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Abstract  
 

An important issue in seismology concerns the characterization of the propagation medium, 

aiming to analyse the behaviour of rocks in relation to the generation of earthquakes (both 

natural and human-made). The basic idea is that seismic waves can be used to image the 

medium’s physical properties.  

In this context we placed our research project, concerning the reconstruction of the spatial 

and temporal changes of physical properties (velocity, attenuation, rock parameters) in 

complex geological media.  

In the first part of this thesis we present a detailed description of known and new 

methodologies useful to track the seismicity, the propagation medium’s features and their 

temporal variation. In particular, a new rock modelling approach is constructed, allowing the 

conversion of velocity and attenuation values in rock micro-parameters; and a new 

equalization procedure for the 4D tomography is developed, allowing at once to optimize the 

choice of time-windows in the case of massive data-sets and to completely handle seismic 

tomography issues.  

In the second part, we show the results obtained by applying this methodologies to three 

complex areas: the Irpinia fault zones, The Geysers geothermal area and the Solfatara volcano. 

The relevance of these three areas lies not only in their different physical nature, but also in 

their different dimension. The obtained results show how the described methodologies can be 

used in seismogenic and volcanic areas to improve the knowledge of the medium’s properties, 

in order to mitigate the risk associated to destructive events, and in geothermal areas, to 

monitor the induced seismicity through the tracking of the medium properties’ temporal 

variation.  

Therefore, this thesis represents a useful tool for the characterization of the propagation 

medium, by providing a compendium of different methodologies and by showing the results 

of their application to three complex areas characterized by different physical nature and 

dimensional scale.  
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Introduction  
 

An important branch of geophysics, in particular of seismology, concerns the characterization 

of the propagation medium though the analysis of seismic waves. The basic idea concerns the 

fact that the ray path of the seismic waves is controlled by the physical properties of the 

crossed medium. These properties are influenced, among other things, by the presence and 

motion of fluids in the medium. Thus, seismic waves contain information on rock composition 

and fluid content, and can be used to image the physical characteristics of the medium. This 

characterization aims not only to get information about the composition and the geological 

structure of the subsoil, but also to analyse the rheological behaviour of rocks in relation to 

the generation of earthquakes.  

In this context is placed our research project, which concerns the reconstruction of space and 

time changes of physical properties (velocity, attenuation, rock parameters) in complex 

geological media such as tectonic, volcanic and geothermal environments. The aim of the 

project is to investigate the influence of physical parameters in dynamic processes during the 

preparatory phase of earthquakes (both natural and human-made), by tracking the seismicity, 

the propagation medium features and their temporal variation. 

With regard to the spatial changes of elastic and anelastic properties, seismic tomography has 

become a rather standard tool to investigate the variation of smooth velocity and attenuation 

in complex geological environments. The tomographic images allow to infer qualitative 

considerations about the geological characteristics of the medium and the presence of pore 

fluids (Nur and Simmons, 1969; Elliot and Wiley, 1975; Domenico, 1976; Toksoz et al., 1979; 

Thurber et al., 1995). We will present an iterative, linearized, tomographic approach in which 

the P and S arrival times are simultaneously inverted for the earthquakes location and 

velocity parameters (Latorre et al., 2004) to retrieve accurate 3D velocity images of 

investigated areas and the related resolution. Then, we will explain the procedure adopted in 

our analysis to modify the velocity code in order to obtain the 3-D attenuation quality factor Q 

images using as data the t* parameter.  

However, the reconstructed velocity and attenuation images do not allow to obtain any 

quantitative estimates about the physical micro-parameters of rocks, such as porosity, 

saturation or type of permeating fluids. In order to solve this issue, the first part of our 

research project incorporates the developing of a rock physical modelling, to apply 

downstream of velocity and attenuation tomography. This modelling allows to obtain 
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quantitative information about the rock micro-parameters through the direct inversion of the 

velocity and the attenuation values obtained through tomography. 

In the interest of reveal the temporal changes of physical properties within rock volumes, 

the 4D seismic tomography, i.e. a 3D seismic tomography repeated in different time windows, 

can be introduced. This approach has been used in tectonic (Chiarabba et al., 2009) 

geothermal and volcanic areas (Julian et al., 1998; Foulger et al., 2003; Gunasekera, 2003) and 

in hydrocarbon surveillance (Guerin et al., 2000). In order to optimize 4D seismic-difference 

anomalies, an equalization of the co-registered repeated data of the survey is required. When 

a permanent seismic acquisition network is available, the only equalization process concerns 

the different position of passive seismicity sources, and thus the equalization of the seismic 

images resolution in the different time windows. An important purpose of our research 

project concerned the methodological development of a new equalization procedure in passive 

seismic for the 4D tomography. The novelty of this procedure lies not only in its ability to 

optimize the choice of time-windows in the case of massive data-sets, but also in a complete 

handling of the issue associated to the seismic tomography, which includes the choice of 

inversion parameters, the choice of the optimal model parameterization, the analysis of the 

model resolution, etc. 

To track the time changes of physical properties, the 4D tomography requires a long time-

spam to record a consistent data-set. Thus, in the second part of our research project, beside 

4D tomography, we deal with “fast” methods that have the advantage of quickly computation 

as soon as the single seismogram is available. 

Another seismic observable that can be related to fluid-flow in propagation medium is the 

seismicity pattern. Indeed, many authors (Nur and Booker, 1972; Hainzl, 2004; Antonioli et 

al., 2005; Hainzl and Ogata, 2005) test the hypothesis that the space distribution and temporal 

evolution of seismicity can be used to analyse the presence and diffusion of a pore-pressure 

perturbation in a poro-elastic fluid saturated medium. It is clear that an accurate knowledge 

of the seismicity pattern is crucial in these analyses in terms of space and time location. A 

small part of this research project focused on providing a high accurate probabilistic double-

difference earthquake location method, which allows the use of a 3D velocity model for 

location in complex media. The main advantages of this method are the determination of 

comprehensive and complete solutions through the probability density function (PDF), the 

use of differential arrival times as data and the possibility to use a 3-D velocity model for both 

absolute and double-difference locations, all of which help to obtain accurate differential 

locations in structurally complex geological media. 
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In addition to the analysis and development of different methodologies, an important aspect 

of our research project concerns the application of these methods to three complex areas: 

the Irpinia fault zones, The Geysers geothermal area and the Solfatara volcano. The relevance of 

these three areas lies not only in their different rheological and structural nature, but also in 

their different dimensional scale. These different features enable us to consider the areas as 

"seismological laboratories", i.e. areas of interest which allow the application, validation and 

development of different methodologies.  

The Thesis is organized in two different parts: methods and applications. 

PART I (methods) is subdivided in three chapters, regarding the description of the 

methodology used to track the changes of the medium’s properties in space (Ch. 1) and time 

(Ch. 2), and the distribution of seismicity (Ch. 3). The first chapter incorporates the seismic 

velocity and attenuation tomography and the rock physical modelling. The second chapter 

contains a description of “fast” and comprehensive methods, such as 4D tomography, which 

aim to track the time variation of the medium’s properties. Finally, in the third chapter we 

present the highly accurate 3D double-difference location method that aims to track the space 

and time variation in the seismicity pattern. 

PART II (application) is organized in three chapters, each one regarding a different 

investigated area: the Irpinia fault zones (Ch. 1), The Geysers geothermal area (Ch. 2) and the 

Solfatara volcano (Ch. 3). Depending on the characteristics, the available data-sets, the 

associated problems and the state of art of each area, we have chosen to apply several of the 

methods of analysis and investigation explained in part I. Thus, the three chapters contain the 

application and results of different methodologies to the three complex areas. 
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PART ONE: METHODS 
 

The study of the earthquake nucleation phase is one of the most important topics in the 

seismological community (Lee and Delaney, 1987; Ellwort and Beroza, 1995; Dodge et al., 

1995; Kanamori, 2005; Olson and Allen, 2005), and its aim is the monitoring of seismogenic 

areas for the prevention/prediction of seismic events, which always cause huge losses in 

social and economic terms.  There are different points of view from which we can analyse this 

issue. In our case, the study of the preparatory phase of earthquakes is done by measuring the 

spatial and temporal variations of the propagation medium physical properties in the region 

of seismic sources (Nur, 1972; Kisslinger and Engdahl, 1973; Whitcomb et al., 1973; 

Chiarabba et al., 2009b; Lucente et al. 2010; Valoroso et al., 2011). 

First-arrival travel time tomography can be used to image the Earth’s interior at various 

scales, from near-surface to global, by using active and passive sources. The velocity 

tomographic models allow to image the physical properties of the host environment and the 

effects of pore-fluid on them (Nur and Simmons, 1969; Elliot and Wiley, 1975; Domenico, 

1976; Michael and Eberhart-Phillips, 1991). Moreover, attenuation tomography may provide 

useful and complementary insights on the physical properties of fluids permeating host rocks 

(Hauksson and Shearer, 2006). However, the above observables (i.e. velocity and attenuation 

parameters) cannot single out a quantitative estimation of rock parameters, like porosity or 

saturation (Dupuy et al., 2016), which can be obtained only by using the physical modelling of 

a rock. 

Is well known that the transient processes occurring along active faults, such as fluid 

migration and pore pressure changes, are thought to promote the occurrence of moderate to 

large earthquakes (Nur and Booker, 1972; Scholz et al., 1973; Sibson, 1992; Cox, 1995; Caine 

et al., 1996; Antonioli et al., 2005). In addition, fluid migration and pore pressure changes can 

provoke transient variations of the medium elastic and anelastic properties. Thus, the 

complex processes that can trigger seismicity may be monitored by tracking the temporal 

variation of physical parameters.  4‐D tomography in space and time represents a very 

comprehensive method to track the spatio-temporal variation of parameters (Gunasekera et 

al., 2003; Foulger et al., 2003; Patanè et al., 2006; Chiarabba et al., 2009b; Lin and Shearer, 

2009; Julian and Foulger, 2010). Beside the 4D tomography, “fast” methods can be used, with 

the advantage that the temporal variation of parameters is quickly computed, that is, as soon 

as the seismogram is available (Chiarabba et al., 2009; Valoroso et al., 2011). 
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Finally, the relationship between fluid-flow and seismicity patterns is well known (Nur and 

Booker, 1972; Hainzl, 2004; Antonioli et al., 2005; Hainzl and Ogata, 2005). Thus, the spatial 

distribution and temporal evolution of seismicity can be used to analyse the presence and 

diffusion of a pore-pressure perturbation in a poro-elastic fluid-saturated medium. In order to 

ensure the high precision of earthquake location, we present a new probabilistic, double-

difference location method, which allows the joint use of differential time, to minimize the 

error due to the uncertainties of the velocity model, and a 3D velocity model, in order to take 

into account the lateral heterogeneity in complex areas.     

In this first part of the thesis we present the different methodologies that have been analysed 

and/or developed in our research project. In detail, the first chapter regards the tracking of 

the spatial changes of the elastic and anelastic parameters, i.e. velocity and attenuation, 

through seismic tomography. Moreover, in this chapter a rock physical modelling allowing the 

conversion of tomographic information in rock micro-parameters is presented in details. The 

second chapter concerns the tracking of the temporal changes of physical properties. This 

chapter contains the detailed explanation of the new equalization procedure for the 4D 

tomography, which must be applied to the passive-seismic data-sets, and of two “fast” 

methods that allow to rapidly monitor the temporal variation of parameters.  Finally, in the 

third chapter we present the new highly-accurate double-difference location method that 

allows the use of the 3D velocity model in complex media.  

 

 

 

 

 

 

 

 

 



 

10 Chapter 1: Tracking SPACE changes of physical properties 

Chapter 1: Tracking SPACE changes of physical properties 
 

 

1. Introduction 

The knowledge of the soil geological characteristics, especially regarding the presence of 

fluids, is nowadays an important issue concerning both the environmental (natural risks, 

geotechnics, groundwater pollutions, etc.) and resources (aquifers, oil and gas, CO2 storage, 

etc.). Because of the erosion and deposition process, the porous materials represent a large 

part of the upper crust geological structures. These are mainly characterized by empty 

interstices, between the granules of the solid matrix, filled with fluids, which modify the 

rheological characteristics of the multiphasic porous media. Seismic waves traveling through 

the Earth's crust are greatly distorted by these rheological heterogeneities and therefore 

contain information on the rock composition and fluid content. Hence comes, the idea to 

characterize the propagation medium in terms of porosity and fluids composition by using the 

velocity and attenuation (visco-elastic) parameters obtained by first-arrival travel time 

seismic tomography. 

In recent years, first arrival time tomography has become a standard tool to investigate the 

smooth velocity variations in complex geological environments. The velocity tomography 

allows to obtain 3D images of investigated areas. Those models allow to study the relationship 

between the behaviour of a fault and the physical-mechanical properties of the host 

environment (Michael and Eberhart-Phillips, 1991). The effect that pore fluids have on 

seismic velocities is well documented (Nur and Simmons, 1969; Elliot and Wiley, 1975; 

Domenico, 1976).  In particular, Thurber et al. (1995) emphasized the relationship between 

the Vp/Vs parameter and the changes in the physical properties of the rocks in seismogenic 

areas.  

Beside to velocity images, attenuation tomography may provide useful and complementary 

insights on the physical properties of fluids permeating host rocks (Hauksson and Shearer, 

2006). Although not yet a routine tool, attenuation tomography using local or regional 

seismicity and artificial sources has been well known for a number of years. The approaches 

used for calculating the spatial distribution of attenuation vary depending on whether one 

considers the inversion scheme (Ho-Liu et al., 1988; Shukri and Mitchell, 1990) or the 

calculation of the whole path attenuation (Evans and Zucca, 1993; Lees and Lindley, 1994). 

Toksoz et al (1979) showed, through laboratory measurements, how the attenuation of P- and 

S-wave in rocks strongly depends on the physical state and saturation, rather than on the 
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seismic velocities. In particular, the Qs/Qp ratio can reveal the types of attenuation 

mechanisms and the possible effects of the crustal fluids percolation and migration on body 

wave anelastic attenuation (Hauksson and Shearer, 2006).  

Rock physics can be used to link the P-wave and S-wave velocity and attenuation models, 

obtained from earthquake travel-time inversion, to rock properties. In fact, rock physics 

provides the link between rock and fluid properties and seismic response. There are 

numerous empirical models, relating the P and S wave velocities to rock properties like 

density (ρ) or porosity (φ) (Wyllie et al., 1956; Han et al., 1986; Raymer et al., 1980; Castagna 

et al., 1993; Dvorkin et al., 1995; Brocher, 2005). However, these models are strongly 

dependent on the rock lithology and are very simplified, since the wave velocity only depends 

on porosity (or on density). Since we are interested in investigating complex porous media 

characterized by different lithologies, we have developed an approach based on the Pride 

(2005) poro-elastic rock modelling, which is valid within a wide range of frequencies and 

consolidated rock lithologies. 

By combining seismic imaging methods and rock physics models, we developed a two-step 

method in order to evaluate the poroelastic micro-parameters of the host porous medium. In 

the first step, we use the seismic imaging technique in order to obtain visco-elastic effective 

macro-parameters (velocity and attenuation). From these visco-elastic parameters, we 

develop an up-scaling method, based on Biot’s theory (1956), in order to estimate micro-scale 

properties (porosity, mechanical moduli, fluid phase properties, and saturation) through the 

direct comparison between observed and up-scaled macro-parameters. 

Finally, we plan to develop a complete inversion procedure of the velocity and attenuation 

models in order to obtain the corresponding images of micro-parameters, and therefore to 

infer a complete interpretation about the physical state of the hosting porous medium. 

In the first two paragraph we describe the method that allows macro-parameters tracking, i.e. 

velocity and attenuation tomography, detailing the general problem, the inversion strategy 

and the assessment of solution quality. The third paragraph concerns the micro-parameter 

tracking. It contains the description of rock physical modelling for the up-scaling procedure, 

and the related down-scaling procedure for the complete inversion. 
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1.1     MACRO-parameters tracking 

First-arrival travel time tomography can be used to image the Earth’s interior at various 

scales, from near-surface to global, by using active and passive sources. For seismic imaging, 

the determination of the near-surface velocity structure is a key step when trying to image 

deeper structures. After the Aki and Lee (1976) work, earthquake location and tomography 

have become widely used means to deduce active and passive structures of the Earth’s 

interior from the available seismological data. In particular, by using seismological 

observables, such as the arrival time of the P and S primary seismic waves and their 

attenuation measured in the frequency domain through the parameter t* (i.e. the ratio 

between the time of the first arrival of seismic phases and the quality factor Q), it is possible 

to perform a 3D imaging, thus obtaining the velocity and the attenuation structure of the 

crust. 

The imaging of crustal seismic velocity provides significant constrains on the physical 

properties of host rocks and on the potential presence of fluids, in particular in the volume 

embedding fault systems. Indeed, the contribution of pore fluid in pressure changes to 

earthquake triggering at different rupture scales is recognized worldwide (Hardebeck and 

Hauksson, 1999; Husen and Kissling, 2001). Fluid movements can be tracked by analysing 

VP/VS ratio space-time changes (e.g. Hamada, 2004; Chiarabba et al. 2009; Lucente et al, 2010; 

Valoroso et al. 2011).  

Seismic attenuation studies provide important independent constraints on Earth properties 

since their sensitivity to temperature, fluids, compositional differences, and other rock 

properties (Toksoz et al., 1979; Hauksson and Shearer, 2006) complementary from that 

provided by P- and S-wave velocities. Tomographic inversions are now commonly applied to 

determine the three-dimensional attenuation (quantified by 1/Q) structure in a manner 

comparable to velocity tomography.  

However, the above observables (i.e. velocity and attenuation parameters) cannot single out, 

for example, the type of fluid mixing and the relative percentage of saturation (Dupuy et al., 

2016), which are necessary factors to define a reliable picture of the host rock physical 

properties. 

1.1.1 Seismic Velocity   

The propagation velocity of the waves depends on density and elastic moduli of the medium.  
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The P-wave velocity is related to the elastic properties of the medium by the following 

expression: 

 

𝑣𝑝 = √
𝐾 + 4/3𝜇

𝜌
 

 

(1) 

where K is the bulk modulus, μ is the shear modulus and ρ is the density. The S-wave velocity 

can be related to the elastic properties of the medium by the following expression: 

 
𝑣𝑠 = √

𝜇

𝜌
 

 

(2) 

S waves propagate through materials more slowly than P waves. In addition, S waves cannot 

propagate through fluids, as fluids do support shear particle motion. 

The bulk modulus, shear modulus and density depend on the mineralogy and structure of a 

rock, its porosity, the pore fluid type and the related saturation. Thus, these are the 

parameters that affect the seismic P- and S-wave seismic velocities.    

The body wave travel time T from an earthquake i to a seismic station j is expressed using ray 

theory as a path integral (Thurber, 1993) 

 
𝑇𝑖𝑗 =  ∫ 𝑢𝑑𝑠

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟

𝑠𝑜𝑢𝑟𝑐𝑒

 
 

(3) 

 

where 𝑢 is the slowness field (reciprocal velocity) and 𝑑𝑠 is the elementary path length. The 

real observations are the arrival times 𝑡𝑖𝑗  , where 

 𝑡𝑖𝑗 =  𝜏𝑖 + 𝑇𝑖𝑗  (4) 

 

and 𝜏𝑖 is the earthquake origin time. 

In order to obtain the arrival time of a phase (picking), the common procedure involves the 

manual measuring of P-and S- arrivals on recordings of a single event at a time. However, the 

growing number of dense seismic monitoring networks installed in areas of high seismicity 

offers a continuously increasing availability of high-quality three-component recordings 

which has motivated the study of techniques for automatic picking. The approaches to 

automatic picking can be divided into main categories. The first one is to analyses a single 
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event at a time doing the picking on each seismogram independently from the others (Allen, 

1978; Diehl et al., 2009; Dai and MacBeth, 1997). A second approach works on several 

seismograms at once, exploiting the similarity of waveforms from nearby events (Rowe et al., 

2002). This approach can be used on the manually picked data-sets in order to obtain highly 

accurate readings.  

 

1.1.1.1 Tomographic inversion strategy  

In terms of inverse problem theory (Menke, 1989) the observed arrival times are the data, 

while the source coordinates, the origin times, the ray-paths, and slowness field are the 

unknowns (model parameters). Given a set of arrival times 𝑡𝑖𝑗
𝑜𝑏𝑠 measured at a network of 

stations, the calculated arrival times 𝑡𝑖𝑗
𝑐𝑎𝑙  are determined from equations 3.1 and 3.2 using 

trial hypocenters and origin times and an initial seismic velocity model. The mistfit between 

observed and predicted (calculated) arrival times are then the residuals 𝑟𝑖𝑗 

 𝑟𝑖𝑗 =  𝑡𝑖𝑗
𝑜𝑏𝑠 − 𝑡𝑖𝑗

𝑐𝑎𝑙  (5) 

The residuals can be related to the desired perturbation to both the hypocentre than to the 

velocity model by using a linear approximation 

 
𝑟𝑖𝑗 =  ∑

𝜕𝑇𝑖𝑗

𝜕𝑥𝑘
∆

3

𝑘=1

𝑥𝑘 + ∆𝜏𝑖 + ∫ 𝛿𝑢𝑑𝑠
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟

𝑠𝑜𝑢𝑟𝑐𝑒

 
 

(6) 

All the linearized local earthquake tomography methods are based on equation 3.4 and then 

diversify to some extent, according to different treatment of some or all of the following 

aspects of the problem: 

• the scheme adopted for representing of the velocity model; 

• the technique for travel time and ray-path calculations; 

• the treatment of the hypocentre-velocity structure coupling; 

• the inversion procedure. 

The tomographic inversion method used by Latorre et al., (2004) is based on an iterative 

scheme operating on a linearized delay-time inversion to estimate both velocity models than 

earthquake locations. Slowness is modelled via trilinear interpolation on a 3D regular grid 

(the inversion grid. First arrival travel times of wavefronts are computed through a finite-

difference solution of the eikonal equation (Podvin and Lecomte, 1991) in a finer grid. For 

each source-receiver pair, travel times are recalculated by numerical integration of the 

slowness on the inversion grid along the rays traced in the finite-difference travel time field. 
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At each node of the inversion grid, travel time Fréhcet derivatives are computed for the P and 

S slowness, hypocentre location and origin time.  

The parameters are inverted using the damped LSQR method (Paige and Saunders, 1982). It 

consists in finding a solution in the sense of least squares, which searches for the vector x 

which minimizes the function 

 𝑚𝑖𝑛‖𝐴𝑥 − 𝑏‖𝐿2 (7) 

Since the problem is underdetermined the solution may not be unique; it is therefore 

necessary to introduce regularization as an additional condition that allows the convergence 

towards a single solution. A classical approach to solve the underdetermined problems is to 

search for a solution in sense of the damped least-squares (Menke, 1989). The system to be 

solved becomes 

 (
𝐴
𝜖𝐼

) 𝑥 =  (
𝑏
0

) (8) 

where I is the identity matrix and 𝜖 is the parameter that controls the damping level. This 

parameter defines the damping of the perturbation amplitudes compared to the reference 

model, otherwise known as the distance between the initial parameters and the final 

parameters of the model. This value in turn controls the relationship (trade-off) between the 

standard deviation of the data (misfit) and the variance of the model obtained. The equation 

(7) can be written as 

 𝑚𝑖𝑛‖𝐴𝑥 − 𝑏‖𝐿2 + ‖𝜖𝐼𝑥‖𝐿2 (9) 

  

and the final solution is 

 𝑥⃗ = (𝐴𝑇𝐴 + 𝜖2𝐼)−1𝐴𝑇𝑏 = 𝐴−𝑔𝑏 (10) 

 

Where 𝐴−𝑔 is the generalized inverse (Backus & Gilbert, 1970). The damping parameter 

defines the perturbation amplitudes in accordance with the reference model, i.e. the distance 

between the initial parameters of the model and final parameters. Model roughness is bonded 

imposing that the Laplacian of the slowness must vanishes during the inversion procedure 

(Benz et al., 1996; Menke, 1989).  

Each iteration consists of the following operations: 
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• trilinear interpolation of the velocity model on a finer grid; 

• calculation of the theoretical arrival times with the finite difference technique of 

Podvin and Lecomte (1991), in order to obtain a first estimate for each station 

of the travel time at each node of the finer grid; 

• ray tracing technique of back ray-tracing for each source-receiver pair along the 

gradient of the travel time estimates; 

• accurate calculation of the travel time field by integrating slowness along the 

ray path; 

• calculation of the Fréchet derivatives of the travel time field simultaneously for 

P and S slowness, hypocentral coordinate and origin time of earthquakes; 

• preconditioning and smoothing of the matrix of derivatives. The first is the 

normalization and scaling of the matrix of derivatives in order to control the 

quality of the estimated parameters. This operation is controlled by a set of four 

hyper-parameters, one for each class of estimate parameters. The smoothing is 

achieved by requiring that the Laplacian of the slowness field counts zero (Benz 

et al., 1996); 

• inversion of linear system of equations, scaled and weighed, with the algorithm 

LSQR (Paige and Saunders, 1982). 

The regularization of the inversion is achieved through the damping factor. The chosen value 

is the damping for which a small variance in the data corresponds to a small variance in the 

model, for each of the four classes of parameters simultaneously. To determine the optimal 

combination of hyper-parameters we performed sensitivity tests, i.e. synthetic tests using the 

real earthquakes-station configuration and the same parameters chosen for the tomographic 

inversions. 

 

The velocity model is parameterized by a nodal representation, described by a tridimensional 

grid. Since no single scheme can faithfully represent all the aspects of the crustal 

heterogeneities, a good inversion strategy is a multiscale approach: a series of inversions is 

carried out refining the velocity grid progressively, the starting model for each inversion 

being the final model of the previous one. This procedure, which was first introduced for 

velocity estimation by Lutter et al. (1990), allows us to determine the large-scale components 

of the velocity model and then to progressively estimate the smaller-scale components. 
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1.1.1.2 Assessment of solution quality 

To assess the reliability of the final solution, the resolution matrix may be numerically 

computed. The full resolution matrix is calculated starting from the tomographic matrix using 

the relation: 

 𝑅 = 𝐴−𝑔𝐴 (11) 

 

The full resolution matrix is represented in terms of its resolution diagonal elements RDE and 

the spread function 𝑆𝑗  (Michelini and McEvilly, 1991) related to off-diagonal elements. The 𝑆𝑗  

is defined as: 

 
𝑆𝑗 = log  (|𝑠𝑗|

−1
∑ (

𝑠𝑘𝑗

|𝑠𝑗|
)

2

𝐷𝑗𝑘

𝑁

𝑘=1

) 
 

(12) 

 

where 𝑠𝑗  is the L2 norm of diagonal j element of resolution matrix, and can be interpreted as a 

weighting factor that takes into account the value of the resolution kernel for each parameter, 

𝑠𝑘𝑗 is the elements of j-th row of resolution matrix, and 𝐷𝑗𝑘  is the distance between model 

parameter j and k. So, 𝑆𝑗 is calculated by compress each row of the resolution matrix into a 

single number, which describes how peaked is the resolution for the corresponding diagonal 

element. The lower the 𝑆𝑗  the more peaked is the resolution.   

In addition to RDE and 𝑆𝑗 , we used for the definition of resolved area the derivative weight 

sum (DWS), that measures the ray density in the neighbourhood of every node. Therefore, we 

used the DWS as a measure of the information density provided by the ray coverage. The DWS 

of the n-th V parameters is defined as 

 

𝐷𝑊𝑆(𝑉𝑛) = 𝑁 ∑ ∑ { ∫ 𝜔𝑛(𝑥)𝑑𝑠

 

𝑃𝑖𝑗

}

𝑗𝑖

 

 
(13) 

 

where i and j are indices for event and station 𝜔𝑛 is the linear interpolation weight that 

depends on coordinate position, 𝑃𝑖𝑗  is the ray path from i to j, and N is the normalization of the 

volume influenced by 𝑉𝑛 (Tomey and Fougler, 1989).The ray-path 𝑃𝑖𝑗  is computed into the 

final model obtained by observation, and take into account the real ray-path geometry. 
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1.2.1 Seismic Attenuation  

The seismic waves propagating across the Earth crust undergo energy dissipation processes, 

which cause their amplitude to attenuate as a function of travel distance and wave frequency.  

There are several different theories explaining the pore fluid attenuation mechanism. Mavko 

and Nur (1979) proposed a model in which liquid droplets in a partially saturated crack flow 

in response to crack compression or dilatation. Kjartansson and Denlinger (1977) have 

presented a model in which the compression of pore fluid gaseous phase causes the adiabatic 

heating of the gas followed by an irreversible flow of heat into the rock and pore water. Those 

two mechanisms predict that attenuation should increase with the degree of saturation and 

then rapidly decrease at total saturation. For fully saturated rock, O'Connell and Budiansky 

(1977) proposed a model which involves "squirting" flow between cracks because, having 

different orientations with respect to the passing wave and aspect ratios, they undergo 

differential compression. This shows that the mechanism may cause significant shear 

attenuation over a broad frequency range, and that shear attenuation should be much larger 

than compressional attenuation. 

Johnston et al (1979), through the application of these models to the ultrasonic data of Toksöz 

et al (1979), showed that friction on thin cracks and grain boundaries is the dominant 

attenuation mechanism for consolidated rocks under most conditions in the Earth’s upper 

crust. Increasing pressure decreases the number of cracks contributing to attenuation by 

friction, thus decreasing the attenuation. Water wetting of cracks and pores reduces the 

friction coefficient, facilitating the sliding and thus increasing the attenuation. In saturated 

rocks, fluid flow plays a secondary role in friction.  

These models shows how the attenuation of P- and S-wave in rocks strongly depends on the 

physical state and saturation condition, and how it generally varies much more than the 

seismic velocities as a result of the changes in the physical state of materials (Toksoz et al 

1979). 

The parameter which describes the anelastic attenuation is the quality factor Q, measuring the 

fraction of energy that is lost per wave cycle through the friction phenomena occurring during 

the wave propagation from a source at depth to the receiver placed at the Earth surface. The 

quality factor Q is linked to the coefficient t* via the formula: 

 
𝑡∗ = ∫

𝑑𝑙

𝑣𝑄
 

 
(14) 
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where dl is the ray element and the terms Q and v are the quality factor and the velocity along 

the ray path, respectively. 

1.2.1.1 t* measurements 

t* is the most used parameter to evaluate the effect of the anelasticity in the Earth.  

Different are the technique that allowing the measure of this parameter. Here we mainly focus 

on frequency domain based techniques.  

 The displacement spectrum 𝑈 of a seismic signal is described as: 

 𝑈(𝑓) = 𝑆0(𝑓)𝐺(𝑓)𝑅(𝑓)𝐼(𝑓) (15) 

The function 𝑆0(𝑓) describes the source spectrum, 𝐺(𝑓) accounts for the geometrical 

spreading, the radiation pattern and the anelastic body-wave attenuation along the travel 

path, and 𝑅(𝑓) is the site transfer function. Lastly, 𝐼(𝑓) is the instrument response curve. 

The attenuation function 𝐺(𝑓) is: 

 𝐺(𝑓) = C′𝑆𝑒−𝜋𝑓𝑡∗
 (16) 

where a distance-dependent term C′𝑆 accounts to direct P and S-wave amplitude variations 

due to the velocity structure. t* measurement from spectrum analysis, as suggested by 

equation (2), needs the removal of the  frequency-dependent contribution of site transfer 

function, instrumental response and source spectrum. Both the instrumental response and 

the site transfer function may be de-convolved or considered as a constant static factor in the 

whole frequency range of interest. 

In their work on source parameters calculation along the Irpinia Fault zone, Zollo et al. (2015) 

used two different approach to calculate the t* for earthquake grater or smaller than ML=1.0. 

For small magnitude earthquakes (e.g. ML < 1.0) t* is has been determined from the low-

frequency spectral decay in a frequency band whose upper limit is given by the event corner 

frequency. For the larger events in the data-set, t* is was instead computed by using a multi-

step, iterative inversion of spectral parameters (i.e. Ωo, ωc, γ, and t* in figure 1; Zollo et al., 

2015). 

For active seismic data, the cross-correlation of the sweep with velocity seismograms allows 

to properly remove the source contribution to provide the Green’s functions of the 

propagation medium (Brittle et al., 2001). Then, the natural logarithm of the displacement 

spectrum yields can be computed as: 

 𝑙𝑛𝑈𝑖,𝑗(𝑓) = ln(C′
𝑆) − 𝜋𝑡𝑖,𝑗

∗ 𝑓 (17) 
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where i, j are the indices for source and station, respectively. The spectral decay produced by 

the anelastic attenuation may be fit in the least-squares sense. The attenuation parameter t* 

may be inferred from the slope of the best-fit curve of the spectrum (Figure 1). 

 

Figure 1. t* measurement by means of a fitting procedure. Example of a displacement spectrum (dashed line) plotted in a log-

linear scale and fit in the least-squares sense in the frequency range 40-125 Hz. 

 

1.2.1.2 Tomographic inversion strategy 

If the velocity model is known and the t* parameter has been estimated along the 

corresponding path, the 3-D attenuation quality factor Q of the medium along this path could 

be solved by an appropriate inversion method. The usual assumption is that the velocity 

model is fixed, so ray paths do not change during the inversion procedure and the problem is 

linear from a mathematical point of view.  

In order to perform the 3D tomographic inversion of 𝑡∗ data, we have adapted the code 

originally developed by Latorre et al. (2004) and used by Amoroso et al. (2014) in order to 

retrieve the velocity model of the area under examination.  

To obtain an attenuation model, we used the residual of 𝑡∗, 𝛿𝑡∗ = 𝑡∗𝑜𝑏𝑠 − 𝑡∗𝑐𝑎𝑙 , that can be 

expressed as a function of partial derivatives, by the formula 

 
𝛿𝑡∗ =

𝜕𝑡∗

𝜕(1 𝑣⁄ )
𝛿 (

1

𝑣
) +

𝜕𝑡∗

𝜕(1 𝑄⁄ )
𝛿 (

1

𝑄
) (18) 
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To determine the parameter Q we modified the code of Latorre et al. (2004). Both the velocity 

than the hypocentre parameters are kept fixed during the inversion. The modifications of the 

algorithm preserve the inversion procedure, but they imply changes concerning inputs and 

computation of the Fréchet derivatives. In particular the entire inversion procedure can be 

summarized in successive steps, as follows: 

 ray-tracing in the fixed velocity model (a priori known from previous analyses) for all 

the station-event couple for which 𝑡∗are available; 

 calculation of the theoretical 𝑡∗ by the integral formulation (x), and residuals 

∆𝑡∗ = 𝑡𝑜𝑏𝑠
∗ − 𝑡𝑐𝑎𝑙

∗ ; 

 set up of the equations system to solve by matrix inversion; 

 smoothing of the matrix (Benz et al., 1996); 

 inversion of the matrix system ∆𝑡∗ = 𝐻𝛿𝜂, where ∆𝑡∗ is the matrix of the residuals, 𝐻 is 

the Frechèt derivatives matrix, and 𝛿𝜂 is the matrix of the attenuation perturbation, 

using the LSQR method (Paige and Saunders, 1982); 

 once we get the Q attenuation model, the RMS of residuals is evaluated, and if these 

values are below a given threshold the final model is obtained, otherwise the 

procedure is reiterated from item 2 onwards. 

As in the velocity tomography case, to assess the reliability of the final solution, the resolution 

matrix may be numerically computed. Moreover, in addition to RDE and Sj, we used for the 

definition of resolved area the derivative weight sum (DWS), that measures the ray density in 

the neighbourhood of every node. The details about these quantities can be found in previous 

1.1.1.2 paragraph. 

1.3   MICRO-parameters tracking 

In the past decades, velocity and attenuation seismic tomography have been used to image the 

spatial variation of elastic/anelastic rock properties within complex geological media. Then, 

these properties were qualitatively interpreted in terms of fluid presence and migration 

within the considered crustal volume (Di Stefano et al 2009, Amoroso et al 2014, Zucca et al 

1994, Gunasekera et al 2003, Husen et al 2004, Hakusson and Shearer 2006). In these works, 

the inferences about pore fluid and the physical condition of the host medium are made from 

the trends of Vp/Vs and Qs/Qp ratio on the basis of laboratory measurements. 
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Although these works are based on widely accepted methodologies, the inferred information 

are entirely qualitative, or are derived from the comparison with laboratory results which do 

not take into account the complexity of the physical conditions of the analysed media. If we 

are interested in a quantitative interpretation of seismic attributes in terms of micro-

parameters values, we need to introduce the poro-elastic rock modelling, taking into account 

as far as possible the complexity of the host medium physical condition. 

There are numerous empirical models, which relate the P and S wave velocities to rock 

properties like density (ρ) or porosity (φ) (Wyllie et al., 1956; Han et al., 1986; Raymer et al., 

1980; Castagna et al., 1993; Dvorkin et al., 1995; Brocher, 2005). However, these models are 

strongly dependent on the rock lithology and the P-wave velocity depends only on porosity 

(or density) without taking into account the drained medium rigidity or the possible 

saturation in fluids (gases or liquids) which play an important role in constraining the macro-

parameters (Dupuy et al., 2016). 

During my internship at ISTErre, l'Istitut des Sciences de la Terre at the J. Fourier University 

of Grenoble, we developed an approach based on the poro-elastic, rock modelling developed 

by Pride (2005), which is valid within a wide range of frequencies and consolidated rock 

lithologies. 

Pride (2005) identifies connections between effective parameters at the mesoscale and 

macroscale seismic parameters obtained by seismic imaging. These connections provide the 

basis for our reconstructions of the mesoscale effective-medium parameters starting from 

inverted velocities and attenuation values. That is, we assume that the effective two-phase 

parameters can be reconstructed from seismic velocities and attenuation values and that 

these quantities also can be up-scaled from multiphase microscale rock physics. 

1.3.1    Rock physics modelling: up-scaling 

Using the effective medium theory and the Biot-Gassmann theory, we performed an up-

scaling modelling to predict the expected macro-parameters for a given host rock 

characterized by a set of micro-parameters which would describe the physical properties of 

the solid and fluid phases. In particular, we have considered possible saturations with 

combination of different types of fluids, gases and liquids, permeating the investigated rock 

volume. The final aim is the evaluation and the characterization of the possible fluid 

saturation from the direct comparison between the up-scaling predicted values of the macro-

parameters (P and S velocities and attenuation parameters and their respective ratios) and 

those ones inferred from the velocity and attenuation tomography. Our approach allows 

calculating the macro-parameters from the dry rock properties. The Biot’s theory deals with 

the elasticity of a two-phase medium: a solid, permeable, skeleton saturated with viscous 
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fluid. The Gassman relations provide the estimates of the bulk modulus of the drained 

medium during a fluid substitution. The Biot-Gassmann relations are applicable under the 

following assumptions: a) the mechanical moduli are computed at low frequency, i.e., in static 

conditions; b) the medium is assumed to be isotropic; c) the frame consists of identical grains 

and the pores are saturated with a single fluid phase. Pride (2005) extended this theory to the 

dynamic cases, in the hypothesis of signal wavelengths larger than grain size. 

Since we are interested in examining porous rocks composed by different solid phases and 

saturated with different fluid phases, the description of porous media requires a 

homogenization approach of both fluid than solid phases at the meso-scale, halfway between 

the macro-scale related to seismic waves and the micro-scale related to rock physics. 

Homogenization allows us to extract subseismic-scale information without involving the 

intrinsic complexities related to detailed rock-physics description (Chopra and Marfurt, 2007; 

Mavko et al., 2009). For this purpose we used the effective medium theory (e.g., Burridge and 

Vargas, 1979; Berryman, 1980a, 1980b), which allows homogenizing the multi-phase 

saturated medium to obtain an equivalent single fluid, which saturates the solid skeleton at 

the meso-scale.  

 

Figure 2. Thin section of rock sample under the microscope. The different boxes indicate the phases making up the porous 

medium and their characteristic parameters: in green the mineral phases; in blue the fluid phases; in red the rock matrix 

composed by the homogenization of mineral phases; in orange the porous media composed by the homogenization of fluid and 

solid phases. 
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The parameter that defines respective proportions of fluid and solid phases is the porosity φ = 

VV /VT , i.e.   the ratio between void and total volumes. The parameters describing fluids and 

associated flows through the solid matrix are a un-compressibility modulus Kf, a density ρf 

and a viscosity η. A non-viscous fluid has a viscosity η equal to zero. The viscosity can be 

introduced with the intrinsic permeability k0 introduced in the Darcy’s law. Auriault et al. 

(1985) and Johnson et al. (1987) generalized this law with a dynamic permeability k(ω) 

depending on the pulsation ω (assuming a time dependency in e−ıωt). This permeability, which 

is a complex number, is defined through the dispersive relation: 

 
𝑘(𝜔) =

𝑘0

√1 − 𝑖𝑃
𝜔
𝜔𝑐

− 𝑖
𝜔
𝜔𝑐

 
(19) 

and at low-frequencies is exactly the hydrological permeability k0 of the sample, while at high 

frequencies it includes inertial effects associated with relative fluid-solid movement (Pride, 

2005). 

The non-dimensional number P is equal, by default, to 0.5 but it hasn’t much influence on the 

seismic frequency bands (Pride, 2005). The separation between the low frequency domain, 

where viscous effects are dominant, from the high frequency one, where inertial effects 

prevail, is given by cut-off pulsation 𝜔𝑐. Using Archie’s law, the pulsation 𝜔𝑐 is defined as: 

 𝜔𝑐 =


𝜌𝑓𝑘0𝜑−𝑚 
 (20) 

  

where 𝑚 is the cementation exponent, related to the electrical cementation factor and to the 

pore tortuosities (Brown, 1980). Then, the dynamic loss of energy due to the fluid flow with 

an explicit frequency dependence can be introduced as the flow resistance density term 𝜌̃. 

This term is responsible for the intrinsic scattering of waves in the Biot poroelasticity theory 

(Biot, 1956) and it is expressed in the frequency domain as: 

 
𝜌̃ =  

𝑖

𝜔𝑘(𝜔)
 (21) 

Considering the solid skeleton, this is entirely described by the association of grains in a solid 

matrix. The grains are characterized by an un-compressibility modulus Ks , a shear solid 

modulus Gs and a solid density ρs. If different mechanical structures exist in the skeleton, we 

assume that a homogenization has already been performed. In consolidated media, this solid 

skeleton is described by an un-compressibility drained modulus KD , a shear modulus G and a 

consolidation parameter cs, which describes the degree of consolidation of solid matrix grains, 
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larger values representing less consolidated rocks (Pride, 2003). With the help of the porosity, 

empirical formulae (Pride, 2005) defined as: 

 
𝐾𝐷 = 𝐾𝑆

1 − 𝜑

1 + 𝑐𝑠𝜑
 (22) 

 
𝐺 = 𝐺𝑆

1 − 𝜑

1 +
3
2 𝑐𝑠𝜑

 
(23) 

links mineral properties to the parameters that characterize the skeleton itself. The 

consolidation parameter 𝑐𝑠 and the porosity 𝜑 are key ingredients for up-scaling constitutive 

parameters. 

Concerning the fluid phases homogenization procedure, we used the Voigt–Reuss–Hill (VRH) 

average (Mavko, 2009) in the gas-gas case and the formula of  Brie at al. (1995) in the liquid-

gas case. The Voigt–Reuss–Hill average is the arithmetic average of the Voigt upper bound and 

the Reuss lower bound: 

 
𝑀𝑉𝑅𝐻 =

𝑀𝑉 + 𝑀𝑅

2
 (24) 

 

Where 

 
𝑀𝑉 = ∑ 𝑓𝑖𝑀𝑖

𝑁

𝑖=1

 (25) 

 1

𝑀𝑅
= ∑

𝑓𝑖

𝑀𝑖

𝑁

𝑖=1

 (26) 

 

the terms fi and Mi are the volume fraction and the modulus  (K or G) of the i-th component, 

respectively.  Brie et al. (1995) suggest an empirical fluid mixing law, given by  

 𝐾𝐵𝑟𝑖𝑒 = (𝐾𝑙𝑖𝑞𝑢𝑖𝑑 − 𝐾𝑔𝑎𝑠)(1 − 𝑆𝑔𝑎𝑠)
𝑒

+ 𝐾𝑔𝑎𝑠 (27) 

 

where K indicates the bulk modulus of the gas and liquid phases, and S represents the 

saturations. 
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The density of the porous medium is the arithmetic mean of fluid and solid phases weighted 

by their own volumes via the porosity, so that: 

 𝜌 = (1 − 𝜑)𝜌𝑆 + 𝜑𝜌𝑓  (28) 

After obtaining the effective medium by the homogenisation process of the solid and fluid 

phases, we are able to apply the Gassmann relations (Gassmann, 1951) that lead to the 

following definitions of parameters that explicitly describe the homogenised porous medium: 

un-compressibility modulus KU, the Biot C modulus and the fluid storage coefficient M.  

Relationships between coefficients KU , C and M and the modulus functions of KD , Ks , Kf and φ 

are given by  

 

𝐾𝑈 =
𝜑𝐾𝐷 + (1 −

(1 + 𝜑)𝐾𝐷

𝐾𝑆
)𝐾𝑓

𝜑(1 + ∆)
 (29) 

 
𝐶 =  

(1 − 𝐾𝐷/𝐾𝑆)𝐾𝑓

𝜑(1 + ∆)
 (30) 

 
𝑀 =

𝐾𝑓

𝜑(1 + ∆)
 (31) 

Where 

 
∆=

1 − 𝜑

𝜑

𝐾𝑓

𝐾𝑆
(1 −

𝐾𝐷

(1 − 𝜑)𝐾𝑆
) (32) 

 

The shear modulus of the porous medium G is independent from the fluid characteristics and, 

therefore, equal to the shear modulus of the drained solid skeleton through the relation where 

only the porosity φ and the consolidation parameter 𝑐𝑠 are present. 

Biot theory provides connections between effective parameters at the mesoscale and 

macroscale seismic parameters obtained by seismic imaging. Biot developed dynamic 

equations which govern particle motions in saturated porous media and which were 

confirmed by many authors (Burridge and Keller, 1981; Pride at al. 1992; Pride and 

Berryman, 1998). Assuming a time dependency in e−ıωt , Pride (2005) formulated these 

equations, that control isotropic poroelastic response, as: 

 ∇ ∙ 𝝉⃗⃗𝐷 − ∇𝑃𝑐 = −𝜔2(𝜌𝒖⃗⃗⃗ + 𝜌𝑓 𝒘⃗⃗⃗⃗) (33) 

 −∇𝑝𝑓 = −𝜔2𝜌𝑓 𝒖⃗⃗⃗ − 𝑖𝜔
𝜂

𝑘(𝜔)
𝒘⃗⃗⃗⃗) (34) 

 
𝜏𝐷 = 𝐶(∇𝒖⃗⃗⃗ + (∇𝒖⃗⃗⃗)𝜏 −

2

3
∇ ∙ 𝒖⃗⃗⃗𝑰) (35) 
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 −𝑃𝑐 = 𝐾𝑈∇ ∙ 𝒖⃗⃗⃗ + 𝐶∇ ∙ 𝒘⃗⃗⃗⃗ (36) 

 −𝑝𝑓 = 𝐶 ∇ ∙ 𝒖⃗⃗⃗ + 𝑀∇ ∙ 𝒘⃗⃗⃗⃗ (37) 

where the stress tensor is denoted by τ and the fluid pressure by P. The displacement u can be 

considered coinciding with the solid grains displacement us and w is the relative displacement 

between fluid and solid phases, w=(uf-us). The terms 𝒖⃗⃗⃗, 𝒘⃗⃗⃗⃗, 𝝉⃗⃗𝐷 , 𝑃𝑐 and 𝑝𝑓represent the average 

response in volume that are much larger than the grains of the material but much smaller 

than the wavelengths. 

Equation (33) represents the total balance of forces on each rock sample. Equation (34) is 

itself a force balance on the fluid from a frame of grains, i. e. a generalized Darcy law. 

Equations (35), (36) and (37) are the constitutive equations. 

To obtain velocity and attenuation parameters, one need to insert the stress/strain relation 

into the force balances considering a homogeneous porous continuum, as in the elastic case. 

Then, putting the plane-wave response into these equations, we obtain the different equations 

solution corresponding to different types of wave. 

In particular, Biot’s  theory predicts three wave types: a shear wave similar to those 

propagating inside an elastic medium and two compressional waves, one similar to those 

propagating inside an elastic medium, and another, called Biot wave, slow and strongly 

diffusive and attenuated at low frequencies. This Biot wave behaves as either a diffusive signal 

or a propagative wave depending on the frequency content of the source with respect to the 

cut-off pulsation or characteristic frequency. The slowness of the shear wave is given by the 

following equation (Pride, 2005) 

 
𝑠𝑆

2 =
𝜌 − 𝜌𝑓

2/𝜌̃

𝐺
 (38) 

 

while slownesses of compressional waves, the P and Biot waves, are given by  

 

𝑠𝑃
2 =

𝛾

2
−

1

2
√𝛾2 −

4(𝜌𝜌̃ − 𝜌𝑓
2)

𝐻𝑀 − 𝐶2
 (39) 

 

𝑠𝐵𝑖𝑜𝑡
2 =

𝛾

2
+

1

2
√𝛾2 −

4(𝜌𝜌̃ − 𝜌𝑓
2)

𝐻𝑀 − 𝐶2
 (40) 

where 
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𝛾 =

𝜌𝑀 + 𝜌̃𝐻 − 2𝜌𝑓𝐶

𝐻𝑀 − 𝐶2
 (41) 

 
𝐻 = 𝐾𝑈 +

4

3
𝐺 (42) 

From these equations we can deduce the correspondent velocity and quality factors (Pride, 

2005): 

 
𝑉𝑃,𝐵𝑖𝑜𝑡,𝑆 =

1

𝑅𝑒(𝑠𝑃,𝐵𝑖𝑜𝑡,𝑆 )
 (43) 

 
𝑄𝑃,𝐵𝑖𝑜𝑡,𝑆 =

1 𝑅𝑒(𝑠𝑃,𝐵𝑖𝑜𝑡,𝑆  
)

2 𝐼𝑚(𝑠𝑃,𝐵𝑖𝑜𝑡,𝑆  
)
 (44) 

 

The Biot slow waves velocities and quality factors are not measurable with classical seismic 

records, so they were not considered in our analysis. 

The procedure described above allows to obtain the up-scaled macro-parameters values, 

which were compared with the macro-parameters obtained with seismic tomography. We 

defined a likely set of micro-parameters as the one for which the resulting up-scaled macro-

parameters fall within the range of the observed values.  

The up-scaling procedure has been implemented in a fortran 90 code. 

 

1.3.2 Rock physics modelling: down-scaling 

In order to obtain three-dimensional models of micro-parameters, starting from the velocity 

and attenuation ones, we could construct a complete non-linear inversion procedure. The first 

step consists in establishing a parameterization of the host volume, i.e. in determining a 

minimal set of model parameters whose values completely characterize the system. Then, we 

could construct a forward modelling, i.e. discovery the physical laws allowing to make 

predictions on the results of some observable parameters. In our case, this is represented by 

the rock modelling described in the previous paragraph. Lastly, we could construct the 

inverse modelling, i.e. a procedure that allows to obtain, for each node of the model grid, an 

optimized estimation of the micro-parameter value from the comparison between the 

observed value of the macro-parameters and the one obtained one by the above up-scaling 

procedure. 

The cost function expression plays a key role in the inversion procedure. In fact, we have to 

pay attention to the fact that the four macro-parameters used in the inversion process have a 



 
 

 
Tracking space and time changes of physical properties in complex geological media - Grazia De Landro 

29 

different physical nature.  Because of that, we have introduced a cost function based on 

relative residuals of macro-parameters, in which the velocity and the attenuation factor are 

differently weighted: 

 

𝐹(𝑉𝑙, 𝑄𝑙) =
√

∑ [𝜔𝑉𝑙 (
𝑉𝑙

𝑜𝑏𝑠 − 𝑉𝑙
𝑐𝑎𝑙

𝑉𝑙
𝑜𝑏𝑠 )

𝑝

+ 𝜔𝑄𝑙 (
𝑄𝑙

𝑜𝑏𝑠 − 𝑄𝑙
𝑐𝑎𝑙

𝑄𝑙
𝑜𝑏𝑠 )

𝑝

]𝑙

∑ (𝜔𝑉𝑙 + 𝜔𝑄𝑙)𝑙

𝑝

 

 

(45) 

Here 𝑙=P,S and the 𝜔 are the weights. 

In order to provide a better definition of the cost function, several tests were planned to 

optimize the choice of: 

 The value of the p-norm, which can be 1 or 2 depending on the weight we want to give 

to the outliers; 

 The value of the weight 𝜔on the velocity and attenuation parameters, depending on 

the accuracy of the observed macro-parameter values; 

 The possibility to use a combination of velocity and/or attenuation parameters, i.e. 

product or ratio, in the cost function, in order to improve the procedure resolution. 

By taking into account the micro-parameters continuity into the realistic host medium, we can 

improve the cost function resolution considering in the inversion of one grid node, the 

information of the six neighbouring nodes. In this way, the complete cost function is defined 

as the sum of the cost functions in the current node plus the ones of the six neighbouring 

nodes, properly weighted.  

Because of the not uniqueness of the inverse problem solution, a more complete description 

of the solution can be obtained by using a probabilistic approach (Tarantola and Valette, 

1982). Assuming that the distributions of micro-parameters and related errors are Gaussian 

around the predicted value, we can write the probability density function (PDF) for each node 

𝑥𝑖,𝑗,𝑘 of model as: 

 
𝑃(𝑥𝑖,𝑗,𝑘) =  

1

(2𝜋)1/2𝜎
𝑘 𝑒

𝜑2

2𝜎2  (46) 

 

Here 𝜎 represents the mean deviation of the distribution, i.e. the error on the observed macro-

parameters, 𝜑is the cost function and 𝑘is a normalization factor, i.e. the sum of all the 
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different micro-parameters models. The posterior density function (PDF) given by the 

equation (?) represents a complete, probabilistic solution to the inverse problem, which 

includes information on uncertainty and resolution. Another advantage of the probabilistic 

approach is the possibility to easily introduce any a-priori information on the observed 

parameters or parameters distribution.  

The minimum misfit point of the complete, non-linear location PDF is selected as an "optimal" 

micro-parameter value. The significance and uncertainty of this "optimal" micro-parameter 

cannot be assessed independently of the complete solution PDF. "Traditional" Gaussian or 

normal estimators, such as the expectation E(x) and covariance matrix C, may be obtained 

from the gridded values of the normalised location PDF or from samples of this function (e.g. 

Tarantola and Valette, 1982). For the grid case with nodes at xi,j,k, 

 𝐸(𝒙) =  ∆𝑉 ∑ 𝑥𝑖,𝑗,𝑘

𝑖,𝑗,𝑘

 𝑃(𝑥𝑖,𝑗,𝑘) 
(47) 

 

Where ∆𝑉 is the volume of a grid cell. The covariance matrix is then given by: 

 𝑪 = 𝐸((𝒙 − 𝐸(𝒙))(𝒙 − 𝐸(𝒙))𝑇) (48) 

 

The 68% confidence ellipsoid can be obtained from the singular value decomposition (SVD) of 

the covariance matrix C, following Press et al. (1992). The SVD gives: 

 𝑪 = 𝑼(𝑑𝑖𝑎𝑔 𝑤𝑖)𝑽𝑇 (49) 

where U = V are square, symmetric matrices and wi are singular values. The columns Vi of V 

give the principal axes of the confidence ellipsoid. The Gaussian estimators and the resulting 

confidence ellipsoid will be good indicators of the uncertainties in the location assuming that 

the complete, non-linear PDF has a single maximum and an ellipsoidal form.  
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Chapter 2: Tracking TIME changes of physical properties 
 

 

2. Introduction 

The characterization of the propagation medium in terms of elastic/anelastic and rock 

parameters and the possibility of making inferences about the presence of fluid are very 

important tool to track fluid migration within the host medium.  

A very important application of the temporal variation tracking of seismic properties 

concerns the prediction of earthquakes. Several authors (Whitcomb et al., 1973; Chiarabba et 

al. 2009; Lucente et al., 2010) found a large precursory change in seismic body-wave 

velocities occurring before earthquakes.  This phenomenon is well explained by considering 

the key role of fluid diffusion in earthquake nucleation and the consequent effects of rock 

dilatancy on fluid-filled, porous media (Frank et al., 1965; Nur, 1972). The authors also 

suggest that similar processes may be observed in the preparatory phases of future 

earthquakes.  

Moreover, the tracking of fluid migration and its consequences on induced seismicity, play a 

key role in the seismic monitoring of a producing reservoir (Wang et al., 1998; Lumley, 2001; 

Vesnaver et al., 2003; Gunasekera et al., 2003; Gritto et al., 2014).  In fact, the aim of seismic 

reservoir monitoring is to image fluid flow in a reservoir during its production. This is 

possible because, as fluid saturations and pressures in the reservoir change, the seismic 

elastic and anelastic response changes accordingly. 

Finally, the question of whether a high level of seismic activity is a precursor to an impending 

eruption is very relevant for volcanic monitoring. The study of the physical properties 

temporal variation inside the volcano (for instance the measurement of a variable related to 

the state within the hydrothermal system) would help in assessing the possible size of an 

eruption or the occurrence of volcanic instability (Ratdomopurbo and Poupinet, 1995; 

Duputel et al., 2009). 

Depending on the needs, “fast” methods should be adopted since they allow the monitoring of 

large scale medium properties for each recorded seismic event, therefore in a short time after 

the event. Despite the necessity of a long time-spam to record a consistent data-set required 

to achieve a good resolution, more comprehensive methods (e.g. tomographic inversion) 
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allow to obtain 3D images in different time intervals of the investigated parameters. This 

results in a better characterization of the location, shape and magnitude of the related 

anomalies. The “fast” techniques provide complementary information to the results of the 

comprehensive methods and its advantage is that it can be quickly computed as soon as the 

seismogram is available (Chiarabba et al., 2009; Lucente et al. 2010; Valoroso et al., 2011). 

Moreover, the “fast” methods can be used as a preliminary analysis tool, in order to select the 

appropriate temporal windows and optimize the source-receiver geometry for each of the 

analysed time window for the 4D tomography. 

Among the “fast” methods we analyse: 

 the station residuals variation analysis, that consists in tracking the temporal variation 

of the time residuals of the location obtained in a 3D model. The time residuals are 

indicators of the temporal and spatial differences between the actual velocity model 

and the average one;  

 the Vp/Vs ratio variation analysis, which consists in tracking the Vp/Vs ratio, a quantity 

that is directly correlated with the presence of fluids within the crust. The Vp/Vs ratio 

is tracked as a function of time for each of the station couples and through their 

comparison to each other, in order to identify both spatial and temporal changes of 

medium properties (Wadati, 1933; Kisslinger and Engdahl, 1973; Chiarabba et al., 

2009b; Lucente et al. 2010; Valoroso et al., 2011; Gritto et al., 2014). 

The analysis of Vp/Vs ratio temporal variation was used by Lucente et al. (2010) to reconstruct 

the preparatory phase of the 6 April 2009 Mw 6.3 L’Aquila earthquake, in central Italy. 

Approaching the earthquake, about a week before, the authors observed clear variations in 

the Vp/Vs ratio temporal trend. The change of the Vp/Vs ratio during the foreshock sequence 

suggests that seismic waves travel through a fractured medium, and that fracture field 

properties vary with time (Nur, 1972; Scholz et al., 1973; Aggarwal et al., 1973; Whitcomb et 

al., 1973). This variation is modelled through a complex sequence of dilatancy and fluid-

diffusion processes affected the rock volume surrounding the nucleation area. The authors 

inferred that the key role played by the process of fluid diffusion in the L’Aquila earthquake 

nucleation may be observed in the preparatory phases of future earthquakes in Italy and 

elsewhere. A similar result was retrieved by Valoroso et al. (2011) analysing the seismicity at 

the Val d’Agri in southern Italy, and Chiarabba et al. (2009) considering the 1997 Umbria-

Marche sequence in central Italy. As a consequence, the authors of these works suggested a 

better monitoring of temporal variation of the elastic properties in order to mitigate the 

seismic hazard in highly vulnerable area. In this framework, a method allowing the rapid 

estimation of the Vp/Vs ratio is fundamental in earthquakes prediction/prevention issue. 
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Among the more comprehensive methods, the most widely used is the time-lapse seismic 

reservoir monitoring. This method consists in the process of acquiring and analysing multiple 

seismic surveys, which were repeated at the same site over calendar time, in order to image 

the fluid-flow effects in a producing reservoir. Time-lapse seismic reservoir monitoring has 

advanced rapidly over the past decade and is quickly becoming a vital engineering reservoir 

management tool (see, e.g., Ebrom et al. 1998; Landrø et al., 1999; Johnston et al., 2000; Davis 

and Benson, 2001; Gunasekera et al., 2003). In fact, 4-D seismic can monitor the progress of 

costly injected fluid fronts (water, gas, steam, CO2, etc.) that can save hundreds of millions of 

dollars in optimizing injection programs and can map reservoir compartmentalization and the 

fluid-flow properties of faults (Lumley, 2001). The goal of 4-D seismic data processing is to 

obtain excellent 3-D seismic images for each data set, and simultaneously optimize time-lapse 

repeatability in regions of no subsurface change. In order to minimize non-reservoir 4-D 

image differences, equalize spectral bandwidth and phase, amplitude gain variations, 

differential statics, and event positioning, a “cross-equalization stage” is required (Altan, 

1997; Eastwood et al., 1998; Rickett and Lumley, 1998).  

Moreover, the 4D seismic tomography can be applied in a seismogenic area where a 

permanent network of sensors is available and a consistent data-set of seismic events is then 

recorded. This technique consists in applying the three-dimensional tomography in different 

time-windows. By analysing the tomographic images obtained for each time-window, after 

having ensured the same resolution for each of them, it is possible to map out the spatial and 

temporal changes in elastic/anelastic seismic parameters. Then, these changes can be 

correlated to the fluid saturations changes in the propagation medium to infer information 

about earthquake nucleation processes. 

A very explicative example of this technique is the application performed by Chiarabba et al. 

(2009) at the 1997 Umbria-Marche sequence in central Italy. The authors showed the 

observations of rock fracturing and fluid overpressure propagation along a fault system by 

using time repeated velocity tomography. In particular, they computed the variations of Vp/Vs 

anomalies (4D variations) that accompanied earthquake migration and preceded large 

aftershocks. The authors inferred that Vp/Vs increase observed before the mid-October 

earthquakes was related to a pore-pressure increase on fluid-filled cracks in the volume 

around the fault. Thus, the 4D seismic tomography represents a very useful tool for track 

pore-pressure and elastic properties variation around the nucleation area. 
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The first paragraph regards the “fast” tracking methods, the station residual variation and the 

Vp/Vs ratio tracking. The second paragraph contains details about the time-lapse tomography. 

In particular, in the second paragraph is described a new automatic procedure of cross-

equalization for passive seismic data-set.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
Tracking space and time changes of physical properties in complex geological media - Grazia De Landro 

35 

2.1 FAST tracking methods 

2.1.1 Station residuals variation tracking 

This method is used to evaluate the variations of the 3D velocity model, and hence of the sub-

soil structure, from the temporal variation of the arrival time residuals of the first P and S-

waves. If we consider the 3D velocity model for an area calculated by inverting a data-set of 

events which occurred over a long period of time, the obtained model averages possible 

model variations over time in the analysed period. The arrival time residuals, separately 

evaluated for the P and S phases, in a given time interval, are indicators of the temporal and 

spatial differences between the actual velocity model and the average one. In particular, we 

can consider the change with time of residuals at the same station for different events that 

occurred in the given time lapse (Figure 3, left panel), or the residual time changes of closely 

located events at different stations (Figure 3, right panel). In the first case, we will obtain 

information about changes of medium properties located near the surface and beneath the 

selected station. In the second case, we can infer possible time changes of medium properties 

in the volume of events occurrence. An important aim of this residual analysis could be the 

selection the appropriate temporal windows for the 4D tomography. The criterion underlying 

this choice is to maximize the spatial resolution and its homogeneity in all the different 

studied time intervals, optimizing the source-receiver geometry. 

 

2.1.2 Vp/Vs ratio variation tracking 

The Vp/Vs ratio is a quantity directly correlated to the presence of fluids within the crust. The 

analysis of the temporal variation of the Vp/Vs ratio is a technique that aims to image the 

large-scale medium properties. This technique provides complementary information to the 

results provided by a tomographic inversion procedure, and its advantage is that it can be 

quickly computed as soon as the seismogram is available. 

The Vp/Vs ratio value can be computed from the time difference between the S- and P-wave 

arrival times at a given station (respectively indicated by tp and ts), divided by the P-wave 

travel-time from the hypocentre to the station (Lucente at al., 2010; Wadati, 1933; Kisslinger 

and Engdahl, 1973; Chiarabba et al., 2009b; Gritto et al., 2014).  
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Here R is the hypocentral distance and ttp is the P wave travel-time. The above relation holds 

for a uniform Vp/Vs ratio along the travel path (Scholz et al., 1973; Whitcomb et al., 1973).  

As in the previous analysis, we can consider the change of the Vp/Vs ratio at the same station 

for different events that occurred in the given time lapse, in order to image the changes in the 

crustal volume beneath the considered station (Figure 3, left panel); or we can compute the 

Vp/Vs ratio for several events that occurred in the same source region, and have been recorded 

at different pairs of nearby stations, in order to reveal possible changes in crustal volume next 

to the source region (Figure 3, right panel). The basic idea is to analyse the graphs of the Vp/Vs 

ratio is a function of time for each couple of the station, and to identify both spatial and 

temporal changes by comparing them to each other.  

 

 

Figure 3. Schematic representation of the rays path for a given sources-stations geometry. The yellow stars represent the seismic 

sources, the red triangles the receivers and the blue lines the ray-paths. The calculated value of residual or Vp/Vs ratio is 

associated at the area common of all considered source-receiver ray-paths. In the left panel the common area of all the rays is the 

region beneath the stations; in the right panel the common area of all the rays is the sources region. 

 

 

Common receiver configuration Common source configuration 
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2.2 COMPREHENSIVE tracking methods: Time-lapse tomography 

The goal of the 4-D seismic data processing is to obtain 3-D high-resolution seismic images for 

each data-set, while minimizing non-reservoir 4-D image differences (Lumley et al. 1995; 

Lumley, 2001; Vesnaver et al., 2003). These custom processing tools have generally come to 

be known in the industry as “cross equalization”. The procedure consists in equalizing 

spectral bandwidth and phase, amplitude gain variation, different statics, and in the event 

positioning of co-register repeated survey data in order to optimize 4D seismic difference 

anomalies. 

We are interested in reconstructing the fluid flow in the medium through the application of 

time-lapse tomography to a continuous data-set of seismic events recorded with the same 

permanent acquisition network. This implies that the parameter to be equalized in the first 

step of time-lapse tomography is only the geometry of the sources, which are not fixed or 

controlled when working in passive seismic. The equalization is based on the choices of time 

windows (epochs) dividing the data-set, ensuring to have the same high-resolution of the 

tomographic images at all epochs. 

In the application realized so far, the choice of time-windows has either been bound to a 

specific physical event to analyse, i.e. an earthquake in a seismic area, fluid 

injection/extraction in a reservoir area or eruption events in a volcanic area (CO2 reservoir: 

Saito et al., 2006; Volcanic area: Patane et al. 2006; Seismogenic area: Chiarabba et al. 2009; 

Valoroso et al. 2011), or has been done by considering separate time periods (Gunasekera et 

al. 2003). In the first case, in particular, the entire time period to analyse is not too long, i.e. at 

most about one year, and the 4D tomography is performed on a few time-epochs (two or 

three). It is clear that in these cases a complex procedure is not required to select the optimal 

time-windows. As an example, in the work of Chiarabba et al. (2009), the authors explained 

that the choice of epochs was done by subdividing the entire data-set in fixed time intervals, 

and then by comparing the resolution in the different obtained epochs, in order to ensure a 

consistent model resolution.   

In this framework, the last part of our research project has focused on the development of a 

new equalization procedure for the massive seismic data-set recorded on a long-time period 

(of the order of several years), on which we are still working on. The novelty of this procedure 

lies not only in its ability to optimize the choice of time-windows (that may have different 

durations in passive seismic) in the case of massive data-sets, but also in a complete handling 
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of the issue associated to the seismic tomography, which includes the choice of inversion 

parameters, the choice of the optimal model parameterization, the analysis of the model 

resolution, etc. Moreover, a multi-scale procedure is included in the method.     

It is clear that this complex procedure should be included in a code system allowing to 

automatically optimize the entire process. We started to develop this code from the existing 

tools of tomographic inversion and resolution analysis that are described in the first chapter 

of this thesis. Below, in table 1, we report the operating scheme of the complete procedure of 

“cross-equalization of the passive seismicity catalogue”. The procedure is divided in four parts: 

1. Parameter setting and definition of the reference model; 

2. Setting of the first epoch time-length; 

3. Estimation of the time-windows length; 

4. Comparison between tomographic images. 

The first part of the equalization procedure consists in a preliminary 3D analysis, which aims 

to achieve a reference 3D velocity model for the entire data-set and the related resolution. The 

resolution can be assessed from the ray coverage, the derivative weight sum (DWS) (Toomey 

and Foulger, 1989) or the diagonal element of the resolution matrix or of the spread function 

(Sj) (Michelini and McEvilly, 1991) (for further details see par. 1.1.1.2).  

 Since the inversion method is linearized, there is the need for an initial velocity model. This 

initial velocity model must be the same for all the inversions in the different epochs, in order 

to minimize the contaminant effect of the 4D variation. The choice of the initial velocity model 

can be done by using a-priori or complementary information (i.e. geological prospection, well 

logs, etc.). An interesting choice could be the use of the 3D reference model as the initial 

model for the inversion in each epoch. In this way, the resulting 3D images will directly show 

the variation with respect to the reference model.  

An important step of this part is the setting, considering the entire data-set, of optimal model 

parameterization, and of the optimal inversion parameters, i.e. the damping factor and iper-

parameters. The first step is achieved by testing different model parameterizations, by halving 

the step size every time, and by stopping the iterative procedure in accordance with the 

Akaike criterion (Akaike, 1974), i.e. when the best compromise between the inversion rms 

(root mean square of time residuals) and the complexity of the model is reached. The second 

step is achieved by performing sensitivity tests with different values of damping and iper-

parameters, and by choosing the combination for which a small variance in the data 

corresponds to a small variance in the model. This step is performed for every selected 

recursive parameterization. 
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The second part of the procedure regards the setting of the time-length of the first epoch. 

First, we fix three different time lengths (e.g. chosen by using a priori information), then we 

invert the correspondent three data-sets by using the inversion parameter set in the previous 

part, thus obtaining the 3D models and calculating the related resolution. The optimal time 

length is the minimal one for which the area that we want to investigate falls inside the well-

resolved one.    

This result is crucial, since it represent the benchmark for the resolution analysis in the 

individual epochs.  

The third part regards the adaptive selection process of the temporal duration of each epoch. 

It consists in selecting specific time-windows and using the data-set recorded within this time 

interval to achieve a 3D tomography. The solution is evaluated and then compared with the 

one obtained in the first epoch with the use of the semblance function as a measure of 

similarity of resolved areas (Fig. 4). This comparison is performed for each recursive 

parameterization, and the semblance function has to be sufficient at least for the wider 

parameterization (Fig. 5). If the resolution is too low with respect to the benchmark one, the 

length of the time-window has to be increased so as to include more data. In order to have a 

consistent model resolution between the different epochs, the epochs may have different 

durations.  

Once a 3D well-resolved model for each epoch has been obtained, the last part consists in the 

comparison of these models. According to what one wants to investigate, the comparison may 

be made between each epoch and the first one, or between each epoch and the reference 

model obtained with the use of the whole data-set, or even between the different epochs. The 

variation found in the obtained images can thus be interpreted in terms of fluid motion in 

preparation, or as a result of an investigated physic phenomenon (i.e. a seismic event, fluid 

injection/extraction, hydrothermal depletion, etc.).  
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Table 1.  Overview for the operation scheme of the code for cross-equalization of passive seismicity catalogue. 

 

 

 

Parameter 
setting and 

reference model 
definition 

•A.1 Construction of input files considering the entire data-set;  

•A.2 Parameterizations choice analysis for the multi-scale (Akaike criterion); 

•A.3 Setting of damping and iper-parameters;  

•A.4 Computation of reference models and related resolution images (Derivative Weight Sum 
(DWS), RDE and Sj), for each multi-scale parametrizzations. 

 

Setting of first 
epoch time 

lenght 

•B.1 Construction of input files by variyng the lenght of first time-window Dt01= t1-t0 (i.e. fix three 
lenghts to explore); 

•B.2 Tomographic inversion using data-set of events that fall within the chosen time-windows and 
the parameters values (damping, hyper-parameters, parameterizations) precedently setup, to 
obtain initial reference models; 

•B.3 Resolution analysis for the obtained models and choice of the time-windows lenght (t1) on 
the basis of the resolution of the area that we want to interpret. 

 

Estimation of 
time-windows 

lenght 

•C.1 Fixed the ti-1 , with i = 2,3,...,n we want to estimate the Dti-1,i= ti-ti-1  of the following epoch;      

•C.2 Construction of input files by variyng the lenght of first time-window (by variyng ti), with an 
overlap ( a fixed % of Dt ); 

•C.3 Tomographic inversion considering the larger parameterization, using the reference model 
as initial model and the parameters values (damping, hyper-parameters, parameterizations) 
precedently setup; 

•C.4 Resolution analysis for this model and costruction of DWS image; 

•C.5 Comparison between the DWS images relative to the model obtained in this step and one 
relative to first epoch Dt0 (fig. 4) and construction of the correspondent semblance function; 

•C.6 The previous three steps shoud be repeated for each parameterization; 

•C.7 For each parameterization, construction of the semblance curves in function of the ti (fig 5); 

•C.8 Comparison between semblance curves for the different multi-scale parameterization with 
ti

*
  (minimum) fixed so that the semblance is maximum for each (or at least the wider) 

parameterization (fig. 5). 

 

Comparison 
between 

tomographic 
images 

•D.1 In each temporal window and for each parameterization, subtract the obtained model 
the reference one; 

•D.2 Comparison between tomographic images corresponding to different epochs; 

•D.3 Analysis of differences and anomalies between pairs of images in terms of fluid presence 
and migration. 
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Figure 4. Assessment of high resolution area in 4D tomography. Comparison between the DWS 
images of different epochs. The last bottom panel shows the construction of semblance function. 

 

Figure 5.  Curves of semblance values in function of length of current epoch time-windows for the 
different multi-scale parameterizations. 
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Chapter 3: Tracking changes of SEISMICITY distribution 
 

 

3 Introduction 

It is widely recognized that pore-fluid flow may play a dominant role in triggering seismicity 

(Nur and Booker, 1972). Diffusive processes of pore pressure relaxation in fractured and 

saturated rocks have been proposed to explain both earthquakes (Noir et al., 1997; Bosl and 

Nur, 2002) and induced seismicity (Talwani and Acree, 1985). Furthermore, the injection or 

production of fluids can induce micro-seismic events in hydrocarbon and geothermal 

reservoirs. 

According to Nur and Booker (1972), considering the behaviour of aftershocks, large shallow 

earthquakes can induce changes in the fluid pore pressure causing a slowly decrease of the 

rock strength and, therefore, an attractive mechanism for aftershocks. Hainzl (2004) analyses 

the earthquake swarms as a result of an intrusion of fluids into the seismogenic zone, which 

reduces the resistance of faults (Kisslinger, 1975; Noir et al., 1997) and causes seismicity 

patterns which significantly differ from aftershock sequences.  

Because of this relationship between fluid-flow and seismicity patterns, many authors (Nur 

and Booker, 1972; Hainzl, 2004; Antonioli et al., 2005; Hainzl and Ogata, 2005) test the 

hypothesis that the space distribution and temporal evolution of seismicity can be used to 

analyse the presence and diffusion of a pore-pressure perturbation in a poro-elastic fluid 

saturated medium. 

Moreover, from the point of view of monitoring, the use of information about the source 

locations, timing, and mechanisms of the induced seismic events is crucial to make inferences 

about the structure of a reservoir or the changes that are associated with injections during the 

production from the reservoir (Grasso and Wittlinger, 1990; Aki et al., 2005; Maxwell et al., 

2010).  

Another important issue concerning the spatiotemporal distribution of seismicity lies into the 

possibility to identify the geometry and kinematics of the activated fault segments during a 

seismic sequence (De Luca et al., 2000; Boncio et al., 2004; Chiaraluce et al., 2011).  

It is clear that an accurate knowledge of the seismicity pattern is crucial in these analyses in 

terms of space and time location. In the following paragraph, we present a high accurate non-

linear, global-search, probabilistic double-difference earthquake location method, 
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implemented in the NLDiffLoc (Non Linear Differential Location) code. The location method 

uses P- and S-wave differential arrival-time data, and related uncertainties, to determine 

refined location solutions in complex 3D media. Moreover, we report the results of several 

synthetic tests, which have been carried out in order to evaluate the performance of the 

method by varying the seismicity distribution, the velocity model and the accuracy of the 

data-set of arrival times.  

 

3.1  3D double-difference earthquake locations 

The knowledge of the spatial distribution of micro-seismicity allows the identification and 

geometrical characterization of active fault structures (e.g., Got et al. 1994; Waldhauser & 

Schaff 2008), the study of the regional stress field (e.g., De Matteis et al. 2012), the 

characterization of the small-scale variability of faulting style, stress and strength (e.g., 

Hardebeck 2006; Stabile et al. 2012), the evaluation of the source parameter scaling and 

radiation efficiency (e.g., Zollo et al. 2014), and the assessment of the seismic hazard (e.g., 

Emolo et al. 2011) in active seismic regions. 

The uncertainty on seismicity location parameters is strongly influenced by the network 

geometry, the knowledge of the crustal structures, and the number and quality of phase 

readings (Pavlis 1986; Gomberg et al. 1990). On the other hand, the effects due to the 

inaccuracy of the crustal velocity model can be minimized using relative location methods 

(Poupinet et al. 1984; Got et al. 1994). When the hypocentral distance between two 

earthquakes is, in fact, small if compared to the event-station distance and to the scale length 

of velocity heterogeneity, the ray paths between the source region and a common station are 

similar. Then, when ray geometry is favourable, the travel times difference for two events 

observed at one station can be attributed to the spatial offset between the events, which can 

be estimated with high accuracy (Got et al. 1994; Waldhauser & Ellsworth 2000). 

The double-difference, relative location method has been widely used to determine fine-scale 

fault geometry and produces high precision earthquake locations with linearized inversion in 

the assumption of a one-dimensional (1D) seismic wave propagation model (Got et al. 1994; 

Hauksson & Shearer, 2005; Valoroso et al. 2013). 

However, it has been demonstrated that the use of an incorrect velocity model can produce 

artefacts in the location of hypocentres even applying the double-difference method 

(Michelini & Lomax 2004). The use of a simple 1D velocity model may be not appropriate in 
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crustal volumes with strong lateral variation in velocity and irregular topographic surface and 

a three-dimensional (3D) velocity model may be needed to get a proper account of this crustal 

heterogeneity. 

3D crustal seismic velocity models are increasingly available from seismic travel-time 

inversion and eventually from geologic and geophysical interpretations. Probabilistic, 

absolute earthquake location using non-linear, global-search methods allows the use of 

complex 3D models and produces comprehensive uncertainty and resolution assessment 

(Lomax et al. 2000; Lomax et al. 2009). On the other hand, the use of differential travel-times 

with 3D velocity models is restricted to linearized, double-difference tomography (Thurber et 

al. 2004; Monteiller et al. 2005; Bannister et al. 2011); in this case the relative event locations 

can be determined jointly with the 3D velocity model. 

In the following paragraph, we present a non-linear, global-search, probabilistic double-

difference earthquake location method, implemented in the NLDiffLoc (Non Linear 

Differential Location) code, which uses both P- and S-wave differential arrival-time data and 

related uncertainties to determine refined location solutions in complex 3D media. This 

analysis has been presented in the paper of De Landro et al. (2015).  

 

3.1.1 Relative location method 

For absolute, non-linear, global-search location in 3D models we use the methodology 

proposed by Lomax et al. (2000), implemented in the NonLinLoc (Non Linear Location. 

Lomax, 2005; http://www.alomax.net/nlloc) software, where the complete probabilistic 

solution of the earthquake location problem is represented by a posterior probability density 

function (PDF). 

In order to perform double-difference (dd) earthquake locations, we propose a methodology 

that optimizes the relative spatial x, y, z, and t (origin time) coordinates for a set of 

hypocentres according to a given a set of differential phase arrival times measured at each 

station for multiple hypocentres. The method is an “annealing Metropolis” algorithm search 

(Mosegaard & Tarantola 1995; Lomax et al. 2000; Lomax et al. 2009). It has a temperature 

parameter which allows to search using a large step-size in x,y,z,t for event perturbation 

initially, with a “cooling”, but not “freezing” to an “adaptive”, nearly constant step size for later 

sampling. Thus the later sampling becomes Metropolis sampling to define the pdf for each 

hypocentre in x,y,z,t. This Metropolis sampling uses an adaptive step size for each event which 

is slowly increased when the acceptance rate for new, perturbed event’s hypocentres is high 

(e.g. > ¼) and decreased more rapidly if the acceptance rate is low (e.g. < ¼).  The method is 

http://www.alomax.net/nlloc
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presumably much faster than a pure Monte-Carlo approach and likely faster, simpler and 

more thorough than a cascading grid-search.  

An important reason for using a non-linear, directed, Metropolis-type stochastic search 

instead of a linearized approach, in addition to the simple use of 3D models (3D travel-time 

fields) with arbitrary complexity and parameterization, is the chance to explore complicated 

cost functions with multiple minima, curved, irregular and non-parabolic valleys in a better 

way. The extreme high-dimensionality of the multi-event inverse problem (“curse of 

dimensionality”) does make this extremely difficult whatever methods are used (including 

and sometimes especially linearized methods). The disadvantage of this method, compared 

with a linearized one is that the computation time is certainly much longer and the maximum 

number of differential times and events that can be processed is much less. 

In the exploration space of model parameters, the algorithm seeks the parameter solution that 

maximizes the likelihood function (based upon the misfit between measured and calculated 

differential phase arrival times) while perturbing the hypocentre coordinates. In particular, 

the misfit and the solution likelihood are determined by evaluating the dd eq. (4) proposed by 

Waldhauser & Ellsworth (2000). 

The equation describing the likelihood for a set of arrival-time difference measures, which 

concerns an event i with coordinates x, y, z, and origin time 𝑡0 is: 

 
𝐿𝑖(𝑥, 𝑦, 𝑧, 𝑡) = exp {−

1

2
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(52) 

 

where (...)obs is the difference between the arrival-times of an event i and of another event j at 

the same station k, (...)cal is the calculated arrival-time difference of these two events i and j at 

the station k, σ is the uncertainty for a differential time measure, and T is the current 

Metropolis (simulated annealing) “temperature” parameter (T≥1.0) (Lomax et al. 2000).  

During the application of the Metropolis random walk, one of the hypocentres, i, whose 

current likelihood is Licurrent (Equation 1), is perturbed in x, y, z, and t. Next, the likelihood for 

the perturbed hypocentre i, Liperturbed, is evaluated to check if the perturbation improves the fit 

to the data, in the sense of the Metropolis rule:  

 always accept the perturbed solution if Liperturbed has a higher likelihood than Licurrent;  
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 otherwise, accept it with probability Liperturbed/Licurrent (see Mosegaard & Tarantola 

1995). 

Note that this application of the Metropolis rule acts on the partial likelihood Li for the event i, 

and not on the total likelihood L for all the hypocentres and over arrival-time difference 

measures. 

The maximum likelihood point of the complete, non-linear location PDF is selected as an 

"optimal" hypocentre. The significance and uncertainty of this maximum likelihood 

hypocentre cannot be assessed independently of the complete solution PDF. Indeed, the 

Gaussian or normal estimators, such as the expectation E(x) and covariance matrix C may be 

obtained from the gridded values of the normalised location PDF or from samples of this 

function (e.g. Tarantola and Valette, 1982; Sen and Stoffa,1995) in the same way as in 

NonLinLoc (Lomax et al. 2000). 

We made several synthetic tests in order to show how the two methods (absolute and dd) 

works depending on the choice of the velocity model, of the maximum possible inter-event 

distance and on the accuracy of the arrival times data-set. 

3.1.2 Synthetic tests 

In order to evaluate the performance of the method, we performed synthetic tests with a 

regular distribution of 112 events, which covers the same occurrence area as in real events of 

Irpinia micro-seismicity (red stars in Fig. 6) and has depths of 10 km, and the configuration of 

ISNet stations. For these events, we calculated the theoretical arrival times (Time2Eq, NLLoc 

package) in the 3D velocity model (Amoroso et al. 2014), assuming that all the stations record 

the P phase and half the S phase. Through this procedure we have obtained a data-set 

consisting of 2912 P phases and 1456 S phases. 

Then, this events distribution has been located: 

i. with the 3D velocity model, considering maximum distance of 5 and 10 km to select 

the events couple to calculate the differential times, to analyse the influence of the 

inter-events connections on the location results (Fig. 6-7), 

ii. with the 1D velocity model, to analyse the influence of the uncertainty in the 

velocity model on the absolute and relative location results (Fig. 8), 

iii. with the 3D velocity model and arrival times with an added error, to analyse the 

influence of the arrival-time errors on the relative location results (Fig. 9). 

From the results of the first test it is clear that the number of connections, and therefore the 

number of differential data, for single event is crucial. In the case of 10 km maximum distance 
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the locations are improved in terms of distance from the true position and of location errors 

that decrease on an average of about 100 m. Considering a 5 km maximum distance, every 

event has a maximum of 8 connections and at least one single connection (Fig. 7a). With this 

condition the obtained locations have mean distance from the true position of about 200 m in 

plane and 200 m in depth (Fig. 6c, blue). Considering a 10 km maximum distance, every event 

has at least 7 connections and a maximum of 16 connections (Fig. 7b). With this condition the 

obtained localizations are significantly improved, in fact, the mean distance is about 30 m in 

plane and 25 m in depth (Fig 6c, green). Thus the minimum number of necessary connections 

to constrain the position of a single event is about 10, which is equal to the number of 

connections of the central events of finer grid. In the case of real locations, Fig. 7c, for the 

catalogue data-set with the use of the sections every event has an average of 40 connections, 

while for the refined data-set, since the maximum distance is 5 km, every event has an 

average of 15  connections (see Fig 12b). 

For the test with the 1D velocity model, the synthetic arrival times were inverted with the 1D 

velocity model in order to calculate the initial absolute locations with NLLoc. For the relative 

location we built the differentials arrival times by considering every possible combination of 

events with a maximum distance of 5 and 10 km, and then we located by considering the 1D 

velocity model (Matrullo et al, 2013). The results of this test, underlines the potential of the 

use of double difference if you locate by using an oversimplified velocity model compared to 

the complexity of the survey area. Both the seismicity distribution and the histograms show 

how the double-differences locations are much closer to the true position of events. Indeed, 

the distance decreases on average of 1.5 km both in plane and in depth, the RMS is reduced of 

0.05 s on average and also the location errors decrease of about 250 m on average. In any 

case, even considering a double-differences technique, the use of a 1D model can however 

lead to errors in location of even more than 1 km (Michelini & Lomax, 2004). In particular 

those events in NE have a location that is far from the real one, because in this area the 3D 

velocity model has a lateral anomaly that the 1D model cannot obviously take into account. 
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Figure 6. Test with the 3D velocity model: max. dist. 5 vs 10 km. Comparison between the dd location results of the synthetic 

events with the 3D velocity model considering a maximum distance of 5 km (blue) and 10 km (green) to calculate the differential 

times. Red stars indicate the reference positions of the events. Grey triangles are the ISNet seismic stations. a) Seismicity 

distribution in plane. (b) East-West vertical section of the seismicity. c) Distance in plane between the calculated and the true 

position (left) and distance between the calculated and the true depth of the events (right). d) Horizontal (left) and vertical 

(right) locations errors. e) RMS distribution. 

 

 

Figure 7. Plot of events inter-connection. a) Connection between events considering a 5 km maximum distance. b) Connection 

between events considering a 10 km maximum distance. c) Case of real locations, for the catalogue data-set with the use of 

sections every event has an average of 40 connections , while for the refined  data-set, since the maximum distance is 5 km, every 

event has an average of 15  connections (see Fig. 12-b). 
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Figure 8. Test with the 1D velocity model: absolute vs. relative locations. a) Comparison between the absolute initial location 

(blue) and the double-difference final location of the synthetic events with the 1D velocity model. Red star indicate the events 

reference positions. Grey triangles are the ISNet seismic stations. a) Seismicity distribution in plane. (b) East-West vertical 

section of the seismicity. c) Distance in plane between the calculated and the true position. d) Distance between the calculated 

and the true depth of the events. e) RMS distribution. 

 

Figure 9. Test with 3D velocity model and data with errors. a) Comparison between the absolute initial location (blue) and the 

double-difference final location (green) of the synthetic events with the 3D velocity model. Red stars indicate reference positions 

of the events. Grey triangles are the ISNet seismic stations and red stars are the reference positions of the events. a) Seismicity 

distribution in plane. (b) East-West vertical section of the seismicity. c) Distance in plane between the calculated and the true 

position. d) Distance between the calculated and the true depth of the events. e) RMS distribution. 



 

50 Chapter 3: Tracking changes of SEISMICITY distribution 

In order to analyse the code performances by considering a 3D velocity model and a data-set 

with an errors distribution, we performed a test whose results are showed in Fig. 9. The 

errors on arrival times were generated according to the distribution of the observed arrival 

times errors, i. e. a Gaussian distribution with a mean of 0 and a standard deviation of 0.08 for 

the P-phase and 0.12 for the S-phase. These errors were randomly added to the synthetic 

arrival times and, then inverted to calculate the initial absolute locations with NLLoc. For the 

relative location we built the differential arrival times considering every possible combination 

of events with a maximum distance of 10 km. Considering that from the arrival times without 

errors an average distance of about 30 meters from the reference position was obtained, we 

can state that the error on the data, with a similar distribution to the real one, influence the 

location with an error of the order of a few hundreds of meters. In this case too, as in the 

previous test, the  double-differences location is able to improve the results in terms of both 

distances with respect to the reference position, which decrease of about 500m on average, 

and of localization errors, which decrease of about 100-150 m on average. 

In Fig. 10 we show the results of a test that was performed to study the influence of the event 

selection criterion for the real catalogue data-sets on location accuracy. In particular, the Fig. 

10 represents the double-difference location of the catalogue data-set with the 3D velocity 

model, considering all the events with a 5 km max distance (turquoise dots) and the 

subdivision in sections of 10x10x30 km^2 (grey dots). The Fig. 10 is useful to show how the 

use of cubic sections, initially introduced to locate a large number of events with the code 

NLDiffLoc and, now optimized, has proved to be necessary to obtain accurate localization for 

the catalogue data-set. It is clear that, if we use all the events by fixing a maximum distance, 

there are several locations that are placed outside of the seismicity distribution and the 

corresponding errors are very high (greater than 3-4 km, Fig. 10). This result indicates that 

with this configuration, the code fails to converge to a good solution, and in consequence the 

probability distributions are very irregular too (some localizations are "ABORTED") despite 

the fact that for each event there is a large number of connections (see Fig. 12-b). With the 

introduction of the 10 km sections, we have the possibility to obtain more stable solutions and 

lower localization error, reaching a maximum of 500 m, even though there is an increase of 

the RMS values. We emphasize that within the sections all the possible connections between 

events are considered thus ensuring a large data-set to be made for each location (see Fig. 7c). 

In addition, the sections are overlapped to ensure that an event placed on the edge of a section 

is in the centre of the next, and so that it could have a sufficient number of connections. 
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Figure 10. Test on the events selection criterion for the real catalogue data-sets. Double-difference location of the catalogue 

data-set with the 3D velocity model considering all the events with a  5 km max distance (turquoise dots) and the subdivision in 

section of 10x10x30 km^2 (grey dots). Grey triangles are the seismic stations. a) Seismicity distribution in plane. (b) East-West 

vertical section of the seismicity. c) Anti-appeninic section according to the dotted red lines in a). d) Horizontal (right) and 

vertical (left) locations error distribution. e) RMS distribution. 

 

Figure 11. Test on the events selection criterion for the real re-fined data-sets. Double-difference location of the re-fined re-

picking data-set with the 3D velocity model considering all the events with a 5 km max distance (turquoise dots) and subdivision 

in section of 10x10x30 km^2 (grey dots). Grey triangles are the seismic stations. a) Seismicity distribution in plane. b) East-West 

vertical section of the seismicity. c) Anti-appeninic section according the dotted red lines in a). d) Horizontal (right) and Vertical 

(Left) locations error distribution. e) RMS distribution. 
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The same test is performed using the re-fined data-set. The results are shown in Fig. 11. In 

particular, the figure shows the double-difference location of the refined re-picking data-set 

with the 3D velocity model considering all the events with a 5 km max distance (turquoise 

dots) and subdivision in sections of 10x10x30 km^2 (grey dots). In the case of the refined re-

picking data-set, the localization obtained by considering all the events with a 5 km maximum 

distance (turquoise dot in Fig. 11) turns out to be similar to the one obtained through the 

sections (grey dot in Fig. 11), if not better, in terms of seismicity distribution, locations errors 

and RMS. 

The two distributions are very similar, the one without the sections appears more clustered 

and only a few events are localized outside the pattern. Such events, not well localized, are 

those with few connections (see Fig. 12a). 

The arrival times of the refined re-picking data-set, despite being absolute times, contain the 

information on the cross-correlation, and then on the similarity of the seismic traces. This 

allows to obtain an accurate pick, such as to be able to locate without the introduction of cubic 

sections as in the case of the catalogue data-set. 

Finally, in the Fig. 12 we show interconnection of the events for the refined and for the 

catalogue data-set. The selection of pairs of events according to the maximum distance is 

made by considering the initial absolute localization and 5 km as a maximum distance 

between pairs of events. It is clear from Fig. 12-b that many events are localized outside the 

distribution, very far from their initial position. 

 

Figure 12. Plot of events inter-connections for the re-fined (a) and for the catalogue (b) data-set considering 5 km as maximum 
distance. 
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PART TWO: APPLICATIONS 
 

The described methods allow to analyse the geological and structural characteristics of 

complex areas and to monitor the presence and migration of fluids assessing their role in the 

dynamics of tectonic, geothermal and volcanic systems. 

In this thesis we chose three different complex areas of investigation: the Irpinia fault zones, 

The Geysers geothermal area and the Solfatara volcano. 

The relevance of these three areas lies not only in their different rheological and structural 

nature, as they represent a seismogenic, a geothermal exploration and a volcanic area, 

respectively, but also in their different dimension. In particular, the investigated Irpinia area 

has a characteristic dimension of about 100 km; the Geysers geothermal system has a 

characteristic dimension of the order of few tens of km; and the scale of the Solfatara crater is 

of the order of one hundred meters. These different features enable us to consider the areas 

as "seismological laboratories", i.e. areas of interest which allow the application, validation 

and development of different methodologies. Depending on the characteristics, the available 

data-sets, the associated problems and the state of art of each area, we have chosen to apply 

several of the methods of analysis and investigation explained in the previous chapters. 

The Irpinia fault zone is a crustal volume in southern Italy, embedding the still active fault 

system that generated the 1980 M 6.9 earthquake. Since 2005, the capability of detecting and 

locating small magnitude events in this area has been greatly improved (Stabile et al. 2013) 

through the deployment of the Irpinia Seismic Network, a dense, permanent and wide 

dynamic range network (ISNet; Iannaccone et al. 2010). Different authors (De Matteis et al. 

2012; Matrullo et al. 2013;Ascione et al., 2013; Amoroso et al. 2014) showed that the low 

magnitude (ML< 3.5) background seismicity does not occur on a single major fault, but rather 

in a volume delimited by the master faults that were reactivated during the Irpinia 

earthquake. So the question arises whether is possible to delineate the faults using an 

accurate location method. 

Therefore, we applied the double-difference location method in order to establish the true 

nature of the diffuse seismicity patter characterizing the Irpinia area (Ch. 1.4 part II).   

Amoroso et al. (2014) adopted an iterative, linearized, tomographic approach in order to 

obtain P- and S-wave velocity models for the Irpinia region. The retrieved velocity models, in 

particular the VP/Vs ratio one, highlight a significant fluid accumulation in highly fractured 
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rocks, where most of micro-seismicity occurs, within a 15-km wide volume called the 

‘earthquake reservoir’. Therefore, the authors assumed that the background micro-seismicity 

is related to the pore-pressure changes in fluid-filled cracks surrounding major faults. 

On these basis, the open question was whether it is possible to deepen our knowledge of the 

complex area with attenuation images to better characterize the ‘earthquake reservoir’ in 

terms of porosity, saturation or fluid type. Is it possible also to make some quantitative 

consideration about the seismicity-triggering mechanism? 

The answer to these questions was given through the joint use of two methods, that is, 

attenuation tomography and rock physical modelling. The details can be found in the next 

chapters (Ch. 1.5 and 1.6 part II).  

 

The Geysers area is the greatest Enhanced Geothermal System (EGS) in the world, located in 

California. Geothermal systems have the potential to provide a significant contribution to the 

world’s energy demand. In particular, an EGS consists in increasing the permeability in the 

rock and steam production by injecting high-pressure water into the reservoir. However, fluid 

injection, steam extraction and reservoir stimulation in EGS lead to induced seismicity, whose 

monitoring is important for both the mitigation of the side effects of industrial operations, and 

the continuous assessment of the reservoir’s conditions. To this purpose, the dense Lawrence 

Berkeley National Laboratory Geysers/Calpine (BG) surface seismic network was 

permanently deployed in the area. The dominant interests for this area are therefore the 

tracking of spatial and temporal variations, on both short and long term, and the tracking of 

the propagation-medium parameter through the use of the high-quality seismic dataset 

collected at the geothermal field. The methodologies applied to this purpose are the velocity 

tomography, the Vp/Vs ratio temporal variation and a preliminary analysis to the 

implementation of the 4D tomography. The details of the application and the results can be 

found in the next chapter (Ch. 2 of part II).  

 

Finally, we considered the volcanic area of the Solfatara crater, located within the active 

Campi Flegrei caldera, in southern Italy. Solfatara and its surroundings are characterized by 

the impressive magnitude of the diffuse degassing process that confirmed the relevance of the 

fluid and heat transport (Chiodini et al., 2001) and prompted for further research, aiming to 

improve the understanding of the hydrothermal system that feeds the surface phenomenon. 

In order to provide time-varying high-resolution images of the structure of Solfatara, a 

repeated active seismic experiment was carried out between September 2013 and November 

2014. In this frame, the interest of our application has been to obtain an ultra-high-resolution 

3D reference velocity image of the shallow hydrothermal structure of the Solfatara crater’s 
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central part, by applying seismic tomography to the data-set acquired during the first 

campaign. Moreover, considering that the presence of fluids and their circulation may greatly 

affect the rock volume and therefore the average compressional wave velocity, we expect that 

the tomographic images can constrain the possible location and phase of the permeating 

fluids. To this purpose, we compared our seismic tomography with 2D cross-sections of 

resistivity () and with temperature and CO2 flux measurements. The application details and 

the results can be found in the next chapter (Ch. 3 of part II). 
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Chapter 1: IRPINIA fault system   
 

3.1 Introduction and state of art 

The southern Apennines of Italy are a seismically active belt characterized by a complex 

crustal environment, in response to a very intense geodynamic activity. This area experienced 

moderate to large earthquakes in the past century. Its complex architecture is derived from 

the deformation of three main paleogeographic domains (Fig. 13b): the shallow water 

carbonates of the Apennine Platform to the West and of the Apulia Platform to the East, and 

the intervening Lagonegro basin, (e.g. Scandone, 1972). The crustal extension controls active 

tectonics and earthquake generation processes in the mountain chain, with the background 

seismicity being characterized by low to moderate magnitude events. The latest destructive 

event, the so-called Irpinia earthquake (MS 6.9), occurred on November 23rd, 1980. This 

event has activated several normal fault segments during the same rupture episode itself 

(Bernard and Zollo, 1989). 

The Irpinia fault system is a graben-like structure, characterized by two SE dipping boundary 

faults: the North East Boundary Fault (NEBF), and the South West Boundary Fault (SWBF). 

The antithetic Central Fault (CF) is contained within the crustal volume comprised between 

the two boundary faults (Ascione et al., 2013). The deeper part of the fault system was 

activated during the Irpinia earthquake, and the complex normal faulting involved the 

activation of both the CF and the NEBF faults (Fig. 13b-c). The highly segmented fault system 

at the surface is decoupled from the deep-seated major structure (Ascione et al., 2013). The 

decoupling is due to a sharp rheological contrast generated by a clay-rich, fluid-saturated 

mélange zone (Mazzoli et al., 2001), which is interposed between the Apulian Platform 

carbonates at depth and the allocthonus units (Apennine Platform and Lagonegro basin 

strata) located at shallow levels. 

The background seismicity that characterizes chain does not occur on a single major fault, but 

rather in a volume, delimited by the master faults – of which only one of them, i.e. the NEBF, 

has been reactivated during the Irpinia earthquake (Ascione et al., 2013; Amoroso et al., 2014; 

De Landro et al., 2015). Plus, it occurs on an inner cluster of sub-parallel, predominantly 

normal faults (De Matteis et al., 2012). The present-day low-magnitude seismicity follows the 

same pattern of the 1980 event aftershocks, with a main elongation parallel to the strike of 

the fault segments activated during the Irpinia earthquake. The earthquakes occurring at the 

core of the Apennine chain affect the uppermost 20 km of the crust. Most the earthquakes 
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occur in carbonate rocks and in the underlying crystalline basement (Picentini and Marzano 

Mounts). In general, the depth distribution is almost nearly uniform, except in the Sele River 

Valley area, where a seismic gap in the upper crust above about 8 km depth is observed. This 

is likely due to the presence of a thick sedimentary cover that probably infills a paleo-valley 

(Amato & Selvaggi 1993). 

We ascribed to the background seismicity the micro-seismicity characterizing the 1990-91 

Potenza seismogenic fault system, suggesting that this EW striking, sub-vertical, right-lateral 

structure is still active at the low magnitude level. The “Potenza” earthquakes were generated 

within the most internal buried foreland, where it tends to deepen below the outer front of 

the Apulia anti-formal stack (i.e., the deepest part of the Apennine chain; Boncio et al. 2007). 

This means that, where present, right-lateral EW striking shear zones could be active at least 

as far as the buried Adriatic foreland is not involved in thrusting. With respect to the 

Apennine chain, the foreland buried below the outer front of the Apulia anti-formal stack is 

the most internal structural domain where active tectonics and seismicity are known to occur 

along EW striking shear zones.  

There is a general consensus that EW striking structures, cutting the foreland crust, are older, 

pre-existing faults inherited at least from the Mesozoic times, and that the associated 

widespread seismicity associated is due to their reactivation under the present-day stress 

field, although it is not always perfectly oriented with respect to it (e.g., Di Bucci et al. 2010; 

Latorre et al. 2010). These structures are large regional fault zones, which dissect the foreland 

crust and have experienced long-lasting activity under different tectonic regimes, that is to 

say, under different kinematics at different times (Di Bucci et al. 2013). 

The principal stress orientations, based on the inversion of micro-earthquake focal 

mechanisms, suggests that a unique NE trending, from horizontal minimum compression 

maximum (3), could explain the two different faulting styles characterizing the earthquakes 

that occur along the chain and the E-W faults dissecting the belt (De Matteis et al., 2012), 

although a permutation between the maximum (1) and intermediate (2) stress axes is 

certainly required to pass from the extensional faulting in the former to the strike-slip faulting 

in the latter. 

The analysis of micro-earthquake sequences, such as events clustered in space and time, has 

revealed that micro-seismicity is primarily concentrated in very limited regions along the 

Irpinia earthquake fault zone. These weakness zones produce repeated earthquakes and 

swarm-like sequences that are possibly related to pre-existing geometrical barriers. 
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Figure 13.  a) Geological sketch map of the Campania-Lucania region integrated with seismogenic source (DISS Working group 

2010), location of seismic ISNet stations (blue triangles) and INGV stations (turquoise triangles), main historical earthquakes 

with their focal mechanisms and aftershock zones (modified after De Matteis et al. 2012). b) Cross-section, indicated with the 

turquoise line in a) (modified after Amoroso et al., 2014). Star shows hypocentre of the Ms 6.9, 1980 Irpinia earthquake; SWBF: 

SW Boundary Fault; CF: Central Fault; NEBF: NE Boundary Fault. 

 

The anomalously large, local stress concentration may be the cause for the generation of small 

fractures in the zones where the fault dip changes (bend jogs) or where overlapping fault 

segments have their tips (offset jogs). These intensely damaged zones could be the source of 

the repeated earthquake activity, which could be due to the internal mechanical re-

adjustments caused by from local stress release and/or to the fluid migration along the fault 

zone near the geometrical barrier (Stabile et al., 2012), particularly at compressional jogs 

where the fault slip induces the increase of pore fluid pressure. 

Amoroso et al. (2014) adopted an iterative, linearized, tomographic approach in which the P 

and S arrival times are simultaneously inverted for the earthquakes location and velocity 

parameters (Latorre et al., 2004). The original dataset for the seismic tomography study 

consisted of more than one thousand events with local magnitude 0.1≤ML≤3.2, recorded by a 

total of 42 stations, which were operated by INGV and AMRA from August 2005 through April 

2011. A cross-section cutting the 3D velocity model normally to the strike of the Apennine 

belt shows that, despite a smoother resolution, the tomographic P-wave model delineates the 

a) b) 

c) 
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main lithological discontinuities of the geological section in Fig. 13(b). The present-day micro-

seismicity, plotted onto the same cross-section, appears to cluster within the basement and at 

the top of the Apulian Platform carbonates (Fig. 13b-c). Laterally, the micro-earthquakes are 

remarkably confined within a roughly 15 km wide block bounded by the SW and NE Boundary 

Faults (also including the Central Fault), along which the main shock of the Ms 6.9, 1980 

earthquake nucleated (Fig. 13b). The horizontal slices through the Vp and Vs models show the 

occurrence of strong lateral variations of seismic velocity that occur orthogonally to the 

Apennine chain. A diffused high Vp⁄Vs ratio (Fig. 13c) occurs within the Apulian Platform 

carbonates located between the SW and NE Boundary Faults, the latter clearly representing a 

major barrier. In general, almost the entire fault-bounded block, where intense micro-

seismicity occurs, is characterized by relatively high values (>1.8) of Vp⁄Vs. The observed 

high Vp⁄Vs indicate a densely porous/fractured rock volume that is largely water saturated 

(O’Connell and Budiansky, 1974; Winkler and Nur, 1979). Moreover, the estimated high 

Vp⁄Vs anomaly provides a Poisson ratio in the 0.3-0.4 range which also indicates a dominant 

water saturation of rocks in the investigated crustal volume (Dvorkin, 1999). The velocity 

models, therefore, highlight a significant fluid accumulation within a 15 km wide volume of 

highly fractured rock. The evidence for a highly fractured, partially fluid-saturated medium 

embedding the Irpinia fault zone is confirmed by Zollo et al. (2014), who studied the 

attenuation within the same rock volume. The background micro-seismicity is therefore 

attributed to pore pressure changes in the fluid-filled cracks surrounding major faults, which 

can trigger the episodic nucleation of moderate to large earthquakes.  

 

1.1 Geological settings  

The Campania-Lucania region (Fig. 13a) is located in the axial portion of Southern Apennines, 

an Adriatic-verging duplex system, orogenically transported over the flexured south-western 

margin of the Apulia foreland (Patacca et al. 1990). This duplex system consists of a complex 

architecture of carbonate horsts deriving from the Apulia Carbonate Platform (ACP), which is 

over thrusted with rootless nappes. The belt is located between the Tyrrhenian back-arc basin 

to the West and with the Bradano foredeep to the East.  

The ACP consists of 7-8 km thick Mesocenozoic carbonate sequence, which overlies 

Permotriassic clastic deposits (Verrucano Fm., Roure et al. 1991). Plio-pleistocene terrigenous 

deposits stratigraphically cover the flexed ACP on the eastern margin of the Bradano Trough 
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(Casnadei 1998). Moving westward to the external zone of the belt, the ACP progressively 

dips below the rootless nappes and is in turn involved in the folds and thrusts of the thrust 

belt. 

The orogenic stack overlying the ACP is formed by thrust sheets coming from the deformation 

of the stratigraphic successions, which are associated with the following main 

paleogeographic domains (Patacca et al. 1992): 

 the Lagonegro Basin (LB, Middle Triassic-Miocene): shallow-water, shelf-margin and 

basinal facies successions located between the Apulia Carbonate Platform and the Western 

Carbonate Platforms;  

 the Western Carbonate Platform succession (WCP; or Apenninic Carbonate Platform), 

overthrusts on the LB units. It consists of a succession of Mesozoic and Paleogene 

carbonate deposits; 

 internal basin domains, which are related to the Sannio and Sicilide Complex. 

Syntectonic terrigenous sequences do not uniformly cover the thrust sheets stack and 

represent the infill of the Upper Tortonian to the Lower Pleistocene satellite basins (Patacca & 

Scandone 2001). 

The tectonics of this area is controlled by the collision between the Adriatic microplate and 

the Apenninic belt, derived by the convergence between the Euro–Asian and African plates. 

The eastward migration of the thrust- belt–foredeep–foreland system, derived from the west-

dipping subduction process of the Adriatic microplate is related to the opening of the 

Tyrrhenian basin (Patacca et al. 1990). The front of the orogenic wedge reached the present-

day location and stopped at the beginning of the middle Pleistocene (Patacca & Scandone 

2004). Indeed, a geodynamic change occurred covering around 800 km, when a SW-NE 

extension became dominant over the core of the Apennines, as shown by geological and 

geomorphological analyses (Galadini, 1999; D’Agostino et al. 2001). This tectonic regime is 

still active, as demonstrated by breakout and seismicity data (Montone et al. 1999; Pantosti & 

Valensise 2001; De Matteis et al. 2012). 

The Campania-Lucania Apenninic belt is one of the regions in Italy with the highest 

seismogenic potential, having experienced historical and recent destructive earthquakes. The 

most recent destructive earthquake was the 23 November 1980 Ms 6.9 Irpinia earthquake, 

generated by the rupture of at least three distinct normal fault segments (Bernard & Zollo 

1989). Since the 1980 earthquake, the largest recorded event within its epicentral area (the 3 

April 1996 ML 4.9 earthquake) was also characterized by a normal-faulting mechanism (Fig. 

13a; Cocco et al. 1999).  

In the surroundings of the city of Potenza, about 60 km southeast of the 1980 Irpinia 

mainshock location, a strike-slip fault zone is located right where two moderate magnitude 
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seismic sequences occurred between 1990 and 1991 (Ekstrom 1994). The two ML ~ 5 

mainshocks were characterized by strike-slip faulting mechanisms, the preferred fault planes 

having an East–West orientation (Di Luccio et al. 2005). 

 

1.2 Seismic network and data 

Since 2005, the capability of detecting and locating small magnitude events in this area has 

been greatly improved (Stabile et al. 2013) with the deployment of a dense, wide dynamic 

range: the Irpinia Seismic Network (ISNet; Iannaccone et al. 2010). Presently, the area 

exhibits low magnitude seismicity (ML < 3.5) primarily concentrated in very limited regions 

along the 1980 Irpinia and the 1990-1991 Potenza earthquake fault zones (De Matteis et al. 

2012). These weakness zones produce repeated earthquakes and swarm-type micro-

earthquakes sequences, which are concentrated in a few specific zones of the fault system 

(Stabile et al. 2012).  

We analysed a seismic data-set consisting of 17,202 traces recorded by 42 ISNet and stations 

of Istituto Nazionale di Geofisica e Vulcanologia (INGV) network from 1,312 micro-

earthquakes, with a moment magnitude ranging between 0.9 and 3.1, which occurred from 

August 2005 to April 2011 (Fig. 14, De Matteis et al. 2012).  

We used the first P- and S-wave arrival times of earthquakes that have been recorded by at 

least four manually picked stations. A weighting factor inversely related to the uncertainty on 

arrival time picking has been assigned. A selection based on the location quality was 

preliminarily performed: 704 events with at least 5 P and 2 S picked arrival times, an 

azimuthal gaps greater than 180 degrees and a RMS of location greater than 0.5 s have been 

taken into account for this study. A total amount of 10,875 absolute arrival times have been 

collected and combined to construct the differential times (see section 3.3). The differential 

times obtained from this procedure constitute the Manually Refined Picking (MRP) dataset.  

We can improve the location precision by using the arrival times refined by waveform cross-

correlation techniques. This technique was used to construct a cross-correlation re-fined 

picking dataset, which was used separately from the MRP dataset in order to validate the 

locations results obtained from the previous data-set. 

In order to enhance and improve the accuracy of the S-wave picking we have applied a phase 

picking technique based on polarization filtering and on a waveform coherence analysis 

(Amoroso et al. 2012). In order to obtain highly accurate, arrival-time readings, the automatic 
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refined re-picking technique proposed by Rowe et al. (2002) has been used. The waveforms of 

all the analysed seismic events have been preliminary organized in common  

 

Figure 14. Epicentral distribution of the analysed seismic events (red dots) recorded by ISNet (blue triangles) and INGV stations 
(green triangles) in August 2005 through April 2011 (from Zollo et al., 2014). 

receiver gathers. For each pair of traces recorded at the same station, the similarity was 

evaluated by using a cross-correlation function in a window bracketing a reference picking 

time. The cross-correlation values are used to identify clusters of highly similar events, and to 

estimate relative lags within the same cluster. The pick adjustment and associated uncertainty 

is therefore evaluated through an iterative conjugate gradient technique. The uncertainty on 

refined picking measurements is assigned as the standard deviation, after estimation via a 

Monte Carlo sampling technique (Tarantola, 2005). The quality check of this selected dataset 

provided an estimation of the uncertainty modal value of 2.6 microseconds for P waves and 

3.5 microseconds for S waves, corresponding to an extremely high quality data-set. 

With this technique we have finally obtained 6,756 absolute arrival times, corresponding to 

513 events, and we have combined them to obtain the differential times that compose the 

cross-correlation re-fined picking (CRP) data-set. 

1.3 Station residuals variations 

We will show an application example of the method discussed in the previous section, which 

will allow us to analyse the temporal variation of the location and the arrival time residuals. 
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The test area is the Campanian-Lucanian region in the South Apennines, embedding the fault 

system that generated the 1980, MS 6.9 earthquake in Irpinia. The seismic data-set consists of 

17,202 traces recorded by a 42 ISNet and INGV station from 1,312 micro-earthquakes. The 

earthquakes have a moment magnitude ranging between 0.9 and 3.1 and occurred from 

August 2005 to April 2011 (Fig. 15). We used 3D P- and S-wave velocity models, which were 

optimized for the area under study (Amoroso O. et al 2014). 

 

Figure 15. (a) Earthquake Non Linear Location of seismicity from 2005 August to 2011 April from catalogue data (turquoise 

dots). (b) East-West vertical section of the seismicity. (c) Comparison between vertical and horizontal localization errors. (d) 

Histogram of the events as function of depth. 
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Figure 16. P-phase time residuals. Plot of the P-phase location residuals for the central stations of ISNet network. We show mean 

(red dots) and standard deviations (black error bar) of the location residuals for each station in each time interval of 6 month. In 

the upper right there is the map of the located events (turquoise dots) and the stations positions (red inverse triangle). The 

orange line delimits the stations of which are plotted the residuals 

 

First we divided the events in time intervals (epochs) of six months, with an overlapping 

interval of a month. For each station and epoch we calculate the average arrival time residuals 

and their standard deviation for all the recorded events, separately for the P and S waves. 

Finally, we have the average station residuals versus epoch, for nearby stations to assess 

possible similarities (Fig. 16 and Fig. 17). This analysis is aimed at detecting and locating 

possible space-time changes occurring in the shallow crustal medium beneath the stations 

during the analysed period. Although the analysis is preliminary, it is worth to note the 

similarity of the mean-residual vs time series between adjacent stations (e.g. MCRV, CSG3, 

SNR3, MRLC) and the occurrence of changes in mean residuals at approximately the same 

epoch, such as the positive variation at the CSG3 and MRLC stations during epochs 5 and 6. 
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1.4    Absolute and double-difference location of micro-earthquakes 

An innovative double-difference location method has been applied to the seismicity (1,312 

micro-earthquakes) recorded by the 42 ISNet and INGV stations from August 2005 to April 

2011 along the Campania-Lucania Apennine chain (Southern Italy). The proposed 

methodology solves the double-difference equations (Waldhauser & Ellsworth 2000) by using 

the non-linear, global-search, probabilistic location approach developed by Lomax et al. 

(2000) instead of linearized approaches. Moreover, the methodology gives the advantage of 

relocating the seismicity by using the same 3D P- and S-wave velocity model (and by 

considering station elevations) adopted for the absolute location of events. This is a crucial 

condition for more reliable and comprehensive dd locations in complex media such as the 

area investigated in this study. Indeed, even though the double-difference technique allows 

Figure 17. S-phase time residuals. Plot of the S -phase location residuals for the central stations of ISNet network. We show mean (red 

dots) and standard deviations (black error bar) of the location residuals for each station in each time interval of 6 month. In the upper 

right there is the map of the located events (turquoise dots) and the stations positions (red inverse triangle). The orange line delimits the 

stations of which are plotted the residuals. 
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for the minimisation of errors due to un-modelled velocity structures, it has been shown (e.g., 

Michelini & Lomax 2004) that the use of an inappropriate 1D velocity model will, in most 

cases, lead to bias and error in the dd locations. Therefore, the combination of the proposed 

methodology with cross-correlation differential times allowed us to perform a robust, high-

resolution study in order to explore new insights concerning the distribution and the 

geometry of the analysed micro-seismicity. Synthetic tests are also carried out in order to 

assess the performance of the methodology and the parameter resolution achievable from the 

available data. This analysis is included in the paper De Landro et al. (2015) published on 

Geophysical Journal International. 

In the present analysis, we qualitatively compared the quality of the cross-correlation refined 

picking data with the manually revised ones and verified that the two data-sets provide 

similar accuracy in earthquake locations. Due to a higher number of events, whose location is 

obtained by manually revised times, we finally preferred to ground on this data-set for the 

interpretation of results and namely for the identification of the “discontinuity” in the 

seismicity spatial distribution. This factor provided new insights on the geometry of the active 

faults and on their relation to the geological structure and to the present tectonic stress 

regime. 

For both data-sets we have used the same location procedure, based on the maximum inter-

event distance, to properly compare the results of the earthquake locations. For this reason, 

and in order to use a more inclusive criterion of event selection than the minimum cross-

correlation coefficient one, an absolute CRP data-set was chosen. 

The software NLLoc and the tool Loc2ddct, which allows to calculate the differential times by 

fixing the maximum distance between an event couple, has been used to obtain the two inputs 

of the dd location code, the initial absolute location of events and the corresponding 

differential travel time. 

In order to obtain more accurate and reliable locations by using the MRP data-set we have 

operated a subdivision in subsets of events located in overlapping rectangular sub-areas of 

the region under study.  We consider rectangular boxes with a size of 10x10x30 km3 and 

overlapping over an area of 10x5 km2. For each box a maximum of one hundred events has 

been considered.  

Conversely, for the CRP data-set we have used a maximum inter-event distance of 5, with no 

need of a previous section sub-division. We used 3D P- and S-wave velocity models obtained 

with an iterative, linearized, tomographic approach in which the P and S arrival times are 

simultaneously inverted for the earthquake locations and velocity parameters (Amoroso et al., 

2014a). The 3D P-wave velocity model is characterized by the presence of a strong lateral 
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velocity variation at 4-8 km depth, along the orthogonal direction to the Apennine chain, thus 

defining two domains characterized by relatively low (3.5-4.8 km/s) and high (5.2-6.5 km/s) 

P-wave velocities. The S-wave velocity model also shows changes along the SW-NE direction 

but they are smaller than the one observed for P-wave velocity. 

Figure 18. a) Double-difference earthquake location of seismicity from 2005 August to 2011 April, from MRP data (in grey) and 

from CRP data (in turquoise). Red lines are the surface projection of the three fault segments that ruptured during the 1980 

Irpinia earthquake (Pantosti & Valensise 1990). b) East-West vertical section of the seismicity. c) Anti-Apenninic AA’ vertical 

section of seismicity and histogram of events number moving in the NW-SE direction along the same profile. d) Comparison 

between horizontal (left) and vertical (right) errors of absolute location (light grey) and dd locations for the MRP data-set (top, 

dark grey) and CRP data-set (bottom, turquoise). e) Histogram of the events as function of depth. f) Earthquake cross-section 

along the profiles BB’ and CC’ indicated in the map in c). From De Landro et al. (2015) 

 



 

68 Chapter 1: IRPINIA fault system 

The mean RMS of the final dd location is 0.13 s for the MRP data-set and 0.15 s for the RRP 

data-set. In Fig. 19 and Fig. 20 we show the comparison between the travel-times residuals, 

the RMS and location errors of the initial absolute locations and the final relative locations for 

the catalogue and the re-fined data-set. For the catalogue data-set, residual histograms of the 

final relative location are improved both in terms of travel-times residual distribution of a 

narrower RMS, which decreases on average by 0.05 s, and of location errors, which decrease 

on average by 0.5 km. For the re-fined data-set the residual histograms of final relative 

location are improved both in terms of travel-times residual distribution of a narrower RMS, 

which decreases on average of 0.1 s, and of location errors, which decrease on average by 0.5 

km. The results showed in these figures allow to assess the improvement of the results by 

using the NLDiffLoc code instead of absolute location code. 

The two dd epicentral distributions of the events, Fig 18.c-d, exhibit very similar 

characteristics, both in terms of distribution centroids and relative inter-event distances. In 

particular, according to the previous works (De Matteis et al. 2012; Matrullo et al. 2013; 

Amoroso et al. 2014), the background seismicity shows a diffuse distribution along the NW-SE 

direction of the Apennine chain for the Irpinia area, and in the EW direction for the Potenza 

area. The map view in Fig. 18c, together with the histogram of the events number in the NW-

SE direction in the d panel, shows that there is one continuous broad zone of seismicity. 

However, a rapid decrease in the rate of events in the SE area is observed. These two zones to 

the NW and to the SE, characterized by different rates of seismicity, are spatially well 

correlated to the fault segments activated during the 1980 earthquake and separated by a 

zone of low seismicity. The zone to the NW is associated with the 1980 fault segment that first 

ruptured and has a higher density of events than the SE zone, which is associated with the 

second fault segment that ruptured 18 s after the first. 

The depth of events ranges from a few km to about 20 km, Fig. 18d, with a higher density of 

events at around 5 and 12 km depth, respectively (Fig. 18g). The error histograms of absolute 

and relative locations are shown in Fig. 18f. The horizontal location error (ErHo, defined as 

the length of the largest projection of the three principal errors on a horizontal plane) and the 

depth error (ErzZ, defined as the largest projection of the three principal errors on a vertical 

line) decrease significantly with the use of the dd technique. In particular, both dd location 

errors are smaller than 0.5 km for the most of the events. 
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Figure 19. a) Comparison between the double-difference travel-time residuals of the initial absolute location (green) and the 

final relative location (blue) for the catalogue data-set. b) comparison between the horizontal (right) and vertical (left) location 

errors. c) comparison between RMS. From De Landro et al. (2015). 

 

Figure 20. a) Comparison between the double-difference travel-time residuals of the initial absolute location (green) and the 

final relative location (blue) for the re-fined data-set. b) comparison between the horizontal (right) and vertical (left) location 

errors. c) comparison between RMS. From De Landro et al. (2015). 

 

The cross-section in Fig. 18h indicates that the seismicity along the Apennine chain does not 

occur on a single, isolated fault but instead within a volume that is possibly delimited by the 

faults activated during the 1980 earthquake. This is consistent with the extensional tectonic 

stress regime characterizing the South Apennines region, where the seismicity rather occurs 

along multiple, sub-parallel and en-echelon normal faults associated to the present-day 

tectonic deformation that act along the Apenninic belt (De Matteis et al. 2012; Rigo et al. 

1996). 
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The location errors in Fig. 18f show that the two data-sets provide similar accuracy in double-

difference earthquake locations. Moreover, the two dd location distributions show the same 

features. Due to a higher number of events in the MRP data-set, we have chosen this one for 

the results analysis. 

In order to underline the potentiality of a probabilistic approach, we will show in the Fig. 21 

and fig.22 histograms and plots of the PDF for some events. The histograms show that for 

some events the value of maximum likelihood is unique and well insulated, while for other 

events, for which the PDF is more irregular, there can be several values of maximum 

likelihood. Hence comes the choice of using a probabilistic technique that allows the 

construction of the PDF, and then a more thorough exploration of the investigation area in 

these cases of irregular probability distributions. 

 

 

Figure 21. Histograms of normalized likelihood function for four different events of the real catalogue data-set localized with 

the 3D-velocity model. From De Landro et al 2015. 
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Figure 22. Plot of the normalized ellipsoidal likelihood function of two events, one of the catalogue data-set (a,b e c) and one of a 

re-fined data-set (d,e and f) located in the 3D velocity model. a-d) Normalized likelihood function in 3D. b-e) Likelihood function 

section in the latitude-longitude plane around the maximum likelihood depth. c-f) Likelihood function section in the latitude-

depth plane around the maximum likelihood longitude. From De Landro et al 2015. 
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The most important result of this analysis is the evidence, from both the distribution of 

seismicity and the tomography, of the presence of a rheological "discontinuity" (Fig. 23). 

Indeed, in the south-eastern part of the Marzano massif, the alignment of the SW-NE 

epicentres and the abrupt limit of seismicity in the orthogonal direction to the Apennine chain 

are clearly visible. We hypothesize that this "barrier" can be due to the contact between units 

with a different rheological behaviour in response to the NE-SW stress regime acting in the 

chain: carbonate units (ACP) at NW and the most recent basinal facies (LB) at SE (e.g., 

Pescatore et al. 1999; Scrocca et al. 2005). It appears indeed that the seismicity distribution is 

controlled by the geometry of the ACP (Improta et al. 2003): the “barrier” in the seismicity 

highlighted by these data is actually located between a high and a low in the Apulian 

carbonates (Fig. 23a). This is more evident in correspondence of a low depth of ACP (Fig. 23a) 

where a seismic gap is observed down to 6 km at depth. The presence of surface deposits of 

the plio-Pleistocene is a consequence of the presence of a depression of the Apulian 

carbonates. 

This is also confirmed by the 3D velocity model retrieved in the area which shows, by moving 

in the SW-NE direction, an in-depth of the Apulian Platform and a decrease in the rate of 

events in the area corresponding to the basinal deposits (Fig. 23b). Thus, the different 

rheology of contact geological formations leads to a substantial decrease in the rate of 

seismicity, moving in SW direction. 

A schematic geological interpretation of the BB' section (Fig. 23b) is showed in Fig. 24. In 

order to construct this figure the distribution of relocated seismicity, the tomographic images 

and the topography of the Apulian Platform have been jointly used. The various geological 

formations are shown at different depths: the shallowest area of basinal deposits between 0 

and 2 km; the Lagonegro unit area, where seismic waves have a velocity between 4.4 and 6.2 

km/s; in contact with this unit , the Apulian platform, whose top is between 5 and 6 km in 

depth, in which wave velocity is ranging between 5.6 and 6.3 km/s; and finally the bedrock 

from 9-12 km down. 

We suggest that this discontinuity is a transverse fault in the basement overlying the Apulian 

carbonates. This fault is oriented in such a way as not to be easily activated in the current 

stress field (the strike of this structure is approximately parallel to the axis of minimum 

compression, NE-SW), and could constitute a barrier to the propagation of seismic ruptures 

towards SE.  

This hypothesis is in agreement with the previous work (Bernard & Zollo 1989; Cocco et al. 

1999), according to which the cause of the delay time in the dislocation of the first two 
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segments of the 1980 earthquake was associated to the possible presence of a geometrical 

"barrier". Indeed, it is observed that the lower limit of the DISS fault (DISS Working Group 

2010) relative to the first segment corresponds to the discontinuity of the seismicity (Fig. 

18a). 

During the 1980 Irpinia earthquake, the Monte Marzano segment ruptured first, and its 

nucleation occurred near its north-eastern edge with a normal fault mechanism on a plane 

dipping 60° towards NE. The rupture propagated bilaterally for 15 km towards NE and for a 

few km in SW direction. 

The southern segment rupture started 18 s after the nucleation of the first event and 15 km 

SE of its hypocentre, on a low-angle normal fault (30°) dipping toward NE (Bernard & Zollo 

1989). This discontinuity has therefore, formed a "barrier" that has resisted and slowed down 

the evolution of the rupture towards SE, forcing it to change its geometry. It then restarted 

with a delay of about 20 seconds along a low-angle deeper fault, where the fracture has 

probably found again the carbonate platform (Bernard & Zollo 1989). 
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Figure 23.   a) Comparison of the dd location of seismicity with the topography of the Apulian Carbonate Platform top (modified 

after Improta et al. 2003). b) Comparison of tomographic cross-sections reported in map a) and the earthquake occurred in this 

area. From De Landro et al 2015 

 

 

 

 

 

 

 

 

 

 

 

Figure 24.  Schematic geological interpretation. The positions of the interfaces are deduced from both tomographic model and 

hypocentre-relocated events. The name of the lithologies and the position of main topographic indications are also indicated and 

supposed from Improta et al. (2003). The crosses indicate the rough position of the retrieved hypocentres. A dashed line is used to 

represent the hypothetical “barrier”/ fault scarp. From De Landro et al 2015. 
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1.5 Attenuation tomography 

Here, we propose to use the estimates of tomographic velocity and attenuation values for a 

comprehensive seismic interpretation of the 1980 Irpinia earthquake fault zone. We 

performed an attenuation tomographic inversion, which provided 3-D images of the anelastic 

attenuation properties in terms of body wave quality factors (QP and QS). These quantitative 

images complement the already existing velocity images inferred from local earthquake 

tomography models (Amoroso et al., 2014). The following work was insert in the paper 

Amoroso et al. (2016a), under second review on Geophysical Research Letters. 

1.5.1 Data processing 

For the area under study, Zollo et al. (2014) analysed 717 events in the moment range 4∙109 - 

2∙1014 Nm recorded at ISNet (Irpinia Seismic Network) and INGV (Istituto Nazionale di 

Geofisica e Vulcanologia) network with the aim to determine the P and S quality factors with 

two different techniques. In the most general formulation of the anelastic attenuation model, 

the coefficient 𝑡∗ is frequency-dependent through a frequency-dependent quality factor 𝑄(𝜔) 

and, as a first order approximation, it can be written as (e.g. Morozov, 2008): 

 𝑡𝑐
∗(𝜔) =

𝑇𝑐

𝑄𝑜𝜔𝑛
    

(53) 

where the symbol n is a positive real number and  𝑄𝑜 is the quality factor evaluated at the 

reference frequency of 1 Hz. For small magnitude earthquakes (ML < 1.0), the quantity 𝑡∗ is 

determined from the low-frequency spectral decay in a frequency band whose upper limit is 

given by the event corner frequency; for the larger events in the data-set, the value 𝑡∗ is 

instead computed by using a multi-step, iterative inversion of spectral parameters. Based on 

the spectral fitting method, Zollo et al. (2014) verified that the attenuation model with n=0 in 

(2) had to be preferred relative to a frequency-dependent model both P and S waves. They 

estimated the crustal median values  𝑄𝑃 = 200 with confidence limit (110, 360) and 𝑄𝑆 = 245 

with confidence limit  (150, 375).  

Here we use the measurements of 𝑡∗ by Zollo et al. (2014) which consist of  4801 𝑡∗ measures 

for P waves and 1833 𝑡∗ measures for S waves, relative to 670 earthquakes with local 

magnitude ranging between 0.1 and 3.4. Fig. 25 shows the distribution of 𝑡∗-residuals (e.g. the 

difference between the observed and theoretical 𝑡∗) as a function of the hypocentral 
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distances. The theoretical 𝑡∗ values have been computed using the estimated median crustal 

values. 

1.5.2 Inversion strategy 

The stations/events distribution in the seismic area under consideration allowed us to 

investigate a volume of 100 × 100 x 20 km3 covered by a total of 42 ISNet and INGV stations. 

In order to perform the 3-D attenuation tomography, we used a modified version of the 

inversion code originally used by Amoroso et al. (2014) to perform the travel time inversion.  

We inverted the t* data for Q following a multiscale strategy (Zollo et al., 2002) whereby 

several optimization runs are performed by progressively increasing the density of grid 

points describing the attenuation model (more details in AM, (Latorre et al., 2004)). We used 

three different grids having spacing equal to 12x12x4 km3 (parametrization A), 6x6x2 km3 

(parametrization B) and 3x3x1 km3 (parametrization C). Three different inversion runs have 

been performed, in each of them the rays were traced in the 3D velocity model while the Q-

model obtained with the previous parameterization is chosen as the initial attenuation model. 

The attenuation models for P and S waves have been obtained by distinct, separate inversion 

of the corresponding 𝑡∗data-sets. 

In order to obtain robust 𝑄𝑃 and 𝑄𝑆 starting models for the 3D inversions, we preliminary 

investigated the optimal 1-D attenuation model, starting with four different homogenous 

models 𝑄𝑃 = 𝑄𝑆 both ranging between 200 and 1000. We performed a series of inversion, by 

parameterizing the medium with a very coarse grid in the horizontal direction respect to the 

vertical (25x25x1 km3). For each investigated model a 1D profile has been obtained by 

averaging the values of 𝑄 at the nodes located at the same depth. We therefore compared the 

obtained 1D models, and observed that between 0 and 14 km the 𝑄 vertical profiles look very 

similar independently on the initial 𝑄 value. This is the depth range where the highest 

resolution is expected from the depth distribution of earthquakes. Finally we choose the 1D Q-

velocity model as the one obtained starting from the initial homogenous model with 𝑄𝑃 = 200 

for the P attenuation model and 𝑄𝑆 = 245 for the S attenuation. These values are consistent 

with  the median values determined from the same dataset by Zollo et al. (2014). 

We selected the optimal damping parameter and smoothing coefficient, for each 

parameterization, running a series of inversions with a large range of values and plotting the 

data variance versus model variance trade-off curves (Eberhart-Phillips, 1986). The 

smoothing of the solution is achieved by constraining the Laplacian of the attenuation field to 

be zero (Benz et al., 1996). 
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To identify the model regions presenting high resolution and low smearing, we computed the 

derivative weight sum (DWS), which measures the ray density in the neighbourhood of every 

node (Hauksson and Shearer, 2006). The threshold value of DWS delimiting the well-resolved 

area was calibrated by comparing the diagonal elements of the resolution matrix and the 

spread function (Michelini and McEvilly, 1991). This comparison was made only for the 

parametrizations A and B, since the resolution matrix for parameterization C could not be 

computed due to the large model size. 

1.5.3 3D P- and S-wave attenuation tomography 

For 𝑄𝑃 and 𝑄𝑆 attenuation models, the initial and final 𝑡∗ residuals distribution is displayed in 

Fig. 25. For final models, the root mean square value of residuals (RMS) shows a reduction of 

34% for the 𝑄𝑃 inversion and 39% for the QS inversion relative to the initial reference models 

(see Fig. 25). According to the resolution analysis, the extent of the best-resolved volumes 

depends on the chosen parameterization, and generally decreases as the grid step decreases 

(see Fig. 27, 28 and 29). The well-resolved areas have been outlined using the results of the 

DWS. These values show that QP and QS are well resolved from 0 to 14.5 km depth for the A 

and B parameterizations, while the well-resolved area is less extended for parameterization C 

and ranges from 2.5 km to 10.5 km depth (Fig. 27c-f). For this reason hereinafter will be 

commented only the results for the A and B parameterizations. 

 

Figure 25. 𝐭∗ residuals (difference between observed and computed 𝐭∗) as a function of the hypocentral distances and as a 

histogram for different attenuation models. (a) 𝐭𝐩
∗  residuals computed with respect to the starting model (grey dots and line) and 

3 D final attenuation model (blue dots and line). (b) Same ad (a), but for 𝐭𝐬
∗ 
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The 3D 𝑄𝑃 and 𝑄𝑆 models exhibit significant spatial variation (Fig. 26a-b-c). The QP model 

with parameterization A shows a slight increase of the values with depth, while with 

parameterization B the increase with depth is sharper, with QP reaching values ranging from 

350 to 850 in the central part of the model, confined between the boundary faults (Fig. 26a) at 

depths between 8 and 12 km (Fig. 26c). This high-𝑄𝑃 anomaly is spatially correlated with the 

fault structure associated with the 1980 Irpinia earthquake, in particular with the location 

and geometry of its first activated fault segment (Bernard and Zollo, 1989).  The QS model also 

shows (Fig. 26b), with both parameterizations A and B, strong lateral variations along a SW-

NE section with a major transition occurring in correspondence with the Ms 6.9, 1980 

earthquake rupture and the north-eastern edge of the uplifted pre-Tertiary limestone. In its 

cross-section representation with parameterization B (Fig. 26d) the QS model clearly 

delineates the transition between the Apulian Carbonate platform and the basement at about 

7 km depth with an increase of values from 400 to 1000.  The attenuation factors 𝑄𝑃 and 𝑄𝑆 

have a different pattern maybe due to their distinct physical nature, related to the different 

frequency content of the related waves.  
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Figure 26. 3-D attenuation models. Horizontal slice through Qp (a) and Qs (b) attenuation models for parametrization A (left 

panels) and B (right panels), at 2, 8 and 10 km depths. Grey curves delimit the well-resolved regions of the model according to the 

resolution analysis. Black dots represent the earthquake located in a range of 1 km around each layer depth.  Qp (c) and Qs (d) 

attenuation models, for parameterization B, and micro-earthquake locations projected onto the cross section located in Figure 

1a (refer to Fig. 1b for the tectonic contacts and geological units). White curves delimit the well-resolved regions of the model 

according to the resolution analysis. 
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Figure 27. Plot of the Derivative Weight Sum (DWS). The DWS values in a, b, d and e show that the 3 D QP and QS models are 

well resolved from 2.5 to 14.5 km depth for the first and second parameterization (12x12x4 km3 and 6x6x2 km3, respectively) 

while for the more refined parameterization (3x3x1 km3) figures c and f show that the well-resolved area is less extended and 

ranges from 2.5 km to 10.5 km depth. 
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Figure 28. Resolution matrix for QP models. a) and b) Map view showing the RDE and Sj (Michelini and McEvilly, 1991) for 

parametrization 12x12x4 km3. c) and d)  same as a) and b) for parametrization 6x6x2 km3. 
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Figure 29. Resolution matrix for 𝐐𝐬 models. a) and b) Map view showing the RDE and Sj (Michelini and McEvilly, 1991) for 

parametrization 12x12x4 km3. c) and d)  same as a) and b) for parametrization 6x6x2 km3. 
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1.5.4 Discussion 

The results obtained from the tomographic inversion of the attenuation parameter, 𝑡∗, for the 

P and S waves, have allowed us to provide a highly detailed three-dimensional image of the 

attenuation quality factors for the whole studied area, in particular of the crustal volume 

embedding the Irpinia fault system zone.  

From the methodological point of view, we implemented a new attenuation tomography 

method and verified that the use of a multiscale inversion strategy allows to optimize the 

search for the best fit attenuation factors 𝑄𝑃 and 𝑄𝑆: this strategy  improves the model 

parameter resolution images (Fig. 27, 28 and 29). The factor 𝑄𝑃 is related to the high-

frequency component of the wave signals and, therefore, is sensitive to the small wavelength 

content and related spatial variations of the attenuation properties in the propagating 

medium. 

In the investigated crustal portion, the attenuation tomography images show relatively high 

𝑄𝑃 values in correspondence of the 1980 Irpinia earthquake fault zone, at depths ranging 

from 8 to 12 km, where the first rupture episode nucleated (Bernard and Zollo, 1989). On the 

other hand, 𝑄𝑆:  appears more sensitive to large wavelength scale variations, by showing a 

good correlation with the surface lithology and geological structures. In particular the 𝑄𝑆:  

tomographic images between 6 and 12 km depth (Fig. 26a, 26b) display  a main structural 

discontinuity along a SW-NE oriented section (i.e. normal to the strike of the Apennine belt) 

that roughly corresponds to the 1980 earthquake rupture and the north-eastern edge of the 

uplifted pre-Tertiary limestone. This feature coincides with the similar NW-SE trending 

lateral velocity discontinuity previously revealed by Amato et al. (1992) (recently confirmed 

by Amoroso et al. (2014), and Improta et al. (2014)) affecting the shallow upper crustal 

volume across the Irpinia earthquake fault zone. This discontinuity can be associated with the 

contrast between the thick cover of low-velocity, high attenuation Miocene basin sediments to 

the NE and the high-velocity, low-attenuation carbonate outcrops of the Apennine Platform to 

the SW (Ascione et al., 2013). At greater depths, this marked contrast is provided by the 

Apulian Platform carbonates being uplifted in the hanging-wall of a basement-involved 

reverse fault (extensionally reactivated as the NEBF during the late Quaternary) and 

juxtaposed to the Lagonegro basin strata and overlying Miocene units (Ascione et al., 2013). 
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1.6 Rock physics modelling 

We now consider another inverse problem where the retrieved seismic velocities and 

attenuations (macro-parameters) are our input data-set. From these observables, we would 

like to recover the properties of the host rock volume characterized by a set of micro-

parameters (porosity, consolidation parameter, permeating fluid type and percentage of fluid 

saturation), which describe the hydrological properties of the solid and bi-phasic fluid 

components. We do this by an exhaustive sampling of micro-parameters for a prediction of 

macro-parameters resulting from an up-scaling strategy. This procedure relies on the rock 

model developed by Pride (2005), based on the Biot's (1962) theory of poroelasticity (Dupuy 

et al., 2016) and Gassmann’s relation (1951). A more detailed discussion of the methodology 

can be found in the chapter 1.3.1 of PART I. The following work was insert in the conference 

paper De Landro et al. 2016, presented at the European Seismological Commission 35th 

General Assembly, Vienna 2016. 

 

1.6.1 Inversion strategy and comparison with attenuation images 

We focused our rock physics modelling on the volume embedding the Irpinia fault system 

between 8 and 10 km depth, where the quality factor QP ranges between 350 and 850 (median 

value 690) (see Fig. 26c) and where most of seismicity occurs. By direct comparison between 

the up-scaled values of the theoretical macro-parameters values and those inferred from the 

velocity and attenuation tomography, we retrieve the micro-parameters for the area enclosed 

within the South West (SWBF) and North East (NEBF) boundary faults (Fig. 13b). For this, we 

needed to restrict the number of poroelastic parameters by assuming the lithology of the host 

rock, the range of variability for porosity and consolidation parameters, and the type of fluids 

to include in the modelling.  

Cross-Apennine seismic profiles (Mostardini and Merlini, 2004) indicate that the investigated 

depth range is host to - for the most part- the lower Apulian platform and, for a smaller 

thickness, the clastic sediments and the basement. The three oil wells drilled in the considered 

area (Contursi, San Gregorio Magno, San Fele; see Fig. 13b) did not reach the lower part of the 

Apulia Carbonate Platform. However, two deep boreholes, drilled for oil exploration in the 

Apulia region, i.e., the Gargano-1 and Puglia-1 wells (available from the ViDEPI Project at 

http://unmig.sviluppoeconomico.gov.it/videpi/pozzi/pozzi.asp), indicate that the lower part 

of the Apulia Carbonate Platform is mainly formed of dolostones. Therefore, we used dolomite 

as the dominant mineral component for our rock physical modelling.   
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In the Puglia-1 well, porosity values ranging between 0.87% and 2.53% have been measured 

in the dolostones of the Burano Formation at 5 km depth. Another core taken at 6 km depth in 

alternating dolostones and anhydrites provided a porosity range of 0.70-1.37% (the data of 

the Puglia 1 well are available at 

http://unmig.sviluppoeconomico.gov.it/deposito/pozzi/profili/pdf/puglia_001.pdf).  Larger 

values of porosity have been reported for carbonate reservoirs (limestones and dolostones) in 

the same depth interval. The modal value of average porosity at a depth of 5.25-5.75 km in the 

huge dataset of Ehrenberg and Nadeau (2005) is 6.2%.  For greater depths, the empirical 

relation of Schmoker and Halley (1982) can be used to predict a porosity of 3.5% for 

dolostone at a depth of 8 km. Most of the porosity values used for the previously cited studies 

are derived from core measurements or well log analyses. The total porosity at the scale 

considered for our rock physics modelling might be significantly higher due to the likely 

presence of a dense network of fractures (Amoroso et al., 2014). For this reason, the explored 

range of porosity was extended up to 5% in the inversion process.   

According to Pride (2003), Cs values range from 2 to 20 in sandstones. de Ceia et al. (2015) 

estimated Cs for a set of microporous carbonate rocks and showed that its values fall, for the 

most part, within the range indicated for sandstone. Lee (2005) concluded that, in practice, Cs 

could be viewed as a free parameter to fit the data if both porosity and P- and S-wave 

velocities are known. Therefore, in the up-scaling procedure we explored the entire (2, 20) 

range for Cs, expecting that the comparison with the retrieved macro-parameters would allow 

the Cs micro-parameter values to be better constrained.  

We hypothesize that the fluids permeating the rocks at the investigated depths are brine, CO2, 

and CH4 based on recent measurements of gas emission at surface (Inversi et al., 2013; 

Chiodini et al., 2004; Ciotoli et al., 2014). We excluded the steam phase since brine can only 

exist in the liquid phase at temperature and pressure conditions within the considered depth 

range. Similarly, we did not consider oil as a plausible permeating fluid since only very minor 

impregnations have been found in the San Gregorio Magno well (as it results from the ViDEPI 

Project http://unmig.sviluppoeconomico.gov.it/videpi/pozzi/pozzi.asp).  

Gassmann's relation requires that the shear modulus of the saturated rock be the same as that 

of the dry rock. However, Adam et al. (2006) showed that the shear modulus, which is linked 

to QS, decreases in water-saturated rock samples, so the assumption that it is independent of 

the fluid substitution may not be valid for carbonate rocks in the range of seismic frequencies. 

Instead, the bulk modulus, which is linked to QP, is well predicted by the Gassman’s relations 
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we adopted; therefore, we did not consider the QS parameter for the rock physics 

interpretation. 

In summary, we assumed that the simulated rock has a dominant dolomite mineralogical 

composition, a porosity in the range (1%, 5%), and Cs in (2, 20), and we considered pores and 

fractures filled by a two-phase fluid (brine-CO2; brine-CH4 and CO2-CH4). We then computed 

the values of the macro-parameters (Vp, Vs and Qp) by varying the relative saturation 

percentage and compared them to the observed values.  

In order to obtain information on micro-parameters of the rocks and most likely fluids mixing 

starting from the tomographic images, we compared the observed macro-parameters with 

those calculated using the up-scaling procedure previously described.  

We adopted the criterion for which the optimal set of micro-parameters is the one for which 

the resulting macro-parameters curves fall within the range of the observed values. We also 

determined the range of retrieved macro-parameters through the analysis of the statistical 

distributions of velocity and attenuation in the considered volume. We selected the macro-

parameter values (Vp, Vs, Vp/Vs and Qp) falling within the volume bounded SW and NE by 

Boundary faults, as indicated in Fig. 2, and extending north for about 10 km. The limiting 

values for macro-parameters are those for which the cumulative frequency ranged between 

15% and 85%. 

By varying the fluid mixing and porosity, we explored the macro-parameter curves in respect 

of the observed values range and discarded the curves of predicted macro-parameters that 

did not fall within the observed ranges for any combination of the micro-parameters.  

From table 2 we infer a porosity range of 3% to 5% and a consolidation parameter between 

6% and 10% for the host rock. All the considered fluid combinations are likely at 8-10 km 

depth with a different combination of porosity, Cs, and the relative percentage of saturation 

(Fig. 30). The saturation range of different fluid combinations is described in Fig. 3d, which 

shows the relative fluid saturation varying with Cs values. 

The inferred relative fluid saturation percentage varies with the porosity and Cs, and it does 

not allow us to discriminate whether one of the two fluids has a dominant saturation 

percentage in the explored rock volume. However, whereas for CO2-CH4 the range of 

saturation is independent from Cs (grey line in Fig. 30d), for the other two fluid combinations 

(blue and green lines), with increasing Cs the saturation goes from values indicating the 

predominance of one fluid with respect to the other, to values indicating a more balanced 

mixing.  Finally, the up-scaled Vp/Vs ratio falls always within the range of the retrieved value, 

slightly increasing with saturation, for all the porosity and Cs values. This ratio appears 

weakly sensitive to the type of fluid combination  (Fig. 30a-d). 
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Figure 30. Up-scaling results. (a) (b) (c) Macro-parameters derived from up-scaling procedure as a function of relative fluid 

saturation (fluid couple reported in title, percentage of the first fluid phase respect to the second) for the three tested fluid 

couples and different combinations of ϕ and CS. For each panel the black dashed lines delimit the range of the retrieved values 

from the tomographic images for each macro-parameter. The ranges are green when the up-scaled curves fall inside the 

retrieved range, while they are red otherwise. (d) Saturation ranges for which the up-scaled curves, relative to the three fluid 

couples, fall inside the retrieved range by varying Cs.  Porosity is fixed to 0.04. 

 

 

Table 2. Summary of the results obtained from the comparison between the up-scaled macro-parameters curves and the 

retrieved macro-parameters ranges. The checkmark indicates that all up-scaled macro-parameters curves fall in the retrieved 

range, otherwise a cross is present. The dash indicates that the value is not reported because the velocity curve falls outside the 

retrieved range. 
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1.7 Conclusion 

The strong lateral SW-NE variation of Qs coincides with the NW-SE trending lateral velocity 

discontinuity previously revealed by Amato et al. (1992) and recently confirmed by Amoroso 

et al. (2014) and Improta et al. (2014), affecting the shallow upper crustal volume across the 

Irpinia earthquake fault zone. This discontinuity can be associated with the contrast between 

the thick cover of low-velocity, high attenuation Miocene basin sediments to the NE and the 

high-velocity, low-attenuation carbonate outcrops of the Apennine Platform to the SW 

(Ascione et al., 2013). This result suggests that jointly mapping Qs seismic velocities in 3D 

allows the geometrical features of large-scale geological structures and  lithological 

transitions to be better constrained. On the other hand, due to its specific high-frequency 

content, QP detects the smaller wavelength spatial variation, e.g. the finer structure of the 

1980 Irpinia earthquake in the considered analysis.  

The retrieved values of VP and VS are needed to constrain the range of average, rock volume 

porosity, but their curves for different fluid combinations, keeping porosity and Cs fixed, have 

the same trend and all fall within the range of the retrieved values (Fig. 3a-c). This means that 

VP, Vs and their ratio alone cannot discriminate between the type and different combinations 

of fluid phases within the uncertainties of the observed macro-parameters and modelling. On 

the other hand, the attenuation macro-parameter QP provides a stronger constraint on rock 

physical micro-parameters, allowing us to reject the fluid mixings that exhibit up-scaled 

theoretical values well outside the uncertainty bounds.  

The host rock was modelled with the dolomite as single mineral component. The consistency 

of the results with independent observations (well logs, measures of gas at the Earth’s 

surface) leads us to conclude that the approximation of a single mineral rock composition is 

reliable for our purposes.  

The determined porosity range of 3 to 5 % at a depth of 8-10 km is larger than that measured 

from borehole rock samples (1-2%). This can be justified by assuming a significantly 

contribution of a densely fractured system to the porosity at the meso-scale as proposed by 

De Matteis et al. (2012) and Amoroso et al. (2014).  

de Ceia et al. (2015) retrieved a relation between the consolidation parameter, Cs, and 

effective pressure through indirect measurements on carbonate rock samples. They found 

that Cs decreased as the effective pressure increased. By using this relation and considering a 

standard gradient for the overburden pressure, we found that at 8-10 km depth our Cs values 

correspond to a pore pressure of up to about 150 MPa. These inferred pore pressure values 
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are significantly high and support the hypothesis of seismic fracture generation driven by 

pore pressure changes in the fault zone. 

As for the possible fluid mixes, both brine-gas and gas-gas (with gases being CO2 and CH4) are 

compatible with observed micro-parameters, thus supporting the hypothetical presence of 

gasses CO2 or CH4 at the explored depth range. We suggest that these gasses, when observed 

at the surface, may be trapped just below and/or in the lower part of the Apulian Platform, 

within dolostones sealed by anhydrite levels (Trippetta et al., 2013), fed by fluid-rich mantle 

melts intruded into the crust (e.g. Improta et al., 2014).  

The presence of liquid and gas fluid phases in a fault volume and the inferred high pore 

pressure values have important consequences on seismicity generation. In fact, the presence 

of fluid inside the fault gauge may enhance seismicity due to lubrication mechanisms, and by 

an increase of pore pressure in the medium embedding the faults. In the Irpinia fault zone, the 

modelling of micro-earthquake spectra has provided a rather low average seismic radiation 

efficiency (Zollo et al., 2014), thus implying that the rupture lubrication mechanisms are not 

favoured. Therefore, we suggest that the dominant mechanism triggering the micro-seismicity 

at the Irpinia fault zone is the pore pressure increment induced by fluid diffusion in the host 

rock medium (Dvorkin et al., 2000; Shapiro et al., 2003; Vanorio et al., 2005). When rocks are 

close to a critical state of failure, a perturbation of the pore pressure, modifying the effective 

normal stress, can lead to the occurrence of a seismic fracture (Nur and Booker, 1972). In 

particular, at the considered depths, gasses more than liquids may significantly increase the 

pore pressure up to a level for which it equals the lithostatic pressure (Hantschel and 

Kauerauf, 2009). The results of the up-scaling procedure, especially in terms of Cs, allow us to 

interpret the investigated volume at 8-10 km depth as highly fractured and liquid-gas 

saturated, where the high pore pressure is directly responsible for the seismicity triggering 

mechanism and where, in fact, most of seismicity occurs. 
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Chapter 2 : THE GEYSERS geothermal field  
 

 

2.  Introduction and state of the art 
 

Geothermal systems have the potential to provide a significant contribution to the world 

energy demand. These are naturally or artificially fractured hydrothermal systems providing 

accessible sources to extract the heat stored in subsurface rocks, which may be directly used 

for heating purposes or to generate electricity. The total resources and their availability tend 

to be restricted to certain areas, and the development of the field only proceeds where the 

conditions are ideal for cost-efficient extraction. Such hydrothermal systems are sometimes 

difficult to locate and also run a high risk of not being commercially feasible, if their 

geological, physical and chemical characteristics are not favourable. In that case the 

underground heat source requires enhancement (e.g., Nielson et al., 2001). The reason for 

developing the Enhanced Geothermal Systems (EGS, Fig. 31) is two-fold. It aims: (1) to bring 

uneconomic hydrothermal systems into production by improving their underground 

conditions (hydraulic fracturing, reservoir stimulation); and (2) to engineer an underground 

condition that creates a new fracture-network system, where injected fluids are heated by 

circulation through hot fractured rock at depth. The hot fluid or steam is then brought to the 

surface, in order to deliver the captured heat for power conversion and other uses. The 

second approach significantly expands the available heat resources and reduces the 

uncertainty of exploitation costs. 

However, fluid injection, steam extraction, and reservoir stimulation in EGS lead to induced 

seismicity. In particular, the mechanisms triggering seismicity are the increase of pore-

pressure induced by fluid diffusion, the thermal cracks due to the difference in temperature 

between hot rock and injected water, and the chemical alteration of the fault surface. 

Although, on the one hand, only in rare cases the induced events may be large enough to pose 

a hazard to the population or to the installed facilities, on the other hand the micro-seismicity 

provides valuable information on the extent and properties of the reservoir (e.g., Eberhart-

Phillips and Oppenheimer, 1984; Stark, 2003). Therefore, micro-seismic monitoring is 

important both for the mitigation of the unwanted effects of industrial operations and for the 

continuous assessment of the reservoir conditions.  
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The controversial issue of induced seismicity in EGS has attracted seismological research. 

Although induced seismicity has in fact few adverse physical effects on operations or on 

surrounding communities, public concern over the amount and magnitude of the seismicity 

associated with current and future EGS operations still remains. 

 

 

 

In order to better understand induced seismicity and the reservoirs in which it occurs, we 

applied a set of different seismological analyses to a high-quality seismic data-set collected at 

The Geysers geothermal field, located about 120 km north of San Francisco, California. The 

Geysers geothermal area is the largest enhanced geothermal system (EGS) in the world. 

The Geysers is a vapor-dominated field, which presents the top of the main steam reservoir at 

about 1-3 km below the surface. The field has been actively exploited since the 1960's and is 

now the most productive geothermal field in the world (Bertani, 2012). With the increasing 

field development, seismicity also increased in the area (e.g., Majer et al., 2007, Majer and 

Peterson, 2007). As reported, for example, by Stark (2003), the dominant mechanism of the 

generation of induced seismicity at The Geysers EGS is the temperature contrast between the 

injected water and the hotter rock-fracture surfaces. In fact, most of the heat is thought to be 

Figure31. Sketch of an enhanced geothermal system. The injection (6) and production (5) wells go down across the 

reservoir stratigraphy to the crystalline bedrock. In this layer the mainly mechanisms that trigger seismicity are the 

pore-pressure increase induced by fluid diffusion and the thermal cracks due to temperature difference, between hot 

rock and injected water. 
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stored in the rock matrix and not in liquid pore-water in the reservoir. The water flows out of 

the pores and flashes to steam in the bore holes during extraction. 

 

Figure 32. a) Distribution of induced seismicity recorded at The Geysers. Black triangles indicate the seismic stations of the 

Lawrence Berkeley National Laboratory (LBNL) Geysers/Calpine seismic network used in this study, and grey triangles are 

additional stations from the Northern California Seismic Network (NCSN) in the region. (from Convertito et al., 2012). b) Main 

geothermal and geological features of the reservoir. The red solid line indicates the top of the steam reservoir, the orange line the 

top of the felsite, and the pink line corresponds to the top of the high temperature reservoir (HTR), as reported by Beall and 

Wright (2010) (from Beall and Wright 2010). 

 

The Geysers area can be divided into two distinct seismicity source zones which are outlined 

by the dashed lines shown in Fig. 31a and here named ZONE1 and ZONE2. The separation 

arguments are supported by Stark (2003), Beall and Wright (2010). Some differences in the 

seismicity distribution were also noted by Eberhart-Phillips and Oppenheimer (1984). All the 

authors observed that the south-eastern part of the Geysers reservoir is seismically less active 
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than the north-western where seismicity extends to greater depth. The differences were 

basically ascribed to a depth variation in the high-temperature (260–360° C) vapor-

dominated reservoir. Specifically, Beall and Wright (2010) identified a net “M>4 dividing zone” 

which separates the whole area into two seismically different zones. In fact, the north-western 

area (ZONE1) contains all the earthquakes having magnitude larger than 4.0, whereas the 

south-eastern one (ZONE2) is characterized by lower magnitude events. Further supporting 

arguments were more recently brought by Convertito et al. (2012) who also distinguished 

two different zones in the Geysers area from the analysis of the b-values of the Gutenberg-

Richter relationship based on the Utsu (1992) test.  

McNitt et al. (1989) compiled the results of several hundred lithologic logs for The Geysers 

region to develop a model of the stratigraphy. They concluded that the steam reservoir is 

contained in a highly indurated and fractured graywacke that is capped with a more ductile, 

unfractured argillaceous graywacke. The graywacke sequence has been intruded at its base by 

silicic magmas to form a felsite batholith whose axis trends northwest and is roughly 

coincident with the steam field (Thompson and Gunderson, 1992). The elevations of the top of 

the steam reservoir before production and of the top of the felsite intrusive body have 

recently been made public by a consortium of Geysers operators (Field Operators, 1992). 

The Fig. 31b shows the main geothermal and geological features characterizing the reservoir  

as reported by Beall and Wright (2010). In particular, in ZONE1 the normal steam dominated 

reservoir (at temperature ~240°C) is underlined by a high temperature steam dominated 

reservoir (HTR) at 260-360 °C . The top of the steam reservoir is located at about 1 km depth. 

The top of felsite, a granitic intrusion, underlines much of the steam reservoir and is shallower 

in ZONE2 compared to ZONE1. Coincidence of the “M>4 dividing zone”  boundary for reservoir 

characteristics as disparate as earthquake magnitude distribution and earthquake depth may 

indicate that this dividing zone represents the south-eastern boundary of the HTR (Beall and 

Wright, 2010). 

In the geysers geothermal region induced seismicity since 1965 (roughly the date of 

significant production at The Geysers) is given in Fig. 33, which reveals that the seismicity 

below magnitude 3.0 has increased significantly over the years. The steam production and 

seismicity trends clearly diverge after additional source of water were used for injection, 

starting in 1980's. The level of seismicity (magnitude M>1.5) has shown positive correlation 

with steam production. Also, the “injection” chart is scaled such that the injection and 

seismicity values, at the time of the injection peak in 1998, plot more or less together. Majer et 
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al. (2007) have noticed that the injection and seismicity plots are very similar for every year 

thereafter, as well as being quite similar for all the years previous to 1998. This findings 

clearly indicates a remarkably strong correlation of seismicity with injection. These data seem 

to confirm that shallow and deep induced micro earthquakes occurring after the 1980 are 

correlated to local injection rates, after a certain time lag. (Stark, 1992; Stark, 2003). For 

example, Stark (1992) showed that plumes of micro-earthquakes are clustered around many 

injection wells, and the seismic activity around each of these wells correlates with its injection 

rate.  

 

Several studies have performed a three-dimensional block inversion for P-wave and S-wave 

velocity structure for The Geysers (Majer and McEvilly, 1979; Gupta, et al., 1982; Eberhart-

Phillips and Oppenheimer, 1984; Eberhart-Phillips, 1986; and O’Connell and Johnson, 1991; 

Zucca et al., 2011). Kirkpatrick et al. (1997) conducted three-dimensional Vp and Vs 

inversions for the same portion of The Geysers area as the one studied here. The 

interpretation is complicated by the transition from metagreywacke-dominated to felsite-

dominated matrix as depth increases. However, they found that high Vp values correlated 

with high Vs, while low Vp correlated with low Vs in the metagreywacke. Effective medium 

Figure 33. Correlation between induced seismicity and injection rates. The Geysers annual steam production (red line) 

plotted with the earthquake activity, and water injection (blue line). Also shown are the M > 4 events (red dots at top of 

chart). The entire seismic events catalogue analysis (Fig. 33) shows the correlation between volume of injected water and 

rate of seismicity occurrence with low magnitude (M > 1.5). The correlations between steam extraction and seismicity with 

higher magnitude are not so evident. (from Seismic Monitoring Advisory Committee). 
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theories would suggest that low Vp and Vs indicate highly fractured regions, while high Vp 

and Vs may indicate un-fractured regions. At greater depths Kirkpatrick et al. found positive 

correlation between high Vp/Vs and high Vp, which are thought to coincide with the felsite. 

In a most recent work, Zucca et al., (2011) obtained a 3D P-wave velocity model that goes 

down to 1.5 km depth by inverting the compressional-wave arrival times of about 300 

earthquakes. The authors found that the velocity structure correlates with known mapped 

geological units. The reservoir appears to exhibit low velocity compared to the surrounding 

country rock. The dry steam reservoir, which is known from the steam well drilling, is mostly 

correlated with low velocity. The correlation is best for those areas where the steam pressure 

has been reduced by production. 

Gritto et al., (2014) analysed temporal changes in the Vp/Vs ratio and average seismic P-and S-

wave velocities (Vp and Vs, respectively) throughout the entire reservoir from 2004 to 2011, 

with a data-base of about 100.000 events. The Vp/Vs ratio was calculated by applying the 

Wadati technique (Wadati, 1928; par. ) and the average Vp and Vs values were calculated as 

the inverse slope of travel-time curves vs. ray length. The authors found that the temporal 

variations in the Vp/Vs ratio reveal a high correlation to the total volume of injected water 

throughout the entire reservoir. 

Finally, Gunasekera et al. (2003) performed a four-dimensional seismic tomography by 

considering five different months between 1991 and 1998. For each epoch, tomographic 

inversions were performed for the three-dimensional Vp and Vp/Vs structure of the reservoir. 

The results show an extensive low-Vp/Vs anomaly occupying the reservoir, which grew in 

strength from a minimum of 9% to a maximum of 13.4% during the 7-year study period. This 

is attributed to the depletion of pore liquid water in the reservoir and its replacement with 

steam. Variations in the Vp and Vs fields indicate that water depletion is the dominant process 

in the central part of the exploited reservoir, and pressure reduction and mineral drying are 

the dominant processes in the northwest and southeast parts of the reservoir. 

All the discussed works show how the continuous monitoring of Vp, Vs, and Vp/Vs is an 

effective geothermal depletion-monitoring tool for the reservoir, and how it can provide 

information about the reservoir conditions. 

 

2.1 Seismic network and data 

Different temporary and long-term seismic networks have been deployed in The Geysers 

geothermal field during the last five decades to monitor the seismic activity. At present, local 
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seismicity is monitored by the dense Lawrence Berkeley National Laboratory Geysers/Calpine 

(BG) surface seismic network and by some nearby stations of the Northern California Seismic 

Network (NCSN). The BG network consists of 32 three-component stations, 29 of which were 

used for the present study (red triangles in Fig. 32a). The BG stations are distributed over an 

area of about 20x10 km2, which covers the entire geothermal field. Each station was equipped 

with I/O Sensor SM-6 geophones with a natural frequency of 14 Hz. In the fall of 2009 these 

instruments were replaced by Oyo GS-11D 4.5 Hz sensors. For the present studies we 

compiled a waveform database of 15476 events recorded at the BG stations between 

2007/07/24 and 2011/10/30, and associated with earthquakes in the catalogue of the 

Northern California Earthquake Data Center (NCEDC). We only selected the events with at 

least 20 high-quality P-wave picks, thus reaching a total of 1320 events. 

 

2.2 3D P and S velocity models 

Although different 3D tomographic models for the area already exist, our aim is to obtain P- 

and S-wave velocity tomographic models with an un-precedent spatial resolution (1 km in 

horizontal and 0.5 km in depth) and down to 5 km depth. 

The obtained velocity models are inserted in the paper Amoroso et al. (2017), submitted in 

the special Issue "Modern methods of Applied Geophysics to the understanding of volcanic 

structures and dynamics" of the Journal of Applied Geophysics and in a poster at the AGIS 

workshop on induced seismicity (Davos, 2015). 

The 3D P- and S-wave velocity model is obtained from the tomographic inversion (see par. 

1.1.1) of the first P- and S-wave arrival times. The selected stations and the distribution of 

events allowed us to investigate a volume of 36 × 25 × 5 km3. The velocity model is 

parametrized by a trilinear interpolation on a tri-dimensional grid with a node spacing of 

1×1×0.5 km3. The inversion starts from the 1D velocity model, optimized for the area, which is 

also used for the initial earthquake locations (Emolo et al., 2012). The misfit function, defined 

as the sum of the squared time delays (RMS), is analysed a posteriori to check the 

convergence, which is reached after 8 iterations (Fig. 34) and where the final RMS value is 

equal to 0.1 s, with an RMS reduction of 50%.         

The damping value has been selected on the basis of an empirical approach: we performed  

several one-step inversions with different damping values for each data-set. 
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Figure 34. RMS curves in function of iteration number. The different symbols represent the curves corresponding to 

inversion with different damping values, as indicated in the legend. 

 

Figure 35. Trade-off curve for selecting optimal value for real data-set. The data variance and solution variance 
are computed after one iteration for indicated damping values. 
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Then, the reduction in the variance of data is compared to the variance of the solution. The 

selected value is 0.3, i.e. the one which greatly reduced the variance of data with a moderate 

increase in the solution variance (Fig. 35). In order to determine the optimal combination of 

hyper-parameters, we performed a sensitivity test, i.e. synthetic tests using the real 

earthquake-station configuration and the same parameters as the ones chosen for the 

tomographic inversions. Synthetic P and S velocity models are the ones obtained at the third 

iteration, i.e. simple 3D models that only contain the predominant characteristics of 3D final 

models. Theoretical travel times are computed in these models and used as observed times. 

The 1D initial P- and S-wave models are considered as initial models and the earthquakes are 

relocated to obtain an initial hypocentre location.  

We performed several inversions for several combinations of hyper-parameters, and, by 

observing the evolution of the difference between the obtained final model and the true model 

in function of the number of iterations, we chose the combination of parameters for which the 

trend of this curve is simultaneously convergent for all the four classes. In Fig. 36 the curves 

represents the variance in function of the iteration number for five different combinations of 

hyper-parameters, Cp, Cs, Cp0 and CT0. The selected values, represented by the red line, are Cp= 

1, Cs= 1, Cp0=1 and CT0=1.  

In Fig. 37a and b we show the results of the tomographic inversion performed with the 

previously explained choice of parameters. The resolved area is evaluated by using the DWS 

(see par. 1.1.1.2). In particular, in Fig. 37 and 38, the solid white contour lines identify the 

model regions where the derivative weight sum (DWS) is greater than 5000. 

The tomographic P-wave model, represented in Fig. 37a, shows an increase in velocity with 

depth ranging from 3.6 to 6.3 km/s. Moreover, down to 2 km, there is a small area in the 

North-West characterized by velocity values which are smaller than the ones in the 

surroundings. The P-wave velocity values are in agreement with the geological composition of 

the reservoir. In fact, Berge and Wagoner (2001), who considered laboratory measurements 

on rock samples and approximated the reservoir as being homogeneous in mineral 

composition, expected low velocities near the surface, which increased with depth up to the 

values observed in the lab on intact samples, that is, 5.5 - 5.7 km/s.   

The tomographic S-wave model, represented in Fig. 37 b, can be divided into two zones 

characterized by different velocity trends down to 3 km depth. In particular, the zone located 

in the North-West shows lower velocity values than those of the South-East zone. At greater 

depths this trend is not visible, but the resolution significantly decreases.     
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Figure 34. P and S-wave velocity models. Top, map view of P-wave velocity model at 0, 1.5, 2, 3, 3.5 and 4 km depth from 3D 

travel time tomography. The seismic stations are shown at 0 km depth layers as open triangles, whereas black dots in all panels 

represent the earthquake location. Regions not covered by ray-paths are in grey. The solid white contour lines identify the model 

regions where derivative weight sum (DWS) is greater than 5000. The images indicate the presence of a strong lateral variation 

of seismic velocity along the NW-SE direction. Bottom, map view of S-wave velocity model at 0, 1, 2, 3, 3.5 and 4 km depth. Again, 

the images indicate the presence of a strong lateral variation of seismic velocity along the NW-SE direction. 
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Figure 35. Cross-section of P and S-wave velocity models and Vp/Vs ratio. The models are projected onto the NW-SE cross-

section indicate with the black line in the first panel of figure 19.The blue solid line indicates the top of the steam reservoir, the 

orange line the top of felsite and the red line corresponds to the top of the high temperature reservoir as reported by Beall and 

Wright (2010). a) Vertical cross-section along NW-SE direction of P-wave velocity model. b) Vertical cross- section along NW-SE 

direction of S-wave velocity model. c) Vp/Vs ratio images deduced from the sections shown in the figures c and d. 

 



 
 

 
Tracking space and time changes of physical properties in complex geological media - Grazia De Landro 

101 

The cross-section view in Fig. 38 shows that both models seem to delineate the main 

geological features of the field, as for the precedent works (Kirkpatrick et al., 1997; Zucca et 

al., 2011). In particular, the iso-velocity curves of 5.4 km/s for Vp and 3.2-3.4 km/s for Vs 

correspond to the top of the felsite. Most of the seismicity in ZONE1 is clustered between 2.5 

and 4.5 km depth, whereas the seismicity in ZONE2 is shallower. The Vp/Vs ratio reveals 

strong deviations from the expected value of 1.73 throughout the reservoir. A high Vp/Vs 

anomaly is present in ZONE1 and can be correlated to the high Vp in the same area 

(Kirkpatrick et al., 1997). Moreover, in this area the most of the seismicity occurs, and the 

temperature is the highest in the field. Thus, although relatively high Vp/Vs values are 

generally associated with fluid-filled fractured rocks, at The Geysers these can be also related 

to the temperature. 

 

2.3 Vp/Vs ratio temporal variation 

The temporal variations in the seismic properties of the hosting medium can be observed by 

means of the variations of the Vp/Vs ratio evaluated at the single stations and through time-

lapse tomography (4D). For the purpose of the analysis the whole catalogue, from August 

2007 to April 2011,  was divided into consecutive epoch periods of 6 months, with an 

overlapping of 2 months. 

A technique for the large-scale identification of the medium’s properties was applied, since it 

can provide complementary information with respect to the tomographic analysis. The 

method allows to evaluate the temporal variation of the Vp/Vs ratio, which can be related to 

the directional properties of the fluid diffusion process, by using the arrival times of the P and 

S phases as seismological observables (Wadati, 1933). After separately taking into account the 

events belonging to the two zones and the catalogue subdivision defined above, the Vp/Vs ratio 

was evaluated for each event at each station. For each epoch, an interpolated colour map of 

the mean values of the ratio at each station is presented in Fig. 37, in order to show the Vp/Vs 

ratio spatial variation. The Vp/Vs values are calculated by considering the receiver 

configuration (par. 2.1.2), therefore the values are attributed to the area under the stations. 

The continuous maps are obtained by interpolating the values that have been found for each 

station. 
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Figure 36. Plane view of Vp/Vs ratio spatial and temporal variation. The Vp/Vs values are calculated by considering the receiver 

configuration (par. 2.1.2), therefore the values are attributed to the area under the stations. The continuous maps are obtained 

by  interpolating the values that have been found for each station. The stations represented  in grey are the ones for which the 

recordings are not enough for the calculation of Vp/Vs ratio. 

 

The Vp/Vs ratio ranges from 1.65 to 1.85, in agreement with the work of Gunasekera et al. 

(2004). The assumption of this technique is that the Vp/Vs ratio is constant along the ray path, 

so that the value found at the stations may be considered as the combination of the anomalies  

contributions at different depths. The plots in Fig. 38 (bottom) represent the 1D Vp/Vs  ratio 

trends for some stations of the network that show similar patterns. We divided the area into 

four parts, then we plotted the ratio trend for the stations of the same area on the same panel 

(Fig. 38, top panel). These plots also indicate a high variability of the Vp/Vs  ratio in the 

different time intervals. For some stations it varies from values lower than 1.7 to 1.8. The 

former value can be attributed to the depletion of pore liquid water and to its replacement 

with steam, while the latter is associated with the presence of liquid water. The Geysers area, 

where the changes in pore-pressure, in the pore fluid phase, and in the water content of 

minerals are caused by steam removal, can produce the observed variability in the Vp/Vs  

ratio. 
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Figure 37. Vp/Vs ratio vs time epoch. The four panels show the Vp/Vs ratio in function of time epoch for different stations, 

grouped according similar trend. The orange line represents the average Vp/Vs ratio of 1.73.  

 

2.4 Time-lapse tomography 

As previously mentioned, the 4D tomography consists in applying the 3D tomography to 

consecutive epochs. Here we present a preliminary analysis for the 4D tomography in which 

we considered a fixed length of the time windows. For the purpose of the analysis the whole 

catalogue, from August 2007 to April 2011, was divided into consecutive epoch periods of 6 

months, with an overlapping of 2 months. The idea is to use the information retrieved from 

this preliminary analysis to build up a complete 4D tomography procedure, as described in 

par. 2.2 of PART I. 
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In this analysis, the 3D P- and S-wave velocity models, which were inferred by considering the 

whole data-set shown in the previous paragraph, was used as the starting model in the 

inversions for each epoch. The model parametrization is the same as for the initial model. We 

evaluated the results in terms of Vp and Vs and their percentage variation with respect to the 

initial model (Fig. 39). For each model the DWS is computed in order to determine the well 

resolved regions. 

Factors that affect Vp, Vs, and Vp/Vs at The Geysers include lithology, temperature, pore-

pressure and pore fluid phase. Among these factors, the temperature of the reservoir has 

remained fairly constant in recent years (M. Stark, personal communication, 2000) despite the 

exploitation. Thus, the changes in pore pressure, pore fluid phase, and in the water content of 

minerals caused by steam removal are probably responsible for the changes observed in the 

anomaly. 

Thus, the observed changes in velocity might be correlated to the field operations, such as 

fluid injection or steam production, which are not constant during each year, but show 

seasonal variations (e.g. Convertito et al., 2012). The inferred temporal variation in the 

velocity pattern (Vp, Vs, and Vp/Vs ratio) suggests a non- isotropic fluid diffusion in the whole 

geothermal field. 

The 4D tomographic images in Fig. 39 show a variation that does not exceed 10% for all the 

epochs, accordingly with precedent works (Gunasekera et al., 2003). The presence of some 

anomalies seems to be rather periodical. This is the case, for example, of the + 5% anomaly in 

the epochs from A and B and of the -3% anomaly in the epochs D, F, I and L. The observed 

temporal variations in Vp and Vs indicate that the effect of water injection is more pronounced 

for Vs than for Vp. The observed Vs variation is consistent with the results of Boitnott and 

Bonner (1994), who found that the Vs variation can be related to the variation of shear 

modulus, from dry to saturated, of core samples extracted at The Geysers. 

The anomaly of the high Vp/Vs ratio seems to vary its magnitude and location in the different 

epochs. According to Gunasekera et al., (2003) the variation in the Vp/Vs ratio anomaly can be 

attributed to the depletion of pore liquid water in the reservoir and to its replacement with 

steam.  Moreover, variations in the Vp and Vs fields, which we also observe in our 

tomographic images,  indicate that water depletion is the dominant process in the central part 

of the exploited reservoir, and pressure reduction and mineral drying are the dominant 

processes in the northwest and southeast parts of the reservoir. 
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Figure 38. 4D seismic tomography. Each panel shows the tomographic model, for each time epoch, projected onto the NW-SE 

cross-section, indicated by the black line in the first panel of Fig. 35. The first column represents the variation of the Vp model 

with respect to the mean Vp model (calculated on the entire period); the second column represents the variation of the Vs model 

with respect to the mean Vs model (calculated on the entire period); finally, the third column represents the Vp/Vs ratio model. 
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2.5 Results and conclusion 

The seismic rate at The Geysers is as much as 45 times higher than that of the surrounding 

area, and over 140ML, 1.2 earthquakes occur every month. Most of this activity is thought to 

be induced by geothermal exploitation, which includes both the removal of steam and fluid 

injection (Eberhart-Phillips and Oppenheimer, 1984; Stark, 1990; Stark and Davies, 1996). 

Thus, it is of great importance monitor the conditions of the reservoir, in order to mitigate the 

rick associated with induced seismicity. 

High-resolution seismic tomography can be used to image the elastic and anelastic properties 

of the reservoir. In turn, the physical properties can be related to the fluid presence and 

migration inside the reservoir. Our results clearly show that it is possible to obtain highly 

accurate information on the elastic properties of the geothermal reservoir, if a high-density 

station network is available, such as the Lawrence Berkeley National Laboratory 

Geysers/Calpine network. The main results of our tomographic application are the good 

correlation between the Vp, Vs trend and the geothermal/geological characteristic of the 

reservoir and the high Vp/Vs ratio anomaly in correspondence of the high-temperature 

reservoir, where the most of the seismicity occurs. 

Time-lapse seismic tomography can be used as a medium to monitor geothermal reservoirs 

on a longer term. Factors that affect Vp, Vs, and Vp/Vs at The Geysers include lithology, 

temperature, pore-pressure and pore fluid phase. Thus, the changes in pore-pressure, pore 

fluid phase, and in the water content of minerals that are caused by steam removal are 

probably responsible for the changes observed in the velocity values. 

Besides, the Vp/Vs ratio variations are more suitable for the short-term monitoring of 

geothermal reservoirs. Moreover, the presented results, in accordance with precedent works 

(Gunasekera et al., 2003; Gritto et al. 2014), show that the Vp/Vs ratio is positively correlated 

to the temporal changes in the reservoir’s saturation. Such a Vp/Vs ratio can be used to 

estimate and possibly predict saturation changes in small areas of the reservoir, such as 

around injection wells or throughout the whole reservoir, by using tomographic techniques. 

As further developments, the obtained results justify the application of a complete 4D 

tomographic procedure (as explained in par. 2.2). Once the well resolved and coherent 3D 

velocity images have been obtained for each epoch, the next step will be to interpret the 

changes in the obtained values and anomalies on the basis of reservoir operation. This means 

integrating the seismic images with further information on the reservoir’s condition, such as 

location, timing and rate of fluid injection, information on rock physics coming from modelling 

or laboratory measurements, etc. 
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Chapter 3 : The SOLFATARA volcano  
 

 

3.  Introduction  

Solfatara is a tuff cone, which was formed between 3.8 and 4.1 ka ago (De Vivo et al., 2001), 

located 1.5 km NE of the town of Pozzuoli  and about 10 km west of the city of Naples in 

Southern Italy. The sub-rectilinear NE and SW rims are cut by two normal faults that strike 

NW-SE, along which deep geothermal fluids can ascend. Outside the crater, two NW-SE 

striking faults cut the eastern part of the tuff cone (Bianco et al., 2004). 

Solfatara is one of the many volcanoes located within Campi Flegrei  caldera (Fig. 40). This is a 

nested, resurgent caldera resulting from two large collapses related to the Campanian 

Ignimbrite (39 ka) and the Neapolitan Yellow Tuff (14 ka) eruptions (Orsi et al. 1996).  Campi 

Flegrei volcanic system is still active, since the last eruption occurred in 1538 A.D. at Monte 

Nuovo. Zollo et al. (2008) identified a deep, sill-like, mid-crustal magmatic body supplying 

heat to this volcanic system at a depth of 7-8 km. They have also identified another shallower 

interface at 2.5 km depth associated with a discontinuity between the older caldera deposits 

and a fluid-saturated metamorphic rock layer.  The caldera has been characterized by periodic 

episodes of extended, low-rate ground subsidence and uplift, a phenomenon called 

bradyseism, accompanied by intense seismic  and geochemical activity  (e.g., De Natale et al. 

1991). During the past century, three main episodes of bradyseism occurred in the area: 

1950-1952, 1969-1972, 1982-1984 (Del Gaudio et al. 2010) . During the subsidence following 

the  1984 crisis,  a series of small uplift episodes and seismic swarms occurred at the 

Solfatara. Saccorotti et al. (2007) suggest that these earthquakes are likely to be associated 

with the vibration of a buried cavity filled with a water-vapour mixture at poor gas-volume 

fractions.  The role of fluids in bradyseism has been recognized by many authors (e.g., Gaeta et 

al. 1998, Battaglia et al. 2006, Cusano et al.  2008). 

The Solfatara crater is characterized by intense diffuse degassing, and fumarolic emissions 

(e.g. Cusano et al., 2008; Chiodini et al., 2005; Chiodini et al., 2009). Chiodini et al. (2001) 

showed that Solfatara releases about 1500 t/day of volcanic-hydrothermal CO2 as a result of 

diffuse degassing through soil, during which   about 3350 t/day of steam condense. This 

hydrothermal water mixes up with the meteoric one. The energy released by degassing at 

Solfatara is much higher than the energy released within the caldera during the current 
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period, through other processes as thermal conduction, earthquakes, and ground 

deformation.  Moreover, the impressive magnitude of diffuse degassing process confirmed the 

relevance of fluid and heat transport at Solfatara (Chiodini et al., 2001) and prompted further 

research to improve the understanding of the hydrothermal system feeding the surface 

phenomenon. 

Although the magmatic source is rather deep, the changes in its outgassing rate greatly affect 

the shallow hydrothermal system processes, which can therefore be used as a constraint for 

the fluid migration processes occurring at depth (Petrillo et al. 2013, Coco et al. 2015). This 

justifies the growing interest of the last years in delineating the physical properties of the 

shallow hydrothermal system of Solfatara as one of the means to assess the level of potential 

danger characterizing this crater of the Campi Flegrei volcanic complex.  

 

 

3.1 RICEN experiments and catalogue construction 

In the framework of the experiment RICEN, Repeated Induced Earthquake and Noise (EU 

Project MEDSUV), an active seismic experiment was carried out between September of 2013 

and November of 2014 in order to provide time-varying high-resolution images of the 

Figure 39. Solfatara with station-shot configuration. a) A photo of RICEN experiment, with an example of seismic sensors. b) Station-shot 

configuration. c) The Solfatara crater, with evidence of crater rims, fumarole, Fangaia and the station-shot configuration. The maps in 

figure 1b-c has been obtained with Google Maps  9.38.1 2016 (Map data: Google, DigitalGlobe): Solfatara, Pozzuoli, Metropolitan City of 

Naples, Italy retrieved from https://www.google.com/maps/@40.8174278,14.1393587,1292a,20y,41.32t/data=!3m1!1e3 
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structure of Solfatara (Serra et al., 2016). A grid of 240 receivers, placed at distance of 5 m on 

10 lines which were 10 m distant from each other, was deployed in the Solfatara crater (Fig. 

40b). A vibroseis energized the soil at the centre of almost all grid cells (green dots in Fig. 

40b).  A large and highly informative data-set was then built. The data used in this work were 

acquired during the first campaign, which was carried out on September of 2013.  

3.2 State of the art 

Bruno et al. (2007) imaged the shallow and intermediate subsurface of Solfatara  through the 

integration of high-resolution geophysical and hydrogeological investigations, including 2D P-

wave velocity and Electrical Resistivity Tomography (ERT) profiles. Their results show that 

the Solfatara subsurface structure can be roughly divided into two zones: a dry, outcropping 

layer and a underlying saturated zone, in which faults and fractures act as preferential escape 

conduits for the hydrothermal fluids (Bruno et al., 2007; Isaia et al., 2015). 

Byrdina et al. (2015) used the results from the ERT survey, the mappings of diffuse CO2 flux, 

the ground temperature and self-potential (SP) to understand the mechanisms and paths of 

shallow fluid circulation. They interpreted the resistivity changes at depth, associated with 

surface gas flux anomalies, as a double-plume structure: a liquid-dominated conductive plume 

below the Fangaia mud-pool and a gas-dominated plume below the Bocca Grande fumarole 

(Fig. 40c). 

Isaia et al. (2015) integrated the electrical resistivity tomography investigations with the 

volcano-tectonic information to better constrain the subsurface structure by outlining a 

complex hydrothermal system. In particular they assume that the upper zone of Solfatara, 

about the first 100 m depth, comprises desegregated rocks and collapse breccias, post-

eruptive sediments, while the lower sector, up to about 3-4 km, is where the gas-saturated 

conduit is connected to a magmatic source. 

Referring to Campi Flegrei caldera, de Lorenzo et al. (2001) and De Siena et al. (2010) carried 

out two studies on the anelastic properties of the northern part of Campi Flegrei caldera, 

including the Solfatara crater. Both studies retrieved an heterogeneous distribution of low-Qp 

and high-Qp anomalies in the investigated area, thus confirming the strong geological 

complexity of the subsoil. Moving closer to Solfatara the two works reveal different features: 

De Siena et al. (2010) found a high Qp and low Qs body. Their correlation with the low Vp/Vs 

ratio and the low Vp was interpreted as due to the effect of a small reservoir of gas. de 
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Lorenzo et al. (2001), on the other hand, found low Qp values at shallow depths, well 

correlated with high Vp/Vs value (Aster and Meyer, 1988): this correlation was interpreted as 

produced by densely fractured, porous and fluid-filled rocks. A similar interpretation was also 

provided also by Tramelli et al. (2006) who found a high-scattering zone in the area of the 

Solfatara crater. A recent attenuation tomography (Serlenga et al., 2016) mainly focused on 

the shallowest subsurface of Campi Flegrei offshore caldera. The retrieved anelastic images 

are not spatially correlated with Solfatara; however, these describe the very shallow volcanic 

system as an environment which is greatly affected by the heterogeneous distribution and the 

different saturation conditions of fluids permeating sediments and rocks of caldera. 

By using a subset of the data-bank obtained through the RICEN experiment, Serra et al. (2016) 

found the spatial variation of surface waves phase and group velocities. By Inverting  the 

related dispersion curves they obtained a one-dimensional S-wave model for different sub-

grids. Together, the different 1-D S-wave models provided a three-dimensional description of 

the S-wave model in the area down to about 15 m depth. In the upper 4 m, they associated the 

changes of the S-wave velocity to the temperature gradient, while at greater depths, the 

seismic images were correlated with the resistivity maps, obtained from the measurement 

that was carried out during the RICEN experiment. The measurement evidenced the presence 

of a the water layer close to the Fangaia area and an abrupt variation in NE direction. 

 

3.3    Velocity tomography 

The goal of the present study is to obtain an ultra-high-resolution (metric) 3D velocity image 

of the shallow (up to 35 m) hydrothermal structure of the central part of Solfatara crater by 

using a technique of delay-time tomography, which uses the P-wave first arrival times. Due to 

the extremely dense acquisition lay-out, the 3D tomographic survey allows to achieve an 

unprecedented spatial detail on the shallow velocity structure which can help understand the 

complex hydrothermal degassing and condensation processes into the porous rocks media. In 

this way, the interpretation obtained by stratigraphic analysis and resistivity profiles (Bruno 

et al., 2007, Isaia et al., 2015) can be complemented. For our purposes, the results of 

temperature and CO2 flux measurements  and resistivity survey carried out in the frame of 

the RICEN experiment will be used to further constrain our interpretation. In fact, several 

studies over the last few years showed how the multi-parametric analysis, of combined 

geophysical and/or geochemical data-sets, has been helpful to investigate the complex 

dynamics of volcanoes systems at different scale (Harris et al., 2005; Caliro et al., 2005; Bruno 

et al. 2007; Aiuppa et al., 2010).  
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3.3.1   Data processing and inversion strategy 

The RICEN experiment consisted in three successive geophysical surveys carried out at the 

Solfatara volcano respectively in September 2013, May and November 2014 each one lasting 

one week. During each experiment, the recording both of active seismic data and of the 

continuous ambient noise was performed. A dataset with more than 75,000 seismograms has 

been collected  in total during the active seismic part of the three experiments. Active seismic 

data were obtained using a Vibroseis Truck soil energizator which operated at the frequency 

range 5-125 Hz. Seismic waveforms were recorded by 4.5 Hz vertical component geophones 

(GS-11D, Fig. 40a).  

In this study, we analyse the data collected during the first experiment. In particular, an area 

of 90 x 115 m2 was sampled by a regular grid of 240 vertical sensors which were deployed at 

the crater surface (40b-c). The seismic network geometry was set up according to a two-

dimensional (2D) grid with 10 lines of 24 sensors, with a 5 m spacing between the stations 

(i.e. in-line distance). The distance between two adjacent lines (i.e. cross-line distance) was 10 

m. About 100 shot-points were energized on a staggered grid relatively to the receivers grid. 

For the vibrational sources, both the in-line and cross-line inter-distances were 10 m. For 

each shot position, three consecutive energizations were performed and waveforms at each 

site were stacked  in order to increase the signal-to-noise ratio. 

It is well known that the volcanic area is a very complex one where effects of scattering and 

attenuation could in general contaminate the first arrival picking. In order to check the 

requirements for the prospected precise picking analysis, we verified a posteriori that the 

signal-to-noise ratio was relatively high at the first arrival onset, and we evaluated 

waveform/picking coherence vs. offset along the seismic section. Moreover, through an 

analysis of particle motion direction, we validated the use of the vertical components though 

the complexity of medium and very short distance between source and receiver. 

The P-wave first arrivals have been first detected through a Neural Network implemented 

into the ProMAX SeisSpace software (Caudill, 1989; Fahlman & Lebiere, 1990; Rumelhart & 

McClelland; 1986 and Wasserman; 1989)  that performs an automatic neural network 

algorithm trained on a limited, manually picked dataset of source-receiver couples. In that 

way about 19,000 picked P-wave travel times have been obtained. Thereafter, the picking 

dataset has been manually validated on the basis of a visual inspection of seismic signals.  

Data affected by a high pick uncertainty (> 0.05 s), based on a very low signal-to-noise ratio 
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(<2), have been discarded. An example of one seismic section in the common-shot gather can 

be found in Fig. 41a. Moreover, for each shot, the travel times referring to the eight closest 

receivers have been excluded. In those cases, indeed, it was too difficult to correctly measure 

the P-wave travel time, due to the short pre-event time window available for picking. All data 

have been considered with the same weight, since only the best quality pickings have been 

considered for the tomographic analysis. The final selected dataset contained 17,418 P wave 

travel times relative to 94 sources and 240 receivers.   

 

Figure 40. Data and travel-time-vs-distance plot. a) Example of seismic section in common shot gather. The processed traces 

concerns the shot 194 recorded at stations 25 to 48. The green dots represents picks of first arrival P phases obtained with 

PROMAX and manually revised. b) Plot of travel-time-vs-distance (red dots). The black lines are the limit imposed for the 

construction of 1D initial velocity models. Blue line is the 1D initial model selected for the inversion. 

In order to determine the 3-D P-wave velocity model, the selected travel-time dataset was 

inverted by applying an iterative, linearized, tomographic approach and by adopting a 

multiscale procedure (Zollo et al, 2002).  

Due to the source-receiver configuration we have investigated a volume of 160 x 160 x 45 m3, 

the top being at 100 m a.s.l. The three-dimensional hosting medium has been discretized with 

a grid of regularly spaced nodes. The inversion strategy was based on a multiscale approach 

(Zollo et al, 2002). Several inversion runs were performed by progressively increasing the 

density of grid points (e.g. increasing the model complexity) describing the velocity field, and 

at each iteration, the starting model is the one estimated in the previous run. The proposed 

procedure is equivalent in principle to moving from a low to high wavenumber description of 

the velocity field. The multiscale strategy does not depend on the scale of the application, 

because the basic assumption is that large wavelength anomalies in the velocity structure 

have a dominant amplitude compared with the smaller ones, which we believe is reasonable 

at all scales of investigation within earth media.  This strategy has been already used in 
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seismic tomography (Zollo et al. 2002) and in migration techniques where it is known as 

“multi-scale” approach. 

The final parameterization of the medium in the multiscale procedure is chosen by applying 

the corrected Akaike Criterion (AICc; Cavanaugh, 1997), which is based on a statistical 

comparison (AIC,) (Akaike, 1974) between models characterized by a different number of 

model parameters. By introducing the minimum AICc criterion, the problem of selecting the 

optimal model parameterization is solved by avoiding a subjective decision.  The minimum 

AICc value, representing the best compromise between data misfit reduction and model 

simplicity, is obtained with the 10 x 10 x 5 m3 grid spacing, which is the final parameterization 

in the multiscale procedure. 

At first for the multiscale approach a coarser parameterization was used  with a node-spacing 

of 16x16x7.5 m3. 

In order to take into account the possible dependence of the final tomographic solution on the 

starting velocity model we adopted the following strategy: (1) first, we estimated a reference 

1D velocity model; (2) starting from this we generated a set of 200 1D initial models; (3) a 3D 

inversion is performed for each initial model. 

The estimation of the 1D reference velocity model is obtained by a modelling procedure which 

minimized the RMS of the travel time residuals. This 1D reference model had 2-layers. As for 

the 200 1D initial models, they have been constructed as 2-layer models with the depth of the 

interface fixed to that of the reference 1D velocity model (10 m). The variability range of the 

velocities in the 2 layers was established by constraining the respective theoretical travel-

time curve to lay within the limits defined by the scattering of measured data in a travel-time-

vs-distance graph (see Fig. 41b and Fig. 42). Each 1D velocity model is used as a starting 

model for the data inversion. Then, by computing the average of the 200 final three-

dimensional velocity models and the normalized standard deviation for each model 

parameter (/𝑉𝑃), we observe that deviations from the average model on retrieved velocity 

values are less than 15%, except for some grid nodes (see Fig. 43).  

The starting velocity model minimizing the final misfit of the residuals is chosen as the initial 

velocity model for the inversion with the coarser parameterization (16 x 16 x 7.5 m3) (see Fig. 

42b).  The three-dimensional P wave velocity model retrieved at the sixth iteration is used as 

starting model for a further data inversion in the final grid (spacing 10 x 10 x 5 m3). 
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Figure 41. a) Distribution of final (green) and initial (red) RMS of the inversion with the 200 2-layer velocity models. b) Plot of 
the 200 2-layer velocity models. The solid black line represents the model with the least final RMS. 

 

 

Figure 42. Map representation of the normalized standard deviation for each model parameter (/𝐕𝐏) of the 3D velocity models 

obtained by the inversion with different 1D 2-layer initial velocity models. The slices are at a depth of 5 m, 10 m, 15 m, 20 m, 25 m 

and 30 m. The grey regions in each slice represent areas not well resolved. 

 

For the calibration of the damping factor we followed an empirical approach: using real 

dataset, we performed several inversions for different values of damping. The data variance 
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and solution variance are computed after 6 iterations for indicated damping values. The 

chosen damping value is the one in which a small variance in the data corresponds to a small 

variance of the model. The L-curve representing the data variance in function of model 

variance are plotted in Fig. 44b, for the 16x16x6.5 m3 parameterization and Fig. 44c, for the 

10x10x5 m3 parameterization. In both cases, the chosen damping value is 0.5. 

 

Figure 43. a) RMS curve as a function of number of iterations for the two parameterization of multiscale procedure. b-c) Trade-

off curves for selecting optimal damping value for real data-sets. The figures in b) and c) represent the L-curve for the inversions 

for VP, respectively, in the coarse grid (16x16x7.5m3) and in the finer (10x10x5m3). 

 

3.3.2   3D P and S velocity models 

In Fig. 45 we show the map view at several depths of 3D velocity models obtained with the 

parametrization 16x16x7.5 m3. The grey regions represent areas not covered by the rays. The 

black contour represents the area well the area for which the tree resolution parameters 

(RDE, Sj and DWS) are included in a threshold value. The model shows already the strong 

lateral variation of velocity values, from 20 m depth, which is then improved in the model 

obtained with the finer parameterization; although, overall, the velocity values are lower than 

the one of obtained with the parameterization 10x10x5 m3.  
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.  

Figure 44. Map view at several depths of 3D velocity models obtained with the parametrization 16x16x7.5 m3. The grey regions 

represent areas not covered by the rays. The black contour represents the area well the area for which the tree resolution 

parameters (RDE, Sj and DWS) are included in a threshold value 

 

In Fig. 46 we show the 3D P-wave velocity model obtained with the finest parameterization 

(10x10x5 m3). Considering all the multiscale steps, we achieved a reduction of the root mean 

square of t residuals (rms) of about 70%, with a final RMS of 4 ms (see Fig. 47).   
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Figure 46. Distribution of inversion residuals for the finer parameterization 10x10x5. The grey histogram represents the initial 

residuals, the black one represents the final residuals. The final residuals histogram shows a tight distribution centered at zero. 

 

Figure 45. P-wave velocity model. a) Horizontal slice of P-wave velocity model at different depths. The grey regions in each slice 

represent areas not covered by rays. b) P-wave velocity model projected onto the SW-NE cross-sections located in Fig. 3a. The 

blurred regions in each slice represent areas not covered by rays. 
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The plane view of the model (Fig. 46a) shows a depth increasing P-wave velocity structure 

within the shallower 13-14 m depth, with velocity values ranging from 200 to 700 m/s.  

Between 13 and 15 m depth an abrupt increase of velocity is observed, from 500 m/s to 1000 

m/s. Moreover, around these depths, the model shows a significant lateral variation. In 

particular, from 15 m to 22 m depth, in the Western part of the model, a low velocity anomaly 

trending NW-SE is imaged. Its P-wave velocity is about 800 m/s and its areal extension 

decreases with depth. From 22 m to 30 m depth, an NW-SE interface separates two distinct 

zones characterized by different compressional velocity values. The Western depth section 

has a velocity ranging between about 900 m/s and 1200 m/s, and the Eastern one has higher 

velocity values of about 1200-1500 m/s.  Finally, a well confined, lens-shaped, high P-wave 

velocity zone is imaged in the deepest part of the model, with velocity values higher than 1500 

m/s.  

The SW-NE cross-sections, shown in Fig. 46b, allow to better delineate the shape and areal 

extension of the features which were already identified in the plane view representation. First 

of all, the intermediate layer, with velocity  ranging between 1000 and 1100 m/s, 

progressively deepens toward SW. Moreover, it quickly rises again at the interface with the 

mud pools (Fig. 46b). Then,  the low velocity anomaly, included in the previous layer, is more 

extended in the central part of the model (see section B-C-D in Fig. 46b), and reduces towards 

the northern and southern edges of the grid (see section A-E-F in Fig. 46b). Finally, the same 

behaviour is observed for the deep high velocity anomaly, which becomes thinner and thinner 

at the edges of the grid and completely disappears in the “F” section in Fig. 46b.         

   

3.3.3   Resolution analysis 

In order to assess the reliability of the final solution, we numerically computed the resolution 

matrix from which we extracted the RDE (Resolution of Diagonal Elements) and the spread 

function (Sj, Michelini and McEvilly, 1991).  

The full resolution matrix is calculated starting from the tomographic matrix using the 

relation 11 of Rawlinson and Spakman (2016). The full resolution matrix is represented in 

terms of its resolution diagonal elements RDE and the spread function Sj related to off-

diagonal elements. In particular, the Sj is defined as equation (12) and the DWS as equation 

(13).   

The resolution parameters, i.e. RDE, Sj and DWS, are calculated for each parameterization, 

since they depends on it. In Fig. 48 are shown the RDE (a), the Sj (b) and the DWS (c) for the 

finest parameterization 10x10x5 m3, and in Fig. 49 the same parameters for the coarser 
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parameterization 16x16x7.5 m3. In Fig. 45 and 46 the black contour delimitates the resolved 

area, i.e. the area for which the tree resolution parameters (RDE, Sj and DWS) are included in 

a threshold value. The threshold values of Sj and DWS are chosen in order to obtain a similar 

contour, binding the RDE to be higher than 0.9. 

The results of resolution analysis allowed us to assess that the resolved area is about 

100x120x35 m3 (see Fig. 48-49). 
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Figure 47. Resolution parameters matrix for 3D velocity model obtained with the parameterization 10x10x5. The full resolution 

matrix is represented in term of resolution diagonal element RDE (a) and spread function Sj (b) at four different depth. In panel 

a) the red and white contour represents the threshold values of Sj (red) and DWS (white) chosen in order to obtain a similar 

contour, binding the RDE to be higher than 0.9. The c) panel represents the DWS at different depths. 
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Figure 48. Resolution parameters matrix for 3D velocity model obtained with the parameterization 16x16x7.5. The full 

resolution matrix is represented in term of resolution diagonal element RDE (a) and spread function Sj (b) at four different 

depths. In panel a) the red and white contour represents the threshold values of Sj (red) and DWS (white) chosen in order to 

obtain a similar contour, binding the RDE to be higher than 0.9. The c) panel represents the DWS at four depths. 
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3.3.4   Multi-parametric analysis 

In this work we obtained a new 3D, high-resolution image of P-wave velocity of the Solfatara 

crater trough an inversion strategy based on a multiscale approach. We suggest that the 

retrieved subsoil velocity images can be explained in terms of the interaction between 

structural patterns and degassing dynamics within shallow hydrothermal circulation cells 

(Bruno et al., 2007). According to the geochemical analysis of the Solfatara fumarolic gases 

performed by Caliro et al. (2007), this degassed flux is composed by deep magmatic CO2-rich 

fluids mixed with hydrothermal liquids of meteoric origin.  

The Solfatara shallow stratigraphy consists of eruption deposits, tephra, which are  

hydrothermally altered and mainly composed of alternating fine to coarse ash deposits with 

limited distribution, scoria layers, and lavas (Isaia et al., 2015). In detail, the first 10-15 m are 

composed by recent, unconsolidated deposits; beneath this layer, the deeper 20-30 m thick 

deposits have a dominant composition of Astroni tephra, i.e. sandwave, ash surge and fallout 

deposits with variable degrees of consolidation (Isaia et al., 2015). The retrieved velocity 

values, Vp < 1800 m/s, are consistent with the ones found in other volcanic areas for the 

tephra deposits (Sisson and Dibble, 1981; Mora et al., 2006). In particular, in the first 10-15 m 

the P-wave velocity values range from 200 m/s to 700 m/s, these values correspond to 

aerated tephra (Mora et al., 2006). On the other hand, the higher velocity values in the deeper 

zone (Vp up to 1800 m/s) can be related to the tephra deposit, which are more consolidated 

and possibly saturated (Sisson and Dibble, 1981; Mora et al., 2006).  

Taking into account that the presence of fluids and their circulation may greatly affect the 

rock volume and therefore, the average compressional wave velocity (Toksöz et al., 1976), we 

expect that the tomographic images can constrain the possible location and phase of 

permeating fluids. For this purpose, we compared our seismic tomography with 2D cross 

sections of resistivity () and with temperature and CO2 flux measurements. Serra et al. 

(2016) show how the integration of velocity images with resistivity tomography provides a 

more complete interpretation of the complex Solfatara system. A high-resolution electrical 

resistivity tomography was performed with sixteen 115-m-long NW–SE profiles and twenty 

four 75-m-long NE–SW profiles. The surveys were carried out in March and May 2014 during 

the RICEN experiment. We used a Wenner-Schlumberger configuration with a 5 m spacing 

between electrodes. In addition to these short profiles, we used the 1 km-long profile 

performed by Byrdina et al., 2014 (labelled Pr2 in their paper) in order to increase the 

resolution at depth. Resistivity data were filtered by removing values with a standard 

deviation exceeding 5 % or when the injected current was lower than 20 mA. The 3-D 
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resistivity inversion was performed with 3028 filtered apparent resistivity measurements 

using RES3DINV software (Loke and Dahlin, 2002) which adopts a smoothness-constrained 

least-squares algorithm (Loke and Barker, 1996). The resistivity tomogram shown on Fig. 50a 

has a 7.5 % RMS error after 5 iterations. The sensitivity map is given by the diagonal elements 

of JTJ matrix and is shown in Fig. 51. Each element in the mesh contains the sum of the 

squared sensitivities of the data, obtained after the 5th iteration. Here, the sensitivity spatial 

distribution is related to the measurement configuration. Around electrodes, the sensitivity is 

closed to 1, which indicates a perfect accuracy. As the density of D-C measurement decreases 

at depth, the resolution and the sensitivity value both decline.  However, the ERT cross section 

still shows a very good resolution up to 25-30 m depth (green and light blue in the Fig. 51) 

whereas at the bottom corner a lower resolution is observed. Therefore, looking at this 

sensitivity map, it appears that the interpretation of the electrical cross-section is valid. 

The electrical conductivity can be written as the sum of the surface conductivity, which is 

prominent in the case of clay-rich minerals produced by hydrothermal alteration, and bulk 

conductivity, which in our case mainly depends on hydrothermal fluid saturation and 

temperature(Revil and Florsch, 2010). The CO2 flux has been measured using the 

Accumulation Chamber Method (for details, see 57), whereas the soil temperature was 

recorded at 30 cm depth by using a type K thermocouple. Both measurements have been 

carried out at each electrode location during the electrical resistivity tomography survey. The 

studied area includes the second largest diffuse degassing spot at Solfatara after the fumarolic 

area, with CO2 flux values ranging from 700 to 10000 g.m-2.day-1. This high CO2 flux anomaly 

is accompanied by a significant thermal anomaly, with soil temperature up to 80°C at 30 cm 

depth, due to the latent heat transfer that occurs during steam condensation at the surface.  

The resistivity values of the SW-NE cross-section range between 1.5 and 20 m, thus 

indicating a globally conductive subsurface for Solfatara (Fig. 50a), in agreement with the 

previous results (Bruno et al., 2007; Byrdina et al. 2014). The model clearly highlights a sharp 

horizontal contrast between a resistive structure (20Ωm) beneath the eastern part of the 

cross section and a conductive body (< 5 m) on the western part, towards the liquid-

saturated Fangaia mud pool. 
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Figure 49. Comparison between temperature (black line) and CO2 flux (red line) in a), resistivity cross section in b) and P-wave 

velocity model projected onto the cross-section D in Fig. 3a in c). 

 

 

Figure 50. ERT sensitivity. The diagonal JTJ matrix shows the sensitivity of the bulk electrical conductivity values with respect to 

the data. This cross section shows a very good resolution up to 25-30 m depth (green and light blue in the figure) whereas at the 

bottom corner a lower resolution is observed. 
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With reference to Fig. 50c, the superficial layer “I”, with a P-wave velocity lower than 700 m/s, 

can be related to the shallow resistive zone “I” in Fig. 50b, with resistivity > 12m, located at 

the top of the resistivity section. The same resistive upper layer was obtained by Byrdina et al. 

(2014), and can be interpreted as unsaturated recent deposits (Bruno et al., 2007; Isaia et al., 

2014). This layer is affected by a high CO2 degassing (Fig. 50a), higher than 1000 g.m-2d-1, and 

by an elevated surface temperature (> 40 °C, Fig. 50a). A passive seismic survey performed by 

Letort et al (2012) identified this area as the source of the ambient seismic noise generated by 

hydrothermal processes. The 3D velocity sections (Fig. 46b) allow to delineate this layer, 

which extends through the entire central area of the crater. 

The second layer “II” shows P-velocity values ranging from 900 m/s to 1200 m/s and is about 

10-m thick. It progressively deepens toward the SW part of the crater, becoming shallower at 

the interface with the mud pool (Fig. 50c). This structure corresponds to the eastern part of 

Fangaia, an area saturated with mineralized liquids (Byrdina et al., 2014). Here, the resistivity 

image shows a body saturated with conductive liquid  “II” at 10-30 m (Fig. 50b),with < 5 

m, getting deeper in the Fangaia direction like the velocity layer “II”. The slope of the liquid-

saturated body is explained by a pronounced influence of local topography (Byrdina et al., 

2014).  

On these grounds, we suggest that steam condensation is produced on the eastern part (“IV” 

and above) in a gas dominated structure that is characterized by both high diffuse degassing 

and high surface temperature. This steam produces hot condensate water which is channelled 

within the “II” layer and finally reaches the Fangaia mud pool in the western part. 

This fluid directionality is also inferred from the Self-Potential mapping by Byrdina et al. 

(2014). Indeed, in their paper Self Potential anomalies decrease from -40 mV in the eastern 

part to -100 mV in the Fangaia area. In a volcanic area the streaming potential is the main 

source of current. It is associated with the drag of the excess of charge in the pore water of 

fluids. Consequently, above the isoelectric point of pH (which is the case in the Fangaia survey, 

with a soil pH above 5), an advective flow can be inferred from a decrease of the streaming 

potential. 

In Fig. 4c the low velocity anomaly “III”, with values between 700 and 900 m/s, is 

characterized by the same conductive properties already described for the body “II” in Fig. 4a. 

There, we expect to find a region saturated with the liquid flow of the Fangaia area. However, 

inasmuch this body has velocity values lower than the “II” layer, we suggest, in agreement 
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with the lithology (Isaia et al., 2015), that it is composed by less consolidated tephra 

sediments than the layer “II”. Therefore the velocity variation between the “III” and the “II” 

zone may identify a gentle discontinuity in the degree of consolidation of rocks. 

The shape of this anomaly, which has the maximum extension in the central area and 

decreases going towards the NW and SE directions (Fig. 46b), could be due to the 

accumulation of deposit materials in a low of the most compact  layer “II” .   

The previous results are in agreement with what was found in Serra et al. (2016).The 

retrieved 3D S-wave velocity model, obtained from a combination of 1D velocity model in 

array sub-grid and resolved up to 15 m, showed two main domains: the S-W one, closest to 

the Fangaia, is slower  than  the N-E one. This feature is common to all the depths. The 

authors, in order to interpret the low S-wave velocity domain at SW, qualitatively 

hypothesized a manifestation of an unconsolidated layer at shallow depths and one of a water 

aquifer at greater depths. The P-wave velocity  model obtained in this work not only has a 

much higher resolution, but also covers an area that is about twice the one of the S-wave 

velocity model obtained by Serra et al. (2016). These features allowed us to be in agreement 

with the previously found results. but above all to considerably increase the knowledge and 

characterization of the deeper  anomalies of the Solfatara complex hydrothermal system. In 

particular, the water aquifer, mentioned by Serra et al. (2016), is imaged and better 

characterized through the interpretation of layer “II”, located at 15-20 m depth. 

Finally, we will try to interpret the high velocity anomaly “IV” in Fig. 4c. It is located between 

25 and 30 m depths and it constitutes a novelty with respect to the S-wave velocity model by 

Serra et al. (2016) since no resolution was achieved in this cited work. This high velocity 

anomaly is characterized by values that range between 1500 and 1800 m/s, and  partially 

overlaps a zone with resistivity values higher than 12 m. This high-resistivity/high-velocity 

body appears at the beginning of the degassing structure (Stufe di Nerone, SN in Fig. 1) on the 

eastern border of Solfatara crater, where major NW-SE directed fractures  (Isaia et al., 2015) 

enhance the up-flow of the water steam and the CO2 flux. This interpretation is consistent 

with the high CO2 flux and ground temperature measured in the same area (Byrdina et al., 

2014).  

From the resistivity images (Fig. 50b) it can be clearly seen that the conduit of the rising gas 

plume on the NE direction is located where the “II” layer saturated with condensed water is 

thinner (Fig 50c). Therefore, the anomaly found in our velocity images can represent an area 

of gas accumulation, trapped by the liquid saturated “II” layer, located immediately above and 

not completely resolved by the resistivity images due to its location below a conductive area. 
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The velocity tomographic model obtained for the Solfatara allows to image with a high 

resolution the shallow area of the crater and to understand the processes taking place inside. 

These processes are part of a complex dynamics triggered by the interaction between 

structural patterns and degassing within shallow hydrothermal circulation cells. Then, at the 

shallow investigated depths, we can see the effect of deep processes affecting the caldera, and 

our investigated area can be interpreted as the surface evidence of deeper processes. 

 

3.3.5   Conclusion 

The importance of this work lies in these principal aspects: 

1. The Solfatara crater represents one of the main pressure release areas of the entire 

Campi Flegrei volcanic system, considering the impressive magnitude of  the diffuse 

degassing process. From this arises the growing interest for the knowledge of this area, 

especially with the aim of assessing the level of potential danger characterizing this 

crater of the Campi Flegrei volcanic complex; 

2. the 3D tomographic survey allows to achieve an unprecedented spatial detail on the 

shallow velocity structure of the central part of the Solfatara crater. The 3d high-

resolution tomographic images allow to better understand, in terms of velocity 

anomalies and fluid type, the complex hydrothermal processes into the shallow part 

(30-35 m) of the volcano; 

3. the procedure used in this work represents a new multi-parametric approach that can 

be used in a volcanic environment; showing how the interpretation of velocity 

tomographic images can be complemented with  the one obtained by stratigraphic 

analysis and resistivity profiles, and, most of all, how this joint interpretation leads to a 

more robust and reliable interpretation of complex hydrothermal system; 

4. the complex interactions (deep fluids, hydrothermal system, geological structures) 

between deep and shallow sources and structures allows to use the shallow 

hydrothermal system processes as a constrain for the fluid migration processes 

occurring at depth. 
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Conclusion 
 

The aim of this research project was to investigate the influence of physical parameters in 

dynamic processes during the preparatory phase of earthquakes (both natural and human-

made), by tracking the seismicity, the propagation medium features and their temporal 

variation. Starting out with the idea that seismic waves contain information about rock 

composition and fluid content of the crossed medium, we used the seismic observable 

associated with them to reconstruct the space and time changes of physical properties 

(velocity, attenuation, rock parameters) in the investigated complex geological media: a 

tectonic, volcanic and geothermal environments. 

The first part of this Thesis encloses the detailed description of the different methodologies 

analysed and developed in our research project. Because of that, this part can be seen as a  

comprehensive and detailed compendium of methods aimed to characterize the propagation 

medium in terms of its composition, geological structure and rheological behaviour.   

For the purpose of image the spatial variation of the host environment physical properties 

and the effects of pore-fluid on them, seismic tomography has been introduced. We first 

showed how an iterative, linearized, tomographic approach in which the P and S arrival times 

are simultaneously inverted for the earthquakes location and velocity parameters (Latorre et 

al., 2004) can be used to retrieve accurate 3D velocity images of investigated areas and the 

related resolution. Then, we explained the procedure adopted to modify the velocity code in 

order to obtain the 3-D attenuation quality factor Q images using as data the t* parameter. 

Finally, motivated by the aim of characterize the medium in terms of rock parameters, like 

porosity or saturation, we developed a rock physics modelling procedure based on Biot’s 

theory (1956) that allows to estimate micro-scale properties through the direct comparison 

between observed and up-scaled velocity and attenuation parameters. 

With regard to the temporal changes of physical properties within rock volumes, the 4D 

seismic tomography, i.e. a 3D seismic tomography repeated in different time windows, can be 

introduced. We showed that a key requirement in 4D tomography is to ensure the same 

resolution of the 3D tomographic images in each analysed time epochs (Lumley et al. 1995; 

Lumley, 2001; Vesnaver et al., 2003). Moreover, when a permanent seismic acquisition 

network is available, the only equalization process concerns the different position of passive 

seismicity sources. For this purpose we developed a new equalization procedure in passive 

seismic for the 4D tomography. The detailed description of procedure operation proofs that 

the novelty lies not only in its ability to optimize the choice of time-windows in the case of 
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massive data-sets, but also in a complete handling of the issue associated to the seismic 

tomography, which includes the choice of inversion parameters, the choice of the optimal 

model parameterization (multi-scale method), the analysis of the model resolution, etc. 

Beside the time-lapse tomography, we considered also “fast” methods that allows to track 

temporal changed of physical observables (in our case station location residuals and Vp/Vs 

ratio) in a shorter time than comprehensive method, that requires a long time-spam to record 

and elaborate consistent data-set. This choice was prompted by the results of several works 

showing the necessity of a better and fast monitoring of temporal variation of the elastic 

properties in order to mitigate the seismic hazard in highly vulnerable area (Chiarabba et al. 

2009; Lucente et al 2010; Valoroso et al. 2011; Gritto et al., 2014). 

Finally, in the last chapter of the PART I, regarding the methodologies, we presented a new 

probabilistic double-difference earthquake location method. Through several synthetic test 

performed by varying the source configuration, the velocity model and the data errors, we 

showed that the use of both differential-times as data, a probabilistic approach and a 3D 

velocity model, makes the resulting location high accurate. Therefore we provided a very 

useful tool to track with high accuracy spatial and temporal changes of the seismicity 

pattern, which, in turn, can be used to analyse the presence and diffusion of a pore-pressure 

perturbation in a fluid saturated medium (Nur and Booker, 1972; Hainzl, 2004; Antonioli et 

al., 2005;Hainzl and Ogata, 2005). 

In the PART II of this Thesis we showed the results of the previous methodologies application 

to three complex areas: the Irpinia fault zones, The Geysers geothermal area and the Solfatara 

volcano. As we discussed, the relevance of these three areas lies not only in their different 

rheological and structural nature, but also in their different dimensional scale. For these 

different features we consider the areas as "seismological laboratories", to which we applied 

different methodologies according to the characteristics, the available data-sets, the 

associated problems and the state of art of each area. This enables us to validate the 

methodologies and to analyse their performance for different scenarios.   

The first analysed area, was the Irpinia fault zone (Southern Italy), a crustal volume in 

southern Italy, embedding the still active fault system that generated the 1980 M 6.9 

earthquake. Since different authors (De Matteis et al. 2012; Matrullo et al. 2013; Ascione et al., 

2013; Amoroso et al. 2014) have showed that the low magnitude (ML< 3.5) background 

seismicity does not occur on a single major fault, but rather in a volume delimited by the 

master faults of Irpinia earthquake, the first raised issue was the possibility to clusterize the 
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seismicity along the main faults using an accurate location method. Secondly, the 3D P- and S-

wave velocity models optimized for the area (Amoroso et al. 2014), have highlighted a 

significant fluid accumulation in highly fractured rocks, where most of micro-seismicity 

occurs. The consequent interest was whether it was possible to deepen our knowledge of the 

complex area with attenuation images and to better characterize the ‘earthquake reservoir’ in 

terms of porosity, saturation or fluid type. These analysis have as final aim the possibility to 

make some quantitative consideration about the seismicity-triggering mechanism. 

The first issue has been addressed by carrying out a high-resolution, earthquake location 

analysis of the Irpinia micro-seismicity by using the double-difference location method jointly 

to an accurate differential time data set. The refined seismicity locations show that the events 

occur in a volume delimited by the faults activated during the 1980 MS 6.9 Irpinia earthquake, 

accordingly with precedent works. The main result of our application is that we found an 

abrupt interruption of the seismicity across an SW–NE oriented structural discontinuity. This, 

interpreted as a geometrical barrier, could have played a key role during the 1980 Irpinia 

event, and possibly controlled the delayed times of activation of the first two rupture 

segments. In order to satisfy the second interest, we retrieved the 3-D attenuation structure of 

the normal fault system, in terms of quality factors QP and QS. The retrieved QS showed a good 

correlation with the geometrical features of large-scale geological structures. While QP 

showed a good correlation with the finer structure of the 1980 Irpinia earthquake. 

Then, to infer quantitative information about rock physics parameters, we considered the 

rock physic up-scaling procedure previously described. By using a realistic rock-physics 

model, we constrained the porosity in the ranges 3-5%, high for the area, and consolidation in 

the range 6-10, correspondent to a pore-pressure up to about 150 MPa (de Ceia et al., 2015), 

with the presence of a fracture system, likely high saturated by brine-CO2/CH4 or CO2-CH4 

mixtures, where the high pore pressure is directly responsible for the seismicity triggering 

mechanism and where, in fact, most of seismicity occurs. 

Moving on to another area, we considered The Geysers geothermal area (California) which 

is the greatest Enhanced Geothermal System (EGS) in the world. The dominant interests for 

this area was to track spatial and temporal variations, on both short and long term, of the 

reservoir physics parameter. We were aware, in fact, that fluid injection, steam extraction and 

reservoir stimulation in EGS lead to induced seismicity (Eberhart-Phillips and Oppenheimer, 

1984; Stark, 1990; Stark and Davies, 1996), whose monitoring is important for both the 

mitigation of the side effects of industrial operations, and the continuous assessment of  the 

reservoir’s conditions. For this aim, the applied methodologies at The Geysers high quality 

data-set (acquired by a permanent seismic network) was the high-resolution seismic velocity 
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tomography, the Vp/Vs ratio temporal variations as a “fast” monitoring tool, and a preliminary 

analysis for the 4D tomography. The main results of our tomographic application are the good 

correlation between the Vp, Vs trend and the geothermal/geological characteristic of the 

reservoir and the high Vp/Vs ratio anomaly in correspondence of the high-temperature 

reservoir, where the most of the seismicity occurs. Concerning the “fast” monitoring tool, the 

presented results, in accordance with precedent works (Gunasekera et al., 2003; Gritto et al. 

2014), showed that the Vp/Vs ratio is positively correlated to the temporal changes in the 

reservoir’s saturation. Thus, this observable can be used to estimate and possibly predict the 

large scale saturation changes in some areas of the reservoir, such as around injection wells, 

or throughout the whole reservoir. Finally, the obtained result of preliminary 4D tomography 

justified the planning of a complete 4D tomographic procedure. Once the well resolved and 

coherent 3D velocity images have been obtained for each epoch, the next step will be to 

interpret the changes in the obtained values and anomalies on the basis of reservoir 

operation, i.e. location, timing and rate of fluid injection, information on rock physics coming 

from modelling or laboratory measurements, etc. 

Finally, we considered the volcanic area of the Solfatara crater, one of the main pressure 

release areas of the entire Campi Flegrei volcanic system, considering the impressive 

magnitude of  the diffuse degassing process (Chiodini et al., 2001). From this arises the 

interest of assessing the level of potential danger characterizing this crater. In this frame, a 

repeated active seismic experiment was carried out between September 2013 and November 

2014. From the data-set acquired during the first campaign, we obtained an ultra-high-

resolution 3D reference velocity image of the shallow hydrothermal structure of the Solfatara 

crater’s central part (up to 35 m depth), by applying seismic tomography. Despite the very 

small scale of the investigated area (about 100 m), the multi-scale procedure enabled us to 

apply the tomographic method. In fact, this strategy does not depend on the scale of the 

application, provided that data have controlled uncertainty and sufficient resolution to 

retrieve unbiased model parameters. Then, aiming to improve the understanding of the 

hydrothermal system that feeds the surface phenomenon, we applied a multi-parametric 

approach by comparing our seismic tomography with 2D cross-sections of resistivity () and 

with temperature and CO2 flux measurements. The results showed how this joint 

interpretation leads to a more robust knowledge of complex hydrothermal system.  

The application of different methodologies to the three complex areas, chosen on the basis of 

open questions and of the state of art related to each one of them, allowed us to add an 
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important piece of information to the knowledge of the subsoil’s structural characteristics and 

of its behaviour in relation to the presence and motion of pore fluids. These factors, obtained 

by tracking the seismicity, the propagation medium’s features and their temporal variation, 

was correlated to the dynamic of the entire considered system, particularly in connection with 

the processes taking place during the enucleation phase of earthquakes. Thus, the obtained 

results showed how the described methodologies can be used in seismogenic and volcanic 

areas, to improve the knowledge of medium properties in order to mitigate the risk associated 

to destructive events; and in geothermal areas, to monitor the induced seismicity through the 

tracking of medium properties temporal variation.  

Therefore, this thesis represents a useful tool for this kind of analyses, by providing a 

compendium of different methodologies applicable to complex areas characterized by a 

different physical nature and a different dimensional scale. Moreover, in the second part of 

this thesis, the applications to the different three complex areas allow to evaluate the 

performances and weaknesses of the methodologies, in order to choose the most suitable one 

in the case of interest. 
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