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uma só coisa - a inteira - cujo significado e vislumbrado dela eu vejo

que eu sempre tive.”
Grande Sertão: Veredas

João Guimarães Rosa
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Abstract

Cancer is a disease caused by alterations in the cell genomes. Different types of
genomic alterations can cause uncontrolled cell proliferation, cell invasiveness, and
resistance to therapy. The advances in high-throughput technologies has permitted
a comprehensive characterization of cancer cell genomes, transcriptomes, and pro-
teomes. Therefore, a big challenge in cancer research relies on new computational
methods able to integrate large amount of “omics” data, reduce its complexity,
and translate it in biological and clinical knowledge. In this thesis, we present three
studies in which we applied ad hoc computational methods, combined with standard
approaches, for the molecular profiling of human cancers using omics data.

The first study is entitled “Detection of somatic single nucleotide polymorphisms
in whole-exome sequencing data”. Several studies have proposed software packages,
filters and parametrizations for the detection of somatic polymorphisms in sequenc-
ing data, but many research groups have been reporting low concordance among
different methods. Our main goal in this study was to develop a pipeline of analy-
sis able to detect a wide range of single nucleotide mutations with high validation
rates. We combined two standard tools - Genome Analysis Toolkit (GATK) and
MuTect - to create the GATK-LODN method. As proof of principle, we applied our
pipeline to exome sequencing data of hematological (Acute Myeloid and Acute Lym-
phoblastic Leukemias) and solid (Gastrointestinal Stromal Tumor and Lung Ade-
nocarcinoma) tumors. We created simulated datasets and performed experimental
validation (Sanger sequencing) to test the pipeline sensitivity and specificity.

The second study is entitled “Network integration of multi-tumor omics data
for the discovery of novel targeting strategies”. We characterized the gene expression
profiles of 11 tumor types, retrieved from The Cancer Genome Atlas data portal,
aiming the discovery of multi-tumor drug targets and new strategies of drug combi-
nation and repurposing. First, we clustered tumors based on their transcriptomical
correlation profiles. Then, we applied a network-based analysis, integrating gene ex-
pression profiles and protein interactions of cancer-related proteins. This allowed us
to define three multi-tumor gene signatures, with genes belonging to the following bi-
ological categories: NF-κB signaling, chromosomal instability, ubiquitin-proteasome
system, DNA metabolism, and apoptosis. We demonstrated the validity of our se-
lection by evaluating the gene signatures based on mutational, pharmacological and
clinical evidences. Moreover, we defined new pharmacological strategies validated
by in vitro experiments that showed inhibition of cell growth in two tumor cell lines,
with significant synergistic effect.

The third study is entitled “Searching for the molecular mechanisms of tumor
progression in thyroid cancer by gene expression data analysis”. As the incidence of
thyroid cancer continue to increase over the past years, we still need to understand
the molecular mechanisms that cause the progression from less aggressive to highly
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invasive and incurable forms of this tumor. We evaluated thyroid gene expression
profiles of normal, Papillary Thyroid Carcinoma (PTC) and Anaplastic Thyroid
Carcinoma (ATC) tissue samples (n=279). We observed that samples grouped in a
progressional trend according to tissue type. The main biological processes affected
in the normal to PTC transition were related to extracellular matrix and cell mor-
phology; and those affected in the PTC to ATC transition were related to the control
of cell cycle. We separated genes according to trends of up and down regulation,
and then defined signatures related to each step of tumor progression. By mapping
the gene signatures onto protein-protein interaction and transcriptomical regulatory
networks, we could prioritize gene signatures for following experimental validation
(ongoing experiments).
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Chapter 1

The genomic basis of cancer

Cancer comprises a group of diseases characterized by uncontrolled proliferation
of cells that can invade normal tissues and metastasize to distant organs. It is a
major cause of morbidity and mortality, representing 15% of the world deaths in
2012 [1]. The incidence of cancer has increased from 12.7 million in 2008 to 14.1
million in 2012, indicating that the number of new cases may rise in 75%, bringing
the number of cancer patients close to 25 million over the next two decades [2].

The first insights about the connection between genome abnormalities and can-
cer development emerged in the late nineteenth and early twentieth centuries, when
David von Hansemann [3] and Theodor Boveri [4] examined cancer cells under the
microscope and observed the presence of bizarre chromosomal aberrations.

After the discovery of the DNA as the genetic material and the determination of
its structure, increasingly refined analyses of cancer cell chromosomes demonstrated
that specific and recurrent genomic abnormalities were associated with particular
cancer types. In the beginning of the 1980s, it was demonstrated that normal cells
could be transformed into cancer cells after receiving the genomic DNA from human
cancers. This study permitted the first detection of an oncogenic mutation in a
human gene: the point mutation G>T that causes a glycine to valine substitution
in the HRAS gene [5, 6]. With this landmark finding, the genomic basis of cancer
became firmly established.

Nowadays, as result of the advances in the molecular biology techniques, we
have an extensive list of genomic alterations related to cancer development. Nu-
cleotide substitutions, insertions and deletions (indels) of bases may modify proteins,
causing their activation, as occurs in many oncogenes, or the loss of their function,
typical of many tumor suppressor genes (Figure 1.1a). Chromosomal rearrange-
ments damage normal genes or generate chimeric ones (gene fusions) that affect the
development and maintenance of malignancy states (Figure 1.1b). Copy Number
Variation (CNV) events cause gain and loss of gene copies through the duplication
or deletion of chromosome segments (Figure 1.1c). Epigenetic processes, such as
DNA methylation and histone modifications, can alter the chromatin structure and,
consequently, the regulation of mechanisms as transcription, DNA repair, and DNA
replication (Figure 1.1d).

The mechanisms causing the genomic alterations have both internal and exter-
nal origins. For instance, environmental and life-style factors as tobacco-smoke and
ultraviolet (UV) radiation exposure are associated with high mutation rates in lung
and melanoma cancers, respectively (Reviewed in [8]). Other processes as aging,
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(a) (b) (c)

(d)

Figure 1.1: Examples of genomic alterations in cancer: (a) Nucleotide Substitutions, (b) Chro-
mosomal Rearrangements, (c) Copy Number Variation, and (d) Epigenetic Modifications. TS:
tumor suppressor; CML: Chronic Myeloid Leukemia; H3K4me3: histone modification associated
with transcription activation; H3K27me3: histone modification associated with transcription re-
pression. (Figures a, b, and c adapted from MacConaill& Garraway, 2010 [7]).

chronic inflammation, and carcinogens exposure may cause oncogenic epigenetic al-
terations (Reviewed in [9]). The malfunctioning of DNA damage-sensor and DNA
repair mechanisms can increase mutation rates and cause chromosomal abnormali-
ties, while erroneous chromosomal segregation during cell replication may result in
large chromosomal rearrangements.

The proof of concept that genomics could bring new strategies for personalized
therapy came in 2002, with the discovery of the BRAF V600E mutation in more
than 50% of melanomas and the subsequent development of the inhibitor to treat
patients having this mutation [10]. Since then, the research for cancer genes through
the characterization of tumor genomic alterations has provided many insights for the

10



Table 1.1: Categories of Genomic Alteration and Exemplary Cancer Genes Exemplary

Genomic
Alteration

Exemplary Cancer
Gene

Type of Cancer Targeted Therapeutic Agent

Translocation

BCR-ABL Chronic myelogenous leukemia Imatinib
PML-RAR Acute promyelocytic leukemia All-trans-retinoic acid
EML4-ALK Breast, colorectal, lung ALK inhibitor

ETS gene fusions Prostate —
Other Leukemias, lymphomas, sarcomas —

Amplification

EGFR
Lung, colorectal, glioblastoma,

pancreatic
Cetuximab, gefitinib, erlotinib,

panitumumab, lapatinib
ERBB2 Breast, ovarian Trastuzumab, lapatinib

KIT, PDGFR GISTs, glioma, HCC, RCC, CML
Imatinib, nilotinib, sunitinib,

sorafenib
MYC Brain, colon, leukemia, lung —
SRC Sarcoma, CML, ALL Dasatinib

PIK3CA Breast, ovarian, colorectal, endometrial PI3-kinase inhibitors

Point Mutation

EGFR Lung, glioblastoma
Cetuximab, gefitinib, erlotinib,

panitumumab, lapatinib

KIT, PDGFR GISTs, glioma, HCC, RCC, CML
Imatinib, nilotinib, sunitinib,

sorafenib
PIK3CA Breast, ovarian, colorectal, endometrial PI3-kinase inhibitors
BRAF Melanoma, pediatric astrocytoma RAF inhibitor

KRAS Colorectal, pancreatic, GI tract, lung
Resistance to erlotinib, cetuximab

(colorectal)

ALK: anaplastic lymphoma kinase; GIST: Gastrointestinal stromal tumor; HCC: hepatocellular carcinoma;
RCC: renal cell carcinoma; CML: chronic myelogenous leukemia; ALL: acute lymphoblastic leukemia; PI3:
phosphatidylinositol-3. (Table adapted from MacConaill & Garraway, 2010 [7])

understanding, classification and treatment of cancer types (Table 1.1). Usually, the
so-called cancer genes encode proteins belonging to a wide range of biological cate-
gories: signal transduction pathways, metabolism, histone modification, nucleosome
remodeling, DNA methylation, RNA splicing, protein homeostasis, and others.

However, we still need to connect the cancer genes into cancer processes in
order to truly understand and treat cancer. Hanahan and Weiberg [11] have pro-
posed “halmark” processes that generally become deregulated in tumorigenesis and
metastasis: i) sustaining proliferative signaling, ii) evading growth supressors, iii)
activating invasion and metastasis, iv) enabling replicative immortality, iv) inducing
angiogenesis, and v) resisting cell death (Figure 1.2a). For instance, mutations in
tyrosine kinase receptors and cell cycle inhibitors lead to effects that can be under-
stood as “jamming the accelerator pedal” or “eliminating the breaks” on cell growth,
respectively. However, these connections remain obscure for several cancer genes,
since many of them affect multiple coregulated targets that act in several processes
(Figure 1.2b) [12]. Therefore, identifying the full range of target genes for designing
therapeutic strategies requires global genomic investigations at the DNA, RNA and
protein levels.

Initial cancer genome projects had to be carried out with what today seem like
primitive technologies, but the advances in microarray techonology, like comparative
genomic hybridization and high-density single nucleotide polymorphism arrays, in-
augurated a new phase for high-throughput and high resolution in cancer genomics
research. The emergence of the Next-Generation Sequencing (NGS) technologies
[13–15] revolutionized the research by lowering the costs and propelling an explo-
sion of sequencing data. In parallel, methods were developed to capture specific
portions of the genome as the 2% of genomic DNA containing known exons (the
“exome”). The NGS technologies made possible the use of a single platform for
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(a) (b)

Figure 1.2: (a) The hallmarks of cancer (Adapted from Hanahan & Weiberg, 2011 [11]). (b)
Alterations in a range of cellular processes presumably contribute to cancer through their action
on one or more target genes, mRNAs, or proteins, although the precise targets remain unknown
in many cases (illustrated by shaded ovals) (Adapted from Garraway & Lander, 2013 [12]).

accessing all categories of genome alterations: point mutations, copy number varia-
tions, chromosomal rearrangements, gene expression measurement, identification of
alternative splicing, detection of DNA methylation, chromatin structure mapping,
and others. The application of NGS platforms to characterize and quantify biologi-
cal molecules inaugurated the “omics” revolution, allowing scientists to explore pro-
teins (proteomics), metabolites (metabolomics), RNA molecules (transcriptomics),
epigenetic markers (epigenomics), and several molecules and processes.

Armed with this new technologies, large-scale efforts organized many groups
across the world to collaboratively characterize tumor genomes and report their
findings from both tissue site-specific and pan-cancer perspectives. The most promi-
nent examples are: The Cancer Genome Atlas (TCGA), The International Cancer
Genome Consortium (ICGC), and the Pediatric Cancer Genome Project (PCGP).
The TCGA (https://cancergenome.nih.gov/) is jointly supported and managed
by the National Cancer Institute and the National Human Genome Research In-
stitute of the US National Institute of Health. The project has generated multi-
dimensional maps of the key genomic changes in 33 types of cancer. The TCGA
dataset (2.5 pentabytes of data describing tumor and matched normal tissues from
more than 11,000 patients) has been used widely by the research community, con-
tributing to more than a thousand of cancer studies by independent researchers. The
ICGC (http://icgc.org/) was launched to coordinate large-scale cancer genome
studies in tumors from 50 different cancer types and subtypes of clinical and soci-
etal importance. The PCGP (http://explore.pediatriccancergenomeproject.
org/) was organized by the St. Jude Children’s Research Hospital and The Genome
Institute at the Washington University (US), with the stated goal of sequencing the
whole genome of 600 tumors (and matched non-tumor germline samples) to define
the landscape of somatic mutations underlying major subtypes of pediatric cancer.

The huge amount of genomic information generated by these projects brings a
set of new challenges: handling, processing and analyzing these massive datasets.
The detection of different genomic alterations requires specialized algorithms and
statistical methods able to deal with false negatives produced by technical problems
(sequencing errors, alignment artifacts) and biological factors as: admixture of non-
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Chapter 1

cancer cells (tumor purity), copy number variations inherent in cancer genomes
(ploidy), and the presence of variant subclones within the cancer cell population
(heterogeneity).

Since the non-functional genomic alterations outnumber the functional onco-
genic events, a harder challenge is their classification according to the consequence
in cancer development. The “driver” events grant growth advantage to cells and
have been positively selected during cancer progression. The remaining genomic
alterations are considered as “passengers”: random events that have simply accu-
mulated over the course of development and cell growth.

In face of all these challenges, the advance in cancer research requires better
methods for integrate large amounts of molecular data, reduce its complexity and
translate it in biological and clinical meaning. We attempted these goals in the three
studies presented in this thesis: first, by developing a method for better detection
of somatic mutations in cancer sequencing data; secondly, by defining multi-tumor
targets and new drug repurposing strategies through the study of genes expression
profiles from 11 tumor types; and finally, by evaluating gene expression profiles to
investigate the molecular mechanisms involved in thyroid cancer progression.

Introduction 13
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Chapter 2

Introduction

2.1 Somatic Mutations in Cancer

The term somatic mutation refers to changes in the DNA that occurs in a
developing somatic tissue, while the germline mutations are those inherited from
the parents and transfered to the offspring. These mutations include single nu-
cleotide variants (SNVs), insertions and deletions (indels) of bases, DNA rearrange-
ments and copy number alterations. Our current understanding of cancer genetics
is grounded on the principle that cancer arises from a clone that has accumulated a
set of somatic aberrations that leads to malignant transformation (Figure 2.1). Con-
sequently, somatic mutations play a crucial role in cancer development, progression
and chemotherapy resistance.

The somatic landscape of cancer genomes has been characterized by the se-
quencing of all human protein-coding exons (WES, Whole Exome Sequencing),
which detects approximately 20,000 SNVs, or by the sequencing of the entire genome
(WGS, Whole Genome Sequencing), which detects 3-4 million SNVs. The analysis
of several samples from different tumors revealed large variability in the frequency
of mutational profiles across cancer types (Figure 2.2) [17]. For example, pediatric
and hematological tumors have the lowest mutation rates while lung cancer and
melanoma present the highest rates. The mutational profiles are related with signa-
tures of carcinogenesis mechanisms, such as the high proportion of G �C transver-

Figure 2.1: The lineage of mitotic cell divisions from the fertilized egg to a single cell within a
cancer. The figure shows the acquisition of somatic mutations and the processes that contribute
to them (Adapted from Stratton, Campbell & Futreal, 2009 [16]).

15



Chapter 2

Figure 2.2: Somatic mutational frequency and mutation profiles observed in 3,083 tumor–normal
paired exomes. Each dot represents a tumor–normal pair and their vertical position indicates the
their frequency of somatic mutations. The bottom panel shows the relative proportions of the six
possible base-pair substitutions (Adapted from Lawerence et al, 2013 [17]).

sions in lung cancers, attributed to tobacco smoke exposure; and the high proportion
of C �T transitions in melanomas, caused by ultraviolet radiation-induced DNA
damage and repair .

However, the detection of somatic mutations in normal-cancer paired samples
presents several challenges. The first one relies on the fact that we need to distin-
guish between germline and somatic mutations, and, at the same time, deal with
many sources of biological variation: tumor heterogeneity, subclonality, copy number
variation events, and tumor samples contaminated with normal cells or vice-versa.
The other problems arise from technical problems as: sequencing artifacts, mapping
errors, and differential sequencing depth between normal and tumor samples.

2.2 Detecting Somatic Mutations in Sequencing

Data

The most important steps in the detection of SNVs in sequencing data are:
quality control, alignment, alignment post-processing, quality score recalibration,
variant and genotype calling, and variant filtering.

Quality Control The sequencing data may present base calling errors, poor qual-
ity reads, adapter contamination, and a wide range of chemistry and instrument
failures [18]. For that reason, the first step must be the data quality control by
removing, trimming or correcting reads that do not meet a defined standard.

Alignment, Alignment Post-Processing and Base Recalibration The next
step is the alignment of reads to a reference genome. The most widely used references
are provided by the University of Santa Cruz (versions hg18, hg19 and hg38) and
by the Genome Reference Consortium (versions GRCh36-38). The choice of align-
ment tool and the corresponding settings significantly affect the analysis outcome
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Chapter 2

as wrongly aligned reads may result in artificial deviations from the reference. The
alignment tools are based on either hash table indexing procedures or data compres-
sion algorithms, as the “Burrows-Wheller transform” (BWT). BWT-based aligners
are fast, memory-efficient and particularly useful for aligning repetitive reads; how-
ever, they tend to be less sensitive than the state-of-the-art hash-based algorithms
[19].

The first step of the alignment post-processing is the sort of reads according to
their chromosomal position. Then, a common practice is to remove (or mark) the
PCR duplicates, which occur when two copies of the same original DNA fragment
is sequenced. They can be detected by selecting the sequencing reads that start and
end at exactly the same position. Finally, one can realign reads around small indels,
since differences in resolving the indels may cause artificial variant positions in the
downstream analysis.

Previous works demonstrated that the per-base quality scores issued by the
sequencing platforms may often deviate from the true error rate [20]. Since the
variant and genotype calling depend on the these scores, it is very important to
obtain well-calibrated quality scores, which is provided by softwares as GATK and
SOAPsnp.

Variant and Genotype Calling The term variant calling refers to determining,
in the sequencing data, positions that differ from a reference sequence; and genotype
calling refers to the process of determining the the individual’s genotype for the
positions having a variant. The early variant calling approaches relied on counting
the abundance of high-quality nucleotides at a single site, but probabilist frameworks
has been developed to provide ways of quantifying uncertainty about the variant
calls. In brief, it is assumed that one can compute a genotype likelihood p(E|G) for
a genotype G using the E evidence, i.e, all the read data for a particular individual
at a particular site. By using a genotype prior p(G), we can calculate the posterior
probability p(G|E) of a genotype G with the Bayes’ formula:

p(G|E) =
p(E|G)p(G)

p(E)
(2.1)

We can compute the most plausible genotype Ĝ by:

Ĝ = argmaxG{p(E|G) ∗ p(G)} (2.2)

The prior for the evidence p(E) remains constant in the maximization and can
therefore be omitted. Thus, it is sufficient to find the genotype that maximizes
the posterior probability. In this case, the evidence E simply consists of the bases
quality values in each read i. Thus, p(E|G) can be calculated directly from the data
by taking the product of p(Ei|G) over all i. More precisely, it will be expressed as:

p(E|G) =
∏
i

p(Ei|G) (2.3)

Variant Filtering Filtering is an essential step in reducing the number of false-
positive SNVs. Typically, the filtering approaches check for deviations from the
Hardy-Weinberg equilibrium, low-quality scores, systematic differences in quality
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scores for major and minor alleles, extreme read depths, strand bias (when a dis-
proportional number of plus and minus strands are observed), spanning deletions,
adjacent indels, within-read position, and presence of particular surrounding se-
quence motifs. [19, 21].

2.3 Low concordance of variant calling pipelines

Since the variant detection methods present different error-modeling approaches
and prior assumptions, several studies demonstrated low concordance between vari-
ant sets called by different pipelines, softwares and parametrizations [21–25]. There-
fore, the current challenge in clinical genomics relies on providing detection ap-
proaches that present the lowest level of false positives, in order to ensure the correct
clinical interpretation and chemotherapy selection, while, at the same time, reduce
the level of false negatives, since even a single variant missed can mean the difference
between discovering a disease-contributing mutation or not.

The false positives originate from factors as: i) batch effect and sample prepa-
ration [26], ii) read depth [23], iii) sequencing and alignment artifacts [27], iv) and
variant calling biases that algorithms may have towards specific types of SNVs [25].
The available tools either detect too many false positives in order to get all true
positives or lose too many true positives in order to reduce the number of false pos-
itives. In the first case, the researcher spends much time and resource validating
the set of candidate variants to select the true ones. In the second case, impor-
tant mutations that explain the biological characteristics of the cancer cells, may
be missed. One could reduce the number of false positives by increasing stringency
filters or intersecting different variant calls, but it usually results in a consistently
increase of false negative rates [28, 29]. As different tools and filtering approaches
usually present variability in performance according to studies and tumor types,
the research community faces a big challenge choosing the right pipeline among all
available options.

2.4 Objectives

In this study, we aimed to develop a pipeline that detects single nucleotide vari-
ants in sequencing data of cancer samples with high specificity and sensitivity rates.
To accomplish that, we combined the benefits of using two standard tools: Genome
Analysis Toolkit (GATK) and MuTect. GATK independently calls variants in the
normal and tumor samples, while MuTect performs the analysis simultaneously. In
order to ensure the somatic classification of the GATK results and reduce its false
positive calls, we created the GATK-LODN method. Briefly, it is part of the MuTect
algorithm that is applied downstream to the GATK analysis in order to ensure the
correct somatic classification and reduce its false positive calls.

We applied our pipeline to hematological (Acute Myeloid and Acute Lym-
phoblastic Leukemias) and solid (Gastrointestinal Stromal Tumor and Lung Adeno-
carcinoma) tumors. We also created artificial tumor samples to test the sensitivity
and specificity of our pipeline. Our results show that the pipeline performed well
and we believe that it can be helpful in discovery studies aimed to profile the somatic
mutational landscape of cancer genomes.
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Material and Methods

3.1 Sequencing Data

The whole exome sequencing data from Acute Myeloid Leukemia (n=37) and
Acute Lymphoblastic Leukemia patients (n=41) were kindly provided by the profes-
sor Giovanni Martinelli, from the Dipartimento di Medicina Specialistica, Diagnos-
tica e Sperimentale of the Università di Bologna. The targeted region comprised 62
Mb of 201,121 exonic regions sequenced by the Illumina HiSeq2000 platform, which
produced a per sample average of 55.2 and 63 million 100 bp paired-end reads for
the AML and ALL cohorts, respectively. The AML and ALL data sets are available
upon request to the Next Generation Sequencing for Targeted Personalized Therapy
of Leukemia consortium. We also selected two public data sets of Illumina HiSeq
2000 whole exome sequencing from NCBI Sequence Read Archive: 1) seven Gas-
trointestinal Stromal Tumors (GIST) samples, and their matching peripheral blood
samples, with an average of 35.5 million 100 bp paired-end reads per sample [SRA:
SRR1299130-141 and SRR1299144-147] [30][U+2060]; and 2) two Lung Adenocar-
cinoma samples, and their normal counterparts, with an average of 56.5 million 100
pb paired-end reads per sample [SRA: ERR160124, ERR160136, ERR166338, and
ERR166339] [31][U+2060]. After the quality control check, the average of final cov-
erages in the tumor cohorts were: 72X (± 29X) for AML, 119X (± 28X) for ALL,
76X (± 7X) for GIST, and 133X (± 64X) for Lung Adenocarcinomma (See appendix
tables A1, A2 ,A3, A4).

3.2 Pipeline for the discovery of Somatic Single

Nucleotide Variants (sSNV)

The Figure 3.1 summarizes steps of the pipeline that we created for the discovery
of somatic single nucleotide variants in paired normal-cancer sequencing data.

3.2.1 Quality Control Check

Initially, the sequencing reads were submitted to a quality control check. It was
based on the per-base error estimation emitted by the sequencing machines, which
provides the probability (P ) of a DNA base calling error. A common approach to
present this probability is by the Phred quality score (Q):
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Figure 3.1: The steps and tools of the pipeline for the discovery of sSNVs in paired normal-cancer
sequencing data.

Q = −10 log10 P (3.1)

We determined Q ≥ 20 as our threshold for base quality, in order to have an
accuracy of 99%. We applied the fastq quality filter.pl script to remove reads having
more than 80% of low quality bases. Then, we applied the fastq quality trimmer.pl
script for trimming the remaining reads with low quality bases in their 3’ extrem-
ities. Both scripts are from the FASTX-Toolkit (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) .

3.2.2 Alignment and alignment post processing

After the quality control check we aligned the reads to the human reference
genome version hg19/GRCh37 using BWA-MEM from the Burrows-Wheeler Align-
ment tool (BWA) package [32]. The BWA is based on backward search with
Burrows-Wheeler Transform (BWT) to efficiently align short sequencing reads against
a large reference sequence. The alignment was sorted according to the chromosome
coordinates and indexed to permit an efficiently access to the reads in the file. Both
sorting and indexing steps were performed by applying SortSam and BuildBamIndex
tools, from Picard (https://broadinstitute.github.io/picard/).

In the next step, we marked the duplicated reads. Read duplication originates
from the DNA sample preparation. In the first step of the sample preparation the
DNA is shattered in random fragments and adapters are ligated to the extremities
of all fragments. Then, all fragments are amplified by PCR (Polymerase chain
reaction) to create multiple copies of each original DNA molecule. The DNA is
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diluted in the flow cells (glass slides where the sequencing chemistry occurs) in order
to hybridize with short oligonucleotides complementary to the adapter sequences.
The duplication occurs when two copies of the same original molecule hybridize with
the oligonucleotides in a flow cell. These duplicates are identified in the sequencing
data by selecting reads with identical start and end positions. We marked the
duplicated reads with MarkDuplicates, from Picard.

The alignment of indels (insertion/deletions) often produce mapping artifacts.
They result from many mismatching bases near to the indel event, which can be
miscalled as true variants. Indel errors also originate from platform-specific arti-
facts. For example, sequencing data from Hi-Seq and Mi-Seq (Illumina) usually
present increased indel error rate around inverted repeats sequences and after long
homopolymer stretches in GC-rich regions [33–35]. We applied the IndelRealigner
from the Genome Analysis Toolkit (GATK) package (version 3.0) [36] to reduce the
number of false positives originating from indel artifacts. First, its algorithm iden-
tify reads spanning an indel; then it performs the Smith-Waterman algorithm to
provide a consistent alignment that minimizes mismatching bases across all reads.

3.2.3 Base Quality Score Recalibration

The variant calling algorithms rely heavily on the quality scores assigned to
the individual bases in each sequenced read. However, due to various sources of
systematic technical errors, the sequencing machines may over- or underestimate the
base qualities [20]. The GATK package provides a base quality score recalibration
(BQRS) tool (BaseRecalibrator) that applies machine learning methods to model
the base errors empirically and adjust the quality scores accordingly. This process
is accomplished by analyzing the covariation among several features of each base as:
reported quality scores, the position within the read, and dinucleotide context. We
applied the base quality score recalibration to improve the accuracy for subsequent
variant calling.

3.2.4 Variant detection

In order to obtain a large set of somatic variant candidates, we combined the
results from three different variant detection strategies: we applied the standard
tools HaplotypeCaller (GATK) and MuTect [37] and we created the GATK-LODN

method.

HaplotypeCaller, VariantRecalibrator and VariantFiltration (GATK)

For the first variant detection strategy, we applied the HaplotypeCaller, Vari-
antRecalibrator, and VariantFiltration tools from the GATK package. The Hap-
lotypeCaller performs the variant calling by applying a Bayesian algorithm that
estimates the probability for the homozygous (AA or BB) and heterozygous (AB)
genotypes.

The VariantRecalibrator was applied for filtering variants in the largest datasets:
AML and ALL. Its algorithm assigns scores to the candidate variants through the
variant quality score recalibration (VQSR) process. The VQSR is based on the idea
that variants with similar characteristics as previously known variants are likely to
be real, whereas those with unusual characteristics are more likely to be machine or
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Table 3.1: List of parameters and thresholds used for SNV hard filtering

QualByDepth (QD)
The variant confidence divided by the unfiltered

depth
< 2

FisherStrand (FS)
Phred-scaled p-value using Fisher’s Exact Test to

detect strand bias
> 60

RMSMappingQuality (MQ)
The Root Mean Square of the reads mapping

qualities
< 40

MappingQualityRankSumTest
(MQRankSum)

The u-based z-approximation from the
Mann-Whitney Rank Sum Test for mapping qualities

(reads with reference bases vs those with the
alternate allele) (Only applied to heterozygous calls)

< -12.5

ReadPosRankSumTest
(ReadPosRankSum)

The u-based z-approximation from the
Mann-Whitney Rank Sum Test for the distance from
the end of the read for reads with the alternate allele.

If the alternate allele is only seen near the ends of
reads, this is indicative of error (Only applied to

heterozygous calls)

< -8

data processing artifacts. It employs a variational Bayes Gaussian mixture model
(GMM) to estimate the probability that each variant is a true polymorphism rather
than a sequencing, alignment or data processing artifact. The set of variants vi are
treated as an n-dimensional point cloud, each variant vi positioned by its covariate
annotation vector, ~v. A mixture of Gaussians is fit to the set of likely true vari-
ants, here approximated by the variants already present in the HapMap3 database.
Following training, this mixture model is used to estimate the probability of each
variant call being true.

Since the number of samples was too small to apply the variant quality score
recalibration for the GIST and Lung Adenocarcinoma datasets, we followed the
GATK best practices instructions and applied a “hard” filtering approach by using
the VariantFiltration tool. The table 3.1 shows the list of parameters and their
thresholds used for SNV hard filtering.

MuTect

In our second variant detection strategy we applied the MuTect software [37].
It analyzes the tumor and normal samples at the same time, performing the variant
detection, filtering, and their classification in germ-line or somatic.

This variant detection algorithm was designed to detect somatic mutations with
very low allele fractions. It analyzes the data at each site considering two alternate
models: (i) a reference model, M0, which assumes there is no variant at the site and
any observed non-reference bases are sequencing errors, and (ii) a variant model,
Mm

f , which assumes that the site contain a true variant allele m at the allele fraction
f . The variant m is declared as a somatic candidate if the log-likelihood ratio of
the data under the variant and reference models (i.e., the log-odds (LOD) score)
exceeds a predefined decision threshold.

Mutect applies six filters for variant filtration and they are listed in the table
3.2.

GATK-LODN

The GATK software analyzes the tumor and control samples separately. The
somatic mutations are classified if they are observed in the tumor samples but not
in the normal samples. However, many variants are artifacts derived from: coverage
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Table 3.2: Description of filters and default thresholds applied by MuTect

Filter name Description and default thresholds

Proximal gap
Remove sites with nearby misaligned small insertion and deletion events. Reject candidate
site if there are ≥ 3 reads with indels in an 11-base-pair window centered on the candidate
mutation

Poor mapping

Two tests are used to identify such sites: (i) candidates are rejected if ≥ 50% of the reads
in the tumor and normal samples have a mapping quality of zero; and (ii) candidates are
rejected if they do not have at least a single observation of the mutant allele with mapping
quality score ≥ 20

Triallelic site
Reject sites where MuTect is considering an alternate allele C in the tumor sample and the
normal samples is heterozygous with alleles A and B. Although this is biologically possible,
calling at these sites generates many false positives.

Strand bias

Reject sites that have the majority of the alternate alleles observed in a single read direction.
This test is performed by stratifying the reads by direction and then applying the core
detection statistic on the two data sets. It also calculates the sensitivity to have passed the
threshold given the data. Candidates are rejected when the strand-specific LOD is < 2.0 in
directions where the sensitivity to have passed that threshold is ≥ 90%

Clustered position

Reject sites hallmarked by the alternate alleles being clustered at a consistent distance from
the start or end of the read alignment. It is performed by calculating the median and median
absolute deviation of the distance from both the start and end of the read and reject sites that
have a median ≤ 10 (near the start/end of the alignment) and a median absolute deviation
≤ 3 (clustered)

Observed in control

Reject sites in the tumor data by looking the matched normal sample for evidence of the
alternate allele beyond what is expected from random sequencing error. A candidate is
rejected if, in the normal sample, there are (i) ≥ 2 observations of the alternate allele or they
represent ≥ 3% of the reads; and (ii) their sum of quality scores is > 20

differences, and sequencing and alignment errors. To ensure the somatic classifica-
tion of each SNV candidate from the GATK output, we developed a method called
GATK-LODN, which was adapted from the MuTect algorithm and is based on the
LODN score. If the LODN was less than a predefined decision threshold, the variant
was classified as somatic. In the following lines we explain the calculation of the
LODN score, as defined in the MuTect original publication [37]:

LODN = log10

(
L(M0)P (m, f)

L(Mm
0.5)P (germ line)

)
≥ log10 θN (3.2)

The terms M0 and Mm
0.5 represent the variant model Mm

f when f = 0 and
f = 0.5, respectively. The f = 0.5 represents a germline heterozygous variant. The
likelihood of the model Mm

f is given by:

L(Mm
f ) = P (bi|ei, r,m, f) =

d∏
i=1

P (bi|ei, r,m, f) (3.3)

The reference alleles are denoted as r, the called base at the read i as bi and ei as
the probability of base miscalling. The term P (m, f) was determined by assuming
that P (m) and P (f) are statistically independent and that P (f) is uniformly dis-
tributed (that is, P (f) = 1). The P (m) was set as a typical mutation frequency of
3 ∗ 10−6. The P (germline) was distinguished according (i) sites known to be variant
in the population (i.e., present in dbSNP database) and (ii) all other sites. There are
30 ∗ 10−6 sites known to be variant in the human population according to dbSNP
release 134, which is 1000 variants/Mb. A given individual typically has 3 ∗ 10−6

variants in their genome, 95% of which are in dbSNP sites. Therefore, we expect
50 variants/Mb not at dbSNP, that is, P (germline|non-dbSNP site) = 5 ∗ 10−5. At
dbSNP sites we expect 95% of variants in the 3 ∗ 10−6 sites in the dbSNP database,
yielding P (germline|dbSNP site) = 0.095.
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The LODN score was calculated from the results of the GATK variant filtration.

3.2.5 Variant Annotation

The process of adding biological information to each variant is called annotation, and
it was performed by the Annovar software [38]. The gene-based annotation identified
whether the variants caused protein coding changes and which aminoacids were
affected. It was performed by using the information available in the Ensembl Gene
annotation database for the build 37 of the human genome (www.ensembl.org/).
Variants were removed if reported in the dbSNP138 and 1000 genomes databases
with minor allele frequency (MAF) greater than 0.05.

3.2.6 Availability of data and material

The scripts and instructions for running the main pipeline steps are available for
the community in the link: https://bitbucket.org/BBDA-UNIBO/wes-pipeline.

3.3 Pipeline Testing

3.3.1 Testing MuTect thresholds

Part of the tumor samples were previously profiled by Sanger Sequencing and it
permitted us to evaluate the number of False Negatives in the MuTect output. We
asked if we could could lower the MuTect decision thresholds in order to reduce
its selectivity and increase the number of True Positives without increasing too
much the number of False Positives. We created an adapted version of the MuTect
algorithm in which we lowered the threshold that determines the mutation detection
(θT ≥ 6.5) and the threshold that determines if the mutation is a somatic event
(θN |dbSNP site ≥ 5.5). This adapted-MuTect was applied to the SNVs in the GATK
output (prior to the variant filtering). We set as new thresholds to the minimum
values that would permit the correct classification of 10 false negative variants.

3.3.2 Simulated datasets

We simulated datasets to evaluate the specificity and sensitivity of the methods
MuTect, GATK and GATK-LODN.

As each read is independently sequenced, datasets can be simulated by splitting
the sequencing data of the same sample in many subsets. We selected the alignment
(80X) of the saliva sample a1025 from the AML cohort and randomized its reads.
Then, we split it in two subsets by applying the bamutils tool from the NGSUtils
package [39]. By considering one of the halves as a normal sample and the other as
a tumor sample, we applied the methods and evaluated the number of called sSNVs.
Since these two simulated samples originated from the same saliva sample, all called
variants were considered as false positives.

The sensitivity was calculated by creating artificial tumor samples. We adapted
the mutate sample.py script from the Shimmer package [40] to create mutations
in the alignment of the a1025 saliva sample. Three artificial tumor samples were
created with 22, 25 and 25 sSNVs, which had variant allelic frequencies (VAF) in the
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Table 3.3: Artifical Tumor Samples

Chromosome Position REF>ALT
Artificial Tumors

Variant allelic frequencies
Normal

Variant Allelic Frequencies

0.02-0.26 0.5-0.86 0.97-1

11 19854088 G>A 0.03 0.69 1.00 0.00
11 36484167 C>T 0.08 0.62 1.00 0.03
11 4608116 T>C 0.13 0.71 1.00 0.02
11 4661826 T>C 0.11 0.60 0.97 0.03
11 4673788 G>A 0.26 0.64 1.00 0.02
11 4928841 T>C 0.13 0.61 1.00 0.00
11 5372856 A>G 0.24 0.69 1.00 0.02
11 5373562 C>A 0.09 0.68 1.00 0.03
11 5443887 T>C 0.10 0.86 1.00 0.00
11 5443893 G>A 0.10 0.86 1.00 0.00
11 5462255 C>G 0.16 0.56 1.00 0.00
11 5906203 T>G 0.19 0.70 1.00 0.00
11 6519642 G>A 0.08 0.61 1.00 0.00
11 824789 T>C 0.11 0.63 1.00 0.03
12 25398281 C>T 0.12 0.63 1.00 0.00
12 75715330 C>A 0.13 0.60 1.00 0.00
22 24891418 A>C 0.21 0.70 1.00 0.03
22 44083442 T>C NA 0.78 1.00 0.00
13 101289801 C>A 0.13 0.65 1.00 0.00
20 61537337 G>T 0.13 0.65 1.00 0.00
17 48557299 G>T 0.11 0.74 1.00 0.00
5 45262378 G>T 0.08 0.50 1.00 0.00
1 94476902 T>C 0.15 0.65 1.00 0.00
2 110372199 G>T NA 0.57 1.00 0.00
5 64907465 C>A 0.10 0.57 1.00 0.00

Table 3.4: Number of SNVs submitted to experimental validation

Mutation Detection Mutation Classification

GATK 48 14
GATK-LODN 9 4

MuTect 22 8

range of 0.02 to 0.25, 0.5 to 0.86, and 0.97 to 1.0, respectively (Table 3.3). For each
artificial tumor sample, we created subsets by randomly excluding reads in order
to simulate sequencing coverages in the range of 5X to 80X, with intervals of 5X.
The creation of the subsets was performed by the DownsampleBam tool of Picard.
We then evaluated the performance of each variant calling method at the different
coverage levels.

3.3.3 Experimental validation

We selected a subset of SNV candidates for experimental validation. They were
selected from the output of each method (MuTect, GATK, and GATK-LODN) and
we tested if these variants were confirmed in the tumor sample (Mutation Detec-
tion) and if they were truly classified as somatic events (Mutation Classification)
(Table 3.4). Variants with allelic frequency higher than 0.2 were validated by Sanger
Sequencing and those with allelic frequency lower than 0.2 were validated by using
the Illumina TrueSight Myeloid Sequencing Panel and Illumina MiSeq sequencing.
The results were analyzed by the VariantStudio software (Illumina), according to
manufacturer’s instruction.
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Results

4.1 Comparison of methods

We built a pipeline for discovery of somatic single nucleotide variants (sSNVs)
in whole exome sequencing data and applied it to Acute Myeloid Leukemia (AML),
Acute Lymphoid Leukemia (ALL), Gastrointestinal Stromal Tumor (GIST), and
Lung Adenocarcinoma (LA) samples.

First, we compared the results of the variant detection procedures MuTect and
GATK. GATK detected more sSNVs than MuTect in all datasets: 5.5, 4.6, 20.9 and
2.6 times more than MuTect in the datasets AML, ALL, GIST, and LA, respectively.
The results also showed low concordance between GATK and MuTect results: 1.1%,
2.54%, 3.67%, 30.11%, for the AML, ALL, GIST and ALL datasets, respectively
(Figure 4.1a). This low concordance indicated that there were several method-
specific sSNVs that could be considered as final candidates by merging the results
from both methods. However, as GATK presented larger numbers of candidates in
comparison with MuTect, we hypothesized that the GATK results also presented
proportionally larger numbers of false positives.

In order to merge both results without increasing the number of false positives,
we created the GATK-LODN variant detection procedure to filter the false positives
from the GATK candidates. By comparing GATK and GATK-LODN, we observed
that the latter filtered 98.36%, 95.52%, 86.69%, and 60.66% of the GATK candi-
dates in the AML, ALL, GIST, and LA datasets, respectively (Figure 4.1b). As
we can see, the filter strongly reduced the GATK candidates in the hematological
tumors, but approximately 10% of the GATK specific sSNVs remained after the
filtering in the solid tumors. Interestingly, after the filtering in the GIST dataset,
GATK-LODN final candidates still represented three times more candidates than
the MuTect results.
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(a)

(b)

Figure 4.1: Comparison of the number of sSNVs between GATK and MuTect before (4.1a) and
after (4.1b) applying the GATK-LODN filter for each whole exome sequencing dataset. AML:
Acute Myeloid Leukemia, ALL: Acute Lymphoblastic Leukemia, GIST: Gastrointestinal Stromal
Tumor, LA: Lung Adenocarcinoma.
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Table 4.1: MuTect False Negatives

Patient Gene Chr Pos Ref Alt θN θT Nalt Nref Talt Tref

b2042 GBP4 1 89652071 T C 3.31 4.72 0 11 2 23
b2042 GBP4 1 89652072 C T 3.01 4.52 0 10 2 23
b2002 YLMP1 14 75245170 T A NA 14.79 0 3 5 12
b2002 MADCAM1 19 501786 C A 7.12 5.45 6 29 9 31
b2002 MADCAM1 19 501801 A C 7.22 5.22 0 24 2 29
b2002 MADCAM1 19 501802 G C 7.22 5.50 0 24 2 26
a1025 ATXN1 6 16327915 A C 19.25 6.14 0 64 3 108
a1024 CENPO 2 25022705 C T 4.51 26.56 0 15 9 25
b2035 GBP4 1 89652071 T C 4.81 5.19 0 16 2 13
b2035 GBP4 1 89652072 C T 4.81 4.87 0 16 2 15

* All listed positions are reported in the dbSNP database
Nalt,ref: Number of reads having the alternate or reference allele in the normal sample
Talt,ref: Number of reads having the alternate or reference allele in the tumor sample
NA: MuTect did not calculate the LODN when the normal samples had a total read depth coverage < 8.

Table 4.2: Number of variants found by MuTect, before and after relaxing the θT and θN parameters
for six Acute Myeloid Leukemia (AML) normal-cancer sample pairs

Patients MuTect MuTect Adapted1

a1024 11 39
a1025 31 41
b1014 22 54
b2002 10 25
b2035 43 419
b2042 58 338

1 Applying the computation of θT and θN , from the MuTect algorithm, with lowered threshold values (4.5 and 3,
respectively) downstream to the GATK analysis

4.2 Pipeline Testing

4.2.1 Testing MuTect thresholds

We observed that MuTect miscalled variants that were previously confirmed by
Sanger sequencing (Table 4.1) and we tested if we could lower the algorithm strin-
gency and reduce the number of false negatives. For each one of the reported false
negatives, we calculated the MuTect parameters that are used for sSNV detection
and classification (θT and θN , respectively). We observed that the minimum thresh-
old values for their correct classification would be θT ≥ 4.5 and θN |dbSNP site ≥ 3.

We observed that applying these decision thresholds increased the number of
final candidates approximately 1.3 to 19 times in comparison with the original Mu-
Tect output (Table 4.2). This result means that reducing the MuTect stringency
may increase the number of true positives, but with the cost of many false positives.
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Table 4.3: Performance of MuTect and GATK-LODN for artificial tumor samples having variants
with diverse allelic frequencies

Artificial Tumor Samples

Low Frequency
VAF: 0.02 – 0.26

Intermediate Frequency
VAF: 0.5 – 0.86

High Frequency
VAF: 0.97 – 1

MuTect

Somatic Candidates 22 25 25
TP 19 25 25
FN 0 0 0
FP 3 0 0

PPV 19/22 25/25 25/25

FDR 3/22 0/25 0/25

GATK-LODN

Somatic Candidates 27 32 33
TP 17 23 23
FN 5 5 2
FP 5 7 8

PPV 17/22 23/30 23/31

FDR 5/22 7/30 8/31

TP: True positives, FN: False negatives, FP: False positives, PPV: Positive Predictive Value ( #TP / (#FP +
#TP) ), FDR: False Discovery Rate ( #FP / (#FP + #TP) ), VAF: Variant Allelic Frequency. GATK results were
not reported in the table since it detected more than 2200 candidates out of 22 or 25 TPs.

4.2.2 Simulated datasets

Simulated data permitted the evaluation of sensitivity and specificity of the
three variant detection approaches (MuTect, GATK and GATK-LODN). We cre-
ated the first simulated dataset by splitting a saliva sample alignment (80X) in two.
As both samples originated from the same alignment, all sequencing and mapping
artifacts were the same, but the splitting would create small deviations of the allelic
frequencies in the two halves. By counting the number of resulted sSNVs, we ob-
served how each method deals with small coverage deviations in normal and tumor
samples. MuTect detected the lowest (8), GATK-LODN an intermediate (35), and
GATK the highest (76) number of false positives.

Then, we applied technical replicates of the same saliva sample to the pipeline.
In this case, each replicate had its own set of sequencing and mapping artifacts
and the number of sSNVs resulted from each method reflected how they deal with
sequencing/mapping errors. Again, MuTect detected the lowest (7), GATK-LODN

an intermediate (33), and GATK the highest (84) number of false positives.
We measured the methods sensitivity by creating three artificial tumors from

the same saliva sample alignment: we inserted high-frequency SNVs in the first
(n=25, VAF: 0.97 to 1.0), intermediate-frequency in the second (n=25, VAF: 0.5 to
0.86), and low-frequency in third (n=22, VAF: 0.02 to 0.25).

GATK presented the worst performance, detecting 2,206 candidates out of 22
or 25 true positive variants. MuTect presented a Positive Predictive Value (PPV)
of 0.86 (19/22) for low VAF mutations and its false negatives either presented VAF
under 0.1 or low sequencing depths (Table 4.3). GATK-LODN presented a PPV of
0.77 (17/22) for the low allelic frequency variants, but it also missed variants with
very low VAFs (< 0.095) (Table 4.3). MuTect detected all intermediate and high
allelic frequency variants, while GATK-LODN presented PPVs of 0.76 (23/30) and
0.74 (23/31), respectively (Table 4.3).

In order to evaluate the detection methods performance at different coverage
levels, we simulated sequencing coverages, in the range of 5X to 80X, for each ar-
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Figure 4.2: Number of False Negatives and True Positives at different coverage levels. Three
artificial tumors were created with 22, 25 and 25 SNVs, which had variant allelic fractions range of
0.02 to 0.25, 0.5 to 0.86, and 0.97 to 1.0, respectively. We counted the number of False Negatives
(FN) and True positives (TP) for different levels of simulated sequencing coverage.

tificial tumor sample. We observed that, at different coverage levels, GATK-LODN

and MuTect presented almost identical performance for the artificial tumors with
high and intermediate variant frequency SNVs, except in the number of false nega-
tives detected by GATK-LODN at the coverage interval of 5 to 20X. GATK-LODN

presented increased number of detected true positives than MuTect in the cover-
age interval of 50 to 55X for high and intermediate-frequency variants, and in the
coverage 20X for low-frequency variants (Figure 4.2).
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4.2.3 Experimental Validation

We evaluated the performance of each variant detection method by performing
two rounds of experimental validation (Sanger sequencing): 1) in the first we tested
the sSNVs presence in the tumor samples (SNV detection), and 2) in the second we
tested both tumor and normal samples, in order to evaluate the correct classification
as a somatic event (SNV classification).

We observed that 37.5% (18/48) and 27.7% (5/18) of GATK variants were
correctly detected and classified, respectively. MuTect presented the highest per-
formance in both rounds (85.7% (6/7) and 66.6% (2/3), respectively). The GATK-
LODN presented intermediate performance, resulting in 66.6% (6/9) and 75% (3/4)
validated variants, for mutation detection and classification, respectively (Table 4.4).

Table 4.4: The GATK-LODN method increases the GATK performance for both mutation detec-
tion and classification

SNV Detection a SNV Classification b

Tested Validated Tested Validated

GATK-LODN (specific) 4 1 2 2
GATK-LODN (all variants) 9 6 4 3
GATK (without GATK-LODN) (specific) 37 11 9 2
GATK (without GATK-LODN) (all variants) 48 18 14 5
MuTect (specific) 22 21 8 8
MuTect (all variants) 29 27 11 10
MuTect & GATK 7 6 3 2

The Sanger sequencing validation was performed in two rounds: in the first round we tested whether the methods
correctly detected the mutation and in the second one we assessed whether the methods correctly classified the
mutations as somatic events. The variant subsets tested (AML datatset) presented variants method specific and
variants detected by one or more methods.
a variants tested for correct mutation detection
b variants tested for correct classification as somatic events
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Discussion

Cataloguing somatic single nucleotide variants (sSNVs) is essential to under-
stand the genetic bases of cancer and extensive efforts have been made towards
accurate variant calling approaches. The main challenge relies on removing errors
derived from multiple sources, detecting rare variants in highly heterogeneous tumor
samples, and detecting rare variants at small sequencing coverage levels. Different
approaches may be more successful dealing with some of these challenges and less
so with others. Therefore, we did not considered the option of considering just the
results obtained from one tool, since it would risk the selection of errors for which
the algorithm is vulnerable [21]. Another option would be taking the intersection
of multiple variant callers, but it would result in high false negative rates, since the
concordance between tools is very small and each one might uniquely identify true
variants [28]. Our data show that the combination of standard tools - Genome Anal-
ysis Toolkit (GATK) and MuTect – improves the range of detected SNVs in whole
exome sequencing data of cancer samples. We also developed the GATK-LODN

method, which reduced the number of GATK false positive calls.
The GATK is one of the variant callers used by the 1000 Genomes Consortium

[41]. It uses a Bayesian model to estimate the likelihood of a genotype given the
sequenced reads that cover the locus and it independently calls genotypes in tumor
and normal samples, being the somatic candidates reported as those only present
in the tumor sample. A previous study demonstrated that the SNVs found only
by GATK had relatively high validation rates [28], but, in our dataset, its results
presented several false positives (Table 4.4). These false calls are likely germline
variants that are not called in normal samples because of low sequencing coverage
or low allelic frequency.

MuTect jointly analyzes tumor and normal samples by also applying a Bayesian
classifier to detect SNVs with very low allelic fractions, requiring only a few support-
ing reads, followed by tuned filters to ensure specificity. When applied to a cohort
of 11 tumor types, it presented high sensitivity and specificity, with validation rates
superior to 90% [37]. MuTect was applied to the Acute Myeloid Leukemia dataset
of the TCGA project, but it was latter demonstrated that its results contained a
consistent presence of false negatives, leading to undervaluation of somatic variants
occurrence in this tumor type [29]. In our dataset, we observed at least 10 MuTect
false negatives (Table 4.1), but we discarded the option of relaxing the algorithm
decision thresholds, because, even if it detected variants previously miscalled, the
final results included many false positives (Table 4.2).
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The combination of different approaches has been suggested in literature. For
instance, Kim et. al, 2014 [42] combined the output of different variant callers by
forming linear combinations of different calls to predict the true somatic status of a
given variant. The authors also demonstrated that, by including genomic features
in the model through a Feature-weighted linear stacking approach, their method
could learn in which type of locus each algorithm is typically right. However, our
pipeline resulted as a straightforward and simple way of combining the advantage
of different algorithms: GATK presented high amounts of false positive calls (type
I error), MuTect presented high amounts of false negative calls (type II error), and
so the GATK-LODN method is an option of increasing the range of detected SNVs
without severely compromising sensitivity and specificity.

Our results show that GATK-LODN reduced the number of GATK false pos-
itives and detected variants that were missed by MuTect (Figure 4.1). The ex-
periments in the simulated artificial tumor samples and the sequencing validation
showed that GATK-LODN increased the GATK performance (Figure 4.2 and Ta-
ble 4.4, respectively). However, we performed the validation experiments just for
variants from the hematological tumors (available in our laboratories) and the val-
idation rate might change for solid tumors. We observed that the GATK-LODN

also outperformed MuTect in some simulated sequencing coverages (Figure 4.2). As
sequencing datasets usually present large variability in coverage and quality, the dif-
ferent error modeling approaches and prior assumptions associated with these two
methods should permit good performances in a wide range of scenario possibilities.

The results show that GATK-LODN filtered more variants in the hematological
tumors than in the solid tumors and we hypothesized that a possible cause might be
that normal samples from hematological tumors are more prone to contamination
by cancer cells. Although GATK-LODN provided a small number of variants in the
hematological datasets, even a single variant can give insights into the mechanisms
of malignant transformation and help design personalized therapeutic approaches
[43]. We observed that the Lung Adenocarcinoma presented the biggest concordance
between methods, maybe because patients with this type of cancer usually presents
high mutation frequencies and harbors more somatic mutations compared with other
cancer types [17, 44].

The GATK-LODN is suitable for application together with other post-calling
filtering strategies proposed in the literature: strand bias, nearby polymorphisms
and technology specific sequencing errors removal [33, 35, 45]. For instance, Carson
et al [26] suggested new thresholds for genotype and variant filters to be used in con-
junction with the GATK pipeline analysis that could increase the GATK-LODN per-
formance in population-based studies. Altogether, the GATK-LODN allows enough
flexibility to deal with different study designs and requirements about how stringent
the analysis must be.

Finally, we believe that the GATK-LODN can be of service in large-cohort dis-
covery studies, helping in the understanding of cancer biology through the discovery
of somatic single nucleotide variants in cancer sequencing data.
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Introduction

6.1 Oncogenic alterations across human cancers

For decades, anatomical localization and histological features have guided the
identification of cancer subtypes, but the genomic profiling of tumor samples has
revealed differences and similarities that go beyond the histopathological classifica-
tion.

The diversity in genomic alteration patterns often stratifies tumors from the
same organ or tissue, while tumors in different tissues may present similar patterns.
For example, TP53 mutations drive high-grade serous ovarian, serous endometrial
and basal-like breast carcinomas, all of which share a global transcriptomical signa-
ture involving the activation of similar oncogenic pathways [46, 47]. Other common-
alities across tumor types include inherited and somatic inactivation of the BRCA1-
BRCA2 pathway in both serous ovarian and basal-like breast cancers, microsatellite
instability in colorectal and endometrial tumors, and the POLE-mediated ultramu-
tator phenotype characterized by extremely high mutation rates, common to both
colon and endometrial cancers [46, 48]. Hoadley et. al, 2013[U+2060] [49] sug-
gests that lung squamous, head and neck, and a subset of bladder cancers form a
unique cancer category typified by specific alterations, while copy number, protein
expression, somatic mutations and activated pathways divide bladder cancer into
different subtypes. The analysis of cancer transcriptomes revealed that the same
tumor type may originate from several cell types and different biological processes
may lead to the same malignant transformation. Moreover, the activation of similar
pathways may occur across different cancers, as exemplified by high-grade serous
ovarian, serous endometrial and basal-like breast carcinomas [46, 47, 50].

However, we still need to translate this increasing amount of knowledge into
practical applications for cancer treatment and classification. A recent study di-
vided tumor samples into a hierarchical system of classification based on two major
classes: tumors primarily affected by mutations, and tumors primarily affected by
copy number alteration events. For each class, the authors found a list of onco-
genic signatures shared by tumor samples, and, based on the cellular processes that
these genomic alterations reflected, they proposed therapeutic strategies for the dif-
ferent tumor classes [51]. A systematic pharmacogenomic profiling in cancer cell
lines revealed several associations between drugs and genomic features (mutational,
transcriptional and CNV profiles) that correlate with drug sensitivity [52]. For ex-
ample, plasma cell lineage correlate with sensitivity to IGF1 receptor inhibitors;
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AHR expression associates with MEK-inhibitor efficacy in NRAS-mutant cell lines,
and SLFN11 expression predicts sensitivity to topoisomerase inhibitors [53].

The development of a molecular and functional perspective across tumors will
result in the description of similar genomic profiles that will enable us to repurpose
therapies from one cancer to another.

6.2 Data integration in cancer genomics

The huge amount of heterogeneous types of data for a large number of tu-
mors requires novel approaches capable to integrate such information into a unified
framework. To reach this goal, data integration methodologies have to meet many
computational challenges, which arise arise owing to different sizes, formats and di-
mensionalities of the data being integrated, as well to their complexity, noisiness,
information content and mutual concordance (i.e. the level of agreement between
datasets) [54].

One integration approach is to describe biological data from different aspects of
cellular information level as omic layers (Figure 6.1). In the cancer research, high-
throughput technologies has permitted an extensive description of these layers: 1)
the genome layer through the sequencing of cancer cell genomes; 2) the transcriptome
layer, by microarray and RNA-sequencing technologies; and 3) the proteome layer,
by the description of protein physical interactions through yeast two-hybrid assays
and affinity purification with mass spectometry.

Each omic layer can be represented by networks (or graphs), with nodes rep-
resenting entities (genes, proteins, etc) and links representing the relationships be-
tween nodes. In biological networks, links can represent physical, functional or
chemical relationships between pairs of nodes. Network approaches have been the
most widely used method for modeling and analyzing omics data, but we still need
improved methods of network integration to detect and study gene-gene associations.

6.3 Objectives

In this study, we aimed to combine gene expression and mutational data from
several cancer types in order to find multi-tumor drug targets, prognostic markers,
and a molecular taxonomy for effective cancer categorization. Our approach relied
on reducing the complexity of thousand of genes to a curated subset of cancer-
related genes described by the Ontocancro database. Based on tumor expression
profiles extracted from The Cancer Genome Atlas (TCGA) data portal, we per-
formed a tumor-wise clustering approach to define clusters of tumors. Then, to find
gene signatures for the tumor clusters, we applied a network analysis approach that
combined: the curated set of cancer-related pathways described in the Ontocan-
cro database, gene expression profiles, and the BioPlex protein-protein interaction
network.

The relevance of the gene signatures was assessed by: considering the mutational
and clinical data available for the cancer types considered in this study, drug-gene
associations according to the DrugBank database, and by evaluating the existence
of ongoing clinical trials that investigate the inhibition of signature genes. Finally
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Figure 6.1: A schematic illustration of the molecular information layers of a cell (Adapted from
Gligorijevic & Przulj, 2015 [54]).

we treated two cancer cell line models with three existing drugs that target genes in
the signatures and evaluated their potential to inhibit cell growth.

We believe that our study will help both clinical and research communities,
providing novel targets for multi-drug approaches and for the repurposing of existing
drugs.
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Material and Methods

7.1 Gene Expression Datasets

The gene expression datasets used in this study were retrieved from The Cancer
Genome Atlas (TCGA) Data Portal. The entire dataset included Agilent expression
arrays of 2,378 samples from 11 tumor types (Table 7.1).

In order to reduce the data high dimensionality (17,814 genes), we performed
a knowledge-based selection of cancer-related genes having protein protein interac-
tion information. For the proteomic information we selected the BioPlex protein-
protein interaction (PPI) network [55]. This network represent the results from
an experiment of affinity purification of epitope-tagged proteins followed by mass
spectrometry (AP-MS), which resulted in a human interaction map of 56553 inter-
actions among 10961 proteins. The list of cancer-related genes was retrieved from
the Ontocancro database (http://ontocancro.inf.ufsm.br/), which provides cu-
rated annotations for cancer-associated genes related to specific biological functions
as: cell cycle, DNA damage response, and inflammation. We selected for this study,
the genes present in both BioPlex network and Ontocancro database, resulting in a
list of 760 genes.

Table 7.1: List of tumors and the respective number of gene expression arrays analyzed

Abbreviation Cancer Number of patients

BRCA Breast invasive carcinoma 593
COAD Colon adenocarcinoma 172
GBM Glioblastoma multiforme 595
KIRC Kidney renal clear cell carcinoma 72
KIRP Kidney renal papillary carcinoma 16
LGG Brain lower grade glioma 27

LUAD Lung adenocarcinoma 32
LUSC Lung squamous cell carcinoma 155

OV Ovarian serous cystadenocarcinoma 590
READ Rectum adenocarcinoma 72
UCEC Uterine corpus endometrial carcinoma 54

Total 2,378
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Figure 7.1: The Context Likelihood of Relatedness (CLR) algorithm. The CLR algorithm com-
putes a z-score for each gene-gene correlation and it depends on the distribution of the Pearson’s
coefficients for all possible interactions of a given pair of genes i and j (Figure adapted from [57]).

7.2 Tumor clustering

In order to find clusters of tumors, we grouped the tumor types according
to their transcriptomical profiles. We studied the relation between genes in each
tumor dataset by calculating a correlation matrix containing pairwise Pearson rij
coefficients across all samples.

In order to filter false correlations and indirect influences, the absolute correla-
tion values (|rij|) were adjusted with the Context Likelihood of Relatedness (CLR)
algorithm [56, 57] (Figure 7.1). In this study, the CLR estimated the correlation
likelihood for a particular pair of genes i and j by comparing their correlation coef-
ficient to a background distribution (the null model). The background distribution
was considered to be two set of values: {ri} and {rj}, the set of all correlation
coefficients for gene i and j, respectively. The CLR algorithm approximates this
background distribution as a joint normal distribution with {ri} and {rj} as inde-
pendent variables. Thus, the final form of the likelihood estimation was:

f(Zi, Zj) =
√
Z2
i + Z2

j (7.1)

where Zi and Zj are the z-scores of ri,j marginal distributions, being the f(Zi, Zj)
the joint likelihood measure. In this study, we used the CLR function implemented
in the R/Bioconductor package “minet” [58][U+2060].

The matrices containing the z-scores computed by the CLR algorithm were
clustered using the hierarchical clustering procedure. The clustering was based on
the element-wise Euclidean distance between each pair of tumor matrices A and B,
calculated as follows:

d(A,B) =

√√√√ n∑
i=1

n∑
j=1

(ai,j − bi,j)2 (7.2)

.
We applied the Ward linkage method, which minimizes the total within-cluster vari-
ance.
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7.3 Multi-tumor gene signatures

A network approach was applied to find gene signatures that characterized the
tumor clusters. First, we created a backbone network (BioPlex-Ontocancro) by
selecting genes present in the BioPlex PPI network that were also annotated in the
Ontocancro database (Figure 7.2).

Then, for each tumor cluster, the gene-gene correlation coefficients were com-
puted and their absolute values were adjusted with the CLR algorithm. Each cor-
relation matrix was superimposed to the BioPlex-Ontocancro network, producing
networks (one for each cluster) in which genes were linked only if they correlated in
the expression profiles and if they presented a physical interaction in the PPI net-
work. For the cluster 1 and 3 networks, we selected the giant components (245 and
244 nodes, respectively), and for the cluster 2 we selected the two biggest compo-
nents (149 and 118 nodes). The networks were analyzed and visualized by Networkx
Python package and Cytoscape [59][U+2060].

We hypothesized that the most central genes in each cluster network would
be those most functionally important for the tumors of each cluster. We selected
the Spectral Centrality (SC) [60] measure to select the most central nodes, which
calculates the effect of a node removal on the network diffusivity based on the
spectral properties of the Laplacian graph. Thus, the gene signatures of each cluster
were defined as the genes (nodes) having the SC measure above the 90th percentile.

7.4 Validation of the multi-tumor gene signatures

7.4.1 Gene signatures and mutational data

In order to verify the relation between genes in the signatures and genes com-
monly mutated in cancer, we retrieved the somatic mutational data from TCGA
data portal for the considered tumors. To avoid cancer unrelated mutations, we
considered only mutations reported in the Catalogue of Somatic Mutations in Can-
cer (COSMIC) database (http://cancer.sanger.ac.uk). The COSMIC database
is the world’s largest resource for exploring somatic mutational data in human can-
cers. In its latest release (August, 2014), it describes more than 2 million coding
point mutations in over one million tumor samples, and all the mutational informa-
tion is manually curated from the scientific literature [61].

We asked if the mutated genes were closer to the signature genes in the PPI
network in comparison with all other genes. To quantify it, for each signature gene,
we calculated the minimum distance (in terms of shortest path in the network)
required to reach a mutated gene, and represented each signature as the average
of minimum distances (d̄ real

min). Then, we performed a permutation test by creating
106 random gene signatures, having the same size as the originals, and recalculated
the average minimum distance to nearest mutated gene (d̄ random

min ). A p-value was
calculated as the proportion of random signatures presenting an average minimum
distance smaller than the real one (d̄ random

min < d̄ real
min).
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Figure 7.2: BioPlex Ontocancro Network. Network built from the genes present in both BioPlex
network and Ontocancro database.
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7.4.2 Gene signatures and pharmacological data

We retrieved drug-gene annotations from the DrugBank (www.drugbank.ca)
and Drug Gene Interaction (DGIdb, www.dgidb.org). The DrugBank database is a
resource that combines drug data (chemical, pharmacological and pharmaceutical)
with drug target information (sequence, structure and pathway) [62]. The DGIdb
is a web resource that combines twenty seven data sources describing drug-gene
interactions and gene drugability [63]. By using the data from these databases, we
evaluated possible drug target annotations for the genes in the signatures.

We also asked if the genes in the signatures have been evaluated in ongoing clini-
cal trials as inhibition targets. To answer this question, we retrieve data from the the
Aggregate Analysis of ClinicalTrials.gov (AACT) database (www.ctti-clinicaltrials.
org/aact-database). The ClinicalTrials.gov is a web-based resource that provides
access to information on publicly and privately supported clinical studies.

7.4.3 Gene signatures and prognosis

The prognostic potential of each gene signature was evaluated by considering
the clinical data (days to death) available in the TCGA data portal. First, we
clustered the patients having clinical information based on the expression levels of
the gene signatures. We performed the k-means clustering procedure, which is one
of the simplest unsupervised clustering algorithms. The algorithm classify a given
dataset into a certain number of clusters (k) fixed a priori. The algorithm starts with
two random cluster centers and iteratively moves the centers to minimize the total
within cluster variance (until convergence) [64]. We fixed the number of clusters as
2 (k = 2), assuming the existence of two patient groups: one with good and another
with bad survival outcome. We applied the k-means algorithm implemented in the
Python package ’scikit’.

Then, we calculated survival curves for each one of the two patient groups
defined by the k-means. The survival curves are the estimated probability of patient
survival for a given time and we applied the Kaplan-Meier method. In this method,
the survival probability at any particular time is calculated as:

St =
n− d
n

(7.3)

being n the number of subjects living at the start; and d the number of died subjects.
Survival to any point time is calculated as the product of all survival probabilities
of preceding time intervals [65]. To compare the two survival curves we applied
the log-rank test, which evaluates the null hypothesis that there is no difference
regarding the groups in the probability of an event (here death) at any time point.
Thus, each time an event occur, the test calculate the observed number of deaths
and the number expected if there were no difference between groups. The χ2 is
used to test the null hypothesis, using the number of groups minus one (i.e., 2-1=1)
degrees of freedom [66]. The survival curves and the log-rank test were calculated
using the Python package “lifelines”.

PART II 42

www.drugbank.ca
www.dgidb.org
www.ctti-clinicaltrials.org/aact-database
www.ctti-clinicaltrials.org/aact-database


Chapter 7

7.4.4 Gene signatures and in vitro inhibition

We asked if the defined gene signatures were good candidates for drug targeting.
We selected two drugs that inhibit genes from the cluster 2 signature: Bortezomib
and BI6727, which inhibit the genes PSMB3 and PLK1, respectively. We also se-
lected the drug PF-00477736 (Selleckchem) for inhibiting the genes CHK1/2, which
are not present in the gene cluster 2 signature but are strictly related to the genes
in the signature.

We tested the effect of the inhibition of these genes in two cancer cell models:
the glioblastoma T98G and the breast adenocarcinoma MCF-7 cell lines, obtained
from ATCC and DSMZ, respectively. Cells were cultured at a density of 105 cells/ml
in RPMI medium plus 10% FBS (plus 5% Sodium orthovanadate for T98G) for 72
hours with increasing drug concentrations, testing the single drugs or their com-
bination. One hour and 30 minutes before the end of treatment, WST-1 reagent
was added to the cell medium and cell viability was measured according to manu-
facturer’s instruction (Roche). The dose-effect response and the IC50 of each drug
were calculated using GraphPad Prism 6 (GraphPad Software).

We evaluated if the results indicated a synergistic effect, which means that the
drug combinations provided better results in comparison with the single agent treat-
ments. We computed the Combination Index (CI) using the CompuSyn software
(ComboSyn Inc), in which values < 1, = 1, and > 1 indicate synergism, additive
effect and antagonism, respectively.
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Results

8.1 Tumor clustering

In order to find sub-classes among 11 tumor types (Table 7.1), we analyzed 2,378
tumor samples considering a list of 760 cancer-related genes. The genes selected for
this study were those present in the Ontocancro database that had protein-protein
interaction annotations in the BioPlex network. The tumor datasets were clustered
based on their gene-gene correlation matrices by applying a hierarchical clustering
method. The clustering results indicate the existence of three tumor clusters con-
taining 2, 6 and 3 cancer types: 1) Colon adenocarcinoma (COAD) and Rectum
Adenocarcinoma (READ); 2) Lung Adenocarcinoma (LUAD), Lung Squamous Cell
Carcinoma (LUSC), Glioblastoma Multiforme (GBM), Ovarian Serous Cystadeno-
carcinoma (OV), Breast Invasive Carcinoma (BRCA), and Uterine Corpus Endome-
trial Carcinoma (UCEC); and 3) Brain Lower Grade Glioma (LGG), Kidney Renal
Clear Cell Carcinoma (KIRC), and Kidney Renal Papillary Cell Carcinoma (KIRP)
(Figure 8.1).

8.2 Multi-tumor gene signatures

Then, we searched for multi-tumor gene signatures characterizing the tumor
clusters by applying a network analysis approach. We superimposed each cluster

Figure 8.1: Tumor clustering. For each tumor, we produced a matrix from the correlation (Pearson)
of the expression profiles among 760 genes. The correlations values were adjusted by the CLR
algorithm. Then, we clustered the resulting matrices by euclidean metrics.
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Table 8.1: Network Properties.

BioPlex-Ontocancro Cluster 1 Cluster 2 Cluster 3

Clustering Coefficient 0.24 0.20 0.19 0.17
Connected Components 24 41 42 41

Network Diameter 16 18 19 18
Avg Path Length 6.52 7.41 6.88 7.31

Avg Degree 3.84 3.2 3.14 2.98
Number of Nodes 511 406 408 410
Number of Edges 981 650 642 612

BioPlex-Ontocancro: BioPlex network considering only genes present in Ontocancro database. Cluster 1, 2, and 3:
BioPlex-Ontocacro superimposed with the respective cluster correlation matrix.

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3

Figure 8.2: Tumor cluster networks. The cluster networks were produced by superimposing each
cluster gene-gene correlation matrix with the backbone network BioPlex Ontocancro. The red
nodes are those defined as the most central in each cluster networks (Spectral Centrality ≥ 90th

percentile. Cluster 1: COAD and READ; Cluster 2: LUAD, LUSC, GBM, OV, BRCA, and UCEC;
Cluster 3: LGG, KIRP, and KIRP.

gene-gene correlation matrix onto the backbone network BioPlex-Ontocancro. In the
resulting networks, genes had links if they either correlated in the gene expression
profiles and if their proteins had physical interaction annotations in the BioPlex
network. We observed that the cluster networks presented approximately 80% of
the nodes and 60% of the edges of the backbone BioPlex-Ontocancro network (Table
8.1, Figure 8.2).

We hypothesized that the most central genes in each network should play a
fundamental role in the tumors represented in the cluster. To find the most cen-
tral genes we measured the Spectral Centrality (SC) topological measure[U+2060],
which evaluates changes in the network global diffusivity after node perturbation.
We considered as the most central nodes those having SC above the 90th percentile
(25, 27 and 24 genes for clusters 1, 2, 3 respectively, Table 8.2 and Figure 8.2). The
overlap between central genes in the cluster networks and in the backbone network
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Table 8.2: Central genes

BioPlex-Ontocancro Cluster 1 Cluster 2 Cluster 3

ALOX5 APP C17orf70
CCDC99 CETN2 CSNK2A1

CSNK2A2 EME1 ERCC1
ERCC4 ERCC6L FANCB

GAB1 GRB2 H2AFX IL6R
MAP4K5 MCM10 MLF1IP

MUS81 NFKIA NRP1
PIK3CA PIK3CB PIK3CD

PIK3R2 PIK3R3 PLK1
POLA1 POLA2 PRIM1
PRIM2 PSMB3 PSMC3

RAC1 SEC13 TNF
TNFRSF1A TRAF6 UBB

UBE2T XPA XPC

ALOX5 BTRC BUB1
CDC20 CENPC1 CHUK
CUL1 MIS12 MLF1IP

NDC80 NFKB1 NFKB2
NFKIA PMF1 PPP2CB

PPP2R5D PSMB9
PSMC2 PSMF1 RAD21
REL RELB RPS27 SRC

STAG1

BTRC CENPC1 CETN2
DSN1 ERCC1 ERCC4

FANCB FYN H2AFX IL6R
MCM10 MIS12 MLF1IP
NEDD1 NFKB1 NFKIA
NUP43 PARP1 PLK1

PSMB3 PSMC3 RPA2 SRC
TNFRSF10B TUBGCP5

TUBGCP6 XPA

AKT2 ALOX5 BAG4
CAPN1 CAPN2 CDC16
CDC27 CDT1 ENDOG
FBXW11 FNTA GMNN

KIF2B KIF2C LSP1
NEDD1 PRKACG

PSMC3 PSMD9 SKP2
TNFRSF1A TUBGCP5

UBB VIM

3/25 13/27 4/24

The table shows the genes that have high centrality (Spectral Centrality ≥ the 90th percentile) in each network.
The ratios show the proportion of genes that are also central in the BioPlex-Ontocancro network

BioPlex-Ontocancro is 3/25, 13/27, and 4/24 for clusters 1, 2, and 3 respectively. It
shows that the importance of the genes in the BioPlex-Ontocancro network changed
according to the gene expression profiles of each tumor cluster.

We defined the most central genes in each cluster network as the cluster gene
signatures. The cluster 1 and cluster 2 signatures have 6 genes in common, cluster 1
and cluster 3 have 1 gene in common; and cluster 2 and cluster 3 have three genes in
common. As we superimposed the gene expression profiles in the backbone network,
some links were differentially removed across the cluster networks, which means that
the same genes can have different set of interacting nodes in each network (Figure
8.3).

We observed that all signatures contain genes related to three biological cate-
gories: NF-κB signaling pathway, chromosomal instability and ubiquitin-proteasome
system (Table 8.3). The chromosomal instability category relates to genes involved
in kinetochore formation, microtubule dynamics and chromosome segregation func-
tions. All signatures have at least one substrate recognition component of E3 ubiq-
uitin ligase complexes: BTRC in clusters 1 and 2; and FBXW11 in cluster 3.

Cluster 1 has genes involved in spindle checkpoint (BUB1, CDC20). The clus-
ter 2 signature has many genes related to DNA repair (CETN2, FANCB, H2AFX,
ERCC1, ERCC4, PARP1, XPA) and DNA replication (RPA2, MCM10). More-
over, it has three important genes in the signaling path that activates the STAT3
transcription factor: SRC, NFKB1 and IL6R. Indeed, the STAT3 gene expression
levels are significantly higher in cluster 2 (ANOVA p-value: 5.58 x 10−15) both in
comparison with cluster 1 (T-Test p-value: 1.08 x 10−9) and cluster 3 (T-Test p-
value: 1.14 x 10−8) patients (Figure 8.4). The cluster 3 signature contains genes
involved in three different apoptotic mechanisms: induced by TNF-α (TNFRSF1A
and BAG4), induced by Endoplasmatic Reticulum stress (CAPN1 and CAPN2) and
caspase-independent apoptosis (ENDOG).
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(a)

(b) (c)

Figure 8.3: Networks showing first neighbors of signature genes that are shared by different tumor
clusters. Figure a: signature genes common to cluster 1 and cluster 2; Figure b: signature genes
common to cluster 1 and cluster 3; and Figure c: signature genes common to cluster 2 and cluster
3.

Table 8.3: Common biological categories present in the gene signatures

NFKB signaling Chromosomal Instability Proteasome

1 BTRC, CUL1, SRC, NFKBIA, NFKB1,
NFKB2, REL, RELB, CHUK

CDC20, BUB1, MLFPIP, CENPC1, MIS12,
PMF1, NDC80, RAD21, STAG1

PSMB9,
PSMC2, PSMF1

2 BTRC, SRC, NFKBIA, TNFRS10B, IL6R MIS12, DSN1, MLFPIP, CENPC1, PLK1,
NEDD1, TUBGCP5, TUBGCP6

PSMB3,
PSMC3

3 FBXW11, AKT2, TNFR1A CDC16, CDC27, NEDD1, TUBGCP5, KIF2B,
KIF2C

PSMC3,
PSMD9

All cluster signatures have genes that can be grouped in the following categories: NF-κB signaling, chromosomal
instability and ubiquitin-proteasome system.
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Figure 8.4: Cluster 2 patients presented higher STAT3 gene expression in comparison with cluster
1 (T-Test p-value: 1.08 x 10−9) and cluster 3 (T-Test p-value: 1.14 x 10−8).

Table 8.4: List of genes from the signatures that are also being tested in ongoing clinical trials
studies (according ClincalTrials.gov).

Inhibition target
Number

of clinical trials
Cluster signature

ALOX5 18 1, 3
CHUK 9 1
FYN 97 2
IL6R 2 2

NFKB1 40 1, 2
NKFB2 8 1

NKFBIA 8 1, 2
PARP1 106 2

PPP2CB 5 1
PSMB9 25 1

SRC 135 1, 2

8.3 Validation of the multi-tumor gene signatures

Then, we searched for possible relationships between the gene signatures and
genes commonly mutated in the studied tumors. We observed that some signature
genes also presented somatic mutations (REL and RAD21 in cluster 1, ERCC4 and
XPA in cluster 2, and AKT2 in cluster 3) or that mutated genes were direct neighbors
of the signature genes in the network (see Figures 2, 3, 4). A permutation test over
the signature labels (see Methods) reveals a significant proximity of signature genes
to mutated genes for cluster 1 and cluster 2 (p-value = 8.76 x 10−4 and p-value =
6.9 x 10−3 respectively) (Figure 8.6). For the particular case of cluster 3, only one
mutated gene is present in the network and it is successfully selected as a signature
gene.

Since the signature genes are the most central nodes in each cluster, we hy-
pothesized that they might be suitable drug targets. For this purpose we collected,
from the Drug Bank database, the drugs that target genes in the signatures and we
evaluated in the ClinicalTrials repository if these drugs are under ongoing clinical
trials for cancer treatment. We observed that 11 genes from the cluster signatures
are being tested: 4 and 3 genes, from cluster 1 and 2, respectively; 3 genes from
both cluster 1 and 2; and 1 gene from both cluster 1 and 3 (Table 8.4).

We then asked whether the expression level of the signature genes could predict
the patients survival in each cluster, independently of the tumor type. First, we
grouped the tumor cluster patients assuming the existence of two groups (one with
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(a) Cluster 1

(b) Cluster 2

(c) Cluster 3

Figure 8.5: Network composed by the first neighbors of the cluster 1 (a), cluster 2 (b) and cluster
3 (c) signature genes.

Figure 8.6: Plot of the distribution of the 106 permutations for the 3 clusters (from left to right).
The insets show the minimum average distances for the signatures (represented in the plots as red
vertical lines), and the p-values according to the permutations.
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Table 8.5: Combination Indexes for BI6727 and Bortezomib at different concentrations in MCF-7
cell line.

BI6727 [mM]
17.3 34.5 69.2 138.4 276.8

Bortezomib [mM]

0.15 1.39 1.24 1.16 0.73 1.7
0.3 1.85 1.19 1.32 0.87 1.57
0.6 1.22 1.18 1.18 1.38 1.2
1.2 0.96 1 0.96 0.96 0.75
2.4 1.09 1.09 1.09 0.91 0.91

good and another with bad survival outcome) and we calculated the Kaplan-Meier
survival curves for both groups. The TCGA data portal had clinical information
for 17, 448, and 32 patients from the tumor clusters 1, 2, and 3, respectively. The
analysis resulted in non-significantly different survival curves for the cluster 1 and
3 (Log-rank test p-values: 0.91 and 0.90, respectively), possibly because we did not
had enough clinical information (Figures 8.7a, 8.7c). For the cluster 2, the gene
signature significantly separated the patients in two groups according to good or
bad survival outcome (Log-rank test p-value = 4.54 x 10−3, Figure 8.7b).

We tested if we could propose a new therapeutic strategy by inhibiting the
genes from the cluster signatures. As the tumor cluster 2 contained the largest and
most heterogeneous set of tumors, we designed in vitro assays to test the inhibition
of two genes derived from the cluster 2 signature and the inhibition of one gene that
is related to the same biological function as those in the signature. By performing
the experiments in this way, we tested if our approach selected the specific genes
important for the tumors in the clusters or if it rather selected genes related to the
predominant biological categories acting on the tumors. We selected three drugs:
i) Bortezomib, to target the gene PSMB3, which is related to the proteasome and
NF-κB pathways; ii) BI6727, to target the gene PLK1, related to chromosomal
instability; and iii) the PF-00477736 drug, to target the CHK1/2 genes, which is
not in the cluster 2 signature but is also related to DNA damage response. We
tested these drugs, alone or in combination, in two cancer models: the glioblastoma
cell line T98G and the breast adenocarcinoma model MCF-7.

Both cell lines were highly sensitive to Bortezomib, with an IC50 of 200 nM
for MCF-7 and 0.6 nM for T98G (Figure 8.8). BI6727 treatment reduced viability
in a concentration-dependent manner in both models, with the glioblastoma model
showing increased responsiveness (IC50 of 69.2 nM versus 1.8 µM for MCF-7, Figure
8.8). Moreover, both cell lines showed low response to CHK1/2 inhibition, with IC50
of 26.9 µM for MCF-7 and 15.1 µM for T98G (Figure 8.8).

We then asked whether these drugs may synergize in the selected models. Al-
though the combinations of PF-00477736 with either BI6727 or Bortezomib did not
show any additive or synergistic effect in MCF-7 and T98G cell lines (data not
shown), we observed a cooperation effect between inhibition of PLK1 and protea-
some activity (Figure 8.9). Indeed, after the treatment with the drug combination,
cell viability was significantly lower compared with single agent treatments in MCF-
7 cells (Figure 8.9a, p-value < 0.05), showing a general additive effect (Table 8.5).
We observed low Combination Index values (< 1) for both cell lines, indicating
synergistic effect for all concentrations tested in the breast cancer model, and for
selected concentrations in the glioblastoma model (Figure 8.9, Tables 8.5 and 8.6).
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(a) Cluster 1

(b) Cluster 2

(c) Cluster 3

Figure 8.7: Kaplan-Meier curves for the two groups of tumor cluster patients defined by the K-
means clustering approach (see Methods). Log-rank test p-values: 0.91, 4.54 x 10−3, and 0.90 for
the cluster 1 (a), 2 (b), and 3 (c), respectively.

Table 8.6: Combination Indexes for BI6727 and Bortezomib at different concentrations in T98G
cell line.

BI6727 [µM ]
0.45 0.9 1.8 3.6 7.2

Bortezomib [µM ]

0.05 0.52 0.46 0.61 0.63 0.53
0.1 0.66 0.51 0.61 0.7 0.48
0.2 0.55 0.62 0.75 0.67 0.48
0.4 0.81 0.45 0.67 0.52 0.39
0.8 0.58 0.69 0.49 0.43 0.35
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Figure 8.8: In vitro response of cancer cell lines from signature 2 to treatment with Bortezomib,
BI6727 and PF-00477736 as single agent. MCF-7 and T98G cells were treated with increasing
doses of Bortezomib (0.01 to 10 µM for MCF-7, 0.02 to 10 nM for T98G), BI6727 (0.04 to 10
µM for MCF-7, 0.004 to 10 µM for T98G), PF-00477736 (5.6 to 100 µM) and cell viability was
measured 72h after drug administration by WST-1 assay (three independent experiments). Cell
viability is represented as (mean ± SEM). IC50 values are reported in the inset boxes (GraphPad
Prism 6).
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(a)

(b)

Figure 8.9: Sensitivity of MCF-7 and T98G cells to combined inhibition of PLK1 and the prote-
some. MCF-7 and T98G cells were treated with increasing doses of Bortezomib (0.05 to 0.8 µM for
MCF-7, 0.15 to 2.4 nM for T98G) and BI6727 (0.5 to 7.2 µM for MCF-7, 17 to 277 nM for T98G),
alone or in combination and cell viability was measured 72h after drug administration by WST-1
assay (three independent experiments). Statistical significance was determined by Student’s t test
(*, P < 0.05; ***, P < 0.001). Combination index (C.I.) was calculated by CompuSyn software.
(a) MCF-7 cells: combinations with a C.I. lower than 0.5 are shown. (b) T98G cells: combinations
showing synergistic effect are shown.
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Discussion

We studied the expression profiles of 11 tumors by considering a selected set
of genes from the Ontocancro database and the BioPlex protein-protein interaction
network. This knowledge-based selection reduced the dimensionality of the data to a
highly curated list of cancer-related genes, involved in pathways that are hallmarks of
cancer as cell cycle, inflammation, and apoptosis [11][U+2060]. This approach also
ensured that all studied genes had protein-protein interaction annotations, which
are crucial to the understanding of how the signaling transduction propagates in the
cell [67].

Tumor Clustering

We clustered tumors by their gene-gene relationships, defined by the Pearson’s
correlation coefficients, to evaluate the functional relationships between genes and
their impact on transcriptome organization [68, 69][U+2060]. Tumors from the same
organ tended to group together, in agreement with previous studies, showing that
tissue-of-origin features provide the dominant signals in the identification of cancer
subtypes [49, 70][U+2060] (Figure 8.1). However, the clustering also grouped tumors
originated from different tissues, according to similarities in genomic alterations, as
in the case of BRCA, OV, LUSC, and UCEC, which share common characteristics
as presence of TP53 mutations and multiple recurrent chromosomal gains and losses
[51][U+2060]. In particular, BRCA and UCEC presented the best prognosis when
compared to other 10 tumor types in a previous study [49], and we our results
they grouped into a well defined sub-cluster. Also interestingly was the fact that
Glioblastoma Multiforme (GBM) and Brain Lower Grade Glioma (LGG) clustered
in two different groups, showing that tumors from the same tissue of origin may
activate different pathways and processes.

Gene Signatures - Common Biological Processes

Network analyses permitted us to integrate different types of biological infor-
mation, identify functional modules and rank genes according to network properties
[71, 72]. Here, we created a network for the tumor clusters by combining a back-
bone network (BioPlex-Ontocancro) and cluster-specific gene expression correlation
profiles. Then, we defined gene signatures based on node ranking by centrality mea-
sures, which presented genes mainly involved in three biological processes: NF-κB
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signaling, chromosomal instability and the ubiquitin-proteasome system (Table 8.3).
The NF-κB signaling pathway regulates genes that participate in cell prolif-

eration, innate and adaptive immune responses, inflammation, cell migration, and
apoptosis regulation processes. The aberrant activity of NF-κB may act as survival
factor for transformed cells which would otherwise become senescent or apoptotic
[73][U+2060].

The genes classified into the chromosomal instability category involve kineto-
chore formation, microtubule dynamics and chromosome segregation functions. The
dysfunction of these genes may cause cell inability to faithfully segregate chromo-
somes, generating genomic alterations as DNA mutations, chromosomal transloca-
tions, and gene amplification. The mutant genotypes may confer beneficial pheno-
typic traits to cancer cells, such as sustained proliferative signaling and resistance
to cell death [11][U+2060]. Two genes classified into this category have already
been related to clinical practice: the prognostic marker KIF2C [74, 75][U+2060];
and the BUB1 gene, which expression correlates with poor clinical diagnosis [76,
77][U+2060].

The ubiquitin-proteasome system is the major degradation machinery that con-
trols the abundance of critical regulatory proteins. Perturbation of the regulatory
proteins turnover disturbs the intricate balance of signaling pathways and the cellu-
lar homeostasis, contributing to the multi-step process of malignant transformation
[78][U+2060]. Proteasome inhibitors have become valuable tools in the treatment
of certain types of cancer, mainly because malignant cells show greater sensitivity
to the cytotoxic effects of proteasome inhibition than non-cancer cells [79][U+2060].

Gene Signatures - Specific Biological Processes

In addition to common features, cluster 2 signature has several genes related
to DNA repair (CETN2, FANCB, H2AFX, ERCC1, ERCC4, PARP1, XPA) and
DNA replication (RPA2, MCM10). Interestingly, the tumors in this cluster usually
present high rates (50% to 90%) of samples with mutated TP53, which is an impor-
tant sensor for the cell DNA damage response [44, 46, 49][U+2060]. The cluster 2
signature also presents the genes SRC, NFKB, and IL6R, which participates in the
activation of STAT3, a transcription factor that is necessary for cell transformation
[80][U+2060]. We observed that STAT3 gene expression is higher in the tumors of
cluster 2 when compared with the tumors of clusters 1 and 3 (Anova p-value: 5.58
x 10−15) (Figure 8.4). The cluster 3 signature has genes involved in three apoptotic
mechanisms: induced by TNF-α (TNFRSF1A and BAG4), Endoplasmatic Retic-
ulum stress (CAPN1 and CAPN2) and caspase-independent apoptosis (ENDOG).
As the regulation of cell death serves as a natural barrier to cancer development,
these processes may reflect different strategies that these tumors use in response to
various cellular stresses.

Somatic Mutations and Gene Signatures

Since the transcriptional disturbances observed in cancer can sometimes be
explained by underlying somatic mutations [81][U+2060] we retrieved TCGA mu-
tational data, and focused on cancer related mutations reported in the Catalogue
of Somatic Mutations in Cancer (COSMIC) database. Many signature genes re-
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sulted also somatically mutated, or first neighbors to mutated genes (Figures 8.5,
8.6), showing their strict relationship and the functional relevance of the biologically
processes they are involved in.

Pharmacological and Clinical Evidences

Several genes in the signatures or in their direct network neighborhood are
already under clinical investigation in a variety of tumor conditions (as annotated
in Clinicaltrials.org database) (Table 8.4). For example, the AKT pathway has been
described as a potential drug intervention in clear cell renal carcinoma [82][U+2060].
Our results confirm its potential for drug treatment, since this gene belongs to the
signature of cluster 3 (comprising LGG, KIRC, and KIRP), it is somatically mutated
in the tumors of cluster 3 and it has been annotated as drug-target according to the
Drug Bank database.

We also asked whether the gene signatures could predict survival outcomes in
each cluster, i.e. independently of tumor type. Our results show that in cluster 2
(the only one with enough available samples) the gene signature defined two groups
of patients with significantly different Kaplan-Meier survival curves (log-rank test
p-value: 4.54 x 10−3) (Figure 8.7b).

In vitro experiments

We tested 3 existing drugs (targeting 2 genes belonging to cluster 2 signature,
and 1 involved in a related biological process) on 2 tumor types from the cluster 2,
T98G and MCF-7 cell line models (Figures 8.8, 8.9). The CHK1/2 inhibitor (PF-
00477736) had poor effect on both cell lines. The PLK and proteasome inhibitors
(BI6727 and Bortezomib, respectively) showed a high effect on both cancer cell
models, showing a significant synergic action at several dosages and suggesting a
novel therapeutic strategy to be further explored for the treatment of cluster 2
tumors.

Conclusions

These observations indicate that our study succeeded in: 1) clustering tumors
and highlighting common functional mechanisms related to their transcriptional
profile; and 2) selecting genes with a relevant functional role in the studied tumors.
The combination of these results may provide the rationale for choosing novel drug
targets, drug combinations, and for the design of new drug repurposing strategies.
As future perspectives, we believe that the investigation of transcriptional and mu-
tational profiles of single patients, combined with the information provided by our
gene signatures, might suggest strategies for personalized therapy approaches.
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Introduction

The incidence of thyroid cancers has rapidly increased over the past 30 years
[86]. The most prevalent, the Papillary Thyroid Carcinoma (PTC), accounts for
up to 80%-85% of the cases and presents 5-year survival rates over 95% [87]. The
PTC derives from follicular thyroid cells and are designated as well-differentiated,
in contrast with the poorly differentiated (PDTC) and undifferentiated Anaplastic
Thyorid Carcinoma (ATC). The ATC comprises the minority of thyroid cancer cases
(2%-3%), but, due to its high aggressiveness, is responsible for up to 40% of thyroid
cancer related deaths. ATC is not sensitive to radiation and chemotherapy treat-
ments, and, in most cases, patients do not survive more than a year after the cancer
diagnosis [88]. The understanding of the molecular pathogenesis of thyroid cancers
and the mechanisms leading to the loss of differentiation in the most aggressive
carcinomas are crucial to the development of more effective treatment strategies.

PTCs are characterized by high frequency (70%) of activating somatic alter-
ations that deregulate the mitogen-activated protein kinase (MAPK) signaling path-
way, as point mutations in BRAF and RAS genes; and gene fusions involving RET
and NTRK1 genes [87, 89]. It has been observed that ATCs also present frequent
somatic mutations in BRAF and RAS genes, supporting the hypothesis that ATC
and PTC share the same tumorigenic origin, being the undifferentiated carcinomas
originated from the previous well-differentiated forms [90, 91]. Aggressive recur-
rent PTC and ATC present the coexistence of multiple genetic alterations that are
otherwise mutually exclusive in the well-differentiated forms, indicating that the
thyroid cancer progression may occur through the accumulation of multiple somatic
alterations that cooperate to amplify oncogenicity [87].

In this study, we aimed to characterize the thyroid transcriptional profiles of
normal, PTC, and ATC samples in order to investigate the molecular mechanisms
involved in tumor progression. We retrieved gene expression arrays of 50 ATC, 102
PTC, and 127 normal samples available in the GEO database. We characterized the
differentially regulated genes considering the PTC vs normal, ATC vs normal, and
PTC vs ATC comparisons. Then, we separated genes that resulted as differentially
expressed in all comparisons according to two general trends: those having increasing
or decreasing expression levels across the different tumor phases. From these lists,
we defined signatures representing the most deregulated genes in each transition:
normal to PTC and PTC to ATC. Our results support the hypothesis that ATC
represent a progression of the PTC forms. The normal to PTC transition involves
the activation of genes belonging to pathways related to cellular morphology and
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extracellular matrix; while the PTC to ATC transition involves the activation of
genes related to cell cycle control. We evaluated the relevance of the signatures
by mapping the genes onto protein-protein and transcriptional regulatory networks.
Our results highlight new thyroid cancer genes, providing a list of potential markers
for cancer prognosis and targeted-therapy strategies.
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Material and Methods

11.1 Data and Processing

In this study, we analyzed gene expression arrays of the Human Genome U133
Plus 2.0 (Affymetrix) platform retrieved from The National Center for Biotechnology
Information Gene Expression Omnibus (GEO) database. The dataset contained
ATC (n=50), PTC (n=102) and normal thyroid (n=127) tissue samples (Table
11.1).

We performed background correction, quantile normalization and expression
calculation using the Robust Multichip Average method implemented in the R/Bioconductor
Affy package. After data normalization, samples were clustered in two different
approaches: i) first by applying the hierarchical clustering method (correlation dis-
tance, single linkage method) based on the 150 probes with highest variance across
the entire dataset; and ii) by performing Principal Component Analysis based on
the expression levels of all probes.

11.2 Differential Expression Analysis

For each comparison between tissue types (ATC vs PTC, ATC vs normal, and
PTC vs normal), the differentially expressed genes were detected using Student’s T
test followed by false discovery rate (FDR) multi-test correction with the Benjamini
and Hochberg’s method. The differentially expressed genes (adjusted p-value <
0.05) were characterized by: i) Gene Ontologies (GO) enrichment analysis, using the
R/Bioconductor ClusterProfiler package [92]; and ii) Reactome pathways enrichment

Table 11.1: Accession numbers for the thyroid gene expression profiles used in this study

GEO Accession Number ATC Well differentiated PTC Normal

GSE76039 18 0 0
GSE65144 12 0 13
GSE33630 11 0 0
GSE29265 9 20 20
GSE3467 0 9 9
GSE35570 0 32 51
GSE60542 0 27 25
GSE3678 0 7 7
GSE53157 0 7 2

Total 50 102 127
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Figure 11.1: Figure showing the steps in the definition of the gene signatures. The genes resulting
as significant in all comparisons were divided according to the trends of their expression levels:
Trend Up or Trend Down. Subsequently, they were divided into signatures S1, S2 and S3, according
to their fold change values in the normal-PTC and ATC-PTC comparisons.

analysis, using the R/Bioconductor ReactomePA package [93].

11.3 Signatures of Tumor Progression

We selected the genes that resulted as significant in all comparisons, and calcu-
lated their average expression in each tissue type dataset: normal, PTC, and ATC.
Then, a gene g was assigned to the Trend Up list if ḡ normal < ḡ PTC < ḡ ATC; and to
the Trend Down list if ḡ normal > ḡ PTC > ḡ ATC (Figure 11.1).

We standardized the fold change values (Z) of the Trend Up and Down lists
from the PTC-normal and ATC-PTC comparisons. Gene signatures were defined
according the absolute values of Z as: signatures S1, the genes having the expression
more affected in the PTC-normal transition (Z PTC-NORM > 4 and Z ATC-PTC < 2);
signatures S2, genes having the expression more affected in the ATC-PTC transition
(ZPTC-NORM < 2 and ZATC-PTC > 4); and signatures S3, genes having the expression
equally affected in both comparisons (ZPTC-NORM > 2 and ZATC-PTC > 4). The
figure 11.1 shows the steps in the definition of the Trend Up and Trend Down genes
signatures.

11.4 Analysis of gene signatures in biological net-

works

We evaluated the genes in the signatures through the analysis of protein-protein
interaction (PPI) and transcriptional regulatory networks. The PPI network was
built from the interactions of the signature genes and their first neighbors in the
BioPlex network [55]. The number of nodes in the networks built from the Up
and Down signatures, were, respectively, 386 and 393; while the number of edges
were 762 and 987. Then, the signature genes were ranked according to the network
topological measures degree and Betweenness Centrality (BC).
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We retrieved associations between transcription factors and the genes they ac-
tivate, from the TRRUST network [94]. Then, for each Up signature, we created
a regulatory network built from the signature genes and their incoming edges and
nodes. The networks of the Up S1, S2, and S3 signatures presented, respectively, 54,
32, and 57 nodes; and 58, 28, and 54 edges. The network analyses were performed
by using Cytoscape, Networkx (Python) and Igraph (R).
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Results

12.1 Clustering Gene Expression Profiles

We analyzed 279 gene expression arrays comprising normal thyroid, papillary
thyroid carcinoma (PTC) and anaplastic thyorid cancer (ATC) samples. After data
normalization and standardization, we clustered patients according to the expres-
sion levels of the 150 probes with highest variance across the entire dataset. We
observed that patients did not grouped according to study of origin, supporting the
absence of strong batch effects and showing that the assembled dataset was suitable
for evaluating the differences and similarities among tissue types. After applying
a Principal Component Analysis (PCA) to the entire dataset, the results showed a
gradational trend separating normal, PTC and ATC samples along the first compo-
nent, being the distinction of ATC samples the most well defined (Figure 12.2). The
14 points in the top of the PCA plot represented all samples from the same study
(GSE3678) and they were removed from the dataset in the downstream analyses.

12.2 Differential Expression Analysis

We applied the Student’s T-Test, followed by False Discovery Rate (BH) multi-
test correction method, to identify differentially expressed probes among conditions:
ATC vs PTC, ATC vs normal, PTC vs normal (Figure 12.3). The number of
differentially expressed probes in the PTC vs normal comparison was considerably
lower than the ATC vs normal and ATC vs PTC comparisons, confirming a pattern
also observed in the PCA results: the PTC expression profiles are more similar to
normal rather than to ATC samples.

In order to provide a biological characterization of the differentially expressed
genes from the results of each comparison, we performed Gene Ontology and Reac-
tome pathway enrichment analysis. In the ATC vs PTC results, most of the highest
enriched GO terms (biological process) and Reactome pathways were related to cell
cycle control (Figures 12.4 and 12.5). In the ATC-normal and PTC-normal com-
parisons, the highly enriched GO terms and Reactome pathways were related to
cell morphology and tissue organization (Figures 12.4 and 12.5). Interestingly, in
the Reactome enrichment analysis for the differentially expressed genes in the ATC-
normal comparison, the results showed enriched pathways related to cell cycle, cell
morphology, and tissue organization (Figure 12.5).
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Figure 12.1: Heatmap showing the normalized expression levels of the 150 probes with highest
variance across the entire dataset. Columns represent samples and rows represent single probes.
The columns are labeled according to the study of origin (GEO accession number) of each sample.
The dendrogram shows the results of a Hierarchical Clustering applied to the list of samples using
the correlation distance and the single linkage method.

Figure 12.2: Principal Component Analysis applied to the entire gene expression dataset. The first
component shows a gradational trend separating ATC, PTC and normal samples.
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Figure 12.3: Venn diagram showing the number of probes resulting differentially expressed (ad-
justed p-value < 0.05) in more than one comparison. The numbers inside parenthesis show the
total number of significant probes in each comparison.

Figure 12.4: Gene Ontology enrichment analysis for genes differentially expressed in the ATC vs
PTC (left), ATC vs normal (center), and PTC vs normal (right) comparisons. The figure shows
the top 5 enrichments for biological process terms.

These results indicate that the transition from the normal tissue to the well
differentiated PTC involves the deregulation of processes related to cell morphology
and tissue organization, while the transition from PTC to ATC involves deregulat-
ing processes controlling cell cycle and cell replication. The fact that the significant
genes from the ATC vs normal comparison presented pathways also enriched in the
PTC-normal and ATC-PTC comparisons supports the idea of a common tumori-
genic origin for PTC and ATCs.

12.3 Trends

Then, we aimed to investigate the genes most deregulated during the progres-
sion from normal to PTC, and from PTC to ATC tissue types. To approach this
problem, we first defined two lists, Trend Up and Trend Down, composed by the
genes that resulted as differentially expressed in all comparisons and that presented a
increasing (or decreasing) trend in their expression levels when assuming the normal-
PTC-ATC as the progression steps of tumorigenesis (Figure 11.1). The Trend Up
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Figure 12.5: Reactome pathway enrichment analysis. The figure shows the top 10 enriched path-
ways (Reactome) for genes differentially expressed in the ATC vs PTC (left), ATC vs normal
(center), and PTC vs normal (right) comparisons.

Figure 12.6: Reactome pathway enrichment analysis. The figure shows the top 10 enriched path-
ways (Reactome) for genes in the Trend Up and Trend Down lists.

and Trend Down lists presented 2,571 and 3,108 genes, respectively.
Reactome pathway enrichment analysis (Figure 12.6) showed that genes having

their expression levels increased in the tumor progression (Trend Up) are mostly
related to cell cycle and extracellular matrix, while those having their expression
levels decreased in the tumor progression (Trend Down) are related mainly to sig-
naling and metabolism pathways. We observed that the enriched pathways in the
Trend Up genes were very concordant to those enriched in the whole list of differ-
entially expressed genes from each comparison (Table 12.1). These results indicate
that the processes leading to gene activation might be more important in the tumor
progression than those related to gene repression.

We performed a further separation of genes in the Trend Up and Trend Down
lists based on their absolute fold change values in the PTC vs Normal and ATC vs
PTC comparisons. Genes with high values in the PTC-Normal and low values in
ATC-PTC were defined as S1, those with the inverse pattern were defined as S2,
and those equally high in both comparisons were defined as S3 (Figure 12.7, Table
12.2). The S1, S2, and S3 signature reflect the relative importance of the genes in
each transition: S1 are those strongly deregulated in the normal to PTC transition;
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Table 12.1: Common enriched pathways in the Trend Up and Trend Down lists compared to the
differentially expressed genes in each comparison

ATC-PTC (92) ATC-Norm (53) PTC-Norm (31)

Trend Up (70) 23 20 14
Trend Down (29) 5 3 5

The numbers in parenthesis represent the total number of significantly enriched pathways considering the list of
differentially expressed genes from each comparison (ATC vs PTC, ATC vs normal, and PTC vs normal), and
considering the genes in the Trend Up and Trend Down lists.

(a) Trend Up (b) Trend Down

Figure 12.7: We defined three signatures for each list of Trend Up and Trend Down gene lists.
The axes show standardized fold change in the comparisons PTC-Norm (Y axis) and ATC-PTC
(X axis).

S2 are those strongly deregulated in the PTC to ATC transition; and S3 are those
strongly deregulated in both steps (Figure 11.1).

We evaluated the genes in the signatures based on a protein-protein interaction
network built from their interactions in the BioPlex network (See methods). The Up
signature genes ICAM1 (S1), ASPM (S2) and PLAUR (S3); and the Down signature
genes FAM167A (S1), SNRPN (S2) and FGFR2 (S3); presented high degree and
centrality (Tables 12.3, 12.4). This suggests that they may have an important role
in the cell signaling transduction and, consequently, might be good candidates for
targeted-therapy strategies.

We also built transcriptional regulatory networks (See methods) in order to
evaluate which are the regulators that activate the genes in the Up signatures.
We observed that four transcription factors that activate the signature gene ICAM1
(S1) were up-regulated when comparing PTC and normal tissues (Figure 12.8). The
network also showed that RELA was up-regulated in the PTC-normal results and
this gene is responsible for activating the following S1 genes: FN1, NOX4, PLAU,
and TNC (Figure 12.8).

Four and five transcriptional factors that activate the S2 signature genes MMP1
and SERPINE1, respectively, were up-regulated in the comparison between ATC
and PTC samples (Figure 12.9). Again, the transcription factor RELA, which is
responsible for the activation of three S2 signature genes, was also up-regulated in
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Table 12.2: Trend Up and Trend Down gene signatures

Up signatures Down Signatures

S1 (n=25) S2 (n=17) S3 (n=29) S1 (n=29) S2 (n=23) S3 (n=31)
ADM ANLN ADAM12 ABAT BEX1 AIF1L

ALDH1A3 ASPM BCAT1 ATP8A1 CLCNKB ALDH1A1
BID CDKN3 BUB1B BEX2 COL23A1 AQP4

CDKN2B CEP55 CCL20 CD24 COL9A3 C16orf89
COL10A1 CXCL5 CENPK CDH1 CRABP1 CLDN8

CTSC DLGAP5 COL11A1 CLIC3 CSGALNACT1 DIO1
EDIL3 DUXAP10 COL1A1 EPB41L4B DPP6 DIO2
EVA1A E2F7 COL1A2 FAM189A2 FAM167A EDN3

FN1 MELK COL5A1 FOXE1 GPM6A FCGBP
FXYD5 MMP1 CTHRC1 GPX3 HGD FGFR2
ICAM1 MMP12 CXCL8 HHEX IGFBPL1 FOLR1

LOC100506403 PBK INHBA KLHL14 KCNIP4 FREM2
LOC101928269 SERPINE1 KIAA0101 NEBL LOC646736 HLF

MRC2 SRPX2 LOXL2 NTRK2 LRP1B HSD17B6
NOX4 TMEM158 MS4A4A PAX8 MPPED2 IYD
NTM TRIP13 NUSAP1 PDE8B MUM1L1 KCNAB1
PLAU UBE2C PLAUR PLEKHH1 PKHD1L1 KIAA1456

RAB27B PMAIP1 PWAR6 PPARGC1A LRRC2
RUNX1 POSTN SLC6A13 RYR2 MATN2
RUNX2 RRM2 SNRPN SLC4A4 PCP4

SPOCK1 SCD TG SPX PRDM16
TNC SPP1 TSHR STXBP5L PRTG

TREM1 TDO2 ZBED2 TCEAL2 PTCSC1
TYMS TGFBI TDRD9 SCUBE3
ULBP2 THBS1 TFCP2L1 SLC26A4

TNFAIP6 TFF3 SLC26A4-AS1
TOP2A TMEM139 SMAD9
UHRF1 TNFRSF11B SORBS2
VCAN WSCD2 SORD

TPO
TXNL1

Figure 12.8: Genes that activate Up S1 genes (Red nodes). Orange colored nodes represent genes
resulting as significant in the PTC vs normal comparison. Triangles represent significantly up-
regulated genes and inverted triangles represent significantly down-regulated genes. The histogram
shows the distribution (and color grade) of the fold change values for orange colored nodes.
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Table 12.3: Signatures Up in BioPlex Network - Ranked by Degree and Betweenness Centrality
(BC)

Gene Signature Degree BC

ICAM1 s1 33 10307
FN1 s1 18 4201

ULBP2 s1 14 3885
MRC2 s1 12 3753

RAB27B s1 11 3374
EDIL3 s1 7 1242

COL10A1 s1 7 1106
ALDH1A3 s1 6 1582

NTM s1 6 876
TYMS s1 5 1303
NOX4 s1 2 100
PLAU s1 2 17

ASPM s2 31 10188
PBK s2 12 2431

MELK s2 12 2135
CEP55 s2 11 2521
TRIP13 s2 8 1990

DLGAP5 s2 7 3428
E2F7 s2 1 0

CDKN3 s2 1 0

PLAUR s3 59 18180
LOXL2 s3 21 3265
BCAT1 s3 19 6322

COL1A1 s3 12 2747
UHRF1 s3 11 2726

NUSAP1 s3 10 2193
RRM2 s3 8 673
TOP2A s3 7 980
COL5A1 s3 7 275
BUB1B s3 5 201
THBS1 s3 4 488

COL1A2 s3 4 179
VCAN s3 3 721

KIAA0101 s3 2 0
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Table 12.4: Signatures Down in BioPlex Network - Ranked by Degree and Betweenness Centrality
(BC)

Gene Signature Degree BC

FAM167A s1 48 19278
GPM6A s1 19 3995
LRP1B s1 17 5444
KCNIP4 s1 10 3346

CSGALNACT1 s1 9 1053
TMEM139 s1 2 369
TCEAL2 s1 2 369

DPP6 s1 2 36
TFCP2L1 s1 1 0
STXBP5L s1 1 0

SNRPN s2 89 12983
FAM189A2 s2 48 10372

TSHR s2 8 1707
KLHL14 s2 7 1030
NEBL s2 4 1104

PLEKHH1 s2 2 369
CDH1 s2 2 100
CLIC3 s2 1 0

ATP8A1 s2 1 0

FGFR2 s3 38 12564
FREM2 s3 15 3371

HSD17B6 s3 11 2603
SMAD9 s3 5 1104
SORD s3 2 1101

KIAA1456 s3 2 369
MATN2 s3 2 0
PRTG s3 2 0

FCGBP s3 1 0
HLF s3 1 0

the ATC-PTC comparison (Figure 12.9).
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Figure 12.9: Genes that activate Up S genes (Red nodes). Orange colored nodes represent genes
resulting as significant in the PTC vs normal comparison. Triangles represent significantly up-
regulated genes and inverted triangles represent significantly down-regulated genes. The histogram
shows the distribution (and color grade) of the fold change values for orange colored nodes.
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Discussion

In this study, in order to investigate the molecular mechanisms involved in the
thyroid cancer progression, we analyzed gene expression profiles of normal thyroid,
papillary thyroid carcinoma (PTC), and anaplastic thyroid carcinoma (ATC) sam-
ples.

A principal component analysis applied to entire dataset of expression pro-
files showed a gradational trend separating normal, PTC, and ATCs samples. We
observed that many deregulated pathways in the comparison between ATC and nor-
mal samples were also deregulated in the ATC-PTC and PTC-normal comparisons.
These results indicate common oncogenic alterations, supporting the hypothesis that
ATCs originate from preexisting PTCs. Recently, a study demonstrated that the
allelic frequency of TERT mutations increase from PTC to ATC [95], indicating that
the tumor progression may result from the expansion of subclones in the advanced
disease.

Then, we separated differentially expressed genes based on two general trends:
Trend Up and Trend Down, representing genes with increasing and decreasing ex-
pression levels along tumor progression, respectively. For each trend, we defined
three signatures representing the highest deregulated genes in the normal to PTC
(S1) or PTC to ATC (S2) transitions, and those highly deregulated in both steps
(S3).

Weinberger et. al. [96] proposed a list of ATC-specific genes, based on the
meta-analysis of 85 samples that were also evaluated by our study. We observed
that 13/17 genes defined by us as highly up-regulated in the PTC-ATC transition
(Trend Up signature S2) were concordant with their list. Our results also confirmed
their observation about the importance of cell cycle controlling processes in the
ATC tumor biology. However, they reported genes that we observed as signatures
for both normal-PTC and PTC-ATC transitions: 2/36 were defined as Trend Up
signature S3, and 8/40 and 4/40 genes were defined as Trend Down signatures S1
and S3, respectively. As they did not performed all possible comparisons between
tissue types, some genes that they reported as ATC signature were also deregulated
in the normal to PTC transition. Again, these observations suggest that PTC and
ATCs have common transcriptional alterations originated from a unique tumorigenic
origin.

Trend Up Signatures
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The genes in the Trend Up signatures (Table 12.2) agree with the role of MAPK
signaling pathway in thyroid cancer tumorigenesis. For example, in PTCs, this
pathway contributes to cancer malignancy by activating the urokinase plasminogen
activator receptor (PLAUR) [97, 98], which was reported in the signature S3. Ad-
ditionally, the signatures S1 and S2 also presented other genes associated with this
receptor: MRC2 and PLAU in the S1; SRPX2 and SERPINE1 in the S2.

Aberrant MAPK signaling permits the release, in the extracellular matrix, of
proteins that interact with integrins and non-integrin membrane receptors, result-
ing in autocrine and paracrine loops that promote tumor progression and metas-
tasis [99, 100]. Our results indicate that most of the genes up-regulated in the
normal-PTC transition were associated with the extracellular matrix organization.
Specifically, the integrin ligand ICAM1, presented in the Trend Up signature S1,
resulted as highly central in the protein-protein interaction network (Table 12.3),
suggesting it as candidate for targeted therapy strategies. In fact, recent studies
demonstrated ICAM1 prognosis potential in different tumor types [101–103], and
its downregulation attenuated the metastatic ability of human breast cancer cell
lines [104].

The analysis of the transcriptional regulatory networks (Figures 12.8 and 12.9)
showed that the transcriptional factor RELA activates 4 and 3 genes from the signa-
tures S1 and S2, respectively. The RELA protein integrates the NFKB transcription
factor, which controls proliferative and anti-apoptotic signaling pathways in thyroid
cancer cells [105, 106]. It has been demonstrated that the RELA expression differ-
entiated PTC according to clinicopathological parameters, indicating that it may
contribute to tumor growth and aggressiveness [107].

Trend Down Signatures

The trend down signatures (Table 12.2) presented the following genes related to
iodide-handling machinery: TSHR and TG in the S1; and TPO and SCL26A4 in the
S3. It has been demonstrated that BRAF mutated thyroid tumors have decreased
expression of these genes, which may explain the inefficiency of the radioiodine
treatment in ATC tumors. In fact, TSHR signaling seems to be protective against
malignant transformation of thyroid cells, and low serum levels of TSH are associated
with common genetic variants that predispose to increased risk of thyroid cancer
(Reviewed in [87]).

The trend down signature genes FAM167A, SNRPN, and FGRF2 resulted as
highly connected in the protein-protein interaction network (Table 12.4), indicat-
ing their importance in the cell signaling transduction. In fact, FGFR2 has been
reported as downregulated in thyroid cancer [108–110] and further research about
the role of these genes in thyroid tumors may indicate the most important silencing
processes that takes place in tumor development and progression.

Conclusion

We believe that our study provides evidence for the understanding of mecha-
nisms leading to thyroid cancer progression. We provided gene signatures related
to each progression step: from normal tissue to PTC, and from PTC to ATC. The
signatures present genes already reported in the literature as related to thyroid can-
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cer, but they also propose, for the first time, several genes that have never been
investigated before for their role in thyorid tumors. As a future perspective, we will
validate the changes in the expression of the signature genes in cases which patients
presented both the PTC and ATC cancer forms.
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A Part I

Table A1: AML samples coverage

Sample Coverage Sample Coverage

a1010d 79.18 b2030d 135.70
a1010s 94.93 b2030s 67.26
a1015d 105.30 b2031d 87.43
a1015s 52.12 b2031s 73.57
a1024d 146.72 b2033d 110.66
a1024s 63.22 b2033s 64.00
a1025s 79.17 b2035d 46.90
b1001d 99.34 b2035s 30.29
b1001s 75.51 b2036d 76.52
b1006d 68.84 b2036s 41.76
b1006s 65.74 b2038s 32.96
b1014d 118.81 b2039d 63.53
b1014s 55.87 b2039s 30.68
b1026d 106.22 b2040d 48.33
b1026s 67.58 b2040s 27.33
b1028d 124.08 b2042d 50.20
b1028s 68.94 b2042s 30.43
b1034d 95.15 b2043d 82.97
b1034s 71.51 b2043s 47.77
b1041d 80.63 b2045d 96.68
b1041s 40.84 b2045s 33.30
b2002d 72.04 c0017d 60.52
b2002s 26.51 c0017s 54.01
b2004d 68.14 c0018d 118.56
b2004s 38.80 c0018s 82.50
b2005d 69.98 c0022d 40.15
b2005s 78.20 c0022s 73.52
b2007d 78.49 c0046d 43.85
b2007s 60.39 c0046s 39.47
b2008d 109.54 d0027d 162.91
b2008s 81.69 d0027s 62.02
b2009d 115.84 n0187s 64.23
b2009s 58.90 n0195d 62.33
b2023d 106.21 n6364d 71.65
b2023s 80.28 n6364s 33.63

Names ending with d refer to tumor samples and those ending with s refer to saliva samples
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Table A2: ALL samples coverage

Sample Coverage Sample Coverage

0010jnd 137.37 01082s 126.88
0010jns 98.15 01833d 135.79
0011ltd 121.64 01833t 123.13
0011lts 144.29 02903d 116.14
003fkd 124.72 02903t 131.85
003fks 102.23 07298d 132.96
00461l 120.99 07298t 142.72
00461s 110.88 10601d 127.22
004pjd 148.67 10601t 132.14
004pjs 137.90 10861d 100.13
005djd 118.63 10861t 127.39
005djl 103.19 11232d 49.10

006mjd 140.46 11232t 125.49
006mjs 122.98 11876d 134.49
00798d 127.93 11876t 147.47
00798t 116.11 11950d 134.55
007tkd 171.06 11950t 178.08
007tks 60.83 12572d 132.03
00808d 119.51 12572t 131.69
00808t 138.27 13921d 126.43
00889d 98.31 13921t 136.60
00889s 83.58 16661d 96.59
008pbd 195.29 16661t 107.33
008pbs 62.19 24631d 108.55
00928d 80.01 24631t 128.74
00928s 91.38 25171d 115.19
00963l 144.49 25171t 74.65
00963s 124.14 30836d 123.61
00994d 122.67 30836t 117.87
00994s 77.25 33121d 138.74
01059d 61.55 33121t 136.23
01059s 60.61 34070d 141.15
01061d 143.52 34070t 132.70
01061s 128.78 41761d 154.76
01067d 76.80 41761t 129.73
01067s 57.70 48471d 142.82
01076d 134.96 48471t 136.68
01076s 139.03 85112d 107.70
01079d 59.66 85112t 134.78
01079s 65.16 98978d 125.41
01082l 139.26 98978t 128.71

Names ending with d, r or l refer to tumor samples; those ending with s refer to saliva samples

Table A3: GIST samples coverage

Sample Coverage

SRR1299146 70.31
SRR1299147 78.41
SRR1299145 82.47
SRR1299144 70.28
SRR1299141 84.99
SRR1299140 84.48
SRR1299139 68.67
SRR1299138 61.43
SRR1299137 74.17
SRR1299136 75.23
SRR1299135 69.11
SRR1299134 78.23
SRR1299133 77.91
SRR1299132 72.11
SRR1299131 87.47
SRR1299130 83.92

The sample names are their respective SRA accession number
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Table A4: Lung Adenocarcinoma samples coverage

Sample (SRA acession number) Coverage

ERR166339 159.23
ERR160136 71.30
ERR166338 211.30
ERR160124 91.04

The sample names are their respective SRA accession number
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