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Abstract

The time dimension is so inherently bound to any information space that it can hardly
be ignored when describing the reality, nor can be disregarded in interpreting most
information. In the pressing need to search and classify a larger amount of unstructured
data with better accuracy, the temporal dimension of text documents is becoming a
crucial property for information retrieval and text mining tasks.

Of all the features that characterize textual information, the time dimension is still
not fully regarded, despite its richness and diversity. Temporal information retrieval is
still in its infancy, while time features of documents are barely taken into account in
text classification. In text documents, time has a dual presence: it tells us when the
documents has been created, but also describes the time extent of events and entities
referred in the text, e.g. looking at the temporal expressions in text. These two temporal
aspects can be used to better interpret the relative truthiness and the context of old
information, and to determine the relevance of a document with respect to information
needs and categories. With an in-depth knowledge of the temporal dimension of text,
and specific models to retrieve and classify documents based on their temporal features,
it is possible to enhance a variety of retrieval and categorization tasks.

In this research, we first explore the temporal dimension of text collections in a large
scale study on more than 30 million documents, quantifying its extent and showing its
peculiarities and patterns, such as the relation between the creation time of documents
with the mentioned time. Then we define a comprehensive and accurate representation
of the temporal aspects of documents, modeling ad-hoc temporal similarities based on
metric distances between time intervals. We evaluate the new temporal features and
similarity models on a set of both general purpose and temporal specific test collections,
in order to measure the accuracy improvement derived from temporal relevance, and
to compare the proposed model with other known temporal relevance models. Results
of evaluation show taking into account the temporal relevance of documents yields a
significant improvement in retrieval e�ectiveness, over both implicit and explicit time
queries, and a gain in classification accuracy when temporal features are involved. By
defining a set of temporal features to comprehensively describe the temporal scope of
text documents, we show their significant relation to topical categories and how these
proposed features are able to categorize documents, improving the text categorization
tasks in combination with ordinary terms frequencies features.
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Chapter 1

Introduction

Time is an important dimension of any information space, and unstructured text data
makes no exception. From social media posts to digital libraries, time can be found
outside the text, in its meta-level, as well as inside the text, when a date or a time of
the day is mentioned.

As an important part of text data, the time dimension is often involved in text
related activies such as searching and classifying documents. Despite temporal informa-
tion is prevalent in many kinds of documents, current Information Retrieval and Text
Categorization models do not fully capture its properties, treating time expressions as
keywords and thus ignoring useful features in ranking and classifying those documents.
This work pursues the harnessing of the temporal dimension of documents by means of
the following strictly related goals:

1. Investigate the volumes, properties and patterns of temporal information in docu-
ments and queries collections.

2. Exploit the temporal information of documents to enhance ranking e�ectiveness,
defining metric and generalized metric1 distances between time intervals.

3. Define time features to temporally characterize documents in text categorization
tasks.

Knowing how much time there is in text documents motivates to further take the time
dimension in consideration for searching and classification tasks. Moreover, studying
its distribution and having a comprehensive picture of its properties in documents is an
important step toward many tasks where time can be involved (e.g. situation recognition,
new events detection, documents timestamping).

As a completely di�erent dimension with respect to keywords or named entities, the
space of time intervals requires ad-hoc models to reason about distances and similari-
ties. Starting from intuitive and well-known metric distances suitable for bidimensional

1
By generalized metric distance we denote distances that partially satisfy the definition of metric

distance.

1



2 CHAPTER 1. INTRODUCTION

points, such as the euclidean distance and the manhattan distance, we define more spe-
cific distances to capture the temporal relevance of documents, taking into account the
asimmetry between time in queries and time in documents. For instance, explicit time in
queries is often more generic than the time mentioned in documents, thus an asymmet-
ric containment relation must be set in place. Having defined the temporal similarities,
we investigate and evaluate di�erent settings of the ranking model, as well as how to
combine this novel similarity with text similarities (well known relevance models such as
BM25 [115] and Language Models [85]), and we compare results with text baseline and
time-aware ranking models.

Finally, we see how, from the distribution of mentioned time in documents, it is
possible to extract the most salient temporal peculiarities. For each of these time fea-
tures we study their relation with the documents topics and how much they are able to
discriminate documents by their category.

1.1 Background

The goal of this section is to clarify the specific context in which this work set in and
its scope, describing the preliminary processes which are needed but not covered in this
research. In particular we want to show how the semantic annotation of temporal
expressions, used but not treated in this work, is a crucial step that makes it possible
to reason about numeric intervals instead of text expressions.

The typical approach to document representation in Information Retrieval (IR), Text
Categorization (TC) and Text Mining in general, is to transform the plain text of a doc-
ument to a set of words (bag-of-words) [41]. This approach does not consider the lexical
and semantic relations between di�erent words, such as synonymy (words expressing
the same meaning) and hypernymy (di�erent meanings for the same word).

Significant improvement has been obtained expanding the terms using their syn-
onyms, in both queries [138] and documents, which is now a common practice in the
indexing pipeline of most known commercial2 and academic3 IR frameworks. However,
this can be only applied to words and n-grams (expressions of more than one word) that
can be found in ontologies such as WordNet [99, 139].

In relation to a time expression (timex) however, solving its synonymy relations with
this kind of approaches can be very hard to achieve or not possible at all, depending on
whether the time expression is absolute or relative:

• Synonyms of absolute timexes: an absolute mention of a time interval, inde-
pendent from the time of writing, such as “4 October 2016” or “the nineties ”,
can have a discrete number of variations for each mentionable time interval. We
can define an upper and lower bound for mentionable dates, and assume the set
of synonyms for an absolute timex to be finite (e.g. “4/10/2016”, “4 October

2
https://lucene.apache.org/core/

3
http://terrier.org/
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2016”, “the fourth of October 2016” etc.). While finite, this set would be too
large for an ontology-based approach.

• Synonyms of relative timexes: the same moment in time can be mentioned
using a relative time expression such as “tomorrow ” or “one year ago ”, depend-
ing on the time of writing. What was “today ” for an ancient philosopher becomes
“three thousand years ago ” in the present time, leading to an infinitely large
number of combinations.

More complex techniques are sometimes applied to solve hypernymy relations in
text, when a term in a document can have a di�erent meaning from the same term
in the query, due to the ambiguity of the keyword. Other than using ontologies for
word sense disambiguation [137], known techniques to solve the hypernymy of terms
goes from Named Entities Disambiguation to unsupervised feature reduction techniques
such as Latent Semantic Indexing. Again, it becomes extremely di�cult to apply text
techniques to time expressions:

• Hypernyms of absolute timexes: absolute dates have one and only one mean-
ing, implying that no disambiguation is needed. However, as we will show in Chap-
ter 3, it is common for temporal information needs in queries to be uncertain: a
user who specify a time interval may not be completely sure, thus providing a
similar time information (“1945” instead of “1944” or a more generic one (“2012”
instead of “6 November 2012”).

• Hypernyms of relative timexes: the same time expression can refer to any
interval, depending on the time of writing: “next year ” could refer to 1950 if
written in 1949, or could refers to 2017 if written in 2016, leading to an infinitely
large number of combinations.

We will deal with absolute timexes hypernyms, those due to writer uncertainty, with
the proposed metric models in Chapter 4.
For all the other cases above, a state-of-the-art temporal annotator is able to detect
and normalize a time expression into an absolute time interval, for both absolute timexes
and relative timexes. Assuming that, in the case of relative timexes, the time of writing
is known and provided to the temporal annotator.

In general, exploting semantic annotations to improve retrieval and classification
accuracy is a relatively new trend in IR and TC area which significantly improves e�ec-
tiveness [132, 49, 78]. This is even more true with temporal expressions: as we just show
in the above examples, semantic annotation of timexes has a crucial impact in relating
di�erent temporal expressions, because of the larger set of synonyms and hypernyms
with respect to other kind of entities, such as persons or organizations.

Despite we conduct a large-scale temporal annotation of query and documents collec-
tions (Chapter 2 and 3) to extract the time intervals from text, no semantic annotation
and normalization method is studied or implemented in this work, therefore this work
is not framed in a Natural Language Processing context, where the semantic annotation
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belongs. Instead this work is mainly devoted to the analysis of the extracted intervals and
to the exploitation of these intervals for Information Retrieval and Text Categorization
tasks.

1.2 Problem Statement

Among the many challenges faced in today massive production of unstructered data,
perhaps the most known and important one is the ability to retrieve and classify in-
formation with the highest possible accuracy. In simple terms, this means the ability
to find the most relevant documents to a user search query (Information Retrieval)
and the ability to classify similar documents by their topic (Text Categorization). The
need for more accurate and di�erentiated results has pushed today’s research toward
more semantically-aware models, some of which are specifically designed for particular
purposes, such as queries with a temporal intent [71].

Time is a peculiar kind of semantic space, with its own meaning and structure.
As this is a completely separated space from other spaces such as the vector space or
the latent semantic space, it needs ad-hoc models to represent, classify and retrieve
documents from a temporal perspective. This is today a well-known problem, which has
attracted the interests of the Information Retrieval area in what is called Temporal
Information Retrieval.

Under the scope of Temporal Information Retrieval fall all the Information Retrieval
works wich take into account di�erent temporal aspects of documents and queries. As a
relatively recent area, Temporal Information Retrieval has partially coped with the needs
for time-aware models for relevance. Most of the related works [120, 89, 145, 66, 20, 107]
do not take into account the temporal expressions inside text, limiting their scope to
meta-level time, such as the date creation time of documents or the revision time. There
are few works which consider the time expressions inside the documents [10, 68, 22],
however in these works the extracted time intervals are still treated with models borrowed
from the text models, thus missing some important time relations. In particular, treating
time intervals as set of tokens cannot capture the similarity betwen disjunct but very
similar intervals. As a consequence, “1945” and “1944” are considered as dissimilar as
“2016” and “the second century BC ”.

For what concerns text categorization and the relation between the distribution of
time mentions and the narrated topics, even if the problem is known and significant
[10], to the best of our knowledge there is not specific work to date. Specific text
categorization tasks have been addressed for which the temporal information is the
target of the categorization, as in the Temporal Query Intent Classificaiton task [71].
Other works take into account the evolution over time of documents to enhance text
categorization accuracy [101], but no work has been done to date to leverage the inner
temporal information in common text categorization tasks.

In discussing the time presence and distribution in texts, marginal information can
be derived from related works on specific document collections and for specific purposes
[15], while no extensive study has been conducted on di�erent kind of corpora. Most of
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the insights on the temporal dimension of texts, making up the motivations of all the
related TIR research to date, often arise from common sense or anecdotal examples. A
more comprehensive point of view on the time presence and distribution in the content of
documents gives motivation in dealing with content time, leads to a more informed design
of new time-aware approaches, and could explain the di�erences in the performance of
current approaches.

1.3 Research Questions
In order to move toward a complete time-aware model for text data, and, as a result,
provide time-aware versions of the current information retrieval and text classification
models, the following main research questions must be addressed, together with related
sub-questions which arise from them.

1. How much time is in text? Understanding the prevalence of time in text is
crucial to set the motivation and significance for this work. Since the answer may
vary depending on the amount of text (Twitter posts vs. Newspaper article) but
also on the kind of document (News story vs. Wikipedia article on historic event)
we conduct a Time Quantification experiment on 13 di�erent text corpora.

2. How time in text is distributed? Also in relation with the time of writing, it is
necessary to understand the prevalence and significance of present, future and past
time mentions. As in quantifying the time in text, also estimating its distribution
strongly varies between text collections. It is crucial for text retrieval purposes to
known the features of this distribution among corpora of documents, but also to
highlight the temporal di�erences between the queries and the documents.

3. What is the best way to represent the time of a document? Depending
on the way we represent time we can capture or lose some properties and relations
of time intervals. Should we treat the time mentions as a set of discrete tokens,
instant points in a one-dimensional space, or intervals in a bidimensional space?
What should be the best granularity to discretize time intervals and how does it
a�ect the information retrieval tasks?

4. How we define the temporal similarity between two documents? In IR,
an e�ective approximation of the notion of relevance derive from the similarity
between the query and the documents, which has resulted in a variety of retrieval
and ranking models [118, 115, 85]. When defining the temporal similarity between
two texts, di�erent intuitive notions of similarity may arise [10]. What’s the most
e�ective in the generic scenario?

5. How do we combine textual and temporal similarities? Modeling the time
representation and the time similarity in a di�erent space such as the metric space,
very di�erent from the ”bag-of-words” vector used in text similarities, leads to
very distant and incomparable similarity scores, in both meaning and distribution
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[92, 113]. How can we combine these two very di�erent similarity scores, taking
also into account that one could discriminate documents better than the other?

6. What are the aspects of time that characterize categories and topics?
The patterns and distribution of mentioned time in a document can vary depending
on their topic. Think for instance at the periodicity of the events mentioned in a
sport article, mostly weekly, or at the focus time of an historic article, very far from
the present time. These features strongly varies across di�erent categories, while
more conforming in the same class. What summarizing features can be extracted
from this distribution and how much they can discriminate their related topics?

1.4 Contributions
Addressing the above research questions, this work provides the following contribution:

1. An extensive and in-depth knowledge of time mentions extracted from more than
30 million texts, across di�erent kind of text collection, di�erent writing periods
and di�erent covered topics.

2. A set of ad-hoc temporal similarities that, combined with common text similarities,
improve the precision and the recall of the ranked results.

3. A comprehensive evaluation of all the presented models for temporal relevance
and textual-temporal combination, as well as comparison with the other known
temporal relevance models, on 5 Information Retrieval test collections.

4. A set of time features, extracted from the distribution of mentioned time in a
document, defined and evaluated to show their discriminating ability in text cate-
gorization tasks.

1.5 Thesis Organization
This work is structured as follows. In Chapter 2 we investigate volumes and distributions
of time mentions in di�erent document collections. In Chapter 3 we define the explicit
and implicit temporal intent of queries showing how many times a temporal need is ex-
picited in queries and what kind of temporal information is found in those cases, for both
test collection queries and real user queries. In Chapter 4 we define metric distances and
generalized metric distances and we construct a temporal similarity model to rank docu-
ments according to their temporal relevance to the query. In Chapter 5 we study how to
combine common text similarity with the above defined temporal similarities, discussing
and evaluating the main concerns in merging of the two similarities. In Chapter 6 we
provide an exhaustive evaluation of the defined temporal relevance, comparing results
of di�erent settings of the model as well as comparing our model to the state-of-the-art
time-aware models. In Chapter 7 we define the temporal features of text for categoriza-
tion tasks and we evaluate the resulting accuracy improvement and the discriminating
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power of each single feature. Finally, in Chapter 8 we draw the conclusions on the whole
study and we set the ground for newly opened research questions and future works.
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Chapter 2

Time in Documents

In text documents, time can be found on many levels and in di�erent forms. Estimating
the presence and distribution of time in text documents is a requirement to understand
many text-related tasks where time is involved, such as Temporal Information Retrieval
and Text Categorization using temporal features, New Events Detection and Document
Timestamping. Moreover, a greater knowledge of the temporal dimension of documents
acquired at this stage of the work can help to understand the challenges of Temporal
Information Retrieval and motivate the related research.

Despite this, no large-scale and in-depth analysis has been conducted so far concern-
ing the presence of time in text. In this chapter we examine the variety of temporal
information related to text documents, spanning from Twitter posts to Wikipedia ar-
ticles, while we focus on the analysis of time in queries as a distinct study in the next
chapter.
To understand the magnitude of this study, this work has involved:

• 24 million texts subjects of several meta data cleaning, text processing and
temporal annotation, plus 6 million user search queries analyzed in Chapter 3.

• Almost 130 million temporal expressions, extracted and normalized in discrete
time intervals in unix epoch time format [1].

• A variety of creation time (i.e. when the document has been written or published)
spanning 30 years from 1984 to 2014.

We first review past quantitative analysis on text corpora, showing definitions and
examples of di�erent kind of temporal information that can be found in text documents,
as already studied in a vast literature. We proceed by defining a representation of
dates and time consistent through all this work. We describe how, using NLP (Natural
Language Processing) tools and implementing a set of time transformation, we go from
unstructured text documents to discrete time intervals. Finally we describe the design
of extensive experiments conducted in this work, their results, and what insights arise
from this study.

9
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2.1 Related Work

The study of texts using statistical methods constitutes a field of interest known as
textual statistics. In recent years there have been important changes in the general
context of this domain of research, as well as its objectives and the methodological
principles it utilizes. Textual statistics take place among a lot of disciplines that concern
texts, such as linguistics, discourse analysis, content analysis, information retrieval and
artificial intelligence. The use of quantitative methods to describe qualitative phenomena
has its starting point in the history when linguists began working on the quantification
of linguistic units in text, assembling and collecting texts into more coherent corpora
as the years went on and data became available. In this section we briefly explores
quantitative methods from first approach in linguistic to modern text mining and then
focuses on time quantification in documents, describing the extraction and the analysis
of temporal information from texts.

2.1.1 Quantitative Content Analysis

Content analysis can be defined as a quantitative method to turn words into numbers
[53]. Any question asking how much?, how often?, or to what extent? will usually
require access to quantitative data. Using content analysis, a researcher is able to extract
information from qualitative sources (such as newspaper articles, television broadcasts
and so on) to provide quantitative measures.

Pioneering works Analyses that used statistical methods for text analysis come from
linguistic studies which first applied a series of quantitative approaches to the linguistic
units (such as phonemes, words) counted in a text. Since the inception of statistical
analyses applied to texts, several models for the theoretical distribution of vocabulary
have been proposed. The earliest attempts were made by Zipf in 1932 [81], who defined
a power law that correlates the rank of words (sorted from the most frequent to the less
frequent) with their exact frequency in a text corpus.

In the mid-20th century, linguistics was practiced primarily as a descriptive field,
used to study structural properties within a language and typological variations be-
tween languages [110]. This work resulted in fairly sophisticated models of the di�erent
informational components comprising linguistic utterances. As in the other social sci-
ences, the collection and analysis of data was also being subjected to quantitative tech-
niques from statistics. Towards the end of the 1930s, linguists such as Bloomfield [25]
were starting to think that language could be explained in probabilistic and behaviorist
terms. Empirical and statistical methods became popular in the 1950s, and Shannon’s
information-theoretic view to language analysis appeared to provide a solid quantitative
approach for modeling qualitative descriptions of linguistic structure.

The recent history of content analysis has been shaped by the increasing use of
computers, which have allowed researchers to carry out content analysis research more
quickly and easily than they might have done previously. [63]
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Counting the occurrences Quantification is the result obtained through counting
the occurrences of content units [52]. Applied to textual material, quantification pro-
vides the basic statistical profile of the words contained in a text. It turns the text into
a bag of words in order to represent the content of the text through a statistical view-
point. Quantification also helps handling historical and social problems. It goes hand in
hand with systematization, rigor, precision, and exactitude in definitions and measure-
ments, with objectivity and replication of procedures and findings, in other words, with
a scientific approach to social science.[52].

2.1.2 Temporal expressions
Temporal expressions are chunks of text that express some sort of direct or inferred
temporal information [122]. Temporal expressions found at the content-level of text
documents can be grouped under 3 categories:

• Explicit temporal expressions, which were first referenced in 1993 [123], denote a
precise moment in time and can be anchored on timelines without further knowl-
edge. Depending on the granularity level, we may for example have “2015” for the
year’s granularity, “December 2015” for the month’s granularity, and “07.12.2015”
for the day’s granularity.

• Implicit expressions are often associated with events carrying an implicit temporal
nature. They are often di�cult to be positioned in time due to the lack of a clear
temporal target or an unambiguously associated time point. For example, expres-
sions such as “Christmas Day ” embody a temporal nature that is not explicitly
specified. Therefore, as observed by Alonso et al. [11], these expressions require
that at least an absolute time expression appears somewhere close in the text to
establish accurate temporal values.

• Relative temporal expressions, which were referenced for the first time in [123],
depend on the document publication date or another date nearby in the text. For
instance, the expressions “today ”, “last Thursday ”, or “45 minutes after ”
are all relative to the document timestamp or to the absolute dates occurring
nearby in the text. As such, collecting the document timestamp or related explicit
temporal expressions is important, so that the expression can be mapped directly
on the timeline as an explicit expression.

2.1.3 Temporal Annotation
Using natural language processing (NLP) techniques, specifically information extraction
methods, it is possible to identify words or expressions that convey temporal meaning
[103]. Although NLP techniques are not treated in this work, we do make uses of third-
party NLP technologies in order to extract the time from text.

In the last few years, temporal taggers have become an important research area.
These tools follow rule-based approaches that are based on regular expressions or local
grammar-based techniques and usually involve hard work by experts.
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Evaluation of the complete temporal content of a document is a rather challenging
task. In the context of the SemEval 2007 workshop the TempEval Challenge was created
[135], in which challenges were: anchoring an event to a time expression in the same
sentence, anchoring an event to the document creation time, and ordering main events
in consecutive sentences.

TempEval, reached its third edition in 2013, and other related challenge such as ACE
TERN1, contributed to the realization of a variety of temporal taggers, such as TempEx
[91], GUTime, Annie, HeidelTime [127], and SuTime [32].

Interest in temporal annotations produced also new standard such as TimeML [109],
a specification language for events and temporal expressions, and TIDES TIMEX2 [50]
evolved more recently in the TIMEX3 standard. Temporal expressions mentioned in
text documents can be grouped into four types according to TimeML [109], the standard
markup language for temporal information: duration, set, date and time.

Duration Duration expressions are used to provide information about the length of an
interval (e.g., “three years ” in “they have been traveling around the U.S. for
three years ”).

Set Set expressions inform about the periodical aspect of an event (e.g., “twice a
week ” in she goes to the gym twice a week).

Date Date expressions (e.g., “January 25, 2010”) refer to a specific point in time.

Time Time expressions (e.g., “3 p.m. ”) also refer to a specific point in time, though
in a di�erent granularity.

2.1.4 Mining the time in documents

Text documents usually contain temporal information at the meta-level and at the
content-level. The temporal information at the meta-level is important for recency
queries and news sources, and its extraction is generally easier than with content-level
temporal expressions. The identification and normalization of temporal information at
the content-level is instead a nontrivial task. All applications using temporal informa-
tion mentioned in text documents rely on high quality temporal taggers, which extract
temporal expressions from documents and normalize them.

Extraction and study of time in text With current text mining techniques, it
has now become possible to measure society’s attention and focus when it comes to
remembering past events and topics [31]. One way to do this is by extracting the
context of temporal expressions that refer to the past, whether recent or distant, from

1
http://www.itl.nist.gov/iad/mig/tests/ace/
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large-scale collections that reflect current concerns and interests of society, such as book-
based Ngram datasets (Google Books Ngram), blog datasets, web page collections or
news article collections [15].

Time influence on a cross-country comparison has also been studied [15], through
Wikipedia pages in di�erent languages. Other historical and time related studies through
text mining on large collection have been conducted [40, 62], with common traits with
our study on di�erent collections described in this chapter.

Several interdisciplinary events have also started to appear, such as Digital Hu-
manities Conference2, Workshop on Language Technology for Cultural Heritage Social
Sciences, and Humanities3, or the Workshop on Histoinformatics4.

2.1.5 Computational History
With the proliferation of digitalized sources such as newspaper archives, scanned books
and other digital artifacts, it has become possible to employ a wide range of computa-
tional techniques in historical and social studies[15]. This has opened new interdisci-
plinary fields of research, very similar to computational linguistics [93], such as compu-
tational history[15, 64] and computational social science [86], which aim at leveraging
computational power to collect and analyze large datasets in order to reveal patterns of
individual and group behaviors. Yeung and Jatowt [15] work focuses on studying how
the past is remembered, while Jatowt and Yeung [64] work focuses on analyzing expec-
tations about the future. Both approaches rely on topic modeling to group documents
that relate to similar events in the past or future.

A lot of other example can be found in the literature recently. Michel et al. [98],
introducing ”culturomics”, have shown that analysis of n-grams from a huge corpus of
digitalized books can be used to reveal trends in the development of the English language
over time and moreover; Takahashi et al. [130] have shown an example of how one can
measure the impact of historical characters using Wikipedia; again, Shahaf and Guestrin
[124] have proposed an algorithm for discovering hidden connections and chains of events
in news articles.

Sentence Retrieval and Event Distillation In order to link events to mentioned
time, a raw approach may be to search for related events in the same sentence where
the temporal expression appears. However the related event could also appear outside
the timex sentence. A better and novel approach has been proposed by Abujabal and
Berberich, P2F Miner [5], that first retrieves relevant sentences from the document
collection that mention a (related) temporal expression (e.g., “March 14, 1897”); then,
these are analyzed and grouped to identify events mentioned therein. Following that,
having distilled events, they rank discovered events according to their importance and
finally, for each event, identified a representative sentence, which provides a meaningful
description of the event.

2
http://adho.org/conference

3
http://sighum.science.ru.nl/latech2014/

4
http://www.dl.kuis.kyoto-u.ac.jp/histoinformatics2014/
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Collective Memory Analysis The way humans forget and remember is a fasci-
nating area of research for both individual and collective remembering. This is related
to the concept of collective memory introduced by Halbwachs [58]. Collective memory
is a socially constructed, common image of the past of a community, which frames its
understanding and actions. At the same time, collective memory is not static; it is
determined by the concerns of the present. With the social Web, the construction and
dynamics of collective memory have become an observable phenomenon, which promises
new insights.

Generally, individual memories are subject to a forgetting process, which is driven
by some form of the forgetting curve first proposed by Ebbinghaus [45]. The attitude
of forgetting the past has been recently reported by Michel et al. [98] over an analysis
of a corpus of million of digitalized books; they have also shown that this attitude
increase by the time, but on the other hand this results in a growing trend to assimilate
the future [98]. Again, extending this work [98], Kanhabua et al. [77] have shown in
a novel research the relationship between the capability to remember something and
the frequency of triggering this memory through a large scale analysis of pattern in
documents visualization of Wikipedia by the users. As they report, for example, the
2011 nuclear catastrophe in Fukushima did trigger the memory of the Chernobyl event
happened 25 years before, raising the Wikipedia event page views from about 9,500
views per day in the first two months of 2011 to up to more than half a million views
per day at the time of the Fukushima disaster (around March 15, 2011). As results of
the analysis how event memory is triggered as part of collective memory it depends on a
score that is a function of temporal similarity, location similarity and impact of events.

Finally, in their work Jatowt, Adam, et al. [65] advocate the concept of memory
and expectation sensing as a complement of the well-known notion of social sensing in
microblogging and social media. Quantifying collective temporal attention over a large
portion of tweets contains time expressions, they have shown regularities and patterns
in data through exploratory analysis of the way in which Twitter users collectively refer
to the future and the past. This kind of knowledge is helpful in the context of growing
interest for detection and prediction of important events within social media.

2.2 Extraction and Representation of time intervals
2.2.1 Text-level temporal information
We first introduce the definitions and the notation we use to model temporal information
in text. We discuss, in Section 2.2.2, how this information can be automatically extracted
from the text using modern NLP tools.

Given a a set of time instants T ™ IR, the smallest piece of information that we
attribute to an excerpt of text, regardless of whether it is a document or a query text,
is a temporal or time interval:

Definition 2.2.1 (Temporal Interval) A temporal interval [ts, te] is an ordered pair
of numbers ts, te œ T, ts Æ te.
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The first component of the pair, ts, indicates the starting time of the time interval,
while the second component, te, indicates its end time. The meaning of a temporal
interval [ts, te] is, therefore, “the period of time starting from time ts, until, and including,
time te”. The time instances, ts and te, have an associated meaning as well. For instance,
ts can be interpreted as “January 1st, 2015”, and te as “December 31st, 2015”, in which
case the interval would indicate the whole year 2015.

It is common practice to fix a time granularity. This granularity is commonly referred
to as the chronon, that is, the smallest discrete unit of time that the system can refer
to. Typical examples of chronons are: a day, a week, a month, or a year. It is also
common to discretize T, e.g., T ™ Z, and fix a minimum time, tmin, and a maximum
time, tmax for the minimum and maximum chronons that the system can handle, such
that T = [tmin, tmax].

Definition 2.2.2 (Temporal Domain) Given a discretized T = [tmin, tmax] ™ Z, the
temporal domain is the set of all possible time intervals: �T = {[ts, te] | ts, te œ T, ts Æ
te}.

ts te Corresponding time period Time period length
0 0 2014 1 year
0 1 2014–2015 2 years
0 2 2014–2016 3 years
1 1 2015 1 year
1 2 2015–2016 2 years
2 2 2016 1 year

Table 2.1: All time intervals using year chronon and T = [0, 2] ™ Z.

Example 2.2.3 With a year chronon, tmin = 0 corresponding to 2014, tmax = 2, Sec-
tion 2.2.1 depicts �T, i.e., all the time intervals that the system can internally represent.
Notice that, in this example, the longest time interval is [0, 2], corresponding to the three-
year-long time period 2014–2016, and there are three shortest time intervals, [0, 0], [1, 1],
and [2, 2], corresponding to the years 2014, 2015, and 2016, respectively.

Making a parallel with traditional term-based retrieval, �T is the temporal dictionary,
that is, the set of all possible temporal tokens that we are interested in capturing from
the text. Just like in term-based retrieval, the entire text of a document or a query can
have several time intervals associated with it. The set of all time intervals in a document
D (or query Q, respectively) is called its temporal representation, and it is denoted by
DT (or QT, respectively).

2.2.2 Automatic extraction of text-level temporal information
The temporal information can be found in text in the form of temporal expressions,
often refer to as timexes in the NLP literature. A timex is a (often contiguous) sequence
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of words found in the raw text of a document or query, to which we can associate a
“temporal meaning”. For instance the expression “two days after Christmas ” is a
timex whose temporal meaning is the day 27 December.

Timexes are not restricted to being only search terms: they can include anything from
the text, including stop words, as long as they constitute together an expression with
temporal meaning. In this work, we restrict ourselves to those temporal expressions that
are automatically recognized and interpreted by existing NLP libraries. This restriction,
however, is only logistic: the temporal expressions that our models can utilize could
potentially include information that today’s NLP tools are not yet able to identify, such
as temporal references that domain experts could identify by studying and analyzing the
text in more sophisticated ways.

The content-level time of a document is expressed through natural language, as a
result its semantic is not readily available for processing. The first step to get the
semantic of content-level time is through temporal annotation and normalization, to
transform timexes in natural language to dates in standardized format.

In order to capture the semantic of temporal expressions (timexes) and to define
metrics and generalized metrics on the time of documents, we represent all normalized
timexes as discrete interval. The discretization of time, which underlie a choice of gran-
ularity, reflects directly the way time is expressed in text, i.e. through discrete units
of time. In order to cover under the same domain both intervals (e.g. from january to
february) and units of time in di�erent sizes (e.g. today and this month), we treat all
timexes as intervals.

In order to get the temporal semantic of timexes in unstructured text, these must
be first recognized and then normalized to standard datetime format. A datetime is a
representation of time following a formatting standard, such as ISO-8601.

"In 2016, the second of January at noon" => 2016-01-02T12:00:00

The extraction of time intervals from the content of text documents is a process that
undergoes trough many steps. The first step in this process is the temporal annotation
of each document. The temporal annotation is carried by an NLP tool, named temporal
tagger, which find temporal expressions and normalize them into precise date and time
values.

This process is carried out either through manual annotation or using a Natural
Language Processing (NLP) automatic tagger. We use the latter method to annotate
and normalize the content-level temporal expressions in each document and query. In our
study the annotation process, highlighted in Figure 2.1, is carried using the third-party
software Heideltime [127].

We define the domain of time unit timexes, TIMEXUNIT , as the set of all the strings
representing a unit of time (e.g. 12 February 2010 ), and TIMEXINT L as the set of
all the string representing an interval betwen two units of time (e.g. from January to
September).

Following the classification found in earlier works on TIR [122, 10], explicit timexes
of two kind are found in documents: absolute timexes (e.g. 12 February 2010 ) and
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Figure 2.1: Text processing flow chart for the extraction of time intervals. Except
for temporal annotation, carried out using NLP tools, all the other steps have been
implemented in this work.

relative timexes (e.g. last week) . The absolute timexes, once recognized, can be straight
normalized to a single date or to an interval of two dates, without any context knowledge.
Conversely, relative timexes require the knowledge of the Date Creation Time (DCT)
in order to be resolved, since those are relative to the time of writing. The complete
normalization functions take therefore two arguments: the timex to be normalized and
the DCT for relative timex resolution.

We apply two distinct normalizations, one for single time timexes and one for interval
timexes.

Normtimex : TIMEXUNIT ◊ DCT æ DATETIME (2.1)

Normtimex intl : TIMEXINT L ◊ DCT æ DATETIME ◊ DATETIME (2.2)

These two normalization functions together transforms all recognized single or inter-
val temporal expressions into a single datetime or pair of datetimes respectively.

2.2.3 Timex as a discrete time interval

In the temporal annotation, the timexes found in each document are normalized in
standard format, i.e. a datetime. We then represent, with a chosen granularity, both
datetimes and datetime intervals as discrete time intervals, associated with the docu-
ment. An interval is a pair of discrete time units. A chronon is the smallest time unit
in the representation. This can be also referred as the granularity of the representation.
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We represent datetimes as ordinal numbers from the starting time, that we fix as the
datetime 0001-01-01T00:00:00. For a chronon of one year, the discretization is equivalent
to extracting the Gregorian calendar’s year (e.g. the discrete time unit of the datetime
2015 is represented with the ordinal 2015). For di�erent chronons, it equals how many
chronons have elapsed from the starting point till the datetime. A discrete interval p,
represented using the chosen granularity, is a couple (ts, te) where ts and te are ordinals
from the starting time and ts > te:

l = (ts, te)|ts, te œ N · ts < te (2.3)

Given a minimum point in time 1, a maximum point tmax and a chronon, the temporal
domain � is the set of all intervals that can be represented.

� = [1, 1], . . . , [1990, 1991], [1990, 1992], . . . , [1, tmax] (2.4)

Using the described extraction process and the above discrete interval representation,
in the next sections we analyze di�erent document collection by their outer and inner
time dimension.

2.3 Documents Collections
Throughout our research we have parsed, annotated and extracted the inner time inter-
vals mentioned in a set of 13 document collections. Some of these document collections
are partially used by the research community as test collections, together with queries
and relevance judgements, to evaluate Information Retrieval and Text Categorization
systems. Others are publicly available dumps of articles and posts online.

The analyzed document collections spans over a rich range of topics, time periods
and writing style, as shown in Table 2.2. This variety ensures a comprehensive picture of
the presence and extent of time in text, as well as showing the peculiarities, in relation
to time, of di�erent classes of texts. Moreover, the large scale of the study allow us to
reason about results and infer insights with high confidence. We now briefly describe
each collection processed for time extraction and analyzed in this chapter.

Wikipedia Almost 10M Wikipedia articles of di�erent topics, part of a Wikipedia
English dump collected in May 2014 and annotated using Heideltime [127].

Twitter A set of 7.5M tweets, i.e. text posts from the Twitter social media. This set
of tweet is geolocalized in the United States, collected between 25 September 2011 and
31 August 2012. No filter has been applied regarding topic covered or cited hashtags.
Collected tweets are in English language.

New York Times The complete corpus of New York Times Articles spanning over 20
years of news articles. With more than 1.8M documents and a period of 20 years, this is
the most valuable corpus available to study the relation between writing time and cited
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Creation period

Collection Documents Start End Timexes

Wikipedia English 9,669,940 25/02/2002 02/05/2014 89,803,568
Twitter 7,565,802 20/05/2012 31/08/2012 381,411
Living Knowledge 3,648,716 24/05/2011 06/03/2013 14,287,842
New York Times 1,840,309 01/01/1987 19/06/2007 15,158,169
Reuters Corpus Vol. 1 806,791 20/08/1996 19/08/1997 7,037,387
Xinhua News Agency 475,475 01/01/1996 30/09/2000 2,805,714
Associated Press 239,576 01/06/1998 30/09/2000 2,242,872
Financial Times 209,872 15/04/1991 31/12/1994 1,278,972
Los Angeles Times 132,271 01/01/1989 31/12/1990 892,467
Foreign Broadcast I.S. 130,987 03/03/1984 24/06/1995 735,975
Federal Register 94 49,927 04/01/1994 30/12/1994 456,822
Reuters 21578 21,578 26/02/1987 20/10/1987 126,072
20 Newsgroups 20,165 26/06/1992 10/12/1993 54,436

Table 2.2: Document collections considered in this study, ordered by number of doc-
uments. Creation period refers to the time period in which the documents have been
created. Last column is the number of time mentions identified and extracted from each
collection.

time. The analyzed news wire collection goes from the 1st January 1987 to the 19 June
2007.

Financial Times This corpus includes 210 thousand articles of the international
business-related newspaper Financial Times, spanning over a period of almost 4 years
from 1991 to 1994.

Los Angeles Times The Los Angeles Times corpus consists of 132 thousand articles
from 1st January 1989 to 31 December 1990.

Federal Register 94 The Federal Register is the o�cial journal of the federal gov-
ernment of the United States containing government agency rules, proposed rules, and
public notices. This subset of the Federal Register contains 50 thousand documents for
the whole year 1994.
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Foreign Broadcast Information Service This C.I.A. intelligence component was
in charge of monitoring, translating and disseminating news and information from the
world media sources to the United States. The related corpus is a set of 130 thousand
articles spanning 6 years from 1989 to 1995.

RCV1 The Reuters Corpus Volume 1 [117] is the largest well-known document col-
lection for Text Categorization. It is a corpus of 800 thousand news wire stories made
available by Reuters, Ltd. and manually labeled with multiple categories. Articles dates
span for a whole year, from August 1996 to August 1997.

Reuters-21578 One of the most known corpus for text categorization, the Reuters-
21578 corpus contains 21578 articles from Reuters. The corpus articles have been col-
lected in 6 months of Reuters news.

Living Knowledge This large corpus of 3.8 million documents has been the subject
of the NTCIR-11 Temporal Information Retrieval challenge [71]. The corpus is made
of news and blogs articles collected and temporally annotated by the LivingKnowledge
project and distributed by Internet Memory [3]. The corpus documents dates span from
2011 to 2013.

20 Newsgroups This very popular text categorization test collection [2] comprises
20 thousand newsgroup posts with 20 di�erent topics collected between 1992 and 1993
from public newsgroups.

Xinhua News Agency English Service A collection of 475 thousand newspaper
articles from the o�cial press agency of the People’s Republic of China. Xinhua is the
biggest media organization in China, with di�erent prints for several languages. This
corpus collect english articles from January 1996 to September 2000.

Associated Press Worldstream News Service Associated Press is a worldwide
leading press service. In this corpus, 240 thousand news articles have been collected
from Associated Press in the period 1998-2000.

As shown in Figure 2.2, the time spans of document creation varies from the 20
years of the New York Times collection to only 6 months for the Reuters-21578 corpus.
A special note regards Wikipedia: besides the creation time, a wikipedia article can have
di�erent further revision times. Being required to select one date for each document, and
to conform to other collection, we choose to take only the creation time in consideration.
For this reason, the creation time of the Wikipedia collection spans from the early dates
of Wikipedia English (February 2002) to the date when the snapshot has been created
(May 2014).
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Figure 2.2: Temporal range by creation time of the 13 corpora considered in this study.

2.4 Time Quantification

The focus of this section is the inner time of documents. The inner time refers to any
temporal expression, in natural language, contained in the text content of a document.
In order to carry out a content-level analysis, we exclude the meta attributes of each
document which usually contain the outer time of the document, and extract the tempo-
ral expression from its content. Outer time is taken in consideration for the sole purpose
of resolving relative temporal expressions, such as “tomorrow ” or “last year ”, and to
correlate the time mentions to the of writing.

Counting the occurrences of the mentioned time intervals, and putting the inner time
in relation with the outer time, we are able to study the volumes and shapes of the time
dimension in all the considered text collections.

2.4.1 Quantification

Measuring the occurrences for temporal dimensions means quantifying how much time
there is in text. By doing this we can have a first perception of the temporal richness
of text and, as a result, understanding how much this dimension, almost disregarded
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in current text processing pipelines, could be involved in all text related tasks. In this
section we analyze the time dimension of document by only measuring its frequency,
without distinguish between past, present and future time mentions. Once we have
quantified how much time there is in text, we proceed in the next section to further
analyze its distribution.
Since not all the documents may have temporal expressions in their content, the first
question we want to answer is how many documents contain time mentions in
their text. Intuitively the outcome of this quantification can di�er from one collection to
another, mainly because of the average size of documents. As the most striking example,
a Twitter post has a limit of 160 characters of text, thus limiting the chance of having
a temporal expression among its words. Conversely in a Wikipedia article, which is
generally composed of several paragraphs and tables, it is much more likely to find a
time mention.
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Figure 2.3: Percentage of documents with temporal expressions in their text. A percent-
age of 100% means that all the documents in the collection have at least one temporal
expression in their content.

In Figure 2.3 we visualize the results of the temporal quantification by percentage
of documents with timexes. For each collection, we show how many documents have
at least one temporal expression in their content, thus excluding its metadata. The
top 4 documents collection show the maximum percentage of documents with timexes,
meaning that each one of the considered documents mentions at least one date, time or
interval. These 4 document collections from the three news wire services of this study:
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Reuters, Xinhua and Associated Press. Wire services gather only news reports, thus
describing current events with the date or time when the events occured. Conversely,
newspapers and magazine, even if they mainly deal with news, often contain also other
kind of informative article (e.g. the editorial page).

As already mentioned, Twitter posts are unlikely mentioning any date or time, mainly
because of their short text bound. We found that the 4.6% of the whole considered
collection contains a temporal expression, which in proportion corresponds to almost
350 thousand tweets. Therefore, despite the percentage is relatively low, we are yet
able to conduct significant further analyses on the distribution and extent of the Twitter
temporal dimension.

Looking at the collections in proportion with the contained timexes give us even more
understanding of their temporal richness. In Figure 2.4 we show this proportion using
a bubble plot: the area of each bubble is proportional to the number of total timexes
contained in the collection. From this perspective, it is easy to see how temporally poor
is Twitter in comparison with Wikipedia, even if Twitter accounts for many more text
units. Temporal richness of news wires and newspapers are mostly comparable.

Xinhua
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Wikipedia
(967K documents)

RCV 1
(807K documents)

New York Times
(1,840K documents)

Living Knowledge
(3,649K documents)
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(7,566K documents)
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Full name and sum of docs.  Color shows details about Full name.  Size shows sum of timexes.  The marks are labeled by Full name
and sum of docs. The view is filtered on Full name, which excludes Null.

Figure 2.4: Timexes found in each document collection. Collections are shown by tem-
poral richness: bigger bubbles denote more timexes found in text. Although Twitter is
the biggest collection considered, it is relatively small by number of timexes.

Apart from merely count how many timexes can be found in the whole collection, we
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want to take an informative look to each document. Given the set of documents with at
least one timex inside, we estimate the average number of timexes for each document.

0 2 4 6 8

Average # timexes per doc
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Figure 2.5: Average of timexes in each document for all the considered collections. Only
documents with at least one timex are taken in consideration.

In Figure 2.5 we show, for each collection, what is the average of timexes found in
documents. The more timexes per document are found in the Wikipedia articles, on
top of Figure 2.5 with an average of 9.5 timexes for each article, followed by news wires
and newspapers. We find Living Knowledge, 20 newsgroups and finally Twitter at the
bottom of the list, which are the 3 collections with user-generated contents. With an
average of 1.1 timexes, the Twitter sample shows that whenever a tweet has timexes
(4.5% of the times), it has one timex only.

2.4.2 Zipf Power law of time expressions
In 1932, the american linguist and philologist George Kingsley Zipf noticed that fre-
quency of a word, f(w), appears as a nonlinearly decreasing function of the rank of the
word, r(w), in a corpus, and formulated the well known relationship between these two
variables: f(w) = Cr(w)≠s, where C is a constant that is determined by the feature of
the single corpus [81] and s is the slope of the above function for the specific set of words.
More simply, ranking the words by their frequency of appearance in a text corpus, the
same frequency decrease exponentially with the rank. With the set of corpora analyzed
in this research, we want to answer the following questions:



2.4. TIME QUANTIFICATION 25

1. Do the Zipf’s law applies to the mentioned intervals in text as it applies to words?

2. Does it apply to all the considered corpora in this study?

3. What is the s slope parameter for temporal expressions and how much it di�ers
from words?

4. What are the most frequent temporal interval? What properties they share?

Because the same date can be expressed with a very large set of di�erent temporal
expressions, we will again count the occurrences of normalized time intervals, instead of
counting the single expressions, so that all the expressions below are considered as the
same interval:

“Today ”,

=∆ (2016-08-09T00:00:00 - 2016-08-09T23:59:59)“8 August ”,
“9/08/2016”,
“2016-09-08”

As a result of the transformation, in the above example the temporal expressions on
the left are counted as 4 occurrences of the normalized time interval on the left. For
each normalized time interval as in the above example, we count all the occurrences in
the texts of the selected corpora. In the same way as in the Zipf’s experiment, we rank
the time intervals by number of occurrences in each collection, so that the most occuring
time interval has rank 1, the second most occurring interval has rank 2 and so on. The
total number of ranks is the number of unique, di�erent intervals found in the collection.
As in the Zipf law, we study the frequency of a time intervals (that is, the number of
occurrences of that time interval) as a function of its rank.

Most frequent intervals As the simplest task among the above questions, we start
by observing what are the most occurent intervals and what they have in common.
After counting the unique intervals occurrences in each collection, we select the top 10
most frequent intervals to get a first glance at the aggregated data. In Figure 2.6 we
show the counts of occurrences for first 10 ranks in each collection, limiting our view
to four representative collection: one newspaper (NYT), one encyclopedia (Wikipedia),
one social media (Twitter) and lastly one news agency (Associated Press).

The first noteworthy observation regards the relation between the most frequent time
intervals and the time period when the documents have been created. In the New York
Times collection in Figure 2.6 the top 10 intervals are all contained in the creation
time period, from 1987 to 2007. The same can be observed in Wikipedia (2002-2014)
and in Twitter (May 2012 - October 2012). Also in Associated Press, most of the top
ranked time intervals are enclosed in the creation period (June 1998 - September 2000)
but with some exception toward past intervals, back until the year 1994. These results
clearly show the strong relation between the creation period of a document and the
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Figure 2.6: Top 10 most frequently mentioned timexes for four representative collections.
Frequent timexes strongly depend from document creation period. Di�erent types of
collection show di�erent common granularities.

mentioned dates inside the document. We further analyze this relation in the next
section.

The second observation regards the granularity of the mentioned intervals: In New
York Times and Wikipedia, we can observe only intervals with one-year granularity, while
in Twitter, except for the year 2012, all the mentioned dates are single days. Associated
Press shows mostly one-year granularities, plus two one-month granularity mentions.
This significant di�erence between Twitter time mentions and the other collections shows
that in social media we are more specific when mentioning time. As we will see in the
next section, where the relation between the mentioned time and the writing (creation)
time is inspected, this narrower granularity is strictly related with mentioning events
closer to the present time. Intuitively, we are prone to be more precise when referring to
close events (such as the meeting of tomorrow morning ) than when mentioning far
events (such as the Haiti earthquake in 2010 ).

Power law fitting In order to verify if and how the Zipf law applies to time intervals
in the considered collections, we want to fit the function

f(r) = C

rs

on our samples and see how much it estimates the data, by looking at the estimation
error, and for which values of the constant C and the slope parameter s the estimation
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error is minimum. The constant C depends on the frequency of the top-1 interval, while
the s determines how fast the frequency decrease with respect to the rank. The Zipf
function defines the frequency of a term (time interval in our case) as a function of its
rank. Fitting the observed data to the Zipf function means choosing the constant C and
the slope parameter s so that the di�erence between the Zipf law estimated frequency
and the observed frequency is minimum:

min
C,s

f(C, s) =
Nÿ

i=1
( C

rs
i

≠ yi)2 (2.5)

where N is the number of unique time intervals, yi is observed the frequency of the i
interval, ri is the rank of the i interval. Because we are minimizing the least square error,
and the function is exponential, this kind of minimization problem is known as nonlinear
least squares problem. To minimize the objective function f(C, s) in the equation 2.5,
we use the Trusted-region algorithm [39], which in our tests gives the best estimation
results in comparison to other well known methods such as the Levenberg-Marquardt
algorithm [88, 94].

Given that, for most of the documents in this analysis, the temporal annotation
has been carried out using automated NLP tools, and considering the non-perfect ac-
curacy of these tools, we must deal with resulting outliers. These outliers are mostly
dates-resembling strings, such as ISBN codes, which are wrongly identified as temporal
expressions. In order to obtain a better estimation for the samples despite anomalies in
the data, we apply the Bisquare weights method [37], a method particularly suited to
ignore outliers. In the Bisquare weights minimization, the least square error is weighted
di�erently for each data point, depending on the distance between the data point and
the fitting curve. For instance, if an observed data point is far from the fitting curve,
the method assigns a lower weight than if it is closer to the fitting curve.

Fitting results In Table 2.3 we show the results for the Zipf’s power law fitting on the
13 collections, with the fitted parameters values, the root-mean-square errors (RMSE)
for the estimation and the number of distinct, unique time intervals considered. As
shown by the low mean error of most collection, the exponential function of the Zipf
power law estimates well the frequency of the time intervals, given their rank. Looking
at the Wikipedia time intervals fitting, for instance, the slope s is 1.35, where for the
same fitting on Wikipedia words [4] the slope is between 1 and 2 but it is not well fitted
as in our result.

A better view on the Zipf’s law fitting with respect to each collection is given in
Figure 2.7. In y-axes are the frequencies of each time interval, in x-axes the frequency
rank of each time interval. Both depicted axes are in log scale, to better visualize the
power law relation between rank and frequency. Blue line in plot show the observed
data, while the superimposed red line is the zipf law with the fitted parameter from
Table 2.3. In general, using a log-log scale as in Figure 2.7, the data (blue line) conforms
to Zipf’s law to the extent that the plot is linear.
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Zipf Parameters

Collection C s RMSE Distinct intervals

Wikipedia English 5.882 ◊ 107 1.35 4.639 1,102,501
Twitter 4.206 ◊ 104 1.353 30.1 3,682
Living Knowledge 2.217 ◊ 108 1.939 29.18 25,626
New York Times 1.018 ◊ 107 1.31 2.927 240,396
Reuters Corpus Vol. 1 9.587 ◊ 107 1.871 34.26 18,376
Xinhua News Agency 1.349 ◊ 107 1.672 1.943 70,868
Associated Press 1.944 ◊ 104 0.833 0.523 199,641
Financial Times 5.215 ◊ 106 1.716 7.697 11,976
Los Angeles Times 5.023 ◊ 105 1.356 1.381 28,392
Foreign Broadcast I.S. 7.376 ◊ 105 1.471 6.521 7,845
Federal Register 94 9.963 ◊ 106 1.674 0.6447 21,636
Reuters 21578 4.461 ◊ 105 1.82 2.552 2,167
20 Newsgroups 3.421 ◊ 104 1.385 2.228 2,957

Table 2.3: Zipf law estimated parameters C and s and estimation errors on all the doc-
ument collections. RMSE is the root-mean-square error. In bold: the lowest estimation
errors.

The plots show a general better fit to Zipf law than other dataset, both for words and
for entities [36]. It should be noted that, di�erently from other experiments on Zipf’s
law fitting [4], we estimate a single power law, instead of breaking the observed data
in more segments, to fit a broken power law [70]. Breaking the power law in more the
one segment help discerning between an early segment from the rest, which usually as
a lower slope. This can be easely observed in Figure 2.7, where for most collections the
early segment (represent the top 10-100 time intervals) conform less to the fitting power
law, having a lower slope.
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Figure 2.7: Original frequencies observed for all ranks (blue line) and Zipf law function
fitting the observed frequencies (red line). Fitted parameters for Zipf law are reported
in Table 2.3.

2.5 Inner Time - Outer Time relation

Intuition and statistical evidence [15] tell us that while we tend to write of events and
facts of the present time, we also write about our past, to some extent, and about the
future, less frequently. In telling stories and communicate information, we often mention
past and future time. Depending on the subject matter, we could for instance refer to
events happened two thousand years ago, or arranging events for the next month. For
this reason in this section we study the extent of time relations not only toward the
past, but also toward the future, in the context of news, blogs, social media and open
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encyclopedia.

Figure 2.8: Time relation example: this graph represents the time mention of a sample
NYT article. Each edge connect the creation date of the document, that is the time of
writing, with all the dates mentioned in the article.

Knowing the relations between the time of writing and the time mentioned in the
text gives us insightful understanding on how the past is remembered and on how much
we approach the future.

In order to conduct a statistical analyses relative to the time of writing, we represent
all temporal information found in the document content in relation to document creation
time. In this definition we will assume a perfect matching between the time of writing
and the document creation time, which in our context is the publishing timestamp of
the document.

In Figure 2.8 a randomly picked article from New York Times has been processed
and the inner time converted into relative dates. Edges in the figure connect the time of
writing (creation time) with the mentioned time. That is, every time the writer mentions
a time interval, we add an edge from the present to the mentioned date. The figure shows
already some interesting aspects, such as a tendency toward past time mentions, and a
notable variance with respect to the creation time.

In the considered collection, the document creation time is expressed using a day
granularity most of the times, and with a second-wise precision in some cases (e.g. in
Twitter). To be consistent among the di�erent collection we select the most precise
common granularity, which is the day granularity. We will use this granularity for
both inner and outer time of documents.

As our ”source point”, we consider the day of writing as the the instant 0. We want
past mentions to assume negative values, while future reference to be positive values.
In this setting, the temporal expression “today ” assumes the value 0, the temporal
expression “yesterday ” is denoted by ≠1 and so on. This also applies to absolute
temporal expression, so if a a document has been created the 1st of January 2016, and
the timex “3 January 2016” appears in the text, this will be denoted as +2. Using the
interval notation and more formally, we define the relative interval as
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[s, e]rel = [s ≠ sdct, e ≠ edct]
where s and e are respectively the start and the end of the interval to be transformed

and sdct and edct are respectively the start and the end of the DCT (Date Creation Time)
interval. With granularity day, and assuming that the exact creation date is known,
sdct = edct. It follows that when the interval is equal to the dct, the relative interval is
[0, 0].

This kind of time representation is similar to the unix epoch notation for timestamps
[1], for which the 0 point is the first Junary 1970, with seconds or milliseconds granularity.
However they di�er in the definition of the 0 point: in the unix epoch notation this
point is statically set to a precise date, while in our setting it’s the creation date of each
document, so it shift along with the outer time of documents.

This is a foundamental requirement to analyze the temporal relations in text collec-
tions with large span of creation times. For instance, in the New York Times corpus
documents span over 20 years, from 1987 to 2007. If we center the distribution in a
fixed point, e.g. the year 1997, it will seems like a large number of temporal expressions
appear in the present that mentions 10 years before and 10 years after. Even if we take
in consideration the time span of each document collection, it would be di�cult to make
comparisons between collections.
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Frequency normalization Going further, we want to compare the distribution of
time metions between the considered collection. In order to obtain a comparison in-
dipendently from the number of timexes found in each collection, we first normalize the
mention frequency by the total number of timexes.

NLP tool The usage of di�erent NLP tools can also a�ect the results. Being an early
step in our pipeline, the chosen NLP tool would a�ect not only this comparison, but also
all the tasks relying on inner-time of documents in this work. It is therefore important
to use the same NLP tool every time a comparison is involved. To better convince the
reader of the e�ect of choosing a di�erent NLP tool to identify and normalize timexes,
we compare the timex distribution obtained using Heideltime on the New York Times
corpus, with the same distribution obtained using TARSQI[134] in the evaluation of a
Temporal Information Retrieval model [22].
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Figure 2.10: Di�erence in the extracted time distribution using di�erent NLP tools for
a 200 years time window (on the left) and for 4 years time window (on the right).

The results of the experiment are shown in Figure 2.10. The usage of a di�erent NLP
tool results in a discrepancy on the timex distributions. By looking at the two di�erent
plot ranges we are able to spot a di�erence both in the long-term mentions, for which
the mentions of TARSQI are higher in the short-term mentions (within All the following
results are therefore obtained using the same NLP tool, Heideltime.

Collections comparison Because some collections are very similar to others in their
time mention distribution. We cluster our set of collections into 4 groups by their source
type:

1. Newspapers and blogs: New York Times, Financial Times, Los Angeles Times and
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the Living Knowledge Corpus.

2. News agencies: Associated Press, Xinhua News Agency, Foreign Broadcast I.S.,
Federal Register 94 and Reuters Corpus.

3. Encyclopedia: Wikipedia English.

4. Social media: Twitter.

The average distribution of the collections included in each group is shown in Figure
2.11. The collection of news agencies is by far the most future-focused one, with a
proportion of mentions of the future which exceed the mentions of the past.
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Figure 2.11: The relative time mentions normalized frequecies for the four groups con-
sidered: Newspapers, News agencies, Encyclopedia, Social media. Two time ranges are
depicted: 100 years before and after the writing time and 2 years before and after the
writing time.

2.5.1 Time Deviation and Skewness

Studying distribution of the mentioned time intervals in text, in relation with the creation
time, is useful to understand In particular, we aim at understanding two key aspects of
the inner time:

• How much the inner time drift away from the outer time.

• How much the inner time tends toward the past (or conversely, toward the future).
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Figure 2.12: Examples of di�erent values for time variance and skewness on synthetic
data following normal (variance examples) and log-normal (skewness examples) distri-
butions.

We now define two key measures, derived from basic statistics notions, which allow
us to describe the above aspects in the real-world collections considered, and to set the
ground and solid motivations for temporal relevance models (Information Retrieval) and
temporal features of text (Text Categorization) that takes into account the inner time
of documents.

In statistic, the variance of a frequency sample measures how far the set of observed
are spread out from their mean:

var = 1
N

Nÿ

i=1
(xi ≠ m)2

where N is the number of observations, xi is the ith observation, m is the sample
mean. In our study of the relative distribution of timexes, where by relative we mean in
relation with the writing time, the variance denotes how much the temporal expressions,
and consequently the mentioned events, drift away from the present, writing time. The
writing time approximately corresponds to the mean of the sample (m ¥ 0) however,
since we are interested in the variance with respect to the present time, we will consider
the point zero (i.e. the creation time) instead of the mean of the sample, thus we define
the time variance of a sample

Definition 2.5.1 Time deviation. The time deviation of a sample is square root of
the sum of the squared distances between each relative interval in the sample and its
writing time.

tvar =
ı̂ıÙ 1

N

Nÿ

i=1
(xi)2
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Because the writing time is set as 0, the squared distance between a relative interval
and the writing time is the squared interval itself.

Another important measure for our temporal analysis is the skewness. The skewness
of a statistical sample is a measure of the asymmetry of the sample distribution of a
real-valued variable about its mean [6]. The skewness value can be positive or negative.
The reader may refer to Figure 2.12 for clear examples of positive and negative skewness.
In our context, we define the skewness as the tendency of time mentions towards the
past (positive skew) or toward the future (negative skew). Again, in order to investigate
the skewness with respect to the writing time, we consider the creation time (0 point)
instead of the mean as our central point.

Definition 2.5.2 Time skewness. The time skewness is the distance between the most
frequent interval xmode, that is the mode of a sample, and the mean of the intervals,
divided by the standard deviation of the sample. Because the mode of the sample is
almost always zero (see 2.4)

tskew = xmeanÔ
tvar

Collection Mean Mode Time Devation Time Skewness

Wikipedia English -20000.3175 0 579342643.2 -0.346187992
Twitter -3788.904 0 24222030.58 -0.097031634
Living Knowledge -578.737 -1 42984337.71 -0.050957824
New York Times -3885.747 0 139054801.2 -0.124276114
Reuters Corpus Vol. 1 -6230.8445 0 125041524.2 -0.133360074
Xinhua News Agency -1149.286 0 31119571.26 -0.061984073
Associated Press -4978.616 0 54863010.57 -0.137162847
Financial Times -3588.082 0 40395834.68 -0.100930468
Los Angeles Times -2845.961 0 27596405.44 -0.097859328
Foreign Broadcast I.S. -3749.7045 0 34023417.24 -0.094964088
Federal Register 94 -16509.3105 0 63794480.6 -0.177595676
Reuters 21578 -2150.795 0 9257040.656 -0.082717033
20 Newsgroups -11633.596 0 17909185.98 -0.153135582

Table 2.4: Collection temporal features Mean, Mode, Time deviation and Time skewness.

In Table 2.4 is shown that for all the inspected collections, the skewness is always to-
wards the future, while the mass of the distribution is on the tail of the log-normal curve,
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between the creation time of the document and the oldest interval in the past. An inter-
esting observation regards the mode: for all the collections, the most frequent mentioned
day is the day of creation of documents, apart from Living Knowledge collection where
the day before the creation date is the most frequent one. It is worth noting that the
Living Knowledge corpus is already annotated with a di�erent NLP tool, therefore this
exception can be the result of a di�erent interval normalization. Time skewness is always
toward the past with nearly the same skewness for all the collections. Very past-focused
collections are Wikipedia (skewness=-0.35), Federal Register 94 (skewness=-0.18) and
20 Newsgroups (-0.15). This is due to their historical (Wikipedia) and religious (20
Newsgroups) topics or for mentioning old policies and regulations along with their dates
(Federal Register 94).

These results suggest the following considerations:

• The creation time of document is absolutely dominant in the inner-time and there-
fore represent a significant temporal feature by itself.

• Despite the most frequent mentioned time, the mass of the distribution is toward
the past, with di�erent value of mean and skewness depending on the treated
subjects. Results proof the intuition that collection related to historical events
have a significant number of intervals far away from the writing time.

• Because all the collections show the same normalized curve for relative time distri-
bution (see 2.11), the time distribution of a collection can be estimated using the
above statiscal parameters for a log-normal distribution.



Chapter 3

Time in Queries

In Chapter 2 we have shown how most of the documents have an inner time made
up of temporal expressions in text. This is particularly true for long and very time-
critical documents, such as articles from news agencies (100% of documents contained
at least one timex), but the same is also true, to di�erent extents, for short social media
postings. We have shown indeed that Twitter has temporal expressions in the 4.6% of
the examined collection (7.5M Twitter posts).
In the pursuit of enhancing Information Retrieval models, a di�erent kind of text unit
must be take into account, that is the user query. At the core of Information Retrieval
studies is the notion of relevance of a document with respect to the user query: the user
express his information need by means of a sequence of keywords (the query), and each
document can be more or less relevant (or not relevant at all) with respect to the issued
query. The first step for defining a relevance model that can estimate the real relevance
of a document is to understand the query intent, that is, what the user really is looking
for by issuing that query. To give an example and at the same time dive already into the
problem, consider the query U.S. election this year. Knowing the issuing time of
the query, it is easy for us to understand what is the query intent of the user. However, a
simple relevance model, based only on the matching between the keywords in the query
and the keywords in a document, could retrieve as highly relevant pages about di�erent
elections, in di�erent years. This is because at the time of writing, in 2008, it was legit
to speak about the presidential election going on this year, while 8 years lated the same
expression has a di�erent meaning.

The above example represent an explicit temporal query, that is a query in which a
temporal intent is made explicit among the keywords, for instance with the expression
“this year ”. However, as we will see in this chapter, most of the query do not have an
explicit temporal need, but an implicit one. Searching for Brazil World Cup has the
implicit meaning of searching for the 2014 FIFA World Cup, and is therefore an implicit
temporal query. If the implicit temporal need is ignored, non relevant results can be
mistakenly considered relevant, such as documents about the World Cups won by Brazil
team, or World Cup football matches played by Brazil team.
In this chapter we will analyze the time dimension of queries in general purpose and
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ad-hoc test collections. Knowing the temporal dimension of queries allow us to fur-
ther reason about specific aspects of a temporal relevance model between queries and
documents. Specifically, we aim at giving significant insights on the following questions:

• How much inner time there is in queries? Answering this question, besides
motivating the whole research of Temporal Information Retrieval, shows the need
to extract the implicit time of queries when it is not made explicit.

• What is the distribution of mentioned time in queries, with respect to
their issue time? Studying the two measures for inner-outer time relations that
we defined in Chapter 2, we show how much the time made explicit in queries drift
away from the moment they are issued, and what’s the tendency towards the past
or the future.

• What is the granularity of the inner time of queries? The granularity of
the explicit time in a query strongly a�ects the results of both traditional relevance
model (based on keyword frequencies) and new temporal relevance models (based
on time units or intervals).

• Is there an asymmetry between time in queries and time in documents?
Queries and documents, besides being both text units of natural language words,
are strongly di�er for dimension, purpose and writing style. After studying the
temporal aspects of queries, answering the above questions, we want to highlight
how these di�er from the temporal aspects of documents. This crucial question
underlies the design for a meaningful relevance models, that takes into account
this diversity to provide better results: we cannot measure the matching between
queries and documents if we are comparing di�erent features.

3.1 Related Work
Studying the temporal aspects of queries is, intuitively, strongly related to the temporal
information retrieval works. Partial attention have been given in temporal information
retrieval works, while specific research to investigate only those aspects in queries have
been conducted and revealed interesting features. Before complementing this discoveries
with our work’s results, we briefly describe past works and the resulted knowledge on
the temporal aspects of queries.

3.1.1 Temporal intent of queries
In order to search for an information, a user express his information need through a query.
The intent of a query is the target of the information need. If no further information on
the user is provided, the query intent must be inferred from the query itself.In the same
way, the query’s temporal intent is the time of the target information which satisfies the
user’s need [22]. A large amount of previous work explored the temporal characteristics
of such queries. Shokouhi [126] investigated seasonal query type which represent seasonal
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events that repeat every year and initiate several temporal information needs. Jones and
Diaz in [72] presented three temporal classes of queries: atemporal query, temporally
unambiguous query and temporally ambiguous query. Metzler et al. [97] investigated
implicitly year qualified queries which is a query that does not actually contain a year, but
yet the user may have implicitly formulated the query with a specific year in mind. Dakka
et al. in [42] proposed a framework for handling time-sensitive queries and automatically
identify the important time intervals that are likely to be of interest for a query. Ren et.
al. [112] presented a query taxonomy which group queries according to their temporal
intents. They proposed a machine learning method to decide the class of a query in
terms of its search frequency over time recorded in Web query logs.

In the overview of the NTCIR Temporalia Challenge [71], Joho et. al. di�er between
four types of temporal query intent: a past query refers to past events in relatively distant
past, a recency query targets recent things, whose search results are expected to be timely
and up to date, a future query about predicted or scheduled events, the search results of
which should contain future-related information, lastly a atemporal query without any
clear temporal intent.

3.1.2 Timexes in queries

An exploration of the temporal dimension of queries to quantify and qualify the men-
tioned timexes in queries’ text have been conducted in 2008 by Nunes et al.. Processing
the AOL dataset of queries using the NLP tool Lingua::EN::Tagger1. They found that
there is indeed a temporal component in real user queries, even if this involve a small
percentage (1.5%) of all the considered queries. They found out that most temporal ex-
pressions regard current dates or recently past dates, while future dates were rarely used.
For the same dataset of queries we will show a di�erent percentage (1.17%), proving that
it strongly depends on the accuracy of the NLP tool. In testing their temporal language
model, Berberich et al. produced 40 queries with an explicit temporal expression. These
queries and the relative timexes were designed to be uniformly diverse for topic treated
and the granularity of the timex (e.g. day, month, year).

3.2 Queries Collections
The queries collections subjects of this study For test collection queries we take in con-
sideration queries from di�erent TREC collection and queries purposefully designed for
temporal information retrieval tasks. In Table 3.1 are shown the collections of queries
considered.

The first two query collections in consideration are from developed by the National
Institute of Standards and Technologies (NIST) in the context of the conference series
Text REtrieval Conference2 (TREC) . The TREC Novelty 2004 set of queries are com-
posed of 25 queries regarding events and 25 queries regarding opinions. These queries

1
http://search.cpan.org/â�acoburn/Lingua-EN-Tagger

2
http://trec.nist.gov
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Creation or Issue Period

Collection Queries Start End Purpose

TREC Novelty 2004 50 07/2004 07/2004
Search for relevant,
new information

TREC Robust 2004 250 2003 2004
General purpose and

di�cult queries

Temporalia 200 28/02/2013 01/03/2013
Temporal Information

Retrieval
LMTU Test

Queries
40 2010 2010

Temporal Information
Retrieval

AOL User Queries 6,356,834 1/03/2006 31/05/2006
Real users

queries

Table 3.1: Query collections considered in this study. Issuing period refers to the time
period in which the queries have been issued (for real queries in AOL) or created (for
test collections’ queries). Last column is the percentage of queries with explicit time.

have been developed in 2004 in the context of the Novelty Track, designed for Infor-
mation Retrieval tasks that involved the novelty of the document content. The set of
queries from TREC Robust 2004 are composed of general purpose queries from the 2003
and 2004 editions for the TREC tasks.

The Temporalia test collection has been developed in the context of the NTCIR-11
conference for a specific Temporal Information Retrieval task. Given the same topic,
the challenge asked to retrieve the documents for 4 di�erent temporal user intent: past,
future, present, atemporal. For each one of 50 di�erent topics, 4 distinct subtopic
are provided, one for each temporal intent. For instance, given a topic regarding the
Playstation, the results past intent should be about the history of the gaming console,
the future intent about the next Playstation release, the present intent about the current
sales of the console and the atemporal should be about what a Playstation is. Given the
temporal nature of the queries, the challenge provided also an issue time for each query,
comprised between the 28 February 2013 and the first March 2013.

The LMTU Test Queries is a set of queries developed by Berberich et al. to specifically
evaluate their relevance model [22]. Each one of the 40 queries in the collection has one
timex explicit in the text. Issue or creation time is not known and not required since all
the the explicit timexes are absolute, we approximate the issuing time as the year of the
published work.

Finally, the AOL queries [105] are a set of distinct queries from the AOL Search
Engine query log, a dataset of 30 million entries made publicly available in 2006, subse-



3.3. TIME QUANTIFICATION 41

quently taken down for several privacy issues [17]. As already mentioned in the related
work of this chapter, among the many insights and scientific results [61, 54] derived
from studying this large dataset, Nunes et al. annotated and quantified the timexes that
occur in this set of queries [104]. In the next sections we extend that study showing
di�erent results for the temporal extraction and studying more temporal aspects such
as the granularity, the distribution and the relation with issuing time.

3.3 Time Quantification

Using the same time extraction process presented in Chapter 2, we proceed to count
the timex occurrences in the text of the queries, and then to analyze the frequency and
distribution for di�erent temporal properties.

Test collection queries, known as topics in the Information Retrieval research area,
are usually made up of di�erent text units and meta attributes, besides the simple query
keywords. In TREC collections, besides the short query (known as topic title), two
more text units are provided: the topic description and the topic narrative. In the topic
description, a one sentence describe the user need behind the short topic title. In the
topic narrative, a complete description is provided to explain what content a relevant
document should contain. Given the average scarcity of timexes in short text, as shown
for Twitter in Chapter 2 and for AOL queries (as found by Nunes et al. [104]), we will take
in consideration all the three text units, looking for temporal expressions. In Temporalia
test collection, other than the title and the description of each subtopic, the collection
provides the meta attribute of the temporal intent (there are 4 di�erent subtopic with
a di�erent temporal intent for each one of the 50 queries.). For each temporal intent,
the correspondent time intervals would be too broad (e.g. past, future) and perfectly
distributed (each subtopic has its own temporal intent) to provide meaningful insights.
For this reason we will only consider the explicited timexes in the topic and subtopic
texts.

Being a test collection purposefully made for queries with timexes [22], each query in
the LMTU Test Queries set has a timex, and granularity is distributed uniformly. The
most interesting query collection is the AOL User Queries, both for the volumes of the
dataset and for the source of the queries, because we can investigate the temporal aspect
of actual users.

In Figure 3.1 are shown the percentage of documents with timexes for each sub-
section of the queries. As already noted before, the LMTU has a timex in all its queries.
Temporalia, being a test collection for TIR, shows a relative high percentage of queries
with timexes 22%), mostly in the subtopic title. The TREC Novelty collection also show
an high percentage of queries with timexes (27%) in comparison with TREC Robust
(only 4.6%). Lastly, in our temporal annotation and extraction the percentage of AOL
User Queries with timexes is 1,17%, that is less than what has been already found [104].
This can be due for two reasons. The first is that we use a more recent, state-of-the-
art NLP tool [127] which has been proved to be more precise than any other recent
temporal annotation tool in challenges TempEval 2 [127] and TempEval 3 [129]. The
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Figure 3.1: Percentage of queries with timexes for each text unit that compose the query.

second reason is that we consider only unique queries, while Nunes et al. counted the
same queries multiple times, as they appear in the AOL dataset: as a query log, the
AOL dataset has en entry for each user action, like opening results link, for the same
query.

An interesting aspect of the temporal dimension of queries is the granularity of the
inner time. Knowing with which grade of precision the users specifies the temporal scope
of their queries is critical in designing the interpretation of timex and an informed notion
of relevance between the time in queries and the time in documents. In Figure 3.2 we
show how all the timexes expressed in the queries distributes by granularity. For each
query collection, we show the percentage of timexes found with granularities: day, week,
month, year, decade, century and other. This last class of granularity cover any timex
not belonging to a precise granularity. These are mostly timexes that express an interval
of irregular size, such as “from monday to thursday ”, seasons and quarters of years.
The distribution of granularity usage between the five collection is quite diversified,
however there are some common traits. The day and year granularities are above all the
most frequent in all the considered query collections. An exception regards the set of
queries from TREC Novelty 2004, where the day granularity overtop all others. This is
due to the fact that half of the queries in the Novelty track regards and describe specific
events, thus specifying their exact date. A similar patterns of granularity usage can be
seen between the TREC Robust collection and the AOL user queries, meaning that this
TREC collection better approximate a general case scenario. Conversely, the TREC
Novelty is more suited for Temporal Information Retrieval evaluation as it has specific
temporal needs expressed using a day or month granularity.

Focusing on the real user queries from AOL, we can note that most of the timexes
are single years (58%) secondly we found specific days (19.11%) and other or irregular
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Figure 3.2: Timexes composition by granularity for all the considered query collections.
The granularity Other denotes intervals of irregular size.

interval sizes (10.38%). Some month an decade granularity timexes have been found,
while almost no week or century were mentioned in the user searches. The percentage
for AOL queries are computed on a total of 77,918 timexes.

For tasks related to Information Retrieval the most interesting aspect of the granu-
larity analysis is to compare the granularity distribution of queries with the granularity
distribution of documents. This is investigated later in Section 3.5, together with the
comparisons over all temporal aspects.

3.4 Inner Time - Outer Time Relations

In this section we inspect the relation betwen the inner time of queries (i.e. the time
or date mentioned in the query) and the outer time (i.e. the time when the query has
been issued). We know that we tend to be interested, generally, more in recent events
than in old facts. By analyzing the distribution of the mentioned time with respect to
the query issuing, we want to see the extent of this phenomenon, that is, how much
the temporal needs of user searches drift away from the present. Moreover, we are
interested in investigating the di�erence in volumes between the future mentions and
the past mentions.

Using the same process applied to documents in Chapter 2, we transform the nor-
malized intervals, found in the queries, with respect to the issuing time. That is, we
set the issuing time as the day 0, each future mention as a positive number and each
past mention as a negative number. The value of each mention is equal to the di�erence
betwen the mention and the issuing time. For instance, if the query World Cup 2002
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has been issued in 2006, the year interval “2002” is transformed to the interval [≠4, ≠4]
if granularity is set to year. As we use day granularity, the timex referring to the year
“2002” issued the 1st January 2006 is transformed to the interval [≠1460, ≠1096], and
every chronon inside the interval is considered in the frequency counting.

We show the results of the frequency counting for the time mentions in AOL User
Queries in Figure 3.3. Considering the logarithmic scale of the y-axis in the figure, most
mentions regards the present time, showing that mostly of the times the users search for
recent events or facts. It is also clear the disproportion between the mentions of past
time periods and the mentions of future time periods. This is what results from a large
span view of the distribution.
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Figure 3.3: Time mentioned in AOL User Queries and relative frequency of mentions.
Time window 100 years before the query issuing and 100 years after the query issuing.
Frequency’s scale is logarithmic.

Reducing the time window to only few years, this perspective on past and future men-
tions slightly changes. A narrower view is given by distribution in Figure 3.4, showing
only 2 years before and after the present (query issuing) time. It shows that most of time
mentions in the short terms are toward future moments in the subsequent months,
while less mentions regards the passed months. This is a controversial result with respect
to the same analysis on documents (see Chapter 2 and related works [40, 62]) and in
general, to well known results in social sciences, about how we approach past and future
information [45].

Lastly, in Figure 3.4 it is possible to see a burst in the distribution over the present
time. This is due to the relative timexes such as “today ”, which are common to some-
how denote current events, and not always to denote the specific day when this time
expression is used.
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3.5 Comparison with time in documents
In order to compare the time mention distribution of queries with the time mention
distribution of documents, we must first normalize the frequency observations. We
normalize the distribution, in the chosen window -100/+100 years around the creation
time, constraining the underlying area to be equal to 1. This constraint allow us to
compare distribution with di�erent number of documents and timex. Moreover, setting
a limited window, allow us to reason with a limited number of chronon, thus to normalize
the observations.
Given a time window of n chronons, centered at chronon 0, we first count the number
of time each chronon xi has been mentioned in the collection of documents. Then, to
constraint the underlying area we divide this count by the sum of all the counts:

norm(xi) = xi
q n

2
j=≠ n

2
xj

After normalizing all the distribution of mentioned time in queries and documents,
we compare this distributions for skewness and variance. In Figure 3.5 we show the
superimposition of the normalized distributions from New York Times collection, the
Associated Press collection and the AOL queries. In all the collections used for Temporal
Information Retrieval evaluation in the next chapters, either a subset from New York
Times or Associated Press is included, therefore these two corpora can well represent
the target documents for retrieval tasks.

The 3 distributions in Figure 3.5 show some common properties, as the burst in the
exact date of document creation time (DCT). However, if we exclude this global maxi-
mum, we can see a di�erent skew between the queries collection and the two documents
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Figure 3.5: Comparison: frequency distribution of chronon mentions for AOL User
Queries, New York Times and Associated Press. The frequencies are normalized so that
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collections. The time in queries as a clear tendency to the near future, while the interest
for the future in documents monotonically decrease after the DCT burst. Moreover, be-
ing the 3 distributions normalized in the time window -100/+100years, the -2/+2 years
zoom of Figure 3.5 shows an higher variance for the AOL query time mentions.
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Metric Distances for Time
Intervals

In the last decade, Temporal Information Retrieval (TIR) has emerged in the research
literature with the goal of improving the e�ectiveness of retrieval systems along the
temporal dimension [31]. Most works in this area limit the temporal information that
the system can utilize to only the creation date of documents and the issue time of
queries [31]. More recently, promising results have also been obtained by extracting
and interpreting temporal information from the text of documents and queries [22, 76,
27]. In this work, we extend these results with more sophisticated ranking models that
exploit the temporal information found in text. Our models use distances (in metric or
hemimetric spaces) between time intervals to capture not only their containment and
overlapping, but also the dissimilarity of non-overlapping intervals. In this chapter,
we extend the results in [27] to study how retrieval models can exploit the semantics
of temporal expressions to improve their e�ectiveness. We focus our attention to the
text-level temporal information, and present methods for making a search engine time-
sensitive. In particular, we make the following contributions we define a formal temporal
domain for representing temporal information in both documents and queries. The core
of our approach consists on: (i) using existing NLP tools to extract and normalize
temporal expressions; (ii) mapping the normalized expressions into temporal intervals,
which constitute the temporal representation of documents and queries in the retrieval
system; (iii) estimating the temporal similarity between documents and queries as an
inverse function of the metric distances betwen their temporal intervals.

4.1 Related Work

Temporal Information Retrieval (TIR) has been a topic of great interest in recent years.
Its purpose is to improve the retrieval of documents by exploiting their temporal infor-
mation, making it possible to position queries and documents in a timeline in accordance
with their temporal dimension. The idea of TIR is to utilize the temporal expressions

47



48 CHAPTER 4. METRIC DISTANCES FOR TIME INTERVALS

that have been determined for each document in order to rank search results base on the
temporal information embedded in the documents [10]. The resulting IR model should
retrieve the result based on the relevance of the documents with respect to the query
using traditional metrics and the distance of the query terms to temporal expressions in
the documents. In this section we consider the TIR works related to improving retrieval
task in the presence of a temporal need. The main categorization regards the time of
the documents. The time of a document can be interpreted as the time the document
was created, revised or indexed (meta-level time), or as the time of the facts narrated
in the document (content-level time). Same categorization can also concern the time of
the queries.

4.1.1 Motivations

As stated by Alonso et. al. in 2007 [10], temporal information embedded in documents in
the form of temporal expressions provides means to further enhance the functionality of
current information retrieval applications. Traditional information retrieval and search
engine fail to exploit the temporal information of documents. After 4 years, Alonso et. al.
[9] reported some progresses on analyzing and exploiting temporal information for the
presentation, organization and exploration of search results, reviewing these research
trends. The works reviewed in [9] still failed to take full advantage of the temporal
dimension of documents and posed some important open questions, such as:

• How can a combined score for the textual part and the temporal part of a query
be calculated in a reasonable way?

• Should a document in which the ”textual match” and the ”temporal match” are
far away from each other be penalized?

• What about documents satisfying one of the constraints but slightly fail to satisfy
the other constraint?

• Should two documents be considered similar if they cover the same temporal sim-
ilarity?

• Should the temporal focus of the documents be important for their temporal sim-
ilarity?

• Can two documents be regarded as temporally similar if one contains a small
temporal interval of the other document in a detailed way?

Other open problems and motivations for TIR have been extensively investigated
more recently by Campos et. al. [31], in which is stated that, despite the recent im-
provement of search and retrieval applications in the temporal context, one can still find
examples when the returned search results do not satisfy the user information needs due
to problems of a temporal nature.
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Another indication of TIR’s importance is the realization of an increasing number
of contests and workshops that focus on the temporal aspects in text. Di�erent chal-
lenges have been proposed, such as the Message Understanding Conference (MUC) with
specific tracks on the identification of temporal expressions (MUC6 and MUC7); the
Automated Content Extraction (ACE) evaluation program, organized by the National
Institute of Standards and Technology (NIST), the Time Expression Recognition and
Normalization (TERN), which has been recently associated with the Text Analysis Con-
ferences (TACs); TempEval within the SemEval competition and the NTCIR Temporal
Information Access (Temporalia). WWW Temporal Web Analytics workshop (TWAW
2011; TempWeb 2012, 2013, and 2014) and the SIGIR Time-Aware Information Access
workshops (TAIA 2012, 2013, and 2014) are examples of seminars dedicated to temporal
information search and processing.

4.1.2 Meta-level.

Former work on TIR considered creation and update time only. In its earlier definition
TIR was the process of extracting time-varying information [120], in a scenario where
documents are modified over time. In particular, the freshness of a content was the
only temporal quality worthy of consideration, as the currency of information is a very
desirable property for users. A number of recency-sensitive ranking research has been
conducted thus far [89, 66, 107], so that this has become a well-known task in IR. There
are also previous works that include the freshness information in well known link-based
algorithm such as PageRank [145, 20]

The creation time of documents has been also considered for relevance ranking.
Perkiö et al. postulated that ranking of the results for query Q at the time t should
promote documents whose most prominent topics are the same that are the most active
within the whole corpus at time t. In [74] the implicit time of the query is determined
from its content and the textual similarity is combined with similarity between the time
of the query and the creation time of documents. In [7] terms relevance is boosted based
on its frequency on the revision history of documents.

4.1.3 Content-level.

Since the first works on TIR, research on temporal tagging has emerged, providing auto-
matic timex detection and normalization. Temporal automatic tagging first appeared in
the context of the Named Entity (NE) tagging subtask within the Message Understand-
ing Conference (MUC). Tools like TARSQI [134] were overtaken by even better temporal
taggers when the TempEval challenge was created, in the context of the SemEval 2007
workshop [135]. Thanks to TempEval, who reached its third edition in 2013, the Au-
tomated Content Extraction (ACE) evaluation program, organized by the National In-
stitute of Standards and Technology (NIST), and the Time Expression Recognition and
Normalization (TERN), more and more advanced temporal taggers have been produced
by the NLP community, allowing to reach high annotation accuracy nowdays.
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Temporal taggers allowed to easily include content-level temporal expressions as a
part of the temporal information of a document. The first intuitions and insights on us-
ing embedded temporal information to enhance ranking, taking advantage of TARSQI’s
automated tagging, are introduced by Alonso et al. [2007] and within the related Alonso’s
PhD dissertation [12]. As Alonso et al. states: ”The central idea in temporal informa-
tion retrieval is to utilize the temporal expressions that have been determined for each
document in a given document collection in order to rank search results”.

In [68], time is extracted from the content of the documents, but also from the DCT
and the time of crawling. If more than one interval exist in content, rules are applied
to select a ”primary time”. Then the ranking is obtained with the linear combination
of keyword similarity, temporal similarity and the PageRank algorithm. Temporal sim-
ilarity of two intervals is computed with 4 rules, in which a similarity greater than zero
exists only if the intersection of two intervals is non-empty. A combination of temporal
similarity with text similarity is defined by Khodaei et al. [2012]. The combination is
made through a weighted sum of the two, while the temporal similarity between two
timespan depends on how many chronons they share.

Berberich et al. [2010] proposed a language model with three requirements (speci-
ficity, coverage and maximality) in order to capture the probability of generating the
timexes in the query from the timexes of a document. Later [76] proposed a time-aware
ranking approach based on learning-to-rank techniques for temporal queries and tested
using the same collection of [22].

A related TIR topic is the temporal query intent detection and classification, that
address the problem of determining the implicit temporal need of a query. In [72] the
temporal profile of a query is defined as the di�erence between the temporal distribution
of top-k documents and the collection. We will apply a similar method in Section 6 to
extend the evaluation on non-explicit temporal queries of the test collection.

A more recent work by Campos et al. [2014] propose a mixture model for implicit
time queries, evaluated on an ad-hoc dataset. Instead of annotating timexes of all
document content, Campos et al. extract timexes from the web snippet only, using an
ad-hoc rule-based tool for explicit year timexes.

In this section we introduce our metric model for TIR, defining di�erent notions of
distance between temporal scopes in a metric space. We define a time similarity notion
and how this is combined with the classic text similarity over terms.

4.2 Time Intervals Metric Spaces
Given that an interval from a query Q an interval from a document D are defined as two
pairs in a bidimensional space �T, the dissimilarity between the two can be expressed
in a metric space.

Definition 4.2.1 (Metric space) A metric space is an ordered pair (M, d) where M
is a set and d is a metric on M , i.e. a function d : M ◊ M æ R such that for any
x, y, z œ M , the following holds:
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1. d(x, y) Ø 0 (non-negative),

2. d(x, y) = 0 ≈∆ x = y (identity of indiscernibles),

3. d(x, y) = d(y, x) (symmetry) and

4. d(x, z) Æ d(x, y) + d(y, z) (triangle inequality).

In our definitions of distance, the symmetry property is not always satisfied and the
pair of points in space is an ordered pair. This asymmetry comes from the di�erent
nature of the points specification, in which one is from the query and the other from a
document. A distance which do not completely satisfies the above properties is called a
generalized metric distance.

The following distance definitions focus on di�erent aspects of temporal intervals and
relations between them. Each distance defines a di�erent metric space (or generalized
metric space) and can be suitable under certain conditions. However, as we will show
through several experiments, some distances performs better then others in most cases,
in both precision and recall measures.

Temporal scopes of query and document are two sets of one or more intervals. For
simplicity’s sake we first define distances on two intervals, respectively one from the
query and one from the document. Then we show how we compute an aggregation
distance defined on two sets of intervals (temporal scopes), derived from the metric and
generalized metric distances.

4.3 Manhattan distance
In a 2-dimension space the Manhattan distance (also known as L1 Mikowski distance)
is a metric distance defined as follows [23]:

d1(p, q) = |p1 ≠ q1| + |p2 ≠ q2|

where p and q are pairs, members of N ◊ N.
We apply this definition in our 2-dimension space where the two dimension refer to

the begin and the end of an interval.

Definition 4.3.1 (Manhattan distance) Given an interval [aQ, bQ] from the query
Q and an interval [aD, bD] from a document D, the Manhattan distance between these
intervals is defined as:

”man([aQ, bQ], [aD, bD]) = |aQ ≠ aD| + |bQ ≠ bD|

4.4 Euclidean distance
The euclidean distance is the straight line distance between two points, also known as
L2 Mikowski distance.
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d2(p, q) =
Ò

(p1 ≠ q1)2 + (p2 ≠ q2)2

We apply the euclidean distance to our interval definition so that p and q are the
two intervals in comparison.
Definition 4.4.1 (Euclidean distance) Given an interval [aQ, bQ] from the query Q
and an interval [aD, bD] from a document D, the euclidean distance between these inter-
vals is defined as:

”eucl([aQ, bQ], [aD, bD]) =
Ò

(aQ ≠ aD)2 + (bQ ≠ bD)2

The Manhattan distance and the euclidean distance are metric distances, since they
statisfy all the 4 properties. This will not hold for the next distance definitions.

4.5 Query-biased Coverage Distance
The coverage of an interval is an important temporal properties which cannot be cap-
tured in the above defined distances. We define two novel generalized metrics for which
the distance of two intervals is 0 if one interval is totally contained (covered) in the
other. We define a query biased distance to boost the similarity if the query interval is
contained in document interval and a
Definition 4.5.1 (Query-biased Coverage Distance) Given a query’s interval [aQ, bQ]
and a document’s interval [aD, bD], the query-biased coverage distance is defined as:

”covQ([aQ, bQ], [aD, bD]) = (bQ ≠ aQ) ≠ (min(bQ, bD) ≠ max(aQ, aD))

The intuitive meaning of this distance is that if the interval of the query is contained
in the interval from the document the distance is 0, otherwise the distance between ends
is computed.

The query biased coverage distance is suitable when, in referring to the same event,
the temporal intervals mentioned in the query are narrower than the temporal intervals
in the document.

This distance is intuitively asymmetric due to the bias. Swapping the interval of the
query with the interval from the document does not give the same distance, unless those
two intervals are the same. Moreover, it does not satisfy the identity of indiscernibles
property in both directions. In fact, while it’s true that if x = y then ”cov(Q)(x, y) = 0,
the reverse does not hold. This makes the defined distance a generalized metric distance
or hemi-metric.

4.6 Document-biased Coverage distance
In the same way as we have defined the query-biased coverage distance, we define a
document biased distance to boost the similarity if the document interval is contained in
the document interval. This function is equivalent to swapping the query and document
arguments in the query biased coverage distance.
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Definition 4.6.1 (Document-biased coverage distance) Given a query’s interval
[aQ, bQ] and a document’s interval [aD, bD], the document-biased coverage distance is
defined as:

”covD([aQ, bQ], [aD, bD]) = (bD ≠ aD) ≠ (min(bQ, bD) ≠ max(aQ, aD))

The document-biased coverage distance is the appropriate distance if relevant doc-
uments have their time interval covered by the interval in the query, i.e. for broader
query intervals and narrower document intervals.

As for the query-biased coverage distance, the document-biased coverage distance
does not satisfy the symmetry and identity of indiscernibles properties of metric dis-
tances, hence it is a generalized metric distance or hemi-metric.

4.7 Quasimetric distances
The Manhattan query coverage distance is the average distance between the manhattan
and the query-biased coverage distance.

Definition 4.7.1 (Manhattan Query-biased coverage distance) Given a query’s
interval [aQ, bQ] and a document’s interval [aD, bD], the Manhattan query-biased coverage
distance is defined as:

”mcovQ([aQ, bQ], [aD, bD]) = ”man([aQ, bQ], [aD, bD]) + ”covQ([aQ, bQ], [aD, bD])

By combining a metric distance with a coverage distance, we obtain a distance that
satisfies the identity of indiscernibles while taking into account the asymmetric cover-
age. More specifically, the document intervals that covers the query interval have lower
distance, while only the exactly matching intervals as distance zero.

Definition 4.7.2 (Manhattan Document-biased coverage distance) Given a query’s
interval [aQ, bQ] and a document’s interval [aD, bD], the Manhattan document-biased cov-
erage distance is defined as:

”mcovD([aQ, bQ], [aD, bD]) = ”man([aQ, bQ], [aD, bD]) + ”covD([aQ, bQ], [aD, bD])

This distance is lower for document intervals which are covered by the query interval,
however, conversely to the document-biased coverage distance, only the exactly matching
interval has null distance.

In Table 4.1 each distance is computed for the query interval Q with respect to
di�erent document intervals Di. When the document interval is exactly the same as
the query, the distance is 0 for all the four distances, as required by the identity of
indiscernibles. However the converse is not true for the two coverage distances: for D3
and D4 the distance is 0 even if the two are equal to Q. It follows that for coverage
distances the implication of identity of indiscernibles is true only in one direction. It is
worth noting that the sum of these two complementary coverage distances always results
in the Manhattan distance.
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”(Di, Q)

Intervals ”man ”eucl ”covQ ”covD ”mcovQ ”mcovD

D1

20
11

20
12

20
13

20
14

20
15

20
16

a b

a b

a b

a b

a b

20
17

a b

0 0 0 0 0 0

D2 2 1.41 1 1 1.5 1.5

D3 2 1.41 0 2 1 2

D4 2 1.41 2 0 2 1

D5 6 4.47 4 2 5 4

Q

Table 4.1: Example of the four distances on di�erent document intervals Di and the
same query interval Q.

4.8 Distances aggregation
The functions ” described so far are all notions of distance between two time intervals.
However both temporal scopes of documents and queries can contain more than one
interval. Recalling the definition of temporal scopes as subsets of the temporal domain
�, we define a distance on temporal scopes as a function on

However in order to fit this similarity estimation inside an Information Retrieval
model a definition of temporal similarity between queries and documents is required,
which could both have several time intervals.

Definition 4.8.1 (Aggregation of distance ”ú) We define an aggregated distance be-
tween the set of query’s intervals and the set of documen’ts intervals as: ”ú : P(�) ◊
P(�) æ R

We provide three di�erent valid definitions for the aggregation of distances: minimum
of the distances, maximum of the distances and average of the distances. A first definition
for ”ú is the minimum of the distances ” between every possible combination of intervals
from the query and from the documents:

Definition 4.8.2 (Minimum of distances)

”ú
min(TD, TQ) = min(”([aQ, bQ], [aD, bD]))|[aQ, bQ] œ TQ · [aD, bD] œ TD

where TQ and TD are the sets of intervals extracted from the query and from the
document respectively. In the same way we can model ”ú as the maximum:
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Definition 4.8.3 (Maximum of distances)

”ú(TD, TQ) = max(”([aQ, bQ], [aD, bD]))|[aQ, bQ] œ TQ · [aD, bD] œ TD

This lead intuitevely to a very strict and precise similarity notion, and will obviously
result in a smaller temporal recall.

Finally, ”ú can be defined as the average (arithmetic mean) of all distances for the
found timexes:

Definition 4.8.4 (Average of distances)

”ú(TD, TQ) = average(”([aQ, bQ], [aD, bD]))|[aQ, bQ] œ TQ · [aD, bD] œ TD

The minimum definition for the ”ú aggregation function produced the best results in
our experimental evaluation, as shown in Chapter 6.

4.9 Distance to similarity

The metric distances defined above are a measure of how much dissimilar two intervals
are. Aggregating the distances using operators such as minimum or average, the ”ú

defined a measure of dissimilarity between two temporal scopes (sets of intervals), the
temporal scope of the query and the temporal scope of the document.

In order to define a similarity notion based on metric distance, a transformation
from distance to similarity is required. We define the transformation from distances
to similarity scores by means of an exponential decay function, that is, the negative
exponential of the distance.

Definition 4.9.1 (Temporal similarity) Given a distance ”ú on temporal scopes TD

and TQ, the temporal similarity between a query Q and a document D is defined as:
simtime(Q, D) = e≠”ú(T

D

,T
Q

).

Taking in consideration the temporal ranking alone, without combining it with text
similarity, any monotonically decreasing would be good choice for the distance to similar-
ity conversion, because it will produce a similarity score which is inversely proportional
to the distance. This is also true if, in combining text and temporal retrieval, only
the rank is considered, as in rank aggregation. However, choosing di�erent distance to
similarity functions strongly a�ect the score combination of temporal and text retrieval,
unless the two scores are normalized taking into account the rank-score distribution

Apart from having better empirical results in the evaluation, the negative exponential
function it’s a good fit for models related to the human perception of time distances,
such as the lose of interests in time with respect to the writing time [98] and the measure
of how much we forget with time [45].
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4.10 Similarity models: discussion and comparison

Apart from empirically evaluating how the di�erent similarities defined perform, in terms
of precision and recall, in comparison with the state of the art, in this section we show
what are the theoretical di�erences in terms of temporal properties captured. By re-
viewing the most representative models, we extrapolate their salient properties and put
them in comparison, showing the related benefits and drawbacks.

Unigram Probably the simplest temporal similarity that can be built upon temporal
annotated documents, able to capture the semantic of temporal expressions, is a classic
text model in which each normalized interval is treated like a keyword. We call this
similarity the Unigram model because each interval is treated like a unigram. Despite its
simplicity, this model is yet able to capture the similarity between “Christmas day last
year ” and “the 25th of December 2015”, because once these timexes are normalized
they will be represented by the same unigram interval, such as 20151225 20151225, and
has been showed to be a more e�ective model with respect to classic IR [22].

However in this model even the slighter di�erence between the document interval
and the query interval would lead to a zero similarity. This is true also in the case when
a interval is contained in the other or when there is a large intersection, such as with the
two timexes “This December ” and “From the first to the 30th of December ”.

LM Uncertainty The current state of the art for temporal similarity in IR is the
Language Model Temporal Uncertainty Aware (LMTU) [22], and the models derived
from it using learning to rank [76]. The main idea behind the Temporal Uncertainty is
that a user, while expressing their temporal intent, is not sure about the precise temporal
scope of its search. For instance, a user can remember that the last Obama election was
in the year 2012, without knowing the exact date, therefore issuing the query Obama
election 2012 instead of Obama election November 6, 2012. For this reason the
LMTU is defined to capture not just the exact match between intervals, but to assign
a certain similarity to all the intervals that have a non-zero intersection with the query
interval. In their language model, the document interval T can refer to any interval
of any size, contained in T 1. The same is true for Q, so |T | and |Q| are the number
of possible intervals which the document interval and the query interval can refer to,
respectively. In the language model, the probability of a document interval T to be
generated from a query interval Q is the defined as:

|T fl Q|
|T | · |Q|

that is, the ratio between the intersection of the two sets of possible intervals and
all the pairs of possible intervals. This model is able to capture the similarity between
two intervals even if these two intervals do not perfectly match, giving more similarity

1
This is true by default in LMTU if not other prior knowledge is specified on the uncertainty bound.
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if the time in the document is contained in the time from the query, provided that there
is some overlapping between the two intervals.

This last assumption is however a limit of this model. For instance, consider the
query timex Q “7 December 2016” and two documents, T1 with the timex “8 December
2016” and T2 with the timex “from 28 July 1914 to 11 November 1918. ”. The in-
terval T1, being the day after Q, is clearly more related to the query than T2, being the
begin and end dates of World War I. However, because both T1 and T2 have no overlap
with Q, their temporal similarity is both zero.

Manhattan distance The Manhattan distance similarity, being based on a metric
distance, has its maximum score only on the perfect match between query interval and
document interval (identity of indiscernibles), a in the Unigram model. However, unlike
the Unigram model, the similarity score is not binary but proportional to the distance
between the two intervals. Moreover, not being based on set operations as the LMTU
similarity, it is able to given quite di�erent scores to the two previous examples, T1
and T2. The similarity between “7 December 2016” and “8 December 2016” is e≠1 =
0.367, while the similarity between “7 December 2016” and “from 28 July 1914 to
11 November 1918. ” is e≠72493, which is a infinitesimally small value.

The drawback of the similarity based on Manhattan distance is that it is not able to
capture the containment of intervals. Because of its simmetry, it makes no distinction
between query interval and document interval, despite query intervals and document
intervals are by nature asymmetric, in particular for the granularity or size of intervals,
as we showed in Chapter 3.

The Euclidean distance similarity captures the same temporal properties as the
Manhattan distance, however it di�ers from the latter by the way it assigns distance
with respect to the space. Using Euclidean distance, the similarity of intervals decays in
circular radius with respect to the query interval, because it is based on the direct-line
distance between the query interval point and the document interval point. Conversely to
the Manhattan distance similarity, which is based on the grid-like line distance between
the two points.

Document coverage The Document coverage similarity shares properties of all the
three similarities reviewed in the above paragraphs. It has a maximum score for the
perfect match of intervals and it is able to di�erentiate between very distant and close
intervals without overlapping requirements, due to its metric nature. Moreover, as for
the LMTU similarity, the Document coverage is asymmetric and takes in consideration
the containment of the interval of the document in the interval of the query. Because it
does not satisfy the symmetry property of metric distances, the Document coverage is
an hemi-metric.

A drawback of Document coverage is that, like LMTU, but unlike the Manhattan
distance, it cannot di�erentiate between perfect matching document interval and a docu-
ment interval contained in the query interval. For instance, if the query interval is “from
28 July 1914 to 11 November 1918. ”, the document intervals “28 July 1914 - 11
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November 1918” and “2 February 1916” will both have the maximum score. A quick
solution for this drawback is to combine the Document coverage and the Manhattan
distance using a mean or a weighted sum.

The Query coverage similarity models the opposite notion of coverage: it has a
maximum score if the interval of the document contains the interval of the query, and it
gradually decays as the document interval gets farer from the query interval.

Manhattan Document Coverage distance As mentioned above, the drawback of
coverage distances is that they can’t distinguish between an exact match and a covered
interval. On the other hand, metric distances such as Manhattan distance cannot capture
the containment property because of they simmetry property. By averaging this two
di�erent metrics, the Manhattan distance with one of the coverage distances, we obtain
a generalized metric able to favor covered intervals while taking into account the distance
between intervals ends.

Comparison To visually represent the salient properties and show di�erences between
the examined similarities, in Figure 4.1 we map the similarity scores between a fixed
query [2009,2012] and all the possible intervals in the range [2006,2016] with a one
year granularity. The color map denotes the score value, from blue to yellow in the range
]0, 1]. Absolute zero value and undefined similarity scores are depicted in gray, as in the
case when the start date of an interval is greater than the begin date. The query interval
is highlighted with a red cross. The Unigram model subplot shows its binary notion of
similarity: all the scores are zero except for the same intervals, [2009,2012], which has
score 1. In the LM Uncertainty subplot, the triangle representing the intervals contained
in [2009,2012] shows the higher score, the intervals the contain [2009,2012] show a
slightly lower value, while all the other intervals without overlapping have zero score. For
Manhattan distance the exact interval has the maximum score, and it gradually decays
proportionally to the distance from the query interval. It is noteworthy that the diagonal
cells are double penalized with respect to the other adjacent cells. This is due to the L2
Mikowski distance, which is called Manhattan distance because it’s the distance between
two points in a grid based on a strictly horizontal and vertical path, like in the grid-like
street geography of Manhattan. The Euclidean distance conversely shows a smoother
decay of similarity score with a circular pattern. In Document coverage distance, the
triangle of the intervals contained in [2009,2012] has the highest score, like in the
LMTU. However in LMTU the maximum score is penalized by the query interval size,
while in Document coverage the highest score coincide with the maximum score 1. It’s
easy to visually notice the opposite notion of coverage of the Query coverage distance.
Finally, the plot of Manhattan Document Coverage distance similarity and Manhattan
Query Coverage distance similarity well represent a combination of the two distances,
having the maximum score of 1 only at the exact match, favoring covered intervals and
gradually decreasing on farther interval points.
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4.11 Distances and Allen’s Interval Algebra
Allen’s intervals algebra is a very popular calculus for reasoning about temporal relations
[8]. The interval algebra comprises thirteen basic relations that allow to comprehensively
describe the relationship betwen two time intervals. While the distances we proposed are
not based on interval relations, given the wide adoption of the Allen’s interval algebra we
analyze whether there are implications between the properties captured by the temporal
distances and the algebra relations. More specifically, given one interval tq from the
query and one interval td from the document, we describe, if a relation tqRttd is true,
whether and how this a�ects the distances of our temporal model.

1. tq precedes td : in all the proposed distances this relation is not directly captured,
however if true it always implies a non-zero distance between tq and td.

2. tq meets td : when this relation is true, the distance between tq and td depends
solely on the intervals length. Moreover if tq1 meets td, while tq2 precedes td

and length(tq1) = length(tq2), for any of the proposed distances ” it holds that
”(tq1, td) < ”(tq2, td).

3. tq overlaps td : if tq1 overlaps td, while tq2 meets td and length(tq1) = length(tq2),
for any of the proposed distances ” it holds that ”(tq1, td) < ”(tq2, td).

4. tq finished by td : this relation implies that td is fully covered by tq, therefore
it holds that for the document-biased coverage distances, ”(tq, td) = 0. For all the
other distances, because two intervals have their end points in common and tq is
longer than td, it implies that the distance depend solely on the begin point of
tq, or alternatively on the length of tq. Moreover if tq1 finished by td, while tq2
overlaps td and length(tq1) = length(tq2), for any of the proposed distances ” it
holds that ”(tq1, td) <= ”(tq2, td).

5. tq contains td : the contain relation is fully captured by the document-biased
distances: for those distances if tq contains td then ”(tq, td) = 0.

6. tq starts td : this relation implies that tq is fully covered by td, therefore it
holds that for the query-biased coverage distances, ”(tq, td) = 0. For all the other
distances, because the two intervals have their begin points in common, it implies
that distance depend solely on the end point of tq, or alternatively on the length of
tq. Moreover if tq1 starts td, while tq2 overlaps td and length(tq1) = length(tq2),
for any of the proposed distances ” it holds that ”(tq1, td) <= ”(tq2, td).

7. tq equals td : for all the proposed distances it holds that tq = td =∆ ”(tq, td) = 0.

8. tq started by td : this relation implies that td is fully covered by tq, therefore it
holds that for the document-biased coverage distances, ”(tq, td) = 0. For all the
other distances, if the two intervals have their end points in common, it implies that
the distance depend solely on the begin point of tq, or alternatively on the length of
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tq. Moreover if tq1 started by td, while tq2 overlapped by td and length(tq1) =
length(tq2), for any of the proposed distances ” it holds that ”(tq1, td) <= ”(tq2, td).

9. tq during td : the during relation is fully captured by the query-biased coverage
distances: for those distances if tq during td then ”(tq, td) = 0.

10. tq finishes td : this relation implies that tq is fully covered by td, therefore it
holds that for the query-biased coverage distances, ”(tq, td) = 0. For all the other
distances, because the two intervals have their end points in common, it implies
that distance depend solely on the begin point of tq, or alternatively on the length
of tq. Moreover if tq1 finishes td, while tq2 overlapped by td and length(tq1) =
length(tq2), for any of the proposed distances ” it holds that ”(tq1, td) <= ”(tq2, td).

11. tq overlapped by td : if tq1 overlapped by td, while tq2 met by td and length(tq1) =
length(tq2), for any of the proposed distances ” it holds that ”(tq1, td) < ”(tq2, td).

12. tq met by td : when this relation is true, the distance between tq and td depends
solely on the intervals length. Moreover if tq1 met by td, while tq2 preceded by
td and length(tq1) = length(tq2), for any of the proposed distances ” it holds that
”(tq1, td) < ”(tq2, td).

13. tq preceded by td : in all the proposed distances this relation is not directly
captured, however if true it always implies a non-zero distance between tq and td.
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Figure 4.1: 2-D comparison between Unigram model, Language model with uncertainty,
all the defined distances and combination of Manhattan and coverage distances. Query
interval is {2009,2012}. Gray spots are zero or undefined. Granularity is set to one year.
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Chapter 5

Combining text and time retrieval

The temporal similarity so far described covers only the temporal dimension of docu-
ments and queries. Temporal similarity alone is not su�cient and needs to be combined
with classic IR text similarities, in a way that produces the best results from the two.
In combining the results from two di�erent similarities, a text similarity and a tempo-
ral similarity, not just the scores must be considered but also the di�erent nature and
importance of the two similarities. This means that it is crucial to understand what are
the di�erences between the two ranked results and what should be the weight of each of
the two components, because these play a key role in the final combined results.

Combining the results of di�erent IR ranking systems is sometimes referred to as data
fusion for Information Retrieval [87], for which many approaches have been proposed and
empirically evaluated. The peculiar nature of our temporal similarity, strongly di�erent
from classic text similarity models, lead us to design and evaluate ad-hoc methods for
score combination.

5.1 Related work
We review in this section the related work on combining evidence from di�erent IR sim-
ilarity models, on normalizing the similarity score to optimize the combination and the
data structures and access methods needed to process the combined retrieval e�ciently.

5.1.1 Combination

Combining the results of two or more IR similarity models is a very well known approach
to improve the overall e�ectiveness by joining di�erent ranking models.

Many di�erent kind of systems has been combined using these approaches. Usually
a common system in the combinations is a classic text similarity, such as Vector Space
Model (VSM) or Okapi BM25. This is then combined with totally di�erent features such
as images or video, link popularity measures such as PageRank and structure features
[46], or with other text similarities such as combining VSM, BM25 and Language models
[121].

63
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The reasons why the combination improves e�ectivenes has to be found in the fol-
lowing motivations [136, 43]:

• Skimming E�ect: when two e�ective systems retrieve di�erent relevant items, the
joint results list can have increased recall and precision.

• Chorus E�ect: when more than one system suggests the same item in their top list
this can be a sign of a highly relevant document. The intersection of the results
lists should therefore rank higher.

• Dark Horse E�ect: a system can be less e�ective than another system but still
yielding one or more relevant documents that does not appear in the other system.

These motivations can be in contrast, as in the case of skimming e�ect and dark horse
e�ect, and this is one of the reasons why many di�erent techniques have been proposed.
The number of analyses and reviews on the di�erent techniques to combine similarity
models gives evidence of both the importance of the problem and the contradictions in
empirical results [87, 34, 59, 136]. There are in fact many di�erent ways to combine two
or more sets of results that can involve their ranking or their scores.

Rank aggregation In rank aggregation, the rank of documents in the di�erent results
sets is considered without their scores, in order to produce a final set: given two or more
ranked results sets from di�erent systems, the final rank of a document is a function of
its ranks in the di�erent results sets [95]. This can be done by simply summing the ranks
from the di�erent systems and reorder using this new rank, or by taking in consideration
multiple criteria expressed using decision rules to judge wheter a document should get
a better rank based on its rank in the result lists [47].

Score combination In score combination, the scores of the documents is considered
instead, so the final score of a document is a function of the original scores in the di�erent
similarity models [51]. Techniques of score combination comprise average of scores, sum
of normalized score, or taking the best score for each document. It has been shown
that one of the most e�cient way to combine scores in di�erent contexts is the linear
combination [136], in which a di�erent weight is given for each combination component.
The weights can be tuned empirically using techniques such as genetic algorithms [46].
One of the practical benefits of score combination is that it is not required to know the
ranking of the documents for the di�erent similarities, but it showed good results also
in late data fusion [38] where the ranks are known before combination.

Reranking Apart from giving di�erent weights in the linear score combination, the
previous methods have a symmetric process in combining all the multiple systems. This
is not true in reranking, where one system is usually used to retrieve the set of results,
while a second ranking system is applied on this set to reorder it [60]. If one component
of the combination is much more e�ective than the other, as in text search combined
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with image similarity [38], the set of results from the most e�ective component (text)
can be reranked accordingly to a weighted, linear combination. In this way the less
e�ective component will have less impact on the final rank. In reranking a results list
many additional operations can improve the final result, such as decision rules based on
scores and ranks [47] and inter-document-similarities betwen the results lists [96].

5.1.2 Normalization

In score combination, the scores from di�erent systems can be very di�erent in scale
and in relation with their ranks. Linear transformation of input scores, such as zero-one
range transformation with the minimal score mapped to 0 and the maximal score to 1
[87] , Sum and ZMUV [100], have been applied for score scaling but are considered rather
naive, because they do not consider the shape of the score distributions with respect to
ranks, altough they show reasonable results in some contexts [143]. Distribution-based
approaches instead are shown to be as e�ective or more e�ective than linear transforma-
tions [14], transforming the scores into some form which exhibits better distributional
properties with respect to ranks. One way to achieve this transformation is to model
the score distributions in their relevant and non relevant components using probabilistic
models such as a mixture model. Manmatha et al. [92] observed that the result scores
have an exponential distribution for the non-relevant documents, and a Gaussian distri-
bution for the relevant documents, then they applied the Bayes’ Rule to map scores to
probabilities of relevance. A deriving approach to distribution-based score normalization
is to first model a common regular distribution, e.g. empirically averaging distributions
from di�erent retrieval models, and then mapping score values from di�erent models to
this common distribution [48].

5.1.3 Access methods for metric objects

documents and object represented in metric spaces need specific data structures and
ad-hoc access methods in order to perform the query evaluation e�ciently. In this
context evaluating a query means to find the documents metric features that are most
similar with the query metric features, a problem known as similarity search [142] Data
structures have been specifically designed to answer range queries in metric spaces [19]
taking into account di�erent relations that exist in spatial data [119] with application
spanning from geometric spatial search and multimedia search [26].

Data structures for metric spaces can be generally divided in two groups: space
partitioning indices and data partitioning indices. In space partitioning data structures,
such as the Grid File [102] and the KDB-Tree [116], the data space is divided along
predefined or predetermined lines regardless of the data loaded. Conversely in data
partitioning data structures, such as the R-Tree [56] and the M-Tree [35], the data space
is divided according to the distribution of the objects that are loaded or inserted in the
tree.

Few studies can be found regarding the combined access of di�erent objects repre-
sentations, such as a bag-of-word and a metric representation. When the representation
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of a document in metric space is confined to a set of features, such as with images [38],
data structures for high-dimensional metric spaces can be applied. When temporal rep-
resentation of documents is similar to the bag-of-word, an inverted index can be used
for both the textual and temporal dimension [22]. This can be an e�cient solution if the
combined score is computed as the multiplication of the textual and temporal scores,
which implies that the space search can be reduced using the most e�cient component:
if a document is not in the set of text results, its final score will be zero. This reduction
can be also obtained in with reranking aggregation, using the text features to select the
set of documents and computing the metric scores only for this latter set [38].

5.2 Linear combination

In Information Retrieval the relevance of a document is estimated with a score, usually a
real number, that usually represents the similarity between the document and the query.
One of the most intuitive way to combine two measures with similar notions, such as
similarities, in a single measure, is to average the two values. However, an important
aspect of our combination model regards the unbalance between the two similarity, in
terms of relevance estimation. As we will show empirically, the text similarity is much
more able to estimate the relevance than the temporal similarity, and should therefore
weight more in the text-temporal combination, mainly for two reasons:

• Expressiveness of text keywords: a keyword or a sequence of keywords have po-
tentially more expressiveness than a temporal expression, which usually are single
years (see Section 3.3) and are close to the present time (see Section 3.4), therefore
they are usually a very small set.

• Implicit time queries: when a timex is not explicit in the query, the temporal query
intent of the query must be inferred from other sources, such as from the corpus
or from pseudorelevant documents [74]. While this can improve the e�ectiveness,
it is uncertain whether the estimated time was in the user intent.

Given a temporal similarity simtime and a text similarity simtext a simple yet pow-
erful technique to combine the two similarity score with di�erent weights is the convex
combination:

sim = –simtime + (1 ≠ –)simtext (5.1)

Where the constant – is a value in the range [0, 1] and denotes the importance of
the temporal similarity in the overall similarity calculation.

The linear combination of scores allows to combine the results from the two sim-
ilarities (text and temporal), taking in consideration the score from each similarity.
Moreover, a convex combination allows to maximize the combined accuracy by tuning a
single parameter –.
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Figure 5.1: Average scores for the two similarty models without distribution normaliza-
tion.

5.3 Score normalization

Combining the ranked results of search engines is notoriously a nontrivial task and
requires a proper score normalization [92]. Each model potentially uses a (sometimes
completely) di�erent set of features, di�erent distance metrics, and di�erent ways of
generating the scores. Moreover, as it has been often noted in the literature [113],
the distribution of the scores may vary a lot from system to system. The problem is
even more critical when the models to be combined operate on di�erent media and
features, since the scores mean really di�erent things as in the case of textual and
temporal relevance. Simple approaches, e.g. range normalization based on minimum
and maximum scores, are considered to be rather naive [14], because they do not take
into account the shape of score distributions.

In this section we propose an optimal score distribution approach [92] for score nor-
malization in the setting of text-temporal score combination that takes in consideration
the distribution of temporal and textual scores. The proposed approach takes the distri-
bution of text scores and the distribution of time scores to map the scores to an optimal,
texto-temporal score distribution. We then compare this state-of-the-art approach with
the simpler approach of linear normalization, for which the scores from text and temporal
similarities are simply scaled to a common range such as [0, 1] before linear combination.

To understand the motivation of investigating a more complex normalization such as
score distribution normalization, in Figure 5.1 we show the di�erent score distributions
from textual and temporal similarities. For each ranking position is shown the average
score, obtained over the 13 queries with time in TREC Novelty 2004 collection, range-
normalized in [0, 1] without considering score distribution. For instance, in ranking
position 1 are shown the average score of the 13 documents in the the top-1 rank for the
13 queries.

The e�ect of combining scores of di�erent systems by considering their score distri-
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Figure 5.2: Example to show e�ects of distribution normalization in combined ranking.

butions is better shown in the example of Figure 5.2. On the left, we show the score
distributions of two hypothetical ranking systems, one based on textual relevance and one
based on temporal relevance. We also show in white markers the same scores normalized
to a common distribution, so that their distributions become more similar. On the right,
their scores are combined in two di�erent ways: with and without the distribution-aware
normalization. For simplicity’s sake we assume that the two sets of scores are disjoint,
i.e. they have no documents in common. The combined ranking of the distribution
normalized scores (white) is heavily di�erent from the combined ranking of the original
scores (black): normalized scores alternate more in the ranking, while original scores do
not blend, remaining (mostly) separated.

Score normalization in text-temporal relevance, however, is not always addressed [69]
or carried out with simple transformations [27], without considering the score distribu-
tion of the two similarities. In this section we analyze the score distributions produced by
a temporal similarity simtime based on metric distance, in comparison with well-studied
score distribution from text relevance models. Then we consider the applicability of
known score normalization approaches to the textual-temporal aggregation. We applied
a distribution-based normalization approach, which shown its e�ectiveness on textual
rankings aggregation [48], to the textual-temporal scenario. In this approach the source
scores are normalized to a common target distribution. We evaluate this approach using
TREC Novelty 2004 collection, showing the e�ectiveness in relation with di�erent target
distributions.

5.3.1 Optimal Score Distribution

A good scoring function, therefore a ranking system, should satisfy the probability rank-
ing principle (PRP), for which the probability of relevance should be monotonically
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increasing with the score [114]. For this reason in single-ranking retrieval there is no
need to normalize or standardize the variety of scores, but this become crucial in merg-
ing di�erent ranking or in optimal rank thresholding. While in the latter application
we must transform the score into a probability of relevance, in the merging di�erent
ranking we simply need to make the scores comparable. To achieve this goal, any mono-
tonic transformation would be a candidate for this process, since it leaves the ranking
unchanged by definition [14].

Among the normalization approaches we must distinguish simple linear trasforma-
tions from score-based transformations. We take in exam linear transformation and
optimal score transformation. The latter approach abstracts the technique in [48] to
map scores to a common target distribution. We instantiate the approach with three
di�erent target distribution:

• Optimal score distribution: an average distribution of the two raking systems.

• Text score distribution: an average distribution of textual ranking systems.

• Decay score distribution: the average distribution of the time similarity simtime,
whose transformation is based on the exponential decay e≠”.

We ruled out the mixture model normalization based on probability of relevance [92]
because it assumes that the considered scoring functions, taken separately, are e�ective
enough to model a boolean relevance model. While this assumption holds for the textual
component of the aggregation simtxt, this is not true for the solely temporal similarity
simtime [27]. Temporal similarity, taking in consideration only the temporal scope of
a query, ignored the topics expressed by keywords, resulting therefore ine�ective to
estimate, alone, the relevance of a document. For the same reason we combine the
two similarities through a linear combination using a weighting parameter – to assign
smaller weight to the temporal similarity than to the textual similarity, thus excluding
combination algorithms such CombSum and CombMNZ [51] which assume all the scoring
functions to be equally e�ective.

The linear transformation aims at normalizing a score to fit in a defined range
[min, max], often the zero-one range [0, 1]. Given a raw score s, the normalizing function
normlin(s) is defined as:

normlin(s) = min + s ≠ smin

smax ≠ smin
(max ≠ min) (5.2)

where smin and smax are respectively the minimum and the maximum raw scores ob-
tained applying sim(Q, D) on every document in the set of documents � for a significant
set queries in �. As for the text similarities considered in our evaluation (Vector space
model, BM25, Language Model Dirichlet) smin and smax are real values in the range
[0, +Œ[. The temporal scores, by definition of simtime using negative exponential, are
already in the zero-one range, therefore the linear transformation would leave unaltered1

1
Normalization on the scores given by negative exponential can be a�ect by linear normalization, if

the s
max

is computed over all the queries and and a particular query does not retrieve a document with

0 distance.
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Figure 5.3: Mapping of a score s1, produced by the scoring function simBM25, on the
optimal score distribution distribution OSD.

both the range and the distribution of the scores.
The optimal score transformation, as defined by Fernández et al.[48], maps the

score of each rank to an optimal score distribution (OSD). In their work, they modelled
the OSD as the average distribution of several text scoring systems, obtained empirically
on a sample of scoring systems and queries. First the cumulative score distribution Fsim

of every scoring function involved is computed:

Fsim(s) = card({t œ Hsim | t Æ s})
card(Hsim) (5.3)

Where Hsim µ Cod(sim) is a statistically significant sample of scores produced by
the scoring function sim. This can be obtained empirically by running random queries
on a document collection, as shown in Figure 5.4.

In order to model the OSD as a function in [0, 1] æ [0, 1], and to compute the average
distribution of the scoring functions involved, scores are normalized in the [0, 1] range
through the normlin linear transformation. First an OSDtext for the text similarities
only is obtained, then the general OSD is computed as the average between OSDtext and
OSDtime (the latter is equal to Ftime). Finally, the normalizing function normOSD(s) is
defined as:

normOSD(s) = OSD≠1 ¶ Fsim (5.4)

Where Fsim is the cumulative score distribution of scoring function subject of normal-
ization. The normalizing function is applied to both textual and temporal scores, using
the appropriate Fsim and the common OSD. The mapping process is shown in Figure
5.3, where scores from simBM25 are mapped in the OSD distribution. In the graphic
example, starting from a sample score s1, we first compute FBM25(s1), then we find
the t1 value for which OSD(t1) = FBM25(s1), that is we apply the inverse function
OSD≠1 to FBM25(s1). The resulting t1 is the normalization of s1 using the optimal
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Figure 5.4: Optimal score distribution computed as the average of cumulative distribu-
tions (FBM25,Fvsm,Flmd) and (OSDtext,Ftime).

score distribution.
The textual score transformation comes from the idea of an optimal score trans-

formation but, instead of modelling a common average distribution for the involved
scoring functions, we choose the score distribution Ftext derived from the average dis-
tribution of textual similarities simtext as the destination model for both the scores: we
map the scores from simtime and the scores from simtext to this distribution.

normtext(s) = OSD≠1
text ¶ Ftime (5.5)

In the same way a reciprocal transformation to map textual scores to the temporal
score distribution is defined, which we call exponential decay transformation due
to the time distribution peculiarity.

normdecay(s) = F ≠1
time ¶ Ftext (5.6)

5.3.2 Score normalization Evaluation
In order to show the e�ect of the defined score normalizations, we computed several
e�ectiveness measures on the 13 queries from the TREC Novelty 2004 collection. These
queries have been selected among the 50 topics for having temporal expressions in their
topic title, description or narrative.

Standard evaluation measures such as precision, recall, map and NDCG are computed
for each normalization function presented in Section 2, for di�erent values of the –
variable of the linear combination of simBM25 and simtime. In Figure 5.5 we show the
NDCG values, a measure that take in consideration the rank of relevance judgement and
compares this ranking with the results ranking. This measure is particularly significant
in this context because the normalization techniques a�ect more the ranking than the
sets content. It is clear from the figure that OSD normalization performs overall better
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than linear transformation, while the latter is still more e�ective compared to text and
decay score distribution normalizations. Moreover OSD normalization proves to be more
robust against variations of –.
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Figure 5.5: NDCG scores for the defined normalization functions over di�erent values of
–.

Precision Recall
P@5 P@10 P@20 R@5 R@10 R@20

lin 0.846 0.854 0.827 0.183 0.372 0.721
OSD 0.877 0.846 0.808 0.191 0.367 0.704
text 0.846 0.839 0.785 0.183 0.366 0.687
decay 0.815 0.823 0.808 0.178 0.357 0.704

Table 5.1: Top-k precision and recall for the normalization functions with – = 0.5

nDCG@5 nDCG@10 nDCG@15 nDCG@20

lin 0.824 0.837 0.825 0.836
OSD 0.897 0.870 0.851 0.847
text 0.824 0.827 0.807 0.805
decay 0.845 0.841 0.829 0.837

Table 5.2: Top-k nDCG for the normalization functions with – = 0.5

We then computed the top-k precision, recall and nDCG values, setting a fixed
– = 0.5 for the linear combination, that is the arithmetic mean of the two similarities,
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therefore without biases toward one of the two components, in order to exclude the
e�ect of a very unbalanced weighting. Table 5.1 shows that while OSD normalization
yields better precision and recall for the top-5 results, for greater values of k linear
transformation it performs better. However, if we take into account the ranking posi-
tions, computing the top-k nDCG, OSD normalization exhibits far more e�ectiveness
compared to other approaches. The greatest change in the results set applying di�erent
normalizations is in fact to be found more in the ranking than in results sets.

5.4 Reranking

Recent works indicates that in combined retrieval, with text being one of the components,
filtering the documents using text retrieval and then combining scores using the other
components produces better results than combining the components scores for all the
documents [106, 96, 38]. All the related work suggest that the text component of a
search query is, in the majority of cases, the one that better express the user intent.
Moreover all text similarities, from the boolean model to the more complex language
models, have a strong and intuitive way of filtering documents: a document is retrieved
if it has at least one query term (in the case of conjunctive queries) or if it has all the
query terms (in the case of disjunctive queries).

TEXT
results

TIME
results
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C (0.97) H (0.97)
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D (0.02)

E (0.01)

Figure 5.6: Example of the distinct retrievals. Time retrieval retrieves all documents,
while text retrieval retrieves a subset of documents. In the table are shown the documents
similarity scores for text retrieval and time retrieval.
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Other than improving e�ectiveness, filtering documents using the text can play a key
role in the performance of the retrieval if the other retrieval components are less selective
than text retrieval, that is, they retrieve larger sets of documents to be processed for
combination [133]. This is the case with temporal similarity, which assumes by definition
a non-zero similarity score for all the documents of a given document collection. Unless
a minimum threshold is set for temporal relevance, the set of time results is the set of
all documents (see Figure 5.6). Moreover computing the distance (thus the similarity)
between two temporal scopes is not as straightforward as computing the distance between
two vectors (as in vector space model and related models), requiring long computations.
This implies that the computational costs of retrieval can overall be very high.

There is more than one way to rerank and combine scores of two retrieval components.
We show how this di�erent settings produce di�erent results first using a synthetic
example with the 15 documents in Figure 5.6. Then we show the results of evaluating
reranking versus full retrieval. In Table 5.3, a document collection of 15 documents is
searched using some query with a text component (keywords) and a temporal component
(time intervals). Green documents are the ones retrieved by the temporal similarity only,
red documents are retrieved by both the temporal and the text similarity. The text
similarity retrieves 10 documents out of 15, and assign a text similarity score indicated
in the TEXT results column of the table in Figure 5.6. For the same query, the temporal
similarity retrieves 15 documents out of 15, assigning a similarity score indicated in the
TIME results column of the table in figure.

In Table 5.3 we show the results of di�erent reranking settings. The first two columns
are the two results lists from text and temporal retrieval with the related similarity
scores. The remaining columns show the results list and scores under one of the 3
following settings:

• TEXT comb– TIME: this is the full combination of all the documents in the
collection. The final score of a document D is given by the linear combination:

sim(D) = –simtime(D) + (1 ≠ –)simtext(D)

• TEXT rerank– TIME : this setting reduces the scope of similarity scoring and
combination to the only set of documents retrieved by the text similarity. The
text similarity is applied to filter the documents set, then the temporal similarity
is computed for this reduced document set and the two similarities are merged
using linear combination:

sim(D) =
I

–simtime(D) + (1 ≠ –)simtext(D) if simtext(D) ”= 0
0 if simtext(D) = 0

• TEXTtopk comb– TIMEtopk: this setting takes in consideration the union of the
k best ranking documents in text retrieval and the k best ranking documents in
temporal retrieval. The rationale behind this setting of reranking is that in ranked
results the user is interested in the top-k documents only. The set of documents
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TEXT
results

TIME
results

TEXT
comb.5
TIME

TEXT
rerank.5
TIME

TEXTtop5
comb.5

TIMEtop5

TEXT
comb.05
TIME

TEXT
rerank.05
TIME

A (0.99) F (0.99) K (0.94) K (0.94) A (0.52) A (0.943) A (0.943)

B (0.98) G (0.98) L (0.93) L (0.93) F (0.52) K (0.940) K (0.940)

C (0.97) H (0.97) M (0.92) M (0.92) B (0.51) B (0.933) B (0.933)

D (0.96) I (0.96) N (0.91) N (0.91) G (0.51) L (0.930) L (0.930)

E (0.95) J (0.95) O (0.90) O (0.90) C (0.50) C (0.923) C (0.923)

K (0.94) K (0.94) A (0.52) A (0.52) H (0.50) M (0.920) M (0.920)

L (0.93) L (0.93) F (0.52) B (0.51) D (0.49) D (0.913) D (0.913)

M (0.92) M (0.92) B (0.51) C (0.50) I (0.49) N (0.910) N (0.910)

N (0.91) N (0.91) G (0.51) D (0.49) E (0.48) E (0.903) E (0.903)

O (0.90) O (0.90) C (0.50) E (0.48) J (0.48) O (0.900) O (0.900)

A (0.05) H (0.50) F (0.050)

B (0.04) D (0.49) G (0.049)

C (0.03) I (0.49) H (0.049)

D (0.02) E (0.48) I (0.048)

E (0.01) J (0.48) J (0.048)

Table 5.3: Example of full combination of documents, reranking, top-k combination for
di�erent –. The operator comb– is the linear combination with – as the weight for the
temporal component. The operator reranking– is the comb operator applied to the set
of text results.

can be furtherly reduced to the k most relevant documents from both text and
temporal retrieval:

sim(D) =
I

–simtime(D) + (1 ≠ –)simtext(D) if D œ kNNtext(Q)fi kNNtime(Q)
0 otherwise

The scenario depicted in Table 5.3 is purposely chosen to highlight the di�erent
results (top 5 temporal results have zero text similarity), however can reflect a real
retrieval, as the top-k results of text and temporal retrieval are mostly distinct sets.

With a combination weight of 0.5, the full combination TEXT comb.5TIME has
5 green results which are retrieved only from the temporal similarity, two of which
are among the top-10 results. Conversely, in the reranking setting TEXT rerank.5
TIME the documents in green are not considered, because they are not retrieved by
the text similarity. This example shows that with – = 0.5 there is a crucial di�erence
between full combination and reranking. Taking in consideration the top-k results of both
the retrievals has an even worse result, since the top-5 results of the full combination
(K,L,M,N,O) do not appear in the results list.
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The outcome is di�erent when – is low and the text similarity has more weight
than the temporal similarity. With – = 0.05, reranking the text results or taking in
consideration the whole set of documents has no e�ect on the final top-10 results, as
shown in the last two columns of Table 5.3. As we show in the evaluation chapter, good
values of – are in a range between 0.3 and 0.03, making the rerank the best tradeo�
between a reduced number of computations and adherence to the original combination
model.

In order to show the e�ect of reranking in comparison to full combination of all
documents, we tested the two settings on the TREC Novelty 2004 collection.
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Figure 5.7: Exhaustive combination (continuous line) and reranking combination
(dashed line) are indistinguishable for the best – weight(TREC Novelty 2004).

In Figure 5.7 the 4 temporal metrics (di�erent colors) are evaluated using the rerank-
ing setting (dashed line) and the exhaustive combination on all documents (continuous
line). Figure 5.7a shows that reranking does not a�ect the results in the most e�ective –
range , while for greater – reranking reduces the actual weight of the temporal similarity,
thus reducing its negative e�ects. Figure 5.7b better shows the indistinguishability of
the two settings’ results in the most e�ective –, which start separating for greater –.

5.5 Combined Access Methods
Similarities defined on metric spaces allows to search in information spaces di�erent
than the term-based ones, such as similarity search in audio and video objects, images
or temporal scopes. Combining similarities from two information spaces can lead to
improved e�ectivenes, as in the case of text and time, however significant performance
challenges must be addressed. While for textual terms query evaluation strategies and
indexes are well known and studied, the metric representation of intervals implies a
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strongly di�erent data which requires ad-hoc indices. Moreover, combining the scores
from similarities of di�erent nature can lead to non-trivial evaluation strategies. For
instance, in the retrieval strategies based on terms if no query terms are in a document
we can ignore it in query evaluation because the document score would be zero. The
strategy is then guided by the inverted index to access only the reduced set of documents.
On the contrary with metric distances no reduction can be applied before an actual score
evaluation, because all the documents have a non-zero, altough very small, score value.
In this Section new data structures and query evaluation strategies are presented to
allows to e�ciently perform the top-k temporal retrieval and the combined retrieval.

5.5.1 Combined Query Evaluation Strategies
Taken separately, both access methods in vector space model and similarity search in
metric spaces have been broadly studied, leading to indices and data structures that
generally trade o� memory space for time e�ciency and exploits peculiar properties of
these two models.

From an data access point of view, the text model and the temporal model are
strongly di�erent for two reasons:

1. Collection size over feature space dimension ratio: in text similarity the set of
features that distinguish documents is the set of all terms (lexicon), and each
document is represented as a subset of the lexicon (bag-of-words). In our metric
space setting the number of features, that is the number of every possible interval,
is a quadratic function on the number of chronons. This number can easily counts
billions of intervals if the granularity is fine enough (e.g. 1 day granularity) over
a long period (e.g. 1 century or more). For instance, given a one day granularity
and a temporal domain of only 10 years, the number of single days would be 3650,
which usually less than the usual number of words in a lexicon. However the
number of all the intervals will be almost 6.7 million

2. Search reduction: in text similarity search the absence of one or all terms of the
query in a document, respectively in the disjunctive and conjunctive settings, ex-
clude that document from the evaluation because its similarity score would be zero.
In the metric space setting instead, every document with any temporal information
have a temporal similarity to the query, even if this is a very low score, therefore
cannot be ruled out from the evaluation.

3. Relations between intervals: temporal models can involve relations between inter-
vals such as containment [22]. Consider a simple model defined to give similarity
score 1 if one interval in the document is contained in the query interval, 0 other-
wise. In this case our search would not be limited to the specific query interval,
but to all the intervals that are contained in it.

The two kind of similarities, one defined on a set of terms and the other on a metric
space, can be e�ciently combined using the proposed models to index documents and
evaluate hybrid queries.
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The queries discussed can have textual terms, metric elements, or both. For sim-
plicity we consider just disjunctive and conjunctive term expressions, as defined by this
grammar in Backus Normal Form:

< query >::=< text > | < time > | < text >< time >
< text >::=< conjuction > | < disjunction > |term
< time >::= interval|interval < time >
< disjunction >::=< text > AND < text >
< conjunction >::=< text > OR < text >

where term is an element of the corpus lexicon, object is an element of the metric
space and the + operator indicates the combination of a query with a metric object.

As with traditional text Information Retrieval, in which we have a Document At
A Time and a Term At A Time strategies, we want to access the metric similarities
searching for a specific document or for a specific metric object. The document based
strategy is convenient for disjunctive queries and for conjunctive text-biased queries,
while the metric based become e�cient for conjunctive text queries with enough weight
for the metric component in the linear combination function (– value). Must be noted
that the two strategies di�er in the way we access the metric data, whereas the access
method for text similarity remain the same, i.e. through an inverted index.

Algorithm 1 Document Based Search
1: Q.T = {t1, ..., tn}
2: Q.M = {o1, ..., om}
3: R =<>
4: for all dj in D do
5: aj Ω 0
6: end for
7: for all ti in Q.T do
8: for all dj in Pi do
9: if dj not in R then

10: ADD(R,dj)
11: end if
12: aj Ω aj + weight(dj , ti)
13: end for
14: end for
15: for all aj in R do
16: aj Ω aj + sym(dj , Q.M)
17: end for
18: sort R on aj

19: return R

Algorithms 1 and 2 describe these two strategies from an high level point of view,
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with no details on how we travers and intersect posting lists. The algorithm 1 applies to
the document first querying scenario, the one in which we first reduce the set of interested
documents, then we retrieve the metric component score just for these documents. This
algorithm can be considered the corresponding of a DAAT algorithm in the classic text
Information Retrieval.

Algorithm 2 Object Based Search
1: Q.T = {t1, ..., tn}
2: Q.M = {o1, ..., om}
3: R =<>
4: for all dj in D do
5: aj Ω 0
6: end for
7: for all ti in Q.T do
8: for all dj in Pi do
9: if dj not in R then

10: ADD(R,dj)
11: end if
12: aj Ω aj + weight(dj , ti)
13: end for
14: end for
15: for all aj in R do
16: aj Ω aj + sym(dj , Q.M)
17: end for
18: dx = fetch(Q.M, S)
19: ax = ax + sym(dj , Q.M)
20: while ax > min(a in R) OR ÎRÎ < K do
21: if dx not in R then
22: ADD(R,dx)
23: end if
24: dx = fetch(Q.M, S)
25: end while
26: sort R on aj

27: return R

The algorithm 2 instead, applies to the object first scenario in which we want to
access metric scores based on the metric object in the query. In row 18 we ”pop” the
first element in the similarity list for the vector of metric objects {o1, ..., om}, that is
a list of documents ordered by decreasing similarity score against the metric objects.
Then we use the similarity score of the current minimum element in the result list R
(row 20) as a threshold to determine if the fetched document belong or not in the top K
query. If this is not the case we stop the retrieval from the similarity tree and we sort
the resulting list R. In this way the algorithm reduce the number of elements accessed
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in the index based on whether or not these elements can have an e�ect in the ranked
result list, as have been done in [13] for text query evaluation.

5.5.2 Data Structures
The access method we propose involves two indices, one for the textual portion of the
query and another for what we call the metric component of a query. This metric
component may be extracted from a pure textual query and than normalized, as in [27],
or it may be already an object of the involved metric space.

Figure 5.8: The two index structures for combined query evaluation.

The inverted index is accessed first when the document first scenario applies, while
the similarity tree is accessed in the object first scenario only.

Inverted index and payloads

Inverted index is widely used in text Information Retrieval systems as it is still considered
the most e�cient access method for a limited lexicon of terms. In the context of inverted
indices we call an occurrence of a term within a document a posting. The vector of all
unique terms in the collection is a lexicon, and the list of all the documents containing
a specific term is the posting list of that term [146]. Each posting in a posting list can
maintain a number of payloads in addition to the document ID. In the inverted index in
Figure 5.8 one of the payloads for the posting of a document dm is the set of temporal
intervals (Metric Data) in the temporal scope Td

m

.

Temporal Similarity Tree

The scope of the similarity tree in Figure 5.8 is to directly access the documents whose
temporal scope is similar to a given interval. Since we defined the temporal similarity as
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Document ID Temporal Scope Keywords
D1 {[4, 4]} {president, house, good, sky}
D2 {[2, 3]} {good, sky, ocean, navy}
D3 {[4, 4], [1, 1]} {best, good, try, election}
D4 {[1, 3]} {white, navy, good, try}

Table 5.4: Temporal scopes and keywords for 4 documents with a temporal domain of 4
chronon {1, 2, 3, 4}

a function on metric distances, the similarity tree, given an interval (a, b), must return
a ranked list of the documents in the collection whose temporal scope has minimum
distance to (a, b).

A convenient data structures for the representation of intervals with di�erent size is
a directed acyclic graph (DAG), with a node for every possible interval, where each node
n(a,b), corresponding to the interval (a, b), has two directed edges:

• n(a,b) æ n(a,b≠1)

• n(a,b) æ n(a≠1,b)

Given n chronons in a discrete timeline, the temporal domain �, that is the set
of all (n(n + 1)/2) possible intervals, can be fully represented using the defined DAG.
Furthermore, starting from the root node t0, tn, corresponding to the largest interval, it
is possible to traverse the graph and reach any given node in O(n) in the worst case.
This is due the fact that every node n(c,d) reachable from n(a,b) statisfies the property
that (c > a · d Æ b) ‚ (c Ø a · d < b). Less formally, every interval reached by (a, b) is
included in (a, b).

Since the temporal scope TD of a document D is a subset of the temporal domain �,
it is possible to represent all its interval in the DAG we just defined or, much better, the
precomputed distance ”ú((a, b), TD) for every possible interval (a, b) A naive similarity
tree would maintain a forest of DAGs, one for every document in the collection. This
would a memory cost of O(mn2) where m is the number of documents in the collection
and n is the number of chronon in �. Moreover we would still scan all the produced
DAGs in the forest for a single similarity search, therefore the computational cost would
be O(mn), plus the additional cost of sorting the distances for top-k retrieval.

An ideal implementation for a temporal similarity tree would allow to directly access
the documents closer to a certain interval, in the same way text similarity search methods
don’t scan all the documents but instead access an inverted index by the query terms.
Fixing a generalized metric distance ”, an aggregation function ”ú, and a temporal
domain �, this is rather possible.

We propose an inverted similarity tree as a graph constructed similarly to the previ-
ously defined DAG, with arcs instead of directed edges. The main idea of the inverted
similarity tree is that each node n(a,b) contains a posting list with the IDs of every docu-
ment D s.t. (a, b) œ TD. Defining a function of arcs accordingly to the selected distance
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” and giving an interval (a, b) from the query, it becomes possible to traverse the graph
in distance order, starting from the documents which contain exactly (a, b), resulting
in 0 distance and maximum temporal similarity, and continuing to the adjacent nodes
with decreasing similarity at each step of the traversal. This ordered traversal allows to
directly obtain the sorted list of top-k documents for a temporal similarity query.

Figure 5.9: The proposed inverted similarity tree for the document collection in table
5.4 .

The representation of temporal scopes of di�erent documents on a single similarity
tree is better shown by example in Figure 5.9. The represented documents with respec-
tive temporal scope are the 4 documents from Table 5.4. Temporal domain � for the
collection is the set of all possible intervals with 4 chronons 1, 2, 3, 4. The similarity tree
built in Figure 5.9 allow top-k traversal for both query biased coverage and document
biased coverage distances seen in Section 3.2.

A document collection can rely on a single inverted temporal similarity tree, therefore
the order of the used memory depends on the size of the similarity tree, that is O(n2),
where n is the number of chronons. The time complexity for the traversal is O(ns(k)),
where n is the number of chronons and s(k) is the number of nodes retrieved to obtain
k results in the top-k setting, which depends on k and on the sparseness of the tree.

It must be noted that the described data structure is suitable only for the minimum
distance aggregation, as it takes the most favourable intervals for each document. The
tree is implemented to support an object-based search, meaning that it access documents
starting from the intervals.



Chapter 6

Evaluation of Metric TIR

In this chapter we evaluate the e�ectiveness of the proposed temporal similarity for
information retrieval. In particular, we want to evaluate, in terms of precision, recall and
related measures for IR evaluation, what are the improvement of our model in comparison
with a text-only baseline and with the state of the art temporal models. Considering also
that our overall model comprises a set of di�erent settings and parameters, the results
of evaluation are organized as following:

1. Results over text baseline: these results highlight the improvement obtained by
adding the temporal similarity to the traditional text retrieval, by combining the
text and temporal scores. Under the same conditions, we show how adding tem-
poral similarity significantly enhance the e�ectiveness of retrieval.

2. Results over temporal model settings: the proposed model comprises several set-
tings and parameters, such as the choice of temporal granularity, metric distance
and the combination weight –. Since di�erent documents and queries collections
di�er by temporal extent, granularity usage and size, as shown in Chapter 2 and
3, we test the model settings in all the test collections considered.

3. Results over state of the art: the proposed model is evaluated in comparison with
state of the art temporal model Language Model with Temporal Uncertainty [22].
Moreover, we define a very e�ective temporal model using the BM25 similarity on
the normalized intervals, named Temporal BM25, with the sole aim of evaluating
the metric model against a challenging baseline.

In order to run the evaluation we built an experimental framework that comprises a
variety of standard corpuses, temporal taggers, IR models implementations and evalu-
ation tools. We briefly describe this experimental setup before showing and discussing
the results obtained.

83
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6.1 Experimental setup

An experimental framework has been built that comprises a variety of standard corpuses,
temporal taggers, IR models implementations and evaluation tools.

6.1.1 Environment and software

We run all the experiments on a machine with the following features: Linux Ubuntu
Server 14.04.1 LTS, RAM 64GB, CPU 8 cores, 8TB storage, Python 2.7.6, Java version
1.7.0 79 (OpenJDK 64-Bit Server VM).

We identified, normalized and annotate temporal expressions in text using Heideltime
[127], a state-of-the-art NLP tool, for both documents and topics. We built di�erent
Python modules in order to parse each document collections and sets of evaluation
topics. We used text similarities implementations from Apache Lucene1 to compute the
text similarit scores. We stored in a MySQL database the text similarity scores for all
queries and documents, precomputed using Apache Lucene, as well as the measurements
for all the systems evaluated. Temporal similarity scores are instead computed on-the-
fly. We implemented in Python the overall model defined in this paper, comprising:
transformation of normalized timexes in discrete intervals; generalized metrics and metric
distances; application of granularity on extracted intervals; normalization functions for
temporal and text score; aggregation of distances ”ú; transformations of distance in
similarity.

We developed a python framework for the experiments implement the permutation on
this parameters: metric distances; granularities; aggregations of distances; combination
weights; normalization methods; distance to similarity transformations.

For TREC collections we measured e�ectiveness using the o�cial trec eval tool, while
for the other collections we implemented MAP, NDCG, precision and recall measure-
ments in Python.

6.1.2 IR Collections

The text collections comprised in the experiments, along with topics and relevance judge-
ments, are shown in Table 6.1. The test collections Novelty 2004, Robust 2004 and
Robust 2005 are revised by the TREC organization. Topics and relevance judgments
are publicly available. Although the Novelty 2004 collection was specifically made for
the task of finding novel information, a set of judgements for the common meaning of
relevance is also available. The Robust collections involves topics that were found to be
particularly di�cult in previous TREC challenges.

The Temporalia collection is a test collection made for the Temporal Information
Retrieval task of the NTCIR ’11 conference. Despite this, the original task di�ers from
our task for each topic there is not detailed temporal scope, but a more general query
intent specified as one of the four classes present, past, future or atemporal.

1
https://lucene.apache.org/core/
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The New York Time test collection from the evaluation work of the LMTU model
[22] is a set of 40 queries specifically designed for temporal information retrieval with
an explicit temporal intent for each topic. Despite sharing the same task and having a
temporally focused corpus of documents (1.8 million NYT articles), this collection has
the disadvantage of a narrow relevance assessments, because document pooling involve
exclusively the top-10 results of their systems.

Timexes occurrencies Timexes granularities
Documents Tmx/Doc Wrd/Doc Tmx:Wrd % D % M % Y % Other

Novelty 20042 1,808 6.46 500 1:77 46.22 12.48 32.18 9.12
Robust 20043 528,155 6.90 516 1:74 47.67 11.64 33.57 7.12
Robust 20054 1,033,461 9.14 476 1:52 44.09 7.43 26.16 22.32
Temporalia5 3,648,716 3.92 482 1:123 53.47 16.05 30.48 0.00
NYT6 1,855,140 8.17 574 1:70 49.07 9.40 34.60 6.93

Table 6.1: For each collection: total number of documents, statistics on timexes and
words occurrences (average number of timexes per document as Tmx/Doc, average num-
ber of words per document as Wrd/Doc, ratio between timexes and words as Tmx:Wrd)
and statistics on the granularities of found timexes (granularity of one day as D, one
month as M, one Year as Y and other intervals di�erent from the previous).

The TREC collections have been annotated using Heideltime, Temporalia collection
is available already including annotated intervals, while the NYT corpus has been an-
notated using TARSQI [22]. More details on the temporal aspects of these document
collections are examined in Chapter 2. All the document collections have been subjects
of extensive experiments to test the presented temporal model under all possible settings.

6.1.3 Temporal scope of queries
In determined the temporal scope of a query we consider the inner-time only, that is the
set of temporal expression in the query. This implies that inner-time of query exists only
if a query, along with its keywords contains also at least a temporal expression. This two
components, text keywords and temporal expressions, are sometimes referred to as the
topical features and the temporal features of a query. A query with temporal features is
considered an explicit temporal query. If we consider all the queries to have a temporal
scope, we may refer to the non-explicit temporal queries as implicit temporal queries.

Explicit content-level temporal queries however are quite rare, in both real queries
(1.21% in the AOL queries dataset [29]) and evaluation queries (0.3% of TREC topic
titles contain a time expression). The number of queries that include explicit timexes
is therefore inadequate to run a significant evaluation. Even when timexes are found in
queries title or description, the improvement outcome with temporal similarity can vary
a lot, as we found out with a per-topic evaluation on the explicit time queries. In Table
6.2 the 15 time queries in Robust 2004 are sorted by the MAP percentage gained with
temporal similarity,to highlight the divergence in improvements.
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Topic title – Distance Time MAP Text MAP MAP Improv.

arrests bombing WTC 0.85 cov d 0.1573 0.0344 +357.27%
Modern Slavery 0.15 man 0.3505 0.2017 +73.77%
Hubble Telescope Achievements 0.25 cov d 0.2605 0.1609 +61.90%
inventions, scientific discoveries 0.3 eucl 0.0387 0.0267 +44.94%
Tiananmen Square protesters 0.25 cov q 0.1673 0.1226 +36.46%
legal, Pan Am, 103 0.95 cov q 0.1884 0.1409 +33.71%
Implant Dentistry 0.1 eucl 0.4416 0.3582 +23.28%
Argentine/British Relations 0.2 eucl 0.5203 0.4443 +17.11%
Winnie Mandela scandal 0.1 eucl 0.6592 0.6041 +9.12%
Export Controls Cryptography 0.15 cov d 0.2925 0.2906 +0.65%
OIC Balkans 1990s 0.9 cov d 0.2648 0.2642 +0.23%
robotics 0.05 man 0.4603 0.4603 0.00%
Pope Beatifications 0.15 cov q 0.5545 0.5545 0.00%
Industrial Espionage 0.1 eucl 0.2665 0.2665 0.00%
Polygamy Polyandry Polygyny 0.15 man 0.6641 0.6641 0.00%

Table 6.2: MAP evaluation for each topic with explicit time in title or description -
TREC Robust 2004.

This result suggest that much more queries are needed in order to conduct a stronger
evaluation and identify the most e�ective distances along with their best parameters.

To overcome this rareness we associate time intervals from di�erent sources to the
queries without time:

1. Topic title: the topic title is the actual query.

2. Topic description and narrative: the topic description of a TREC topic describes
the topic area in one sentence. The topic narrative describe concisely the docu-
ments relevant to the query.

3. Pseudo-relevant documents: the most occurrent interval is extracted from docu-
ments pseudo-relevant to the query.

Time intervals are searched in the above order, if intervals are found in a source the
search is stopped and the set of intervals is considered as the temporal scope of the
query.

While the first two sources to extract the time of a query are rather straightforward,
when no time is specified in the query title or description di�erent techniques can be
found in literature that use di�erent sources. These techniques aim at determining the
temporal scope of an implicit time query, given temporal data external to the query
but related to their keywords. For instance, if query log is available, the keywords of
a query can be used to search similar queries that include an explicit timex. [97]. The
popularity of a query over time can also be exploited to extract the most important
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periods related to the query [82]. When available web snippets of search results can be
also used to extract important timexes related to the query [29]. Finally, the corpus of
documents has been shown to be valuable to extract the time related to a query [74].
Kanhabua and Nørv̊ag show 3 di�erent techniques to extract the time of a query from
(i) the whole corpus of documents looking at the time-keyword co-occurrence through
language modeling, (ii) the timestamp of the top-k pseudo-relevant documents (iii) the
inner time of the top-k pseudo-relevant documents. The approach (iii) has been shown
to be the most valuable in dating queries [74].

Following this latter approach, when there are no explicit timexes in the topic title,
description and narrative, time intervals are extracted from a subset of pseudo-relevant
documents of the collection. Because many di�erent intervals can be extracted with
this method, we sort the found intervals by number of occurrences in the set of pseudo-
relevant documents, and the most occurrent interval is selected as temporal scope. We
choose to take only one interval since all the queries found with explicit timexes have a
singlet temporal scope.

Query temporal scope source

Collection Title
Description

and narrative
Pseudo-relevant

documents
Total queries

TREC Novelty 2004 0 13 37 50
TREC Robust 2004 1 12 237 250
TREC Robust 2005 0 3 47 50
NTCIR Temporalia 76 3 121 200
NYT 40 0 0 40

Table 6.3: Number of queries temporal scopes extracted from each source.

Taking time intervals from a subset of documents needs particular attention, since
we can use relevant documents from relevance judgements or pseudo-relevant documents
from BM25 retrieval. Using the most occurrent time interval from relevant documents
requires to exclude the involved documents from final results, to avoid the introduction of
bias. Using the time intervals from pseudo-relevant documents, instead, no information
from relevance judgements is involved and there is no need to exclude documents from
the results. In Figure 6.1B we show that, for the most e�ective – range, using pseudo-
relevant documents yields more e�ectiveness than using relevance judgements without
excluding relevant documents. We therefore run all the following experiments with this
strategy: when a temporal scope is not found in the topic, the most occurrent time
interval is extracted from the top-3 documents retrieved using BM25.
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Figure 6.1: Temporal scope from pseudo-relevance (BM25) vs temporal scope from rele-
vance judgements (REL). Subplot (A) shows results for the complete range of –, subplot
(B) zooms on the MAP-optimizing –. Using pseudo-relevance is more e�ective for the
MAP-optimizing – values.

6.1.4 Systems evaluated
We carried a large number of experimental runs to assess the e�ectiveness of the metric
TIR in comparison with the state-of-the-art IR and TIR models, and to evaluate di�erent
settings in the overall approach, such as di�erent metrics and values of combination
factors. The parameters which define a complete IR system are shown in Table 6.4.
Each combination of parameters compose a di�erent IR system. We define a notation
for system names in order to ease the reading and the understanding of the combination
of variables underneath a specific evaluation. We will use this notation in the following
evaluation results.

Each evaluated system is defined using a tuple of parameter using the notation in
table 6.4. For instance we will use the notation:

(M = man, A = min, G = w, – = 0.2)
referring to a system using BM25 as the text similarity, Manhattan distance for

temporal similarity, exponential decay for transformation of the distance in a similarity,
an – value of 0.2 for the weight of the temporal similarity in the combination with text
similarity, and a linear normalization of the similarity scores.

6.1.5 Evaluation measures
Each system has been evaluated through standard IR e�ectivements measurements:

• Precision@k: fraction of the returned documents by the system in the first k results
which are relevant.

• Recall@k: fraction of the relevant documents which are returned by the system in
the first k results.
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Parameter Instances Values Notation

Temporal similarity

Document coverage distance covd M = covd

Query coverage distance covq M = covq

Manhattan distance man M = man

Euclidean eucl M = eucl

Temporal BM25 Tbm25 M = Tbm25

Aggregation
Minimum min A = min

Maximum max A = max

Average avg A = avg

Granularity

Day D G = D

Week W G = W

Month M G = M

Season S G = S

Year Y G = Y

Granularity-aware A G = A

Weight for temporal relevance – œ [0, 1] [0, 1] – : [0, 1]

Table 6.4: Notation for evlauated systems

• MAP: Mean of the average precision over all queries of a test collection.

• NDCG: Normalized Discount Cumulative Gain.

6.2 Results over text baseline
In the evaluation of the temporal model in comparison to the text baseline, we want
to show how much e�ectiveness is gained using the combination of text and temporal
similarity with respect to using traditional IR models that consider timexes as keywords.

Among the well-known text similarities we choose the Okapi BM25 weighting schema
[115] as a fixed baseline for all the experiment. Altough this choice, we show in Figure 6.2
a short experiment comprehending also other text similarity, for a total of three di�erent
text baselines: Vector Space Model, Okapi BM25 and Language Model Dirichlet.

The MAP (Mean Average Precision) values in Figure 6.2 are grouped by text simi-
larity, showing di�erent settings to deal with the temporal information in text using the
same text similarity. The goal of the figure is to show that the improvement is obtained
independently from the text similarity used. The Original query setting shows the MAP
obtained using queries and documents in their original form, without any temporal an-
notation or trasformation and using only the text similarity. In the Time annotated
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Figure 6.2: MAP obtained on TREC Novelty 2004 using 3 di�erent text similarities
(Vector Space Model, Okapi BM25, Language Model Dirichlet) and di�erent temporal
settings.

in queries setting, the temporal expressions in queries are normalized to a standard
form, but the similarity is still the original text similarity. In the Time annotated in
queries and docs setting the temporal expressions are annotated in both document and
queries, thus unifying the temporal expressions with the same semantic into the same
normalized interval. Finally, the last setting Metric approach, with color filled bars in
the figure, is the combination of the text baseline (in its Original query setting) with
the best configuration of metric distance. Apart from showing that the improvement is
obtained independently from the choice of the text similarity, the figure shows also that
a significant improvement is obtained using the metric approach with respect to using
the original text similarity on normalized intervals.

After fixing the text similarity to Okapi BM25 [115] and the metric distance to
Document Coverage (covd), the complete results are shown in Figure 6.3. In order to
better visualize the contribution of the text and temporal components, in the experiment
of Figure 6.3 we don’t select the – parameter by cross-validation. Instead, we show the
MAP measure evaluated at each value of – in small incremental steps, in the most
interesting range. Plots in Figure 6.3 are separated by explicit time queries and implicit
time queries. Explicit time queries are the queries with an explicit temporal expression
in their topic title, description or narrative, whilst implicit time queries are the ones for
which we extracted their temporal intent from their pseudo-relevant documents. The
parameter setting – = 0.0 indicates the original text baseline, i.e. with zero weight to the
temporal component. In both groups there is an improvement over the text baseline in
the right spot for the – parameter, which is collection-dependent. Overall, explicit time
queries shows a larger improvement over the text baseline with respect to the implicit
ones. Standard deviation in plots is related to the average precision values among the
di�erent queries. Values of standard deviation shows that adding the temporal similarity
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Figure 6.3: Mean (black line) and standard deviation (gray area) of the Average
Precision for di�erent values of – on two subset of queries: explicit and implicit.
(T:bm25,M:covd,A:min,G:M)

improve the average precision while keeping standard deviation in the same range. The
results evaluated in Figure 6.3 are produced fixing the granularity to month, however, in
the same way as the – depends on the temporality of queries and documents, the choice
of granularity depends on the granularity used in the specific documents and queries
collection.

6.2.1 Cross-validation for the tuning of –

Linear combination of scores requires the tuning of the weights for the involved systems
in order to e�ectively combine their results [144]. Since in our model there are only two
systems involved, we reduced the linear combination to a convex combination and the
two weights to a single parameter –. In Figure 6.4 we show the MAP as a function on –
on di�erent collections. The estimation of a proper – value strongly a�ects the results
and, as shown in Figure 6.4, it is collection dependent.

An important observation regarding the results in Figure 6.4 is that the e�ectiveness
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Figure 6.4: Mean and standard deviation of the Average Precision for di�erent values of
– on two subset of queries: explicit and implicit. (T:bm25,M:covd,A:min,G:M)

of the combined model is an unimodal function of the temporal weight: given the –m

value that optimize the e�ectiveness, the average precision is monotonically increasing
for values smaller than –m and monotonically increasing for values greater than –m.

Given the strict unimodality of the e�ectiveness with respect to –, and having only
one parameter to tune, simple numerical optimizations algorithms can be applied to find
the – parameter that maximize the MAP measure. We apply the Golden Section Search
[16] algorithm to find an appropriate weight optimizing the average precision, that is
finding the extremum of the function MAP(–). With a – in the range [0, 1], we set the
golden section search tolerance parameter at 0.005. When the alpha parameter is not
explictly stated, results shown in this section are obtained with the above optimization
technique.

This method however learn a model parameter from the testing data, meaning that
it would require the query relevance judgement in order to choose the best parameter,
therefore leading to a biased evaluation.

To fairly evaluate our model in this context, in each experiment we apply one of
these two strategies:

1. We fix the – parameter to the same value for all the collection, choosing a sound
value but not the optimum one, because it would be di�erent for each collection

2. We conduct experiments with 10-fold cross-validation: the – parameter is esti-
mated using a collection subset di�erent from the subset used for evaluation. The
provided evaluation measures are computed as the average of the cross-validation
results, obtaining for all the collections a statistically significant improvement over
the text baseline.

To illustrate in practice the cross-validation for tuning –, in Table 6.5 we show the
results for each group of topic in all the collections. For instance, for group 1 (first
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10-fold Cross Validation testing sets

1 2 3 4 5 6 7 8 9 10 AVG

Novelty04 MAP 0.809 0.863 0.952 0.835 0.601 0.828 0.835 0.792 0.97 0.931 0.842
– 0.17 0.16 0.17 0.17 0.13 0.17 0.17 0.15 0.17 0.17 0.17

Robust04 MAP 0.266 0.271 0.263 0.282 0.196 0.252 0.248 0.222 0.222 0.237 0.246
– 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.06

Robust05 MAP 0.189 0.264 0.059 0.088 0.213 0.26 0.163 0.236 0.255 0.166 0.189
– 0.05 0.07 0.05 0.07 0.07 0.05 0.07 0.07 0.05 0.07 0.06

Temporalia MAP 0.299 0.282 0.301 0.262 0.343 0.332 0.257 0.243 0.287 0.255 0.286
– 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Table 6.5: MAP and – for each testing iteration of a 10-fold cross-validation run.
(T=bm25,M=covd,A=min,G=1)

column) in the TREC Novelty 2004 collection (first row) the applied – is 0.17, a value
obtained using golden-section search on the topics in groups 2-10 (training groups). In
other words, in finding a good value for –, all the topics are used except the one of the
group we are testing. Applying this value of – on the group 1 we obtain a MAP of
0.809, that is the Mean Average Precision of all the topics in group 1 using – = 0.17.
By rotating the testing and training groups, we obtain an Average Precision for all the
topics in the collection, so that the last column AVG is the MAP for all the topics.

6.3 Results over di�erent model settings
In Chapters 4 and 5 we presented di�erent settings for the metric temporal model,
including di�erent granularity settings, a set of generalized metric distances, and three
aggregation of distances. In this section we evaluate all these settings on four test
collections: TREC Novelty 2004, TREC Robust 2004, TREC Robust 2005 and NTCIR-
11 Temporalia.

6.3.1 Time granularities
The choice of the time granularity a�ects di�erently the test collections considered in
this evaluation. Apart from having a consequence on the model e�ectiveness, the choice
of granularity can have also an impact on the performance of search. In general, choosing
a larger granularity means faster computations, because for larger chronons the space of
the temporal domain considered is reduced. Observing the e�ectiveness of the temporal
model at di�erent granularity, besides revealing what is the best granularity, allows to
choose the preferred tradeo� between chronon size and e�ectiveness.

In Figure 6.5 we fixed all the model setting except granularity, showing MAP results
for the 4 collections using Okapi BM25 for the text similarity, Document Coverage for the
temporal similarity. Because the e�ect of granularity is inconsistent for di�erent values
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Figure 6.5: MAP scores for di�erent granularities (day,week,month,season,year) on the
considered collections. (T:bm25,M:covd,–:0.06,A:min)

of –, we fixed also – = 0.06 for all the collections. A common property of the TREC
collections in Figure 6.5 is that the MAP is a unimodal function of granularity, having
its maximum point at week or month granularity. This means that the e�ectiveness
of the model is monotonically increasing for granularity smaller than the best one and
monotonically decreasing for granularity larger than the best one. This observation does
not apply to Temporalia, for which the season granularity looks as an outlier, resulting
in a bad average precision. This can be explained by the fact that in the Temporalia
collection timexes are previously annotated, using a NLP tool di�erent from Heideltime
that we used on the TREC collections. In the temporal annotation provided in the
Temporalia corpus, only three granularity can be found: day, month, year.

6.3.2 Metric distances
In Chapter 4 we presented di�erent metric distances able to estimate the dissimilarity be-
tween two time intervals: Manhattan distance, Euclidean distance, Document Coverage
distance and Query Coverage distance.

Moreover, we mentioned how we can combine two di�erent metrics to capture tem-
poral properties of both. For instance, the two coverage distances assign zero distance if
an interval is completely covered by the other, indipendently from the distance of their
extremities. By combining the Coverage distances with the Manhattan distance, it is
possible to give more similarity to the contained intervals and at the same time taking
into account the distance between the ends of the intervals.

In Table 6.6 we show the results obtained by each temporal similarity on all the
four test collection. Individual results for the three granularities are also shown: best
result for a collection is shown in red bold, best result for each granularity is shown
in black bold. Overall, the euclidean distance can be considered the best metric to
measure the dissimilarity between two temporal scopes, although the coverage distances
carry slightly better results in Robust 2005 and Temporalia. By looking at each single
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MAP

Novelty04 Robust04 Robust05 Temporalia

Metric G=D G=M G=Y G=D G=M G=Y G=D G=M G=Y G=D G=M G=Y

BM25 Text 0.8131 0.2433 0.1866 0.2696

Man 0.8465 0.8423 0.8262 0.2448 0.2459 0.245 0.1875 0.1893 0.1884 0.2704 0.2704 0.2701
CovD 0.8454 0.8426 0.8251 0.2448 0.2462 0.2452 0.1877 0.1898 0.1888 0.2704 0.2703 0.2702
CovQ 0.8349 0.8319 0.8238 0.2453 0.2462 0.2451 0.1879 0.1898 0.1891 0.2707 0.2706 0.2702
Eucl 0.8481 0.8413 0.8251 0.2451 0.2465 0.2452 0.1877 0.1894 0.1889 0.2703 0.2704 0.2702
Man+CovD 0.8474 0.8428 0.8261 0.2448 0.2459 0.245 0.1875 0.1895 0.1886 0.2704 0.2703 0.2701
Man+CovQ 0.8472 0.8422 0.826 0.2448 0.2459 0.245 0.1875 0.1894 0.1886 0.2704 0.2704 0.2701
Eucl+CovD 0.8479 0.8427 0.8251 0.2448 0.2463 0.2452 0.1876 0.1902 0.1889 0.2703 0.2704 0.2702
Eucl+CovQ 0.8476 0.841 0.825 0.245 0.2465 0.2452 0.188 0.1888 0.1889 0.2704 0.2704 0.2702

Table 6.6: Comparison between metric-based temporal similarities on day, month and
year granularities. In red: best result for the collection. In bold: best result for the
granularity. (T:bm25,–:cross,A:min).

granularity it is di�cult to observe a single best model, but we can observe that using
a coarser granularity thins the e�ectiveness variance among distances.

In conclusion, there is no clear winner among the considered distances: the di�erent
results for di�erent collections suggests that a specific distance can be more suitable for
a specific collection. Running a bootstrap significance test and a t-test, the di�erence
of e�ectiveness obtained from di�erent distances is not significant apart from Novelty
2004, while it is always significant the di�erence between the best temporal distance and
the text baseline.

6.3.3 Aggregation

The generalized metric distances that we proposed and evaluated are defined over pairs of
intervals. Distance between temporal scopes (set of intervals) is obtained by aggregation
of the distances between pairs of intervals. On the test collection used, the temporal
intent of queries is always a single interval, therefore for each document a number of
distances equal to the number of intervals of its inner time are produced. We presented
three di�erent strategies to aggregate the temporal distances of a document: minimum,
average and maximum of distances. In Figure 6.6 we show the results obtained on the
four test collections using di�erent aggregations. We measure the results as improvement
percentage of the Mean Average Precision (MAP) over the text baseline.

Figure 6.6 shows that aggregating the distances between temporal scopes by taking
the minimum (MIN in the figure) distance produces the best results for all collection.
This is by far the most relaxed aggregation, because ignores all the dissimilar intervals
in a document and takes in consideration only the one intervals that is closer to the
query. Average aggregation (AVG in the figure) is more precise because it takes in
consideration all the intervals in the document, however together with the maximum
aggregation (MAX in the figure) which takes only the farther interval in consideration,
performs worse than minimum aggregation and in the Temporalia collection they produce
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even worse results than the text baseline (MAP improvement < 0%).

6.4 Results over TIR state of the art
In Chapter 4 we presented related work on Temporal Information Retrieval and showed
how those di�er from the defined metric similarity. In this section we empirically compare
our temporal model with other state of the art temporal models:

1. Language Model with Temporal Uncertainty (LMTU) [22]: we run the
original LMTU code, with the Language Model Jelinek-Mercer (LMJM) [33] for the
text component, on the same data. We compare the results with our model using
the same text similarity (LMJM) linearly combined with the document coverage
similarity, with cross-validated weights. Moreover, we also replace our temporal
similarity in their combination model to further demonstrate the metric model
capability.

2. Unigram Temporal BM25 (TBM25): we build a temporal representation of
documents as sets of unigram intervals: every document is represented as the set
of unique intervals that it contains, along with the frequency the intervals occur.
We apply the original Okapi BM25 weighting schema [115] using the similarity
betwen temporal unigram representation as temporal similarity:

simtbm25(TD, TQ) =
nÿ

i=1
IDF (tqi) ú f(tqi, TD) ú (k1 + 1)

f(tqi, TD) + k1 ú (1 ≠ b + b ú |T D|
avgT Dl )

In this weighting schema, tqi is one of the n intervals of the temporal scope of query
TQ, TD is the temporal scope of the document and tdi it interval, f(tqi, TD) is
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the frequency count of the interval from the query in the temporal scope of the
document, and avgTDl is the average number of intervals per document. This
temporal similarity, named TBM25 as (Temporal Best Match 25), is linearly com-
bined with the text similarity and the results are compared with the metric model.
Despite its simplicity in terms of intervals matching, this model is more e�ective
than other models in literature because it takes in consideration the frequency of
intervals in a document, the rareness of intervals in the collection and the number
of intervals in a document, following the BM25 schema.

We evaluate the two temporal baseline in comparison with the metric model on the
three TREC collections and on a test collection used to evaluate the LMTU work [22],
the latter with some reservations due to a remarkable pooling bias, as explained in the
next subsection.

6.4.1 Test collections and pooling bias

In the evaluation process of Information Retrieval systems, a relevance judgement of a
human assessor is needed in order to test if the a document retrieved from a system
is actually relevant or not. Test collection for IR are therefore made of a corpus of
documents, a set of queries, and a set of relevance judgement on document-query pairs.
This evaluation approach is called the Cranfield paradigm, after the pioneering works of
Cleverdon at the Cranfield Aeronautical College [140].

In the original setting of the Cranfield Paradigm, for a given query a relevance
judgement was needed for all the documents. With corpora becoming bigger and bigger,
this approach turned out to be quite impractical: even for a single query, judging each
single document in a collection of one million documents could take several years.

Di�erent strategies have been used for pooling the document collections to reduce the
amount of judgements needed. Pooling a collection means select a subset of documents
to be judged by human assessors. Di�erent pooling strategies exist depending on how
this subset is selected. The main idea of test collection pooling, common to many
strategies, is depth-k pooling [73]: given all the systems that we want to evaluate, the
top-k documents are taken from each system, and union of all these top-k sets is the pool
of documents to be judged. This is a rather safe and fair approach to pooling, because
we assure that each evaluated system has at least its top-k documents judged. The same
strategy is applied to the TREC test collections, which are considered the gold standard
for IR evaluation. Moreover using a large set of systems for pooling and taking a large
k for k-deep pooling such as 100, assures that the final relevance judgment set will be a
close approximation to the complete collection assessment. For instance, in the TREC
yearly challenges a depth pooling with k = 100 and more than one hundred systems is
applied [141], while sometimes the most diverse systems are picked for pooling in order
to have a more diversified set of results. For this reason the IR community considers
these test collections to be reliable even for the evaluation of third systems which are
not included in the first depth pooling.



98 CHAPTER 6. EVALUATION OF METRIC TIR

Unfortunately, for the specific Temporal information Retrieval task there is no test
collection that complies with these requirements. In fact, in the evaluation of Berberich
et al. for their temporal language model [22] the pooling involves 5 systems with similar
properties and only the top-10 documents are taken from each system. This evaluation
framework is not suitable for third systems evaluation, because a third system which
di�ers from the original models may easily retrieve a document which have been not
judged.

Nevertheless, evaluating and comparing the temporal models on more generic test
collections allow us to take a glance at the applicability of this model to a more common
scenario, in which time is not always the focus of a document search and temporal intent
is not always explicited.

6.4.2 Results
We present and compare the results obtained by di�erent temporal models in the same
context. In Table 6.7 we compare the results of one of our metric models, the Document
Coverage distance similarity, under the same exact settings used in the original LMTU
work [22]. In particular, we use the same text similarity, the Language Model with
Jelinek-Mercer smoothing, with the same smoothing parameter (⁄ = 0.75). We use
granularity day for all the temporal similarities and the same temporal intervals for
all the temporal models in comparison. We compare the results obtained running the
LMTU system [22] with respect to our model, based on linear combination between text
similarity and document coverage distance (LMJM + CovD), but also with respect to
their multiplicative combination replacing our temporal similarity with their temporal
similarity. We show the evaluation of these three models together with the text baseline,
on the three test collection from TREC (Novelty04, Robust04,Robust05) and on the
test collection used to evaluate the LMTU system [22]. E�ectiveness is measured by
precision of the top 10 results of each system, to reproduce the results in the original
LMTU work.

Precision@10

Model Settings Novelty04 Robust04 Robust05 NYT

LMJM (Text only) ⁄=0.75 0.7760 0.4072 0.312 0.36

LMJM · LMTU-EX “=0.5, ⁄=0.75 7 0.6740 0.1067 0.128 0.48

LMJM · CovD G=D, A:min 0.6979 0.1331 0.232 0.3375
LMJM + CovD G=D, A:min 0.8159 0.4353 0.354 0.14

Table 6.7: Precision@10 comparison between temporal models on the 4 test collections.

The results obtained in all the TREC collections are always higher using our temporal
similarity, both in our original linear combination and by replacing our temporal model
in their multiplicative combination. Conversely, in the evaluation with the query and
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relevance judgements used to evaluate the LMTU system [22], our temporal similarity
has worse results in all the cases. All the di�erences in results between Document
Coverage and LMTU have been positively tested for statistical significance using the
bootstrap method and t-test, having p-value < 0.01, however it is not possible to test
make unbiased observations on the NYT test collection because of the particularly small
pooling of relevance assessments.

In Table 6.8 we compare our unigram model, TBM25, against the two coverage
distances that we defined. Both the coverage distances and the TBM25 similarity are
combined with the BM25 similarity score. We show the results for month granularity as
this is overall the best performing granularity.

MAP

Model Settings Novelty04 Robust04 Robust05 NYT

BM25 (Text only) 0.8131 0.2433 0.1866 0.2696

BM25 + TBM25 G=M 0.8529 0.2448 0.1897 0.2696
BM25 + CovD G=M, A:min 0.8426 0.2462 0.1898 0.2703
BM25 + CovQ G=M, A:min 0.8319 0.2462 0.1898 0.2706

Table 6.8: MAP comparison between Temporal BM25 and coverage distances on the 4
test collections.

Results in Table 6.8 show that the Temporal BM25 similarity that we defined is in-
deed a very good temporal similarity with a remarkable advantage over the text baseline.
Moreover, in the single case of the TREC Novelty 2004 collection, the TBM25 similarity
exhibit the best result among all the proposed similarities. However in bigger collection
the coverage distances are still slightly above the e�ectiveness of TBM25. This result
suggests that considering features such as the cardinality of temporal scopes and the
frequency of time intervals in documents and collection, improves the e�ectiveness even
with units di�erent than keywords. The distances between intervals and the weighting
of e�ective similarities like BM25 can be combined together in future research to achieve
even better results.
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Chapter 7

Time features for Text
Categorization

The goal of Text Categorization tasks is to predict the actual category of a text unit
(usually a text document such an email or a web page) given the features that repre-
sent this text unit. Usually, a document is represented using a bag-of-word: a boolean
vector with one element for each word in the document collection. In the bag-of-word
representation, the feature (i.e. an element of the boolean vector) denotes the presence
or the absence of each word. A text classifier, trained using these features, will estimate
the category of a document given the presence or absence of some ”more representative”
words. For instance, a classifier that estimates if an email is spam or a legit communi-
cation, determines the class based on some document features, such as the presence of
some words that all the spam emails have in common.

Going further, a vector of frequency features can be used instead of a boolean bag of
word, to allow a more accurate distinction between the categories. Intuitively, the better
the features can describe documents with respect to their categories, the higher will be
the accuracy of a model trained with such features. Adding more features to represent
documents can improve the accuracy of the classifier, given that these features assume
significantly di�erent values for the classes. For instance, if the spam email tends to have
more capital letters than normal emails, the ratio between sentences and capital letter
can help the classifier to distinguish the two classes, a feature that cannot be captured
by the sole bag-of-words representation. At the same time, adding a feature that is
totally uncorrelated with the categories (such as the email file location in our disk drive)
cannot benefit the categorization or could even worsen the classifier accuracy.

Considering temporal features of documents, in addition to traditional features such
the bag-of-words vector, can better describe the content of a document and help distin-
guish documents of di�erent categories. What is true for Information Retrieval applies
also to Text Categorization: representing the temporal expression as simple words can-
not capture the underlying temporal semantic of a document.

Improving text categorization by means of semantic annotations has been considered
in the past [24], however to the best of our knowledge no work has been done to exploit
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temporal annotations for text categorization. Given the peculiarities of the temporal
dimension of text, such as synonymity and relativity from the writing time, particular
attention must be paid to the representation of this information space.

In this chapter we propose four novel time features for documents, namely focus
time, temporality, periodicity and interval size, to capture the temporal peculiarities of
the documents and their related categories in a low-dimensional representation.

1. Temporality: some texts are more time-related than others (e.g. news article vs
philosophy argument). In the same way, documents belonging to di�erent cate-
gories can have a significantly di�erent temporality. Temporality is an indicator of
how much time there is in a document.

2. Focus and mean time: these features denotes the central scope of the intervals
mentioned in the text, with two di�erent notions on what is the central time
window of the narrated events. The focus time is the mode of all the intervals
(the most frequent interval), while the mean time is the mean of all the intervals.
Depending on the simmetry of the time distribution curve with respect to the focus
time, the mean time and the focus time can be less or more close.

3. Periodicity: the narrated subjects in documents often show cyclic patterns of
low or higher strength (e.g. sport articles show a weekly pattern in their time
mentions). The periodicity feature denotes the extent of the strongest periodicity
of a document.

4. Interval size: depending on the topic, the mentioned intervals can be short, such
as one day, or longer such as years and millenniums. The interval size is the average
of the mentioned intervals size in a document.

These temporal features can improve general text classification tasks such as text
categorization or new events detection, provided that their values are dependent from the
class that we want to predict. For this reason, after formally defining how these features
are built, we show the results of ANOVA and t-tests to assure correlation between
features and categories on a well-known test collection for text categorization. Finally,
we will evaluate how much accuracy is possible to get using only this time features to
describe documents, without any text features, and we will set the foundations for a
time-aware text categorization that combines both the feature spaces.

7.1 Features Definition
Each document, in its textual body, cites a number of absolute and relative dates (inner
time). For instance, a certain document can contain a temporal expression such as ”On
2015 Christmas eve” referring to the absolute date 2015-12-24. The same document
could also contain a temporal expression such as ”the match we watched yesterday”,
referring to a relative date, which depends on the creation time of the document (this
timestamp is known as DCT). All the temporal expressions, absolute and relative, can
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be annotated and normalized into timestamps using a temporal annotator, such as Hei-
deltime. We define this set of all the mentioned intervals as the temporal scope of the
document (see also Chapter 4 for more formal definitions).

The next temporal features are all derived from the temporal scope of documents.
For each feature we define we consider two settings:

1. Absolute intervals: in this setting the features are computed with the original
temporal intervals, represented with a day granularity.

2. Relative intervals: in this setting the features are computed with the relative in-
tervals, that is the original intervals minus the DCT (Document Creation Time).
See Section 2.5 for a complete view on relative intervals.

From these two sets of intervals, we aim at extracting di�erent time features that are
able to finely describe the document characteristic in the temporal space, without using
a plain bag-of-chronon that would require a very high-dimensionality representation.

7.1.1 Temporality
The temporality is the cardinality of timexes in a document. Despite its simplicity, this
feature capture a property that can strongly discerns some topics and categories. This
is due to the fact that the subjects of some categories relies on many time mentions,
while other hardly make use of time in their narrative.

Definition 7.1.1 (Temporality) Given the temporal scope TD of a document as the
set of all the mentioned intervals in its content, the temporality is the cardinality of
TD.

timetemporality(TD) = |TD| (7.1)

7.1.2 Mean time window and focus time
Mean time window The set of time expressions in a document often revolves around
a central time window, such as the time of the main event described. Even when this is
not the case, an intuitive way to place a document’s content in the timeline is the center
of its intervals.

We define the focus time of a document as a time window that has its start at the
average of all the document intervals starting time, and its end at the average of all the
document intervals ending time.

Definition 7.1.2 (Mean time window) Given the temporal scope of a document as
the set of all the mentioned intervals in its content, the mean time window is an
interval [ts, te] where ts is the mean of all the start times in the temporal scope and te is
the mean of all the end times in the temporal scope.

timewindow(TD) = [ 1
|TD|

ÿ

xœT
D

xs,
1

|TD|
ÿ

xœT
D

xe] (7.2)



104 CHAPTER 7. TIME FEATURES FOR TEXT CATEGORIZATION

The mean time window, aggregating all the mentioned intervals, gives a rich informa-
tion on the time extent of the document. However, averaging the intervals can lose a very
crucial information, which is what the ”focus” of the document is. This is particularly
true when a specific, central event is the main subject of an article, but many correlated
events happens after or before this centra event, moving the mean time window away
from the subject (see Figure 7.1).

Focus time Di�erent works in literature have di�erent conceptions on what the focus
time of a document is. For Strötgen et al. the focus time is the most frequent time
in a document [128], while in more complex approaches [67] the focus time is the one
with which the document’s terms are mostly associated in the corpus. Following the
former notion of focus time [128], we define our focus time as the mode of the frequency
distribution, that is, the interval which is most frequently mentioned in the document.

Definition 7.1.3 (Focus) Given the temporal scope of a document as the set of all the
mentioned intervals in its content, the focus time is an interval [ts, te] where ts is the
mode of all the start times in the temporal scope and te is the mode of all the end times
in the temporal scope.

timefocus(TD) = [mode(xs), mode(xe)] (7.3)

In order to illustrate how well the focus time can approximate the time of a document,
and the di�erence between the focus time and the mean time window, we picked two
very di�erent documents.
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Figure 7.1: Absolute time distribution for two documents: a New York Times article
on the WTC terrorist attack and the Wikipedia main article on Napoleon. Top frame
shows the Mean time window feature and the Focus time feature.

In Figure 7.1 we represent the content time of the two di�erent documents as a
frequency distribution of each interval. Intervals are the absolute days mentioned in the
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articles, so they are not relative to the writing time. On the left, a New York Times
article on the WTC 2001 attack, written in 2002, shows a peak on the day of the attack,
but it also shows other mentioned intervals about events happened after the attack, and
the whole year 2002 in particular. For this reason, the mean time window for this article
is the period from 16/10/2001 to 1/12/2001, it is therefore moved slightly toward the
future with respect to the focus event. On the contrary, the focus time precisely recognize
the main event time as the 11th of September 2001, but it loses the time information
of all the other correlated events mentioned. The same results are obtained on a totally
di�erent kind of text document: the Wikipedia article on Napoleon Bonaparte. As
before, the focus time is able to spot the date which is probably the most important in
Napoleon’s lifespan, 2 December 1804, the date of his incoronation.

We consider both this central time features as useful to describe the temporal di-
mension of a document with respect to a category.

7.1.3 Periodicity

The periodicity of a time series, sometimes named seasonality in literature when long
periods are involved [55], describes the cyclic patterns of repeating event. For instance,
consider the web searches for ”Gifts” in Google, using the data from Google Trends.
In this example, the seasonality is clean and predictable, with timeline bursts before
christmas dates, when gifts are bought online.

Figure 7.2: Google Trends results for the query ”gifts”. Screenshot from
https://trends.google.com/ .

The idea of a periodicity for text categories comes from the direct observation of
the time mentions distribution. Text categories are always associated with one or more
topics, and topics often reveal a periodicity pattern in their time mentions. This is
mainly due to an intrisic periodicity in the cyclic events narrated that belong to a
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specific category. Some examples of cyclic events narrated in text and belonging to
a specific category are football matches (sport), political elections (politics), quarterly
dividend payments (finance). Given that in the same text more than one event with
cyclic pattern is cited, along with its time placement, it is possible to spot a category-
related periodicity even in the single text, therefore providing a valuable feature for text
categorization.

In Figure 7.3 we show an example of a periodicity for the Movies and the Business
article categories in the New York Times corpus. For each day relative to the writing
time of the articles, we show the average count of occurrences over the whole corpus
of 1.8 million articles. Apart from a di�erent focus time and temporality, the Movies
category clearly shows a stronger week periodicity than the Business category.
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Figure 7.3: The relative time mention distribution in a 2 months window with the writing
time in the center. The occurrences count is averaged on all the documents for Movies
category and Business category in the New York Times corpus.

Time series of a document

A periodicity analysis is meaningful only when applied to a signal or a time series. In a
discrete domain, a time series is a set of measures where each measure has been observed
in a di�erent time. For instance, in the Google Trends results of Figure 7.2 the time
series is given by the number of Google searches for that query, measured in each day of
the interval December 2010 - March 2014.

In order to apply the notion of periodicity to the temporal scope of documents we
first of all consider the temporal scope of a document as a bag of chronons. Each
chronon mentioned in the document is a time point of our time series, and each time
the chronon is mentioned we count an occurrence for the frequency count of that time
point. We count an occurrence for a chronon even when a bigger interval is mentioned,
that contains that chronon. In this way we are able to build a discrete time series of
the temporal scope of a document in which the amplitude is given by the frequencies of
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each chronon.
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Figure 7.4: Building a time series from the temporal scope of a document. On the left, a
partial view on the temporal scope of the Wikipedia article for Napoleon. On the right,
the derived time series.

If a specific chronon is not mentioned in the document, that point of the time series
has zero frequency. Because all the non-mentioned chronon have zero frequencies, we
limit our time series in a relevant time window: the begin point and the end point of
the document time series is given respectively by the first and last mentioned chronon
in the document. In Figure 7.4 we illustrate this process for the Wikipedia article of
Napoleon. On the left, a partial view of the temporal scope shows a set of intervals
found in the text of the article. For each chronon that appears in the temporal scope,
we count how many times it occurs. For instance, if the year “1805” is mentioned, we
count one occurrence for all the days inside the year 1805. The resulting time series is
a vector with one element for each chronon in the relevant window. The value in each
element is the frequency count of the related chronon (right plot in Figure 7.4).

Extracting period

Extracting the periodicity of a time series is a common practice in predicting periodicity
events [90], such as stock market trends or computer networks overloading. The most
common and classic technique to extract the period and the amplitude of recurring
events in a time series is the periodogram [18]. Periodogram is a common tool in
spectral density analysis, used to decompose a signal in the sum of periodic functions
with regular frequencies, but it has been also widely used to characterize time series [28]
in time series classification tasks. In the same way, we apply the periodogram technique
to the time series obtained from the temporal scope of a document. The periodogram,
obtained by Fast-Fourier Transform, can be view as a function P (f) that returns the
spectral power of the frequency f . From this set, we pick the frequency f with highest
spectral power:

timeperiodicity = 1
argmaxf P (f)
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Using a sampling interval of one day, the same granularity chosen for the other
time features, the minimum period that can be therefore detected is two day, and all
the detected periods are multiple of two days, as for the Nyquistâ��Shannon sampling
theorem [125].

7.1.4 Interval size
The temporal expressions found in a document, once normalized to time intervals, can
have a di�erent size depending on the spine of the cited time. In the Gregorian calendar
this time span can be of 7 days if a week is mentioned, 28 to 31 days if a month is
mentioned, 365 days for the year and so on. Moreover, there can be found a smaller
percentage of irregular intervals, in temporal expressions such as “I will train for 10
days ” or “The Great War lasted from 28 July 1914 to 11 November 1918”. Put
together, all these intervals compose a set that can be very diversified, but can also follow
some patterns depending on the topic of a document and, therefore, on its category.

Definition 7.1.4 (Intervals size.) The intervals size of a document is the mean of the
the size of all the intervals of its temporal scope.

timesize =
q

xœT
D

xe ≠ xs

|TD| (7.4)

This feature, altough simple in its definition, is very valuable in discriminating doc-
uments from di�erent categories, as we show in the next section.

7.2 Analysis of features-categories relation
The ANOVA test (Analysis of variance) is a statistical model to analyze the di�erence
for a specific variable (feature) over a set of groups (categories). This statistical test is a
generalization of the significance t-test to more than two groups, to show if the di�erence
between the mean values of the groups, for a secific feature, is not due to chance. The
ANOVA test has been widely used for feature selection because it gives a measure of the
reliability of a feature [57].

We run the ANOVA test for all the features and among all the groups in the 20
Newsgroups dataset. First we use the ANOVA test to check if there is a significant
di�erence in the feature values among all the classes. Then we analyze and show the
significance for each pair of categories. The latter analysis is important to show for
which categories the defined feature are strongly discriminant and for which not.

Temporality. Intuitively, some topics are more time-related than others. This a�ects
the necessity of relying on temporal expressions to write about a topic, which directly
reflects on the number of temporal expression in the text. This di�erence between cat-
egories is clear in Figure 7.5. For each category we show the mean of the temporality
for all its documents (circle point), along with its standard error (horizontal line). We
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Figure 7.5: Category mean for temporality (circle points) and related standard error
(lines) in 20 Newsgroups. The mean of selected sample category rec.sport.hockey in
blue, significantly di�ers from 14 other categories.

picked rec.sport.hockey as a noteworthy category, in blue, for which there are 15 cate-
gories that di�ers significantly in temporality. All the significantly di�erent categories
are shown in red, while the categories with similar temporality are in gray.

Apart from the selected category, in Figure 7.5 it can be easily seen which cate-
gories are significantly di�erent by looking at the overlapping: if the standard error
line of two categories overlaps, their mean is not significantly di�erent. For instance,
in Figure 7.5, the category talk.politics.mideast significantly di�ers from any other cat-
egory. For this reason the temporality feature will be more reliable in discriminat-
ing between comp.sys.ibm.pc.hardware and talk.politics.mideast, than in discriminate
comp.sys.ibm.pc.hardware and the category comp.sys.mac.hardware.

Mean time. In the former section we defined the mean time window of a document
as the interval composed of the average interval starting date and the average interval
ending date, and we defined the focus time window as the interval composed of the
mode of the interval starting dates and the mode of the interval ending dates. For sake
of simplicity, the central point of these two windows can be considered instead, in order
to observe the categories’ properties toward a single variable. Moreover, we can compute
these feature in both absolute and relative settings. Of all the features obtained from
the mean and focus time the most significant one in terms of mean di�erence among
categories is the mean time. In Figure 7.6 we show the category mean and standard
error, respectively the circle points and the horizontal lines, for the temporal feature
mean time, that is the center of the mean time window of documents.
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Figure 7.6: Category mean for relative mean time (circle points) and related standard
error (lines) in 20 Newsgroups. The mean of selected sample category talk.politics.misc
in blue, significantly di�ers from 14 other categories.

Categories for which the lines do not overlap have significantly di�erent means
(p < 0.05). In the figure, the category talk.politics.misc is selected(in blue), show-
ing 14 categories which significantly di�ers in their means (in red). Some categories
are more similar, such as comp.graphics and sci.space, while other categories such as
comp.windows.x totally di�er from all the other 19 categories.

Periodicity. The periodicity is a more complex feature that needs a certain number of
intervals in order to results in a meaningful information. Having few intervals, therefore
data points in the related time series, leads to a meaningless periods values. This is
because, in order for the periodicity to have a meaning, there need to be some mentioned
time at equal distance repeated in the temporal scope.

In Figure 7.7 we show the average periodicity for all the categories. The means of
categories shown in figure are quite diversified, however there is a large deviation from
the mean in each category, as can be seen by the standard error line. For this reason,
this feature is not as reliable as the other defined feature, because for many categories
the di�erence between means is not statistically significant. As an example, the selected
category rec.sport.hockey, in blue, has 7 significantly di�erent categories for periodicity,
while the remaining 12 categories have either a similar mean for periodicity (such as
rec.sport.baseball or their high inner variance can’t allow to state that are significantly
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Figure 7.7: Category mean for periodicity (circle points) and related standard error
(lines) in 20 Newsgroups. The mean of selected sample category soc.religion.christian
in blue, significantly di�ers from 14 other categories.

di�erent (such as comp.sys.mac.hardware).

Intervals size. The Figure 7.8 shows the category mean for the intervals size. Again,
categories for which the lines do not overlap have significantly di�erent means (p < 0.05).

In Figure 7.8 we picked a the category soc.religion.christian highlighted in blue, as
an example to show which categories di�ers significantly from it. The 14 categories in
red have a significantly di�erent means, while 4 categories, in gray, have similar means
for this feature. It is noteworthy that the categories talk.religion.misc, alt.atheism and
soc.religion.christian have all a similar mean for the size of the mentioned intervals. This
is clearly due to the fact that religion related discussions involve periods of millenniums
and centuries.

7.2.1 Collections and importance of time features

In Chapter 2 we have shown a great variance in temporal presence among di�erent col-
lections. Some collections were particularly time-related, meaning that the documents
mention many time intervals and these intervals often di�ered from the writing time,
providing additional meaningful information. Other collections contained much less
temporal expressions, mainly because of the shorter text length (e.g. Twitter posts).
Intuitively, the richness of temporal information can a�ect the significance and useful-
ness of the proposed temporal features: more temporal information means well defined
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Figure 7.8: Category mean for intervals size (circle points) and related standard error
(lines) in 20 Newsgroups. The mean of selected sample category soc.religion.christian
in blue, significantly di�ers from 14 other categories.

temporal features, conversely having few time intervals leads to a poorer description of
the temporal identity of a document. As a striking example, we take for comparison
the New York Times corpus, which has been commonly used for temporal related tasks
[21, 75, 111]. The NYT corpus has more timexes per document on average ( more than
8 timexes per document, against less than 3 timexes per document of 20 Newsgroups), is
more extended on the writing time (20 years against 1.5 year) and has a time deviation
with respect to writing time which is 8 times the 20 Newsgroups corpus. This makes
the NYT corpus richer in terms of temporal information, thus the above defined tempo-
ral features are much more informative. In Figure 7.9 we show the temporality feature
ANOVA analysis on the top 15 online section categories of NYT corpus, as annotated
by the New York Times.

Apart from showing a much bigger temporality value for all the categories, in com-
parison with the temporality of 20 Newsgroups, from Figure 7.9 results also a much
greater variance among categories, which makes the categories easily distinguishable in
their temporality. The highlighted category Arts (in blue) is significantly di�erent from
all the other categories except for the category Magazine, because they share a similar
temporality.
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Figure 7.9: Category mean for temporality (circle points) and related standard error
(lines) in NYT Corpus. The mean of selected sample category Arts in blue, significantly
di�ers from 13 other categories.

7.3 Experimental Setup
In order to test the categorization accuracy obtained using the defined time features,
we proceed to evaluate them on a very popular corpus for text classification, the 20
Newsgroups corpus (20ng) and on the New York Times Annotated Corpus for sections
classification. We run di�erent machine learning models to fit the data, with di�erent
settings to test the categorization ability of the sole time features, to compare them
with an - almost - random guess and with a traditional text classifier, and to test the
improvement obtained combining both time and text features.

Text features classifier The corpora has been first tokenized, then each term is
weighted using log TFIDF frequencies. The english stop-words are removed from the
set of tokens. A k-nearest neighbours classifier is trained on the text features. For
some of the selected corpus, di�erent settings exist in the choice of removing or keeping
text meta-data: unless specified otherwise, the default setting is to use all the articles’
content.

Time features classifier For each document in the corpora, the complete set of time
features derived from the formal definitions in this chapter, including start, end and
center of windows features, is the following:

1. Focus time window start: the mode of the start intervals in the temporal scope.
Intervals are absolute.

2. Focus time window end: the mode of the end intervals in the temporal scope.
Intervals are absolute.
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3. Relative focus time window start: the mode of the start intervals in the temporal
scope. Intervals are relative to creation date.

4. Relative focus time window end: the mode of the end intervals in the temporal
scope. Intervals are relative to creation date.

5. Mean time window start: the mean of all the intervals starting day in the temporal
scope, where intervals are absolute.

6. Relative mean time window start: the mean of all the intervals starting day in the
temporal scope, where intervals are relative to the creation date.

7. Mean time window end: the mean of all the intervals ending day in the temporal
scope, where intervals are absolute.

8. Relative mean time window end: the mean of all the intervals ending day in the
temporal scope, where intervals are relative to the creation date.

9. Mean time: the average of the mean time window start and the mean time window
end, i.e. the center of the mean time window. Intervals are absolute.

10. Relative mean time: the average of the mean time window start and the mean
time window end, i.e. the center of the mean time window. Intervals are relative.

11. Periodicity: the period of the decomposed signal with the highest spectral power.

12. Size mean: the average size of the intervals in the temporal scope.

13. Size variance: the variance of the size for the intervals in the temporal scope.

14. Temporality: the cardinality of the temporal scope.

A k-NN with the same parameters used for the text features is trained using the
above features.

Dummy classifier A dummy classifier is a common baseline to evaluate machine
learning algorithms and features [80]. Keeping in mind that text features are far more
richer the temporal features, we make use of a dummy classifier in order to show how
a time only classifier compares with a generic baseline. The used dummy classifier is
not just a random picker, but a stratified distribution classifier1, that is, it takes into
account the class distribution in order to make a guess.

1
http://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
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Combination of Text and Time features While the text features are very sparse
vectors, the time features defined so far are dense, except for document with an empty
temporal scope (temporality = 0). Moreover, text features have very low values in the
range [0, 1] obtained by the TFIDF weighting, while time features have irregular ranges
of values. Combining di�erent feature spaces is a non-trivial problem [44] that led to
di�erent solutions in literature [131, 83].

In this work we provide a preliminary evaluation, in which the combination of the
feature spaces is obtained training two di�erent models:

1. A k-NN classifier trained on text features only.

2. A k-NN classifier trained on time features only.

The two classifier are linearly combined using an hyper-paramater –. The best value
for the hyper-parameter is obtained using the training set only.

Test collections In Table 7.1 are shown the used test collection and the associated
task. All the test collections are multi-class and single-label.

Collection Documents Categories Labels/doc Test Split
20 Newsgroups 19,997 20 One label ’bydate’ split
NYT Sections 30,000 15 One label 6-fold Cross-validation

Table 7.1: Standard test collections for text categorization used to evaluate the temporal
features.

The 20 Newsgroups test collection [84] is a very well known text categorization
collection with around 20 thousand newsgroup messages categorized by group. The
splitting strategy between train and test subsets is by chronological order, following
most works in literature and popular machine-learning frameworks2.

The NYT Sections test collection is a random sampling of 30 thousand documents
from the The New York Times Annotated Corpus 3, which is the most used corpus for
temporal related tasks [21]. The category annotation of New York Times articles is
provided by the New York Times Newsroom, the New York Times Indexing Service and
the online production sta� at nytimes.com. Because each article is annotated with more
than one topical classification, we choose the most concise and uniform categorization,
that is the main online section of each article. We randomly sampled 2,000 articles for
each one of the 15 most occurrent categories:

For the NYT Sections test collection, the training and testing splits are built using
a 6-folds cross-validation.

2
Scikit Learn: http://scikit-learn.org/stable/datasets/twenty_newsgroups.html

3
Available at https://catalog.ldc.upenn.edu/ldc2008t19
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1. Arts 6. Opinion 11. Technology
2. Business 7. Paid Death Notices 12. Travel
3. Magazine 8. Real Estate 13. U.S.
4. New York Region 9. Sports 14. Week in Review
5. Obituaries 10. Style 15. World

7.4 Results

The results of the time features evaluation are summarized in Table 7.2. For each test
collection we show the results of single classifiers and of combined classifier of time and
text. The accuracy is measured in terms of F1-score percentage:

F1 = 2 ◊ precision ◊ recall

precision + recall

The last column of Table 7.2 is the percentage improvement obtained combined text
and time classifiers with respect to the text only classifier.

Classifiers

Stratified Time Only Text Only
(no meta) Combined % Improv.

20 Newsgroups 4.55 11.83 70.06 70.07 +0.014%
NYT Sections 6.26 29.41 50.43 57.29 +13.61%**

Table 7.2: Accuracy as F1-score in the 4 settings on the considered test collections. **
is p ≠ value < 0.01.

Using only the defined time features without any knowledge of the textual terms in
the documents, the accuracy is 160% higher than the dummy classifier in 20 Newsgroups
and 369% higher in NYT Sections , proving that the time features have a discrim-
inating power for topic categories by themselves. This is however very weak in
comparison to text features: as expected, time features cannot be a replacement for text
features. In fact, for all the test collections, the text classification is always significantly
higher than the time only classifier: almost 6 times higher in 20 Newsgroups and 70%
higher in New York Times.

Combining time and text features improves the overall accuracy. This improvement
is significant for the classification NYT Sections while not significant for 20 Newsgroups
(p > 0.05). In New York Times, where the the Time Only classifier has an accuracy
closer to the accuracy obtained with text features, the combination of text and time
shows an improvement of accuracy of +13.6% over the Text Only baseline.

In Figure 7.10 we break down the results for each of the 15 categories in NYT
Sections. The figure shows how many more (in green) or less (in red) samples are
categorized in the right class, when we add the time features in the classification. The
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Figure 7.10: Number of right samples classified in each category when time features are
added. Test collection is NYT Sections.

figure shows that time features are worse at classifying some categories, like New York
and Business but very good in distinguishing other categories such as Obituaries, Travel
and Style. Overall there is a positive di�erence of 553 samples when time features are
taken into account, because the 316 samples wrongly classified adding time features are
covered by the additional 869 rightly classified adding time features.

We conclude that time features are able to discriminate document categories to a
certain degree, which can depend on the number of timexes per document of the specific
collection, however further work is needed to model a combination of the two feature
spaces and obtain a greater improvement. Moreover, quite di�erent results are obtained
depending on the test collection and the topics involved, represented by the categories,
as anticipated from the ANOVA results.
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Chapter 8

Conclusions

The temporal dimension of text, hidden under natural language expressions, is usually
ignored in text mining and retrieval. In this work we showed how much this information
is semantically rich and diverse and we presented methods and models to make the
most of it in text related tasks. We quantified the presence and distribution of this
information, proposed specific features to describe it and defined similarity models to
leverage the temporal dimension of text in information retrieval.

By conducting extensive experiments, we demonstrated how taking in consideration
this particular aspects of documents, and using the appropriate similarities, leads to a
significant improvement in ranking e�ectiveness and categorization accuracy. These find-
ings extend the results obtained in literature, confirming the importance of dealing with
the semantic of temporal expressions, and, most notably, representing a step forward
in the design and implementation of temporal-aware text retrieval systems. Apart from
providing valuable information on the temporal dimension of texts, this is the first work
to our knowledge to propose and evaluate time related features for text categorization
and generalized metric distances for temporal information retrieval.

Time quantification The large-scale time quantification of text documents involved
almost 130 million temporal expressions, in more than 30 million texts spanning from
1984 to 2014. Each corpus that we examined from a temporal point of view showed di�er-
ent characteristics. For this reason, many tasks that involve temporal analysis and ma-
nipulation on document collections can take advantage of these features to parametrize
their model: di�erent collections should be treated di�erently depending on their tem-
poral features.

By describing the distribution of time mentions toward the past, present and future
we showed how much we refer time di�erent far or close to the writing time, and how
this distribution varies among di�erent corpora. We showed how the distributions of
mentioned intervals in corpora resembles the distribution of words, in the fact that
they can be approximated in the Zipf’s power law. As a valuable contribution to
researcher in temporal information retrieval, we highlighted the di�erences between the
time in queries and the time in documents, both in the context of test collections and

119
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in real queries from query logs. Apart from showing di�erent distributions of time
mentions toward the past, present and future for specific type of corpora, we found a
remarkable di�erence in the granularity used in temporal expressions, that are much
more precise in Twitter and coarser in real world queries. As already noted in literature,
we found that explicit temporal expressions are very rare in the text of queries, that
confirms how determining the implicit time of queries is crucial for Temporal information
Retrieval.

Time metrics Representing the temporal dimension of text as set of intervals is by
far the more suitable and complete way to store and manipulate this information, as
confirmed by all the related work in literature. Nevertheless, in previous works, intervals
have been treated as single tokens of information, like in the unigram models, or as sets
of chronons (i.e. units of time of predefined size). With this kind of approaches, all the
spatial semantic of the intervals is lost, and the temporal similarities built upon them
are bound by text-centric representations, such as language models.

In this work we have proposed a temporal similarity based on metric and gen-
eralized metric distances, representing and dealing with intervals as points in a
bidimensional space. These approach allows to reason in terms of distances between
intervals while also capturing all other important relations such as interval containment
and overlapping. We illustrate the importance

We showed that our approach produces significantly better results than the only-text
baseline, and a significant improvement over the state of the art temporal models
for information retrieval. Apart from a set of generalized metric distances, we define a
temporal version of BM25 to test it against the distance-based similarities. Our results
provide compelling evidence for the need of an appropriate model to estimate the tem-
poral similarity between query and documents, and suggest that our metric approaches
appear to be the most e�ective in all the general-purpose information retrieval test
collection.

Time features We defined a set of features that can approximately describe a cat-
egory by looking solely to is temporal dimension. By analysing the variances of these
time features we have showed how they significantly varies among categories. This result
suggest a relation between the inner temporal features of text and its topics, opening
new possibilities in text mining areas such as text categorization or new event detection.
We show that, while some categories are di�cult to distinguish based on the sole time
features, other categories are strongly di�erent in their temporal dimension. This dis-
criminatory power of time features can be complementary to the capability of ordinary
text features, adding a valuable contribution in categorization tasks. To show
the value of these time features in the context of text categorization we evaluated a
supervised classifier, trained only on the time features, both alone and in combination
with a text features classifier. The positive results obtained indicate that future work
in some should take in consideration the time features of text in combination with key-
words features, opening new possibilities also in other related tasks such as new event
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detection or situation recognition.

8.1 Future work
The study on the time dimension of text showed a valuable aspect of documents and
queries content, however our results were constrained within an isolated perspective, i.e.
the temporal dimension. As we have shown, even more valuable results are obtained
when the temporal information is combined with other aspects of documents, such as
the text terms, as in Temporal Information Retrieval, or topic categories, as in Text
Categorization. For this reason, we aim at unifying the two points of view, text and
time, with the focus of text mining task as a multi-modal retrieval and categorization,
by studying the relations between temporal mentions and atemporal terms.

The proposed Information Retrieval model has shown to be e�ective in several
general-purpose test collections, considering all the queries, explicitly or implicitly, as
related to a certain temporal scope. While e�ective in practice, this is still far from the
optimal solution, because queries are not equally time-related. Further work on tempo-
ral query intent classification and temporal diversification is required to appropriately
weight the influence of the temporal component of retrieval with respect to the text
component.

We have shown that some aspects of the time mentioned in documents are related to
the document topic category, and these aspect can be meaningfully synthesized in a set
of category-related features. The found relation between mentioned time and document
properties can have strong implications in several text mining and NLP tasks, however
this may varies depending on how much time there is within a particular text collection.
For this reason we plan to apply the proposed time-aware text categorization to di�erent
domain-specific text collections, carrying on several evaluation to probe the advantage
and limits of this approach. Among the specific text mining task we plan to address, the
time related tasks need particular mention, such as new event detection and document
timestamping.
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logs to measure implicit temporal intents in queries. In SIGIR 2011 Workshop on
Query Representation and Understanding, 2011.
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[31] Ricardo Campos, Gaël Dias, Aĺıpio M Jorge, and Adam Jatowt. Survey of Tem-
poral Information Retrieval and Related Applications. ACM Computing Surveys,
47(2):1–41, January 2015.

[32] A. X. Chang and C. D. Manning. SUTime: A library for recognizing and normal-
izing time expressions. LREC, 2012.



126 CHAPTER 9. BIBLIOGRAPHY

[33] Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques
for language modeling. In Proceedings of the 34th annual meeting on Association
for Computational Linguistics, pages 310–318. Association for Computational Lin-
guistics, 1996.

[34] Abdur Chowdhury, Ophir Frieder, David Grossman, and Catherine McCabe. Anal-
yses of multiple-evidence combinations for retrieval strategies. In Proceedings of the
24th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 394–395. ACM, 2001.

[35] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An e�cient access method
for similarity search in metric spaces. In Proceedings of the... International Con-
ference on Very Large Data Bases, volume 23, page 426. Morgan Kaufmann Pub,
1997.

[36] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law dis-
tributions in empirical data. SIAM Review, 51(4):661–703, 2009. doi: 10.1137/
070710111. URL http://dx.doi.org/10.1137/070710111.

[37] William S Cleveland. Robust locally weighted regression and smoothing scatter-
plots. Journal of the American statistical association, 74(368):829–836, 1979.
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