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Pyroclastic Density Currents (PDCs) are fast-moving hot mixtures of volcanic gas
and particles that can devastate significant areas surrounding explosive volcanoes.
Moreover, volcanoes are typically multi-hazard environments where secondary pro-
cesses, like volcaniclastic mudflows (lahars), can be equally or more dangerous than
PDCs. In this view, quantitative volcanic (multi) hazard assessment is among the
most pursued goals of modern volcanology. However, the assessment is affected by
deep variability-related (aleatory) and knowledge-related (epistemic) uncertain-
ties. De facto, hazard analyses of PDCs and lahars quantifying such uncertainties
are uncommon because modeling their complex flow dynamics, in a stochastic
scheme, has a high computational cost.
In this PhD, different probabilistic approaches to model and quantify uncertainty
in volcanic hazard assessment are explored and implemented at two Italian volca-
noes: Somma-Vesuvius and Campi Flegrei. First, it is demonstrated that simple
PDC models (Energy Cone), coupled with Monte Carlo sampling, are able to:
(1) reproduce the spatial extent of past PDC deposits, and (2) quantify epis-
temic uncertainty comprehensively. Secondly, by merging Energy Cone simula-
tions with more complex statistical models (Bayesian Event Tree for Volcanic
Hazard, BET_VH ), a cutting-edge hazard product is computed: a multi-volcano,
single-target probabilistic PDC hazard assessment over the central Campania re-
gion. Thirdly, through assembling more sophisticated PDC models (Titan2D)
with Polynomial Chaos Quadrature and BET_VH, hazard curves for dense pumice
flows from Somma-Vesuvius are obtained. These curves are extremely valuable for
quantitative volcanic risk analyses. Finally, probabilistic volcanic multi-hazard as-
sessment is performed at Somma-Vesuvius by combining a Bayesian Belief Network
(Multihaz : which incorporates probabilistic hazard analyses of tephra fallout and
dense PDCs and models aleatory uncertainty in lahar triggering) and a numerical
model of lahars (LaharFlow : which allows to compute probabilistic hazard foot-
prints). Future steps in probabilistic volcanic hazard assessment will likely require
strategies that are multi-disciplinary and explicitly oriented to calculate volcanic
hazard.
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Chapter 1

Introduction and background

1.1 Explosive volcanism

Volcanic activity is one of the most powerful and spectacular phenomena that can
be witnessed in nature. It is also the result of one of the most complex chains of
physico-chemical processes within the natural world. Magma (a given volume of
partially melted rock) is formed at depths which range between few kilometers at
mid-oceanic ridges up to few hundreds of kilometers at subduction zones, depend-
ing on the P-T-X (pressure-temperature-composition) conditions that lead to the
melting point on the specific environment. From their (usually) mantellic source,
magmas rise towards the Earth’s surface mainly driven by the density contrast
between these partially-molten volumes and the rocks that surround them (known
as country rocks). Once they approach the upper levels of the lithosphere, they
can get stored to form large masses of plutonic rocks or they can break through
the surface producing volcanic eruptions (Fig. 1.1). During such evolution, the
magmas experience profound changes in their chemistry and physical properties
as a consequence of processes like crystallization, assimilation of country rocks or
volatiles exsolution (e.g. [1, 2]).

Depending on the specific magma origin and path towards the surface, volcanic
eruptions can display very different pattern and behaviors. One basic classification
of volcanic eruptions divides them into effusive and explosive eruptions [3, 4].
Effusive eruptions are commonly characterized by: (a) low-viscosity, low-volatile-
content mafic magmas (i.e. rich in ferro-magnesian mineral phases such as olivine
and pyroxene) being erupted; (b) low to moderate mass eruption rates (MER);

1
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Figure 1.1: Artistic scheme displaying tectonic-plate dynamics, the main types
of plate boundaries and the magmatic/volcanic activity associated with them.
The differences between each tectonic setting (i.e. type of plate boundary) is
reflected in both the geochemistry of the generated magmas and, accordingly,
in the usual eruptive style exhibited by the volcanoes of that particular tectonic

setting. Modified from https://pubs.usgs.gov/gip/dynamic/Vigil.html.

(c) modest degrees of magma fragmentation (i.e. the breakage of magma due
to unrecoverable tensile strength [5]); and, thus, (d) eruptive styles which are
dominated by lava fountaining and lava flows (e.g. [6]). On the other edge of the
spectrum, explosive eruptions are commonly characterized by: (a) high-viscosity,
high-volatile-content felsic magmas (i.e. rich in mineral phases such as feldespars
and quartz -SiO2-) being erupted; (b) potentially moderate to high MER values;
(c) high degrees of magma fragmentation; and, therefore, (d) eruptive styles which
are dominated by vertical jets of volcanic particles and gas (eruption columns,
see subsection 2.1) which may sometimes collapse to form Pyroclastic Density
Currents (PDCs, see subsection 2.2). Nevertheless, the previous does not always
hold true since: (1) mafic magmas can be also responsible for highly-explosive
eruptions (typically known as basaltic Plinian eruptions: e.g. [7, 8]); and (2) felsic
magmas can also be erupted not explosively to form very-viscous masses of lava
accumulated at the top of the volcano and known as lava domes (e.g. [6, 9]).
Besides, the effect of external agents, such as water/ice, can modify the eruptive
style to a great extent (e.g. [10, 11]).

Notwithstanding, explosive volcanism, and the hazardous processes associated
with it, tend to occur at volcanoes with intermediate to felsic magma composi-
tions and this type of volcano is not distributed randomly over the planet’s surface
(Fig. 1.2). Thus, they are typically located along the subduction zones where the

https://pubs.usgs.gov/gip/dynamic/Vigil.html
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physico-chemical conditions favor the generation of viscous, volatile-rich eruptible
magmas with a tendency towards explosive behaviors (e.g. [12, 13]). The most
universal scale to classify explosive eruptions is the Volcanic Explosivity Index
(VEI), developed by [14]. According to the VEI scale, the total erupted volume,
which is linked to the MER and eruption column height (see next subsection 2.1),
defines the level of explosivity according to a logarithmic scale. Thus, eruptions
that produce, for instance, an amount of material in the order of 10−3 − 10−2km3

are classified as VEI2 while eruptions that erupt around 1-10 km3 are classified
as VEI5 (so three VEI levels imply 3 orders of magnitude in the erupted volume).
Descriptively, eruptions of VEI≤3 are commonly called as Strombolian and/or
Vulcanian (from the Italian volcanic islands Stromboli and Vulcano); eruptions of
VEI4 are typically referred to as sub-Plinian and eruptions of VEI5 on tend to be
known as Plinian eruptions (from Plinius the Younger, a witness and reporter of
the largely explosive eruption of Somma-Vesuvius, Italy, in 79 AD).

Figure 1.2: Worldwide spatial distribution of Quaternary (∼ 2.6 Ma) large-
magnitude (VEI≥4) explosive eruptions (red points), according to the LaMEVE
database [15]. Note how the density of points is greater along subduction zones
like in Japan, Philippines, Indonesia or the occidental coast of the whole Amer-

ican continent (taken from http://www.bgs.ac.uk/vogripa).

http://www.bgs.ac.uk/vogripa
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1.2 Volcanic hazard assessments

Volcanic activity can cause serious impacts on both population and infrastructures
located, not only in the vicinity of active volcanoes, but also at moderate-long dis-
tances from the volcanic vent (e.g. [16, 17]; see Chapter 2). Assessing the volcanic
hazard existent at a given area or region is of paramount importance for: (i) land-
use planning; (ii) management of volcanic crises; (iii) emergency planning before
the onset of an eruption; (iv) assessing volcanic risk; (v) outreach and education;
etc.
The most common way to show volcanic hazard assessments is through the com-
pilation of maps (e.g. [18]). However, the content of these maps and the method-
ologies utilized to produce them, tends to be quite diverse: from geology-based
and qualitative maps up to probabilistic maps, which incorporate a measure of, at
least, the natural variability in the hazardous process (e.g. [18, 19]), also known as
aleatory uncertainty or variability (see subsection 1.2.3). This lack of homogeneity
may be due to a vague definition of what volcanic hazard means: sometimes it
may simply refer to a hazardous process (e.g. [17]); or to the loss of life related to a
hazardous process (e.g. [16]); or be a qualitative description of the likelihood that
more than one hazardous process impacts a given area around the volcano (e.g.
[20]); or be considered as the probability (per time window) of a hazardous pro-
cess impacting a given area in space (e.g. [21]). All this mixture in interpretations
and applications of hazard may come directly from the ethimology of the word,
its general definition being: “a danger or risk” or “a potential source of danger”
[22]. However, a second meaning is that of “chance; probability”, which is closely
related to the origin of the word hazard (from Old French hasard, from Spanish
azar, from Arabic az-zahr : chance, luck; from Persian zãr or Turkish zar : dice).

By the time this PhD began in 2014, hazard assessments of PDCs ranged from
single-scenario (even single-simulation) up to probabilistic assessments, with quan-
tification of uncertainty, even though they were only applicable to dense PDCs
[23, 24]. Yet today, there is a certain number of different approaches proposed
to quantify PDC hazard; these approaches tend to use one or a combination
of the following methods: (a) collecting field data on past PDC deposits (e.g.
[25, 26]); (b) running physical, theoretical and/or empirical models of PDCs (e.g.
[27, 28, 29, 30]); and (c) using uncertainty quantification techniques, from Monte
Carlo methods to expert-judgment analyses (e.g. [31, 32, 33]).
In the following subsections, we describe the bodywork done in volcanic hazard
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assessments of PDCs and volcanic multi-hazard assessments, independently of the
definition of hazard adopted by the authors or the final hazard product. In particu-
lar, three main approaches for PDC hazard assessment are detailed: (1) field-based
hazard assessments; (2) scenario-based hazard assessments; and (3) probabilitistic
hazard assessments.

1.2.1 Field-based PDC hazard assessments

Field-based (or geology-based) assessments are the most usual hazard products
that are utilized world-wide, not only for PDCs but, in general, for volcanic hazards
[18]. They are the result of individuating and mapping the extent of stratigraphic
units from past eruptions (and, in this case, associated with PDCs) at a specific
volcano of interest (Fig. 1.3a, e.g. [25, 26, 34]). The geological analysis takes into
account the spatial distribution of the PDC deposits but also their thickness (val-
ues and spatial pattern) and, more importantly, their sedimentological structures
and the way in which different units success each other vertically and laterally
(e.g. [6, 35]). This is of crucial relevance for volcanic hazard studies of PDCs since
it is the only way of extracting the eruptive behavior and the physical processes
and patterns which may have occurred during past eruptions at a given volcanic
system (e.g. [36, 37, 38]). Sometimes, the present eruptive behavior of the volcano
may be completely different from what the volcano was capable of doing in the
past and geology-based studies are the key to get to know such situations. For
instance, volcanic systems which currently show mild-explosive behaviors (Strom-
bolian/Vulcanian), like Mount Sakurajima (Japan), or even have not erupted for
more than 1,500 yr, like the Taupo caldera (New Zealand), are known to have
produced very-large, ignimbrite-forming eruptions in the past thanks to geological
assessments (e.g. [39, 40]).

Nonetheless, field-based hazard assessments of PDCs do not fully account for the
natural variability inherent to volcanic hazards (i.e. the aleatory uncertainty, see
subsection 1.2.3) since what happened in the past does not represent everything
that may happen in the future. Moreover, the eruptive record of a volcano is never
one-hundred-percent complete (e.g. [15, 42, 43]) and the deposits left by large
dilute PDCs may be quite thin and eroded shortly after the end of the eruption
(e.g. [9]). These two factors (among others) add up epistemic uncertainty (see
subsection 1.2.3) which cannot be resolved with the geology-based approach only.
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1.2.2 Scenario-based PDC hazard assessments

Scenario-based PDC hazard assessments are rooted in the detailed description of
one or few eruptive scenarios (Fig. 1.3b) that, because of the present state of the
volcano (e.g. [41]) or its past eruptive history (e.g. [44, 45]), are believed to be
the most representative events to explore. Therefore, they may incorporate the
information derived from field-based analyses but they focus on a specific subset
of this past eruptive behavior. In some occasions, they can use physical models
of PDCs to calculate the possible intensity of the PDC hazard for a given past
eruption occurred at the volcano (e.g. [46]).
In principle, the degree of detail obtained with this approach is higher than in
the case of probabilistic assessments (see subsection 1.2.4) mainly owing to the
fact that the physical models1 used in scenario-based hazard assessments can be
more sophisticated (e.g. [44, 47, 48]). Consequently, variables such as dynamic
pressure, particle concentration or even temperature can be analyzed in time and
space, something that is not possible yet with the type of physical models used in
probabilistic hazard assessments.

Nevertheless, the main drawback of scenario-based PDC hazard assessments is
that they focalize on a (very) reduced subset of the possible eruptive events that
might unfold at a given volcanic system. Thus, the aleatory uncertainty (see sub-
section 1.2.3) is far from being quantified with this kind of hazard assessment.
Yet, scenario-based hazard assessments, because of their aforementioned superior
level of detail, could be used to complement and improve field-based or probabilis-
tic assessments by means of statistical models such as Bayesian emulators (e.g.
[23, 31]) or logic- and event-trees (e.g. [49, 50, 51]).

1.2.3 Uncertainty in modeling volcanic hazards

The word uncertainty indicates a lack of certainty, of being certain, a term that
comes from the Latin word certus (settled, sure [22]). Uncertainty is pervasive
in volcanic hazards, as well as in natural hazards (e.g. [52, 53, 54]), not only
because of the complexity, non-linearities and feedback effects in physical volcanic
processes but also because of the impossibility, yet, to observe them directly (e.g.
[1, 2, 5, 55, 56]).

1Or simulators. We use the two terms indistinctly along the thesis dissertation.
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One main source of uncertainty in volcanic hazards is the natural variability, or
stochastic behavior (from the Greek stokhazesthai : aim at, guess [22]), of volcanic
systems, mainly in terms of the timing (e.g. [57]), location (e.g. [58]), duration
(e.g. [59]), magnitude ([60]) and/or eruptive style (e.g. [11]) of their eruptions.
This is commonly referred to as aleatory (from the Latin word: aleator : dice player
[22]) uncertainty or variability (e.g. [52, 53, 54, 61]). Another main source of
uncertainty arises from the very-limited direct access to volcanoes and, in general,
relates to the incomplete knowledge about their components and behavior. This
type of uncertainty is commonly known as epistemic (from the Greek: epistēmē,
knowledge [22]) uncertainty (e.g. [52, 61]). A third principal source of uncertainty
is defined by some authors as ontological (from the Greek words onto: a being, and
logos : the study of) error [62]. This source is related to the fact that there might
be unknown unknowns, that is, things that we do not know that we do not know.
A volcano-related example of ontological error is the case of the 79AD eruption at
Somma-Vesuvius (Italy): at that time, the Roman population living around the
volcano did not know that that isolated mountain was actually a volcano [63].

Probability is a suitable way of quantifying uncertainty in general, and specifically
in the case of natural and volcanic hazards (e.g. [53]), because: (i) its fundamental
axioms are very simple [64]; (ii) it allows to reason about conditioning between
outcomes/events; and (iii) there is a great variety of tools and methods to calculate
probabilities (e.g. [65, 66]).
One probabilistic method that has been at the foundation of Probabilistic Volcanic
Hazard Assessment (PVHA) is Bayesian inference, based upon the Bayes’ rule (e.g.
[21, 61, 67], see subsection 1.2.4 and Chapter 4). Bayesian inference can be defined
as the process of fitting a probability model to a set of data (i.e. past hazard data at
the volcano), and summarizing the result by a probability density function (PDF)
of the parameters of the model [68] (see Fig. 1.4 for more details). One basic
motivation for the use of Bayesian statistics in volcanic hazards is the fact that
the frequentist approach to probability calculus (i.e. calculating the probability
of an event as the limit of the frequency of occurrence of it when the number of
reproducible experiments performed tend to infinite, e.g. [69]) cannot be utilized.
In other words, volcanic eruptions (i.e. the experiment) do not occur every day at
each single volcano around the world and, therefore, it is not possible to collect
large numbers of outcomes/events from all of them (e.g. [21, 68]). Besides, it could
be argued that they are not reproducible experiments, although this is usually
overlooked, in a similar way as it is assumed when a die is rolled (obviously, a
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person does not roll a die in the same exact manner twice and, therefore, the
experiment would never be reproducible).

Figure 1.4: Exemplification of Probability Density Functions (PDFs), p(θ),
and aleatory and epistemic uncertainties through the Ellsberg paradox (modified
from [61]): (A) an urn containing the same proportion of black and white balls
(50%); (B) an urn containing an unknown proportion of black and white balls.
The variable θ denotes the proportion of black balls in the urn or, similarly, the
probability of picking up a black ball in a single extraction from the urn. In (A),
we know that this probability is 0.5 (or 50%) and this is indicated by a PDF
with a domain θ ∈ [0.5] and an infinite density of probability at the only value
of the domain (i.e. a Dirac Delta PDF). In (B), we do not know anything about
the proportion of black balls so we may assume that any proportion (from 0%
up to 100% is possible and equally likely). This is denoted by a domain for the
variable θ ∈ [0, 1] and the same density of probability assigned to all the values
within the domain (i.e. a Uniform PDF between 0 and 1). Therefore, in (A)
there is aleatory uncertainty only (it is not certain that the next extracted ball
will be black) while in (B) there are both aleatory and epistemic uncertainties
(apart from what said about (A), the true probability of extracting a black ball
is unkwnow). The paradox resides in the fact that the best estimate for the
probability of extracting a black ball in (B) is just the same as in (A), that is:

0.5 (50%).

Aleatory uncertainty (or variability) in volcanic hazards is modeled through a
PDF (Fig. 1.4) for variables like: erupted volume, the H2O content of the magma,
eruption duration, eruption column height, column collapse height and so forth
(e.g. [23, 61, 70, 71, 72, 73]). The PDF shows two major aspects of the variable
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being modeled (Fig. 1.4): (1) the domain of the variable, that is, the range of
values that the variable can take; and (2) the density of probability associated to
each value of the variable or, likewise, the likelihood of each value being true.
If epistemic uncertainty exists, then a single PDF may not be adequate to model
the variable of interest. There are several types of epistemic uncertainty which
can play a role in the (volcanic) hazard assessment (e.g. [54, 74, 75]). The result
of incorporating epistemic uncertainty into the analysis is commonly, but not
exclusively, that different types of PDFs or different parameterizations of the same
type of PDF (e.g. Gaussian PDF) are explored. This is successfully handled with
the Bayesian apparatus and usually translates into having alternative outputs for
the hazard analysis (e.g. [49, 75, 76]).

1.2.4 Probabilistic hazard assessments

Probabilistic Volcanic Hazard Assessment (PVHA) aims at computing the prob-
ability of a hazardous process affecting a given point in space, over a given time
window (e.g. [21, 49]). The volcanic hazard is interpreted as this very probability
which corresponds to the aleatory uncertainty. Moreover, the epistemic uncer-
tainty can be incorporated into the hazard analysis, for example, by assigning
a PDF to that probability (Fig. 1.4, e.g. [49, 68]). Such probabilistic hazard
assessment has been significantly developed and applied to tephra fallout (e.g.
[19, 70, 71, 72, 77, 78]) but this has not been the case for PDCs, lahars or multi-
hazard assessments.
One principal reason for the scarcity of PVHA for PDCs and lahars may reside
in the fact these physical processes are extremely complex (e.g. [79, 80]). On
the one hand, sophisticated physical models (e.g. [44, 81]) may be able to cap-
ture the properties and evolution of such complex flows but, unfortunately, they
usually take too long to run which makes them inappropriate to explore aleatory
and/or epistemic uncertainty in a robust manner (e.g. [82]). On the other hand,
simple physical models, combined with the right statistical model(s), can serve to
quantify aleatory and epistemic uncertainty (see Chapters 4,6,7,8).

Focusing on PDCs, the natural variability in their generation (i.e. column-collapse
height, PDC mobility, collapsed mass, particle-volume concentration in the PDC,
etc.) translates into aleatory uncertainty about whether a given point around the
volcano will be inundated or not by PDCs, how thick these PDCs will be at that
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point, how fast they will be when they pass through the point, and so on (e.g.
[31]). As previously introduced, to calculate this probability, a full description of
the aleatory uncertainty in terms of (at least some of) the aforementioned variables
must be carried out and, thus, a probability for each hazard outcome (for instance:
column-collapse height = 500 m and collapse mass = 5000 kg) must be assigned
(e.g. [83]). Then, the aleatory uncertainty is usually propagated into the hazard
domain by using the outputs from deterministic PDC simulators plus different
uncertainty quantification techniques (see Chapter 4 for the methods utilized in
this thesis dissertation). In this way, the probability of PDC arrival, PDC flow-
depth and speed, etc. can be computed over the hazard domain (e.g. [23, 24]).
These probabilities may be conditional to the occurrence of an eruption at the
volcanic system of interest (e.g. [33]) or they can be absolute probabilities if
the probability of eruption at the system is incorporated into the analysis (e.g.
[32, 49]).

Again, the PDC simulators used to compute PVHA are forced to be computa-
tionally cheap. This is because propagating the aleatory uncertainty requires to
compute a large number of hazard footprints (i.e. outputs from the simulator) in
order for the hazard analysis to be statistically robust (e.g. [82]). Therefore, some
of the PDC simulators utilized for scenario-based PDC hazard assessments (e.g.
[44]), which need some days of computation on supercomputers, are not suitable
for the statistical modeling needed in PVHA.
Besides aleatory uncertainty, a truly comprehensive probabilistic assessment of
PDC hazard would need to include epistemic uncertainty into the analysis (e.g.
[32, 33]). Sources of epistemic uncertainty can be varied (e.g. [75]), from uncer-
tainty on the Digital Elevation Model (DEM) used to run the PDC simulator (e.g.
[84, 85]) to uncertainty related to the model structure, sometimes explored via
goodness-of-fit analysis of simulations and real PDC deposits (e.g. [86]).

On the whole, PVHA offers a very detailed analysis of the PDC hazard, including
the aleatory and epistemic uncertainties associated with it (Fig. 1.3c). Neverthe-
less, it is a computationally-costly approach and, nowadays, there is still a strong
dichotomy between the use of physically-complex (but more reliable) simulators
mainly for scenario-based assessments (e.g. [47, 48, 80]) and the search for simpler
models which are apt for PVHA of PDCs (e.g. [28, 31, 33]). In addition, prob-
abilistic assessments of volcanic hazards are still in their infancy with respect to
those in other fields of natural hazards such as climate, hydrology or seismology;
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and there is still a long way to go in terms of understanding and communication
of probabilities and uncertainties linked to volcanic hazards (e.g. [87, 88]).

1.2.5 Volcanic multi-hazard assessments

Volcanic systems, especially those explosive, tend to be multi-hazard, not single-
hazard, environments and, thus, different hazardous processes may occur whether
simultaneously or in succession (e.g. [17]). For instance, the occurrence of tephra
fallout from Plinian eruption columns followed by (or in concomitance with) par-
tial or total column collapses which generate PDCs is well documented to have
happened at many volcanoes around the world (e.g. [57, 89, 90]). Else, dome ex-
plosions can also be followed by sustained eruption columns which produce tephra
fallout (e.g. [91]).
Likewise, the input of pyroclastic material, as a result of tephra-fallout and PDC
deposition, into the drainage basins and catchments surrounding the volcano al-
ters the hydrogeological equilibrium at the local to regional scales (e.g. [92, 93]).
This causes an increase in the frequency and magnitude of lahars from years to
decades after the end of the eruption (e.g. [94, 95]).

Volcanic multi-hazard assessments target the evaluation of such type of hazardous
situations. In some cases, the volcanic multi-hazard assessment may be an inte-
gration of field-based hazard assessments (sometimes combined with physical sim-
ulations) performed for several hazardous processes and integrated into a single
map (e.g. [18, 20, 96], http://www.sernageomin.cl/volcanes-mapas.php). Other
studies have produced semi-quantitative multi-hazard assessments by applying
the information extracted from the eruptive history of the volcano(es) to rank and
combine: (i) the likelihood (or return period) of different volcanic hazardous pro-
cesses; (ii) the expected intensity and (iii) areal extent of each hazardous process
(e.g. [97, 98, 99]).
Some research has also been done to compute probabilistic multi-hazard assess-
ments but the hazardous processes are nonetheless analyzed independently of each
other (e.g. [100]). Finally, in the case of lahars, some works have looked into the
sequential nature of the hazardous processes: [101] simulate lahar propagation, at
some areas likely to generate lahars, using the spatial distribution for the accumu-
lation of tephra fallout as the input for the lahar volumes.

http://www.sernageomin.cl/volcanes-mapas.php
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It is clear that multi-hazard assessments are more realistic than single-hazard
assessments as they resemble more the actual behavior of explosive volcanoes.
However, there is still the big challenge of properly accounting (in a probabilistic
framework, ideally) for the cascade effects, common not only in volcanic hazards
but, more generally, in natural hazards (e.g. [102]).

1.3 Contents and aims of this PhD

This thesis dissertation is conceived as an attempt to improve probabilistic hazard
assessments of PDCs and lahars, the latter in a Probabilistic Volcanic Multi-
Hazard Assesment (PVMHA) perspective. We adopt the definition of volcanic
hazard proposed by [21, 49] and pursue two major specific goals:

1. Explore different combinations of physical and statistical models to quantify
uncertainty in volcanic hazards, in particular of PDCs and lahars

2. Compute PVHA of these hazardous processes at the city of Napoli and its
surroundings (Italy)

In Chapter 2, we describe the main physical features of the principal, and most
common, hazardous processes associated with explosive eruptions: tephra fallout,
PDCs and lahars.

In Chapter 3, we introduce the geographical and volcanological setting of the study
area: the city of Napoli and surroundings, and summarize the main eruptive his-
tory and behavior of the two main volcanic systems in the area: Somma-Vesuvius
and Campi Flegrei.

In Chapter 4, we detail the methods utilized in the PhD which basically consist of:
(1) physical models of PDCs (Energy Cone and Titan2D) and lahars (LaharFlow);
and (2) statistical models to quantify uncertainty, also known as uncertainty quan-
tification techniques (Monte Carlo sampling -MC-, Polynomial Chaos Quadrature
-PCQ-, Bayesian Event Tree for Volcanic Hazard -BET_VH-, and Bayesian Belief
Networks -BBNs-).

In Chapter 5, we develop and carry out validation tests of the Energy Cone model
at Somma-Vesuvius and Campi Flegrei in order to check for the suitability of
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this simple PDC model to compute PVHA of PDCs. To do so, we quantify and
propagate aleatory uncertainty through Monte Carlo sampling techniques and use
past PDC deposits at the two volcanoes to assess the performance of the Energy
Cone. The results from this study have been published in Bulletin of Volcanology
[103].

In Chapter 6, we perform a detailed quantitative analysis of four different sources
of epistemic uncertainty associated with PDC modeling at Somma-Vesuvius, using
the Energy Cone model in conjunction with Monte Carlo sampling. The results
from this study have been published in the AGU Geopysical Monograph Series
volume 223 [104].

In Chapter 7, we use the data and insights obtained from Chapters 3 and 4 to
compute an innovative type of PVHA: following the praxis utilized in probabilistic
seismic hazard, we calculate a multi-source (Somma-Vesuvius and Campi Flegrei)
site-specific (the city of Napoli and surroundings) PVHA of PDC arrival. We do
so for both dense and dilute PDCs by combining Energy Cone simulations, Monte
Carlo sampling and BET_VH. The results from this study will be submitted to
an international journal soon [105].

In Chapter 8, we utilize a different PDC model, Titan2D, in conjunction with
PCQ and BET_VH, to compute a single-source (Somma-Vesuvius) site-specific
PVHA for dense PDCs. We are able to produce hazard curves for flow depth and
speed of dense PDCs. These curves can be very informative to quantify volcanic
risk associated with dense PDCs around the volcano. Part of the results from this
study were presented at the EGU General Assembly 2014 [106]. The complete
study is aimed at the submission of a paper during the following months [107].
Moreover, a certain percentage of these results was applied to other two papers to
be submitted in the near future: [108] and [109] (see Chapter 9).

In Chapter 9, we propose and apply a methodology to calculate Probabilistic
Volcanic Multi-Hazard Assessment (PVMHA) at Somma-Vesuvius, with focus on
rain-triggered lahars. We use a BBN model to merge probabilistic hazard assess-
ments of tephra fallout and PDCs with information coming from other datasets
and literature data and, finally, we use a physical model of lahars to propagate the
aleatory uncertainty in lahar generation towards the hazard footprints of these
flows. The results from this study will be submitted to the special volume in
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Frontiers in Earth Science: Volcanic hazard assessment: rising to the challenges
of data and model integration [109].

In the end, Chapter 10 summarizes the main findings derived from this PhD
and briefly suggests some future directions in the fields of PVHA of PDCs and
PVHMA.



Chapter 2

Hazardous phenomena related to

explosive volcanism

Three of the main (and most common) hazardous processes that unfold during
explosive eruptions are the following: tephra fallout, Pyroclastic Density Currents
(PDCs) and lahars, the latter being usually a secondary hazardous process, not
produced by the eruption itself but by the interaction between the eruptive prod-
ucts and other external factors (see section 2.3). The following sections summarize
some of the physical features and possible impacts of these hazardous processes.

2.1 Tephra fallout

Likely the most typical characteristic of explosive volcanism is the creation of vol-
canic jets of pyroclasts and gas which exit the volcanic vent at very high speed
(in the order of hundreds of m/s) and reach altitudes up to 40 km, approximately,
during ultra-Plinian eruptions (e.g. [55, 110]). These volcanic jets are known as
eruption columns and are formed by very intense fragmentation of the magma
when it is stretched beyond the limit of its tensile strength (e.g.[5, 111]). This is
driven by feedback effects which involve large increases in viscosity and acceler-
ation of the magma as it is strongly decompressed and volatiles rapidly exsolve
during the very last stages of magma ascent towards the surface (e.g. [112, 113]).
The mixture of pyroclasts and gas that forms the eruption column is clearly denser
that the atmosphere when it exits the volcanic vent (a basaltic -mafic- rock has

16
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densities around 2,800-3,000 g/cm3 while an andesitic -intermediate- rock has den-
sities about 2,500-2,800 g/cm3). As the eruption column rises, it loses a great deal
of momentum in its lowermost part but it also starts entraining some of the sur-
rounding air which is then heated up and helps reduce the density of the pyroclast-
gas mixture (Fig. 2.1). The lowermost region of the eruption column, which is
dominated by the inertial forces induced by the exit velocity of the mixture, is
known as gas-thrust region (e.g. [4, 114]). Its extent is minor compared to the
total height of the eruption column: its height can be roughly estimated to be
10% of the total eruption column (e.g. [110]). Beyond the top of the gas-thrust
region, the mixture has been able to entrain a quantity of surrounding air which
is high enough for the eruption column to become less dense than the atmosphere
and to rise under the main influence of thermal buoyancy (e.g. [110, 114]). This
region is called convective region and, along it, the ascent velocity may increase
significantly in comparison with the velocity at the zone of transition between the
gas-thrust and the convective regions (e.g. [115]). Finally, the eruption column
rises up to a point in which, due to the cooling of the mixture, it becomes as
dense as the surrounding air and it spreads out laterally, being transported by the
prevailing winds at the altitude at which this second transition occurs (Fig. 2.1).
This uppermost region of the eruption column is called the umbrella region (e.g.
[114]).

Tephra fallout is the physical process by which the remaining pyroclasts in the
umbrella region of the eruption column are transported by the wind and fall out
of the mixture onto the ground under gravity and according to, principally, the
terminal fall (or settling) velocity of each pyroclast, which mainly depends upon
size, shape and density of the particle (e.g. [117]). That is, if the vertical drag
exerted, on a given particle, is not high enough to balance the force of gravity, the
pyroclast will leave the current and fall onto the ground (e.g. [118, 119]).
The volcanic hazard associated with tephra fallout can be complex. During
transport, airborne tephra can severely damage the engines of aircrafts which
fly through the volcanic plume because of the vitrifying effect that volcanic ash
can produce on the nozzle guide vanes and the turbine blades (e.g. [120]). The
most direct consequence of this hazardous process is the accumulation of tephra
(i.e. pyroclastic particulated material) over the proximal, medial and distal/very-
distal areas from the volcanic source depending on the size of the specific eruption
(and, therefore, depending on the height of the eruption column, the mass of the
erupted material, and so on). Primarily, this accumulation can cause the collapse



Chapter 2. Hazardous phenomena 18

Figure 2.1: Simplified scheme of the vertical rise of an eruption column. The
three main regions within the column (gas-thrust, convective and umbrella) are
indicated. On the right, the profiles of the density and vertical velocity of the
column as a function of height above the vent are shown. Note that the velocity
profile may be different in the case of strong plumes (e.g. high MER) or if the
exit velocity is not high enough to avoid a sharper drop in velocity along the
gas-thrust zone before reaching buoyancy (e.g. [115, 116]). Modified from [114].

of the roofs of buildings surrounding the volcano, especially if the tephra is wet
(e.g. [121]). In addition, the tephra cover (from milimetres up to several meters)
strongly disturbs the vegetation of the area from grass and shrubs up to big trees
which can see their foliage covered in ash (fine tephra), thus hindering or even pre-
cluding their photosynthesis activity (e.g. [122]). Similarly, toxic elements such
as Cl, F or As, common in volcanic tephra, can represent a serious health threat
to cattle but also to humans if aquifers used for drinking water are affected by
leaching of these tephra layers (e.g. [123]).

2.2 Pyroclastic Density Currents (PDCs)

Pyroclastic Density Currents (PDCs) are ground-hugging mixtures of hot gas and
pyroclasts that travel at moderate to very high speed along the surrounding areas
of erupting volcanoes (e.g. [6, 9, 35, 124]). Even though the internal structure of a
PDC cannot be directly seen, according to visual observations of PDC propagation
and to the study of their deposits, PDCs are composed of two main layers (Fig.
2.2) which define a gradient in density and velocity from their lower/basal part
(denser and tendentially slower) to their upper part (less dense -dilute- and faster,
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e.g. [9, 125, 126]). These differences between the basal and upper part of PDCs are
reflected into the dominating transport mechanisms over the whole current (e.g.
[80]): in the basal part, particles are transported by traction and frictional behavior
dominates; while, in the upper part, particles are transported by suspesion or
saltation and turbulent behavior dominates (e.g. [124]). This marked difference
in transport dynamics is of paramount importance to the modeling of PDCs as it
is detailed in Chapter 2.

Figure 2.2: Simplified scheme of the structure of a PDC formed by intermittent
column collapse (basal dense and upper dilute parts are highlighted in blue;
modified from www.bgs.ac.uk). In the zoomed green inset, a more detailed
scheme of the internal structure is given: an exchange of particles occurs between
the deposit and the upper turbulent parts of the PDC, via the flow-boundary
zone [35], which is the lower part of the PDC where deposition is promoted. Ren:
rate of re-entrainment of particles in the flow; Rel: rate of elutration (i.e. escape)
of particles from the flow-boundary zone; Rs: rate of supply of particles from
the upper part of the flow into the flow-boundary zone; Rd: rate of deposition

from the flow-boundary zone into the deposit (modified from [124]).

PDCs are generated typically at explosive volcanoes but they can occur without
necessarily requiring an explosive eruption. In fact, the mechanisms that lead to
the generation of PDCs are quite varied (Fig. 2.3, e.g. [6, 124]). A somehow
general classification of PDCs, by mechanism, can be the following:

1. PDCs generated by the collapse of an eruption column, commonly known
as pumice flows. The (total) collapse of the eruption column occurs when
the volcanic mixture is not able to entrain enough air as to become lighter
than the surrounding atmosphere; in this case, the drop in upwards velocity
goes all the way down to zero and the mixture collapses to the ground (e.g.
[116, 127]).

www.bgs.ac.uk
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Pumice flows can result from continuous collapses (boiling-over), partial or
total (intermittent) collapses or even radial collapses, when there is an im-
portant lateral component in their initiation (e.g. [6, 124, 128]). The latter
are usually produced during phreatomagmatic explosions (i.e. there is ef-
ficient interaction between magma and water, e.g. [10]) and are known as
base-surges (e.g. [129]).

2. PDCs generated from the disruption of a lava dome, commonly known as
Block-And-Ash Flows (BAFs): they can be subdivided into Merapi-type
BAFs, caused by gravitational collapse of the lava dome and Soufrière-type
BAFs, triggered by a dome explosion (e.g. [41]).

3. PDCs generated as a consequence of the gravitational failure of part of the
volcanic edifice, usually referred to as lateral blasts (e.g. [130]).

4. PDCs generated by caldera collapse, commonly known as ignimbrites (e.g.
[35]).

Each mechanism of PDC generation leads to PDCs with certain characteristics
which differentiate them from other types of PDCs. One of the characteristics
that has received a great deal of attention is the PDC mobility (e.g. [9, 124, 129,
131], that is, the ability of PDCs to propagate for long distances and surmount
topographic barriers. A simple definition of mobility is the ratio between the
total difference in height between the initiation and the stopping point of the
PDCs, ∆H, and the maximum distance reached by them, L (e.g. atanφ = ∆H/L

[129, 132], more details are given in Chapter 4), in a way that the more mobile
the PDC, the smaller the value of ∆H/L (i.e. the longer it is able to propagate,
for a given value of ∆H).
This PDC mobility has often been linked to the partition between dense and dilute
members inside a given type of PDC [133, 134, 135, 136, 137, 138]. Thus, for a
given flux of material occurring at a PDC, dilute PDCs are expected to travel
further (and be more mobile) than dense PDCs because the particles transported
by saltation and suspension will take longer to segregate towards the base of the
current (and the deposition zone) and the whole current will take longer to come
to rest (e.g. [124, 133, 139]). This is a simplified picture though, since entraining
of air at the head of the PDC (e.g. [80, 140]) can induce a decrease in density large
enough to make the whole dilute PDC to become lighter than the surrounding air
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and lift, forming what it is known as coignimbrite plumes (e.g. [141, 142, 143]),
and causing the PDC to stop.

Coming back to the mechanism-type of PDCs, pumice flows formed by vertical
column collapses usually have both dense and dilute members well-developed.
Mobility can be greatly influenced by the amount of material (or mass) that par-
ticipates in the column collapse (e.g. [44]) and/or by the continuous/intermittent
nature of the column collapse (e.g. [144]). In contrast, base-surges tend to be
dominated by the dilute member altough they also have thin, subordinated dense-
basal parts (e.g. [139]). Their mobilities tend to be relatively high (e.g. [137]),
in part aided by the initial lateral momentum produced during phreatomagmatic
explosions (e.g. [10, 128]). BAFs are characterized by an important dense compo-
nent but significant secondary dilute PDCs (or ash surges) can be derived from the
main PDC when BAFs interact with topography (e.g. [91, 145]). The mobilities of
BAFs tend to be similar to, sometimes smaller than, pumice flows, e.g. [136, 138])
although the ash surge can significantly outrun its parent dense-dominanted PDC
(e.g. [145]). Lateral blasts are very-energetic PDCs and, although a large pro-
portion of the area covered by their deposits may be dilute-like (e.g. [130]), they
also have an important part of their volumes transported as more dense-like PDCs
(e.g. [130, 141]). Their mobilities tend to be quite elevated, especially because
of the strong directionality and energy of the blast (e.g. [130, 132]). Finally, ig-
nimbrites are characterized by depositing extremely huge amounts of pyroclastic
material and traveling for tens of kilometers away from the vent (e.g. [9, 35])
so their mobilities are huge (e.g. [135]). There is still debate about the nature
and behavior of ignimbrites (e.g. [124] and references therein), since the facies
and spatial distribution of the deposits of some ignimbrites may resemble those
of PDCs (with both dense and dilute members occurring), only that the volumes,
areas, distances traveled, etc. are gigantic. However, there are other examples
of ignimbrites which point to dense-like (maybe low-mobility) flows which, even
though they may have propagated over almost flat topographies, they were able to
maintain lateral motion for many kilometers away from the vent (e.g. [146, 147]).
A slow-motion, long-lasting and very-large flux of material from the ring faults of
the collapsed caldera (lava-flow model) is proposed by some authors to explain the
emplacement mechanism of such very-thick, massive deposits of some ignimbrites
[124].

Another classification of PDCs, based on the macroscale propagation mechanism
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Figure 2.3: Worldwide examples of mechanisms of PDC generation (taken
from [124]): (a) gravitational collapse of a lava dome at Soufrière Hills vol-
cano, Montserrat; (b) column-collapse PDCs formed during the 1984 eruption
at Mayon volcano, Philippines; (c) lava-dome explosion at Soufrière Hills vol-
cano, Montserrat; (d) base-surge generated from a phreatomagmatic eruption
at Capelinhos, Azores; (e) lateral blast triggered by the gravitational failure
of part of the volcanic edifice of Mount Saint Helens volcano, USA, in 1980;
(f) continuous column collapse from an eruption offshore of Tonga island; (g)
boiling-over (upwelling and continuous collapse) PDCs formed during the same

eruption offshore Tonga island.
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that dominates the PDC (instead of using the particle concentration and trans-
port), has been proposed by [148]. This classification focuses on the interaction
with topography and divides PDCs into two main types (either they might be
dense or dilute): forced convection-dominated flows and inertia-dominated flows.
The former are characteristic of quasi-steadily fed PDCs (e.g. ignimbrites and
boiling-over events), lateral blasts or PDCs strongly controlled by gravity (e.g.
along steep flanks of stratovolcanoes, [148]). The latter are governed by their own
inertia and may be more able to surmount topographic features. In reality, the
two end-members can develop within the same flow (e.g. [149]) or can evolve from
one to the other in a complex fashion during the transport and emplacement of
PDCs (e.g. [150]).
Indeed, the interaction of PDCs with topography is a very complex aspect of PDC
propagation, besides one of the most crucial for hazard assessment purposes (e.g.
[91, 125]). As introduced above, not only does topography influence the prop-
agation of PDCs and which types of PDCs will form after the interaction; but
also the type of PDC that encounters a specific topographic structure (a narrow
channel, a break in slope, a vertical barrier, etc.) will deeply change the typol-
ogy of PDC that unfolds after the PDC and the structure have interacted (e.g.
[28, 124, 125, 149, 150, 151, 152]).

Regarding volcanic hazard, PDC are among the most hazardous processes that
are produced by volcanic systems worldwide. Their destructive potential, both in
terms of structural damage (e.g. [153, 154]) and threat to human life (e.g. [155]),
is huge. This is due to several factors such as their very high speed (up to hundreds
of m/s), hot temperatures (sometimes well above 200◦C, [156]), the presence of
toxic gases (e.g. [155]) and the lethal concentration of particles of mixed grain size
(from microns up to several meters). During the last 400 years, PDCs have been
responsible for the largest number of fatalities related to volcanic eruptions (≈
100,000 lives, 33% of all fatalities, [157]). Among the most devastating events, we
recall Mount Pelée 1902, Martinique [158]; Mount Lamington 1951, Papua New
Guinea [159]; and El Chichón 1982, Mexico [160].

2.3 Lahars

Volcanic mudflows, commonly known by the Javanese word lahar, are volcani-
clastic water-sediment flows with a particle-volume concentration greater than
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10% (e.g. [161]). They tend to be divided into hyperconcentrated flows, if the
particle-volume concentration is in between 10 and 50%, and debris flows, if the
particle-volume concentration is above 50%.

Figure 2.4: Two examples of the very high capacity of sediment transport and
deposition that lahars can display: (a)-(b), 7 meters of aggradation (vertical
accumulation of deposit), during a 3-month span, on the Boyong River, near
Mount Merapi (Indonesia); (c)-(d), almost 9 meters of sediment deposited by
a single lahar event on the Bamban River, Mount Pinatubo (Philippines); note

the roof of the two houses. Modified from [92].

Lahars are formed in volcanic environments when four main controlling factors
are present (e.g. [161, 162]): (1) a source of water; (2) easily erodible/entrained
material; (3) steep slopes; and (4) a triggering mechanism. The source of water
can be in the form of intense and/or sustained rainfall events (e.g. [163, 164, 165]),
melted ice from glaciers capping the volcano (e.g. [166, 167]), or water released
as the result of the breakout of, usually, a volcanic lake (e.g. [168]). The eas-
ily erodible/entrained material is typically pyroclastic material produced during
recent explosive eruptions at the volcano and it is composed of tephra fallout
and PDC deposits, principally (e.g. [90, 92, 169, 170]). However, debris flows
can be triggered on pyroclastic soils even after more than 300 yr after the last
significant input of pyroclastic material, as the infamous event of Sarno-Quindici
(Italy) showed (e.g. [171, 172]). Steep slopes are almost guaranteed at many
stratovolcanoes (due to the shape of these volcanic edifices), but they can also
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characterize nearby topographic reliefs (e.g. [173, 174, 175]). Finally, the trigger-
ing mechanisms can be largely divided into: (a) efficient erosion due to significant
surficial runoff (e.g. [92, 164, 176]); and (b) shallow-landsliding caused by wa-
ter infiltration and a critical increase in pore pressure within the deposit (e.g.
[162, 170, 177, 178]). The former may be typical of tropical volcanoes, where high
rainfall intensities promote an efficient erosive runoff (e.g. [163, 179]), while the
latter may be more characteristics of volcanoes located on temperate climates,
where moderate-intensity rainfalls favor the built of pore-pressure that may gen-
erate the shallow landslides (e.g. [162, 170]).

During propagation, lahars only reach moderate speeds (up to few tens of m/s,
[180, 181, 182]) but their high densities (above 1,400 g/cm3, e.g. [183]) and vis-
cosities, large sediment yields (Fig. 2.4, e.g. [90, 92]) and very long runouts (in
the order of several km up to more than 100 km from the source, e.g. [166, 184]),
make them an extremely serious hazard (e.g. [181, 185]). In fact, during the last
four centuries, the number of fatalities caused by lahars is overcome only by that
due to PDCs, indirect processes (e.g. starvation) and tsunamis [157]. When the
largest volcanic disasters (including the tragedy at Nevado del Ruiz, Colombia,
in 1985, when lahars hit the city of Armero, claiming more than 23,000 lives,
e.g. [166]) are removed from the dataset, lahars become the second-most deadly
volcanic phenomenon, only behind PDCs [157].
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Neapolitan volcanoes

The city of Napoli (∼ 1M inhabitants), in Southern Italy, partially lies inside the
active Campi Flegrei caldera and it is surrounded by two other active volcanic
systems: Somma-Vesuvius and Ischia (Fig. 3.1). Ischia island, located towards
the SW from Campi Flegrei, is a resurgent caldera [186] which has shown eruptive
patterns characterized by long periods of quiescence alternated with periods of
intense volcanic activity around 55-33 ka BP, 28-18 ka BP and 10 ka BP. The
last eruption at the system occurred in 1302 AD [187]. Even though the eruptive
behavior at Ischia tends to be explosive, with generation of base-surges (e.g. [187]),
these PDCs would need to travel considerable distances over water before reaching
the city of Napoli and its surroundings.
The focus of this thesis dissertation is on Campi Flegrei and Somma-Vesuvius
because: (1) they are situated within the city of Napoli or quite close from it;
(2) they are capable of producing (large) explosive eruptions whose PDCs may
affect Napoli and its surroundings (e.g. [25, 26]); (3) they are able to produce
secondary hazarddous processes such as lahars (e.g. [170]); and (4) the present
state of volcanic unrest at Campi Flegrei (e.g. [188]) urges hazard scientists to
produce quantitative hazard assessments (e.g. [33]) that can be useful for civil
protection agencies.

Somma-Vesuvius and Campi Flegrei are two volcanic systems located on the Cam-
panian plain, a Plio-Pleistocene graben structure formed by regional NW-SE and
NE-SW trending normal faults and related to the extension produced during the
opening of the Tyrrhenian sea [189]. Although they are located close to one an-
other, each system is independent in terms of geochemistry of magmas involved,

26
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vent-opening patterns, eruption dynamics and, as a result, in the types of PDCs
generated (e.g. [25, 37, 89, 190, 191, 192]). A summary of some physical param-
eters inferred from the 24 explosive eruptions (6 at Somma-Vesuvius and 18 at
Campi Flegrei) analyzed in Chapter 5 is given in Table 3.1.

3.1 Somma-Vesuvius

Somma-Vesuvius is a ∼1300 m-high stratovolcano located about 15 km away from
the city of Napoli. Its main volcanic edifice has been built and destroyed several
times during the last 20 kyr of volcanic activity [89, 196]. The complex eruptive
history has produced a landscape where several topographic remnants of collapsed
volcanic edifices are still recognizable, the most evident being Mt Somma [196],
north of Vesuvius’ cone. The latter has been shaped through the last 1.5 kyr,
since the sub-Plinian Pollena eruption (472 AD, [144]). During the last 20 kyr,
the volcanic activity at Somma-Vesuvius has been punctuated by large Plinian
eruptions, with variable inter-Plinian intervals, alternated with sub-Plinian erup-
tions and also periods of open-conduit volcanism [89].

This pattern in eruption behavior began with the Pomici di Base eruption (20.5 cal.
ka, [197]) and it is considered that the expected present evolution of the system,
and therefore analysis of its hazards, should be assessed using the information
gathered from the last 20 kyr [89]. Along this thesis dissertation, we follow a
magnitude-based classification (e.g. [195]) for the possible eruption sizes expected
in future eruptions at Somma-Vesuvius which, given the current repose of more
than 70 years, are thought to be energetic enough to re-open the Somma-Vesuvius
conduit (e.g. [61]). Therefore, we deal with three eruption sizes and explore the
aleatory uncertainty within each of them: small size (comparable to the 1944
AD eruption), medium size (comparable to the Pollena eruption), and large size
(comparable to the Pompeii eruption).

In terms of PDCs, the explosive eruptions at Somma-Vesuvius have generated
dense and dilute PDCs as a result of transient eruption-column collapses, continu-
ous collapses (pyroclastic fountaining) or very energetic phreato-magmatic explo-
sions (e.g. [89]). The expected PDCs to occur during medium and large eruptions
(Plinian and sub-Plinian I in the classification of [89]) consist of more or less ra-
dial PDCs produced by partial and total column collapses, pyroclastic fountaning
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Figure 3.1: Geographical and volcanological setting of the Neapolitan area.
On top left: map of South-Central Europe with Italy located in the middle of the
map. The yellow square denotes the boundaries of the main image where differ-
ent key locations are identified. The city of Napoli stands on or is surrounded by
two principal volcanic systems: Campi Flegrei to the west, and Somma-Vesuvius
to the east. The Campanian Plain is the tectonic basin where the two volcanic
systems originated. Some geomorphological highs which limit the Campanian
Plain are the Nola-Sarno Mountains (on the top-right of the map) and the Sor-
rento Peninsula (on bottom-right of the map). Northwards from Vesuvius, a
remnant from previous edifice collapses is present: Mount Somma. A 3D view
from the southwest (Torre del Greco is in the bottom-center of the caption) of
the Somma-Vesuvius’ cone and Mount Somma are shown in the inset on the
bottom left of the figure. Source: Google, DigitalGlobe, December 11, 2014.

From [104].

or phreatomagmatic explosions. In the case of small eruptions (sub-Plinian II
and violent Strombolian in the classification of [89]), PDC events can vary from
small-volume PDCs formed by column collapse to low-mobility hot avalanches
(e.g. [193]).

Regarding the generation of lahars, the eruptions from Somma-Vesuvius have
produced rain-triggered lahars whether as a result of post-eruption remobiliza-
tion of the tephra deposits accumulated during medium and large eruptions (e.g.
[170, 198]) or during the intervals between eruptions [199, 200]). The former type
of flows generated deposits composed almost completely by tephra coming from
the preceding eruption while the second type of flows produced deposits with a
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mixture of tephra from different eruptions and also parts of the carbonate bedrock
(e.g. [170, 201, 202]).
In the future, it may be expected that explosive eruptions at Somma-Vesuvius
(from small up to large) will deposit a certain amount of pyroclastic material onto
the slopes of the volcanic edifice as well as on the Apenninic reliefs towards the
northeast, east and southeast of Somma-Vesuvius [26, 196]). Under this situation,
tephra may be initially remobilized mainly by erosive runoff of the fine-grained
upper-part of the deposit and then mainly by shallow gravitational failures as the
coarser-grained underlying deposit is exposed (e.g. [170]).

3.2 Campi Flegrei

Campi Flegrei lies west of Somma-Vesuvius and is a nested caldera complex (Fig.
3.1) built mainly after two large eruptions at ∼39 ka (Campanian Ignimbrite, CI,
eruption; [203] and references therein) and ∼15 ka (Neapolitan Yellow Tuff, NYT,
eruption; [204] and references therein). After the latter, eruption occurrence has
followed diverse spatial-temporal trends. Spatially, regional normal faults have
tended to control the vent-opening pattern [25, 205, 206] while, temporally, vol-
canic events have clustered in three main epochs [25, 191]: epoch I (15-9.5 ka),
epoch II (8.6-8.2 ka) and epoch III (4.8-3.8 ka).
During the first two epochs, the volcanic vents were located almost exclusively
along the marginal faults associated with caldera collapse during the NYT erup-
tion. Between epochs II and III, however, caldera resurgence led to strong uplift
of the central sector of the caldera floor (La Starza block, [37]) and conditioned
the vent-opening locations during epoch III, which mainly clustered over the NE
sector of the NYT caldera floor [25]. Although some recent studies have also con-
sidered the both epochs I and II in their hazard analysis [33, 206], here we focus
on information extracted from the last 5 kyr of volcanic activity, as did [25, 195]
and [72]. This is based on the assumption that future behavior of the caldera
system will be linked to the stress regime and deformation pattern established
after uplift of the La Starza block and before the onset of epoch III of volcanic
activity. The spatial distribution of volcanic vents during epoch III, as well as
the present-day geothermal manifestations and the dynamics of recent episodes of
unrest (e.g. [188, 207, 208]) are compatible with the tectonic model presented by
[25].
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Similarly to what proposed at Somma-Vesuvius, we use a magnitude-based clas-
sification of the explosive eruptions possible at Campi Flegrei (e.g. [195]) and
explore three eruption sizes: small (comparable to Averno 2 eruption), medium
(comparable to Astroni 6 eruption) and large (comparable to Agnano-Monte Spina
eruption).

PDC generation at Campi Flegrei is strongly affected by the existence of well-
established aquifers along a mature hydrothermal system (e.g. [209]), which has
led to the generation of moderately to highly mobile pyroclastic surges (e.g. [25]).
We focus on the eruptive behavior related to the III epoch of volcanic activity at
Campi Flegrei (after [195]) and, thus, we do not consider the formation of very
large ignimbrites, like the NYT or the CI, similarly to what has been recently done
by [33] in their PDC hazard assessment.
The base surges expected to occur at Campi Flegrei may have moderate to high
mobilities, similar to that associated with surges at other volcanic systems (e.g.
[137]), and in approximate correspondence to their total volumes (e.g. [131]).



Chapter 4

Physical and statistical modeling of

uncertainty in volcanic hazards

Uncertainty is pervasive in volcanic hazards so its quantification has become a
major goal for volcanic hazard assessments of any kind of hazardous process (e.g.
[21, 33, 49, 70, 101, 210, 211]). As previously discussed, not only does the natural
variability of the process (i.e. aleatory uncertainty) affect the hazard assessment
but also different sources of incomplete knowledge (i.e. epistemic uncertainty)
have a major impact on the final assessment (e.g. [53, 54]). The quantification
of these (large) uncertainties is extremely challenging and there might be several
strategies to achieve this goal (e.g. [83]).
We choose probability as the way to quantify uncertainty because of the reasons
related in Chapter 1. In the probabilistic view to uncertainty quantification, the
hazard analyst commonly needs to (e.g. [83]): (1) define the spatial and/or tem-
poral domain over which the hazard is quantified (the hazard domain); (2) define
the set of events that are possible according to, for instance, the eruptive history
of the volcano of interest (or that of analog volcanoes); (3) assign probabilities
to all the hazard events defined in (2); and (4) propagate the hazard events into
hazard outcomes. For us, the hazard domain is only spatial because we model
hazard events that do not overlap in time. Therefore, the distinction between
hazard event and outcome proposed by [83] is not relevant for our general model-
ing strategy. Altough such a strategy is a simplification of the complex temporal
evolution of real eruptions (e.g. [3]), it still is the state of the art in volcanic
hazard assessments (e.g. [31, 33, 54, 70]). Thus, we describe a hazard event as the
features of the onset of the hazardous process, for example: PDCs triggered from

32
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a collapse height of 1 km and that have a mobility of φ = 15◦ (see section 4.1.1).
The hazard outcome is seen as the result of the hazard event, e.g. PDCs invade
a specific point over the hazard domain. In summary, our hazard events can be
interpreted as hazard outcomes of one single hazard event in [83] and our hazard
outcomes can be viewed as realizations of the footprint function in [83], which we
call hazard footprints. The footprint function is a tool that “imprints” the hazard
event into the hazard domain and, thus, it produces a hazard outcome (or hazard
footprint).

Commonly, the footprint function is a deterministic physical model of the haz-
ardous process. The complicated part of the probabilistic volcanic hazard assess-
ment is that the number of possible hazard events tends to be huge. Ensuring
that the uncertainty quantified in step (3) above (usually by means of probability
density function(s), PDF) is propagated into the hazard footprints of the phys-
ical process is the core of probabilistic hazard assessments. This procedure has
a computational cost that depends on: (a) how fast the physical model (or foot-
print function) is; and (b) how many hazard footprints are needed to ensure that
uncertainty has been propagated in a robust manner (e.g. [82]). Unfortunately,
the fastest simulators are also the simplest (see Chapter 1). Similarly, uncertainty
quantification techniques, UQT1 that are easily implemented tend to be the ones
that are less efficient, i.e. a higher number of physical-model runs are required to
properly quantify uncertainty.

In this dissertation, we explore several combinations of physical models and UQTs
that allow to compute probabilistic volcanic hazard of PDCs and lahars. In par-
ticular, the fastest physical model, Energy Cone (see subsection 4.1.1) is coupled
with the least-efficient UQT, Monte Carlo sampling (see subsection 4.2.1); while a
more sophisticated (but slower) physical model, Titan2D (see subsection 4.1.2), is
coupled with a more-efficient UQT, Polynomial Chaos Quadrature (see subsection
4.2.2). The results derived from these hazard analyses are input into a versatile
UQT, Bayesian Event Tree for Volcanic Hazard (see subsection 4.2.3), that per-
mits the merging of probabilities of, say, PDC arrival with probabilities of eruption
size or location at the volcanic system of interest. Likewise, another flexible UQT,
Bayesian Belief Network (see subsection 4.2.4), allows us to combine probabilistic
hazard assessments of tephra fallout and PDCs with other information to provide

1Along this dissertation, we also refer to them, more generally, as “statistical models”.
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probabilities for the occurrence and volume and rain-triggered lahars. The compu-
tation of the hazard footprints for these lahars is done through a dynamic physical
model called LaharFlow (see subsection 4.1.3). Along this chapter, we summarize
the main features of the 3 physical models and 4 UQTs aforementioned.

4.1 Physical models

4.1.1 Energy Cone model

The Energy Cone model (EC, [132]) is an analytical model based upon a simplified
formulation of the energy conservation equation that can be derived from the
Bernoulli’s equation (e.g. [134]). The model assumes that PDCs have an initial
potential energy expressed as the height above sea level (a.s.l.) from which they
are generated. Thus, PDCs can be triggered at the top of the volcano (located at
a height Hv a.s.l.): for instance, in the case of a lava-dome collapse or explosion
(see Chapter 2); or they can form because of a collapse of the eruption column
from a given height H0 (above Hv). According to the model, the potential energy
is converted into kinetic energy as the pyroclastic mixture (PDC) flows over the
ground and travels away from the vent. During PDC motion, kinetic energy is
dissipated by effective friction with the ground. PDCs are assumed to behave as
a gravity-driven, cohesionless suspension of particles and gas with mass remaining
constant [129]. Under these assumptions, the energy loss is simplified into a linear
decay with distance, i.e. the Energy Line [212]:

[(Hv +H0)− h(x)] · g = 1/2 · v2(x) + gx · tanφ (4.1)

where h(x) is the topographic height at distance x from the vent, g is the accelera-
tion of gravity, v(x) is the velocity of the PDC at distance x, and tanφ denotes the
equivalent coefficient of friction: a bulk measure of the PDCs resistance to flow
or, in other words, the PDC mobility (the smaller φ, the more mobile the PDCs).

Along a given direction, PDCs terminate when all energy has been dissipated, i.e.
when the Energy Line cuts the topographic surface (Fig. 4.1). At the point where
the flow stops (xstop), located at a horizontal distance from the vent equal to L
and at a height, h(xstop) = Hstop, we have:
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v2(xstop) = 0 =⇒ (Hv +H0)−Hstop = L · tanφ

=⇒ ∆H/L = tanφ (4.2)

Note that L is the PDC runout in a given direction, and so the Maximum Runout
(MR) is equal to max(L) among all the simulated azimuths. Equation 4.2 has been
typically used to calculate the mobility of PDCs formed during a given eruption by
measuring L on the deposits preserved from the eruption and giving an estimation
of ∆H (e.g. [131, 213, 214]).

Figure 4.1: The Energy Line concept. PDC transport is dependent on the
initial collapse height above the vent, H0 (in the picture coincident with the top
of the gas-thrust region: ∼ 0.1HT -not to scale-; where HT is the total eruption
column height, above the vent) and the angle between the Energy Line and the
horizontal (φ), a proxy for the PDC mobility. PDC runout is denoted by L. Hv:
altitude of the volcanic vent (a.s.l.); HS : altitude of the stopping point (a.s.l.);

DeltaH = (H0 +Hv)−HS . From [103], after [215].

Regarding PDC modeling, EC was first presented by [132] who applied a 3D
extrapolation of the Energy Line concept to the lateral blast produced during
the 1980 eruption at Mt Saint Helens, USA. The Energy Line concept had been
previously applied to model a phreatically originated block-and-ash flow at La
Soufrière, Guadeloupe [216] and, since then, EC has been utilized to simulate
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diverse types of PDCs, ranging from surges to phreatic explosions and including
both column collapse and dome collapse processes (e.g. [41, 136, 137, 217]).
Nevertheless, the application of the EC model (based on a balance of energies) is
expected to be more appropriate for dense PDCs, for which this energy balance
better predicts the distribution of the PDC deposit [124]. According to the PDC
classification of [148] (see Chapter 2), EC applies better to forced convection-
dominated PDCs although some effects derived from inertia-dominated PDCs (e.g.
riding over topography) may be captured when the EC is used in a stochastic
manner (e.g. [104], see Chapters 5, 6). Additionally, the application of the EC
model to strongly channelized PDCs can be inadequate.

In this dissertation, we apply EC to Somma-Vesuvius and Campi Flegrei (Italy),
two volcanoes for which the channelization problem should not be an issue, due to
the high frequency of radially dispersed PDCs in their eruptive records (see Table
3.1, Chapter 3). Our way of applying the EC model is founded on the exploration
of the model-parameter space (basically the parameters H0 and φ), by means of
Monte Carlo sampling (see subsection 4.2.1), in order to quantify aleatory and
epistemic uncertainty linked to the modeling of PDCs via the EC model. We
select this model because: (1) it is the simplest PDC model that can simulate, in
principle, both dense and dilute PDCs; (2) its use has been widespread; (3) its
computational time is very short (seconds to minutes per run); and (4) it can be
run over a Digital Elevation Model (DEM). The first point is quite relevant since
probabilistic hazard assessments of PDCs so far have utilized PDC models which
can only deal with dense (e.g. Titan2D, [23, 31, 82]) or dilute PDCs (e.g. Box
Model, [33]). Also point (4) is crucial because, among the aforementioned PDC
models, the Box Model has not been yet implemented to run over real topography
(e.g. a DEM, [33]), and the Titan2D has been demonstrated to be quite sensitive to
the characteristics (e.g. horizontal resolution, vertical errors) of the DEM product
used to run the model (e.g. [84, 85, 180]). On the contrary, the EC model
does not seem to be much affected by the DEM utilized, at least in terms of
horizontal resolution [104] (see Chapter 6). Nonetheless, before applying EC to
compute probabilistic volcanic hazard of PDCs (see Chapter 7), we develop a
robust procedure to test the suitability of this PDC model for this purpose [103],
as related in Chapter 5.
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4.1.2 Titan2D

The Titan2D model [218] is a numerical simulator initially conceived to simulate
dry avalanches on volcanic environments. The model calculates the propagation of
an incompressible continuum (e.g. a granular flow) that deforms brittly following
a Mohr-Coulomb law [218]. Thus, normal and shear stresses control the loss of
momentum of the flow by means of friction: (1) within the flow (internal friction);
and (2) along the contact surface between the flow and the underlying terrain (bed
or basal friction). The governing equations of Titan2D are derived from the debris
flows equations [219]: a set of depth-averaged, frame-invariant hyperbolic equa-
tions for (fluidized) granular masses propagating over three-dimensional terrain
(e.g. a DEM). Titan2D is based upon the dry limit (i.e. zero pore pressure) of the
debris flow equations of [219]. Moreover, the model assumes that the simulated
flow is very thin as compared to its lateral extension (shallow-layer approximation).

Under these assumptions, the momentum of the granular flow over directions par-
allel to the topographic surface (i.e. x, y; z is the direction normal to this surface)
can be described in terms of the following equation (for the x axis in this case):

∂t(hv̄x) + ∂x

(
hv̄2x +

1

2
kapgzh

2

)
+ ∂y(hv̄xv̄y) =

gxh− hkapsgn(∂v̄x/∂y)∂y(gzh)sinφint −
v̄x√
v̄2x + v̄2y

[
gzh(1 +

v̄x
rxgz

)

]
tanφbed (4.3)

where h is the flow depth; v̄x and v̄y are the depth-averaged velocities on the x
and y axes, respectively, that is (for the x axis):

hv̄x =

∫ s

b

vxdz

h(x, t) = s(x, t)− b(x, t) (4.4)

where s(x, t) denotes the free surface (top) of the granular flow, and b(x, t) denotes
the basal surface, interface between the granular flow and the topography. These
free and basal surfaces are actually functions that evolve in space and time as the
flow propagates [218].
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In equation 4.3: gx and gz are the components of the acceleration of gravity on
the x and z axes, respectively; kap is a variable that serves to define the state of
stress over an element of the flow as active (if the element is elongated) or passive
(if the element is compressed) [218]; sgn is the sign function; rx is the local radius
of curvature (of the topographic surface) along the x axis; and φint, φbed are the
angles of internal and basal (or bed) friction, respectively (see below).
The principal governing equation of the Titan2D model states that: (1) the granu-
lar flow basically acquires momentum due to the force of gravity; (2) the granular
flow loses momentum due to internal friction at a rate that increases with the flow
speed along the x axis (in equation 4.3), the flow depth, the internal friction angle
and with flows that converge or are “compressed” (according to the definition of
kap, [218, 219]); (3) the granular flow loses momentum due to basal (bed) friction
at a rate that increases with the flow speed along the x axis, the difference in
flow speed between the x and y axis, the flow depth, the local curvature of the
topography along the x axis, and the bed friction angle.

We describe the main parameters of Titan2D below. For a more detailed de-
scription of the numerical model see the Titan2D user guide [220]. Instead, for
the parameterization that we implement to model column-collapse dense PDCs at
Somma-Vesuvius see Chapter 8:

• Internal friction angle (φint): it represents the angle of repose (e.g. [221]) of
a pile of (simulated) material that stands on a horizontal surface, that is,
the maximum angle that the conical surface of the pile can form with the
aforementioned surface. It is a property of the material only and it has been
demonstrated to have a limited impact on the Titan2D outputs (e.g. [222]).

• Bed friction angle (φint): it represents the angle that an inclined plane must
reach for a static pile of (simulated) material resting over it to start moving
down the plane. It is a property of both the flow and the underlying surface
(e.g. [41, 82] and its importance has been shown paramount in controlling
the output of the model (e.g. [23, 27, 180, 222]).

• Number of piles (N): the model allows to use one or more piles of material,
each of them with different characteristics, set by the variables described
below. Moreover, the user may select pile sources but also flux sources (e.g.
[27]).
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• Major and minor radii of the pile (R, r): they define the shape of the base of
each pile of material, which can range from a circle (i.e. R = r) to different
types of ellipses, when R 6= r.

• Strike of the major radius (θ): it defines the orientation of each pile as the
angle between the East and the major axis of the pile (measured counter-
clockwise from the East).

• Location of the center of the pile (x, y): it indicates the Universal Transverse
Mercator (UTM) coordinates of the center of the pile.

• Pile height (h0): it denotes the vertical dimension of each pile. Together
with R, r and the shape of the pile, it determines the initial volume of dense
PDCs that is simulated (see below).

• Pile shape: Titan2D can work with elliptic paraboloids or elliptic cylinders
as the pile shapes. The choice of the pile shape affects the calculation of
the total volume (V0) of material present in each pile: V0 = 1

2
πRrh0 for an

elliptic paraboloid and V0 = πRrh0 for an elliptic cylinder.

• Initial speed (v0): it defines whether the simulated dense PDCs have an
initial lateral speed when the simulation starts. Such a feature can be used,
for instance, to model dome-collapse (v0 = 0) and dome-explosion PDCs
(v0 6= 0) differently.

• Initial direction (θv0): it indicates the azimuth for the initial propagation of
dense PDCs as an angle measured counterclockwise from the East.

Titan2D has become very popular among the volcanological community that has
used it, principally, to simulate dense PDCs, in particular Block-And-Ash Flows,
BAFs (e.g. [27, 41, 145, 222, 223, 224, 225]). The reasons for its success are
varied. From the computational point of view, Titan2D gives accurate and precise
solutions of the (adapted) debris flow equations at a reasonable computational cost.
Firstly, the model is written using free software tools and libraries and it runs in
parallel (i.e. the code is executed by multiple processors simultaneously). This can
be exploited at several scales, from that of a multi-core laptop up to that of large-
scale cluster computers. Secondly, the model uses a computational mesh that is
adapted (i.e. refined and unrefined), at each time step of the simulation, according
to two aspects: (1) where the greatest fluxes of material are located; and (2) where
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the local changes in flow depth occur (e.g. at the flow front, [218]). Thirdly, the
model is coupled with a scheme for dynamic load balancing (e.g. [226]) through
which the work given to each processor is evenly distributed as the simulation
proceeds. All these aspects together reduce significantly the computational time
of each run of Titan2D and make it one of the fastest simulators available to model
PDCs (e.g. [227]).

From the volcanological point of view, the greatest advantages of Titan2D are
the following: (1) it provides a detailed physical description of the dense basal
part of PDCs; (2) each model run is typically started from a pile of material, a
setting that resembles the triggering of BAFs; (3) the simulator is user-friendly
enough to be run by a wide variety of hazard analysts, not only by those with
a strong background in computer science. Finally, the Titan2D is a versatile
simulator because of the wide applicability of its governing equations. Thus, some
other studies have applied it to simulate: (i) column-collapse PDCs (e.g. [106],
see Chapter 8); (ii) lahars of different origin (e.g. [228, 229, 230]); (iii) debris
avalanches (e.g. [222, 231]).

Nonetheless, there are also limitations and disadvantages of the Titan2D model for
simulating PDCs and for estimating the probabilistic volcanic hazard associated
with them. First of all, the Titan2D model is only valid for dense PDCs (see
Chapter 2). This excludes its application to volcanoes (like Campi Flegrei, Italy,
e.g. [25, 37]) or to eruptions (like the Avellino eruption at Somma-Vesuvius, Italy,
e.g. [232]) characterized by generating predominantly-dilute PDCs. Another issue
that arises in the application of Titan2D to reconstruct past PDC deposits and/or
for volcanic hazard assessments is the fact that each Titan2D simulation needs
to be “stopped” after a given total time of simulation (or after a given number
of time steps). Otherwise, the simulated flow does not stop and, moreover, as
its depth (h) approximates zero, its speed can tend towards infinity because the
flow speed is calculated as flow momentum (hv) divided by the flow depth (the
thin-layer problem, e.g. [82]). Some solutions based on scaling and thresholding
the flow depth, speed or flow fluxes have been presented by [82]. Other works
have proposed global and local stopping times that are functions of some Titan2D
parameters [108, 233] but a general solution still has to be found.
Other sources of epistemic uncertainty known to exist in Titan2D modeling are
the DEM resolution (e.g. [84, 85, 86, 180]) and the link between the PDC volume
and the bed friction angle, φbed (e.g. [131, 138, 234]). A major problem for
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probabilistic hazard assessment of dense PDCs performed via the Titan2D is that
all these sources of epistemic uncertainty still need to be fully understood (see
Chapter 8): they have just been quantified to some extent (e.g. [84, 85, 222]) but
it is still strongly unclear which of these sources is most crucial in modifying the
outputs of the Titan2D model and whether they are all similar in importance or
one of them dominates over the rest (e.g. [75, 104]).

4.1.3 LaharFlow

In Chapter 9 of this dissertation, we couple a physical model of lahars with a
Bayesian Belief Network to provide a probabilistic multi-hazard assessment of rain-
triggered lahars at Somma-Vesuvius (Italy). Our multi-hazard approach allows the
coupling of any lahar-transport model with the BBN model. In this dissertation,
we utilize a dynamic lahar model called LaharFlow [235]. We briefly summarize
the key features of the model and the boundary conditions adopted in Chapter 9
in the following subsections.

Model description

LaharFlow adopts a shallow-layer formulation, in which the flowing layer is depth-
averaged, similarly to many models of earth surface flows. The equations governing
the evolution of the lahars are derived from conservation of mass and momentum,
and are applied on a DEM. The model also includes a description of solids trans-
port, which plays a crucial role in the dynamics. The solid phase is assumed to
be transported at the bulk horizontal velocity of the flow, but can settle from
the fluid phase and be deposited. Additionally, solids can be entrained into the
flow by erosion of the underlying topography. The erosion and deposition alters
the topography, and this morphodynamics is coupled to the flow dynamics in La-
harFlow.
We describe erosion by adopting a Shields criterion (e.g. [236]), whereby material
is entrained into the flow when the Shields stress (the non-dimensional shear stress
acting on the base boundary of the flow) exceeds a threshold value that is depen-
dent on the properties of the bed (specifically the grain size and density). When
the critical Shields stress is exceeded, material is entrained from the bed into the
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flow at a rate that is a function of the excess of the Shields stress. This entrain-
ment model is commonly applied in hydraulic models, and we have calibrated this
description for use in a model of lahars.
In contrast to many hydraulic flows, the solids phase can constitute a very sub-
stantial proportion of lahars and significantly influence the flow dynamics. In
LaharFlow, we model the influence of the solid phase primarily through the basal
frictional resistance to motion, referred to as the basal drag. Our model adopts
a basal drag that varies as the concentration of solids in the flow evolves. At
low concentrations we expect the solids to have relatively little dynamical influ-
ence, and so model the flow as a turbulent fluid with a basal drag that is velocity
dependent; we take a Chézy drag formulation where the resistance takes the form:

Ff = CD|u|2 (4.5)

where CD is referred to as the Chézy drag coefficient and u is the depth-averaged
flow velocity. If the solids concentration increases sufficiently the flow can transi-
tion to a (lubricated) dense granular flow. For granular flows, experiments suggest
that a Coulomb basal drag is appropriate, where Fg = µgh with µ referred to as
the friction coefficient, g is the gravitational acceleration and h is the thickness
of the flowing layer. Here we adopt a granular drag model proposed by [237],
noting that while this model was proposed on the basis of experiments with dry
grains, the relationship is calibrated using observations of lahars [235]. The model
of [237] specifies a non-constant granular friction coefficient µ, allowing uniform
flows to exist over a range of inclinations of the bed (as observed in experiments).
At intermediate concentrations, we expect both fluid-like velocity-dependent and
granular-like depth dependent basal drag forms to contribute to the bulk flow re-
sistance. We model this transition between regimes by introducing a switching
function, so that the basal drag is:

F = (1− f(c))Ff + f(c)Fg (4.6)

with f(0) = 0, f(cm) = 1 and f(c) monotone increasing for 0 < c < cm where cm is
the maximum packing fraction of the grains. In this study, we take f(c) = 1/2(1+

tanh(γ(c − c0))) with the parameters γ and c0 calibrated against observations of
lahars [235].
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4.2 Statistical models

4.2.1 Monte Carlo sampling

Monte Carlo sampling methods are based upon the generation of random (or pseu-
dorandom) numbers in order to solve different kinds of problems such as numerical
integration, inverse modeling or statistical inference (e.g. [238, 239]). The name
Monte Carlo makes reference to the administrative area of the Principality of
Monaco and was coined by researchers of the Manhattan Project at Los Alamos
National Laboratory (NM, USA) in the late 40s.
In the field of probabilistic volcanic hazard assessment, where aleatory (and some-
times epistemic) uncertainty tends to be defined through PDFs for the parameters
of a given physical model, the main objective of Monte Carlo sampling methods
is to approximate a specific PDF as a (large) compilation of random samples from
the distribution. In other words, by randomly drawing thousands to millions of re-
alizations from a given PDF, it is possible to obtain samples whose mean, variance
and percentiles approximate those of the actual distribution (e.g. [239]). By the
central limit theorem, the standard error of the mean calculated via Monte Carlo
sampling tends to zero as the number of realizations tends to infinity. Therefore,
the number of realizations required to obtain two and three significant figures of
accuracy in the final results is 104 and 106, respectively. Each of these realizations
implies one run of the physical model used as the footprint function (i.e. to prop-
agate hazard events into hazard outcomes). Thus, it is clear that Monte Carlo
sampling methods may be of application only with very simple physical models,
for which the runtime ranges from seconds to minutes (e.g. Energy Cone). More
sophisticated simulators, such as Titan2D, would require more than 215 days of
non-stop computation to be able to run 106 simulations [82].

The number of different methods to perform Monte Carlo sampling is huge (e.g.
[239]) and distinct geophysical problems may need specific methods to be consid-
ered. In our case, we sample the PDFs of interest following the inversion method,
which is simple and efficient (e.g. [239]). The procedure for one uncertain variable
(x), with PDF f(x), reads as follows:

1. Calculate the Cumulative Distribution Function, CDF (y = F (x)), for the
variable:
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y = F (x) =

∫
X

f(x)dx (4.7)

where X denotes the domain of the variable (xi ∈ X∀xi). The domain of
the variable y is [0, 1].

2. Generate (equiprobable) random numbers in the interval [0, 1].

3. For each random number, calculate the value of the inverse CDF: x′ =

F−1(y). The values of x′ are actually random samples of the PDF f(x).

In most of our applications of Monte Carlo sampling to probabilistic volcanic
hazard assessment, we use sample sizes of 104 (see Chapters 5, 6, 9). In some
cases, where the target PDF is the Uniform distribution, we may use sample sizes
of 103 (see Chapter 7). This is because the Uniform PDF can be well approximated
with random samples of such size, something that might not be true for other
distributions with more complex shapes or with long right-hand tails (e.g. [83,
239]).

4.2.2 Polynomial Chaos Quadrature

Polynomial Chaos Quadrature (PCQ) is an uncertainty-quantification technique
aimed at obtaining a functional approximation of a given simulator (e.g. Titan2D)
by combining polynomial expansion procedures and numerical quadrature (e.g.
[24, 82]). The basic target is the computation of a continuous response function,
Y , from a collection of discrete realizations, yi. These realizations are extracted
from the outputs of the simulator that, in turn, depend on the specific values of the
model paramaters used to run the simulator. The model parameters explored (i.e.
assumed to be uncertain: X = (X1, . . . , Xd) are usually selected because of their
high impact on the model outputs (e.g. [222, 225]). Thus, the response function,
Y , represents a link between the parameters of the model and its outputs. Here,
we illustrate the very basics of the PCQ derivation in the case in which d = 2 (i.e.
X = (X1, X2)). Let us consider the response function:

Y = f(X1, X2) (4.8)
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where aleatory uncertainty in X1, X2 is modeled through marginal distributions
with finite moments: w1(X1), w2(X2). The variables need to be independent of
each other (or very-weakly related) for the PCQ procedure to be implemented
successfully. The joint distribution of X1, X2, given independence between the
variables, can be written as follows:

w(X) = w1(X1) · w2(X2) (4.9)

Following the Karhunen–Loève theorem, we can describe f(X1, X2) in equation
4.8 as an infinite linear combination of orthogonal polynomials, Φi, and unknown
coefficients, ci (e.g. [82]):

Y =
∞∑
i=0

ci Φi(X1, X2) (4.10)

The set of polynomials in equation 4.10 is chosen to be orthogonal (see equation
4.11 below) to the marginal distributions w1(X1), w2(X2) and are known for a va-
riety of probability distributions such as the Gaussian or Beta PDFs (e.g. [24, 82]).
Orthogonality allows exponential convergence (i.e. error reduction) in deriving the
statistical moments of the reponse function, Y . Note that the use of an infinite
number of polynomials and coefficients is not feasible for real-world problems and,
therefore, the polynomial expansion is truncated at a given finite number of these
polynomials (n). Given the truncation, the actual response function Y cannot be
retrieved but what is obtained is an estimator of the response function: Ỹ . The
higher the number of polynomials used, the closer the estimator will be to the true
response function (e.g. [82]).
Orthogonal polynomials can be defined as those that satisfy the following equation:

∫ ∞
−∞

Φj(X1, X2)
∞∏
i=0

Φi(X1, X2) w1(X1)w2(X2) dX1dX2 = δij (4.11)

where δij is the Kronecker delta. As previously mentioned, there are families of
polynomials that are orthogonal to different common PDFs such as the Hermite
polynomials for Gaussian dsitributions, the Jacobi polynomials for Beta distribu-
tions or the Laguerre polynomials for Exponential distributions (e.g. [24]). Thus,
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the only unknowns present in equation 4.10 are the coefficients ci. Let us analyze
the following integral:

∫∫
R2

∞∑
i=0

ci Φi(X1, X2) Φ1(X1, X2) w1(X1) w2(X2) dX1 dX2 (4.12)

which can be re-written as follows:

∫∫
R2

c1 Φ2
1(X1, X2) w1(X1) w2(X2) dX1 dX2 (4.13)

because of orthogonality (equation 4.12). Consequently, we can derive that:

c1

∫∫
R2

Φ2
1(X1, X2) w1(X1) w2(X2) dX1 dX2 = c1 (4.14)

Thus, the integral 4.12 equals c1 and the same applies to the n terms of the
polynomial expansion. In addition, we note that the member

∑∞
i=0 ci Φi(X1, X2)

in integral 4.12 is equivalent to the definition of the response function, given in
equation 4.10. Therefore:

c1 =

∫∫
R2

Y (X1, X2) Φ1(X1, X2) w1(X1) w2(X2) dX1 dX2 (4.15)

Given the assumption that the response function, Y , can be described as a poly-
nomial of a specific degree, numerical integration can be approximated through
Gaussian quadrature (e.g. [82]), that is: as a weighted sum of the integrand eval-
uated at a collection of quadrature points. The total number of quadrature points
(Qtot) needed to carry out the PCQ procedure is given by the maximum order of
polynomials used in the expansion (Npolymax) and the number of uncertain model
parameters considered (d) as follows: Qtot = (N + 1)d, where Npolymax = 2N + 1

(e.g. [82, 240]). Therefore, PCQ is subject to the “curse of dimensionality” (e.g.
[241]) and it is expected to outperfom Monte Carlo sampling only if the number
of uncertain model parameters is around three (e.g. [24]).

The collection of quadrature points (Q) belongs to the model parameter space
(Q = {(X1i , X2i), . . . , (X1Qtot

, X2Qtot
)} ∈ X) and the location of each quadrature

point along this parameter space is given by the Gaussian quadrature rule and
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the PDFs selected to model uncertainty in the model parameters (e.g. [24, 240]).
At the coordinates of the model parameter space indicated by each quadrature
point (e.g. X11 , X21), one simulation of the physical model is run. Using the
full collection of Qtot simulations, all the PCQ coefficients are calculated and one
estimator of the response function, Ỹ , can be computed at each grid point over
the hazard domain. By Monte Carlo sampling of these estimators (i.e. surrogates
of the simulator), the probability of exceedance for different values of any output
variable of interest to assess volcanic hazard (PDC speed, PDC flow depth, PDC
volume at given catchment) can be extracted (see Chapters 8, 9).

4.2.3 Bayesian Event Tree for Volcanic Hazard

The Bayesian Event Tree for Volcanic Hazard, BET_VH [49, 242], is a statistical
model conceived to estimate the probability of different volcanic hazardous events,
at a specific volcano(es) of interest, by applying Bayesian statistics. The core of
the latter is the Bayes’ theorem (e.g. [65]), which can be stated as:

P (A|B) =
P (A

⋂
B)

P (B)
=
P (B|A) · P (A)

P (B)
(4.16)

where, in the simplest case, A and B are two related events, P(A) denotes the
probability of A happening and is commonly known as prior probability, P(B|A)
denotes the probability of B happening given that A has already happened and
is commonly known as likelihood function, P(A|B) denotes the probability of A
happening given that B has already happened and is commonly known as poste-
rior distribution, and P(B) denotes the probability of B happening and acts as a
normalising factor (note that P(B) must be greater than 0).

The general structure of the BET_VH model is displayed in Figure 4.2. The model
is made up of nodes, such as eruption, which contain events, such as eruption and
no eruption. Nodes can be thought of as processes or phenomena while the events
are particular realizations of the process or of a specific type of phenomenon (e.g.
PDC ). These entities (nodes and events) are arranged in a somehow logical way
in BET_VH: the events located towards the left preceed, logically and sometimes
temporally, the events located towards the right. For instance, the occurrence
(or not) of an eruption (nodes 1-2-3) preceeds where the eruption occurs (i.e. its
vent location, node 4). Of course, in the absence of an eruption, a volcanic vent
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fed by magma will not form. The nodes 1-2-3 in BET_VH are derived from a
previous BET model: Bayesian Event Tree for Eruption Forecasting, BET_EF
[68], where node 1 describes the occurrence (or not) of volcanic unrest, node 2
describes the origin of the unrest (magmatic or not) and node 3 describes the
occurrence (or not) of an eruption, at the volcanic system of interest. Again, the
occurrence of magmatic unrest is a necessary condition for the occurrence of a
volcanic eruption. However, other type of eruptions (e.g. phreatic eruptions) can
occur even when magma in the movement is not the cause of the unrest. Such
situations have been recently incorporated into the BET modeling framework and
applied to some volcanic systems that may feature this kind of eruptive behavior
[243, 244, 245].

Figure 4.2: The structure of the BET_VHmodel, arranged in nodes (processes
or phenomena) and events (realizations of the former). There is a logical path
through BET_VH in the sense that nodes located on the left side of the model
tend to be a necessary condition for the nodes placed rightwards. The presence of
many overcoming thresholds, for a given hazardous process and reaching area,
is a representation of hazard curves (e.g. [76, 83]. See text for more details.

Modified after [49].

The BET_VHmodel provides a methodology to calculate absolute and conditional
probabilities of volcanic hazard by exploring different paths along its structure.
Absolute probabilities are understood as the marginal probabilities, of a specific
event, computed from the joint PDF of a chain of events [49]. For example, we can
compute the absolute (or total) probability of PDCs impacting area k by applying
the chain rule of probability calculus (e.g. [69]):



Chapter 4. Physical and statistical modeling 49

P (areak) =
E∑
e=1

N∑
n=1

M∑
m=1

P (eruptione) · P (locationn|eruptione)·

P (sizem|locationn, eruptione)·

P (PDC|sizem, locationn, eruptione)·

P (areak|PDC, sizem, locationn, eruptione) (4.17)

which can be simplified into:

P (areak) =
N∑
n=1

M∑
m=1

P (eruption1) · P (locationn|eruption1)·

P (sizem|locationn)·

P (PDC|sizem, locationn)·

P (areak|PDC, sizem, locationn) (4.18)

where eruption1 means there is an eruption. We can simplify equation 4.17 because
the probabilities of size, PDC and area are independent of eruption, given location
(as aforementioned, if there is no eruption, there is no volcanic vent and, likewise:
if there is a volcanic vent, then there is an eruption). Elsewhere, the values of n,
m and k corrospend to the events inside each specific node of BET_VH.
On the contrary, the conditional probability of PDCs impacting area k given that,
for instance, there is an eruption with a volcanic vent situated at location 10 and
eruption size equal to 4; would be given by the expression:

P (areak|eruption1, location10, size4) =P (location10|eruption1)·

P (size4|location10)·

P (PDC|size4, location10)·

P (areak|PDC, size4, location10) (4.19)

Moreover, the BET_VH model does not treat the probability of occurrence of each
event as a single value (e.g. [21]) but it interprets the probability of occurrence
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of the event as its real frequency [62] and models this frequency as an uncertain
variable for which a PDF can be defined (e.g. [49, 68]). This approach allows to
account for both aleatory and epistemic uncertainty (see Fig. 1.4 in Chapter 1):
the former is estimated as a central value of the PDF (e.g. the mean or the me-
dian) while the latter epistemic uncertainty is estimated as the dispersion around
this central value (e.g. the variance).
This hybrid statistical approach, where the probability is conceived as a frequency
(e.g. [246]) but this frequency is treated as a random variable (or parameter
of the model) in a Bayesian framework (e.g. [65, 247]) offers two major advan-
tages, especially in the field of volcanic hazards, for which the number of data
is commonly very scarce and reproducibility could be strongly contested (e.g.
[67, 248, 249, 250]): (1) the interpretation of the probability of an event as a
frequency (and not as a degree of belief, e.g. [65]) offers the opportunity for sta-
tistical testing of the probabilistic assessments given by BET_VH (e.g. [62]); and
(2) the Bayesian framework allows to combine different strands of information
(volcanological data, physical models, other statistical models, etc) into a homo-
geneous probabilistic assessment of volcanic hazard (e.g. [19, 21, 32, 49, 68, 100]).

The generalization of the Bayes’ theorem to work with PDFs instead of single
values of probability can be written as follows [68]:

[θ
(j)
i |y] =

[θ
(j)
i ]prior[y|θ(j)i ]

[y]
(4.20)

where [·] denotes a PDF over the variable enclosed by the square brackets, in
the case of BET_VH the frequency of a given event (j) inside a given node (i):
θ
(j)
i . Therefore, [θ

(j)
i |y] denotes the posterior distribution (i.e. PDF), [θ

(j)
i ]prior

denotes the prior distribution, [y|θ(j)i ] denotes the likelihood function, and [y] is
the normalizing factor (see equation 4.16).

In BET_VH, the procedure developed to parameterize the prior distribution and
likelihood function of each node is slightly dissimilar. For nodes 1-5, the distribu-
tions are parameterized through a common multivariate distribution of Ji variables
(where Ji is the number of events inside the node i): the Dirichlet distribution for
the prior distribution and the Multinomial distribution for the likelihood function
[68]. This choice implies that the events of the nodes 1-5 are mutually exclusive
and exhaustive between each other. For instance, the probability of a volcanic
vent opening at any point (given an eruption) is 1. Besides, the model assumes
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that only one vent will open.
For nodes 6-8, the prior distribution and likelihood function are constructed indi-
vidually at each event of each specific node, e.g. area k. The distributions used
are the Beta and the Binomial PDFs, the univariate equivalents of the Dirichlet
and the Multinomial distributions (note that the Uniform distribution is a special
case of the Beta PDF, e.g. [68]). The total number of variables being modeled
at each node i = 6, 7, 8 is still Ji but these events are modeled through Ji PDFs
and not through a multivariate PDF of Ji variables like in nodes 1-5. This implies
that the events in nodes 6-8 are not mutually exclusive and exhaustive. That is,
lava flows and PDCs can both occur during a given eruption. Likewise, area k and
area k + 1 can be both invaded by PDCs during this (or another) eruption [49].

Independently of these differences among nodes 1-5 and 6-8, the reasoning behind
the parameterization of the prior distribution and likelihood function, as well as
the construction of the posterior distribution from them, is homogeneous along
the whole structure of BET_VH. The prior distribution is usually parameterized
using several sources of information: volcanological data, physical and/or theoret-
ical models, etc (e.g. [19, 32, 100], see Chapters 7, 8, 9). The likelihood function,
in turn, is commonly parameterized by using past data from the volcano of in-
terest [49] (and assuming there is reproducibility, since the past events are taken
as random samples from the Multinomial or Binomial distribution). For instance,
if area k has been invaded by PDCs during three out of four eruptions of size 4
from location 10, we can parameterized the Binomial PDF for area k through the
number of “trials” (i.e. eruptions: 4) and “successes” (i.e. times that PDCs have
impacted area k: 3) recorded at area k (e.g. [19, 49, 68]).
The posterior distribution in BET_VH is modeled through a Dirichlet PDF (nodes
1-5) or many Beta PDFs (nodes 6-8). The use of this type of distributions is a
mathematical consequence of the choice for the prior distribution and the likeli-
hood function. Thus, it occurs that the Dirichlet and the Multinomial (or the
Beta and the Binomial) PDFs are conjugate distributions, that is, the product
of a Dirichlet (or Beta) PDF and a Multinomial (or Binomial) PDF is another
Dirichlet (or Beta) PDF (e.g. [65]). The parameters of the computed posterior
distributions, which ultimate define the mean (i.e. aleatory uncertainty) and vari-
ance (i.e. epistemic uncertainty) of the PDF, are derived from the parameters of
the correspondent prior distributions and likelihood functions at the node or event
of interest [68]. The specific choices that we adopt to parameterize and apply the
BET_VH model to asses the probabilistic volcanic hazard associated with PDCs
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at Somma-Vesuvius, Campi Flegrei and the city of Napoli and surroundings (in
Italy) are described in Chapters 7 and 8.

4.2.4 Bayesian Belief Networks

A Bayesian Belief Network (BBN) is a graphical representation of the joint proba-
bility distribution of a given set of (random) variables (e.g. [247, 251]) and can be
thought of as a combination of a graphical and a probabilistic model [252]. The
basis of a BBN, as in the case of BET_VH, is Bayes’ theorem (e.g. [65]).
A BBN is a directed acyclic graph composed of nodes, each representing a ran-
dom variable (usually discretised) of the system being modeled, and arcs, which
denote conditional dependences between the variables (see Figure 9.2 in Chapter
9). A given node is a parent node if it has one or more arcs pointing towards
other nodes (which are its children). Note that a node can be both a parent and
a children. The BBN is directed because the arcs point from parent to children
nodes (unlike Markov networks, for instance, that have undirected arcs) and it is
acyclic because Bayesian updating cannot be solved for a cycle of variables which
are conditionally dependent on each other. By definition, a given BBN structure
defines a particular set of unconditional and conditional independences between
the variables (nodes) in the network [253]. This actually represents one of the
main foundations of BBNs: by applying the chain rule of probability calculus, and
exploiting the unconditional/conditional independences within the network, the
joint probability distribution of the whole model can be calculated at a reduced
parametric and computational cost [253]. That is, let us consider a joint distri-
bution of three variables A, B and C each having three states (e.g. B1, B2, B3).
The joint distribution, P(A,B,C), can be calculated as: P(A,B,C) = P(C|B,A) x
P(B|A) x P(A), and it contains 33 = 27 probability values. However, if we build
a BBN like: A → B → C (the arrows indicate the arcs), then C is independent
of A given B, i.e. (C ⊥ A | B), and the joint distribution becomes: P(A,B,C) =
P(C|B) x P(B|A) x P(A), which contains 9 + 9 + 3 = 21 probability values (or
parameters in the BBN; see next paragraph). This reduction in the number of
parameters gets more important as the number of nodes (and states within them)
augment. Moreover, the reduction speeds up the Bayesian updating that the BBN
performs when new evidence is introduced into the BBN (e.g. [252]).
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A BBN (made of discretized nodes) is parameterized through Prior Tables (PTs)
and Conditional Probability Tables (CPTs). If a node has no parents, then it
is parameterized through a PT which has as many parameters as the number of
states within the node. This PT expresses the discrete PDF of the node. When
a node has one or more parents, it is parameterized through a CPT which has as
many parameters as the product of the number of states of the child and all the
parent nodes (e.g. P(C|B) above would have a CPT with 3 · 3 = 9 parameters).
The CPT is a discrete representation of the conditional PDF between the child
node and its parents, and indicates the probability of each state of the child node
to be true given that one state (or a combination of states) from its parent node(s)
is true (see Chapter 9).
Second-order independencies can be introduced in the BBN by means of the pa-
rameterization of its CPTs. Let us consider another simple BBN with the following
structure: D→ E← F, and two states per node. According to the BBN structure,
the variable E is dependent on both D and F (its parents). However, if the CPT
of E is set in a way that: P(E1|D1,F1) = P(E1|D1,F2) = 0, then it is seen that
E is independent of F given D1, i.e. (E ⊥ F | D1). This independence is only a
consequence of the way we parameterize the CPT and it is unrelated to the BBN
structure (e.g. [253]).

Finally, a BBN is highly modular which is clearly advantageous as the complexity
of the probabilistic model increases. For instance, let us assume that the variable
D above can be modeled in a more precise way by introducing two new variables
(X, Y) that act as parents of node D. The BBN previously described would be
expanded to include these two new nodes but the only part of the model that
we would need to re-parameterize is the CPT of node D, that is: P(D|X,Y). In
contrast, the CPT of node E would remain unchanged because the distribution
P(E|D,F) only depends on the specific states of D and F being true and not on
their relative probabilities (which in the case of node D, they now depend on nodes
X and Y).
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Suitability of Energy Cone for

Probabilistic Volcanic Hazard

Assessment: validation tests at

Somma-Vesuvius and Campi Flegrei

(Italy)

Abstract

Pyroclastic Density Currents (PDCs) are gravity-driven hot mixtures of gas and
volcanic particles which can propagate at high speed and cover distances up to
several tens of kilometers around a given volcano. Therefore, they pose a severe
hazard to the surroundings of explosive volcanoes able to produce such phenomena.
Despite this threat, Probabilistic Volcanic Hazard Assessment (PVHA) of PDCs
is still in an early stage of development. PVHA is rooted in the quantification of
the large uncertainties (aleatory and epistemic) which characterize volcanic hazard
analyses. This quantification typically requires a big dataset of hazard footprints
obtained from numerical simulations of the physical process. For PDCs, numerical
models range from very sophisticated (not useful for PVHA because of their very
long runtimes) to very simple models (criticized because of their highly simplified
physics). We present here a systematic and robust validation testing of a simple
PDC model, the Energy Cone (EC), to unravel whether it can be applied to PVHA

54
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of PDCs. Using past PDC deposits at Somma-Vesuvius and Campi Flegrei (Italy),
we assess the ability of EC to capture the values and variability in some relevant
variables for hazard assessment, i.e. area of PDC invasion and maximum runout.
In terms of area of invasion, the highest Jaccard coefficients range from 0.33 to 0.86
which indicates an equal or better performance compared to other volcanic mass-
flow models. The p-values for the observed maximum runouts vary from 0.003 to
0.44. Finally, the frequencies of PDC arrival computed from the EC are similar
to those determined from the spatial distribution of past PDC deposits, with high
PDC-arrival frequencies over a 8 km radius from the crater area at Somma-
Vesuvius and around the Astroni crater at Campi Flegrei. The insights derived
from our validation tests seem to indicate that the EC is a suitable candidate to
compute PVHA of PDCs.

5.1 Introduction

Pyroclastic Density Currents (PDCs) are among the most hazardous processes that
are produced by volcanic systems worldwide (e.g. [35, 124]). PDCs are ground-
hugging mixtures of hot gas and pyroclasts that travel at moderate to very high
speed along the surrounding areas of erupting volcanoes. Due to the physical
complexity of processes governing PDCs, considerable uncertainties inherent to
their natural variability, e.g. initiation height, volume, mobility, etc. (hereinafter
referred to as aleatory uncertainty) as well as related to incomplete knowledge, e.g.
links between volume and mobility, simplified modeling, etc. (hereinafter referred
to as epistemic uncertainties) occur in the hazard analysis (e.g. [33, 104]).

The most common practices in assessing PDC volcanic hazard have either used
the areal distribution of past deposits of PDCs (e.g. [25, 26]), or have evalu-
ated selected scenarios (e.g. [41, 44, 225]). Few studies have produced struc-
tured quantifications of the uncertainties involved in the PDC hazard assessment
(e.g. [23, 24, 33, 84, 104]). In contrast, Probabilistic Volcanic Hazard Assess-
ment (PVHA) has been carried out for other volcanic hazards (e.g. tephra fallout:
[70, 71]; lahars: [100]; lava flows: [254]), and has proved to be a valuable method
that can account for and quantify the aforementioned uncertainties. One of the
main features of PVHA is that it takes into consideration the natural variability
observed in the eruptive process. In other words, rather than selecting one or a
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few specific scenarios, PVHA has to deal with a complete set of possible erup-
tive settings. This mostly translates into accounting for different vent positions,
eruptive styles, eruption sizes and related source parameters (e.g. Mass Eruption
Rate -MER-, erupted mass, column collapse height, PDC mobility, etc.). Each of
these elements is then combined into a unique PVHA through the total probabil-
ity theorem [69]. In order to fully explore this variability, one needs to be able
to simulate the hazardous phenomenon under many different eruptive conditions
and compute PVHA in a reasonable computational time, which during volcanic
crises can be on the order of hours to days [76].

In this view, the main challenges in using PVHA for PDCs lie in the demanding
computational needs and in dealing with physical processes that are not well un-
derstood (e.g. kinematic response of PDCs interacting with topographic barriers)
that can affect PDC dynamics. On the one hand, very sophisticated simulators,
able to describe the evolution of several important variables such as temperature,
dynamic pressure or particle concentration, exist but have extremely long run-
times (e.g. PDAC, [44]). This makes them impractical for use in quantifying
uncertainties for probabilistic hazard assessments, which would require very large
numbers of runs. On the other hand, simple models (e.g. Energy Cone, EC, [132])
that describe a few crucial hazard-related variables such as maximum runout or
area of PDC invasion have been criticized because they are rooted on a very small
number of physical components, which has been argued to make them incapable
of capturing the intrinsic complexities of PDC transport. A sound approach de-
signed to avoid both "trifle worship" attitudes [255] and reliance on models that
are problematically oversimplified is to compare model forecasts with the kinds
of observations that are relevant for PVHA purposes. In particular, the quan-
tification of the possible impact of PDCs in terms of maximum runout and area
of invasion still represents a vital aspect for the hazard assessment of this phe-
nomenon. It becomes even more crucial in highly exposed areas as the city of
Napoli, in southern Italy.

In this work, we develop a systematic and robust validation procedure of EC
applied to Somma-Vesuvius and Campi Flegrei (Italy), selected because of their
significant potential of producing (large) explosive eruptions whose PDCs may
reach the city of Napoli and surroundings. This validation is set up in a completely
blind manner, meaning two different things: (1) the data used to configure the EC
simulations are fully independent of the data utilized to validate them (i.e. we try
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to avoid over-fitting at all costs); and (2) the EC simulations are set up to capture
the natural variability (aleatory uncertainty) attainable during an eruption of a
given size. This means that the simulations are by no means restricted to the
types of past events known from the volcanic systems under study.

Our validation procedure aims to unravel whether EC is able to produce hazard
footprints that are statistically reliable when compared to real data from PDC
deposits, in terms of maximum runout and area of PDC invasion. It is also im-
portant to stress here that the focus of the study is not on deriving possible values
of physical parameters for PDC generation during the past eruptions. For this
purpose there are much more comprehensive simulators which can serve to invert
observed field data and describe the evolution of some PDC-governing parameters
(e.g. [44]). In contrast, the global methodology is designed to determine whether
the preserved PDC deposits and statistical samples of simulated PDCs have some
features in common, by answering the question: given the present-day topogra-
phy and expected eruptive behavior of the studied volcanoes, can a statistical
sample (and/or all samples as a whole) of EC simulations capture the values and
variability of some parameters measured from deposits of past PDCs? Should the
validation demonstrate that EC is able to capture such hazard-related variables, it
would justify its application for computing PVHA of PDCs over the surroundings
of Somma-Vesuvius and Campi Flegrei.

5.2 Simulation and validation strategies

5.2.1 Uncertainty description and propagation

We describe aleatory uncertainty through the definition of Probability Density
Functions (PDFs) for the EC model parameters (see Figure 5.1 and Table 5.1):
Truncated Exponential PDF for H0, and Truncated Gaussian (Somma-Vesuvius)
and Uniform (Campi Flegrei) PDFs for φ. The reasoning behind selecting each
specific type of PDF, as well as the way in which they are parameterized, is detailed
in A. We propagate aleatory uncertainty by performing Monte Carlo sampling on
the EC parameters’ PDFs and running 210,000 simulations of the EC model over
a 40m-resolution Digital Elevation Model. Firstly, we sample 10,000 pairs of H0-φ
values from the PDFs built for each eruption size and volcanic system. Then,
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we run 10,000 simulations per each studied case, according to its eruption size
and its vent position. At Somma-Vesuvius, we run 30,000 simulations and we use
the current central crater area as the common vent position [104]. Moreover, we
set H0 = 0 at the height of the crater rim in order to simulate only eruptions
which generate appreciable PDCs. At Campi Flegrei, we run 180,000 simulations
because the vent position changes from one case to the other. We select each vent
position as the grid point in [205] which is closest to the inferred vent location for
the eruption [25]. We use 18 eruptions (see Table 3.1, Chapter 3) instead of the
21 used by [33] for epoch III (plus Monte Nuovo eruption) because we discard:
(i) Nisida and Capo Miseno eruptions due to substantial loss of PDC deposits
under the sea; and (ii) Paleoastroni 2 eruption owing to inconsistencies between
the PDC deposit distribution and the eruptive vent location inferred from tephra
fallout deposits [25].

Figure 5.1: Probability Density Functions (PDFs) chosen for the two EC model
parameters: H0 and φ, at the two volcanic systems of interest: Somma-Vesuvius
(A, B) and Campi Flegrei (C, D), in Italy. Different colors refer to different
eruption sizes (total deposit volumes): small (green), medium (blue) and large

(red). From [103].
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We justify the independent sampling ofH0 and φ because no clear relationships can
be straightforwardly inferred from the available data on ∆H and φ [104] (Fig. 10B,
A). Nonetheless, possible influences ofH0 on PDC mobility (thus on φ) are in effect
addressed by: (a) trying out, within each eruptive size class, different φ values for
similar collapse heights, acknowledging the fact that the mass participating in
PDC generation might be different [44]; and (b) assigning, among eruption sizes,
smaller values of φ to higher values of H0 as more dilute and mobile PDCs may
be formed when collapses are triggered from higher levels in the eruption column
[133].

5.2.2 Energy Cone validation

From each EC simulation performed, a value of maximum runout and area of
PDC invasion (MRSIM , ASIM) is retrieved. Past PDC-deposit variables (MROBS,
AOBS) are extracted from the literature [25, 26, 193]. In all the cases where the
extent of the deposits under the sea is not known, the polygons are closed along the
coastline. On the contrary, and even though EC cannot deal with either over- or
under-water PDC transport [134], the outputs are not modified to close along the
coastline, in order to avoid overestimating the goodness-of-fit between ASIM and
ASIM . Here, we stress that MROBS and AOBS may depend upon post- and syn-
eruption processes such as erosion/remobilization or lack of sedimentation. This
can be crucial for large dilute PDCs, which are able to travel for long distances only
depositing a very thin layer of pyroclastic material that might be eroded rapidly
after emplacement [9, 91], and may introduce a bias in validation procedures based
upon the extent of preserved PDC deposits. We then check the ability of EC to
reproduce these key hazard-related PDC variables in three different ways. Firstly,
we create a set of quantitative validation metrics for area of PDC invasion (Fig.
5.2; see subsection 5.3.1):

• Areal Fit (AF ): is the ratio between the intersection area, AINT = AOBS ∩
ASIM , and the union of areas, AU = AOBS + ASIM − AINT , a measure
commonly known as the Jaccard similarity coefficient [256]. Hence: AF =

AINT/AU . This metric is dimensionless and can range from 0 to 1. AF =
1 only in the case that the simulated area is exactly equal to the preserved
PDC area. Whenever ASIM is bigger, smaller or does not coincide in space
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with AOBS, the fit is penalized and AF < 1, reaching zero in the case that
no overlapping occurs between both areas.

• Areal Overestimation (AO): is a measure of the over- or under-estimation
of ASIM with respect to AOBS : AO = AOV ER −AUND; where AOV ER is the
simulated area that exceeds the area covered by deposits and AUND is the
invasion area of the deposits that is not covered by the simulation. If AO >

0, that means that the simulation overestimates the PDC deposit area; if
AO < 0, then the simulation underestimates the PDC deposit area. The
units of AO are km2.

• Areal Misfit (AM): is a measure of the total discrepancy between the sim-
ulated and observed area of PDC invasion, expressed as the total area that
lies outside AINT , i.e. AM = AOV ER + AUND. The units of the metric are
km2.

Secondly, we look at the probability of simulating a value equal or greater that
MROBS per each studied eruption (see subsection 5.3.2). In the end, we qualita-
tively evaluate the resemblance between the spatial distribution of the frequencies
of PDC arrival computed from ASIM and AOBS (see subsection 5.3.3).

Figure 5.2: Validation metrics utilized to test the performance of the Energy
Cone, mainly for reproducing areas of PDC invasion. See text for more details.

From [103].
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5.3 Results

5.3.1 Areal distribution

For all the studied eruptions, the values of areal fit (Jaccard coefficients) across
the model parameter space show the same pattern (Fig. 5.3): there is one region
characterized by high areal fit values which is surrounded by regions with smaller
to very low values of areal fit. The former shows an elongated positive-sloped linear
shape which indicates that similar values for area of invasion (and, therefore, areal
fit) can result from combining either small initial energy (small H0) with high
mobility (small φ) or high initial energy (high H0) with more-reduced mobility
(higher φ). By looking at the distribution of minimum areal misfits (white stars,
Fig. 5.3) we can identify sectors in the parameter space over which both the
areal fit is the highest and the areal misfit is minimum. We identify such sectors
for most of the eruptions, although there are some cases in which the minimum
misfits are located towards the underestimation region: AO < 0 or AOV ER < AUND

(Fig. 5.3). The location of the minimum areal misfits in terms of collapse height
(H0) shows a division between eruption sizes independently of the volcanic system
studied. Thus, minimum misfits tend to fall around H0 = 0.5 km, 1 ≤ H0 ≤ 1.5
km and H0 ≥ 1.5 km for small, medium and large eruptions, respectively (Fig.
5.3). We also observe that, typically, the sector with the highest areal fits tends to
be symmetrically divided by the AO = 0 line (that is, AOV ER = AUND; Fig. 5.3).

Other eruptions may show the AO = 0 line towards the upper limit (e.g. Pompeii
eruption, Somma-Vesuvius) or the lower limit (e.g. Agnano-Monte Spina eruption,
Campi Flegrei) of the high-AF sector (Fig. 5.3). The absolute values of areal misfit
can vary from a few km2 (e.g. 1944 eruption at Somma-Vesuvius; or Astroni 1
at Campi Flegrei) to maximum values exceeding 3,000 km2 in the cases of large
eruptions (e.g. Mercato or Avellino at Somma-Vesuvius; or Agnano-Monte Spina
at Campi Flegrei). The very large mismatches occur for a small percentage of
the simulations (commonly < 1%) and are related to particularly high values of
AOV ER produced when there are very high H0 values combined with very low φ

values. Furthermore, in our case, a tangible percentage of the “misfitted” area
of PDC invasion corresponds to marine sectors of ASIM , which we decide not to
exclude in order to avoid increasing the areal fit (and decreasing the areal misfit)
in a somehow artificial way.
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Figure 5.3: Areal Fit (AF ) values calculated by comparing the areas of PDCs
simulated with EC modeling to the actual areas of PDC deposits preserved
at Somma-Vesuvius (SV) and some selected eruptions at Campi Flegrei (CF).
Black dashed lines indicate simulations for which AO = 0, i.e. AUND = AOV ER.
White stars locate the 10 minimum values of areal misfit. The area between
the white dashed lines indicates the approximate location for the direct-pattern

simulations of [104]. From [103].

5.3.2 Maximum Runout

The histograms of simulated maximum runouts (MRSIM) generally reveal large
numbers of events with small-moderate maximum runouts, with fewer towards
high or very high values (Fig. 5.4). In statistical terms, the probability of sim-
ulating a value equal to or more extreme than a given value (e.g. PDC deposit
maximum runout, MROBS) is equivalent to the p-value:



Chapter 5. Energy Cone validation 64

p-value = 1− F (MRSIM = MROBS) (5.1)

where F (x) is the Empirical Cumulative Distribution Function (ECDF) of the
10,000 MRSIM values for a given size of eruption, for each volcanic system. The
p-value is a statistical indicator of model reliability: on average, the smaller the
p-value, the more likely that the model is incorrect. A p-value close to zero
indicates that the model is not compatible with available data. For the EC model,
all MROBS values fall inside the range covered by the MRSIM histograms: more
than 95% of the cases have p-values greater than 10−2 while only one case (Monte
Sant’Angelo eruption from Campi Flegrei) has a very small p-value, about 10−3

(Fig. 5.5). We also calculate histograms of maximum runout (and p-values) for
the Box Model presented by [33] at Campi Flegrei (lmax formula, Appendix B). To
do this, we use the parameter ranges and probability distributions reported by [33]
for all variables except the PDC volume, for which we use the total PDC volume as
shown in Table 3.1, Chapter 3 (note that, in this way, lmax represents the longest
possible runout, since the volume of all PDC deposits is released in a single pulse).
In this case, 40% of the obtained p-values are greater than 10−2, around 10% are
very small, between 10−2 and 10−4, and the other 50% are extremely small, below
10−4 (Fig. 5.5).

5.3.3 Frequencies of PDC invasion

The spatial distribution of sites where PDCs arrive in EC simulations (fSIM)
is similar to that of sites with deposits of past PDCs (fOBS) at the two volcanic
systems studied (Fig. 5.6). Zones frequently affected by PDCs at Somma-Vesuvius
are proximal and medial areas (up to 8 km, approximately) around the main
crater area (Fig. 5.6). Beyond, the frequency of PDC arrival decays with distance
and reaches negligible values (i.e. fSIM ≈ 10−4; last gray corona, Fig. 5.6A) at
limits similar to those beyond which no PDC deposits are known (e.g. the main
topographic barriers like the Sorrento peninsula or the Nola-Sarno Mountains: Fig.
5.6). At Campi Flegrei, PDCs most frequently affect the area near Astroni crater
(Fig. 5.6C, D). The sites affected only very rarely in simulations show extents
comparable to those of the least abundant PDC deposits in the southwestern part
of the non-submerged caldera but are situated around 2 and 4 km beyond the most
distal known deposits in the northwest and south-southeast, respectively (note that
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Figure 5.4: Histograms ofMRSIM computed with EC simulations for Somma-
Vesuvius (SV; top) and some selected cases for Campi Flegrei (CF; bottom).
Dashed lines denoteMROBS (p-values, p, are given) while colored boxes indicate
maximum runout ranges reported by [26] for 1631AD-Pollena (Pol) and Mercato
(Mer) eruptions. Elsewhere: Pom, Pompeii eruption; Ave, Avellino eruption;
AMS, Agnano-Monte Spina eruption. Different colors indicate different eruption

sizes: small (green), medium (blue) and large (red). From [103].

PDC deposits are mapped only on land, while the EC simulations extend offshore).
Towards the northeast, the last gray corona covers an area approximately 80 km2

smaller and 9 km less distant from the source than known PDC deposits from the
Agnano-Monte Spina eruption (4.5-4.6 Mod. Cal. ka; [37, 191]).

5.4 Discussion

The presented methodology allows testing of whether the EC model captures key
PDC hazard variables (maximum runout and area of PDC invasion) at two volcanic
systems, Somma-Vesuvius and Campi Flegrei in Italy. These systems have diverse
topography and different types of PDCs, although in both systems most PDCs
are radially dispersed and lack strong channelization. Despite the fact that the
EC model may not be based on a detailed understanding of the physical processes
behind PDC generation and transport, our results indicate that it can be useful
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Figure 5.5: Calculated p-values of MROBS (A) according to the Empirical
Cumulative Distribution Functions (ECDFs) built from the EC simulations and,
at Campi Flegrei, also from the Box Model formula provided by [33]. A tendency
towards smaller p-values in the Box Model is indicated by the black arrow in
A and quantified in B, where negative differences in the p-value imply that the
likelihood of simulating a value of maximum runout equal to or larger than
MROBS is higher when using the Energy Cone model than with the Box Model
(1: Agnano2, 2: Astroni1, 3: Astroni2, 4: Astroni7, 5: Averno1, 6: Averno2,
7: Cigliano, 8: Fossa Lupara, 9: Monte Nuovo, 10: Monte Sant’Angelo, 11:
Paleoastroni1, 12: Solfatara, 13: Agnano3, 14: Astroni3, 15: Astroni4, 16:
Astroni5, 17: Astroni6, 18: Agnano-Monte Spina). Fine-dashed blue lines in A
show the lowest and highest MROBS from medium eruptions at Campi Flegrei.
Filled circles in B denote cases for which p − valueBoxModel < 10−4. Colors
indicate eruption sizes: small (green), medium (blue) and large (red). From

[103].

in quantifying the areal extent of sites that will be affected by PDCs, and at what
frequency.

5.4.1 Areal validation metrics

Within the 210,000 simulations performed, there are 24 (one per each eruption
analyzed) that best reproduce the observed areas: 0.33 ≤ AF ≤ 0.86. Around
70% of them have best areal fits of 0.5 or greater (Fig. 5.7A). This represents quite
a good performance when compared to areal fit values published for other volcanic
mass flow simulators (e.g. 0.35 ≤ AF ≤ 0.69 for lava flows at Mt Etna, Italy: [257];
max(AF ) ≈ 0.6 for BAFs simulated via Titan2D at Mt Taranaki, New Zealand:
[225]; or 0.07 ≤ AF ≤ 0.72 for a 2006 BAF at Mt Merapi, Indonesia, simulated
with Titan2D and using DEMs with different resolutions: [86]). In addition to
our simulations that fit well the past deposits, there are other simulations that
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show small values for areal fit. This is not necessarily a model failure –the full
simulation set is intended to represent not only the recorded (past) events, but
also smaller and larger events: that is, those with AO < 0 and AO > 0 (Fig. 5.3).
This is the key reason for exploring aleatory uncertainty of geophysical processes
for the purpose of probabilistic hazard assessment (e.g. [49, 76, 100]).

Generally, the best AF values coincide with simulations displaying AO = 0 (Fig.
5.3) which means that the model is not especially biased through a tendency to
underestimate (in such a case, we would observe AO < 0 for high areal fit values)
or overestimate (conversely, AO > 0 would be linked to high areal fit values).
Nonetheless, we see some cases of both. There is underestimation for the Pompeii
eruption, in which the PDC deposits indicate limited PDC propagation beyond
Mt Somma in contrast to the known long runout towards the SE-ESE [26]. The
underestimate occurs because, when Mt Somma is substantially surmounted, the
areal fit is significantly penalized due to the large simulated area that is found
beyond the Pompeii PDC-deposit limits. There is overestimation for the Agnano-
Monte Spina eruption, where simulated PDCs extensively overrun the CI caldera
scarp of Marano di Napoli hills (Fig. 5.6C). The areal misfit values generally tend
to a minimum when the areal fit is maximum (Fig. 5.3). For values of column col-
lapse height, H0, that yield the minimum areal misfits, there are some exceptions
to the aforementioned pattern (i.e. the larger the eruption size, the higher the H0

associated with the minimum areal misfit). These cases are the 1631 AD, Pollena,
and Mercato eruptions for Somma-Vesuvius. For 1631 AD, the minimum misfits
result when H0 ≈ 0.35 km and this may be related to the extensive propagation
of PDCs towards the topographically lower southern sector of the volcano [198].
PDC deposits from 1631 have been found at only one site beyond the topographic
barrier of Mt Somma [26]. In contrast, for the other medium-sized eruption at
Somma-Vesuvius, the Pollena eruption, PDC deposits cover a considerable area
north of Mt Somma [26]. Hence, Pollena eruption minimum misfits occur for H0 ≈
1.6 km (Fig. 5.3). The minimum misfits obtained for the Mercato eruption are for
H0 ≈ 1.4 km. This value is smaller than those of the other large eruptions (Pom-
peii, H0 ≈ 1.5 km; and Avellino, H0 ≈ 2 km) but it is also lower than the value
inferred for the Pollena eruption. Although classified as VEI5 based on its total
deposit volume (e.g. [89]), the Mercato eruption displays peak MER, PDC volume,
AOBS and MROBS values more similar to those of medium eruptions than of large
eruptions (see Table 3.1, Chapter 3). Lastly, highly asymmetric PDC deposits
may be linked to lower AF values and AO < 0. In this respect, it might appear as
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though areal fit decreases as eruption size (total deposit volume) increases (Fig.
5.3). It is, however, the ratio of the maximum to the minimum runout (MR:mR
ratio) that is more important, and this ratio seems to be independent of eruption
size (Fig. 5.7B), instead directly measuring the asymmetry of the deposit (the
larger the ratio, the more asymmetric the deposit) with respect to the (inferred)
vent location. We observe that the more asymmetric the deposit, the smaller the
best AF (Fig. 5.7B). This is in part because the EC concept does not capture
PDCs that exhibit preferential spreading in one direction (as mentioned above),
unless there is (or there was at the time of the eruption) a clear topographic con-
trol on this spreading. As an example, the inferred vent location for the Avellino
eruption is located along the western slopes of the Somma-Vesuvius edifice [232];
this may have reduced Mt Somma’s capability to efficiently block PDC propaga-
tion towards the northwest and it is, in fact, to the northwest that deposits from
the longest-runout PDCs of the eruption have been measured [26].

5.4.2 Maximum runout validation metrics

Although the EC model seems able to capture the MROBS value for every indi-
vidual eruption (Figs. 5.4, 5.5), there are some cases in which the probability of
simulating MROBS, given the EC and the PDF parameterization used here (i.e.
p-value), is low to very low. In the case of the Box Model [33], half of the p-values
computed are smaller than 10−4 (Fig. 5.5). These situations have one (or a com-
bination) of three causes: (1) the simulator fails to reproduce the observed values
of past PDC deposits; (2) the model parameter space does not capture the PDC
phenomena for an eruption of a particular size; and (3) the studied event is gen-
uinely very extreme (i.e. its theoretical probability is relatively small) considering
the typical PDCs generated during an eruption of the analyzed size.
We argue that, given the results obtained in this chapter and in [33], the first cause
is not the general case for either the EC or the Box Model. Nonetheless, there
might be circumstances in which EC models struggle to accurately reproduce past
PDC deposits. This is usually related to PDCs that become strongly channel-
ized despite modest topography, yielding deposits with a high MR:mR ratio (Fig.
5.7B). The second and third causes may explain other cases for which small or very
small p-values are computed. The Box-Model p-values tend to be smaller than
those computed from the EC (Fig. 5.5A, B) and this may be due to the selected
ranges of model parameters. For instance, maximum runouts equal toMROBS are
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obtained for approximately half and one quarter of the eruptions when assigning
particle settling velocities of ws < 0.05 m/s and ws < 0.02 m/s, respectively (here
we use again the total PDC volume and, for the rest of the parameters, the high-
est value reported by [33]). The lower bound proposed by [33] is ws = 0.05 m/s
which might be too high for some cases, given the complex transport histories of
particles within turbulent PDCs in which particle comminution and resuspension
of fine particles, for instance, can play an important role in the motion and final
maximum runout of the current [35, 124, 139].
We consider that for medium-size eruptions at Somma-Vesuvius there may also
be issues with model parameterization, specifically a lack of completeness in the
dataset employed for this size (only 4 data are available to parameterize the PDF
for φ). Incomplete datasets can give rise to irregularities in the consequent cu-
mulative distribution (ECDF) of MRSIM . The minimum value of the probability
density function (PDF) is φ = 7.5◦ while the mean is placed at φ ≈ 17◦. Given the
PDC phenomenology reported for the 1631AD [198] and Pollena eruptions [144]
and their medium-long-runout MROBS (these being equal or greater than the one
recorded during the large-size Mercato eruption, [26], see Table 3.1, Chapter 3),
the cited φ values (e.g. mean = 17◦) may be too big to capture the moderate to
high-mobility PDCs generated during medium-size eruptions at Somma-Vesuvius.
Using a different PDF parameterization (e.g. lower mean φ) would shift the his-
togram towards longer maximum runouts. Another way to obtain a similar result
would be to perform a sampling of H0 values conditional to the sampled φ values;
for instance, we could sample only high H0 (collapse heights) when low φ (equiva-
lent friction) values are sampled (direct pattern in theoretical uncertainty; [104]).
Concerning the cluster of low p-values for some small eruptions at Campi Flegrei,
we see that their values of maximum runout are equal to or greater than those
for the majority of medium eruptions (Fig. 5.5A). Particularly, the small Monte
Sant’Angelo eruption [37](p-value = 0.003) has a maximum runout greater than
all but one medium-size eruption: Agnano 3 (MR = 7.73 km) which, in turn,
displays values of PDC volume, maximum runout and area of PDC invasion that,
compared to the average values for the rest of medium-size eruptions at Campi
Flegrei, are around: 40%, 70% and 95% greater, respectively. Therefore, we might
classify the PDCs from some of these eruptions as actually being low-probability
events, in the light of the typical PDCs expected to form at Campi Flegrei during
small or medium eruptions.

The Agnano-Monte Spina eruption from Campi Flegrei (p-value ≈ 0.04) was quite
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Figure 5.7: Best Areal Fit patterns extracted from EC simulations carried out
at Somma-Vesuvius and Campi Flegrei (Italy). A: histogram of best areal fit
values; B: best areal fit versusMR : mR ratio. Different colors indicate different
eruption sizes (total deposit volumes): small (green), medium (blue) and large

(red). From [103].

complex [258] with several different phases that led to the generation of diverse
PDCs. The dynamics of water-magma interaction changed significantly during
the eruption, causing transiently unstable eruption columns, modifications in the
depth of the fragmentation level and other related processes [258]. Above all, the
last phases of the eruption were linked to a volcano-tectonic collapse which eventu-
ally produced: (1) a northeast-wards migration of the eruptive vents; and (2) very
dilute and high-mobility PDCs that surpassed the topographic barrier north of
the Agnano plain [258]. In the absence of other large-size events registered during
epoch III of eruptive history at Campi Flegrei, the Agnano-Monte Spina eruption
could be considered as an extreme event that would justify the low probability of
observing the actual MROBS value of this eruption.

5.4.3 Frequencies of PDC arrival

As previously described, the simulated frequencies of PDC arrival resemble those
inferred from deposits of past PDCs at both volcanic systems studied. At Somma-
Vesuvius, the difference in frequencies between the southern and northern flanks
of the volcano is evident, reflecting the role of Mt Somma in hindering PDC
propagation towards the north [44, 104]. Over distal sectors, the main topographic
highs seem to control the furthermost extent of PDCs [26]. At Campi Flegrei, the
general pattern of frequencies of PDC arrival mostly reflects topographic control by
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the caldera rims of the NYT and CI eruptions [25]. Even though we do not explore
the whole range of possible vent locations [205, 206], we observe, for instance,
that the frequency along the Posillipo hill (eastern scarp of the NYT caldera) is
greater than zero, as also presented recently in the probability map by [33]. The
clearest discrepancy between the EC frequencies and those inferred from deposits
of past PDCs is found towards the north, where there are PDC deposits of the
Agnano-Monte Spina eruption. Nonetheless, the computed frequencies are not
zero indicating that such an event is still possible within our modeling framework.
The next step must be to consider all vent locations and their specific probabilities
of opening.

5.5 Conclusions

In this chapter, we quantify the ability of the EC model to capture the natural
variability of PDC generation and emplacement in a way that is useful for hazard
assessment. We test whether the preserved PDC deposits share with our statis-
tical sample of PDCs modeled with EC the predominant features of: (1) invaded
area, (2) maximum runout, and (3) frequency of PDC arrival. With this target,
we have developed a systematic and robust validation procedure of the EC model.
Our results show that a statistical sample of EC simulations seems able to capture
the aleatory variability of these three variables at Somma-Vesuvius and Campi
Flegrei (Italy).
This is a very important result as it might open the door to probabalistic volcanic
hazard analysis for dilute and dense PDCs. Such an assessment of this hazard has
hardly been attempted, because simple simulators (e.g. EC) have been consid-
ered inadequate, and because of the intractability of probabilistic analyses if they
are performed only with very sophisticated simulators (e.g. PDAC: [44]). Some
approaches have been carried out using robust simulators for dense PDCs (e.g.
Titan2D: [23, 24]), using a mixture of physical and statistical forward models for
PDCs (e.g. [100]), or combining information from deposits of past PDCs with
inverse physical modeling of PDCs and expert elicitation techniques ([33]). Never-
theless, there remains no general implementation of probabalistic hazard analysis
for PDCs.
Despite the strong physical simplifications applied in EC modeling (e.g. some
physical processes such as PDC channelization and dense-dilute PDC decoupling
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are difficult to describe, [104]), such modeling remains an option for reliable prob-
abilistic hazard analysis of PDCs based on the results presented here, and given
the current absence of computationally cheap but physically robust simulators of
dilute PDCs.
Finally, even though EC modeling captures the aleatory variability in a satisfactory
way, we argue that probabilistic hazard analysis also requires a full description of
the epistemic uncertainty. This may be achieved by merging the output of different
reliable PDC models (e.g. [51]). For instance, the output of EC simulations cov-
ering extensively the model parameters’ space (and/or the spatial hazard domain)
may be combined with the output of other more elaborate and/or computationally
time-consuming PDC models (e.g. Titan2D, VolcFlow, Box Model) that explore
the aleatory variability in well-defined sub-regions of specific interest.



Chapter 6

Uncertainty assessment of

Pyroclastic Density Currents at

Somma-Vesuvius (Italy) simulated

through the Energy Cone Model

Abstract

Pyroclastic Density Currents (PDCs) are extremely dangerous phenomena so their
modeling is essential for hazard and risk purposes. However, PDCs are governed by
very complex processes, making their deterministic prediction impossible. Proba-
bilistic approaches are in a pioneering phase and feature large (and still unknown)
uncertainties, from the natural variability of PDCs (aleatory uncertainty) to the
main sources of epistemic uncertainty (input, parametric, theoretical and struc-
tural). In this chapter, we quantify these uncertainties by using the Energy Cone
Model (ECM) in a Monte Carlo scheme applied to Mount Vesuvius. According
to our results, theoretical uncertainty has the largest impact, 5-100 times bigger
than input uncertainty which seems to play a minor role. We find that conditional
probabilities of PDC arrival (given an eruption of a specific size) show spatial
distributions related to the surrounding topography. In particular, for medium
and large eruptions, the conditional probability of PDCs traveling beyond Mount
Somma is [1-15]% and [50-60]%, while they reach the Napoli airport in about
[0-1]% and [0-15]% of the simulations, respectively. Small-eruption PDCs remain
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restricted to the south flank and summit area. These results may guide future
research devoted to reduce epistemic uncertainties and improve volcanic hazard
analyses associated with PDCs.

6.1 Introduction

Phenomena related to explosive volcanic systems threaten life and property of
many millions of people around the world. In particular, Pyroclastic Density Cur-
rents (PDCs) are one the most destructive physical phenomena, both in terms
of structural damage [153] and threat to life [155]. PDCs are composed of a hot
gravity-driven mixture of gas and solid particles which travels at high speed along
the area surrounding the volcanic vent [6, 9, 35, 124]. Their high potential damage
is due to several causes, such as lateral impact, elevated temperature, fine- and
coarse-particle concentration, toxic gases, etc. [155].
During the last 400 years, PDCs have been responsible for the largest number of
fatalities related to volcanic eruptions (≈ 100,000 lives, 33% of all fatalities, [157]).
Among the most devastating events, we recall Mount Pelée 1902, Martinique [158];
Mount Lamington 1951, Papua New Guinea [159]; and El Chichón 1982, Mexico
[160].
The extreme complexity of PDC generation, transport, and deposition processes
makes PDC modeling extremely challenging. For this reason, the first attempts to
evaluate the hazard posed by PDCs were mostly based on maps describing PDC
deposits from past eruptions (e.g. [20, 25, 26]). On the other hand, Probabilis-
tic Volcanic Hazard Assessment (PVHA) [21, 61, 67] requires proper quantitative
PDC modeling strategies that are able to describe the inherent complexity of the
process (the aleatory uncertainty), and the incomplete knowledge of the system
(the epistemic uncertainty). Although the distinction between aleatory and epis-
temic uncertainties has been often considered inherently ambiguous, we adopt the
taxonomy of uncertainties proposed by [62] in which aleatory variability and epis-
temic uncertainty can be unambiguously distinguished. The inclusion of aleatory
and epistemic uncertainties is essential for any reliable PVHA and it allows sci-
entists to provide quantitative assessments that can be used in rational decision
making (e.g. [259]).
Presently, PVHA has been already carried out for tephra fallout (e.g. [71]), lava
flows (e.g. [210]) or lahars (e.g. [100]). Conversely, only a few studies have
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looked into a systematic characterization of the uncertainties associated to nu-
merical modeling of PDCs (e.g. [84, 85, 260, 261]) or have produced PVHA of
this phenomenon (e.g. [23, 24, 33, 231]). This is mainly owing to the difficulty
to simulate PDCs, in terms of numerical algorithms and computational resources.
PDC simulators that aim to reproduce the most detailed physics of the process
are computationally expensive (e.g. [44]) and, therefore, not suitable for the ex-
ploration of the large uncertainties involved in the hazard assessment.
In this chapter, we opt for a widely-used PDC model, the Energy Cone Model
(ECM), applied to Somma-Vesuvius, in Italy. Explosive eruptions at the vol-
cano have generated dense and dilute PDCs as a result of transient eruption-
column collapses, continuous collapses (pyroclastic fountaining) or very energetic
phreato-magmatic explosions (e.g. cioni2008). By means of extensive Monte Carlo
sampling of the model parameters, we investigate the role of different types of
uncertainty in describing the PDC invasion around the volcano. The aleatory
uncertainty is addressed by building and sampling Probability Density Functions
(PDFs) of the model eruptive parameters (collapse height, H0, and PDC mobility,
φ). Epistemic uncertainty is examined by the specific contribution of four distinct
sources (after [75]): input, parametric, theoretical, and structural uncertainties.
Input uncertainty refers to the lack of knowledge about boundary conditions, for
instance the real terrain over which PDCs propagate; here we quantify input un-
certainty by running equivalent sets of simulations over Digital Elevation Models
(DEMs) with different horizontal spatial resolutions. Parametric uncertainty stems
from the fact that we do not know exactly the PDFs for sampling the eruptive pa-
rameters describing the aleatory uncertainty; here we describe the effects of using
different kinds of PDFs on model output. Theoretical uncertainty is linked to the
assumptions adopted in the simulation strategy, for example, whether considering
the model parameters as independent or not; this source of epistemic uncertainty is
addressed by testing several possible relationships between the ECM parameters.
Finally, structural uncertainty derives from all the simplifications of the model it-
self; in other words, it is the uncertainty that remains after having run the model
using perfect-known boundary conditions and the ‘best’ parameter values [75].
We evaluate structural uncertainty by using computed values of misfit between
the ‘best’ set of ECM simulations and past PDC deposits at Somma-Vesuvius.
Exploring all these sources of uncertainty allows us to quantify their specific con-
tribution as recorded in the model outputs. We express such a quantification
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through: (1) Empirical Cumulative Distribution Functions (ECDFs) of two im-
portant variables in terms of volcanic hazard posed by PDCs: area of invasion and
maximum runout; and (2) conditional-probability maps of PDC invasion in the
area around Somma-Vesuvius (given the occurrence of an eruption of a specific
size).
The implications of this study are twofold: on the one hand, it allows for ranking
the different types of uncertainty and checking, quantitatively, their effect on the
model outputs. On the other hand, it provides a detailed and structured quan-
tification of epistemic uncertainty associated to the simulation of PDCs through
the ECM. This can be applied to assess epistemic uncertainty within PVHA tools
and, in the end, may help to improve quantitative volcanic risk assessments.

6.2 Methods

6.2.1 Quantification of Aleatory Uncertainty:

Intrinsic Randomness

Given a specific eruptive size, the randomness in PDC generation (see PDC phe-
nomenology above) can be simulated through a set of possible values for the ECM
parameters, φ and H0 (Fig. 3). Again, we do not take into account vent locations
outside the current crater owing to the very high vent-opening probability over the
crater. Nonetheless, a complete PVHA procedure should include the possibility of
vents opening on the flanks of the volcano.
In our approach, we account for aleatory uncertainty by describing the ECM pa-
rameters through bounded PDFs1 (Table 6.1, [104]) for each eruptive size: Trun-
cated Gaussian (φ) and Truncated Exponential (H0) PDFs (see the motivation for
these choices in section 6.3.3).

We propagate aleatory uncertainty by sampling from such PDFs, through a Monte
Carlo inversion method [239], 10000 pairs of values for φ and H0 per each eruptive
size. These 30000 pairs are finally used to run the ECM over a 40 m-resolution
DEM. This choice is motivated by a potentially wider applicability of the obtained
results (high-resolution DEMs are not always available). Nonetheless, as we shall

1Negative or infinity values of the parameters are not physically possible.
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see in section 6.4, our results indicate that input uncertainty is, by far, the smallest
source of epistemic uncertainty.

6.2.2 Quantification of Input Uncertainty:

Incomplete Knowledge on Boundary Conditions

Input uncertainty is here explored by running the same set of ECM simulations
(as described above in section 6.2.1) over DEMs with varied horizontal resolutions,
namely: 10, 20, 40 and 80 meters (Fig. 6.1). This totals 120000 ECM simula-
tions. The DEM mean vertical errors, although not treated in the analysis, are,
respectively: 3.5 [262], 10, 10 and 10 meters. Thus, we assess input uncertainty
linked only to sparse topographic data. A more complete quantification of input
uncertainty may include the DEM vertical errors, spatial correlation between er-
rors and could even model the entire DEM as an uncertain variable ([84]).
The 10 m DEM is constructed with data downloaded from OpenMap and it is
based on data derived from the Italian Regional topographic maps, GPS points,
ground based and radar altimetry data [262]. The 20 m DEM is derived from
interpolation of contour lines and spot heights present in the 1:25000 Italian to-
pographic maps. Finally, the 40 m and 80 m DEMs are derived from resampling
of the 20 m DEM. The 10 m DEM is taken as the reference model (i.e. the closest
representation of the real terrain) and its associated input uncertainty is assumed
to be negligible [85].

6.2.3 Quantification of Parametric Uncertainty:

Incomplete Knowledge on Model Parameterization

Parametric uncertainty is examined by imposing different PDFs for φ and H0. In
principle, and given the scarce amount of real data available for both parameters,
several PDFs could be used. Here, we quantitatively assess how much the ECM
outputs change when different PDFs are explored.

http://openmap.rm.ingv.it/openmap/
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Figure 6.1: Schematic representation of the origin and way of addressing the
different types of uncertainty (aleatory and epistemic) quantified in this chapter.
Aleatory uncertainty (solid lines) is described through Probability Density Func-
tions (PDFs) of the Energy Cone Model (ECM) parameters: collapse height, H0,
and PDC mobility, φ (note that H0 values are not to scale and φ values might
seem greater than the actual values used in the chapter). Every simulation pro-
vides a value of area of PDC invasion (not shown here) and maximum runout
(MR; bottom right of the cartoon). Input uncertainty is explored by running
the ECM over Digital Elevation Models (DEMs) with diverse spatial resolutions
(also notice that only the horizontal position of the 20, 40 and 80 m DEM grid
points has to be considered). Parametric uncertainty is characterized by means
of alternative choices for the PDFs (e.g. Tukey or Linear PDFs; dotted-dashed
lines). Theoretical uncertainty arises from the fact that possible relationships
between H0 and φ are not known. Finally, structural uncertainty derives from
all the simplifications adopted by simulating the real phenomenon, PDCs, via

the ECM (see text for more details). From [104].
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PDFs for φ

Concerning the φ parameter, we rely on a worldwide database of PDC mobility
that contains volcanic systems morphologically similar to Somma-Vesuvius [138].
We initially explore three different PDFs (in brackets we list their parameters):

• Uniform (min and max limits). This PDF represents the “maximum igno-
rance” as no value, within the selected domain, is preferred.

• Truncated Gaussian (mean, µ; standard deviation, σ; min and max limits).
This PDF is chosen as previous works have indicated that Gaussian PDF
may be consistent with φ data from Volcán de Colima, Mexico [136].

• Asymmetric Tukey window (high-probability plateau, a, b; min and max
limits; Fig. 6.1, [104]). This PDF is chosen following the idea that φ could
follow a distribution characterized by a higher likelihood in its central values.

Then, we perform one-sample Kolmogorov-Smirnov tests [263], using φ data in
[138], to test the null hypothesis of such data having been sampled from each
PDF. We find that the null hypothesis can only be rejected, at the 1% level
of significance, for the Uniform PDF. Therefore, we discard this PDF and use
Truncated Gaussian and Asymmetric Tukey window PDFs to assess how much
they influence the ECM outputs. Their parameters are derived from [138] after
applying some constraints. Firstly, φ values are partitioned into VEI ≤ 3, VEI4,
VEI ≥ 5 eruptions. As we mentioned above, expected PDCs during VEI ≈ 3
at Somma-Vesuvius can show large variability. For this reason, we decide not
to exclude the φ values related to VEI ≤ 3 eruptions since we consider they
are compatible with the PDC phenomenology (e.g. low-mobility hot avalanches)
attainable during small eruptions.
Secondly, data from Block and Ash Flows (BAFs) and ignimbrites are discarded
since the occurrence of such types of PDCs is unlikely (i.e. their deposits have
not been observed in the last 20 ka of stratigraphic record at Somma-Vesuvius,
[26, 89]). Thus, we only use data from pumice flows (formed by column collapse)
in [138].
For each eruptive size, Truncated Gaussian µ and σ are constrained using data
from [138] and, similarly, Tukey high-probability plateaus are placed, subjectively,
between the 20th and 80th percentiles of these samples. The latter implies that



Chapter 6. Uncertainty Assessment of PDCs at Mount Vesuvius 82

60% of the φ values are placed inside the plateau (approximately the same density
of probability (≈ 68%) is located within µ±σ in a Gaussian PDF). Minimum and
maximum φ values, for Gaussian and Tukey PDFs, are those found in [138].

PDFs for H0

In the absence of real data for H0, our choice for the PDFs is based on the as-
sumption that high column collapses are less likely than low ones and that column
collapse will occur within the gas-thrust region whose top is roughly estimated as
10% of the total height of the eruption column, HT [110].
The PDFs used are the following (in brackets we list their parameters):

• Truncated Exponential (mean, λ−1; min and max limits).

• Linear-decaying (min and max limits).

For each eruptive size, we set the minimum and maximum limits of the Linear
PDF at 20 m and 0.1HT , respectively [104]. Nonetheless, alternative choices of
the minimum limit, at H0 = 10 m and H0 = 50 m, are tested for consistency and
no significant differences can be recognized in the ECM outputs. The distribution
for HT is derived from eruption column simulations at Somma-Vesuvius [264]. In
that work, HT values were calculated from MER [265], after having sampled, from
proper PDFs, values of total erupted mass and eruption duration.
The parameter λ defining the Truncated Exponential PDF is inferred by assuming
that the 95th percentile2 of the corresponding non-truncated Exponential PDF
(i.e. f(x) = λe−λx) is equal to 0.1HT (i.e. the top of the gas-thrust region). The
obtained Exponential PDFs are then truncated and renormalized between H0 = 20

m and H0 = 0.1HT .

Combinations of φ and H0 sampled pairs

For each eruptive size, we test three different combinations of PDFs. The combi-
nation Gaussian-Exponential is taken as reference since: (a) Gaussian PDFs have

2The selected percentile is a subjective choice guided by a precautionary principle since as-
signing a higher percentile (e.g. 99th) would produce PDFs with higher density at the smaller
H0 values and lower density at larger values.
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been previously proposed as the PDF for φ [136]; and (b) the consideration that
many natural phenomena follow exponential-like distributions.
In order to highlight the deviations from this reference combination we test only
its alternatives: (1) Tukey-Exponential; and (2) Gaussian-Linear combinations.
Again, 10000 pairs of φ-H0 (per eruptive size) are sampled from each combination
via the Monte Carlo inversion method. In total, 90000 simulations of the ECM
are run.

6.2.4 Quantification of Theoretical Uncertainty:

Incomplete Knowledge on Theoretical Assumptions

PDC mobility stands as an important variable to assess the potential extent of
PDCs at a given volcanic system. However, there is not a complete agreement upon
either which is the principal factor controlling φ or what might be the relationship
(if any) with other variables: e.g. PDC volume [214, 266, 267], ground surface
characteristics [222], ground slope [27], or column collapse height [44, 133].
Here, we estimate theoretical uncertainty by exploring three different hypotheses
on the relationship between φ and H0 within each eruptive size3:

• Direct pattern: column collapse height and PDC mobility are directly re-
lated, that is, the higher the collapse, the smaller the value of φ. For exam-
ple, the dilute part of PDCs in the model developed by [133] would follow
this direct pattern.

• Inverse pattern: column collapse height and PDC mobility are inversely
related, that is, the higher the collapse, the larger the value of φ. [44]
simulations for a VEI4 scenario at Somma-Vesuvius would agree with this
inverse pattern.

• Independent pattern: no relationship exists between collapse height and
PDC mobility (at least within a given eruptive size). Data in [138] as well as
in [266] would support the independent pattern (i.e. the ECM parameters
are not related).

3The eruption column heights [264] and φ values [138] determine a direct pattern among
eruption sizes.
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Our description of aleatory uncertainty comes from the independent pattern.
Direct- and inverse-pattern are obtained as subsets of such description. In or-
der to obtain reasonable subsets sizes, the parameter space (φ-H0) is divided into
the 9 sectors shown in Fig. 6.2. Boundaries are, subjectively, placed at the 20th
and 80th percentiles of the φ-H0 sample distributions in order to ensure that the
parameter space is properly separated into regions of low φ-high H0, high φ-high
H0 and so forth. However, both the direct- and inverse-pattern φ-H0 samples are
continuous throughout the parameter space since the magenta areas in Fig. 6.2
indicate φ-H0 values which belong to both patterns. Finally, theoretical uncer-
tainty is quantified using the ECM outputs from each pattern and building output
ECDFs accordingly (Fig. 6.3).

6.2.5 Quantification of Structural Uncertainty:

Incomplete Knowledge Reflected in the Model

Structural uncertainty is quantified by comparing the ‘best’ ECM outputs against
real data that, in our case, are the PDC deposits preserved from past eruptions.
Here, six eruptions of Somma-Vesuvius are used: the 1944 AD eruption [268] for
the small eruptive size; Pollena eruption, 472 AD [269], and the 1631 AD eruption
[270] for the medium eruptive size; and Mercato eruption, 8540 ± 50 cal. yr. BP
[271], Avellino eruption, 3945 ± 10 BP [194, 232] and Pompeii eruption, 79 AD
[272], as representative of large eruptions.
Following the validation carried out by [103], we firstly compute the areal misfit,
MAij

, associated to the ‘best’ 250 simulations (5% of the total, see note 45), i.e.
those with highest Areal Fit, AF = Ainter/Atot (where Ainter is the intersection
area between the simulated area, Asim, and the area of the PDC deposit, Aobs;
and Atot is the union area between Asim and Aobs), per each selected eruption5.

MAij
= Asimij

− Aobsj i = 1, ..., 250 j = 1, ..., Nerup (6.1)

5The total number of simulations utilized to quantify structural uncertainty (whether for
area of invasion or maximum runout) is: 250 sims × 6 eruptions = 1,500 simulations. This
corresponds to the 5% of the total number of simulations: 10,000 sims × 3 = 30,000 simula-
tions. Therefore, our quantification of structural uncertainty gives equal weight to the misfit
distributions estimated from each eruption, as far as there is not evidence to proceed differently.
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Figure 6.2: Sub-sampling of the Gaussian-Exponential, 40 m DEM configura-
tion (aleatory uncertainty, AU) to explore theoretical uncertainty. Each graph
delineates the ECM parameter space according to three eruption sizes: small
(top), medium (middle) and large (bottom). Black dots indicate pairs of φ and
H0 as sampled from the aleatory-uncertainty configuration. Red open circles
denote the inverse-pattern sub-sample and purple open circles denote the direct-
pattern sub-sample. Magenta circles represent points shared by both inverse and

direct sub-samples. From [104].

where Asimij
is the area recorded in the i-th ‘best’ simulation of a specific eruptive

size and eruption j, Aobsj is the area of the PDC deposits preserved from the j-th
eruption of this size and Nerup is the number of eruptions for this size.
The simulations are extracted from the configuration: Gaussian-Exponential PDFs
run over 10 m DEM (i.e. the other sources of epistemic uncertainty are minimized,
[75]).
We repeat the same process for the misfit on maximum runout (MMRij

), selecting
the 250 simulations, per eruption, with the closest maximum runout to the real
observations.
We then build ECDFs based upon the obtained misfits of area and maximum
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Figure 6.3: Epistemic uncertainty description taking as example the case of
theoretical uncertainty and area of PDC invasion. Aleatory uncertainty (AU)
corresponds to the solid red line (independent pattern). Epistemic uncertainty
is defined as the pale red area between the three Empirical Cumulative Dis-
tribution Functions (ECDFs). Horizontal distances between the curves demark
possible ranges of the output variable considering both aleatory and epistemic

uncertainties (see text for more details). From [104].

runout according to the number of eruptions in each eruptive size (e.g. the misfit
distribution for the large eruptive size contains 750 values of misfit). We add
the misfit values (which can be negative6) along the whole aleatory uncertainty
output ECDF and compute the final quantification of structural uncertainty from
the minimum and maximum alternate ECDFs (Fig. 6.4).

This way of quantifying structural uncertainty is neither unique nor exhaustive.
We note that the use of alternative PDC simulators for characterization of pro-
cesses not accounted for here would improve the structural uncertainty quantifi-
cation. In addition, our misfit distributions are based upon a reduced number of
realizations of the ‘true model’ (the PDC deposits) and therefore we are adding a
source of aleatory uncertainty within our quantification. Nevertheless, we consider
that even a preliminary quantification of structural uncertainty is still better than
assuming a ‘perfect’ model [75].

6NB. Nonetheless, negative values of area and maximum runout are not allowed.
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Figure 6.4: Structural uncertainty (SU) description. Top: misfit distributions
of area of invasion (top-left) and maximum runout (top-right) according to three
different eruption sizes at Somma-Vesuvius (Italy): small (green), medium (pur-
ple) and large (red). Bottom: medium-size structural-uncertainty representation
in the form of SU ECDFs (dashed cyan lines) computed from aleatory uncer-
tainty (AU ECDF, solid purple line) by adding distinct values of areal misfit,
MA (bottom-left), and maximum-runout misfit, MMR (bottom-right), picked
up from the graphs on top (see text for details). Note that the horizontal distance
between the minimum-maximum SU ECDFs in the bottom graphs corresponds
to the domain of MA and MMR (top graphs), i.e. around 50 km2 and 3 km,

respectively, in the medium eruption size. From [104].

6.3 Results

Our results are visualized in two different ways: (1) plots of ECDFs for invaded
area and maximum runout; and (2) conditional-probability maps of PDC arrival
(given an eruption of a specific size) over the surroundings of Somma-Vesuvius. As
introduced before, aleatory uncertainty is described by the range in model outputs,
in terms of invaded area and maximum runout, derived from the configuration:
“Gaussian-Exponential, 40 m DEM, independent pattern” (Fig. 6.5). Epistemic
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uncertainty (Fig. 6.6) is quantified by the range in model outputs obtained by: (i)
running the ECM with “Gaussian-Exponential, independent” samples over differ-
ent DEMs (input uncertainty); (ii) sampling the ECM parameters from alternate
configurations (parametric uncertainty); and (iii) analyzing specific subsets of the
aleatory uncertainty simulations (theoretical and structural uncertainties).

Figure 6.5: Aleatory uncertainty description, in terms of output Empirical
Cumulative Distribution Functions (ECDF) for area of invasion and maximum
runout (A and MR) of Pyroclastic Density Currents simulated with ECM
at Somma-Vesuvius (Italy), according to three different eruption sizes: small

(green), medium (purple) and large (red). From [104].

Figure 6.3 exemplifies our uncertainty quantification in terms of ECDFs. Aleatory
uncertainty (due to randomness in the process) is given as the probability: Prob(X ≤
x); where X represents the ECM output variable, e.g. invaded area. Hence:
Prob(Xlarge ≤ 450 km2) = 0.8, is a measure of aleatory uncertainty. In other words,
the quantification of aleatory uncertainty is provided by different percentiles in
the model output variable (in the above example, 450 km2 is the 80-th percentile).
Epistemic uncertainty (due to incomplete knowledge) is measured by the range in
model outputs for any given percentile. In the example above, the 80-th percentile
is in the range [250, 450] km2, when accounting for epistemic uncertainty.
Figure 6.7 shows the spatial distribution of aleatory and epistemic uncertainties
over the surroundings of Somma-Vesuvius. In the leftmost column, we plot the
conditional probability of PDC arrival, at each grid point, given the occurrence of
an eruption of a specific size (CP = Prob(PDCs|Eruption, Size)); as computed
from the aleatory uncertainty simulations. Examples of epistemic uncertainty (Fig.
6.7; right-hand side columns) are given as differences in conditional probability,
∆CP , among aleatory and epistemic uncertainty simulations. For the sake of
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brevity, we focus on the configurations which lead to the highest absolute ∆CP

values (Fig. 6.7).

6.3.1 Aleatory Uncertainty

The aleatory uncertainty ECDFs (Fig. 6.5) show that, respectively for small,
medium and large eruptions, 85%, 50% and 25% of the ECM simulations corre-
spond to PDCs with negligible area of invasion and maximum runout (i.e. they
remain almost inside the crater). The simulations that escape the crater provide
areal values rapidly increasing to reach maxima around 100, 1000 and 3700 km2,
respectively. In the case of maximum runout, the increase is not continuous. A
lack of values (nearly horizontal ECDFs) occurs between 300 m and 1, 1.5 and 3
km of maximum runout in small, medium and large eruptive sizes, respectively.
This is due to heterogeneities in crater-rim altitude and the fact that, for a given
simulated Energy Cone, a small number of Energy Lines might escape the crater
while others remain inside it. This produces an abrupt increase in the maximum
runout (but not in the invaded area) of the simulation. Maximum runout values
reach maxima around 6, 19 and 47 km, for small, medium and large eruptions,
respectively.
Extreme values of both output variables are restricted to very high percentiles. For
instance, considering large eruptions, MR ≈ 30 km occurs around the 99th per-
centile while A ≈ 1, 000 km2 occurs around the 95th percentile. In other words,
1% of the simulations record MR ≥ 30 km while 5% of the simulations cover
A ≥ 1, 000 km2.
Regarding the conditional-probability, the contrast among eruptive sizes is obvious
(Fig. 6.7). Small-size simulations are restricted to the southern flank of the vol-
cano, cover small areas and have modest runouts. Medium-size simulations cover
larger areas with moderate conditional probabilities (CP > 0.4) remaining over
the South, East and West flanks of Somma-Vesuvius. The area with CP ≥ 0.05

(colored area) has a radius of about 9 km around the volcano. An area similar to
this is covered by CP ≥ 0.4 in large-size simulations where, in turn, the CP ≥ 0.05

area shows a radius of ≈ 22 km. Nonetheless, distal topographic highs such as the
Sorrento Peninsula and the Nola-Sarno Mountains influence the runout blocking
the simulated PDCs. Almost the entire city of Napoli lies inside the CP ≥ 0.05

area. The topographic effect of the natural barrier of Mt Somma is recognizable
for all eruptive sizes (Fig. 6.7).
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Figure 6.6: Comprehensive epistemic uncertainty description for the area
of invasion (A) and maximum runout (MR) of Pyroclastic Density Currents
at Somma-Vesuvius (Italy) according to three different eruption sizes: small
(green), medium (blue) and large (red). Aleatory uncertainty (Fig. 6.5) lies
inside the band of input uncertainty. Note how the contribution of each type of
epistemic uncertainty to the total uncertainty changes along the graphs. From

[104].
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6.3.2 Input Uncertainty

Input uncertainty, investigated using differing DEM resolutions, is the source of
epistemic uncertainty with the smallest contribution, taking into account all sizes
and both output variables. Quantitatively, its maximum absolute values are, re-
spectively, ≈ 3, 7, 25 km2 for area of invasion and ≈ 1, 1.5, 3.5 km for maximum
runout in small, medium and large eruptions. These values are hardly distinguish-
able, particularly in the medium- and large-size ECDFs of area of invasion. In
terms of maximum runout, input uncertainty has a larger effect on total epistemic
uncertainty. Its maximum extent coincides with the first simulations exiting the
crater and this is recognized in all eruptive sizes (Fig. 6.6).
Due to its very small contribution, we do not show any conditional-probability
map for input uncertainty, since these maps are very similar to those calculated
from aleatory uncertainty (i.e. ∆CP ∼ 0).

6.3.3 Parametric Uncertainty

Parametric uncertainty, investigated using different PDFs for the model param-
eters, has a larger impact than input uncertainty on both output variables and,
mostly, in medium and large eruptions. In small eruptions, parametric and input
uncertainties are superposed (Fig. 6.6). Maximum parametric-uncertainty abso-
lute values are about 20, 300, 700 km2 for area of invasion and 1, 4, 8 km, for
maximum runout in small, medium and large sizes, respectively.
Regarding the conditional-probability maps, we only display the Gaussian-Linear
(40 m, independent pattern) simulations which show clear positive ∆CP values
over the whole map (Fig. 9). These ∆CP values are bigger in the vicinity of the
volcanic vent and get smaller at increasing distances. For large-eruption simula-
tions, ∆CP is approximately +0.1 over the whole North sector (Fig. 6.7) which
implies that most of the Gaussian-Linear large size simulations produce PDCs
overcoming Mt Somma (i.e. the conditional probability over the North flank is
similar to that on the other flanks of the volcano).
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6.3.4 Theoretical Uncertainty

Theoretical uncertainty, investigated analyzing different relationships between the
model parameters, gives the largest contribution to total epistemic uncertainty.
Maximum theoretical uncertainty, in absolute terms, reaches around 90, 850, 3000
km2 for area of invasion and 3, 11, 33 km, for maximum runout in small, medium
and large eruptions, respectively. This is due to two reasons: (a) the inverse-
pattern ECDF has a much narrower range of possible (smaller) values of area of
invasion and maximum runout than the aleatory-uncertainty output ECDF; and
(b) the direct-pattern ECDF shows a significant break-in-slope (Fig. 6.3) and its
tail is slightly heavier than what seen in the aleatory-uncertainty output ECDF.
Considering the conditional-probability maps, the direct and inverse pattern dis-
play remarkably different features as well. Direct-pattern difference maps are
characterized by a common spatial distribution of ∆CP , independently of erup-
tive size (Fig. 6.7): proximal areas display positive ∆CP values; in medial areas
(e.g. about 4 and 7 km from the crater in medium and large sizes, respectively),
we observe negative ∆CP values; and, then, at more distal locations (e.g. beyond
the CP ≥ 0.05 limit in aleatory uncertainty), ∆CP changes sign again, although
the positive differences here are smaller than in proximal areas. By and large,
Mt Somma barrier seems to prevent PDC propagation northwards. The inverse-
pattern maps also display positive ∆CP values over proximal sectors. However,
beyond the positive-negative ∆CP boundary (Fig. 6.7), ∆CP gets strongly nega-
tive, decaying to smaller negative ∆CP values only at distal locations. This reflects
the fact that no inverse-pattern simulation reaches medial and distal areas.

6.3.5 Structural Uncertainty

In regard to structural uncertainty, we only present ECDFs since this type of epis-
temic uncertainty cannot be directly mapped in this study. Here, we use the ‘best’
ECM simulations to characterize the misfit distributions and we apply the latter
to build the final quantification of structural uncertainty (see subsection 6.2.5).
However, estimating the effect of structural uncertainty on conditional-probability
maps would require a procedure able to incorporate this source of epistemic un-
certainty in the model itself, maybe as some sort of asymmetric buffer depending
on the surrounding topography (e.g. [30]). This propagation of structural uncer-
tainty to the conditional-probability maps should rely upon misfit distributions,
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as previously estimated.
In terms of ECDFs, structural uncertainty is the most uniform source of epistemic
uncertainty (Fig. 6.6). The maximum absolute values can get as high as ≈ 6, 50,
380 km2 for area of invasion and ≈ 0.7, 3, 8 km for maximum runout in small,
medium and large eruptions, respectively.

6.4 Discussion and future directions

Computing PVHA is time- and resources-consuming and not all numerical simu-
lators or uncertainty quantification techniques are suitable for this purpose. The
combined use of the ECM and Monte Carlo sampling supplies a comprehensive
description of aleatory and epistemic uncertainties for PDCs at Somma-Vesuvius,
Italy (Figs. 6.6, 6.7 and 6.8), that may be incorporated into PVHA.

6.4.1 A comprehensive uncertainty description

In order to compare the different sources of epistemic uncertainty among them
and across eruptive sizes, we calculate the relative maximum expected deviation
as: δij = ∆ij/x50i , where, for a given size i, ∆ij is the maximum horizontal
distance between the aleatory-uncertainty ECDF and the alternate ECDFs of the
j-th source of epistemic uncertainty; and x50i is a common reference value: the
50th percentile of the aleatory-uncertainty ECDF, again for size i. Note that
δij > 1 implies that maximum expected deviation is greater than the median, x50i .
Concerning area of invasion, δAij

spans from 10−1 to 103 considering all sources.
The largest deviations occur on parametric and theoretical uncertainties in all
eruptive sizes but especially in the small and medium sizes where δAij

reaches
values on the order of 102-103 (Table 6.2. Among all types of epistemic uncertainty,
input uncertainty has the smallest effect on the areal outputs.

In the case of maximum runout, the obtained values are much more homogeneous,
spanning only three orders of magnitude (δMRij

∼ 10−1 to 101), considering all
sources. Again, small and medium sizes show greater deviations in the outputs
with respect to the large size. Theoretical uncertainty is confirmed to give the
largest contribution. Input and structural uncertainties exhibit the smallest devi-
ations even though the former plays a role in the small-size epistemic uncertainty,
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Table 6.2: Relative maximum expected deviations from aleatory uncertainty
considering area of PDC invasion and maximum runout (δA, δMR) and four
different sources of epistemic uncertainty. IU = input, PU = parametric, TU =

theoretical, SU = structural. From [104].

Variable → δA δMR

Eruption size IU PU TU SU IU PU TU SU
Small 32.34 432.6 1168 53.81 5.595 5.404 18.37 1.921
Medium 3.569 130.7 402.2 12.87 0.927 2.073 7.312 0.926
Large 0.201 4.312 22.48 1.889 0.491 0.993 4.529 0.550

probably due to a stronger interaction of its simulated PDCs with the proximal
topography (e.g. the crater and Mt Somma caldera rim). Figure 6.8 shows a
South-North profile covering our study area, where topographic altitude is plotted
against conditional probabilities of PDC arrival taking into account both aleatory
and epistemic uncertainties. The smaller the eruptive size, the greater the in-
fluence of Mt Somma. The different shape of the conditional-probability profiles
over the North flank (Mt Somma) compared to the South flank of the volcano is
recognizable for all sizes. Nonetheless, the profile is more homogeneous in the case
of a large eruption. This is in agreement with the general idea that large PDCs
are less controlled by topography than smaller ones (e.g. [9]).

The very small contribution of input uncertainty to simulation results of medium
and large sizes could be related to two main factors. Firstly, our case study is
based on a topographic setting controlled by a high-standing stratocone (Somma-
Vesuvius) surrounded by a quite flat area (Campanian plain). Assessing the im-
portance of input uncertainty linked to ECM simulations on other volcanic systems
featured by more complex topographies (e.g. Campi Flegrei, Italy) could be of par-
ticular interest for PVHA. The example of Campi Flegrei is relevant here as PDC
propagation could be controlled by: (1) the complex morphology of the volcanic
system (where caldera- and edifice-collapse structures are spatially combined with
preserved eruptive cones, e.g. [25, 37]); and (2) the vent-opening spatial variability
that can be expected from future eruptions (e.g. [205]).
Secondly, it should be stressed that the topographic control on PDC propagation
that can be captured using the ECM is limited. Some effects such as channeliza-
tion of PDCs [44, 91] or dense-dilute PDC decoupling [125] are not captured by
such a simple model. Still, these effects can be crucial for PVHA and adequate
scientific support for risk management. On the one hand, single-simulation or
single-scenario (composed of few ECM simulations) approaches will likely fail in
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Figure 6.8: South-North profile (A-A’) of the study area (map on the left).
Top: altitude profile where some regional topographic highs are identified. The
three other profiles, from top to bottom, show the conditional probabilities of
PDC invasion computed from ECM simulations at Somma-Vesuvius and taking
into consideration three eruption sizes: small (green), medium (purple) and
large (red). Solid lines indicate the value of conditional probability as calculated
from aleatory-uncertainty simulations. Dashed lines denote the minimum and
maximum values of conditional probability taking into account all sources of
epistemic uncertainty but the structural uncertainty (see text for more details).
The link between topography and PDC invasion can be visualized in all three

eruption sizes. From [104].
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describing the possible extent of surge-decoupling processes as one might expect to
occur, for instance, when PDCs encounter Mt Somma (there are other situations
in which surge-decoupling is favored, such as sharp variations in channel capacity
and/or sinuosity (e.g. [145]). On the other hand, structured analyses quantifying
both aleatory and epistemic uncertainties (where many thousands of simulations,
covering coherent ranges of φ and H0, are run), may be able to somehow assess
this extent, since they generate a statistical sample of ECM outputs which in part
end before/at Mt Somma but in part go beyond it (Figs. 6.7, 6.8). As refers
to PDC channelization, little can be done with the ECM and more sophisticated
simulators are needed to evaluate the importance of such a phenomenon in the
final PDC extent (see, for instance, Fig. 7 in [44]).
In order to statistically test which alternate configurations significantly change
the output ECDFs of area of invasion and maximum runout from the aleatory-
uncertainty output ECDF, we perform two-sample Kolmogorov-Smirnov tests,
one per each epistemic-uncertainty ECDF tested against the aleatory-uncertainty
ECDF (Table 6.3). This test evaluates the null hypothesis that both ECDFs (each
epistemic one and the common aleatory) have been sampled from the same un-
derlying distribution, i.e. a theoretical CDF (e.g. [273]). By means of the K-S
tests, we want to find out whether the epistemic ECDFs are significantly different
from the aleatory ECDF and, hence, quantifying epistemic uncertainty provides
useful information about the ECM outputs. The only alternate configuration for
which we cannot reject the null hypothesis, at the 5% significance level, is the
Tukey-Exponential combination (parametric uncertainty). This fact reaffirms the
choice of not exploring the Tukey-Linear configuration as we may assume their
outputs would not be significantly different from Gaussian-Linear ones.

By taking into account all other epistemic uncertainties, instead, we observe a sta-
tistically significant variation of the final distribution for both area and maximum-
runout values (Table 6.3). This means that, although input uncertainty changes
these values by a small δij amount, it is sufficient to modify the output ECDFs.
More generally, it suggests that all types of epistemic uncertainty analyzed in this
study are able to significantly change the resulting output values compared to
those obtained when considering only aleatory uncertainty.
Finally, we can provide the probability ranges (considering both aleatory and
epistemic uncertainties), conditional to the generation of PDCs and given the oc-
currence of an eruption of a specific size; for different locations being invaded by
PDCs in case of small, medium, and large eruptions at Somma-Vesuvius. For
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illustrating this, we report some examples of conditional probabilities (Fig. 9) for
PDCs arriving: (1) beyond Mt Somma (e.g. Somma Vesuviana); (2) at Torre del
Greco (Napoli-Reggio Calabria highway and train station); (3) at Scafati (E-SE
from Somma-Vesuvius); (4) at the hospital in Massa di Somma; and (5) at the
Napoli-Capodichino airport (Table 6.4).

6.4.2 Applicability to Other Volcanoes

As indicated before, quantifying uncertainties is often a computationally expensive
procedure. In spite of this, uncertainty is unavoidably linked to volcanic hazards
(e.g. [274]). A better understanding of its sources, and how it can be whether
reduced or, when not possible, quantified properly, will be beneficial for decision-
making and risk mitigation [259]. Moreover, exploring the best ways of visualizing
and communicating uncertainty requires close collaboration between scientists and
decision-makers (e.g. [275]).
Accordingly, uncertainty characterization should be gradually included in volcanic
hazard products as it has become a routine procedure in other natural hazards,
such as earthquakes (e.g. [276, 277]).
The ECM has been one of the most-used models in volcanic hazard mapping stud-
ies [41, 132, 136, 217, 278, 279] because of its capability to capture some first-order
characteristics of PDCs and its computational efficiency. The results presented in
this chapter may be used to include preliminary uncertainty quantifications into
single-scenario or even single-simulation hazard studies. Despite being an order-
of-magnitude estimation of aleatory and/or epistemic uncertainty, this can enrich
the information provided in the hazard analysis. Besides, getting an understand-
ing of where or why different sources of uncertainty may arise, can guide future
research efforts to better describe and/or reduce them.
For these reasons, the application of the presented approach to other volcanic sys-
tems (as well as to other PDC simulators) might serve to bridge the gap between
some current practices, which lack of any uncertainty description, and an eventual
common framework for uncertainty quantification in PVHA of PDCs.
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6.4.3 Applicability to PVHA

Epistemic uncertainty represents an essential part of uncertainty assessment pro-
cedures. Quantifying the extent to which our knowledge is limited requires, first
of all, to have an idea on what are the missing processes, the ill-constrained data,
etc. In other words, we need to be aware of what we don’t know [74].
This implies that epistemic uncertainty may increase or decrease as knowledge
about volcanic systems changes over time. For instance, before the tragic eruption
of Mt Saint Helens (USA) in 1980, little was known about the possibility of a
gravitational failure of part of the volcanic edifice which triggered the devastat-
ing lateral blast (e.g. [280]). Consequently, at that time, the epistemic uncer-
tainty associated to a nearly unknown outcome would have been very low. After
the eruption, we discover an ontological error [62]. Many horseshoe-shaped mor-
phologies on different volcanoes around the world were recognized afterwards and
volcanic hazard scientists would start including the possibility of flank failure in
their assessments (e.g. [281]). However, the causal links between magma ascent,
emplacement or eruption, and the triggering of a flank collapse are not perfectly
known. This means that epistemic uncertainty about the probability of flank fail-
ure has increased over time even though the knowledge about volcanic systems
has clearly increased during the last 35 years.
This changing nature of epistemic uncertainty copes well with Bayesian methodolo-
gies, where new information can be incorporated to previous states of information
in a structured manner (e.g. [239]), and with the taxonomy of uncertainties pro-
posed by [62].
PVHA has been connected to Bayesian theory since its beginnings [21, 61, 67].
Some development in formal frameworks to evaluate epistemic uncertainty was
published afterwards (e.g. [68]). In these works, a necessarily subjective (al-
though expert) choice must be made in order to assign a degree of confidence on
the proposed model, with respect to other possible models and observed data.
This is ultimately linked to the selected modeling procedure, including: the sim-
ulator itself, the underlying assumptions, the DEM, the number of simulations,
etc. (e.g. [19]). In this respect, we think that our study (and similar studies)
can provide useful insights for assigning the subjective degree of confidence based
upon a more robust, transparent and justifiable procedure, taking into account
all the information about the morphology and magnitude of epistemic uncertainty
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gathered from the presented results.



Chapter 7

Probabilistic Volcanic Hazard

Assessment of PDCs in Central

Campania (Italy)

Abstract

In this chapter, we incorporate the results of Energy Cone simulations of PDCs,
from Somma-Veusvius and Campi Flegrei volcanoes separately, into the Bayesian
Event Tree for Volcanic Hazard (BET_VH), to compute the probability of inva-
sion by PDCs, from each of these volcanoes, over the central Campania region (the
city of Napoli and surroundings) in the next 50 years. The probability of PDC
invasion due to the two volcanoes is then combined, by assuming independency
in the activity at the two volcanic systems, to obtain a Probabilistic Volcanic
Hazard Assessment (PVHA) for PDCs in the target region in the next 50 years.
The method used is doubly stochastic, allowing us to provide percentile maps to
display the epistemic uncertainty associated with our best estimation. Since the
probability density function of the model parameters of the Energy Cone is not
known, we propose an ensemble of different hazard assessments based on different
assumptions on such unknown probability density functions. The ensemble de-
scribes the merging of two plausible distributions for the collapse height and this
reflects a source of epistemic (specifically, parametric) uncertainty. Notably, we
include both dense and dilute PDCs in our hazard analysis that, in addition, is en-
tirely based on forward modeling. We also apply a novel quantification of epistemic

103
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uncertainty associated to PDC simulations: in this study, we compute spatially-
varying evaluations of epistemic uncertainty, by using the characterization of the
largest source of epistemic uncertainty, that is the theoretical uncertainty, revealed
by [104].

7.1 Introduction

Pyroclastic Density Currents (PDCs) are ground-hugging hot mixtures of gases
and pyroclasts, traveling at high speed over the flanks of, commonly, explosive
volcanoes. Together with lahars, they have been the volcanic phenomenon re-
sponsible for the highest death toll in the last four centuries [157], and are among
the causes of major concern in volcanic emergency management, as the most safe
action to protect population against PDCs is the call for evacuations, sometimes
on a large scale (e.g. [282]).
The generation, transport and deposition of PDCs are governed by a chain of very
complex processes, that have long attracted the attention of scientists as a chal-
lenging problem to be modeled: in particular, a whole range of different simulators
have been proposed, from very simple ones like the Energy Line (or Energy Cone
in 3D, [132]), to more detailed numerical models considering friction within the
flow and between the flow and the underlying ground (e.g. Titan2D and VolcFlow,
see respectively [218, 283]), up to very complex models that are able to consider
the multi-phase and multi-component nature of PDCs (e.g. [44]).

So far, the use of PDCs simulators has been mostly twofold: on the one hand, they
have been used to reconstruct the dynamics (and related variables) of some past
eruptions, by best-fitting the direct observations (e.g. [145, 284]) or some features
of their PDCs deposits (e.g. [27, 285]; on the other hand, they have been used
to model the hazard posed by PDCs at a given volcano (e.g. [45, 286]). For the
former use it is likely that the more sophisticated the simulator, the more detailed
the information retrieved; however, for the latter use, the output of few simula-
tions from a very detailed model cannot guarantee the full characterization of all
the uncertainties involved in forecasting future activity, and its resulting impact.
Indeed, in modeling the hazard posed by such complex processes, a necessary bal-
ance must be reached between model complexity (the more complex the simulator,
the higher its computational cost) and the possibility to fully explore the model
parameters’ space. In any case, the physical complexity of PDC-related processes
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implies that there are subtantial uncertainties that cannot be neglected, stem-
ming from intrinsical natural variability of such processes (aleatory uncertainty)
and from our lack of knowledge or available data (epistemic uncertainties).

In this view, a few works in recent years have tried to fully account for uncertainties
in modeling the hazard posed by PDCs. In particular, [24] have applied Titan2D
model to Colima volcano (Mexico), to produce probability maps conditional to the
occurrence of PDCs within a given volume range. [23] and [31] have developed a
Bayesian emulator (built on Titan2D simulations) to produce hazard curves (e.g.
[242]) at some points around Soufrière Hills volcano at Montserrat. These hazard
curves were conditional to the occurrence of PDCs or applicable to a given time
window. Nonetheless, the physical assumptions at the basis of Titan2D equations
make it suitable only to simulate dense (and not dilute) PDCs.

More recently, [33] have produced probability maps of the invaded area in case
of an inland explosive eruption from Campi Flegrei (Italy): here, the authors
applied an integral model based on the box model [287], assuming the topography
of the Campi Flegrei caldera as a sub-horizontal one, and using the areas of past
deposits to build up a set of statistical distributions that quantify the aleatory
and epistemic uncertainty in the PDC-invaded area for the next eruption. By
sampling such distributions of areas and applying the box model in an inverse
fashion, the authors retrieved the mass of pyroclastic material required to invade
such an area, given a specific vent position and surrounding topography. The
effect of topography on the propagation of the PDCs has been accounted for as in
previous applications of the Energy Line model [288], i.e. by comparing the flow-
front kinetic energy to the potential energy required to overcome topographical
barriers along the flow path.
Unfortunately, the integral model based on the box model used by [33] can only
be applied when the flow propagates over a subhorizontal surface. This hampers
its use on volcanic systems with predominant topograhical structures, such as
stratovolcanoes (e.g. Somma-Vesuvius). Further, this inverse scheme requires the
availability of a significant number of data on the areas invaded by past PDCs at
the volcano of interest, and this favourable situation is not very common.

In order to explore the possibility of using the Energy Cone model to produce
probability maps of areas invaded by PDCs, [104] have studied how aleatory and
epistemic uncertainties influence the outputs of the Energy Cone (in terms of
invaded area A, and maximum run-out distance MR) at Somma-Vesuvius, when:



Chapter 7. PVHA of PDCs, Central Campania 106

• running the Energy Cone on Digital Elevation Models (DEMs) of increasing
resolution

• using different statistical distributions (reflecting different hypothesis on the
flow generation and propagation) for the model parameters (i.e., the height
of collapse H0, and the flow mobility, usually parameterized by the φ angle:
the larger the φ angle, the less mobile the flow)

• exploring diverse theoretical assumptions on the correlation patterns between
the model parameters (independent, inverse or direct)

• quantifying, in a preliminary way, the intrinsical limitations of the Energy
Cone model.

According to such study, all the types of epistemic uncertainty explored affect
significantly the final output of the Energy Cone model, in terms of A and MR.
Furthermore, a major contribution to epistemic uncertainty results from the so-
called theoretical uncertainty (third item in the list above). Such correlation is
controversial, as some authors (e.g. [133]) tend to assume a direct correlation
between collapse height and mobility, while some others (e.g. [44]) are inclined
towards an inverse one.

Further, [103] have proposed a quantitative procedure to validate the output of the
Energy Cone model at Somma-Vesuvius and Campi Flegrei. In particular, they
blindly tested the corresponcence between simulated and observed (from past de-
posits) A and MR values. By using independent data from worldwide PDCs
deposits [138], they set up probability density functions for the model parameters
of the Energy Cone model (H0 and φ). Then, by sampling the parameters’ values
in a Monte Carlo scheme, they ran the Energy Cone model many thousands of
times, obtaining the distributions of the simulated A and MR. These were sta-
tistically compared to the values observed in 24 mapped PDC deposits: 18 from
Campi Flegrei [25] and 6 from Somma-Vesuvius [26, 193]. The comparison has
shown that the real values are generally in statistical agreement with the simula-
tions from the Energy Cone. In other words, despite being an extremely simple
model (e.g. [289]), such studies on the Energy Cone model have highlighted its
skill in quantitatively capturing the natural variability that an adequate hazard
assessment should display.
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Under these premises, in this chapter, we apply the Energy Cone model to simu-
late the invasion of PDCs from Somma-Vesuvius and Campi Flegrei on the Napoli
metropolitan area in Southern Italy where about 3 million people live. The re-
sults of the simulations are included in a Bayesian Event Tree for Volcanic Hazard
(BET_VH, [49] scheme, to produce long-term probability maps of invaded areas
by PDCs on the target area, which is among the ones exposed at highest volcanic
risk in the world, being densely inhabited and hosting strategical economic infras-
tructures at national scale. As in [33], the method is doubly stochastic, allowing
us to provide percentile maps to display the epistemic uncertainty.

Three main novelties characterize this study. First, in analogy with probabilistic
seismic hazard studies [290], the focus of our study is not a single source of hazard,
but the target area. In this respect, we account for all the potential sources of
the considered hazardous event (PDCs), i.e. Somma-Vesuvius and Campi Flegrei,
threatening the metropolitan area of Napoli. The total hazard due to both these
sources, considered independent, is thus evaluated and properly combined. This
represents a first step towards the inclusion of probabilistic hazard studies on
PDCs into quantitative risk and multi-risk studies, in order to rank risks and
prioritize mitigation actions (e.g. [291]. We remark that, in the past, very few
studies in volcanology (e.g. [292, 293]) have evaluated multi-source PDC hazard,
as the generally accepted approach is to focus on a single volcano. Nevertheless,
the studies by [292, 293] focused on peculiar events (i.e. single and subjectively
adopted scenarios) from each volcano, rather than exploring the natural variability
displayed by volcanic activity.
In this view, here we fully explore the model parameters’ space (for both volcanic
systems separately) in order to account for all the uncertainties involved. In other
words, we do not subjectively choose representative scenarios, but we account for
all the possible eruption sizes and eruptive vents for both volcanic sources, by
adopting a novel approach as regards the eruption sizes recently proposed by [70].

Secondly, we include both dense and dilute PDCs in our hazard analysis, which is
entirely based on forward modeling. This includes the quantification of epistemic
uncertainty, which, up to now, has been mainly derived from expert judgement
(e.g. [33]). In the case of previous BET_VH studies (e.g. [32, 100], epistemic
uncertainty was measured in terms of the equivalent sample size Λ (e.g. [19]),
guided by experts’ choice. In this study, we compute spatially-varying Λ values,
using the information contained in the simulations carried out by [104] and focusing
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on the largest source of epistemic uncertainty identified by the authors: that is,
the theoretical uncertainty.

Finally, since the probability density function of the model parameters of the en-
ergy cone model is not known, we propose a final hazard assessment based on
the ensemble of different hazard assessments [76, 242]; each of them is based on
different assumptions on the probability density function for the collapse-height
parameter (H0). The ensemble aims at evaluating this source of parametric un-
certainty (e.g. [75, 104]).

7.2 Methods

In order to assess the probabilistic hazard from PDCs invasion, we follow the
general scheme of BET_VH probabilistic model [49]. In particular, we divide the
whole process, from the occurrence of an eruption to the impact on a given grid
point in the target area, into three main logical steps:

• Eruption forecasting - in this step we assess a Probability Density Function
(PDF) for the occurrence of an eruption (corresponding to Nodes 1-2-3 in
BET_VH) in a given time window, that here we set to 50 years for long-
term hazard purposes. For both volcanic systems, we use the assessment
made in previous studies, i.e., [61] for Somma-Vesuvius, and [294] for Campi
Flegrei. For Campi Flegrei, we see that our estimates are within the bounds
proposed by [295].

• Scenario forecasting - in this step we assess a PDF for the location of the vent,
given the occurrence of an eruption, and a PDF for the size of the eruption,
given a position of the vent. These two PDFs respectively correspond to
Nodes 4 and 5 in BET_VH.

• Impact forecasting - in this step we assess a PDF for the probability of
generating PDCs and of reaching a given point in the target area (Naples
metropolitan area), given the occurrence of an eruption of a given size class
and vent. These two PDFs respectively correspond to Nodes 6 and 7 in
BET_VH. Since we use a very simple simulator, we are not able in this
study to compute the hazard curves (that would correspond to Node 8 in
BET_VH, as in [242]).
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7.2.1 Scenario forecasting

7.2.1.1 Spatial probability of vent opening

In the case of Campi Flegrei we use the long-term spatial probability of vent open-
ing proposed by [205], which was the first one produced, and covers the whole
caldera. We also test significant differences when using a more recent map pro-
posed by [206].

In the case of Somma-Vesuvius, previous studies (e.g. [68]) concentrated most of
the vent opening probability on the present Gran Cono crater, due to the persistent
activity from this vent in the last 2ky. Here, we take a step forward and, by
following an approach similar to [19], we try to use both prior knowledge due to
the morphological features of the volcanic edific and the location of eruptions in
the last 20ky.
To do so, we cover the volcano edifice (that we approximate as a circular area with
center at (40.821N,14.426E), and radius of 6 km, see Figure 7.1a) with a regular
grid of 500m spacing, totalling Nv=441 grid points. As in [205], we describe the
spatial probability of vent opening by a Dirichlet distribution characterized by a
set of parameters (α1, ...αNv), and describing an exhaustive set of Nv mutually
exclusive random variates [65]; in other words, our distribution for the spatial
probability of vent opening is computed under the assumption that, in case of an
eruption at Somma-Vesuvius, only one vent will open, and it will be within the area
covered by the grid. The set of parameters (α1, ...αNv) fully describe the aleatory
and epistemic uncertainty, and are univocally linked to the mean probability of
each grid points and to a number of equivalent data (or equivalent sample size) Λ,
characterizing the dispersion around such mean values (see also [296].

In order to assign a prior probability distribution over the grid points, we divide
them into three categories: 1 grid point in the center (the Gran cono’s crater),
48 grid points belonging to the area enclosed by caldera collapses (identified by
[25, 196]) and the remaining 392 "lateral" grid points. We assign a subjective
prior mean probability of 0.90 to the crater point and 0.09 to the caldera points
(uniformly spread, i.e., a mean probability of ∼ 0.002 for each of them). This
is justified by the inferred location of Somma-Vesuvius’s conduit below the Gran
Cono position, and implies a larger probability of vents over the summit area. This
is in agreement with [68], who assigned a general 0.99 probability to the opening
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Figure 7.1: Spatial probability of vent opening, given an eruption, proposed
for Somma-Vesuvius (Italy). (a) prior Dirichlet distribution showing high prob-
abilities of vent opening over the present cone and the area covered by past
volcanic-edifice collapses (calderas’ floor); (b) number and location of past erup-
tive vents at Somma-Vesuvius (see Table 7.1); (c) number and location of past
eruptive vents after applying a Gaussian filter to account for uncertainty in the
inferred location for these vents; (d) posterior Dirichlet distribution computed
after updating the prior distribution using the (filtered) past-vent locations.
Probabilities in (a), (d) are expressed in log10 scale. In (b), (c) the size of the
red circles indicates the number of past events (the bigger the circle, the higher

the number). See text for more details. From [105].

of a vent in the summit area of Somma-Vesuvius. However this model does not
exclude the (unlikely) event of a lateral opening outside the summit area (Gran
Cono crater and caldera collapses): the lateral points are characterized by a prior
mean probability, spread uniformly around all the points, of the remaining 1%

(i.e., a mean probability of 2.6 10−5 per lateral grid point).

A moderate degree of confidence, expressed in terms of equivalent sample size Λ

(see [296] for more details) is given to these prior mean probabilities (Λ=10). We
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then use the location of past VEI≥3 explosive events in the last 22 kyr [89] (see
Table 7.1) shown in Figure 7.1b, to condition such prior probability distribution.
By using past locations as counts of “successes” in a Bernoulli multinomial scheme
(n1, ...nNv , where ni is the number of recorded past eruptions in vent position i),
we can exploit the conjugacy property of the Dirichlet distribution with the Multi-
nomial function to compute the posterior probability distribution, conditional to
the occurrence of an eruption at Somma-Vesuvius, which would be again a Dirich-
let distributions with parameters (α1 + n1, ...αNv + nNv). In practice, since the
exact position of some past vents is not known, first we apply a a Gaussian filter
with null mean and σ=250m [205] to the counts of past vents in every possible
location. The standard deviation value reflects the expected error in past vents’
location, and it is of the order of the main crater’s radius.

Given a number of recorded past eruptions nj in vent position j, the Gaussian-
filtered count n′j will be:

n′j =

∑Nv

i=1wijni∑Nv

i=1wij
(7.1)

where

wij = exp(−d2ij/(2σ2)) (7.2)

and d2ij is the metric distance between grid points i and j (in case i = j, such
distance is obviously 0 and the weight wii = 1). The map of the filtered counts
is shown in Figure 7.1c. The resulting posterior distribution is then computed as
a Dirichlet distributions with parameters (α1 + n′1, ...αNv + n′Nv

); the map of the
posterior mean values is shown in Figure 7.1d.

7.2.1.2 Probability distribution for the eruption size

We use the probability distribution for the eruption size proposed by [70], indepen-
dently on where the vent is. In particular, to avoid assuming a set of subjectively
chosen representative scenarios, we first define some broad size classes based on
different ranges in the total erupted mass. For Somma-Vesuvius, we define three
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eruption size classes (small, medium and large, all characterized by explosive activ-
ity), assuming that next eruption will have a minimum eruptive energy to re-open
the conduit [61]. For Campi Flegrei, we define four (effusive, small explosive,
medium explosive and large explosive). Then we build a volcano-specific power
law on the total erupted mass in explosive events, constrained by previous oc-
currences of each size class [70] (see Table 7.2). In this way, every simulation
run of the Energy Cone is associated with a specific weight corresponding to its
probability, given the occurrence of an eruption at the considered volcano.

7.2.2 Impact forecasting

7.2.2.1 Probability of PDC generation

Here, we use the statistics provided by [21] to define the prior means, grouped
by eruption size. In particular, we give a null mean probability to Campi Flegrei
effusive eruptions to generate PDCs. For eruptions falling in the small size class,
at both volcanic systems, we give a mean probability of 0.35, while for larger
eruptions we give a mean probability of 0.7. We give very low confidence on such
prior mean values, assigning a Λ = 1 (Table 7.2), thus building up little-informative
prior Dirichlet distributions. We then use past frequencies to condition the prior
Dirichlet, again in a Bernoulli trial scheme as for the spatial probability of vent
opening. In particular, all of the explosive eruptions at the two volcanoes have
generated PDCs.
At Campi Flegrei, we also take into account the possibility of a vent opening in
deep waters: in such a case, explosivity is likely to be suppressed by the pressure
exerted by the water column above the vent (e.g. [32, 305, 306]). Thus, whatever
the explosive size class, we assume that PDCs are not generated if the vent opens
at a depth larger than 10 m, in accordance with [32, 305].

7.2.2.2 Probability of PDCs reaching target grid points

As regards the probability of reaching a given target point, we make use of simu-
lations performed specifically with the Energy Cone model that are illustrated in
this section. The general approach is similar to the one adopted by [103, 104]: for
every volcanic system, vent position and size class, we first define a suitable model
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parameter space and distribution for the Energy Cone parameters, collapse height
(H0) and PDC mobility1 (φ). We then sample tens of thousands of pairs of values
from this parameter space and, for each pair, we run an Energy Cone simulation.
Then, at a given target grid point, we compute the frequency of simulations that
reach that point, which is adopted as our best-estimate value (the mean) of the
probability of reaching that point.

In this study, we sample the mobility φ from truncated Gaussian and Uniform
distributions for Somma-Vesuvius and Campi Flegrei, respectively, as in [103, 104].
These two distributions reflect the evidence emerging from the catalog by [138]
and from the data of the two specific volcanoes.
As a novelty, here we explore how results change when considering two “end-
member” assumptions on the probability distribution of the collapse height H0. In
particular, we run two separate sets of simulations considering:

• a truncated Exponential probability distribution on H0 (as in [103, 104]),
accounting for the general idea that large column collapse heights are by far
less likely than smaller ones, reflecting a common feature of frequency-size
relationships in nature (e.g., the Gutenberg-Richter law for earthquakes)

• a Uniform probability distribution on H0, reflecting maximum ignorance on
the real relative frequency of large to small collapse heights.

In both cases, we assume that column collapse will occur within the gas-thrust
region whose top is roughly estimated as 10% of the total height of the eruption
column [110].

The results of the two simulation sets are then merged together through an en-
semble model, that is a statistical mixing in which we give equal weight to the two
end-member assumptions. In Appendix B, we provide a detailed description of
the evidence upon which we build up the two different probability distributions.

Further, we use sub-groups of simulations to infer the confidence on such best
estimates. As mentioned in the Introduction, [104] found that the largest con-
tribution to epistemic uncertainty on MR and A, when using the Energy Cone
model, comes from alternative hypothesis on possible correlations between values
of H0 and φ, namely a “direct” correlation (the largest the H0, the more mobile the

1Note that, in reality, the smaller the φ value, the larger the mobility (see Chapter 4).
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flow and thus the smaller the φ angle, and vice versa, e.g. [133]), and an “inverse”
one (the largest the H0, the less mobile the flow and thus the larger the φ angle,
and vice versa, e.g. [44]). In order to assess how constrained is our best-estimate
frequency value, we extract, from our simulations, two sub-groups of simulations,
whose model parameters’ pairs are in agreement with either one of the two correla-
tion patterns: the sub-set of pairs in agreement with the direct pattern (in which
the H0 values are either below the 20th percentile or above the 80th percentile,
and the corresponding φ values are respectively either above the 80th percentile or
below the 20th percentile) and the sub-set of pairs in agreement with the inverse
pattern (in which the H0 values are either below the 20th percentile or above the
80th percentile, and the corresponding φ values are respectively either below the
20th percentile or above the 80th percentile). In this way, for a given target grid
point, we obtain a set of 3 estimated values for the frequency of PDC arrival: one
considering all the simulations, and two considering the theoretical uncertainty on
the link between the Energy Cone parameters. We best-fit these 3 values with a
Beta distribution, thus retrieving the best-estimate value for the frequency, and
an associated Λ value (equivalent sample size). At a given target grid point, these
two values fully define the Beta distribution for the Node 7 in BET_VH (for every
given volcano, vent position and size class).

7.2.3 Ensemble probability of invasion from each volcano,

and PVHA in 50 years

For both volcanic sources (Somma-Vesuvius and Campi Flegrei), after having set
the probability distributions at all the nodes of BET_VH, and for any given grid
point in our hazard domain, we sample 1,000 variates from these distributions at
each node and combine them to obtain 1000 values of the probability of PDCs
invading that grid point. We repeat this for both the end-member assumptions on
the PDF governing the collapse height parameter of Energy Cone model (Expo-
nential and Uniform), obtaining two different maps of the probability of invasion
by PDCs in 50 years, for every volcano. The two maps quantify the parametric
uncertainty deriving from the unknown shape of the PDF for H0. In order to
obtain a single probability map for every volcanic source, these two maps are sta-
tistically mixed, with equal weight, to obtain the ensemble probability of invasion
in 50 years (7.2 for Somma-Vesuvius, and 7.3 for Campi Flegrei).
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Finally, we combine the two volcanic sources by assuming independency in the
volcanic activity at Somma-Vesuvius and Campi Flegrei, that is, at any given grid
point i we compute the probability of experiencing at least one PDC arrival in 50
years (PV HAi) by:

PV HAi = 1− (1− PV HASVi) · (1− PV HACFi
) (7.3)

where PV HASVi and PV HACFi
are the probabilities at grid point i to be invaded

by PDCs arrival, respectively from Somma-Vesuvius and Campi Flegrei, in the
next 50 years, as computed above. The resulting PVHA maps are given in Figure
7.4.

7.3 Results

In Figures 7.2 and 7.3 we show the probability of invasion of PDCs in all the grid
points in the next 50 years, at different percentiles (the best-estimate value given
by the mean, and epistemic uncertainty expressed by 10th and 90th percentiles, i.e.
an 80% confidence interval), for Somma-Vesuvius and Campi Flegrei, respectively
and separately. These results account for both the end-member assumptions on the
distribution governing H0 (Exponential and Uniform), as they show the statistical
mixture of the two end-member models (with equal weight, see previous subsection
7.2.3).

At Somma-Vesuvius, the highest probabilities of PDC arrival are observed over
the southern flank of the volcano, with mean values around or above 10% (in 50
years) extending for about 4 km towards the southeast (Fig. 7.2). The shape of
Mount Somma is mapped, very neatly, by the northern limit of the isoline of mean
probability corresponding to 8% (Fig. 7.2d). Moreover, the central, most elevated
part of Mount Somma is evidenced by the shape of the 6-8% color contouring
towards the north. According to the 10th percentile of the distribution over the
frequency of PDC arrival, it is observed that this frequency is below 0.5% (i.e.
white countouring) for any grid point apart from those located on the proximal
sector (∼2 km from the crater) of the southern flank (Fig. 7.2a). In contrast,
according to the 90th of such distribution for the frequency of PDC arrival, areas up
to 103 km2 are covered by probabilities of PDC arrival, in the next 50 years, greater
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than 0.5%. Nevertheless, the probabilities over medial-distal sectors (beyond ∼8
km) are below 5% and confined by the Appenninic topographic over the S-SE and
N-NE (Fig. 7.2b). The values of probability of PDC arrival towards the west
must be taken with extreme care because, even though PDCs in our simulations
are allowed to propagate over the sea water, the Energy Cone model is not suitable
to model this type of PDC propagation (e.g. [134]). The analysis of differences in
the percentile maps indicates that the summit part of Somma-Vesuvius has an 80%
confidence interval approximately [0.5% - 40%] in 50 years; the same quantities,
for PDCs generated from Somma-Vesuvius invading the city center of Napoli (gray
star in Figure 7.2) are between [0.02% - 3%], with a mean value of 1% (Fig. 7.2).

At Campi Flegrei, the maximum probability of PDC invasion, in the next 50
years, is about 7% (mean value) and ranges between [0.3% - 16%] (80% confidence
interval) when epistemic uncertainty is taken into consideration. These maxima in
probability of PDC arrival are located in the Eastern caldera sector, in particular
over the Astroni crater and the Agnano plain (Fig. 7.3d). The general spatial
pattern of the mean probability of PDC arrival shows that values equal to or
greater than 3% (in 50 years) are restricted to the structural boundaries of the
calderas formed during the Campanian Ignimbrite and the Neapolitan Yellow Tuff
(e.g. [203, 204] and references therein). Nonetheless, in our maps the gradient in
the mean probability values is not extremely sharp across the caldera’s boundary:
for example, the Posillipo hill (located beyond the Eastern border of the Neapolitan
Yellow Tuff caldera, and part of the municipality of Napoli) has a mean probability
of 2-3% to be hit by PDCs from Campi Flegrei. At the city center of Napoli (gray
star in Figure 7.3), mean probabilities of PDC arrival are around 0.5% and [0.01% -
1%] considering the aforementioned 80% confidence interval. At farther distances,
mean values of probability of PDC arrival ≥0.5%, in 50 years (colored contouring),
are obtained for grid points up to 10-12 km from the center of the Campi Flegrei
caldera (Fig. 7.3c). When accounting for epistemic uncertainty, the probability of
PDC arrival can range from less than 0.5% over the whole caldera (10th percentile
of the distribution for this probability, Fig. 7.3a) to values generally greater than
7% over the whole caldera and values above 0.5% at distances almost of 20 km
(northwards, for instance) from the center of the caldera (90th percentile of the
probability of PDC arrival, Fig. 7.3b).

In Figure 7.4, we show the map of the combined PDC hazard calculated for the
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Figure 7.2: Probability maps displaying the probability (or future frequency)
of PDCs, from Somma-Vesuvius, arriving at each grid point over the haz-
ard domain (light-gray star points downtown Napoli) in the next 50 years,
P (PDC; 50yr, according to the ensemble model for the collapse height (H0).
Our integrated probabilistic approach allows to compute a PDF for each fre-
quency of PDC arrival. The different plots show diverse “slices” of such distri-
butions: (a) 10th percentile, (b) 90th percentile (NB. The colorbar of this map
does not show its maximum values, which are around 40%), (c), (d) mean value.
Note how: (1) the distributions tend to have positive skewness, i.e. mean values
are closer to the 90th than to the 10th percentile; and (2) due to large epistemic
uncertainty in the hazard assessment, the probability maps for the 10th and

90th percentiles are very different. See text for more details. From [105].
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Figure 7.3: Probability maps displaying the probability (or future frequency)
of PDCs, from Campi Flegrei, arriving at each grid point over the hazard domain
(light-gray star points downtown Napoli) in the next 50 years, P (PDC; 50yr,
according to the ensemble model for the collapse height (H0). Our integrated
probabilistic approach allows to compute a PDF for each frequency of PDC ar-
rival. The different plots show diverse “slices” of such distributions: (a) 10th
percentile, (b) 90th percentile, (c), (d) mean value. Note how: (1) the distri-
butions tend to have positive skewness, i.e. mean values are closer to the 90th
than to the 10th percentile; and (2) due to large epistemic uncertainty in the
hazard assessment, the probability maps for the 10th and 90th percentiles are
very different (in fact, the 10th of P (PDC; 50yr from Campi Flegrei is below

0.5% -white color in inset (a)-). See text for more details. From [105].
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activity at the two volcanoes, assumed to erupt independently. Thus, the prob-
ability of PDC arrival displayed in this figure corresponds to the probability of
PDCs, from at least one of the two volcanoes, invading each grid point over our
hazard domain: the central Campania region (see subsection 7.2.3). These multi-
source probability maps are very similar to the single-source maps (Figs. 7.2, 7.3)
in the vicinity of each volcano, as far as the PDCs from one of them are not able
to propagate far enough to invade grid points over the proximal sector of the other
volcano, apart from some unlikely cases (Figs. 7.2, 7.3). The city of Napoli has
its western part located on the Campi Flegrei caldera and its center and eastern
part in between the two volcanoes. The probabilities of PDC arrival (in 50 years)
shown in Figure 7.4 are greater than the probabilities computed from either single
volcanic source (see equation 7.3). In particular, the whole city center is placed
over grid points with mean probability of PDC arrival, in 50 years, of 1-2%. These
mean values reach 2-3% over the eastern end of the city and 4-5% over the west-
ern areas of the municipality (Fig. 7.4d). According to the 10th percentile of the
distribution for the probability of PDC arrival (in 50 years), the city of Napoli is
less than 0.5% probable to be impacted by PDCs in the next 50 years (Fig. 7.4a).
However, if the 90th percentile of the distribution is considered, the city center of
Napoli is associated with values over 5% (in 50 years), while the western sector of
the city is about 10% probable to be impacted by PDCs (Fig. 7.4b).

7.4 Discussion and Conclusions

7.4.1 Simple insights into PDC propagation

Even though the PDCs from Campi Flegrei tend to be more mobile than the
ones from Somma-Vesuvius (see Chapter 3 and Appendix A), the summit part of
Somma-Vesuvius is much more likely to experience PDC invasion than any other
point along the hazard domain. This is mostly due to two reasons. First, there is
a “dissipating” effect caused by the much larger uncertainty on the vent position at
Campi Flegrei: while the distance between any given grid point within the Campi
Flegrei caldera and the next opening vent is very uncertain (it can range from
meters to kilometers with similar probability, e.g. [205, 206]), the points nearby
the Somma-Vesuvius summit are highly likely to be close to the next opening vent,
as Somma-Vesuvius summit caldera area concentrates almost all the probability
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Figure 7.4: Probability maps displaying the probability (or future frequency)
of PDCs, from Somma-Vesuvius (SV) and/or Campi Flegrei (CF), arriving at
each grid point over the hazard domain (light-gray star points downtown Napoli)
in the next 50 years, P (PDC; 50yr, according to the ensemble model for the
collapse height (H0). Our integrated probabilistic approach allows to compute a
PDF for each frequency of PDC arrival. The different plots show diverse “slices”
of such distributions: (a) 10th percentile, (b) 90th percentile, (c), (d) mean
value (NB. The colorbar in (b) and (d) does not show the maximum values in
probability, which are around 40% and 16%, respectively). Note how: (1) the
distributions tend to have positive skewness, i.e. mean values are closer to the
90th than to the 10th percentile; and (2) due to large epistemic uncertainty in
the hazard assessment, the probability maps for the 10th and 90th percentiles

are very different. See text for more details. From [105].
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of vent opening (Fig. 7.1). Secondly, the predominant topographical structure
of Somma-Vesuvius stratovolcano allows PDCs to propagate, at least, towards
the south and west where there is no barrier (e.g. Fig. 5.6, see Chapter 5).
On the opposite, in our simulations, the rough topography of the Campi Flegrei
caldera often stops small PDCs (by far the most likely ones, at least in the case
of H0 being sampled from an Exponential distribution) close to their originating
vent. In other words, PDCs from Campi Flegrei are entrapped by neighbouring
topographical heights at short distances from the point they originate.

Our novel approach of quantifying the equivalent number of data (Λ in [49, 68])
for Node 7 (Λ7), at each grid point and based on the simulations of the physical
model (instead of deriving it from expert judgement, e.g. [19, 32, 100]), permits
the analysis of the spatial patterns in this BET_VH parameter. Therefore, areas
where epistemic uncertainty2 is high (i.e. low Λ values; minimum Λ is 1) or low (i.e.
high Λ values; maximum Λ shown is 1000) can be identified and related to the main
morphological features of the study volcanoes. In Figure 7.5, we show the spatial
distribution of log10(Λ7) for different eruption sizes from the most probable vent
location at Somma-Vesuvius (central-summit crater) and Campi Flegrei (Astroni
crater).

At Somma-Vesuvius, the maps are characterized by a region of low uncertainty
(yellow ring for medium and large size, proximal area to the SE for the small
size) which is where the three patterns in the Energy Cone paramaters that de-
fine theoretical uncertainty (independent, direct and inverse; see 6) lead to similar
output frequencies of PDC arrival (Fig. 7.5). We interpret this zone as the one
having an approximately equal number of simulations with smaller and larger
model-parameter values (H0, φ). In this view, half of the simulations produce
shorter runouts (or smaller areas of PDC invasion) and the other half produce
larger runouts (or larger areas of PDC invasion). The in-between zone, charac-
terized by frequencies around 50%, is reached with a similar frequency no matter
the relationship between H0 and φ. The location of this zone of minimum epis-
temic uncertainty for the medium size, before the Mount Somma, suggests the
importance of this topographic barrier for medium-size PDCs (e.g. [44, 307]):
grid points beyond Mount Somma are more uncertain to be invaded by PDCs
than points just before the barrier (Fig. 7.5). Large-size PDCs in turn, are less
influenced by Mount Somma and the yellow zone is located some kilometers away

2In our case, theoretical uncertainty (see subsection 7.2.2.2).
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from the barrier. Additionally, the maps for the small and medium eruption sizes
also show a low-uncertainty zone (i.e. high Λ) at large distances from the central
crater due to the fact that no simulated PDCs (of these sizes) are able to invade
those distal grid points (Fig. 7.5).

At Campi Flegrei, maps are characterized by a low-uncertainty zone surrounding
the Astroni crater, the larger the eruption size, the wider this zone. We interpret
this zone as the one invaded by all the PDCs that make it out of the Astroni crater.
Inside the crater itself, the variability is a bit larger as very small PDCs probably
do not invade all of the crater area. Again, at large distances from the crater,
there is a low-uncertainty zone that is where no simulated PDCs arrive (Fig. 7.5).
According to our results, the simulated PDCs are not strongly confined by the
presence of the scarps that delineate the boundaries of the Campi Flegrei caldera
(e.g. [25, 33]). In other words, a certain (albeit small, Fig. 7.3) number of PDCs
are able to overcome the caldera boundaries and invade grid points towards the
north. Therefore, the epistemic uncertainty at the caldera boundaries and beyond
is relatively high (Fig. 7.5).

Finally, a limit in our simulation strategy, in terms of PDC propagation, is that we
neglect the presence of the sea in the propagation of PDCs; in other words, when
a flow reaches the sea, the EC model propagates it as if there was land, which is
obviously a crude approximation (e.g. [134]). In practice, our probability maps
might include some simulations from Campi Flegrei in which PDCs unrealistically
flow across the Pozzuoli Bay or the Gulf of Napoli. Analogously, a few PDCs simu-
lated from Somma-Vesuvius might reach the Posillipo coast after having traveled,
unrealistically, over the sea water of the Gulf of Napoli. However, these “fake”
simulations represent a very small percentage of the total number of simulations
run and, hence, the final probability maps are not significantly affected by them.

7.4.2 PDC hazard assessments at Somma-Vesuvius and

Campi Flegrei

Our final probability maps cannot be really compared with previous works, even
in the case of a single volcanic source, as there is no previous map having all the
features that ours possess. That is, for each volcano analyzed (Figs. 7.2, 7.3) and
for the two volcanoes jointly (Fig. 7.4), our maps display: the probability of PDC
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Figure 7.5: Examples of the spatial distribution of the equivalent number
of data used to parameterize the Beta PDFs (there is one PDF per each grid
point) for the Node 7 of the BET_VH model (Λ7, see Table 7.2). The Λ7 values
displayed are computed by exploring theoretical uncertainty via the Energy Cone
model (after [104]) for three eruption sizes and two volcanic systems (Somma-
Vesuvius -SV- and Campi Flegrei -CF-, in Italy). The maps for Somma-Vesuvius
(a,b,c) are based upon Energy Cone simulations starting from the current central
crater of the volcano while those for Campi Flegrei (d,e,f) correspond to Energy
Cone simulations starting from the closest vent position to the Astroni crater.

See text for more details. From [105].
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invasion, in a specific time window, from an eruption of any size and from any
possible vent.

Nevertheless, in the case of Somma-Vesuvius, a qualitative comparison of our maps
for the probability of PDC invasion in the next 50 years can be made with the
PDC hazard assessments of [26] (based on past PDC deposits) and [307] (based
on expert elicitation and numerical modeling of PDCs).
A comparison of Figure 7.2 with the most recent frequency map of PDC deposits
around Somma-Vesuvius (Figure 6 in [26]) informs that the isoline enclosing the
area having experienced at least 2 PDC arrivals in the last 22 kyr coincides ap-
proximately with the one with a mean probability of at least 1% in 50 years (Fig.
7.2c). By using our mean probability value, and assuming a Binomial PDF to
model the arrival of PDCs (in n time windows) at a given grid point, the prob-
ability of observing at least 2 PDC arrivals in that area in 440 time windows of
50 years each (i.e. 22 kyr in total) is about 99%. Accounting for uncertainties
both in our model and in the field data (e.g. possible incompleteness in the field
observations), this crude comparison highlights that our mean probability values
seem statistically consistent with the observed frequency of PDCs reported by [26].

On the other hand, if we compare our ensemble probabilities of PDC arrival (for
any size and any vent, Fig. 7.2) with the 90% confidence interval provided by [307]
for different sectors around Somma-Vesuvius (given an eruption of medium size
or “Sub-Plinian 1” [89], Fig. 7.6a), we observe that the spatial pattern is similar:
both the study of [307] and ours confirm the importance of Mount Somma in
hindering PDC propagation towards the north. In terms of probability values, the
comparison with Figure 7.2 is difficult because the study by [307] shows elicited
probabilities conditional to the occurrence of a medium size eruption from the main
crater, while we show absolute probabilities for the next 50 years from any kind of
eruption (any size and vent). Nevertheless, our mean probability of PDC invasion
beyond Mount Somma is between 4 and 6 %, which is about half the probability
on the opposite southern flank, at a similar distance (between 10 and 12%, Fig.
7.2c,d). This spatial pattern is in agreement with the one for the elicited values
by [307] (e.g. median probabilities of PDC invasion are around 90-95% over the
southern, western and eastern flanks of the volcano but only 45% on the northern
flank, beyond Mount Somma).
If we compare the results presented by [307] with the probabilities of PDC arrival,
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given a medium-size eruption from the central crater, computed from our two end-
member models for the collapse height, H0 (Fig. 7.6), we note that the hazard
assessment of [307] is somehow intermediate between the two end-member models.
Thus, the 50%-probability points of the Exponential model (Fig. 7.6c) show a
strong influence of the Mount Somma in hindering PDC propagation towards the
north, similar to what proposed by [307], but maximum runouts a bit shorter
than those presented by [307] for the same probability of PDC arrival (green lines,
Fig. 7.6b). In contrast, the 50%-probability points of the Uniform model display
maximum runouts that are closer to the ones given by [307] over the southern,
western and eastern flanks of the volcano. On the northern flank, the probabilities
of PDC arrival obtained with the Uniform model are not much influenced by the
presence of Mount Somma (Fig. 7.6d), which is in disagreement with the hazard
assessment of [307]. Nevertheless, it could be argued that, independently of the
proportion of PDCs that are able to overcome the topographic barrier of Mount
Somma (i.e. frequency of PDC arrival beyond it), the ones that actually propagate
further northwards might reach maximum runouts that are not very different from
the ones recorded over the southern flank (e.g. [155, 308]), hence the probabilities
of PDC arrival for large (infrequent) PDCs are less constrained by the presence
Mount Somma (Fig. 7.6c, d).

In the case of Campi Flegrei, we compare some of our partial results with the
ones obtained by [33]. In particular, in Figure 7.7, we show the difference between
the probability of invasion of PDCs, conditional to the occurrence of an eruption
of any size from an inland vent of Campi Flegrei caldera, obtained by [33] and
by our hazard assessment [105]. We show such difference for both end-member
assumptions on the PDF for the collapse height: Exponential and Uniform (Fig.
7.7). It is seen that the differences with [33]:

• are always positive, implying that our method produces, sistematically, ei-
ther comparable or smaller probabilities of PDC invasion;

• are particularly large over the Astroni crater and the Agnano plain (absolute
values are up to ∼40% and ∼30% for the Exponential and Uniform H0

models, respectively);

• are less significant along elevated areas (e.g. Posillipo hill) and the western
sector of the caldera, especially in the case of the Uniform model for H0.
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Figure 7.6: Qualitative comparison between the PDC hazard analysis carried
out by Neri et al. (2008) at Somma-Vesuvius (SV) and part of the results
derived from our study. (a): probability (in %) of PDCs invading each of the
sectors displayed, given the occurrence of a sub-Plinian 1 eruption (e.g. [89])
from the central crater, according to the expert elicitation performed by [307]:
the values in brackets indicate the 5th, 50th (median) and 95th percentiles of the
distribution built for such probability; (b) maximum-runout estimates (white
numbers, in km) for PDCs generated during a sub-Plinian 1 eruption, according
to [307]: blue, green and orange lines correspond, respectively, to probabilities
of exceedance of 95%, 50% and 5% for the values of maximum runout on each
sector; (c) probability of PDC arrival, given an eruption of medium size from
the central crater (P (PDC|MedErupt), in %), according to the Exponential
model for H0 presented in this chapter; (d) probability of PDC arrival, given
an eruption of medium size from the central crater, according to the Uniform
model for H0 presented in this chapter. Gray star points to the downtown of

Napoli. From [105].
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Figure 7.7: Differences in the mean probability of PDC arrival, conditional
to the occurrence of an eruption from an inland vent at the Campi Flegrei
caldera, computed by [33] minus that computed in this chapter [105]: Neri2015
- SandriIP (where IP means in preparation). Positive values (red) indicate that
the probability of PDC arrival is greater in [33]. The differences are expressed
in the unit interval: [0, 1]. (a) Exponential model for the collapse height (H0);
(b) Uniform model for the collapse height (H0). See text for more details. From

[105].

We interpret such differences as linked to one (or a combination) of the following
causes, which may have led to an overestimation of the probabilities of PDC arrival
presented by [33]:

1. The PDFs for the areas invaded by PDCs used by [33] to construct their
probability maps (at least for the last 5 ka, i.e. our temporal range of
study, e.g. [103]) are based upon eruptions that predominantly occurred in
the central part of the inland sector of the caldera [25, 206]; however, the
authors utilized the same PDF to simulate PDC invasion associated with any
vent position along the whole (inland) caldera [33]; we argue that eruptions
of the same scale as those that happened during the last 5 ka (III epoch)
would have produced a different PDF of areas of PDC invasion depending
on the location of each eruptive vent: in particular, for vents opening closer
to the main caldera scarps, we might expect smaller areas to be invaded by
PDCs.

2. The aforementioned PDFs for the areas of PDC invasion might suffer from
under-recording, especially of small-size eruptions (e.g. [43]) that can leave
minor, erodible PDC deposits (e.g. [9]); in this respect, we find interesting
to observe that PDCs formed during many small eruptions at Campi Flegrei
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have preserved maximum runouts comparable to the maximum runouts of
PDCs formed during medium eruptions [103] (see Figure 5.5 in Chapter 5).

7.4.3 Multi-source volcanic hazard assessments

The PVHA for PDCs from both volcanoes (Fig. 7.4) may look similar to the one
proposed by [292] (their Figure 1) or [293] (their Figure 5, a zoom on the city of
Napoli). However, there are substantial differences with our work:

• here, we consider all possible eruption sizes and eruptive vents, combined
through the total probability theorem, without selecting a reference size or
scenario as in [292, 293], who, for example, selected a specific reference size
(a VEI=4 for Campi Flegrei) or specific past eruptions (only the PDC de-
posits from the Avellino, 79 AD and 472 AD (Pollena) eruptions for Somma-
Vesuvius)

• in our work, we produce a best-estimate map (based on the mean expected
frequencies, or probabilities, that we compute) accompanied by percentile
maps that express our degree of confidence on our best-estimate map (the
so-called “doubly stochastic approach” by [33])

• our maps provide numerical values of probability of arrival in 50 years, that
can be interpreted as expected frequencies, and can be used by decision-
makers as input for rational decisional protocols (e.g. Cost-Benefit Analysis,
[282, 309]) without any subjective discretization made by scientists; on the
opposite, in [292, 293] the authors, which are scientists, dicretize the hazard
maps in “Low”, “Medium” and “High” hazard areas, which in turn is equiva-
lent to decide thresholds (in probability) above which a given action should
be taken to mitigate a risk (see e.g. the hazard-risk separation principle in
[310]). This is clearly a decision that goes beyond the typical background
and skills of volcanologists.



Chapter 8

Probabilistic Volcanic Hazard

Assessment of dense PDCs from

Somma-Vesuvius (Italy)

Abstract

Pyroclastic Density Currents (PDCs) are hot, very fast volcanic flows composed
of gas and pyroclasts and densities which vary (even along a single flow) from
tens to thousands of kg/m3. Their capacity for destruction is by no means only
relevant in terms of loss of life but PDCs are able to damage buildings and crit-
ical infrastructure in a severe way. Quantitative risk assessments of PDCs are
commonly derived from scenario-based hazard analyses which clearly overlook the
large aleatory and epistemic uncertainty associated with this volcanic hazard. In
this work, we develop a three-steps procedure to address and quantify such uncer-
tainties for dense pumice flows in a robust manner. The Titan2D model is first
coupled with a method of polynomial expansion (Polynomial Chaos Quadrature)
to assess aleatory uncertainty and, then, the obtained results are further merged
with the Bayesian Event Tree for Volcanic Hazard (BET_VH) tool. The resulting
hazard products are probabilistic hazard curves that indicate the probability of
exceeding different values of dense-PDC variables such as flow depth and speed.
The application of our procedure to Somma-Vesuvius (Italy) shows that high val-
ues of exceedance probability (40-70%) can occur on the first 2-3 km around the
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current crater, for flow depths of 1 m and flow speeds of 2 m/s, when consider-
ing aleatory uncertainty only. Besides, relatively rare events (10% of exceedance
probability) can create dense-PDCs overcoming speeds of 30 m/s over areas about
100 km2 around the crater. Such events could entirely devastate the buildings in
the proximal-medial sectors of Somma-Vesuvius, according to previous studies on
the resistance of circum-Vesuvian buildings to PDC passage. Probabilistic hazard
assessments of dense PDCs similar to the novel presented here can prove invalu-
able inputs to quantitative multi-hazard assessments and quantitative analyses of
volcanic risk.

8.1 Introduction

Pyroclastic Density Currents (PDCs) are devastating phenomena that commonly
occur at explosive volcanic systems. They are gravity-driven mixtures of gas and
fragments of volcanic material (pyroclasts) that can travel at speeds up to few
hundreds of m/s, reach temperatures of several hundreds of ◦C and exert dynamic
pressures above 100 kPa (e.g. [6, 35, 124, 153]). Therefore, their potential for
destruction is huge as it has been demonstrated in terms of major loss of life and
property due to PDCs in recent historical times (e.g. [155, 157, 311, 312]). Loss
of life is commonly related to impact of missiles carried by the current, extremely
severe burns due to elevated temperature and varied respiratory damage owing
to a combination of high temperatures, toxic gases and fine-particle concentration
(e.g. [16, 155]). Destruction of infrastructure (collapse of buildings, for instance)
is usually associated with high dynamic pressures, missiles impact and internal
combustion of the building triggered by hot ash that penetrates when openings,
such as doors and windows, are broken by PDCs (e.g. [311, 313]).

At Somma-Vesuvius (Italy), several studies have investigated the impact of PDCs
on the buildings surrounding the volcano following diverse methodological ap-
proaches. [314] and [315] utilized the outputs from a multi-phase, 2D-axisymmetric
PDC model (PDAC2D, [308, 316]), run to simulate an eruptive scenario similar to
the 1631 AD eruption (e.g. [198]), to evaluate the possible impact of such PDCs
on the buildings of different localities along the south flank of the volcano. The
authors described the structure of diverse types of buildings and assessed their
resistance to PDC passage by means of analytical methods and load-failure exper-
iments. Some of the findings indicated that, given the specific scenario explored,
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a low percentage of dwellings (∼7%) would be invaded by PDCs and, generally,
expected damage to buildings should be irrelevant or light (e.g. [315]). [154]
used new 3D simulations of surge-like (dilute) PDCs expected to occur during an
eruption similar to the 1631 AD eruption [44] combined with deterministic and
probabilistic analyses of the buildings’ resistance to dilute PDCs to estimate the
damage expected on different buildings according to specific values of dynamic
pressure. According to the methodology, the percentage of collapsed buildings
(for the weakest type of structure) can be above 50% from dynamic pressures of
6 kPa or greater. The percentage of collapsed buildings in the case of stronger
structures could range from 5 to 80% [154]. Nevertheless, studies at other volca-
noes seem to indicate that collapse is rather likely to occur above 3 kPa, even for
dilute PDCs, because the building openings would tend to fail at these dynamic
pressures (e.g. [313]) and internal combustion would promote the failure of the
whole building (e.g. [311]).

An aspect that has been overlooked in volcanic risk assessments of PDCs at
Somma-Vesuvius is the fact that PDC phenomenology can be quite variable both
at the inter- and intra-eruption-size scales (e.g. [26, 144, 198, 232, 271]). This
natural variability needs to incorporated into the hazard analysis of PDCs (e.g.
[23, 31, 32, 33, 100]) for it is crucial to assess: (i) how likely the given scenario is
(e.g. [61, 307]); and (ii) how likely the different points around the volcano are to
be invaded by PDCs (e.g. [103, 104, 105], see Chapter 7).

In this work, we develop a three-stages methodology to improve the assessment of
this natural variability (or aleatory uncertainty, e.g. [52]) in flow depth and speed
of (dense) column-collapse PDCs at Somma-Vesuvius, Italy. We explore three dif-
ferent eruption sizes: small, medium and large (see Chapters 5, 6, 7). Besides, we
also provide a quantification of epistemic uncertainty in the hazard analysis.
Our procedure is based on the combination of one physical simulator for dense
PDCs (Titan2D, [218], see Chapter 4) and two uncertainty-quantification tech-
niques: Polynomial Chaos Quadrature (PCQ) and Bayesian Event Tree for Vol-
canic Hazard (BET_VH, [49, 242], see Chapter 4). The merging of Titan2D and
PCQ (first two stages) guarantees a robust quantification of aleatory uncertainty in
dense-PDC propagation (e.g. [24]). Additionaly, coupling this assessment with the
BET_VH model allows to: (1) quantify volcano-specific uncertainty (e.g. prob-
ability of eruption, vent-opening probabilities; see Chapter 7); and (2) provide a
measure of epistemic uncertainty to the Titan2D-PCQ hazard analysis.
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The strategy is equivalent to the one implemented by [105] for PDC arrival using
the Energy Cone model coupled with Monte Carlo sampling and BET_VH (see
Chapter 7). The main differences in this chapter are the following:

• The PDC model used here is more sophisticated and, thus, its runtimes are
quite longer (∼ 30-60 minutes per simulation, e.g. [82]). This makes Monte
Carlo sampling unsuitable to quantify aleatory uncertainty via Titan2D so
PCQ is utilized as the alternative (e.g. [24]).

• The epistemic uncertainty in BET_VH is not quantified through the Ti-
tan2D simulations (like it is done by [105]) but it is set according to general
considerations about the modeling strategy (e.g. [19, 32, 100]).

• The governing equations of the Titan2D model are only applicable to a
granular continuum that resembles the dense basal part of PDCs but not
the upper dilute part (see Chapters 2, 4). Thus, the probabilistic hazard
analysis presented in this chapter is only valid for dense PDCs while the
one by [105] is justifiable, in principle, for both dense and dilute PDCs (see
Chapters 4, 7).

Several novelties highlight our approach: (1) it is one of the first times that the Ti-
tan2D model is used to model pumice flows (e.g. [317]); (2) it is the first time that
Titan2D and PCQ are combined with BET_VH to obtain both a robust quantifi-
cation of aleatory uncertainty plus a measure of epistemic uncertainty (previous
studies have whether computed just aleatory uncertainty through Titan2D and
PCQ, e.g. [24], or calculated both aleatory and epistemic uncertainty but the for-
mer was quantified through a few Titan2D simulations, e.g [100]); and (3) it is the
first time in a hazard analysis of dense PDCs that hazard curves and probability
and hazard maps are explicitly computed for all the grid points over the hazard
domain and different thresholds of the hazard variable of interest: dense-PDC
depth and speed1 (previous studies have focused on computing hazard curves at
specific grid points and/or for a single threshold that leads to a catastrophe, e.g.
[23, 31, 318]). We strongly believe that quantitative risk assessments of dense
PDCs can largely benefit from our probabilistic hazard analysis and similar ones.

1We actually compute the maximum values of flow depth and speed recorded during each
Titan2D simulation. Along the chapter, each time we mention these variables, we refer to their
maximum values.
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8.2 Methods

Our procedure developed to compute probabilistic volcanic hazard of dense PDCs
at Somma-Vesuvius (Italy) can be divided into several steps: (i) parameterization
of the initial conditions for the Titan2D simulations (the DEM used to run the
model and the number and location of the initiation piles, see subsection 8.2.1);
(ii) parameterization of Titan2D in terms of the type of dense PDCs simulated
(dense-PDC volumes and friction angles, see subsection 8.2.2); (iii) propagation
of the aleatory uncertainty in dense-PDC volume and bed friction angle into the
Titan2D outputs (see subsection 8.2.3); and (iv) coupling of the quantification
of aleatory uncertainty via Titan2D with the description of epistemic uncertainty
provided by BET_VH (see subsection 8.2.4).

8.2.1 Titan2D initial conditions

The most important initial conditions to set up before running the Titan2D model
are: the DEM utilized to run the simulator and the location (and number) of piles
of material that act as the source of the dense PDCs. We briefly describe these
two components in the following subsections.

Digital Elevation Model

The choice of the DEM can have a strong influence on the computed outputs as
it has been demonstrated by several recent works (e.g. [84, 85, 319]). We select a
10m-resolution DEM with an associated altimetric error of about ±5 m. The DEM
was produced by the Italian Ministero dell’Ambiente as an update of a previous
DEM (constructed by the Italian Istituto Geografico Militare) of 20 m of horizontal
resolution (±10 m of altimetric error) derived from the isolines of altitude and
topographic landmarks of the 1:25,000 maps of the Italian territory. This update
to the 10m DEM consisted of adding breaklines (detailed point-sequences in a
topographic survey) and new topographic landmarks to the ones utilized to build
the precedent DEM product.
The horizontal resolution we use is in the range proposed by [319] (5-10 m) to
obtain accurate results when running Titan2D. Moreover, we deem the 10m DEM
as a suitable elevation model in our particular application to Somma-Vesuvius
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because: (1) the flow volumes that we simulate tend to be relatively big (especially
for medium and large eruptions, see subsection 8.2.2) and the outputs of this kind
of flows have been found to be less sensitive to the DEM resolution [85]; and (2)
the topography of Somma-Vesuvius is not very rough2 so, again, the impact of the
DEM resolution (and the altimetric errors associated) should have a smaller effect
on the Titan2D outputs [84].

Starting piles

The location (and number) of the piles of material has also a major effect on the
outputs of the Titan2D model. Single-pile simulations are usually preferred when
the scope is to model Block-and-Ash Flows formed by the collapse or explosion of a
lava dome (e.g. [27, 41, 82]). Given that these collapses or explosions may trigger
dense PDCs with different azimuths of initial spreading, the aleatory uncertainty
in the initiation azimuth needs to be accounted for (e.g. [31, 82]). In our case,
we simulate dense PDCs that are formed by the collapse of an eruption column.
Therefore, we assume that radial spreading of dense PDCs away from the volcanic
source is likely to occur at Somma-Vesuvius (see Chapter 5). In particular, we take
the present central crater of the volcano as the volcanic vent because its probability
of opening is much greater than that of other vents along the volcanic edifice
(e.g. [68, 103, 104, 105, 321]). In addition, we simulate the radial collapse of the
eruption column by means of 8 piles (elliptic cylinders) of material distributed over
the external rim of the central crater (Fig. 8.1). Our assumption is that the dense
basal part of the generated PDCs forms immediately after the collapsing mass of
gas and pyroclasts hits the ground. This may be representative of approximately
short collapses, such as in boiling-over events, but it might not be the case when
PDCs are formed from tall collapses dominated by fine particles (e.g. [133]).

The piles are arranged around the Somma-Vesuvius crater as to cover its whole
external rim, the centers of the ellipses oriented towards the 8 principal cardinal
directions from the approximated geometrical center of the crater (Fig. 8.1). The
dimensions of these ellipses (185 m, 135 m of major and minor axes, respectively)
are chosen with the same purpose and avoiding significant superpositions among
the piles. The orientation of the major axis of each ellipse is set tangent to the
crater rim. Finally, the piles are left to collapse under their own weight once the

2Terrain roughness can be computed from the standard deviation of the slope or the altitude,
the planimetric-to-surface area, etc., e.g. [320]
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Figure 8.1: Set up of the elliptic cylinders (piles) of material used to run the
Titan2D simulations aimed at describing the generation of dense PDCs from
column collapse at Somma-Vesuvius (Italy). The surface ellipses of all piles have
the same dimensions: [R, r] = [185, 135] m, where R and r are the major and
minor axes of each ellipse, respectively. The centers of the ellipses are displayed
as yellow dots. See text for more details. Source: Google, DigitalGlobe, October

8, 2013. From [107].

Titan2D simulation starts. That is, we do not introduce any lateral initial speed
or azimuth of propagation for the simulated dense PDCs. The initial velocity is
only vertical and it is determined by the collapse height (i.e. the height of each
elliptic cylinder). All piles share the same height and, hence, the same dense-PDC
volume (see next subsection 8.2.2). After the initial collapse, the modeled dense
PDCs flow away from the source according only to the topography they encounter
as they propagate.

8.2.2 Dense-PDC volumes and friction angles

The Titan2D parameters that serve to define the typology of the simulated dense
PDCs are primarily the following (see Chapter 4): (1) the volume of released
material (V0); (2) the bed friction angle (φbed); and (3) the internal friction angle
(φint). The outputs of Titan2D are not very sensitive to the value of the internal
friction angle (e.g. [222]) unless the dense PDCs propagate through narrow and
deep gullies. Therefore, it is common practice to set φint to a fixed value and
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explore different values of the bed friction angle. Generally, it is assumed that 30◦

is a representative value for dry granular materials (e.g. [27, 41, 224, 233]) and
we use this value for φint. For the other two model parameters (V0, φbed), we use
values compiled from past dense PDCs and hot avalanches at Somma-Vesuvius.
Similarly to the hazard analyses described in Chapters 5, 6 and 7, we focus on three
eruption sizes: small (comparable to VEI≈3), medium (comparable to VEI4) and
large (comparable to VEI≥5). The eruptions that we select to inform the Titan2D
parameterization for each size are the following: the 1822 AD (e.g. [303]) and 1944
AD eruptions (e.g. [193, 268]) for the small size; the Pollena (e.g. [144, 269]) and
1631 AD eruptions (e.g. [198, 270]) for the medium size; and the Mercato (e.g.
[271]) and Pompeii eruptions (e.g. [272]) for the large size.

PDFs for PDC volume and bed friction

Given our setup for the starting piles detailed in subsection 8.2.1, the volume of
material released during each simulation of Titan2D (V0) is defined only by the
height of each elliptic cylinder. In reality, we define the parameter space for V0 and
then we calculate the pile height that corresponds with each volume of dense-PDC.
The volume V0 is partitioned equally among the 8 piles that surround the crater of
Somma-Vesuvius. For example, if V0 = 8 · 106 m3, then each pile has a volume of
V p
0 = 106 m3, where the superscript p denotes the common volume for each single

pile. Given the common major and minor radii of each pile ([R, r] = [185, 135] m),
the common pile height (hp0) is calculated as: hp0 = V p

0 /πRr (∼ 13 m in the
example).
To model the aleatory uncertainty in V0 we define Uniform PDFs for the variable,
one per each eruption size previously described. Even though previous studies have
used PDFs with monotonically-decreasing probability as V0 increases (e.g. [23,
24]), these studies dealt with single-event BAFs, not with column-collapse dense
PDCs. Besides, we simulate whole-eruption volumes (e.g. [33]), for the medium
and large eruption size, because it is very difficult to extract single-event volumes
for dense PDCs at the Somma-Vesuvius stratigraphic record (e.g. [144, 269, 271]).
Given the scarcity of data at our target volcano (5 eruptions; there is no volume
data for the 1822 AD eruption) and, to our knowledge, the complete absence
of data about the possible distribution of volumes for dense PDCs generated by
column collapse3, we consider that a first step in modeling the aleatory uncertainty

3For instance, data in [138] refer to total PDC volumes, not to dense-PDC volumes.
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in the volumes of such dense PDCs may be to use an uninformative distribution
like the Uniform PDF (e.g. [49, 68]).

The lower and upper limits of the Uniform distributions are reported in Table
8.1 and are selected as follows: (1) for the small size, we take the volumes of
single hot avalanches reported by [193] during the 1944 AD eruption; (2) for the
medium and large sizes, we take the volumes of whole-eruption PDCs reported
by [26] for the eruptions of each size; and, finally, (3) for the medium and large
sizes, we apply a correction to account for the fact that, with Titan2D, we are
modeling dense-PDC volumes and not total PDC volumes: we assume that the
ratio δV = VPDCdense : VPDCdilute might range from 0.01 to 1, the lower bound being
calculated from the actual value of δV measured from the preserved PDC deposits
of the Pollena eruption [144, 269].

Table 8.1: Shape parameters of the selected Uniform Probability Density Func-
tions (PDFs) for dense-PDC volume (V0; V

p
0 indicates the volume of each pile)

and bed friction angle (φbed). min, max: lower and upper limits of the Uniform
PDFs. From [107].

V0 [106 m3]: Uniform PDF φbed [deg]: Uniform PDF
Eruption Size min V0 max V0 min V p

0 max V p
0 min φbed max φbed

Small 0.18 1.15 0.02 0.14 13 30
Medium 2.01 390 0.25 48.8 5 30
Large 2.31 831 0.29 104 5 25

Regarding the bed friction angle (φbed), we also choose Uniform PDFs for the
three eruption sizes explored. This is justified by the scarcity of data available at
Somma-Vesuvius but also by the fact that world-wide data on PDC mobility (e.g.
[138], φbed ∼ atan(∆H/L)) are not fully incompatible with the Uniform distribu-
tion [103]. Thus, while φbed values for dense and dilute PDCs formed by column
collapse (i.e. pumice flows) may not have been sampled from a Uniform PDF,
these φbed values for the group of pumice flows together with hot avalanches as
well as for groups of pumice flows separated according to eruption size may have
actually been sampled from such a distribution [103]. Nonetheless, it is also im-
portant to stress that such measures of PDC mobility [138] are usually calculated
from deposits of dense plus dilute PDCs.
Previous probabilistic hazard assessments of dense PDCs (BAFs, specifically)
based on Titan2D simulations have used: (a) fixed values of φbed (e.g. [23]);
(b) φbed that is distributed following a Uniform PDF (e.g. [24]); or (c) φbed that
is stochastically correlated to the value of PDC volume (e.g. [31]), that is: the
bed friction angle and the PDC volume are modeled as inversely correlated (e.g.
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[131, 138, 234, 267]) but the specific correlation function is taken as uncertain and
explored within the probabilistic hazard analysis.
In our parameterization of the Uniform PDFs for φbed at Somma-Vesuvius, we
derive the lower and upper limits of the distributions for each eruption size from
data compiled for the aforementioned eruptions at our target volcano (e.g. [26,
193, 198, 270, 303]). The specific values of bed friction angle are reported in Table
8.1. For large eruptions, despite some PDC deposits having φbed < 5◦, we set the
limit of the Uniform PDF at φbed = 5◦. This is due to the fact that, around and
below this value, the thin-layer problem becomes especially acute and the Titan2D
outputs may show unrealistic jumps during dense-PDC propagation (e.g. Fig. 4A
in [225]).

8.2.3 Aleatory-uncertainty propagation

The aleatory uncertainty in dense-PDC generation by column collapse at Somma-
Vesuvius is described by the Uniform PDFs of V0 and φbed previously reported. In
order to propagate this aleatory uncertainty into hazard footprints of dense PDCs,
we utilize the Titan2D model combined with Polynomial Chaos Quadrature (PCQ,
see Chapter 4). The greatest assumption of our methodology, necessary to ensure
the convergence of the PCQ procedure, is that the two uncertain model parameters
are independent of each other. This assumption has been made in previous studies
(e.g. [24]) but it is thought to be generally incorrect (e.g. [31, 131]). However, we
argue that, as recent works have demonstrated, the tendency of large-volume PDCs
to have smaller φbed values is clear from PDC deposits of many volcanoes taken
as a whole (e.g. [131]) but it may be not so evident when considering φbed values
for individual volcanoes (e.g. [234]). In the case of Somma-Vesuvius, we have four
eruptions with pumice flows4 and this makes very hard to extract any relationship
between the two variables that is applicable, specifically, to our target volcano.
Moreover, the log-log correlation between PDC volume and φbed described by
several authors (e.g. [131, 234, 267]; and displayed in Figure 8.2 for pumice flows
in [138] (plus the data for Somma-Vesuvius) implies that the influence of the
PDC volume on the bed friction angle is very important for small values of PDC
volume (Fig. 8.2B and [234]) but it is less crucial as PDC volume increases. In
particular, we observe that similar φbed values (about 10-20◦) occur for PDCs that

4The data that we have for the 1944 AD eruption [193] are related to hot avalanches, not
pumice flows.
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have volumes ranging 1-2 orders of magnitude (Fig. 8.2B). We do acknowledge the
general correlation of PDC volume and φbed (i.e. more voluminous PDCs tend to
be more mobile) in the definition of the model parameter space for each eruption
size (colored boxes, Fig. 8.2) but we explore all combinations of the two model
parameters within each eruptive size. In the light of the data available [138], and
considering the large uncertainties that may affect these estimations (e.g. φbed

estimates for pumice flows require to know the collapse height but, typically, this
can be, at best, approximately inferred: [132, 213]); we consider that our model
parameter spaces, based upon the eruptive history of Somma-Vesuvius, are still
compatible with published data on PDC mobility.

Figure 8.2: Pumice-flow data for bed friction angle (φbed ∼ atan(∆H/L)) and
PDC volume in [138] and some eruptions at Somma-Vesuvius (Mercato [322],
1631AD [198, 270], Pollena [144, 269], and Pompeii [272]). A: plot in log-log
scale that shows a roughly linear relationship between the variables (e.g. [234]).
B: plot in linear-linear scale that evidences how the influence of PDC volume on
φbed is stronger for low PDC volumes rather than for high PDC volumes. Colored
boxes indicate the model parameter space that we explore in this chapter, for
each eruption size: small (green), medium (blue) and large (red). The dashed-
black box in B indicates the location of the inset displayed on the upper-right

part of the plot. See text for more details. From [107].

The PCQ procedure we implement to propagate aleatory uncertainty from the
Titan2D parameters into hazard footprints of dense PDCs is based on the following
steps (see Chapter 4):

1. Select the quadrature points according to the joint PDF of V0 and φbed (we
select 64 quadrature points along the model parameter space).

2. Run the Titan2D model with parameter values corresponding to each quadra-
ture point.
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3. Calculate the coefficients of the PCQ polynomials, at each grid point over
the hazard domain, according to the Titan2D outputs from each simulation.

4. Sample the obtained polynomial expression that links model-parameter val-
ues and model outputs through Monte Carlo sampling (sample size = 104).

5. Calculate exceedance probabilities from these samples for different output
variables, specifically: flow depth and speed.

6. Repeat step 5 with different thresholds of the output variables to obtain
hazard curves at each grid point over the hazard domain.

During the simulation stage (step 2), we apply a stopping-time criterion modified
after [233]. We find that the stopping time proposed by [233] is quite dependent
on the value of φbed utilized in the simulation (Fig. 8.3).

Figure 8.3: Power-law relationship between the stopping time defined by [233]
and the bed friction angle (φbed) extracted from some Titan2D simulations,
performed with calibration purposes, at Somma-Vesuvius (Italy). See text for

more details. From [107].

We preliminarly fit a power-law function to quantify this dependence:

tstop = 2405.36 · φ−0.9bed (8.1)

where tstop is the stopping time computed with equation 19 in [233]. Thus, we
set the simulation time of each run to match the tstop value derived from equation
8.1. A more sophisticated statistical model, which incorporates data from several
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volcanoes and links tstop with bed friction angle, PDC volume and time of collapse,
is now under development [108].

8.2.4 BET_VH parameterization

The methodology described in the previous section allows us to quantify the
aleatory uncertainty in column-collapse dense-PDC propagation at Somma-Vesuvius,
given the occurrence of an eruption of a specific size from the current central crater
of the volcano. However, this hazard analysis does not provide the probability of
occurrence for each eruption size or the probability of PDCs occurring as a result
of an eruption of each size (e.g. [21]). In addition, the epistemic uncertainty is
not assessed by any means. To overcome these two limitations, we couple the
Titan2D-PCQ hazard assessment with the BET_VH. The result is a probabilistic
hazard assessment of dense PDCs at Somma-Vesuvius, given the occurrence of an
eruption from the central crater of the volcano.
The nodes 5 (eruption size) and 6 (hazardous phenomena) of BET_VH are pa-
rameterized in the same way as in Chapter 7. In nodes 7-8, we use the hazard
curves obtained with Titan2D and PCQ to set the best-estimate parameters in
the BET_VH model. We set the number of equivalent data (λ, e.g. [49, 68])
to: λ = 20. This choice is intermediate between assuming that the Titan2D-PCQ
assessments are very uninformative (in which case λ = 1) and assigning a high
degree of confidence to the assessments (in which case λ ≥ 50 may be used; e.g.
[76]).

8.2.5 Final probabilistic hazard products

The use of the Titan2D model allows to compute probabilistic measures of the
two hazard (or output) variables previously mentioned. Consequently, three valu-
able hazard products can be derived: (1) probability maps; (2) hazard maps; and
(3) hazard curves. The first type of map displays the probability of exceedance
of a given threshold of the output variable over the hazard domain. They can
also simply display the probability of arrival of the hazardous phenomenon (e.g.
[33, 103, 104]). The second type of map displays the severity of the hazard, in
terms of the values of the output variable (i.e. intensity measure), over the hazard
domain, for a given threshold of probability of exceedance. This definition applies



Chapter 8. PVHA of dense PDCs 144

to probabilistic hazard analyses. Sometimes, hazard maps can be constructed for
eruptive scenarios so the probability of the hazardous event is not considered but
the hazard severity expected for such scenario is shown (e.g. [41, 44]). Finally,
hazard curves are the synthetic probabilistic expression of probability maps and
(probabilistic) hazard maps (e.g. [23, 53, 70, 76]). They are bivariate graphs
showing, for a given grid point: on the x-axis, the severity of the hazard, typically
in units of the intensity measure (e.g. meters for dense-PDC depth); and, on the
y-axis, the exceedance probability for each value of the output variable (see sub-
section 8.3.1). If a line parallel to the y-axis (and starting from a given value, i.e.
threshold, of the output variable) is drawn, its intersection with the hazard curve
will indicate a value of exceedance probability corresponding to the threshold. If
hazard curves are available at each grid point over the hazard domain, as in the
work we present here, then a value of exceedance probability can be extracted for
each grid point and a probability map is obtained (see 8.3.3).
On the other hand, if a line parallel to the x-axis (and starting from a given value,
i.e. threshold, of exceedance probability) is drawn, its intersection with the hazard
curve will indicate a value of the output variable expected to be overcome with
probability equal to the threshold. By calculating the value of the output value
corresponding to the aforementioned probability threshold at each grid point over
the hazard domain, a hazard map can be computed (see 8.3.2).

8.3 Results

We divide the main findings derived from our probabilistic hazard assessment of
dense PDCs at Somma-Vesuvius (Italy) into three categories (see section 8.1): (i)
hazard curves; (ii) hazard maps; and (iii) probability maps. For each of these
categories, we describe the results obtained for two output variables of Titan2D:
flow depth and flow speed.

8.3.1 Hazard curves

Hazard curves are the basic hazard product extracted from our probabilistic as-
sessment. Actually, the other hazard products (hazard and probability maps) are
built from the information contained in the hazard curves (Figs. 8.4, 8.5).
For each grid point across the hazard domain, we provide a best-estimate (mean)
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hazard curve (solid lines in Figures 8.4, 8.5), which is a complete description of the
aleatory uncertainty; and alternative hazard curves (e.g. dashed lines in Figures
8.4, 8.5), which give a measure of the dispersion around the best-estimate curve
and are a description of epistemic uncertainty (e.g. [53, 70, 76]). In Figures 8.4
and 8.5, we display such hazard curves at three selected locations and for two
dense-PDC variables: flow depth and speed, respectively. These locations are: (1)
Torre Annunziata (TA), southwards from the central crater; (2) San Sebastiano
al Vesuvio (SSaV), westwards from the central crater; and (3) Somma Vesuviana
(SoVe), northwards from the central crater.

Maximum flow depth

The values of flow depth recorded around Somma-Vesuvius range from very low
values (close to 0 m) up to flow depths greater than 3 m. In particular, the
exceedance probability for a flow depth of 3 m is around 4% and 8% at TA and
SSaV, according to the mean hazard curve (Fig. 8.4). This probability is very
small in the case of SoVe. On the other side of the plots, we observe that the
(mean) probability of flow depths close to 0 m to be exceeded ranges from 7%
(at SoVe) to 25% (at SSaV), approximately. Taking into account the epistemic
uncertainty, the same probabilities range, respectively, from ∼12% and ∼38% (in
the 90th-percentile hazard curve) to ∼1% and ∼11% (in the 10th-percentile hazard
curve, Fig. 8.4). The general shape of the hazard curves is quite continuous and
the strongest changes in the slope of the curves occur over low values of flow depth.

Maximum flow speed

The values of flow speed recorded around Somma-Vesuvius can be greater than 30
m/s. The mean exceedance probabilities of such values of flow speed are below 5%
for all the example locations, however (Fig. 8.5). Similarly to what observed in
the case of flow depth, the values of flow speed, from highest to lowest, tend to be
recorded at SSaV, TA and SoVe, respectively, the latter being located beyond the
topographic barrier of Mount Somma. Nonetheless, we notice that the exceedance
probabilities of high flow speeds are more similar at SSaV and TA than in the case
of high flow depths at these two locations (Figs. 8.4, 8.5). In other words, thick
flows are quite more probable to occur at SSaV than at TA but, in terms of flow
speed, fast flows are similarly probable to occur at both locations.
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Figure 8.4: Examples of hazard curves for the flow depth of dense PDCs at
Somma-Vesuvius (SV, Italy), computed from the merging of Titan2D simula-
tions with quantification of uncertainty performed via PCQ and the BET_VH
model. The curves display the values of flow depth against the probability that
each value of the variable is exceeded, given an eruption from the central crater
of Somma-Vesuvius. Solid lines denote the best-estimate (mean) hazard curve
while dashed lines indicate the 10th-percentile (lower bound) and 90th-percentile
(upper bound) hazard curves. The hazard and probability maps in Figures 8.6
and 8.8, respectively, are obtained by “cutting” (see red lines) the hazard curve
of each grid point over the hazard domain. The locations of the hazard curves
displayed in this figure (1, 2, 3) are given in the bottom-right inset and are the
same as in Figure 9.11 (see Chapter 9). Source: Google, DigitalGlobe, March 1,

2017. From [107].
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The exceedance probability for dense PDCs with zero speed is 24%, 26% and 21%
at TA, SSaV and SoVe, respectively, according to the mean hazard curve. In the
case of the 90th-percentile hazard curve, these probabilities are ∼38%, 40% and
34%, respectively. This implies that, given an eruption of any size happening at
the central crater of Somma-Vesuvius, the probabilities of no dense PDCs reaching
the example locations are 76%, 74% and 79%, for the mean hazard curve, and 62%,
60% and 66%, for the 90th-percentile hazard curve (Fig. 8.5).
The hazard curves for flow speed generally show the steepest slopes over low values
of flow speed while these curves are relatively flat over high values of flow speed,
similarly to what related about the flow-depth hazard curves. However, in the
(mean) flow-speed hazard curves, there is a break-in-slope at about 5 m/s, 8 m/s
and 10 m/s for SoVe, TA and SSaV, respectively. This indicates a moderate-strong
decrease in the frequency of arrival of fast dense PDCs with respect to slow dense
PDCs at the three example locations (Fig. 8.5).

8.3.2 Hazard maps

Hazard maps are built from the hazard curves at each grid point of the hazard
domain. As an illustrative example, we set and show a threshold of exceedance
probability along these curves (10% in our case), the values of flow depth or flow
speed associated with such threshold can be extracted for each grid point (Figs.
8.4, 8.5). Thus, hazard maps display these values over the hazard domain (Figs.
8.6, 8.7). Given that we quantify aleatory and epistemic uncertainty, there is not
only one hazard map available (e.g. mean hazard map) but a set of many hazard
maps can be analyzed. In Figures 8.6 and 8.7 we show the mean, 10th-percentile
and 90th-percentile hazard maps, plus a zoomed section of the mean hazard map,
for the two aforementioned output variables.

Maximum flow depth

In terms of flow depth, the main spatial pattern shows dense PDCs that primar-
ily spread over the southern flank of Somma-Vesuvius and reach their maximum
runouts along a SW azimuth from the central crater. Part of this dense-PDC
spreading is simulated over seawater, especially in the case of the 90th-percentile
hazard map, Fig. 8.6B), and this is a situation that Titan2D does not model [218].
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Figure 8.5: Examples of hazard curves for the flow speed of dense PDCs at
Somma-Vesuvius (SV, Italy), computed from the merging of Titan2D simula-
tions with quantification of uncertainty performed via PCQ and the BET_VH
model. The curves display the values of flow speed against the probability that
each value of the variable is exceeded, given an eruption from the central crater
of Somma-Vesuvius. Solid lines denote the best-estimate (mean) hazard curve
while dashed lines indicate the 10th-percentile (lower bound) and 90th-percentile
(upper bound) hazard curves. The hazard and probability maps in Figures 8.7
and 8.9, respectively, are obtained by “cutting” (see red lines) the hazard curve
of each grid point over the hazard domain. The locations of the hazard curves
displayed in this figure (1, 2, 3) are given in the bottom-right inset and are the
same as in Figures 8.4 (this chapter) and 9.11 (see Chapter 9). Source: Google,

DigitalGlobe, March 1, 2017. From [107].
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The lateral extension of dense PDCs towards the south and southeast is also con-
siderable while towards the east and west is more limited (Fig. 8.6). Towards the
north, the shortest runouts are recorded and, in the case of the 10th-percentile
hazard map (Fig. 8.6A), very few dense PDCs are able to surmount the Mount
Somma and propagate further northwards. Note that all the hazard maps in Fig-
ure 8.6 refer to an exceedance probability of 10%. If this threshold is set to, say,
60%, the hazard maps will show a much more limited extent. For instance, ac-
cording to the mean hazard curves (Fig. 8.4), we expect extremely-thin dense
PDCs to be overcome in 60% of the eruptions from the central crater at the three
example locations. However, we expect dense PDCs with flow depths of ∼1.9, 0.8
and close to zero, to be overcome in 10% of the eruptions from the central crater
at SSaV, TA and SoVe, respectively (Fig. 8.4).
In the zoomed section of the mean hazard map, we observe how the occidental
sector of Mount Somma seems quite inefficient in blocking dense PDCs with high
flow depths, at least for the selected threshold of exceedance probability (10%).
The central and oriental sectors of this topographic barrier are more effective in
blocking the passage of dense PDCs, although it is also noted that some channels
on the north flank of the volcano are able to deliver relatively-thick flows up to
the base of the flank, approximately (Fig. 8.6). The lobate morphology of the iso-
flow-depth points (see, for instance, the yellow points: flow depth ∼ 2 m) stresses
the influence of topographic features of several scales (such as small scoria cones,
remnants of volcanic-edifice collapses, irregular valleys, etc.) on the dense-PDC
propagation simulated by Titan2D.

Maximum flow speed

The hazard maps of flow speed show an approximately rectangular pattern with
fast dense-PDCs reaching rather long distances towards the south, with respect to
the east and west, and shorter distances towards the north (Fig. 8.7). The latter,
however, are comparable to the distances reached by fast dense-PDCs towards the
east and west, in particular for the mean and 90th-percentile hazard maps. In
the mean hazard map, dense PDCs reaching the sea coast can have flow speeds
of 10-20 m/s, for an exceedance probability of 10% (Figs. 8.5, 8.7). Regarding
the 10th-percentile hazard map, high flow speeds are restricted to the southern
flanks and the area beyond the occidental sector of Mount Somma (Fig. 8.7a).
Nonetheless, for all the hazard maps displayed, areas of ∼100 km2 (or larger)
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Figure 8.6: Hazard maps for dense PDCs, with an exceedance probability
of 10%, at Somma-Vesuvius (SV, Italy), computed from the merging of Ti-
tan2D simulations with quantification of uncertainty performed via PCQ and
the BET_VH model. The maps display the values of flow depth (fdepth, in
meters), at each grid point over the hazard domain and given an eruption from
the central crater of Somma-Vesuvius, that correspond to the aforementioned
threshold of exceedance probability. The white star denotes the downtown of
the city of Napoli. Different graphs show the best estimate (mean, inset c -d
is a detail of it, centered at the Somma-Vesuvius crater-) for these values of
flow depth as well as their dispersion: (a) 10th percentile (perc); and (b) 90th
percentile. See text for more details. Source: Google, DigitalGlobe, March 1,

2017. From [107].
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around Somma-Vesuvius are covered by flow speed values equal to or greater than
30 m/s.
The homogeneity in the distribution of high flow speeds, even over the northern
flank beyond Mount Somma indicates that, notwithstanding this topographic bar-
rier can hinder the occurrence of thick flows over the north flank of the volcano
(Fig. 8.6), these dense PDCs can still reach high speeds (Fig. 8.7). In the zoomed
section of the mean hazard map, it is seen that only the centermost sector of
Mount Somma acts as a really efficient barrier for fast dense PDCs (again, given
an exceedance probability of 10%). The lobate morphology of the hazard maps
for flow depth is less evident in the case of flow depth. Thus, this variable seems
not very sensitive to topographic features of small to medium scale while it is only
slightly influenced by large topographic features such as Mount Somma.

8.3.3 Probability maps

Probability maps are built from the hazard curves at each grid point of the hazard
domain. As an illustrative example, we set and show a threshold for the output
variable of interest along these curves (flow depth = 1 m and flow speed = 2 m/s,
in our case), the values of exceedance probability associated with such thresholds
can be extracted for each grid point (Figs. 8.4, 8.5). Thus, probability maps
display these values over the hazard domain (Figs. 8.8, 8.9). Given that we
quantify aleatory and epistemic uncertainty, there is not only one probability map
available (e.g. mean probability map) but a set of many probability maps can be
analyzed. In Figures 8.8 and 8.9 we show the mean, 10th-percentile and 90th-
percentile probability maps, plus a zoomed section of the mean probability map,
for the two aforementioned output variables.

Maximum flow depth

The probability maps for the (dense-PDC) flow depth are strongly different de-
pending on the hazard curve they are built from. The 10th-percentile probability
map shows that the probabilities of exceeding 1 m of flow depth are well below
50% over the vast majority of the hazard domain (Fig. 8.8a). Only the crater
area and the central sector of the calderas’ floor (mainly shaped as a result of the
Mercato and Pompeii eruption, e.g. [89, 196]) display values of probability around
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Figure 8.7: Hazard maps for dense PDCs, with an exceedance probability
of 10%, at Somma-Vesuvius (SV, Italy), computed from the merging of Ti-
tan2D simulations with quantification of uncertainty performed via PCQ and
the BET_VH model. The maps display the values of flow speed (fspeed, in
meters per second), at each grid point over the hazard domain and given an
eruption from the central crater of Somma-Vesuvius, that correspond to the
aforementioned threshold of exceedance probability. The white star denotes the
downtown of the city of Napoli. Different graphs show the best estimate (mean,
inset c -d is a detail of it, centered at the Somma-Vesuvius crater-) for these
values of flow speed as well as their dispersion: (a) 10th percentile (perc); and
(b) 90th percentile. See text for more details. Source: Google, DigitalGlobe,

March 1, 2017. From [107].



Chapter 8. PVHA of dense PDCs 153

40-50%. The rest of the volcanic edificed is covered by values of exceedance prob-
ability about 20%. In the mean probability map, exceedance probabilities of 40 to
60% are observed over an area that involves the central and, partially, the western
sectors of the calderas’ floor (the latter sector formed by the Pomici di Base and
Avellino eruptions, e.g. [196]). The preferred propagation axis towards the SW
and SSE, identified in the hazard maps, is also evidenced by the mean probability
map (Fig. 8.8c,d). The effect of Mount Somma in hampering dense-PDC propa-
gation towards the northern sector of the volcano is clear, especially in the mean
and 90th-percentile probability maps. Nonetheless, the potentiality of a certain
percentage of dense PDCs to overcome Mount Somma and be channelized through
some valleys along the north flank is also noticed (Fig. 8.8). On the whole, the
colored countours of the probability maps may seem more spiked than those of
the hazard maps but the limits of the former (pale blue colors) are rather similar
to that of the hazard maps (Figs. 8.6, 8.8).

Maximum flow speed

The probability maps for flow speed are characterized by sharp discontinuities in
the exceedance probability between the most proximal sectors (crater area and
calderas’ floor) and the medial sectors of the volcano (Fig. 8.9). This is consistent
with the break-in-slope observed in the hazard curves for flow speed at the three
example locations (Fig. 8.5). Dense PDCs with speeds equal to or greater than
2 m/s do not seem to travel further than 8 km, approximately. The highest ex-
ceedance probabilities are around 40-60% for the 10th-percentile probability map,
50-70% for the mean probability map, and 70-100% for the 90th-percentile proba-
bility map. Outside from the proximal sectors, the exceedance probabilities show
small and/or gradual changes for each of the aforementioned maps; respectively:
∼20%, ∼20-30% and ∼40-50% (Fig. 8.9).
The homogeneity in the values of flow speed between the areas beyond Mount
Somma and areas over other flanks of the volcano that is noted in the hazard
maps of flow speed, can be identified in the probability maps as well. Thus, values
of exceedance probability about 35% are present on the eastern and western flanks
but also on the northern flank, beyond Mount Somma. Nevertheless, the sharp
drop in exceedance probability between points just south of Mount Somma and
just beyond the topographic barrier is very significant (Fig. 8.9). It appears that
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Figure 8.8: Probability maps for dense PDCs, with 1 m of flow depth (fdepth),
at Somma-Vesuvius (SV, Italy), computed from the merging of Titan2D simula-
tions with quantification of uncertainty performed via PCQ and the BET_VH
model. The maps display the exceedance probabilities (in percentage), at each
grid point over the hazard domain and given an eruption from the central crater
of Somma-Vesuvius, that correspond to the aforementioned threshold of flow
depth. The white star denotes the downtown of the city of Napoli. Different
graphs show the best estimate (mean, inset c -d is a detail of it, centered at the
Somma-Vesuvius crater; note the different colorbar scale-) for these probabilities
as well as their dispersion: (a) 10th percentile (perc); and (b) 90th percentile.
See text for more details. Source: Google, DigitalGlobe, March 1, 2017. From

[107].
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this decrease in exceedance probability (for dense PDCs with speed = 2 m/s) is
approximately constant (∼30%) for the three maps displayed in Figure 8.9.

Figure 8.9: Probability maps for dense PDCs, with 2 m/s of flow speed
(fspeed), at Somma-Vesuvius (SV, Italy), computed from the merging of Ti-
tan2D simulations with quantification of uncertainty performed via PCQ and
the BET_VH model. The maps display the exceedance probabilities (in per-
centage), at each grid point over the hazard domain and given an eruption from
the central crater of Somma-Vesuvius, that correspond to the aforementioned
threshold of flow speed. The white star denotes the downtown of the city of
Napoli. Different graphs show the best estimate (mean, inset c -d is a detail of
it, centered at the Somma-Vesuvius crater; note the different colorbar scale-) for
these probabilities as well as their dispersion: (a) 10th percentile (perc); and (b)
90th percentile. See text for more details. Source: Google, DigitalGlobe, March

1, 2017. From [107].

8.4 Discussion

The three-step procedure presented in this chapter allows us to obtain a compre-
hensive and homogeneous probabilistic hazard assessment of dense PDCs, formed
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by column collapse, at Somma-Vesuvius (Italy). Such a probabilistic assessment
is extremely rare in the literature of any type of PDC (e.g. [31, 33, 100, 206]).
We consider that the strenghts of our results in comparison to previous works
are the following: (1) the aleatory uncertainty is quantified in a robust manner
through the PCQ procedure (e.g. [100] ran few Titan2D simulations to properly
quantify the aleatory uncertainty); (2) epistemic uncertainty and volcano-specific
information are incorporated via the BET_VH model ([31, 33] also quantify the
epistemic uncertainty although through different strategies); (3) the whole merging
of Titan2D-PCQ-BET_VH allows to compute hazard curves for different dense-
PDC variables and diverse thresholds of these variables (e.g. the hazard analysis
by [33] can only calculate the probability of PDC arrival while that of [31] focuses
on just one threshold of flow depth).

8.4.1 Structural damage expected around Somma-Vesuvius

According to our results, very extensive damage is expected to occur around
Somma-Vesuvius when we consider a “standard” threshold of exceedance probabil-
ity (e.g. 10% for probabilistic seismic hazard assessment [290]). Thus, maximum
flow speeds of even 30 m/s may occur over an area of ∼ 80 km2 around the present
crater, on average, in 1 out of 10 eruptions (e.g. mean hazard map, Fig. 8.7c,d).
If we take the density of these dense PDCs as ∼ 1, 250 kg/km3 [269], it implies
that dynamic pressures greater than 500 kPa could occur associated with that
threshold of exceedance probability. These values are two orders of magnitude
bigger than most of the thresholds for building collapse defined in vulnerability
and risk analyses at Somma-Vesuvius (e.g. [154, 314, 315, 323]).
If a threshold of dense-PDC speed is set at 2 m/s (thus, dynamic pressure is ap-
proximately 2.5 kPa), we observe that the mean probability of exceedance related
to such dense-PDCs is equal to or greater than 50% only over the calderas’ floor,
approximately (Fig. 8.9). Nonetheless, exceedance probabilities greater than 20%
cover a large area around the volcano. In this case, the threshold of dynamic
pressure would correspond to the collapse of only the weakest buildings located in
the area around Somma-Vesuvius (e.g. [323]).

Even though our probabilistic hazard analysis might overestimate the mean hazard
of dense PDCs (we use whole-eruption PDC volumes, see next subsection 8.4.2), it
does not seem in disagreement with the study of [44] which, at Somma-Vesuvius,
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has been typically used as the unique hazard reference to estimate building vulner-
ability and, generally, quantitative volcanic risk from PDCs (e.g. [154, 323, 324]).
The hazard analysis of [44] is based upon a few eruptive scenarios for surge-like
PDCs. Specifically, the values of dynamic pressure computed by [44], for the most
representative scenario (corresponding to our medium-size eruptions), are about
1-70 kPa. The spatial distribution of these values shows a clear discontinuity that
delineates the calderas’ floor quite precisely (Fig. 13 in [44]).
In our probabilistic hazard analysis, values of dynamic pressure equal to or greater
than 2.5 kPa are very likely (∼ 50%5) over an area quite similar to the aforemen-
tioned.

Two main aspects can be derived from the comparison of our hazard analysis and
that of [44]. On the one hand, the PDAC model used by [44] is more suited
to simulate the surge-like (dilute) member of PDCs while the Titan2D model
is applicable to the other (dense) end-member of PDCs [218]. This has strong
implications for the comparison of the two evaluations of dynamic pressure because
the mean flow densities of dilute PDCs at Somma-Vesuvius can be two orders of
magnitude smaller than mean flow densities of dense PDCs (e.g. [269]). This
implies that dilute PDCs must reach flow speeds around 10 times bigger than dense
PDCs to cause dynamic pressures that are comparable between them. On the other
hand, the spatial distribution of the discontinuity in dynamic-pressure values in
[44] could indicate that PDAC simulations respond more faithfully to topography
(in this case to the flat surface of the calderas’ floor) than the Titan2D model (e.g.
Fig. 8.9). The accuracy in describing topography interactions that can be gained
through 3D physical models of PDCs is pointed out by the same authors [44]. They
show how the effect of Mount Somma in hindering PDC propagation towards the
north is well captured with the 3D model (PDAC) but not with a previous 2D
version of it [325]. Nevertheless, the use of PDC models with runtimes in the order
of days is not compatible with the assessment of probabilistic volcanic hazard for
this phenomenon (e.g. [23, 28, 31]).

Our hazard assessment highlights the paramount importance of developing vol-
canic hazard assessments that address and quantify, at least, the aleatory variabil-
ity of the hazardous process (e.g. [49, 53, 54]). We contend that scenario-based
hazard assessments can be useful to analyze particular hazardous situations: for

5Note that, given the coupling of the Titan2D-PCQ assessment with BET_VH, we are also
modeling the probability of PDCs occurring, given an eruption of each eruption size. This
probability is not 1, especially in the case of small eruptions (see Chapter 7).
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instance, whether a sub-Plinian I eruption at Somma-Vesuvius [89] can or can-
not generate surge-like PDCs that are able to substantially overcome the topo-
graphic barrier of Mount Somma (e.g. [44]). However, structured probabilistic
hazard assessments can provide a global view on the aleatory variability (and
epistemic uncertainty) that goes beyond the view of single eruptive scenarios (e.g.
[49, 70, 326]).

8.4.2 Epistemic uncertainty in modeling dense PDCs via

Titan2D

Epistemic uncertainty in volcanic (and natural) hazards can arise from several
different sources (e.g. [75]). Each of them needs to be quantified separately in
order to understand its specific impact on the simulator outputs (e.g. [327]).
In addition, the relevance of a given source of epistemic uncertainty (e.g. input
uncertainty, primarily linked to the quality of the DEM used in the simulations)
can depend on the volcanic system studied (e.g. [84]) and/or on the values of
other model parameters (e.g. [85]). It may also be expected that different PDC
models, such as Titan2D and the Energy Cone, do show different sensitivity to
the same source of epistemic uncertainty (e.g. input uncertainty). Thus, Titan2D
seems much more sensitive to input uncertainty (e.g. [84, 85, 86, 319]) than the
Energy Cone model (e.g. [104]), at least in the volcanic systems analyzed.
Therefore, a comprehensive assessment of not only aleatory variability but also
different sources of epistemic uncertainty can be very useful to: (1) check which
sources of epistemic uncertainty mostly control the output of the PDC model; and
(2) prioritize future research in trying to reduce them.

Concerning the Titan2D model, several sources of epistemic uncertainty have been
demonstrated to exist (e.g. [318]). Following the classification presented by [104]
(adapted from [75], see Chapter 6), we can define:

• Input uncertainty: tt was initially explored by [86, 319] and then quanti-
fied in a more structured way by [84, 85].

• Parametric uncertainty: different PDFs have been explored to model Ti-
tan2D parameters such as V0 and φbed. For V0, PDFs from Uniform (e.g.
[24, 107]) to Pareto distributions (e.g. [23]) have been used. For φbed, [24]
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used a Uniform distribution while [31] proposed a PDF that is derived from
the PDF selected for V0. That is, the authors model the theoretical uncer-
tainty (see next item) by defining φbed in terms of V0 in a way that the higher
V0, the smaller φbed (e.g. [131, 234, 267]). In Figure 8.10, we explore the
implications that deriving the PDF for φbed from the PDF V0 (by using a
formula that links the two parameters) may have. We check that the PDF
for φbed tends to resemble that of V0 if the latter is approximately symmetri-
cal around the mean (Fig. 8.10A,D). However, if the PDF for V0 is strongly
asymmetric, then the PDF for φbed is approximately a specular reflection of
the former (Fig. 8.10B,C). Other studies have considered other distributions
for atan(∆H/L) ∼ φbed of dense and dilute PDCs such as the Gaussian PDF
(e.g. [103, 136]) or the asymmetric Tukey PDF (e.g. [104]).
Parametric uncertainty in the Titan2D model is also related to the choice of
the stopping time for each simulation (e.g. [41, 233]).

• Theoretical uncertainty: V0 and φbed have been modeled as they were
correlated (e.g. [31]) or independent (e.g. [24]). We note that theoretical
uncertainty not only arises from the type of possible correlation (positive,
negative, none; e.g. [104]) but also from the specific form of the correlation
function (e.g. [31]).

• Structural uncertainty: its quantification can be challenging so only pre-
liminary assessments have been performed so far, by comparing the model
predictions with data from past PDC deposits (e.g. [86, 225]).

In this chapter, we do not explicitly model the different sources of epistemic un-
certainty, as other recent studies have done (e.g. [31, 84, 85]). However, we do
include a measure of epistemic uncertainty through the parameterization of the
BET_VH model (see subsection 8.2.4). Given that few studies have quantified
epistemic uncertainty in volcanic hazard assessments performed with Titan2D and
none of them has provided a ranking or quantitative comparison between the im-
pact of different sources of epistemic uncertainty (e.g. [104]), it is difficult to ensure
whether our quantification of epistemic uncertainty does or does not capture the
effect of this uncertainty on the Titan2D outputs. Likewise, we cannot assert that
the sources of epistemic uncertainty that we try to reduce in our hazard analysis
(e.g. input and, partially, parametric uncertainty) are very important, as impor-
tant as other sources, or relatively unimportant (e.g. [104]).
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Figure 8.10: Examples of the links between the PDFs of V0 and φbed according
to the function presented by [31]: φbed = atan(exp(a + blogV )). We use a =
0.1047 and b = −0.2490 (i.e. approximately the median used by [31]), and
log10(V0,m3 ∈ [5, 9.5]. Depending on the PDF selected for the V0 variable, the
PDF of φbed is fixed by the relationship between the variables. We randomly
sample 104 values from different PDFs for V0 and calculate 104 values for φbed
by applying the aforementioned formula. (a) Beta distribution with α = β = 2;
(b) Beta distribution with α = 2, β = 10; (c) Beta distribution with α = 10,

β = 2; (d) Beta distribution with α = β = 10. From [107].

In the following, we detail the implications that each source of epistemic uncer-
tainty may have for modeling dense-PDC hazard through Titan2D and how our
choices can be relevant for our specific probabilistic hazard assessment of dense
pumice flows.

Input uncertainty should not represent an issue for our hazard analysis because:
(1) the DEM resolution is high enough (10 m, e.g. [319]); (2) the dense-PDC
volumes simulated tend to be large (e.g. [85]); and (3) the study area does not
have an extremely rough topographic surface (e.g. [84]).
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Concerning parametric uncertainty, we do not explore the influence of using dif-
ferent PDFs for the model parameters: V0 and φbed. This influence has not been
quantified in previous studies so we do not know how much it could affect to the
Titan2D outputs. In the case of Energy Cone model, it has been seen that some
choices for these PDFs might not result in big changes of the model outputs (e.g.
[104]). However, if the PDFs are very different from each other (e.g. Exponential
and Uniform PDFs), the impact on the probabilistic hazard assessment can be
quite significant (e.g. [105], see Chapter 7). Therefore, more research is needed to
properly assess the parametric uncertainty related to the choice of PDFs to model
aleatory uncertainty, especially in the case of Titan2D where the specific choice
for φbed may modify the model outputs to a great extent (e.g. [27, 222, 225]).
As regards the stopping time of the Titan2D simulations, it is usually overlooked
as a source of parametric uncertainty (e.g. [23, 31]). The criterion, presented by
[233], to select the stopping time can be very useful to reduce this parametric un-
certainty and it has been applied in subsequent works (e.g. [41]). Yet, the results
obtained during some calibration tests of Titan2D at Somma-Vesuvius (Fig. 8.3)
seem to indicate that there is a strong link between the value of the stopping time,
according to [233] criterion, and the value of φbed. In order to reduce this para-
metric uncertainty, we set up the stopping time of our Titan2D simulations before
running them, according to the calculated correlation. Not taking into account
this aspect, could result in significant changes in the simulated maximum runouts
and areas invaded by dense PDCs. For example, let us assume that we set the
stopping time to 200 seconds for all the simulations. Those simulations with low
φbed would be stopped about 400 to 550 seconds before the stopping criterion of
[233] is met (Fig. 8.3). If we hypothesize that the flow front advances at an average
speed of 1 m/s during these 400-550 seconds, the underestimation in the dense-
PDC runout could be of 0.4-0.55 km, approximately. In terms of invaded area,
the underestimation will depend on the shape and size of the flow-front envelope.

As concerns theoretical uncertainty, we assume that V0 and φbed are independent,
internally to each eruption size analyzed. Previous studies have also assumed this
independence between the model parameters (e.g. [24]) and, to our knowledge,
there is no probabilistic hazard analysis, performed with Titan2D, that has ana-
lyzed eruption sizes separately. Nevertheless, when taking all the eruption sizes
as a whole, our simulation setup does approximately follow the inverse correla-
tion between V0 and φbed that has been recognized at other volcanoes worlwide
(Fig. 8.2; [31, 131, 234, 267]). Therefore, we argue that our methodology is not
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incompatible with this correlation. Moreover, the selected model parameter space
for each eruption size is symmetric with respect to the available data on V0 and
φbed [138] (Fig. 8.2A) so we do not expect our probabilistic hazard assessment
to be particularly biased towards overestimating or underestimating the hazard
footprints of dense pumice flows, at least in terms of the correlation between these
model parameters. We do anticipate, however, that our hazard footprints will be
an overestimation because we use total-eruption PDC volumes in our Titan2D
runs. Considering whole-eruption PDCs is a common practice in volcanic hazard
assessments, especially in the case of pumice flows and pyroclastic surges (e.g.
[25, 26, 33, 103, 105, 217, 328]), and it provides an upper-bound, conservative
estimate of the PDC hazard.

Finally, the structural uncertainty is tendentially the most difficult source to be
quantified (e.g. [75]). Preliminarly, the quantitative comparison of the Titan2D
outputs with past PDC deposits may be used as a measure of structural uncer-
tainty (e.g. [75, 104]). Some studies have calculated (maximum) Jaccard co-
efficients for Titan2D simulations around 0.6-0.7 (e.g. [86, 225]). These values
are equal to or smaller than the ones computed by [103] at Somma-Vesuvius and
Campi Flegrei (Italy). Assuming, for instance, a dense-PDC area of invasion about
100 km2, the expected areal misfit [103] would be ∼ 40 − 70 km2 while it would
rise up to ∼ 80 − 130 km2 if the area of invasion is around 200 km2. Therefore,
we presume that structural uncertainty may also represent an important source of
epistemic uncertainty in volcanic hazard assessments computed through Titan2D.

8.4.3 Implications for quantitative volcanic multi-hazard as-

sessments

Explosive volcanoes are multi-hazard settings where diverse hazardous processes
can occur whether in succession (e.g. lahars triggered by rainfall after a certain
volume of pyroclastic material has been deposited around the volcano, e.g. [90])
or in concomitance (e.g. contemporaneous tephra fallout and PDC propagation,
e.g. [329]). Current practices in quantitative volcanic hazard analyses are almost
exclusively focused on single hazards (e.g. [23, 31, 32, 33, 76, 210]). Some authors
have performed volcanic multi-hazard assessments but considering the different
hazardous processes independently (e.g. [97, 100]). Very few studies have actu-
ally modeled the interaction between hazardous processes (e.g. tephra fallout and
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lahars, [101]). Our probabilistic hazard assessment of dense PDCs (and similar
ones) could represent an important step towards quantitative multi-hazard assess-
ments in which the volcanic hazard interaction is explicitly accounted for. For
instance, the hazard curves of (dense-PDC) flow depth and speed at locations
along the coastline southwards and southwestwards of Somma-Vesuvius could be
integrated into quantitative hazard analyses of tsunamis triggered by dense PDCs
entering the sea (e.g. [330, 331]). Similarly, the probabilistic assessments of flow
depth could be extended to calculate dense-PDC volumes over different catch-
ments around the volcano and, therefore, evaluate the volcanic hazard posed, for
instance, by rain-triggered lahars (see Chapter 9).
One interesting aspect derived from our hazard analysis is the spatial discontinuity
observed between the area where previous volcanic-edifice collapses have occurred
(calderas’ floor) and the sectors of the volcano located towards the toe of the
present edifice. This discontinuity is especially clear in the probability maps of
flow speed (Fig. 8.9) and in the selected hazard curves for the same variable (Fig.
8.5), where the discontinuity is seen as a break-in-slope in the exceedance proba-
bility. That is, the percentage of dense PDCs that are able to reach the example
locations with high speed is scarce and this percentage does not increase much
if lower speeds are considered (see right-hand-side part of the hazard curves in
Figure 8.5). On the contrary, leftwards of the break-in-slope of the hazard curves,
the percentage of dense PDCs able to reach the locations with a given speed (or
greater) greatly increases as lower flow speeds are analyzed (Fig. 8.5). In other
words, the majority of simulated dense PDCs have difficulties in overcoming the
values of flow speed beyond the break-in-slope. Our interpretation is that the
relatively-flat area covered by previous volcanic-edifice collapses (e.g. Figure 4 in
[26]) produces a deceleration of the dense PDCs over the proximal sectors of the
volcano, possibly greater than at other volcanoes where the most proximal sectors
may be dominated by steep slopes (e.g. Volcán de Colima, Mexico, [41]). This
deceleration should result in an increase of the flow depth over this area. Beyond
the calderas’ floor, the dense PDCs are expected to regain speed and get thinner
because of the steeper slope. Nonetheless, maximum flow speeds may not reach
the same values as in proximal sectors, given the momentum already lost during
propagation. Regarding the flow depth, we argue that the hazard curves do not
show the same break-in-slope as the ones for flow speed because, even though the
flow depth decreases as the dense PDCs propagate beyond the calderas’ floor, the
maximum values can still be high at the discontinuity. Therefore, the percentage
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of dense PDCs that are able to overcome each threshold of flow depth over the
hazard curve changes in a more gradual way (Figs. 8.4, 8.8).

The implications of the interpreted dense-PDC kinematics highlight how volcanic
hazards can arise from complex interactions of different hazardous phenomena
(e.g. [92, 166]). We may expect that, if dense PDCs decelerate over the calderas’
floor, their associated hazard (in terms of dynamic pressure, for instance) at loca-
tions downhill the volcanic edifice will be lower, as the hazard curves demonstrate
(Fig. 8.5). However, we may also expect that, as these dense PDCs decelerate,
their transport capacity will be reduced (e.g. [35, 148]) and, thus, substantial
amounts of pyroclastic material could be deposited over the calderas’ floor. This
pyroclastic material could subsequently act as the source for rain-triggered lahars
that may travel radially, impacting locations that have already been impacted by
the passage of dense PDCs (see Chapter 9). The quantification of secondary haz-
ardous processes, such as lahars, is of paramount importance since they can cause
long-lasting and more severe damages than primary processes, such as PDCs (e.g.
[90, 164]).

8.5 Conclusions

In this chapter, we present a methodology that makes use of one PDC model and
two uncertainty quantifications techniques and allows a robust quantification of
aleatory and epistemic uncertainty in the volcanic hazard posed by dense pumice
flows. The final hazard product is a large set of probablistic hazard curves, one
at each grid point over the hazard domain, which represent a full description of
uncertainty (e.g. [83]). Such a hazard analysis has been performed for tephra
fallout (e.g. [70, 76]) but, to our knowledge, this is the first time that the same is
provided for (dense) PDCs. Nevertheless, we contend that other recent strategies
to calculate probabilistic volcanic hazard of dense PDCs have the potential to
calculate such hazard curves. For instance, statistical emulation implemented
on the Titan2D model (e.g. [23, 31, 318]) could provide response surfaces (i.e.
functions that estimate the value of flow depth/speed according to the values of
one or more model parameters, such as V0 and φbed) at each grid point over the
hazard domain. Moreover, evaluating the emulator to assess all possibles sources
of epistemic uncertainty would be feasible in terms of computation time (e.g. [31]
quantified theoretical uncertainty at a reduced computational cost).
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Other future directions may include the search for a two-layer PDC model that
satisfies the following requirements: (1) it can simulate both dense and dilute
PDCs (e.g. [133]); (2) it can be run over real terrain (like Titan2D); and (3)
it is simple enough to, at least, be run many hundreds of times so a statistical
emulator can be built from the outputs of these simulations. Even if a solution to
this problem is found in the near future, probabilistic volcanic hazard assessments
of PDCs will still have the necessity to incorporate the specific characteristics of
the volcanic system under study in terms of probability of eruption, vent-opening
probability, etc. This can be accomplished, as it has been done in recent years,
through event trees (e.g. [21, 32, 49, 100, 250, 281, 307, 332]), which may also
model non-eruption hazardous processes (e.g. [243, 244]), and Bayesian Belief
Networks (e.g. [274, 333]).

Finally, the fact that we present a set of hazard curves, that show the haz-
ard description over different thresholds of the hazard variable (dense-PDC flow
depth/speed), is of paramount importance. A variety of probability and hazard
maps can be easily derived from these hazard curves (Figs. 8.6, 8.7, 8.8, 8.9) but
the specific choice of what thresholds in flow speed/depth or exceedance proba-
bility, respectively, are representative or informative is a duty that corresponds
to decision-making agencies (e.g. [259]). Hazard scientists lack the training and
information needed to decide upon those thresholds and, therefore, a separation
between scientists and decision makers, in terms of actions, must be clear-cut (e.g.
[334]).
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A framework for Probabilistic

Volcanic Multi-Hazard Assessment

of rain-triggered lahars using

Bayesian Belief Networks

Abstract

Secondary water-sediment flows, commonly known as lahars, can pose a higher
threat to population and infrastructure than primary volcanic hazardous processes
such as tephra fallout and Pyroclastic Density Currents (PDCs). Lahars are dense
and highly-viscous flows which may reach high speeds and flow depths causing se-
vere damage by lateral impact and/or burial. Frequently, lahars are triggered by
intense or long rainfalls occurring after explosive eruptions at a given volcano.
These eruptions provide important amounts of loose pyroclastic material that is
consequently remobilized and transported by lahars. The whole process depends
on many factors such as: (1) the spatio-temporal rainfall characteristics; (2) the
spatial distribution and hydraulic properties of the tephra deposit; (3) the pre- and
post-eruption topography. Modeling such a complex system requires the quantifi-
cation of aleatory variability in the lahar triggering and propagation. In this work,
we present a multi-hazard framework to produce probabilistic assessments of lahar
hazard. We opt for coupling a simple but flexible probabilistic model (Bayesian
Belief Network, BBN) for lahar triggering with a dynamic physical model for lahar
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propagation. The BBN model allows to merge varied information about regional
rainfall, scientific knowledge about lahar triggering and probabilistic hazard assess-
ments of tephra fallout and dense PDCs, and compute a homogeneous assessment
of the probability of lahar volumes. The lahar model serves to propagate the
aleatory variability into hazard footprints of lahars. We preliminary apply our
multi-hazard procedure to Somma-Vesuvius (Italy) because: (a) the volcano is
strongly lahar-prone; (b) there are many possible source areas for lahars; and (c)
there is high density of population nearby. Our results indicate that large lahars
(initiation volume ≥ 105 m3) along the volcano flanks are almost 60% probable to
occur after large eruptions but less than 40% after medium eruptions. Some lahars
over the surrounding topographic reliefs can propagate for 15 km and many lahars
are able to produce combined flow depths of 2 m and speeds of 5-10 m/s, even
over flat terrain. We argue that probabilistic multi-hazard frameworks like the one
presented here can be invaluable for volcanic hazard assessment worldwide.

9.1 Introduction

Very large explosive eruptions can produce volumes of pyroclastic material of up
to tens to thousands of cubic kilometres [14]. A substantial proportion of this
material is deposited over the areas surrounding the volcano as tephra fallout (e.g.
[118, 335]) or transported in Pyroclastic Density Currents, PDCs (e.g. [124]).
The deposits from tephra fallout typically affect areas of 102 to 103 km2 while
PDC deposits usually have areal extents of 101 to 102 km2 (e.g. [25]). This input
of fresh loose pyroclastic material into the drainage basins around the erupting
volcano alters the hydrogeological equilibrium of the basins, leading commonly
to the formation of volcanic mudflows or lahars [92] as a response to intense or
sustained events of rainfall [163, 169, 336]. The degree to which the drainage
basins are disturbed, and their subsequent hydrogeomorphic response, depends
on many different factors [92], including total tephra volume deposited, grain size
distribution of the deposits, changes in the morphology of the catchments, and the
type and extent of vegetation damage/loss. Moreover, the rainfall characteristics
associated with the climate of the volcano’s region have a profound impact on the
frequency and volumes of the generated lahars (e.g. [337]).

The volcanic hazard (and associated risk) due to the occurrence of lahars is very
high. In the last four centuries, the number of fatalities caused by lahars is second
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only to PDCs when the largest volcanic disasters are removed from the dataset
[157]. This confirms the importance of including, in hazard quantifications, the
potential interaction of multiple hazards in a multi-risk perspective (e.g. [291,
338, 339]). Similar to other volcanic hazards including tephra fallout and PDCs,
the natural variability in the volcanic process and environmental conditions, as
well as diverse sources of lack of knowledge, give rise to considerable aleatory and
epistemic uncertainties [52, 53, 61], further increased by the evaluation of chains
of multiple events. In this context, probabilistic approaches that, at least, address
and quantify the aleatory uncertainty linked to the volcanic hazard, tend to be
preferred by both scientists and decision-makers (e.g. [53, 54]).

In the case of rain-triggered lahars, the hazardous event can be divided into two
major components: (1) a rainfall event with particular characteristics (rainfall spa-
tial distribution, intensity, duration) acts as the trigger for erosive runoff and/or
shallow landsliding on the loose tephra deposits and (2) this generates an initial
volume of water-sediment mixture that flows down the slope of the volcanic edifice
and transforms into a lahar. Frequently, hazard analyses of lahars have focused on
one of these two components, either the temporal and/or spatial features of the la-
har triggering, or calculating the hazard footprints (i.e. inundated areas) of lahars
of specific total volumes. For temporal triggering, rainfall Intensity-Duration (I-D)
thresholds have been one of the most utilised methods [163, 164, 180, 340, 341].
Some studies have improved the classical I-D approach (in which just one line
marks the occurrence or not of lahars) to produce probabilistic thresholds by
performing logistic regressions on the binary dataset, i.e. event/no event, given
an I-D combination (e.g. [177]), or through Bayesian data analysis (e.g. [342]).
Other studies, have used several diagnostic triggering variables (e.g. antecedent
and total rainfall), in addition to I-D, and have explored their potential to com-
pute probabilistic forescasts of lahar occurrence in nearly real time [343]. For
spatial triggering, deterministic physical models of slope stability and/or overland
erosion have been employed to delimit the areas that can act as sources of water-
sediment flows (e.g. [178, 344]). Very few of such studies have considered the
spatial availability of tephra before the lahar triggering (e.g. [101]). Some proba-
bilistic assessments of the areal susceptibility of such flows have been implemented
by exploring the epistemic uncertainty on soil properties (e.g. [177]) or by coupling
the results from deterministic susceptibility models with a probabilistic measure
in terms of the recurrence interval for a specific event of triggering rainfall (e.g.
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[162]). However, such studies did not merge the lahar triggering with the lahar
propagation to compute hazard footprints of lahars.

Diverse approaches have been developed to model lahar hazard footprints, in-
cluding statistical/empirical models (e.g. LAHARZ : [345]) and two-dimensional
shallow-layer continuum models formulated using Coulomb-friction (e.g. Titan2D:
[218]), whose potential for extension to describe lahar bulking-debulking (i.e.
erosion-sedimentation) during transport has been demonstrated [81, 346, 347].
Typically, one crucial input is the lahar volume whether at initiation (if the model
incorporates bulking-debulking) or the total lahar volume (if the model does not in-
clude this feature). The application of these deterministic models to previous lahar
events and specific hazard scenarios has been extensive (e.g. [223, 228, 229, 230]).
However, integration of these models into frameworks for probabilistic assessment
of lahar hazard is only just beginning. Recent studies have started to explore the
coupling of empirical models (LAHARZ ) with Bayesian statistical descriptions
[100]. Moreover, studies like the one presented by [162] could represent a step to-
wards probabilistic hazard assessments of lahars if a physical model is incorporated
to such type of analysis. There are some studies which have coupled a physical
model for mass-movement susceptibility with simple lahar-propagation models to
determine mass-flows hazard (e.g. [101, 348]). Nonetheles, the aleatory variability
in the temporal and/or spatial triggering of the hazardous event was not described
or quantified. Only very recent research has proposed a methodology to couple
the spatial-triggering and the flow propagation in a way that could be extended
towards probabilistic hazard assessments [349].

In this chapter, we address some of the aforementioned limitations and present an
integrated framework for probabilistic volcanic multi-hazard assessment, with fo-
cus on post-eruption rain-triggered lahars (Fig. 9.1). Two are the major goals that
we pursue through this integrated approach: (1) create a simple but informative
probabilistic model of lahar occurrence and volumes; and (2) couple this proba-
bilistic model with a lahar simulator in order to propagate the uncertainty in lahar
triggering towards hazard footprints of lahars. The probabilistic model chosen is
a Bayesian Belief Network (BBN, e.g. [247]), a flexible and versatile probabilistic
model which allows us to merge information coming from diverse sources (litera-
ture data, physical and statistical modeling, probabilistic hazard assessments; see
Figure 9.1) and quantify the aleatory uncertainty linked to the lahar triggering.
In particular, we propose a generalizable BBN model (Multihaz ) that quantifies
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the aleatory uncertainty in terms of: (i) pyroclastic volume (from tephra fallout
and dense PDCs) stored in different catchments around the volcano; (ii) rainfall
characteristics over the catchments (specifically the intensity and duration); (iii)
response of the catchments to specific conditions of rainfall and pyroclastic volume
(in terms of the amount of material that may be remobilized by lahar events); and,
finally, (iv) lahar initiation volumes for each of the catchments defined over the
hazard domain.

In principle, Multihaz can be applied to any volcanic system and coupled with any
lahar simulator. In this study, it is coupled with a shallow-water physical model of
lahar dynamics [235] which incorporates bulking-debulking and permits, coupled
with Multihaz, the calculation of probabilistic hazard footprints of lahars. As a
study case, we present an inital application of our multi-hazard framework to post-
eruption rain-triggered lahars at Somma-Vesuvius (Italy). We select this volcanic
system for three reasons: (1) there are data available to quantify the aleatory
uncertainty linked to tephra fallout (e.g. [70]) and dense PDCs (e.g. [107], see
Chapter 8); (2) the volcano has generated syn-eruptive lahars during/after mid-
large explosive eruptions (e.g. [170, 198]) and is prone to form them at many
locations around it (e.g. [173, 174]); and (3) the relatively high population density
nearby.

In section 9.2, we detail the variables and structure of Multihaz as well as a core
parameterization that could be applicable to any volcano. In section 9.3, we re-
port the procedure carried out to parameterize Multihaz at Somma-Vesuvius. In
section 9.5, we show the main results obtained from the probabilistic assessments
of Multihaz and the hazard footprints computed from some LaharFlow simula-
tions. We pay particular attention to three scenarios of lahar generation, selected
to emphasize the impact of the eruption size and the efficiency of tephra remobi-
lization on the probabilistic multi-hazard assessment. In section 9.6, our findings
are put in the context of previous studies regarding: (i) spatio-temporal triggering
of lahars; (ii) lahar hazard assessments worldwide; and (iii) lahar and debris-flow
hazard at Somma-Vesuvius. We also propose some future directions in volcanic
multi-hazard assessment focused on lahars.
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9.2 Multihaz : a general BBN model for rain-

triggered lahars

The volcanological and climatological inputs for a BBN for lahar generation vary
significantly from one volcano to another [92, 337, 350]. Our approach here is to
create a general-purpose BBN (Multihaz ; see Figure 9.2 and Table 9.1), with nodes
discretised into qualitative states (e.g. low, medium, high), which is applicable to
any volcano location. The PTs and CPTs can be parameterized to satisfy the
specific characteristics of a given volcano. For instance, the probability of high-
intensity rainfalls should be higher at tropical volcanoes (e.g. [163]) than at a
temperate-climate volcano (e.g. [351]).

Other CPTs are parameterized to describe the general physical processes for
rainfall-triggering of lahars (see Figure 9.3 and Table 9.2) and are thus applicable
to different volcanoes. We parameterize these CPTs as follows: (1) we compile
information (data and evidential reasoning) from lahar or debris-flows observa-
tions and physical or statistical models from the literature (Table 9.2); and (2)
we translate this information into quantitative likelihood distributions within the
CPTs. In order to reduce the degrees of freedom in our choice of the probabili-
ties inside the CPTs, we adopt a five-fold classification of likelihood following the
structure proposed by the Intergovernmental Panel for Climate Change (IPCC)
in 2007 (Table 9.3; [352]). We use central measures of each range in probability
and, finally, we normalise these values to ensure that the states in the nodes are
mutually exclusive and exhaustive.

This BBN parameterization is not unique and epistemic uncertainty, due to in-
complete knowledge about the probabilistic triggering of lahars, is present. In this
chapter, we focus on quantification of aleatory uncertainty, but note that quantifi-
cation of epistemic uncertainty could consist of modeling each row of each CPT
(e.g. P (IV |yi), where yi represents a given combination of remobilisation efficiency
and pyroclastic volume) as a Dirichlet multivariate PDF of four variables, that is:
P (IV = zero|yi), P (IV = low|yi), P (IV = medium|yi), and P (IV = high|yi).
The mean of each variable could be the best-estimate probability value presented
here, while the variance could be modeled as common to all the variables and
expressed via the number of equivalent data (Λ, see Chapter 7).
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Figure 9.2: The generalizable probabilistic model proposed in this study: Mul-
tihaz. Variables (or nodes) are displayed as ovals while conditional relationships
(or arcs) are shown as arrows, with the parents nodes pointing to the children
nodes. Abbreviations for the names of the nodes are given in brackets at each
node and are used throughout the chapter. The abbreviations for the states
of each node as well as the independence relationships between nodes that the
Multihaz structure implies are reported. On the bottom left, the Conditional
Probability Table (CPT) for the WR node is displayed (see text for more details).

From [109].

Table 9.3: Five-fold classification of likelihood adopted for the parametrisa-
tion of Multihaz (after [352]). Central values of probability are used for each
parameter in the prior tables and conditional probability tables and finally re-
normalised to ensure the mutually-exclusive-and-exhaustive requirement of BBN

models. From [109].

Likelihood terminology Range in probability [%] Central Value of probability [%]
Very Unlikely 0-10 5

Unlikely 10-33 22
About as likely as not 33-66 50

Likely 66-90 78
Very Likely 90-100 95
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Our BBN structure does not include antecedent rainfall conditions. This choice
is made to keep the parameterization as simple as possible, given that rainfall
intensity and duration are typically considered more informative for the likeli-
hood of rain-triggered lahars (e.g. [162, 341, 343]). Moreover, the conditional
links between remobilization efficiency and antecedent rainfall are not yet fully
understood; antecedent rainfall is commonly considered to increase the likelihood
of lahars or debris flows (e.g. [177, 343]), but other physical processes such as
“hydro-repellency” have been proposed to decrease the likelihood of lahars when
antecedent rainfall is high (e.g. [180]).

9.2.1 Aleatory uncertainty in rainfall intensity and pyro-

clastic volume

The only two nodes in Multihaz that have no parents are RI and PV (Fig. 9.2).
Although RI and PV are defined in terms of qualitative states, they can be de-
scribed in a quantitative way by defining thresholds that characterize their states.
These need to be set according to the volcano studied and the potential variability
of RI and PV. As mentioned above, the rainfall regime can change significantly
depending on regional climate (e.g. [337]). Similarly, the spatial distribution and
total amount of pyroclastic material available at the different catchments sur-
rounding the volcano will depend on factors such as: (a) aleatory variability in
eruption behaviour: eruption column height, grain size distribution, PDC volume
and mobility; (b) aleatory variability in wind-field speed and azimuth at different
altitudes; (c) topography of the volcano and surrounding terrain. We quantify all
these aspects in our application for Somma-Vesuvius in section 9.3.

9.2.2 Physical insights into lahar triggering and initiation

volumes

Lahar initiation is described inMultihaz through the parameterization of the CPTs
for two nodes: RE and IV. The former has RI, WR and RD as its parent nodes
(Fig. 9.2). Both the WR and RD nodes have CPTs derived from their common
parent node, RI. The CPT of the IV node is described as a function of the states
in its parent nodes: RE and PV.
All these CPTs are parameterized following a general-purpose approach, based on



Chapter 9. PVHMA of rain-triggered lahars 177

F
ig

u
r
e

9.
3:

Sc
he
m
e
of

th
e
re
as
on

in
g
ab

ou
t
th
e
ph

ys
ic
al

pr
oc
es
se
s
as
so
ci
at
ed

w
it
h
th
e
tr
ig
ge
ri
ng

of
la
ha

rs
by

m
ea
ns

of
ra
in
fa
ll
ut
ili
ze
d

to
co
ns
tr
uc
t
ou

r
B
B
N

m
od

el
:
M

ul
ti
ha

z
(s
ee

F
ig
ur
e
9.
2
an

d
T
ab

le
9.
1)
.
T
og

et
he

r
w
it
h
T
ab

le
9.
2,

th
is
re
as
on

in
g
de

fin
es

th
e
st
ru
ct
ur
e
an

d
pa

ra
m
et
er
iz
at
io
n
of

M
ul

ti
ha

z
(s
ee

te
xt

fo
r
m
or
e
de

ta
ils
).

Fr
om

[1
09

].



Chapter 9. PVHMA of rain-triggered lahars 178

diverse strands of evidence about the physical processes behind the complex inter-
relationships that exist between the variables modeled by Multihaz. This evidence
is extracted from the literature and it is summarized in Table 9.2. The majority of
data is related to the RE node which has the largest CPT within Multihaz (Table
9.1). In Figure 9.4, we show some probabilistic trends observed within the CPT of
the RE node that confirm the evidence listed in Table 9.2 is correctly incorporated
intoMultihaz. For instance, the probability of lahar occurrence (i.e. P (RE > 0)) is
very similar for long-lasting, low-intensity rainfall events (RI=low, RD=high) and
for short-lived but high-intensity rainfall events (RI=high, RD=low), especially
when the predominant water-routing mechanism is infiltration (WR=ifl) or a par-
tition between infiltration and runoff (WR=both). When runoff is the dominant
water-routing mechanism (WR=roff), the more intense the rainfall, the higher the
probability of lahar occurrence (Fig. 9.4d), in particular of medium-large lahars
(Fig. 9.4b; e.g. [92, 356]). Additionally, the importance of rainfall duration in
controlling lahar occurrence and volume when shallow landsliding is the main trig-
gered mechanism (e.g. [162, 178]) is observed as peaks in probability in all the
graphs (especially for medium-large remobilization efficiencies) when WR=both
and RD=high.

The probabilistic patterns included in the CPT of the IV node (derived from the
information on Table 9.2) show that the probability of having lahars, especially
of medium-large sizes, increases more or less linearly with increasing RE and PV.
However, we ensure that the probability of any size of lahars increases considerably
when the PV available is relatively high (e.g. [356]). Thus, for example, the
probability of having medium or large lahars given that PV=high but RE=low is
slightly greater than the probability of having such lahars given that PV=low but
RE=high. Likewise, the probability of medium-large lahars given that PV=high
and RE=medium is higher than the same probability given that PV=medium and
RE=high.

9.3 Multihaz parameterization at Somma-

Vesuvius (Italy)

We parameterize Multihaz at Somma-Vesuvius by using the general-purpose CPTs
for the WR, RD, RE and IV nodes and setting up volcano-specific prior tables
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Figure 9.4: Probabilistic patterns found within the Conditional Probability
Table (CPT) of the Remobilization Efficiency (RE) node, arranged according to
its parent nodes: rainfall intensity (RI, a), water-routing mechanism (WR, b)
and rainfall duration (RD, c). On graph d: probability of RE > 0 according
to the water-routing mechanism and as a function of RI and RD. The patterns
displayed are in agreement with the scientific knowledge collected about the
physical processes responsible for the rainfall triggering of lahars (see Table
9.2 and text for more details). roff: runoff dominant; ifl: infiltration dominant.
RE1, RE2, RE3, RE4 denote the states zero, low, medium and high, respectively.

From [109].

(PTs) for the RI and PV nodes. In the first case, we collect information on max-
imum yearly rainfall intensities at the central Campania region where Somma-
Vesuvius is located [360] (see subsection 9.3.2). In the case of the PV node, we
take the probabilistic hazard assessments carried out by [70] and [107] (see Chapter
8), for tephra fallout and dense PDCs, respectively, and complete them to finally
obtain probabilistic quantifications of the aleatory uncertainty in PV for each of
the hydrological catchments selected (see subsection 9.3.1).
Concerning the CPT for the WR node, our parameterization is general-purpose
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but it is only valid for the fine-grained deposits which may be found at the up-
permost part of the pyroclastic stratigraphic sequences from the Somma-Vesuvius.
These sequences, for both tephra-fallout and PDC deposits, are commonly topped
by fine-rich pyroclastic layers [144, 170, 196, 232] that have infiltration capacities
(∼4-40 mm/h; [170]) within the range of the expected rainfall events at the area
[361]. In contrast, the underlying coarse-grained pyroclastic deposits have infiltra-
tion capacities ( 4 · 103-4 · 105 mm/h, [170, 362]) that can be orders of magnitude
above the maximum rainfall intensities expected in the area (∼ 70 mm/h for a
100yr-event, [361, 363]). Therefore, in order to model lahar triggering on such
deposits, the CPT of the WR node would need to have very low values of prob-
ability for runoff being true, even in the case of high-intensity rains. We contend
that this is not the general case at other volcanoes worldwide, since those located
in temperate-climate areas have had recent eruptions with much finer-grained de-
posits (e.g. [364]), while other volcanoes located in tropical regions can experience
typical rainfall intensities in the order of 102 mm/h [163, 164]. Still, a more
comprehensive hazard analysis of rain-triggered lahars at Somma-Vesuvius could
include a spatial model for the grain size distribution across the hazard domain,
perhaps as a function of thickness, although this is beyond the objectives of this
chapter.

9.3.1 Definition of hydrological catchments

As previously discussed, rain-triggered lahars typically need two principal com-
ponents to be generated: (1) availability of loose, readily removable pyroclastic
material; and (2) a rainfall event that is able to remove a significant amount of
this pyroclastic deposit (through erosion or shallow landslides). Additionally, it
is thought that steep slopes that favour runoff and/or shallow landslides are a
requirement [92, 161, 162, 340]. A value of 30◦ tends to be considered a threshold
for gravitational stability of the deposit [170, 171] and it is this threshold which
separates volcaniclastic erosion from deposition at other volcanoes (e.g. [350]).
At Somma-Vesuvius, such steep slopes occur along the volcano edifice and over
the topographic reliefs located towards the southeast, east and northeast from the
volcano [173, 174]. We deem all the catchments that have a substantial proportion
of their upper area covered by slopes greater than 30◦ as potential sources of rain-
triggered lahars (Fig. 9.5). Using a 20m-resolution DEM as the base topography,
we develop a procedure to identify and demarcate hydrological catchments that,
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in addition, share the following characteristics: (1) their areas are not smaller than
about 0.08 km2 (one third of the spatial resolution used to quantify the aleatory
uncertainty in pyroclastic volume; see subsection 9.3.3); (2) they have at least one
potential initiation point for lahars located on a slope greater than 5◦ (so the lahar
simulations can have an inertial component at initiation); (3) their outlet points
(i.e. the points where all the surficial runoff of the catchment should converge) are
located further away than 1.5 km from the sea coast (to give the lahar simulations
some distance to propagate through).

Figure 9.5: Digital Elevation Model (DEM) of Somma-Vesuvius (1) and sur-
roundings which include the Campi Flegrei caldera (2) and the city of Napoli
(white star). The catchments identified as having potential to generate rain-
triggered lahars after explosive eruptions at Somma-Vesuvius are plotted in blue.
Red areas indicate the grid points inside the 20m-resolution DEM with slope
greater than 30◦. The horse-shoe shape of Mount Somma (3) is evidenced by
grouping of steep-slope points slightly north of the current crater of Somma-

Vesuvius. From [109].

The definition of the hydrological catchments (Fig. 9.5) and the initiation points
is done in a semi-aumotatic way by using an application of Quantum Geographical
Information System [320]. Specifically, we carry out the following steps (e.g. [365]):
(a) we fill the sinks (i.e. local depressions) in the raw DEM to obtain a realistic
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flow-direction raster; (b) we derive the flow-accumulation raster and the junctions
of the channel network from the filled DEM; and (c) we calculate the watershed
basins -or catchments- from the channel network previously derived. Finally, we
manually group the catchments and choose the initiation points (from the junctions
automatically defined) in order to fulfill the requirements indicated above. We
assume that all the catchments delimited will behave in a similar way when they
experience a specific rainfall event. This is why we use the general-purpose CPTs
of the nodes WR, RD and RE for all the catchments.

9.3.2 Rainfall intensity

The climate of the Campania region can be classified as warm-temperate with
dry and warm summers [366]. The area around Somma-Vesuvius receives average
monthly precipitations from few tens of mm during summer up to few hundreds of
mm during fall (e.g. [199]). In terms of rainfall intensity, average yearly maximum
values can be in the order of 10-30 mm/h for rainfall events shorter than 6 hours
while these average yearly maxima can be below 5 mm/h for rainfall events equal
or longer than 20 hours [360].
Given that we separate rainfall intensity and duration in the structure of Multihaz,
we build a PDF for RI alone. We separate rainfall intensity and duration because
it is easier to obtain a probabilistic quantification of our variable of interest, RI.
Nevertheless, we do model the widely-acknowledged inverse relationship between
rainfall intensity and duration [353, 355] through the CPT of RD, whose parent
node is RI. We use the Two-Component Extreme Value (TCEV) PDF described
by [367] and used by [360] to model the (maximum yearly) rainfall intensity at
Somma-Vesuvius and surroundings. The cumulative distribution function is writ-
ten as follows [367]:

FX(X) = exp(−η1exp(−X/θ1)− η2exp(−X/θ2)) (9.1)

where X represents the maximum yearly rainfall intensity, η1, η2 denote the mean
number of independent ordinary and extraordinary events; and θ1, θ2 indicate
the mean rainfall intensity of the ordinary and extraordinary events. We extract
the values of the parameters: η1, η2, θ1, θ2 for each of the catchments identified
in the Somma-Vesuvius area (see subsection 9.3.1) from regional data about the
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rainfall regime across the study area [360], including the average altitude of each
catchment. Once we build the TCEV distributions for all the catchments, we can
define rainfall-intensity thresholds for the study area and, finally, calculate the
prior probabilities for each state in the RI node. We choose thresholds at RI ≤ 1

mm/h for RI = low, RI > 10 mm/h for RI = high, and, thus, 1 < RI ≤ 10 mm/h
for RI = medium. These thresholds are chosen, not only taking into consideration
the rainfall phenomenology of the area, but also the values of permeability of the
pyroclastic deposits, in order to ensure that our general-purpose CPT table for
the WR node is compatible with them. We note that our parameterization of the
RI node is likely to be an overestimation of rainfall intensities, since we are using
data for yearly maxima of RI. However, the PT of this node could be also filled in
by using real-time meteorological data, for instance.

9.3.3 Tephra-fallout and PDC-deposit volumes

Somma-Vesuvius explosive eruptions capable of producing enough pyroclastic ma-
terial, dispersed along its flanks and medial-distal surrounding areas, to generate
considerable lahar activity, range from violent Strombolian up to sub-Plinian and
Plinian eruptions [89, 170, 196]. The natural variability of these eruptions, in
terms of tephra-fallout dispersal and PDC inundation, is quite large [26, 44, 70,
89, 104, 368]. In this chapter, we quantify this aleatory uncertainty in pyroclastic
volume over different catchments around Somma-Vesuvius, conditional to the oc-
currence of a small, medium, large or any-size eruption, the latter meaning that we
weigh each eruption size with their probability of occurrence given that there is an
eruption (after [61, 70]). Our procedure is carried out by adapting and extending
the methodologies presented by [70] for tephra-fallout dispersal and accumulation,
and by [107] for dense PDCs1 (see Chapter 8).
Aleatory uncertainty in pyroclastic volume, due to tephra fallout, is explored and
quantified by running a set of simulations of the HAZMAP model [369] and using
its outputs to populate the BET_VH model [49, 242]. The final result are single
hazard curves (i.e. only aleatory uncertainty is accounted for), at each selected

1Note that our PDC modeling is restricted to dense PDCs. Since dilute PDCs are not
simulated, a certain thickness of PDC deposit is expected to be missing from our probabilistic
quantification of the PDC volume. Nevertheless, dilute PDCs at Somma-Vesuvius are likely to
invade medial and distal sectors from the central crater (e.g. [26]). These areas are predominantly
located over the Campanian Plain where conditions that favor lahar generation (e.g. steep slopes)
are not likely to occur.
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catchment (Fig. 9.5), for the pyroclastic volume due to tephra-fallout accumu-
lation. In the case of dense PDCs, we implement a similar procedure to [107]
(see Chapter 8) in which the pyroclastic volume at each selected catchment is cal-
culated through the merging of Titan2D [218] and Polynomial Chaos Quadrature
(PCQ, e.g. [24]). In order to convert the maximum flow thickness simulated by Ti-
tan2D into expected PDC-deposit thickness, we follow a two step approximation.
First, we apply a ratio between Titan2D maximum thickness and PDC-deposit
thickness of 0.5, which is approximately the value found by [27, 370]. Secondly, we
account for enhanced deposition on low-angle slopes in comparison to high-angle
slopes [26, 133] by applying a correction similar to [133]. Instead of setting up a
threshold of slope above which there is no PDC deposition, we use the minimum
non-zero value of slope over the study area in a way that the final thickness is
a fraction of the initial thickness (the greater the slope of a point, the smaller
this fraction): hf = h0 · min(δ)/δi, where hf is the final PDC-deposit thickness
estimate, h0 is the thickness estimate after applying the first correction mentioned
above, δi is the (non-zero) slope in a given point, and min(δ) is the minimum
(non-zero) slope in the study area.
Finally, for those catchments on the proximal areas of Somma-Vesuvius in which
both tephra-fallout and PDC deposition are expected to occur, we randomly sam-
ple the hazard curves of tephra fallout and dense PDCs and sum up the samples
to obtain the final quantification of aleatory uncertainty (i.e. single hazard curves)
for the variable PV. This step implies that tephra-fallout and dense-PDC prop-
agation are independent. Using these hazard curves of PV, we can parameterize
the prior table of the PV node at each selected catchment. We set two thresholds
of PV in a way that PV ≤ 104m3 means PV = low; PV > 106m3 means PV =
high; and 104 < PV ≤ 106m3 means PV = medium.

Figure 9.6 shows some examples of the hazard curves of tephra-fallout and dense-
PDC volumes at catchments on the flanks of Somma-Vesuvius. We observe quite
different curves depending on: (a) location of the catchment with respect to the
central crater and the topographic barrier of Mount Somma; and (b) the size of the
eruption considered. Generally, catchments located beyond Mount Somma (Fig.
9.6a, b, c) do not experience significant PDC deposition during small eruptions (i.e.
pyroclastic volume is less than 102 m3). On the central and oriental sectors beyond
Mount Somma (Fig. 9.6a, b), greater accumulations of pyroclastic material are
expected to occur due primarily to tephra fallout rather than PDCs. However, at
the westernmost end of Mount Somma (Fig. 9.6c), we see that greater pyroclastic
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volumes can result from PDC deposition rather than from tephra fallout. On the
southern flank (Fig. 9.6d), small-size PDCs can deposit a substantial amount of
pyroclastic volume while medium and large PDCs have the potential to deposit
considerably greater amounts of pyroclastic volume in comparison with tephra
fallout.

Figure 9.6: Hazard curves (or Exceedance Probability curves) for the volume of
pyroclastic material (Vol), produced by tephra fallout (solid lines with squares)
or PDCs (dashed lines), and available at four selected catchments over the flanks
of Somma-Vesuvius (Italy). The colours indicate the eruption size: small (green),
medium (blue), large (red) and any size (black, see text for more details). The
inset maps show the location of the corresponding catchment (in yellow) and the
other catchments on the Somma-Vesuvius flanks (in blue). Napoli downtown is

located outside the maps, around 10 km towards the WNW. From [109].
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9.4 Boundary conditions of LaharFlow

We initiate the model simulations with numerous sources distributed across the
study region. At each source, we specify a simple time series to model the release
of fluid from the catchment, that acts as source for lahars, with a volume flux
Qj(t) for source j given by:

Q(t) = Qmt/t0 for t < t0,

Qm(t1 − t)/(t1 − t0) for t0 < t < t1,

0 for t > t1 (9.2)

The total volume released at source j is then Vj = Qmt1/2 which is specified
through Multihaz. The specification of flux time series at the sources is preferred
over instantaneous releases of a volume as a model of the source, but introduces
additional parameters characterizing the release. In our demonstration of the
Multihaz coupling to the lahar dynamical model we do not explore in detail the
sensitivity of the predictions to the parameters in the source model, but take t0 =
150 s and t1 = 300 s for each source.

The confluence of channels are points of interest in the flow dynamics as the
combination of material can lead to overtopping of channels. Thus, the 273 catch-
ments identified from the geospatial analysis of the region (see subsection 9.3.1)
are partitioned into 24 groups comprising sources that produce flows that have the
potential to interact during their propagation. The flows from multiple sources in
each group are simulated together. For simplicity, we model the sources as ini-
tiating simultaneously, but note that more sophisticated source initiation models
could be adopted.

Our simulations employ the DEM derived from the Shuttle Radar Topographic
Mission, at 30 m horizontal resolution, which is interpolated to the resolution of
the computational model (here taken to be 10 m). The topography used in the
model could in principle be modified to include the topographical changes (in
altitude and slope, for instance) induced by an eruption in the volcanic system
(e.g. [90, 92, 162]). Furthermore, given that the lahar simulator models the
erosion during propagation of the lahar and the alteration of the topography,
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the morphological changes predicted by the model could be assessed against field
observations following an eruption. The morphodynamic changes are expected to
be greater when large volumes of pyroclastic material deposited by PDCs have
modified the pre-eruption topography substantially and the post-eruption lahars
erode the PDC deposits strongly and rapidly [92].

The parameters in the lahar model are held fixed in this study, as our primary aim
is to illustrate the coupling of Multihaz to LaharFlow. In applications, the param-
eters should be calibrated to represent the properties of typical flows in the region
of interest, through comparison of model predictions with observations. Where
observations are imprecise (which is typical, if not ubiquitous) the uncertainty in
the calibration should be propagated through the flow model and quantified in the
resulting model predictions. In this preliminary demonstration of the modeling,
we use model parameters calibrated for lahars at volcanoes other than Somma-
Vesuvius, and we do not conduct an uncertainty quantification. Thus, the predic-
tions of the lahar model must be considered as illustrative and highly uncertain.
Nevertheless, they provide indications of the possible lahar dynamics and demon-
strate the utility of coupling the statistical model of lahar initiation volume to a
deterministic flow simulator.

9.5 Probabilistic Volcanic Multi-Hazard

Assessment at Somma-Vesuvius

9.5.1 Multihaz assessments and behavior

Once Multihaz is parameterized, a variety of probabilistic queries can be done
on the model. These can be classified into two principal categories: causal (i.e.
forecast) and evidential (i.e. inference) queries. In the first case, a given node is
instantiated (i.e. one of its states is set to be true) and the probability distributions
over the path through its children nodes are examined. In the case of evidential
inference, the reasoning is done by analysing the probability distributions of nodes
which are ancestors of the instantiated node. That is, the forecast focuses on the
outcome while the inference is an investigation about the causes of a specific
outcome. Let us consider the largest catchment in our dataset (#14, area ∼
23km2) after the occurrence of an eruption of any size. The Multihaz assessments
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for this situation are shown in Figure 9.7. If no node is instantiated (i.e. we do not
have any evidence to input into the BBN), we observe that the probability of no
lahars occurring, i.e. P (IV = zero), is around 30% while large lahars have a 10%
chance to occur (Fig. 9.7a). However, if the RI is instantiated to the state “low”
(Fig. 9.7b), we see that the probabilities at the nodes WR, RD, RE and IV are
all modified. In particular, the probability of no lahars being triggered becomes
54%, as a result of the increase in probability of WR=ifl (Figs. 9.4d, 9.7b). If the
instantiation of Multihaz is RD=high, the situation is quite different (Fig. 9.7c):
the probability of no lahars is 15%, that of large lahars is similar (14%) and low
and medium lahars are the most likely outcomes (32% and 39%, respectively).
This responds to the probability distribution at the RE node (Fig. 9.7c) which
is mostly influenced by the combination of: (i) RD being high; and (ii) WR=roff
and WR=both being relatively likely. Thus, the whole effect is that, for example,
the probability of no lahars occurring clearly diminishes (Figs. 9.4, 9.7c).

In addition, we note that the probability distribution at the PV node does not
change after the instantiation of the RI and RD nodes (Fig. 9.7b, 9.7c, respec-
tively). This is owing to the fact that, according to the Multihaz structure, PV is
independent of RE (and hence of its ancestors) unless IV is observed (Fig. 9.2; e.g.
[252]). Finally, while instantiating RI to “low” causes a jump in P(RD=high) from
11% (Fig. 9.7a) to 63% (Fig. 9.7b), it is seen that instantiating RD to “high” does
not cause such jump in the probability of RI=low (which changes from 0.01% to
0.057%). This is due to the way in which Bayesian updating is performed in BBN
models (see Chapter 4). The probability P(RI=low|RD=high) in Figure 9.7c is
calculated as follows:

P (RI = low|RD = high) =
P (RD = high|RI = low) · P (RI = low)

P (RD = high)
(9.3)

where P(RI=low) and P(RD=high) are the probabilities shown in Figure 9.7a
(i.e. 0.01% and 11%, respectively). Therefore, even though P(RD=high|RI=low)
is quite big (63%), the very small probability of RI=low, before instantiation,
makes RI=low to be very unlikely, notwithstanding that the evidence says that
RD=high (Fig. 9.7c).
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Similarly to our observations of the pyroclastic volume from tephra fallout and
dense PDCs (see subsection 9.3.3), the probability estimates of Multihaz parame-
terized at Somma-Vesuvius depend on the location of the catchment with respect
to the expected spatial distribution of the PV variable. For medial-distal catch-
ments located over the Apenninic reliefs, tephra-fallout accumulation is expected
to be greater towards the east and southeast of Somma-Vesuvius in comparison
to the northeast (Fig. 9.8; [70]). Therefore, the Multihaz assessments reflect this
spatial distribution on the PV node. In particular, the changes in probability at
the IV node are more evident when the RE is likely to be medium or high (Fig.
9.8). This is because the influence of the PV node on the IV node is also related
to the probabilistic distribution on the RE node. In other words, even if it is likely
to have a large volume of pyroclastic material at one catchment, if this material
cannot be mobilised by rainfall by runoff or landsliding (so that RE=low or even
RE=zero), the probability of having large lahars will be small. Moreover, the
spatial distribution of pyroclastic volumes is not the only factor to be considered
in the parameterization of the PV node. It may be possible that a very small
catchment, situated on the tephra dispersion axis, is expected to store an amount
of pyroclastic material that is equal to or lower than a much larger catchment
situated further the dispersion axis but still downwind from the volcanic vent. We
test such situations by looking at Multihaz, in the eventuality of a large eruption
occurring, and for the following catchments (Fig. 9.8): #195 (∼ 2km2, north-
east), #225 (∼ 10km2, northeast), and #277 (∼ 2km2, east). If we instantiate the
rainfall-intensity node to RI=high and water-routing node to WR=both (that is,
rainfall is quite intense but not enough for the water to be routed predominantly
by runoff and, thus, there is also infiltration and a consequent rapid increase in
the pore-pressure within the deposit) we can find that the probabilities at the
RD and RE nodes mimic each other for all three catchments, since they all share
the same parameterization of the CPTs for RD and RE (Fig. 9.8). However, in
terms of initiation volume, we notice the important differences in probability for
small, medium and large lahars, especially if we compare: (1) catchments with
similar area but that are located at two different azimuths from the volcano (e.g.
catchments #195 and #277, Fig. 9.8a, c); or (2) catchments with similar locations
but with greatly differing areas (e.g. catchments #195 and #277, Fig. 9.8a, b).
In the case of catchments #225 and #277 (Fig. 9.8b, c), the differences due to
catchment size are offset by the location of the catchments relative to the primary
dispersion axis. Nevertheless, we find that the probability of having large lahars
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is still around 3% greater at the small catchment (#277, Fig. 9.8b, c).

As a further check of our BBN parameterization, if we instantiate the WR node
to “infiltration” (that is, even though the rainfall is intense, the deposit is able
to route water predominantly through infiltration), the probability of RE=zero
raises to 55% for all catchments and the differences in the probability of non-zero
IV states between the catchments become smaller. For instance, P(IV=high |
RE,PV) become 10% and 11% for catchments #225 and #277, respectively, and
P(IV=low | RE,PV) is 22%, 13% and 12% for catchments #195, #225 and #277,
respectively. In the situation deployed in Figure 9.8, the latter probabilities are
44%, 28% and 25%, respectively. Note that all the previous reasoning about the
Multihaz assessments and behaviour is done for specific eruption sizes: any size in
Figure 9.7 and large size in Figure 9.8. However, we parameterize Multihaz models
for each catchment (273) and four different eruption sizes: small, medium, large
and any, thus the total number of Multihaz models built is 1,092. In the following
subsection, we concentrate on some selected scenarios to illustrate the coupling
between Multihaz and the lahar simulator, LaharFlow.

9.5.2 Scenario-based probabilities for initiation volumes

Given the large computational cost that would be required to explore all the
possible combinations in terms of: (1) the size of the eruption that preceeds the
rainfall-triggering of lahars; and (2) the lahar volumes that could be generated
from each of the 273 catchments defined; we focus our preliminary application
of the proposed probabilistic multi-hazard framework on three specific scenarios.
These scenarios are fixed as a function of: (i) an eruption of a specific size occurring
at Somma-Vesuvius; (ii) a specific value of RE triggering the rainfall lahars; and
(iii) the maximum value of IV that a specific catchment can produce, given (i) and
(ii). The multi-hazard scenarios are:

• Scenario 1: a large eruption occurs at Somma-Vesuvius and lahars are trig-
gered by means of high remobilization efficiencies (i.e. RE=high).

• Scenario 2: a medium eruption occurs at Somma-Vesuvius and lahars are
triggering by means of medium remobilization efficiencies (i.e. RE=medium).
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• Scenario 3: an eruption of an unknown size (i.e. any) occurs at Somma-
Vesuvius and lahars are triggered by means of low remobilization efficiencies
(i.e. RE=low).

Even though our multi-hazard assessment is scenario-based, our integrated frame-
work gives the possibility to select a variety of scenarios depending on the scope of
the hazard analysis. For each selected scenario, the Multihaz model can provide
the probability of lahars of specific volumes happening (Fig. 9.9). By coupling
these probabilistic assessements with the lahar simulator, the aleatory uncertainty
modeled by Multihaz can be propagated into hazard footprints of lahars (see next
subsection 9.5.3; e.g. [31, 83]). In this subsection, we detail the probabilistic
assessments provided by Multihaz for each catchment and scenario explored.

As related previously, the Multihaz model, for each catchment, shares a common
parameterization of the WR, RD, RE and IV nodes but it has its own parame-
terization for the RI and PV nodes (see section 9.3). Figure 9.9 shows the prob-
abilities for the different states of the IV node, for each of the explored scenarios.
To aid in visualising the results, we divide the catchments into four big zones:
(1) medial-distal catchments (∼20-30 km from the vent) towards the SE and E;
(2) medial-distal catchments towards the NE; (3) medial catchments (∼15-20 km
from the vent) towards the E; and (4) proximal catchments (within a radius of
about 3-4 km from the vent). The first scenario (Fig. 9.9a) is characterized by an
almost constant probability for the occurrence of medium lahars while the prob-
abilities for small and large lahars are both smaller than the former and tend to
mirror each other2. In the catchments of zone 4, the probability of small lahars
goes down up to be virtually zero over the catchments located on the south flank
of Somma-Vesuvius. In these catchments, IV=high is the most likely state, given
scenario 1 (Fig. 9.9a).
The second scenario (Fig. 9.9b) is characterized by small and medium lahars hav-
ing relatively similar probabilities of occurrence in zones 1 and 3. The probability
of large lahars increases slightly over zone 3 and more significantly over zone 4,
similarly to what observed in scenario 1 (Fig. 9.9a, b). Nonetheless, large lahars
are never the most likely outcome of scenario 2.
The third scenario is strongly dominated by all catchments having IV=low as their

2Note that the states of each node are mutually exclusive and exhaustive, so the sum of their
probabilities must be 1. Besides, P (IV = zero|RE 6= zero) = 0 in our parameterization of
Multihaz ).
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Figure 9.9: Probability distributions for the initiation volume (IV) node across
all the catchments defined at Somma-Vesuvius (Italy) and surroundings, accord-
ing to three different scenarios: (a) high remobilization efficiency taking place
after a large eruption; (b) medium remobilization efficiency taking place after
a medium eruption; and (c) low remobilization efficiency taking place after an
eruption of any size. Z1, Z2, Z3 and Z4 are large grouping of catchments (or
zones) and their locations are shown in the inset map of graph (b). Graph (d)
displays the number of catchments for which the most-likely water-routing mech-
anism (WR) is runoff (roff), infiltration (ifl) or both, according to the Multihaz

assessments for each scenario (see text for more details). From [109].

most likely state (Fig. 9.9c). The probability of having medium lahars increases
over zone 4 coinciding with a very slight increase in the probability of large la-
hars, up to 4-5% (Fig. 9.9c). The jump in probability of occurrence for small and
medium lahars inside zone 4 marks the separation between the catchments located
on the north flank of the volcano, where small lahars are much more likely in sce-
nario 3, and those on the south flank, where small lahars are only slightly more
probable than medium lahars (Fig. 9.9c). Finally, we examine which water-routing
mechanism is the most likely state for each of the three scenarios explored (Fig.
9.9d). It is clear that the predominant mechanism is the partition between runoff
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and infiltration (WR=both) in the cases in which the remobilization efficiency is
medium or high (scenarios 1 and 2). When RE=small (scenario 3), approximately
half of the catchments still have WR=both as the most-likely state. The remaining
half display WR=roff as their most-likely state (Fig. 9.9d).

9.5.3 Probabilistic scenario-based hazard assessment

The results shown in the previous subsection can be merged with lahar simulations
to map the possible impact of such lahars in probabilistic terms. For each of the
selected scenarios, we run LaharFlow simulations at each of the 24 simulation
groups aforementioned (see section 9.4). We define our final hazard domain as
a grid with 100 m of spatial resolution that, for each simulation group, extends
from the source areas of lahars through the areas over which they propagate. In
the end, at each grid point of the hazard domain, we are able to compute three
values of lahar flow depth and speed and three values of probability associated
with such event, according to the Multihaz assessments. In reality, we derive these
probability values by multiplying the probability of each catchment to generate
the volume of lahars simulated with LaharFlow, given a specific scenario:

pij =

Nj∏
k

Pk(IVmax|scei) (9.4)

where pij is the probability assigned to the hazard footprint computed with La-
harFlow for the scenario i and the simulation group j; Nj is the number of catch-
ments that form the simulation group j; Pk(IVmax|scei) is the probability of the
catchment k to trigger lahars with the maximum possible volume for the catch-
ment (IVmax, the volume simulated with LaharFlow), given the scenario i (scei).
These Pk values come from the Multihaz model implemented at each catchment
and for an eruption of the size indicated by a specific scenario.
Our way of calculating pij implies that some assumptions about the probabilis-
tic independence between the Pk values, in a simulation group, are thought to
hold: (1) the triggering rainfall is homogeneous over the catchments of the same
simulation group; (2) the catchments of the same simulation group are located
close enough to each other that changes in available tephra volume (i.e. PV)
are only due to the catchment area (and not to the spatial distribution of PV);
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and (3) the spatial distribution of the catchment area does not show any cluster-
ing pattern, that is: small and large catchments do not tend to cluster together,
spatially. We acknowledge that some of these assumptions may not be accurate
in some cases: e.g. assumption (2) could be reasonable for tephra fallout but
it may be questionable for dense PDCs in the presence of topographic barriers,
such as Mount Somma. Relaxing these assumptions would require to develop an-
other probabilistic model to assess the dependencies among the Pk values for each
simulation group and this is beyond the scope of this chapter. Here we intend to
present an initial application of the proposed probabilistic multi-hazard framework
at Somma-Vesuvius and surroundings.

Hazard footprints of lahars

The lahar flows simulated at Somma-Vesuvius and surroundings tend to be chan-
nelized following the main (narrow) valleys that descend from their initiation
points but there are also cases in which steep short valleys lead to lahars that
converge and accumulate a certain amount material over larger flat areas, like in
the area near Sarno. We summarize the observed patterns in lahar propagation in
Figure 9.10. We select four simulation groups which are characterized by: (a) in-
cluding catchments with large areas; (b) representing one of the big zones defined
in the previous subsection; and (c) having densely-populated areas nearby. Thus,
the simulation groups are the following:

� Simulation group 3 (Fig. 9.10a): it is located in the area of Gragnano in
zone 1, in particular in medial sectors towards the SE.

� Simulation group 19-20 (Fig. 9.10b): it is located in the area of Avella in
zone 2, that is: medial-distal sectors towards the NE.

� Simulation group 24 (Fig. 9.10c): it is located on the flanks of Somma-
Vesuvius in zone 4, i.e, the most proximal sector (within 3-4 km from the
vent).

� Simulation group 22 (Fig. 9.10d): it is located in the area of Sarno in zone
3, i.e. medial sectors towards the E.

In Figure 9.10, we show the hazard footprints of the flow-depth of lahars computed
for scenario 1, the one which produces the most voluminous lahars. In simulation
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group 3, the flows propagate following the principal valleys of the catchments
from SE to NE, primarily, and they spread out after reaching the flat area where
Castellammare di Sabbia is located. The longest runout of lahars in the simulation
group is about 7-8 km (Fig. 9.10a). The maximum values of flow depth tend to be
around 10 m while the maximum values of speed are greater than 25 m/s, close to
the initiation of some lahars, but they are around 5-10 m/s over the flat lowlands.

In simulation group 19-20, the flows propagate following the principal valleys in
some cases, especially on the eastern and southeastern sectors of the hazard do-
main (Fig. 9.10b). The largest flow, formed over the southeastern sector, can
develop cross-section widths of few hundreds of metres while keeping flow depths
not far away from 10 m (Fig. 9.10b). The flow crosses the area where Mugnano
di Cardinale, Avella and other municipalities are located and stops after approx-
imately 15 km of propagation. The maximum speeds recorded in the simulation
can be 30 m/s at the initiation areas but they descend up to about 5 m/s over the
flat areas.
In simulation group 24, the flows trigger from the upper part of the Somma-
Vesuvius edifice, including the north flank beyond Mt Somma, and propagate
radially developing braided patters as the topography is less confining than in the
previous two simulation groups (Fig. 9.10c). The majority of the lahars simulated
on the south flank reach the sea after having traveled for approximately 5-6 km.
The lahars on the other flanks of the volcano have similar maximum runouts (Fig.
9.10c). The maximum flow depths are around 10 m in some proximal sectors
where flows might get channelized. Maximum flow speeds can reach 25 m/s and
be maintained around 10-12 m/s over proximal-medial sectors (up to ∼4 km). On
distal sectors (∼4-6 km), the lahars slow down to speeds of 5 m/s or lower (Figs.
9.10c, 9.1a).
Finally, in simulation group 22, the flows propagate short distances along quite
straight valleys before reaching the flat area on the Campanian Plain where Epis-
copio and Sarno are located. The lahars on the oriental part of the hazard domain
converge over the Campanian Plain to produce an extended inundated area, dom-
inated by flow depths equal to or greater than 10 m (Fig. 9.10d). The maximum
runouts of the whole simulation group are not greater than 3 km. In terms of
lahar speed, maximum values can be above 30 m/s nearby the initiation and be
sustained around 10-15 m/s over the initial part (∼1 km) of the Campanian Plain.
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Probabilistic output distributions

Combining the probabilistic assessments performed by Multihaz with the hazard
footprints of lahars computed with LaharFlow, we are able to extract discrete prob-
abilistic output distributions for the hazard variables: lahar flow-depth and lahar
speed. In Figure 9.11, we show such probabilistic quantification of the lahar haz-
ard for the flow speed and considering the simulation group 24 (Somma-Vesuvius
flanks). As previously reported, having three different scenarios permits us to
compute three values of the hazard variable (e.g. lahar speed) and having a quan-
titative description of the likelihood of each initial volume of lahars, plus some
assumptions about probabilistic independence between them, allow us to compute
the probability value to attach to each lahar speed. The final result, discrete prob-
abilistic distributions of lahar speed, is shown in Figure 9.11c, for the same three
example points (red filled circles) used in Chapter 8 (see Figs. 8.4, 8.5). Never-
theless, our hazard analysis permits the evaluation of any desired point along the
hazard domain.

We see that the fastest lahars are expected to occur during scenario 1, with the
maximum speed recorded at Somma Vesuviana (∼ 7 m/s). Scenario 3 is associated
with lahars of maximum speeds between 0 and 2 m/s while, during scenario 2,
lahars can reach maximum speeds around 2 m/s at Torre Annunziata and Somma
Vesuviana and about 0.2 m/s at San Sebastiano al Vesuvio. The probabilities
attached to scenarios 1 and 3 are much lower than those assigned to scenario 2
(Fig. 9.11d). The range of lahar speed at San Sebastiano al Vesuvio is narrower
than the speed ranges at the other two locations. Thus, the maximum lahar speed
at Torre Annunziata during scenario 1 is three times the maximum lahar speed at
San Sebastiano al Vesuvio but, during scenario 3, the former is 0 m/s while the
latter is around 0.2 m/s. This implies that relatively slow lahars are expected to
impact San Sebastiano al Vesuvio, more or less independently of the magnitude of
the event, while lahars may reach Torre Annunziata only during large events but
these lahars could have much higher speeds than those impacting areas closer to
the Somma-Vesuvius central crater (Fig. 9.11).
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Figure 9.11: Probabilistic multi-hazard assessment of rain-triggered lahars at
Somma-Vesuvius (Italy). On graphs a, b and c: hazard footprints of lahar speed
at simulation group (simgroup) 24 according to the three selected scenarios:
scenario 1 (a), scenario 2 (b) and scenario 3 (c). On graph d, probabilistic
output distributions for the hazard variable of interest: lahar speed. Note that
these distributions are discrete: lines connecting the different points are used to
aid visualisation but the actual density of probability between the points is not
known (that is why we use “PDF” to refer to the Probability Density Function

of the output hazard variable (see text for more details). From [109].

9.6 Discussion and future directions

9.6.1 Use of BBNs in the context of rain-triggering of lahars

The complexity in the spatial and temporal triggering of lahars makes them quite
difficult to forecast accurately. In terms of spatial triggering, deterministic phys-
ical models of erosive runoff (e.g. [371, 372]) and/or shallow-landsliding (e.g.
[162, 178, 373]) are one of the most common strategies to forecast lahar initia-
tion. These approaches are able to describe the main physical processes which
are thought to cause the initiation of the hazardous event but, sometimes, their
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application is restricted to a small set of values of the model parameters because
exploring the aleatory uncertainty (e.g. rainfall intensity and duration) and/or
the epistemic uncertainty (e.g. tephra-deposit properties such as infiltration ca-
pacity or hydraulic conductivity) may become very challenging computationally.
A second main strategy is that of computing probabilities for the lahar/debris-
flow/landslide initiation. Some studies use simple physical models in conjunction
with PDFs to model the epistemic uncertainty in soil properties (e.g. [177]) while
others treat the initiation thresholds (e.g. I-D) as random variables instead of
fixed values (e.g. [177, 342]). Our BBN approach follows this second main strat-
egy to deal with the spatial triggering of lahars. We target a simple model that
can be easily adapted to many volcanoes, provided that there is a probabilistic
description available in terms of: (1) rainfall intensity at the volcano’s region; (2)
spatial distribution of tephra deposits around the volcano. It is also likely that
the specific parameterization of the CPT for the WR node needs to be adapted
to each specific volcano, depending on the characteristic median grain size of the
volcanic products (e.g. Figure 4 in [92]).
We argue that the point (2) above is one of the major strengths of our multi-
hazard framework. The coupling between the areas which are expected to be
affected by tephra deposition, given an eruption, and the areas which may act
as lahar sources subsequently is rare in the literature (e.g. [101]). However, the
links between the spatial distribution of tephra accumulation (as well as the type of
tephra deposit) and the magnitude and frequency of triggered lahars have been evi-
denced at several volcanoes after recent eruptions (e.g. [90, 92, 94, 169]). Morever,
the importance of quantifying the aleatory uncertainty in tephra accumulation is
highlighted by the presented results. For instance, let us assume that we do not
describe this aleatory uncertainty in PV. We can instantiate the PV node to its
most-likely state to model this. We take as an example the Multihaz model in Fig-
ure 9.8a (catchment #195, large-size eruption): PV=low is the most-likely state
but PV=medium and PV=high are still possible (Fig. 9.8a). If we set PV=low,
we observe that the probability of a large lahar decreases from 6% to 0%. That
is, the model is informing that large lahars are impossible (they were unlikely
but possible before instantiating the node, when the aleatory uncertainty in PV
was considered, Fig. 9.8a). Such low-probability high-consequence situations are
very relevant not only in volcanic hazards but in any kind of natural hazard (e.g.
[53, 259, 338, 374]). Therefore, recent probabilistic hazard assessments of tephra
fallout (e.g. [71, 72, 375]) and/or PDC thickness (e.g. [23, 31]) could be used to
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quantify the aleatory uncertainty in pyroclastic volumes expected in catchments
of other volcanoes worldwide.

Regarding the probabilistic quantification of rainfall intensity, Intensity-Duration-
Frequency (IDF) curves (e.g. [376]) can be available at many volcanic regions
around the world (e.g. [162]). From them, a PDF to model the rainfall intensity
at the region of interest may be derived, as illustrated in this chapter. The link
between rainfall intensity and duration is here assumed to be inverse, that is: the
higher the intensity, the shorter the duration. Nonetheless, a model like Multi-
haz can be easily adapted to situations in which these two variables (RI, RD) are
thought to be independent [377] or even positively-correlated (e.g. [378]).
We also note that, in some volcanoes, the separation between lahar and no-lahar
events, in terms of I-D thresholds, for instance, may not be very clear (e.g. [180]).
On the one hand, it is possible that strong mismatches occur between the rain-
fall measured at the available raingauges and the actual rainfall happening at
the lahar-initiation areas (e.g. [176, 379]). This could be corrected either semi-
quantitatively (e.g. [380]) or by using the raingauge data in combination with
high-resolution meteorological models (e.g. [381, 382]). On the other hand, it
seems that multi-parametric analysis (e.g. [343]) and/or physical models for lahar
triggering (e.g. [162]) could provide more informative forecasts of lahar activity
than simplified I-D thresholds. The approach presented here is an intermediate
solution since it uses few variables but can incorporate physical information into
the lahar triggering and it describes the natural variability in pyroclastic budgets
around the volcano, as detailed previously.

In terms of the triggering mechanism for lahar initiation, Multihaz is an at-
tempt to merge two “schools of thought”: one that considers erosive runoff as
the principal initiation mechanism (e.g. [92, 164, 165, 343, 383]) and the other
that deem shallow-landsling as the primary generation mechanism for lahars (e.g.
[101, 162, 178]). Discrepancies in interpretation of volcanological phenomena can
lead to contrasting model assessments (e.g. [274]) and it is important that the
selected model is able to incorporate this information. In Multihaz, the key rela-
tionships among variables such as RI and RD and the lahar-triggering mechanism
are stored in the marginal distributions of the RE node (Fig. 9.4). Multihaz could
be simply adapted to model only erosive runoff or shallow-landsliding by perma-
nently instantiating WR to “runoff” or “both”, respectively (even though WR=ifl
also implies the possibility of landslides triggering lahars, Figs. 9.2, 9.3). Deeper
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changes in Multihaz could be done on the structure, by removing the WR node
and adding variables (nodes) which were thought to cause an important effect on
the triggering in case of each mechanism, e.g. hydraulic diffusivity (e.g. [162]).

Nevertheless, there are some drawbacks in Multihaz and our integrated multi-
hazard framework. Regarding the lahar triggering, the most crucial deficiency
of our model is that it does not describe the timing of the lahar initiation, only
whether a given rainfall event may lead to the formation of lahars of a certain
volume or not. The fact of modeling the possible volume at initiation is a step
forward compared to other studies in which the outputs are binary: event or no
event (e.g. [163, 342, 343]). Still, Multihaz is unable to give a detailed temporal
analysis of the triggering (e.g. [162, 178]) or even of the spatial changes in lahar
susceptibility with time (e.g. [349]).

9.6.2 A probabilistic multi-hazard assessment of lahars

Secondary hazardous volcanic processes, such as lahars, represent a further chal-
lenge for hazard assessments in comparison with primary processes such as tephra
fallout and PDCs. This is largely due to the fact that the aleatory (and epistemic)
uncertainty in the primary processes conditions the spatial and temporal variabil-
ity in the secondary process (e.g. [92]). Moreover, lahar models can range from
semi-empirical approaches (e.g. LAHARZ, [345]) to depth-averaged simulators
with different degrees of complexity (e.g. [81, 218, 235, 346]). They are readily
applicable to scenario-based hazard assessments of lahars (e.g. [230, 365, 384])
but in probabilistic assessments, where uncertainty must be quantified, there is
the necessity of finding a balance between how sophisticated the lahar simulator
is (i.e. how long their runs take) and how efficient the uncertainty-quantification
technique is (i.e. how many runs are needed to quantify uncertainty, e.g. [82]). In
this case, it arises a dichotomy among simple and complex physical models, which
is common not only to other volcanic hazardous processes (e.g. [28, 70, 103, 115])
but also to other disciplines (e.g. [289]). On the one hand, simple models are
computationally fast but their predictions need to be tested against observations
(e.g. [103]). On the other hand, complex models are believed to give accurate
predictions but their long runtimes tend to be an issue in terms of quantifying
uncertainty (e.g. [82, 385]).
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Our proposed multi-hazard framework fundamentally relies on the strategy of
separating the calculation of the probability of a specific event and the hazard
footprint that ensues from this event [23, 31]. This is a great advantage because
it implies that changes in the probability distributions of Multihaz, for instance
due to a modification in the prior table of RI, do not inevitably result in more
LaharFlow simulations needed to be run. The final probabilistic products that
we obtain (discrete output distributions for the lahar speed, Fig. 9.11; or flow
depth) are an important output because, similarly to hazard curves, they link the
hazard intensity and its probability of occurrence at a given point of the hazard
domain. However, our probabilistic output distributions are too discrete (they
are based on 3 values only) and we decide not to compute hazard curves from
them, since we actually have little information about the exceedance probabilities
of extreme values, either small or, more importantly, large extreme values (e.g.
[83]). This limitation could be overcome by building a BBN model that used
continuous PDFs at each of its nodes (e.g. [386]). Moreover, we find that modeling
the dependencies between the probability of lahar occurrence (and volumes) at the
different catchments around the volcano can be one crucial aspect to pursue during
future research. We observe that, while marginal probabilities at each catchment
may be reasonable (Fig. 9.9), the computed joint probabilities, when assuming
independence between the probability of lahars at each catchment, may be too
low (Fig. 9.11).

We present a parameterization of Multihaz that is based upon scientific knowledge
about rainfall-triggering of lahars compiled from the literature but BBN models
can be parameterized in a more robust manner by expert elicitation procedures
(e.g. [274, 294]) or when a substantial amount of data is available so the BBN
parameters can be learned directly from these data (e.g. [252, 253]). At volcanic
systems where lahars are relatively frequent (e.g. Merapi volcano, Indonesia),
large datasets of lahar observations (e.g. [164, 181, 387]) can be available to set
up the Multihaz parameters. Likewise, lahar observations at any volcano can
be used to test the Multihaz assessments (Fig. 9.12) for any of its nodes or for
groups of nodes (e.g. [253]). The observations that might be collected with this
purpose of testing the BBN behaviour can range from: (1) direct observations
of the water-routing mechanism, given rainfall intensity, through slope plots (e.g.
[350, 364, 388, 389]); (2) discrimination between event/no event, given rainfall
intensity and duration, through acoustic flow monitoring (e.g. [181, 343, 390]); (3)
estimation of averages or single-event initiation volumes through image and field
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analyses (e.g. [169, 391, 392, 393, 394]). The compilation of some of these lahar
observations might be boosted by exploiting new technologies such as unmanned
aerial vehicles (e.g. [395]).

9.6.3 Lahar hazard at Somma-Vesuvius

As far as we are concerned, the presented results represent the first time in which
the following aspects have been developed in a hazard assessment of lahars at
Somma-Vesuvius: (1) an explicit and quantitative coupling between the lahar trig-
gering and propagation; and (2) a probabilistic assessment of the lahar initiation
volumes. Previous studies have mostly dealt with the analysis of the stratigraph-
ical sequences and historical data of syn-eruptive and post-eruptive lahars (e.g.
[170, 172, 198, 200, 396]). These studies indicate that lahar hazard at Somma-
Vesuvius can be a persistent and relatively-frequent phenomenon even many years
after significant explosive eruptions (e.g. [171, 175, 200]). Nevertheless, we con-
jecture that persistent lahar activity at Somma-Vesuvius (exclusively linked to
new tephra deposits) may be much shorter than in other volcanic systems due to
the non-confining topography that dominates the proximal-medial areas around
the Somma-Vesuvius’ cone. This clearly contrasts with the situation at volcanoes
such as Mt Saint Helens, USA [94] or Mt Pinatubo, Philippines [90]. For instance,
after the 1991 eruption at Mt Pinatubo, approximately 1 km3 of PDC deposits
was stored by the Marella-Santo Tomas watershed (area ∼71 km2, [179, 337]). In
contrast, a similar volume of PDC deposits from the Avellino eruption at Somma-
Vesuvius spread over an area of nearly 700 km2 [26, 232], which, besides, is char-
acterized by predominantly low-angle slopes.

Other hazard studies of water-sediment flows at Somma-Vesuvius have focused on
the detailed description of the susceptibility of different catchments (both around
the volcano and in very distal sectors) to act as sources for these volcaniclastic
flows according to: (a) the spatial distribution of past pyroclastic deposits; and (b)
the hydrogeomorphological characteristics of these catchments (e.g. [173, 174]).
Very few studies have analysed the propagation of lahars at Somma-Vesuvius (e.g.
[362]). In their study, [362] focused on the maximum expected eruptive event at the
volcano which, according to the emergency plan implemented by the Italian civil
protection, is a sub-Plinian I eruption similar to the 1631 AD eruption (e.g. [89,
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198]). We overcome this limitation by modeling the aleatory uncertainty in tephra-
fallout dispersion and dense-PDC deposition, as previously discussed. However,
our modeling of tephra dispersal does not explicitly consider the occurrence of
long-lasting violent Strombolian/ash-emission eruptions [89] which might produce
a long-term tephra availability for lahars over the proximal sectors of the volcano
(e.g. [343]).
Contrarily to what stated by [362], our results do not identify the Acerra-Nola
plain as, possibly, the most-hazardous area in term of rain-triggered lahars. The
closest catchments to the central part of the plain (approximately catchments
#200-225, Figs. 9.8, 9.9, zone 3) show the lowest probability of producing large
lahars of all our selected catchments (Fig. 9.9). Additionally, the LaharFlow runs
for the simulation group 19-20 do inundate the eastern part of the Acerrra-Nola
plain but do not have maximum runouts as long as the flows simulated by [362].
We argue that the value of rainfall intensity used by the authors (peak intensity at
108 mm/h during 0.5 h of rainfall) might be too elevated, taking into account the
results presented in the recent hydrological report for the central Campania region
[360], where the maximum rainfall intensity, for an infinitesimal short rainfall (i.e.
duration approaches 0), is estimated to be just above 85 mm/h for the area where
the Acerra-Nola plain is located.

Finally, we compare our hazard footprints computed for the simulation group 22
(Sarno-Episcopio area) with the tragical event of the 5 May 1998 (e.g. [171, 172,
397]). Leaving aside the potential differences in the triggering mechanism of lahars
or debris flows among syn-eruptive flows on fresh pyroclastic material and inter-
eruptive flows on pyroclastic soils (e.g. [170, 398]), we concentrate our attention
in the hazard footprints, including the specific values computed for the flow depth
and speed. In terms of spatial extent of the flows, we find the scenario 3 to be,
qualitatively, the one that resembles the actual flows the most. Scenario 2 and,
particularly, scenario 1, have larger areal extents. Moreover, the hazard footprint
for scenario 1 (Fig. 9.10c) displays high values of lahar flow depth (around 10
m) over a considerable flat area over Episcopio. Similar high values may have
occurred on sectors close to the initiation (e.g. [399]) but not after the main break
in slope. Likewise, the maximum speeds for the lahars simulated in scenario 1 (up
to 25-30 m/s) confirm that this scenario could be potentially more dangerous than
the event in 5 May 1998, where flows reached maximum speeds around 14-20 m/s
(e.g. [172]).



Chapter 10

Summary and general conclusions

This PhD was conceived with the major goal of developing structured, robust and
transparent procedures to compute probabilistic hazard of PDCs and multiple vol-
canic hazardous processes, specifically in a target region that is crucial for Italian
volcanic risk: the Campania region. The starting point were simple physical mod-
els of PDCs which could be run a great many times thus easing the quantification
of the large uncertainties linked to the volcanic hazard assessment.

One first step was to check the suitability of the Energy Cone model [132] to
calculate probabilistic hazard assessments of PDCs. The findings derived from a
robust statistical testing of Monte Carlo outputs of the Energy Cone model against
data from past PDC deposits at Somma-Vesuvius and Campi Flegrei, in Italy (see
Chapter 3), indicated that the Energy Cone performs quite well, provided that the
volcanic system of interest is not characterized by PDCs that are predominantly
channelized, even through small topographical features (see Chapter 5 and [103]).

The search for improving the quantification of epistemic uncertainty in proba-
bilistic volcanic hazard assessment led to the implementation of a Monte Carlo
procedure to explore and quantify different sources of epistemic uncertainty in
modeling of PDCs through the Energy Cone (see Chapter 6). The computed
ranking of uncertainties permitted the identification of theoretical uncertainty (re-
lated to possible the relationship between collapse height and effective friction
coefficient) as the largest source of epistemic uncertainty. Other sources have a
smaller impact on the model outputs. Particularly, input uncertainty (linked to
the DEM resolution) is almost negligible, which is in clear contrast to what has

208
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been seen in other more complex PDC models, like Titan2D (see Chapters 6, 8
and [104]).

Having checked positively the suitability of the Energy Cone for probabilistic vol-
canic hazard assessment and having obtained an objective quantification of epis-
temic uncertainty, the logical successive step was to utilize this PDC model to pop-
ulate the final nodes of the BET_VH model [49, 242]. Moreover, the BET_VH
provided the opportunity for homogeneizing the hazard assessments coming from
the two volcanoes (Somma-Vesuvius and Campi Flegrei). Thus, a first-ever proba-
bilistic volcanic hazard assessment of PDCs from multiple volcanoes, a single target
area (the city of Napoli and surroundings) and quantification of both aleatory and
epistemic uncertainty was computed. The results point out that the downtown of
Napoli has a ∼2% probability of being invaded by PDCs, from at least one of the
two volcanoes, in the next 50 years. This same probability is about 5% over the
western part of the city and it is around 8-10% along the whole southern flank of
Somma-Vesuvius (see Chapter 7 and [105]).

In order to extend the previous PDC hazard analyses to probabilistic assessments
that could be informative for the quantification of volcanic risk, the Titan2D
model [218] was selected to simulate dense pumice flows at Somma-Vesuvius (PDCs
at Campi Flegrei are predominantly dilute, see Chapter 3). The long runtimes
of the model forced us to use Polynomial Chaos Quadrature (PCQ), instead of
Monte Carlo sampling, to quantify aleatory uncertainty. The initial Titan2D-
PCQ analysis was then combined with the BET_VH model to assess epistemic
uncertainty and probabilistic hazard curves (e.g. [76, 83]), for flow depth and
speed, were computed at each grid point over the hazard domain around Somma-
Vesuvius. Dense PDCs with depths equal to or greater than 1 m and speeds equal
to or greater than 2 m/s are 40-70% probable to cover proximal areas (2-3 km) and
10-30% probable to cover medial areas (5-6 km) around the current central crater,
in the event of an eruption from this position. Dynamic pressures of few hundreds
of kPa (which would likely produce extensive devastation on the buildings around
Somma-Vesuvius) could occur, on average, one every ten eruptions of the volcano
(see Chapter 8 and [107]).

The final step was to perform a probabilistic volcanic multi-hazard assessment
through the development of a framework that combines probabilistic hazard anal-
yses of tephra fallout and dense PDCs via Bayesian Belief Networks (BBNs, e.g.
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[253]) with a physical model for lahar propagation (LaharFlow, [235]). The flex-
ibility and high modularity of BBNs permits modeling of (aleatory) uncertainty
more explicitly and at a level of refinement that the BET_VH does not include.
Thus, our BBN model (Multihaz ), implemented at Somma-Vesuvius, can estimate
the spatial probability of occurrence (and volumes) of rain-triggered lahars by con-
sidering in detail: (1) physical mechanisms of lahar triggering; (2) probabilistic
analyses of regional rainfall; and (3) probabilistic hazard assessments of tephra
fallout [70] and dense PDCs (adapted from Chapter 8, [107]). The LaharFlow
model served to propagate aleatory uncertainty in lahar triggering towards hazard
footprints of these volcaniclastic flows. The probabilistic multi-hazard assessment
was found very dependent on the eruption size considered and the location of the
hydrological catchments. Catchments towards the ENE (main tephra-fallout dis-
persion axis) and, especially, those located over the volcano flanks (dense-PDC
sedimentation) have the greatest potential for triggering medium and large lahars.
However, we find that probabilities of exceeding different thresholds of lahar speed
at points around Somma-Vesuvius may be too small due to oversimplifications in
the process of combining the probabilities calculated by Multihaz at each catch-
ment. Robust spatial analyses that allow to correlate the availability of tephra
at different catchments could solve this issue in future research. Additionally, the
use of BBNs as sub-models to parameterize the BET_VH model in a more robust
way could bring substantial improvements to probabilistic volcanic multi-hazard
analyses.

Four main general conclusions can be extracted from this PhD. Firstly, probabilis-
tic volcanic hazard assessments need to stem from multi-disciplinary collaboration
(e.g. [31, 33, 103, 107, 318]). Improving the knowledge on how volcanic systems
work or how a particular volcanic system works; developing adequate and effective
numerical models of the physical and chemical processes occurring at volcanoes;
applying efficient uncertainty quantification techniques depending on the specific
hazard problem: all them are required to better our volcanic hazard assessments.
Reaching these objectives will demand growing and sharing expertise in geology,
physics, chemistry, mathematics, through multi-disciplinary research.

Secondly, the refinement of probabilistic volcanic hazard assessments will likely de-
rive from developing future research with a hazard-oriented view. That is, future
efforts can be directed towards critical aspects of volcanic hazard. For instance,
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given the crucial importance of the relationship between the effective friction coef-
ficient and whether PDC volume or collapse height (e.g. [31, 104]), future efforts,
in volcanic hazard assessment of PDCs, may be directed towards understanding
this relationship further (e.g. [234]). Likewise, given the current absence of a
sophisticated PDC model that can simulate both dense and dilute PDCs at a
reduced computational cost, future research directions could pursue the construc-
tion of such a model, under a hazard perspective: for instance, focusing on the
interaction between PDCs and topography (e.g. [28, 80, 152, 400]).

Thirdly, after a bit more than a decade from the first attempts to assess volcanic
hazard in probabilistic terms (e.g. [21]), it is now clearer than ever that there is
still a long way to go. In particular, as this PhD study has tried to examine in
depth, the paramount role of the epistemic uncertainty associated with probabilis-
tic hazard assessement is far to be fully quantified, and it will be a key issue in
the forthcoming years (e.g. [53, 54]).

Last, but not least, this PhD thesis highlights how the results from different prob-
abilistic volcanic hazard assessments, if homogeneously computed (at common
grids, time windows and hazard metrics, which are probabilistic hazard curves
in this PhD), can be quantitatively combined to produce a second-order volcanic
hazard assessment, in which cascade effects (such as secondary lahars in this PhD)
are accounted for.



Appendix A

Definition of the Energy Cone

parameter space (Chapter 5)

The parameter space for the Energy Cone (EC) model in Chapter 5 is defined to
capture, in probabilistic terms, the expected broad variety of PDCs that might
be generated, during an eruption of a given size, at a volcanic system similar to
Somma-Vesuvius or Campi Flegrei. In other words, the selected EC parameter
space is not intended to reproduce the available past events but it is designed to
capture any plausible event, given an eruption of a specific size.
In order to explore the possible outcomes that may unfold during an eruption of
a given size, Probability Density Functions (PDFs) for the model parameters (H0,
φ) must be defined. The use of PDFs has the purpose of reproducing as best
as possible the randomness in PDC formation (aleatory uncertainty estimation).
Therefore, we need to identify suitable PDFs for H0 and φ, and assign sound and
coherent values to their parameters (note that the “proper” PDFs and their pa-
rameterization are themselves not known. This gives rise to epistemic uncertainty
in the form of parametric uncertainty: [75, 104], see Chapter 6).

A.1 PDF for H0

Pyroclastic Density Currents (PDCs) can be generated during explosive eruptions
in different ways, which span from gravitational instability (i.e. dome collapses) to
fountaining processes (pyroclastic fountain collapse and partial column collapses,

212
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e.g. [124], see Chapter 2). Being PDCs at both Somma-Vesuvius and Campi Fle-
grei not related to dome collapses, we consider in the following only the generation
of PDCs from column or fountain collapses.
The maximum possible source height of PDCs in these cases is the end of the lower
basal gas-thrust or jet region, dominated by inertial forces caused by magma ac-
celeration and fragmentation in the uppermost part of the volcanic conduit (e.g.
[114]). This region is characterized by an abrupt decrease of the mixture velocity
due to loss of momentum and extends up to a small fraction of the total column
height (HT ). For a sustained column, the height of the gas-thrust zone (Hg−t) can
be roughly estimated as 10% of HT [110].
For the PDF of H0, we assume an Exponential PDF, characterized by only one
shape parameter (λ), and in which the most likely values are by far the small ones:

f(X) = λ · e−λX (A.1)

or, expressed in the form of the Cumulative Distribution Function (CDF):

F (X) = P (X ≤ x) = 1− e−λX (A.2)

As in [104] (see Chapter 6), in order to obtain plausible λ ranges, we consider
values of HT picked up from thousands of potential eruption column heights for
the three different eruption sizes considered at Somma-Vesuvius and Campi Flegrei
[70]. The calculation of λ is consequently performed by sampling HT from the
above-mentioned simulations and, for each HT realization, assuming that the 95th
percentile of the Exponential PDF is equal to Hg−t, the gas-thrust height, for that
specific HT value. That is:

F (Hg−t) = 1− e−(λ·0.1HT ) = 0.95 (A.3)

Since it can be argued that column collapses forming at heights H0 = 0 m or
H0 = +∞ m are not physically consistent, the Exponential PDFs are truncated
at H0 = 20 m (lower bound) and H0 = 0.1HT m (upper bound) and normalized
accordingly to build the final Truncated Exponential PDFs [104]. The lower limit
at 20 m is set as an arbitrary minimum collapse height. Nevertheless, it has been
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checked that limits at H0 = 5 m and H0 = 50 m do not have a large effect on the
results.

A.2 PDF for φ

PDCs generated from column or fountain collapses can show quite different values
of mobility depending on: total mass that participates in the collapse, average
density of the pyroclasts forming the PDC, volume partition between gas and
pyroclasts, fluidization processes (e.g. [124]). The degree of knowledge about how
these processes control the value of φ is limited. [136] fit Gaussian PDFs to values of
φmeasured on PDCs at Volcán de Colima, Mexico. [104] used Truncated Gaussian
PDFs and Asymmetric Tukey Window PDFs (a variant of a Uniform PDF with
cosine-shaped tails) at Somma-Vesuvius and found the impact of this choice on
the EC outputs to be small. Here, we use a different type of PDF depending on
the volcanic system of interest. This is motivated by the difference in the amount
of φ data available for Somma-Vesuvius and Campi Flegrei. In particular, as we
base the PDF shape and parameters on data coming from analog volcanoes, there
are many more data for volcanic systems which are analog to Somma-Vesuvius
than to Campi Flegrei. For Somma-Vesuvius, a worldwide database of φ values
is available [138]. We add to the database four extra values of φ from PDCs
simulated via EC. These values come from Guagua Pichincha, Ecuador [279]; La
Soufrière, Guadeloupe [216] and Somma-Vesuvius [137]. We use the dataset to:
(a) check which PDF choice seems most appropriate, given the data; and (b) set
the PDF parameters for each eruption size. In the case of Campi Flegrei, we lack
such a database and, therefore, we select a very non-informative distribution: the
Uniform PDF.

A.2.1 PDF for φ at Somma-Vesuvius

At Somma-Vesuvius, reported PDCs range from column collapse-generated PDCs
with variable volumes (VEI4, VEI≥5) to small PDCs and hot avalanches during
VEI∼3 eruptions, e.g. 1944 eruption [193] (see Chapter 3). As introduced before,
we assume that the world database [138] covers the φ values which can describe
this typology of PDCs as far as the volcanic systems in the database are similar
to Somma-Vesuvius.
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We perform a series of non-parametric hypothesis tests (one-sample Kolmogorov-
Smirnov, K-S) in conjunction with information criteria (corrected Akaike Informa-
tion Criterion, AICc, [401]) to shed some light on which choice seems more appro-
priate and reasonable. For this purpose, we divide the data of [138] into different
categories (Table A.1). Among them, PDCm3, PDC4 and PDCM5 represent all
the φ values of Pumice Flows (PFs) related to VEI≤3, VEI4, and VEIgeq5 erup-
tions (Table A.1). The null hypothesis we want to test through K-S is that the φ
values in [138] may have been sampled from a given type of theoretical PDF. In
particular, we test four different types of PDFs (Table A.1): Uniform, Asymmetric
Tukey Window, Beta and Truncated Gaussian (NB. truncation of the Gaussian
PDFs is needed since values of φ cannot be either negative or greater than 90 de-
grees). For the Uniform PDFs, maximum and minimum values in the database are
used as the limits of the distributions. PDFs parameters for Tukey and Truncated
Gaussian PDFs are set as in [104] (see Chapter 6). For the Beta PDFs, Maximum-
Likelihood Estimation (MLE) of the PDF parameters is performed, considering
the available φ data per each group. Note that for (truncated) Gaussian PDFs,
the MLE parameters (given the φ data in [138]) are the same as if the mean and
standard deviation were calculated from the data. Out of the 32 K-S tests we
carry out, only four of them lead to rejection (at the 1% significance level) of the
null hypothesis (marked in red in Table A.1): PFs do not seem compatible with
sampling from the Uniform PDF while BAFs only seem compatible with sampling
from the Truncated Gaussian PDF (i.e. the other three PDFs are rejected, at the
1% significance level and in light of the BAF data; Table A.1).

AICc represents an enhancement of the Akaike Information Criterion (AIC) par-
ticularly useful when the sample size is small or the number of parameters in the
model is not considerably smaller than that sample size (e.g. [402]). Small values
of AICc correspond to “better” models compared to high values. The index re-
wards both goodness-of-fit (by means of the log-likelihood) and model simplicity,
expressed as the number of parameters in the model, with a correction for small
sample sizes. The calculated AICc indexes for PDCm3 and PDCM5 are similar
as concerns Uniform and Truncated Gaussian PDFs but are higher for Tukey and
Beta PDFs (Table A.1). In the case of PDC4, Beta and Truncated Gaussian PDFs
have the lowest AICc values. Nonetheless, this case is not very representative as
the number of data available equals the number of parameters of some of the
explored PDFs. By and large, Tukey and Beta PDFs are affected by very low log-
likelihood values on the boundaries of the PDF as well as their complexity. On
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the other hand, the Uniform statistical model benefits from its simplicity and a
constant log-likelihood value along its domain (L(Uniform) = f(X|θ) = constant;
where L denotes the log-likelihood and θ the PDF parameters).

On the whole, taking into account both criteria (hypothesis testing and informa-
tion index) and insights from the literature (e.g. [136]), we decide that Truncated
Gaussian PDF is an appropriate and defensible choice for the PDF of φ at Somma-
Vesuvius [104]. Thus, we use the mean (µ), standard deviation (σ), minimum and
maximum φ values of PDCm3, PDC4 and PDCM5 to set the equivalent PDF
parameters for the small, medium and large eruption sizes at Somma-Vesuvius
(Table 5.1).

A.2.2 PDF for φ at Campi Flegrei

At Campi Flegrei, PDC generation is strongly affected by the existence of well-
established aquifers along a mature hydrothermal system (e.g. [188, 209]), which
has led to the generation of moderately to highly mobile pyroclastic surges, e.g.
[25] (see Chapter 3). The present study takes only into account the epoch III of
volcanic activity at Campi Flegrei (after [195]), meaning that the formation of very
large ignimbrites (i.e. the Campanian Ignimbrite and Neapolitan Yellow Tuff) is
not considered.

For each eruption size, the Uniform PDF parameters (i.e. minimum and maximum
limits) are based upon independent information regarding realistic values of PDC
mobility at Campi Flegrei. We first search in the collapse caldera worldwide
database [403] calderas with similar: (1) spatial-temporal pattern of post-caldera
vent-opening; (2) local tectonic faulting; and (3) geochemistry of the magmas
involved. Out of 14 volcanic systems which share more than one feature, no
specific constraints on φ values can be extracted. Therefore, we try to gather
some independent information from: (a) published works about possible φ values
for surges [137]; (b) published works about φ values and PDC mobility, in general
[138, 404]; and (c) published works in which a relation between PDC total volume
and φ values is given [131].
Minimum limits of the Uniform PDFs are set at 4◦ for small and medium sizes and
3◦ for large size. The first corresponds to the minimum φ value reported by [137]
for surges at Vulcano and Lipari (Italy). The large-size limit is just a conservative
choice as far as only one large-size eruption has been recorded during the III Epoch
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of Campi Flegrei (e.g. [195]): the Agnano-Monte Spina eruption. Concerning the
maximum limits of the Uniform PDFs, we take into consideration the fact that
(very) low-mobility PDCs are not expected to form at Campi Flegrei. [404] links
low-mobility BAFs to φ values around 18-21◦. In the PFs data from [138], a clear
gap between a group of PDCs with 10◦ ≤ φ ≤ 20◦ (intermediate mobility) and
another group with φ ≥ 24◦ (low to very-low mobility) is clearly observed (Fig.
A.1B). Hence, we identify a delimiter for low-mobility PDCs (which we do not
expect to form at Campi Flegrei) around φ = 20◦. Given that PDC mobility is
thought to be related to PDC volume and, hence, eruption size (Fig. A.1A); we
choose the maximum φ limits to be slightly shifted between sizes, that is: 22◦, 20◦,
18◦ for small, medium and large eruption sizes, respectively.

Figure A.1: Data collected from the PDC mobility database [138]. A: values
of φ arranged by VEI size (only Pumice Flows, PFs; and Hot Avalanches, HAv).
Target symbols denote the 50th percentile of the φ Empirical Cumulative Dis-
tribution Functions (ECDFs). Box edges indicate the 25th and 75th percentiles
while whiskers mark the 5th and 95th percentiles of these ECDFs (note that for
VEI1 and VEI6 the sample size is 2 -no whiskers-; while for VEI2, the sample
size is 1 -no box, no whiskers-). B: values of φ against ∆H (PFs and HAv).

From [103].

Finally, we check out that the values of φ derived from the empirical formula
published by [131], which relates PDC total volume and H/L (hence φ), are in
agreement with our Uniform PDF parameters. Values of φ estimated in this way
are about 7.5-9.5◦ for small size, around 7◦ for medium size and 5.5◦ for large size;
hence, they are coherent with our PDF parametrization (Table 5.1).
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Modeling procedure (Chapter 7)

B.1 Definition of the two end-member probability

distributions for H0

B.1.1 Truncated Exponential distribution

In this case, we adopt the same paradygm as in [103, 104]. For each eruption size
class, we first account for the total column heights derived from eruption column
simulations at Somma-Vesuvius and Campi Flegrei in [70]. In that work, total
column height (HT ) values were calculated through the fourth power relationship
presented by [265], using Mass Eruption Rates computed by randomly sampling
values of total erupted mass and eruption duration from adequate PDFs built for
our two target volcanoes. Secondly, we assume that the top of the gas-thrust re-
gion top is roughly estimated as 10% of the total height of the eruption column
[110]. In this way, the parameter λ defining the truncated Exponential PDF for H0

is inferred by assuming that the top of the gas-thrust region marks the 95th per-
centile of the corresponding non-truncated exponential PDF [103]. The obtained
Exponential PDFs are then truncated and renormalized between H0min

=20 m and
H0max = 0.1HT m.

In our simulation scheme, for each volcano and eruptive size class, we sample 1,000
HT values from [70]. For each of these, we retrieve a λ value and so a truncated
Exponential distribution, from which we sample 10 values of H0. Thus, we end up
with 10,000 H0 values for each volcano and eruptive size class. Correspondingly,

219
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we sample 10,000 φ values given the volcano and eruptive size class. Finally, we run
EC model 10,000 times (one for each pair (H0, φ)) for every volcano studied (2),
possible vent position (441 and 460 for Vesuvius and Campi Flegrei, respectively)
and size class (3 for each volcano), totalling: 104 ∗ 441 ∗ 3 and 104 ∗ 460 ∗ 3

simulations for Somma-Vesuvius and Campi Flegrei, respectively. Such a large
number of simulations is necessary to sample correctly the tail of the exponential
PDF adopted. In order to lower the computational time, in the case of the 392
lateral vents at Somma-Vesuvius (which have very low probability of opening),
we only run 1,000 simulations. Thus, in the end we run the EC model 104 ∗ 49 ∗
3 + 103 ∗ 392 ∗ 3 ∼ 2.5M times at this volcano. At Campi Flegrei, we run 10,000
simulations for all vents so the final number of EC runs is about 14 M.

Uniform distribution

In this case, we again account for the total column heights derived from eruption
column simulations at Somma-Vesuvius and Campi Flegrei [70], and assume that
the top of the gas-thrust region top is roughly estimated as 10% of the total height
of the eruption column [110]. In this way,the uniform distribution is set between
H0min

=20 m and H0max = 0.1HT .

In our simulation scheme, for each volcano and eruptive size class, we again sample
1,000 HT values from [70] and define 1,000 Uniform distributions. From each one
of these, we sample one value of H0. Thus, we end up with 1,000 H0 values for
each volcano and eruptive size class. Correspondingly, we sample 1,000 φ values
given the volcano and eruptive size class. Finally, we run EC model 1,000 times
(one for each pair (H0, φ)) for every volcano studied, possible vent position and
size class. In the case of uniform distributions the number of samples can be lower
as it is not too difficult to effectively sample the whole range of possible values of
H0 (the uniform distribution has no real “tail”).

EC simulations

The EC model is implemented in MATLAB [405] and the simulations are run,
using a 40m DEM, at the Center for Computational Research (CCR) of the Uni-
versity at Buffalo (USA). For Somma-Vesuvius, [104] demonstrated that the use
of a 40m DEM, instead of a finer-resolution DEM (e.g. 10 m), does not alter the
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output of the EC simulations considerably. Other sources of epistemic uncertainty,
such as theoretical uncertainty (linked to the relationship between H0 and φ, see
Chapter 6), can be one to two order of magnitues larger than epistemic uncertainty
linked to the DEM horizontal resolution [104]. For Campi Flegrei, such a system-
atic quantification of different sources of epistemic uncertainty is not available.
We are aware that, in the case of calderas, the absence of a predominant topo-
graphical structure could give a more relevant role to DEM resolution, compared
to other sources of uncertainty. However, given the overwhelming difference in the
importance of theoretical uncertainty with respect to input uncertainty (i.e., DEM
resolution) in the case of Somma-Vesuvius, we assume that for Campi Flegrei the
usage of a 40m DEM does not affect the results too much.

The output of the simulations are then interpolated on a 100m grid for the PVHA.
This reduction is necessary to keep the computational time of BET_VH model
acceptable. The final domain of PVHA is thus on a 100m grid with lower left
and upper right corners respectively at [402575,4486891] and [483375,4546091] in
meters (UTM, zone 33).
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