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Abstract 

 

Multivariate analysis has rapidly developed in the  past few years. This rise is due to 

advances in intelligent instruments and laboratory automation as well the possibility of 

using powerful computers and user-friendly software. In the field of analytical 

chemistry, the capability of newer, mostly multicomponent or multielement analytical 

methods produces so many data, that only the use of mathematical and statistical 

techniques can provide a suitable interpretation. The term Chemometrics, introduced for 

the first time by the Swedish scientist Swante Wold in the early 70’s, concerns the 

implementation of multivariate principles to chemical data with the goal both to 

describe observed phenomena (and relationships among involved variables) and to 

create useful models for prediction purposes. 

The aim of the present work is to develop multivariate methods for processing 

experimental data obtained through non-destructive techniques, in which it is possible 

to investigate samples without altering them, and keeping the sample available for 

further analysis. For qualitative investigation,  such “direct” analytical procedures like 

infrared spectroscopy are available; however, the univariate approach is not exaustive in 

case of very complex matrices. The quantitative approach is still an open issue, due to 

the strong matrix effect hindering the creation of univariate calibration methods in 

interpolation mode. Multivariate analysis may be the solution. 

This thesis is organized as follows: 

In Section 1 the general problem of high-dimensional data is introduced, reviewing the 

basic principles of Principal Components and their implementation for descriptive and 

predictive purposes. In the last part of this section the core of the present work is 

discussed: advanced algorithms aimed to perform standard addition method in 

multivariate analysis. 

Section 2 is dedicated to theory of the employed analytical technique: the basis of 

infrared spectroscopy,  focusing particular attention to reflectance technique and issues 

related to data handling. 
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Section 3 describes the typologies of the analysed samples (marine sediments), the 

reason of interest of one of their specific components (biogenic silica), and 

shortcomings related to traditional methods of analysis. 

In Section 4 experimental data, their computational treatment and a final discussion of 

results compared with other reference methods are presented.  
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Section 1 
 

1.1 A current topic: facing with big dataset 

Advances in data collection and storage capabilities during the past decades have led to 

an information overload in most sciences. Researchers working in domains as diverse as 

engineering, astronomy, biology, remote sensing, economics, and consumer 

transactions, face larger and larger observations and simulations on a daily basis. In 

many cases such observations are related with data where many variables  are involved. 

Multivariate statistics include all statistical techniques for analyzing two or more 

variables of interest: it essentially concerns the statistical process of simultaneously 

analyzing multiple independent variables (predictors) with multiple dependent variables 

(outcome or responses) using matrix algebra. While these analyses have been a part of 

statistics since the early 1900’s, the development of mainframe and microcomputers and 

subsequent analytical software has made the once tedious calculations fairly simple and 

very fast. In the field of chemistry the processes requiring investigation have become 

increasingly complex. Consequently, the relevance of analytical chemistry has rapidly 

increased. In the past the acquisition of data was a limiting step in the analytical 

process, but the introduction of new instrumental methods has improved the production 

of analytical information. Such abundance of data provided the possibility of more 

detailed and quantitative description of the observed phenomena. With the development 

of computer science and technology it became easier for analytical chemists to apply 

computational and advanced statistical methods in their work. This link between 

statistic and chemical knowledge led to the birth of a new discipline called 

Chemometrics. 

In analytical chemistry, a typical case of application of multivariate techniques are 

spectroscopic and chromatographic measurements. As a matter of fact, such methods 

provide analytical data on many components of a single sample. For example, when we 

record a spectrum, each wavelength can be considered a single variable and the 

measured sample is described by the absorbances of the whole examined wavelength 

range. In other words, we can say that most instrumental measurements are inherently 

multivariate, since many variables can be related to a single sample. In the recent years, 

a number of methods have been developed for big-data processing, with the aim either 

of exploring relationships and structures or of confirming hypotheses. The methods rely 
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strongly on graphical presentation of the results. Among the most well known and 

analysed methods in this tradition, there are principal component analysis (PCA) for 

interpreting large data matrices, partial least squares (PLS) regression and principal 

component regression (PCR) for relating different data sets to each other, and  

shrinkage methods (e.g. LASSO, Ridge Regression) aimed to select significant 

variables. 

 

1.2 Data presentation: dataset and graphs  

Datasets The first step in facing a huge amount of data is to organize them in structures 

that can be subjected to mathematical elaborations. The key concept underlying the 

classification of multivariate methods is the data matrix. A conceptual illustration is 

shown in Table 1.1. It can be noticed that the table (also called dataset) consists of a set 

of objects  (the m rows) and a set of measurements on those objects (the n columns). 

Cell entries represent the value xij of  i-th object on j-th variable. The objects are any 

kind of entity measurable characteristics (numeric or not). The variables are 

characteristics of the objects and serve to define the objects in any specific study.  

 

 
Table 1.1 

 

Graphs When only two variables are measured, the information they bring can be 

graphically represented: a plot can be created where the coordinates of the points are the 

values measured for the two variables. The point can also be defined by a vector, called 

a data vector, drawn to it from the origin: in this case we have a two-dimensional 

vector. Objects which have similar properties will have similar data vectors, that is they 



 

 

8 

 

will lie close to each other in the space defined by the variables. Such a group is called a 

cluster. This way of presentation is very valuable in practice, since the human eye is 

superior to anything else in detecting structures and relationships. A graphical 

representation is less easy for three variables and no longer possible for four or more: it 

is here that computer analysis is particularly valuable in finding patterns and 

relationships. Matrix algebra is needed in order to fully describe the methods of 

multivariate analysis. 

 

1.3 Dimension reduction: introduction to PCA 

Modern datasets, in contrast with smaller more traditional datasets that have been 

widely studied in the past, present new challenges in data analysis. Traditional statistical 

methods break down, partly because of the increase in the number of observations, and 

also because of the increase in the number of variables associated with each 

observation. High-dimensional datasets present many mathematical issues as well as 

some opportunities, which give rise to new theoretical developments. One of the 

problems with high-dimensional datasets is that, in many cases, not all the measured 

variables are “important” for understanding the underlying phenomena of interest. In 

fact, quite frequently there is some correlation between the variables, and so some of the 

information is redundant. The use of redundant, irrelevant, and noisy variables tends to 

compromise the performance of many statistical tools, leading to unreliable inferences 

and costly data collection.  This is particularly true when  calibration methods are 

applied. Moreover, a huge volume  of data may make it difficult to see patterns and 

relationships. For example, a spectrum would normally be characterized by several 

hundred intensity measurements and in this case it is impossible to represent graphically 

the samples in order to highlight similarities and differences.  

Dimension Reduction refers to the process of converting a set of data having vast 

dimensions into data with lesser dimensions, ensuring that it concisely conveys similar 

information. There are many reasons to reduce the dimension; some of them are listed 

below. 

 It helps in data compressing and reducing the required storage space.  

 It fastens the time required for performing same computations. Less dimensions leads 

to less computing, also less dimensions can allow usage of algorithms unfit for a large 

number of dimensions. 
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 In some cases, for example in performing regression with PLS method, collinearity 

between variables can affect model performance. By removing redundant features the 

problem can be overcome. 

 Reducing the dimensions of data to 2D or 3D may allow to plot and visualize it. 

Patterns can be more clearly observed.  

 It is also helpful in noise removal, and as result we can improve the performance of 

models. 

From a mathematical point of view, the problem of dimension reduction can be stated in 

the following terms: given the p-dimensional random variable x = (x1; … ; xp) , find a 

lowest dimensional representation of it, s = (s1; … ; sk) with k<p, that captures the 

content in the original data, according to some criterion (for example imposing 

orthogonality). The components of s are sometimes called the latent components. 

Different fields use different names for the p multivariate vectors: the term “variable" is 

mostly used in statistics, while “feature" and “attribute" are alternatives commonly used 

in the computer science and machine learning literature.  

There are many methods to perform dimension reduction. For example, in the method 

called Factor Analysis if some variables are highly correlated, these variables can be 

grouped by their correlations, i.e. all variables in a particular group can be highly 

correlated among themselves but have low correlation with variables of other group(s). 

Here each group represents a single underlying construct or factor. These factors will 

supposedly be  small in number as compared to large number of original variables. In 

summary, the purpose of factor analysis is to discover simple patterns in the pattern of 

relationships among the variables. In particular, it seeks to investigate whether the 

observed variables can be explained largely or entirely in terms of a much smaller 

number of variables called factors. Other techniques (Backward Feature Elimination, 

Decision Trees, Low Variance) can be used in order to lower the dimension; however, 

Principal Component Analysis is doubtless the oldest and best known of the techniques 

of multivariate analysis. 

 

1.4 Principal Component Analysis  

Principal Component Analysis (PCA) is probably the most popular multivariate 

statistical technique and it is used by almost all scientific disciplines. It is also likely to 

be the oldest multivariate technique. In fact, its origin can be traced back to 
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Pearson(1901) but its modern instantiation was formalized by Hotelling
 
(1933) who also 

introduced the term principal component. PCA analyses a data table where observations  

are described by several dependent variables, which are, in general, inter-correlated. 

The method is aimed to extract the relevant  information from the data table and to 

express this information as a set of new orthogonal variables called principal 

components (PCs). The goals of PCA can be summarized in the following points: 

 extract the most important information from the data table 

 compress the size of the dataset by keeping only this significant variables 

 simplify the description of the data set 

 analyse the structure of the observations and the variables. 

In order to achieve these goals, PCA algorithm performs a rotation of original axes and 

transforms original variables a into a set of new, latent variables, which are linear 

combination of the original ones. PCA also provides graphical representation showing 

the pattern of similarity of the observations and the variables by displaying them as 

points in graphs. Mathematically, PCA can be obtained by  the eigen-decomposition of 

covariance or correlation (positive semidefinite) matrices and/or by the singular value 

decomposition (SVD) of rectangular matrices. The method is used in numerous areas of 

application and has been the source of inspiration for much of the development which 

has taken place in multivariate analysis. In fact, even though PCA is essentially a 

descriptive technique, some regression methods like Principal Component Regression 

(PCR) and Partial Least Square (PLS) rely on the same concepts. PCA is based on 

identifying the most important directions of variability in a multivariate data space (data 

matrix) and present to the user the results in graphical plots on the computer screen. 

 

 

Fig.1.1 
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This way of presentation is very valuable in practice, since thanks to graphical 

representation it is possible to assemble objects (i.e. samples) in clusters, detect 

correlations among original variables and, finally, relationship between samples and 

original variables. However, it should be stressed that since only the directions of main 

variability in the data matrix are given attention in the PCA, the more subtle sources of 

variability may pass unnoticed. Therefore, multivariate treatments of this kind of data 

should usually be accompanied by more detailed studies, by for instance ANOVA 

methods.  

 

1.5 PCA mathematical feature  

Before implementing the  PCA algorithm, in some cases it can be necessary to perform 

a mathematical pre-treatment on variables. The pre-processing part can make the 

difference between a useful model and no model at all, and it is advisable when the 

variables are measured with different units. 

One term for pre-processing is called autoscaling, which is the combination of mean 

centering and standardization. Standardization is one type of scaling where each value is 

scaled by 1/STD 

 

Mathematically, PCA is defined as a orthogonal linear transformation and assumes all 

basis vectors are an orthonomal matrix. PCA is concerned with finding the variances 

and coefficients of a dataset by finding the eigenvalues and eigenvectors. The PCA is 

computed by determining the eigenvectors and eigenvalues of the covariance matrix. 

The covariance matrix is used to measure how much the variables vary from the mean 

with respect to each other. The covariance of two random variables is their tendency to 

vary together. For two variables X and Y, this can be explicitly written out as: 

N

yyxx
N

i

iiyx
))((

1

),cov(




  

with x  = mean(X) and y = mean(Y), where N is the dimension of the dataset. The 

covariance matrix is a matrix A with elements Ai,j = cov(i,j). 
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In the covariance matrix, the exact value is not as  important as its sign (i.e. positive or 

negative). If the value is positive, it indicates that both dimensions increase, meaning 

that as the value of dimension X increased, so did the dimension Y. If the value is 

negative, then as one dimension increases, the other de-creases. In this case, the 

dimensions end up with opposite values. In the final case, where the covariance is zero, 

the two dimensions are independent of each other. 

If we consider a dataset of  N  objects and K variables   

 

 

the covariance matrix can be expressed by the product 

 

Cov(X)=X
T
X 

 

where X
T
 is the transposed matrix. 

Due of the commutative attribute, the covariance between xij and xji is equal to the 

covariance between xji and xij. So the covariance matrix is symmetric.  

From linear algebra we know that a symmetric matrix can be decomposed: the spectral 

decomposition (or Jordan decomposition) links the structure of a matrix to the 

eigenvalues and the eigenvectors. 

      where M and J are called similar matrices 

Therefore the eigenvectors and eigenvalues  of the covariance matrix can be calculated 

The computation of eigenvalues and eigenvectors is an important issue in the analysis of 

matrices. For a given    (covariance matrix)  

UU
T
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where = diag (1; … ; p) is the diagonal matrix of the ordered eigenvalues 1,…,p, and 

U is a pxp orthogonal matrix containing the eigenvectors. 

Once the eigenvectors and the eigenvalues are calculated, the eigenvalues are sorted in 

descending order. This gives us the components in order of explained variance. The 

eigenvector with the highest eigenvalue expresses the direction with the highest 

variance. The second component is computed under the constraint of being orthogonal 

to the first component and to have the largest possible variability. The other components 

are computed likewise. Finally, in order to get the coordinates in the new space (PCA 

space) the original dataset is projected in the eigenvectors directions. Therefore, 

principal components are calculated by multiplying each row of the eigenvectors with  

the sorted eigenvalues.  

 

  

 

where X is the original dataset 

 

The values of the new variables for the observations are called factor scores, and these 

factors scores can be interpreted geometrically as the projections of the observations 

onto the principal-components space. PCA provides several results and numerical 

outcomes, but probably the most useful are the graphs of scores and loadings. The 

scores are the  coordinates with respect to PCs, while loadings are normalized 

coefficient accounting for the relevance of original variables with respect to PCs. In 

such plots, samples and original variables are depicted in the new “latent” space where 

is possible detect similarities and correlations. 
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1.6 Regression 

Calibration is fundamental to achieve consistency of measurement. Often calibration 

involves establishing the relationship between an instrument response and one or more 

reference variables. In statistics, the term regression is used to describe a group of 

methods that summarize the degree of association between one variable (or set of 

variables) and another variable (or set of variables). The simplest and most common 

type of association between two variables is the linear relationship y=a+b∙x. However, 

not all physical or chemical relationships can be adequately described using the simple 

linear model and more complex functions, such as quadratic and higher order 

polynomial equations, may be required to fit the experimental data. For this reason there 

are a number of regression models such as logarithmic, exponential and power. The 

most common statistical method used to perform a regression is least-squares 

regression, which works by finding the “best curve” through the data that minimizes the 

sums of squares of the residuals. The important term here is the “best curve”, not the 

method by which this is achieved. Even though there are a number of least-squares 

regression models, linear regression is anyway one of the most frequently used 

statistical methods in calibration. Once the relationship between the input value and the 

response value (assumed to be represented by a straight line) is established, the 

calibration model can be used in reverse, that is to predict a value from an instrument 

response.  The principal aim in undertaking regression analysis is to develop a suitable 

mathematical model for descriptive or predictive purposes.  

The model can be used  

1) to confirm some idea or theory regarding the relationship between variables   

2) to predict some general, continuous response function from discrete and possibly 

relatively few measurements.  

The most common application of regression analysis in analytical laboratories is 

undoubtedly curve-fitting,  where the creation of calibration lines from data is obtained 

from instrumental methods of analysis. In many cases, more than one variable may be 

measured. For example, multiwavelength calibration procedures are finding increasing 

applications in analytical spectrometry and multivariate regression analysis forms the 

basis for many chemometric methods reported in the literature. 
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1.7 Univariate regression  

In its univariate  form,  a linear calibration model is y=a+b∙x+e where yi represents the 

response (for example an instrumental signal like an absorbance) of the ith calibration 

sample, xi denotes the corresponding descriptive variable (in analytical chemistry often 

a concentration), a and b are the constant coefficients  characteristic of the regression 

line (intercept and slope), and ei signifies the error associated with the i-th calibration 

sample, assumed to be normally distributed random, N (0,1). A single instrument 

response, e.g. absorbance at a single wavelength, is measured for each calibration 

sample: the vecto rs x, y and e will contain the corresponding values . In vectorial terms  

y=a+bx+e 

where y , x , and e are n dimensional vectors for n calibration samples 

Values in  y  and  x  are used to estimate the model parameter b by the least squares  

procedure.  The method is based on minimizing the Root (Residual) Sum of Square 

(RSS). 

In matricial terms, b  (vector of coefficients) is computed by: 

         yXXXb TT 1
^

)(               Eq.1.1 

 

where a column of ones is added to vector x to take into account the intercept term 

 

 

 

 

 

 

In Eq. 1.1 the symbol 
^

b  , called “b-hat,” is used to highlight its role as an  estimate of  

b. The resulting calibration model is used to predict the analyte concentration  for an 

unknown sample 

y1 

y2 

. 

. 

yn 
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1   x2 
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b 

 

    = 



 

 

16 

 

  abxy unk 
^^

 

where  xunk  represents the response for the unknown sample measured at the calibrated  

wavelength. This kind of calibration is called univariate calibration because there are 

just one descriptor and one  response variable. 

 

1.8 Multivariate case 

 Univariate calibration is specific to situations where the instrument response depends  

only on the target analyte concentration. In multivariate systems, responses depend on 

the target analyte in addition to other chemical or physical variables and, hence, model 

parameters must take into account these interfering and/or multiple effects. Assuming a 

linear relation for the i-th calibration sample, the model can be written as  

y=b0+xi1b1+xi2b2+…+xijbj+ei 

 

  

 

 

 

 

 

 

the equation becomes   

y=Xb+e                 Eq. 1.2 

the same equation of univariate is used in computing the vector of coefficients. 

To obtain an estimate of the regression vector b by use of Eq1.2, i.e. to ensure that the 

inverse (XTX)
-1

 exists, the determinant of (X
T
X) must be different from zero. When in 

the X matrix there is complete collinearity, (X
T
X) is singular, its determinant is zero, so 

that  it is not invertible. Even if  only partial collinearity is present, the determinant will 

be very small and estimated coefficient will not be accurate. The issue can be easily  

understood if we consider that in the least square method partial derivative are 

computed. This means that regression coefficients provide an estimate of the effect of a 

one unit change in an independent variable, holding the other variables constant. If in 

the given data set one variable x1 is highly correlated with another independent variable, 

y1 

y2 

. 

. 

yn 

 

 

   = 

1   x1 1                x12                                 …                                  x1n                                 

1   x12                   x22  … 

...           … 

….                              … 

1   x1m                    x12  …               x1n 
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b1 

… 
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x2, then we have a set of observations for which x1 and x2 have a particular linear 

stochastic relationship. We don't have a set of observations for which all changes in x1 

are independent from x2. This means that we have an imprecise estimate of the effect of 

independent changes in x1 because its collinear variables contain the same information. 

In addition, the standard errors of the coefficients tend to be large, and small changes to 

the input data can lead to large changes in the model, even resulting in changes of sign 

of parameter estimates. This is the collinearity problem in regression, and estimates can 

be seriously degraded. Thus, selection of specific descriptive variables to be included in 

the model is critical to the performance of the model. This aspect will be further 

discussed in the shrinkage section.  

Furthermore, we can have more than just one response:  in this case, the model begin  Y 

= X b + E, where Y is n × q matrix  for q responses:  solution for the regression matrix 

is still obtained by Eq.1.2, with Y replacing y. 

 

1.9 PCR 

The key concept on the basis of calculation of principal components, i.e. of generating 

orthogonal linear combinations of variables in order to extract maximum information 

from a dataset, is also useful in treatment of regression. As mentioned above. it is often 

the case with multiple regression analysis involving large numbers of independent 

variables that there exists extensive collinearity or correlation between these variables. 

Collinearity adds redundancy to the regression model since it happens that are more 

variables included in the model, for adequate predictive performance. To avoid 

collinearity, the regression coefficients should be orthogonal (i.e. independent each 

other). Among the methods available to the analytical chemist for regression analysis 

with protection against the problems caused by correlation between variables, principal 

components regression (PCR) is the most commonly employed. Besides bypassing 

multicollinearity, the method results in estimation and prediction better than ordinary 

least squares when successfully used. With this method, the original k descriptive 

variables are transformed into a new set of orthogonal or uncorrelated variables called 

principal components of the correlation matrix. This transformation ranks the new 

orthogonal variables, ordering them basing on their significance, and the procedure then 

allows eliminating some of the principal components to realize a reduction in variance. 

After elimination of the least important principal components, a multiple regression 
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analysis of the response variable against the reduced set of principal components is 

performed using ordinary least squares estimation (ordinary least square, OLS, or 

multivariate linear regression, MLR). Because the principal components are orthogonal, 

they are pair-wise independent and hence OLS can be used. Once the regression 

coefficients for the reduced set of orthogonal variables have been calculated, they are 

mathematically transformed into a new set of coefficients that correspond to the original 

or initial correlated set of variables. These new coefficients are principal component 

estimators . 

 

 

 

  

  

 

 

 

 

 

 

1.10 PLS 

In principle, MLR can be used with very numerous factors. However, if the number of 

factors gets too large (for example, greater than the number of observations), surely we 

will get a model that fits the sampled data perfectly but that will fail to well predict new 

data. This phenomenon is called over-fitting. In such cases, although there are many 

manifest factors, there may be only a few underlying or latent factors that account for 

most of the variation in the response. The general idea of PLS is to try to extract these 

latent factors, accounting for as much of the manifest factor variation as possible while 

modeling the responses well. For this reason, the acronym PLS besides  Partial Least 

Regression has also been taken to mean Projection to Latent Structure. 

Partial least squares (PLS) was first developed by H. Wold in the field of econometrics 

in the late 1960s. Two different methods are available, called PLS1 and PLS2. In PLS1, 

MLR PCA 

Step 1 
Step 2 

Step 3 

X T a1 

a2 

… 

an 

 

 

Y 
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b2 

… 
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a2 
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separate calibration models are built for each column in Y. With PLS2, one calibration 

model is built for all columns of Y simultaneously. 

The basic principle in PLS is that modeling the response (y) information, is as important 

as modeling the descriptors (or x) information. In performing PCR the PCs are 

calculated only on the X matrix, and do not take account of the Y matrix. In PLS, 

components are obtained using together x and y data. In other words,  PLS maximizes 

the covariance between the two set of variables instead of the variance of the x variables 

as happens in PCR. PLS finds a variable that maximizes xy, or the product of the 

independent variables data with the responses. In physical terms, PLS assumes that 

there are errors in both blocks which are of equal weight. This is reasonable: in 

spectrophotometric measurement, for example, the concentrations used in calibration 

are subject to error (e.g. dilution and weighing) just as much as the spectra. MLR and 

PCR as commonly applied in chemistry assume that all the errors are in the measured 

data and that the concentrations in the calibration set are unaffected by errors. 

 

1.11 PLS matricial algorithm 

In PLS, the matrix of descriptors X is decomposed in a similar mode to principal 

component analysis, generating a matrix of scores, T, and loadings or factors, P. The 

same decomposition is performed for the response matrix Y, producing a matrix of 

scores, U, and loadings, Q. 

 

The goal of PLS is to model all the variables belonging to X and Y so that the residuals 

for the X block, E, and the residuals for the Y block, F, tend to zero. An inner 

relationship is also created that relates the scores of the X block to the scores of the Y 

block 

  

The above mentioned model is improved by establishing the so-called inner 

relationship. Because latent vectors at the beginning are calculated for both blocks 

independently, they will have only a weak relation to each other. The inner relation is 

improved by exchanging the scores, T and U, in an iterative calculation. By this 

iterative process  information from one block is used to adjust the orientation of the 
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latent vectors in the other block, and vice versa. Once the complete model is calculated, 

the equations can be combined to give a matrix of regression vectors, one for each 

component in Y:  

 

The complementary use of information from X and Y makes PLS algorithm more 

problematic than PCR. However, PLS can allow to develop better regression vectors, 

i.e., more parsimonious with respect to the bias/variance trade-off. Some authors also 

report that PLS can sometime provide more acceptable solutions when compared to 

PCR. Other authors have reported that PLS has a greater tendency to overfit noisy Y 

data. It is often reported in the literature that PLS is preferred because it uses fewer 

factors than PCR and, hence, provides a more parsimonious model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly to other techniques, the quality of the models can be determined by the size of 

the errors, so usually normally the sum of squares of E and F is calculated. The number 

of significant PLS components can be estimated according to the size of these errors, 

often using cross-validation, the bootstrap or test sets, although it can be done on the 

training set (often called autoprediction)  
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1.12 High-dimensional regression shortcomings and possible solutions  

It is known that the aim of variable selection is to select the optimal variables subset 

that can improve the prediction performance and make the calibration reliable when 

carried out prior to a multivariate calibration method like PLS and PCR. Some 

applications have also validated the positive effect of variable selection in the case of 

high-complexity samples. Additionally, a large body of literature has been devoted to 

the method of variable selection in a different way.  

A basic topic in the present study concerns treatment of spectroscopic data. Spectral 

measurement are a typical case of high dimensional problem, because undoubtedly the 

number of variables exceeds the number of observations. Moreover, spectroscopic 

variables are highly correlated. From a statistic point of view, high-dimensional 

regression problems are changeling because they cannot be solved by classical 

estimation procedures like the method of ordinary least squares. As discussed 

previously, the standard procedures require X
T
X  to be nonsingular, otherwise X

T
X 

cannot be inverted and the parameters cannot be uniquely estimated. This obviously is 

not possible when variables>observations, as the covariate matrix does not have full 

column rank. 

In addition to the problem arising from multicollinearity, OLS method is affected by 

further issues. In linear regression the goal is to build a prediction model with two 

properties 

1. Low bias: it must be able to minimize the error in prediction for data belonging to 

training set 

2. Low variance: it must be able to minimize the error in prediction for data not 

belonging to the training set 

Classical OLS usually generates models with low bias but high variance hence a trade-

off is  supposed to be considered. 
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Fig.1.2 

Thus some kind of strategies or alternative methods to classical regression are needed. 

There are a number of both simple and more advanced methods available, on the basis 

of occurrence. The most intuitive approach is maybe the preselection, that is to simply 

pick out a smaller subset of the covariates (≤ number of original variables) based on a 

certain relevant criterion and fit the model to these covariates only. This can, however, 

result dangerous because it might exclude relevant variables. Another approach is to use 

methods like principal components regression or partial least squares. These methods 

provide a small number of linear combinations of the original explanatory variables, and 

these “latent” variables are used instead of the original ones. This may be reasonable for 

prediction purposes, but models are often difficult to interpret (Hastie et al., 2009) 

because a problem arises: relating one or more descriptors to a dependent variable 

which we call the response.   

 

1.13 Alternative regression techniques 

Several methods known as Shrinkage or Penalization techniques have been proposed to 

improve prediction accuracy and interpretation of OLS. For example, ridge regression 

(Hoerl and Kennard,1970),  also know as Tikhonov regularization, minimizes the 

residual sum of squares subject to a bound on the L2-norm of the coefficients. In linear 

algebra the norm is a function that that assigns a strictly positive length or size to each 

vector: the L2 or  Euclidean norm for a n-dimensional vector is 
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In ridge regression estimate  is the value of that minimizes the function 

 

Where solutions are indexed by tuning parameter  For every choice of  λ, we have a 

ridge estimate of the coefficients of the regression equation: Y = Xβ(λ)+ε. 

As a continuous shrinkage method, ridge regression achieves its better prediction 

performance through a bias–variance trade-off. Ridge regression often achieves better 

prediction accuracy by shrinking the OLS coefficients, particularly in the highly 

correlated predictor situation. However, ridge regression cannot produce a parsimonious 

model, because it always keeps all the predictors in the model. Best subset selection in 

contrast produces a so-called sparse model, but it is extremely variable because of its 

inherent discreteness A promising technique called the LASSO (Least Absolute 

Shrinkage and Selection) was proposed by Tibshirani (1996). The LASSO is a 

penalized least squares method imposing an L1-penalty on the regression coefficients.  

The L1  (Taxicab  or Manhattan norm) norm is 





n

i

ixx
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1 ||:||||  

 

The L1 penalty appeared to have advantageous properties that could be exploited with 

great benefit in high-dimensional regression problems, and it is in the p >> n (where p is 

number of variables and n is number of objects) problems that the LASSO methods 

have really proven their superiority compared to other existing methods.  

Owing to the nature of the L1-penalty, the LASSO does both continuous shrinkage and 

automatic variable selection simultaneously. 

Tibshirani (1996) compared the prediction performance of the LASSO and ridge 

regression and found that none of them uniformly dominates the other. However, as 

variable selection becomes increasingly important in modern data analysis, the LASSO 

is much more appealing owing to its sparse representation. Although the LASSO has 

shown success in many situations, it has some limitations. 

(a) In the p>n case, the LASSO selects at most n variables before it saturates, because of 

the nature of the convex optimization problem. This seems to be a limiting feature for a 
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variable selection method. Moreover, the LASSO is not well defined unless the bound 

on the L1-norm of the coefficients is smaller than a certain value. 

 (b) If there is a group of variables among which the pairwise correlations are very high, 

then the LASSO tends to select only one variable from the group and does not care 

which one is selected.  

 (c) For usual n>p situations, if there are high correlations between predictors, it has 

been empirically observed that the prediction performance of the LASSO is dominated 

by ridge regression (Tibshirani, 1996).  

 

1.14 Classical calibration and inverse calibration issues: the aim of the present work 

Thanks to mathematical and statistical procedures, in multivariate calibration it is 

possible to relate many  measured variables (like wavelengths) to properties of interest 

(like concentration values). We can create a predictive model, and then use that model 

to predict the same properties from the measured variables of unknown objects 

(samples). Based on the features and approaches of calibration, multivariate calibration 

can be divided into two classes: classical calibration (including multiple linear 

regression, MLR) and inverse calibration (including method like principal component 

regression, PCR, and partial least square, PLS) .  

In the former the signal (e.g. spectral data) is the dependent variable and concentration 

is the descriptor. In the inverse case, concentration is expressed as function of the 

signal. 

In the case of classical calibration, creating a model requires knowledge of pure spectra 

of all components. The spectra of mixture samples (the response values) are a linear 

combination of the pure spectra of all components (the independent variables). Based on 

the Beer–Lambert law or the similar in analytical chemistry, the classical calibration 

model can directly make predictions using least squares without any further validation 

like cross-validation, which is also called ‘solid modeling’. Based on the available 

information of the pure spectra of interferential species, Lorber introduced the concept 

of the Net Analyte Signal (NAS) with the help of orthogonal projection, which can be 

further used as a practical tool to obtain the fundamental analytical figures of merit such 

as selectivity, signal-to-noise ratio and limit of detection for classical calibration. 

In order to overcome the defect of collinearity of the descriptors matrix, the methods 

PCR and PLS were introduced into multivariate calibration, which made inverse 
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calibration very appealing and convenient, since it aimed directly at building the 

relationship between measured spectra of the samples and the concentrations (or even 

properties) of the analytes of interest.  

Aside from the overcoming of the problem of collinearity, there are several advantages 

of chemical modeling by latent variables. Firstly, the original variables are replaced by a 

few latent variables or principal components of larger variance, which consist of linear 

combinations of the original variables. Only this fact makes the dimensional reduction 

of datasets of many variables possible. Secondly, the variable selection among the latent 

variables becomes much easier, since the latent variables are orthogonal with each other. 

Thus, the cross-validation technique can be easily introduced into PCR and PLS 

modeling to avoid the overfitting problem. It can also be proven that the measurement 

noise can be reduced if the number of selected principal components are just equal to 

the number of coexisting chemical species in a mixture system, which makes the 

resolution of a completely unknown mixture system (black analytical systems) possible. 

Despite all of these significant advantages, the use of inverse calibration is not 

applicable in some situations. As a matter of fact, in carrying out Standard Addition 

Method to a multivariate system we get from PLS algorithm a function where the 

unknown variable  must be calculated by extrapolation. This means that we need the 

signal of the matrix (the sample without analyte).  Specially when environmental 

samples are analysed  this is not possible, hence an alternative strategy is required. 

 

1.15 Net Analyte Signal 

The essential issue in quantitative analytical chemistry is that of assessing within some 

acceptable approximation the wanted chemical or physical property for a sample of 

interest. Most of such approximations are made using theoretically or empirically 

calibration functions. Although these functions may be interpreted without problems for 

univariate analytical measurements such as pH or single-wavelength absorbance, highly 

multivariate calibration functions, like those used in spectroscopy, can be much less 

easy. In his work of 1986, Lorber provided an smart interpretation to these multivariate 

calibration functions with his concept of the Net Analyte Signal (NAS) vector in linear 

additive systems. Geometrically, the NAS vector represents the portion of the pure 

analyte signal vector that resides in a space orthogonal to the pure-component signals of 

all interfering species in a linear additive system (Fig. 1.3) 
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Fig. 1.3 

Since the NAS vector indicates a direction only affected by changes in the analyte 

concentration, it can be used as fully selective property predictor. Sanchez and 

Kowalski (1988), and later Booksh and Kowalski (1994), employed the NAS concept 

for a larger discussion of analytical calibration theory and figures of merit in linear 

multivariate calibration. From Lorber’s original work, they derived expressions for 

calculating the NAS vector(s), based on the pure-component signals of the chemical 

components in the system, both in classical and inverse calibration models. In the 

following years, several modifications of such calculations were proposed.  The relation 

of the NAS concept to analytical figures became the basis of a considerable body of 

literature on multivariate measures of selectivity, sensitivity, limit of detection, and 

multivariate signal-to-noise ratios.  

 

1.16 NAS algorithm and related issues  

In multivariate inverse calibration a regression model is searched to predict the response 

y of size Ix1 from the multivariate measurements in X (IxJ). The regression vector b 

(Jx1) is found to minimize the residuals e (Ix1) in the equation 

 

 

and additional constraints are often imposed. For example, in principal component 

regression (PCR), X is constrained to be in the subspace of the first principal 

components, whereas in partial least squares regression (PLS) different criteria are used. 

The NAS vector is a suitable tool that allows to perform calculations in a similar way as 

in univariate regression. Although net analyte signals have originally been thought in 

relation to spectral data and mainly in settings where Beer’s law is assumed to be valid, 
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the principle is both general and applicable, and useful for all multivariate calibration 

models. 

The basic idea of NAS method is to separate the contributions in the calibration data 

matrix X into one originating solely from the analyte of interest (called Xk to indicate 

that the k-th analyte is the analyte of interest) and another from other sources of 

variability such as interfering species (X-k) 

 

X=Xk+ X-k  

 

Xk denotes the unique part of the analyte signal and X-k is the matrix describing the 

signal orthogonal to that. From a matrix spanning the space of the interfering (X-k), the 

net analyte signal vector of a sample i is calculated by 

 

x*k=[I- X-k X
+

-k] xi 

 

where xi is the spectrum of the i-th sample, I is the JxJ identity matrix and 
+
 denotes a 

pseudoinverse. The net analyte signal is usually taken as the norm of x*k;i and can be 

used similarly to a univariate signal in ‘pseudo-univariate’ linear regression. 

The matrix [I – (X
+

_k)X-k] projects the calibration spectra onto the space orthogonal to 

that spanned by the spectra of all analytes except the sought k-th analyte. Thus, in order 

to find the NAS vector of a certain analyte, it is necessary to find this projection matrix: 

calculation of  [I – (X
+

_k)X-k] involves finding the matrix describing the interfering 

spectra, X-k. This makes the calculation of X-k the key step of the procedure. There are 

several ways to estimate this matrix. Lorber et al. (1997)  suggested a method that uses 

PCR or PLS. First, the calibration matrix X is rebuilt using a set of  significant 

components obtained by PCR or PLS, yielding Xreb. Then a rank annihilation step in 

then-dimensional space is used for finding the part of the original matrix spanned by the 

interfering species: 

T
krebk xcXX

^

  

where kc
^

is the projection of the vector of responses ck (Ix1) onto the n-dimensional 

subspace and is given by 

 krebrebk cXXc 
^
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The vector x is a linear combination of the rows of X, which is chosen to include a 

contribution from the spectrum of the k-th analyte. Any reasonable spectrum can be 

used for this purpose, though it is recommended to use a spectrum that contains 

maximal information on the analyte. The scalar can be calculated as   

^1
kT

cX
x

  

 

Other approaches were proposed by Xu and Schechter (1997) who introduced another 

approach where ck is used to define X-k. The calibration matrix X is scaled by dividing 

each spectral vector of matrix X by the corresponding ck-value such that each spectral 

vector contains the same contribution of the analyte 

i

i

sci
c

x
x ,  

In the next step the average of the scaled vectors is calculated and subtracted from all 

the scaled vectors. This gives a mean-centering pre-treatment of the scaled matrix, thus 

removing the constant contribution of the analyte: 

sc
T

sciik xxx


  1,,  

 

where 1 is a J vector of unitary values. Combining x-ki for all samples provides an 

estimate of   X-k. A similar approach is described by Goicoechea and Olivieri (1999)  

The mean calibration spectrum is obtained as 
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the contribution of the analyte is then subtracted from the data matrix  

T

k

k

c

xc
XX

   

where c   denotes the mean calibration concentration of the analyte. Goicoechea and 

Olivieri (2001) proposed to define X-k as the projection of X orthogonal to ck as 

illustrated in Equation (10). 
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Faber [8] put forward an idea which does not require the calculation of X-k. By this 

method. the NAS vector is calculated from the regression vector as 

i

T

ik cbbbx 1*

, )(   

The rationale for this development was to circumvent the computational burden of some 

of the prior methods, and it was argued that the new method was an alternative that gave 

similar results than the older methods. 
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Section 2 
 

2.1 Analytical Infrared Spectroscopy 

Spectroscopy is the analysis of the interaction between matter and any portion of the 

electromagnetic spectrum. Traditionally, the first application of spectroscopy to 

analytical chemistry involved the visible spectrum of light, but X-ray, IR and UV 

spectroscopy also soon became valuable analytical techniques. Spectroscopy may 

involve any interaction between light and matter, including absorption, emission, 

scattering etc. Absorption processes, including those of vibration and rotation of 

molecules associated with infrared spectroscopy, can be represented in terms of 

quantized discrete energy levels E0, E1, E2, etc. Each atom or molecule in a system must 

exist in one or other of these levels.  Whenever a molecule is shined by radiation of 

proper energy, a quantum of energy (or photon) is either emitted or absorbed. In each 

case, the   energy of  the  quantum of  radiation  must  exactly fit the energy gap E1−E0 

or E2–E1, etc. The energy of the quantum is related to the frequency by the following 

relation: 

E = hν         Eq. 2.1 

For each processes of interaction a specific portion of the spectrum is involved  
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An unit which is widely used in infrared spectroscopy is the wavenumber, , in cm
−1

. 

This is the number of waves in a length of one centimeter and is given by the following 

relationship  

= 1/λ = ν/c  

An increase in energy is equal to an increase in wavenumber. 

The infrared range of the electromagnetic spectrum covers the wavelength region from 

0.8 μm to 1 mm, which conforms to the wavenumber range 12500-10 cm
-1

. It is split in 

the Near-IR (NIR), the Mid-IR (MIR) and the Far-IR (FIR) region (Fig. 2.1). It is 

neighbor to the visible region on one side and the microwave region on the other. 

 

 

Fig. 2.1 

 

Infrared spectroscopy is a very important non-destructive technique for gaining 

structural information and identifying the chemical bonds in unknown compounds. This 

information is important for qualitative as well as quantitative determination of the 

chemical compounds and is used in various scientific areas either in research activity or 

in  the private/applicative sectors. 

Applications fields have subjects such as: 

 · Food analysis: additives, preservatives, colorants 

 · Environmental analysis: water, atmospheric particles, gases 

 · Forensic science: paints, textiles, cosmetics, 
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 · Semiconductor analysis 

 · Pharmaceuticals. 

 · Multilayer compounds: polymers, paintings, films 

 · Geological samples: inclusions in stones  

 

One of the great advantages of infrared spectroscopy is that it is suitable for analysing 

the majority of samples, no matter the matrix in which the analyte is included. Liquids, 

solutions, pastes, powders, films, fibers, gases and surfaces can all be examined with a 

proper choice of sampling technique. As a consequence of the improved 

instrumentation, a variety of new sensitive techniques have now been developed in 

order to examine formerly intractable samples.   

 

2.2. Basics in IR spectroscopy : vibro-rotational transitions 

In order to better understand the application of IR spectroscopy to the research issues 

presented in this thesis, some basic recalls of IR spectroscopy may be useful to readers 

with low expertise in physical chemistry. 

In any molecule, it is known that atoms or groups of atoms are connected by bonds. 

These bonds are in a continuous motion in a molecule, as a result they maintain some 

vibrations with some frequency, characteristic to every portion of molecule. This is 

called natural frequency of vibration. A suitable model for describing molecular 

vibrations is the harmonic oscillator. 

From quantum mechanics we know that vibrational transitions in a molecule occur 

between distinct vibrational energy levels. Both intramolecular and intermolecular 

vibrations contribute to the spectrum. The simplest possible situation is a vibration 

between two atoms of a diatomic molecule. The vibration between two molecules can 

be expressed by Hook’s spring law. The atoms are located at an average inter-nuclear 

distance r, the bond length. An attempt to bring the atoms more closely together will 

lead to a rapid increase of the repulsive force between the two atoms. An attempt to pull 

them apart is resisted by the attractive force. Both displacements require an input of 

energy which can be described as a function of the distance between the two atoms. 
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The molecular bond between two atoms is equivalent to a spring between two spheres 

of the masses m1 and m2. The force of compression or expansion is then given by 

Hook’s law: 

F=-k (r -r0 ) 

k is a constant and  r-r0  is the distance difference to the equilibrium distance generated 

by the force F. The force is directed against the displacement of the atoms and thus has 

a negative sign. The potential energy of the oscillating system 

  

increases symmetrically when the distance between both atoms is decreased or 

increased compared to the equilibrium distance. 

The vibration of such a diatomic molecule is characterized by an oscillation frequency 

that is given by classical mechanics: 

         Eq. 2.2 

 

where μ is the reduced mass of the system: 
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From Eq 2.2. we see that the oscillation frequency is dependent on the force constant (k) 

and on the masses of the oscillating atoms. The larger the mass of an atom, the smaller 

the frequency of the vibration. 

We also know that in contrast to classical mechanics, vibrational energies of molecules 

are quantized like all other molecular energies.  

vibn hvnE 









2

1
 

where n is called the vibrational quantum number. From the above equation arises that 

the lowest vibrational energy is E = ½ h ν when n=0. Therefore, a molecule can never 

have null vibrational energy, i.e. the atoms can never be without a vibrational motion.  

The quantity E = ½ h ν is called the zero-point energy; it depends on the classical 

oscillation frequency and hence on the strength of the chemical bond and on the masses 

of atoms that participate in this bond. 

Further application of the quantum mechanic laws leads to a simple selection rule for 

the harmonic oscillator undergoing vibrational changes: 

1  

and the energy of a transition between two vibrational states is then given by 

E=h 

For arising absorption, the frequency of the radiation must be identical to the frequency 

of the vibration. 

Indispensable requirement for a molecule to show infrared absorptions is that it must 

possess an electric dipole moment. This is the selection rule for infrared spectroscopy. 

Fig. 2.2 illustrates an example of an ‘infrared-active’ molecule, a heteronuclear diatomic 

molecule. The dipole moment of such a molecule changes as the bond expands and 

contracts. By comparison, an example of an ‘infrared-inactive’ molecule is a 

homonuclear diatomicmolecule because its dipole moment remains zero no matter how 

long the bond. 
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Fig. 2.2 

We can sum up selection rules in IR spectroscopy  

1) Change in dipole moment. Since no net change in dipole moment occurs during the 

vibration or rotation of homo nuclear species  (i.e. O2 ,N2 ,Cl2) such compounds cannot 

absorb IR radiation 

2) Applied IR frequency should be equal to the natural frequency of radiation. 

Otherwise compound do not give IR absorption peaks. 

 

When in a molecule N atoms are present, it can be described by three spatial coordinates 

(x, y, z) of each atom in space. The total number of such coordinates is therefore 3N and 

the molecule has 3N degrees of freedom. In such a description, the position of the 

molecule and the bond-angles are fixed. The translation of the molecule in space is 

described by three degrees of translational freedom. In addition to translation, for the 

rotational motion of a nonlinear molecule we need additional three degrees of freedom, 

while for a linear molecule just two (the rotation around the bond axis of a linear 

molecule does not result in a change of the coordinates of the atoms). Consequently, a 

non-linear molecule must have 3N-3-3=3N-6 (non-linear molecule) 3N-3-2 = 3N-5 

(linear molecule) degrees of freedom of internal vibration. A linear molecule like CO2 

therefore has 4 vibrational degrees of freedom, while H2O (non-linear) has only 3 

vibrational degrees of freedom. The number of vibrations derived in this way are called 

the number of fundamental vibrations or the normal modes of vibration. There are 

symmetrical and asymmetrical vibrations depending on the maintenance of symmetry in 

the molecule. The internal molecular vibration can be subdivided into stretching and 

bending vibrations. Change in the inter-atomic distance along the bond axis is called 

symmetric and asymmetric stretching vibrations and can be seen in Fig. 2.3 
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Fig. 2.3 

 

If the motion does not involve changes along the bond axis but involves changes 

between bond angles the vibration is called bending. Here there are two types of 

bending vibrations: in-plane (ip) bending vibrations and out-of-plane (oop) bending 

vibrations. The (ip)-bending vibrations are thus named because they happen in the plane 

of the molecule. Anti-symmetric and symmetric (ip)-bending vibrations are known as 

rocking and scissoring vibrations. The (oop)-bending vibrations are a change in bond 

angles across the plane of the molecule and these vibrations are known as wagging and 

twisting bending vibrations (Fig. 2.4) 

 

 

Fig. 2.4 
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2.3 Overtones and IR spectra complexity: the anharmonic oscillator  

Harmonic oscillator model is an approximation that cannot totally describe IR spectra. 

In fact, molecules do not simply behave like to masses that are connected by a spring 

and described by the harmonic motion. Although chemical bonds are elastic they do not 

obey Hook’s law totally. They can break if they are stretch beyond a limiting distance 

and the molecule will dissociate. When amplitudes of vibration exceed a certain value, 

the system must be described differently. An empiric description of such behavior was 

given by P.M. Morse and is called the Morse function. However, also the Morse 

function is an approximation and more accurate descriptions require additional cubic 

and terms of higher order and other harmonicity constants. The magnitude of these 

additional an harmonicity constants is rapidly getting smaller with increased order of 

the an harmonicity term. The selection rules for the anharmonic oscillator are 1, 

2, 3, ... so that they are the same as for the harmonic oscillator, with further 

possibility of larger jumps. However, the intensity of the resonance line decreases 

strongly with the difference in the energy levels and transitions with 3 or higher 

are only seldom observed. 

Chiefly transitions of 2hor 3h are sometimes observed, these transitions are called 

overtones or combination band.   

 

2.4 IR spectrum as fingerprint  of molecules 

From quantum mechanics and the oscillator models, we know now that the internal 

vibrations observed in molecules are fundamental vibrations, which are quantized in 

specific energy levels. When energy in the form of IR radiation is irradiating a sample 

and when applied IR frequency = natural frequency of vibration, absorption of  IR 

radiation takes place and a peak is observed. Every bond or portion of a molecule 

requires different frequency for absorption. Hence characteristic peaks are observed for 

every functional group or part of molecule. In other words, IR spectra is nothing but a 

fingerprint of a molecule. Fig. 2.5 shows absorption ranges of the most common 

chemical bonds observed in IR spectroscopy 
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Fig. 2.5 

Some features are common to all spectra 

 Stretching frequencies are higher than corresponding bending frequencies. It is 

easier to bend a bond than to stretch or compress it 

 Bonds to hydrogen have higher stretching frequencies than those to heavier atoms. 

In fact, the energy difference in chemical bond excitation, is caused by the atoms 

involved in the bond. With increased atomic mass the bond length between the atoms 

will be increasingly longer, and the vibrational excitation energy becomes lower 

 Triple bonds have higher stretching frequencies than corresponding double bonds, 

which in turn have higher frequencies than single bonds 

 

2.5 Transmission and Reflectance 

IR measurement can be performed using either transmission or reflectance setup. The 

theory behind them is quite different considering that they are both based on the 

absorption. In transmission spectroscopy an infrared spectrum is commonly obtained by 

passing infrared radiation through a sample and determining what fraction of the 

incident radiation is absorbed at a particular wavelength, which corresponds to the 

vibration frequency of a part of the molecule. The sample is normally embedded in a 

substrate, KBr for the MIR region and in CsI for the FIR region, as these are inert in the 

respective regions. Infrared transmission spectroscopy relies on Lambert-Beer’s law 

(empiric). Lambert’s law states that the fraction of the incident light absorbed is 
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independent of the intensity of the source. Beer’s law states that the absorption is 

proportional to the number of absorbing molecules. In combining the two law’s we 

express the Lambert-Beer Law: 

lc
I

I
A  0

10log  

where A is absorbance, c is the concentration of the sample, I is the path length travelled 

by the light through the sample and  is the absorptivity (also know as extinction 

coefficient).  The absorptivity is a peculiar physical property of the specific molecule 

under investigation and is function of wavenumber. 

For historical reasons in some cases transmittance T is used, because when grating or 

prismatic instruments were employed, they gave a directly readable output-signal as a 

difference between sample and no-sample in the pathway of the IR beam 

0I

I
T   

 

Fig. 2.6 

 

Aside from the conventional IR spectroscopy of measuring light transmitted from the 

sample (Fig. 2.6), the reflection IR spectroscopy was developed using combination of 

IR spectroscopy with reflection theories. In the reflection spectroscopy techniques, the 

absorption properties of a sample can be extracted from the reflected light. IR 

reflectance techniques can be divided into two categories: external reflection and 

internal reflection. External reflection covers two different types of reflection: specular 

(regular) reflection and diffuse reflection (Fig. 2.7). The former is usually associated 
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with reflection from smooth, polished surfaces like mirror, while the latter is associated 

with the reflection from rough surfaces. In internal reflection method, interaction of the 

electromagnetic radiation on the interface between the sample and a medium with a 

higher refraction index is studied.  

 

            

            specular reflection                                             diffuse reflection 

Fig. 2.7 

 

Internal Reflectance Spectroscopy (IRS) theories were independently built by Jacques 

Fahrenfortand (1959) and  N.J.Harrrick, (1967)  and soon became popular techniques 

due to the possibility to be employed in a wide range of applications. IRS is also known 

as Attenuated Total Reflectance (ATR) and was emplyed in this work. ATR technique is 

a surface analytical technique. An Internal Reflecting Element (IRE) is used to focus 

and direct the light beam to the investigated surface.  

The concept of internal reflection spectroscopy originates from total internal reflection 

phenomenon. An internal reflection occurs when a beam of radiation enters from a more 

dense medium (with a higher refractive index, n1) into a less-dense medium (with a 

lower refractive index, n2), The fraction of the incident beam reflected increases as the 

angle of incidence rises. When the angle of incidence is greater than the critical angle θc, 

all incident radiations are completely reflected at the interface, results in total internal 

reflection (Fig. 2.8). 
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Fig. 2.8 

In ATR spectroscopy a crystal with a high refractive index and excellent IR transmitting 

properties is used as IRE and is placed in close contact with the sample. When the angle 

of incidence at the interface exceeds the critical angle θc, the beam of radiation 

propagating in IRE undergoes total internal reflection at the interface IRE/sample. Total 

internal reflection of the light at the interface between two media of different refractive 

index creates an “evanescent wave” penetrating into the medium of lower refractive 

index that decays exponentially with distance from the boundary 














p

ev
d

z
II exp0  

where z is the distance normal to the optical interface, dp is the penetration depth 

(distance through which the evanescent wave travels path length), and I0 is the intensity 

at z = 0.  
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 where n1 and n2  are the reflective index of the rarer medium and the denser medium An 

ATR spectrum arises by reflection of the evanescent wave with the sample. When an 

absorbing material undergoes ATR measurement, the evanescent wave will be absorbed 

by the sample and its intensity is reduced in regions of the IR spectrum where the 

sample absorbs, thus, the intensity of reflected beam is attenuated. As can be seen in the 

formula of dp, the resultant attenuated radiation is a function of wavelength so that, at 
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longer wavelength, the evanescent wave penetrates deeper into the sample. 

Consequently, the absorption bands at longer wavelengths will be relatively more 

intense than those shorter wavelengths. Therefore, an ATR spectrum compared with a 

transmission spectrum is similar except or the band intensities at longer wavelengths.  

 Additionally, compared to the transmission spectrum, small differences may be seen in 

an ATR spectrum which arise from dispersion effects (variation of refractive index of a 

material with change of wavelength). An anomalous dispersion produces changes in 

refractive index and in penetration depth through an absorption band. The penetration 

depth changes strongly at wavelength in which the dispersion is the highest. Other 

differences may occur due to the surface effects between the sample and internal 

reflection element (IRE crystal). For instance, the degree of physical contact between 

IRE and the sample influences the sensitivity of an ATR spectrum. Since the evanescent 

wave only propagates 2-15 m beyond the surface of the crystal, thus, an intimate 

contact of the IRE with the sample is essential.  

 

 IRE materials used in ATR applications 

 

2.6 Fourier Transform  

A great significant advance in infrared spectroscopy, occurred as a result of the 

introduction of Fourier-transform spectrometers. This type of instrument employs an 

interferometer and exploits the well known mathematical process of Fourier-

transformation. Fourier-transform infrared spectroscopy (FTIR) has remarkably 

improved the quality of IR spectroscopy and reduced the time required in performing 
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measurement. In addition, with the introduction of computers, infrared spectroscopy has 

gained further improvements 

The goal of any absorption spectroscopy (IR, UV-visible spectroscopy etc.) is to 

measure how much a sample absorbs light at each wavelength. The most 

straightforward way to do this, the “dispersive spectroscopy” technique, is to shine a 

monochromatic light beam at a sample, measure how much of the light is absorbed, and 

repeat for each different wavelength: this is how some UV-Vis spectrometers work. The 

monochromatic light beam is obtained through a dispersive element (a prism or a 

grating) that separates the frequencies. One of the major disadvantages of the dispersive 

spectroscopy to produce a spectrum is its slowness. As matter of fact, each wavelength 

of the spectrum has to be recorded separately. The frequency is spread smoothly across 

the whole range of the spectrum, then the detector signal is monitored and recorded. 

Lately, a very different method of obtaining an infrared spectrum replaced the dispersive 

instruments. Fourier transform infrared spectrometers are now predominantly used and 

have simplified the acquisition of infrared spectra dramatically. Instead of shining the 

sample with monochromatic beam of light, this technique shines a beam containing 

many frequencies of light at once, and measures how much of that beam is absorbed by 

the sample. Thanks to Fourier transform spectroscopy, simultaneous and almost 

instantaneous a recording of the whole spectrum in the magnetic resonance, microwave 

and infrared regions is possible. 

As simple example we can consider a radiation composed by different waves with  two 

different frequencies. A detector receiving such radiation will show an oscillating signal 

due to the frequencies of the two superimposed waves, but also to a periodic change in 

the amplitude which slowly increases and decreases (Fig. 2.9) 

 

 

Fig. 2.9 
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The periodic change in the amplitude arises from the interaction of the two components; 

when the amplitudes reinforce each other (the waves are “in step”) or cancel each other 

the (the waves are “out of step”). To resolve a combined wave such as those shown 

above into its components require to evaluate four unknowns. As matter of fact each 

component wave has its own frequency and maximum amplitude. Adding more than 

two waves makes the situation even more complicated. The Fourier transform process 

provides a simple and general way to resolve a complex wave into its frequency 

components. 

An other advantage of the Fourier transformation technique is that the whole radiation 

emitted by the source is monitored. Conversely, in dispersive technique  

monochromator discards most of the radiation, therefore Fourier transform 

spectrometers have a higher sensitivity than traditional spectrometers. 

Modern spectrometers, in particular those used in infrared spectroscopy, today almost 

always make use of Fourier transform techniques to record the spectrum. The heart of 

the Fourier transform infrared spectrometer is the interferometer, a device for analyzing 

the frequencies present in a composite signal. 

The purpose of an interferometer is to split a beam of light into two beams, ensuring 

that one of the light beams travel a different distance than the other. Fourier transform 

infrared (FTIR) spectroscopy is based on the concept of the interference of radiation 

between the two beams that produces an interferogram. Interferogram will show a 

signal that is function of the difference of path length between the two beams and the 

mathematical method of Fourier-transformation can convert the two domains of 

distance and frequency.  When the two beams are recombined, the difference in the path 

leads to a phase difference between them, and they interfere either constructively or 

destructively, depending on the difference in path lengths. The detected signal oscillates 

as the two components alternately come into and out of phase as the path difference is 

changed. The radiation emitted by the source passes through an interferometer and then 

to the sample before reaching a detector. The detected signal is amplified, then the data 

are converted to digital by an analog-to-digital converter and transferred to the 

computer. The most common interferometer used in FTIR spectrometry is a Michelson 

interferometer that consists of a fixed mirror and a movable mirror located at a right 

angle to each other and oriented perpendicularly, with a semi-reflecting film, the 
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beamsplitter, placed at the vertex of the right angle and oriented at a 45°angle relative to 

the two mirrors (Fig. 2.10) 

 

Fig. 2.10 

The beamsplitter material has to be chosen according to the region to be examined. 

Materials such as germanium or iron oxide are coated onto an ‘infrared-transparent’ 

substrate such as potassium bromide or cesium iodide to produce beam splitters for the 

mid or near infrared regions. Thin organic films, such as polyethylene terephthalate, are 

used in the far-infrared region. The beam splitter splits the incident beam in two equal 

beams. When a collimated beam is passed into an ideal beamsplitter, half of the incident 

radiation will be reflected to one of the mirrors (i.e. the translating one) while half will 

be transmitted to the fixed mirror. The beams are both reflected by these mirrors, and 

return to the beamsplitter where they recombine and interfere. Fifty percent of the beam 

reflected from the fixed mirror is transmitted through the beamsplitter while the other 

fifty percent is reflected back in the direction of the source. The beam which emerges 

from the interferometer at 90
◦
 to the input beam is called the transmitted beam, and this 

is the beam detected in FTIR spectrometry.  The moving mirror produces an optical path 

difference between the two arms of the interferometer. If the translating mirror and the 

fixed mirror are the same distance from the beam splitter, the distance travelled by the 

two light beams are the same. This is called Zero Path Difference. If the path difference 

is (n + ½), the two beams interfere destructively in the case of the transmitted beam and 

constructively in the case of the reflected beam.  
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Spectrometer Layout 

 

2.7 Preprocessing 

 Building a practically useful calibration model using spectroscopic data involves 

preprocessing and data manipulation. No doubt that the first step consists in baseline 

correction. It is usual in quantitative infrared spectroscopy to use a baseline joining the 

points of lowest absorbance on a peak, preferably in reproducibly flat parts of the 

absorption line. The absorbance difference between the baseline and the top of the band 

is then used. However, there are many other harmful effect that must be approached 

with more elaborated techniques. 

After proper data collection, pre-processing of spectral data is the most important step 

before chemometric modeling (e.g., Principal Component Analysis or Partial Least 

Squares). Regarding solid samples, when undesired systematic variations occur, they are 

mostly due to light scattering and differences in the effective path-length. Such 

undesired variations often constitute the major part of the total variation in the sample 

set, and can be observed as shifts in baseline (addictive and multiplicative effects) and 

other phenomena called non-linearities. Scattering is a general physical process in 

which light in the form of propagating energy is spread owing to non-uniformities in the 
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medium in which radiation propagates. Light scattering can be thought as the deflection 

of a ray from a straight path, for example by interactions with  the propagation medium, 

particles, or in the interface between two media. For instance, deviations from the law 

of reflection due to irregularities on a surface are also usually considered to be a form of 

scattering. When these irregularities are considered to be random and dense enough that 

their individual effects average out, this kind of scattered reflection is commonly 

referred to as diffuse reflection. Hence electromagnetic waves are scattered by a system 

owing to its  heterogeneity, whether on the molecular scale or on the scale of  

aggregations of many molecules. In any case, physical reasons of scattering are the 

same for all systems. Matter is composed of electrically charged particles: electrons and 

protons. When one molecule is shined by an electromagnetic wave (Fig 2.11) the 

electron orbits are perturbed periodically with the same frequency as the electric field of 

the incident wave. Such perturbation of the electron cloud produces a periodic 

separation of charge within the molecule, which is called an induced dipole moment. 

The oscillating induced dipole moment in turn becomes source of electromagnetic 

radiation, thereby generating scattering phenomenon. The greater part of light scattered 

by the particle is emitted at the identical frequency of the incident light, a process 

referred to as elastic scattering. In addition to reradiating electromagnetic energy, the 

excited elementary particles may transform part of the incident energy into other  forms 

(thermal energy, for example), according to a process called absorption underlying the 

spectroscopy. In summary, light scattering can be thought as a complex interaction 

between the incident electromagnetic wave and the molecular/atomic structure of the 

scattering object. 

 

Fig. 2.11 
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The most important forms of light scattering (in which energy transfer with the sample 

is not included) are Rayleigh and Lorentz-Mie (Fig. 2.12). Both are processes where the 

electromagnetic radiation is scattered (e.g., by small particles, bubbles, surface 

roughness, crystalline defects and so on). Rayleigh scattering is, strictly speaking as 

originally formulated, applicable to small, dielectric (non-absorbing), spherical 

particles: the theory is strongly wavelength dependent and occurs when the particles are 

much smaller in diameter than the wavelength of the electromagnetic radiation. On the 

other hand, Mie scattering theory includes the general spherical scattering solution 

(absorbing or non-absorbing) without a particular reference to particle size. Therefore, 

Mie scattering theory has no size limitations and converges to the limit of geometric 

optics for large particles. Consequently, Mie theory is more general and can be used for 

describing most spherical particle scattering systems, including Rayleigh scattering. 

However, Rayleigh scattering theory is generally preferred if applicable, due to the 

complexity of the Mie scattering formulation.  

 

 

Fig. 2.12 

In the case of environmental samples, the scattering effects make spectra very 

complicated: so spectral preprocessing techniques  are demanded to remove the scatter 

and obtain a pure, suitable absorbance spectrum.  

All pre-processing techniques have the goal of reducing variability in the data in order 

to highlight the supposed relationship underlying the phenomenon of interest. By using 

a proper pre-processing technique this can be achieved, but there is always the risk of 

applying the wrong type or applying a too severe pre-processing that will remove the 

valuable information. The proper choice of pre-processing method is difficult to assess 

but, in general, performing several pre-processing steps is not advisable, and, as a 

minimum requirement, pre-processing should maintain or decrease the effective model 

complexity.  The most generally used pre-processing procedures (in both reflectance 
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and transmittance mode) can be divided into two categories: scatter correction methods 

and spectral derivatives. Scatter corrective pre-processing methods includes 

Multiplicative Scatter Correction (MSC), Inverse MSC, Extended MSC, Extended 

Inverse MSC, Standard Normal Variate (SNV) and normalization. The main spectral 

derivation techniques are: Norris-Williams (NW) derivatives and Savitzky-Golay 

polynomial derivative filters which use a smoothing of the spectra prior to calculating 

the derivative in order to lower the harmful effects on the signal-to-noise ratio that 

conventional derivatives methods involve. The aims of the pre-processing treatment are 

primarily to improve a subsequent exploratory analysis and to allow a building of a 

calibration model. In this work, spectroscopic data arise from reflectance measurement 

so, in order to build a model, they are supposed to obey to Lambert-Beer law, an 

empirical equation that suggest a linear relationship between the absorbance and the 

concentrations of the constituent 

lcTA    )(log10  

where Ak is the wavelength-dependent absorbance, T is the light transmittance, k is the 

wavelength-dependent  molar absorptivity, l is the effective path length of the  light 

through the sample matrix and c is the concentration  of the constituent of interest. 

Lambert-Beer’s was originally derived for transmittance systems. In reflectance 

measurements, it can be redefined in analogy to transmittance measurements as:  

lcRA    )(log10  

where R is the detected reflectance. 

Since reflectance spectra, the subject of the present work, are highly affected by 

scattering, the following method were here applied: MSC, SNV and normalization. As 

matter of fact, these techniques were in the beginning designed to reduce the (physical) 

variability between samples due to scatter. All three also adjust for baseline shifts 

between samples. Multiplicative Scatter Correction (MSC) is probably the most widely 

used anti-scattering technique. MSC in its basic form was first introduced by Martens et 

al. in 1983  and further elaborated on by Geladi et al. in 1985. MSC method relies on 

the assumption that a corrected spectrum (xcorr) can be expressed by original spectrum 
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(xorg) according the equation xorg=b0+b1xcorr  where xorg is the recorded spectrum and 

xcorr is the “corrected” one. 
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In turn the xorg  is related to a reference spectrum by 

exbbx refreforg  0  

in which e is the un-modeled part of xorg. Hence the scalar correction parameters b0 and 

b1  are found as the intercept and the slope of the line obtained by a least square 

regression  plotting xorg against a reference spectrum. Correction coefficients b0 and bref  

account for additive and multiplicative contributions in original spectrum. and differ for 

each sample. Fig. 2.13 illustrates the interpretation of the scalar parameters 

 

Reference spectrum 

Fig. 2.13 

Therefore, in order to obtain a corrected spectrum, a reference spectrum is needed. In 

most applications the average spectrum of the calibration set is used as the reference 

spectrum. However, reference spectrum can also be screened according with different 

criteria. In the original paper by Martens et al. (1983), it was suggested to use only those 

parts of the spectral axis that do not include relevant information. Although this makes 
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good spectroscopic sense, it is difficult to determine such regions in practice, especially 

in ATR measurements where the signals from different chemical components are 

strongly overlapping and correlated, and little or no true baseline is found. This is the 

reason why, in most cases, the entire spectrum is used to find the scalar correction 

parameters in MSC. The above described is the basic form of MSC, that can be 

expanded into more elaborate forms where more sophisticated corrections can be 

performed using higher order polynomial fitting (EMSC) or other transformations of the 

wavelength dependency. 

 Further pre-processing method applied in this study for scatter correction are 

Normalization and Standard Normal Variate (SNV). Their underlying basic concept is 

the same as that for the traditional MSC: xcorr = (xorg - a0)/ a1.  For SNV, a0 is the average 

value of the sample spectrum to be corrected, while for Normalization a0 is set equal to 

zero. Another difference between SNV and Normalization lies in a1: in the former, this 

parameter is the standard deviation of the sample spectrum while in Normalization 

different vector-norms can be used, for instance total sum of the absolute values of the 

elements in the vector (so-called Taxicab norm) or the square root of sum of the squared 

elements (Euclidian norm). Other options that are sometimes used are normalizing to 

the maximum absorbance variable and normalizing towards a single selected 

wavelength. Both these last options should be used with caution, since they can have 

undesirable effects on the subsequent analysis in cases of noisy data. It should be noted 

that in Normalization and SNV, unlike MSC, a reference signal is usually not required: 

each observation is processed on its own, isolated from the rest of the set. The lack of 

need for a common reference might be a practical advantage.   

 Spectral derivatives techniques have the capability to remove both additive and 

multiplicative effects in the spectra and are widely used in analytical spectroscopy. 

Alternatively methods to scatteing-correction, based on spectral derivatives (like Norris-

Williams derivation and Savitzky-Golay derivation) were attempted  but no significant 

improvement was observed, so they will not discussed in detail. 
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Section 3 
 

3.1 Marine sediments: tipology and composition 

The sediments deposited in the ocean are an archive of historical information about the 

Earth. As a matter of fact, their distribution in the ocean is determined by biological and 

chemical processes and they provide information about global biogeochemical cycles. 

The constituents of a marine sediment are often classified according to their origin. 

Detrital: brought into the ocean from outside, are subdivided in:  

 Terrigenous: those where the ultimate source is weathering and erosion of rocks on 

land. The materials composing these sediments are introduced to the ocean by water, 

wind or ice. 

  Volcanic: composed of minerals brought into the ocean mostly by wind, as dust and 

ash from volcanic eruptions. 

 Cosmogenic particles that arrive from outer space and survive the Earth’s atmosphere 

to enter the sedimentary record. 

Authigenic: these components are oceanic inorganic minerals that precipitate directly 

from the seawater. These minerals makeup only a small fraction of deep-sea sediments, 

but in special environments and certain geological times, they comprise the bulk of the 

sedimentary sequence 

Biogenic: these are among the most important constituents of marine sediments. These 

sediments are widespread on the sea floor, covering one half of the shelves and more 

than one half of the deep ocean bottom (total ~55%). They constitute ~30% of total 

volume of sediment being deposited. As the name implies, these form directly or 

indirectly through biological activity and can be subdivided in inorganic and organic 

matter. 

 Inorganic are made of a variety of delicate and intricate structures mostly of 

structural part remains of marine phytoplankton and zooplankton. The life span of 

most of these organisms is on the order of weeks, so there is a slow continuous “rain” 

of their remains down through the water column to build successive layers of 

sediment. The distribution of these sediments depend on the abundance of organisms  
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 Organic: although not a mineral, organic matter is an important component of 

biogenic sediments. There are a lot of organisms that do not form hard parts and what 

is preserved from them is the organic matter. On average in the ocean about only 1% 

of the organic matter that sinks to the bottom of the ocean is preserved. The amount of 

organic matter preserved in the sediment depends on how much is produced and the 

preservation efficiency. 

 

3.2 Composition of deep ocean sediment  

In this work we are interested in deep ocean sediment that take great contribution from 

biogenic sediments. Biogenic sediments, which are defined as containing skeletal 

remains of marine organisms, cover approximately 55% of the deep ocean floor. Clay 

minerals make up most of the non-biogenic constituents of remaining matter. The most 

important biogenic minerals are of calcareous and siliceous origin. Calcareous 

sediments are composed principally of calcite or aragonite arising from the remains of 

organisms like plankton with calcium-based skeletons (also called tests), such as 

coccolithophores (plants) and foraminifera (animals), while siliceous sediment are 

formed from the remains (hard part like frustles and spicules) of organisms with silica-

based skeletons like diatoms (plants) or radiolarians (animals). 
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When the organisms floating in the surface waters die, they settle to the bottom of the 

sea. When these tests make up greater than 30% of the sediment it is called an ooze. 

Distributions and accumulation of biogenic oozes in oceanic sediments depend on rates 

of production of biogenic particles in the surface waters and dissolution rates of those 

particles either in the water column or after they reach the bottom. Biogenic oozes 

accumulate very slowly in the deep ocean. This is because the surface waters of the 

central oceans are very poor in the nutrients (mostly land-derived), such as nitrogen and 

phosphorus, that are required by the surface sea creatures. Therefore, these waters are 

inhabited by only small populations which contribute very slowly to the development of 

the deep ocean sediment accumulation. Moreover, in some regions of the oceans the 

tests of these organisms re-dissolve before they reach the bottom.  In these regions the 

sediments are dominated by abyssal clays. 

 

 

 

Fig. 3.1 Sediment deposit  distribution in sea floor 
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3.3 Behavior of calcareous and siliceous compounds  in seawater 

Conditions favoring deposition of silica or calcium carbonate are quite different. 

Calcareous oozes are never found deeper than about 4,000 to 5,000 meters because the 

calcium dissolves at deeper depths. Silica, even though is under-saturated in the oceans, 

is less under-saturated in deep water. The patterns of carbonate and silica deposits 

reflect different processes of formation and preservation, so that carbonate oozes that 

are poor in biogenic silica and vice versa (Fig. 3.1) 

 

3.4 Carbon 

The marine carbon cycle involves the production and recycling of two types of carbon-

rich materials: organic matter and carbonates (inorganic). Over 95% of oceanic carbon 

is in the form of inorganic dissolved carbon (Fig. 3.2). The remainder is comprised of 

various forms of organic carbon, namely living organic matter as well as particulate and 

dissolved organic carbon. The primary processes responsible for variations in the deep 

sea CO2-carbonic acid system are oxidative degradation of organic matter, dissolution 

of calcium carbonate, and oceanic circulation patterns. Temperature and salinity 

variations in deep seawaters are small and of secondary importance compared to the 

major variations in pressure with depth.  

 

  

Fig. 3.2  Inorganic carbon  equilibria 
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In warm tropical surface waters CaCO3 does not readily dissolve. However, in colder 

deeper waters the presence of increased amounts of CO2 in the water enhances the 

dissolution of CaCO3 causing the breakdown of calcareous tests, so that bottom waters 

become more under-saturated  in calcium carbonate. Carbonate solubility increase with 

depth can be explained with physical and chemical effects. 

Physical effect: the effect of pressure is the most important environmental variable 

affecting the solubility product of CaCO3. Ksp increases with increasing pressure. 

Thermodynamically, the pressure effect is related to the partial molar volumes of Ca
2+

, 

CO3
2- 

and CaCO3. Like free energies, the partial molar change for the reaction is 

calculated from the sum of the products minus the sum of the reactants:  

 

V= V Ca
2+

+ V CO3
2-

-V CaCO3 

 

The V for calcite is negative, meaning that the volume occupied by CaCO3 is greater 

than the combined volume of Ca
2+ 

and CO3
2-

 in solution; so, CaCO3 becomes more 

soluble with depth. CaCO3 is an unusual mineral in that it is more soluble at lower 

temperatures (Ksp increases with decreasing temperature); the effect is only about 4% 

over a temperature range of 20°C. Since the temperature range in the deep sea is only a 

few degrees, temperature effect is less important than pressure effect in dissolving 

carbonates 

 

Chemical effect: remineralization of organic matter in the water column  produces CO2  

 

 CH2O + O2 → CO2 + H2O 

Carbon dioxide and water combine to form carbonic acid which dissolves the CaCO3 

CaCO3 (s) + H2O (l) + CO2 (g) =  Ca
2+

 (aq) + 2 HCO3
-
 (aq)        

An increase of CO2 at depth lower CO3
-2 

at depth. In the deep ocean, the decrease in 

[CO3
-2

] from this reaction has a marked effect on CaCO3 solubility. The point where 

dissolution increases markedly is called lysocline (Fig. 3.3). The depth below which 

calcareous skeletons dissolve as fast as they accumulate is called Carbonate 

Compensation Depth (CCD). In warm latitudes the CCD occurs at 4-5 kilometers. 
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Therefore, calcareous oozes will be found only at depths less than 4-5 kilometers. 

Where the bottom of the ocean is deeper than 4-5 kilometers, calcareous tests will not 

accumulate. Calcareous oozes, therefore, are found mostly on the oceanic ridges and 

plateaus. 

 

 

Fig. 3.3 

3.5 Silicon  

The oceanic silicon cycle is driven by the production of biogenic silica (BSi) by marine 

organisms, primarily diatoms (Brzezinski et al., 2003; Treguer et al., 1995) that extract 

silicic acid from seawater to make their structures. During such process the siliceous 

organisms expend metabolic energy to extract dissolved silicates from seawater and 

precipitate amorphous silica. Nowhere in the oceans does silica precipitate 

spontaneously without the intervention of an organism. In fact, silica is 

thermodynamically unstable under conditions encountered in the water column. Under-

saturation of seawater with respect to amorphous silica causes dissolution of the silica 

hard parts following death of the organisms, thereby recycling most of the dissolved 

silicates (Hurd, 1972; Nelson et al., 1995; Treguer et al., 1995). Accordingly, the 

tendency for silica is to dissolve everywhere it occurs in the oceans. Besides silicates 

arising from decomposition of organic remains, deep ocean waters are rich in nutrients, 

such as nitrate and phosphate, themselves the result of decomposition of sinking organic 

matter (mainly detrital of dead plankton) from surface waters. When brought to the 
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surface, these nutrients are utilized by phytoplankton, along with dissolved CO2 and 

light energy from the sun, to produce organic compounds, through the process of 

photosynthesis. Such phenomenon is called upwelling and involves wind-driven motion 

of dense, cooler, and usually nutrient-rich water towards the ocean surface, replacing 

the warmer, usually nutrient-depleted surface water. The nutrient-rich upwelled water 

stimulates the growth and reproduction of primary producers such as phytoplankton. 

The only regions in which siliceous oozes are abundant are in regions where the nutrient 

supply is so large that diatom and radiolarian tests accumulate faster than  the seawater 

can re-dissolve them after death. These regions are along the equator in the central 

Pacific and in high latitudes near Antarctica. In these area, small amounts of BSi escape 

dissolution and are buried in marine sediments. Over geological time, the burial flux of 

BSi exerts a major control on the bio-siliceous productivity of the oceans (DeMaster, 

1981; Van Cappellen et al., 2002). 

The fundamental difference between carbonate and silicate compounds in sediments is 

their behavior with respect to pressure and temperature. Contrarily to carbonates, silica 

solubility increases with decreasing pressure and increasing temperature. The solubility 

of silica decreases with decreasing temperature by about 30% from 25-5 ºC, so that less 

silica dissolves when the waters are colder. The solubility increases slightly with 

pressure, providing some offset to the temperature effect. Although a big share of silica 

dissolves and only 1-10% of the flux survives dissolution, siliceous sediments are 

therefore found in zones of high productivity and high sedimentation rates but only 

below the CCD, where less carbonate dilution occurs and specifically at high latitudes 

where the water is colder; in such areas, diatom productivity is typically high. 

 

3.6 Origin of BSi: Diatoms   

The main contributors to biosilica in today’s oceans are diatoms, although radiolarians 

silicoflagellates, discoasters and sponge spicules can also contribute. Diatoms are single 

cellular organisms (algal photo synthesizers) that live at varying depths in the water 

column. They are abundant in nearly every habitat where water is found:  oceans, lakes, 

streams, mosses, soils and even the bark of trees. These algae form part of the base of 

aquatic food in marine and freshwater habitats. Diatoms grow as single cells or form 

filaments and simple colonies. Assemblages of diatom species are often specific to 

particular habitats and can be used to characterize those habitats. As algae, diatoms are 
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protists. placed in the division Bacillariophyta, which is distinguished by the presence 

of an inorganic cell wall (called frustle, an hard and porous external layer) composed of 

hydrated silica. There are an estimated 20,000 to 2 million species of diatom on Earth. 

This range is so large because scientists are still working to understand basic aspects 

about "what is a diatom species" and because new and diverse forms are still being 

discovered and described in scientific publications. Nearly all diatoms are microscopic 

cells range in size from about 2 µm to about 500 µm. Scientists use light microscopes or 

scanning electron microscopes (SEM) to visualize diatom structures. When diatoms are 

observed with a light microscope, the frustules appear clear (we are seeing through 

glass). When diatoms are obsrved with a scanning electron microscope, the frustules 

appear opaque. 

 

 3.7 Diatoms and Silicon 

 Diatom distinctive, transparent cell walls are made of silicon dioxide hydrated with a 

small amount of water (Si02 + H20). Silica is the main component of glass and hydrated 

silica is very like the mineral opal, making these algae, often called "algae in glass 

houses" more like "algae in opal houses". The biosilica wall of a diatom cell is 

constructed in a petri-dish like fashion being composed of a top half (epitheca) that 

overlaps the slightly smaller bottom half (hypotheca). Since silica is impermeable, 

diatoms have evolved elaborate patterns of perforations in their valves to allow nutrient 

and waste exchange with the environment. These valve patterns can be quite beautiful 

and are also helpful for classifying diatoms. Formation of these biosilica structures takes 

place in specialized intracellular compartments called Silica Deposition Vesicles 

(SDV). Studies on other silicifying protists have shown that SDV are not a speciality of 

diatoms but rather represent general organelles for silica biogenesis. The immediate 

precursor for biosilica formation inside the SDV is unknown, even though monosilicic 

acid Si(OH)4, which occurs in natural habitats in concentrations between 1 and 100 

mM, clearly represents the original source for silica formation. There is general 

agreement that polymerization, that is, the reactions that result in an increase in 

molecular weight of the silica, involves the condensation of silanol groups:  
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Silicic acid polymerization involves three distinct stages. First, monomeric silicic acid 

polymerizes by condensation of silanol groups to form dimers, trimers, and cyclic 

oligomers. Oligo silicic acid species have a strong tendency to further polymerize in 

such a way that siloxane bond (Si–O–Si) formation is maximized. These early processes 

create highly branched polysilicic acids as nuclei for silica formation. Second, the 

nuclei grow to form spherical particles either by continuous polymerization with 

monomeric and oligomeric silicic acids or by fusion of particles. Finally, the silica 

nanospheres can form a three-dimensional network forming branched particle chains 

that are cross-linked by siloxane bonds.  

 

 3.8 Diatoms as proxy  

Microfossils can be used as proxies for climate. When identified by species, they can 

tell us about the range of oceanic temperatures because every species has specific 

parameters for survival. Besides temperature they are an effective proxy for climate 

change due to their sensitivity to a variety of ecological conditions. Therefore, past 

changes in climate can be inferred from changes in species abundance within a sediment 

core, as the ecological requirements are well known for a number of ‘indicator’ species. 

These species are indicative of several variables linked to nutrient availability. These 

variables are dependent upon a combination of primary factors (for example 

precipitation, solar output, and wind strength) and secondary factors (i.e. upwelling and 

erosion). For instance, the presence of diatoms themselves tells us one extremely 

important fact: ice in the form of permanent sheets must not have been present. Diatoms 

cannot photosynthesize under ice sheets, although some of them live in and on ice 
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sheets. If they are present in the sediment record, ice sheets must not have extended to 

this area. By examining the fluctuations in diatom levels we can begin to establish a 

pattern of warm interglacial periods with high diatom abundance and cooler glacial 

periods with little or no diatom presence. Assuming a constant sedimentation rate at the 

coring site, core depth is analogous to time before present. As diatoms bloom and die, 

their skeletons settle to the bottom of the sea and are incorporated into the sediments. 

Diatom valves, or skeletons, are made up of silica, which preserves well for a very long 

time. This allows for the reconstruction of past climate by analyzing the changes in the 

preserved diatom valves through time. 

 

3.9 Colleting sediment samples: coring 

The basic design of the coring devices consists of one or more steel tubes or boxes 

attached below a lead weight unit. This set-up is dropped to the sea floor and pushed 

into the sediment to recover a core. There are four main types of coring devices.  

The simplest design is the gravity corer, consisting of an up to 20m-long steel tube 

attached to a lead weight of 1–2 tons. Longer cores can, however, be recovered with the 

piston corer. Originally invented in 1947, the piston corer has been further developed 

during the last few decades and is one of the most used coring devices within the marine 

coring community. Attached to the piston corer there is a trigger arm, which carries a 

wire with a small weight or a small gravity corer device (trigger corer) extending below 

the base of the piston corer tube. When the trigger corer penetrates the sea floor to 

collect the uppermost sediment sequence, the trigger arm is lifted and the piston corer is 

released falling freely with its own gravity into the sediment. When contact is made 

with the sediment surface, a piston, located inside the coring tube, is lifted up at the 

speed of penetration. Such a design reduces the friction inside the tube and allows for 

the collection of long cores. 

Another simpler device is the kasten corer. This coring device also penetrates marine 

sediments by gravity and consists of long, rectangular boxes. Because of the large 

volume of sediment sampled, this coring technique is beneficial for multiproxy 

paleoceanographic studies. Sediment coring is generally accompanied by surface 

sediment sampling for undisturbed recovery of the sediment/water interface. This is 

most often achieved using a multicorer, which samples up to 12 individual core. Surface 

sediment samples may also be obtained using different designs of grabs and box corers, 
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but generally these do not result in the same quality of sampling as the multicorer. The 

surface sediment sampling is of importance for understanding modern sediment 

deposition and the development of reference data sets for paleoceanographic transfer 

functions. It also provides material for the reconstruction of the most recent ocean 

history.  

  

3.10 Assessment methods  

Techniques to estimate the BSi content of sediments can be classified into 5 broad 

categories: 1) X-ray diffraction (Goldberg, 1958), 2) point counting of diatoms (Pudsey, 

1992), 3) infrared analysis (Fröhlich, 1989), 4) a normative calculation technique 

whereby BSi is estimated by difference from mineral silicates (Leinen, 1977), and 5) the 

wet-alkaline digestion techniques (Hurd, 1972; DeMaster, , 1981, 1991; Eggiman et al., 

1980; Mortlock & Froelich, 1989; Müller & Schneider, 1993).Wet-alkaline techniques 

are most often used because of their ease of use and reliability.  

The wet-chemical method  (DeMaster 1991), in principle, is based on the idea that the 

dissolution of silica is a surface process requiring the presence of a catalyst. In the case 

of alkaline leaching, the catalyst is a hydroxyl ion that can be chemisorbed, thereby 

increasing the coordination number of a silicon atom at the amorphous silica surface to 

more than four, and as result weakening the oxygen bonds with the underlying oxygen 

atoms. After the adsorption of OH
-
, silicon is released into solution as a silicate ion, 

Si(OH)5
-
, which hydrolyzes to soluble silica, Si(OH)4, once the pH goes below 11. In 

alkaline leaching procedures, either Na2CO3 or NaOH is used to supply the catalytic 

hydroxyl ion needed as a catalyst. Soviet scientists ( Bezrukov, 1955) were the first to 

apply a wet-chemical method for the determination of BSi in marine sediments and 

suspended material, but the description of this technique is oversimplified and does not 

provide information on effectiveness of extracting systems or the extent to which silica 

is dissolved from coexisting aluminosilicates. 

 Indeed, the big issue in the determination of biogenic silica in marine sediments is how 

to distinguish BSi dissolved with respect to silica coming from non-BSi compounds. As 

a matter of fact, marine sediments consist of some reactive silica fractions among 

which, within the time span of natural leaching experiments, quartz, and alumino-

silicate minerals are virtually insoluble, but nevertheless the dissolution of clay minerals 

severely complicates the determination of the BSi content. To overcome this, many wet 
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chemical methods have been proposed and tested, but none have been completely 

acceptable. 

For instance, Hurd (1973) prepared a calibration curve constructed from mixtures of 

typical clay minerals and BSi. The difficulty of this method is to prepare an artificial 

matrix similar to natural sediments.  

DeMaster  (1981; 1991) used a sequential alkaline extraction taking samples after 1, 2, 

3 and 5h. His results showed that the diatoms are quantitatively dissolved within 2h or 

less and that Si from clay minerals dissolves at a constant, much slower rate. DeMaster 

therefore concluded that the S dissolution from clay minerals occurred independently 

from the dissolution of BSi. Extrapolation of the linear ‘clay dissolution line’ to time 

zero would thus correct for the contribution of non-biogenic silica and gives the BSi 

content of the sample (Fig. 3.4). 

 

 Fig. 3.4 ‘Ideal’ dissolution curve for biogenic silica in sediments as proposed by 

DeMaster (1981). Extrapolation of the clay line to time zero would subtract the 

contribution of silica from the lithogenic fraction and would thus give the BSi content 

 

Several corrections and variants to DeMaster procedure were proposed. Mortlock and 

Froelich (1989) showed that for diatom-rich and clay-poor sediments a single 5h 

extraction with 2M Na2CO3 could be as accurate a measure of biogenic silica as the 

sequential leaching procedure, although BSi concentrations below 2% were to be 

regarded with suspicion. In sandy opal-poor sediments from the North Sea, however, 

the single leach in 2M Na2CO3 overestimated the BSi content substantially (Gehlen and 

van Raaphorst, 1993). In all sequential leaching procedures, correction for the 

lithogenic mineral phase was made on the basis of a small number of samples, 

commonly 5 or 6, introducing considerable uncertainties in the intercept determined 
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from extrapolating of the ‘clay-line’ (Conley,1998). More importantly, this error is 

determined solely by the composition and quantity of the clay fraction in the sample and 

can thus be relatively large at low BSi contents. In 1993, Müller and Schneider refined 

DeMaster’s method to an automated continuous digestion method. They employed an 

auto-analyzer system that allowed for continuous monitoring of the increase of the 

dissolved silica concentration in a 1M NaOH leaching solution. The continuous 

recording of the ‘clay-dissolution line’ improved the accuracy of BSi estimated from the 

extrapolated intercept. 

Ragueneau and Treguer (1994) recognized that for the determination of BSi in 

suspended matter it is essential to make a correction for the silica leached from 

lithogenic silicates, and proposed a statistical method to correct for the interference 

from lithogenic silicates. Recently, Kamatani and Oku (2000) described an alternative 

approach to correct for the non-biogenic content of the sample. They estimated BSi 

through linear regression of the extracted SiO2 plotted against extracted aluminum (Fig. 

3.5). The sample was subjected to a sequential digestion for 120 min at 1008C with 0.2 

M NaOH solution. The extracted SiO (y-axis) was plotted as a function of the extracted 

AlO (x-axis), which yields a good linear relationship between the two elements. The 

straight line is extrapolated to the y-axis, where the intercepting point is used to estimate 

the BSi content of the sample. However, this is a complicated method and is not 

recommended for routine work.  

 

 

Fig. 3.5 Plot of dissolved silica vs. dissolved aluminum. Kamatami and Oku proposed 

that all aluminum was associated with lithogenic fraction of the sample. Silica and 

aluminum dissolve at constant ratio and extrapolating their liner relationship to time 

zero would subtract the contribution of silica from the lithogenic fraction and would 

thus give the Bsi content of the sample 
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3.11 Wet Method: interferences  

 The wet chemical digestion techniques rely on the ability of a weak base solution to 

quantitatively dissolve all amorphous Si components of the sediments, while dissolving 

only a small fraction of the mineral silicates. Either a “mineral correction” is made for 

separation between the two components (e.g., DeMaster, 1981) or in sediment samples 

with high BSi concentrations the relative difference between Si extracted from 

amorphous compounds and from mineral silicates is large so that the “mineral 

correction” is ignored (Mortlock & Froelich, 1989; Conley, 1998).  However, the 

difficulty of the BSi measurement lies not only in the correction for the dissolution of 

co-existing aluminosilicates, but also in the extraction efficiency of BSiO2, which must 

be 100%. Moreover, if the goal of BSi analysis is to estimate diatoms content in 

sediment, further components can affect the result. For example, in sediments where 

sponge spicules as well as diatoms and mineral silicates are present, the diatoms are 

rapidly dissolved (<2 h), sponge spicules are dissolved during the first 8–12 h of the 

digestion, and increases in Si extracted after that time period are due to digestion of 

mineral fraction. The procedure for separating diatom BSi from sponge BSi probably 

overestimates diatoms BSi because smaller and/or lightly silicified sponges can be 

completely dissolved early during the digestion process. Sponge BSi can comprise a 

significant portion of the total amorphous Si extracted from sediments and may act as a 

significant interfering species (Conley & Schelske, 1993; Bavestrello et al., 1996). 

Each of mentioned procedures has inherent systematic problems or is analytically 

cumbersome. Despite these circumstances, the wet-chemical methods have been used 

widely by many marine scientists, principally because of being simple and economical 

in handling. Much controversy still remains surrounding the methodology for BSi 

determination and there is a need for further study. 

 

3.12  Wet Method variability  

Besides the problem of interference of clay minerals, the wet method is affected by an 

inherent variability. Conley (1998) proved that there is a wide range of variability in the 

measurement of BSi across the community of aquatic scientists. In the study an inter-

laboratory a comparison was made with the purpose to show the amplitude of variability 
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in the measurement of BSi in sediments among the community of aquatic scientists and 

to determine if patterns in the measurement were related to specific methodologies used 

or to treatments. 30 selected laboratories used a variety of different wet chemical 

extraction techniques and X-ray method. Six samples were used in the inter-laboratory 

comparison collected from modern freshwater and coastal marine depositional 

environments. The samples were chosen to cover a wide range of BSi concentrations. 

Independently measured BSi concentrations of the same sediment ranged widely. BSi 

concentrations determined by X-ray diffraction were significantly higher than 

concentrations determined by wet chemical methods. It can be noticed (see Tab. 3.1) 

that the percent standard deviation of the mean in samples analyzed by wet chemical 

digestion techniques was highest in the samples with the lowest BSi concentration 

(sample 6) and lowest at the highest BSi concentration (sample 2) 

 

 

Tab. 3.1 Overall neam biogenica silica (BSi) concentration (wt% as SiO2 ) of 

samples 1 standard deviation (SD) about the mean and the percent standard 

deviation of the mean (SD of mean) from all laboratories using wet  chemical 

digestion techniques (Conley 1998) 

 

3.13 Wet Method final thoughts 

 All wet-chemical methods, in principle, are based on the idea that BSi and 

aluminosilicates have different dissolution rates even in a weakly alkaline solution such 

that BSi dissolves faster than aluminosilicates. The dissolution rate of BSi depends on 

its physical and chemical characteristics such as its origin, age, specific surface area and 

the concentration of silanol radicals, Si–OH  (Kamatani, 1971; Hurd, 1983). Therefore, 

the recovery of BSi is probably a function of extraction conditions: pH, temperature, 

nature and concentration of the alkaline solution, and digestion time. Different 
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conditions are shown in Tab. 3.2. Moreover, the method as described by DeMaster is 

quite complex and time-consuming: several step  are required before the spectroscopic 

measurement. The major problem, however, is how to make the correction of silica 

leached from the non-BSi compounds which coexist with biogenic phases in samples. 

 

 

Tab. 3.2 A list of  conditions used wet in alkaline method 
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Section 4 
 

In the last few decades, many research has been dedicated to polar ecosystems, which 

are generally regarded as the last uncontaminated environments on Earth. Antarctica is 

the coldest, windiest and most isolated continent, therefore it is practically unaffected by 

anthropogenic activity. For this reason, Antarctica is scientifically attractive and is a 

unique natural laboratory. The study of marine sediments represents an important tool to 

obtain information about past conditions in the ocean. Sediments are also studied for 

their role in controlling the biogeochemical cycles of seawater. They constitute 

repository of biologic trace elements which act as micronutrients and characterize the 

ecosystem. High-latitude environments experience frequent algal blooms during the 

spring–early summer retreat of the seasonal sea ice cover. These can generate high 

pulses of biogenic particulate export from surface waters, especially when algal 

assemblages are composed of diatoms. The Ross Sea is a deep bay of the Southern 

Ocean in Antarctica, between Victoria Land and Marie Byrd Land. Although the Ross 

Sea is covered with ice for most of the year, thanks to the circumpolar deep water 

current, the water mass that flows onto the continental shelf is relatively warm, salty and 

nutrient-rich. Therefore, the Ross Sea is one of the last sea areas on Earth that is still 

relatively unaffected by human influence. Because of this, it is still almost totally free 

from pollution and the introduction of harmful agents. Accordingly, this area has 

become a subject of numerous environmentalist groups for its feature of a world marine 

reserve. The Ross Sea is regarded by marine biologists as having a very high biological 

diversity: for this reason,  it is the target of many scientific research as well focus of 

some environmentalist groups. 

Satellite observations showed that each year the Ross Sea exhibits the most spatially 

extensive biomass in the Southern Ocean (Comiso et al. 1993, Sullivan et al. 1993, 

Arrigo et al. 1998). Recently, Smith & Gordon (1997) and Smith et al. (2000) were able 

to confirm the hyperproductive nature of the Ross Sea through a series of spring process 

studies in its southern portion. Due to the high preservation potential, the Ross Sea 

continental shelf is an area of high accumulation of biogenic silica in the sediments 

(Ledford-Hoffman et al. 1986; DeMaster et al. 1996, Langone et al. 1998). Sediments 

record environmental conditions at the time of their formation, and the study of 

sediments can give information on water column processes. Coupling data obtained 
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from water column fluxes measured by traps and data of sediment deposition and 

accumulation onto the sea bottom can allow a better understanding of the relative 

importance of particle sinking processes and the factors that influence particle 

biogeochemistry and transport.   

The Ross Sea has a distinctive geomorphology, characterized by a deep and irregular 

continental shelf, with an average depth of 500 m. The central portion alternates banks 

and basins, characterized by an elongate shape and oriented to north-east. The shelf 

slopes towards the continent and is sharper and deeper on its western side. Near Victoria 

Land, glacial erosion has created tight transverse channels, that can exceed 1000 m 

depth. 

The samples object of the present study come from a site (named site D, Fig. 4.1), 

located in the western sector of the Ross Sea continental shelf. Site D is within the 

polynya (a polynia is an area of open water surrounded by sea ice) of Terra Nova Bay, 

at 75°06'S and 164°13'E. This is an area of high productivity of biological organism 

(Saggiomo et al. 2002). Although sediment texture and composition in this area have 

been already described (Dunbar et al. 1985), biogeochemical processes at the seafloor 

are poorly known. Surface sediments in the Ross Sea are composed of unsorted ice-

rafted debris, siliceous and calcareous biogenic debris and terrigenous silts and clays 

(Dunbar et al. 1985). In site D predominate coarse terrigenous deposits.  Sediment 

gravity cores and box-cores (gravity core 148c and box core 148bc) were collected at 

the Site D  during the 1994/95 Italian Antarctic expedition.  

 

Fig. 4.1 Study area and samples site D 
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In this section the application of NAS method (based on ATR measurement) is 

described to determine biogenic silica in marine sediment originated from site D. In 

order to have some reference values, the samples were formerly analyzed with wet-

method in cooperation with Institute of Marine Science (ISMAR-CNR) 

 

4.1 Wet Method performed  in ISMAR 

 Biogenic silica (BSi) content was determined through a progressive dissolution 

method, followed by colorimetric analysis. Sediments were previously dried at 60°C  

for 24h at least, and then pulverized in an agate mortar. 0.5g of sediment was 

transferred in a teflon falcon tube and 35ml of 0.5M NaOH solution as an extractant 

were added. Tubes were immersed in a water bath heated to 85°C and periodically 

(every 15 min) shaken throughout the digestion period to ensure full exposure of the 

sediment to the solution. For each core, 3 sample replicates were analysed to check 

method reproducibility, and a set of blanks was run every ten samples. After 1, 2, 3 and 

4 hours of digestion, tubes were centrifuged at 2000 rpm for 3 min and then 0.2 ml of 

sample aliquots were collected. Such aliquots were diluted in MilliQ water to a volume 

of 5 ml (Solution A). 

Separately a solution containing ammonium paramolybdate, NaOH 0.5M and water in 

ratios1:0.2:2.3 is prepared (Solution B). For each sample, 1 ml of solution A and 2.8 ml 

of solution B are mixed in order to obtain a volume of 3.8 ml (Solution  C). The 

reducing agent is obtained by mixing metol, 4-(methylamino)phenol hemisulfate, 

saturated solution of oxalic acid, sulphuric acid 50% and  water in ratios 10:6:6:8.  

1.2 ml of reducing solution is added to sol. C, at this point total volume for each sample 

will be 5ml. After 3 h, =810 nm. 

Concentrations are determined by interpolation using a calibration line built with a 

reference solution of BSi. 

 

4.2 ATR measurement 

The analytical reproducibility and accuracy of the FTIR-ATR method are strictly related 

to the optimization of the experimental conditions such as drying process, sample 
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deposition, instrumental calibration. In ATR measurement two requirement are 

particularly important to obtain an adequate spectrum 

 

1. The size of particles mustn’t be greater than the wavelength at which absorption is 

measured 

2. The sample must be homogeneous 

The results also depend strictly on the effect of the spectral resolution on the intensity of 

the signal. The improvement in resolution (when the resolution decreases at 1 or 2 cm
-1

) 

produces a general improvement of intensity measurements. In any case, the intensity of 

the signal is also influenced by the change in the refractive index, depending on the 

concentration of the absorbing species. When the effect of the change in the refractive 

index is negligible, a linear relationship is observed between the intensity of the signal 

and the concentration, according to the Lambert–Beer law. A spectral resolution of 4 

cm
-1 

is an acceptable trade-off , otherwise the relationship can result nonlinear.  

Samples were first mechanically grinded down to a size smaller than the shortest 

wavelength used (2.5 mm) before mixing with Celite (Sigma) in various amounts. The 

powder was dried at 110 °C overnight in order to remove absorbed water and then 

analyzed with an FTIR spectrometer (65 scans) in the 1400–400 cm
-1

 range. FTIR-ATR 

spectra were obtained from approximately 0.01 g of sample material using an 

instrument Bruker Model ALPHA (Bruker Optik GmbH, Leipzig, Germany).  

The FTIR spectra of BSi (Fig. 4.2) exhibit four vibration bands. The two main bands at 

1100 and 471 cm
-1

 are attributed respectively to triply degenerated, stretching and 

bending, vibration modes of the [SiO4] tetrahedron. The band at 800 cm
-1

 corresponds 

to an inter-tetrahedral Si–O–Si bending vibration mode  and the band near 945 cm
-1

 to a 

Si–OH mode . 
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Fig. 4.2 Biosilca ATR spectrum 

 

 

After having collected spectra, all data were subjected to the following procedure 

1) Spectral pre-treatment: MSC and normalization 

2) Esplorative analysis: PCA 

3) Mathematical treatment: PLS /NAS 

5.3 Data pre-processing.  

 

Pre-processing of the spectral data was performed by The Unscrambler (Version 10.3 

Camo, Norway) software packages. For optimal modelling, Multiple Scatter Correction 

(MSC) and baseline correction were used to linearize spectra and remove variation in 

spectra caused by noise. Baseline correction performs a linear correction of the spectra 

so that two points equal zero. MSC removes spectral variation arising from different 

effective path lengths and particle sizes.  

 

 4.3 Determination of BSi by NAS 

 The quantitative assesment of BSi is performed by Multivariate Standard Addition 

Method (MSAM). Partial Least Squares (PLS) Regression (par. 1.10), was used for 

building the calibration model. By PLS the explained variance and the correlation are 

optomized at the same time (Geladi 1986). According to standard addition method, 

known amounts of  dependent variable (celite in this case) are added to the sample. 

Then the unkwnown value is determined in extrapolation mode, which allows to bypass 

the eventual matrix effect. The suitability of multivariate models to be applied in 
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extrapolation  mode has been demonstrated by some Authors (Lorber et al. 1997). In 

that work, MSAM was applied to a bulk method, while in the present work the sample 

was in solid state: this is another very useful novelty, since analysing solid samples as 

such is a very interesting target for analysts.  

One futher novelty here proposed with respect to the previuos work on MSAM is how 

to extrapolate the signal. In fact, in that previous work a blank solution was available, 

and the blank signal was the unkwnown to be predicted by the MSAM model. On the 

contrary, in the present case the blank is not available. We don’t have a marine sediment 

surely devoid of biogenic silica. The solution to this issue comes from chemometrics 

again: the Net Analyte Signal (NAS) method  may solve the problem. This method was 

introduced by Lorber (1997), and Hemmateenejad (2009) applied it to MSAM in similar 

mathematical mode as it is applied in the present work. The present procedure was 

followed 

 A first interference reduction is obtained by computing a PLS model from the 

original data and choosing the proper number of PCs (the ones which minimizes 

RMSE). By a matrix product between the chosen scores and loadings  we rebuild the 

original data to  a Rreb matrix  

 A mathematical combination of the pure analyte signal (which is represented by the 

vector r) with the matrix Rreb extract the blank contribution to signal (matrix R-k so 

called because contains all compounds signals  except the kth analyte signal) 

T
krebk rcRR

^

  

Where and  kc
^

 are calculated as described in par. 1.16 

 For each object (row) in the dataset, a “net” signal is calculated  

r*k=[I- R-k R
+

-k] rk 

 

r
*
k is the vector of the kth analyte. This mathematical operation performed to extract the 

blank contribution consist in projecting the pure-anayte signal on a plane and the 

sample-signal on another plane that is perpendicular to the first: normal planes 

correspond to independent mathematical quantities. In other words, NAS is based on the 

idea of extracting that part of the signal which is mainly related to the concentration of 

the analyte of  interest and independent from all other components 
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 The result is the NAS vector  r
* 
: by taking the Euclidean norm we obtain a scalar signal 

directly related to the analyte concentration. Also the added concentration vector is 

projected onto the PLS-NAS space to give a new concentration vector (here called kc
^

). 

In this way, a multivariate model is well represented by an univariate linear regression 

between the pseudo-univariate NAS signal and kc
^

. This method is well developed for 

the standard addition method. The extrapolated value doesn’t need further calculation 

and it corresponds to the extrapolated concentration value of the starting data. If 

necessary, the described PLS and NAS procedures can be combined with chemometric 

tools for variables selection. In fact, the dataset here analysed is characterized by a low 

number of rows (some units of samples which, by replicating measurements, become 

some tens of objetcs, the spectra) and a very high number of variables (some hundreds 

of frequencies). The  LASSO and SPLS variable-selection (decribed in shrinkage 

techniques) were applied, and among them the best performing was chosen.  

 
 

4.4 Results 

All the samples were both analyzed as such and emplyed to prepare several samples for 

the standard addition method. 

 

Sample D9 

In the case of sample D9, four additions of celite were performed: 2.2, 5.2, 7.9 and 12.5 

%w/w. 

In figg. 4.3-4.4 the original acquired spectra (4.3) and the spectra after MSC treatment 

(4.4) are shown. As for treated spectra (likewise for the following samples), also the 

pure-analyte spectrum is plotted (marked 100%).  In the score plot of PCA (fig 4.9) it 

can be seen that samples with the same content of celite form clusters which lie on 

horizontal axis: cluster with increasing amount of analyte are aligned from right to left. 

For this sample the LASSO resulted the most suitable shrinkage technique (fig.4.12) 

and after PLS three components were chosen. In fig. 4.14 NAS regression line is shown, 

together with the fundamental figures of merit (quality parameters). The extrapolated 

value is (3.79±0.09) %w/w, whreas the wet-method result is (4±1) %w/w. 
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Sample D18 

Sample D18 resulted more difficult to analyze compared to the others. In fact, even 

though  five addition on the analyte were performed (1.8,3.2,7.2,10.3 and 14 %w/w), 

samples with 1.8% w/w and 10.3% w/w content of celite were rejected owing to a big 

overlapping of spectra. In PCA (fig. 4.10) score plot, samples with increasing amount of 

analyte are ordered from left to right: we can see that sample 1.8% w/w is not 

distinguishable from sample as such (0% w/w of added celite) and the same is for sample 

10.3% w/w compared to samples 7.2% w/w and 14% w/w. Two further outliers are marked 

with a circle. In fig. 4.6. just spectra of samples used in calibration (0, 3.2, 7.2 and 14 

%w/w of added celite) are shown. 

No shrinkage methods were applied because no improvement was observed. Despite 

these problems, the extrapolated value (5.2±0.3) %w/w is somewhat close to the one 

obtained with wet method (4.3±0.6) %w/w. NAS line and relative parameters are 

reported in fig. 4.15. 

 

Sample D21 

For this sample, just three addictions of celite (5,10 and 14 %w/w) were enough to build 

a good calibration model. In score plot (fig 4.11.) it can be seen that clusters with 

increasing amount of celite are well divided and ordered along horizontal axis from left 

to right. 

After MSC pre-treatment, there is a little overlapping in some region of the spectrum 

(fig.4.8). However, the extrapolated value (fig. 4.16) is in excellent agreement with 

“classical” method (3.17±0.04) %w/w  for ATR and (3.5±0.5) %w/w for the wet method). 

In the case of sample D21, SPLS method (fig. 4.13) instead of LASSO was emplyed, 

and three components were used.  

 

Table 5.1 summes up the results with reference values obtained with wet method and 

NAS regression lines. 

 

 



 

 

76 

 

Sample Shrinkage 

Number of 

components NAS  

Wet 

Method 

D9 LASSO 3 3.79±0.09 4±1 

D18 - 3 5.2±0.3 4.3±0.6 

D21 SPLS 6 3.17±0.04 3.5±0.5 

Tab. 5.1 
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Conclusions 

 

In this work, a new chemometric method applied to the analysis of environmental 

samples is presented. The aim of the project was to develop new multivariate  

procedures to be applied to data obtained  by direct analytical techniques. The great 

advantage of direct chemical analysis is that we can  to investigate samples without 

altering them, keeping the sample available for further analysis. Specifically, infrared 

spectroscopic measurements in Attenuated Total Reflectance (ATR-IR) were 

performed. In addition to being a non destructive technique, ATR is rapid and useful to 

characterize materials with minimal sample preparation. Compared with transmission 

spectroscopy, ATR sample preparation is less labor-intensive, spectra variation due to 

sample preparation is minimal and the impact on results of sample preparation due to 

KBr grinding and particle size differences is greatly reduced. 

Although ATR is a widespread technique in qualitative investigations, its use in 

quantitative analysis is not yet well-established. Moreover in the case of environmental 

samples, due to their very complex matrices, matrix effect hinder the use of calibration 

methods in interpolation mode. For this reason univariate approach may be not 

exaustive and Multivariate Standard Addition Method (MSAM)  was chosen as suitable 

alternative.  

In multivariate analysis, and in particular in creating and validating calibration models, 

real data are often contaminated with atypical samples or instrumental  anomalous 

responses (outliers), which may have harmful consequences on the estimations of the 

parameters.  A big issue in this work was that spectroscopic data are often affected by 

undesired systematic variations primarily caused by phenomena like difference path-

length and light-scattering. In the case of ATR, where the penetration depth of incoming 

beam is proportional to wavelength and to incident angle, such phenomena produce 

changes in intensities of some bands. Moreover, light scattering due to physical 

conditions of the samples (e.g. surface roughness, droplets, crystalline defects, density 

fluctuations) can cause shifts in baseline and other phenomena called non-linearities. 

For these reasons, pre-processing techniques were required in order to remove physical 

phenomena and reduce the un-modeled variability in the data, thus enhancing the 

feature sought in the spectra. Such preprocessing methods are also aimed to adjust 

baseline shifts among samples, thus improving subsequent multivariate analysis. The 

goal was to obtain a simple (linear) relationship with the constituent of interest. Among 
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scatter-correction methods, we considered three preprocessing methods: MSC, 

normalization and derivative. Therefore, as first step after we collected data, we 

experienced these techniques to reduce the physical variability between samples due to 

scattering. 

Besides the above mentioned experimental shortcomings, the heart of this work consists 

in mathematical treatment of data. As matter of fact, in certain circumstances calibration 

methods cannot be performed in classical mode, i.e. with Ordinary Least Square 

regression. When high correlated variables are present and/or the number of 

independent variables >> number of experiment, Principal Component Regression or 

Partial Least Square Regression are required. Such methods are based on so-called 

inverse regression and provide models in which the signal (IR spectrum in this case) is 

the independent variable. Hence, in order to extrapolate the unknown, blank signal is 

needed. In environmental analysis the blank is typically not available: we don’t have the 

matrix without analyte. The theory of Net Analyte Signal (NAS) originally proposed by 

Lorber (1986) and subsequently applied and improved by many authors allows to 

separate, by a mathematical procedure, the signal of analyte of interest from other 

interfering components. Implementing NAS principle, for the first time MSAM was 

applied to solid state samples: this is a very useful novelty, since analysing solid 

samples as such is a very interesting target for analysts. 

Spectroscopic measurement and following multivariate treatment were applied to 

determine biogenic silica (BSi) content in marine sediment. In order to confirm the 

obtained results, samples were also analysed in  cooperation with ISMAR-CNR 

(Institute of Marine Science), where the alkaline methods were applied according the 

protocol proposed by DeMaster(1981). A quite good agreement was observed. 

Perspectives 

 

Since the results obtained in this work are very encouraging, in perspective the same 

work may be applied to all solid-state direct-analysis analytical techniques. 

In fact, preliminary work applied to X-Ray Diffractometry (not here reported) has 

already been done with very good results. 

Moreover, this work, together with previous similar work in Raman Spectroscopy, has 

already been published (Melucci et al., 2016).  
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Fig 4.3 D9 original spectra 

 

      

Fig. 4.4 D9 treated spectra 
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Fig. 4.5 D18 original spectra 

 

 

 

 

Fig. 4.6 D18 treated spectra 
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Fig. 4.7 D21 original spectra 

 

 

 

 

Fig. 4.8 D21 treated spectra 
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Fig. 4.9 D9 PCA 

 

         

Fig. 4.10 D18 PCA 

 

 

Fig. 4.11 D21 PCA 
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Fig 4.12 D9 LASSO 

 

 

Fig. 4.13 D21  SPLS 
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Fig 4.14 D9 NAS 

  

Fig 4.15 D18 NAS 

 

Fig. 4.16  D21 NAS 

 

 

 

 

Intercept = 3.917±0.008 

Slope =1.212±0.0.002 

RMSE=0.01401 

Radj=0.999 

 

Intercept = 4.2±0.2 

Slope =0.80±0.02 

RMSE=0.3591 

Radj=0.991 

 

Intercept = 3.63e-02±2e-04 

Slope =7.95e-03±1e-05 

RMSE=0.002 

Radj=0.999 
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Appendix Library and script R 

 

library(MASS) 

library(pls) 

library(glmnet) 

library(spls) 

 

# R is the matrix containing samples spectra 

# c.agg is the vector of added concentrations 

# r.pure is the matrix containing the pure analyte spectra 

 

n.fold<-10 

 

## LASSO ## 

grid<-10^seq(10,-10,length=300) 

set.seed(1) 

cv.model.lasso<-cv.glmnet(R,c.agg,alpha=1,grouped=FALSE,nfolds=n.fold) 

plot(cv.model.lasso) 

 

lambda<-cv.model.lasso$lambda.min 

out.lasso<-glmnet(R,c.agg,alpha=1,lambda=lambda) 

coeff.lasso<-predict(out.lasso,type="coefficients",s=lambda2) 

 

plot(cv.model.lasso$glmnet.fit,xvar='lambda') 

abline(v=log(c(lambda)),lty=2) 

 

index.lasso<-which(coeff.lasso!=0) 

coefficients.lasso<-coeff.lasso[index.lasso] 

 

## SPLS ## 

set.seed(1) 

cv<-cv.spls(R,c.agg,eta=seq(0.1,0.9,0.01),K=c(1:10),fold=n.fold) 

 

model.spls<-spls(R,c.agg,K=cv$K.opt,eta=cv$eta.opt,scale.x=FALSE) 

coef.spls<-coef(model.spls) 

 

index.spls<-which(coef.spls!=0) 

coefficients.spls<-coef.spls[index.spls] 

 

 

## Dataset definition ## 

# If a subset of variables has been chosen by LASSO or SPLS 

index<-index.lasso # For LASSO-subset 

index<-index.spls # For SPLS-subset 

R.new<-subset(R,select=index) 

r.pure.mean<-apply(subset(r.pure,select=index),2,mean) 
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# ELSE if NO subset has to be used 

R.new<-R 

r.pure.mean<-apply(r.pure,2,mean) 

 

## PLS Regression ## 

n.sam<-nrow(R.new) 

p.var<-ncol(R.new) 

set.seed(1) 

model.plsr<-plsr(c.agg~R.new,validation="CV",ncomp=n.sam-3) 

rmse<-RMSEP(model.plsr) 

plot(rmse,legendpos="topright") 

n.comp<-# Optimal number of components (which minimizes RMSE) 

 

## Recalculation of R ## 

T<-as.matrix(model.plsr$scores[,1:n.comp]) 

P<-as.matrix(model.plsr$loadings[,1:n.comp]) 

m<-apply(R,2,mean) 

R.reb<-t(t(T%*%t(P))+m) 

 

## R.reb decomposition ## 

R.reb.pinv<-ginv(R.reb) 

c2<-R.reb%*%R.reb.pinv%*%c.agg 

w<-r.pure.mean%*%R.reb.pinv 

alpha<-as.numeric(1/(w%*%c2)) 

 

## Rank Annihilation ## 

Rk<-R.reb-alfa*c2%*%r.pure.mean 

Rk.pinv<-ginv(Rk) 

 

## Orthogonal projection matrices ## 

Id<-diag(1,p.var,p.var) 

H<-(Id-t(Rk)%*%t(Rk.pinv)) 

 

## Net spectra and NAS ## 

r.net<-matrix(NA,n.sam,p.var) 

nas<-matrix(NA,n.sam,1) 

for(i in 1:n.sam) { 

r.net[i,]<-H%*%R.new[i,] 

nas[i,]<-norm(as.matrix(r.net.i[i,]),"f") 

} 

 

## Univariate regression ## 

lin.reg<-lm(nas~c.agg) 

summary(lin.reg) 

 

## Extrapolation ## 
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c0<-lin.reg$coefficients[1]/lin.reg$coefficients[2] 

c0 

 

 

 


