	to	the	speckle	dot	size	in	the	

binarized	images	(D).			
	
The	 interspinous,	 supraspinous	 and	 posterior	 longitudinal	 ligaments,	 and	 the	
capsules	were	left	 intact	in	order	to	preserve	the	natural	kinematics	during	the	
tests.	 	The	specimens	were	aligned	using	a	six-degree-of-freedom	clamp	so	that	
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the	 central	 disc	 of	 each	 segment	 (respectively,	 the	 disc	 between	 vertebrae	 T8	
and	T9,	between	T12	and	T13,	and	between	L3	and	L4)	was	aligned	horizontally	
in	 the	 frontal	 and	 lateral	 views	 (Rohlmann	 et	 al.,	 2001).	 	 In	 this	 configuration,	
two	 pots	 of	 poly-methyl-methacrylate	 (PMMA)	 were	 created	 parallel	 to	 one	
another,	where	the	upper	half	of	the	most	cranial	vertebra	and	the	lower	half	of	
the	most	caudal	vertebra,	were	embedded	(Fig.	1).	
In	order	to	enable	DIC	to	address	the	entire	spine	segments	(both	the	vertebrae	
and	 the	 intervertebral	 discs),	 a	 high-contrast	 white-on-black	 speckle	 pattern	
(Palanca	 et	 al.,	 2016a)	 was	 prepared	 (Fig.	 1).	 	 The	 spine	 segments	 were	 first	
stained	with	a	dark	background,	with	a	solution	of	methylene-blue	and	water	(4g	
of	 methylene-blue	 per	 100	 ml	 of	 water)	 (Lionello	 et	 al.,	 2014;	 Luyckx	 et	 al.,	
2014).		Two	applications	were	required	for	the	intervertebral	discs	and	three	for	
the	 vertebrae	 in	 order	 to	 obtain	 a	 uniformly	 dark	 background.	 	 Dying	 was	
preferred	to	surface	painting	 to	avoid	crumbling	and	cracking	problems	due	to	
the	large	deformations,	typical	of	the	soft	tissues	such	as	the	intervertebral	discs.		
The	 white	 speckle	 pattern	 was	 prepared	 achieving	 the	 qualitative	 and	
quantitative	 requirements	 widely	 described	 in	 (Sutton	 et	 al.,	 2009).	 	 A	 white	
water-based	 paint	 (Q250201	 Bianco	Opaco,	 Chrèon,	 Italy)	was	 diluted	 at	 40%	
with	 water	 and	 sprayed	 using	 an	 airbrush-airgun	 (AZ3	 HTE	 2,	 nozzle	 1.8mm,	
Antes	 Iwata,	 Torino,	 Italy).	 	 The	 spraying	 distance	 (around	 300mm),	 and	 the	
pressure	 (1000kPa)	 were	 optimized	 (Lionello	 and	 Cristofolini,	 2014)	 so	 as	 to	
obtain	 the	 desired	 average	 dot	 (0.18mm	 –	 equal	 to	 6	 pixels	 on	 the	 cameras	
sensors)	with	a	 small	 standard	deviation	 (0.18mm)	(Fig.	1).	 	The	actual	 size	of	
the	 speckle	 dots	 was	 measured	 in	 the	 digital	 images	 of	 the	 relevant	 areas	
through	a	homemade	script	developed	for	this	work.	
	
4.2.2 Mechanical testing 
In	 order	 to	 assess	 the	 feasibility	 of	 measuring	 strains	 on	 such	 complex	
specimens,	 different	 loading	 conditions	 were	 applied	 to	 explore	 the	 different	
loading	configurations	normally	imposed	to	spine	segments.			
The	 specimens	 were	 tested	 using	 a	 servo-hydraulic	 testing	 machine	 (8032,	
Instron,	 High	 Wycombe,	 UK)	 in	 displacement	 control.	 	 In	 order	 to	 avoid	 the	
transmission	 of	 any	 undesired	 component	 of	 load,	 free	 rotation	 of	 the	 loading	
plate	 was	 allowed	 by	 means	 of	 a	 ball	 joint,	 while	 free	 horizontal	 translations	
were	granted	by	means	of	two	low-friction	linear	bearings.			
Two	 different	 loading	 configurations	 were	 simulated,	 which	 are	 frequently	
investigated	in	the	literature	(Brandolini	et	al.,	2014)	(Fig.	2):	

• Anterior	 bending:	 the	 vertical	 force	 had	 an	 anterior	 offset	 equal	 to	 the	
20%	of	the	antero-posterior	depth	of	the	central	intervertebral	disc;	

• Lateral	bending:	the	vertical	force	had	a	lateral	offset	equal	to	the	20%	of	
the	lateral-lateral	width	of	the	central	intervertebral	disc.	

Ten	preconditioning	cycles	were	applied	between	0	and	1.0	mm	of	compression,	
at	0.5Hz.		A	compression	of	3.0	mm	was	applied	for	each	loading	configuration	in	
0.1mm	steps,	where	DIC	 images	were	 acquired	 at	 each	 step	 (see	below).	 	 This	
value	of	the	compression	was	chosen	to	prevent	damage	of	the	specimens	based	
on	 preliminary	 tests.	 	 In	 fact,	 this	 allowed	 reaching	 a	 strain	 below	 2000	
microstrain	 on	 the	 bone,	 (this	 is	 comparable	 to	 the	 strain	 associated	 to	
physiological	load	(Cristofolini,	2015)),	and	below	100	000	in	the	intervertebral	
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discs	(this	is	comparable	to	the	physiological	strain		in	the	discs	(O'Connell	et	al.,	
2011)).	 	 These	 loading	 configurations	 did	 not	 aim	 at	 mimicking	 any	 specific	
motor	task.	
 
4.2.3 Digital Image Correlation  
A	 commercial	 3D-DIC	 system	 (Q400,	 Dantec	 Dynamics,	 Skovlunde,	 Denmark)	
with	 directional	 custom	 designed	 arrays	 of	 LEDs	 (10000	 lumen	 in	 total)	 was	
used.		Images	were	acquired	by	two	cameras	(5	MegaPixels,	2440	x	2050	pixels,	
8-bit)	 equipped	with	 35mm	 lens	 (Apo-Xenoplan	 1.8/35,	 Schneider-Kreuznach,	
Bad-Kreuznach,	 Germany)	 for	 a	 stereoscopic	 view,	 positioned	 vertically	 on	 a	
tripod.	
The	field	of	view	was	set	to	70	mm	by	60	mm,	which	involved	a	spatial	resolution	
of	 28	 micrometers,	 with	 depth	 of	 field	 of	 20mm	 (this	 related	 to	 the	 selected	
aperture	of	f/16).		This	allowed	evaluating	displacement	and	strain	on	the	region	
of	 interest:	 the	 central	 intervertebral	 disc	 and	 the	 two	 adjacent	 cranial	 and	
caudal	vertebrae.	 	The	field	of	view	was	wide	enough	to	avoid	losing	portion	of	
the	region	of	 interest	due	 to	 the	movements	under	 large	deformations	(Fig.	1).		
Calibration	was	performed	before	the	tests	using	a	dedicated	calibration	target	
(Al4-BMB-9x9).		To	explore	the	possibility	of	assessing	the	different	sides	of	the	
spine,	two	different	acquisitions	were	performed	for	each	loading	configuration	
and	each	specimen	(Fig.	2)	without	moving	the	cameras	system	and	rotating	the	
specimens:		

• Frontal	view:		the	cameras	pointed	the	anterior	wall	of	the	spine	segment;	
• Lateral	view:	 the	cameras	pointed	 the	 lateral	 side	(either	right	o	 left)	of	

the	spine	segment.	

								 	
Fig.	2	-	The	different	loading	configurations	were	reproduced	using	a	uniaxial	testing	machine	

and	a	dedicated	system	of	low-friction	linear	and	ball	bearings	to	avoid	transmission	of	
undesired	force	components	(A).		The	different	loading	configurations	(anterior	bending	(B,	C),	



Application	of	Digital	Image	Correlation	on	spine		

Paper under preparation 

69	

lateral	bending	(D,	E))	and	the	different	views	(frontal	(B,	D),	lateral	(C,	E))	are	sketched,	viewed	
from	top:	the	red	cross	represents	the	compressive	force	applied	to	the	specimen;	the	two	

cameras	are	aligned	in	this	top	view.			
	
A	deep	optimization	and	validation	of	 the	 system	was	preliminarily	performed	
(Palanca	et	al.,	2015a).		Couples	of	images	of	the	unloaded	spine	segments	were	
captured	and	analysed	with	the	optimal	hardware	and	software	settings	in	order	
to	assess	the	measurement	uncertainties	in	a	known	configuration	(zero-strain).		
Being	 in	 a	 zero-strain	 configuration,	 any	 strain	 different	 from	 zero	 was	
accounted	 as	measurement	 error.	 	 The	 Kolmogorov-Smirnov	 test	 was	 used	 to	
check	 that	 the	 errors	 followed	 a	 Gaussian	 distribution.	 	 The	 systematic	 and	
random	errors	(Palanca	et	al.,	2015a)	were	computed,	for	each	specimen,	as	the	
average	 and	 the	 standard	 deviation	 of	 the	 maximum	 and	 minimum	 principal	
strains	evaluated	on	the	frontal	and	sagittal	view	of	the	specimens.		
During	the	actual	mechanical	tests,	series	of	images	were	acquired,	starting	from	
the	unloaded	condition	(reference	step),	and	every	0.1mm	step	of	compression.		
The	test	lasted	few	seconds,	and	between	a	test	and	another,	the	specimen	was	
hydrated	spraying	saline	solution.	
The	 maximum	 and	 minimum	 principal	 strains	 were	 evaluated	 with	 Instra	 4D	
(v.4.3.1,	Dantec	Dynamics,	Skovlunde,	Denmark)	using	the	following	parameters	
(Fig.	1):	

a) Facet	size:	33pixels;	
b) Grid	spacing:	19pixels;	
c) Contour	smoothing:	local	regression	with	a	kernel	size	of	5x5;	

This	resulted	in	a	measurement	spatial	resolution	of	around	3mm.	
	
	
	
4.3 Results 

Measurements	could	be	successfully	performed	on	all	specimens,	over	the	entire	
region	 of	 interest	 in	 both	 the	 frontal	 and	 sagittal	 view,	 for	 both	 loading	
configurations,	during	the	entire	tests.		Similar	strain	distributions	were	found	in	
the	three	specimens.		
	
4.3.1 Strain error 
In	the	zero-strain	test,	the	apparent	strains	(i.e.	the	errors)	followed	a	Gaussian	
distribution	 (Kolmogorov-Smirnov),	 with	 no	 significant	 variations	 between	
different	portions	of	 the	 region	of	 interest.	 	 In	 the	anterior	view	 the	maximum	
principal	strain	had	a	systematic	error	of	30	microstrain	and	a	random	error	of	
80	 microstrain;	 the	 minimum	 principal	 strain	 had	 a	 systematic	 error	 of	 -10	
microstrain	and	a	random	error	of	90	microstrain	(the	values	reported	are	 the	
median	over	three	specimens).		In	the	lateral	view,	the	maximum	principal	strain	
had	a	systematic	error	of	5	microstrain	and	a	random	error	of	140	microstrain;	
the	minimum	principal	 strain	 had	 a	 systematic	 error	 of	 -10	microstrain	 and	 a	
random	error	of	140	microstrain	(median	over	three	specimens).			
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4.3.2 Anterior bending – frontal view 
During	 the	anterior	bending,	 in	 the	 frontal	view,	4.4%	of	 the	 region	of	 interest	
lost	correlation	between	the	first	and	the	last	step.	 	The	discs	underwent	larger	
deformations	compared	to	 the	vertebral	bone	(Fig.	3).	 	 In	 this	 frontal	view,	 the	
strain	in	the	discs	followed	a	strain	gradient,	with	peaks	in	the	central	portion.		

	
Fig.	3	-	Results	for	a	spine	segment	for	anterior	bending	(images	on	the	left)	and	for	lateral	

bending	(images	on	the	right),	both	in	the	frontal	and	lateral	view.		The	results	for	lateral	bending	
with	compression	on	the	right	side	of	the	spine	are	shown;	results	for	bending	in	the	opposite	
direction	were	quite	similar.		The	images	as	recorded	by	the	DIC	system	are	shown	(A).		The	

maps	of	the	maximum	(B,	C)	and	minimum	(D,	E)	principal	strain	are	reported	for	the	last	step	of	
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the	test	(compression	of	3	mm).		As	the	strain	in	the	intervertebral	disc	and	in	the	vertebral	bone	
exhibited	different	orders	of	magnitude,	the	strain	distributions	are	shown	twice:	with	a	full-
scale	suitable	for	the	disc	(B,	D)	and	for	the	vertebra	(C,	E).		For	brevity,	results	are	shown	only	
for	one	of	the	three	specimens.		The	magnitude	and	distribution	of	strain	were	similar	in	all	three	

specimens.			
	
In	 the	 discs,	 a	 maximum	 principal	 strain	 of	 the	 order	 of	 +20000	 microstrain	
(aligned	 circumferentially)	 and	 a	 minimum	 principal	 strain	 of	 the	 order	 of	 -
40000	microstrain	(aligned	axially)	were	observed.			
The	vertebrae	had	 lower	strains:	peak	of	 the	order	of	+500	microstrain	 for	 the	
maximum	 principal	 strain	 and	 around	 -1500	 microstrain	 for	 the	 minimum	
principal	strain	(Fig.	3).		As	the	vertebrae	came	from	relatively	young	pigs,	larger	
strains	were	visible	on	the	growth	cartilages.			
	
4.3.3 Anterior bending – lateral view 
During	 the	 anterior	bending,	 in	 the	 lateral	 view,	5.7%	of	 the	 region	of	 interest	
lost	 correlation	 between	 the	 first	 and	 the	 last	 step.	 	 In	 this	 scenario,	 the	 discs	
presented	a	strain	gradient:	 they	were	more	deformed	 in	absolute	value	 in	 the	
posterior	 than	 in	 the	anterior	 side	 (Fig.	3).	 	The	maximum	principal	 strains	on	
the	intervertebral	discs	varied	between	+12000	microstrain	(anterior	side)	and	
+87000	microstrain	(posterior	side).	 	The	minimum	principal	strain	 followed	a	
similar	 gradient,	 from	 -87000	 microstrain	 (anterior)	 to	 -18000	 microstrain	
(posterior).	 	 The	 direction	 of	 the	 maximum	 principal	 strain	 changed	 from	
circumferential	 (anterior	 side),	 to	 axial	 (posterior).	 	 Therefore,	 in	 anterior	
bending	 the	 discs	 tended	 to	 swell	 in	 the	 anterior	 part,	 and	 to	 stretch	 in	 the	
posterior	side.				
The	 vertebrae	 experienced	 lower	 strains:	 below	 +600	 microstrain	 for	 the	
maximum	 principal	 strain,	 and	 -1500	 microstrain	 for	 the	 minimum	 principal	
strain	(Fig.	3).	
	
4.3.4 Lateral bending – frontal view 
During	the	lateral	bending,	in	the	frontal	view,	1.5%	of	the	region	of	interest	lost	
correlation	between	the	first	and	the	last	step.		Lateral	bending	was	applied	both	
towards	 the	 right	 and	 the	 left	 sides,	 to	 all	 specimens:	 the	 outputs,	 in	 terms	 of	
strain	distribution	on	 intervertebral	discs	and	vertebrae	were	 symmetrical.	 	 In	
the	frontal	view,	the	discs	showed	tension	and	compression	respectively	on	the	
left	and	right	sides,	depending	on	the	direction	of	the	imposed	bending	(Fig.	3).		
The	maximum	principal	strains	varied	between	+6000	microstrain	(compressed	
side)	and	+143000	microstrain	(stretched	side).	The	minimum	principal	strains	
were	varied	from	-85000	microstrain	(compressed	side)	to	+12000	microstrain	
(stretched	side).		The	orientation	of	the	maximum	principal	strain	changed	from	
circumferential	on	the	compressed	side,	to	axial	on	the	stretched	side.			
The	vertebrae	had	 lower	strains	 than	 the	discs:	 the	maximum	principal	strains	
were	 lower	 than	 500	 microstrain	 and	 the	 minimum	 principal	 strains	 did	 not	
exceed	 -1700	 microstrain	 (Fig.	 3).	 	 In	 this	 configuration	 it	 was	 possible	 to	
observe	also	tension	and	compression	in	the	growth	cartilages.	
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4.3.5 Lateral bending – lateral view 
During	the	lateral	bending,	in	the	lateral	view,	5.2%	of	the	region	of	interest	lost	
correlation	 between	 the	 first	 and	 the	 last	 step.	 	When	 the	 specimen	 loaded	 in	
lateral	bending	was	observed	from	the	lateral	side,	the	strains	on	the	discs	were	
rather	 uniformly	 distributed	 (Fig.	 3).	 	 When	 the	 side	 in	 compression	 was	
observed,	the	maximum	principal	strains	in	the	disc	were	of	the	order	of	+40000	
microstrain,	 and	 the	 minimum	 principal	 strain	 of	 the	 order	 of	 -60000	
microstrain.		
The	vertebrae	had	 lower	strains	 than	 the	discs:	 the	maximum	principal	strains	
were	 lower	 than	 700	 microstrain	 and	 the	 minimum	 principal	 strains	 did	 not	
exceed	-1400	microstrain	(Fig.	3).			
	
	
	
4.4 Discussion 

The	main	 aim	 of	 this	work	was	 to	 develop	 a	 procedure	 to	measure	 the	 strain	
distribution	 on	 thoracic	 and	 lumbar	 spine	 segments	 (Borchers	 et	 al.,	 2004),		
simultaneously	 on	 hard	 tissues	 (the	 vertebral	 bone)	 and	 soft	 tissues	 (the	
intervertebral	 discs)	 by	 means	 3D-DIC	 (Sutton	 et	 al.,	 2009).	 	 Two	 different	
loading	configurations	were	explored	 in	 this	 study,	 frequently	 simulated	 in	 the	
biomechanics	 literature	 (Busscher	et	al.,	2009;	Hansson	et	al.,	1987;	Oda	et	al.,	
2002;	Panjabi	et	al.,	1994)	by	two	different	viewpoints.		
The	 results	 of	 this	work	 showed	 the	 technical	 feasibility	 of	 investigating	 spine	
segments	quantifying	 the	strain	distribution	during	 the	entire	 tests.	 	Moreover,	
the	measured	 strain	 distributions	were	 highly	 inhomogeneous,	 confirming	 the	
importance	of	 investigating	 the	 spine	using	a	 full-field	 tool,	 to	 complement	 the	
evaluation	of	the	range	of	motion	and	stiffness	performed	in	the	past.			
A	compromise	was	sought	between	reduction	of	measurement	uncertainty	and	
spatial	 resolution.	 	The	hardware	(camera	resolution,	 lenses,	 field	of	view)	and	
software	 parameters	 (facet	 size,	 grid	 spacing,	 contour	 smoothing)	 provided	 a	
measurement	spatial	resolution	of	about	3mm.		This	is	comparable	with	the	grid	
length	 of	 the	 strain	 gauges	 typically	 used	 in	 these	 applications	 (1-5	 mm)	
(Cristofolini	et	al.,	2009;	Field	and	Rushton,	1989;	Sobczak	et	al.,	2011;	Weinans	
and	 Blankevoort,	 1995).	 	 The	 strain	 measurement	 uncertainties	 (below	 150	
microstrain)	 were	 acceptable	 for	 biomechanical	 purposes.	 	 Such	 uncertainties	
would	 not	 prevent	 detecting	 failure	 of	 the	 bone	 (around	 10	 000	 microstrain	
(Cristofolini,	2015)),	as	well	as	strain	associated	to	physiological	loads	(1	000	-	2	
000	microstrain	(Lanyon	et	al.,	1975)).		The	same	considerations	are	confirmed	
for	the	 intervertebral	discs:	as	the	 failure	strain	 is	around	250	000	microstrain	
(Stokes,	 1987),	 and	 the	 physiological	 strain	 is	 below	 150	 000	 microstrain	
(O'Connell	 et	 al.,	 2011),	 DIC	 can	 be	 used	 to	 investigate	 both	 physiological	
deformations	and	failure.	
Even	 if	 large	 deformations	 and	 displacements	 were	 involved,	 correlation	 was	
satisfactory	 throughout	 the	 tests.	 	 The	 correlated	 surface	 covered	 the	 desired	
field	of	view,	with	a	loss	of	correlation	lower	than	5.7%	of	the	initial	correlated	
surface.	 	 This	 loss	 of	 correlation	was	 due	mainly	 to	 the	 leakage	 of	marrow	 or	
blood	from	the	vertebral	body	during	the	compression,	especially	in	the	frontal	
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view.	 	 Additionally,	 the	 out-of-plane	 movements	 of	 the	 posterior	 elements	
(capsule)	 caused	 some	 out-of-focus	 in	 the	 lateral	 view.	 	 The	 white-on-black	
patter	prepared	confirmed	its	suitability	both	for	hard	and	soft	tissues	(Lionello	
et	 al.,	 2014).	 	 In	 fact,	 the	 background,	 prepared	 with	 methylene-blue,	 did	 not	
crumble	during	the	tests,	while	the	white	dots	remained	sharp	and	adherent	to	
the	specimen’s	surface.		
The	evaluated	strains	confirmed	the	expected	trends	in	all	the	performed	tests:	
larger	 strains	 were	 measured	 in	 the	 intervertebral	 discs	 (in	 the	 order	 tens	
thousands	 microstrain),	 lower	 strains	 in	 the	 vertebrae	 (below	 2	 000	
microstrain).	 	 Such	 strain	 gradients	 are	 consistent	 with	 the	 expected	
biomechanics	of	the	spine	(White	III	and	Panjabi,	1990).	 	DIC	discriminated	the	
portion	 of	 the	 discs	 subjected	 to	 tension/compression,	 with	 the	 expected	
orientation	 of	 the	 principal	 strains.	 	 In	 fact,	 DIC	 was	 able	 to	 capture	 the	
compression	and	its	relative	bulging	of	the	discs:	 in	the	compressed	side	of	the	
discs	 the	 minimum	 principal	 strains	 were	 axial,	 as	 expected;	 the	 maximum	
principal	strains	were	large,	and	with	a	horizontal	orientation.	
Moreover,	 the	 combination	 of	 the	 selected	 pattern,	 software	 parameters,	 and	
hardware	allowed	easily	recognizing	the	deformation	on	the	growth	cartilages	of	
the	 vertebrae.	 	 This	 would	 otherwise	 be	 impossible	 to	 evaluate,	 e.g.,	 with	
traditional	strain	gauges.		Being	the	spine	obtained	by	young	pigs	(Taylor,	1975)	
the	 growth	 cartilages	 were	 not	 closed,	 and	 so	 they	 were	 subjected	 to	 larger	
deformation	compared	with	vertebrae	(Fig.	3).			
To	 the	 authors’	 best	 knowledge,	 this	 is	 the	 first	 time	 that	 strain	patterns	were	
measured	simultaneously	on	the	vertebrae	and	intervertebral	discs	of	the	same	
spine	specimens.		Measurements	were	carried	out	in	a	frontal	and	a	sagittal	full-
field	 view,	 in	different	 loading	 configurations,	 frequently	 explored	 in	 literature	
(Brandolini	 et	 al.,	 2014).	 	Usually,	 in	vitro	 spine	 segments	were	 investigated	 in	
terms	of	range	of	inter-segment	motion	(Busscher	et	al.,	2009;	Oda	et	al.,	2002;	
Panjabi	 et	 al.,	 1994;	Wilke	 et	 al.,	 1997)	 and	 overall	 stiffness	 (Anderson	 et	 al.,	
2009;	 Busscher	 et	 al.,	 2009;	Hansson	 et	 al.,	 1987;	 Shim	 et	 al.,	 2006).	 	 In	 other	
works	 the	 spine	 was	 investigated,	 accounting	 local	 deformation	 either	 in	 the	
vertebrae	or	in	the	intervertebral	discs.		In	the	vertebrae,	strains	were	evaluated	
in	 a	 point-wise	 way	 using	 strain	 gauges,	 which	 offer	 an	 accurate	 and	 precise	
value	of	the	strain,	but	only	on	those	points	where	strain	gauges	are	applied.		At	
the	 same	 time,	 strain	 gauges	 cause	 a	 reinforcement	 effect,	 especially	 on	 thin	
osteoporotic	 tissues	 (Cristofolini	 et	 al.,	 2013;	Danesi	 et	 al.,	 2016a).	 	Otherwise,	
the	 vertebrae	 were	 studied	 using	 DIC	 (Gustafson	 et	 al.,	 2016;	 Palanca	 et	 al.,	
2015a),	but	without	evaluating	the	contiguous	discs.		Conventional	strain	gauges	
cannot	 be	 used	 on	 the	 discs,	 due	 to	 their	 low	 elastic	 modulus:	 strain	
measurement	is	possible	with	optical	methods	(Spera	et	al.,	2011;	Stokes,	1987).		
A	work	that	focused	on	the	strain	distribution	on	spine	segments	was	developed	
by	 Holsgrove	 et	 al.	 (Holsgrove	 et	 al.,	 2015).	 	 They	 used	 high-speed	 3D-DIC	 to	
evaluate	 the	 strains	 on	 the	 anterior	 side	 of	 porcine	 cervical	 spine	 segments	 in	
axial	impacts.		They	identified	the	peak	surface	strain	at	failure,	but	they	did	not	
report	a	quantitative	full-field	strain	map.			
A	 limitation	 of	 this	 work	 could	 be	 the	 use	 of	 porcine	 spine	 instead	 of	 human	
spine.	 	 This	 choice	was	mandatory	 because	 of	 ethical	motivations:	 this	was	 an	
exploratory	methodological	work	to	assess,	for	the	first	time,	the	applicability	of	
this	 procedure	 to	 the	 thoracolumbar	 spine.	 	 The	 porcine	 spines	 are	 different	



Application	of	Digital	Image	Correlation	on	spine		

Paper under preparation 

74	

from	 the	 human	 ones	 in	 some	 details,	 but	 are	 a	 valid	 biomechanical	 model	
(Busscher	et	al.,	2010a;	Wilke	et	al.,	2011)	to	demonstrate	the	feasibility	of	this	
novel	approach.	In	fact,	this	work	aimed	to	define	a	new	procedure	to	investigate	
spine	segments,	not	to	quantify	the	biomechanics	of	the	porcine	spine	itself.		The	
applied	 loading	 configurations	 were	 not	 intended	 to	 replicate	 any	 specific	
physiological	motor	 task,	 but	 included	 separate	 components	 of	 load	which	 are	
present	in	physiological	motor	tasks	(anterior	bending	and	lateral	bending),	and	
which	are	typically	found	in	spine	biomechanics	(Brandolini	et	al.,	2014).		These	
loading	configurations	were	implemented	to	identify	possible	limitations	of	this	
technique.			
Finally,	 this	 work	 showed	 the	 importance	 of	 exploring	 the	 full-field	 strain	
pattern	 on	 spine	 segments,	 due	 to	 the	 high	 strain	 gradients	 and	 differences	
between	 the	bone	and	 the	discs.	 	Our	 findings	entail	new	possible	applications	
for	basic	biomechanics	research	and	clinical	innovations,	such	as	fixator	devices.			
	
	
	
4.5 Conclusion 

This	 work	 showed	 that	 starting	 from	 the	 preparation	 of	 an	 adequate	 speckle	
pattern,	through	a	validation	of	the	DIC	system	and	the	selection	of	optimal	DIC	
parameters,	 the	 full-field	 strain	 distribution	 can	 be	 evaluated	 on	 a	 complex	
structure	 composed	 of	 soft	 and	 hard	 tissues,	 such	 as	 a	 spine	 segments.		
Application	of	DIC	to	the	spine	can	increase	the	understanding	in	the	spine	field,	
and	open	the	way	to	a	new	approach	both	to	basic,	and	translational	research.			
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5.1 Introduction  

The	last	years	have	seen	the	success	and	increasing	application	of	Digital	Volume	
Correlation	 (DVC)	 (Bay	 et	 al.,	 1999a;	 Roberts	 et	 al.,	 2014)	 in	 measuring	
displacements	and	strains	 inside	bones	(Grassi	and	 Isaksson,	2015).	 	Using	 the	
keywords	 “Digital	 Volume	 Correlation	 bone”	 on	 PubMed	 only	 few	works	were	
published	more	than	5	years	ago,	while	the	first	application	is	dated	1999	(Bay	et	
al.,	 1999a).	 	 The	 principal	 reason	 of	 this	 exponential	 diffusion	 releases	 in	 the	
ability	 of	 measuring,	 for	 the	 first	 time,	 displacement	 and	 strain	 inside	 the	
specimens,	 by	means	 three-dimensional	 images.	 	 Of	 course,	 this	 diffusion	was	
incited	 by	 the	 decreasing	 cost	 of	 computational	 power,	 storage	 and	 high-
resolution	 computed	 tomography	 (CT)	 or	 magnetic	 resonance	 imaging	 (MRI)	
scans	and	the	equivalent	increasing	potentiality	of	them.	 	At	the	same	time,	the	
DVC	ability	of	measuring	inside	specimens	coincides	with	its	weak	point,	because	
no	other	measurement	techniques	were	able,	today,	to	provide	the	same	kind	of	
measurements.	 	 It	 implicates	 the	 issue	 of	 validating	 this	 tool.	 	 In	 fact,	 the	
exportable	data	were	potentially	interesting	but	the	reliability	of	them,	in	term	of	
measurement	 uncertainties,	 cannot	 be	 taken	 for	 granted.	 	 A	 large	 number	 of	
questions,	about	the	effect	of	quality/noise	of	images,	of	spatial	resolution,	of	the	
specimens,	of	the	surrounding,	of	algorithms,	of	setting	parameters	were	without	
answers.			
Due	to	the	necessity	of	validating	this	tool,	and	the	opportunity	of	expanding	the	
biomechanics	 knowledge,	 the	 Digital	 Volume	 Correlation	 became,	 before	 a	
measurement	 tool,	 a	 tool	 to	 validate.	 	 Different	 studies	 assessed	 the	 effect	 of	
single	inputs,	with	different	techniques,	contributing	to	the	creation	of	a	shared	
benchmark	 test	 to	 evaluate	 the	 performance	 of	 a	 new	 DVC	 algorithm,	 a	
methodology	 to	estimate	 the	errors	and	 the	sources	of	error,	 the	diffusion	of	a	
new	reliable	technique.			
This	 review	 born	 to	 the	 necessity	 of	 a	 critical	 judgment	 of	 forthcoming	 data,	
which	 will	 be	 available	 by	 means	 of	 DVC,	 and	 the	 frequent	 lack	 of	 a	 priori	
evaluation	of	the	tool.	
The	aim	of	this	review	was	to	summarize	the	know-how	about	the	validation	of	
DVC,	 splitting	 two	 scenarios	 of	 zero-strain	 condition	 and	 non-zero-strain	
condition,	 covering	 the	 problem	 from	 tissue-level	 to	 organ	 level,	 in	 order	 to	
assess	the	effect	of	different	parameters.		This	review	is	conceived	for	DVC	users,	
developer,	and	all	the	related	companies	(i.e.	micro-CT	developers)	and	it	would	
improve	their	application	to	open	the	way	to	a	clinical	use.			
	
	
	
5.2 Digital Volume Correlation operating principles 

The	description	of	the	DVC-based	functions	and	algorithms	(Freddi	et	al.,	2015;	
Roberts	et	al.,	2014)	 falls	outside	 the	aims	of	 this	 review,	but	rudiments	of	 the	
operating	principles	are	necessary	to	understand	the	related	problems.			
The	 first	 step	 is	 the	 image	 acquisition	 of	 the	 specimens	 before	 and	 during	 the	
application	 of	 the	 load.	 	 A	 high-resolution	 3D	 imaging	 system,	 such	 as	 a	
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laboratory	desk	micro	computed	tomography,	with	a	 loading	stage	(Madi	et	al.,	
2013;	 Tozzi	 et	 al.,	 2012)	 is	 required	 for	 the	 stepwise	 loading.	 	 The	 acquired	
images	of	 the	specimen	are	used	 to	compute	 the	displacement	and	strain	 field.		
Two	different	DVC	approaches	are	available:		

• The	global	approach	(Barber	and	Hose,	2005;	Barber	et	al.,	2007;	Dall'Ara	
et	 al.,	 2014;	 Madi	 et	 al.,	 2013),	 which	 analyses	 the	 whole	 volume	 of	
interest	 for	 the	 recognition	 of	 identical	 features,	 superimposing	 a	
selectable	grid	and	minimizing	the	sum	of	square	differences	with	respect	
to	the	unknown	kinematics	degrees	of	freedom;		

• The	 local	 approach	 (Madi	 et	 al.,	 2013;	 Palanca	 et	 al.,	 2015b),	 which	
divides	the	volumes	of	interest	in	smaller	and	selectable	subvolumes	that	
are	then	individually	cross-correlated	(using	fast-Fourier	transformer,	or	
direct-correlation).			

When	 the	 correlation	 procedures	 have	 converged,	 and	 the	 quality	 of	 these	
correlations	is	expressed	with	the	residuum,	the	displacement	field	is	computed.		
As	 for	 the	 Digital	 Image	 Correlation	 (Palanca	 et	 al.,	 2016a),	 the	 displacement	
field	 should	 have	 a	 subvoxels	 accuracy	 to	 evaluate	 the	 displacement	 in	 elastic	
regime.		In	order	to	achieve	this	goal,	different	orders	of	interpolations	are	used	
(Bay	et	al.,	1999a).		The	last	step	is	the	evaluation	of	the	strain	field	starting	from	
the	displacement	field.		For	the	two	approaches	the	operations	are	different,	but	
the	 related	 problem	 is	 in	 common.	 	 In	 fact,	 the	 strain	 can	 be	 obtained	 by	
differentiation	 of	 the	 displacements,	 but	 the	 displacement	 fields	 have	
discontinuities	that	do	not	allowed	the	differentiating	operations.	 	To	solve	this	
problem,	 the	 local	 approach	 computed	 the	 strain	 field	 from	 the	 displacements	
evaluated	 on	 the	 center	 of	 each	 subvolume	 using	 center	 finite	 differences	
(Palanca	 et	 al.,	 2015b).	 	 The	 global	 approach,	 instead,	 converted	 the	 grid	 in	 a	
finite	 element	 mesh.	 	 So	 the	 displacement	 at	 the	 nodes	 of	 grid	 becomes	 the	
boundary	 conditions	 for	 the	 computation	 of	 strain	 through	 a	 finite	 element	
solver	(Dall'Ara	et	al.,	2014).			
	
	
	
5.3 Causes of errors 

A	series	of	parameters,	 from	the	acquisition	of	the	images	to	the	elaboration	of	
the	 strain,	 can	 affect	 the	 measurement	 uncertainties.	 	 The	 selection	 of	 some	
parameters	 sometimes	 is	 imposed,	 such	 as	 the	 available	 technology	 to	 acquire	
the	 images;	 other	 times	 the	 selection	 of	 the	 parameters	 can	 be	 optimized	 in	
order	 to	 reduce	 the	 uncertainties,	 such	 as	 the	 dimension	 of	 the	measurement	
spatial	resolution.		The	principal	parameters	(Fig.	1)	were:	

• The	 imaging	 technology:	 it	 is	 the	machine	 (technology)	 used	 to	 acquire	
the	3D-images	of	the	specimen	(Mobilio	et	al.,	2015;	Stock,	2009;	Stoller,	
2006).	 	 It	 could	 be:	 MRI,	 microMRI,	 CT,	 microCT,	 SynchrotronCT,	 OCT.		
Pros	 and	 cons	 are	 connected	 for	 each	 technology.	 	 The	 discriminating	
factor	for	the	selection	of	the	technology	is	the	kind	of	specimen:	hard	or	
soft	 tissue,	 in	vivo	or	 in	vitro.	 	The	 technology	with	an	higher	 signal-to-
noise	ratio	could	reduce	the	measurement	uncertainties,	for	example	the	
SynchrotronCT,	but	cannot	be	ever	used,	i.e.	for	in	vivo	tests;	
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Fig.	1:	Exemplification	of	the	principal	parameters	affecting	the	measurement	uncertainties.		
Imaging	technology:	traditional	microCT	vs	synchrotron	microCT;	spatial	resolution:	1.6μm	vs	

10μm;	DVC	approach:	local	vs	global;	subvolumes:	small	vs	large;	overlap:	50%	vs	25%;	
differentiation	strategy:	centred	finite	differences	vs	finite	element	solver.	
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• The	spatial	resolution:	this	is	deeply	connected	to	the	imaging	technology	
(Leclerc	 et	 al.,	 2012).	 	The	 smaller	 the	 spatial	 resolution,	 the	higher	 the	
feature	 resolvable.	 	 But	 a	 small	 voxel	 size	 cannot	 be	 ever	 obtained;	
sometimes	it	is	due	thanks	to	a	high	radiation	dose,	other	times	through	a	
long	 time	 scanning	 session.	 	 A	 compromise	 between	 spatial	 resolution	
and	the	kind	of	specimen	and	test	is	mandatory;	

• The	 DVC	 approach:	 two	macro-family	 are	 available:	 the	 local	 approach,	
and	 the	global	 approach	 (Hild	and	Roux,	2012).	 	The	differences	 rely	 in	
the	volumes	(subvolumes	or	the	entire	volume)	taken	into	account	for	the	
evaluation	of	the	displacement;	

• The	 sub-volume	 size:	 it	 is	 the	 three-dimensional	 equivalent	 of	 the	 facet	
for	the	DIC.	It	is	the	dimension	of	the	sub-3D-image	used	to	recognize	the	
features;	

• The	overlap:	is	the	step	between	consecutive	sub-volumes;	
• The	 strain	 evaluation:	 the	 strains	 were	 obtained	 differentiating	 the	

displacement	 field.	 	 But,	 in	 same	 points	 the	 displacement	 field	 has	
discontinuity,	 so	 it	 is	 necessary	 a	method	 to	 pass	 through	 this	 problem	
and	that	limited	the	error.		

	
	
	
5.4 How can we quantify accuracy and precision? 

A	brief	explanation	of	the	issue	related	to	the	validation	of	the	DVC	is	mandatory.		
The	DVC,	as	its	surface	counter	part:	the	Digital	Image	Correlation	(Palanca	et	al.,	
2016a;	Sutton	et	al.,	2009),	showed	an	impressive	accuracy	and	precision	for	the	
displacement	measurement.	 	 This	 is	 due	 to	 the	 correlation	process,	 previously	
described,	 that	 allows	 containing	 the	 measurement	 uncertainties	 of	 the	
displacement	under	one	tenth	the	voxel	size	(Palanca	et	al.,	2015b;	Roberts	et	al.,	
2014).		Another	level	of	uncertainties,	instead,	is	connected	to	the	strain.		In	fact,	
the	strain	 is	obtained	through	differentiation	that	acts	 in	 the	opposite	way	of	a	
filter,	 enhancing	 the	 noise.	 	 A	 series	 of	 works	 showed	 procedures	 and	
optimizations	 in	order	to	reduce	the	strain	measurement	uncertainties	starting	
from	the	preparation	of	the	3D-images.		To	these	reasons,	the	following	sections	
of	the	work	focused	mainly	on	the	strain	analysis.	
	
5.4.1 Zero-strain scenarios 
The	zero-strain	 tests	 represent	 the	simplest	way	 to	access	 the	minimum	strain	
error	of	DVC.	 	 It	consists	 in	a	pair	of	3D	 images,	of	 the	same	specimen	without	
any	load,	obtained:		

• Scanning	twice	without	any	repositioning	(later	referred	to	as	“Repeated-
Scan-Test”)(Bay	et	al.,	1999a;	Dall'Ara	et	al.,	2014;	Gillard	et	al.,	2014;	Liu	
and	Morgan,	2007;	Palanca	et	al.,	2015b;	Palanca	et	al.,	2016b;	Tozzi	et	al.,	
2017;	Verhulp	et	al.,	2004;	Zauel	et	al.,	2006);	

• Scanning	once	and	virtually	moving	it	for	the	second	image	(later	referred	
to	 as	 “Virtually-Moved-Test”)(Benoit	 et	 al.,	 2009;	 Dall'Ara	 et	 al.,	 2014;	
Madi	et	al.,	2013;	Palanca	et	al.,	2015b;	Roux	et	al.,	2008);	
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• Scanning	 once	 and	 repositioning	 the	 specimen	 for	 the	 second	 scan,	
manually	 or	 virtually	 (later	 referred	 to	 as	 “Repositioned-Scan-
Test”)(Dall'Ara	 et	 al.,	 2014;	 Gillard	 et	 al.,	 2014;	 Hussein	 et	 al.,	 2012;	
Verhulp	et	al.,	2004).			

These	 tests	 are	 far	 from	 the	 loading	 condition,	 but	 they	 can	 account	 the	
minimum	and	unavoidable	strain	measurement	error.			
Respectively:	

• The	Repeated-Scan-Test	 assesses	 the	 errors	 due	 to	 the	 noise	 of	 images.		
The	 same	 specimens,	 in	 the	 same	 position,	 but	 scanned	 with	 different	
machines	 and/or	 relatively	 parameters,	 could	 have	 large	 differences	 in	
terms	of	strain	errors;	

• The	 Virtually-Moved-Test	 assesses	 the	 capability	 of	 the	 approach	 to	
recognise	 rigid-body-motion	 of	 the	 specimen,	 without	 accounting	 the	
noise	level	of	the	image.	 	Using	this	test	is	possible,	moreover,	having	an	
estimation	 of	 the	 displacement	 errors.	 	 In	 fact,	 being	 in	 zero-strain	
conditions	does	not	mean	being	 in	 zero-displacement.	 	 In	 this	 case,	 it	 is	
possible	to	evaluate	the	bias	between	the	imposed	displacement	and	the	
measured	displacement;	while	 in	other	condition	of	zero-strain,	 it	 is	not	
possible	 because	 of	 unavoidable	movements	 of	 specimen	 inside	 CT,	 the	
detector	of	CT,	and	so	on;	

• The	 Repositioned-Scan-Test	 instead	 merges	 the	 previous	 errors	 above	
described.	 	The	approach	has	 to	recognise	 images	with	different	 level	of	
noise,	because	they	are	scanned	twice,	with	the	specimen	moved	into	the	
space,	manually	or	virtually,	moving	bold	a	second	scan	image.			

On	 the	 other	 hand,	 these	 tests	 are	 not	 enough	 reliable	 for	 evaluation	 of	 the	
displacement	 measurement	 errors,	 especially	 for	 the	 differences	 between	 the	
evaluated	and	the	expected	value.		In	fact,	there	is	an	intrinsic	problem	related	to	
the	 evaluation	 of	 displacement	 systematic	 errors	 for	 these	 tests.	 	 While	 the	
computation	of	a	strain,	is	strictly	related	to	the	applied	load;	the	displacements	
measurement	 is	 inevitably	 connected	 to	 the	 micro-movements	 of	 the	 imaging	
tool	during	the	scans	that	is	impossible	to	quantify	(Liu	and	Morgan,	2007).	
	
5.4.2 Known strain scenarios 
As	 mentioned	 above,	 the	 accuracy	 and	 precision	 of	 a	 reliable	 measurement	
technique	cannot	be	 taken	 for	granted.	 	Usually,	 an	estimation	of	accuracy	and	
precision	can	be	carried	out	comparing	 the	outputs	of	 the	 tool	 to	validate	with	
the	 ones	 of	 a	 validated.	 	 But	 no	 other	 measurement	 techniques	 are	 able	 to	
provide	comparable	measurements	with	the	ones	of	DVC.		Due	to	these	reasons,	
only	verification	is	possible	instead	of	a	validation	(Babuska	and	Oden,	2004)	for	
scenarios	different	from	zero.			
A	 test	developed	 to	 estimate	 the	 strain	measurement	uncertainties	 in	 scenario	
different	from	zero	could	be	obtained	scanning	the	specimen	and	then	virtually	
stretching	 the	 obtained	 images	 of	 a	 known	 quantity	 (later	 referred	 to	 as	
“Virtually-Stretched-Test”)	(Christen	et	al.,	2012).		The	capability	of	the	approach	
to	identify	and	estimate	the	deformation	of	the	specimen	was	tested	but	all	the	
issues	related	 to	 the	acquisition	of	 the	second	scan	were	not	contemplates	 (i.e.	
the	noise	of	 the	 images	and	 the	micro-movements	of	 the	machine).	 	Moreover,	



Errors	in	Digital	Volume	Correlation	

 

82	

the	deformation	modalities	of	a	biological	specimen	are	so	far	from	an	imposed	
virtual	deformation,	and	this	problem	could	reduce	its	useful.			
A	 partial	 validation	 could	 be	 performed	 in	 non	 zero-strain	 condition	 on	 the	
surface	 of	 the	 specimen	 (Wentzell	 et	 al.,	 2015).	 	 In	 fact,	 more	 than	 a	
measurement	 technique	could	be	used.	 	But	 this	procedure	does	not	 represent	
the	 best	 condition,	 because	 the	 evaluation	 of	 strain	 with	 optics	 full-field	
measurement	tools	on	the	boundary	of	the	specimen	could	be	affected	by	large	
errors.	
	
	
	
5.5 Metrics 

DVC	provided	full-field	measurements	of	the	specimens,	but	in	order	to	compare	
the	 output	 of	 different	 approach,	 or	 simulations	 developed	 with	 different	
parameters,	simplified	indexes	were	computed:	

• The	 accuracy	 (bias,	 systematic	 error):	 that	 is	 defined	 as	 difference	
between	the	average	of	all	the	measurements	point	of	the	specimens	and	
the	 expected	 values.	 	 It	 represents	 the	 distance	 between	 the	 expected	
strain	and	the	evaluated	strain;	

• The	 precision	 (scatter,	 random	 error):	 that	 is	 defined	 as	 the	 standard	
deviation	of	all	 the	measurements	point	of	 the	specimens.	 	 It	 represents	
the	dispersion	of	the	measurements	around	their	average	value.	

Some	works	evaluated	the	accuracy	and	precision	for	each	component	of	strains,	
others	 instead	average	 the	components	providing	a	single	 index	of	comparison	
but	loosing	information.	
	
	
	
5.6 Summary of the validation works 

5.6.1 Tissue level 
The	works	here	described	cover	the	field	of	DVC	validation	for	tissue	specimens.		
The	first	to	performed	a	DVC	analysis	and	an	estimation	of	the	errors	is	(Bay	et	
al.,	 1999a).	 	 They	 worked	 on	 different	 samples	 of	 trabecular	 bone	 (human	
vertebra,	 tibia	 and	 femur),	 with	 a	 level	 of	 precision	 in	 zero	 strain	 condition	
useful	 to	explore	 the	elastic	 regime	of	bone,	opening	 the	way	 to	a	new	kind	of	
knowledge.	 	The	 same	group	 (Smith	et	 al.,	 2002),	working	on	 the	 rotation	of	 a	
trabecular	 bone	 specimens,	 developed	 the	 first	 optimization.	 	 (Verhulp	 et	 al.,	
2004)	performed	a	new	wide	factorial	design	for	the	spatial	resolution	and	the	
computational	parameters,	connected	to	the	exploration	of	the	displacement	and	
strain	on	a	single	trabecula	instead	of	the	continuum.		A	new	improvement	of	the	
approach	was	tested	by	(Zauel	et	al.,	2006).	 	They	evaluated	also	the	strains	 in	
the	 trabecular	 bone	 of	 a	 human	 vertebra	 during	 an	 axial	 compression	 and	
compared	them	to	the	results	obtained	by	a	validated	FE	model.	 	Another	wide	
factorial	design	was	planned	using	6	different	bone	types,	3	DVC	approaches,	4	
sub-volume	 sizes	 by	 (Liu	 and	 Morgan,	 2007).	 	 At	 the	 end	 of	 their	 work,	 the	
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authors	defined	the	DVC	a	reliable	tool	to	estimate	the	pre	and	post	yielding	on	
bone.	 (Christen	et	al.,	2012)	proposed	a	big	 improvement	of	 the	 imaging	using	
the	 synchrotron	 radiation	 micro	 computed	 tomography,	 instead	 of	 laboratory	
source	micro	computed	tomography	for	scanning	the	cortical	bone	of	a	murine	
tibia.	 	 This	 combination	 was	 tested	 with	 virtually	 moved	 test	 and	 virtually	
deformed	test.		The	results	showed	an	impressive	improvement	in	the	evaluation	
of	 displacement	 (precision	 of	 130nanometers),	 almost	 an	 order	 of	 magnitude	
better	than	the	other	works	(1.66-6	micrometers).		But,	at	the	same	time,	a	large	
systematic	and	 random	error	was	obtained	due	 to	 the	 small	 spatial	 resolution.		
(Gillard	 et	 al.,	 2014;	 Madi	 et	 al.,	 2013),	 as	 in	 other	 works,	 evaluated	 the	
performance	 of	 two	 different	 DVC	 approaches,	 before	 starting	 to	 use	 it	 on	
stepwise	loading	tests.		(Dall'Ara	et	al.,	2014;	Palanca	et	al.,	2015b)	evaluated	the	
displacement	 and	 strain	 measurement	 uncertainties	 on	 bovine	 cortical	 and	
trabecular	 bone,	 using	 a	 microCT,	 with	 virtually	 moved	 and	 repeated	 scans,	
elaborating	 the	 images	with	 global	 and	 local	 approach:	 this	work	 showed	how	
the	uncertainties	could	be	reduced	optimizing	the	DVC	parameters.		The	results	
obtained	 compressing	 trabecular	 bone	 by	 DVC	 and	 a	 microCT	 based	 finite	
element	 models	 were	 compared	 showing	 an	 excellent	 correlation	 in	 all	 the	
planes.	 	(Wentzell	et	al.,	2015)	introduced	the	using	of	the	confocal	microscope	
to	perform	DVC	analysis	on	the	lacunae	of	cortical	bone.		Moreover,	a	validation	
under	 actual	 loading	 condition	was	 performed	 comparing	 the	 strain	 evaluated	
on	 the	 surface	 by	means	DVC	 and	DIC,	 showing	 strains	 for	 the	Digital	 Volume	
Correlation	 larger	 than	 2-5	 fold	 compared	 with	 Digital	 Image	 Correlation.		
Finally,	a	wide	study	of	the	effect	of	the	structure	was	performed	analyzing	the	
uncertainties	 correlated	 to	 cortical	 bone,	 trabecular	 bone,	 cement	 and	 the	
interdigitation	 between	 cement	 and	 trabecular	 bone,	 using	 global	 and	 local	
approach	 (Tozzi	 et	 al.,	 2017).	 	 It	 showed	 the	 robust	 algorithm	 of	 the	 global	
approach	that	 is	 less	sensitive	to	the	boundary	condition	compared	to	the	local	
approach.		
All	 the	 reported	 works	 focused	 the	 importance	 of	 a	 validation,	 and	 showed	
different	 strategies	 to	 reduce	 the	measurement	 uncertainties.	 	 Nevertheless,	 a	
real	and	appropriate	validation	is	still	challenging	and	could	define	the	reliability	
of	this	tool.			
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Table	1:	Summary	of	the	validation	works	performed	at	tissue	type.		They	are	reported	in	chronological	order	because	the	evaluation	of	the	computational	

performance,	can	allow	using	more	efficient	parameters,	and	potentially	better	results.		For	more	details	on	the	results,	please	check	the	reference.			

	

Ref	 Tissues	 Imaging	
technique	

Voxel	size	
(micrometers)	

Validation	
tests	

Parameters		 Accuracy	
achieved	

(microstrain)	

Precision	
achieved	

(microstrain)	

Note	

(Bay	 et	

al.,	

1999a)	

Trabecular	

bones	

(human	

vertebra,	

tibia,	

femur)	

	

microCT	 35	 Repeated	

scan	

SV:	61	

OL:0	

	 211-457	 	

(Smith	 et	

al.,	2002)	

Trabecular	

bones	

(human	

vertebra)	

	

microCT	 35	 Virtually	

moved	test	

SV:	51	 	 	 Evaluated	

only	 the	

displacement	

errors	

(Verhulp	

et	 al.,	

2004)	

Al	 foam,	

like	

trabecular	

bone	

microCT	 12,	20,	36	 Repeated	

scan;	

Repositioned	

scan	

SV:	7,	13,	21	

	

<	5000	 40	000	

20	000	

10	000	

Results	

reported	

only	on	plots,	

hard	 to	

define	 the	

exact	values	
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Ref	 Tissues	 Imaging	
technique	

Voxel	size	
(micrometers)	

Validation	
tests	

Parameters	 Accuracy	
achieved	

(microstrain)	

Precision	
achieved	

(microstrain)	

Note	

(Zauel	 et	

al.,	2006)	

Trabecular	

bones	

(human	

vertebra)	

	

	

microCT	 35	 Repeated	

scan	

SV:	35	 	 39-100	 Comparison	

between	 FE	

and	DVC	

(Liu	 and	

Morgan,	

2007)	

Trabecular	

bones	

(bovine	

femur,	

tibia,	

rabbit	

femur,	

tibia,	

vertebra,	

human	

vertebra)	

	

microCT	 36	 Virtually	

moved;	

Repeated	

scan	

SV:	

20,30,40,50	

400-1300	 150-600	 Results	 for	

the	

subvolume	

size	 of	 40	

voxels	
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Ref	 Tissues	 Imaging	
technique	

Voxel	size	
(micrometers)	

Validation	
tests	

Parameters	 Accuracy	
achieved	

(microstrain)	

Precision	
achieved	

(microstrain)	

Note	

(Christen	

et	 al.,	

2012)	

Cortical	

bone	

(murine	

tibia)	

Synchrotron	

microCT	

0.74	 Virtually	

moved;	

Virtually	

deformed	

	

	 0-50	000	 11	000	–		

13	000	

	

(Madi	 et	

al.,	2013)	

Scaffold	

implant,	

like	

cartilage	

and	bone	

	

microCT	 20	 Virtually	

moved	

SV:	32,	64	

OL:	0,	50%	

	 30-200;	

	

	

(Gillard	

et	 al.,	

2014)	

Trabecular	

bone	

(porcine	

femur)	

microCT	 24.6	 Repeated	

scans;	

Repositioned	

scan	

	

SV:	 24,	 48,	

64,	96	

OL:	50%	

-25	-	40	 20-75	 	

(Dall'Ara	

et	 al.,	

2014)	

Cortical	

and	

trabecular	

bone	

(bovine	

femur)	

microCT	 9.96	 Repeated	

scans;	

Repositioned	

scan;	

virtually	

moved	

SV:	5,	10,	15,	

20,	 25,	 30,	

35,	40,	50	

0.1 –	65	477	
	

0.1	–	23	308	 	



Errors	in	Digital	Volume	Correlation	

 

87	

Ref	 Tissues	 Imaging	
technique	

Voxel	size	
(micrometers)	

Validation	
tests	

Parameters	 Accuracy	
achieved	

(microstrain)	

Precision	
achieved	

(microstrain)	

Note	

(Palanca	

et	 al.,	

2015b)	

Cortical	

and	

trabecular	

bone	

(bovine	

femur)	

microCT	 9.96	 Repeated	

scans;	

virtually	

moved	

SV:	5,	10,	15,	

20,	 25,	 30,	

35,	40,	50	

425	–		

211	119	–		

202	-		

103	332	

	

(Wentzell	

et	 al.,	

2015)	

Cortical	

bone	

(human	

femur)	

Multifoton	

Confocal	

microscope	

0.82	 Comparison	

with	DIC	

SV:	51	 	 	 Validation	 of	

the	 surface	

strain	 under	

loading	

condition	

(Chen	 et	

al.,	2016)	

Trabecular	

bone	

(human	

and	 bovine	

femur)	

microCT	 17,22	

9.92	

Comparison	

with	

microFE	

SV:	12,	25	 	 	 Excellent	

correlation		

R2=0.99	

(Tozzi	 et	

al.,	2017)	

Cortical,	

Trabecular,	

biocement	

(porcine	

vertebra)	

microCT	 39	 Repeated	

Scan	

SV:	16,	48	 -50	-	5600	 50-80	000	 	
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5.6.2 Organ level 
A	series	of	works	in	literature	instead	used	the	DVC	to	explore	the	biomechanics	
at	 organ	 level.	 	 The	 authors	 of	 these	works	 initially	 validate	 the	methods	 and	
then	 moved	 the	 know-how	 to	 their	 applications.	 	 The	 group	 of	 Hardisty	 and	
Whyne	validated	and	applied	the	DVC	analyses	at	organ	 level	(vertebrae).	 	The	
correlation	procedures	 (Hardisty	 and	Whyne,	 2009)	were	 similar	 to	 the	 tissue	
level:	 they	used	 repeated	 scans	and	virtually	deformed	 tests.	 	The	novelty	was	
the	simultaneous	study	of	different	microstructures:	such	as	the	vertebral	body	
and	 the	 growth	 plate	 (Hardisty	 et	 al.,	 2010),	 or	 in	 metastatically	 involved	
vertebrae	(Hardisty	et	al.,	2012).	 	In	this	way,	the	interaction	between	different	
structures	in	a	complex	geometry	can	be	highlighted.			
The	DVC	was	also	used	to	study	the	interaction	between	screws	and	bone	(Basler	
et	 al.,	 2011).	 	 They	 used	 a	 HR-pQCT	 for	 in	 vivo	 scanning	 and	 studied	 the	
mechanical	 interaction	between	bone	(femoral	head)	and	implant	(hip	screws).		
They	performed	two	series	of	validation:	one	based	on	repeated	scans	virtually	
moved	 and	 deformed,	 and	 another	 based	 on	 real	 displacement:	 showing	 an	
excellent	 precision	 in	 the	 displacement	 evaluation	 (1/1000	 of	 the	 image	
resolution)	 and	 a	 valid	 precision	 (around	 300	 microstrain)	 in	 the	 strain	
evaluation	for	the	measurements	in	the	elastic	regime.			
The	 spine	 was	 explored	 studying	 the	 rat	 vertebrae	 (Hussein	 et	 al.,	 2012)	 and	
then	the	 intervertebral	discs	 (Hussein	et	al.,	2013).	 	The	errors	were	evaluated	
with	 repositioned	 scans,	 showing	 an	 error	 magnitude	 potentially	 useful	 to	
explore	the	elastic	regime	(740	+/-	630	microstrain,	with	a	measurement	spatial	
resolution	of	4.8	mm).		
Finally,	 preliminary	 validation	 study,	 and	 following	 DVC	 applications	 were	
performed	on	porcine	natural	vertebrae	and	augmented	vertebrae.	 	(Palanca	et	
al.,	2016b)	explored	the	parameters	to	minimize	the	errors	in	both	the	kinds	of	
vertebrae	 (errors	 lower	 than	 200	 micrometers	 at	 a	 measurement	 spatial	
resolution	of	1.8mm).		(Tozzi	et	al.,	2016)	explored	the	biomechanics	of	natural	
vertebrae	under	 loading	condition,	showing	the	capability	of	DVC	in	computing	
the	strain	 in	elastic	regime.	 	(Danesi	et	al.,	2016b)	enlarged	the	study,	studying	
the	 interdigitation	 between	 cement	 and	 trabecular	 bone	 inside	 porcine	
vertebrae	in	axial	loading	conditions.			
	
	
	
5.7 Conclusions 

This	review	wants	to	show	and	reminds	the	necessity	of	the	optimization	and	the	
validation	of	the	Digital	Volume	Correlation.		As	new	measurement	tool,	the	DVC	
allowed	 a	 series	 of	 measurements	 that	 will	 improve	 the	 knowledge	 on	 the	
biomechanical	 field.	 	At	 the	same	time,	 it	 is	mandatory	 to	know,	and	cannot	be	
ignored,	 the	 reliability	 level	 of	 this	 new	measurement	 tool	 and	 of	 its	 provided	
measurements.		The	series	of	works	reported	here,	showed	that	when	sufficient	
care	is	dedicated	to	the	knowledge	and	adjustment	of	all	the	parameters,	the	DVC	
can	became	an	actual	powerful	tool.			
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6.1 Introduction 

Digital	Volume	Correlation	 (DVC)	 is	 a	novel	 and	useful	 tool	 for	quantifying	 the	
internal	 3D	deformation	 across	 the	 entire	 volume	of	 various	biological	 tissues,	
such	as	bone	(Roberts	et	al.,	2014).		In	fact,	DVC	was	originally	developed	by	Bay	
and	 co-workers	 (Bay	 et	 al.,	 1999a)	 to	 investigate	 the	 volumetric	 strain	
distribution	 throughout	 the	 bone	 trabecular	 structure.	 	 This	 was	 done	 to	
overcome	the	limitation	of	its	2D	counterpart,	known	as	digital	image	correlation	
(DIC),	which	has	 the	 ability	 to	 compute	 strain	 and	displacement	 fields	 only	 on	
the	 external	 surface	 of	 the	 specimen	 (Gates	 et	 al.,	 2010).	 	 The	 benefit	 of	 DVC	
relies	in	the	use	of	volumetric	images,	that	can	be	obtained	by	methods	such	as	
magnetic	 resonance	 imaging	 (MRI)	 (Barber	 et	 al.,	 2007),	 microscopy	
(Khodabakhshi	 et	 al.,	 2013),	 computed	 tomography	 (CT),	 or	 high-resolution	
micro-CT	(Dall'Ara	et	al.,	2014;	Gillard	et	al.,	2014;	Liu	and	Morgan,	2007;	Madi	
et	al.,	2013;	Tozzi	et	al.,	2014),	to	track	the	deformation	of	internal	features,	by	
registering	elastically	the	images	of	undeformed	and	deformed	specimens.	 	The	
procedure	 outputs	 a	 full-field	 3D	 displacement	 vector.	 	 Afterwards,	 the	
displacement	 fields	 are	 differentiated	 using	 various	 numerical	 differentiation	
approaches	to	obtain	full-field	strain	maps	(Pan	et	al.,	2014).	
Since	 it	 was	 introduced,	 DVC	 in	 combination	 with	 micro-CT	 allowed	 the	
determination	of	displacement	and	strain	field	inside	trabecular	bone	(Bay	et	al.,	
1999a;	Dall'Ara	et	al.,	2014;	Gillard	et	al.,	2014;	Liu	and	Morgan,	2007),	cortical	
bone	 (Christen	 et	 al.,	 2012;	 Dall'Ara	 et	 al.,	 2014),	 trabecular	 bone	 substitutes	
(Madi	 et	 al.,	 2013),	 Aluminum	 foams	 (Smith	 et	 al.,	 2002)	 and	 also	
trabecular/cortical-cement	 composites	 (Tozzi	 et	 al.,	 2014).	 	 However,	 DVC	
employs	a	number	of	 computational	 strategies	 to	 recognize	 the	 features	of	 the	
undeformed	 (fixed)	 and	deformed	 (moved)	 volumes	 and,	 therefore,	 to	 provide	
estimates	 of	 displacement	 and	 strain	 distribution.	 	 Comparison	 studies	 among	
different	 DVC	 approaches	 are	 mandatory	 as	 accuracy	 and	 precision	 may	 vary	
significantly,	depending	on	factors	such	as	quality	of	the	images,	typology	of	the	
specimen	 under	 investigation	 and	 intrinsic	 nature	 of	 the	 computational	
approach	(Dall'Ara	et	al.,	2014;	Roberts	et	al.,	2014;	Tozzi	et	al.,	2014).	 	 In	fact,	
while	 numerical	 and	 experimental	 methods	 can	 validate	 each	 other	 if	 similar	
testing	 arrangements	 are	 defined,	 there	 is	 no	 golden	 standard	 to	 date	 for	 the	
assessment	 of	 the	 accuracy	 and	 precision	 of	 a	 DVC	 strategy,	 due	 to	 the	
unavailability	of	other	accurate	 techniques	able	 to	measure	 internal	 strains.	 	A	
first	 attempt	 to	 compare	 different	 DVC	 approaches	 used	 to	 investigate	 the	
performance	 of	 a	 trabecular	 bone	 substitute	 (porous	 polymeric	 scaffold)	 was	
carried	out	by	Madi	et	al.	(Madi	et	al.,	2013),	who	compared	the	output	of	a	local	
correlation	 algorithm	based	on	Fast	 Fourier	Transform	 (FFT)	 and	 another	one	
based	on	a	continuous	and	global	home-written	code	(Benoit	et	al.,	2009;	Roux	et	
al.,	 2008).	 	However,	 in	Madi	 et	 al.	 (Madi	 et	 al.,	 2013)	displacement	 and	 strain	
uncertainties	of	the	two	DVC	methodologies	were	assessed	only	in	relation	to	a	
virtual	imposed	rigid	displacement	test.		Hence,	the	strain	fluctuation	associated	
with	 repeated	 scans	 (Dall'Ara	 et	 al.,	 2014;	 Gillard	 et	 al.,	 2014)	 was	 not	
considered.			
The	accuracy	and	precision	of	DVC	in	quantifying	displacements	and	strains	have	
been	investigated	for	trabecular	bone	(Dall'Ara	et	al.,	2014;	Gillard	et	al.,	2014;	
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Liu	and	Morgan,	2007),	cortical	bone	(Christen	et	al.,	2012;	Dall'Ara	et	al.,	2014)	
and	whole	bones	(Hussein	et	al.,	2012;	Hussein	et	al.,	2013),	where	a	single	DVC	
software,	either	commercial	or	home-written,	was	employed.		Moreover,	in	most	
cases	 errors	 are	 quantified	 in	 terms	 of	 average	 of	 the	 strain	 components	
(Dall'Ara	et	al.,	2014;	Liu	and	Morgan,	2007).		Only	in	one	case	the	error	affecting	
the	 DVC-computed	 single	 components	 of	 displacement	 and	 strain	 has	 been	
quantified	for	trabecular	bone	(Gillard	et	al.,	2014).		For	all	these	reasons,	further	
comparative	 accuracy	 investigations	 of	 DVC	 methodologies	 are	 needed	 to	
interpret	 the	 results	 obtained	 in	 bone	 applications.	 	 Only	 in	 this	 way	 the	
suitability	 of	 a	 specific	 DVC	 approach	 can	 be	 evaluated	 against	 both	 bone	
structure	(i.e.	cortical,	trabecular,	cortical	and	trabecular	together)	and	'scale'	of	
examination	 (i.e.	 dimension	 of	 the	 specimen,	 particular	 set	 of	 loading	
conditions).	
	 The	aim	of	 this	study	was	to	perform	a	more	extensive	validation	of	 the	
DVC,	 to	 better	 elucidate	 the	 sources	 of	 error	 affecting	 both	 displacement	 and	
strain	 calculations	 at	 the	 tissue	 level.	 	 Specifically,	we	 compared	 the	 output	 of	
three	different	DVC	approaches	applied	on	the	same	micro-CT	scanned	specimen	
(trabecular	and	cortical	bone)	by	investigating:	

• The	 accuracy	 and	 precision	 in	 computing	 the	 displacement	 and	 strain	
fields	 for	 two	 zero-strain	 conditions:	 a	 virtually	 simulated	 3D	 rigid	
displacement,	and	a	specimen	re-scan	condition;	

• The	influence	of	different	computation	settings	on	the	final	outputs;	
• The	 presence	 of	 preferential	 directions	 for	 strain	 measurement	 in	 the	

different	algorithms.	
	
	
	
6.2 Material and Methods 

6.2.1 Specimens and Images 
Two	specimens	(Fig.	1)	were	obtained	from	a	fresh	bovine	femur:	a	cylinder	of	
cortical	bone	was	extracted	from	the	diaphysis	(3	mm	diameter,	20	mm	height),	
and	a	cylinder	of	 trabecular	bone	was	extracted	from	the	greater	trochanter	(8	
mm	diameter,	12	mm	height).	 	The	specimens	were	already	used	 in	a	previous	
study	 (Dall'Ara	 et	 al.,	 2014)	 and	 were	 collected	 from	 an	 animal	 sacrificed	 for	
alimentary	purposes.	
In	 order	 to	 compare	 the	 displacement	 and	 strain	 uncertainties	 using	 different	
DVC	 techniques,	 virtual	 image	 translation	 and	 zero-strain	 repeated	 scans	 (Liu	
and	Morgan,	 2007)	were	 employed.	 	Micro-CT	 scans	were	performed	 in	 saline	
solution	 (SkyScan	 1172,	 Bruker,	 Belgium;	 scanned	 height:	 9.323	 mm;	 10	
Megapixels	 12-bit	 digital	 cooled	 ORCA-HR	 CCD;	 2000	 x	 1048	 pixel;	 1	 mm	
Aluminum	beam	hardening	filter;	power:	10	W;	voltage:	59	kV	for	the	trabecular	
bone	 and	 70	 kV	 for	 the	 cortical	 bone;	 voxel	 size:	 9.96	 micrometer;	 exposure:	
1180	 ms;	 rotation	 step:	 0.7°;	 total	 rotation	 180°;	 images	 averages:	 x2).	 	 Each	
specimen	was	 scanned	 twice	 (Dall'Ara	 et	 al.,	 2014),	without	 any	 repositioning	
between	the	scans	(Scan1	and	Scan2).		In	order	to	avoid	possible	artifacts	due	to	
small	movements	 of	 free	 trabeculae	 at	 the	 outer	 surface,	 a	 volume	 of	 interest	
(VOI)	consisting	of	a	parallelepiped	with	a	section	of	180	voxels	x	180	voxels	and	
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a	 height	 of	 932	 voxels,	 was	 cropped	 in	 the	 central	 portion	 of	 the	 scanned	
cylinders.	 	 Two	 tests	were	 performed	 on	 the	 VOI	 extracted	 from	 both	 cortical	
and	trabecular	specimens	(Fig.	1):	
	“Repeated-Scan-Test”:	 Scan1	 and	 Scan2	 were	 correlated	 in	 order	 to	 obtain	 a	
condition	 of	 zero-strain	 and	 real	 displacements,	 due	 to	 the	 machine	 micro-
movements.		
	“Virtually-Moved-Test”:	 Scan1	 was	 virtually	 translated	 of	 two	 voxels	 (19.92	
micrometer)	 in	 each	 direction	 (Scan1_Moved)	 in	 order	 to	 obtain	 a	 known,	
controlled	 displacement	 with	 a	 zero-strain	 field.	 	 Correlation	 of	 Scan1_Moved	
was	computed	with	reference	to	the	original	Scan1.		A	bounding	box	of	ten	voxels	
was	added	all	around	the	specimen	in	order	to	avoid	losing	part	of	the	image.			
The	 cropping	 and	 translation	 were	 performed	 by	 means	 of	 a	 free	 imaging	
processing	 toolkit	 MeVisLab	 (MeVis	 Medical	 Solution	 AG,	
http://www.mevislab.de/).	
	 	

	

	
Fig.	1	–	Schematic	of	the	two	specimens	obtained	from	a	fresh	bovine	femur:	a	cylinder	of	cortical	

bone	was	extracted	from	the	diaphysis	(3	mm	diameter,	20	mm	height),	and	a	cylinder	of	
trabecular	bone	was	extracted	from	the	greater	trochanter	(8	mm	diameter,	12	mm	height).		
Each	specimen	was	scanned	twice	(height	of	9.323	mm).		Identical	Volumes	of	Interest	(VOI)	
were	extracted	from	each	specimen.		The	displacements	and	strains	were	computed	for	such	a	
zero-strain	condition,	both	between	Scan	1	and	Scan	2,	and	by	virtually	displacing	Scan	1.	
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6.2.2 DVC approaches under investigation 
The	 outputs	 of	 three	 DVC	 approaches	 were	 compared	 (Fig.	 2),	 for	 both	
specimens	and	for	both	Repeated-Scan-Test	and	Virtually-Moved-Test.		
	

	
Fig.	2	–	Description	of	the	three	DVC	approaches	for	the	determination	of	strain	accuracy	and	
precision.		DaVis	software	enabled	both	Fast	Fourier	Transform	(DaVis-FFT)	and	Direct	

Correlation	(Davis-DC)	displacement	calculation	and	strain	was	computed	using	a	Centred	Finite	
Difference	(CFD)	scheme.		A	custom-written	software	(ShIRT)	in	combination	with	a	finite	

element	(FE)	solver	was	also	tested.	
	
The	 first	 two	approaches	are	 implemented	 in	commercial	DVC	software:	DaVis	
8.2.1	(LaVision	Ltd,	Goettingen,	Germany).	 	The	volume	correlation	begins	with	
the	 division	 of	 the	 3D	 images	 into	 smaller	 and	 selectable	 sub-volumes,	
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represented	 as	 a	 discrete	 function	 of	 grey	 levels.	 	 Recognition	 of	 identical	
features	is	possible	via	Fast-Fourier-transform	(FFT,	later	referred	to	as	“Davis-
FFT”)	(Gillard	et	al.,	2014;	Madi	et	al.,	2013)	or	via	Direct-Correlation	(DC,	later	
referred	 to	 as	 “Davis-DC”)	 (Cheminet	 et	 al.,	 2014).	 	 Either	 way,	 a	 piece-wise	
linear	 shape	 function	 for	 the	 reference-deformed	 mapping	 and	 a	 cross-
correlation	function	are	employed	to	quantify	the	similarity	between	the	images	
(Gillard	 et	 al.,	 2014;	 Madi	 et	 al.,	 2013).	 	 For	 both	 DaVis-FFT	 and	 DaVis-DC,	 a	
normalized	cross-correlation	coefficient,	rDaVis,	based	on	grey	level	gaps	is	used:		
	

	
rDaVis =

f (x, y, z)g(x ', y ', z ')
X ( x ,y,z )∈VOI
∑

f (x, y, z)2 g(x ', y ', z ')2
X* ( x ,y,z )∈VOI

∑
X ( x ,y,z )∈VOI
∑ 	(Eq.	1)	

	
where:	X	(x,	y,	z)	and	X*(x,	y,	z)	refer	to	coordinates	(in	voxels)	of	a	same	point	in	
the	initial	state	and	in	the	deformed	state;	f	and	g	are	the	grey	levels	respectively	
in	the	initial	and	deformed	images.		The	main	difference	between	DaVis-FFT	and	
DaVis-DC	 lies	 on	 the	 use	 of	 a	 Fourier	 space	 for	 the	 calculation	 in	 DaVis-FFT	
(Scarano,	 2013),	 rather	 than	 a	 direct	 coupling	 for	 DaVis-DC.	 	 A	 tri-linear	
interpolation	 is	 used	 in	 the	 case	 of	 DaVis-FFT,	 and	 a	 3rd	 order	 spline	
interpolation	 in	 DaVis-DC.	 	 The	 estimated	 full	 3D	 displacement	 field	 is	 then	
computed,	 with	 sub-voxel	 precision,	 through	 a	 predictor-corrector	 approach	
with	decreasing	subset	sizes,	and	an	 intensity	 interpolation	Gaussian	algorithm	
fitted	to	the	correlation	peak.		This	process,	also	known	as	multi-pass,	allows	the	
calculated	displacements	 from	the	predictor	step	to	be	used	to	 inform	the	next	
corrector	 step.	 	The	process	 is	 iterated	as	 the	 sub-volume	size	decreases	 to	 its	
final	defined	size.		This	process	provides	a	full	3D	field	of	displacement	vectors,	
which	describes	the	mapping	from	reference	to	deformed	state.		From	the	field	of	
resultant	 displacement	 vectors	 at	 the	 center	 of	 each	 sub-volume,	 the	 field	 of	
strain	components	is	computed	using	a	centered	finite	difference	scheme.		
The	 third	 approach	 (later	 referred	 to	 as	 “ShIRT-FE”)	 consists	 in	 combining	 a	
home-written	 elastic	 registration	 software	 ShIRT	 (Barber	 and	 Hose,	 2005;	
Barber	 et	 al.,	 2007;	 Khodabakhshi	 et	 al.,	 2013)	 with	 a	 Finite	 Element	 (FE)	
simulation	in	ANSYS	Mechanical	APDL	v.14.0	(Ansys	Inc.,	USA).	 	The	procedure,	
reported	in	(Dall'Ara	et	al.,	2014),	focuses	on	the	recognition	of	identical	features	
in	the	two	3D	images	by	superimposing	a	homogeneous	cubic	grid	with	certain	
nodal	 spacing	 (sub-volume)	 to	 the	 images	 to	 be	 registered.	 	 The	 software	
computes	 the	 nodal	 displacements	 that	 map	 each	 point	 in	 the	 first	 image	
(Scan1),	into	the	ones	in	the	second	image	(Scan2),	solving	the	equations	in	the	
nodes	 of	 the	 grid	 (Barber	 and	 Hose,	 2005;	 Dall'Ara	 et	 al.,	 2014).	 	 Briefly,	 the	
procedure	 consists	 in	 finding	 the	 displacement	 functions	 u(x,y,z),	 v(x,y,z)	 and	
w(x,y,z)	 	 that	map	the	fixed	 image	 f	(x,y,z)	 into	the	moving	 image	m(x’,y’,z’).	 	As	
described	 in	 Barber	 et	 al.	 (Barber	 et	 al.,	 2007)	 an	 additional	 intensity	
displacement	function	c(x,	y,	z)	is	included	in	order	to	account	for	changes	in	the	
grey	levels.		For	small	displacement	values	we	need	to	solve:	
	
	 !−! ≈ !

! ! !!
!" +

!!
!" + ! !!

!" +
!!
!" + ! !!

!" +
!!
!" − ! !+! 	(Eq.	2)	
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However,	 as	 this	 problem	would	 be	 underdetermined	 if	 solved	 for	 each	 voxel,	
ShIRT	solves	the	equations	only	in	the	nodes	of	a	cubic	grid	superimposed	to	the	
images	 and	 with	 elements	 as	 large	 as	 the	 imposed	 sub-volume.	 	 The	
displacements	are	interpolated	with	a	tri-linear	function	between	the	nodes.		The	
problem	is	then	solved	when	the	coefficients	a	of	the	displacement	functions	are	
found:	
	

	
! =  !!"!!!
! =  !!"!!!
! = !!"!!!

	 (Eq.	3)	

	
ShIRT	adds	an	additional	smoothness	constraint	on	the	mapping	by	including	in	
the	solution	a	term	based	on	the	Laplacian	operator	L,	and	the	coefficient	λ	that	
weights	the	relative	importance	of	smoothing.		Therefore,	it	can	be	demonstrated	
that	for	suitable	values	of	λ,	a	robust	solution	is	obtained	by	solving	the	following	
equation	in	matrix	form:	
	
	 !−! = (!!!+ !!!!)!	 (Eq.	4)	
	
where	 T	 is	 a	KxN	 matrix	 (K	 number	 of	 voxels	 in	 the	 image,	 and	N	 number	 of	
nodes	in	the	grid).		T	is	derived	from	integrals	of	the	image	gradients	multiplied	
by	the	basis	functions	of	the	displacements.		For	large	displacements	the	method	
can	 iterate	 to	 a	 correct	 solution	as	 shown	 in	 (Barber	 et	 al.,	 2007).	 	The	grid	 is	
then	 converted	 into	 an	 8-noded	 hexahedrons	 mesh.	 	 The	 displacements	
computed	by	ShIRT	at	each	node	of	the	grid	are	imposed	as	boundary	conditions	
for	the	computation	of	the	strain	field	with	a	commercial	FE	solver	(ANSYS).	
	
6.2.3 Influence of sub-volume size 
In	order	to	compare	the	results	of	 the	different	DVC	approaches	an	analysis	on	
the	 dependency	 of	 the	 accuracy	 and	 precision	 in	 function	 of	 the	 selected	 sub-
volume	size	(5-50	voxels)	was	performed	(Table	1).		In	particular,	for	the	DaVis	
approaches,	no	overlap	or	multi-pass	approach	was	used	for	a	fair	comparison.		
However,	 a	 correlation	 using	 a	multi-pass	 approach	 incorporated	 in	 DaVis	 for	
that	specific	VOI	(extending	the	computation	sub-volume	up	to	52	voxels,	Table	
2)	 was	 also	 implemented	 in	 order	 to	 investigate	 the	 effect	 of	 other	 features	
typical	of	the	DaVis	commercial	software,	for	this	specific	type	of	images.		As	the	
DaVis	software	did	not	allow	selecting	any	arbitrary	sub-volume	size	when	the	
DC	was	used	for	feature	recognition,	the	nearest	sub-volume	size	available	was	
used	(8-52	voxels).			
	
6.2.4 Metrics to quantify the accuracy and precision 
The	 components	 of	 displacement	 and	 strain	were	 extracted	 from	 the	 different	
approaches	 and	 processed	 with	 a	 home-written	 script	 MatLab	 2014a,	 (The	
MathWorks,	 Natick,	 USA).	 	 For	 the	 three	 approaches,	 accuracy	 (average)	 and	
precision	 (standard	 deviation-SD)	 were	 quantified	 for	 each	 component	 of	 the	
displacement.	 	Quantitative	comparisons	were	performed	on	the	strains	 in	 two	
ways:		
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• Scalar	 comparison:	 in	 order	 to	 compare	 the	 outputs	 of	 the	 different	
approaches	 for	 strain	 estimation,	 following	 the	 indications	 available	 in	
literature	 (Dall'Ara	 et	 al.,	 2014;	 Liu	 and	Morgan,	 2007),	 mean	 absolute	
error	(MAER)	and	standard	deviation	of	the	error	(SDER)	were	quantified	
as	the	average	and	the	SD	of	the	average	of	the	absolute	values	of	the	six	
strain	components.				

• Comparison	 by	 component:	 in	 order	 to	 investigate	 the	 presence	 of	
preferential	 components	 of	 strain	 in	 the	 algorithms,	 accuracy	 (average)	
and	precision	 (SD)	were	 reported	and	compared	 for	each	component	of	
the	strain.		

• 	
Table	1:	Comparison	of	the	correlated	volumes	for	the	different	computation	approaches,	for	
both	specimens	(cortical	and	trabecular)	and	both	tests,	and	according	to	the	size	of	the	sub-
volume.		*Note:	In	the	ShIRT-FE	approach	the	computation	occurs	only	in	the	nodes	of	the	
elements	of	the	selected	grid.	Although	the	number	of	measurement	points	was	less	than	the	
number	of	measurement	points	of	the	other	two	approaches	(DaVis-FFT	and	DaVis-DC),	this	

allows	a	correlation	on	the	whole	volume.	
	 DaVis-FFT	 DaVis-DC	 ShIRT-FE	

	 Nominal	sub-
volume	size	
(voxels)	

Actual	sub-
volume	size	
(voxels)	

Correlated	
volume	(%)	

Actual	sub-
volume	size	
(voxels)	

Correlated	
volume	(%)	

Actual	sub-
volume	size	
(voxels)	

Correlated	
volume	(%)	

	
	
	

Cortical	
	

Virtually-
Moved-
Test	

5	 5	 25.9%	 8	 100.0%	 5	

100%*	

10	 10	 79.5%	 10	 100.0%	 10	
15	 15	 100.0%	 16	 100.0%	 15	
20	 20	 100.0%	 20	 99.2%	 20	
25	 25	 100.0%	 24	 99.3%	 25	
30	 30	 97.2%	 28	 99.6%	 30	
35	 35	 100.0%	 34	 96.6%	 35	
40	 40	 100.0%	 40	 96.7%	 40	
45	 45	 100.0%	 44	 84.4%	 45	
50	 50	 100.0%	 52	 96.6%	 50	

	
	
	

Trabecular	
	

Virtually-
Moved-
Test	

5	 5	 30.3%	 8	 100.0%	 5	

100%*	

10	 10	 79.8%	 10	 100.0%	 10	
15	 15	 100.0%	 16	 100.0%	 15	
20	 20	 100.0%	 20	 99.2%	 20	
25	 25	 100.0%	 24	 99.3%	 25	
30	 30	 97.2%	 28	 99.6%	 30	
35	 35	 99.9%	 34	 96.6%	 35	
40	 40	 100.0%	 40	 96.7%	 40	
45	 45	 100.0%	 44	 84.4%	 45	
50	 50	 100.0%	 52	 96.6%	 50	

	
	
	

Cortical	
	

Repeated-
Scan-Test	

5	 5	 37.1%	 8	 100.0%	 5	

100%*	

10	 10	 94.4%	 10	 100.0%	 10	
15	 15	 100.0%	 16	 99.9%	 15	
20	 20	 100.0%	 20	 99.1%	 20	
25	 25	 100.0%	 24	 99.3%	 25	
30	 30	 100.0%	 28	 99.9%	 30	
35	 35	 100.0%	 34	 99.9%	 35	
40	 40	 100.0%	 40	 99.7%	 40	
45	 45	 100.0%	 44	 98.5%	 45	
50	 50	 91.8%	 52	 79.6%	 50	

	
	
	

Trabecular	
	

Repeated-
Scan-Test	

5	 5	 45.4%	 8	 100.0%	 5	

100%*	

10	 10	 95.8%	 10	 100.0%	 10	
15	 15	 100.0%	 16	 99.9%	 15	
20	 20	 99.9%	 20	 99.1%	 20	
25	 25	 100.0%	 24	 99.3%	 25	
30	 30	 100.0%	 28	 99.9%	 30	
35	 35	 100.0%	 34	 99.9%	 35	
40	 40	 100.0%	 40	 99.7%	 40	
45	 45	 100.0%	 44	 98.5%	 45	
50	 50	 91.8%	 52	 79.6%	 50	



Validation	of	Digital	Volume	Correlation	at	tissue	level	-	microCT	

Published in: Journal of Biomechanical Engineering (ASME), 2015, 137(7): 
071006 1 - 14 

97	

	
The	 trends	were	 analyzed	 plotting	 the	 errors	 as	 a	 function	 of	 the	 sub-volume	
sizes.	 	Different	 interpolating	 laws	were	 tested	 (linear,	polynomial,	power-law)	
in	terms	of	adjusted	determination	coefficient.		
Some	sub-volumes	could	not	be	correlated	by	the	DaVis	algorithms	(i.e.	because	
they	 contained	only	voxels	of	 constant	 intensity).	 	Due	 to	 the	algorithm	 locally	
normalizing	the	intensity,	no	correlation	at	all	is	possible	for	such	sub-volumes,	
and	as	such,	no	corresponding	displacement	vector	can	be	calculated.	 	To	avoid	
misinterpretation	 of	 the	 results,	 the	 correlated	 volume	was	 evaluated	 for	 each	
computation	 sub-volume	 size	 (Table	 1)	 as	 the	 ratio	 between	 the	 numbers	 of	
correlated	voxels	and	the	total	number	of	voxels	of	the	VOI.		This	applied	to	the	
DaVis	 approaches	 only;	 as	 of	 the	 ShIRT-FE	 the	 correlated	 volume	 is	 100%	 by	
definition.	
Finally,	the	computational	cost	of	each	approach	was	estimated	as	the	sum	of	the	
computation	 time	 needed	 for	 the	 different	 analyses.	 	 For	 the	 DaVis-FFT	 and	
DaVis-DC	the	computation	time	was	calculated	as	 the	 total	 time	 for	 the	 feature	
recognition,	 the	 time	 necessary	 for	 the	 computation	 of	 the	 displacement	 field	
and	 the	 time	needed	 for	 the	 computation	of	 the	 strain	 field.	 	 For	 the	ShIRT-FE	
approach,	 the	 computational	 cost	 was	 estimated	 as	 the	 time	 needed	 for	 the	
registration	with	ShIRT	plus	the	time	for	computing	the	strain	with	the	FE	solver.	

	
Table	2:	Parameters	used	in	the	multi-pass	approach	for	both	the	DaVis-FFT	and	the	

DaVis-DC.	
Step	 Sub-volume	size	

(voxels)	
Overlap	between	
sub-volumes	

Number	of	
iterations	

1	 96	 50%	 1	
2	 64	 50%	 2	
3	 52	 75%	 3	

	
	
6.3 Results 

The	 correlated	 volume	 (both	 trabecular	 and	 cortical	 bone)	 seemed	 to	 increase	
for	 the	 DaVis-FFT	 and	 to	 decrease	 for	 the	 DaVis-DC,	 as	 the	 computation	 sub-
volume	increased,	although	no	clear	 trend	was	observed	(Table	1).	 	Because	of	
the	different	computational	approach,	such	analysis	does	not	apply	to	the	ShIRT-
FE,	which	is	based	on	a	global	analysis	on	the	total	volume.	
	
6.3.1 Displacement 
The	comparison	of	the	displacement	among	the	different	approaches	is	reported	
only	for	the	“Virtually-Moved-Test”,	as	the	actual	displacement	in	the	“Repeated-
Scan-Test”	is	unknown.		
The	accuracy	errors	for	the	displacements	were	comparable	for	the	cortical	and	
trabecular	specimens	(Table	3).		For	the	different	sub-volume	sizes	(from	5-8	to	
50-52	voxels)	and	specimen	types	(trabecular	and	cortical),	the	largest	accuracy	
error	was	found	for	the	Davis-FFT	approach	(up	to	13	micrometer),	which	was	
larger	 than	 those	 found	 with	 the	 Davis-DC	 (never	 exceeding	 0.1	micrometer),	
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Table	3	Accuracy	of	the	computed	components	of	displacement	(micrometer)	in	the	Virtually-Translated-Test	for	the	three	DVC	approaches	and	different	sub-
volumes	in	both	cortical	and	trabecular	specimen.	The	z-direction	is	the	axis	of	rotation	of	the	specimen	during	imaging	in	the	micro-CT.	

	
	

	
	 DaVis-FFT	 DaVis-DC	 ShIRT-FE	

	 Nominal	Sub-
volume	size	
(voxels)	

Accuracy	along	
x-axis	

(micrometers)	

Accuracy	along	
y-axis	

(micrometers)	

Accuracy	along	
z-axis	

(micrometers)	

Accuracy	along	
x-axis	

(micrometers)	

Accuracy	along	
y-axis	

(micrometers)	

Accuracy	along	
z-axis	

(micrometers)	

Accuracy	along	
x-axis	

(micrometers)	

Accuracy	along	
y-axis	

(micrometers)	

Accuracy	along	
z-axis	

(micrometers)	

CO
RT

IC
AL

	B
O
N
E	

5	 13.54	 13.18	 14.11	 0.0019	 0.0019	 0.00045	 0.0015	 0.0013	 0.00073	
10	 5.02	 4.43	 5.98	 0.0079	 0.0079	 0.0017	 0.00044	 0.00023	 0.00041	
15	 5.10	 4.78	 4.47	 0.080	 0.079	 0.013	 0.00047	 0.00101	 0.0029	
20	 5.02	 4.74	 3.94	 0.026	 0.033	 0.054	 0.0000059	 0.000081	 0.0000080	
25	 5.00	 4.76	 3.59	 0.04	 0.04	 0.0017	 0.0000091	 0.0000068	 0.0000044	
30	 4.18	 3.95	 3.13	 0.047	 0.047	 0.0084	 0.00018	 0.00016	 0.000501	
35	 4.32	 4.12	 3.16	 0.052	 0.052	 0.0099	 0.00027	 0.000014	 0.000025	
40	 5.25	 5.07	 2.90	 0.063	 0.064	 0.008	 0.0027	 0.000053	 0.00015	
45	 3.66	 3.39	 2.88	 0.052	 0.051	 0.00033	 0.000022	 0.0000050	 0.000018	
50	 5.47	 5.26	 2.96	 0.074	 0.074	 0.0095	 0.0000032	 0.0000047	 0.000012	

TR
AB

EC
U
LA

R	
BO

N
E	

5	 14.48	 14.33	 14.86	 0.0011	 0.0013	 0.00074	 0.0012	 0.0012	 0.0013	
10	 7.79	 7.50	 9.27	 0.0034	 0.0056	 0.00062	 0.00034	 0.00025	 0.00089	
15	 8.75	 8.55	 9.23	 0.0092	 0.011	 0.0012	 0.00068	 0.00071	 0.0029	
20	 9.21	 8.97	 9.58	 0.014	 0.00065	 0.018	 0.000080	 0.000042	 0.000034	
25	 9.43	 9.33	 9.51	 0.0083	 0.011	 0.0031	 0.000011	 0.000016	 0.000022	
30	 9.42	 9.28	 9.12	 0.0097	 0.011	 0.0014	 0.0000088	 0.000096	 0.000047	
35	 9.35	 9.10	 8.84	 0.012	 0.011	 0.0029	 0.000048	 0.0000023	 0.000011	
40	 8.67	 8.31	 8.37	 0.012	 0.011	 0.00099	 0.000403	 0.000028	 0.00016	
45	 8.54	 8.22	 7.61	 0.012	 0.012	 0.0012	 0.000045	 0.000004	 0.000012	
50	 7.14	 6.96	 6.85	 0.012	 0.011	 0.0011	 0.0000026	 0.0000004	 0.0000098	
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Table	4	Precision	of	the	computed	components	of	displacement	(micrometer)	in	the	Virtually-Translated-Test	for	the	three	DVC	approaches	and	different	sub-
volumes	in	both	cortical	and	trabecular	specimen.	The	z-direction	is	the	axis	of	rotation	of	the	specimen	during	imaging	in	the	micro-CT.	

	
	

	
	 DaVis-FFT	 DaVis-DC	 ShIRT-FE	

	 Nominal	Sub-
volume	size	
(voxels)	

Precision	along	
x-axis	

(micrometers)	

Precision	along	
y-axis	

(micrometers)	

Precision	along	
z-axis	

(micrometers)	

Precision	along	
x-axis	

(micrometers)	

Precision	along	
y-axis	

(micrometers)	

Precision	along	
z-axis	

(micrometers)	

Precision	along	
x-axis	

(micrometers)	

Precision	along	
y-axis	

(micrometers)	

Precision	along	
z-axis	

(micrometers)	

CO
RT

IC
AL

	B
O
N
E	

5	 6.62	 6.73	 6.53	 0.32	 0.33	 0.17	 0.086	 0.086	 0.37	
10	 8.12	 8.04	 7.40	 0.15	 0.16	 0.093	 0.017	 0.017	 0.067	
15	 5.29	 5.20	 5.36	 0.22	 0.22	 0.093	 0.019	 0.019	 0.077	
20	 4.87	 4.84	 3.92	 1.06	 1.03	 0.42	 0.0024	 0.0023	 0.0092	
25	 4.83	 4.81	 3.44	 0.078	 0.079	 0.054	 0.00093	 0.00095	 0.00044	
30	 3.93	 3.89	 2.75	 0.082	 0.081	 0.04	 0.0037	 0.0037	 0.014	
35	 3.85	 3.81	 2.95	 0.085	 0.085	 0.041	 0.00093	 0.00066	 0.00074	
40	 4.37	 4.32	 2.48	 0.087	 0.086	 0.038	 0.0057	 0.0011	 0.0036	
45	 3.67	 3.52	 2.76	 0.082	 0.081	 0.054	 0.00063	 0.00054	 0.00076	
50	 3.94	 3.88	 2.88	 0.084	 0.084	 0.039	 0.00013	 0.00013	 0.00016	

TR
AB

EC
U
LA

R	
BO

N
E	

5	 6.19	 6.22	 5.79	 0.35	 0.33	 0.28	 0.087	 0.087	 0.37	
10	 8.37	 8.24	 7.30	 0.19	 0.18	 0.21	 0.017	 0.017	 0.068	
15	 7.38	 7.05	 7.05	 0.11	 0.11	 0.15	 0.019	 0.019	 0.078	
20	 7.29	 6.98	 6.79	 0.66	 0.57	 0.22	 0.0025	 0.0025	 0.0097	
25	 7.22	 6.78	 6.95	 0.07	 0.059	 0.089	 0.00093	 0.00095	 0.00045	
30	 6.90	 6.49	 6.82	 0.054	 0.045	 0.064	 0.0033	 0.0033	 0.012	
35	 6.63	 6.14	 6.57	 0.036	 0.032	 0.039	 0.00058	 0.00065	 0.00075	
40	 6.36	 5.87	 6.32	 0.026	 0.023	 0.028	 0.0014	 0.00105	 0.0034	
45	 5.55	 5.12	 5.73	 0.024	 0.021	 0.018	 0.00059	 0.00052	 0.00073	
50	 5.10	 4.72	 5.17	 0.016	 0.016	 0.015	 0.00011	 0.00011	 0.00014	
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and	 larger	 than	 those	 obtained	 with	 the	 ShIRT-FE	 (never	 exceeding	 0.01	

micrometer).		The	smallest	accuracy	errors	for	the	DaVis-FFT	and	DaVis-DC	were	

found	 along	 the	 z-direction	 (i.e.	 the	 rotation	 axis	 of	 the	 micro-CT	 during	

imaging).		Conversely,	errors	were	slightly	larger	in	the	z-direction	for	ShIRT-FE.		

The	tendency	of	the	DaVis-FFT	and	ShIRT-FE	was	for	an	improved	accuracy	for	

larger	sub-volume	sizes.	

Similarly,	 the	 largest	 precision	 errors	 (Table	 4)	were	 found	 for	 the	 DaVis-FFT	

(several	micrometers),	 followed	by	DaVis-DC	 (between	0.1	and	1	micrometer),	

and	 then	 by	 the	 ShIRT-FE	 (never	 exceeding	 0.1	 micrometer).	 	 The	 smallest	

precision	 errors	 for	 the	DaVis-FFT	 and	DaVis-DC	were	 found	 once	more	 along	

the	 z-direction,	 whereas	 errors	 were	 slightly	 larger	 along	 the	 z-direction	 for	

ShIRT-FE.	 	 The	 precision	 of	 all	 three	 DVC	 approaches	 tended	 to	 improve	 as	 a	

function	of	the	computation	sub-volume	size.	

	

6.3.2 Strain 
6.3.2.1 Scalar Comparison 
The	 first	 comparison	 is	based	on	 the	 scalar	magnitudes,	 calculated	 similarly	 to	

(Liu	and	Morgan,	2007).			

For	 the	 “Virtually-Moved-Test”,	 the	 errors	 for	 the	 strains	 were	

comparable	 for	 the	cortical	and	trabecular	specimens.	 	Both	MAER	(Fig.	3)	and	

SDER	 (Fig.	 4)	 error	 were	 largest	 for	 the	 Davis-FFT	 (at	 best:	 4670	 and	 1718	

microstrain,	respectively),	which	was	larger	than	with	Davis-DC	(at	best:	18	and	

6	 microstrain,	 respectively),	 and	 ShIRT-FE	 approach	 (below	 one	 microstrain).		

Both	MAER	and	SDER	showed	a	steady	improvement	for	larger	sub-volumes	for	

all	 three	 DVC	 approaches,	 following	 a	 power-law	 relation	 (Fig.	 3,	 4).	 	 For	 the	

DaVis-FFT,	 the	multi-pass	approach	provided	a	 lower	MAER	 (Fig.	3)	 and	SDER	

(Fig.	 4)	 than	 the	 same	 algorithm	 at	 50	 voxels.	 	 Conversely,	 the	 multi-pass	

approach	did	not	 improve	the	outcomes	of	 the	DaVis-DC	at	similar	sub-volume	

size	(52	voxels).	
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Fig.	3:	Virtually-Moved-Test:	trend	of	MAER	(microstrain)	for	both	cortical	and	trabecular	

specimen,	as	a	function	of	the	sub-volume	size	(voxels).		MAER	of	the	three	DVC	approaches	was	

first	computed	as	a	scalar,	consistently	with	Liu	&	Morgan,	2007).		The	trendline	equation	

(power-law	relation	and	R^2)	is	also	reported.	

*The	sub-volume	was	different	for	DaVis-DC.		Refer	to	Table	1	for	more	details.	
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Fig.	4:	Virtually-Moved-Test:	trend	of	SDER	(microstrain)	for	both	cortical	and	trabecular	

specimen,	as	a	function	of	the	sub-volume	size	(voxels).		SDER	of	the	three	DVC	approaches	was	

first	computed	as	a	scalar,	consistently	with	Liu	&	Morgan,	2007).		The	trendline	equation	

(power-law	relation	and	R^2)	is	also	reported.	

	

For	 the	“Repeated-Scan-Test”,	 the	errors	were	 larger	 for	 the	cortical	bone	than	

for	the	trabecular	bone.		For	all	three	DVC	approaches,	both	accuracy	(Fig.	5)	and	

precision	 (Fig.	 6)	 improved	 for	 larger	 sub-volumes,	 following	 a	 power-law	

relation.	 	 Similar	 trends	 to	 the	 “Virtually-Moved-Test”	were	observed,	but	with	

lower	differences.			The	accuracy	error	for	all	approaches	was	between	hundreds	

and	 thousands	 of	microstrain	 for	 the	 best	 settings:	 errors	were	 largest	 for	 the	
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Davis-FFT,	 followed	by	the	Davis-DC,	and	by	the	ShIRT-FE	(Fig.	5).	 	The	 lowest	

precision	error	was	of	the	same	order	of	magnitude	for	DaVis-DC	and	ShIRT-FE	

(a	 few	 hundreds	 of	 microstrain	 at	 best)	 and	 was	 larger	 for	 DaVis-FFT,	

particularly	 for	 the	 cortical	bone	 (Fig.	6).	 	 In	 this	 test,	 the	multi-pass	approach	

provided	worse	 accuracy	 and	 precision	 than	 the	 largest	 sub-volume	 alone,	 for	

both	the	DaVis-FFT	and	the	DaVis-DC.	

	

	
Fig.	5:	Repeated-Scan-Test:	trend	of	MAER	(microstrain)	for	both	cortical	and	trabecular	

specimen,	as	a	function	of	the	sub-volume	size	(voxels).		MAER	of	the	three	DVC	approaches	was	

first	computed	as	a	scalar,	consistently	with	Liu	&	Morgan,	2007).		The	trendline	equation	

(power-law	relation	and	R^2)	is	also	reported.	

*	The	sub-volume	was	different	for	DaVis-DC.		Refer	to	Table	1	for	more	details.	
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Fig.	6:	Repeated-Scan-Test:	trend	of	SDER	(microstrain)	for	both	cortical	and	trabecular	

specimen,	as	a	function	of	the	sub-volume	size	(voxels).		SDER	of	the	three	DVC	approaches	was	

first	computed	as	a	scalar,	consistently	with	Liu	&	Morgan,	2007).		The	trendline	equation	

(power-law	relation	and	R^2)	is	also	reported.	

*	The	sub-volume	was	different	for	DaVis-DC.		Refer	to	Table	1	for	more	details.	
	

6.3.2.2 Comparison by component 
When	 the	 individual	 components	 of	 strain	were	 analyzed	 separately,	 the	 same	

trend	was	observed	between	the	 three	computation	approaches	(worst:	DaVis-

FFT;	best:	ShIRT-FE),	for	both	the	accuracy	and	precision	(Figs.	7-10).		
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In	the	“Virtually-Moved-Test”	the	accuracy	(Fig.	7)	and	precision	(Fig.	8)	errors	

with	the	Davis-FFT	and	in	particular	Davis-DC	were	larger	for	the	normal	strain	

components,	 than	 for	 the	shear	strains.	 	Among	the	normal	strain	components,	

errors	were	smaller	in	the	z-direction.		Conversely,	the	accuracy	was	similar	for	

each	 component	 for	 the	 ShIRT-FE	 (and	 closer	 to	 zero	 than	 the	DaVis-FFT	 and	

DaVis-DC).	

	

	
Fig.	7:	Virtually-Moved-Test:	Analysis	of	the	accuracy	of	the	six	components	of	strain	
(microstrain),	in	both	cortical	and	trabecular	specimen,	for	the	largest	sub-volume	size	

considered	(50	voxels	ShIRT	&	DaVis-FFT,	52	voxels	DaVis-DC).	The	Z-axis	represents	the	axis	of	

rotation	of	the	specimen	during	imaging	in	the	micro-CT.		The	accuracy	of	the	three	DVC	

approaches	was	computed	as	the	average	of	the	absolute	values	of	each	component	of	strain.		

Different	scales	are	used	for	the	three	computation	approaches	due	to	large	differences	in	

absolute	values.	
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Fig.	8:	Virtually-Moved-Test:	Analysis	of	the	precision	of	the	six	components	of	strain	
(microstrain),	in	both	cortical	and	trabecular	specimen,	for	the	largest	sub-volume	size	

considered	(50	voxels	ShIRT	&	DaVis-FFT,	52	voxels	DaVis-DC).	The	Z-axis	represents	the	axis	of	

rotation	of	the	specimen	during	imaging	in	the	micro-CT.		The	precision	of	the	three	DVC	

approaches	was	computed	as	the	standard	deviation	of	the	absolute	values	of	each	component	of	

strain.		Different	scales	are	used	for	the	three	computation	approaches	due	to	large	differences	in	

absolute	values.	
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	 No	 systematic	 difference	 was	 observed	 between	 strain	 components	 for	

the	“Repeated-Scan-Test”,	although	the	accuracy	(Fig.	9)	and	precision	(Fig.	10)	

errors	were	generally	larger	for	the	normal	strains.		

	

	
Fig.	9:Repeated-Scan-Test:	Analysis	of	the	accuracy	of	the	six	components	of	strain	(microstrain),	
in	both	cortical	and	trabecular	specimen,	for	the	largest	sub-volume	size	considered	(50	voxels	

ShIRT	&	DaVis-FFT,	52	voxels	DaVis-DC).	The	Z-axis	represents	the	axis	of	rotation	of	the	

specimen	during	imaging	in	the	micro-CT.		The	accuracy	of	the	three	DVC	approaches	was	

computed	as	the	average	of	the	absolute	values	of	each	component	of	strain.		Different	scales	are	

used	for	the	three	computation	approaches	due	to	large	differences	in	absolute	values.	
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Fig.	10:	Repeated-Scan-Test:	Analysis	of	the	precision	of	the	six	components	of	strain	
(microstrain),	in	both	cortical	and	trabecular	specimen,	for	the	largest	sub-volume	size	

considered	(50	voxels	ShIRT	&	DaVis-FFT,	52	voxels	DaVis-DC).	The	Z-axis	represents	the	axis	of	

rotation	of	the	specimen	during	imaging	in	the	micro-CT.		The	precision	of	the	three	DVC	

approaches	was	computed	as	the	standard	deviation	of	the	absolute	values	of	each	component	of	

strain.		Different	scales	are	used	for	the	three	computation	approaches	due	to	large	differences	in	

absolute	values.	
	

	

6.3.3 Computational Costs 
The	total	computation	times	were:	

• For	the	DaVis-FFT:	8	seconds	for	a	computation	sub-volume	of	5	voxels,	

and	5	seconds	for	50	voxels	(3.4	GHz	quad-core	i7,	32	GB	Ram,	solid	state	

disk);		

• For	the	DaVis-DC:	146	seconds	for	a	computation	sub-volume	of	8	voxels,	

and	 80	 seconds	 for	 52	 voxels	 (3.4	 GHz	 quad-core	 i7,	 32	 GB	 Ram,	 solid	

state	disk);		

• For	the	ShIRT-FE:	404	seconds	for	a	computation	sub-volume	of	5	voxels,	

and	120	seconds	for	50	voxels	(2.9	GHz	dual-core	i7,	8	GB	Ram,	solid	state	

disk).	 	This	does	not	 include	the	time	for	migrating	 from	the	correlation	

software	to	the	FE	package.	
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6.4 Discussion 

The	aim	of	this	study	was	to	compare	the	accuracy	and	precision	of	different	DVC	

approaches	 used	 in	 computing	 the	 displacements	 and	 strains	 from	 micro-CT	

images	of	cortical	and	trabecular	bone.		Three	DVC	approaches	were	tested	in	a	

zero-strain	condition	(Repeated-Scan-Test)	and	with	a	virtual	rigid	displacement	

(Virtually-Moved-Test).		

We	 investigated	 the	 strengths	 and	 limitations	 of	 two	 commercial	 approaches	

(DaVis-FFT	and	DaVis-DC)	that	implement	different	local	correlation	algorithms	

to	estimate	the	displacement	and	strain	fields,	and	a	third	approach	(ShIRT-FE),	

which	exploits	a	global	correlation	strategy,	by	combining	an	elastic	registration	

algorithm	 to	 estimate	 the	 displacements,	 and	 an	 FE	 solver	 for	 computing	 the	

strain	(Dall'Ara	et	al.,	2014).	

In	 this	 study,	 all	 the	 DVC	 approaches	 showed	 non-linear	 trends	 for	 the	

measurement	 uncertainties	 of	 the	 strain,	 as	 a	 function	 of	 the	 considered	 sub-

volume:	the	larger	the	sub-volume,	the	lower	the	error.		However,	it	is	important	

to	remember	that	increasing	the	sub-volume	size	reduces	the	spatial	resolution	

of	the	method.		An	inverse	relationship	between	the	size	of	the	computation	sub-

volume	 and	 the	 displacement/strain	 uncertainties	 is	 typical	 for	 both	 local	 and	

global	approaches	(Hild	and	Roux,	2012).		Such	trends	were	reported	when	DVC	

was	applied	to	synthetic	and	natural	trabecular	bone	(Gillard	et	al.,	2014;	Madi	et	

al.,	2013),	and	 in	a	validation	study	on	the	DIC	(Lionello	and	Cristofolini,	2014;	

Nicolella	et	al.,	2001).	MAER	and	SDER	of	the	three	DVC	approaches	showed	an	

asymptotic	trend,	when	the	sub-volume	exceeded	a	size	of	25-30	voxels	for	the	

displacements,	and	around	50	voxels	for	the	strains.	 	Given	the	voxel	size	(9.96	

micrometers)	 this	 corresponds	 to	 the	 typical	 dimension	 of	 trabeculae	 (50-500	

micrometers	 (Currey,	 1982;	 Fung,	 1980))	 and	 osteons	 (150-250	 micrometers	

(Currey,	1982;	Fung,	1980)).		This	consideration	could	be	the	explanation	for	the	

slightly	 better	 behavior	 of	 the	 DVC	 applied	 to	 the	 trabecular	 bone	 (coarser	

pattern;	 closer	 to	 the	 ideal	 condition	of	1:1	 solid-porosity	 ratio)	 as	opposed	 to	

the	 cortical	 one.	 	 It	 is	 possible	 to	 deduce	 that	 a	 relatively	 large	 sub-volume	

investigated	 in	 this	study	(larger	 than	30	voxels)	provides	an	optimal	 trade-off	

between	 spatial	 resolution,	 and	 error	when	 applied	 to	 bone	 tissue.	 	 The	 three	

DVC	approaches	differed	among	each	other	 in	 terms	of	accuracy	and	precision,	

both	as	a	scalar	(average	of	the	error	components,	similarly	to	(Liu	and	Morgan,	

2007)),	and	for	the	individual	components	(similarly	to	(Gillard	et	al.,	2014))	of	

displacement	and	strain.		The	ShIRT-FE	approach	showed	the	best	accuracy	and	

precision	for	the	displacements	 in	the	Virtually-Moved-Test.	 	The	errors	on	the	

displacements	estimated	by	DaVis-DC	were	comparable	with	ShIRT-FE,	while	the	

errors	 affecting	 the	 DaVis-FFT	 were	 some	 order	 of	 magnitude	 higher.	 	 The	

accuracy	and	precision	achieved	on	 the	displacements	by	ShIRT-FE	and	DaVis-

DC	 with	 optimal	 settings	 (sub-volume	 larger	 than	 25	 voxels)	 were	 generally	

better	 than	 0.1	micrometers.	 	 Such	 an	 accuracy	 and	 precision	 is	 sufficient	 for	

most	applications	with	hard	tissue.		Consequently,	as	the	strain	field	is	obtained	

by	differentiation	of	 the	displacement	 field	 in	DaVis,	 similar	 trends	were	 found	

for	 the	 errors	 affecting	 the	 computed	 strain.	 	 The	 best	 accuracy	 and	 precision	

achieved	on	 the	 strains	 for	 the	Repeated-Scan-Test	 by	 ShIRT-FE	 and	DaVis-DC	

with	optimal	 settings	 (sub-volume	of	50-52	voxels)	were	of	 the	order	of	 a	 few	
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hundred	microstrain	(in	case	of	cortical	bone	up	to	1053	and	477	microstrain	for	

DaVis-DC	and	ShIRT-FE,	respectively).		Such	an	error	is	one	order	of	magnitude	

lower	than	the	failure	strain	of	bone	tissue	(7000	microstrain	in	tension,	10000	

microstrain	in	compression,	(Bayraktar	et	al.,	2004)).		Therefore,	one	can	at	least	

discriminate	 between	 yielded	 and	 not-yielded	 regions.	 	 However,	 the	 present	

results	 suggest	 that,	 in	 order	 to	 further	 improve	 the	 accuracy	 and	 precision,	

larger	computation	sub-volumes	should	be	used,	with	the	concurrent	limitations	

in	 terms	 of	 resolution.	 	While	 for	 the	 cortical	 bone	 the	 differences	 among	 the	

approaches	 were	 higher,	 in	 case	 of	 trabecular	 bone	 the	 DaVis-DC	 approach	

provided	MAER	and	 in	particular	SDER	closer	 to	 the	ShIRT-FE	approach,	when	

moving	 towards	 larger	 sub-volumes.	 	 When	 making	 such	 comparisons	 one	

should	 remember	 that	 the	 global	 approach	 (ShIRT-FE)	 is	 based	 on	 a	 method	

where	each	element	is	affected	by	up	to	eight	neighboring	elements	(Madi	et	al.,	

2013).		In	fact,	the	improvement	of	MAER	and	SDER	we	found	may	be,	among	the	

other	parameters,	driven	by	the	continuity	assumption.		The	results	of	this	study	

for	the	repeated	scans	confirm	that	similar	uncertainty	levels	are	obtained	for	a	

global	approach	(ShIRT-FE)	with	a	mesh	two	times	finer	than	the	one	used	for	a	

local	one	(DaVis-FFT)	[21].			Moreover,	it	should	be	also	noted	that	the	SDER	and	

MAER	 for	 the	 DaVis-DC	were	 underestimated	 as	 the	 solution	 covered	 a	 lower	

correlated	 volume	 (80%	 for	 sub-volume	 equal	 to	 52	 voxels):	 if	 the	 entire	 VOI	

was	 forcedly	 included	 (including	 regions	 affected	 by	 poor	 correlation),	 the	

overall	 error	would	 have	 been	 larger.	 Further	 studies	 in	 this	 direction	will	 be	

done	in	the	future	in	order	to	quantify	these	effects.	

To	the	Authors’	knowledge,	this	is	the	first	paper	that	compares	three	different	

DVC	approaches,	and	different	bone	microstructures.	 	 In	reference	(Madi	et	al.,	

2013)	 two	 DVC	 approaches	 were	 compared,	 on	 a	 single	 porous	 polymeric	

specimen	and	only	for	a	virtual	rigid	displacement.	 	Similarly	to	our	study,	they	

concluded	that	a	global	correlation	approach	gives	lower	errors	than	a	local	DVC	

algorithm.		However,	it	was	also	reported	how,	for	that	particular	specimen	and	

set	 of	 images,	 the	 local	 FFT-based	 approach	 (DaVis-FFT)	might	 be	 appropriate	

and	 provided	 a	 good	 compromise	 between	 computational	 cost	 and	 accuracy	

(strain	uncertainties	of	the	order	of	200	microstrain	from	virtually	moved	test).	

Conversely,	in	our	study	the	DaVis-FFT	approach	showed	high	MAER	and	SDER	

for	the	cortical	bone	and,	therefore,	should	be	used	carefully	with	similar	images.		

In	order	to	understand	the	true	reliability	of	the	strain	and	displacement	results	

one	 should	 also	 consider	 the	 correlated	 volume,	 or	 the	 quantity	 of	 numerical	

outputs	(i.e.	displacements)	relative	to	either	the	software	calculation	scheme,	or	

a	 specific	 threshold	 chosen	 for	 the	 correlation	 function.	 	 Hence,	 using	 local	

algorithms	 (DaVis-FFT	 and	 DaVis-DC)	 there	may	 be	 cases	 where	 a	 very	 small	

error	can	be	achieved	at	the	cost	of	excluding	large	regions	that	would	increase	

the	error	indicators.		In	this	study,	no	specific	threshold	value	for	the	correlation	

function	 was	 adopted	 in	 DaVis.	 However,	 a	 certain	 amount	 of	 data	 is	

systematically	 lost	 in	 the	 correlation	 of	 sub-volumes	 containing	 voxels	 with	

constant	intensities,	due	to	the	algorithm	local	normalization.			

The	 selected	 sequence	 of	 sub-volumes	 (96-64-52),	 overlaps	 (50%-50%-75%)	

and	iterations	(1-2-3),	used	in	this	study	for	the	multi-pass	calculation	in	DaVis	

approaches	 (Table	 2),	 did	 only	 improve	 the	 performance	 of	 DaVis-FFT	 for	 the	

Virtually-Moved-Test,	in	particular	for	the	trabecular	bone.	This	can	be	used	as	a	

valuable	indication	for	future	studies,	where	the	same	multi-pass	cannot	be	used	
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as	 a	 universally	 valid	matrix	 for	 all	 the	 cases	 and	 approaches,	 but	 parameters	

may	be	selected	for	that	specific	bone	tissue,	test,	quality	of	images	and	sample	

size.	

In	 terms	of	 computational	 cost,	 the	DaVis-FFT	and	DaVis-DC	were	 lighter	 than	

ShIRT-FE.		Between	the	two	local	algorithms,	DaVis-DC	was	up	to	two	orders	of	

magnitude	slower.		It	must	be	noted	that	while	DaVis-FFT	has	been	implemented	

earlier	and	was	fully	optimized	in	terms	of	computational	efficiency,	the	current	

versions	of	DaVis-DC	and	of	ShIRT-FE	were	not	yet	fully	optimized.		For	further	

application	 on	 larger	 VOIs,	 and	 considering	 that	 the	 DVC	 is	 becoming	

increasingly	common,	a	reduced	computation	time	would	be	desirable.	

In	this	study	a	step	beyond	the	work	of	(Liu	and	Morgan,	2007)	and	(Dall'Ara	et	

al.,	 2014)	 was	 done	 in	 order	 to	 investigate	 if	 strain	 components	 are	 better	

evaluated	 in	some	preferential	direction.	 	 In	 fact,	 for	both	 the	Virtually-Moved-

Test	 and	 the	Repeated-Scan-Test,	 ShIRT-FE	 showed	a	more	 isotropic	behavior,	

with	 similar	 errors	 for	 the	 six	 components	 of	 the	 strain.	 	 Conversely,	 in	 the	

Virtually-Moved-Test	 the	 DaVis-FFT	 and	 in	 particular	 DaVis-DC	 approaches	

showed	better	accuracy	(Fig.	7)	and	precision	(Fig.	8)	for	the	shear	strains	than	

for	 the	 normal	 strain	 components,	 consistently	 with	 the	 findings	 reported	 by	

(Gillard	et	al.,	2014).		For	these	approaches	it	must	be	noted	that	when	a	scalar	

indicator	 of	 the	 error	 is	 computed	 averaging	 the	 different	 strain	 components	

(similarly	 to	 (Liu	 and	Morgan,	 2007)	 and	 (Dall'Ara	 et	 al.,	 2014),	 Fig.	 3-6),	 this	

underestimates	by	about	50%	the	largest	error,	which	is	found	for	just	one	of	the	

strain	components	(Fig.	7-10,	DaVis-FFT	and	DaVis-Dc).	 	However,	these	trends	

became	less	clear	in	the	more	interesting	case	of	the	Repeated-Scan-Test	where,	

for	all	three	approaches,	similar	errors	were	found	for	all	strain	components	and	

highest	errors	were	generally	produced	for	one	of	the	normal	strains.	In	such	a	

case,	reporting	the	error	in	terms	of	averages	is	less	critical.		

A	 limitation	of	 this	work	 relates	 to	 the	number	of	 specimens:	 only	one	 for	 the	

cortical	bone	and	one	for	trabecular	bone.		Moreover,	due	to	the	limited	diameter	

of	 the	 cortical	 bone	 specimen,	 only	 a	 limited	 range	 of	 sub-volume	 sizes	 was	

explored.	 	 The	 dimensions	 of	 the	 specimens	 were	 suitable	 for	 bone	 tissue,	

considering	 its	osteomorphometric	parameters	(Öhman	et	al.,	2008).	 	Potential	

influences	of	specimen	size	(i.e.	whole	vertebra),	 image	quality	(i.e.	variation	of	

the	level	of	noise)	and	scanning	resolution	(i.e.	clinical	CT)	on	the	accuracy	and	

precision	 obtainable	 with	 different	 DVC	 approaches	 (i.e.	 optimal	 multi-pass	

calculation	for	DaVis-FFT	and	DaVis-DC),	are	yet	to	be	investigated.		Moreover,	in	

this	 study	 only	 trabecular	 and	 cortical	 specimens	 were	 considered.	 	 Further	

analysis	 shall	 be	 conducted	 on	 specimens	 composed	 of	 both	 cortical	 and	

trabecular	 tissue,	 and	 possibly	 incorporating	 biomaterials	 (i.e.	 implantable	

devices	or	injectable	materials).			

	

	

	

6.5 Conclusion 

In	 conclusion,	 we	 have	 shown	 the	 importance	 of	 performing	 a	 quantitative	
optimization	 and	 validation	 of	 DVC	 approaches	 by	 using	 repeated	 scans	 and	

comparing	 the	 DVC	 outputs	 on	 the	 same	 set	 of	 specimens.	 	 While	 computed	
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displacements	 were	 generally	 highly	 accurate	 and	 precise,	 larger	 errors	

(decreasing	 with	 larger	 sub-volumes	 and	 with	 a	 similar	 behavior	 for	 each	

component)	were	found	in	the	computed	strain	distributions.		Our	results	show	

how	the	 integration	of	DVC	(for	 the	computation	of	displacements)	with	an	FE	

code	 (which	 imposes	 a	 continuum	 mechanics	 assumption	 on	 the	 structure)	

provides	the	most	accurate	and	precise	results,	for	this	particular	set	of	images.		

However,	 the	 local	 DaVis	 approaches,	 as	 a	 single	 software	 package,	 show	

reasonable	results	 for	 large	nodal	spacing	and	particularly	 for	 trabecular	bone.		

The	 results	 from	 the	 repeated	 scans	 showed	 that	 the	 multi-pass	 calculation	

scheme	used	in	this	study	for	the	DaVis	methods	lead	to	larger	errors	compared	

to	 the	 largest	 sub-volume.	 Moreover,	 the	 errors	 from	 the	 Repeated-Scan-Test	

were	 similar	 for	 the	 different	 components	 for	 all	 three	 methods.	 Finally,	 this	

study	 indicates	 that	 every	method	 should	 be	 used	with	 sufficiently	 large	 sub-

volumes	in	order	to	achieve	reasonable	accuracy	and	precision.		Further	work	is	

needed	to	fully	appreciate	the	performance	of	DVC	for	different	bone	structures,	

dimensions	and	imaging	techniques/settings.	
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7.1 Introduction 

The	efficacy	of	prophylactic	augmentation	with	injectable	biomaterials	(i.e.	poly-

methyl-methacrylate	 (PMMA)-based	 cements)	 in	 improving	 the	 mechanical	

stability	of	vertebrae	is	still	a	matter	of	debate	(Kamano	et	al.,	2011;	Cristofolini	

et	al.,	2016).	In	particular,	a	deep	understanding	of	internal	microdamage	in	the	

bone	 tissue	and	at	 the	cement-bone	 interface,	which	could	potentially	promote	

further	damage	to	treated	vertebrae,	is	currently	missing.			

This	is	probably	due	to	the	intrinsic	limitations	in	most	experimental	techniques	

like	 digital	 image	 correlation	 (DIC)	 (Palanca	 et	 al.,	 2016)	 in	 not	 being	 able	 to	

capture	 and	 quantify	 internal	 microdamage	 evolution	 under	 load.	 In	 this	

perspective,	 digital	 volume	 correlation	 (DVC)	 is	 ideal	 to	 investigate	 the	 local	

internal	damage	 in	treated	vertebrae.	 In	 fact,	with	the	rapid	progress	of	micro-

focus	 computed	 tomography	 (micro-CT)	 in	 conjunction	with	 in	situ	mechanical	
testing	 (Nazarian	&	Muller,	 2004;	Tozzi	 et	 al.,	 2012,	 2013),	DVC	has	 become	 a	

powerful	tool	to	examine	full-field	internal	deformations	in	trabecular	bone	(Liu	

&	Morgan,	2007;	Gillard	et	al.,	2014;	Dall'Ara	et	al.,	2014,	Roberts	et	al.,	2014),	

cortical	bone	(Christen	et	al.,	2012;	Dall'Ara	et	al.,	2014),	whole	bones	(Hussein	

et	al.,	2012,	2013;	Danesi	et	al.,	2016;	Tozzi	et	al.,	2016),	cellular	scaffolds	(Madi	

et	al.,	2013)	and	cement-bone	interface	(Tozzi	et	al.,	2014).		

In	 order	 to	 expand	 the	 applications	 of	 DVC	 to	 biological	 tissues,	 including	

investigation	 of	 clinically	 relevant	 issues	 such	 as	 bone	 augmentation,	 it	 is	

important	to	understand	what	 is	 the	error	associated	to	the	DVC	measurement	

for	specific	sets	of	images,	scanning	protocols	and	correlation	strategies.	To	this	

extent,	 the	 uncertainties	 of	 DVC	 in	 calculating	 strain	 in	 bone	 tissue	 have	 been	

quantified	(Roberts	et	al.,	2014).	Moreover,	the	strain	uncertainties	in	relation	to	

a	virtual	displacement	applied	to	one	single	micro-CT	image	was	also	evaluated	

(Madi	et	al.,	2013).	However,	it	is	recommended	that	strain	uncertainties	of	any	

specific	 DVC	 approach	 are	 quantified	 on	 repeated	 scans	 (i.e.	 in	 a	 known	

deformation	 field	 such	 as	 zero-strain)	 to	 account	 for	 the	 intrinsic	 noise	 of	 the	

input	 images.	 This	 repeated	 scans	 methodology	 has	 been	 already	 adopted	 to	

quantify	strain	errors	associated	to	trabecular	bone	(Liu	&	Morgan,	2007;	Gillard	

et	 al.,	 2014;	 Dall’Ara	 et	 al.,	 2014),	 cortical	 bone	 (Dall’Ara	 et	 al.,	 2014),	 whole	

bones	 (Hussein	 et	 al.,	 2012)	 and	 cement-bone	 interface	 (Zhu	 et	 al.,	 2015).	

However,	 as	 DVC	 typically	 exploits	 different	 correlation	 and	 strain	 calculation	

strategies	 to	 compute	 strains	 (i.e.	 local	 vs	 global	 approaches,	 different	

registration	metrics,	etc.),	 it	 is	 important	 to	quantify	 the	 level	of	uncertainty	 in	

the	 strain	determination,	by	 comparing	 two	or	more	DVC	methodologies	using	

the	 same	original	 image	 dataset.	 Palanca	 et	 al.	 (2015)	 compared	 the	 output	 of	

three	 different	 DVC	 approaches	 (a	 global	 and	 two	 local	 ones)	 applied	 on	 the	

same	 micro-CT	 biopsies	 of	 trabecular	 and	 cortical	 bone,	 where	 accuracy	 and	

precision	in	strain	fields	for	both	virtual	displacements	and	repeated	scans	were	

investigated.	 Moreover,	 the	 presence	 of	 preferential	 components	 (normal	 or	

shear)	for	strain	measurement	 in	the	different	correlation	approaches	was	also	

evaluated	(Palanca	et	al.,	2015).		

Given	a	specific	pattern/texture	inside	the	bone	specimen,	DVC	uncertainties	are	

affected	by	the	features	that	can	be	recognized	in	the	sequence	of	images,	which	

in	 turn	 depends	 on	 the	 spatial	 resolution	 of	 the	 image,	 and	 on	 the	 number	 of	
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voxels	included	in	the	computation	window	(sub-volume)	(Roberts	et	al.,	2014).	

This	 pattern	distribution	 can	be	 related	 to	 the	 intrinsic	 natural	 features	 of	 the	

material	(i.e.	trabeculae	in	trabecular	bone)	or	to	radiopacifier	particles	usually	

incorporated	in	bone	cements	(i.e.	ZrO2	and	BaSO4)	(Lewis	et	al.,	1997).	Thus,	the	

DVC-computed	 strain	 errors	 can	 be	 affected	 by	 the	 presence	 of	 biomaterials	

within	 the	 bone.	 Zhu	 et	 al.	 (2015)	 proposed	 a	 first	 attempt	 to	 investigate	 the	

strain	uncertainties	 in	specimens	 including	cement	and	bone.	 	They	 focused	on	

images	 with	 voxel	 size	 of	 22	 micrometers,	 with	 smallest	 computation	 sub-

volume	of	32	voxels.	The	noise	affecting	computed	strains	was	lowest	within	the	

cement	 (~500	 microstrain),	 slightly	 higher	 in	 the	 bone	 regions	 partially	

interdigitated	with	 cement	 (~700	microstrain),	 and	more	 than	 doubled	 in	 the	

trabecular	bone	(~1400	microstrain).	Zhu	et	al.	 (2015)	used	a	single	 local	DVC	

approach	based	on	Fast	Fourier	Transform	(described	as	DaVis-FFT	in	Palanca	et	

al.,	 2015)	with	multipass	 and	 overlaps	 up	 to	 75%,	 on	 one	 single	 cement-bone	

specimen	 in	dry	conditions,	 focusing	on	a	single	component	of	strain	(the	axial	

one,	 ezz).	 However,	 recent	 literature	 in	 the	 DVC	 computation	 of	 bone	 tissue	

(Palanca	et	al.,	2015)	clearly	indicated	how	DVC	strain	uncertainties	obtained	for	

the	 same	 local	 approach	 (DaVis-FFT)	 used	 in	 Zhu	 et	 al.	 (2015)	 are	 very	much	

reduced	if	a	direct	correlation	(described	as	DaVis-DC)	is	used	instead	of	a	FFT-

based	 one	 (DaVis-FFT),	 and	 no	 overlap	 is	 used	 in	 multipass	 strategy.	

Furthermore,	it	is	known	(Gillard	et	al.,	2014;	Palanca	et	al.,	2015)	that	looking	at	

one	 single	 strain	 component	 (i.e.	 ezz)	 is	 not	 sufficient	 for	 a	 complete	

understanding	of	 the	error	pattern,	 as	variability	of	 strain	error	among	 the	 six	

components	could	be	quite	large.	Very	recently,	uncertainty	analyses	of	local	and	

global	 DVC	 approaches	 applied	 to	 the	 whole	 natural	 and	 augmented	 porcine	

vertebrae	were	performed	(Palanca	et	al.,	2016b).	In	that	study	it	was	found	that,	

despite	the	strain	error	produced	similar	trends	in	function	of	the	computation	

sub-volumes	 for	both	groups,	 in	 the	augmented	vertebrae	 the	 random	error	of	

the	 strain	 components	 computed	 with	 the	 two	 DVC	 methods	 were	 different,	

especially	for	higher	spatial	resolution.	In	particular,	the	augmentation	increased	

the	error	for	the	global	approach,	while	reducing	it	for	the	local.	It	is	not	clear	yet	

how	 the	 DVC	 errors	 are	 influenced	 by	 the	 tissue	 microstructure	 and	 by	 the	

biomaterial	distribution.		

The	main	 aim	 of	 this	 study	was	 to	 evaluate	 and	 quantify	 strain	measurement	

uncertainties	at	tissue	level	in	five	specific	locations	within	different	augmented	

vertebrae.	 This	 was	 done	 in	 order	 to	 better	 understand	 how	 the	 bone	

microstructure	 (trabecular	 and	 cortical),	 the	 presence	 of	 biomaterial	 and	 its	

integration	 with	 bone	 (cement-bone	 interface)	 could	 explain	 differences	 in	

performance	of	the	two	DVC	approaches.		

	

	

	

7.2 Methods 

7.2.1 Specimens 
Five	 thoracic	 vertebrae	 (T1-T3)	 were	 harvested	 from	 fresh	 porcine	 thoracic	

spines.	 All	 the	 surrounding	 soft	 tissues	 were	 removed,	 as	 well	 as	 the	 growth	

plates.	 The	 endplate	 areas	 of	 the	 vertebrae	 were	 potted	 in	 poly-methyl-
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methacrylate	 (PMMA)	similar	 to	Danesi	et	al.	 (2014).	The	spinous	process	was	

used	to	center	the	specimen	in	the	transverse	plane	and	align	it	about	its	vertical	

axis.	The	posterior	arch	was	subsequently	 removed.	Cement	routinely	used	 for	

vertebroplasty	 (Mendec	Spine,	Tecres,	 Italy)	was	 then	 injected	 in	 the	vertebral	

bodies	 by	 means	 of	 a	 proprietary	 device,	 following	 the	 instructions	 of	 the	

manufacturer.	 	 This	 is	 an	 acrylic-based	 cement,	 containing	 pellets	 of	 BaSO4	

(~300	micrometers)	 as	 a	 radiopacifier.	 The	 vertebrae	were	 heated	 before	 and	

after	 augmentation	 in	 a	 circulating	 bath	 at	 40°C,	 to	 allow	 optimal	 flow	 and	

consolidation	of	the	cement.	

	

7.2.2 Experimental procedures and volumes of interest 
(VOIs) 
All	the	specimens	(n=5)	were	placed	in	a	loading	device	(CT5000,	Deben	Ltd,	UK)	

equipped	with	 a	 custom-designed	 environmental	 chamber,	 in	 order	 to	 closely	

simulate	 in	 situ	 loading	 conditions	 that	 are	 typically	 being	 applied	 to	 such	
vertebral	 bodies	 (Danesi	 et	 al.,	 2016;	 Tozzi	 et	 al.,	 2016).	 The	 specimens	were	

immersed	in	saline	solution	and	constrained	against	rotation	inside	the	loading	

device	 with	 sandpaper	 disks	 glued	 to	 the	 bottom	 compressive	 platen.	 Each	

unloaded	specimen	was	micro-CT	imaged	(XTH225,	Nikon	Metrology,	UK)	twice	

without	 repositioning,	 in	 order	 to	 reproduce	 a	 zero-strain	 condition.	 Prior	 to	

each	 imaging	 session	 a	 full	 conditioning	 of	 the	 micro-CT	 (up	 to	 225	 kV)	 was	

performed	to	stabilize	x-rays	and	reduce	at	minimum	fluctuations	in	the	selected	

settings	(i.e.	kV,	microA),	throughout	the	duration	of	test.	The	micro-CT	scanner	

was	set	to	a	voltage	of	88	kV	and	a	current	of	110-115	microA.	With	an	isotropic	

voxel	 size	 of	 39	 micrometers	 and	 exposure	 of	 2	 s,	 the	 image	 acquisition	 was	

performed	with	a	rotational	step	of	0.23°,	over	360°	for	a	total	scanning	time	of	

approximately	90	min.		

In	order	to	investigate	the	performance	of	the	DVC	approaches	for	the	different	

bone	tissues	(cortical	and	trabecular),	for	the	cement,	and	for	the	interdigitated	

regions,	 five	 volumes	 of	 interest	 (VOIs)	 were	 identified	 within	 each	 vertebral	

body.	The	five	VOIs	were	cropped	using	MeVisLab	(MeVis	Medical	Solution	AG,	

Germany)	and	consisted	in	parallelepipeds	of	300*300*432	voxels	for	the	largest	

possible	area	 that	could	be	 inscribed	 in	all	vertebrae	 (VOI-1,	data	presented	 in	

Palanca	et	al.	(2016b)	and	reported	here	for	completeness	and	for	comparison)	

and	 of	 152*152*432	 voxels	 for	 smaller	 VOIs	 including	 areas	 of:	 fully	 cement-

augmented	 trabecular	 bone	 (VOI-2),	 interface	 between	 augmented	 and	 non-

augmented	 trabecular	 bone	 (VOI-3),	 trabecular	 bone	 (VOI-4),	 and	 regions	

containing	 both	 trabecular	 and	 cortical	 bone,	with	 surrounding	 saline	 solution	

(VOI-5)	(Fig.1).	The	VOI-5	region	was	selected	to	understand	how	inappropriate	

(or	ineffective)	image	masking	could	influence	the	DVC	performance	in	the	two	

approaches,	particularly	for	the	local	DVC.	The	dimensions	for	the	smallest	VOIs	

(2-5)	were	able	to	include	the	different	regions	of	interest	within	the	augmented	

vertebra.	 To	 allow	 for	 the	 most	 standardized	 and	 less	 operator-dependent	

workflow,	and	investigate	the	worst-case	scenario,	no	beam	hardening	and	noise	

artifacts	were	corrected	in	the	images.	In	order	to	allow	comparison	between	the	

results	obtained	from	different	DVC	approaches,	the	image	datasets	used	in	the	

present	 study	 will	 be	 made	 available	 to	 the	 scientific	 community	 at	
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http://dx.doi.org/10.6084/m9.figshare.4308926	 or	 by	 contacting	 the	

corresponding	author.		

	

	
Fig	1:	Transverse	section	of	a	vertebra,	showing	the	five	different	volumes	of	interest	(VOIs)	

selected	for	the	DVC	computation.	Specifically,	VOI-1	was	the	largest	volume	that	could	be	

inscribed	in	all	vertebrae,	VOI-2	a	region	of	full	cement-bone	augmentation,	VOI-3	a	region	of	

partial	cement-bone	augmentation,	VOI-4	a	region	of	trabecular	bone,	and	VOI-5	a	region	of	

trabecular	and	cortical	mixture	surrounded	by	saline	solution.	Data	related	to	VOI-1	has	been	

reported	for	completeness	and	adapted	from	Palanca	et	al.	(2016b).	

	

For	each	VOI	in	each	specimen,	the	solid	volume	fraction	(SV/TV)	was	computed	

as	the	sum	of	the	volume	of	cement	and/or	bone,	divided	by	the	total	volume	of	

the	VOI	(Table	2).	In	VOI-4	and	VOI-5	the	SV/TV	is	equivalent	to	the	bone	volume	

fraction	(BV/TV).	The	values	of	SV/TV	were	obtained	via	a	manual	thresholding	

of	the	grey-scale	histograms	with	ImageJ	(NIH)	software,	using	its	BoneJ	plugin	

(Doube	 et	 al.,	 2010).	 The	 images	 were	 segmented	 by	 using	 a	 single	 level	

threshold,	 chosen	 in	 the	 valley	 between	 the	 first	 and	 second	 peak	 of	 the	

frequency	 distribution	 of	 the	 greyscale	 (histograms).	 The	 threshold	 value	was	

adapted	by	visual	comparison	of	the	segmented	and	greyscale	image	in	order	to	

separate	 bone	 and	 cement	 from	 the	 background	 values.	 The	 SV/TV	 value,	

computed	as	average	±	standard	deviation	between	specimens	for	each	VOI,	was	

used	to	assess	possible	correlations	with	the	DVC	strain	errors.	

	

7.2.3 Digital Volume Correlation (DVC) approaches 
Two	 different	 DVC	 approaches	 were	 compared	 in	 this	 work,	 namely	 a	 ‘local	

correlation’	 and	 ‘global	 correlation’.	 The	 operating	 principles	 of	 the	 two	 DVC	

methods	have	been	detailed	elsewhere	(Palanca	et	al.,	2015,	2016b).	Briefly,	the	

local	 approach	 (DaVis-DC)	 is	 implemented	 in	 the	 DaVis	 software	 (v8.2.1,	

LaVision,	 Germany).	 DaVis-DC	 sub-divides	 the	 3D	 images	 into	 smaller	 sub-

volumes	 that	 can	 be	 correlated	 independently	 as	 a	 discrete	 function	 of	 grey-

levels.	 The	 matching	 between	 the	 sub-volumes	 is	 achieved	 via	 a	 direct	 cross-
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correlation	function	(DC).	Additionally,	a	piece-wise	linear	shape	function	and	a	

third-order	 spline	 interpolation	 in	 the	 image	 reconstruction	 are	 employed	 to	

correlate	 the	 pattern	 information	 contained	 in	 the	 reference	 and	 deformed	

images.	 The	 displacement	 field	 vector	 is	 obtained	 at	 the	 center	 of	 each	 sub-

volume	 and	 the	 strain	 field	 is	 subsequently	 computed	 using	 a	 centered	 finite	

differences	 (CFD)	 scheme.	 The	 employed	 global	 approach	 (ShIRT-FE)	 is	 a	

combination	of	an	home-written	elastic	registration	software	known	as	Sheffield	

Image	 Registration	 Toolkit	 (ShIRT)	 (Barber	 et	 al.,	 2007)	 and	 a	 Finite	 Element	

(FE)	 software	 package	 (Ansys	 v.14.0,	 ANSYS,	 US)	 as	 reported	 in	Dall’Ara	 et	 al.	

(2014).	In	ShIRT	the	recognition	of	corresponding	features	in	the	subsequent	3D	

images	 is	 obtained	 by	 superimposing	 a	 grid	with	 selectable	 nodal	 spacing	 (or	

sub-volume)	 to	 the	 entire	 volume	of	 interest.	 ShIRT	 solves	 elastic	 equations	 at	

the	nodes	of	 the	 selected	grid	 to	 evaluate	 the	nodal	displacements.	The	grid	 is	

then	 converted	 into	 an	 eight-node	 hexahedral	 mesh	 and	 the	 displacements	

computed	by	ShIRT	at	each	node	are	imposed	as	boundary	conditions	in	the	FE	

model,	where	the	strain	field	is	then	computed.	

In	order	 to	evaluate	 the	random	errors	associated	 to	 the	displacement	and	 the	

systematic	 and	 random	 errors	 associated	 to	 the	 strain	 for	 both	 DVC	methods,	

two	sub-volume	sizes	of	16	and	48	voxels	were	investigated	for	the	five	VOIs	in	

each	 specimen.	 	 The	 larger	 sub-volume	 (48	 voxels	 –	 1872	 micrometers)	 was	

chosen	in	order	to	obtain	sufficient	measurement	points	in	the	VOIs,	and	while	it	

showed	 acceptable	 uncertainties	 of	 the	 strain	 components	 averaged	 over	 the	

whole	organ	for	augmented	vertebrae,	it	also	revealed	different	behavior	for	the	

two	DVC	methods	 (Palanca	 et	 al.,	 2016b).	 The	 lower	 sub-volume	 (16	 voxels	 –	

624	 micrometers)	 was	 chosen	 in	 order	 to	 evaluate	 the	 error	 for	 smaller	

registration	 regions,	 which	 could	 be	 beneficial	 especially	 for	 the	 boundary	

between	 the	 cement	 and	 bone.	 Moreover,	 both	 sub-volume	 sizes	 produced	 a	

100%	of	correlated	volume	(defined	as	in	Palanca	et	al.	(2015,	2016b))	for	both	

local	and	global	approaches.	Finally,	two	different	multipass	schemes	(available	

only	 on	 DaVis-DC)	 with	 decreasing	 sub-volume	 size	 of	 128-112-96-80-64-48	

voxels	for	VOI1	and	48-32-16	voxels	for	VOI2-VOI5	were	tested	with	0%	overlap,	

In	particular,	 the	multipass	was	pushed	 to	a	 final	 size	of	16	voxels	 in	 the	 local	

VOIs	 (2-5),	 to	 explore	 the	 potential	 improvements	 for	 the	 local	DVC	 approach,	

but	still	producing	a	 larger	number	of	measurement	points	 (spatial	 resolution)	

when	compared	to	48	voxels.		

	

7.2.4 Evaluation of errors as a consequence of the 
computation sub-volume 
To	quantify	the	errors,	different	indicators	were	computed:	

• Ideally,	 the	 displacements	 were	 null;	 in	 the	 real	 experiment	 the	 actual	

displacements	 were	 affected	 by	 the	 inevitable	 unknown	 micro-

movements	of	the	moving	parts	of	the	scanner.	 	To	quantify	the	random	

error	 of	 the	 displacements,	 their	 variability	 was	 computed	 within	 each	

specimen.	 	 The	 systematic	 error	 for	 the	 displacements	 could	 not	 be	

quantified.			

• As	the	test	was	based	on	a	zero-strain	condition,	any	non-zero	values	of	

strain	were	considered	as	error.	 	Systematic	and	random	errors	for	each	

specimen	 were	 computed	 as	 the	 average	 and	 standard	 deviation,	
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separately,	 for	 each	 component	 of	 strain.	 For	 each	 VOI	 and	 sub-volume	

size,	 the	 median	 of	 the	 values	 of	 the	 errors	 obtained	 for	 the	 five	

specimens	was	then	reported	for	each	strain	component.		

• The	mean	absolute	error	(MAER)	and	standard	deviation	of	error	(SDER)	

were	computed	as:	

MAER	=	
!
! (!!

!
!!! !!,! )!

!!! 																											(Eq.	1)	

SDER=
!
! (!! !!,!!

!!! −MAER)!!
!!!  													(Eq.	2)	

where	“ε”	represents	the	strain;	“c”	represents	the	six	independent	strain	

components;	 “k”	 represents	 the	measurement	point;	N	 is	 the	number	of	

measurement	 points.	 MAER	 and	 SDER	 correspond	 to	 the	 indicators	

formerly	called	as	“accuracy”	and	“precision”		(Liu	&	Morgan,	2007).		

• Linear	correlations	between	the	SV/TV	and	the	random	error	computed	

for	each	component	of	 the	 strain,	or	 the	SDER,	were	computed	 for	each	

VOI	and	for	both	DVC	approaches	(Mann-Withney	U	test,	α=0.05,	Minitab	

17,	UK).		

	

	

	

7.3 Results 

The	random	errors	affecting	the	displacements	ranged	between	0.01	and	1.61	of	

the	voxel	size	(from	0.66	to	63.08	micrometers)	for	DaVis-DC,	and	from	0.01	to	

0.04	voxels	(from	0.50	to	1.53	micrometers)	for	ShIRT-FE.	Random	errors	were	

typically	 larger	 for	 smaller	 sub-volume	 sizes	 (Table	 1)	 and	 this	 difference	was	

more	pronounced	for	DaVis-DC	than	ShIRT-FE.	The	multipass	scheme	available	

for	DaVis-DC	notably	improved	the	performance	in	VOI-1	(sub-volume	output	of	

48	voxels),	VOI-4	 	 (sub-volume	output	of	16	voxels)	and	partially	 in	VOI-2	and	

VOI-3	(sub-volume	output	of	16	voxels)	when	compared	to	the	results	obtained	

with	sub-volume	of	16	voxels,	obtaining	values	comparable	 to	 the	case	when	a	

sub-volume	of	48	voxels	was	used.	Multipass	in	VOI-5	also	(sub-volume	output	of	

16	 voxels)	 produced	 an	 improvement	 compared	 to	 the	 case	 in	 which	 a	 sub-

volume	of	16	voxels	was	used,	but	 less	 relevant	when	compared	 to	 the	 results	

obtained	with	a	sub-volume	of	48	voxels.			

	
Table	1:	Random	errors	affecting	the	displacements	(in	micrometers)	for	DaVis-DC	and	ShIRT-

FE,	for	a	sub-volume	size	of	16	and	48	voxels	for	each	VOI.		The	median	over	the	five	specimens	is	

reported.	

DISPLACEMENT RANDOM ERROR (MICROMETERS) 

VOI Sub-Volume DaVis-DC ShIRT-FE 
X Y Z X Y Z 

1 
16 1.87 1.49 2.18 1.22 1.27 1.13 
48 1.56 1.10 1.16 1.25 1.35 1.24 

Multipass (48) 1.05 1.08 0.92 NOT AVAILABLE 

2 
16 1.55 1.66 1.05 1.24 1.35 0.68 
48 1.11 0.89 0.47 1.24 1.23 0.63 

Multipass (16) 1.58 1.40 0.66 NOT AVAILABLE 
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3 
16 2.02 1.71 1.97 1.22 1.34 0.67 
48 1.47 1.19 0.76 1.15 1.30 0.54 

Multipass (16) 1.23 1.35 1.04 NOT AVAILABLE 

4 
16 2.20 2.04 2.41 1.31 1.40 0.77 
48 1.73 1.57 1.36 1.25 1.35 0.54 

Multipass (16) 1.37 1.31 1.04 NOT AVAILABLE 

5 
16 54.77 63.08 48.57 1.40 1.53 0.80 
48 2.59 2.04 2.18 1.18 1.55 0.50 

Multipass (16) 15.64 17.49 17.49 NOT AVAILABLE 
	

Both	 the	 local	 (DaVis-DC)	 DVC	 and	 the	 global	 (ShIRT-FE)	 approaches	 did	 not	

show	a	clear	trend	in	the	systematic	(Fig.	2)	and	random	(Fig.	3)	errors	affecting	

the	 specific	 components	 of	 strain.	 Moreover,	 the	 sub-volume	 size	 (16-	 or	 48-

voxel)	did	not	seem	to	generally	affect	the	order	of	magnitude	of	the	systematic	

error.	DaVis-DC	experienced	absolute	systematic	errors	mostly	 lower	 than	100	

microstrain,	with	a	maximum	peak	of	350	microstrain	 (exx	 in	VOI-3)	 for	VOI-1,	

VOI-2,	 VOI-3	 and	 VOI-4.	 The	 main	 exception	 was	 observed	 for	 DaVis-DC	 in	

relation	 to	 VOI-5	 (Fig.	 2),	 where	 considerably	 higher	 systematic	 errors	 (up	 to	

~6000	microstrain)	where	 found	with	 the	16-voxel	 sub-volume	size.	However,	

the	use	of	a	48-voxel	sub-volume	size	produced	errors	ranging	from	-223	to	428	

microstrain	for	exz	and	exx,	respectively.	The	multipass	strategy	for	DaVis-DC	did	

not	drastically	reduce	the	strain	uncertainties	for	all	VOIs,	but	only	in	few	cases	

such	as	exx	 in	VOI-1	and	exx,	 in	VOI-3.	 In	 some	other	 cases	 the	multipass	had	a	

rather	 detrimental	 effect	 and	 considerably	 increased	 the	 strain	 error,	

particularly	when	compared	with	the	48-voxel	sub-volume	size	(i.e.	exy	in	VOI-1,	

eyy	 in	 VOI-5	 and	 exy	 in	 VOI-5).	 In	 ShIRT-FE,	 for	 the	 six	 components,	 absolute	

strain	values	were	always	lower	than	100	microstrain	(for	all	VOIs).		

Once	 again	 the	 random	 error	 evaluation	 did	 not	 indicate	 any	 preferential	

direction	 in	 the	 six	 strain	 components	 for	 the	different	VOIs,	 but	more	 regular	

patterns	 could	 be	 identified	 (Fig.	 3,	 all	 values	 for	 sub-volume	 48	 in	

supplementary	material).	For	 the	sub-volume	size	of	48	voxels	 in	VOI-1,	VOI-2,	

VOI-3	and	VOI-4,	DaVis-DC	computed	errors	that	were	generally	lower	than	200	

microstrain	with	a	maximum	value	of	274	microstrain	for	ezz	in	VOI-1.	The	sub-

volume	size	of	16	voxels	increased	the	random	error	to	thousands	of	microstrain	

in	DaVis-DC	as	well	 in	VOI-1,	VOI-2,	VOI-3	and	VOI-4,	with	a	maximum	of	1771	

microstrain	for	ezz	in	VOI-4.	VOI-5	still	presented	the	worst	case	with	very	large	

errors	(several-thousands	microstrain)	for	the	16-voxel	sub-volume	size,	and	up	

to	770	microstrain	 for	 the	48-voxel	 size.	 The	multipass	 for	DaVis-DC	was	 only	

able	 to	 reduce	 the	 uncertainties	 for	VOI-1,	when	 a	 final	 sub-volume	 size	 of	 48	

voxels	was	used.	 For	VOI-2,	VOI-3,	VOI-4	 and	VOI-5	 the	multipass,	with	 a	 final	

sub-volume	pushed	 at	 16	 voxels,	 could	 only	mitigate	 the	 errors	 relative	 to	 the	

16-voxel	sub-volume	alone,	without	any	considerable	 improvements.	 In	ShIRT-

FE	the	strain	uncertainties	for	all	the	components	with	a	sub-volume	size	of	48	

voxels	 were	 consistently	 lower	 or	 close	 to	 200	microstrain.	 For	 a	 sub-volume	

size	 of	 16	 voxels	 ShIRT-FE	 produced	 a	 maximum	 strain	 error	 of	 ~1200	

microstrain.	Interestingly,	this	global	approach	seems	to	produce	lower	random	

errors	for	the	normal	strains,	rather	than	the	shear	ones	for	all	VOIs.		 	
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Fig	2:	Systematic	error	with	ShIRT-FE	(left)	and	DaVis-DC	(right)	in	the	five	VOIs	(1-5):	median	

between	five	specimens.	Data	related	to	VOI-1	has	been	reported	for	completeness	and	adapted	

from	Palanca	et	al.	(2016b).	

	

The	strain	values	obtained	 in	DaVis-DC	(local	approach)	 for	VOI-5	were	clearly	

influenced	 by	 the	 presence	 of	 the	 saline	 solution	 in	 the	 micro-CT	 images	 as	

shown	in	Fig.	4	(a,	b,	d,	e).	Conversely,	ShIRT-FE	(global	approach)	seemed	to	be	

less	 sensitive	 to	 saline	 region,	 and	 the	major	 strain	 uncertainty	was	 related	 to	

boundary	effect	(Fig.	4a,	c,	d,	f).		

In	 order	 to	 facilitate	 the	 comparison	 with	 published	 literature	 the	 MAER	 and	

SDER	were	also	computed	as	scalar	values	similar	to	(Liu	&	Morgan,	2007),	so	as	

to	have	 a	 single	 value	 to	be	 associated	with	 each	VOI	 (Fig.	 5).	Both	MAER	and	

SDER	followed	a	decreasing	trend	with	the	increase	of	sub-volume	size	from	16	

to	48	voxels.		
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Fig	3:	Random	error	with	ShIRT-FE	(left)	and	DaVis-DC	(right)	in	the	five	VOIs	(1-5):	median	

between	five	specimens.	Data	related	to	VOI-1	has	been	reported	for	completeness	and	adapted	

from	Palanca	et	al.	(2016b).	

	

In	particular,	 for	the	48-voxel	sub-volume	the	MAER	and	SDER	in	VOI-1,	VOI-2,	

VOI-3	 and	 VOI-4	 for	 both	 DaVis-DC	 and	 ShIRT-FE	were	 consistently	 better	 or	

close	 to	200	microstrain	 and	100	microstrain,	 respectively.	 In	VOI-5,	DaVis-DC	

produced	 MAER	 and	 SDER	 (48	 voxels)	 better	 than	 400	 microstrain	 and	 200	

microstrain,	 respectively.	 The	 multipass	 scheme	 was	 only	 able	 to	 reduce	 the	

error	 in	 VOI-1	 (48-voxel	 final	 sub-volume),	 but	 not	 in	 the	 smaller	 VOIs	 (2-5)	

when	the	final	sub-volume	output	was	pushed	to	16	voxels.	ShIRT-FE	confirmed	

the	 same	 trend	 as	 for	 the	 other	 VOIs	 with	 strain	 errors	 better	 than	 150	

microstrain.	
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The	effect	of	SV/TV	was	not	clearly	associated	with	 the	strain	uncertainties.	 In	

terms	 of	 SDER	 (48-voxel	 sub-volume,	 Table	 2)	 the	 outputs	 of	 ShIRT-FE	 and	

DaVis-DC	 did	 not	 show	 any	 linear	 correlation	with	 the	 SV/TV	 (p	 >	 0.21).	 The	

random	error	for	each	strain	component	(not	reported	here	for	brevity)	showed	

inverse	linear	correlation	with	SV/TV	only	for	exx	(p	=	0.012,	R2	=	0.61)	and	exz	(p	

=	0.036,	R2	=	0.45)	computed	in	VOI-2	(48	voxels	sub-volume)	with	DaVis-DC.		

	
 

Table	2:	SDER	and	solid	volume	fraction	(SV/TV)	for	DaVis-DC	and	ShIRT-FE	calculated	for	a	sub-

volume	size	of	48	voxels	in	the	five	specimens	and	for	each	VOI.	SDER	is	reported	as	median	and	

standard	deviation,	whereas	SV/TV	as	average	and	standard	deviation.		

VOI SDER DaVis-DC 
(microstrain) 

SDER ShIRT-FE 
(microstrain) SV/TV (%) 

VOI-1 
(300*300*432 voxels) 66 ± 52 35 ± 52 57.5 ± 10.9 

VOI-2 
(152*152*432 voxels) 45 ± 69 75 ± 48 84.1 ± 10.9 

VOI-3 
(152*152*432 voxels) 63 ± 47 52 ± 42 54.5 ± 6.4 

VOI-4 
(152*152*432 voxels) 61 ± 46 83 ± 48 32.9 ± 3.6 

VOI-5 
(152*152*432 voxels) 159 ± 406 51 ± 41 31.4 ± 5.2 

	

	

7.4 Discussion 

The	main	 aim	 of	 this	 work	was	 to	 evaluate	 the	 effect	 of	 bone	microstructure,	

biomaterial	 and	 its	 integration	 with	 bone	 (cement-bone	 interface)	 on	 the	

systematic	 and	 random	 strain	 error	 distributions	 within	 prophylactically	

augmented	vertebrae,	when	two	different	DVC	approaches	are	used.	For	VOI-1,	

which	 was	 intended	 as	 an	 organ-level	 investigation,	 DaVis-DC	 and	 ShIRT-FE	

were	similar	in	terms	of	magnitude	of	systematic	and	random	errors.	For	more	

details	 please	 refer	 to	 Palanca	 et	 al.	 (2016b).	 For	 all	 VOIs	 the	 effect	 of	 sub-

volume	size	on	the	systematic	error	seemed	negligible	as	well	as	 the	multipass	

(16-voxel	final	sub-volume).	Most	of	the	strain	components	in	VOI-2,	VOI-3,	and	

VOI-4	were	included	in	the	range	±50	microstrain	and	absolute	maximum	strains	

of	~70	microstrain	for	ShIRT-FE	(in	VOI-2)	and	~350	microstrain	for	DaVis-DC	

(in	 VOI-3).	 However,	 in	 VOI-5	 there	 was	 a	 visible	 difference	 between	 the	 two	

DVC	approaches.	ShIRT-FE	reported	values	comparable	 to	 the	other	VOIs,	with	

absolute	strains	always	lower	than	100	microstrain,	whereas	DaVis-DC	produced	

absolute	errors	up	to	~5600	microstrain.	Moreover,	the	effect	of	sub-volume	size	

was	remarkable	in	some	strain	components:	some	components	of	error	(i.e.	exy)	

for	 a	 16-voxel	 sub-volume	were	~200	 times	 higher	 than	 for	 the	 48-voxel	 sub-

volume.	 This	 was	 expected	 for	 the	 local	 DVC	 approach	 due	 to	 the	 absence	 of	

trackable	features	outside	the	bone	(Fig.	4),	which	becomes	critical	for	the	local	

DaVis-DC	when	computing	smaller	sub-volumes	(higher	spatial	resolution).		
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Not	surprisingly	random	errors	for	both	approaches	were	largely	influenced	by	

the	sub-volume	size	 in	all	VOIs,	where	errors	 for	the	16-voxel	subvolume	were	

much	 higher	 than	 those	 for	 the	 48-voxels,	 and	 a	more	 repeatable	 trend	 in	 the	

strain	 components	 was	 observed	 (Fig.	 3).	 In	 all	 VOIs	 except	 VOI-5,	 DaVis-DC	

produced	strain	errors	up	to	in	the	order	or	thousand	microstrain	(maximum	of	

~1800	microstrain	in	VOI-4)	for	the	16-voxel	sub-volume	and	errors	in	the	order	

of	 hundred	 microstrain	 for	 the	 48-voxel	 sub-volume	 (maximum	 of	 ~250	

microstrain	in	VOI-4).	The	multipass	was	able	to	further	reduce	the	error	in	VOI-

1	(close	or	below	100	microstrain	for	all	components)	only	when	the	final	sub-

volume	was	48	voxels.	In	the	smaller	VOIs	(2-4)	where	the	final	sub-volume	was	

pushed	at	16	voxels,	the	multipass	was	only	able	to	reduce	the	error	for	the	same	

sub-volume	size	without	multipass	to	a	minimum	of	~600	microstrain	in	VOI-2.		

	

	
Fig	4:	The	first	row	reports	the	volumetric	view	of	VOI-5	for	micro-CT	(a),	DVC	strain	maps	

computed	with	DaVis-DC	(b)	and	ShIRT-FE	(c)	with	sub-volume	size	of	48	voxels.	The	second	

row	reports	the	z-z	planar	section	for	micro-CT	(d),	DVC	strain	maps	computed	with	DaVis-DC	

(e)	and	ShIRT-FE	(f).	For	DaVis-DC	the	largest	random	errors	mainly	corresponded	to	the	region	

of	saline	solution	and	negatively	influenced	the	result	in	the	trabecular/cortical	region,	whereas	

strain	error	in	ShIRT-FE	are	localized	mainly	in	the	boundaries	of	the	image.	
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This	 can	 be	 related	 to	 a	 lack	 of	 convergence	 of	 the	 different	 steps	 in	 the	

multipass	 due	 to	 the	 reduced	 number	 of	 features	 with	 the	 smallest	 final	 sub-

volume	 (16	 voxels).	 In	VOI-5,	 ShIRT-FE	 reported	 the	 same	 trend	 shown	 in	 the	

other	VOIs	with	errors	 constantly	 lower	 than	200	microstrain	 for	 the	48-voxel	

sub-volume	 and	 close	 or	 lower	 than	 1000	 microstrain	 for	 the	 16-voxel	 sub-

volume.	 Similarly	 to	 the	 systematic	 error,	DaVis-DC	 showed	high	 sensitivity	 to	

the	saline	solution	surrounding	the	tissue	also	for	random	errors	as	documented	

in	Fig.	4.		While	errors	outside	the	bone	are	in	most	cases	acceptable,	care	should	

be	 taken	when	 interpreting	 the	 results	 on	 the	 border	 of	 the	 specimen,	 where	

local	 approaches	 are	 affected	 by	 the	 absence	 of	 reference	 features.	 A	 possible	

solution	to	the	problem	for	local	DVC	could	rely	in	the	use	of	appropriate	overlap	

strategies	 to	ensure	a	higher	degree	of	 continuity	during	correlation.	However,	

current	 overlap	 scheme	 implemented	 in	 DaVis	 did	 not	 produce	 any	

improvements	in	strain	error	(Palanca	et	al.,	2015)	and	further	work	is	needed	

on	that	side.	Also,	an	appropriate	and	controlled	masking	is	suggested	when	local	

DVC	approaches	are	used.	However,	it	must	be	noted	that	for	sub-volume	size	of	

48	voxels	DaVis-DC	generated	errors	in	the	range	209	–	770	microstrain,	which	

suggests	how	even	the	minimal	variation	in	the	image	gray-scale	intensity	for	the	

individual	 sub-volume	 could	 result	 in	 an	 important	 improvement	 of	 the	 local	

correlation	strategy.	There	was	no	evidence	of	a	clear	directionality	associated	to	

strain	 error	 in	 all	 VOIs	 for	 both	 DVC	 approaches.	 Only	 ShIRT-FE	 seemed	 to	

indicate	 lower	 errors	 for	 the	 normal	 strains	 when	 compared	 to	 the	 shear	

components	 (Fig.	 3),	 but	 no	 clear	 trend	 could	 be	 observed.	 The	 random	 error	

reported	for	the	displacements	(Table	1)	is	in	line	with	the	strain	results.	This	is	

important	as	different	strain	calculation	strategies	could	affect	the	final	outcome,	

starting	 from	 comparable	 displacements.	 However,	 particularly	 for	 VOI-4	 the	

multipass	produced	better	displacements	even	when	compared	to	the	48	voxels.	

This	opens	up	discussion	on	how	strain	is	actually	computed.	In	fact,	in	this	study	

only	 the	 centered	 finite	 differences	 (CFD)	 scheme	 available	 in	 DaVis	 software	

was	 used,	 but	 the	 influence	 of	 different	 strain	 computation	 of	 primary	 DVC	

output	 (displacement)	 surely	 requires	 further	 investigation.	 Overall,	 for	 both	

sub-volume	size	and	DVC	approaches	 (excluding	 the	VOI-5	 for	DaVis-DC),	both	

systematic	 and	 random	 errors	 resulted	 not	 particularly	 related	 to	 the	 bone	

microarchitecture	 and	 or	 the	 presence	 of	 biomaterial.	 Therefore,	 it	 seems	 that	

local	 material	 heterogeneities	 should	 not	 affect	 the	 precision	 of	 the	 DVC	

calculation,	 provided	 that	 enough	 recognizable	 patterns	 are	 available	 in	 the	

images.	

The	MAER	 and	 SDER,	 reported	 as	 “accuracy”	 and	 “precision”	 in	 Liu	&	Morgan	

(2007)	(Fig.	5),	showed	a	clear	reduction	for	both	error	indicators	with	a	larger	

sub-volume,	consistently	with	previous	 literature	(Dall’Ara	et	al.,	2014;	Palanca	

et	al.,	2015).	The	multipass	was	still	able	to	produce	improvements	for	VOI-1,	but	

not	for	the	remaining	VOIs	(2-5),	where	the	final	sub-volume	was	16	voxels.	For	

VOI-4,	containing	only	trabecular	bone,	both	MAER	and	SDER	were	worse	than	

those	 extrapolated	 via	 power	 law	 in	Dall’Ara	 et	 al.	 (2014)	 for	 sub-volume	 size	

with	physical	 dimension	 equal	 to	 1872	micrometers	 and	 equivalent	 to	 the	 48-

voxel	 sub-volume	 in	 this	 study	 (MAER:	 ~200	 microstrain	 in	 this	 study	 vs	

extrapolated	 21	 microstrain;	 SDER:	 ~50	 microstrain	 in	 this	 study	 vs	

extrapolated	 13	 microstrain).	 This	 difference	 is	 probably	 due	 to	 the	 higher	
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spatial	resolution	of	 the	 images	used	 in	 the	study	of	Dall’Ara	et	al.	 (2014)	with	

respect	to	the	one	of	the	images	used	in	this	study	(voxel	size	~10	micrometers	

vs	39	micrometers).	

	

	
Fig	5:	DVC	strain	uncertainties	reported	as	‘MAER’	(left)	and	‘SDER’	(right)	(formerly	known	as	

‘accuracy’	and	‘precision’	respectively	in	Liu	&	Morgan,	2007)	for	both	ShIRT-FE	and	DaVis-DC	

with	sub-volume	sizes	of	16	and	48	voxels,	and	for	the	multipass	scheme	(only	DaVis-DC,	final	

sub-volume	size	equal	to	48	for	VOI-1	and	16	for	the	other	VOIs).	Data	related	to	VOI-1	has	been	

reported	for	completeness	and	adapted	from	Palanca	et	al.	(2016b).	
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The	SV/TV	was	calculated	for	each	VOI	in	order	to	take	into	account	the	effect	of	

both	bone	and	cement	on	the	SDER,	for	the	two	DVC	approaches.	This	choice	was	

preferred	to	the	BV/TV	involving	only	bone	tissue	(Roberts	et	al.,	2014),	as	the	

influence	 of	 bone	 cement	 with	 pellets	 of	 BaSO4	 (~300	micrometers)	 or	 other	

radiopacifiers	 could	 strongly	 modify	 the	 material	 texture	 and,	 therefore,	

influence	 the	 DVC	 analysis.	 It	 was	 found	 that	 there	 is	 no	 linear	 correlation	

between	the	SDER	calculated	in	DaVis-DC	and	ShIRT-FE	with	SV/TV	for	all	VOIs	

(p	 >	 0.21).	 With	 regards	 to	 the	 single	 components,	 the	 random	 strain	 error	

produced	a	weak	inverse	correlation	with	SV/TV	in	VOI-2	(48-voxel	sub-volume)	

for	DaVis-DC	only	for	exx	(p	=	0.012,	R2	=	0.61)	and	exz	(p	=	0.036,	R2	=	0.45).	This	

could	 be	 related	 to	 the	 intrinsic	 nature	 of	 local	 DVC	 approaches,	 where	 small	

interrogation	 volumes	 in	 two	 scans	 are	 registered	 independently	 to	map	 local	

grey-scale	intensities	in	the	images	(if	enough	features	are	available).	Hence,	the	

presence	of	radiopacifiers	in	the	cement	may	have	helped	the	local	approach	to	

produce	 lower	errors,	compared	to	areas	with	gradient	of	materials.	 	However,	

this	 correlation	 is	 insufficient	 to	 justify	 the	 effect	 of	 microstructure	 or	

biomaterial	 in	 the	 strain	 error.	 The	 application	 of	 DVC	 to	 cement-bone	

composites	 was	 firstly	 introduced	 by	 Tozzi	 et	 al.	 (2014).	 In	 that	 study	 it	 was	

noted	that	the	presence	of	radiopacifiers	with	suitable	particle	size	in	the	cement	

helped	 the	 correlation	 process,	 producing	 better	 correlation	 in	 such	 areas.	

However,	 a	 detailed	 investigation	 of	 the	 effects	 of	 cement	 in	 the	 DVC	 strain	

uncertainties	was	 not	 performed.	 Zhu	 et	 al.	 (2015)	 reported	 a	 first	 attempt	 to	

investigate	 this	 effect.	 They	 evaluated	 the	 DVC	 uncertainties	 with	 a	 local	

approach	 (DaVis-FFT)	 in	 zero-strain	 (repeated	 scans)	 on	 one	 cement-bone	

specimen	in	dry	conditions	(22	micrometers	voxel	size,	smallest	sub-volume	of	

32	 voxels).	 They	 reported	 the	 MAER	 (referred	 to	 as	 “accuracy”)	 and	 SDER	

(referred	to	as	“precision”)	 for	only	one	strain	component	(ezz).	Thus,	 if	results	

have	to	be	compared	with	the	current	study,	the	SDER	with	DaVis-DC	multipass	

for	the	16-voxel	subvolume	(our	624	micrometers	vs	their	704	micrometers)	on	

the	ezz	would	be	more	appropriate	and	represent	the	worst	case	in	both	studies.	

The	current	results	did	not	show	the	same	decreasing	trend	from	trabecular	to	

cement	 as	 in	Zhu	et	 al.	 (2015).	 In	 fact,	 the	 SDER	 from	 trabecular	bone	 regions	

(current	 VOI-4),	 to	 partially	 interdigitated	 (current	 VOI-3),	 to	 cement	 (current	

VOI-2)	in	the	current	study	remains	pretty	constant	(<100	microstrain	for	both	

approaches).	However,	our	SDER	was	consistently	better	 than	 that	 reported	 in	

Zhu	 et	 al.	 (2015)	 for	 ezz	 in	 the	 bone	 region	 (230	microstrain	 in	 this	 study	 vs		

~1400	 microstrain	 in	 that	 study),	 partially	 interdigitated	 (364	 microstrain	 in	

this	 study	 vs	 ~700	 microstrain	 in	 that	 study)	 and	 cement	 region	 (207	

microstrain	in	this	study	vs	~500	microstrain	in	that	study).	This	is	surely	due	to	

the	 specific	 choice	 of	 FFT-based	 local	 DVC	 as	well	 as	 extensive	 overlap	 (up	 to	

75%)	in	Zhu	et	al.	(2015),	which	were	found	to	be	less	accurate	when	compared	

to	a	direct	correlation	approach	 for	 the	same	software	(DaVis-DC)	without	any	

overlaps	(Palanca	et	al.,	2015).		The	present	findings	show	that	the	local	errors	to	

be	expected	in	the	cement,	bone,	and	in	the	interdigitated	regions	may	not	be	so	

different,	but	that	different	sub-volume	sizes	may	be	required	to	minimize	such	

errors	in	the	different	regions.	

The	current	study	has	some	limitations.	Firstly,	only	two	sub-volume	sizes	(16-	

and	 48-voxel)	 were	 chosen	 in	 the	 present	 study.	 However,	 a	 more	

comprehensive	trend	for	augmented	vertebrae	with	sub-volume	sizes	up	to	128	
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voxels	has	been	recently	reported	in	Palanca	et	al.	(2016b).	That	study	showed	

how	 random	 error	 could	 be	 reduced	well	 below	 100	microstrain	 in	 both	 DVC	

approaches	for	VOI-1.	Thus,	 it	 is	expected	that	also	smaller	VOIs	could	follow	a	

similar	trend.	Secondly,	the	use	of	five	specimens	could	not	provide	a	statistical	

relevance,	but	only	a	trend	that	may	be	sufficient	to	have	reliable	information	on	

strain	 uncertainties	 location	 and	 distribution.	 Thirdly,	 the	 strain	 error	 is	 only	

calculated	 in	 a	 zero-strain	 condition	 for	 repeated	 scans.	 This	 type	 of	 analysis	

should	 be	 expanded	 in	 order	 to	 take	 into	 account	 strain	 errors	 under	 load.	

Finally,	 the	 use	 of	 animal	 tissue	 is	 justified	 by	 easier	 handling	 and	 availability	

compared	 to	 human.	 This	 decision	 was	 taken	 for	 ethical	 reasons	 in	 this	

preliminary	 methodological	 work.	 	 Future	 work	 on	 DVC	 strain	 uncertainties	

from	 clinical	 CT	 images	will	 expand	 our	 knowledge	 of	 the	 tool	 for	 a	 potential	

implementation	in	clinical	practice.					

	

	

	

7.5 Conclusions 

The	results	obtained	in	this	study	aimed	at	better	understanding	the	complexity	

of	DVC	strain	uncertainties	in	prophylactically	augmented	vertebrae,	and	of	how	

the	 bone	 microstructure	 and	 the	 presence	 of	 injectable	 biomaterial	 could	

influence	 the	 strain	 error.	 Two	 different	 DVC	 approaches	 were	 tested	 (global	

ShIRT-FE	 and	 local	 DaVis-DC)	 and	 strain	 errors	 were	 evaluated	 for	 two	 sub-

volume	 sizes	 (16-	 and	 48-voxel).	 It	 was	 found	 that	 systematic	 error	 was	

insensitive	 to	 sub-volume	changes,	whereas	 the	 random	errors	were	 lower	 for	

the	 48-voxel	 sub-volume	 (all	 values	 around	 or	 lower	 than	 200	microstrain)	 in	

volumes	 of	 interest	with	 larger	 amount	 of	 solid	 volume	 fraction,	 for	 both	DVC	

approaches.	The	bone	microstructure	as	well	as	the	presence	of	biomaterial	did	

not	seem	to	have	an	important	affect	on	DVC	computation	for	both	approaches.	

When	 the	 liquid	 (uniform	 material)	 was	 included	 in	 the	 image,	 DaVis-DC	

experienced	 higher	 errors	 (770	 microstrain	 in	 the	 best	 case)	 than	 ShIRT-FE.	

MAER	 and	 particularly	 SDER	 were	 substantially	 improved	 when	 compared	 to	

recent	literature	in	cement-bone	interface.	The	multipass	approach	for	DaVis-DC	

further	 reduced	 the	minimum	 random	error	 for	 the	 largest	 volume	 of	 interest	

(48-voxel	final	sub-volume)	and	reduced	the	maximum	random	error	(16-voxel	

final	sub-volume)	in	the	other	volumes.	Finally,	no	anisotropy	was	found	for	the	

errors	affecting	the	different	components	of	strain,	where	only	ShiRT-FE	seemed	

to	produce	lower	random	errors	in	the	normal	strain	components.	
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8.1 Introduction 

Digital	 Volume	 Correlation	 (DVC)	 has	 been	 used	 to	 explore	 the	 full-field	

displacement	 and	 strain	distribution	 inside	 specimens	 from	3D	 images	 (Bay	et	

al.,	 1999a;	 Grassi	 and	 Isaksson,	 2015;	 Roberts	 et	 al.,	 2014).	 	 Since	 the	

introduction	 of	 DVC,	 several	 studies	were	 performed	 to	 evaluate	 its	 reliability	

(measurement	 error).	 	 As	 no	 other	 experimental	 method	 allows	 measuring	

internal	 displacements	 and	 strains,	 validation	 experiments	 must	 be	 designed	

where	the	field	of	displacement	and/or	strain	is	known	a	priori.			
DVC	is	extremely	powerful	in	measuring	displacements	(overall	error	of	1/50	to	

1/10	of	the	voxel	size	(Bay	et	al.,	1999a;	Dall'Ara	et	al.,	2014;	Freddi	et	al.,	2015;	

Palanca	et	al.,	2015b;	Tozzi	et	al.,	2017)).		Conversely,	DVC-computed	strains	are	

affected	 by	 significant	 errors.	 	 Tests	 in	 a	 zero-strain	 condition	 have	 been	

performed,	 from	the	tissue-level	(trabecular	or	cortical	bone	(Bay	et	al.,	1999a;	

Dall'Ara	 et	 al.,	 2014;	 Gillard	 et	 al.,	 2014;	 Liu	 and	Morgan,	 2007;	 Palanca	 et	 al.,	

2015b;	 Zhu	 et	 al.,	 2015)),	 to	 the	 organ-level	 (vertebral	 bodies	 (Hardisty	 and	

Whyne,	2009;	Hussein	et	al.,	2012)).		Depending	on	the	nature	of	the	tissue	type	

under	 investigation	 and	 on	 the	 voxel	 size	 of	 the	 input	 images,	 the	 accuracy	 of	

strain	 measurements	 can	 range	 between	 300	 and	 794	 microstrain,	 while	 the	

precision	 between	 69	 and	 630	 microstrain	 (Roberts	 et	 al.,	 2014).	 	 All	 these	

studies	showed	how	the	performance	of	DVC	depends	on	the	natural	texture	of	

the	specimen	(i.e.	histomorphometric	parameters	 in	trabecular	bone),	and	how	

DVC	is	suitable	to	examine	the	pre-	and	post-yield	deformation	in	bone	(Liu	and	

Morgan,	2007;	Tozzi	et	al.,	2016).			

The	 above-mentioned	 studies	 provided	 deep	 basic	 knowledge	 about	 the	

reliability	 and	 main	 benefits/limitations	 of	 the	 DVC	 applied	 to	 bone	 with	 no	

information	about	 the	variability	of	such	errors	between	specimens.	 	 In	 fact,	 in	

those	 studies	 the	DVC	uncertainties	were	 evaluated	using	 only	 one	 (Bay	 et	 al.,	

1999a;	Dall'Ara	et	al.,	2014;	Gillard	et	al.,	2014;	Palanca	et	al.,	2015b;	Zauel	et	al.,	

2006)	or	two	(Liu	and	Morgan,	2007)	specimens.		

It	 was	 probably	 (Bay	 et	 al.,	 1999)	 who	 first	 assessed	 the	 variability	 of	 errors	

between	 different	 trabecular	 bone	 cores.	 	 Later	 (Liu	 and	 Morgan,	 2007)	

performed	an	evaluation	on	more	bone	types	considering	the	intrinsic	variability	

in	different	biological	tissues	(2	specimens	for	each	type).			

Another	open	issue	relates	to	the	reliability	of	DVC	in	bones	interdigitated	with	

biomaterials	 as	 opposed	 to	 natural	 bones.	 	 In	 fact,	 vertebroplasty	 has	 become	

increasingly	 popular	 to	 treat	 and/or	 prevent	 osteoporotic	 vertebral	 fractures	

(Wilcox,	2004).		Vertebroplasty	requires	the	injection	of	bone	cement	inside	the	

vertebral	body,	 through	a	cannula.	 	Due	to	 the	potential	clinical	 implications	 in	

investigating	 augmented	 bone,	 the	 reliability	 of	 DVC	 on	 such	 composite	

structures	must	be	investigated.			

To	 the	 authors’	 knowledge,	 a	 systematic	 comparison	 of	 the	 output	 of	 two	

different	DVC	approaches	(i.e.	local	and	global),	at	the	organ-level,	on	specimens	

including	different	materials	such	as	an	augmented	vertebra,	and	including	inter-

specimen	variability,	is	currently	missing.			

The	 aims	 of	 this	 work	were	 therefore	 to	 compare	 the	 output	 of	 a	 local	 and	 a	

global	DVC	approach	on	a	stationary	test,	and	specifically:	
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! To	quantify	 the	 reliability	 (in	 terms	of	 systematic	 and	 random	error)	of	

DVC	when	applied	to	natural	and	augmented	bones;		

! To	 investigate	 the	spatial	distribution	of	 the	errors,	and	 the	presence	of	

any	preferential	direction;	

! To	assess	the	variability	between	different	specimens;	

In	 order	 to	 achieve	 these	 aims,	 zero-strain	 tests	 were	 performed	 on	 porcine	

natural	and	augmented	vertebrae.			

	

	

	

8.2 Material and methods 

8.2.1 Specimens and images 
Ten	 thoracic	 vertebrae	were	 collected	 from	 six	 fresh	 porcine	 spines,	 obtained	

from	the	alimentary	chain.	 	Soft	 tissues,	 intervertebral	disks	and	growth	plates	

were	removed.		A	sample	of	five	vertebrae	was	used	for	augmentation	(hereafter	

referred	 to	 as	 “augmented”).	 	 Acrylic	 vertebroplasty	 cement	 (Mendec	 Spine,	

Tecres,	Italy)	was	injected	in	the	vertebral	body	with	its	proprietary	device,	until	

the	cement	started	 leaking	(typically	~1	ml	of	cement).	 	The	cement	contained	

BaSO4	 pellets	 (average	 size:	 300	 micrometers)	 to	 increase	 radiopacity.	 	 To	

facilitate	 cement	 injection	 and	 curing,	 the	 vertebrae	 were	 heated,	 before	 and	

after	 augmentation,	 in	 a	 circulating	 bath	 at	 40°C	 (Ye	 et	 al.,	 2007).	 	 Another	

sample	of	 five	vertebrae	was	 left	untreated	(hereafter	referred	to	as	“natural”).		

Sampling	was	 arranged	 so	 that	 the	 augmented	 and	 natural	 samples	were	well	

distributed	 within	 the	 thoracic	 spine	 segment	 (T1-T4),	 in	 order	 to	 avoid	

potential	effects	related	to	morphology.		The	posterior	processes	were	removed	

for	 both	 samples.	 	 To	 allow	 consistent	 alignment	 inside	 the	 micro-CT,	 the	

extremities	of	 each	vertebra	were	potted	 in	poly-methyl-methacrylate	 (PMMA)	

with	a	dedicated	positioning	device	(Danesi	et	al.,	2014).		

In	 order	 to	 evaluate	 the	 reliability	 of	 DVC	 approaches,	 each	 specimen	 was	

scanned	twice	without	any	repositioning,	in	a	zero-strain	condition,	similarly	to	

Palanca	 et	 al.	 (2015).	 	Micro-CT	 (XTH225,	 Nikon	Metrology,	 UK)	 scans	 had	 an	

isotropic	voxel	size	of	39	micrometers,	and	were	performed	with	 the	 following	

settings:	 voltage	 88kV;	 current	 110-115	 micro-A;	 exposure	 2s;	 rotation	 step	

0.23°;	 total	 rotation	 360°.	 	 The	 specimens	 were	 placed	 in	 the	 environmental	

chamber	of	a	 loading	device	 (CT5000,	Deben	Ltd,	UK)	and	 immersed	 in	saline-

solution,	in	order	to	closely	simulate	in	situ	loading	conditions.	
Two	 volumes	 of	 interest	 (VOIs,	 Fig.	 1)	were	 cropped	 from	 each	 reconstructed	

3D-image	(MeVisLab,	Me	Vis	Medical	Solution	AG,	http://www.mevislab.de/):	

• VOI-0	 contained	 the	whole	 vertebral	 body,	 including	 the	 thin	 cortical	 shell	

and	the	interface	between	the	bone	and	the	surrounding	saline	solution.		VOI-

0	was	 a	 parallelepiped	 circumscribing	 the	 contour	 of	 the	 vertebral	 body	 in	

the	transversal	plane,	including	432	slices.		This	region	was	analyzed	to	study	

how	the	strain	error	changes	through	the	vertebra,	 the	vertebral	body	edge	

and	the	surrounding	interface;	

• VOI-1	was	 inside	 the	 vertebral	 body.	 	 VOI-1	was	 a	parallelepiped	 inscribed	

inside	 the	 vertebra	 of	 300x300x432	 voxels	 (consistent	 for	 all	 specimens).		

VOI-0	was	analyzed	to	quantify	the	error	only	inside	the	vertebrae.	
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Fig.	1:	The	vertebra	was	aligned	and	potted	in	a	PMMA	support	and	then	scanned	with	a	micro-
CT.		In	order	to	show	the	differences	between	VOIs,	the	slice	at	mid-height	is	reported	for	an	

augmented	and	a	natural	specimen.		The	larger	box	represents	VOI-0:	the	entire	vertebra	with	

part	of	the	surrounding	saline	solution.		The	smaller	box	represents	VOI-1:	a	parallelepiped	

inscribed	inside	the	vertebra.	

	

In	 order	 to	 allow	 comparison	 between	 the	 results	 obtained	 from	 other	 DVC	

approaches,	the	image	datasets	used	in	the	present	study	will	be	made	available	

to	the	scientific	community,	at	https://dx.doi.org/10.6084/m9.figshare.4062351	

or	by	contacting	the	Authors.		

	

8.2.2 Local vs. global approach 
Two	 DVC	 software	 packages,	 using	 either	 a	 local	 or	 a	 global	 approach,	 were	

compared	in	this	work,	similarly	to	(Palanca	et	al.,	2015b).		The	local	approach	is	

implemented	 in	 a	 commercial	 package	 (DaVis	 8.2.1,	 LaVision,	 Germany)	 later	

referred	 to	 as	 “DaVis-DC”.	 	 The	 global	 approach	 is	 a	 combination	 of	 a	 home-

written	elastic	registration	software	ShIRT	(Sheffield	Image	Registration	Toolkit)	

(Barber	 and	Hose,	 2005;	Barber	 et	 al.,	 2007;	Khodabakhshi	 et	 al.,	 2013)	 and	 a	

Finite	 Element	 (FE)	 software	 package	 (Ansys	 v.14.0,	 ANSYS,	 Inc.,	 Canonsburg,	

PA),	 later	 referred	 to	 as	 “ShIRT-FE”	 (Dall’Ara	 et	 al.,	 2014).	 	 The	 operating	

principles	of	the	two	DVC	approaches	were	described	in	detail	in	(Palanca	et	al.,	

2015b).		Briefly,	DaVis-DC	independently	correlates	sub-volumes	from	deformed	
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to	undeformed	state	as	a	discrete	function	of	grey-levels.		The	matching	between	

the	 sub-volumes	 is	 done	 via	 direct	 correlation,	 which	 provided	 better	 results	

compared	 to	 FFT	 (Palanca	 et	 al.,	 2015b)	 for	 bone.	 	 A	 piece-wise	 linear	 shape	

function	and	a	cross-correlation	function	are	employed	to	quantify	the	similarity	

between	the	reference	and	deformed	image.		The	displacement	field	is	evaluated	

at	 the	 center	of	 each	 sub-volume	and	 the	 strain	 field	 is	 computed	via	 centered	

finite	differences.	ShIRT-FE	focuses	on	the	recognition	of	identical	features	in	the	

whole	 3D	 images	 by	 superimposing	 a	 grid	with	 selectable	 nodal	 spacing	 (sub-

volume)	 to	 the	 images.	 ShIRT	 solves	 the	 elastic	 registration	 equations	 at	 the	

nodes	of	the	grid	to	evaluate	the	displacement	field.		The	grid	is	then	converted	

into	 an	 eight-noded	 hexahedrons	 mesh	 and	 the	 displacements	 computed	 by	

ShIRT	 at	 each	 node	 are	 imposed	 as	 boundary	 conditions.	 	 The	 strain	 field	 is	

obtained	using	the	FE	solver	to	differentiate	the	displacement	field	obtained	with	

ShIRT.	

In	order	to	compute	the	measurement	errors,	eight	sub-volume	sizes	(from	16	to	

128	 voxels,	 in	 steps	 of	 16	 voxels)	 were	 investigated	 (Table	 1).	 	 Moreover,	 a	

multipass	scheme	with	final	sub-volume	size	of	48	voxels	(Table	2)	was	tested	to	

explore	 the	 potentialities	 of	 the	 local	 approach.	 	 The	 multipass	 scheme	 is	

available	only	on	DaVis-DC	and	is	explained	in	(Palanca	et	al.,	2015b).		Based	on	

the	 results	 reported	 in	 that	 study	 (Palanca	et	 al.,	 2015b),	0%	overlap	was	also	

used	in	the	current	study.	

	
Table	1:	Comparison	of	the	correlated	volume	for	the	different	approaches	for	both	the	

augmented	and	the	natural	samples,	and	both	VOIs,	for	each	sub-volume	size.		The	sub-volume	

was	cubic	in	all	cases,	and	its	size	is	described	by	the	side	length,	in	voxels.		The	values	reported	

for	each	sample	are	the	median	of	the	five	augmented	vertebrae	and	of	the	five	natural	vertebrae.	

DaVis-DC	is	trying	to	maximize	the	coverage	when	sampling	the	VOI	with	the	requested	sub-

volume	size.	In	order	to	do	that	part	of	the	boundary	sub-volumes	can	be	largely	outside	of	the	

structure	under	investigation,	which	in	turn	causes	lower	correlation	in	those	regions	that	can	

affect	the	overall	correlated	volume.	For	ShIRT-FE	a	grid	is	superimposed	on	the	entire	volume,	

and	displacements	and	strains	are	computed	on	the	nodes	of	the	grid;	so	no	regions	are	excluded.			

	

VOI	 SAMPLE	 SUB-VOLUME	SIZE	
(voxels)	

DaVis-DC	 ShIRT-FE	

VOI-0	

Augmented	

16	 100%	

100%	

32	 100%	

48	 100%	

64	 98%	

80	 99%	

96	 100%	

112	 97%	

128	 100%	

Natural	

16	 100%	

32	 100%	

48	 100%	

64	 99%	

80	 98%	

96	 98%	

112	 94%	

128	 97%	
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VOI	 SAMPLE	 SUB-VOLUME	SIZE	
(voxels)	

DaVis-DC	 ShIRT-FE	

VOI-1	

Augmented	

16	 100%	

100%	

32	 100%	

48	 100%	

64	 94%	

80	 94%	

96	 97%	

112	 79%	

128	 100%	

Natural	

16	 99%	

32	 100%	

48	 100%	

64	 94%	

80	 94%	

96	 97%	

112	 80%	

128	 100%	

	

Finally,	 to	 avoid	misinterpretation	 of	 the	 results	 due	 to	 potential	 uncorrelated	

volumes,	 the	 percentage	 of	 correlated	 volume	 for	 each	 sub-volume	 size	 was	

computed	as	the	ratio	between	the	number	of	the	correlated	voxels	and	the	total	

number	of	voxels	(Table	1).	 	The	correlated	volume	is	an	essential	indicator	for	

the	 local	 approach,	 as	 the	 correlation	of	 each	 sub-volume	 is	 independent	 from	

each	 other.	 	 For	 the	 global	 approach,	 instead,	 a	 grid	 is	 superimposed	 on	 the	

entire	volume,	and	displacements	and	strains	are	computed	on	the	nodes	of	the	

grid;	so	no	regions	are	excluded.			

	

8.2.3 Quantification of the errors (error metrics) 
Given	 the	 zero-strain	 condition,	 any	 strain	 value	 different	 from	 zero	 was	

accounted	as	an	error.		The	following	analyses	were	carried	out:	

• Errors	by	 strain	 component:	 for	 each	 specimen,	 the	 systematic	 and	 random	
errors	 were	 quantified	 as	 the	 average	 and	 standard	 deviation,	 for	 each	

component	of	strain.		This	analysis	was	repeated	for	VOI-0	and	VOI-1	for	the	

different	sub-volume	sizes.	

• Error	 distribution:	 in	 order	 to	 identify	 the	 areas	 with	 larger	 errors,	 a	
qualitative	analysis	of	the	distribution	of	apparent	strain	(z-component)	was	

performed	 on	 the	 cross-section	 of	 VOI-0,	 for	 both	 DVC	 approaches,	 both	

samples,	 for	sub-volume	size	of	48	voxels	(this	sub-volume	size	was	chosen	

as	it	corresponds	to	an	acceptable	lever	of	the	error,	see	below).	

• Inter-specimen	 variability:	 the	 systematic	 and	 random	 errors	 for	 each	
component	 of	 strain	 in	 VOI-1,	 for	 a	 sub-volume	 size	 of	 48	 voxels,	 were	

compared	 between	 specimens.	 	 In	 order	 to	 investigate	 potential	 relation	

between	 the	magnitude	of	 the	error	and	 the	morphology	of	each	specimen,	

the	bone	volume	fraction	(BV/TV:	bone	volume,	divided	by	total	volume)	for	

the	natural	vertebrae,	or	the	solid	volume	fraction	(SV/TV:	sum	of	volume	of	

cement	 and	of	bone,	divided	by	 total	 volume)	 for	 the	 augmented	vertebrae	

were	 computed.	 	 The	 images	 were	 segmented	 using	 a	 single	 threshold,	
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chosen	in	the	valley	between	the	first	two	peaks	of	the	frequency	distribution	

in	 the	 grey-scale	 (histograms).	 	 The	 threshold	 value	was	 adapted	 by	 visual	

comparison	 of	 the	 segmented	 and	 grey-scale	 images,	 in	 order	 to	 separate	

bone	 (or	 bone	 and	 cement)	 from	 the	 background.	 	 Both	BV/TV	 and	 SV/TV	

were	 calculated	 as	 ratio	between	 the	number	of	 voxels	 in	 the	 solid	 volume	

divided	by	 the	 total	 number	 of	 voxels	 (Rasband,	W.S.,	 ImageJ,	U.S.	National	

Institutes	 of	 Health,	 Bethesda,	 Maryland,	 USA,	 http://imagej.nih.gov/ij/,	

1997-2015)	(BoneJ	plugin	(Doube	et	al.,	2010)).	

All	the	analyses	were	performed	with	a	script	in	MatLab	2014a	(MathWorks,	US).		

Data	were	screened	for	outliers	applying	the	criterion	of	Peirce	(Ross,	2003).	

	

	

	

8.3 Results 

8.3.1 Errors over VOI-0 
The	systematic	errors	 fluctuated	around	zero	microstrain,	 apart	 from	 the	peak	

for	 the	 smallest	 sub-volume	 size	 (Supplementary	 Materials).	 	 For	 small	 sub-

volume	 sizes	 DaVis-DC	 had	 errors	 up	 to	 two	 orders	 of	magnitude	 larger	 than	

ShIRT-FE;	 only	 with	 sub-volumes	 larger	 than	 96	 voxels	 the	 systematic	 errors	

were	comparable	(generally	within	100	microstrain).			

The	random	errors	showed	a	clear	decreasing	trend	towards	larger	sub-volume	

sizes	(Supplementary	Materials).		The	differences	between	DaVis-DC	and	ShIRT-

FE	were	as	high	as	 two	orders	of	magnitude,	with	maximum	values	of	126312	

and	 121281	microstrain,	 respectively,	 for	 augmented	 and	 natural	 sample	with	

DaVis-DC	 and	 2957	 and	 1124	microstrain,	 for	 augmented	 and	 natural	 sample,	

with	ShIRT-FE.		The	multipass	scheme	on	DaVis-DC	(Table	2)	was	able	to	reduce	

both	 the	 systematic	 and	 random	 errors	 by	 up	 to	 a	 factor	 ten,	 with	 respect	 to	

those	 with	 the	 equivalent	 sub-volume	 (48	 voxels).	 	 The	 errors	 on	 augmented	

vertebrae	 were	 consistently	 larger,	 up	 to	 50%,	 than	 the	 ones	 on	 natural	

vertebrae.			

	
Table	2:	Series	of	steps	implemented	in	the	multipass	approach,	mp	(48),	without	any	overlap.		

This	feature	is	available	only	on	DaVis-DC.	

	

STEP	 SUB-VOLUME	SIZE	
(voxels)	

NUMBER	 OF	
ITERATIONS	

1	 128	 1	

2	 112	 2	

3	 96	 2	

4	 80	 2	

5	 64	 2	

6	 48	 2	

	

The	distribution	of	apparent	strain	within	VOI-0	(Fig.	2)	showed	that	 the	error	

increased	passing	from	the	trabecular	tissue,	rich	of	features,	to	the	thin	cortical	

bone,	 and	 finally	 to	 the	 surrounding	 saline	 solution.	 	 High	 gradients	 were	

localized	 at	 the	 interface	between	bone	 and	 saline	 solution,	 and	 in	 the	 regions	
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outside	 the	 vertebral	 body.	 	 A	 similar	 trend	was	 observed	with	 ShIRT-FE,	 but	

maximal	errors	were	three	orders	of	magnitude	lower	than	for	DaVis-DC.	

	

	
Fig.	2:	Strain	distribution	in	the	z-direction	with	a	sub-volume	size	of	48	voxels	on	a	mid-height	
cross	section	of	typical	augmented	and	natural	specimens,	for,	on	the	left	the	local	approach	

(DaVis-DC)	and,	on	the	right,	the	global	approach	(ShIRT-FE).		The	scales	on	the	right	of	each	plot	

were	selected	to	allow	visualization	of	the	strain	distribution	in	the	region	of	interest.		The	

maximum	ranges	recorded	are	reported	under	each	strain	map.		

	

8.3.2 Errors over VOI-1 
The	systematic	and	random	errors	were	of	the	same	order	of	magnitude	for	both	

DVC	approaches	and	showed	similar	trends	(Fig.	3	and	4).			

DaVis-DC	was	 affected	 by	 slightly	 larger	 (tens	microstrains)	 systematic	 errors	

compared	 to	 ShIRT-FE.	 	 The	 effect	 of	 sub-volume	 size	 on	 the	 systematic	 error	

was	negligible	(Fig.	3).	

As	 expected,	 the	 random	 error	 had	 a	 decreasing	 trend	 towards	 larger	 sub-

volume	sizes,	 for	both	DVC	approaches	(Fig.	4).	 	The	highest	random	errors	for	

DaVis-DC	 (at	 16	 voxels)	 were	 in	 the	 range	 960-1517	 microstrain	 for	 the	

augmented	 vertebrae,	 and	 807-1279	 microstrain	 for	 the	 natural	 vertebrae.		

Random	errors	with	DaVis-DC	were	generally	 lower	than	200	microstrain	with	

sub-volume	size	equal	or	larger	than	48	voxels.		The	multipass	scheme	produced	

slightly	 reduced	 random	 errors	 in	 both	 samples	 augmented	 and	 natural	

vertebrae	(from	69	to	103	microstrain	for	augmented	vertebrae	and	from	43	to	

69	microstrain	 for	natural	vertebrae)	when	compared	 to	 the	 same	sub-volume	

size	of	48	voxels	without	multipass	(from	142	to	274	microstrain	for	augmented	

vertebrae	and	from	81	to	159	microstrain	for	natural	vertebrae).		For	ShIRT-FE	

the	highest	random	errors	(at	16	voxels)	were	in	the	range	359-606	microstrain	

for	 the	 augmented	 vertebrae,	 and	 445-1003	 microstrain	 for	 the	 natural	

vertebrae.	 	 For	 larger	 sub-volumes	 random	 errors	 for	 ShIRT-FE	were	 in	most	

cases	 smaller	 than	 200	 microstrain.	 	 The	 two	 DVC	 approaches	 provided	



Validation	of	Digital	Volume	Correlation	at	organ	level	-	microCT	

Published in: Journal of Biomechanics, 2016, 49 (16): 3882-3890 

137	

comparable	random	errors	for	sub-volume	size	larger	than	48	voxels,	and	were	

consistently	 lower	 than	 200	microstrain	 above	 64	 voxels.	 	While	 for	DaVis-DC	

the	 random	 error	 steadily	 decreased	 for	 the	 range	 of	 sub-volumes	 explored,	

ShIRT-FE	 reached	 a	 plateau	 after	 48	 voxels.	 	 The	 random	 errors	 for	 the	

augmented	 vertebrae	 for	 DaVis-DC,	were	 consistently	 higher,	 up	 to	 50%,	 than	

the	 natural	 ones.	 	 For	 ShIRT-DC	 such	 differences	 between	 augmented	 and	

natural	 samples	were	 smaller.	 	 No	 significant	 differences	were	 found	 between	

the	errors	for	the	different	components	of	strain,	for	any	given	sub-volume	size,	

for	both	ShIRT-FE	and	DaVis-DC.			

	

	
Fig.	3:	Systematic	errors	for	the	local	(DaVis-DC)	and	global	(ShIRT-FE)	DVC	approaches,	

evaluated	for	VOI-1	in	the	augmented	and	natural	vertebrae	for	sub-volume	sizes	ranging	from	

16	to	128	voxels.		The	multipass	computation	for	DaVis-DC	(mp	(48);	6	passes	from	128	to	48	

voxels)	is	also	reported.		The	median	over	the	five	augmented	and	five	natural	specimens	is	

plotted.			

	

Random	errors	showed	large	inter-specimen	differences	(Fig.	5),	with	maximum	

differences	 up	 to	 2882	microstrain	 for	 DaVis-DC	 (augmented,	 Exz,	 specimen-1	

vs.	 specimen-2)	 and	 up	 to	 429	 microstrain	 for	 ShIRT-FE	 (augmented,	 Exz,	

specimen-1	 vs	 specimen-2).	 	 In	 particular,	 within	 the	 augmented	 sample,	
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considerably	 higher	 errors	 were	 found	 for	 specimen-1,	 with	 both	 DVC	

approaches.		Similarly,	specimen-3	(from	a	different	donor)	was	associated	with	

the	largest	error	in	the	natural	sample.		The	reason	is	not	clear,	as	the	error	was	

not	associated	with	the	highest/lowest	values	of	solid	volume	fraction,	or	bone	

volume	fraction	(Table	3).		The	Peirce’s	criterion	identified	these	two	specimens	

as	outliers	in	terms	of	error	values,	but	not	in	terms	of	volume	fraction.	

	

	
Fig.	4:	Random	errors	for	the	local	(DaVis-DC)	and	global	(ShIRT-FE)	DVC	approaches,	evaluated	
for	VOI-1	in	the	augmented	and	natural	vertebrae	for	sub-volume	sizes	ranging	from	16	to	128	

voxels.		The	multipass	computation	for	DaVis-DC	(mp	(48);	6	passes	from	128	to	48	voxels)	is	

also	reported.		The	median	over	the	five	augmented	and	five	natural	specimens	is	plotted.	

	 	



Validation	of	Digital	Volume	Correlation	at	organ	level	-	microCT	

Published in: Journal of Biomechanics, 2016, 49 (16): 3882-3890 

139	

	
Table	3:	Solid	Volume	Fraction	(SV/TV)	evaluated	as	the	ratio	between	the	sum	of	the	volume	of	
the	cement	and	the	bone,	and	the	total	volume	for	the	augmented	vertebrae,	and	Bone	Volume	

Fraction	(BV/TV)	evaluated	as	the	ratio	between	the	bone	volume	and	the	total	volume	for	the	

natural	vertebrae.	

	

Augmented	 SV/TV	(%)	
Specimen-1	 44.4	

Specimen-2	 72.2	

Specimen-3	 50.1	

Specimen-4	 63.6	

Specimen-5	 57.1	

	

Natural	 BV/TV	(%)	
Specimen-1	 29.5	

Specimen-2	 32.0	

Specimen-3	 29.0	

Specimen-4	 30.4	

Specimen-5	 27.7	

	

	

	

8.4 Discussion 

The	aim	of	this	work	was	to	quantify	the	measurement	uncertainties	of	different	

DVC	 approaches	 applied	 to	 augmented	 bones	 at	 the	 organ-level.	 	 More	

specifically,	 we	 intended	 to	 investigate	 how	 such	 uncertainties	 vary	 between	

specimens	 and	 if	 there	 is	 any	 anisotropy-related	 directionality	 in	 the	

measurement	error.	

Two	DVC	approaches	were	investigated:	a	local	correlation	algorithm	(DaVis-DC)	

and	a	global	strategy	(ShiRT-FE).	 	As	no	robust	alternative	reference	method	is	

available	 for	measuring	 internal	 strains,	 repeated	 scans	 (zero-strain	 condition)	

of	vertebrae	were	shared	between	our	institutions	in	a	sort	of	round-Robin	test.	

Our	 results	 showed	 that	 applying	 a	 local	 approach	 directly	 on	 images	without	

masking	(bone	including	the	surrounding	saline	solution,	VOI-0)	yielded	to	large	

errors	due	to	the	lack	of	features	provided	by	the	saline	solution.		The	analysis	of	

the	spatial	distribution	of	the	errors	(Fig.	2)	confirmed	this	hypothesis:	the	areas	

with	 large	 noise	were	mainly	 the	 outer	 boundaries	 of	 the	 bone	 and	 the	 saline	

solution;	 the	 areas	 where	 errors	 were	 substantially	 lower	 were	 all	 inside	 the	

specimen	 (which	 are	 typically	 the	 areas	 of	 interest).	 	 Therefore,	 average	

measurements	over	a	volume	including	regions	lacking	features	should	be	used	

with	 care	 if	 a	 local	 algorithm	 is	 applied.	 	 This	 effect	 could	 be	 an	 issue	 for	

specimens	 such	 as	 osteoporotic	 vertebrae,	 where	 fewer	 features	 are	 present	

compared	 to	 healthy	 denser	 vertebrae.	 	 Conversely,	 the	 global	 approach	 was	

almost	insensitive	to	the	surrounding	saline	solution.		This	suggests	that	a	global	

approach	 may	 be	 more	 robust	 for	 strain	 measurements	 at	 the	 border	 of	 the	

specimen.	
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Inside	the	vertebra	(VOI-1),	the	errors	had	the	same	order	of	magnitude	for	the	

local	 and	 global	 approaches.	 	 For	 both	 approaches,	 the	 systematic	 error	 (bias)	

fluctuated	 generally	 within	 100	 microstrain,	 meaning	 that	 the	 average	 of	 the	

strain	components	were	close	to	zero,	independently	of	the	selected	sub-volume	

size.	 	Both	approaches	showed	a	decreasing	trend	of	the	random	error	towards	

larger	 sub-volumes.	 	 Results	 for	 sub-volumes	 of	 48	 voxels	 and	 larger	 were	

comparable	for	the	two	approaches.	

The	difference	between	augmented	and	natural	 samples	was	rather	consistent,	

but	small.		This	confirms	the	robustness	of	both	DVC	approaches	on	biomaterial	

interdigitation.	 	 This	 is	 confirmed	 in	 another	 tissue-level	 study	 (Tozzi	 et	 al.,	

2017).		It	must	be	noted	that	the	present	results	were	obtained	with	cement	for	

vertebroplasty,	which	includes	a	radiopacifier	(300	micrometers	BaSO4	pellets):	

this	 could	 have	 provided	 suitable	 features	 to	 the	 correlation	 algorithms.	 	 The	

multipass	 scheme	 available	 in	 DaVis-DC	was	 able	 to	 reduce	 the	 random	 error	

(both	natural	and	augmented)	 in	both	VOI-0	and	VOI-1,	when	compared	to	 the	

corresponding	sub-volume	of	48	voxels	without	multipass.	Obviously,	the	effect	

of	 such	 scheme	was	 less	 pronounced	 in	 VOI-1,	where	 the	 errors	were	 already	

much	lower	compared	to	the	same	sub-volume	in	VOI-0.			

For	both	approaches	and	both	natural	and	augmented	vertebrae,	the	systematic	

and	random	errors	did	not	show	any	correlation	with	the	scan	direction	and/or	

specimen	 directionality:	 similar	 uncertainties	 values	 were	 found	 for	 all	

directions.			

Some	differences	existed	between	specimens	in	absolute	terms.		To	the	authors’	

knowledge,	 inter-specimen	 variations	 and	 potential	 outliers	 have	 not	 been	

considered	 before	 at	 the	 organ	 level.	 	 In	 a	 sample	 of	 five	 specimens	 it	 is	

questionable	 to	 perform	 an	 outlier	 analysis	 (Ross,	 2003).	 	 However,	 two	

specimens	(Specimen-1	augmented,	and	Specimen-3	natural,	Fig.	5)	were	clearly	

outliers	for	both	DVC	approaches.		

Outliers	 were	 found	 both	 among	 the	 augmented	 (T4)	 and	 the	 natural	 (T2)	

vertebrae.	 The	 outliers	 did	 not	 come	 from	 the	 same	 animal.	 Other	 T4	 and	 T2	

vertebrae	did	not	show	large	errors.		All	the	scan	sessions	started	in	the	morning,	

after	a	standard	warm-up	(as	suggested	by	(Gillard	et	al.,	2014)),	and	 followed	

the	same	protocol.		The	outliers	were	not	associated	with	any	remarkable	event	

from	the	log	files	and	the	lab	diaries,	nor	with	a	specific	day	of	the	week.			

The	grey-scale	distribution	(over	each	slice	of	each	vertebra	and	over	the	entire	

vertebra)	of	the	outliers	could	be	overlapped	to	those	of	the	“regular”	specimens.		

To	understand	 if	some	scans	contained	higher	noise,	we	analyzed	the	standard	

deviation	of	the	grey-scale	distribution	in	a	parallelepiped	(150x150x400	voxels)	

containing	 only	 saline	 solution:	 the	 standard	 deviation	 of	 all	 scans	 and	 all	

specimens	were	comparable	(range:	221-946,	16-bit	grey-scale	count)	

Despite	all	 these	checks,	we	could	not	 identify	a	single	event	or	parameter	that	

could	explain	such	outliers.	
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Fig.	5:	Variability	of	the	random	error	inside	the	augmented	and	natural	vertebrae,	for	VOI-1,	for	

a	sub-volume	size	of	48	voxels.		Similar	trends	were	found	for	the	systematic	error.	

	

This	 inter-specimen	 variability	 in	 the	 DVC	 uncertainties	 can	 be	 a	 warning	 for	

future	 studies,	 because	 a	 sequence	 of	 apparently	 high-quality	 images	 can	

unexpectedly	result	in	large	strain	errors.		Because	of	this	variability,	the	authors	

recommend	 performing	 always	 a	 zero-strain	 test,	 before	 loading	 a	 specimen	

(repeated	scan	in	the	unloaded	or	preloaded	condition).		Unfortunately	this	kind	

of	methodological	analysis	is	frequently	missing	(Hardisty	and	Whyne,	2009).	In	

case	 this	 approach	would	be	 inefficient	 for	projects	with	 large	 sample	 size,	we	

suggest	performing	a	zero-strain	analysis	on	a	reasonable	number	of	specimens	

(e.g.	 five	or	more).	A	question	left	open	with	this	work	is	whether	some	robust	

parameters	exist	and	whether	these	are	able	to	predict	such	errors.			

A	 similar	 zero-strain	 study	 on	 human,	 bovine	 and	 rabbit	 trabecular	 bone	was	

performed	by	(Liu	and	Morgan,	2007).		They	analyzed	4.3	mm	cubes	with	a	voxel	

size	of	36	micrometers,	and	explored	computation	sub-volume	of	20,	30,	40	and	

50	voxels,	with	three	DVC	methods	(based	on	home-written	algorithm	of	digital	

particle	image	velocimetry	and	ultrasound	elastography).		In	that	paper	a	scalar	

indicator	 (which	 contains	 no	 information	 about	 the	 single	 strain	 components)	

was	computed:	the	mean	absolute	error	(MAER),	referred	to	as	accuracy,	and	the	
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standard	deviation	of	the	error	(SDER),	referred	to	as	precision,	were	quantified	

as	average	and	standard	deviation	of	the	average	of	the	absolute	values	of	the	six	

components	of	strain	for	each	sub-volume.		For	the	human	vertebrae	at	40	voxels	

sub-volume	they	found	MAER	in	the	order	of	500	microstrain,	and	SDER	of	150-

200	microstrain.	 	They	 found	slightly	 lower	errors	 for	 the	bovine	distal	 femur.		

The	smallest	total	error	they	found	was	345	microstrain.		To	allow	comparisons,	

we	computed	the	same	scalar	indicators	for	the	augmented	and	natural	sample	

for	VOI-1	(Fig.	6).			

In	order	to	compare	the	results,	interpolated	power	laws	were	used	to	estimate	

the	MAER	and	 SDER	 for	 the	 same	 sub-volume	 size	 of	 (Liu	 and	Morgan,	 2007).		

DaVis-DC	 showed	 a	MAER	of	 275	 and	 215	microstrain	 for	 the	 augmented	 and	

natural	 vertebrae,	 respectively;	 ShIRT-FE	 had	 a	 MAER	 of	 159	 and	 139	

microstrain	respectively.		The	SDER	with	DaVis-DC	were	116	and	68	microstrain	

for	 the	 augmented	 and	 natural	 vertebrae;	 ShIRT	 had	 a	 SDER	 of	 68	 and	 61	

microstrain	 respectively.	 	MAER	 and	 SDER	of	 the	 present	 study	 confirmed	 the	

trend	 found	 in	 previous	 studies	 (Dall'Ara	 et	 al.,	 2014;	 Liu	 and	 Morgan,	 2007;	

Palanca	et	al.,	2015b).			

An	estimate	of	the	measurement	uncertainty	was	provided	for	human	vertebrae	

in	 (Hussein	 et	 al.,	 2012).	 	 The	 voxel	 size	 (37	micrometers)	was	 similar	 to	 the	

present	work.	 	They	analyzed	just	a	sub-volume	of	4.8	mm	(approximately	130	

voxels).	 	 They	 found	 larger	 errors	 than	 in	 the	 present	 study:	 MAER=740	

microstrain,	 SDER=630	 microstrain.	 	 Their	 analysis	 was	 performed	 as	 a	

preliminary	check	before	the	actual	compression	test.		

The	 current	 study	 has	 shown	 that,	 when	 sufficient	 care	 is	 dedicated	 to	 a	

preliminary	methodological	optimization,	the	strain	measurement	uncertainties	

of	 DVC	 may	 be	 not	 only	 adequate	 to	 investigate	 bone	 failure	 (7000-10000	

microstrain	(Bayraktar	et	al.,	2004;	de	Bakker	et	al.,	2009)),	but	also	the	strain	

distribution	 associated	 with	 physiological	 loads	 (strain	 of	 the	 order	 of	 1000-

2000	microstrain	(Aamodt	et	al.,	1997;	Cristofolini,	2015)).		The	present	findings	

suggest	 that	 for	whole	vertebrae	DVC	methods	are	sensitive	enough	for	proper	

validation	of	 the	strain	predictions	 from	computational	models	only	when	sub-

volumes	 equal	 or	 larger	 than	 48	 voxels	 (equivalent	 to	 approximately	 2mm	 in	

side	 length)	 are	 used.	 	 However,	 in	 order	 to	 validate	 the	 strain	 at	 spatial	

resolutions	 of	 10-30	 micrometers,	 typical	 of	 micro-FE	 (Van	 Rietbergen	 et	 al.,	

1995),	the	measurement	uncertainties	of	the	current	DVC	approaches	need	to	be	

reduced.		
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Fig.	6:	Accuracy	and	precision	(with	interpolated	power	laws)	for	the	local	(DaVis-DC)	and	global	
(ShIRT-FE)	DVC	approaches,	evaluated	for	VOI-1	in	the	augmented	and	natural	vertebrae	for	

sub-volume	sizes	ranging	from	16	to	128	voxels.		The	multipass	computation	for	DaVis-DC	(mp	

(48);	6	passes	from	128	to	48	voxels)	is	also	reported.		The	median	over	the	five	augmented	and	

the	five	natural	specimens	is	plotted.		The	plots	report	the	MAER	and	SDER	defined	as	in	(Liu	and	

Morgan,	2007),	where	“ε”	is	the	strain;	the	subscript	“c”	identifies	the	strain	components;	the	

subscript	“k”	identifies	the	measurement	points;	N	is	the	number	of	measurement	points.	

	

A	limitation	of	this	work	is	the	use	of	porcine	vertebrae	instead	of	human	ones.		

In	this	explorative	study	this	decision	was	driven	by	an	ethical	choice.		While	the	

present	 results	 might	 not	 directly	 translate	 to	 human	 specimens	 in	 absolute	

terms,	the	trends	and	the	general	observations	can	certainly	be	applied.			

This	 study	 demonstrated	 the	 suitability	 of	 local	 and	 global	DVC	 approaches	 to	

investigate	natural	and	augmented	bones.	 	Systematic	and	random	errors	were	

rather	 isotropic,	 with	 no	 relation	 to	 bone	 anisotropy	 or	 micro-CT	 scanning	
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planes.	 	 While	 the	 errors	 were	 rather	 consistent	 between	 specimens,	 some	

specimens	caused	unpredictably	and	inexplicably	larger	errors:	for	this	reason,	it	

is	 highly	 recommended	 to	 perform	 a	 preliminary	 zero-strain	 check	 on	 each	

specimen.	

With	the	measurement	uncertainties	evaluated	for	a	reasonable	sub-volume	size	

(i.e.	 100-200	 microstrain	 for	 sub-volume	 of	 48	 voxels),	 DVC	 becomes	 an	

attractive	 tool	 for	 the	 measurement	 of	 local	 properties	 (displacements	 and	

strains)	 in	 the	 elastic	 regime.	 	 This	 could	 be	 useful	per	 se,	 to	 investigate	 bone	
micromechanics,	but	also	to	reliably	validate	computational	models	at	the	tissue	

level	for	spatial	resolutions	of	approximately	2mm.		
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SUPPLEMENTARY MATERIAL: STRAIN ERRORS IN VOI-0 

Suppl. 1: Systematic errors for the local (DaVis-DC) and global (ShIRT-FE) DVC 
approaches evaluated for VOI-0 in the augmented and natural vertebrae, for sub-
volume sizes ranging from 16 to 128 voxels.  A multipass computation for DaVis-DC 
(mp(48); 6 passes, from 128 to 48 voxels) is also reported.  The median over the five 
augmented and five natural specimens is plotted.   
 

 
  

-6	000	

-4	500	

-3	000	

-1	500	

0	

1	500	

3	000	

4	500	

6	000	

0	 20	 40	 60	 80	 100	 120	 140	 160	

Sy
st
em

a(
c	
er
ro
r	(
m
ic
ro
st
ra
in
)	

Sub-volume	(voxels)	

-6	000	

-4	500	

-3	000	

-1	500	

0	

1	500	

3	000	

4	500	

6	000	

0	 20	 40	 60	 80	 100	 120	 140	 160	

Sy
st
em

a(
c	e

rr
or
	(m

ic
ro
st
ra
in
)	

Sub-volume	(voxels)	

-80	

-60	

-40	

-20	

0	

20	

40	

60	

80	

0	 20	 40	 60	 80	 100	 120	 140	

Sy
st
em

a(
c	
er
ro
r	(
m
ic
ro
st
ra
in
)	

Sub-volume	(voxels)	

-80	

-60	

-40	

-20	

0	

20	

40	

60	

80	

0	 20	 40	 60	 80	 100	 120	 140	
Sy
st
em

a(
c	
er
ro
r	(
m
ic
ro
st
ra
in
)	

Sub-volume	(voxels)	

-80	

-60	

-40	

-20	

0	

20	

40	

60	

80	

0	 50	 100	 150	

Sy
st
em

a(
c	
er
ro
r	(
m
ic
ro
st
ra
in
)	

Sub-volume	(voxels)	

ShIRT-FE	augmented	vertebrae	

Exx	 Eyy	 Ezz	 Exy	 Exz	 Eyz	

DaVis-DC	augmented	vertebrae	 ShIRT-FE	augmented	vertebrae	

DaVis-DC	natural	vertebrae	 ShIRT-FE	natural	vertebrae	

VOI-0	

6000	

-6000	

6000	

-6000	

80	

80	

-80	

-80	

		

		

mp	(48)	

mp	(48)	



Validation	of	Digital	Volume	Correlation	at	organ	level	-	microCT	

Published in: Journal of Biomechanics, 2016, 49 (16): 3882-3890 

146	

	
	

Suppl. 2: Random errors for the local (DaVis-DC) and global (ShIRT-FE) DVC 
approaches, evaluated for VOI-0 in the augmented and natural vertebrae, for sub-
volume sizes ranging from 16 to 128 voxels.  A multipass computation for DaVis-DC 
(mp(48); 6 passes, from 128 to 48 voxels) is also reported.  The median over the five 
augmented and five natural specimens is plotted.   
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9.1 Introduction 

Musculoskeletal	 pathologies,	 such	 as	 osteoporosis	 or	 bone	 metastasis,	 are	

associated	 with	 alterations	 of	 bone	 structures	 at	 different	 spatial	 scales.		

Assessment	of	bone	quality	(Bouxsein,	2003)	and	mineral	density	have	become	

key	 to	 studying	 the	 effects	 of	 pathologies	 and	 related	 treatments	 at	 different	

bone	 hierarchical	 levels.	 Subject-specific	 computed	 tomography	 based	 finite	

element	 (FE)	 analyses	have	been	used	 to	 estimate	bone	mechanical	properties	

(Dall'Ara	et	al.,	2013;	Dall'Ara	et	al.,	2012;	Schileo	et	al.,	2008a)	and	the	effect	of	

interventions	(Keaveny	et	al.,	2014;	Zysset	et	al.,	2015)	 in	vivo.	 	Combination	of	
FE	models	and	mathematical	models	of	bone	remodeling	(Lerebours	et	al.,	2015)	

can	estimate	bone	changes	over	time.		However,	first	we	need	to	understand	how	

well	the	structural	FE	models	predict	the	local	3-dimensional	strain	field,	which	

can	 be	 used	 to	 estimate	 the	 local	 cell	 activity	 on	 the	 bone	 structural	 units	

(Levchuk	et	al.,	2014).			

A	possible	way	of	validating	the	FE	models	at	the	tissue	level	is	by	using	digital	

volume	 correlation	 (DVC)	 (Bay	 et	 al.,	 1999a).	 	 DVC	 is	 a	 full-field,	 contactless	

technique	 that	 provides	 both	 displacement	 and	 strain	 maps	 inside	 bone	

specimens	 via	 the	 comparison	 of	 3D	 images	 acquired	 in,	 for	 example,	 the	

unloaded	and	 loaded	 conditions	 (Grassi	 and	 Isaksson,	 2015).	 	DVC	approaches	

based	 on	 ‘laboratory	 source’	 micro-computed	 tomography	 (LS-microCT)	 can	

measure	 displacements	 in	 bones	 with	 sub-voxel	 accuracy	 and	 precision	 (ca.	

1/10-1/20	 of	 the	 effective	 voxel	 size)	 (Chen	 et	 al.,	 2016;	 Zauel	 et	 al.,	 2006).		

However,	 current	 LS-microCT-based	 DVC	 cannot	 measure	 strain	 in	 bone	 with	

enough	precision	to	validate	the	model	output	within	a	bone	structural	unit	(e.g.	

a	trabecula	or	an	osteon)	(Dall'Ara	et	al.,	2014;	Roberts	et	al.,	2014).			To	date,	the	

typical	measurement	uncertainty	enabled	using	DVC	to	discriminate	the	pre-	or	

post-yielding	 conditions	 in	 vertebra	 bodies	 scanned	 with	 LS-microCT	 with	 a	

voxel	size	of	approximately	35-40	micrometers	(Danesi	et	al.,	2016b;	Hussein	et	

al.,	2012;	Tozzi	et	al.,	2016).	 	 In	 fact,	 as	bone	yields	at	a	deformation	of	7,000-

10,000	 microstrain	 (Bayraktar	 et	 al.,	 2004),	 a	 measurement	 uncertainty	 of	

approximately	 700	 microstrain	 could	 be	 acceptable	 for	 classifying	 regions	

starting	 to	 yield	 from	 those	 still	 in	 the	 elastic	 regime.	 	 After	 extensive	

optimization,	 DVC	 based	 on	 LS-microCT	 has	 reached	 acceptable	 accuracy	 and	

precision,	on	the	order	of	200	microstrain,	but	only	if	a	strong	compromise	with	

measurement	 spatial	 resolution	 is	 accepted	 (measurements	 every	 500-600	

micrometers)	(Dall'Ara	et	al.,	2014;	Palanca	et	al.,	2015b).	Unfortunately,	due	to	

the	 heterogeneity	 of	 bone	 tissue,	DVC	based	 on	 LS-microCT	 cannot	 be	 used	 to	

obtain	 accurate	 measurements	 of	 strain	 within	 the	 typical	 element	 size	 of	

microCT-based	FE	models	(on	the	order	of	10-20	micrometers).			

In	order	to	reduce	the	strain	measurement	errors	of	DVC	we	can	try	to	improve	

the	 input	 images	 by,	 e.g.,	 using	 synchrotron	 radiation	 microCT	 (SR-microCT).		

However,	it	is	currently	not	clear	if,	and	to	what	extent,	better	quality	tomograms	

would	 improve	 the	 accuracy	 of	 DVC	 strain	 measurements.	 	 To	 the	 authors’	

knowledge,	 the	only	published	study	 that	 characterized	 the	accuracy	of	 strains	

computed	 with	 DVC	 based	 on	 SR-microCT	 of	 bone	 focused	 on	 the	 crack	

propagation	in	murine	femora	(Christen	et	al.,	2012).		However,	in	that	study	the	

precision	 of	 the	 method	 was	 assessed	 only	 on	 virtually	 moved	 or	 stretched	



Validation	of	Digital	Volume	Correlation	-	synchrotronCT	

Submitted to: Journal of Biomechanics 

149	

images,	which	has	been	shown	to	underestimate	the	real	error	induced	by	image	

noise	 and	 artifacts	 (Dall'Ara	 et	 al.,	 2014).	 	 Therefore,	 the	 real	 potential	 of	 SR-

microCT	 based	 DVC	 for	 bone	 applications	 is	 still	 partially	 unexplored	 as	 the	

potential	 benefits	 of	 using	 high-quality	 tomograms	 that	 allow	 resolving	micro-

features	such	as	osteocyte	lacunae	are	not	yet	known.			

The	 aim	 of	 this	 study	was	 to	 quantify	 the	 improvement	 that	 SR-microCT	 data	

could	 bring	 to	 global	 DVC	 for	 different	 bone	 tissues,	 by	 investigating	 the	

compromise	between	measurement	spatial	resolution	and	uncertainties.	

	

	

	

9.2 Materials and Methods 

9.2.1 Specimen preparation, tomography and image 
processing 
In	order	to	investigate	the	effect	of	microstructure	on	measurement	errors,	three	

different	tissue	types	were	used.	The	first	sample	consisted	of	four	cortical	bone	

cores	obtained	from	the	diaphysis	of	a	fresh	bovine	femur	(18	months	old,	killed	

for	alimentary	purposes).	 	The	second	tissue	type	consisted	of	 three	trabecular	

bone	cores	obtained	from	the	greater	trochanter	of	the	same	femur.		A	diamond	

band	 saw	 (CP300,	Exakt,	Germany)	was	used	 to	 cut	12mm-high	bone	 sections.		

Diamond	core	drills	were	used	to	extract	cylindrical	specimens	(Fig.1a,	b)	(3mm	

in	 diameter	 for	 cortical	 bone;	 8mm	 for	 trabecular	 bone).	 	 All	 machining	 was	

performed	under	constant	water	 irrigation.	 	The	third	sample	consisted	of	 four	

paired	tibiae,	which	had	been	used	in	a	previous	study	(Lu	et	al.,	2015)	(Fig.1c);	

these	had	been	obtained	 from	two	14-week	old	 female	C57BL/6J	mice	 (Harlan	

Laboratories,	 Bicester,	 UK).	 	 The	 soft	 tissues	 around	 the	 tibiae	 were	 carefully	

removed	 with	 a	 scalpel.	 	 All	 specimens	 were	 dehydrated	 overnight	 at	 room	

temperature	and	then	embedded	in	acrylic	resin	without	bone	infiltration.	

Tomography	was	performed	at	the	Diamond-Manchester	Imaging	Beamline	l13-

2	 of	 Diamond	 Light	 Source,	 UK.	 A	 filtered	 (950μm	 C,	 2mm	 Al,	 20μm	 Ni)	

polychromatic	 ‘pink’	beam	(5	to	35	keV)	of	parallel	geometry	was	used	with	an	

undulator	 gap	 of	 5mm.	 The	 propagation	 distance	 was	 approximately	 10mm.	

Tomography	 data	 were	 acquired	 using	 a	 pco.edge	 5.5	 detector	 (PCO	 AG,	

Germany)	 coupled	 to	 a	 750μm-thick	 CdWO4	 scintillator,	 with	 visual	 optics	

providing	4x total	magnification.	This	lead	to	an	effective	pixel	size	of	1.6μm	and	
a	field	of	view	of	4.2x3.5mm.	4,001	projection	images	were	collected	at	equally-

spaced	angles	over	180°	of	continuous	rotation,	with	an	exposure	time	of	53ms.	

The	total	scanning	time	was	approximately	four	minutes.	The	projection	images	

were	 flat	 and	 dark	 corrected	 prior	 to	 reconstruction	 using	 the	 tomographic	

reconstruction	module	of	Dawn	v1.7	(Ashton	et	al.,	2015;	Basham	et	al.,	2015),	

which	 incorporated	 ring	 artifact	 suppression	 (Titarenko	 et	 al.,	 2010).	 Samples	

were	mounted	such	that	their	long	axes	corresponded	to	the	rotation	axis	during	

data	collection.		Each	specimen	was	scanned	twice	under	zero-strain	conditions	

and	without	any	repositioning.	
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Fig.1:	Typical	specimen	for	each	tissue	type.	From	top	to	bottom:	3-dimensional	(3D)	

representation	of	a	typical	specimen;	3D	representation	of	typical	VOI;	2-dimensional	(2D)	cross-

section	through	the	middle	of	each	VOI;	masked	2D	cross-sections;	solid	volume	fraction	(SV/TV)	

values	(median	+/-	standard	deviation).	The	side	length	of	each	cross	section	is	1000	voxels,	

equivalent	to	1600	micrometers.	 
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Two	 cubic	 volumes	 of	 interest	 (VOIs),	 with	 side	 lengths	 of	 1,000	 voxels,	 were	

cropped	from	the	middle	of	each	cortical	and	trabecular	specimen	(Fig.1d,	e,	g,	h)	

using	 ImageJ	 v1.49	 (Rasband,	 W.S.,	 ImageJ,	 NIH,	 Bethesda,	 Maryland,	 USA,	

http://imagej.nih.gov/ij/,	1997-2015).	 	 In	order	 to	 include	both	 trabecular	and	

cortical	 bone,	 one	 cubic	 VOI	 (Fig.1f,	 i)	was	 cropped	 from	 the	 proximal	 part	 of	

each	murine	tibia.			

In	order	 to	evaluate	 the	DVC	errors	only	where	bone	tissue	 is	present,	masked	

images	 were	 created:	 after	 applying	 a	 Gaussian	 filter	 (σ=4)	 to	 reduce	 high-

frequency	noise,	 image	segmentation	was	performed,	followed	by	a	single-level	

threshold	 in	 the	valley	between	 the	 first	 two	peaks	of	 the	greyscale	histogram.		

The	threshold	was	adjusted	visually	by	comparing	the	segmented	and	greyscale	

images.	 	These	binary	 images	 (0	 for	background,	1	 for	bone	voxels)	were	 then	

used	 also	 to	 mask	 the	 original	 bovine	 trabecular	 bone	 and	 murine	 tibia	 VOIs	

(Fig.1j,	k).		

For	each	VOI	the	solid	volume	fraction	(solid	volume	/	total	volume,	SV/TV),	was	

determined	 as	 the	 ratio	 between	 the	 number	 of	 bone	 voxels	 and	 the	 total	

number	of	voxels	in	the	VOI,	using	the	ImageJ	plug-in	BoneJ	(Doube	et	al.,	2010).		

The	 potential	 benefit	 associated	 with	 SR-microCT	 could	 be	 due	 both	 to	 the	

signal-to-noise	 ratio	 and	 the	 voxel	 size.	 	 In	 order	 to	 evaluate	 the	 effect	 of	 the	

voxel	 size	 on	 the	 strain	 uncertainties,	 all	 original	 (not	 masked)	 VOIs	 were	

downsampled	 to	 a	 voxel	 size	 of	 8	micrometers	 (by	 averaging	 the	 voxels	 grey-

values)	using	ImageJ.		With	a	similar	approach,	downsampled	binary	masks	were	

created	 from	 the	 original	 masks	 for	 trabecular	 bone	 and	 murine	 tibiae	 and	

assigning	1	to	any	value	greater	than	0.	

	

9.2.2 DVC protocol  
The	 adopted	 DVC	 approach	 (ShIRT-FE)	 was	 a	 combination	 of	 a	 global	

deformable	 image	 registration	 algorithm	 (Sheffield	 Image	 Registration	 toolkit,	

ShIRT	 (Barber	 and	 Hose,	 2005;	 Barber	 et	 al.,	 2007))	 that	 computes	 the	

displacements	 maps,	 and	 a	 finite	 element	 (FE)	 software	 package	 for	 the	

calculation	and	visualization	of	 the	 strains	 (Dall'Ara	et	 al.,	 2014;	Palanca	et	 al.,	

2015b;	Palanca	et	al.,	2016b;	Tozzi	et	al.,	2017).	 	Briefly,	a	grid	with	selectable	

nodal	spacing	(NS)	was	superimposed	on	the	VOIs	from	pairs	of	repeated	scans.		

ShIRT	 computes	 the	 displacements	 at	 the	 nodes	 of	 the	 grid	 by	 solving	 the	

registration	equation	(Barber	and	Hose,	2005;	Barber	et	al.,	2007).	 	The	grid	 is	

then	 converted	 into	a	 linear	hexahedral	FE	mesh,	 the	 computed	displacements	

are	 assigned	 as	 boundary	 conditions	 (Fig.2),	 the	 models	 are	 solved	 linearly	

(ANSYS	Mechanical	APDL	v.	 15.0,	Ansys,	 Inc.,	 USA),	 and	 the	 six	 components	 of	

strain	 are	 computed	 at	 each	 node.	 As	 it	 has	 been	 demonstrated	 that	 nodal	

spacing	(NS)	affects	uncertainties	of	the	method	(Dall'Ara	et	al.,	2014),	a	series	of	

NS	 values	 was	 used	 (from	 10	 to	 300	 voxels,	 equivalent	 to	 16.0	 to	 480.0	

micrometers)	for	every	pair	of	repeated	tomograms	(Table1).	 	
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Table	1:	List	of	investigated	nodal	spacing	and	nominal	numbers	of	elements	and	nodes	inside	

the	VOI.		Finer	steps	were	used	for	lower	NS	(10,	15,	20,	and	25)	and	coarser	steps	for	higher	NS	

values	(50,	75,	100,	150,	200,	250,	300).	

Nodal spacing 

(voxels) 

Nodal spacing 

(micrometers) 

Nominal 

number of 

elements 

inside VOI 

Nominal 

number of 

nodes inside 

VOI 

10 16. 0 1 000 000 1 030 301 
15 24.0 314 432 328 509 
20 32.0 125 000 132 651 
25 40.0 64 000 68 921 
50 80.0 8 000 9 261 
75 120.0 2 744 3 375 

100 160.0 1 000 1 331 
150 240.0 512 729 
200 320.0 216 343 
250 400.0 64 125 
300 480.0 64 125 

	

For	the	bovine	trabecular	bone	and	murine	tibia	samples,	which	showed	lower	

SV/TV	 than	 the	 bovine	 cortical	 samples	 (approximately	 96%	 for	 cortical	 bone	

versus	 approximately	 26%	 for	 trabecular	 bone	 and	 murine	 tibia,	 Fig.1),	 two	

approaches	were	 taken	 in	order	 to	 investigate	 the	effect	of	 the	 inclusion	of	 the	

marrow	 regions	during	 the	 registration:	 either	 the	whole	VOI	 (’unmasked’),	 or	

only	the	parts	of	the	VOI	within	the	mask	(’masked’)	were	registered.			

	
Fig.	2:	Workflow	of	the	registration	procedure.	Tomograms	were	obtained	by	scanning	the	

specimens	twice	without	any	repositioning.	From	left	to	right:	a	grid	of	particular	nodal	spacing	

(NS,	from	10	to	300	voxels)	was	superimposed	on	the	cropped	VOIs	(unmasked	or	masked,	in	

case	of	trabecular	and	murine	tibiae);	the	displacements	were	evaluated	at	each	node	by	ShIRT;	

the	grid	was	converted	to	an	FE	mesh	and	computed	displacements	assigned	as	boundary	

conditions;	the	cells	of	the	grid	with	all	nodes	outside	the	mask	were	ignored	when	evaluating	

measurement	uncertainties.		
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In	 both	 cases	 (unmasked	 and	 masked)	 the	 cells	 of	 the	 mesh	 with	 all	 nodes	

outside	 the	 mask	 were	 ignored	 and	 the	 errors	 were	 averaged	 only	 in	 the	

remaining	nodes	(Fig.2),	in	order	to	account	only	for	the	errors	within	the	bone	

tissue.	The	same	protocol	was	applied	also	to	the	downsampled	images	using	the	

downsampled	masks.		

	

9.2.3 Quantification of errors 
The	systematic	error	for	the	displacements	could	not	be	quantified,	as	the	actual	

displacements	were	close	to	zero,	but	were	affected	by	the	inevitable	unknown	

nano-movements	 of	 the	 moving	 parts	 of	 the	 scanner.	 	 To	 quantify	 the	

displacement	 random	 errors,	 their	 variability	 within	 each	 specimen	 was	

computed.		Conversely,	as	the	test	was	based	on	a	zero-strain	condition,	any	non-

zero	values	of	strain	were	considered	as	error,	and	both	precision	and	accuracy	

could	 be	 estimated.	 	Hence,	 the	 following	parameters	were	 computed	 for	 each	

registration:	

• Random	 error	 for	 the	 displacement:	 standard	 deviation	 (SD)	 of	 each	

component	of	displacement,	as	 in	 (Benoit	et	al.,	2009;	Madi	et	al.,	2013;	

Palanca	et	al.,	2015b;	Roux	et	al.,	2008);		

• Mean	 absolute	 error	 (MAER):	 average	 of	 the	 average	 of	 the	 absolute	

values	of	the	six	components	of	strain	in	each	node,	referred	as	“accuracy”	

in	(Liu	and	Morgan,	2007);	

• Standard	 deviation	 of	 error	 (SDER):	 SD	 of	 the	 average	 of	 the	 absolute	

values	of	the	six	components	of	strain	in	each	node,	referred	as	“precision”	

in	(Liu	and	Morgan,	2007);	

• Systematic	error	for	each	component	of	strain:	average	of	the	respective	

component	 of	 strain	 on	 the	 evaluated	 nodes,	 as	 in	 (Gillard	 et	 al.,	 2014;	

Palanca	et	al.,	2016b);	

• Random	 error	 for	 each	 component	 of	 strain:	 SD	 of	 the	 respective	

component	 of	 strain	 on	 the	 evaluated	 nodes,	 as	 in	 (Gillard	 et	 al.,	 2014;	

Palanca	et	al.,	2016b);	

The	median	and	standard	deviation	were	computed	within	each	sample	for	such	

errors.			

Finally,	 a	qualitative	error	distribution	 in	 the	middle	 cross	 section	of	 a	generic	

VOI	 for	each	 typical	bone	microstructure	 for	 the	normal	strain	along	 the	z-axis	

(axis	of	the	scan	revolution)	was	inspected.	

	

	

	

9.3 Results 

9.3.1 Random error for displacements 
The	random	errors	of	each	component	of	 the	displacement,	obtained	using	 the	

registration	based	on	the	unmasked	images	never	exceeded	0.139	voxels	(0.226	

micrometers;	for	trabecular	bone	with	a	NS	of	10,	Table2).		The	maximal	random	

errors,	obtained	at	NS	equal	to	10,	were	smallest	for	the	bovine	cortical	sample	

(below	0.054	voxels	for	z-direction,	0.088	micrometers),	followed	by	the	ones	for	

the	murine	tibia	sample	(below	0.080	voxels	for	x-direction,	0.130	micrometers),	
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Table	2:	Random	errors	for	the	components	of	displacement	(micrometers)	for	each	bone	type.		

NS 

DISPLACEMENT RANDOM ERRORS (micrometers) 

BOVINE  

CORTICAL  

BOVINE 

TRABECULAR 

UNMASKED 

BOVINE 

TRABECULAR 

MASKED 

MURINE TIBIA 

UNMASKED 

MURINE TIBIA 

MASKED 

X Y Z X Y Z X Y Z X Y Z X Y Z 

10 0.073 0.072 0.088 0.171 0.176 0.226 0.108 0.101 0.152 0.130 0.118 0.118 0.103 0.087 0.084 

15 0.053 0.049 0.069 0.143 0.143 0.192 0.095 0.092 0.133 0.093 0.078 0.079 0.099 0.081 0.078 

20 0.051 0.046 0.067 0.139 0.141 0.201 0.090 0.083 0.128 0.089 0.074 0.081 0.094 0.077 0.072 

25 0.047 0.041 0.061 0.123 0.125 0.186 0.086 0.077 0.116 0.085 0.072 0.078 0.092 0.076 0.070 

50 0.039 0.033 0.058 0.087 0.091 0.156 0.068 0.064 0.102 0.074 0.061 0.066 0.085 0.071 0.059 

75 0.036 0.032 0.061 0.075 0.081 0.144 0.056 0.057 0.098 0.070 0.057 0.061 0.083 0.069 0.052 

100 0.033 0.027 0.055 0.056 0.062 0.114 0.043 0.051 0.086 0.067 0.054 0.053 0.082 0.068 0.049 

150 0.031 0.029 0.060 0.047 0.053 0.096 0.037 0.045 0.079 0.062 0.051 0.045 0.075 0.071 0.047 

200 0.029 0.025 0.055 0.038 0.041 0.084 0.031 0.042 0.076 0.057 0.050 0.041 0.076 0.071 0.045 

250 0.034 0.038 0.068 0.050 0.056 0.103 0.037 0.042 0.062 0.055 0.043 0.057 0.068 0.065 0.040 

300 0.024 0.026 0.053 0.030 0.030 0.061 0.027 0.034 0.056 0.049 0.039 0.033 0.065 0.063 0.038 



Validation	of	Digital	Volume	Correlation	-	synchrotronCT	

Submitted to: Journal of Biomechanics 

155	

and	 largest	 for	 the	 ones	 computed	 for	 bovine	 trabecular	 sample	 (below	 0.139	
voxels	 for	 z-direction,	 0.226	 micrometers).	 	 The	 errors	 obtained	 for	 the	
displacements	using	the	masked	images	were	lower	than	those	for	the	unmasked	
images	 for	 both	bovine	 trabecular	bone	 and	murine	 tibia	 samples	 (Table2).	 	 A	
trend	 could	 be	 observed	 for	 all	 bone	 types:	 the	 higher	 the	 NS,	 the	 lower	 the	
random	error.		No	preferential	direction	was	observed.		
	
9.3.2 Accuracy and precision: average of components 
As	expected	from	the	results	reported	in	previous	studies	on	bone	(Benoit	et	al.,	
2009;	 Dall'Ara	 et	 al.,	 2014;	 Palanca	 et	 al.,	 2016b)	 and	 on	 polypropylene-foam	
(Roux	et	al.,	2008),	the	uncertainties	of	the	DVC	approach	(MAER	and	SDER)	had	
decreasing	trends	with	respect	to	NS,	for	all	types	of	bone	(Fig.3).			

	
Fig.	3:	MAER	(top)	and	SDER	(bottom)	for	each	bone	type	(bovine	cortical	bone	in	blue,	bovine	
trabecular	bone	in	orange	and	murine	tibia	in	green),	for	unmasked	and	masked	images	(solid	
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and	striped	bars,	respectively)	as	a	function	of	the	nodal	spacing	NS.		Bars	represent	the	median	
values,	while	error	bars	represent	the	standard	deviation.		On	the	right,	the	power	laws	and	the	

coefficients	of	determination	(R²)	are	reported.			

	
For	a	given	NS,	the	values	of	MAER	were	larger	than	SDER.	
The	ranges	(for	NS	of	16.0	to	480.0	micrometers)	of	the	medians	for	MAER	and	
SDER	 for	bovine	cortical	bone	sample	were	between	29-2,026	microstrain	and	
between	8-890	microstrain,	respectively.	 	Errors	 for	this	bone	type	were	 lower	
than	 those	 obtained	 for	 the	 other	 types	 of	 bone	 (from	 registration	 based	 on	
masked	 or	 unmasked	 images).	 	 For	 bovine	 trabecular	 bone	 the	 MAER	 ranged	
between	 49-4,058	 microstrain	 and	 41-1,795	 microstrain	 for	 unmasked	 and	
masked	 images,	respectively.	 	For	murine	tibiae	the	MAER	ranged	between	43-
3,868	microstrain	and	51-1,394	microstrain	 for	unmasked	and	masked	 images,	
respectively.	 	Lower	SDER	was	found	for	the	bovine	trabecular	bone	 	(between	
17-2,253	 microstrain	 and	 9-1,162	 microstrain	 for	 unmasked	 and	 masked	
images)	and	for	the	murine	tibia	sample		(between	14-2,012	microstrain	and	24-
909	microstrain	for	unmasked	and	masked	images).		
Downsampling	 the	 images	 increased	 the	 median	 errors	 for	 all	 bone	 types	 for	
both	MAER	 (113-11,971	microstrain	 for	 cortical	 bone,	 265-14,650	microstrain	
for	trabecular	bone	and	86-7,011	microstrain	for	murine	tibiae)	and	SDER	(36-
4,790	microstrain	 for	 cortical	 bone,	 124-8,985	microstrain	 for	 trabecular	 bone	
and	 19-4,165	 microstrain	 for	 murine	 tibiae).	 The	 power	 laws	 for	 MAER	 and	
SDER	 showed	 similar	 trends	 but	 different	 amplitude	 for	 native	 resolution,	
downsampled	images	and	LS-microCT	images	of	similar	samples	(Dall'Ara	et	al.,	
2014)	(Fig.4).			
	
9.3.3 Systematic errors for each component of strain 
The	systematic	errors	were	independent	from	NS,	for	all	bone	types	and	for	both	
registrations	 based	 on	 unmasked	 or	 masked	 images	 (see	 supplementary	
material).	 Only	 weak	 reductions	 of	 the	 systematic	 errors	 for	 the	 normal	
components	 have	 been	 observed	 for	 mouse	 tibiae	 for	 both	 unmasked	 and	
masked	 images.	 	 The	medians	 of	 the	 systematic	 errors	 for	 the	 bovine	 cortical	
bone	sample	ranged	between	-43	and	80	microstrain,	and	were	lower	than	those	
of	the	other	two	bone	types	(between	-55	and	124	microstrain	and	between	-133	
and	 88	 microstrain	 for	 bovine	 trabecular	 bone	 with	 unmasked	 and	 masked	
images,	respectively;	between	-17	and	197	microstrain	and	between	-6	and	209	
microstrain	for	murine	tibiae	using	unmasked	and	masked	images,	respectively).		
In	most	cases	no	systematic	preferential	direction	was	observed.	Larger	errors	
were	 found	 for	 normal	 components	 in	 the	 mouse	 tibiae.	 	 The	 downsampled	
images	 confirmed	 the	 independence	 of	 the	 systematic	 errors	 from	 the	NS,	 but	
showed	higher	values	errors	 (between	 -74	and	264	microstrain	 for	 the	bovine	
cortical	 bone,	 between	 -207	 and	 590	 for	 the	 bovine	 trabecular	 bone,	 and	
between	-12	and	219	for	the	murine	tibiae).				
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Fig.	4:	Power	laws	computed	for	MAER	(top)	and	SDER	(bottom)	for	each	bone	type	(bovine	

cortical	bone	in	blue,	bovine	trabecular	bone	in	orange	and	murine	tibia	in	green),	for	native	SR-
microCT	images	(solid	lines),	downsampled	SR-microCT	images	(dashed	lines)	and	LS-microCT	

images	from	Dall’Ara	et	al.	(2014)	(dash-dot	lines).	On	the	right,	the	power	laws	and	the	
coefficients	of	determination	(R²)	are	reported.			
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9.3.4 Random errors for each component of strain 
For	 all	 registrations,	 increasing	 the	 NS	 reduced	 the	 random	 error	 for	 each	
component	of	strain	(Fig.5).			
	

	
Fig.	5:	Median	of	the	random	error	for	each	bone	type	(cortical	bone	on	the	top,	trabecular	bone	
in	the	middle	and	murine	tibiae	on	the	bottom),	for	each	registration	methods	(from	unmasked	
images	on	the	left,	from	masked	images	on	the	right),	for	each	component	of	strain,	as	a	function	
of	NS.		To	improve	the	readability,	error	bars	representing	standard	deviations	were	reported	
only	on	the	top	of	each	histogram.		To	help	interpreting	the	results,	a	range	for	the	typical	

physiological	deformations	(1000-2000	microstrain	(Yang	et	al.,	2011))	is	indicated.		For	the	
scope	of	this	study,	also	the	target	value	for	the	measurement	error	is	indicated	(one	order	of	

magnitude	lower:	200	microstrain).			

	
As	 observed	 for	 the	 displacement,	 bovine	 cortical	 bone	 showed	 the	 lowest	
random	 errors,	 with	 medians	 ranging	 between	 14-3,271	 microstrain.	 Bovine	



Validation	of	Digital	Volume	Correlation	-	synchrotronCT	

Submitted to: Journal of Biomechanics 

159	

trabecular	 bone	 was	 associated	 to	 random	 errors	 of	 32-7,480	 and	 23-3,228	
microstrain	 using	 unmasked	 images,	 and	 masked	 images,	 respectively.	 	 The	
murine	 tibiae	 showed	 errors	 of	 23-6,669	 and	 23-2,543	 microstrain	 using	
unmasked	and	masked	images,	respectively.		Random	errors	were	largest	for	the	
shear	 strains	 in	 all	 cases	 (approximately	 1.5	 times	 higher	 than	 for	 the	 normal	
strain).	 	The	same	trend	was	observed	for	the	downsampled	images.	 	Here,	 the	
murine	 tibiae	 had	 the	 lowest	 random	 errors	 (57-12,051	 microstrain).	 	 The	
bovine	cortical	bone	had	errors	between	77-18,810	microstrain	and	the	bovine	
trabecular	bone	between	249-25,185	microstrain.	
	
9.3.5 Strain distribution of the errors 
The	 distribution	 of	 the	 apparent	 normal	 strain	 along	 the	 z-direction	 varied	
between	bone	 types,	 and	 even	more	pronouncedly	with	 the	NS	 (Fig.6).	Having	
applied	 the	DVC	 to	 repeated	 images	of	 the	same	undeformed	specimens	 (zero-
strain	condition),	 this	strain	represents	the	error	distribution	within	each	bone	
structure.			

	
Fig.	6:	Distribution	of	z-direction	normal	strain	shown	for	a	mid-height	cross-section	for	a	typical	

specimen	of	each	bone	type	for	three	nodal	spacing	(10,	50,	100).	For	trabecular	bone	and	
murine	tibiae	the	masked	images	were	used	for	this	analyses.	As	the	DVC	was	applied	to	repeated	

images	of	the	same	undeformed	specimens,	the	reported	strain	represents	in	fact	the	DVC	
measurement	uncertainties.		The	cross-section	image	of	the	corresponding	slice	was	overlapped	

to	the	strain	error	map.	For	every	microstructure,	the	side	length	of	the	image	is	1600	
micrometers.		

	
For	bovine	cortical	bone,	a	reasonably	uniform	strain	distribution	was	obtained	
with	NS	equal	to	50	and	100	voxels	(80	and	160	micrometers).	 	Conversely,	for	
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the	 bovine	 trabecular	 bone	 and	 murine	 tibiae,	 the	 bone	 surface	 and	 those	
regions	with	limited	number	of	features	within	the	volume	(e.g.	central	portion	
of	 the	 murine	 tibia)	 showed	 larger	 strain	 errors.	 	 It	 must	 be	 noted	 that	 for	
trabecular	 bone	with	NS	 equal	 to	 50	 voxels	 (80	micrometers)	 the	 peak	 errors	
were	 in	 most	 cases	 in	 regions	 outside	 the	 bone	 or	 close	 to	 the	 border	 of	 the	
image.	
	
	
	
9.4 Discussion 

The	 potential	 of	DVC	 for	 bone	 applications	 is	 still	 partially	 unexplored,	 as	 this	
approach	 has	 not	 been	 yet	 applied	 intensively	 to	 high-quality	 images.	 	 In	 this	
study	 measurement	 uncertainties	 of	 a	 SR-microCT	 based	 DVC	 approach	 were	
evaluated	for	the	first	time	for	three	different	types	of	bone	by	using	Repeated-
Scan-Tests	(Palanca	et	al.,	2015b).			
In	 line	with	previous	 studies	performed	on	LS-microCT	 images	 (Dall'Ara	 et	 al.,	
2014;	Palanca	et	al.,	2015b;	Palanca	et	al.,	2016b;	Tozzi	et	al.,	2017),	also	for	DVC	
based	 on	 SR-microCT,	 the	 larger	 the	 NS	 the	 lower	 the	 measurement	
uncertainties.	 	This	trend	is	probably	due	to	the	fact	that	even	for	higher	image	
quality,	the	displacement	errors	were	only	modestly	affected	by	the	NS	(e.g.	for	
NS	10	and	100	voxels,	the	random	error	was	reduced	by	a	factor	2	if	the	NS	was	
increased	 by	 a	 factor	 10,	 Table1),	 which	 lead	 to	 increased	 strain	 errors	 for	
smallest	distance	between	the	nodes	of	the	grid.			
For	 the	bovine	 trabecular	bone,	 registrations	based	on	masked	 images	showed	
lower	 errors	 compared	 to	 the	 ones	 obtained	 by	 registering	 unmasked	 images.		
This	 finding	 highlights	 how	 the	 exclusion	 of	 low-contrast	marrow	 regions,	 for	
which	 noise	 and	 artifacts	 probably	 dominate	 the	 registration,	 is	 beneficial	 for	
DVC.	 	 Conversely	 for	 murine	 tibiae	 the	 SDERs	 computed	 with	 unmasked	 or	
masked	 images	 were	 similar	 for	 NSs	 larger	 than	 10	 voxels	 (16	micrometers).	
This	different	effect	of	the	masking	could	be	due	to	differences	in	size	and	shape	
of	the	bone	features	that	form	the	two	microstructures.			
This	 study	 explored	 the	 relationships	 between	 spatial	 resolution	 of	 the	 DVC	
strain	measurements	and	the	associated	error	for	the	different	bone	types.		Not	
surprisingly,	the	trend	of	the	DVC	uncertainties	followed	a	power	law	for	all	bone	
types,	 confirming	 what	 was	 previously	 found	 for	 LS-microCT	 based	 bone	
specimens	(Dall'Ara	et	al.,	2014;	Roberts	et	al.,	2014)	or	for	polypropylene-foam	
specimens	(Roux	et	al.,	2008).	For	NSs	of	40	micrometers	or	larger,	the	SDER	for	
the	 cortical	 bone	 images	 were	 lower	 than	 200	 microstrain,	 acceptable	 error	
when	 investigating	 deformations	 in	 the	 physiological	 range.	 	 For	 registrations	
using	the	masked	images,	median	SDER	lower	than	200	microstrain	were	found	
for	 NS	 larger	 than	 80	 micrometers	 for	 the	 murine	 tibiae,	 or	 larger	 than	 120	
micrometers	for	the	bovine	trabecular	bone.		Larger	NSs	were	required	to	reduce	
the	 error	 associated	 to	 each	 component	 of	 strain	 below	 200	 microstrain	 (80	
micrometers	for	the	cortical	bone,	160	micrometers	for	masked	trabecular	bone,	
and	120	micrometers	for	masked	murine	tibiae).	These	values	are	acceptable	for	
measurements	 performed	 on	 bone	 structural	 units,	 and	 suggest	 that	 the	 SR-
microCT	based	DVC	 can	be	 used	 to	 validate	 computational	models	 that	 aim	 to	
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predict	 local	 strains	at	 the	 tissue	 level	 (Chen	et	al.,	2016;	Eswaran	et	al.,	2007;	
Van	Rietbergen	et	al.,	1995;	Verhulp	et	al.,	2006).	
In	the	present	study	the	errors	were	vastly	lower	than	those	obtained	processing	
traditional	LS-microCT	 (voxel	 size	of	~10	micrometers)	 images	 (Dall'Ara	et	al.,	
2014)	of	similar	specimens	from	the	same	femur	processed	in	this	study,	using	
the	same	DVC	approach	on	Repeated-Scan-Tests.		In	that	study,	SDER	below	200	
microstrain	 were	 achieved	 only	 for	 NS	 above	 472	micrometers	 for	 trabecular	
bone,	and	536	micrometers	for	cortical	bone.		The	present	study	proved	that	the	
DVC	 uncertainties	 could	 be	 reduced,	 improving	 the	 measurement	 spatial	
resolution	 almost	 fourteen	 times	 for	 cortical	 bone	 and	 almost	 four	 times	 for	
trabecular	 bone.	 	 This	 difference	 could	 be	 due	 to	 the	 superimposition	 of	 two	
effects	in	the	SR-microCT	images:	the	smaller	effective	voxel	size	and	the	higher	
signal-to-noise	 ratio.	 	When	 the	 downsampled	 images	were	 analyzed,	 SDER	 of	
200	microstrain	 were	 achieved	with	 a	measurement	 spatial	 resolution	 of	 176	
micrometers	 for	 the	 cortical	bone	 (five	 times	coarser	 than	 the	34	micrometers	
needed	for	the	original	images),	and	of	402	micrometers	for	the	trabecular	bone	
(four	times	coarser	than	the	97	of	the	original	images).		These	analyses	showed	
that	a	finer	voxel	size	can	explain	only	partially	the	lower	SDER	of	the	DVC	with	
SR-microCT.	 	Such	measurement	spatial	resolutions	were	still	better	than	those	
required	to	obtain	the	same	SDER	with	LS-microCT	(Dall'Ara	et	al.,	2014).	 	The	
larger	improvement	for	cortical	bone	is	likely	due	to	the	much	higher	number	of	
features	 (i.e.	 the	 osteocyte	 lacunae	 around	 the	 vascular	 pores)	 resolvable	with	
SR-microCT	 images	 for	 such	 microstructure	 compared	 to	 LS-microCT	 images.	
However,	 as	 comparisons	 were	 made	 between	 SR-microCT	 and	 LS-microCT	
images	of	similar	(but	not	identical)	specimens,	further	investigations	could	help	
to	better	clarify	the	sources	of	errors.			
To	 the	 authors’	 knowledge,	 this	 is	 the	 first	 study	where	 the	 displacement	 and	
strain	 errors	 of	 a	 global	 DVC	 approach	 based	 on	 SR-microCT	 images	 were	
evaluated	 with	 Repeated-Scan-Tests	 for	 different	 types	 of	 bone	 specimens.		
Another	 study	 used	 synchrotron	 images	 on	 a	 DVC	 approach	 and	 performed	 a	
preliminary	evaluation	of	the	error	(Christen	et	al.,	2012)	on	virtually	moved	and	
stretched	 images	 of	 murine	 femur.	 	 That	 DVC	 approach,	 based	 on	 demons	
deformable	registration	algorithm,	was	applied	to	SR-microCT	images	(voxel	size	
of	 740	nanometers)	with	 a	NS	of	 approximately	30	micrometers	 and	provided	
SDER	of	approximately	1,800	microstrain,	more	than	four	times	larger	than	that	
found	 for	masked	murine	 tibiae	 in	 this	 study.	 	This	difference	might	be	due	 to	
differences	 in	microstructure,	 tomographic	 resolution	and	registration	method.	
However,	 considering	 that	 in	 that	 study	 the	 SDER	 was	 computed	 on	 virtually	
moved	images	that	do	not	include	the	effect	of	image	noise,	the	method	proposed	
in	this	study	is	by	far	the	one	with	the	highest	precision	(lowest	SDER)	reported	
in	 the	 literature	 to	 date	 for	 analyses	 on	 bone	 specimens.	 It	 remains	 to	 be	
investigated	if	other	DVC	approaches	would	achieve	similar	(or	better)	precision	
if	based	on	the	same	images	used	in	the	present	study.			
Despite	the	high	potential	of	SR-microCT	based	DVC,	bone	damage	induced	by	X-
ray	synchrotron	irradiation	is	apparently	the	major	limitation	for	its	application	
in	 time-lapsed	 in	 situ	 mechanical	 tests	 (Barth	 et	 al.,	 2010).	 	 Previous	 authors	
have	attempted	to	mechanically	test	bone	samples	within	a	synchrotron	facility	
(Christen	 et	 al.,	 2012;	 Thurner	 et	 al.,	 2006)	 but	 reported	 that	 the	 irradiation	
and/or	associated	heat	affected	the	local	material	properties	of	the	tissue	(Barth	
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et	 al.,	 2010).	 In	 order	 to	 apply	 this	 DVC	 approach	 to	 SR-microCT	 in	 situ	
mechanically	 tested	 and	 imaged	 bone	 samples	 further	 scanning	 optimization	
(Pacureanu	 et	 al.,	 2012)	 and	 analysis	 to	 reduce	 this	 problem	 by,	 for	 example,	
reducing	 exposure	 times,	 suppressing	 lower	 X-ray	 frequencies	 or	 submerging	
samples	 in	 aqueous	 buffer,	 would	 form	 the	 basis	 of	 a	 useful	 methodological	
study.	
The	main	 limitation	 of	 this	 study	 is	 that	 the	measurement	 uncertainties	 were	
investigated	only	in	a	homogeneous	zero-strain	case.		It	would	be	interesting	to	
further	study	the	evolution	of	errors	within	strained	specimens,	especially	where	
the	gradients	of	strains	are	highest.		Moreover,	the	error	associated	to	the	strain	
and	displacement	measurements	was	evaluated	 for	a	global	DVC	approach	and	
remaining	 to	 be	 investigated	 if	 similar	 trends	 would	 be	 found	 for	 local	 DVC	
algorithms	(Palanca	et	al.,	2015b).	While	similar	trends	can	be	expected	also	for	
local	DVC	approaches	(Leclerc	et	al.,	2012;	Palanca	et	al.,	2015b)	researchers	are	
welcome	 to	 contact	 the	 corresponding	 author	who	will	 share	 the	 data	 used	 in	
this	study	for	comparing	different	methods.		
	
	
	
9.5 Conclusion 

The	uncertainties	associated	with	a	global	DVC	approach	applied	to	Synchrotron	
tomograms	 with	 small	 voxel	 size	 are	 sufficiently	 low	 to	 allow	 reliable	 strain	
measurements	at	 the	 tissue-level	 in	different	bone	structures.	This	method	can	
be	used	 to	evaluate	 local	bone	deformations	under	 loading,	and	 to	validate	 the	
strain	predicted	by	computational	models	at	the	tissue-level.		
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In	this	PhD	project	a	full-field	analysis	was	applied	on	spine	segments	to	explore	
their	 biomechanics.	 	Displacement	 and	 strain	measurements	were	 reported	on	
the	 surface	 and	 inside	 the	 spine	 segment	 using	 full-field	 and	 contactless	
measurement	 tools:	 the	 Digital	 Image	 Correlation	 and	 the	 Digital	 Volume	
Correlation.	
	
The	first	part	of	the	research,	regarding	the	surface	measurements,	started	with	
a	 deep	 review	of	 the	 literature	of	 the	Digital	 Image	Correlation	 applications	 in	
the	 biomechanical	 field.	 	 An	 analysis	 and	 discussion	 of	 a	 series	 of	 work	 at	
different	dimensional	scales	and	on	a	wide	range	of	biological	specimens	allowed	
highlighting	 the	 pros	 (full-field	measurement,	 for	 small	 and	 large	 deformation,	
not	invasive,	usable	in	vivo)	and	cons	(problem	related	to	precision,	requirement	
of	a	careful	optimization,	not	real	time)	of	this	novel	measurement	tool.	
The	 know-how	 acquired	 in	 the	 literature	 was	 moved	 and	 applied	 for	 a	
preliminary	 study	 on	 biological	 specimen	 (vertebra).	 	 Through	 a	 careful	
validation	and	optimization	of	the	Digital	Image	Correlation,	the	systematic	and	
random	errors	on	the	surface	of	a	human	vertebra	were	reduced,	compared	with	
the	 initial	 situation,	 respectively	 up	 to	 10	 microstrain	 and	 110	 microstrain.		
These	results	were	potentially	useful	for	the	exploration	of	the	strain	associated	
to	physiological	loads	(around	1000	–	2000	microstrain).	
The	next	step	was	to	expand	this	preliminary	study	to	spine	segments,	in	order	
to	 define	 a	 new	 way	 to	 study	 the	 spine,	 in	 addition	 to	 the	 well-known	
measurement	 of	 the	 range	 of	motion	 and	 stiffness.	 	 This	 goal	was	 reached	 on	
porcine	spines,	tested	in	two	different	 loading	configurations	(anterior	bending	
and	lateral	bending),	acquiring	two	different	points	of	view.		

	
Fig.	1:	Maximum	principal	strain	(με)	evaluated	on	the	surface	of	a	spine	segments	loaded	in	

lateral	bending.	
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The	preparation	of	a	suitable	speckle	pattern,	the	validation	and	optimization	of	
the	 Digital	 Image	 Correlation	 allowed	 evaluating	 the	 strain	 maps	 in	 all	 tested	
conditions	without	substantial	loss	of	correlation	and	limiting	the	entities	of	the	
errors	 to	 acceptable	 level	 (systematic	 error	 of	 ten	 microstrain,	 random	 error	
around	 hundred	microstrain).	 	 The	 strains	 on	 the	 intervertebral	 discs	 and	 on	
vertebrae	were	evaluated	simultaneously	in	a	full-field	and	contactless	way.	The	
high	gradients,	showed	the	need	of	exploring	the	spine	in	a	full-field	way	(Fig.	1).		
This	application	of	Digital	Image	Correlation	to	spine	segments	can	open	the	way	
to	a	new	approach	both	to	basic,	and	translational	research.			
	
A	similar	approach	was	used	in	the	second	part	of	this	research,	focused	on	the	
measurements	inside	the	specimen.			
The	Digital	Volume	Correlation	is	an	emerging	measurement	tools	in	the	field	of	
biomechanics;	before	starting	 to	work	on	 it,	a	validation	study	was	mandatory.		
But	 the	 validation	 can	 be	 performed	 only	 partially,	 because	 no	 other	
measurement	 techniques	 provided	 comparable	 measurements.	 	 In	 fact,	 the	
review	 of	 the	 works	 that	 focused	 assessing	 the	measurement	 uncertainties	 of	
Digital	 Volume	 Correlation	 showed	 a	 wide	 range	 of	 results,	 and	 the	 lack	 of	 a	
benchmark,	to	standardize	the	performance	of	the	algorithms.	
Different,	 simplified	 and	 a	 priori	 known	 situations	 (zero-strain	 tests,	 virtually	
moved	test,	virtually	stretched	test)	were	reproduced	to	ensure	the	reliability	of	
the	tool;	but	a	complete	validation	was	still	not	developed.			
The	effects	of	the	single	inputs:	

• Bone	specimens	(organ	 level:	cortical	and	 trabecular	bones,	 tissue	 level:	
natural	vertebrae,	augmented	vertebrae);	

• Imaging	 source	 (laboratory	 source	 microCT,	 synchrotron	 radiation	
microCT);	

• Algorithms	(local	and	global	approach);	
• Computational	parameters	(subvolume	size,	overlap,	multipass,	etc);	

were	analyzed	performing	a	quantitative	validation	and	optimization	of	the	DVC	
for	biomechanical	applications	and	using	a	wide	factorial	design.	
For	each	combination	of	these	parameters,	the	measurement	uncertainties	were	
computed.	 Moreover,	 in	 order	 to	 provide	 benchmark	 materials	 to	 test	 and	
compare	DVC	approaches,	the	inputs	images	were	publically	shared.	
The	 imaging	 source,	 especially	 the	 combinations	 of	 signal-to-noise	 ratio	 and	
spatial	resolution,	and	the	computational	parameters	have	the	larger	impact	on	
the	 reduction	 of	 the	measurement	 uncertainties.	 	 Conversely,	 the	 tissue	 types	
and	the	used	algorithms	minimally	influence	the	final	results	(Fig.	2).			
In	conclusion	of	this	analysis	was	showed	that	when	sufficient	care	is	dedicated	
to	 preliminary	 methodological	 work,	 the	 overall	 error	 could	 be	 reduced	 and	
potentially	 acceptable	 to	 explore	 strain	 failure	 and	 strain	 associated	 to	
physiological	loads	(<	200	microstrain).			
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Fig.	2:	Overview	of	the	measurement	uncertainties	evaluated	as	standard	deviation	of	the	error	
(SDER)	using	2	different	bone	types	(blue:	cortical	bovine	bone,	red:	trabecular	bovine	bone),	2	
different	imaging	systems	(synchrotron	radiation	microCT	and	laboratory	source	microCT),	2	
different	DVC	approaches	(global:	ShIRT-FE,	local:	DaVis-DC),	and	different	spatial	resolution	

(voxel	size:	1.6,	8,	10	micrometers).	

	
Of	 course,	 a	 compromise	 between	 the	measurement	 spatial	 resolution	 and	 the	
measurement	uncertainties	should	be	always	taken	in	account.		Finally,	this	large	
methodological	 background	 on	 the	 optimization	 of	 the	 Digital	 Volume	
Correlation	 was	 employed	 in	 preliminary	 tests	 on	 porcine	 vertebra,	 in	 elastic	
regime	 until	 failure.	 	 The	 DVC	 successfully	 evaluated	 since	 the	 elastic	 regime	
where	the	failure	point	inside	a	vertebra	will	be	placed.	
	
The	work	is	completed	in	terms	of	exploring	the	feasibility	of	these	new	full-field	
procedures	 on	 spine	 segments.	 	 In	 the	 next	 years,	 the	 real	 application	 of	 the	
methods	 should	 be	 performed	 on	 human	 specimens:	 applying	 more	 complex	
loading	scenarios	and	exploring	the	biomechanics	 in	physiological,	pathological	
and	instrumented	specimens.		
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1 Introduction 

Pathologies	 such	as	osteoporosis	 and	bone	metastases	 are	 the	major	 causes	of	
vertebral	 fractures,	 often	 in	 combination	 with	 trauma	 or	 para-physiological	
overloading.	 These	 vertebrae	 are	 weak	 because	 their	 micro-	 and/or	 macro-
structure	 are	 pathologically	 compromised.	 If	 untreated,	 they	 might	 fracture,	
causing	severe	disabilities	and	in	some	cases	even	mortality	(Ferrar	et	al.,	2005;	
Tancioni	et	al.,	2011).	For	this	reason,	knowledge	of	the	failure	mechanism	in	the	
vertebra	 is	 of	 fundamental	 importance	 to	 understand	 vertebral	 biomechanics	
(Cristofolini,	2015),	 improve	diagnosis	and	prophylactic	treatments	(Goel	et	al.,	
2006;	Pollintine	et	al.,	2010).		
In	vitro	testing	of	the	vertebral	body	has	been	extensively	carried	out	in	the	past	
(Brandolini	et	al.,	2014;	Lochmüller	et	al.,	2002;	Singer	et	al.,	1995).	The	strain	
distribution	in	the	vertebral	body	was	investigated	using	different	experimental	
techniques	 but	mainly	with	 strain	 gauges	 (Cristofolini	 et	 al.,	 2013),	where	 the	
full-field	strain	distribution	was	not	investigated.	Furthermore,	strain	gauges	are	
associated	with	a	reinforcement	effect	that	 in	the	case	of	a	thin	shell	of	cortical	
bone	 cannot	be	neglected	 (Ajovalasit	 and	Zuccarello,	2005;	Freddi	 et	 al.,	 2015;	
Grassi	and	Isaksson,	2015).		
More	 recently,	 digital	 image	 correlation	 (DIC)	 was	 adopted	 to	 investigate	 the	
full-field	strain	distribution	on	the	cortical	surface	of	vertebrae,	in	an	attempt	to	
avoid	direct	 contact	measurement	 (i.e.	via	 strain	gauges)	 that	could	potentially	
produce	 important	 artifacts	 in	 the	 local	 strain	 determination	 (Palanca	 et	 al.,	
2015a).	To	this	extent,	(Gustafson	et	al.,	2016)	presented	a	comparison	of	strain	
rosettes	 and	 DIC	 to	 measure	 the	 vertebral	 body	 strain.	 In	 that	 study	 porcine	
vertebrae	were	prepared	with	a	strain	rosette	plus	a	speckled	paint	pattern	for	
DIC	 and	 loaded	 in	 compression.	However,	 it	must	 be	pointed	out	 that	 also	 the	
specimen	preparation	for	an	appropriate	DIC	measurement	(i.e.	speckle	pattern	
distribution)	 must	 be	 planned	 carefully	 if	 reliable	 results	 are	 to	 be	 achieved	
(Lionello	and	Cristofolini,	2014;	Palanca	et	al.,	2015a).	When	measuring	strain	in	
bone	 one	 must	 consider	 the	 magnitude	 of	 strain	 experienced	 during	
physiological	 tasks	(1000-2000	microstrain,	(Lanyon,	1980;	Yang	et	al.,	2011)),	
and	the	failure	strain	of	bone	tissue	(7000-10000	microstrain,	(Bayraktar	et	al.,	
2004)).	 The	 overall	 precision	 that	 can	 be	 obtained	 with	 strain	 gauges	 when	
applied	to	bone	is	of	the	order	of	1-2%	of	the	readout	(Cristofolini	and	Viceconti,	
1997;	Freddi	et	al.,	2015),	which	corresponds	to	10-20	microstrain	when	loads,	
that	 cause	 strains	 comparable	 to	 those	 obtained	 during	 physiological	 tasks	
(Bergmann,	 2011),	 are	 applied	 in	 vitro.	 The	 overall	 precision	 that	 can	 be	
obtained	with	DIC	(which	is	mainly	limited	by	noise)	is	of	the	order	of	100-300	
microstrain	(Palanca	et	al.,	2016a).			
In	 any	 case,	 for	 all	 the	 above	 studies	 with	 strain	 gauges	 and	 DIC	 the	 main	
limitation	 is	 represented	 by	 the	 inability	 to	 capture	 and	 quantify	 internal	
microdamage	 evolution	 and	 full-field	 strain	 distribution	 under	 load.	 	 As	 the	
internal	 trabecular	 bone	 of	 the	 vertebral	 body	 plays	 a	 fundamental	 structural	
role	 (Bouxsein,	 2003;	 Cristofolini,	 2015;	 Fung,	 1980),	 it	 would	 be	 extremely	
important	to	measure	the	internal	strain	distribution.	In	fact,	a	number	of	studies	
have	 shown	 that	 in	 several	 cases	 failure	 starts	 inside	 the	 vertebral	 body	 itself	
(Silva	 et	 al.,	 1997;	 Wang	 et	 al.,	 2007).	 In	 this	 perspective,	 digital	 volume	
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correlation	(DVC)	 is	 ideal	 to	 investigate	 the	 internal	strain	distribution	and	the	
local	 damage	 inside	 the	 vertebra.	 In	 recent	 years,	DVC	has	 become	 a	 powerful	
tool	to	examine	full-field	internal	deformations	mainly	in	trabecular	(Dall'Ara	et	
al.,	 2014;	 Gillard	 et	 al.,	 2014;	 Liu	 and	 Morgan,	 2007;	 Palanca	 et	 al.,	 2015b;	
Roberts	et	al.,	2014)	and	cortical	bone	(Christen	et	al.,	2012;	Dall'Ara	et	al.,	2014;	
Palanca	 et	 al.,	 2015b).	 The	 use	 of	 DVC	 to	 investigate	 the	 strain	 distribution	 in	
vertebrae	 has	 been	 firstly	 introduced	 by	 (Hardisty	 and	Whyne,	 2009).	 In	 that	
study	 a	 new	 image	 registration	 algorithm	 was	 developed	 to	 spatially	 resolve	
strain	 in	 whole	 bones	 (rat	 vertebrae)	 using	 micro-CT	 images.	 Since	 then,	 a	
number	 of	 studies	 investigated	 the	 full-field	 strain	 distribution	 in	 vertebral	
bodies	without	(Hussein	et	al.,	2012)	and	with	the	adjacent	intervertebral	discs	
(Hussein	et	al.,	2013),	 as	well	 as	entire	vertebrae	 (Hardisty	et	al.,	2012)	under	
compressive	 loading.	 In	 (Hussein	 et	 al.,	 2012)	 the	 highest	 strain	 magnitudes	
(minimum	 principal	 strain)	 were	 distributed	 in	 the	 superior-inferior	 (axial)	
direction	ranging	between	 -20000	and	 -40000	microstrain,	 in	human	vertebral	
bodies.	 In	 a	 following	 study	 from	 the	 same	 Authors	 (Hussein	 et	 al.,	 2013),	 a	
comparison	between	vertebral	body	(rabbits)	without	and	with	the	presence	of	
adjacent	 intervertebral	 discs	 highlighted	 a	 different	 minimum	 principal	 strain	
distribution	 in	 the	 two	 configurations	 for	 yield	 and	 failure	 conditions,	 with	
maximum	differences	of	-10000	microstrain	for	the	average	strain	magnitude	in	
the	 two	 configurations	 (with	 and	 without	 discs).	 However,	 in	 both	 studies	
(Hussein	 et	 al.,	 2012;	 Hussein	 et	 al.,	 2013)	 there	 is	 no	 information	 on	 the	
progression	 of	 strain	 levels	 from	 the	 elastic	 regime	 (more	 physiological),	
preceding	 the	 final	 failure	event.	Also,	 the	 influence	of	strain	directionality	and	
local	 levels	 of	 strain	 on	 microdamage	 evolution	 in	 the	 vertebra	 has	 not	 been	
investigated.	Hardisty	 et	 al.	 (Hardisty	 et	 al.,	 2012)	 is	 the	 only	 study	 to	 date	 to	
report	 the	 microdamage	 in	 metastatic	 and	 healthy	 vertebrae	 (rat	 models)	
associated	with	full-field	strain	from	DVC,	but	only	for	the	axial	strain.	That	work	
reported	an	average	axial	strain	at	failure	of	-27000	microstrain	for	the	healthy	
group	(5	specimens),	but	no	information	of	the	critical	strain	values	in	different	
locations	of	the	vertebrae.	Another	important	aspect	to	be	considered	is	the	level	
of	uncertainly	of	the	DVC-computed	strain	distribution,	that	can	be	associated	to	
imaging	conditions,	bone	type,	image	preparation,	computation	sub-volume	size	
and	nature	of	the	DVC	approach	(i.e.	 local	vs	global).	Very	recently,	an	in-depth	
methodological	 investigation	 of	 all	 those	 aspects	 for	 natural	 and	 augmented	
vertebral	bodies	(porcine	models)	was	carried	out	(Palanca	et	al.,	2016b;	Tozzi	
et	 al.,	 2017).	 Those	 studies	 reported	 that	 strain	 uncertainties	 can	 be	 reduced	
below	 300	 microstrain	 for	 both	 local	 and	 global	 approaches,	 for	 this	 king	 of	
specimens	 and	 images.	 	 To	 obtain	 those	 results	 the	 images	 are	 adequately	
prepared	(excluding	the	non-tissue	background),	and	a	wide	investigation	of	the	
DVC	 parameters	 was	 performed	 before	 choosing	 the	 better	 compromise	
between	uncertainties	and	spatial	(i.e.	48	voxels	for	a	39	micrometers	voxel	size	
image).		
In	this	study,	full-field	strain	distributions	inside	porcine	vertebral	bodies	were	
obtained	thought	DVC	under	compressive	load.	Specifically,	the	main	aims	of	this	
paper	were:		

• To	measure	the	internal	strain	up	to	failure;		
• To	 analyse	 the	 distribution	 of	 the	 different	 components	 of	 strain	 (axial,	

antero-posterior	and	lateral-lateral)	for	each	specimen;		
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• To	 identify	 microdamage	 initiation/progression	 during	 loading,	 and	 to	
damage	with	the	distribution	of	the	three	components	of	strain.	

	
	
	
2 Methods 

2.1 Material and experimental procedures 
Three	 thoracic	 vertebrae	 (specimens	T1,	T2,	T3)	were	harvested	 from	animals	
that	were	bred	and	slaughtered	 for	alimentation	purposes.	All	 the	surrounding	
soft	 tissues	 were	 removed,	 including	 the	 ligaments	 and	 discs.	 The	 vertebrae	
were	 obtained	 from	 young	 animals,	 where	 the	 growth	 plates	 were	 still	 fully	
open.	To	avoid	 the	presence	of	 soft	 tissue	and	prevent	viscoelastic	phenomena	
(which	might	compromise	image	acquisition	under	load),	the	growth	plates	were	
removed	 together	 with	 the	 adjacent	 endplates	 (due	 to	 the	 young	 age	 of	 the	
animals	 at	 sacrifice,	 this	 could	 be	 performed	 with	 little	 manual	 effort).	 The	
endplate	 areas	 of	 the	 vertebrae	 were	 aligned	 and	 potted	 in	 poly-methyl-
methacrylate	 (PMMA)	 for	 a	 depth	 of	 about	 4	 mm	 for	 each	 side	 following	 a	
procedure	adapted	from	(Danesi	et	al.,	2014).	The	spinous	process	was	used	to	
center	 the	specimen	 in	 the	 transverse	plane	and	align	 it	 about	 its	vertical	axis.	
The	posterior	arch	was	subsequently	removed.		
Step-wise	compression	testing	of	the	vertebrae	in	combination	with	time-lapsed	
micro-CT	 imaging	was	performed.	 In	situ	 testing	was	 conducted	by	means	of	 a	
loading	 device	 (CT5000,	 Deben	 Ltd,	 UK),	 equipped	with	 a	 5kN	 load	 cell	 and	 a	
custom-designed	 environmental	 chamber	 which	 was	 filled	 with	 physiological	
saline	solution	(Fig.	1).		
	

 
Fig.	1:	The	micromechanical	loading	device	inside	the	micro-CT	chamber	(top-left).	The	specimen	
was	potted	in	PMMA	and	aligned	to	the	rotation	axis	of	the	micro-CT	(top-right).	On	the	bottom,	

the	three	compressive	steps;	namely	5%,	10%,	15%	of	apparent	strain.	
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The	specimens	were	constrained	against	rotation	inside	the	loading	device	with	
sandpaper	 discs	 applied	 to	 the	 bottom	 compressive	 platen.	 A	 preload	 of	 50	 N	
was	applied.	Each	specimen	was	compressed	axially	under	displacement	control	
in	a	step-wise	fashion.	The	compression	steps	were	adjusted	for	each	specimen	
based	on	its	height,	so	that	at	each	step	the	free	height	was	compressed	by	5%	
(this	 corresponded	 to	 actuator	 steps	 of	 0.54-0.66	 mm,	 depending	 on	 the	
specimen’s	 size).	All	 tests	were	 carried	out	 at	 a	 constant	 actuator	 speed	of	 0.1	
mm/sec.	 	At	each	compression	step	 the	specimens	were	allowed	 to	 relaxate	 to	
reach	a	steady	state	for	15	minutes	before	imaging.		
Micro-CT	imaging	(XTH225,	Nikon	Metrology,	UK)	was	carried	out	at	each	step	
(0%	with	50N	preload,	5%,	10%	and	15%	compression).	The	micro-CT	scanner	
was	set	to	a	voltage	of	88-89	kV,	a	current	of	115-116	microA	and	exposure	time	
of	 2	 s.	 The	 image	 acquisition	was	 performed	 at	 a	 rotational	 step	 of	 0.23°	 over	
360°	for	a	scanning	time	of	approximately	90	min	at	each	compression	step.	The	
reconstructed	micro-CT	images	had	an	isotropic	voxel	size	of	38.8	micrometers.			
	
2.2 Digital Volume Correlation (DVC) 
DaVis	DVC	software	(v8.3,	LaVision,	Germany)	was	used	to	compute	the	full-field	
strains	 in	 the	 vertebra	 along	 the	 axial,	 antero-posterior	 and	 lateral-lateral	
directions.	The	operating	principle	of	the	DaVis	DVC	has	been	detailed	elsewhere	
(Palanca	 et	 al.,	 2015b;	 Tozzi	 et	 al.,	 2014).	 Briefly,	 DaVis	 sub-divides	 the	 3D	
images	 into	 smaller	 sub-volumes	 that	 can	 be	 correlated	 independently	 (local	
approach)	as	a	discrete	 function	of	grey-levels.	The	matching	between	the	sub-
volumes	corresponding	to	the	different	stages	of	loading	is	achieved	via	a	direct	
correlation	function	(DaVis-DC).	Additionally,	a	piece-wise	linear	shape	function	
and	a	third-order	spline	interpolation	in	the	image	reconstruction	are	employed	
to	 help	 correlation	 of	 the	 pattern	 information	 contained	 in	 the	 reference	 and	
deformed	images.	The	displacement	vector	field	is	obtained	at	the	center	of	each	
sub-volume.	 The	 strain	 field	 is	 subsequently	 computed	 using	 a	 centered	 finite	
differences	(CFD)	scheme.	The	original	micro-CT	 images	were	masked	 in	order	
to	 remove	 the	 background	 areas	 where	 no	 bone	 was	 present.	 In	 fact,	 it	 was	
shown	 that	 regions	 that	 do	 not	 contain	 useful	 feature	 for	 the	 correlation	
algorithm	are	associated	with	large	strain	artifacts	(Palanca	et	al.,	2016b;	Tozzi	
et	al.,	2017).	A	user-defined	polygon	mask	was	created,	which	corresponded	to	
the	 contour	 shape	 of	 each	 vertebral	 body.	 The	 mask	 was	 defined	 in	 the	
transverse	plane	of	 the	vertebral	body	and	 sequentially	 adapted	 in	 the	 caudal-
cranial	 direction	 to	 follow	 the	 shape	 of	 the	 vertebra.	 The	 geometric	 mask	
enabled	the	DVC	software	to	include	only	the	voxels	inside	the	mask	(vertebral	
body	area).			
The	 DVC	 computation	 relied	 on	 final	 sub-volumes	 of	 48	 voxels,	 reached	 after	
successive	 (predictor)	 passes	 using	 sub-volumes	 of	 128	 voxels,	 112	 voxels,	 96	
voxels,	80	voxels	and	64	voxels,	with	a	0%	overlap.	This	multipass	sequence	and	
the	final	sub-volume	were	found	to	produce	the	lowest	strain	error	in	DaVis-DC,	
after	a	wide	investigation	(Palanca	et	al.,	2016b;	Tozzi	et	al.,	2017),	for	such	type	
of	 specimens,	 with	 the	 same	 imaging	 and	 environmental	 settings.	 Briefly,	
repeated	micro-CT	scans	in	zero-strain	conditions	were	processed	using	a	wide	
range	 of	 sub-volume	 size.	 	 The	 systematic	 and	 random	 errors	were	 evaluated	
and	 finally	 selected	 the	 unavoidable	 compromise	 between	 measurement	
uncertainties	 and	 measurement	 spatial	 resolution.	 Given	 the	 voxel	 size	 of	 the	
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acquired	micro-CT	images,	the	final	computation	sub-volume	size	corresponded	
to	1862	micrometers.	
In	order	to	evaluate	the	strain	distribution	in	the	vertebra	and	to	associate	local	
high-strains	with	 visible	microdamage,	 dedicated	Matlab	 (v2014a,	MathWorks,	
US)	scripts	were	developed.	These	allowed	2D	visualization	of	the	evaluated	3D	
strain	maps	for	the	three	components	of	normal	strain,	 in	order	to	easily	show	
the	 strain	 distribution	 inside	 the	 specimens.	 Moreover,	 for	 each	 compression	
step,	the	average	of	the	measurement	points	within	each	cross-section,	for	each	
normal	component	of	strains	 (axial,	antero-posterior	and	 lateral-lateral	strain),	
was	computed.		
	
	
	
3 Results 

The	 force-displacement	 curves	 showed	 a	 monotonic	 trend	 for	 all	 specimens	
while	load	was	increased	(Fig.	2).		

	
Fig.	2:	Force-compression	curves	for	the	three	specimens.	The	load	shows	a	drop	at	the	end	of	
each	step	of	compression:	this	corresponds	to	relaxation	while	the	specimen	was	allowed	to	

settle	(15	minutes)	before	the	micro-CT	scan	took	place	(90	minutes).		

	
Specimen	 failure	 (clearly	 visible	 as	 a	 plateau	 and	 decrease	 in	 the	 force-
displacement	plots)	occurred	at	10%	or	15%	steps	 in	all	 specimens.	The	 loads	
applied	onto	the	three	specimens	for	each	loading	steps	are	reported	in	Table	1.		
	
Table	1:	Loads	experienced	by	the	three	specimens	(T1,	T2,	T3)	in	each	loading	step	of	5%,	10%	

and	15%	apparent	strain,	under	displacement	control.		

Loading	step	 Loads	T1	(N)	 Loads	T2	(N)	 Loads	T3	(N)	

5%	apparent	strain	 1115	 1025	 2917	
10%	apparent	strain	 2104	 4118	 3576	
15%	apparent	strain	 2198	 3994	 3777	

	
Relaxation	 was	 also	 visible	 at	 the	 end	 of	 each	 step	 of	 compression,	 when	 the	
actuator	 was	 stopped	 to	 allow	 micro-CT	 scanning.	 	 The	 internal	 strain	
distributions	 (axial,	 antero-posterior	 and	 lateral-lateral	 components	 of	 strain)	
for	 the	 three	 compression	 steps	 (5%,	10%	and	15%)	on	 the	 sagittal	 section	of	
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the	 three	 specimens	 are	 reported	 in	 Figures	 3-5.	 	 The	 micro-CT	 images	 of	
specimen	 T1	 showed	 a	 main	 microdamage	 localized	 in	 the	 trabecular	 bone	
(caudal	 region),	 which	 started	 to	 appear	 at	 the	 10%	 compressive	 step,	 and	
degenerated	into	a	trabecular	collapse	at	15%	(Fig.	3).	Such	a	collapse	gradually	
led	 to	a	weakening	of	 the	vertebral	body	 in	 the	 transverse	plane,	with	damage	
extending	 to	 the	 cortical	 bone	 anteriorly.	 The	 distribution	 of	 the	 three	
components	 of	 strain	 well	 described	 the	 damage	 events,	 with	 the	 maximum	
strains	 located	in	regions	adjacent	to	the	crushed	zone;	away	from	the	crushed	
region	the	strains	were	significantly	lower	(Fig.	3).			
	

	
Fig	3:		Internal	strain	distribution	(Axial,	Antero-Posterior	and	Lateral-Lateral	strain)	and	
corresponding	microdamage	progression	under	compression	load	for	specimen	T1.	Sagittal	

micro-CT	views	taken	at	5%,	10%	and	15%	compression	steps	are	shown	on	the	left	(the	antero	
(A)	and	posterior	(P)	direction	are	also	indicated).	The	crushed	zone	of	specimen	is	visible	in	the	
10%	and	15%	compression	steps.	Strain	maps	in	sagittal	section	are	overlapped	to	the	micro-CT	

images.	The	most	strained	region	corresponded	to	the	damaged	area,	which	gradually	
progressed	in	a	crack	propagating	throughout	the	vertebra,	in	an	approximately	transverse	

plane.		

	
A	similar	agreement	between	 the	damage	(visible	 in	 the	micro-CT	 images)	and	
the	distribution	of	 strain	 (computed	by	means	of	DVC)	was	 found	 in	 the	other	
two	specimens,	although	the	damage	pattern	was	different	(Fig.	4	and	5).		
In	 specimen	 T2	 the	 microdamage	 seemed	 to	 be	 localized	 in	 the	 trabecular	
structure	as	a	gradual	collapse	that	initiated	(10%)	and	then	propagated	(15%)	
posteriorly,	along	the	caudal-cranial	direction	(Fig.	4),	similarly	to	specimen	T1.	
In	 specimen	T3	damage	 initiated	 in	 the	 cranial	 region	 (10%	compression)	 and	
progressively	 extended	as	 a	 collapse	 in	 a	 transverse	plane	 (15%	compression)	
(Fig.	5).				
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Fig	4:	Internal	strain	distribution	(Axial,	Antero-Posterior	and	Lateral-Lateral	strain)	and	
corresponding	microdamage	progression	under	compression	load	for	specimen	T2.	Sagittal	

micro-CT	views	taken	at	5%,	10%	and	15%	compression	steps	are	shown	on	the	left	(the	antero	
(A)	and	posterior	(P)	direction	are	also	indicated).	The	crushed	zone	of	specimen	is	visible	in	the	
10%	and	15%	compression	steps.	Strain	maps	in	sagittal	section	are	overlapped	to	the	micro-CT	

images.	The	most	strained	region	corresponded	to	the	damaged	area,	which	gradually	
progressed	in	a	crack	propagating	throughout	the	vertebra,	in	an	approximately	caudal-cranial	

direction.	
	

	
Fig	5:	Internal	strain	distribution	(Axial,	Antero-Posterior	and	Lateral-Lateral	strain)	and	
corresponding	microdamage	progression	under	compression	load	for	specimen	T2.	Sagittal	

micro-CT	views	taken	at	5%,	10%	and	15%	compression	steps	are	shown	on	the	left	(the	antero	
(A)	and	posterior	(P)	direction	are	also	indicated).	The	crushed	zone	of	specimen	is	visible	in	the	
10%	and	15%	compression	steps.	Strain	maps	in	sagittal	section	are	overlapped	to	the	micro-CT	

images.	The	most	strained	region	corresponded	to	the	damaged	area,	which	gradually	
progressed	in	a	crack	propagating	throughout	the	vertebra,	in	an	approximately	transverse	

plane.			
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In	general,	for	all	specimens	the	increase	of	strain	was	larger	from	10%	to	15%	
compression,	than	from	5%	to	10%	compression,	both	for	the	axial	component	
of	 strain	 (compressive),	 and	 the	 antero-posterior	 and	 lateral-lateral	 ones	
(tensile).	 	For	 all	 specimens,	 the	 strain	 distribution	 in	 the	 elastic	 regime	 (first	
step	of	loading,	5%)	showed	a	non-uniform	strain	distribution,	which	seemed	to	
predict	 the	 location	 of	 damage	 initiation	 before	 it	 actually	 became	 identifiable	
(Fig.	 3-5).	 	The	progression	of	 strain	 (axial,	 antero-posterior	 and	 lateral-lateral	
components	of	strain)	during	compression	for	the	three	specimens	 is	shown	in	
Figure	 6	 in	 terms	 of	 average	 strain	 at	 each	 cross-section.	 	 Specimen	 T1	
experienced	 the	 highest	 axial	 compressive	 strain	 (-75689	microstrain,	 average	
over	 the	 most	 strained	 cross-section),	 followed	 by	 specimen	 T3	 (-42005	
microstrain)	 and	 specimen	 T2	 (-32859	 microstrain).	 For	 the	 antero-posterior	
component	 of	 strain,	 the	 most	 strained	 regions	 experienced	 a	 strain	 between	
6161	and	7940	microstrain	(average	over	the	most	strained	cross-section),	in	all	
specimens.	For	the	lateral-lateral	component	of	strain,	the	most	strained	regions	
experienced	a	strain	between	3430	and	9013	microstrain	(average	over	the	most	
strained	 cross-section),	 in	 all	 specimens.	 The	 strain	 pattern	 along	 the	 caudal-
cranial	 direction	 was	 similar	 for	 specimens	 T1	 and	 T2,	 with	 the	 largest	
deformation	localized	in	correspondence	of	the	first	quarter	caudal.	In	specimen	
T3	the	highest	axial	strain	magnitudes	were	found	where	the	cortical	shell	was	
mostly	 curved	 (first	 quarter	 cranial);	 the	 largest	 antero-posterior	 and	 lateral-
lateral	 strains	 were	 observed	 in	 correspondence	 of	 the	 cranial	 and	 caudal	
endplates.	The	cranial-posterior	portion	of	 this	specimen	was	 in	a	compressive	
state,	with	the	largest	strain	(-5327	microstrain)	at	15%	loading	step.	
	

 
Fig	6:	Comparison	of	the	average	strains	obtained	from	DVC	analysis	along	the	caudal-cranial	
direction.	The	average	strains	were	computed	for	each	transverse	slice	of	the	3D	strain	map	in	

the	Axial,	Antero-Posterior	and	Lateral-Lateral	directions.	The	average	strains	are	plotted	for	5%,	
10%	and	15%	steps	in	each	specimen.	In	general,	an	incremental	strain	pattern	among	the	

consecutive	compression	steps	is	observed.		
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4 Discussion 

The	first	aim	of	this	paper	was	to	evaluate	the	internal	strain	distribution	(axial,	
antero-posterior	and	 lateral-lateral	 components	of	 strain)	 from	DVC	 in	porcine	
vertebral	body,	under	applied	compressive	load.	A	deeper	understanding	of	the	
internal	 elastic	 full-field	 strain	 distribution	 was	 achieved.	 In	 fact,	 despite	 a	
number	 of	 studies	 used	DVC	 to	 investigate	 the	 vertebral	 global	 fracture	 under	
compression	(Hardisty	et	al.,	2012;	Hussein	et	al.,	2012;	Hussein	et	al.,	2013),	the	
elastic	 strain	 distribution	 is	 still	 unexplored.	 The	 results	 clearly	 showed	 how	
local	 strain	 built	 up	 from	 the	 elastic	 regime,	 and	 highlighted	 those	 internal	
weaker	regions	 that	could	result	 in	microdamage	 initiation	and	progression	up	
to	 vertebral	 failure	 (Fig.	 3-5).	 When	 a	 compression	 of	 5%	 was	 applied,	 all	
specimens	experienced	levels	of	 internal	tensile	and	compressive	strains	above	
or	 close	 to	 the	 typical	 values	 of	 bone	 tissue	 failure	 (i.e.	 7000	 microstrain	 for	
tensile	 and	 -10000	 microstrain	 for	 compression	 as	 reported	 in	 (Cristofolini,	
2015)).	 For	 two	 specimens	 (T1	 and	 T2)	 rather	 regular	 strain	 maps	 were	
identified	for	each	component	of	strain,	and	for	the	steps	of	applied	compression.		
Conversely,	 the	 third	 specimen	 (T3)	 exhibited	 a	 more	 irregular	 strain	
distribution,	 possibly	 associated	with	 the	 superimposition	 of	 compression	 and	
some	degree	of	bending.	
The	 benefit	 of	 using	DVC	 compared	 to	 surface	 strain	measurement	 techniques	
(i.e.	strain	gauges	or	DIC)	is	particularly	evident	in	specimen	T1.	In	fact,	surface	
strain	measurement	 in	 the	5%	compression	 step	 (load	of	1115	N)	would	have	
only	 provided	 information	 on	 the	 strain	 distribution	 on	 the	 cortical	 shell	 that	
was	mostly	 below	 the	 yield	 values	 for	 bone	 in	 both	 compression	 and	 tension	
(Fig.	3	and	6).	Particularly,	strains	of	the	order	of	500	to	1500	microstrain	were	
found	 in	 the	cortical	 shell	of	vertebral	bodies	using	strain	gauges	 for	a	1470	N	
compressive	load	(Shah	et	al.,	1978)	and	average	compressive	and	tensile	strains	
(minimum	 and	maximum	 principal	 strains)	 from	 DIC	were	 found	 to	 be	 -2587	
microstrain	 and	 678	 microstrain	 for	 a	 compressive	 load	 equal	 to	 2050	 N	
(Gustafson	 et	 al.,	 2016).	 These	 values	would	 have	 therefore	 obscured	 the	 real	
nature	of	internal	strain	distribution	and	made	impossible	to	predict	where	the	
damage	in	the	vertebral	body	would	initiate.	In	this	context	the	ability	of	DVC	in	
identifying	 internal	 strain	 represents	 an	 invaluable	 resource	 despite	 its	 higher	
strain	precision	errors	at	organ	level	(few	hundreds	microstrain)	(Palanca	et	al.,	
2016b;	Tozzi	et	al.,	2017),	when	compared	to	DIC	(few	tens	and	up	to	hundred	
microstrain)	(Grassi	and	Isaksson,	2015;	Palanca	et	al.,	2015a)	or	strain	gauges	
(few	microstrain)	(Gustafson	et	al.,	2016).		
Another	 important	 advantage	 of	 DVC	 relies	 in	 its	 ability	 to	 quantify	 internal	
microdamage	 in	 the	 bone	microstructures.	 The	 use	 of	 micro-CT	 image-guided	
failure	 assessment	 (Nazarian	and	Müller,	 2004;	Tozzi	 et	 al.,	 2012)	has	 allowed	
three-dimensional	 analysis	 of	 microdamage	 in	 bone	 tissue,	 allowing	 the	
assessment	of	damage	onset	and	progression	under	load.	In	trabecular	bone	the	
microdamage	is	mainly	characterised	by	bending	and	buckling	of	the	trabeculae	
at	different	locations	(Tozzi	et	al.,	2013;	Tozzi	et	al.,	2012).	The	use	of	a	specific	
script	 allowed	 a	 successful	 coupling	 of	 a	 qualitative	 microdamage	 inspection	
(from	micro-CT	images)	to	quantitative	information	about	the	strain	fields	(from	
DVC),	 throughout	 the	 entire	 volume	 of	 the	 specimens	 (Tozzi	 et	 al.,	 2014).	
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Interestingly,	 the	 use	 of	 DVC	 in	 vertebral	 mechanics	 rarely	 focused	 on	 the	
coupling	of	microdamage	with	strain	distribution	in	the	failure	region.	When	this	
was	 done,	 it	 mainly	 involved	 the	 axial	 strain	 (Hardisty	 et	 al.,	 2012),	 which	 is	
surely	 important	 in	 a	 compression	 loading	 but	 provides	 only	 incomplete	
physiological	 information.	 Conversely,	 when	 the	 main	 physiological	 directions	
(axial,	 antero-posterior	 and	 lateral-lateral	 components	 of	 strain)	 were	
considered,	 the	 microdamage	 development	 associated	 to	 that	 specific	 strain	
condition	was	not	analyzed	(Hussein	et	al.,	2012;	Hussein	et	al.,	2013).	Moreover,	
only	scattered	information	on	the	average	strains	at	the	different	levels	along	the	
vertebral	body	are	reported	(Hussein	et	al.,	2013).	Hussein	et	al.	[25]	presented	
an	 average	 compressive	 strain	 (minimum	 principal	 strain)	 in	 six	 vertebral	
bodies	 at	 three	 locations;	 namely	 superior	 (−44000	 ±	 53000	 microstrain),	
central	 (−49000	 ±	 76000	 microstrain)	 and	 inferior	 (−50000	 ±	 65000	
microstrain)	 regions.	 However,	 no	 details	 on	 the	 single	 vertebral	 bodies	were	
reported	 and,	 as	 indicated	 by	 the	 large	 scatter	 in	 the	 results,	 a	 number	 of	
different	damage	patterns	are	to	be	expected.	Our	findings	are	in	agreement	with	
the	results	from	Hussein	et	al.	(Hussein	et	al.,	2013)	where	the	most	 important	
compressive	 strains	 were	 found	 in	 caudal	 direction	 (or	 inferior)	 for	 both	
specimen	 T1	 (-75689	 microstrain)	 and	 specimen	 T2	 (-32859	 microstrain).	
Dissimilarly,	the	third	specimen	(T3)	experienced	highest	compressive	strains	(-
42005	 microstrain)	 in	 the	 cranial	 region,	 confirming	 the	 high	 standard	
deviations	reported	by	(Hussein	et	al.,	2013).			
The	current	study	has	two	main	 limitations.	Firstly,	 the	use	of	 three	specimens	
could	 not	 provide	 enough	 statistical	 power	 to	 identify	 consistent	 trends.	
However,	this	sample	was	sufficient	to	demonstrate	the	feasibility	of	measuring	
internal	strain	in	the	elastic	regime,	to	correlate	such	elastic	strain	with	the	final	
failure	 mechanism	 and	 to	 understand	 the	 basic	 strain	 distribution	 associated	
with	microdamage	in	vertebral	bodies.	A	second	limitation	relates	to	the	use	of	
animal	 vertebrae	 (which	 are	 certainly	 different	 from	 the	 human	 ones	
(Cristofolini	 et	 al.,	 2013)).	 This	 choice	 was	 driven	 by	 easier	 tissue	 availability	
compared	to	human,	and	by	the	possibility	of	fitting	the	entire	vertebral	body	in	
the	micro-CT	scanner	and	its	loading	device.	Additionally,	animal	tissue	was	also	
used	in	similar	studies	(Hardisty	et	al.,	2012;	Hardisty	and	Whyne,	2009;	Hussein	
et	 al.,	 2013)	 and	 fully	 justified	 for	 explorative	 in	 vitro	 testing	 of	 vertebrae	
(Brandolini	et	al.,	2014).	
	
	
	
5 Conclusions 

In	 this	 paper	 building	 up	 of	 internal	 full-field	 strain	 from	 DVC	 in	 the	 elastic	
regime	and	progression	up	 to	 failure	was	measured	 in	vertebral	bodies	 loaded	
under	 step-wise	 compression	 loading.	 Regions	 of	 internal	 microdamage	 were	
successfully	 matched	 with	 the	 distribution	 of	 strains,	 where	 axial,	 antero-
posterior	and	lateral-lateral	strains	were	monitored	for	all	specimens	at	all	levels	
of	compression.	The	results	obtained	in	this	study	clearly	showed	how	different	
vertebral	 bodies	 might	 be	 subjected	 to	 different	 damage/strain	 distribution.	
Thus,	 consequent	 microdamage	 can	 develop	 and	 progress	 in	 different	 ways	
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towards	the	final	failure	of	the	vertebra.	Interestingly,	DVC-computed	strains	in	
the	 elastic	 regime	 had	 the	 ability	 to	 predict	 high-strain	 concentration	 and	
therefore	damage	before	 failure	 actually	occurred.	This	has	 the	potential	 to	be	
implemented	 in	 clinical	 CT	 assessment	 of	 vertebrae,	 given	 controlled	 loading	
conditions	during	imaging.		
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