Algorithms and Numerical Methods for Electrical Brain Imaging

Samore, Andrea (2017) Algorithms and Numerical Methods for Electrical Brain Imaging, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Ingegneria elettronica, telecomunicazioni e tecnologie dell'informazione, 29 Ciclo. DOI 10.6092/unibo/amsdottorato/8019.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (14MB) | Anteprima

Abstract

Electrical brain imaging (EBI) refers to a set of techniques that exploit either the spontaneous electrical activity of the central nervous system, as in electroencephalographic (EEG) source reconstruction, or make use of external current injections, as in electrical impedance tomography (EIT) , to image the structure or function of the brain. When compared to other brain imaging methods used in research or in the clinical setting, such as computed tomography (CT), magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and single photon emission computed tomography (SPECT), EIT and EEG source localization instrumentation offer the advantages of portability, low cost, high temporal resolution [ms] and quick setup. The downsides are a low spatial resolution [cm], high computational cost of the image reconstruction process and high sensitivity to imperfections of the electrical model of the head. In this work, a new special purpose reconstruction algorithm for EIT is presented and validated wth experimental measurements performed on a cylindrical phantom and on a simulated human head. The algorithm focuses on the quick detection of compact conductivity contrasts in imperfectly known in 3D domains. The performance of the proposed algorithm is then compared to the one of a benchmark reconstruction method in the EIT field, Tikhonov regularized reconstruction, with stroke detection and classification as a case study. Moreover, the possible application of EIT imaging to the detection of epileptic foci with intracranial deep electrodes (stereoelectroencephalography or SEEG) is explored. Finally, EEG source reconstruction algorithms are implemented on a heterogeneous multi-CPU and multi-GPU computing system to significantly reduce the reconstruction time.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Samore, Andrea
Supervisore
Dottorato di ricerca
Ciclo
29
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Brain Imaging, EIT, EEG, SEEG
URN:NBN
DOI
10.6092/unibo/amsdottorato/8019
Data di discussione
8 Maggio 2017
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^