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1. BACKGROUND 
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1.1 Acute Lymphoblastic Leukemia 

Acute lymphoblastic leukemia (ALL) is a malignant disorder that originates in a single B- 

or T-lymphocyte progenitor. Proliferation and accumulation of leukaemic cells result in the 

suppression of normal haematopoiesis and involves various extramedullary sites, especially 

the liver, spleen, lymphnodes, thymus, meninges and gonads. The disease is most common 

in children, but can occur in any age group. A vastly improved understanding of ALL 

pathophysiology has emerged from two decades of progress in defining the lineage-related 

development, antigen expression and genetic abnormalities of leukaemic cells, and in 

elucidating the multistep mechanisms by which changes in the function of specific genes 

disrupt key signalling pathways, which ultimately lead to leukaemic transformation. 

 

1.1.1 Epidemiology 

ALL is the most frequently diagnosed childhood acute leukemia, constituting 25% of 

childhood malignancies. It represents only 20% of adult acute leukemias. The incidence is 

4–5 per 100,000 population between the ages of 2–4, which decreases during later 

childhood, adolescence, and young adulthood before a second, smaller peak occurs in 

patients older than 50 years (incidence 1 per 100,000 population). Among children, white 

children are affected more frequently than African-American children. There is little 

difference in incidence rates by gender among children, but in older age groups, ALL is 

more predominant in males.  

1.1.2 Clinical presentation 

Symptoms of ALL at onset are primarily produced by the detrimental effects of the 

expanding cell population on bone marrow, and secondarily by infiltration of other organs 

and by metabolic disturbances 1,2. Bone marrow is usually infiltrated with >90% blast cells. 

Infiltration with less than 50% blasts represents only 4% of cases. The classical triad of 
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symptoms related to bone marrow failure is the following: fatigue and increasing 

intolerance to physical exercise (caused by anaemia), easy bruising and bleeding from 

mucosal surfaces and skin (caused by thrombocytopenia especially when platelets are <20 × 

109 l−1), and fever with infections (40% of all cases, caused by absolute granulocytopenia). 

Headache and cranial or other nerve palsy are related to meningeal or extradural nerve 

involvement, which occurs in 5–10% of cases at presentation, being most prevalent in B-

ALL and T-ALL. Enlargement of superficial lymph nodes, liver and spleen each occur in 

approximately one-half of cases; mediastinal lymph nodes are enlarged in the majority of T-

ALL and can cause cardiorespiratory problems. The involvement of other organs at a 

clinically detectable level is consistently below 5%: kidney, skin, eye, retina, lungs, pleura, 

heart, pericardium, testis, ovary, abdominal or retroperitoneal lymph nodes can be affected. 

Hyperleukocytic leukaemias with >100.000 blast cells rarely lead to the leukostasis 

syndrome and catastrophic early bleeding 3. 

1.1.3 Diagnostic study 

Diagnostics is based on bone marrow aspirate, morphological analysis, immunophenotyping 

and cytogenetic study. 

1.1.3.1 Morphological classification 

Morphology is the main criterion for primary diagnosis of ALL and differentiation from 

AML 4. The diagnosis of acute lymphoblastic leukaemia (ALL) can be established when the 

bone marrow examination reveals a lymphoid blast cell content in excess of 20% of total 

cellularity. Three major morphological subtypes, according to the French–American–British 

(FAB) committee criteria can be distinguished5: 

• L1/small lymphoid cells, homogeneous chromatin, no nucleoli, scanty cytoplasm, 

regular nuclei/25–30%; 
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• L2/large heterogeneous cells, lacy chromatin, irregular nuclear shape, nucleoli present, 

cytoplasm/65–70%: 

• L3/large homogeneous cells with finely stippled nuclear chromatin, prominent 

nucleolus, strongly basophilic and vacuolated cytoplasm/5–10%. 

The subclassification of groups L1 and L2 is of minor relevance since it has no prognostic 

implications. The new WHO classification scheme for both T- and B-lineage ALL no longer 

considers this distinction but does rather distinguish between precursor B or T 

lymphoblastic leukaemia6, with different immunophenotypes and cytogenetic 

characteristics. The subgroup L3 gives a hint of the presence of B-lineage ALL (B-ALL), 

but again this distinction is not absolute, since occasional B-ALLs display L1/L2 

morphology and, conversely, L3-like morphology can be seen in acute non-lymphocytic 

leukaemia.  

 

1.1.3.2 Immunophenotyping 

Immunophenotyping is an essential component of the diagnostic work-up of ALL and it can 

be used to subclassify cases according to the recognized stages of normal B- and T-cell 

maturation. Clinically, the only distinctions with therapeutic importance are those between 

T-cell and B-cell precursors (including the early pre-B, pre-B and transitional pre-B 

immunophenotypes) and between these cell types and mature B cells. Comprehensive 

immunophenotyping is also useful in immunological monitoring for minimal residual 

leukaemia and in immunotherapy. 

The antigen-expression profiles of leukaemic lymphoblasts parallels the normal stages of B- 

and T-cell differentiation and maturation. Roughly 75% of cases of adult ALL are of B-cell 

lineage. B-lineage markers are CD19, CD20, CD22, CD24, and CD79a. The earliest B-

lineage markers are CD19, CD22 (membrane and cytoplasm) and CD79a. A positive 
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reaction for any two of these three markers, without further differentiation markers, 

identifies pro-B ALL. The presence of CD10 antigen (CALLA) defines the “common” 

ALL. subgroup. Cases with additional identification of cytoplasmatic IgM (heavy chain of 

mu type only) constitute the pre-B group, whereas the presence of surface immunglobulin 

light chains defines mature B-ALL. T-cell ALL constitutes approximately 25% of all adult 

cases of ALL. T-cell markers are CD1a, CD2, CD3 (membrane and cytoplasm), CD4, CD5, 

CD7 and CD8. CD2, CD5 and CD7 antigens are the most immature T-cell markers, but 

none of them is absolutely lineage-specific, so that the unequivocal diagnosis of T-lineage 

ALL (T-ALL) rests on the demonstration of surface/cytoplasmic CD3 (Fig.1)7,8. ALL blasts 

coexpress myeloid markers in 15–50% of adults and in 5–35% of children9. The most 

frequently coexpressed myeloid markers are CD13 and CD3310. 

 

 

Figure 1. Schematic of B- and T-cell development. The hallmark of bone-marrow B-cell development 

is the ordered rearrangement of gene segments that encode the variable portion of the antibody molecule. 

Distinct gene-expression signatures are associated with leukaemic cell samples with recognized stages of 

thymocyte differentiation: LYL1+ corresponds to pre-T, HOX11+ corresponds to early cortical, and 

TAL1+ corresponds to late cortical. 
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1.1.3.3 Cytogenetic and molecular genetic abnormalities 

The cloning and characterization of recurrent chromosomal translocations has allowed the 

identification of genes critical for the leukemogenic process11 (Fig.2). Furthermore the 

presence of particular translocations often has prognostic importance and can be used to 

stratify patients into those who require more-intensive therapy. The use of gene expression 

analysis to characterize the differences in gene expression between leukemias with different 

chromosomal aberrations has solidified the notion that specific chromosomal abnormalities 

specify unique leukemias12,13. 

 

B-lineage ALL 

In children, 85% of ALL cases are of B-lineage origin, and about 80% of these can be 

further classified by cytogenetics and characteristic genetic translocations (Fig.2): 

• t(1;19)(q23;p13.3): it fuses the transactivation domain of the transcription factor E2A on 

chromosome 19, to the homeobox (HOX) gene PBX1 on chromosome 1. E2A contains a 

basic helix-loop-helix domain responsible for sequence specific DNA binding and 

dimerization, and plays a critical role in lymphocyte development. Given that 

E2Adeficient mice show significant defects in lymphoid development and the t(1;19) 

impairs one copy of the E2A locus, loss of E2A function may contribute to 

leukemogenesis in this subtype of ALL. Furthermore, given the clear role of HOX genes 

in leukemogenesis, and the ability of PBX1 to alter HOX gene dependent regulatory 

programs, dysregulation of PBX1 function likely contributes to leukemogenesis14. 

• t(4;11)(q21;q23): the rearrangement that involves MLL on chromosome 11 is the most 

common genetic abnormality in ALL cells in children younger than 1 year of age (85% 

of cases), and it is found in 3–8% of adults15. The AF4 gene on chromosome 4 is most 

often the fusion partner, but about 40 different partners have been shown to fuse with 

MLL. Any rearrangement of MLL is commonly considered a high-risk feature in ALL.  
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• t(8;14)(q24;q32) and its less common variants, t(8;22)(q24;q11) and t(2;8)(p12;q24), are 

characteristic of mature–B-cell ALL. All three translocations result in deregulation, 

increased transcription, and overexpression of c-MYC. In 80% of patients, 8q24 is 

juxtaposed to the IgH gene locus on 14q32, whereas the Ig lamba gene locus on 22q11 is 

involved in 15% of patients and the Ig kappa gene locus on 2p12 is involved in 5% of 

patients. Mature–B-cell ALL and Burkitt lymphoma typically are associated with 8q24 

rearrangements. 

• t(9;22)(q34;q11): translocation of parts of chromosomes 9 and 22 to create the BCR–

ABL fusion, also called the Philadelphia chromosome. This genetic abnormality occurs 

in about 3% of ALL cases in children and in approximately 33% of cases in adults. It is 

associated with an unfavourable prognosis. 

• t(12;21) (p13;q22): this translocation can be identified in up to 30% of children with 

ALL,making it the most frequent recurring cytogenetic molecular abnormality in 

pediatric ALL. It is rare in adults (i.e., it occurs in 1–3% of adults)16. The translocation 

involves TEL (ETV6), a transcription-regulating gene of the Ets family of transcription 

factors on 12p11, and AML1 on 21q22.94 The outcome of patients with a TEL-AML1 

fusion is favorable in children with pre-B ALL, independent of age or leukocyte count at 

presentation. Its prognostic significance is undetermined in adults. Microarray-based 

gene expression studies have shown that TEL-AML1–rearranged ALLs represent a 

unique biologic subset of B-precursor ALL13. 

• Hyperdiploidy: this is defined as ALL cells with more than 50 chromosomes. 

Hyperdiploidy is a relatively favourable prognostic feature and is found in about 25% of 

all cases of paediatric ALL. Mutations in the receptor tyrosine kinase FLT3 were 

identified in approximately 20% of hyperdiploid ALL17. 
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T-lineage ALL 

Basic helix-loop-helix domain (bHLH), HOX, and other developmental genes. 

Transcription factor genes are the preferred targets of chromosomal translocations in the 

acute T-cell leukemias. Notable examples include the bHLH genes MYC18, TAL1(SCL)19, 

and LYL120, which are essential for the development of other lineages such as erythroid 

cells (TAL1), but with the exception of MYC, they are not normally expressed in T-

lymphoid cells. When rearranged near enhancers within the TCRβ-chain locus on 

chromosome 7, band q34, or the α/δ-chain locus on chromosome 14, band q11, these 

regulatory genes become active, and their protein products bind inappropriately to the 

promoter or enhancer elements of downstream target genes. 

In addition to genes encoding bHLH proteins, additional classes of regulatory genes are 

rearranged near TCR loci, including those encoding the proteins LMO1 (formerly known as 

RBTN1 or TTG1) and LMO2 (formerly known as RBTN2 or TTG2) within the cysteine-

rich LIM family21. Both LMO1 and LMO2 possess zinc-finger–like structures in their LIM 

domains but lack the DNA-binding domains common to other transcription factors in this 

family, suggesting that the LIM domain functions in protein-protein rather than protein-

DNA interactions. The t(11;14)(p15;q11) and t(11;14)(p13;q11) are thought to affect similar 

T-cell developmental pathways by inducing ectopic expression of either LMO1 or LMO2. 

HOX11, HOX11L2, and also major HOX genes complete the list of developmental genes 

that are inappropriately placed under the control of TCR loci. Located on chromosome 10, 

band q2422, HOX11 encodes a homeodomain transcription factor that can bind DNA and 

transactivate specific target genes. Activation of HOX11 expression by chromosomal 

translocations, either the t(10;14)(q24;q11) or the t(7;10)(q35;q24), in developing T cells 

must interfere with normal regulatory cascades to promote malignant transformation. 

Interestingly, HOX11 expression by T-ALL blasts is associated with a favorable prognosis 

in children treated with modern intensive therapy, possibly because these leukemias have a 
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gene expression signature reflecting an arrest at the early cortical thymocyte stage with 

downregulation of anti-apoptotic proteins such as BCL2 and BCLXL23. In addition, the 

HOX11L2 gene, located at chromosome 5 band q35, has been found to be activated by 

translocation near the BCL11B locus as a result of the t(5;14)(q35;q32), or by fusion to the 

TCRδ locus as a result of the t(5;14)(q35;q11). More recently, a new recurrent translocation 

has been recognized that targets and dysregulates expression from the whole HOXA 

cluster24. Thus, this translocation mimics the global HOXA gene dysregulation 

characteristic of T-ALLs with MLL gene fusions. 

 

Fusion genes in T-ALL.  

Although most chromosomal translocations in T-ALL patients lead to inappropriate 

activation of structurally intact cellular proto-oncogenes such as MYC, TAL1, HOX11 or 

LMO2, some can produce fusion genes. MLL-ENL fusion results from the translocation 

t(11;19)(q23;p13), and is associated with acute myeloid leukemia, B-cell precursor ALL, 

and T-ALL. Strikingly, in one series, all 11 T-ALL patients with the MLL-ENL fusion 

became long-term survivors, suggesting that this rearrangement is associated with a good 

prognosis25. CALM-AF10 fusions were identified in 12 (9%) of 131 consecutive patients 

with T-ALL. Of note, all of the patients with CALM-AF10 fusions had either immature T-

cell lymphoblasts that expressed no TCR genes or γ/δ-positive lymphoblasts. None of the 

patients with CALM-AF10 fusions expressed TCR α/β, suggesting that such fusions are 

restricted to the TCR δ lineage26. 

 

NOTCH1 gene mutations in T-ALL.  

Very rare cases of T-ALL harbor chromosomal translocations that produce a truncated and 

activated form of NOTCH1, a gene that normally encodes a transmembrane receptor, that is 

involved in the regulation of normal T-cell development and may other tissues during 
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embryologic development. NOTCH-1 had previously been shown to be truncated and 

activated by a rare t(7;9) in T-cell ALL. Specific mutations in sequences encoding both the 

heterodimerization and PEST domains of NOTCH1 were identified in over 50% of primary 

patient T-cell ALL samples27-30. 

 

 

 

  

 

 
Figure 2. Cytogenetic and molecular genetic abnormalities of childhood and adult acute 

lymphoblastic leukaemia (ALL). Data for childhood (a) and adult (b) acute lymphoblastic leukaemia. 

The genetic lesions that are exclusively observed in T-cell acute lymphoblastic leukaemia are illustrated 

in beige colour, and all other genetic subtypes are either exclusively or primarily observed in B-lineage 

ALL. 
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1.2 Molecular basis of the Philadelphia chromosome translocation 

The Philadelphia (Ph) chromosome is observed in 95% of adult chronic myeloid leukaemia 

(CML), 15–20% of adult ALL, 3–5% of childhood ALL and very rarely in acute myeloid 

leukaemia31,32. It was the first specific genetic lesion identified in a human cancer and was 

subsequently shown to be t(9;22). The translocation creates a fusion of human homologue 

of the Abelson Murine leukaemia virus ABL on 9q34 with breakpoint cluster region BCR 

on 22q11. Immunophenotyping is pre-B (CD19+, CD10+), often asociated to the expression 

of myeloid markers (CD13+, CD33+).  

 

1.2.1. Structure and functions of the Bcr and Abl proteins 

The BCR and ABL genes are expressed ubiquitously.  

Bcr is a 160-kd cytoplasmic protein with several functional domains. The N-terminal 426 

amino acids of Bcr, encoded by the first exon, are retained in all Bcr-Abl fusion protein 

isoforms. This region contains a serine-threonine kinase domain, whose only known 

substrates are Bcr and Bap-1 (a member of the 14-3-3 family of proteins), and two 

serine/threonine–rich regions that bind Src homology (SH)2 domains. The proximal SH2-

binding domain is essential for transformation of rat fibroblasts by Bcr-Abl33. The two key 

motifs of the first BCR exon are tyrosine 177 and the coiled-coil domain contained in amino 

acids 1 to 63. Phosphorylated tyrosine 177 forms a binding site for Grb-2 (an adapter 

molecule that links Bcr to the Ras pathway) and is required for the induction of myeloid 

leukemia 34. The coiled-coil is crucial for dimerization of Bcr-Abl35, which in turn is 

required for activation of Abl kinase activity and oncogenicity of Bcr-Abl. Bcr regions of 

exon 1 are not essential to oncogenicity but influence the specific phenotype of the 

leukaemia (Fig.3).  

The ABL  gene, the human homolog of v-abl (the oncogene of the Abelson murine leukemia 

virus), codes for a 145-kd nonreceptor tyrosine kinase. Two isoforms exist that differ in the 
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first exon (1a and 1b). Only Abl type 1b protein contains a myristoylation site and, 

therefore, can be anchored to the plasma membrane. Three domains located toward the N-

terminus of Abl are named after their homology to the respective domains in Src, the 

prototype non-receptor tyrosine kinase. The SH1 domain carries the tyrosine kinase 

function, the SH2 domain binds phosphotyrosine-containing consensus sites, and the SH3 

domain binds to proline-rich consensus sequences in proteins like Crk 36 and Crkl 37.Abl 

differs from Src in having a long (~90-kd) C-terminal region that contains actin-and DNA-

binding domains35, three nuclear localization signals, and one nuclear export signal. Another 

unique feature of Abl is the N-terminal ‘‘Cap’’ region that is critical to the regulation of 

kinase activity. Abl is expressed predominantly in the nucleus38 but shuttles between 

nucleus and cytoplasm. The functions of the Abl protein are complex and include cell cycle 

inhibition, cellular responses to genotoxic stress39, and signal transduction from growth 

factor receptors and from integrins40 (Fig.3). 

 

 

 

Figure 3. Schematic representation of the ABL (a) and BCR (b) proteins. There are several important 

domains that make up ABL and BCR proteins. 
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1.2.2. BCR-ABL fusion gene 

 

Breakpoints in ABL 

Breakpoints within the ABL gene can occur anywhere within a 50 segment that extends for 

over 300 kilobases (kb)41. Typically, breakpoints form within intronic sequences, most 

frequently between the two alternative first exons of ABL. Thus, BCR-ABL fusion genes 

may contain both exons 1b and 1a, exon 1a alone, or neither of the alternative first exons. 

BCR-ABL mRNA lacks exon 1, regardless of the structure of the fusion gene, with the 

transcript consisting of BCR exons fused directly to ABL exon a2. 

 

Breakpoints in BCR 

The breakpoints within the BCR gene on chromosome 22 are found within three defined 

regions. In 95% of patients with Chronic Myeloid Leukemia (CML) and approximately one 

third of patients with ALL, the BCR gene is truncated within a 5.8-kb region known as the 

major breakpoint cluster region. This region contains five exons, originally named b1 to b5, 

but now referred to as e12 to e16, according to their true positions in the gene. Most 

breakpoints form within introns immediately downstream of exon 13 (b2) or exon 14 (b3). 

Because processing of BCR-ABL mRNA results in the joining of BCR exons to ABL exon 

a2, hybrid transcripts are produced that have an e13a2 (b2a2) or an e14a2 (b3a2) junction. 

In both cases, the mRNA consists of an 8.5-kb sequence that encodes a 210-kd fusion 

protein, p210Bcr-Abl (Fig. 4). In two-thirds of patients with Ph-positive ALL and in rare 

cases of CML and acute myelogenous leukemia, the breakpoint in BCR occurs in a region 

upstream of the major breakpoint cluster region known as the minor breakpoint cluster 

region. This region consists of the 54.4-kb intron between the two alternative second exons 

of the BCR gene, e20 and e2. BCR-ABL fusion genes that have breakpoints within the 

minor breakpoint cluster region contain both BCR alternative first exons (e1 and e10) 
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together with the alternative second exon (e20). The hybrid mRNA consists of sequences 

that are approximately 7 kb in length in which exon e1 from BCR is joined to exon a2 of 

ABL. The translated product is a 190-kd fusion protein, p190Bcr-Abl (also referred to as 

p185Bcr-Abl). Interestingly, transcripts with an e1a2 junction are detectable at very low 

levels in patients with a major breakpoint cluster region rearrangement. The third defined 

breakpoint cluster region within the BCR gene was named ‘‘micro’’ breakpoint cluster 

region 42. In this case, the breaks occur within a 30 segment of the BCR gene between exons 

e19 and e20 (known as c3 and c4 in the original nomenclature) (Fig. 4). Transcription of the 

hybrid gene yields an e19a2 BCRABL fusion transcript that encodes a 230-k protein, 

p230Bcr-Abl. 

 

 

 

 

 

 

   

 

 

Figure 4. Three BCR-ABL variants and association of leukemia types. (A) Locations of the breakpoints in 

the ABL and BCR genes and (B) structure of the chimeric BCR-ABL mRNA transcripts derived from the 

various breaks. (C) Functional domains of P210 BCR-ABL. 
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1.2.3. Mechanisms of BCR-ABL-mediated leukaemogenesis 

Tyrosine kinase enzymatic activity is central to cellular signaling and growth, and 

constitutively elevated kinase activity has been associated with transformation in several 

systems. The Abl protein is a non-receptor tyrosine kinase whose enzymatic activity is 

under close physiologic control43. In contrast, Bcr-Abl proteins are constitutively active 

tyrosine kinases. The degree of transforming activity of Bcr-Abl correlates with the degree 

of tyrosine kinase activity. p190Bcr-Abl, which has higher tyrosine kinase activity, is 

therefore associated with the development of the more aggressive acute leukemia 

phenotype, while p210Bcr-Abl plays a role in the more indolent chronic leukemia 

phenotype.  

 

1.2.3.1 Altered cellular adhesion 

In normal hematopoiesis, progenitor cells adhere to the stromal cells of the bone marrow 

and their associated extracellular matrix. The latter contains proteins such as fibronectin that 

function as adhesive ligands for receptors expressed on the surface of hematopoietic 

progenitor cells. Current thinking holds that the process of adhesion is essential for the 

regulation of hematopoiesis, providing a means of anchoring progenitors within the vicinity 

of cytokine-secreting cells 44, exposing them to specific signals that determine their fate. Ph-

positive progenitors exhibit reduced adhesion to stromal cells and the extracellular matrix45, 

which ‘‘liberates’’ them from the regulatory signals that are supplied to normal, adherent 

hematopoietic progenitors. It also may explain why their homing to the bone marrow is 

disturbed, leading to the appearance of immature cells in the peripheral blood. There is 

evidence that the function of β integrins on the surface of CML progenitor cells is perturbed, 

the net effect being reduced adhesion and increased proliferation44. In addition, migration, in 

response to certain chemokines such as MIP-1a, is abnormally high46. 

 



 20 

1.2.3.2 Activation of mitogenic signaling pathways  

Bcr-Abl is known to activate several signaling pathways with mitogenic potential 47. It is 

important to remember that in many cases, the available data comes from experiments in 

BCR-ABL–positive cell lines, and activation of some of these pathways in primary CML 

cells has yet to be verified. 

 

Ras and the mitogen-activated protein kinase pathways 

Bcr-Abl binds directly to proteins that activate Ras48. Autophosphorylation of tyrosine 177 

generates a binding site for the adapter molecule Grb-233. Grb- 2 associates with the Sos 

protein, which stimulates the conversion of the inactive GDP-bound form of Ras to the 

active GTP-bound state48. Ras also may be activated by two other adapter molecules, Shc 

and CrkL, which are substrates of Bcr-Abl49. Although CrkL appears to be necessary for the 

transformation of fibroblasts by Bcr-Abl, direct binding of Crkl to Bcr-Abl is not required 

for the transformation of myeloid cells. Activated Ras binds to the serinethreonine kinase 

Raf-1, recruiting it to the plasma membrane where it is activated by tyrosine 

phosphorylation and initiates a signaling cascade by way of the mitogen-activated protein 

kinase (MAPK) pathway. Grb-2 also recruits the scaffolding adapter Gab2, which then is 

phosphorylated by Bcr-Abl, resulting in activation of phosphatidylinositol 3 (PI-3) 

kinase/Akt and Ras/Erk50. Bcr-Abl activates different types of mitogen-activated protein 

kinases, including extracellular signal–related kinases (ERK)-1/2 and JNK or stress-

activated protein kinase. Ultimately, these pathways regulate gene transcription.  

 

Janus kinase–signal transducer and activator of transcription pathway.  

Phosphorylation of members of the signal transducer and activator of transcription (STAT) 

family of transcription factors has been reported in BCRABL–positive cell lines51 [104] and 

in primary CML cells. Physiologically, STATs are phosphorylated by Janus kinases (Jak) 
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that are downstream of growth factor receptors. In contrast, phosphorylation of STAT5 in 

Bcr-Abl–expressing myeloid cells appears to be mediated by the Src family kinase, Hck, 

which binds the SH2 and SH3 domains of Bcr-Abl52. There is evidence that activation of 

STAT5 by p210Bcr-Abl contributes to malignant transformation of K562 cells53 and 

inhibits apoptosis by up-regulating the transcription of Bcl-xL54. STAT5, however, is not 

required for leukemia induction by Bcr-Abl in mice, casting doubt on its relevance in a 

more physiologic context. Interestingly, p190Bcr-Abl differs from p210Bcr-Abl in that it 

also is able to activate STAT6. It remains to be seen whether the predominantly 

lymphoblastic phenotype associated with p190Bcr-Abl is related to this property of the 

shorter form of the oncoprotein. 

 

Phosphatidylinositol 3 kinase pathway.  

Proliferation of BCR-ABL–positive cell lines and primary cells is dependent on PI-3 kinase. 

Bcr-Abl apparently activates this pathway by forming a multimeric complex with PI-3 

kinase, p120Cbl, and the adaptor molecules Crk and CrkL. In BCR-ABL–expressing cells, 

activated PI-3 kinase stimulates the serine-threonine kinase Akt55, which in turn 

phosphorylates the forkhead transcription factor, FKHRL1. The net result of activating this 

pathway appears to be the proteasome-mediated degradation of the key cell cycle inhibitor 

p27Kip1, although the precise intermediates are unknown. Activated Akt may function in an 

antiapoptotic capacity. A key substrate of Akt is the proapoptotic protein or ‘‘death 

agonist’’ Bad. Bad promotes cell death by binding to and thereby inactivating the 

antiapoptotic Bcl-2 and Bcl-xL. Thus, phosphorylation of Bad by Akt may prevent it from 

binding to these proteins, resulting in reduced apoptosis. Indeed, increased Bad 

phosphorylation was seen in BCR-ABL–positive cells; however, even with Bad completely 

dephosphorylated, a fraction of cells survived, indicating the existence of Bad-independent 

survival pathways. 
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Myc pathway.  

Myc is classed as a proto-oncogene because it is overexpressed in many human 

malignancies. As a transcription factor and immediate early response gene, Myc converts 

mitogenic signals to alterations of gene expression. Not surprisingly, Myc targets include 

genes related to cell cycle and apoptosis. Within Bcr-Abl, the SH2 domain56 and the C-

terminus are required for full activation of Myc. It recently has been shown that Jak2 is 

involved in Myc induction by Bcr-Abl, apparently by way of induction of Myc mRNA and 

by stabilization of the protein.  

  

1.2.3.3 Inhibition of apoptosis 

Apoptosis caused by growth factor withdrawal is eliminated when factor dependent cell 

lines are transfected with exogenous BCR-ABL. The mechanisms by which Bcr-Abl 

inhibits apoptosis in cell lines are not well understood. The release of cytochrome C from 

mitochondria, a prerequisite for caspase-3 activation, apparently is blocked in BCR-ABL–

expressing cell lines. Members of the Bcl-2 family of proteins may be involved in mediating 

the antiapoptotic effect of Bcr-Abl. Up-regulation of Bcl-2 by Bcr-Abl has been 

demonstrated in two different cellular contexts: one dependent on the Ras pathway and the 

other on the PI-3 kinase pathway. Bcl-2 targets Raf-1 to mitochondria where it inactivates 

the proapoptotic protein Bad by phosphorylating it on serine residues57. Down-regulation of 

interferon consensus sequence binding protein (ICSBP) by Bcr-Abl also has been implicated 

as an important antiapoptotic event; conversely, ICSBP antagonizes Bcr-Abl by decreasing 

Bcl-2 expression. Another regulator of apoptosis targeted by Bcr-Abl is Bcl-xL, the 

expression of which is dependent of STAT5 activation. Surprisingly, a recent report has 

demonstrated that Bcr-Abl can actively induce apoptosis when trapped in the nucleus58. 

Treatment of human and murine Bcr-Abl–positive cell lines with imatinib stimulated entry 

of the oncoprotein into the nucleus.  
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1.2.3.4 Proteasomal degradation 

It recently was reported that Bcr-Abl tyrosine kinase activity induced the proteasome-

mediated degradation of the Abl-interactor proteins Abi-1 and Abi-257. Bcr-Abl was found 

to cause down-regulation of the DNA repair protein DNA-PKcs in cell lines. Loss of DNA-

PKcs activity was correlated with impaired DNA repair and may facilitate the acquisition of 

additional genetic lesions that lead to disease progression. Another important degradation 

target is the cell p27, a crucial inhibitor of progression from the G1 to the S phase of the cell 

cycle. Furthermore, Bcr-Abl can stabilize the expression of Mdm2, a protein that targets the 

tumor suppressor p53 for ubiquitination, which also would promote genomic instability59.
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Figure 5. Leukaemogenic signalling of BCR–ABL. The BCR–ABL proteins can form dimers or 

tetramers through their CC domains, and trans-autophosphorylate (indicated by up and down arrows 

between protein structures). Phosphorylation at the Y177 residue generates a high-affinity binding site for 

growth factor receptor-bound protein 2 (GRB2). GRB2 binds to BCR–ABL through its SH2 domain and 

binds to SOS and GRB2-associated binding protein 2 (GAB2) through its SH3 domains. SOS in turn 

activates RAS. Following phosphorylation (P) by BCR–ABL, GAB2 recruits phosphatidylinositol 3-

kinase (PI3K) and SHP2 proteins. The SH2 domain of ABL can bind SHC, which, following 

phosphorylation can also recruit GRB2. The ABL SH3 domain and the SH3 binding sites in the carboxy-

terminal region can bind several proteins that involve regulations of cell adhesion/migration. Interferon 

consensus sequence binding protein (ICSBP), also known as interferon regulatory factor 8, negatively 

regulates proliferation and survival of myeloid cells by inducing differentiation of monocytic cells. JUNB 

inhibits cell proliferation and survival, partly by antagonizing the RAS downstream target JUN. SIPA1 

(signal-induced proliferation-associated gene-1) is a RAP1 GAP that keeps RAP1 inactive. BCR–ABL 

can promote cell proliferation and survival partly by activating the RAS, SHP2 and PI3K–AKT 

signalling pathways. It can also downregulate transcription of ICSBP and JUNB, and might also inhibit 

SIPA1. Red arrows indicate direct interactions and/or activations. Black arrows indicate negative 

regulations. Broken arrows indicate multiple steps. ABD, actin-binding domain; CC, coiled-coil; DBD, 

DNA-binding domain; DH, Dbl/CDC24 guanine-nuleotide exchange factor homology; NES, nuclear 

exporting signal; NLS, nuclear localization signal; PP, proline-rich SH3 binding site; S/T-K, 

serine/threonine kinase; Y-K, tyrosine kinase. 
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1.3 The BCR-ABL1 Kinase Bypasses Selection for the Expression of a Pre–B Cell 

Receptor in Pre–B Acute Lymphoblastic Leukemia Cells 

B-cell differentiation in adult bone marrow is a highly regulated process that requires a 

stepwise expression of particular cell surface markers and the sequential rearrangement of 

the genes encoding for the immunoglobulin light (IgL) chains. The transient expression on 

developing B-cell precursors of a functional pre-B cell receptor (pre-BCR) is the first 

checkpoint in B-cell development at the pro-B/pre-B transition stage. Signalling through the 

pre-BCR is required for allelic exclusion at the Ig heavy locus, down-regulation of the 

recombination machinery, cell proliferation, and differentiation to small post-mitotic pre-B 

cells that further undergo the rearrangement of the IgL chain genes. Structurally the pre-B-

cell receptor is composed of Ig heavy (IgH) and surrogate light chains (SLC), which 

associate with the signaling molecules Igα and Igβ (Igα/β). In contrast to a conventional IgL 

chain in BCR, the SL chain is a heterodimer composed of two invariant polypeptides: an Ig 

V-like sequence called VpreB and an Ig C-like sequence called λ5 (Fig. 6). A critical 

component in the pre–B cell receptor signalling cascade is the adaptor molecule SLP65, 

which links SYK to downstream effector pathways, including PLCγ2 BTK, and VAV. 

Although somatic SLP65 deficiency is a frequent aberration in pre–B acute lymphoblastic 

leukaemia (ALL) in humans, SLP65-/- mutant mice exhibit a differentiation block at the 

pre–B cell stage, and also show autonomous proliferation, ongoing rearrangement of IgH V 

region genes, and development of leukaemia.  

Comparing the gene expression pattern in BCR-ABL positive pre–B ALL and normal uman 

pre–B cells, many genes conferring B cell lineage commitment and signal 

transductionthrough the pre–B cell receptor were transcriptionally silenced in the leukemic 

cells (Fig 7). Loss of pre–B cell receptor–related molecules in the pre–B ALL cells involves 

nuclear transcription factors OBF1, PAX5, E2A, OCT2, EBF, and IRF4, cytoplasmic 

kinases and linker molecules (LYN, BLK, BTK, BRAG, SLP65, SYK, BAP37, IgαBP1, 
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BRDG1, PLCγ2, VAV1-3, HPK1, LCK, FYN, BAM32, AKT, SHC1, SAP, p62DOK, 

CIN85, NIK, and IKK), and membrane-associated receptor molecules (CD19, IGHµ, 

VpreB, Igα, and Igβ). Conversely, transcription factors related to primitive hematopoiesis, 

including AML1 and GATA1, are upregulated in the leukemia cells as compared with their 

normal counterpart. Also, signaling molecules related to NF-κB, JAK-STAT, GAB2, and 

GRB2 pathways are expressed in the leukemia cells at similar or higher levels than in pre–B 

cells. However, NF-κB activation and GAB2/GRB2 phosphorylation, together with 

expression of JAK and STAT proteins, reflect oncogenic BCR-ABL1 kinase activity or 

requirements for transformation by BCR-ABL1 rather than pre–B cell receptor signaling in 

the leukemia cells. These findings suggest that BCR-ABL1 expressing human pre-B ALL 

cells do not express a functional pre-B cell receptor in most of the cases. This is in striking 

contrast with selection processes during early B cell development, which impose the 

expression of a pre-B cell receptor. Presumably, the survival signals originating from the 

BCR-ABL1 kinase enable the pre-B ALL cells to bypass selection for the expression of a 

functionally rearranged Ig-µ heavy chain60.  

 

Figure 6. Role of SLP65 through the B-cell 

receptor. B-cell-receptor (BCR) activation results 

in the sequential activation of protein tyrosine 

kinases, which results in the formation of a 

signalling complex and activation of downstream 

pathways as shown. 
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Figure 7. Expression of pre–B cell receptor–related molecules in BCR-ABL+ pre–B ALL cells (ALL, 

cases II and IX). 
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1.3.1. Defective splicing of SLP-65 transcripts 

BCR-ABL1 kinase activity is linked to the expression of a truncated isoform of SH2 

domain-containing leukocyte adaptor protein (SLP-65, also named BLNK or BASH), which 

may contribute to the compromised pre-BCR signaling. SLP-65 is the key effector for 

signaling downstream of the B-cell antigen receptor (BCR), it controls not only B 

lymphopoiesis and humoral immunity but also possesses a yet poorly defined tumor 

suppressor activity. Inhibition of BCR-ABL1 kinase activity by the specific inhibitor STI-

571 (Imatinib mesylate, Gleevec) reconstituted selection of pre-B ALL cells expressing the 

pre-BCR, corrected the expression of SLP-65, and restored the capacity of the surviving 

cells to differentiate into IgM+ immature B cells60. Interestingly, defective SLP-65 

expression may potentially cause the initiation of the secondary, mostly nonproductive Ig 

VH replacements, which would be consistent with the finding that interruption of basal IgM 

signaling in immature B cells, e.g., with the tyrosine kinase inhibitor herbimycin A or the 

PI3K inhibitor wortmannin, led to a strong induction of RAG expression. Analysis of a 

panel of childhood pre-B ALL samples revealed that 16 out of 34 had either complete loss 

or drastic reduction of SLP-65 expression. No genomic mutations in the SLP-65 locus were 

present, but SLP-65 transcripts contained alternative exons that introduced premature stop 

codons. 

 

1.3.2 Truncated Btk splice variants 

Btk signaling is not only critical for the induction of proliferation of pre-B cells, but also for 

cell survival, as it induces Bcl-xL expression and inhibits the pro-apoptotic effects of Fas 

ligation in mature B cells. Btk activation is initiated by transphosphorylation at position 

Y551 by Lyn or Syk kinase, which promotes the catalytic activity of Btk and subsequently 

results in its autophosphorylation at position Y223 in the SH3 domain61. BCR-ABL induces 

aberrant splicing of Btk, resulting in the presence of Btk-p52 (lack of exon 15, loss of 
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reading frame) and Btk-p62 (in frame deletions of exons 15 and 16) isoforms. Although c-

Abl can phosphorylate Btk at position Y223 in the SH3 domain, BCRABL+ is unable to 

physically interact with full-length Btk. However, in BCR-ABL+ pre-B-ALL, the BCR-

ABL1 fusion protein utilizes the expression of the truncated splice variant Btk-p52 as a 

linker molecule to constitutively phosphorylate full-length Btk and Btk-p52 at Y223 (Fig. 

8). In this complex, full length Btk and Btk-p52 can bind to each other as a result of stable 

intermolecular interactions between the praline rich region within the Tec domain of one 

molecule and the SH3 domain of a second molecule. As a result, activated Btk provides 

signals that otherwise would be transmitted by the pre-BCR, such as activation of PLCγ1 

and induction of Bcl-xL. Activation of Btk and PLCγ1 is independent of SLP-65 expression, 

which is defective in BCR-ABL+ ALL. The presence of BCR-ABL, full-length Btk, Btk-

p52, and PLCγ1 is also required for autonomous Ca2+ oscillations in these ALL cells, as 

well as for phosphorylation and nuclear translocation of Stat5, which was previously shown 

to be a direct substrate of Btk. 

 

 

Figure 8. Model for BCR-ABL1-dependent activation of Btk in ALL.  Truncated Btk-p52 acts as a 

linker, enabling BCR-ABL1 to phosphorylate full length Btk at position Y223 in the SH3 domain, which 

initiates the indicated downstream survival signals. Full length and Btk-p52 interact through association 

of proline-rich regions in the Tec-homology domain and the SH3 domain. PH: pleckstrin-homology 

domain, SH2,3: Src-homology domain-2 and -3; NLS: nuclear localization signal; DNA: DNA-binding 

domain; ActinBD: actin binding domain.  
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1.4 The role of the Ikaros gene in lymphocyte development and pre-B Ph+ ALL  

Human leukaemia has been shown to be heterogeneous for the pattern of spliced isoforms of 

Ikaros (Ik1, Lyf-1, ZNFN1A1) proteins which are critical for the development of 

lymphocytes and other haematopoietic lineages62,63. 

 

1.4.1 Expression in the Hemo-Lymphoid Lineages 

Ikaros is abundantly expressed in the day-8 yolk sac, the first site of extra-embryonic 

hemopoiesis. Subsequently, its mRNA is detected in the day-9.5 fetal liver primordium, a 

subsequent site of hemopoiesis in the embryo proper. At these sites, Ikaros is expressed in 

hemopoietic progenitors and in erythroid and myeloid precursors long before the appearance 

of fetal lymphocytes. Ikaros is expressed in the fetal thymus from the beginning of its 

colonization by hemopoietic progenitors that generate the fetal T lineages. High levels of 

Ikaros mRNA are detected in maturing thymocytes in the fetal as well as in the adult organ. 

It is also expressed in mature T and B lymphocytes and natural killer cells. Within 

hemopoietic progenitors, Ikaros is expressed in the Sca-1C/c-kitC population that is highly 

enriched for the pluripotent hematopoietic stem cells (HSC). It is equally expressed in 

multipotent progenitors with a strong erythro-myeloid (Sca-1−/c-kitC) and lymphoid (Sca-

1C/ckitC/Sca-2C) potential. Although it is also expressed in erythroid and myeloid 

precursors, it is turned off in most of their terminally differentiated products. The highly 

restricted and complex pattern of Ikaros expression in embryonic, fetal, and adult 

hemopoietic sites qualifies this gene as a potential regulator of cell fate in the fetal and adult 

hemopoietic systems (Fig. 9). 
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Figure 9. An Ikaros-centered view of hematopoiesis. Ikaros is important for the development of 

lymphoid at the expense of myeloid lineages starting in the LMPP. In the absence of Ikaros, an LMPP-

mediated pathway of granulocyte macrophage progenitor development predominates. In addition, Ikaros 

is important for specification of the GMP at the expense of MEP in the CMP and for the development of 

erythrocyte progenitors at the expense of megakaryocyte progenitors from the MEP. The star indicates an 

alternative developmental pathway for GMPs. 



 32 

1.4.2 Functionally Distinct Zinc Finger Domains Play a Pivotal Role in Ikaros Activity 

Ikaros gene is comprised of eight exons, seven of which (2-8) are encoding64. By means of 

alternative splicing of exon 4-7, at least eight different isoforms were encoded (Fig. 10). All 

isoforms containing two C-terminal zinc fingers which mediate functionally indispensable 

protein-protein interactions between Ikaros family members whereas they differ in the 

number of N-terminal zinc finger motifs which dictate sequence specificity and DNA 

affinity. Only the isoforms with at least three out of four of the N-terminal zinc fingers are 

capable of binding to sites that contain the GGGA 8 base pair core motif. Therefore, the 

presence of functionally distinct combinations of zinc fingers in the Ikaros gene modulates 

the DNA binding potential of its protein products and, consequently, their effects in 

transcription. The formation of homo- and heterodimers among the DNA-binding isoforms 

increases their affinity for DNA, whereas the dominant-negative isoforms can dimerize with 

DNA-binding isoforms of Ikaros or with other members of Ikaros family such as Aiolos65,66 

and Helios 67, preventing the DNA binding of the formed dimer.  

When bound to DNA through their cognate recognition sites, Ikaros protein complexes 

stimulate basal levels of transcription by means of a bipartite activation domain adjacent to 

the C-terminal zinc fingers and common to all of the Ikaros proteins. The Ikaros activation 

domain is comprised of two functionally distinct stretches of amino acids that are, 

respectively, acidic and hydrophobic in nature. The stretch of acidic amino acids activates 

transcription when tethered to a heterologous DNA binding domain, whereas the 

hydrophobic residues do not. These two subdomains, when put together, form a strong 

activation module. The role of the hydrophobic region may be to stabilize interactions that 

take place between the acidic amino acids and members of the basal transcription 

machinery, possibly by providing additional interaction interfaces. Such protein interactions 

between the two distinct components of the Ikaros activation domain may involve the same 

or distinct members of the holoenzyme complex. Alternatively, the hydrophobic amino 
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acids may control accessibility of the acidic region by influencing local protein structure. 

Interestingly, when the full-length Ikaros protein is tethered to a heterologous DNA binding 

domain, it displays a significantly weaker activation potential compared to its isolated 

bipartite activation module.  

 

1.4.3 Phosphorylation Controls Ikaros’s Ability To Negatively Regulate the G1-S 

Transition 

Ikaros impedes the G1-S transition by modulating expression of genes that function as 

positive or negative effectors of the cell cycle (i.e., have a negative effect on cyclins and/or 

a positive effect on cell cycle inhibitors p27, p21, etc.). Ikaros may affect expression of 

some of these genes directly by binding to their transcriptional regulatory regions. In 

support of this model, mutations in the Ikaros DNA binding domain alleviate its ability to 

control the cell cycle. Under physiological conditions, Ikaros DNA binding activity is 

temporarily downmodulated through CKIIdependent phosphorylation of its C-terminal 

region that facilitates the G1-S transition. Mutations in Ikaros that abolish p1 

phosphorylation eliminate this type of regulation on Ikaros DNA binding and block cells in 

G1. During the G1-S transition, Ikaros becomes phosphorylated in exon 8, an event that 

reduces its activity as a negative regulator of the G1-S transition and its DNA binding. In 

the M phase, Ikaros becomes phosphorylated at the zinc finger linker regions, which further 

reduces its DNA binding to possibly exclude it from mitotic chromosomes. The G1-S 

transition is a critical checkpoint in cell cycle regulation. The expression and activity of 

proteins involved in this transition are tightly regulated, and a failure to do so frequently 

results in cellular apoptosis or neoplastic transformation. Ikaros modifications may allow 

only lymphocytes that have received appropriate levels of signaling to enter the replicative 

phase of the cell cycle68.  
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1.4.4 Ikaros has a dualistic role 

The molecular function of Ikaros appears to be dualistic depending on whether it acts as a 

transcriptional activator or potentiator that enhances the activity of the promoter, or as a 

suppressor. For the latter, Ikaros associates with the nucleosome remodeling and 

deacetylation complex and has been considered as a factor to convert genes from active to 

inactive state. In support of this, Ikaros binds to its consensus sites in the regulatory 

elements of TdT and λ5 genes in vitro, and is important for the down-regulation of their 

activity in lymphocytes69,70. Ikaros recruitment to specific promoters causes the localized 

hypo-acetylation of core histones and repression; these effects are mediated through Ikaros 

association with histone deacetylases (HDACs) which have been proposed to interfere with 

the communication between activators, TBP and the PolII holoenzyme complex by exerting 

local changes in chromatin. A significant fraction of Ikaros protein is also associated with a 

Brg-1-based SWI/SNF complex implicated in mediating chromatin accessibility. The 

functional participation of Ikaros proteins in histone deacetylase complexes may provide a 

molecular mechanism to explain the development of lymphoid tumors in Ikaros mutant 

mice and possibly acute lymphoblastic leukemia. Deregulated recruitment of histone 

deacetylases has been observed in several leukemias. Ikaros isoforms which cannot bind 

DNA can still interact with mSin3 and HDAC proteins. Increased expression of these Ikaros 

isoforms in ALLpatients and mutant mice may result in the titration of HDAC into non-

productive complexes which cannot participate in the normal molecular processes of 

transcription or replication. the lymphoid lineage-determining factors encoded by the Ikaros 

gene can repress basal transcription, through recruitment of histone 

deacetylases,whenbrought to promoters through heterologous DNA-binding factors. The 

difference in the ability of Ikaros to activate versus repress transcription appears to be 

determined by how it is recruited to a given promoter: when Ikaros binds DNA using its 
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own DNA binding-domain (DBD) it is able to activate transcription. However, when 

recruited via a heterologous DBD, Ikaros becomes a potent transcriptional repressor.  

 

1.4.5 Over-expression of dominant-negative Ikaros isoforms 

The fact that Ikaros functions as a critical regulator of normal lymphocyte development and 

the observation of rapid development of leukaemia in mice expressing non-DNA binding 

isoforms, prompted many studies to investigate whether normal Ikaros expression and 

function might be altered in human haematological malignancies. An excess of short Ikaros 

isoforms has been described in leukemic cells obtained from infant, children B and T acute 

lymphoblastic leukemias (ALLs)71-74, in de novo adult B ALL75, in cells from transformed 

chronic myeloid leukemias (CML)76 and from de novo acute myelomonocytic and 

monocytic leukemias77,78, demonstrating that aberrant regulation of splicing is a new 

mechanism of activation of an oncogene in ALL. 
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Figure 10. Schematic diagram of the full-lenght Ikaros cDNA and the different isoforms produced 

by alternative splicing; N-terminal zinc-fingers (F) show DNA-binding activity and C-terminal F 

mediate dimerization of the protein (Ex= exon). 
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1.5 Treatment of Ph-positive ALL 

Significant advances in the treatment of Philadelephia chromosome ALL have been made 

since the discovery of the selective ABL tyrosine kinase inhibitors (TKIs). Optimal use of 

these novel agents in the treatment schema of Ph+ ALL will be paramount in ensuring 

continued success in the eradication of this disease. 

 

1.5.1 Chemotherapy for Ph+ ALL in the Pre-Imatinib Era 

Historically, prior to the advent of tyrosine kinase inhibitors (TKIs), outcome after 

chemotherapy for Ph+ ALL was dismal. Although the complete remission (CR) rates with 

conventional and intensive ALL regimens ranged from 60% to 90%, long-term disease-free 

survival (DFS) rates were less than 20% in the absence of allogeneic stem cell 

transplantation (SCT)79. Median survival ranged from 8 to 16 months owing to relapse-

related mortality. Improved CR rates with the more intensive regimens did not translate into 

an increase in durability of response. The quality of the molecular response as measured by 

log reduction in the level of BCR-ABL transcripts after frontline chemotherapy correlated 

with outcome, even prior to the availability of TKIs. In a study using high-dose 

anthracycline chemotherapy, chemosensitive patients who achieved at least a 3-log 

reduction in BCR-ABL transcripts by quantitative real-time polymerase chain reaction (RT-

PCR) after consolidation chemotherapy had 2-year DFS and overall survival rates of 27% 

and 48%, respectively, not dissimilar from the outcomes observed after allogeneic SCT in 

first CR80. None of the patients who had less than a 3-log reduction in BCRABL transcripts 

were alive at 2 years.  

 

1.5.2 Allogeneic Stem Cell Transplantation for Ph+ ALL in the Pre-Imatinib Era 

Given the dismal outcome with chemotherapy alone, allogeneic stem cell transplantation 

(SCT) was established as the only potential curative modality. However, allogeneic SCT 
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was often feasible only in younger patients without significant comorbidities and for whom 

a suitable donor was identified prior to disease recurrence, limiting the applicability of this 

approach. Although the long-term survival rates improved to 27% to 65% after allogeneic 

SCT in first CR, relapse remained the primary cause of failure, with persistent detection of 

BCRABL by RT-PCR heralding eventual recurrence81-83. In a retrospective review of 197 

patients with Ph+ ALL who underwent allogeneic SCT, the 5-year survival rates were 34% 

for patients in first CR, 21% for those in second or subsequent CR, and 9% for those with 

active disease (P < .0001)84. 

 

1.5.3 Imatinib Mesylate in Previously Treated Ph+ ALL 

The phenylaminopyrimidine compound imatinib mesylate (Gleevec/Glivec/STI571; 

Novartis) was among the first selective protein kinase inhibitors developed for targeted 

cancer therapy, and is highly effective against several tyrosine kinases such as Abl, c-kit and 

the platelet-derived growth factor receptor (PDGFR)85. Imatinib binds to the inactive moiety 

of Bcr-Abl while partially blocking the ATP binding site, preventing a conformational 

switch to the activated form of the oncoprotein (Fig 4). The activity of single-agent imatinib 

was initially investigated in patients with relapsed or refractory Ph+ ALL. A phase 1 clinical 

trial of imatinib at doses of 300 to 1000 mg daily led to a 70% hematologic response rate 

with a 20% CR rate. A phase 2 trial of intermediate-dose imatinib yielded a CR rate of 29%. 

Disease recurrence was usually observed within a median of 2 months, and responses were 

durable only in a minority of patients. Relapse in the central nervous system (CNS) was not 

uncommon, as imatinib concentrations in the cerebrospinal fluid only reach 1% to 2% of 

detectable serum levels, emphasizing the need for concurrent CNS prophylaxis86.  
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1.5.4 Imatinib-Based Chemotherapy for de novo Ph+ ALL 

Although monotherapy with imatinib demonstrated modest activity in the setting of 

recurrent or refractory disease, durability of responses was suboptimal. Imatinib was thus 

incorporated into combination chemotherapy regimens typically used for de novo Ph+ ALL, 

either concurrently (simultaneous imatinib and chemotherapy) or sequentially (alternating 

imatinib with chemotherapy). The first report of a clinical trial of this nature included 20 

patients with de novo or minimally treated Ph+ ALL (no age restrictions)87; CR rate was 

96%, with a 2-year DFS rate of 85%. Lee et al88 also reported favorable outcomes after 

incorporating imatinib into a conventional L-asparaginase–based ALL regimen for newly 

diagnosed Ph+ ALL (up to age 67 years). In a subsequent report of outcome with imatinib-

based frontline chemotherapy, two sequential cohorts of patients with de novo Ph+ ALL 

were treated according to German Multi-Centre Acute Lymphoblastic Leukemia (GMALL) 

protocols89.  

 

1.5.5 Allogeneic Stem Cell Transplant in the Imatinib Era 

The role of allogeneic SCT for de novo Ph+ ALL in the imatinib era continues to be refined, 

with feasibility of this approach still limited by the availability of an appropriate donor, 

absence of significant comorbidities, and ability to sustain a complete remission. Several 

studies have reported an improvement in the rate of allogeneic SCT in first CR after 

imatinib-based therapy compared with the prior experience90,91. This success is in part 

related to (1) an increase in the proportion of sustained remissions, offering additional time 

for identification of a suitable donor, and to (2) an improvement in the quality of the 

remissions (e.g., lower levels of BCR-ABL transcripts after imatinib-based therapy), 

resulting in a lower pre transplantation tumor burden. Two of the early nonrandomized 

studies of imatinib-based chemotherapy for de novo Ph+ ALL applied allogeneic SCT in 

first CR as standard of care when feasible. Similar survival outcomes were observed with or 
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without allogeneic SCT, despite the selection biases favouring SCT. Post-allogeneic SCT 

maintenance strategies are also being explored, particularly as the detection of minimal 

residual disease (MRD) following SCT predicts imminent relapse in the absence of 

intervention. 
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1.6 Mechanisms of Resistance to Imatinib 

Although high rates of complete remissions have been observed with imatinib in Ph+ ALL, 

a short duration of response with eventual emergence of resistance has also been observed.  

There are two possible categories of imatinib resistance: BCR-ABL independent and BCR-

ABL dependent. In the first category, the leukemia cells no longer rely on BCR-ABL for 

their proliferative drive but grow as a consequence of the secondary oncogenic changes in 

these cells. Alternatively, something may change in either the patient or the leukemia clone 

that prevents the drug from effectively shutting down the target BCR-ABL enzyme. 

However, resistance to any particular drug is likely to be a multifactorial process. Imatinib 

is given orally and, like other oral medications, is therefore subject to variations in 

gastrointestinal absorption and first-pass metabolism, as well as: plasma-protein binding; 

cellular drug influx and drug efflux; enzymatic inactivation; changes in expression or 

mutations of the target molecule; defects in apoptosis, senescence, or repair mechanisms; 

and the development of alternative pathways of signal transduction.  

 

1.6.1 Point Mutations 

Bcr-Abl kinase domain mutations are at present the most extensively investigated and best 

characterized mechanism of resistance to imatinib, but nature of their origin is still not clear. 

They may emerge from drug-selection pressure or independently as a consequence of the 

genetic instability induced by BCR-ABL92,93. Mutation analysis has identified structural 

motifs that are critical for enzyme activity of Bcr-Abl, most importantly the adenosine 

triphosphate (ATP)–binding loop (p-loop) and the activation loop, a highly flexible structure 

that controls access of substrate and ATP to the catalytic site. Kinase activity is regulated by 

the phosphorylation of tyrosines within the activation loop. The crystal structure of the Abl 

KD in complex with an imatinib analogue and subsequently with imatinib itself was solved 

at high resolution (Fig. 11). Imatinib was found to penetrate deeply through the entire 
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catalytic cleft, burying a large surface area and engaging ≥ 19 amino acid residues in 

hydrogen bonds or van der Waals interactions. Unexpectedly, inhibitor binding was found 

to require a catalytically inactive kinase conformation with the activation loop in a “closed” 

position that precludes substrate binding. The aspartate of the DFG motif, which is highly 

conserved among kinases and binds the magnesium ion required to position the phosphate 

groups of ATP, was turned outward, preventing productive ATP binding. Therefore, rather 

than directly competing with ATP for binding to the active site, imatinib blocks kinase 

activity by stabilizing a unique inactive conformation of Abl. In contrast, imatinib cannot 

gain access to the activated conformation of Abl. More than 50 different point mutations 

encoding for distinct single amino acid substitutions in the BCR-ABL kinase domain have 

been identified in relapsed CML patients and Ph+ ALL. They were clustered in four 

regions: (1) the P-loop, a highly conserved region responsible for phosphate binding; (2) at 

315, a non-conserved residue that is in part responsible for the selective inhibition of Abl by 

Imatinib; (3) M351 and E355, (4) mutations of the activation loop, resulting in an activated 

conformation of Abl insensitive to Imatinib. Kinase domain mutations could confer imatinib 

resistance by more about 3 mechanisms. For one, mutations affecting contact residues could 

abolish critical hydrogen bonds or cause a steric clash in the case of bulky substitutions in 

spatially confined areas. The prototype of this mutation type is T315I; it not only eliminates 

the hydrogen bond between the nitrogen of the pyridinyl ring of imatinib and the threonine 

side chain but also occurs in the “gatekeeper” position where large side chains are not 

tolerated. The second type of mutation leads to changes in the structure that prevent the 

conformational adjustments required for optimal imatinib binding. It is thought that this 

mechanism underlies the resistance caused by mutations in the p-loop that prevent the 

induced fit required to accommodate the pyridine ring of imatinib. The third type of 

mutation involves residues that are more remote from the imatinib binding surface. It is 

believed that this mutation type confers resistance by shifting the equilibrium between the 
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inactive and active Abl conformation toward the active state, from which imatinib is 

sterically excluded. Mutations in the activation loop and other domains involved in 

autoregulation of the kinase are thought to operate through this mechanism94. 

 

                                       

 

Figure 11.. (A) Structure of Abl in its imatinib-sensitive, inactive conformation in complex with 

imatinib  (blue). In this conformation, the activation loop (magenta) occupies its closed position and does 

not interfere with imatinib binding. The distortion of the p-loop (yellow) relative to the active 

conformation might be induced by imatinib binding or might simply be a feature of the natural, 

autoinhibited state of the kinase. (B) Placement of imatinib into the ATP-binding site of Abl kinase in 

its active conformation, to which imatinib cannot bind. In this conformation, the phosphorylated 

activation loop (red) folds into the prospective imatinib-binding site and interferes with inhibitor binding.  

 
 
 
1.6.2 BCR-ABL gene amplification 

In a study by Mahon and co-workers95, overexpression of BCR-ABL was shown to be the 

most frequent cause of resistance identified in cell lines that were engineered to develop 

resistance. The fact that this finding is not more frequent in clinical practice is surprising. 

Amplification of BCR-ABL was first reported in three of 11 patients with acquired 

resistance, and in one individual it coexisted with the presence of a point mutation in the 

ABL-kinase domain. Several case reports have since described clinical resistance to 

A 
B 
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imatinib in association with BCRABL amplification or multiple copies of the Ph 

chromosome, or both. However, in a large study of 66 patients with primary or acquired 

resistance to imatinib, only two patients showed BCR-ABL genomic amplification96. The 

chance of gene amplification is likely to be related to genetic instability and is thought to 

occur at a rate of 10–4 per cell division, whereas point mutations occur much less frequently  

at 10–⁹ per cell division. In practice, however, clinical resistance is much more likely to be 

due to a point mutation than to BCR-ABL amplification. One explanation for this could be 

that overexpression of BCR-ABL might itself be harmful to the cell. Cell lines that 

overexpressed BCR-ABL were noted to have a sudden loss of viability and decreased 

proliferation when imatinib was withdrawn. Additionally, cell lines that expressed varying 

amounts of BCR-ABL were noted to have dose dependent differences in growth-factor 

dependence, clonogenicity, and migration. Cells with high expression of BCR-ABL were 

much less sensitive to imatinib and, more importantly, took a substantially shorter time to 

produce a mutant subclone resistant to the inhibitor than cells with low expression levels. 

 

1.6.3 Oral biovailability 

Early studies on the pharmacokinetics of imatinib showed considerable interpatient 

variability in imatinib concentrations97. Oral bioavailability is established by gastrointestinal 

absorption and first-pass drug metabolism in the liver. Imatinib is largely neutralised by the 

cytochrome p450 isoenzyme 4A (CYP3A4). Variability in CYP3A4 concentrations between 

individuals, together with the potential for drug interactions, might explain, in part, the 

variability in imatinib concentrations. Picard and co-workers98 assayed plasma imatinib 

trough concentrations in 68 patients who had been on treatment for at least 12 months and 

they confirmed wide variability. More importantly, mean trough concentrations were higher 

in patients with good responses (complete cytogenetic remission and major molecular 
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response) than in patients with less good outcomes, suggesting that drug concentrations 

should be measured in patients without optimum responses. 

 

1.6.4 Alterations in intracellular availability of imatinib 

In patients with wild-type Bcr-Abl other mechanisms of resistance have been suspected. It is 

now clear that blood and tissue concentrations of most drugs are influenced by inter-

individual variations in genes encoding drug metabolizing enzymes (DMEs) and drug 

transporters. Cytochrome P450 enzymes (CYPs) are thought to have evolved as a protective 

adaptive response against environmental toxic effects. Imatinib is metabolized mainly by 

CYP3A4 and CYP3A5 isoforms, and to a lesser extent by CYP1A2, CYP2D6, CYP2C1999. 

Some imatinib metabolites have been shown to be produced by CYP1A1 and CYP1B1. 

Picard and co-workers98 assayed plasma imatinib trough concentrations in 68 patients who 

had been on treatment for at least 12 months and they confirmed wide variability. More 

importantly, mean trough concentrations were higher in patients with good responses 

(complete cytogenetic remission and major molecular response) than in patients with less 

good outcomes, suggesting that drug concentrations should be measured in patients without 

optimum responses. 

Imatinib transport into cells has been shown to be mediated by hOCT1 (human Organic 

Cation Transporter, isoform 1)100, also known as SLC22A1 (Solute Carrier family 22, 

member 1). The OCT family mediates electrogenic and sodium-independent translocation of 

organic cations or weak bases, i.e., molecules with a transient or permanent positive net 

charge at physiological Ph, in both directions across the plasma membrane. The family 

comprises three members (hOCT1, hOCT2 and hOCT3 also known as EMT, Extraneural 

Monoamine Transporter) differing in tissue distribution and substrate specificity. Pre-

imatinib hOCT1 expression levels have been demonstrated to be significantly lower in 
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patients who remain >65% Philadelphia-chromosome positive by cytogenetics during the 

first 10 months of imatinib treatment.  

In contrast, imatinib efflux is thought to be mediated by ABC transporters ABCB1100,101 

(MDR1; P-glycoprotein) and ABCG2 (also known as also known as breast-cancer resistance 

protein, BCRP)102,103. Both ABCB1 and ABCG2 are expressed at the apical membrane of 

the small intestine and bile canalicular membranes, and gastrointestinal transport activity 

could affect oral drug bioavailability. Overexpression of the cell-surface transmembrane 

ATPase ABCB1 seemingly conferred insensitivity to many chemotherapeutic drugs by 

active (ie, energy-dependent) drug transport. The MDR-1 gene is commonly overexpressed 

in blast cells of patients in the advanced phase Ph+ leukemia. Mahon and colleagues104 

firstly reported the overexpression of ABCB1 as a possible mechanism for resistance to 

imatinib. They developed a resistant cell line, LAMA-84R, by gradual exposure to 

increasing concentrations of imatinib. Both BCR-ABL and ABCB1 were overexpressed 

compared with the sensitive parental cell line. The treatment with verapamil, a protein-

pump inhibitor, restored imatinib sensitivity. Overexpression of ABCB1 in resistant cell 

lines has now been confirmed by other groups105,106. The role of ABCB1 in clinical 

resistance remain also unclear. A study of 33 patients on imatinib showed that those who 

did not achieve at least major cytogenetic remission showed overexpression of ABCB1, as 

did those who developed disease progression106. By contrast, Mahon and colleagues104 were 

unable to identify ABCB1 overexpression in six patients in blast crisis after imatinib who 

did not have point mutations or BCR-ABL overexpression, although the addition of 

PSC833, an alternative pump inhibitor, increased the sensitivity of the primary cells, taken 

from these patients, to imatinib in a clonogenic assay. The relationship between imatinib 

and ABCG2 (BRCP), another efflux protein of the ATP binding cassette family, is, 

however, less clear, and the source of much controversy lately. At least 4 independent 

groups have investigated this issue, reaching somewhat different conclusions99,102. Thus, 



 47 

Houghton et al107 reported that imatinib is an inhibitor but not a substrate of ABCG2, 

whereas Burger et al99 concluded otherwise when demonstrating that ABCG2-

overexpressing cell lines are resistant to imatinib. Recently, Nakanishi et al108 showed that 

the interaction between ABCG2 and imatinib in BCR-ABL–expressing cells is in fact rather 

complex, with ABCG2-mediated resistance to imatinib being counteracted by the inhibitor’s 

capacity to down-modulate ABCG2 expression via the AKT-signaling pathway. Jordanides 

and colleagues suggested that imatinib is an inhibitor but not a substrate of ABCG2102. 

 

1.6.5 Overexpression of Src-family kinases 

Another resistance mechanism could be the compensation of loss of BCR-ABL signalling 

by other tyrosine kinase-mediated pathways. Src-family kinases such as Lyn are involved in 

BCR-ABL-mediated leukemogenesis and have been found to be up regulated in cultured 

CML cells selected for imatinib resistance; increased Lyn expression was also found to 

correlate with clinical evidence of imatinib resistance in some patients, which highlights the 

potential clinical relevance of this resistance mechanism. Hu et al. reported that the 

expression of BCR-ABL in progenitors that harbour a genetic triple src-kinase knockout for 

fgr, lyn, and hck generate a CML phenotype, whereas wild-type progenitors develop into 

Ph+ lymphatic blasts109. This provides compelling evidence that src kinases are critical in 

the molecular pathogenesis of Ph+ ALL. In line with this, subsequent work demonstrated 

that inhibition of the src kinase Lyn is per se sufficient to kill Ph+ primary Ph+ ALL blasts. 

Moreover, simultaneous src kinase and BCR-ABL inhibition appears to be more effective in 

killing of Ph+ cells. The reason for this may be that src-kinases contribute not only as 

downstream targets of BCR-ABL, but also independently to the survival of the malignant 

clone and are thus capable to drive imatinib resistance. Indeed, when patients with Ph+ ALL 

or lymphatic blast crisis of CML are treated with dasatinib (an Abl/Src dual kinase 

inhibitor) the complete cytogenetic responses are in the range of 46–54% 110 and tended to 



 48 

be higher than the frequency of responses seen with sole BCR-ABL inhibition using 

nilotinib in lymphatic blast crisis of CML in a phase I study (n = 1/9, 11%).The challenge 

for the future is to improve current clinical results with tyrosine kinase inhibitors in Ph+ 

leukemias, developing strategies that can eradicate residual disease and overcome or prevent 

resistance. 

 

1.6.6 Loss of the tumor suppressor p14Arf is involved in imatinib resistance in Ph+ ALL 

In Ph+ ALL pro B-cells have a self-renewing capacity. Recently, Williams and colleagues, 

have shown that loss of the tumor suppressor p14Arf is a cooperating event of BCR-ABL 

induced transformation in Ph+ ALL. The Arf tumor suppressor protects against the 

emergence of oncogene-induced cancers111. By antagonizing the p53-negative regulator 

Mdm2, the p19Arf protein induces a p53 transcriptional response that triggers either cell 

cycle arrest or apoptosis, thereby eliminating incipient tumor cells. Deletion or epigenetic 

silencing of Arf abrogates this form of tumor suppression and, not surprisingly, Arf 

inactivation is frequently observed in many forms of cancer112. Transduction of BCR-ABL 

into Arf-null pro-B-cells resulted in the evolution of a highly aggressive leukemia initiating 

cell population. Injection of very few BCR-ABL-transformed Arf−/− cells was sufficient to 

cause leukemia. In contrast, even large numbers of BCR-ABL transduced Arf+/+ pro-B-

cells were incapable of causing leukemia, again demonstrating how decisively cooperating 

genetic factors control the biology of BCR-ABL. BCR-ABL-transformed Arf-null 

leukemias were insensitive to imatinib in vivo because interleukin-7 (IL-7)-induced Jak-

Stat-5 signaling fully replaced BCR-ABL-dependence for growth and survival after 

inhibition with imatinib112. Deletion of the INK4A/ARF locus occurs in Ph+ ALL 

cases72,113,114; indeed, a recent survey of 21 pediatric and 22 adult cases has documented 

INK4A–ARF deletion in Ph+ ALL blasts taken from about 50% of patients at diagnosis. 
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This finding suggest that INK4A–ARF deletion might help leukemia-initiating cells survival 

and favour the emergence of drug resistant BCR-ABL variants (Fig. 12). 

 

 

 

 

 
 
 
Figure 12. Proposed stem cell model of kinase inhibitor resistance in Ph+ ALL. The BCR-ABL 

chromosomal translocation targets a lymphatic precursor population (here: CD34+/CD38−/aberrantly 

CD19+) that normally has no self-renewal potential. BCR-ABL therefore requires cooperating mutations 

that promote transformation as well the capacity to self-renew. Imatinib cannot eradicate this population, 

because of the BCR-ABL-independence of leukemic self-renewal. BCR-ABL point mutations are genetic 

hits that are frequently detected in this population as a reflection of the substantial genetic instability, that 

also led to the manifestation of the disease. Abbreviations—SC: stem cell, LMSC: lymphomyeloid stem 

cell, CMP: common myeloid progenitor, MP: megakaryocytic progenitor, EP: erythroid progenitor, lin: 

lineage.  
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1.7 Newer Tyrosine Kinase Inhibitors for Imatinib-Resistant Ph+ ALL  

The fact that imatinib resistance is usually associated with reactivation of Bcr-Abl signal 

transduction represents a therapeutic standpoint because there continues to be a uniform 

therapeutic target rather than a host of different escape mechanisms necessitating 

individualized therapeutic approaches. Options to restore Bcr-Abl inhibition in this situation 

include the design of Abl inhibitors that bind and inhibit ABL but are less affected by point 

mutations through their static conformation. Second-generation TKIs such as dasatinib 

(BMS-354825; SPRYCEL; Bristol-Myers Squibb, New York, NY) and nilotinib (AMN107, 

Novartis) are increasingly potent inhibitors of ABL. Several of the more recently developed 

multitargeted agents in ongoing clinical trials can also inhibit c-kit, PDGFR, FLT3, and 

other kinases with varying potency. 

 

Dasatinib is a dual Src/Abl inhibitor with 325-fold more in vitro, and 30- to 50-fold more in 

vivo potency than imatinib against wild-type Bcr-Abl; it also inhibits the ckit, PDGFR, and 

ephrin A receptor kinases. Unlike imatinib, it binds to both the inactive and active forms of 

the Bcr-Abl protein. Dasatinib has demonstrated in vitro efficacy against all imatinib-

resistant KD mutations tested, with the exception of T315I and F317L. In a phase I trial of 

dasatinib, a hematologic response rate of 80% was observed in 10 patients with imatinib-

resistant Ph+ ALL. In a phase 2 program with START (Src/Abl Tyrosine Kinase Inhibition 

Activity: Research Trials of Dasatinib) using single-agent dasatinib 70 mg twice daily in 36 

patients with imatinib-resistant Ph+ ALL, a CR rate of 33% was achieved. Responses were 

observed even with the presence of ABL KD mutations other than T3151. Based on the 

efficacy demonstrated in these and other trials, dasatinib was granted approval by the U.S. 

Food and Drug Administration for the treatment of all phases of CML and Ph+ ALL 

resistant or intolerant to imatinib. Adverse events associated with dasatinib were often 

amenable to dose modifications, and included myelosuppression, diarrhea and peripheral 
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edema. The unique toxicity of pleural effusions occurred in 5% to 20% of the patients, and 

has been attributed to dasatinib’s potent inhibition of PDGFR. Although these effusions are 

amenable to dose interruptions and corticosteroids, in some patients the effusions recur with 

rechallenge despite dose reductions110,115. 

 

Nilotinib  was developed by researchers at Novartis Pharmaceuticals using a rational drug 

design strategy based on the replacement of the metylpiperazinyl group of imatinib and 

optimization of drug-like properties. Like imatinib, nilotinib does not inhibit Src kinase and 

binds only to the inactive conformation of Bcr-Abl, with P-loop folding over the ATP-

binding site, and the activation-loop blocking the substrate binding site, to disrupt the ATP-

phosphate-binding site and inhibit the catalytic activity of the enzyme 116. Nilotinib inhibits 

the catalytic activity of Bcr-Abl and most imatinib-resistant Bcr-Abl variants with 20- to 50-

fold greater potency, compared with imatinib. The key exception is Bcr-AblT315I, which is 

cross resistant to nilotinib, imatinib, and dasatinib, as well as to dual combinations of these 

Abl kinase inhibitors. Several preclinical studies have established the bcr-abl mutations 

Y253H and E255V as the least nilotinib-resistant besides T315I, and the usefulness of 

nilotinib for treating patients with these p-loop mutations remains to be seen. Phase 1 and 2 

clinical trials of nilotinib in imatinib-resistant Ph+ ALL demonstrate hematologic responses 

in 30% to 35% of the patients. Dose-dependent adverse events included myelosuppression, 

transient indirect hyperbilirubinemia, pruritis, and rash117,118.  

 

Development of third- or fourth-generation novel TKIs which target specific ABL KD 

mutations is now the focus of developmental therapeutics. Several of these agents have dual 

activity against the Src/ABL kinases, and are currently being investigated in clinical trials 

(e.g., bosutinib or SKI-60661,62 and INNO-40663). Differential selectivity for the other 

tyrosine kinases besides ABL, or lack thereof, as in the case of bosutinib (which does not 
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inhibit c-kit or PDGFR) may improve clinical outcome simply by altering the safety profile. 

The multi-targeted agent MK-0457 (previously VX-680), an inhibitor of the Aurora, FLT3, 

JAK2 and ABL kinases, is a promising agent with preliminary clinical activity against the 

T315I mutation, as it does not require interaction with threonine 315 for efficient binding. 

Several other agents are in preclinical stages of development: (1) dual specific Abl and Src 

kinase inhibitors such as AZD0502 and AP23464; (2) the ABL, Src, and PDGFR inhibitor 

ON012380 with activity in T315I mutated cell lines; and (3) pyrimidine Src/Abl inhibitors 

such as PD166326. Combination TKI therapy may prove of interest for further study as in 

vitro data suggest that nilotinib and/or dual Src/Abl inhibitors such as dasatinib or AP23464 

further enhance the ability of imatinib to prevent autophosphorylation of wild-type Bcr-Abl. 
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2. AIMS  
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Pre-mRNA splicing is an important determinant of the protein repertoire in human cells but 

it is also a natural source of cancer-causing errors in gene expression and could contribute to 

the pathogenesis or resistance in leukemia. Human leukaemia has been shown to be 

heterogeneous for the pattern of spliced isoforms of Ikaros (Ik1, Lyf-1, ZNFN1A1) proteins 

which are critical for the development of lymphocytes and other haematopoietic 

lineages62,63. Mice that are heterozygous for a germline mutation which results in loss of 

critical DNA-binding zinc fingers of Ikaros develop a very aggressive form of 

lymphoblastic leukaemia, suggesting that Ikaros has an important leukaemia suppressor 

function119. Moreover, Ikaros has an important role in recruitment and centromere-

associated silencing of potentially leukemogenic growth-regulatory genes70. The human 

Ikaros gene contains eight exons64 that can, by alternative splicing, give rise to at least eight 

isoforms120,121. The isoforms differ in the number of N-terminal zinc finger motifs that bind 

DNA and contain the nuclear localization signals, resulting in members with and without 

DNA-binding properties. The fact that Ikaros functions as a critical regulator of normal 

lymphocyte development and the observation of rapid development of leukaemia in mice 

expressing non-DNA binding isoforms, prompted many studies to investigate whether 

normal Ikaros expression and function might be altered in human haematological 

malignancies. An excess of short Ikaros isoforms has been described in leukemic cells 

obtained from infant, children B and T acute lymphoblastic leukemias (ALLs)71-74, in de 

novo adult B ALL75, in cells from transformed chronic myeloid leukemias (CML)76 and 

from de novo acute myelomonocytic and monocytic leukemias77,78, demonstrating that 

aberrant regulation of splicing is a new mechanism of activation of an oncogene in ALL. In 

this study, we analyzed the differential expression pattern of Ikaros isoforms in Ph+ ALL 

patients treated with imatinib and dasatinib. Our aims were to: 

 

� determine whether the Ikaros gene undergoes alternative splicing in Ph+ ALL; 
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� investigate if there were a correlation between the different Ikaros isoforms 

produced by alternative splicing and the BCR-ABL transcript levels; 

� determine if molecular abnormalities involving the Ikaros gene could associate with 

the resistance to tyrosine kinase inhibitors (TKIs) in Ph+ ALL patients; 

� investigate which mechanisms determine alternative splicing in Ikaros gene. 

 

The latter point is particularly important because defects in pre-mRNA splicing can result 

from cis-acting mutations which can affect the use of constitutive splice sites (loss of gene 

expression due to aberrant splicing) or alternative splice sites (force expression of one of the 

alternative splicing patterns) or from trans-acting splicing mutations which can affect the 

function of the basal splicing machinery or factors that regulate alternative splicing. 

Mutations that affect the basal splicing machinery have the potential to affect splicing of all 

pre-mRNAs, whereas mutations that affect a regulator of alternative splicing will affect only 

the subset of pre-mRNAs that are targets of the regulator.  

To identify cis-acting mutations in genes in which we have previously demonstrated spliced 

oncogenic isoforms, we will perform a genome sequence analysis of splice junctions exon 

regions in search of mutations. Generations of any cryptic splice site for any nucleotide 

variation will be assessed applied the RESCUE (relative enhancer and silencer classification 

by unanimous enrichment) approach. 
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3. PATIENTS AND METHODS 
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3.1 Patients and cell lines 

Expression patterns of Ikaros isoforms were retrospectively studied in bone marrow and 

peripheral blood samples collected after informed consent from 46 adult patients with Ph-

positive acute lymphoblastic leukaemia (ALL): 16 patients were treated with imatinib, 30 

patients were treated with dasatinib both after imatinib failure (7 patients) and as front-line 

treatment (23 patients). The median age was 55 years (range, 18-76). Diagnosis of all ALL 

cases was made on the basis of morphologic, biochemical and immunologic features of the 

leukemic cells. In addition, the human lymphoblastoid SD-1, the human B cell precursor 

leukemia SUP-B15 and the human B-cell precursor leukaemia BV-173 cell lines were also 

included in the analysis. Human cell lines were obtained from DMSZ (DeutsheSammlung 

von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany) and maintained in 

culture following the DMSZ recommendations. The cells were incubated at 37 °C in a 

humidified atmosphere flushed with 5% CO2. Ph+ leukemic cells were treated with 10 

µmol/l Imatinib (Novartis), 1 µmol/l Nilotinib (Novartis) and 1 µmol/l Dasatinib (Bristol 

Myers Squibb) for 18 hours. 

 

3.2 RNA isolation and RT analysis  

Mononuclear cells were separated by Ficoll-Hypaque density gradient centrifugation and 

samples stored at -190°C in RPMI 1640 with 20% FBS and 10% dimethylsulfoxid or in 

GTC (guanidine thiocyanate) at -80°C, as needed. Total cellular RNA was extracted from 

cells using the RNeasy total RNAisolation kit (Qiagen, Valencia, CA) according to the 

instructions of the manufacturer, and 1µg of the total RNA sample was used for cDNA 

synthesis with Moloney murine leukemia virus reverse transcriptase kit (Invitrogen, San 

Diego, CA) in the presence of 1mM dNTPs (Roche) and 5µM Random Hexamers (Perkin 

Elmer).  

 



 58 

3.3 Ikaros transcript analysis  

In order to set up a screening for Ikaros transcript variants, cDNA was amplified with two 

pairs of oligonucleotides, the forward primer of each couple conjugated with a fluorescent 

dye (fluorescein, excitation occurs at 494 nm and emission at 521) at its 5’ end yielding 

amplicons A, B (Table 1). Polymerase chain reaction (PCR) was performed using 1 unit of 

AmpliTaq Gold DNA polymerase and a final concentration of 1.5 mM MgCl2, on a 

BIOMETRA Tpersonal thermal cycler set for an initial denaturation at 95°C for 5 min, 25-

35 cycles with denaturation at 95°C for 30 s, annealing at 62°C for 30 s, extension at 72°C 

for 50 s, and a final cycle at 72°C for 10 min and at 60°C for 45 min to stabilize the 

fluorescence. 1µl of each amplicon was added to 9µl of Formaldehyde (Sigma-Aldrich) 

containing 0.2µl of GeneScan 500 (-250) LIZ size standard (Applied Biosystems) and 

loaded on the ABI Prism 3730 DNA Analyzer for automated capillary gel electrophoresis, 

and the results were plotted with the AbiPrism GeneMapper v3.5 software (Applied 

Biosystems). RNA integrity was confirmed by PCR amplification of the GAPDH mRNA, 

which is expressed ubiquitously in human hematopoietic cells.  

 

3.4 Cloning and Sequencing analyses 

Nucleotide sequences of all the observed amplicons were validated by repeating the PCRs 

with 5’-unmodified primers and cloning the products into pcR2.1-TOPO vectors using the 

TOPO TA Cloning Kit and related protocol (Invitrogen, San Diego, CA). TOP10F’ strain E. 

coli cells (Invitrogen, San Diego, CA) were employed as a host for transformation, and 

colonies containing the recombinant plasmids were screened by PCR with the primer pair 

for the appropriate amplicon and at the same conditions described previously. PCR product 

were purifed with QIAquick PCR purification kit (Qiagen, Hilden, Germany) and directly 

sequenced by using ABI PRISM 3730 automated DNA sequencer (Applied Biosystem, 
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Foster City, CA) and a Big Dye Terminator DNA sequencing kit (Applied Biosystem, 

Foster City, CA).  

 

3.5 Genomic analysis 

Genomic DNA was isolated using QIAamp DNA Blood Mini Kit (Qiagen). The genomic 

sequence surrounding the predominant splice donor and acceptor sites at the exon 2/3, exon 

3/4, exon 7/8 splice junctions from leukemic patient samples and cell lines were performed 

in search of mutations.  

To amplify the region surrounding the splice junction of Ikaros exons 2 and 3 we used for 

the 5’ splice site a primer sense from exon 2 (F1) and an anti-sense primer (R1) on intronic 

region, position +608 counting from the first base of the interesting intron. For the 3’ splice 

site we used a primer sense F2, position -703 to the end of the intron and a primer anti-sense 

R2 on exon 3. For the 3’ splice site of the exon3/4 junction we used F3 (-601) and R3 on 

exon 4. To amplify the region surrounding the splice junction of Ikaros exons 7 and 8 we 

used for the 5’ splice site a primer sense F4 on exon 7 and R4 (+ 563); The 3’ splice site was 

tested using the intronic primer F5 (-689) and R5 on exon 8. PCR was performed using 100 

ng of genomic DNA in a 50-µL reaction volume using 5 µL  cDNA, 5 µL Amplitaq Buffer 

II (Applied Biosystems, 10x), 5 µL Amplitaq MgCl2 (Applied Biosystems, 25mM), 1 µL 

dNTP Mix (Amersham Pharmacia, 2.5mM), 25 pmol of each primer, 0,5 µL of the 

AmpliTtaq GoldTM (Applied Byosystem 5U/µL) and distilled water. The long-range PCR 

cycling parameters were as follows: 95°C for 5 minutes (complete denaturation), which is 

followed by 30 cycles at 95°C for 30seconds, 61°C for 30 seconds, extension at 72°C for 70 

seconds, with an additional extension at the end of 7 minutes (for F1-R1 and F4-R4); 95°C 

for 5 minutes (complete denaturation), which is followed by 35 cycles at 95°C for 

30seconds, 57°C for 30 seconds, extension at 72°C for 80 seconds, with an additional 

extension at the end of 7 minutes (for F2-R2, F3-R3, F5-R5). Generations of any cryptic 
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splice site for any nucleotide variation was assessed applied the RESCUE13 (relative 

enhancer and silencer classification by unanimous enrichment) approach. RESCUE-

ESE122,123 (exonic splicing enhancer) approach was used to predict whether exonic 

mutations disrupt putative exon splicing enhancers (http://genes.mit.edu/burgelab/rescue-

ese/), whereas RESCUE-ISE13 (intronic splicing enhancer) was applied to predict which 

intronic motifs may enhance or repress exon splicing 

(http://genes.mit.edu/acescan2/index.html). RESCUE-ESE identifies ESEs in human 

genomic sequences by searching for hexanucleotides that satisfy the following two criteria: 

(i) they are significantly enriched in human exons relative to introns, and (ii) they are 

significantly more frequent in exons with weak (non-consensus) splice sites than in exons 

with strong (consensus) splice sites. RESCUE-ISE predicts as ISEs hexamers that share two 

properties: (i) significant enrichment in introns relative to exons and (ii) significant 

enrichment in introns with weak (non consensus) 5’ss or 3’ss relative to intron with strong 

splice sites.  

 

3.6 Western Blot analysis 

Cells were lysed with sample buffer (2%SDS in 125 mM Tris HCL, pH 6.8). Cell lysates 

were subjected to SDS-PAGE on 12% gels and then transferred to nitrocellulose membranes 

(Amersham Biosciences). The blots were incubated for 60 min in Odyssey blocking buffer 

before incubation overnight (4°C) with polyclonal anti-Ikaros antibody (Santa Cruz). 

Blotted proteins were detected and quantified using the Odyssey infrared imaging system 

LI-COR. 

 

3.7 Subcellular Localization Studies Using Confocal Laser Scanning Microscopy 

The subcellular localization of Ikaros protein(s) was examined by immunofluorescence and 

confocal laser scanning microscopy. Cytospins were prepared using SD-1 and BV-173 cell 
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lines and leukemic cell from patients with Ph+ ALL. Cytospins were fixed with 4% 

paraformaldeyde and permeabilized with 0,1% Triton X-100 for 3 minutes. Cells were 

blocked with a solution containing: 2% Fetal Calf Serum, 2% Bovine Serum Albumin, 0.2% 

Fish Skin Gelatin Solution, PBS 10X for 45 minutes at room temperature. Cells were then 

stained with a rabbit polyclonal antibody against Ikaros (Santa Cruz Biotechnology) for 2 

hrs at room temperature and washed 3 times with PBS for 3 minutes. The antibody-antigen 

complexes were detected by incubation for 30 minutes with a secondary goat anti rabbit 

Alexa Fluor 488 immunoglobulin G antibodies (1:1000, Molecular probes). Cells were 

washed in PBS for 5 minutes and treated with propidium iodide for 5 minutes to stain the 

nucleus. Cover slips were mounted with Mowiol and the cells were subsequently analyzed 

with Leica Gmbh fluorescence microscope using Qfluoro software (Leica Microsystem). 

Representative digital images were processed using the Photoshop Software (Adobe 

Systems). 

 

3.8 DNA-binding assay: EMSA (Electrophoretic mobility shift assay) 

The Ikaros consensus and mutant sequences (32P-labeled probe sense: 5’-

GTTTCTTCAGAGCCTGGGAAACAAGTC-3, containing a known high-affinity Ikaros-

binding site, underlined, and 32P-labeled probe antisense:5’-

ATTCTGACTTGTTTCCCAGGCTCGAA-3’) were obtained from Sigma Genosys and 

labeled with T4 polynucleotide kinase (LifeTechnologies, Gaithersburg, MD) and [32P]-

ATP (NEN, Boston, MA) and purified over aSephadex G25 (Pharmacia Biotech) column. 

40 µg of protein nuclear  extracts (obtained from IK2 and IK6 patients)  were incubated 

with 2 mg poly d(I-C) (Roche Molecular Biochemicals, Indianapolis, IN) and 10214 mol 

32P-labeled probe in 10 mM HEPES, 5 mM Tris, 50 mM KCl, 1.2 mM EDTA, and 10% 

(vol/vol) glycerol (pH7.8) for 30 minutes at room temperature. A 200-fold molar excess of 

unlabeled oligonucleotide (Ikaros consensus or mutant) was added for competition assays. 
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Protein/DNA complexes were resolved on 6% native polyacrylamide gels in 0.25 3 TBE (25 

mM Tris, 22.5 mM boric acid, and 0.25 mM EDTA). Gels were visualized by 

autoradiography using MS-BioMax film and intensifying screens (Kodak, Rochester, NY). 

 

3.9 Monitoring of BCR-ABL transcript levels 

BCR-ABL transcript levels were detected at diagnosis and during the follow-up by a 

standardized real time quantitative PCR (RQ-PCR) method that was established within the 

framework of the EU Concerted Action124. The method independently measures, in each 

sample by RQ-PCR, the copy number of mRNA encoding for the p210 BCR-ABL protein 

or the p190 BCR-ABL protein and for a control gene (ABL) to verify sample-to-sample 

RNA quality variations. RQ-PCR was performed on an ABI PRISM 7700 Sequence 

Detector (Perkin Elmer, Foster City, CA). The quantification principles and procedure using 

the TaqMan probe have been previously described.15 All real time RT-PCR experiments 

were performed in duplicate. The copy number of BCR-ABL and ABL transcripts was 

derived by the interpolation of threshold cycle (ct) values to the appropriate standard curve, 

and the result, for each sample, was expressed as a ratio of BCR-ABL mRNA copies to 

ABL mRNA copies per cent. The threshold was systematically set at 0.1 in order to avoid 

any particular problems of baseline creeping. The lowest level of detectability of the method 

is 0.001.  

 

3.10 Construction of pcDNA-Ik6 expression vector  

The complete Ik6 coding sequence was PCR amplified; PCR products were isolated from 

agarose gel, purified using a Spin Column Kit (Qiagen, Valencia, CA) and restricted with 

EcoRI and Xba. The restricted fragment was cloned into the pcDNA3.1 expression vector 

(Invitrogen Ltd, Paisley UK) treated with EcoRI and Xba. The recombinant plasmid 

carrying the Ik6 gene was transfected into Escherichia coli DH5-αstrain and growth in LB 
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(Luria Bertani) medium supplemented with ampicillin 100 µg/ml, over night at 37° C . 

Preparation of plasmid DNA was performed using the QiafilterTM Plasmid Maxi Kit 

(Qiagen) according to the manufacturer’s instructions. 

 

3.11 Transfection with pcDNA-Ik6 

For transfection, 1X106 SUP-B15 cells were collected on Day 2, PBS washed and 

resuspended in 1ml serum-free medium. Cells were transiently transfected with 16 µg 

pcDNA-IK6 using the geneJammer ( Invitrogen) mediated DNA transfection technique, 

following the manufacturer’s instructions. In addition, a GFP empty vector (16 µg pEGFP) 

was used as internal control. GFP expression was detected within 48 h after transfection 

using a fluorescent microscope (Qfluoro Software, Leica Microsystem). 

 

3.12 Apoptosis assay 

Apoptosis was evaluated by flow cytometry for the detection of annexin V positive cells. 

Transfected and treated cells were were labeled with annexin V conjugated with fluorescein 

isothiocyanate and propidium iodide. Briefly, cells were washed once in PBS and once in 1x 

binding buffer, then 5 µL each of annexin V-FITC and propidium iodide was added to the 

cells. Cells were incubated at room temperature for 15 minutes, after which 300 µl 1x 

binding buffer was added and cells were analyzed by flow cytometry. Apoptotic cells were 

defined as annexin V positive and propidium iodide negative. 

 

3.13 Proliferation assay by incorporation of 3H timidine  

Cells are seeded at 10 X 104 concentration in RPMI added with 10% FBS for 18 hrs and 

then starved. After 12 hrs 10% FBS is added. After 6 hrs 1 µCi/ml of 3H timidine is added 

(Amersham Bioscences, Piscataway, NJ). After 24 of incubation hrs 3H timidine is 

removed. Cells are then washed with PBS and 5% Tricloric Acetic Acid and re-suspended 
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with NaOH. The amount of incorporated 3H timidine is detected by β counter. 

 

3.14 Clonogenic assay or colony formation assay 

5x105 cells were plated in methylcellulose (Methocult 4230, Stem Cell Technologies) 

supplemented with 10ng/ml G-CSF, 10ng/ml GM-CSF, 10ng/ml IL3, 300U/ml EPO. Cells 

were plated in 35 mm Petri dishes and for each sample were prepared 4 dishes. Cells were 

maintained at 37°C in a fully humidified incubator with 5% CO2 for 14 days. The growth of 

hematopietic colonies was assessed by count at optic microscopy.  

 

3.15 Definitions 

Hematologic complete remission (HCR) was defined as: bone marrow (BM) cellularity of at 

least 20% and containing less than 5% blast cells; peripheral blood (PB) smears without 

blasts; no evidence of extramedullary involvement from leukaemia; polymorphonuclear 

(PMN) cells >1.5 x 109/L and platelets >100 x 109/L. Cytogenetic response (CgR) was 

classified in complete (CCgR, 0% Ph+ metaphases), partial (PCgR, 1-35% Ph+ 

metaphases), minor (MCgR, 36-94% Ph+ metaphases), and none or minimal response 

(NCgR, >95% abnormal metaphases). Hematologic relapse was defined as the re-

appearance of >5% BM blasts or in PB in HCR patients confirmed with a second BM 

aspirate one week after the first one. Cytogenetic response was defined whenever a 

complete or a partial CgR were lost to minor or minimal/none. 

 

3.16 Statistical analysis 

To estimate whether the difference in the level of BCR-ABL transcript was statistically 

significant between different patient groups we performed nonparametric Mann-Whitney 

test and p<0.05 was considered statistically significant. Comparison of frequencies were 

made with the χ2 test or the Fisher’s exact test, as appropriate. All statistical calculations 
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and graphs were performed using GraphPad Prism 4 (GraphPad Software, Inc.., San Diego, 

CA, USA). 

 

Table 1 A. - PCR primers used for Ikaros transcript analysis 

 
 

 

 

 

 

 

 

 

 

 

 

Table 2 A. - PCR primers used for genomic analysis.  

F1: 5’-ATGGATGCTGATGAGGGTCAAGAC-3’ 

R1: 5’-gccagtccaacaaaaccgcac-3’ 

F2: 5’-ctctaagcagaatacctggtg-3’ 

R2: 5’-CTCATCTGGAGTATCGCTTAC-3’ 

F3: 5’-cggaaatctgaaagggaactg-3’ 

R3: 5’-GATGAAGAGAATGGGCGTGC-3’ 

F4: 5’-CGTGCTGGACAGACTAGCAAG-3’ 

R4: 5’-ctaggagcattgcccagagtag-3’ 

F5: 5’-cgggcctgccaactacagag-3’ 

R5: 5’-TCCCACGTGATGGACCAAGCCATC-3’ 

 

Amplicon Primer name Sequence (5’���� 3’) Position 

    
Ikaros F_A,  
Fluorescein-
conjugated 

ATGGATGCTGATGAGGGTCAAGAC exon 2 

   

A 

Ikaros R_A GATGGCTTGGTCCATCACGTGG exon 8 
    

Ikaros F_B,  
Fluorescein-
conjugated 

GGGGCTGATGACTTTAGGGATTTC insertion 

   

B 

Ikaros R_B GATGGCTTGGTCCATCACGTGG exon 8 
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4. RESULTS 
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4.1 Adult Ph+ ALL patients express different wild-type Ikaros transcript variants 

The expression of Ikaros was detected in all patients and the majority of them expressed 

different Ikaros variants at the same time (Table 1 and Fig. 1A). In 19/46 (41%) Ph+ ALL 

patients valuable at diagnosis we identified by fluorescent RT-PCR a single peak of 255 bp 

which by cloning and subsequent sequencing we found to be corresponded to Ik6 isoform in 

which the exon 3 is juxtaposed to exon 8. Since this isoform lacks all zinc fingers needed to 

bind the DNA of target genes, it is considered to be not functional. In the remaining patients 

(27/46, 59%) we observed the coexistence in the same PCR sample and at the same time of 

many fragments ranging from more than 900 bp to less than 200 bp (Fig.1B and 1C). In 

addition to already identified Ik6 isoform in these patients cloning and subsequent 

sequencing analysis revealed that the longer PCR product was Ik-1, the full-length isoform 

containing all the exons (945 bp). The fragment of 684 bp was identified as Ik2 isoform 

which shares three of the four N-terminal zinc fingers (F2, F3 and F4), whereas the band of 

558 bp corresponded to Ik4 isoform in which exon 3 and exon 5 are lost. Other spliced 

Ikaros isoforms were identified: Ik4A containing the exons 1, 2, 3, 5 and 8; Ik 8 in which 

the exons 4, 5 and 6 lack; a new isoform which we called Ik5A, containing the exons 1, 2, 3, 

4, 6 and 8; furthermore we identified a new small Ikaros isoform containing just two exons: 

2 and 8 (Ik 6∆). Since patients can express different Ikaros isoforms at the same time, our 

aim was to determine whether some isoforms could be overexpressed and favoured by 

alternative splicing. We set up a fast, high-throughput method, derived from microsatellite 

analysis and based on capillary electrophoresis technology, to detect and quantify splice 

variants. Since the peak heights showed in the electrophoretograms are correlated to the 

quantity of amplified PCR product, we used them as an indicator of the relative expression 

of each Ikaros isoform in a sample. As shown in Figure 3A, in the samples which showed 

the co-expression of more than one Ikaros variants, the isoforms more frequently produced 

by alternative splicing were Ik2 (median value 19%, SD 5.14), Ik4 (median value 16%, SD 
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8.46), Ik6 (median value 21%, SD 10.45) and Ik8 (median value 11%, SD 3.75) (Figure 

3A). Other isoforms were observed with a minor expression: Ik4A (median value 7%, SD 

2.75), Ik5A (median value 9%, SD 3.22) and Ik6∆ (median value 6%, SD 5.48). In 

comparison, in normal bone marrow pre-B cells we observed that the major Ikaros isoforms 

expressed were: Ik2 (median value 23%, SD 3.15), Ik4 (median value 20%, SD 5.20) and 

Ik8 (median value 9%, SD 4.55). Ik6 expression was observed with a minor expression 

(median value 6%, SD 6.84), such as Ik5A (median value 8%, SD 2.85), Ik4A (median 

value 7%, SD 2.95 ) and Ik5 (median value 2%, SD 3.05). 
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Figure 1. A. Schematic diagram of the the different Ikaros isoforms produced in our Ph+ ALL samples 

by alternative splicing; N-terminal zinc-fingers (F) show DNA-binding activity and C-terminal F mediate 

dimerization of the protein (Ex= exon). B. Bands generated by RT-PCR using primers derived on exons 2 

and 8 and corresponding to the alternatively spliced products of the Ikaros pre-mRNA transcript. PCR 

products were detected by ethidium bromide staining of 1.5% agarose gel. The left lane is the molecular 

size marker,Marker VI Roche; lane2:Ik6 expression; lane 3: co-expression of Ik1, Ik2, Ik4, Ik4A/Ik8 and 

Ik6. C. Electrophenogram of Ikaros PCR product performed using a forward primer conjugated with the 

fluorescin dye at its 5’. Different Ikaros isoforms were represented in the electrophenogram by different 

peaks. The x-axis displays the computed lenght of PCR product in base pairs, as determined 

automatically by the use of an internal lane standard. The y-axis represents the peak height in 

fluorescence units.  
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Table 2. Characteristics of 59% Ph+ ALL patients who co- expressed different Ikaros 
isoforms. For each patient hypothetical and confirmed wild type and aberrant Ikaros 
isoforms are shown.  
 

ID Age Blast count 
(%) 

BCR-ABL 
transcript Wild-type Ikaros isoforms Aberrant ikaros isoforms 

1 65 100 p190 Ik6∆, Ik6, Ik8, Ik4A, Ik4, Ik2 
Ik4 del, Ik8 ins, Ik4A ins, Ik4 ins+del, Ik2 ins+del, 
Ik2ins 

2 18 71 p210/p190 Ik6, Ik8, Ik4A, Ik4, Ik5A, Ik2 
Ik5A del, Ik4 del, Ik6 ins, Ik8 ins, Ik4A ins, Ik4 
ins+del, Ik2 ins+del, ik2 ins 

3 60 100 p210 Ik6, Ik8, Ik4A, Ik4, Ik5A, Ik2 
Ik5A del, Ik4 del, Ik6 ins, Ik8 ins, Ik4A ins, Ik4 
ins+del, Ik2 ins+del, Ik2 ins 

4 73 91 p190 Ik6, Ik8, Ik4A, Ik4, Ik5A, Ik2 
Ik5A del, Ik4 del, Ik8 ins, Ik4A ins, Ik4 ins+del, Ik4 
ins, Ik5A ins, Ik2 ins 

5 57 85 p190 Ik6∆, Ik6, Ik8, Ik4A, Ik4, Ik2 
Ik4 del, Ik4A ins, Ik8 ins, Ik4A ins, Ik4 ins+del, Ik4 
ins, Ik2 ins+del, Ik2 ins 

6 45 85 p190 Ik6∆, Ik6, Ik8, Ik4A, Ik4, Ik2 
Ik4 del, Ik8 ins, Ik4A ins, Ik4 ins+del, Ik4 ins, Ik2 
ins+del, Ik2 ins 

7 40 10 p210 Ik6, Ik8, Ik4A, Ik4 del, Ik4, Ik5A, Ik2 Ik4 del, Ik8 ins, Ik4A ins, Ik4 ins+del, Ik4 ins 

8 50 80 p190 Ik6, Ik8, Ik4A, Ik4, Ik5A, Ik2 
Ik5A del, Ik4 del, Ik6 ins, Ik8 ins, Ik4A ins, Ik4 
ins+del, Ik2 ins+del, Ik2 ins 

9 72 N.A. p210 Ik6∆, Ik6, Ik8, Ik4A, Ik4, Ik5A, Ik2 
Ik4 del, Ik6 ins, Ik8 ins, Ik4A ins, Ik4 ins+del, Ik2 
ins+del, Ik2 ins 

10 50 85 p190 Ik6∆, Ik6, Ik8, Ik4A, Ik4, Ik5A, Ik2 
Ik5A del, Ik4 del, Ik6 ins, Ik8 ins, Ik4A ins, Ik4 
ins+del, Ik2 ins+del, Ik2 ins 

11 52 85 p210 Ik6∆, Ik6, Ik4, Ik2 
Ik4A ins, Ik6 ins, Ik8 ins, Ik4A ins, Ik4 ins+del, Ik2 
ins+del, Ik2 ins 

12 53 94 p190 Ik6∆, Ik6, Ik8, Ik4A, Ik4, Ik5A 
Ik5A del, Ik4 del, Ik6 ins, Ik8 ins, Ik4A ins, Ik4 
ins+del, Ik2 ins+del, Ik2 ins 

13 41 64 p210/p190 Ik6, Ik4A, Ik4, Ik5A Ik4del, Ik6 ins, Ik4 ins+del, Ik4 ins 

14 31 96 p210 Ik6, Ik8, Ik4A, Ik4, Ik5A, Ik2 Ik4del, Ik6 ins, Ik4 ins+del, Ik4 ins, Ik2 ins 

15 75 73 p210 Ik6, Ik8, Ik4A, Ik4, Ik5A, Ik2 
Ik4 del, Ik4A ins, Ik4 ins+del, Ik4 ins, Ik5A ins, Ik2 
ins 

16 48 96 p210 Ik6, Ik8, Ik4A, Ik4, Ik5A, Ik2 
Ik4 del, Ik8 ins, Ik4A ins, Ik4 ins+del, Ik2 ins+del, 
Ik2 ins 

17 54 90 p210 Ik6∆, Ik6,  Ik8, Ik4A, Ik4, Ik5A 
Ik5A del, Ik4 del, Ik8 ins, Ik4A ins, Ik4 ins+del, Ik2 
ins+del, Ik2 ins 

18 48 70 p210 Ik6, Ik8, Ik4A, Ik4, Ik5A, Ik2 
Ik5A del, Ik4 del, Ik8 ins, Ik4A ins, Ik4 ins+del, Ik4 
ins, Ik2 ins 

19 41 70 p210 Ik6∆, Ik6, Ik8, Ik4A, Ik4, Ik5A, Ik2 
Ik5A del, Ik4 del, Ik6 ins, Ik8 ins, Ik4A ins, Ik4 
ins+del, Ik4 ins, Ik2 ins 

20 34 80 p190 Ik6, Ik8, Ik4A, Ik4 del, Ik4, Ik5A Ik4 del, Ik6 ins, Ik4 ins 

21 31 80 p190 Ik6∆, Ik6, Ik8, Ik4A, Ik4, Ik5A Ik4A ins, Ik4 ins+del, Ik4 ins, Ik2 ins 

22 75 90 p210 Ik6∆, Ik6, Ik8, Ik4A, Ik4,  Ik5A, Ik2 Ik4 del, Ik8 ins, Ik4A ins, Ik4 ins+del, Ik4 ins, Ik2 ins 

23 63 55 p190 Ik6∆, Ik6, Ik8, Ik4A, Ik4, Ik5A 
Ik5A del, Ik4 del, Ik8 ins, Ik4A ins, Ik4 ins+del, Ik4 
ins, Ik2 ins 

24 60 72 p210 Ik6∆, Ik6, Ik8, Ik4A, Ik5A, Ik2 
Ik5A del, Ik4 del, Ik6 ins, Ik8 ins, Ik4A ins, Ik4 
ins+del, Ik4 ins, Ik2 ins 

25 36 70 p210 Ik6∆, Ik6, Ik8, Ik4A, Ik4, Ik2 Ik4 del, Ik8 ins, Ik4A ins, Ik4 ins+del, Ik4 ins, Ik2 ins 

26 62 94 p190 Ik6, Ik4A, k4, Ik5A, Ik2 Ik8 del, Ik4 del, Ik4A del  Ik4 ins+del, Ik4 ins, Ik2 ins 

27 48 90 p190 Ik6∆, Ik6, Ik8 del, Ik4A, Ik4, Ik5A, Ik2 
Ik8 del, Ik4 del, Ik4A del, Ik4A ins, Ik4 ins+del, Ik4 
ins, Ik5A ins, Ik2 ins 
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4.2 Adult Ph+ ALL patients express different aberrant Ikaros transcript variants 

In addition to wild-type isoforms generated by alternative splicing of Ikaros gene, we 

frequently identified transcript variants with an atypical length not corresponding to well 

known and characterized wild-type isoforms. By cloning and subsequent sequencing we 

found that Ph+ ALL patients may express aberrant spliced Ikaros isoforms. In all 27/46 

(59%) patients who did not express Ik6 alone we found clones which expressed wild-type 

Ikaros isoforms: (Ik1, Ik2, Ik4, Ik4a, Ik5a, Ik6, Ik6∆ and Ik8) as previously described and 

clones which expressed aberrant Ik2 isoforms [that we called Ik2(ins)] or Ik4/4A/5A 

isoforms [Ik4(ins), Ik4A(ins), Ik5A(ins), respectively] with a 20–amino acid insertion 

(TYGADDFRDFHAIIPKSFSR) due to a 60-bp insertion immediately downstream of exon 

3 (Table 2 and Fig.2A-B). This alteration was identified either alone or together with an in-

frame 10–amino acid deletion, DKSSMPQKFLG, due to a 30-bp deletion at the end of exon 

7. Furthermore, aberrant transcript variants containing only the deletion between the exon 7 

and exon 8 were also detected [Ik2(del), Ik4(del), Ik5A(del), Ik8(del)], increasing the 

complex scenario of Ikaros isoforms produce by alternative splicing and suggesting that Ph+ 

ALL is characterized by high instability. The observed N-terminal insertions and C-terminal 

deletions did not cause a frame shift and, therefore, did not change the downstream amino 

acid sequences.  



 72 

 

 

 

 

Figure 2: A. Schematic diagram of Ikaros isoforms with 60-bp insertion or 30-bp deletion identified in 

Ph+ ALL samples; B. Electrophenogram of Ikaros PCR product performed using the insertion primer 

conjugated with the fluorescin dye at its 5’. Different Ikaros isoforms were represented in the 

electrophenogram by different peaks. The x-axis displays the computed lenght of PCR product in base 

pairs, as determined automatically by the use of an internal lane standard. The y-axis represents the peak 

height in fluorescence units. 
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4.3 The aberrant Ikaros isoforms are due to the selection of an alternative splice donor 

and an alternative splice acceptor sites 

We hypothesized that the 60-bp insertion is due to selection of an alternative splice donor 

and an alternative splice acceptor sites (Figure 4A). Using the Basic Local Alignment 

Search Tool (BLAST, http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) we found that the 60-bp 

insertion found in [Ik2(ins)] or [Ik4(ins)] isoforms corresponded to a region in the intron 3-

4. This sequence is flanked by criptic splice sites because it starts with AG and ends with 

GU (ie, GT in cDNA). The selection of these alternative splice sites may determine in 

Ik2(ins) or Ik4(ins) the skipping of the exon 4 and the introduction in the mRNA of an 

alternative exon (Figure 4C). In the 5A isoform the 60-bp insertion is in conjunction with 

the exon 3 enforcing our hypothesis on its role as alternative exon. The 60-bp insertion 

encodes a perfect α helix, which is followed by a flexible region (KSFSR) located upstream 

from the DNA binding zinc fingers (F2 and F3). The presence of this new motif may 

significantly alter the Ikaros-specific DNA-binding activity. Also the 30-bp deletion in exon 

7 might have resulted from the selection of an alternative splice site, because it starts with a 

GU sequence (ie, GT in cDNA) at the 5’ junction, which could very well serve as a donor 

site recognition sequence (Figure 4B). 

 

4.4 Analysis of DNA-binding and non DNA-binding Ikaros isoforms containing the 60-

base insertion 

To obtain a more accurate characterization of aberrant isoforms, Ikaros cDNA was 

amplified with a forward oligonucleotide conjugated with a fluorescent dye at its 5’ end and 

designed to specifically detect forms with the 60-base insertion following exon 3. DNA 

sequencing of RT-PCR products from insertion primer identified transcripts of different 

lengths corresponding to hypothetical aberrant isoforms. Among these the most expressed 

transcript variants were those of 576 bp (median value 19%, SD 7.41), 546 bp (median 
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value 17%, SD 4.20), 450 bp (median value 14%, SD 4.64) and 420 bp (median value 16%, 

SD 4.44) corresponded to Ik2(ins), Ik2(ins+del), Ik4(ins), Ik4(ins+del) isoforms, 

respectively (Figure 3B). In only three patients (patient 4, 15 and 27 in Table 2) we 

identified the Ik5A (ins) isoform expressed at high levels (median value 29%). Other 

isoforms were detected at lower levels: Ik4A(ins), Ik6(ins), Ik8(ins), Ik8(ins+del). All 

aberrant isoforms were confirmed by cloning and subsequent sequencing except for 

Ik6(ins), Ik8(ins) and Ik8(ins+del) (Figure 3B). Likely it is due to the fact the these isoforms 

are expressed very low in leukaemia cases (median value 7%, range 3-13%). 

To determine whether the aberrant human Ikaros splice variants with insertion or deletion 

were unique to patients with Ph+ ALL diagnosis, we studied Ikaros expression in acute 

leukaemia cases in remission and in normal human peripheral blood. Our RT-PCR assays 

on capillary electrophoresis showed that Ikaros transcript variants with insert or deletion 

were present in normal human hemopoietic cells or in acute leukaemia cases in remission. 

However, these isoforms were expressed at low levels (less than 5% considering their 

expression respect to the other Ikaros isoforms versus a median value of 15% of leukemic 

cells). 
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Figure 3. Relative expression of wild-type Ikaros isoforms (A) and relative expression of aberrant Ikaros 

isoforms (B) produced using insertion primers in Ph+ ALL samples. The relative expression of each 

Ikaros isoform was expressed as a percent fraction between the height of each peak and the sum of the 

heights of all peaks in a sample according to the following: Ik isoform A= [A/A+B]x100, where A=peak 

height of isoform A and B= sum of the peak heights of other Ik isoforms expressed in a sample. Ik1 

isoform was omitted from the analysis. 
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4.5 Ik6 protein is expressed in an abnormal subcellular compartmentalization 

RT-PCR and sequencing results were confirmed by Western blot analysis on primary 

leukemic cells from each adult Ph+ ALL patient expressing small non–DNA-binding and/or 

aberrant isoforms of Ikaros (Figure 5A). A 57-kDa immunoreactive protein that 

corresponded in size to Ik-1 and a 47- kDa immunoreactive protein that corresponded to Ik-

2 were identified. In contrast, we confirmed the presence of a smaller immunoreactive 

protein band of approximately 37 to 40 kd, which corresponded in size to Ik6 in patients 

who were positive for this non-DNA binding isoform from RT-PCR. The absence of an 

abundant Ik1, Ik2 was not caused by a generalized proteolytic degradation because a 120-

kDa Cbl protein was detected by Western blot analysis in the same whole cell lysates. The 

co-expression of many Ikaros isoforms in the same sample confirmed that the different 

splice variants identified by RT-PCR are transduced. In the patients who were positive for 

the expression of only Ik6, we confirmed the presence of only one band of approximately 40 

kDa. The subcellular compartimentalization of Ikaros proteins in normal hematopoietic cells 

and in primary Ph+ leukemic cells were compared by confocal laser scanning microscopy. 

In normal mononuclear cells the nuclei were stained brightly by the anti-Ikaros antibody, as 

showed by a specific punctuate green fluorescent staining pattern. In mononuclear cells 

from patients who expressed the Ik6 isoform alone, we observed a cytoplasmatic 

localization of Ikaros, as evidenced by a bright green fluorescent ring surrounding the red 

nuclei. It is interesting to note that in patients who expressed different Ikaros transcript 

variants, we identified both nuclear proteins and cytoplasmatic proteins, suggesting that full-

length Ikaros isoforms had a nuclear localization, whereas short-dominant negative isoforms 

and aberrant isoforms had a cytoplasmatic localization (Figure 5B). 

The ability of nuclear extract proteins from normal mononuclear cells and leukemic cells to 

show Ikaros-specific, high affinity DNA-binding activity was tested using EMSA. In the 
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extracts from cell expressing Ik6 isoform alone only one very weak protein- DNA complex 

band was found, in contrast to normal cells expressing full-length isoforms. 

 

 

 

 

Figure 4: A. Upper the wild type junction between exon 2 and exon 4 is shown; below there is the 

aberrant sequence with the insertion of 60-bp 

(TTACATATGGGGCTGATGACTTTAGGGATTTCCATGCAATAATTCCCA) between the exon 

3/exon 5 junction. B: Upper the 30-bp deletion at the exon 7/ exon 8 is shown; below there is the wild-

type sequence. C: Schematic representation of the mechanism determing the insertion of a regione inside 

the intron 3-4 and the skipping of the exon 4.  
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Figure 5. (A) Anti-Ikaros Western Blots of whole cell lysates from leukemic cells. Anti-Cbl Western 

Blots of the whole cell lysates was performed as control. (B) Expression and subcellular localization of 

ikaros proteins in leukemic cells from Ph+ ALL patients. In all images cells were stained with an Ikaros 

antibody (green) and with propidium iodide (red) to visualize DNA. In A and B confocal images of  

leukemic cells from patients expressing full-lenght Ikaros isoforms showed the characteristic multifocal 

nuclear localization pattern of Ikaros. C and D are confocal images of leukemic cells expressing Ik6 

isoform and showing cytoplasmatic expression of Ikaros (e.g., bright green fluorescent rim surrounding 

the toto-labeled red nuclei). 

 

4.6 Ik6 expression correlated with the percentage of blast cells  

In some cases, we detected in our samples by RT-PCR and Western blot analysis the 

expression of the non-DNA binding isoform Ik6 both alone and in association with 

functional Ik1, Ik2 isoforms. Since these samples contain a mixed population of cells with a 

variable percentage of blast cells, it is not clear whether the larger isoforms result from 

normal cells present in the samples or from blast cells which have acquired a mutation in 

one Ikaros allele that affects isoform expression. To addressee this issue, we correlated the 

different expression pattern of Ikaros isoforms to the percentage of blast cells in each 

sample. We observed that the median percentage of blast cells in patients who expressed the 

Ik6 isoform alone was 90% (range, 54-100) versus 57% (range, 5-94) of patients co-

expressing both the short Ik6 isoform and functional Ik1, Ik2 (p = 0.0003). Our hypothesis 

was that the co-expression of functional Ik1, Ik2 and Ik6 is due to normal cells present in 

the samples which express larger isoforms and to blast cells which express the short Ik6 

isoform.  

 

4.7 Ik6 expression strongly correlated with BCR-ABL transcript level in Ph positive ALL 

patients 

After we showed a correlation between the percentage of blast cells and the expression of 

Ik6 isoform in the sample, the next stage was to investigate whether this alteration could 

depend on Bcr-Abl activity. For this purpose, BCR-ABL transcript levels were monitored in 
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all patients at different time points during therapy with imatinib or dasatinib. First, we 

demonstrated that dominant Ik6 does not depend on the type of BCR-ABL transcript 

rearrangement, but it can be detected both in patients carrying a p210 and in patients with 

p190 oncoprotein. Secondly, we found a very statistically significant difference between the 

BCR-ABL/ABL per cent values of the patients who expressed the DNA-binding isoforms 

and those of patients with only Ik6 dominant-negative isoform (Fig.6A). The median ratio 

BCR-ABL/ABL per cent of the first group was 0.01 (range, 64.49-0.0001) against 61.26 

(range, 251.62-1.21) of the second group (p <.0001). These results showed that the 

expression of Ik6 strongly correlated with the BCR-ABL transcript levels, suggesting that 

its expression could depend on the Bcr-Abl oncoprotein activity.  

 

4.8 Ik6 expression is associated in vivo with resistance to imatinib and dasatinib  

The mechanism of aberrant over-expression of the non DNA-binding Ik6 isoform has been 

previously demonstrated to be restricted to certain forms of leukemia125, such as blast crisis 

of CML76 or acute lymphoblastic/myeloid leukemia73,77,126, suggesting a role into 

pathogenesis of leukaemia but its role into leukaemia resistance has not yet been 

demonstrated. In this study, in order to provide new evidence for a possible link between the 

expression of Ik6 and the resistance to TKIs in Ph+ ALL patients, we examined the 

expression manner of Ikaros isoforms at different checkpoints during treatment with TKIs: 

at baseline, during remission and at the time of hematologic relapse. On the same samples 

and at the same time-points we performed a RQ-PCR analysis to quantify the BCR-ABL 

transcript levels. We divided the patients in three groups according to the Ik isoforms 

expressed (DNA-binding isoforms (A); co-expression of both DNA-binding and non DNA-

binding isoforms (B); dominant non DNA-binding isoforms (C)) and the phase of disease 

(diagnosis, hematologic/cytogenetic remission and hematologic/cytogenetic relapse) (Fig. 

6). Forty-one patients were evaluable for molecular analysis of BCR-ABL and Ikaros at 
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diagnosis. The expression of Ik6 was detected in 36 patients (88%) but in only 14 patients 

(34%) it was expressed alone versus 12% of patients with only Ik1, Ik2 and Ik4 isoforms (p 

= ns), suggesting that the expression of Ik6 alone was not correlated with diagnosis. 

Furthermore, at diagnosis we did not observe any significant difference in the BCR-ABL 

transcript levels among the three patient groups (p= .399). During remission following 

tyrosine kinase inhibitor-therapy, in all patients we detected only DNA-binding isoforms 

with a median BCR-ABL/ABL x100 value of 0.001 (range, 0.07-0.0001). It is important to 

note that in none we detected the Ik6 isoform enforcing the idea that the Ik6 expression was 

correlated to the amount of BCR-ABL transcript. Therefore, in patients with relapse and 

high levels of BCR-ABL transcript the Ik6 became the major isoform expressed both alone 

(67%) and in association with other isoforms (24%) versus 9% of patients expressing 

predominantly Ik1, Ik2 and Ik4. We did not observe any difference in the expression of Ik6 

at the time of relapse between patients who were resistant to imatinib (10/16, 63%) and 

patients who were resistant to dasatinib (4/8, 50%). Overall, these results demonstrated that 

the expression of Ik6 isoform is associated with resistance to both imatinib and dasatinib. 
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Figure 6. Comparison between the BCR-ABL/ABL per cent values of the patients who expressed the 

Ik1, Ik2 DNA-binding isoforms alone and those of patients with Ik6 dominant-negative isoform alone, 

independent on the disease clinical status. There is a strong correlation between the Ik6 expression and 

the BR-ABL transcript levels (p< 0.0001) (A). 

Expression manner of Ikaros isoforms at different checkpoints during treatment with tyrosine kinase 

inhibitor: at baseline (B), during remission (C) and at the time of relapse (D) (both 

hematologic/cytogenetic and molecular). In pts with relapse and high levels of BCR-ABL transcript the 

Ik6 was the major isoform expressed. E. RT-PCR analysis at baseline (lane1), during remission (lane2) 

and at the time of relapse (lane3). 
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4.9 TKIs induced apoptosis in full-length Ikaros expressing-cells but not in Ik6 

expressing cells 

In order to assess whether also in vitro the selection of cells with higher expression of short 

Ikaros isoforms affects the sensitivity to TKIs in Ph+ALL, we treated full-length Ikaros 

expressing-cells (SD-1) and Ik6 expressing cells (BV-173) with different TKIs (imatinib, 

dasatinib and nilotinib). As shown in Figure 7 (A-B), in SD-1 cells we observed an increase 

of apoptotic cells of 18%, 20% and 11% after incubation with imatinib, dasatinib and 

nilotinib, respectively. By contrast, in Ik6 expressing cells TKIs did not increase the number 

of apoptotic cells when compared to the control samples. These results were confirmed by 

those obtained from colony growth assay (Figure 7C). The in vitro incubations of SD-1 cells 

with imatinib, dasatinib and nilotinib resulted in a marked inhibition of colony growth when 

compared to the control (colony growth percentage values were 23%, 9% and 22% with 

imatinib, dasatinib and nilotinib, respectively). In contrast, no significant inhibition of 

colony growth was detected after incubation of Ik6 expressing cells with TKIs when 

compared to the untreated control cells (colony growth percentage values were 69%, 85% 

and 77% with imatinib, dasatinib and nilotinib, respectively).  

 

4.10 Transfection of Ik6 in an Imatinib-sensitive Ik6-negative Ph+ ALL cell line 

decreases sensitivity to TKIs 

In order to mechanistically demonstrated whether in vitro the overexpression of Ik6 impairs 

the response to TKIs and contributes to resistance we transfected an imatinib-sensitive Ik6-

negative Ph+ ALL cell line (SUP-B15) with the complete Ik6 DNA coding sequence. First 

all, we assessed the proliferation activity of the cells transfected with Ik6 (pcDNA-Ik6) and 

those with the empty vector (pEGFP). Interestingly, we observed a strong increase of the 

proliferation rate (of about five hundred times) in cells transfected with pcDNA-Ik6 (Figure 

8A). Similar results were obtained by colony growth assay as shown in Figure 8B. The 



 84 

expression of Ik6 isoform in SUP-B15 cells strikingly determined an increased colony 

growth (of about twenty times). Moreover, in pcDNA-Ik6 SUP-B15 transfected cells 

number of apoptotic cells did not significantly increase after imatinib incubation when 

compared to the samples transfected with the empty vector (3.5 % versus 18%).  
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Figure 7. (A-B) Apoptotic rates of untreated and TKI (imatinib, dasatinib and nilotinib) treated-cells. 

Treatment with TKIs determined an incresed of apoptotic rate in Ikaros full lenght expressing cells (SD-

1), whereas no differences were identified in Ik6 expressing cells (BV-173) between untreated and TKIs 

treated cells. C. Percentage of inhibition of colony growth compared to controls (white column). Colony 

growth inhibition of SD-1 and BV-173 TKIs treated cells was normalized respect to the own untreated 

cells. 
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Figure 8. Induction of cell proliferation (A) and colony growth (B) in pcDNA-Ik6 SUP-B15 transfected 

cells. Fold induction was calculated using pEGFP SUP-B15 transfected cells as control. C. Apoptotic 

rates evaluated by FACS for the detection of annexin V positive cells in pcDNA-Ik6 SUP-B15 

transfected cells and cells transfected with the empy vector (pEGFP) after incubation with imatinib.   
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4.11 Cis-acting mutations may be responsible for alternative splicing of Ikaros transcript 

Amplification and genomic sequence analysis of the exon splice junction regions was 

performed in search of mutations in the region spanning the cryptic splice site, as well as the 

predominant 5’ (donor) or 3’ (acceptor) splice sites in Ph+ ALL patients who expressed Ik6 

isoform. In these regions we observed the presence of 2 single nucleotide polymorphisms 

(SNPs): rs10251980 [A/G] in the exon2/3 splice junction and rs10262731 [A/G] in the exon 

7/8 splice junction in 50% and 36% of analyzed patients, respectively (Fig.9). We also 

found a variant of the rs11329346 [-/C], in which an A was substituted by a G, in intron 3-4, 

in 16% of patients. Other two different single nucleotide substitutions not recognized as 

SNP were observed in our samples. The first one is a substitution of a G with an A in exon 

2/3 splice junction at position +114 numbering from the first base of the intron 2-3, in 80% 

of Ik6-expressing patients. The other one is always a substitution of a G with an A in exon 

3/4 splice junction at position -191 to the end of the intron 3-4, identified in 30% of patients. 

In Figure 9 the characterization and the position of mutations and SNPs are shown. 

Furthermore, we examined the expression of the single nucleotide polymorphism (SNP) 

affecting the third base of the triplet codon for a proline (CCC or CCA) in the highly 

conserved bipartite activation region of the exon 8 (A or C at position 1170 numbering from 

the translation start site of Ik-1, GenBank accession number U40462, NM_006060.3, 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_006060.3) within our Ikaros 

clones among different isoforms. This region is conserved in the various Ikaros splice 

variants, thereby allowing typing of all Ikaros isoforms. In order to assess if SNPs or point 

mutations in intronic or exonic sequences could affect alternative splicing creating or 

abolishing splicing enhancers and silencers, we applied a computational RESCUE-ESE/ISE 

approach, by which we analyzed the effect of sequence variation entering both the wild-type 

and the variant sequence into the input window. In our samples the mutation at position 

+114 in the intron 3-4 was identified as putative ESE creating the AAAAAG motif (Figure 
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9, A). ESE alteration events were also observed in the case of rs10251980 SNP in the same 

intron 3-4 where the allelic variant containing an A instead of a G was part of the GGAAAA 

or GAAAAG ESE motif. In the case of the mutation at position -191 at the 3’ of the intron 

4-5, the RESCUE approach identified a putative exon splicing silencer (ESS) site: 

CCAAGGT.  

 

 

 

 

Figure 9. Results from genome sequence analysis of the splice junction regions are shown. Point 

mutations and single nucleotide polymorphisms (SNPs) are represented in a different way. The letters 

written in red represented the ESE/ESS motifs identified by using the RESCUE-ESE/ISE computational 

approach (http://genes.mit.edu/burgelab/rescue-ese/) and the mutated base is bold. Nucleotide 

substitutions which are not predicted to create ESE/ESS motifs are indicated in blue. 
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5. DISCUSSION 
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The Ph chromosome is the most frequent cytogenetic aberration associated with adult ALL 

and it represents the single most significant adverse prognostic marker. The constitutively 

active tyrosine kinase encoded by BCR-ABL blocks the differentiation of B precursor cells, 

prevents apoptosis and also causes genetic instability. This leads in the majority of cases to 

the acquisition of new mutations, resistance to tyrosine kinase inhibitors and disease 

progression. Despite imatinib has led to significant improvements in the treatment of 

patients with Ph+ ALL, in the majority of cases resistance developed quickly and disease 

progressed. Some mechanisms of resistance have been widely described but the full 

knowledge of contributing factors, driving both the disease and resistance, remains to be 

defined. The observation of rapid development of lymphoblastic leukemia in mice 

expressing altered Ikaros isoforms represented the background of this study.  

Ikaros is a critical zinc finger transcription factor required primarily for the formation of 

more primitive lymphoid progenitors. Deletion of the Ikaros DNA-binding domain results in 

the absence of detectable lymphocytes or their precursors127. The fact that Ikaros functions 

as a critical regulator of normal lymphocyte development and the observation of rapid 

development of leukaemia in mice expressing non-DNA binding isoforms, represented the 

rationale for many studies to investigate whether normal Ikaros expression and function 

might be altered in human haematological malignancies. An excess of short Ikaros isoforms 

has been described in leukemic cells obtained from infant, children B and T acute 

lymphoblastic leukemias (ALLs)71-74, in de novo adult B ALL75, in cells from transformed 

chronic myeloid leukemias (CML)76 and from de novo acute myelomonocytic and 

monocytic leukemias77,78, demonstrating that aberrant regulation of splicing is a new 

mechanism of activation of an oncogene in ALL. Since expression of non-DNA binding 

Ikaros isoforms during early lymphopoiesis may dysregulate normal lymphocyte 

development, predisposing lymphocyte precursors to second hits and leukemic 

transformation and/or progression, we analyzed for the first time the expression pattern of 
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Ikaros isoforms in Ph+ ALL patients who were resistant to imatinib and dasatinib with the 

purpose to determine if Ik aberrant spliced isoforms could correlate with the BCR-ABL 

transcript levels and associate with the resistance to imatinib and dasatinib. 

Given that different Ikaros isoforms can be expressed following by alternative splicing and 

considering the leukemic role of short and/or aberrant isoforms, it is extremely important to 

use a sensitive method to detect and quantify the different transcript variants. In this study, 

for the first time we set up a fast, high-throughput method to detect and quantify splice 

variants. It is derived from microsatellite analysis128-130 and it based on capillary 

electrophoresis technology which is characterized by high detection sensitivity, high 

accurate and sizing capability and an automated format that requires minimal user 

intervention. Our results demonstrated that this method can be very useful to screen at high 

resolution different transcript variants and may become a handy tool within different 

research areas. It allows non only a screening of different variants but in the same 

experiment also the quantification of the same variants, demonstrating to be less labour 

intensive than other available techniques, such as real-time PCR. We were able to 

characterize all Ikaros isoforms expressed in adult Ph+ ALL at diagnosis and previously not 

identified, such as Ik5A and Ik6∆. We demonstrated that 41% Ph+ ALL patients expressed 

high levels of the only DNA-binding dominant negative Ik6 isoform lacking critical N-

terminal zinc-fingers which display abnormal subcellular compartmentalization pattern. 

Nuclear extracts from patients expressed Ik6 failed to bind DNA in mobility shift assay 

using a DNA probe containing an Ikaros-specific DNA binding sequence. In 59% Ph+ ALL 

patients we observed the coexistence in the same PCR sample and at the same time of many 

splice variants corresponded to Ik1, Ik2, Ik4, Ik4A, Ik5A, Ik6, Ik6∆ and Ik8 isoforms. In 

these patients we also identified aberrant full-length Ikaros isoforms in Ph+ ALL 

characterized by a 60-bp insertion immediately downstream of exon 3 and a recurring 30-bp 

in-frame deletion at the end of exon 7 involving most frequently the Ik2, Ik4 isoforms. Both 
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the insertion and deletion were due to the selection of alternative splice donor and acceptor 

sites. The 60-bp insertion is incorporated into the DNA-binding region and therefore may 

significantly alter the DNA-binding activity of Ik2 and Ik4 isoforms. The deleted sequence 

in these aberrant Ikaros isoforms is close to the conserved bipartite transcription activation 

domain within the exon 8 and it is adjacent to the C-terminal zinc finger dimerization 

motifs. The deletion of this peptide determines structural changes which could affect the 

accessibility of the Ikaros activation domain with members of the basal transcription 

machinery and stability of such interactions. Furthermore, the ability of these aberrant 

isoforms to form dimers with other Ikaros isoforms or other proteins could also be impaired 

and such impairments could lead to altered DNA-binding or altered subcellular localization 

of Ikaros. In conclusion, our findings demonstrated that alterations of the transcription 

factor Ikaros, involving both short spliced oncogenic isoforms and aberrant full-length 

isoforms are a common feature in Ph+ ALL patients. Since aberrant and short isoforms are 

present at low levels in normal mononuclear cells where have a potential regulatory role on 

the activity of the predominant Ik1 and Ik2 isoforms131, it is probably that other factors, such 

as abnormalities in the splicing regulation, in this error prone system, could determine a 

disequilibrium which leads to the overexpression of short dominant negative isoforms or 

aberrant isoforms.  

The presented data are consistent with the evidence from previous studies that reported an 

aberrant expression of spliced isoforms of Ikaros in some subtypes of human leukaemia71,73-

75,77,126,132. Moreover, in a recent study, the comparison of the genome wide gene expression 

profiles of normal B-cell subsets and BCR-ABL pre-B lymphoblastic leukaemia cells by 

SAGE, showed loss of B-lymphoid identity and aberrant expression of myeloid lineage-

specific molecules in leukemia cells133. In the same report BCR-ABL has been 

demonstrated to induce the expression of dominant-negative Ik6, which contributes to 

lineage infidelity observed in BCR-ABL pre-B lymphoblastic leukaemia cells. In this study 
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focusing on a subtype of ALL, the Ph+ ALL, we confirmed not only that BCR-ABL may 

induce the expression of Ik6 isoform, but we also demonstrated that the splice variant Ik6 

does not depend on the type of BCR-ABL rearrangement since it was detected both in 

patients carrying a p210 and in patients carrying a p190 oncoprotein. Furthermore, the 

molecular monitoring of minimal residual disease showed for the first time in vivo that the 

dominant negative Ik6 expression correlated with the BCR-ABL transcript levels enforcing 

the interpretation that this alteration could depend on the Bcr-Abl activity. Patient-derived 

leukaemia cells expressed dominant-negative Ik6 before, but not during response to TKIs 

and predominantly at the time of relapse. In order to mechanistically demonstrated whether 

in vitro the overexpression of Ik6 impairs the response to TKIs and contributes to resistance 

we transfected an imatinib-sensitive Ik6-negative Ph+ ALL cell line (SUP-B15) with the 

complete Ik6 DNA coding sequence. We confirmed that expression of Ik6 strongly 

increases proliferation and inhibits apoptosis in TKI sensitive cells establishing a previously 

unknown link between specific molecular defects that involve the IKAROS gene and the 

resistance to TKIs in Ph+ ALL patients. 

Expression of aberrant Ikaros isoforms in leukemic cells could result in cis from sequence 

alterations or from leukemia-associated alterations in trans-acting factors. While the splice 

sites themselves are located in the introns, additional sequences that enhance splicing from 

an exonic location are also known. These exonic splicing enhancers (ESEs) are short 

oligonucleotide sequences that are often recognized by proteins of the SR (serine-arginine) 

family. In order to establish which mechanism could be responsible for spliced Ikaros 

isoforms in our patients, amplification and genomic sequence analysis of the exon splice 

junction regions were performed in search of mutations. We applied for the first time on 

IKAROS gene a computational method, RESCUE-ESE/RESCUE-ISE to determine which 

sequences are capable of functioning as splicing enhancers, finding that some mutations in 

our samples can be function as splicing enhancer or silencer. Given the overwhelming 
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number of ESEs in human genes, it is likely that not all of them are the binding targets of 

the SR proteins and consequently, it is difficult to reliably determine the true incidence of 

ESE alteration within the set of mutations predicted to alter ESEs. The presence of some 

predicted ESEs may frequently occur in human genes just by chance and in this case the 

non-DNA binding Ikaros isoforms could be due to changes in trans-acting splicing 

regulators. This aspect is under investigation.  

In conclusion, our data demonstrated that the post-transcriptional regulation of alternative 

splicing of IKAROS pre-mRNA is defective in the majority of Ph+ ALL patients treated 

with TKIs. Our hypothesis is that the overexpression of Ik6 blocking B-cell differentiation 

could contribute to resistance opening a time frame, during which leukaemia cells acquire 

secondary transforming events. 
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